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INTRODUCTION

There are several definitions of direct and inverse problems. In physics,
the direct problem means the determination of states using model param-
eters and the inverse problem means the determination of parameters of
models using given states. Often the model is described by differential or
integro-differential equations. Then the direct problem means the solution
of the equation subject to proper boundary and/or initial conditions. In
this narrower mathematical sense, the inverse problem means the identifi-
cation of parameters of the equation (e.g. coefficients, free terms, kernels)
or boundary or initial conditions on the basis of information available on
the solution of the direct problem. Different mathematical and physical
aspects of inverse problems for partial differential equations can be found
in monographs and articles [2, 8, 20, 22, 23, 26, 38, 39, 51, 59].

An important issue is the well-posedness of a posed problem. A prob-
lem is well-posed in the sense of Hadamard [17] if the solution exists, is
unique and continuously depends on the data (the latter one is the so-
called stability requirement). In case the problem is not well-posed, it is
called ill-posed. In case of nonexistence the problem is over-determined and
contradictive. The non-uniqueness or non-stability indicates lack of infor-
mation. Provided the solution exist, usually it is possible to find functional
spaces where it is unique and stable. However, for an inverse problem those
spaces often contain derivatives of data, which are not directly measurable.
This means ill-posedness from the practical viewpoint. In case the spaces
where the problem is well-posed contain derivatives up to some finite order
from the data then the problem is called moderately ill-posed. The highest
degree of the derivative involved in such a space is called the degree of ill-
posedness of the problem. In case such spaces involve all derivatives of the
data, the problem is called severely ill-posed. To solve ill-posed problems,
regularization techniques are used [9, 19, 38, 62].

Starting from ca 1970 models with memory to describe heat processes
were introduced and developed [6, 16, 36, 37, 49, 50, 52] (see also the
monographs [1, 57]). In those models the temperature satisfies parabolic
integro-differential equations that contain integral terms with kernels re-
lated to the "memory” of the material. Incorporation of memory terms
brings along an inertia to the heat process and such models are more rel-
evant from the practical viewpoint. In parallel, models with memory were
introduced for mechanical processes, too (viscoelastic materials), leading
to hyperbolic integro-differential equations [10, 58].

The study of inverse problems for parabolic and hyperbolic integro-
differential equations with memory terms started in the middle of 1980s.
First series of papers [12, 14, 24, 30, 31, 32, 33, 34, 48, 64, 66] was devoted to
the identification of time-dependent kernels using information about certain



traces of the solutions of the direct problems over the time. Such problems
are moderately ill-posed and can be reduced to Volterra equations of the
second kind. In case the parabolic equation is linear, the corresponding
Volterra equation contains nonlinearities that are only of convolution type.
In [24] a method of norms with exponential weights was proposed to prove
global (in time) existence and stability of the solutions of such problems.
This method was exploited in many subsequent papers.

Approximately in the middle of 1990s the study of inverse problems to
determine space- and time-dependent memory kernels in parabolic integro-
differential equations started. One class of treated problems consists in
identification of kernels that depend only on some part of the space vari-
ables or have radial or else symmetries under information about traces of
the solutions of the direct problems over the time, again [7, 11, 28]. Into
this group of results we can put also papers dealing with determination of
kernels representable in the form of finite sums of products of known space-
dependent and unknown time-dependent functions [35, 53, 54, 55]. It turns
out that those problems still admit the reduction to Volterra equations of
the second kind and can be treated as before, in particular the method of
weighted norms enables to prove global existence and stability.

In case the kernel depends on all space variables, the inverse prob-
lem may be posed on the basis of the Dirichlet-to-Neumann map. The
uniqueness of the solution of such a problem was proved in [25]. The
proof adjustes the celebrated method of Sylvester and Uhlmann [61] to
the integro-differential case.

Another direction is the treatment of problems to determine other
space-dependent parameters than the memory kernels. In case the un-
known parameter of the equation depends only on space variables, it is
natural to use an additional information of the same structure in the in-
verse problem, e.g. traces of solutions of direct problems at fixed time
values (instant conditions) or integrals over fixed time domains (integral
conditions). Those problem are not of Volterra type any more. For ex-
ample, the problem to determine a space-dependent free term in a usual
parabolic equation by means of final over-determination of the solution can
be reduced to a Fredholm equation of the second kind [21]. There are two
possibilities to handle such type of problems. One way consists in applying
the fixed point argument under certain smallness restrictions (local results).
This was exploited in papers [45, 47]. Another way is to avoid smallness
restrictions and to apply the Fredholm alternative. Then the uniqueness
implies the existence and stability. Actually, the latter one is the starting
point of the investigations of the present thesis.

The first aim is to prove uniqueness of the solution of the inverse
problem to determine a space-dependent component of a source term of
a parabolic integro-differential equation in case the solution of the direct
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problem is over-determined at the final moment of time (problem IP1)
without assuming smallness restrictions (global result). This was previ-
ously proved for the usual parabolic equation in [21] (see also [4] for the
semi-linear case). The proof uses a positivity principle for the direct prob-
lem (e.g. positivity of data implies the positivity of the solution) that is
an immediate consequence of the well-know maximum principle. Thus, in
the first step, we prove such a principle for parabolic integro-differential
equations. Further, by means of the positivity principle the uniqueness of
the mentioned inverse problem is shown. The assumptions contain certain
positivity and monotonicity restrictions on the time-dependent component
of the source term. Making use of the proved uniqueness and Fredholm-
type results for an analogous problem for the usual parabolic results, we
prove the existence and stability of the solution of the inverse problem.
We mention that the existence and stability was previously proved in [46]
under the assumption that the memory kernel is positive and the solution
of inverse problem is unique. We do not need the positivity of the kernel
in the Fredholm-type result.

The next aim is to prove the global uniqueness and local existence and
stability for inverse problems to determine a lower-order coefficient and a
coefficient of the time derivative involved in a parabolic integro-differential
equation from the final data concerning the solution of the direct problem
(problems IP2 and IP3). In this connection the previously obtained results
for the inverse source problem and the Banach fixed-point theorem can be
applied.

In addition to mentioned positivity and monotonicity assumptions, these
results require also sufficient smoothness of the data. The stability esti-
mates contain derivatives of the data up to the second order. Therefore,
these inverse problems are moderately ill-posed. This complicates the gen-
eralization of the results to non-smooth models (e.g. transmission prob-
lems). Inverse transmission problems for time-dependent kernels and given
additional information along the time axis can be treated assuming addi-
tional regularity of the problem in a neighborhood of the trace where the
additional information is given [29]. But this is not the case when this
information is given in an instant form over the space domain where the
direct problem is not regular.

In the second part of the thesis we consider inverse problems to deter-
mine parameters in parabolic integro-differential equations using instant
and integral additional data in such a manner that the solution is under-
stood in a non-exact sense, namely we deal with quasi-solutions of these
problems that minimize certain cost functionals. In this connection we pose
the direct problem in a non-regular (weak) form and treat inverse problems
to determine several parameters simultaneously.

More precisely, we consider:
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e an inverse problem to reconstruct several components of a free term
depending either on space or time variables making use of instant
conditions given at different time levels (IP4);

e an inverse problem to determine space-dependent components of the
free term and an initial condition from integral conditions over time
containing different weights (IP5);

e an inverse problem to determine two kernels and a lower order co-
efficient from a final condition and two conditions for traces of the
solution of the direct problem over time (IP6).

First two problems are linear and the latter one is nonlinear. The exis-
tence of the quasi-solutions may be proved making use of the Weierstrass
existence theorem [65]. The proof is easy for the problems IP4 and IP5,
but more complicated for the problem IP6. In latter case we have to show
the weak continuity of the solution of the direct problem with respect to
the parameters to be recovered. We will do it in the one-dimensional case.
In general, the uniqueness of the quasi-solutions may be proved using the
strict convexity of the cost functional. Unfortunately, the latter one may
not hold for the problems under consideration. However, corresponding
regularized problems have unique quasi-solutions due to the strict convex-
ity. The stability issue of quasi-solutions falls outside of the content of the
present thesis.

In addition, we prove the Fréchet differentiability of the cost function-
als and deduce formulas for the Fréchet derivatives in terms of solutions
of certain adjoint problems. To this end we introduce an integrated con-
volutional form for the weak direct problem. This form does not contain
the time derivative of a test function. Operating with such a form of di-
rect problem, we develop a general method to derive adjoint problems and
apply it in particular cases.

Finally, we discuss issues related to the gradient method to find the
quasi-solutions. The components of the gradient are expressed in terms
of the mentioned solutions of the adjoint problems. We will show mono-
tone convergence of the gradient method. This result is a generalization
of the former work [18] related to inverse problems for the usual parabolic
equation.

The main novelties of the thesis are:

1. a positivity principle for parabolic integro-differential equations is
proved;

2. the global existence, uniqueness and stability for an inverse prob-
lem to determine a space-dependent component of a free term of a
parabolic integro-differential equation in case of given final data are
proved;
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3. the global uniqueness and local existence and stability for inverse
problems to determine a lower-order coefficient and a coefficient of a
time derivative of a parabolic integro-differential equation in case of
given final data are proved;

4. a general method to derive adjoint problems for Fréchet derivatives
of cost functionals corresponding to inverse problems for parabolic
integro-differential equations in a weak form is developed and applied
particular inverse problems;

5. the existence of quasi-solutions to particular inverse problems with in-
stant and integral additional conditions for parabolic integro-differen-
tial equations in a weak form is proved in special cases.

Summing up, the thesis contains a systematical theoretical study of in-
verse problems for parabolic integro-differential equations with instant and
integral conditions, which has not been done before.

The results of the thesis have been presented in the following interna-
tional meetings:

1. the conference Direct, Inverse and Control Problems for PDE’s - DI-
COP, Cortona (Italy), 22 - 26.09.2008;

2. Chemnitz—RICAM Symposium on Inverse Problems, Linz (Austria),
14-15.07.2009;

3. 17th International Conference Mathematical Modelling and Analysis,
Tallinn, 6-9.06.2012;

4. 18th International Conference Mathematical Modelling and Analysis
and 4th International Conference Approximation Methods and Or-
thogonal Expansions, Tartu, 27-30.05.2013.

Let us give an overview of the contents of the thesis. Thesis contains
three chapters.

In Chapter I physical background of the problem is discussed and basic
parabolic integrodifferential equation is deduced. Moreover, notation used
throughout the thesis is introduced.

Chapter 2 contains results obtained in the smooth case when all terms
in the parabolic equation are regular functions. We start by proving basic
well-posedness results for the direct problem and establish the positivity
principle (§2.1, 2.2). Thereupon, in §2.3 we study the problem to determine
the space-dependent component of a free term and in §2.4 we treat the
inverse coefficient problems.
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Chapter 3 is devoted to the non-smooth case when the parabolic equa-
tion contains singular distributions. In §3.1 we prove well-posedness results
for the direct problem and introduce the weak convolutional form of the
direct problem. Further, in §3.2 we formulate three particular inverse prob-
lems in the sense of quasi-solutions, propose the general method to deduce
adjoint problems for Fréchet derivatives of cost functionals and apply this
method to the posed inverse problems. §3.3 is devoted to the existence of
quasi-solutions. In §3.4 briefly the discretization discussed.
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1 PHYSICAL BACKGROUND AND NOTATION

1.1 Physical background and the integro-differential equa-
tion

Let us deduce the basic parabolic integro-differential equation that will
appear in our inverse problems in next chapters.

In linear theory of heat conduction with memory in a medium that is
generally inhomogeneous and anisotropic the following constitutive rela-
tions are assumed [3, 6, 13, 14, 16, 33, 50, 52, 54]:

t
Za,] T)ug, (v t)+/ m(t—r1 Za,] T)ug; (v, 7)dT,

(1.1)
1=1,...,n,
t
clart) =A@ [ulat) + [ alt = ryuCa,r)dr] (12)
—00
where x is the space variable, t is the time, ¢ = (q1,...,¢n) is the heat

flux, e is the internal energy and w is the temperature. Moreover, a;; is the
conductivity matrix that in the isotropic case has the form a;;(z) = a(x)l
with some function « and the unity matrix I, and (§ is the heat capacity.
The functions m and p are the heat flux relaxation kernel and the internal
energy relaxation kernel, respectively. They express the memory of the
material. We assume that the memory is synchronous in all points of the
medium, i.e. m and p depend only on the time.
Further, we make use of the continuity equation

ei(z,t) + divg(z,t) = x(x, ), (1.3)

where y is the source term. Inserting (1.1) and (1.2) into (1.3) and assuming
that u = 0 for ¢t < 0 we come to the following parabolic integro-differential
equation:

Blu+ p*uly = Au—m* Au + x, (1.4)

n
where A = ) % (aij a%j).
ij=1 "

Here and in the sequel the symbol * stands for the time convolution,
i.e.

vy * va(t) = /0 v1(t — T)vo(T)dT.

In this thesis we generalize this model mathematically. Namely, we
assume the operator A in Eq. (1.4) be of the form

n

A= Z% %%+Z<%zmmw (15)
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where a;j, a; and a are some coefficients. If necessary, we write A(t) to
indicate the dependence of A on t.

We will consider the solution u of the integro-differential equation (1.4)
for the arguments
(z,t) € @ =2 x(0,T),

where ) € R"™ is an n-dimensional open domain and T > 0 is a fixed
number.

We are not going to specify the regularity of Q. We simply suppose
that Q is sufficiently smooth in order to guarantee our statements to hold.
We denote by I' the boundary of Q, by v(z) = (v1(z),...,v,(x)) the outer
normal of ' at the point z € I and by S the boundary cylinder, i.e.

S=Tx(0,T).

Throughout the thesis we assume that the z-dependent coefficient ma-
trix a;; of the higher order part of the operator A is uniformly elliptic,
ie.

Z aijhiNj > €]A? in Q for any A € R" and some € € (0,00) (1.6)
ij=1
and z-dependent coefficient 3 is strictly positive:
B> pFo in  with some fy € (0, 00). (1.7)

(In Sections 2.1 and 2.2 the relations (1.6) and (1.7) will be assumed in a
more general form).

1.2 Functional spaces

In this section we define most important functional spaces to be used in
the study of inverse problems and give some notation.

Firstly, we introduce the Lebesgue spaces of functions defined on a set
U C R!, 1 € N. They are

1/p
D)= {0 ol = [ [ owlPas] < o) 1<p <o

(U) =A{v : |[vllpee) = esssup |v(y)| < oo}
yeU
The space L?(U) is a Hilbert space with the inner product (v, w) 2 =
Jor v(y)w(y)dy. The symbol C(U) stands for the space of functions, contin-
uous on U In case U is compact, C(U) is a Banach space endowed with
the usual maximum norm [|v||¢y = I;leaUX lu(y)].
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Next, let X be a Banach space. We generalize the Lebesgue spaces to
abstract functions v defined on the interval (0,7") and having values in X:

T 1/p
PO.TX) = (o Dol = [ | Io01a] < ) 120 <00,

L%(0,T;X) = {v : [[v]|e(or,x) =ess sup |lv(t)]|x < oo}
te(0,T)

and for 1 < p < oo and [ € N define the abstract Sobolev spaces:

W£(07T§X) = { HUHWZ(OTX Z [0 HLP 0,7;x) < OO}
7=0

In case X =R, we write merely Wzﬁ((), T;R) = Wé((), T).

Moreover, by C([0,T]; X) we denote the Banach space of abstract func-
tions, continuous on [0, 7).

The symbol Z(X,Y’) stands for the space of linear bounded operators
from a Banach space X to another Banach space Y. In case X =Y we
write merely Z(X).

In the first part of the thesis (devoted to smooth problems) we need
some spaces of fractional order and anisotropic spaces of z- and (z,t)-
dependent real-valued functions. To defined them, let us first introduce the
following notation for difference quotients of such functions with powers:

(V)p(r, x2) = HEZLED (o), (1, w93 ) = UELE2l)

(V)p(w5t1,t2) := v(@t)—v(zts)

[t1—t2?

For any real numbers p € [1,00) and [ € [0,00) we define the Sobolev-
Slobodeckij spaces (cf. [43, 60])

W) = {v : lollwyey == % [fo ID?0(@)Pda]

laf<[1]

D=

hSA

+Or > [ f |<Dav>ﬂ+l—[l}($1a$2)|pd$1d$2] <oo},
la)=[l] - QxQ P

1

1.1 .
Wy (Q) = qv : [jv]| 1 = > |D! D%v(z, t)|Pdxdt|”
P { W, 2 (Q) 2j+a|<[l][Q><[f0T] ! }
1

+@l Z [ f ‘ D D U +l m(a:l,xg, } d:rldxgdt}

Ztlel=l] " 82X
1
+@L Z [ ’<D5ng>l+l72jf\a| (l’; tl, tg)}pdxdtldtz} P < OO}
2 0<l—2j—|al<2 - 2x[0,1] 2 CR
x[0,T]
Here o = (a1, ...,a,) € N is the multi-index with |a| = a1 + ... + ay,

[l] is the greatest integer <[ and ©; = 0 and ©; = 1 in the cases of integer
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[ and non-integer [, respectively. We mention that in the case of integer [,
W;,(Q) is the usual Sobolev space of functions defined on (2.
Furthermore, for any non-integer [ > 0 we define the Holder spaces

cl(Q) = {v . D% € C(Q) for |a| < 1],

lolii= 5 [sup|D(@)|+ sup [(D)p(ar,a2)] | < oo},
| <[7] e T1,r2€)

Ch3(Q) = {v . DID% € C(Q) for 2j + |a| < [I],

loll, 2 := > [ sup D{D‘;U(x,t)‘ + sup
D) 2j+|0¢‘§m (z,t)€ (w1 ,x9,t)E
Qx[0,7] QxQx[0,T]
+ sup ’(DgDav>ﬂ(x;t1,t2)H< oo}
(z,t1,t3)€ 2
Qx[0,7T]x[0,T]

(D] D)y (w1, w25 t)‘

The definitions of WII,% and C"2 are in a standard manner extended from
@ to the boundary cylinder S (for details see [43]). For integer [ > 0 we
define .

O Q) = {v : DID% € C(Q) for 2j + |a| < 21}.

Finally, we introduce specific notation related to comparison of real-
valued functions. Let U be an open subset or a closer of an open subset in
R 1eN, and f,g : U — R. We write

f>g inU if f(x) > g(x) ae. x €U,

f>g in U if for any open set Uy such that Uy C U (1.8)
there exists €, > 0 such that f > g+¢, inU.

18



2 SMOOTH PROBLEMS

In this chapter we will pose and study problems for (1.4) under the as-
sumption that this equation holds in the classical sense. The results with
some modifications are taken from Publication I.

The starting point is the following initial-boundary value problem

Blu+pxuly = Au —m*Au+x in Q, (2.1)
u=wug in 2x {0}, Bu=b in S,

where ug, b are given functions, B is the boundary operator defined either
by

Bu=u (we call it case I) (2.3)
or by
Bu=w-Vu—m=xw-Vu (we call it case II), (2.4)

the operator V stands for the gradient with respect to the vector of space
variables z €  and w(z) = (wi(x),...,wn(z)) is an z-dependent vector
satisfying the condition w - v > 0. We assume that w € (C1(I"))".

We define a number ¥ that depends on cases I and II as follows:

9 — 0 in casel
“ 1 1 in case Il

This enables unified formulation of statements for direct and inverse prob-
lems in both cases (see e.g. Theorem 2.1).

Note that in case II the condition Bu = ¢ is a generalized boundary
condition of the second kind. Indeed, if w; = Y_:" | a;;v; then Bu = b takes
the form —¢q - v = b. This is the physical flux condition.

Let us formulate the following inverse problems that use over-determined
final data at t = T of the solution of (2.1), (2.2) (an inverse free term prob-
lem and two inverse coefficient problems).

IP1: Let the free term be of the following form:

x(x,t) = 2(z)¢(x,t) + xo(z, ). (2.5)

Given u, m, 8, aij, a;,a, ug, b, ¢, xo and a function up(z), x € Q, find z and
u so that the relations (2.1), (2.2), (2.5) and

u = ur in Q x {T} (2.6)

hold.
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IP2: Let a; = 0. Given p,m, 3, a;j, aj, uo, b, x and a function up(x), z € Q,
find a and u so that the relations (2.1), (2.2) and (2.6) hold.

IP3: Given p, m,a;j,aj,a,uo, b, x and a function ur(z), z € , find g and
u so that the relations (2.1), (2.2) and (2.6) hold.

It turns out that it is more convenient to treat the direct problem (2.1),
(2.2) in case the convolution is removed from the operator A. Let us trans-
form (2.1), (2.2) to such a form. Define the resolvent kernel m of the kernel
m as the solution of the following Volterra integral equation:

() — /O m(t — 7)i(r)dr = m(t), t e (0,T). (2.7)

It is well-known that in case m € LP(0,T") with p > 1 the solution m of (2.7)
exists, is unique and belongs to LP(0,T") (see e.g. [15]).
The equality (2.7) implies the following operator relation:

(I +mx)(I —mx) =1,

where I is the unity operator. Bringing the derivative with respect to ¢ into
the integral p*wu and applying the operator I+ m to the equation (2.1) and
the boundary condition (2.2) in case II we transform the relations (2.1),
(2.2) to the following form:

Blus +k*xu) =Au+ f inQ, u=uwuy in Qx {0}, Biu=g in 5,(2.8)

where
k=p+ p*m+m, (2.9)
f = x— Bpuo + M * (x — Buuo), (2.10)
By =B, g=b incasel, (2.11)
Biu=w-Vu, g=b+m=b in case IL (2.12)

Summing up, we can formulate the following lemma.

Lemma 2.1 In case all t-dependent data in (2.1) and (2.2) belong to the
space LP(0,T) with respect to t for any x with some p > 1, the problem
(2.1), (2.2) is equivalent to the problem (2.8) in a class of functions u such
that w, ug, Ug,, Uz, z; belong to LP(0,T) with respect to t for any x.

2.1 Well-posedness results for direct problem

In present and the next section we prove existence, uniqueness, stability and
a positivity principle for the solution of the direct problem (2.8). These re-
sults are used in the study of inverse problems in the subsequent sections.
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To the author’s opinion, the positivity principle has a scientific value inde-
pendently of the inverse problems. Therefore, we try to prove it as generally
as we can. For that reason we allow the kernel £ and the coefficients 3, a;;
and a; to depend both on the variables x and ¢ in Sections 2.1 and 2.2.
This means that A has the form

A= PHEN ) pa— (2, t) — 1), 2.1
P AP SULLF Rt (213)

and the basic assumptions (1.6), (1.7) read
Z aijhidj > €[\ in Q for any A € R” and some ¢ € (0, 00), (2.14)
ij=1
B>By in@ with some Sy € (0,00). (2.15)

We start by formulating without a proof a technical lemma. It gives
two integral inequalities. Proofs of these inequalities are contained in Pub-
lication I, i.e. [27], p. 21 - 23.

Lemma 2.1 Define Q; = Q x (0,t), t > 0. The following assertions are
valid.

(i) Let k € LY(0,T; L>®(2)) and v € LP(Q) with some p € (1,00). Then
kxve LP(Q) and

t
IIk*vlm(QoS/O kGt =)@ 0l o @nydrs T € (0,T).  (2.16)

(ii) Letk € L%(O,T; CHQ)) and v € C’l’é(Q) with some l € (0,1). Then
kxve Cl’%(Q) and

2-1

t 37 2
IR m],<zw>

te(0,T)

Hk * UHCZ%(QQ < CO

with some constant Cy.

Now let us prove the existence, uniqueness and stability theorem for
the direct problem.

Theorem 2.1 Assume (2.14), (2.15). Then the following assertions are
valid.
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(i) Let 5,az],a],a € C’(Q1 k elLlﬁ(O T;L>®(Q)), f € LP(Q), uy €
— -9,
W; P(Q) and g € W; T ?2(8) with some p € (1,00). More-

over, in case 1 let p # 3 5 and the consistency condition ug = g hold in
I'x {0} if p > % and in case Il let p # 3 and the consistency condition
w-Vuy = g hold in T x {0} if p > 3. Then the problem (2.8) has
a unique solution in the space Wg’l(Q). This solution satisfies the
estimate

lullz ) < Cr{ I llzo@) + luoll_ .-

widiy H IO o pag g

P

where Cy is a constant depending on 3, a;j, aj, a and k.

(ii) Let B,a;j,aj,a € Cl’é(Q) and k € L%—l(O,T; CL()) with some | €
(0,1). Moreover, let f € C’l’%(Q), ug € C*H(Q), g € C2+l_ﬂ’1+%_g(5)
and in case 1 the consistency conditions ug = g, Bg: = Aug + f hold
in I' x {0} and in case 11 the consistency condition w - Vug = g hold

in I' x {0}. Then the solution of (2.8) belongs to C’Q‘H’H‘é(Q) and
satisfies the estimate

el i1yt < Co{Illl s + lollzs + Igllasy prys s} (219)
with some constant Cy depending on 3, a;j, aj, a and k.

Proof. The assertions (i) and (ii) in the usual parabolic case when k = 0
were proved in [60]. The proof of the present theorem is based on the
Banach fixed point theorem considering the problem (2.8) as a perturbation
of the problem in case k = 0. The contraction is achieved in norms with
exponential weights.

Let us start with the assertion (i). By Theorem 5.4 in [60], under the
assumptions of (i) problem (2.8) in case k = 0 has a unique solution @ in
the space WE’I(Q). Thus, (2.8) for u € Wg’l(Q) in case k # 0 is equivalent
to the following problem for the difference v =u —u € I/Vp2 1(Q):

Pup=Av —Bk*(vy+1)) n@, v=0inQx{0}, Bijv=0 inS.
(2.20)
Let F' stand for the operator that assigns to a function ¢ the solution w of
the problem

pwr=Aw+1Y in@Q, w=0inQx{0}, Bjw=0 inS. (2.21)

By Theorem 5.4 in [60], it holds F € Z(LP(Q), Wz (Q)). On the other
hand, due to the properties of 5 and the assertion (i) of Lemma 2.1 we have
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B(k * vy) € LP(Q) for any v € W' (Q). Consequently, the problem (2.20)
in VVp2 ’1(Qt) is equivalent to the following fixed-point equation:

v =Fv+Fu, where Fv=F(—p(k=x*wv)) (2.22)

and F € Z(W2(Q)).
Let t € (0,7) and define a cutting operator P; by the formula

P = { 8 iE gt\ Q Observing that F'v = FPw in @ and using (2.16)
we deduce the estimate
[Folly21q,) = IFBE*xv)lly2r g,y = 1FRBE*v)lly21 0,

< HFPt( (kx0r))lly21g) < HFH HPt( Bk xve)l e ()

t
= |FI[118CK *v0) | o < Ca /0 Ikt = D@0l . dr

with C5 = || F|| Hﬁ”c@)- Now we define the weighted norms |v||, =

sup efgtHvHme(Qt), o > 0, in the space W2 (Q) and deduce the esti-
0<t<T
mate

t
Fulls < C3 su e_"t/ k(- t —7)|| e v , dr 2.23
I1Folle < Cs sup et [kt =)l oz, (2.23)

t
= C3 sup / e T ENE( Lt — )| Loy T 0]y 61T < ollv]lo,
0<t<T Jo L i ) I HWp (Qr) ollvllo

where ¢, = C3 fOT e T|[k(-, T)|| oo () d7. Since k € L'(0,T; L*°(9)), by the
dominated convergence theorem it holds ¢, — 0 as ¢ — oo. Thus, there
exists op > 0 such that ¢,, < 3. Consequently, (2.23) shows that F is a
contraction. We conclude that the equation (2.22), which is equivalent to
(2.8), has a unique solution in Wg’l(Q).

Further, from (2.22) and (2.23) we deduce

. 1 .

lWlloo < 1Fvllo0 + 1Flloy < S (HI0lloe + llallo)-

This implies ||v]|s, < ||t]ls,- Taking into account the equivalency relations
of norms e =T ||-/lo < |Ille < |I-/lo = HHW2 1(@) We further have Hvaz 1) <

Hu||Wz '@ and by u = v+u we get ||u|]W2 1) < < (1+e% T)||uHW2 Q)
Recall that @ is the solution of (2.8) in case k = 0. According to The-
orem 5.4 in [60], ||17||W5,1(Q) is bounded by the right-hand side of (2.18).
Consequently, we obtain the estimate (2.18).

Secondly, we prove (ii). Here, in general words, we repeat the part
(1) of the proof, but in different spaces. Consider again the above-defined
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function u. By Theorem 4.9 in [60] it holds u € CQ+I’1+5(Q). This implies
that the problem (2.8) for u € C’QH’H%(Q) is equivalent to the problem
(2.20) for the difference v =u —u € C’2+l’1+é(Q).

Moreover, recall that F' is the operator that assigns to an element v
the solution w of the problem (2.21). In order to guarantee that Fy €
C’QH’Hé(Q), the element ¢ must satisfy the consistency condition ¢ = 0
in I' x {0} in case I. To this end, let us define the following Banach space
(that is a subspace of Cl’é(Q) in case I):

Ch3(Q) = (b € CH4(Q) : = 0in T x {0} in case I}

with the norm H¢|| c =119l L

2

(2.24)

Due to Theorem 4.9 in [60], again, we have F € DS,”(C(I,’%(Q), 2T (Q)).
According to the assumed properties of 3, k and the assertion (ii) of Lemma
2.1 we have B(/@ % V) € Cl’é(Q) for any v € C’2+l’1+é(Q). Moreover,
Bk *wvy) € C '3 (Q) for any v € CQ‘H’H‘%(Q), because the time convolution
is zero for t = 0. Now we see that the problem (2.8) for u € CQH’H%(Q) is
equivalent to the fixed-point equation (2.22) for v =u —1u € C’QH’H%(Q),
where F € £(C2H:143(Q)).

Let t € (0, ) and define a continuation operator P, by the formula

~ f .

HvHCL%(Q ) and Fv = F]Btv in @;. Thus, using (2.17) we obtain
”‘FUHCQ+Z 1+2 HF( (k *Ut))H 2+z,1+%(Q )
= HFPt( (k * Ut))HCQ-H 1+§( < HFPt( (k * Ut))||2+l,1+%
< FHIP(B (R * v)) (ko v)ll g @)
t 5=

< G bt = Dol arnnig g } ]

where Cy = Co|F|[||B]l, ¢- Defining the weighted norms |w||,
2
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= sup e 7w|| , 0 >0, in the space C’QH’Hé(Q), we deduce

1
0<t<T CFFE(Qu)

2 2—1
2

t
Foll, < C ”t[/{k-,t— L ar]
1Fvlle < Ca sup e ; Gyt = Delloll o g T

t

= ¢y sup | / [k ( =)
o<t<T  JO

2 2;1

_ 2-1
Xe UTHUHCQ-HJ-Q-%(QT)} dT}

< [ | e =i dr] lollo.
0

Since k € L%(O,T; CY()), by the dominated convergence theorem, the

) 2-1
coefficient UOT {e7 k(- t — 1)} 21 dT] * is small for large 0. Owing to
this, the proof can be finished as in case (i) making use of the fixed-point

argument and an estimate for |[u|,,;,, 1 in Theorem 4.9 of [60]. m
’ 2

2.2 Positivity principle

In this section we prove a positivity principle for the solution of (2.8).

Theorem 2.2 Assume (2.14), (2.15), k € W}(0,T; L>=(Q)), B, aij,aj,a €
C(Q) and

k>0, k <0. (2.25)

Let u € W' (Q) with some p € (1,00) solve the problem (2.8) and
ug >0, g>0, f>0. Then the following assertions are valid:

(i) u>0;
(ii) if, in addition, B,aij,aj,a € Cl’%(Q) with some l € (0,1) and there
exists an open subset Qf of Q such that f >0 in Q¢, then u(-,T) >0

in Q in case I and u(-,T) > 0 in Q in case IL.

Proof. It consists of 4 steps.

1. step. We prove the assertion (i) under the additional assumptions
ue C*HQ), ke W0,T;C(Q)), a <0. (2.26)
Since u = ug > 0 in 2 x {0}, there exists

to =sup{t: u(z,7) >0 for (z,7) € Q2 x[0,t],0<t<T}.
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In case the assertion w > 0 holds in @), we have ty = T. Suppose on the
contrary that ¢ty < 7. Then, we fix some h € (0,7 — 9] and define the set
Vio.n = Qx (to, to+h]. Note that the closure of Vi, p, is Vi, n = QX [to, to+h].
By the definition of ty and Vi, 4, there exists (z},t;) € Vi, such that
u(xy,ty) < 0. Let us introduce the following function:

u(z, )
2h

Since —puph < pp(t —to — h) <0 for t € [to,to + h], we have

v(x,t) = u(x,t) + pp(t —to — h), where pup=— > 0. (2.27)
u(x,t) — pph < v(z,t) <ulx,t) for (z,t) € Vi p- (2.28)

Observing (2.28), the definition of pj, and the inequality u(z},t}) < 0, we
see that for all (x,t) € Vj, , such that u(z,t) > 0, the relations

u(xy, th)

’U(Jj‘,t) > U(ZE,t) - /’th > _/'th = 9

> ul(xp, ty,) = v(@), ty)
are valid. They imply that

function v cannot attain its minimum over Vi, , (2.29)
in a point (z,t) where u(z,t) > 0. '

In particular, (2.29) implies that v cannot attain its minimum over Vi, p,
on the subset Vi 5 \ Vio.n =  x {to}, because there u > 0 in view of the
definition of ty. Therefore,

xn,th) € Vign + v(zh, tp) < vz, t) forall (z,t) € Vigh.

Moreover, v(xp,ty) < 0, because v(xp,tp) < v(zy,t)) < u(xy,t;) and
u(xy,ty) < 0.

Let us show that x = xj is the stationary minimum point of the z-
dependent function v(z,tp), i.e.

V’U((IZh,th) =0. (2.30)

This relation may fail only in case the minimum occurs in the lateral bound-
ary of Vi, pn,i.e. when z;, € I'. In case I we have u = g > 0 for z € I and, by
statement (2.29), z;, cannot belong to I'. Thus, it remains to show (2.30)
for the case II when zp € I'. In this case w- Vv =w-Vu =g in I'. Note
that then the inequality g(xp,t,) > 0 cannot hold, because otherwise v is
strictly decreasing in the inner direction —w(xy) at (zp,ty) which implies
that v(xp,ty) cannot be the minimum of v. Consequently, due to the as-
sumption g > 0, it holds g(x,tn) = 0 and we have w(zxyp,) - Vo(zp, tn) = 0.
In addition, in case n > 2 we also have 7 - Vu(zp,ty) = 0, where 7 is an
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arbitrary tangential direction of I' at xj, because x = xp, is the minimum
point of the z-dependent function v(x,t;) over the set I'.  Summing up,
& - Vou(zp,ty) =0, where £ is any direction. We obtain (2.30).

Now we are going to estimate the operator Lu = SB(us + k * u¢) — Au
of the equation (2.8) termwise at the point (z,t) = (xn,tn). By (2.27)
we have w¢(xp,tp) = vi(xp,tn) — pp. Since tp is the minimum point of
the t—dependent function v(xp,t) in the half-interval (to,to + k], it holds
ve(xp, tp) < 0. Thus, we obtain

ug(Tp, th) < —pip- (2.31)

Substituting u by v — pp(t — to — h) in the right-hand side of (2.13) we

N n
have Au = )7 ajjve,e; + Y ajve; + alv — pp(t —to—h)]. Since © = =y,
t,j=1 Jj=1
is the stationary minimum point of v(z,t;) and the principal part of A is
n n
elliptic (see (2.14)), the relations ) ajv,; and Y a;jvs,e; > 0 are valid at
Jj=1 4,j=1

(2,t) = (xn, tn). Thus, —Au(zp,tn) < a(zn, tn)[pn(th —to — h) —v(zp, th)].
By the additional assumption a < 0 and and the inequality v(xp,tp) < 0
we further get —Au(zyp, tn) < a(xp, tp)pn(t, —to—h). Since [t —to—h| < h
we deduce the estimate

— Au(:):h, th) S C5,uhh, (2.32)

where C5 = [lal|¢q)-

Finally, we estimate the term (k * u;)(xp, tn) in Lu(xp, ty). Integrating
by parts we have

th
/ k(@n, th — T)ur(2h, T)dT = (2, 0)u(wh, th) — k(wh, th)uo(zh)
0

to th
+/ ki(zp, tp — T)u(xp, 7)dT + / ki(zp, tp — T)u(xp, 7)dT.
0

to

Here —k(xp,tp)up(zy) < 0 and fgo ki(xp, tn — T)u(zp, 7)dT < 0, because
k>0, k <0, uy>0and u(xp,7) >0 for 7 € [0,p] by the definition of t.
Consequently, we can estimate as follows:

173 tn
k(xn, th—7)ur(zh, 7)dT < k(2p,0)u(zh, th)+ [ ki(zh, th—7)u(zn, 7)dT.
0 to

27



Substituting in the right-hand side u(zp,t) by v(xp,t) — pp(t —to — h), we
get,

th
/ k(zp, tp — 7)ur(xp, 7)dT (2.33)
0

th
< k(zh, 0)v(zh, th) + ki(zp,th — T)v(Th, T)dT —
to

— ik |:k($h,0)(th - t() - h) + /th k:t(xh,th - T)(T - tQ — h)dT .

to

In this relation we analyze separately the term ﬁ;h ki(zp, tp — T)v(zh, T)dT.
To this end, introduce the following subsets of [to, t3] :

U,j ={r € [to,tn] : v(zp,7) 20}, U, ={7 € [to,ty] : v(zy,7) <0}

Taking account of k; < 0 and the fact that v(zp, ty) < 0 is the minimum of
v(xp,t) on the interval [tg, ts], we deduce

th
/ kt(xh,th —T)U(xh,T)dT
to

= /+ ki(zp, ty, — T)v(zh, T)dT —l—/ ki(zp, ty, — T)v(zh, T)dT
U

h h

S/ ki(wp,th — 7)v(2n, 7)dT S/ ki(wp,ty — 7)d7 - v(ph,th)
Uy h
th

< kt(xhvth - T)dT ' U(ZEh,th) = (k’(l‘h,th - tO) - k(xha O)) U(mha th)
to

Using this estimate in (2.33) and taking into account k > 0, v(xp,tn) <0
we obtain

ty
E(zn,th — T)ur(zp, 7)dT < k(zh,0)0(2h, th)

0
+ (k(zp, th — to) — k(zp, 0)) v(zn, th)

—fin [k‘(fﬂh, 0)(tn —to — h) + /th k(zp,th —7)(T —to — h)dT]

< —pup [kz(wh, 0)(tp, —to — h) + /tth ki(zp, tp — 7)(T — to — h)dr] .
(2.34)

Let us put all pieces together. Making use of (2.31), (2.32), (2.34),
the assumption (2.15) and the relations pj, > 0 and |7 — tg — h| < h for
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T € [to, tp] we obtain

Lu(zp, tp) < Mh{—ﬁ(ﬂch,th) — B(xn,tn) [k‘(ﬂﬁh, 0)(tr, — to — h)

to

th
—I—/ ke(xp,tp — 7)(T — to — h)dT] +C'5h}

< i { =0+ (I8llo) [Bn, 0) + kel ooy +C5) }-

In case h > 0 is sufficiently small, due to the inequalities p, > 0 and Sy > 0
the relation Lu(xp,ty) < 0 holds. But this contradicts to the assumption
Lu = f > 0. Consequently, the supposition ty < 1" was not right. It holds
to = T, which by the definition of ¢g implies u > 0.

2. step. We prove the assertion (i) under the additional assumptions

u e CH(Q), ke W0,T;0(9)), ug = 0. (2.35)

Let us define & = e “tu, where 0 = laloa and insert u = % to the

equation (2.8). Expressing the t-derivative as follows: u; = ety + oe’tu
and dividing the equation by e°* we obtain

B(u+ou+e k[ +oe”u)) = Au+e 7. (2.36)

Let us transform the term with % in this equation:

t

ek * [e7 Ty + ot

t t
= / e " k(z, t — 7y (z, 7)dT + 0'/ e (2, t — 7Yz, T)dT
0 0

t t pt—r
= / e k(x, t — ) (x, T)dT + 0'/ / e 7"k(n)dn ur(z, T)dT
0 0 Jo

=k *

N

ts

where k(z,t) = e 'k(z,t) + o fot e~k (x,n)dn. Here we used the relation
u(,0) = up = 0 during the integration by parts. L
Thus, the equation (2.36) takes the form B(u; + k*u;) = Au+ f, where
n n

f=ef Au= > Qijlg,z; + Y ajlg; +au and a = a — o f3.
. =

1,j=1
Summing up, u solves the problem

By +k+u)=Au+f inQ, 2=0 inQx {0}, Blu=g in S,

where § = e~7%g. Since k € WL(0,T; C(Q)), it holds k € W (0,T;C(Q)).
The inequalities (2.25) yield k& > 0, k; < 0. Moreover, f > 0, g > 0, and
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due to the choice of ¢ and the condition (2.15), it holds @ < 0. By means
of the part 1 of the proof, we get @ > 0. This implies u > 0.

3. step. We prove the assertion (i) in the general case. It is enough to
prove this assertion for p € (1, 3). Indeed, a solution u of (2.8) that belongs
to the space Wg’l(Q) for some p € [%, o0) belongs to such a space for any
p € (1, %), too. Operating with solutions in WpZ’l(Q), p € (1, %), we have
not to deal with consistency conditions.

Let us formulate two problems:

Puy = (A—k(,0)8)u in @, u=uy in 2x {0}, Biju=g in S, (2.37)
Blig+ k*ig) = Ali+ fy inQ, G=0 in Qx {0}, Bia=0 in S, (2.38)

where fz = f — (ke x u) + Bkuo.
Firstly, we establish the existence of solutions of these problems. Due
to u € W2 (Q) and embedding theorems [43] we have ug = uloxqoy €

_2 1 )
Wo P (Q)and g = Biuls € W * ' % 2(8). Since k € W(0,T; L*(1))

and 8 € C(Q), the coefficient of the lower order term k(-,0)3 of the
parabolic equation in (2.37) belongs to L*°(Q). Using Theorem 5.4 in
[60] we conclude that problem (2.37) has a unique solution @ € Wy (Q).
Further, due to 8 € C(Q), k € WL(0,T;L®(Q)) C L*®°(Q) and uy €

2
W;_;(Q) C LP(Q2) we have Bkug € LP(Q). Moreover, in view of k; €
LY0,T; L°(Q)), & € W2 (Q) € LP(Q) and the Young’s theorem for con-
volutions, we get k; * w € LP(Q), which implies B(k; * u) € LP(Q)). Con-
sequently, due to f € LP(Q) we obtain fz € LP(Q). By Theorem 2.1 (i),
problem (2.38) has a unique solution @ € Wg’l(Q).

Adding the problems (2.37) and (2.38) and integrating by parts the
convolution term in fg, we see that the sum @ + @ solves (2.8). Hence, by
the uniqueness, it holds © = @+ @. According to the well-known extremum
principle for parabolic equations (e.g. [43] Ch. 3, Theorem 7.2), we have
@ > 0. This together with the assumptions of theorem implies fz > 0. In
order to complete the step 3 it remains to show that u > 0.

The idea to prove % > 0 consists in approximation of the problem (2.38)
by a sequence of smooth problems and applying the result of step 2 to latter
ones. Let us choose some functions 8™, a;7, a7, a™, fm km e C*>(Q) such
that

18™ = Blley: laif = aijllo@y lla]" = ajlloq, ™ = allog

. - (2.39)
/™ = fallLe@)> 1K™ = Ellwio o) — 0 as m— o0

and f™ =0in T x {0}. Due to (2.39), for sufficiently large m > M, g, the
relations max ||a} —aijl o) < 5; and [ —Bllo@@) < 520 are valid. There-
irj

fore, from (2.14) and (2. 15) we get the following elhptlclty and positivity
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inequalities for the matrix a;; and the coefficient 3™ in case m > M, g,:

( Aj > £IN? foranyz €, t€(0,T), \eR",

2 B
1 1
5m(x,t)2% for any z € Q, t € (0, 7).

HM3

3l

Further, on the basis of f ™ let us define the nonnegative approximation
fm(x,t) = W for the function f3z. Due to fz > 0 the inequality
1™ — fal < |f™— fu\ holds. Therefore, in view of (2.39) we obtain

1f™ = fallo@) < IF™ = fallog) — 0 as m — oc. (2.40)

The operation of taking the absolute value preserves the Holder-continuity
of a function. Therefore, ™ € Cl’é(Q) for any | € (0,1). The relation
f™=01inT x {0} yields f™=0in ' x {0}.

Finally, on the basis of k™ we define the new approximation for k:

E™(x,t) = f; 7" (x, T)dT + ¢ (),

where »™(z,t) = w and ¢"(z) = |km(x’T)|2+km(x’T). Then
k™ e W0, T;CHRQ)) for any [ € (0,1) and k™ > 0, k™ < 0. Moreover,
since i, < 0 and k& > 0, we obtain [ — k| < [k{" — k| and [¢™
( )] < ]km( T) — k(-,T)|. Observing these inequalities, the relation
fT T)dT + k(x,T) and (2.39) we deduce

1™ = Kl L1 (0,750 ()

< (T T\ m m

< J ess Sup [ft |5 (2, 7) — ke (2, 7)|dT + |¢™(x) — k(:c,T)]} dt
S

<T [H’%%" — ell o oo + 16T, T) — k('aT)HLOO(Q)] -0

as m — Q.

(2.41)

Now let us formulate the following sequence of approximating problems

for (2.38):

M + kK™ xul™) = A™u™ 4+ ™ in Q)
B (uf i) f Q (2.42)
™ =0 1in Q x {0}, Biu™ =0 in S,

where A™v = Z aw Uy + Z a vz;+a™v. Observing the proved regular-
t,j=1
ity of the data of these problems and Theorem 2.1 (ii) we conclude that for

each integer m > M, g,, (2.42) has the unique solution u™ € C2+l’1+%(Q).
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Subtracting (2.38) from (2.42) we obtain the following problems for the
differences v™ = u™ — w:

B + kxv") = Av" +¢™ iIn @, v"=0 in Qx {0}, Biv"=0in S
where
" = (A" — A) W +a) — (BT = B) v + G + ko (v + )]
=B+ 8" = BE™ — k) = (vf" + @) + [ — fa

Using the estimate (2.18) and the Young’s inequality for convolutions we
deduce

0™ ly21q) < Cillo™llLe@) < CLllF™ = fallzr @)

+O(m) ([0l + il ). where

C(m) = Cs lai} — aijll(c@yynen + 107" = ajll c@yn + lla™ — all o
8™ = Blle@) + UBleg) + 18™ = Blle@ )Hkm kllLr 0,71 0))

and Cg is a constant independent of m. By virtue of (2.39) and (2.41)
we have C(m) — 0 as m — oo. Hence, there exists M > M, g, such
that C(m) <  for m > M. We get ||vaW§,1(Q) <201 f™ = fallpe(q) +

2C(m)||illy 21, for m > M. This in view of (2.40) implies
P
HUmHWg,l(Q) = |lu™ — ﬁ]\W5,1(Q) —0 as m — oo. (2.43)

Recall that f™ > 0, k™ > 0 and k" < 0. Thus, according to step 2 of the
proof, the solution of the problem (2.42) satisfies «™ > 0. This with (2.43)
implies @ > 0. This yields u > 0. Step 3 is completed. The assertion (i) of
the theorem is proved.

4. step. We prove (ii). According to (1.8), there exists an open ball
U C Qg and & > 0 such that f > e in U. We can choose some fT € C®(Q)
so that ff =0in Q\ U and 0 < f < 5 in U. (For instance, we can set

Ju—vol?
fily) = 5e #2-lv- WP in U, where y = (x,t) and yo and p are the center
and the radlus of the ball U, respectively.) Then fT < f in Q.

Further, let us define ¢, = esssup k(x,0) and formulate the following
€S
problems:

Bul = (A—eB)ul + flinQ, vl =0in Qx {0}, Biul =0in 5, (2.44)
Bliy + k*ty) = A+ frin Q, 4 =upin Qx {0}, Bia=gin S, (2.45)

where f,; = f — f1 = B(k;  u) + B(er, — k(-,0))ul. By Theorem 2.1 (ii),
problem (2.44) has a unique solution u! € C2+l’1+%(Q). Observing that
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fT>0in Q and fT > 0 in U and using the well-known strong extremum
principles for parabolic equations (see e.g. Theorem 6.1.1 (ii) in [20]), we
obtain the relation

u'(-,T) >0 in Q (Q) in case I (II). (2.46)

As in step 3 we assume without restriction of generality that p € (1, %)
The components ff, 8, ul of the function fuT are continuous in Q. Moreover,
ky € LY(0,T; L=(Q)), k(-,0) € L=(Q) and f € LP(Q). Thus, we have f,; €
LP(Q). Moreover, as in step 3 we can show (by embedding theorems) that

2

1 1 9

Uy € W;_E(Q) and g € W;_E_ﬂ’l_%_i(é’). Therefore, due to Theorem
2.1 (i) the problem (2.45) has a unique solution @ € Wy (Q). Because
of f—f1 >0, 8>0,k <0, ut >0, ¢, —k(-,0) > 0 we have f,; > 0.
Moreover, ug, g > 0. Thus, the part (i) of the present theorem yields @ > 0.

Adding (2.44) and (2.45) and integrating by parts the term k; * ul we
see that the function u' + @ solves the problem (2.8). By uniqueness we
get u = ul 4 4. The relations (2.46) and @ > 0 imply the assertion (ii).
Theorem is completely proved m

Remark 2.1 For k, depending only on ¢, the assumptions (2.25) read
ke Wi, T), k>0, K <O0. (2.47)

A natural question is: which sufficient conditions should satisfy the original
relaxation kernels m and g in order to guarantee (2.47)7

The simplest particular case occurs when m = 0. Then p = k and the
conditions for k£ and p coincide. In general case, let us firstly assume that
m,u € Wi(0,T) and m,pu > 0. Then m € C[0,7] and the solution m
of (2.7) also belongs to C[0,T] (see e.g. [15]). From (2.7) we deduce the
following relations for m and its derivative:

m=mxm-+m, m =m'*m+m(0)m+m' (2.48)

Since m’ € LY(0,T) and m € C[0,T), the right-hand side of the second
equality in (2.48) belongs to L'(0,T). Therefore, m € W(0,T). Iterating
the first relation in (2.48) we get the representation of m in the form of
the Neumann series: m = Y o, m(*m)’ that converges in C[0,7]. Due to
m > 0, this series is nonnegative, hence m > 0. From (2.9) in view of u, m €
WL(0,T), p,m > 0 we obtain the desired relations k € W{(0,T), k > 0. It
remains to deduce sufficient conditions for the relation &’ < 0. To this end,
let us perform the following computations. Observing (2.48) we substitute
the last addend m in (2.9) by m*m +m to get k =m + p+ (m + p) * m.
Then we differentiate: k' = m' + p/ + (m' + p/) « m + (m(0) + p(0))m.
Substituting the term m in the last addend again by m % m + m we finally
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obtain k' =1 + 1 x m, where | = m/ 4+ ' 4+ (m(0) + u(0))m. Since m > 0,
the sufficient condition for ¥/ < 0 is [ < 0. Summing up, the sufficient
conditions for (2.47) in terms of the original kernels m and p are

m, € WEH0,T), m,u>0, m'+u <—(m(0)+ u(0)m. (2.49)

For instance, the widely used exponential kernels m(t) = Zf\il e it

w(t) = Zf\il Bie it satisfy the conditions (2.49) provided «y, 8; > 0, v; >
: N .
az‘ojrlﬁi ijl(aj + Bj)» i=1,...,N.

2.3 Results for IP1

From now on, let the coefficients 3, a;;,a; depend only on z and k depend
only on t¢.

Due to Lemma 2.1, IP1 is in the class of pairs (z,u) of functions, whose
second component u together with its derivatives wu, u,, Uz z; belongs to
LP(0,T), p > 1, for any z, equivalent to the following inverse problem:

Blug + k*xup) = Au+ 2r + fo in Q,

(2.50)
u=up in 2 x {0}, Bju=g in S,
u = up in Q x {T}, (2.51)
where Bj, g are given by (2.11), (2.12) and
r=¢+mx*d, fo=xo— Buuo+m=*(xo— Buuo). (2.52)

We continue to study the problem (2.50), (2.51).

2.3.1 Uniqueness

Firstly, we formulate a technical result.

Lemma 2.2 Let (1.6), (1.7) hold. Assume B € CY(Q) with some | €
(0,1), aija; € C(Q), a € C(Q), ay € LP(Q), k € LP(0,T) with some
p € (1,min{3, 5%}) and the problem (2.8) has a solution u € wWal(Q)

such that Biu is continuous in a neighborhood of T' x {0}. If fi € LP(Q),
2 1 _1_9

22 2—=—1,1
up € W2 (Q), A(O)uo + f(-,0) € Wy, *(Q) and gr € Wy, * *2(S)
then u, € W (Q).
This lemma is proved in Publication I, i.e. [27], p. 30-31.

Now we formulate a uniqueness theorem for the inverse problem (2.50),
(2.51).
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Theorem 2.3 Let (1.6), (1.7), (2.47) hold and B,a;;,a; € CY(Q), a €
C’l’%(Q), a; € LP(Q) with some l € (0,1),p € (1,00). Moreover, let a; > 0
inQ,re Cl’%(Q),rt € LP(Q) and

r>0, re+kxr—0r>0 in Q, (2.53)
where
0 = sup 4&1)
meg @) (2.54)

Finally, assume that

for all x € Q there exists an open subset Q. of Q) such that (2.55)
Jt, € (0,T) : (x,ty) €EQy and ri+kxry—60r >0 in Q,. '
If (z,u) € CL(Q) x C2H1+3(Q) solves (2.50), (2.51) and fo,uo, g, ur = 0
then z =0, u = 0.

Before proving this theorem we formulate and prove an additional technical
lemma.

Lemma 2.3 Under the assumptions of Theorem 2.3 the following assertion
1s valid:

for all x € Q there exists an open subset @x of Q such that

= P 2.56
(z,t:) €Qr and 1 >0 in Q. (256)

Proof. Denote ¢ = r: + k *xry — Or. Integrating by parts the term k *x r; we
can transform this equality to the following ordinary differential equation
for r: vy + (k(0) — 0)r = r(x,0)k — k¥’ x r + q. The solution is

r = r(z,0)el=FODE 1 Ok 4 (2 0k — & %] + @+t 4 4. (2.57)

Let x be an arbitrary point in 2. We can choose an open cylinder @z =Ux
(t1,%1) C Qg such that (z,t,) € Qu. Due to (2.47), the continuity of r and
the inequality r > 0 the first two addends in the right-hand side of (2.57)
are continuous nonnegative functions. Thus, r(y,t) > e(@=*O)t « 4(y, 1) for
any (y,t) € Q.. According to the assumptions (2.53), (2.55) and (1.8) it
holds ¢ > 0 in @ and there exists € > 0 such that ¢ > ¢ in @x Inside the
equivalence class corresponding to ¢, we can choose such a ¢ that satisfies
q(y,t) > 0 for any (y,t) € Q and q(y,t) > ¢ for any (y,t) € @x Now for
any (y,t) € Q. we estimate

r(y,t) > eOFO s g(y,t) = [ e@FONE=T)g(y, r)dr

> fttl eO—kONE=)g(y, 7)dT > min{1; e@FONEt) e (1 —#)).
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This yields (2.56). =

Proof of Theorem 2.3. The proof develops further a method that was
previously applied for usual parabolic inverse problems with final over-
determination in [21].

Suppose contrary that z # 0 and define 2+ = |Z|2+Z, 2T = |Z‘;Z. Note
that z* € C!(). (The operation of taking absolute value preserves the

Holder-continuity of a function.) Firstly, let us show that
2t #£0 and 2z~ #0. (2.58)

Let 2~ = 0. Then z = 2™ > 0 and zr > 0. Moreover, by the supposition
z # 0 and the continuity of z there exists an open ball U in €2 such that
z>01in U. Let us choose some x; € U. Then, by virtue of (2.56) it holds
zr > 0 in the open set [U x (0,T)] N Qg of Q. Observing the assumptions
fo,u0,g = 0 and applying Theorem 2.2 to the solution u of the problem
(2.50) we get u(x,T) > 0, = € §2. But this contradicts to the assumption
ur = 0. Similarly, we reach the contradiction in case z* = 0 making use of
Theorem 2.2 for —u.
Further, let us formulate the following problems for u*:

ﬂ(uf—i—kz*uf) = Aut 4+ 25rin Q, vF=0in Q2 x {0}, Bjut =0in S.
(2.59)
By virtue of the assumptions, the free term of (2.59) has the smoothness
property ztr € chs (Q). In order to apply Theorem 2.1 (ii) to the problem
(2.59), it remains to show the consistency condition z*r = 0 in T x {0}
in case I. Due to u € C’2+l’1+%(Q), the equation in (2.50) can be extended
to I' x {0}. In case I this implies the relation g, = Aug + 2zr + fo, and
by g¢,uo, fo = 0 the equality zr = 0 in I' x {0}. Since the null-set of
2%+ is larger than the null-set of z, we get the desired relation z*r = 0 in
I'x{0}. Consequently, by Theorem 2.1 (ii) problems (2.59) have the unique
solutions u® € C’2+l71+é(Q).
Next step is to prove the following inequalities:

ut >0, v, T) >0 in Q (Q) in case I (II), (2.60)

uf +kruf —0ut >0, (uF+kxuf —0uT)(-,T) > 0in Q (Q) in case I (II).

(2.61)

By ¥ >0 and (2.53) we have 2Er > 0. Moreover, since z= are continuous

and non-vanishing (see (2.58)), there exist open balls U* of € such that

z* > 01in U*. Let us choose some z* € U*. By virtue of (2.56) it holds

z%r > 0 in the open subsets [UF x (0,T)] N Q,+ of Q. Using Theorem 2.2
for solutions of problems (2.59) we immediately obtain (2.60).

Let us prove (2.61). Assume without restriction of generality that

p € (1,min{%; %}) Then the assumptions of Lemma 2.2 are satisfied

+
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for the solutions u® of the problems (2.59). (In particular, the assump-
2

2—
tion z*r(-,0) € W, 7 () follows from zFr(-,0) € C'(R2) and the inequal-
ity I > 2 — %) Thus, we obtain u € Wg’l(Q). We have immediately
utit,uiii,uf;ﬂj € LP(Q) and by Lemma 2.1 (i) we get k * uf, k * utj;i,k: *
uf@ixj € LP(Q), which implies k * uf € Wg’l(Q). From (2.59) we deduce
the following problems for the functions v = uf +kxuf —u® € W2 (Q):

B('Uti"“k*vti):AUi‘FZi[Tt*Fk*Tt—QT]—l—fli in Q,

1 2.62
vi:Bzir in Qx {0}, Bjvt=0in S, (2.62)

where
fli(x,t) = at(a:,t)ui(:r,t) + / K (t—71)(a(z,7)— a(m,t))ui(x,T)dT.
0

By virtue of the assumptions of theorem and 2z¥ >0 and u* > 0 the free
term and initial condition in (2.62) are non-negative. Therefore, Theorem
2.2 (i) implies v > 0, i.e. the left relation in (2.61). Moreover, according
to (2.55) and the definition of U* we have z*[r; + k % r; — 6r] > 0 in the
open subset [U* x (0,T)] N Q,+ of Q. Using Theorem 2.2 (ii) deduce the
right relation in (2.61).

Since u™T is continuous in @, there exists * € Q such that

ut (2, T) <ub(2*,T) for any x € Q. (2.63)

Observing the relation u = u™ — = and the assumption u(-,T) = up = 0,
we have ut(-,T) =u~(-,T), and (2.63) implies

u (2, T) <u (2, T) for any z € Q. (2.64)
Let us show that the point 2* is the stationary maximum of u* (-, T), i.e.
Vot (z*,T) = 0. (2.65)

The equality (2.65) may fail only when z* € I'. In case I we have the
boundary condition w* = 0 in T, hence in view of (2.60) the function
ut (-, T) cannot achieve its maximum on I', and we automatically get (2.65).
It remains to show (2.65) for the case II when z* € I'. In this case due the
vanishing boundary condition we have w(z*)-Vu™(z*, T) = 0. (Recall that
w(z) is an outer direction at x € I'). Furthermore, since u*(-,T) achieves
its maximum over I in the point z = z*, we have 7-Vu™ (z*,T) = 0, where
7 is any tangential direction at z* (this applies when n > 1). Summing up,
we get £+ VuT(z*,T) = 0, where £ is any direction. This yields (2.65).
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Now we are ready to present the final part of the proof. By the def-
initions of 2T and 27, it holds either 2T (z*) = 0 or 2~ (2*) = 0. In case
2t (x*) = 0 we have (z%r)(z*,T) = 0 and from the equation (2.59) we
obtain

[Bluf + kxuf) —au't] (2%, T) = Agu™t (2%, T), (2.66)

where Ag = A — a. The left-hand side of (2.66) is strictly positive due to
the inequalities (1.7), (2.60), (2.61) and the definition of #. Indeed:

[Bluf + k*uf) —aut] (2%, T) = B(x*) [uff +k*uf — %uﬂ (x*,T)
> Bo [uf + kxu —0ut] (2%, T) > 0.
Therefore, the right-hand side of (2.66) is also strictly positive, i.e.

Agu™ (2*,T) > 0. (2.67)

On the other hand, since x = x* is the stationary maximum point of

ut(-,T) and the principal part of Ay is elliptic (see (1.6)), we obtain

n

n
Agut (2%, T) = > aij(a*yub, (@, T) + Y aj(a*)ul (2%, T) <0.
i,j=1 j=1

This contradicts (2.67). Analogously we come to a contradiction in case
2z~ (z*) = 0. Hence, the assumption z # 0 was incorrect. We have z = 0.
Finally, whereas fo,up,g = 0 by assumption, problem (2.50) is homoge-
neous. Thus, by the uniqueness of the solution (see Theorem 2.1) it holds
u = 0. Proof is complete. =

2.3.2 Existence and stability

Let us impose the following additional assumptions on the function r:

r>6 in Qx (T'—6,T) withsomed € (0,%) and

B (2.68)
r=0 in Q x (0,9).

Below we formulate and prove an existence and stability theorem for
IP1. We note that a Fredholm-type result of this theorem (i.e. the asser-
tion (i) of Theorem 3.8) was already obtained in [46], but under different
assumptions. Namely, in [46] ¢ = 0 was assumed and certain positivity
conditions on the original kernel m were imposed. We do not need such
assumptions in the assertion (i).

Theorem 2.4 Let (1.6), (1.7) hold, f,a;;,a; € CcH), a € Cl’%(Q) and
a; € LP(Q) with some | € (0,1),p € (1,00). Moreover, let a; > 0,
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r e Cl’%(Q), re € LP(Q) and (2.68) hold. In addition, let fy € CZ’%(Q),
ug € C*(Q), g € C’2+17’9’1+%7%(S), ur € C?*Y(Q) and the consistency
conditions

(a) up =49, /Bgt = Aug + fO in case I, (2 69)
w-Vug=g in casell inI x {0} )
(b) wur =g in casel, (2.70)

w-Vur =g in casell inT x {T}

be satisfied. Then the following assertions are valid.

(1)

(Fredholm-type result) If k € W1, (0,7),
2—1
r>0,r—0r >0 inQ with 6 given by (2.54),

for all x € Q there exists an open subset Qu of Q sqch that  (2.71)
3t, € (0,T) : (2,t,) €EQr and 71— 0r >0 in Q,

and the homogeneous inverse problem, i.e.

B + kxv)) = Av® + ¢ in Q,

v’ =0 i Qx{0}, Biv°=0 inS, v’ =0 in Qx{T}

has in C'() x C’Q‘H’H‘%(Q) only the trivial solution ¢° =0, v° = 0,
then the inverse problem (2.50), (2.51) has a unique solution (z,u) in

the space C'(Q) x C’ZH’Hé(Q). Moreover, the solution (z,u) satisfies
the estimate

||Z”l -+ Hu||2+l71+é < A(/Baaijaajaa‘7k>r)

(2.73)
J

s {1l s + Tuollzet + Nallyyrg rp g g + lurlase
with some constant A depending on the quantities shown in brackets.
(Full existence, uniqueness and stability result) If

k:eW%(O,T), E>0, k<0 (2.74)

and r satisfies (2.53), (2.55), (2.71) then the inverse problem (2.50),
(2.51) has a unique solution (z,u) in the space C*(Q) x C’2+l’1+%(Q).
The solution satisfies the estimate (2.73).

Proof. We note that the assertion (ii) follows from the assertion (i) and
Theorem 2.3. Indeed, the assumptions of (ii) contain the assumptions of
the uniqueness Theorem 2.3. This implies that the homogeneous problem
(2.72) has in CY(Q) x C2+l’1+%(Q) only the trivial solution ¢° = 0, v° = 0.
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As a result, all assumptions of (i) are satisfied, and the desired existence,
uniqueness and stability result follows.

Thus, it remains to prove the assertion (i). We use a method that is
based on a proved Fredholm-type result for the usual parabolic case (when
k = 0). By means of this result we reduce the problem under consideration
to an equation of the second kind, and apply the Fredholm’s alternative.

So, let us start with the case K = 0. We mention that the general
assumptions of the theorem preceding the statement (i) (except for the
assumptions imposed on k) are sufficient for the following Fredholm-type
result: the inverse problem in case k = 0, i.e. the problem

1 1 1 .
uy = Au + z'r + foin Q,
Blt Jo 1 1 (2.75)
u =wupin Q x {0}, Biu  =¢gin S, v =upin Q x {T}

has a solution (z',u!) in the space X! = CY(Q) x CQH’H%(Q) and the

estimate
e+ 1 < As(Brais,az.a,7)
(2.76)
x {folls + luollass + 9llasrg1ss s + lurl}

holds with some constant Ay depending on the quantities shown in brackets,
provided the corresponding homogeneous problem (i.e. the problem with
the data fo,uo, g, ur = 0) has only the trivial solution z' = 0,u' = 0. This
follows directly from Theorem 1.2 in [21]. But because of the additional
assumption (2.71) of (i) Theorem 2.3 (in case k = 0) implies that such a
homogeneous problem indeed has only the trivial solution. Therefore, we
can conclude that the unique solution (z!,u!) of (2.75) exists in the space
X' and the estimate (2.76) is valid.

For further discussion we introduce an additional Banach space of pairs

of functions, whose second components are zero at t = 0: X} = C/(Q) x

L
C’g+l’1+ 2(Q), where

TR (Q) = v e CPE(Q) s v =010 Q x {0}

with the normH’UHCQH,H%(Q) = Hv”2+l,1+%’

0

Let us denote ¢ = z — 2! and v = u — u'. Then the inverse problem

(2.50), (2.51) for (z,u) € X! is equivalent to the following inverse problem
for the pair X = (q,v) € &

Buy = Av+qr— Bk * (ui +v) in Q,

. : : (2.77)
v=0in Q x {0}, Bjv=0in S, v=01in Q x {T}.
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Let P stand for the operator that assigns to a given right-hand side
fo the solution of the problem (2.75) with ug,g,ur = 0. In view of the

L
statements formulated before for (2.75), it holds P € E(C’f{Q (Q), X}), where

the space Cé% (@) is defined in (2.24). (The domain of P is Céé (@), because
the element fy € C’l’é(Q) must satisfy the consistency condition fy = 0 in
' x {0} in case I (cf. (2.69) in case wug,g,ur = 0).) According to (2.76)
1Pl < A1(B, agj, aj, a,7).

By virtue of Lemma 2.1 (ii) and 8 € C%(Q) it holds Bk * w; € CZ’%(Q)
for any w € C?*h H'L(Q) and Sk * wt]t 0= 0. Thus, the operator (¢, w) —
Bk x w; is well-defined from &} to cl ’Q(Q), and in turn the operator 7

defined by T (g,v) = P(— Bk * v;) is well-defined from &} to itself. Now we
see that the problem (2.77) is in X} equivalent to the operator equation

X =TX+0, (2.78)

where ¥ = P(— Sk  u}).

2
But thanks to the assumption k¥’ € L2-1(0,T) we can even extend 7 to

’ ’ : 1
the space LU, &), where U" = OV (Q) x €Y (Q),

L
Ch2(Q) = {v e Ch5(Q) : v=01in Q x {0}}
with the norm|lv|| ,; = |vl], 1,

Co?(Q) 2

0

and !’ is an arbitrary number in the interval (0,1). Indeed, taking into
account the relation 7 (q,v) = P(—pBkxv) = P(—pk'*xv—Bk(0)v), obtained
by integration by parts, and using (2.17) we deduce

IT(a,)ly < IPINBK =+ BEO g = IPUISK «v + kO],
< Aalllly < Aallalcwio + 10l oy ) = Rell@ )l (279)

with Ay = A8l {CollF ]|z, o’ |k(0)|}. This proves T € LU, &)

Since XO is compactly embedded in Z/{é’l,, the operator 7 is compact in
Ué’l/. Moreover, 1 is not an eigenvalue of 7, because the equation X0 =
T X0 is in X} equivalent to the problem (2.72), whose solution X° = (¢°,°)
is zero by the assumption. Consequently, by the Fredholm’s alternative,
the equation (2.78) has a unique solution in A{. This proves the existence
assertion of (i).

It remains to prove (2.73). Since 1 belongs to the resolvent set of T,

it holds (I —7)~' € LUL") and ||(I — T)~ gy = A3(B, aijy aj,0,k,m)

41



with some constant As depending on the parameters shown in brackets.
Thus, from (2.78) we immediately have

X\ =11 =) 0 < As|| W, 0. 2.80
H Hué,z (I —T) Hué,z_ 3| IIL,é,z (2.80)

Observing that H’THE( < Ay (in view of (2.79)) and [|-[|, v < C7H-HX(§
0

Uy )
with some constant C7 (in view of the continuous embedding of X! in Z/lé’l )
and using (2.80) from (2.78) again we obtain

1X g < 1T X+ ¥l < Aa Wl + 191
< <C7A2A3 + l)H\I/HXé (2.81)

Here ||U||y, = [[P(=Bk * ui)|lxy < P8k + utchl*%(Q) < Aglfutllypy iyt
with Ay = Aqf|B[:Collk]l
(2.81) we deduce

in view of (2.17). Consequently, from

2-1(0,T

)

X[ < As(CrA2A3 +1) (2.82)

(% ||2+l,1+§'

Recall that X = (¢,v) with ¢ = z — 2! and v = u — u!. Thus, by means of
(2.82) we deduce

2l + el 1y = 1wl < M v)la + 1 wh)lla
k] 2 0

< {A4(CrA2As + 1) + 1} (21 ul) || 4

Here the term ||(z1, u')|| y1 can be estimated by (2.76). We reach the desired
estimate (2.73). m

Remark 2.2 The relationship between the conditions (2.53)&(2.55) and
(2.71) essentially depends on 6.

In case 6 > 0 provided k > 0, the conditions (2.71) imply (2.53)&(2.55).
Indeed, then the relations » > 0 and r; — 6r > 0 in (2.71) immediately
yield vy > 0 and in turn k% r; > 0. Thus, adding the nonnegative term
k * r; to the left-hand side of the inequalities in (2.71) we immediately
obtain (2.53)&(2.55). Consequently, the assumptions (2.53) and (2.55) in
the formulation of the statement (ii) of Theorem 3.8 are redundant in case
6>0.

In case 8 < 0 the situation is more complicated. Then it is possible
to find functions r that satisfy (2.71) but not (2.53)&(2.55). To construct
such a counter-example, we can make use of following ideas. Firstly, we
note that the kernel k,(t) = ae™* with sufficiently large o > 0 approaches
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the Dirac delta-distribution. Indeed, let t € (0,7T) and w € L*(0,T) be a
function satisfying w’ € L'(t — ¢,t) with some ¢ > 0. Then

(ko *w)(t) —w(t) = /0 7Eae*a(t77)w(7)dr + /t ae” Ty (r)dr — w(t)

—€

t—e t
= / ae Ty (r)dr — / ey (7)dr — e Cw(t — ¢).
0 t

—E&

Note that ae ™ *""w(r) — 0 as o — oo for a.e. 7 € (0,t — &) and
lae= =Ty (7)| < e |w(T)| < Ljw(r)| for any o > 0 and a.e. 7 € (0,t—
¢), where |w(7)| is integrable on (0,¢—¢). Due to the dominated convergence
theorem we have fot_aae_a(t_T)w(T)dT — 0 as @ — oo. Similarly we get
ftt_ae_o‘(t_ﬂfw’(r)dv' — 0 as a@ — oo. Moreover, e~ **w(t—e) — 0 as a — oo.
Consequently, |(kq * w)(t) — w(t)] — 0 as a — o0o. Now let us define the
function r = r(t) in the following manner:

r(t) =0, t€[0,90], r(t)= e_bt, te|T—06,T],
—b(T—0)

r(t) = T 95 (t

—0), te (6, T —9),

where b > 0 is a constant. Then r» > 0 in (0,7) and r, > 0 in (0,7 — 9).
This in view of § < 0 implies ry — 6r > 0 in (0,7 — §). Further, let
us choose b € (—%,—9). Then [r; — 0r](t) = (—b — 0)e™® > 0 for any
t € (T'—6,T). The deduced inequalities show that (2.71) is valid. On the
other hand, with fixed t € (T' — 0,T) in view of the choice of b we have
[2r, — Or](t) = (—2b — 0)e™" < 0. Therefore, in case of sufficiently large
a it holds [ry + ko x 1 — Or](t) = [2r — Or](t) + (ko * 7¢)(t) — 74() < 0.
Consequently, (2.53) fails.

2.4 Results for inverse coefficient problems

In this section we deal with the nonlinear coefficient-type inverse problems
IP2 and IP3 making use of previously proved results concerning the linear
inverse free term problem (2.50), (2.51). For this purpose, we introduce the
following notation.

Let 13’57&,7« stand for the operator that assigns to the vector d =
(fo, uo, g, ur) the solution of the inverse problem (2.50), (2.51). We have
shown that in case 3, a,r and also a;j, aj, k satisfy the assumptions of The-
orem 3.8 (incl. the additional assumptions of the assertion (ii) of this
theorem), the operator Fﬁ,a,r is well-defined from the space

2 = {d : deC"3(Q) x C*(Q) x C2H=P1+5-5(8) x C2H(Q),
d satisfy the consistency conditions (2.69), (2.70)}
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to the space CL() x CQH’H%(Q) and satisfies the estimate

Cl(ﬂ)xc2+lv1+é(Q) < A(B,Cij,(Lj’a’k’/,«)

% Lol s + luollzss + 1gllyyp1ss o + lurllzsi

155 0.0 (fo, w0, g, ur)]|
(2.83)

2.4.1 Results for IP2

Firstly, let us study IP2. Due to Lemma 2.1, IP2 is in the class of pairs (a, u)
of functions, whose second component u together with its derivatives uy,
Uz, Ug,e; Delongs to LP (0,7), p > 1, for any x, equivalent to the following
inverse problem:

Blug + k *u) = Apu+ au+ f in @,

(2.84)
u=1wugy in Qx {0}, Bju=g in S,

u=wur in Qx{T}, (2.85)
where f, By and g are given by (2.10) - (2.12) and

n n

Agu = ) QijUge; + D Qjug;.
i5=1 j=1

We are going to prove existence, uniqueness and stability results for the

inverse problem (2.84), (2.85) in spaces of pairs (a,u) whose first compo-

nents a belong to the following sets that depend on [, 5 and a given number
0 eR:

Ay = {ae Q) : sup ) <0},

The next theorem comprises two results for (2.84), (2.85): (i) a global
uniqueness; (ii) local conditional existence and stability. The meaning of
the latter one is the following: assuming the existence of the solution of
(2.84), (2.85) with certain data d, we prove the existence of solution to
(2.84), (2.85) with data d that are sufficiently close to d and estimate the
difference of these solutions in terms of d — d.

Theorem 2.5 Let (1.6), (1.7) hold, B, a;j,a; € CHQ) with some 1 € (0,1)
and 0 € R. Then the following assertions are valid.

(1) If k satisfies (2.47) and the problem (2.84), (2.85) has the solutions
1,U1) € X ’ % , (ag,ug) € X ’ é , where
a CL(Q) x C2HHE(Q Alg,e C2HL145 (), wh

u = u1 satisfies the conditions
u>0,u+kxu—0u>0inQ,

for all x € Q there exists an open subset Q. of Q such that (2.86)
Jt, € (0,7) : (x,ty) €Qy and up+kxur—0u>0 in Qy,

then a1 = ag and w1 = us.

44



(i) If k satisfies (2.74) and (2.84), (2.85) has a solution (a,u) € Afgﬂ X

C’QH’H%(Q) such that u fulfills the conditions (2.86), the conditions
(2.86) with k replaced by 0 and the relations

u>38 in Qx (T —-46,T),

_ - (2.87)
u=0 inQx(0,0) with some 6 € (0, 5),
then for any data vector ]?, ug, g, ur such that
D i= [[F~Fl + ol + 10l 1 s
(2.88)

+ Jur —urll2+ < with A = A(B, aij, aj, a, k, u),

272

where A is the coefficient of the estimate (2.73) (note that ug = 0 due
to the second relation in (2.88)),

(a‘) 170 = gv Bgt = (AO + a)aO + J? in case L (2 89)
w-Viug =7 incaseIl inT x {0} '
(b) up =g in casel,

w - VHT — g in case IT in T x {T} (290)

and tug = 0 in case I in ', the problem (2.84), (2.85) with fo,uo, g, ur
replaced by fo, w0, g, ur has a unique solution (a,w) in the ball

U ={@ma) : la—ali+a—uly,, <% (1-vi-2D) }.
(2.91)

Remark 2.3 Since (1 — V1 —2A2D) ~ AD as D — 07, the relation
(2.91) implies that the solution operator of the problem (2.84), (2.85) is
locally Lipschitz-continuous in the neighborhood of (a,u).

Proof of Theorem 2.5. Let us prove (i). Subtracting the problems (2.84),
(2.85) for the pairs (a1,u1) and (a2, u2) we obtain the following problem
for the pair of differences z = a1 — as, u = uy — us:

Blus + k *up) = (Ap + a2)u + zu; in Q,
u=0 in Q x {0}, Bju=0 in S,
u=01in Qx{T}.
This problem satisfies the assumptions of Theorem 2.3. Indeed, we have

az € CYQ) and az; = 0. Moreover, due to az € .Alﬁﬁ it holds 0y :=

sup ‘}32(%) < 6. In view of this inequality, the assumption (2.86) for u =

e
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u; holds with 6 replaced by 2. This means that the assumptions (2.53)
and (2.55) are satisfied for r = u;. Applying Theorem 2.3 we obtain the
assertion z =ay; —ags =0, u = u; —ug = 0.
Let us we prove (ii). The proof is based on Banach fixed-point principle.
Note that the problem for (a,u) € C'(Q) x C’QH’H%(Q) is equivalent
to the following problem for the differences z =@ —a € CY(Q),w = —u €
02+l,1+é(Q):

B(we + k * wy) = (Ao + a)w + zu + folzw] in Q,
w=1uy in 2x {0}, Bjw=g—g in S, (2.92)

w=ur —ur in Q x {T}

with fo[zw] = 2w + f— f. Since @iy = 0 in case I in I, any solution
S = (z,w) € CY(Q) x C'QH’Hé(Q) of (2.92) belongs to the following space:

S = {8 = (z,w) € CY(Q) x C’2+l’1+%(Q) :w=0in case Iin I x {0}}.

We will transform (2.92) to a fixed-point equation in .&.

Note that owing to the properties of 3, a,u and also a;j, a;, k, the oper-
ator F@a,u is well-defined from 2 to C'(Q) x CQ‘H’H‘%(Q).

Let us show that the data vector of (2.92), i.e. (fo[zw], w0, §—g, ur—ur)
belongs to & for any S = (z,w) € .. Assume S € .. From (2.88)
and z € CY(Q), u € C’QH’Hé(Q) we immediately have fo[zw] € Cl’%(Q),

g, ur — ur € C*HQ) and g —g € CQH*ﬁ’H%*g(S). Moreover, from
the smoothness of all terms of the equation (2.84) at the corners I' x {0},
I' x {T'} and the initial, boundary and final conditions in (2.84),(2.85) it
follows that the consistency conditions (2.69), (2.70) (with Sg; = f instead
of Bgr = Aup + fo in case I in I' x {0}) are satisfied. Subtracting these
conditions from (2.89), (2.90) and observing that zw = 0 in case I in I'x {0}

(see the definition of .#) we obtain the following consistency conditions:
up=9g—9g, B(gt—gt) = (Ao +a)io + folzw] in casel,
w-Viug=g—g incaseIl inT x {0},
ur —up =g —g in case I,

w-V(ur —ur)=9g—g incaselIl inT x {T}.

Consequently, the vector (fo[zw], wy, g — g, ur — ur) belongs to Z.
Now we see that the operator

F(8) = Fggulzw + f — f,0,§ — g, Ur — ur) (2.93)

is well-defined for any S € .. Moreover, it holds F(.%) C ., because the

second component of the element F(S) € CHQ) x CQH’H%(Q) is zero at
I' x {0} in case L.
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We can conclude that the problem (2.92) is in the space . equivalent
to the fixed-point equation
S = F(9).

Define the norm [|S|| = [|z[[; + [Jwl[y,; 1 in " and show that Fis a
1T
contraction in the ball

uoz{SGy .15l §Q::%<1—x/1—2)\2D) } (2.94)
Using (2.93), (2.83) and the definitions of D and X in (2.88) we deduce
IZS)N < A{llzwll,1+D} < M {zlllwly 1 +D} < A{SISI+D}

In case S € Uy it holds || F(S)| < A{30? + D}. Note that o defined in
(2.94) solves the quadratic equation A {%Qz + D} = po. Therefore, we have

|F(S)|| < o. Hence, F(Uo) C Uo.
Similarly, for S7 = (2, w’), j = 1,2, in view of the relation

2wt — 22w? = 721‘?2 (w! —w?) + (z1—22)w1%w2 (2.95)

we obtain
|F(SY) — F(S?)|| = || Fpau(ztw! — 2%w?2,0,0,0)]

ISt = S < (IS + 1S2D1IS* = S2]I.

2
SA’ 51455

In case S, 5% € Uy we have || F(S?) — F(S?)|| < ¢||S* — S?|| with ¢ = Ao =
1 —+1—2X2D < 1. Therefore, by the contraction principle, the equation
S = F(S) has a unique solution in the ball Uy. This yields (ii). m

Remark 2.4 It is possible to deduce sufficient conditions for the data of
the direct problem (2.84) that imply the the conditions (2.86) and (2.87) for
solution u. The second relation in (2.87) simply follows from uniqueness
of the solution of the direct problem (2.84) restricted to € x (0,9) if we
assume ugp =0, ¢ =01in S x (0,9), f =01in Q x (0,0). The first relation
in (2.87) follows from Theorem 2.2 under the assumption that ug, g, f > 0,
there exists an open subset Q; of € x (0,7 — §) such that f > 0 in Qy
and g > 6 in S x (T — 0,T) in case I. This theorem has to be applied
for problems restricted to the domains Q x (0,77), where 71 € [T — 6, T]
to get the desired result. Finally, the inequalities for u; + k * uy — fu in
(2.84) can be shown under certain assumptions on the data constructing a
direct problem for v = u; + k * uy — fu and applying Theorem 2.2 to this
problem. Such a problem can be constructed similarly to the construction
of problems (2.62) in the proof of Theorem 2.3.
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2.4.2 Results for IP3

Finally, we study IP3. In view of 2.1, IP3 is in the class of pairs (3,u) of
functions, whose second component u together with its derivatives w;, u,,
Ugz;z; belongs to LP (0,7), p > 1, for any z, equivalent to the problem

Blus + k*u) = Au+ f in Q,
u=mwy in 2 x {0}, Biju=g in S,
u=wuyp in Qx{T}, (2.97)

(2.96)

where f, By and g are given by (2.10) - (2.12). We assume here p = 0.
Let us introduce the following set for the coefficients § that depends on
Bo > 0:
B, = {8€CQ) : inf f(x) > fo)

a(z,T)
B(x)

and define 03, = max{O; % sup a(z, T)} Then we have sup < g, for
e e

any 3 € Blo.

Theorem 2.6 Let (1.6)
with some | € (0,1), p €
assertions are valid.

(i) If k satisfies (2.47), the problem (2.96), (2.97) has the solutions

(Br,u) € CHQ) x C*NH2(Q) and (B, uz) € Bl x C*HIH3(Q)
such that u = w1 and U := uy + k x uy satisfy the conditions

hold, a;j,a; € CY(Q), a € C’l’é(Q), a; € LP(Q)
(1,00), a; > 0 and Sy > 0. Then the following

Ut GLP(Q), >0, ﬂt+k*at—egoa20,
for all x € Q there exists an open subset Q. of Q such that (2.98)
dt, € (0,7T) : (x,tz) € Qr and Uy +k x Uy — g, > 0 in Qg,

then B1 = By and uy = us.

(ii) If k satisfies (2.74), Aug+ f =0 in case I in I" x {0} and the problem
(2.96), (2.97) has a solution (5,u) € Blﬁo X C’2+l’1+%(Q) such that u
and 4 = up + k * ug fulfill the conditions (2.98) and the conditions
(2.98) with k replaced by 0,

>0 inQx (T—45T) and

o | . (299)
ug =0 in Q x (0,0) with some 0 € (0, 5),
then for any data vector f~‘, ug, g, ur such that
D= = flly,z + w0 —woll2ri + 19=9gllor 91112
(2.100)

+ [[ur —ur|l24+1 < with A = A(B, aij, aj,a, k, ),

1
2X2(1+ 1K)
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where A is the coefficient of the estimate (2.73), ||k|| = ||k co,r) and

(a) wy=y9g, Bg = Aug+ f: 0 in casel, (2.101)
w-Viug =79 in caseIl inT x {0} '
(b) ur =149 in casel,

w-Vur=9g incasell inT x {T}, (2.102)

then the problem (2.96), (2.97) with fo,uo, g, ur replaced by ]?0, U, g, T

has a unique solution (B,w) in the ball
U ={G0)  1F-Bli+ lG—ulyyyss
1 < -
<= |1- 1—2>\2(1—l—||k||)D> .
A(L+([E]) \/ }

Remark 2.5 The relation (2.103) implies that the solution operator of the
problem (2.96), (2.97) is locally Lipschitz-continuous in the neighborhood

of (B,u).

(2.103)

Proof of Theorem 2.6. The proof is similar to the proof of Theorem
2.5. To prove (i), we subtract the problems for with the pairs (81,u1)
and (f2,u2). Then we obtain the problem (2.50), (2.51) for the difference
z = B1— P2, u = u; —uo that has the zero free term f, zero initial, boundary
and final conditions and contains 32 and @ = w1 ¢ + Kk *u1 ¢ instead of 3 and
r, respectively. Applying Theorem 2.3 to this problem, we immediately
obtain z =0, u = 0.
Let us prove (ii). Note that (3,u) € .#, where

S = {8 = (z,w) € C(Q) x CQH’H%(Q) :wy=01in case Iin I' x {0}}.

Indeed, (B,u) € CY(R) x CQH’Hé(Q), by assumption. Setting ¢ = 0 in
the equation (2.96) we get Sus(-,0) = A(0)ug + f(-,0). This due to the
assumption Aug+f = 0in case [ in I'x {0} and § > 0 implies u; = 0 in case
Iin I x {0}. Furthermore, any solution (3, %) € C*(Q) x CQH’H%(Q) also
belongs to .. This can be shown analogously, making us of the assumption
Alig+ f = 0in case Iin I x {0} (see (2.101)).

Subtracting the problems for (E ,u) and (3, u) we see that the problem
for (B, ) € CY(Q) x CQ‘H’H‘é(Q) is equivalent to the following problem for
the pair of differences (z,w) = (8 — 3,7 — u) in the space .7

B(wy + k xwy) = Aw + 20+ folz,w] in Q,
w=uy—up in 2 x {0}, Bjw=g—g in S, (2.104)

w=up —up in Qx{T},
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where folz, w] = z(w; + k*w;) —&-f— f and @ = uy + k *uy, as defined above.
Let us transform (2.104) to a fixed-point equation.

Note that the assumptions r € Cl’%(Q), re € LP(Q), (2.53), (2.55),
(2.68) and (2.71) are satisfied for the function r = @. Indeed, the relation
u € CQH’H%(Q) and the assumption uy € LP(Q) with Lemma 2.1 imply
@ € C2(Q), @ € LP(Q). Further, (2.53), (2.55), (2.71) and the first
relation in (2.68) for r = @ automatically follow from the assumptions of the
assertion (ii). The second relation in (2.68) follows from the second relation
n (2.99). Observing also other assumptions of the present theorem, we see
that the assumptions of Theorem 3.8 are satisfied for the set of parameters
a;j,aj,k,B,a and r = 4. This means that the operator Fﬁ7a,ﬁ is well-defined
from 2 to C(Q) x C’Q‘H’H‘é(Q).

Further, for any S = (z,w) € . the data vector (fo[z,w], Uy — uo, g —
g,ur — ur) of the problem (2.104) belongs to 2. This can be shown by
means of arguments that are similar to arguments that we used in the proof
of Theorem 2.5. In particular, the consistency condition 5(g—g): = A(ug—
ug) + fo[z,w] in case T'in T x {0} follows from the relations 8g; = Aug + f,
Bgr = Aug + fo and wy = 0 in case I 'in T x {0}.

Now we see that the operator

F(S) = Faa(folz, w], o — uo, g — g, Uiy — ur) (2.105)

is well-defined for any S € .. Moreover, it holds F(.) C ., because
time derivative of the second component w! of (2!, w') = F(z,w) € CY(Q)x
C2HLI+s (Q) is zero at T'x {0} in case I for (z,w) € .. The latter statement
follows from the equality Sw;} = A(tg — ug) + 24 + fo[z, w] that is derived
from the equation for w! at T'x {0} and the relations Aug+f = 0, Alig+f =
0,%=0,w; =01incase [ in I x {0} and 8 > 0.

Summing up, the problem (2.104) is in Z equivalent to the following
operator equation:

S = F(S).

We use the norm [|S|| = [|(z, w)|| = [|2]li + [[w]lg4; 142 in . and define the
— ’ 2
following ball in .

th={ses :|Isl<a=y

5 (1= VI=2X@(+kDD) }.
By means of (2.105), (2.83) and (2.100) we obtain

17 (s X{H (we+Exw)ll e + D} < X1+ kD lllewrl 2 + D}

)<
< x{ Ik g2 +D}.
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In case S € Uy it holds | F(9)| < S\{HHRH 0 + D}. Since g solves the
quadratic equation A {w(ﬁ —}—D} = 9, we have || F(S)|| < g. Conse-

quently, F(Uy) C Uy.
Moreover, for S7 = (27, w’), j = 1,2, in view of the relation (2.95) we
deduce

|IF(SY) = F(S?)|| = |1 Fpaa(z (wh + k*wi) — 22(w} + k *w?),0,0,0)]|
< 5\||zl(wg + k * wtl) — 22(wt2 + k *wt2||l I
'3

1 2 1 2
242 ()} — w2 + k # (w) — wd) + (21 — 22) (U 4k wf;“”f)H

Il
>

!
Z’E

< X+ 1l | 52| 15t - 52 < 2D 51y 1 525" - 52

In case S7 € Uy, j = 1,2, it holds || F(S) — F(S?)|| < q||S* — S?|| with
g =M1+ |k[Da = 1 —+/1—-2X2(1+[[k])D < 1. By the contraction
principle, the equation S = F(S) has a unique solution in the ball Zfy. This
proves (ii). m

Remark 2.6 It is possible to establish conditions that guarantee (2.86)
and (2.87) for the solution u of the direct problem (2.96). To this end,
initial-boundary value problems for involved functions u;, 4 and v = 4; +
k% 1y — 6,1 have to be constructed. The second condition in (2.99) follows
if we assume the initial data and boundary data of the problem for u; to
be zero for ¢ € (0,0) and other conditions in (2.86) and (2.87) follow from
Theorem 2.2 under proper assumptions of of the data of the problems for
@ and 9.
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3 NON-SMOOTH PROBLEMS

In this chapter we deal with inverse problems for Eq. (1.4) in case this equa-
tion holds in a weak sense and analyze quasi-solutions of these problems.
Results are taken from Publications II and III.

Let (1.4) have the following form:
u+ (p*xu)y = Au—mxAu+ f+V -0+ ¢ inQ, (3.1)

where f, ¢ are regular scalar functions and ¢ is a regular vector function.
The functions ¢ and ¢ may not have classical derivatives with respect to
the space variables and the time, respectively. This means that the free
term x = f 4+ V - ¢ + ¢; is generally a singular distribution. Since we are
not planning to consider inverse problems to determine 3, we assume 8 = 1,
for the sake of simplicity. Moreover, we assume that A is of the divergence
type and has symmetric principal part, i.e.

n

(Av)(2) = Y (aij(@)vs,),, +al@)o(),  ay = azi.

ij=1

We are going to study problems with generally mixed boundary condi-
tions. To this end, we split the boundary of 2 into two parts. Namely, let
I' =T UTI'y and we assume that measI'; NI’y = 0 and for any j € {1;2}
either I'; = () or measT'; > 0.

Let us return to Eq. (3.1) and complement it with the initial condition
u=uwug in Q x {0} (3.2)
and the boundary conditions

u=g inTy x(0,7), (3.3)
—va-Vu+msvy-Vu=h+v-¢ inTs x (0,7), (3.4)

where the functions ug, g, h are given and

n

va = ( > aivj|. )
- i=1,...,n
Jj=1

is the co-normal vector to I'. In case I'y = ) (or I's = @) the boundary
condition (3.3) (or (3.4)) is omitted.

Summing up, (3.1) - (3.4) constitute a formal direct problem for the
function w.

Let us pose formal inverse problems. They use instant and integral data
of the solution of (3.1) - (3.4).
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IP4: Let the component f of the free term be of the form

N
fla,t) = folw,t) + D vj(t)w;(@) (3.5)
j=1
and p = 0, ¢ = 0. Given m,a;j,a,uo, fo,0,9,h,7vj, j = 1,...,N, and
functions ur(z), z € Q,i=1,..., Nwith0<T1 <Tp < ... <Tn <T,
find wj, j =1,..., N, such that the solution u of (3.1) - (3.4) satisfies the
following instant additional conditions:

u=ur, inQx{T;}, i=12,...,N.

IP5: Let the component f of the free term be of the form (3.5) and p =0,
¢ = 0. Given m,ayj,a, fo,¢,9,h,7v;, 3 = 1,..., N, and functions v;(x),
reQi=1,...,N+1,findw;, j =1,..., N, and ug such that the solution
u of (3.1) - (3.4) satisfies the following integral additional conditions:

T
/ Ki(z, hu(z, t)dt =vi(x), x €Q, i=1,2,...,N+1, (3.6)
0

where k4, 1 =1,..., N 4+ 1 are given weights.

IP6: Let measT's > 0. Given ajj,uo, f, 9,9, g, h and functions up(x),
x € Q, v(t), t € (0,T),i=1,2, find a, m and p such that the solution of
(3.1) - (3.4) satisfies the following final and integral additional conditions:

u=up inQx{T}, (3.7)
/ Ki(z,t)u(x,t)dl’ = vi(t), t € (0,T), i=1,2, (3.8)
1)

where k;, 1 = 1,2, are given weights and dI" is the surface measure on I'.

Remark 3.1 Incasen = 1and Q = (c,d) the integral [;, z(x)dI is merely

the sum S 7 z(x;), where 2; € Ty C {¢;d} and L is the number of points
in I'y (i.e L € {1;2}). Then the conditions (3.8) read

L

> kilz bz, t) = vi(t), € (0,T), i=12. (3.9)
=1

Remark 3.2 The conditions ¢ = 0 and g = 0 in IP4 and IP5 is assumed
for the sake of simplicity. The inclusion of generally non-vanishing ¢ in
IP6 is natural due to the method we will use. Namely, an adjoint problem
corresponding to IP6 contains a singular time-derivative in a free term. We
have to prove well-posedness results both for (3.1) - (3.4) and the adjoint
problem. Therefore, it is natural to incorporate such a singular term in
(3.1) already from the beginning.
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3.1 Results concerning direct problem

3.1.1 Additional notation. Well-posedness of weak direct prob-
lem

In addition to cylinders @, S and Q; = Q x (0,t), t > 0, defined in §1.1 and
Lemma 2.1, we introduce t-dependent cylinders

St =1 x (O,t), Fl,t = Fl X (O,t), F27t = FQ X (O,t)

for t > 0.
In the treatment of the weak direct problem we make use of the following
functional spaces:

U(Q) = C(10,1]; L3(©)) N L2(0, W (2),

Up(Qr) = {77 €UQ¢) : nlr,, =0 in case I'1 # (ZJ},
T(Q) = {n € 2O0.6WHQ) + m € 0, 12(Q) },
To(Q:) = {77 € T(Q:) : nlr,, =0 in case I'y # (D},

where t € (0,7]. In case t = T we write merely U(Q), Up(Q), T(Q) and

To(Q), because Qr = Q.

We recall that the ellipticity condition (1.6) is assumed by default in
this thesis. Let us collect other regularity assumptions on the data of the
direct problem (3.1) - (3.4). They are

aij € LOO(Q), (310)
a € LM (Q), where 4y =1 if n=1, ¢ > g if n>2, (3.11)
pe L*0,7), (3.12)
m e LY(0,T), (3.13)
ug € L*(), (3.14)
g€ T(Q), heL*(Tyr), (3.15)
f € L?0,T;L%2(Q)), where 316
@p=1ifn=1, q@e(l,q)if n=2 q=:>2%if n>3, (3-16)
¢ = (1, dn) € (L*(Q)", (3.17)

peU(Q) andin case I'1 #0 g, € T(Q) : ¢ =g, inTy7. (3.18)

In case the additional conditions a;; € W3 (), 8%1_@%)@- € L*Q), i =
1,...,n, ¢ € L*(Q) hold and (3.1) - (3.4) has a classical solution u € L?(Q)
such that ug, ug,, Ug,e; € L*(Q), 4,7 =1,...,n, then multiplying (3.1) with
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a test function n € 7p(Q) and integrating by parts we come to the relation

/Q[(u +puxu—o)(x, T)n(z,T) — (uo(z) — ¢(x,0))n(z, 0)} dx

—//(u+,u*u—go)77td$dt
Q

+/Q/ [jzl i (Ug; — T * Uy, )1, —a(u—m*u)n}dmt (3.19)
—I—F/ZT/hndth—/Q/(fn_d).vn)dxdtzg

Note that this relation makes sense also in a more general case when a;;,
¢, o satisfy (3.10), (3.17), (3.18) and u € U(Q).

We call a weak solution of the problem (3.1) - (3.4) a function that
belongs to U(Q), satisfies the relation (3.19) for any n € 7p(Q) and, in case
I’y # (), fulfills the boundary condition (3.3).

The next aim is to show the existence, uniqueness and stability of the
weak solution. But before we prove a technical lemma.

Lemma 3.1 The following assertions are valid:
(i) U(Q) — L?(0,T;L%3(Q)) where g3 = o0 ifn =1, g3 < 00 ifn = 2 and
q3 = % if n > 2; in the sequel we assume q3 € (‘f%qq?z,oo) in case
n = 2, where q1 and qo are given in (3.11) and (3.16), respectively;
(ii) if a satisfies (3.11) then for any u € L*(0,T; L%(Q)) it holds au €
LQ(OaTj L%(Q)) and |laul| 20,7192 (0)) < Collall Lar @) llull 20,719 ()
where Cy 1s a constant.

Proof. Since U(Q) — L*(0,T; W(Q)), the assertion (i) follows from the
continuous embedding of W3 (2) in L%(2). The assertion (ii) can be di-
rectly proved by means of the Holder’s inequality. m

Now we formulate and prove the main theorem of the subsection.

Theorem 3.1 Let (3.10) - (3.18) hold. Then the problem (3.1) - (3.4) has
a unique weak solution. This solution satisfies the estimate

lulluy < Cullluollzz + I1£ 1 L20m0o2 () + 16l (z2(Q)m (3.20)
+ el + O1{lgllr@) + lgaliri} + 2z, o |

where 0; = 0 in case Tj =0, 6; =1 in case I'; # 0 and Cy is a constant
depending on a;j,a, jt,m.
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L 1/2
Note that according to Remark 3.1, [|h||z2(p, .,y = [fOT S° h(wy, t)2dt
’ =1

in case n = 1.
Proof. Firstly, we prove the assertion of the theorem in case y = 0 and
p =0.

The assertion of the theorem in case p = 0, ¢ = 0 and m = 0 is well-
known from the theory of parabolic equations (see e.g. [43]). Let Z be
the operator that assigns to the data vector d := (ug, f, ¢, g, h) the weak
solution of the problem (3.1) - (3.4) in case 4 =0, ¢ = 0 and m = 0. Then
it holds

1Zdllu@y < Collluollrz) + I1£ 1 L20m0o2 () + 161l 22(Q)n

+ 019y + G2l 2y )

where Cs is a constant depending on a;j, a.

Further, let in general m # 0 and formulate the problem for the differ-
ence v = u — Zd. Introducing the linear operator A by the formula

szZ( —am * w, Zaum*wz, ,0),

the problem (3.1) - (3.4) for the weak solution u € U(Q) is equivalent to
the following operator equation for the quantity v € U(Q):

v=Av+ AZd. (3.22)

To analyze this equation, have to estimate the operator A. To this end,
we need the following auxiliary inequality:

t
[ * yll L2040 () < /0 im(t — )| 1yl L2(0,7,L0())dT, t € (0,T), (3.23)

for any p > 1 and y € L?(0,7T; LP(£2)). This was proved in Publication II,
ie. [42], p. 4.

Let t be an arbitrary number in the interval (0,7"). As in the proof of
w in Q
0 inQ\Q
Due to the causality we have Z(0, P.f, Pi¢,0,0)(z,t) = Z(0, f, $,0,0)(x, t)
for any (x,t) € ;. Using these relations, the inequalities (3.21), (3.23) and

Theorem 2.1, we introduce the cutting operator Pw =
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the boundedness of a;;, we compute:

AWl = HZ (07 —am Kk w, =35 aifm * W, 0, O) Hu(Qt)

<[ oo [ sogme] 00
<2 o-riom - [Ersaume ] 0]

< [HPt[am « W]l r20.7:092(0)) + Doiey ||Pelaijm x wy,] HLQ(Q)]

Co [Ham s w2010 (0)) + 2oim [ aigm * wa Hm(@z)}

IN

t
éy / m(t—7)| [lawl2omze @yt IVolgeoyy] dr  (3.24)

with some constant Cs depending on a;;, a. Due to Lemma 3.1, obtain
lawl| 2207192 () < CallallLa ) llwlluq,)

with some constant Cy. Using this relation in (3.24), we arrive at the
following basic estimate for A:

t
lAwlyon < Cs /0 m(t — ) wlgdr, t€(©0.T),  (3.25

where the constant C’5 depends on a;j;, a.
Let us define the weighted norms in U(Q): [[v]lc = sup e~ 7||v]ly(q,)
0<t<T

where o > 0. The estimate (3.25) implies the further estimate:

lMwlls < Cs sup e [ |m(t — )| [lw]yq,)dr
0<t<T

=Cs5 sup [y e "D lm(t — )| e |wlyq.)dT
o<t<T

A (T —os
< Cs [y e77%m(s)|ds [[w]]s-

Since fOT e~7%|m(s)|ds — 0 as 0 — oo, there exists g, depending on Cs

and m, such that Cs fOT e~%%|m(s)|ds < 3. Thus, ||Awle,
The operator A is a contraction in U(Q). This implies the existence and
uniqueness assertions of the theorem in case =0, ¢ = 0.

< glwlle,-

To prove the estimate (3.20) in case p = 0, ¢ = 0, we deduce from
(3.22) the inequality [[v[ls, < [[AV[loy + [AZd]loy < 3[V]oy + [12d]lo]-

This implies ||v||¢, < || 2d||s,, hence ||u|lo, = |0+ 2d||o, < 2||Zd||s,- Using
the equivalence relations e=7T|[lo < || [loy < [|-[lo. Where [|-[lo = || 1),

o7



and (3.21), we reach

lulkegy < 2Coe™T [luoll 2oy + I lz2(0rizea(ey) + 19l 22y -

+ 019l + OallAl 2y 1)

This is (3.20) in case p =0, ¢ = 0.

Secondly, we prove the theorem in the general case when p and ¢ may
not vanish. Let us introduce the resolvent kernel fi of u that is the solution
of the Volterra equation of the second kind

g+ pxp=p in (0,7). (3.27)

Since p € L?(0,T), the equation (3.27) has a unique solution zi € L?(0,T)
[15]. Note that the relations

(I —p)(I 4 px) = (I 4+ px)(I —pux) =1 (3.28)

are valid, where [ is the unity operator. Moreover, we define the following
one-to-one connection between functions u € U(Q) and u € U(Q):

U=u+purxu—¢ < u=u+e—u*xUu+yp) (3.29)

Now we note that the problem (3.1) - (3.4) for the weak solution u € U(Q)
is equivalent to the following problem for the weak solution u € U(Q):

, = AUu—m* AU+ f+V-$ inQ,
:ao iHQX{O},
=g inTyr7,

<)

(3.30)

g )

—uA-Vﬂ—l—fr\L*uA-Vﬂ:h—i—u-(E inl"ZT,
where
=m+f-m*fi, f=f+ap—ii*ap,
n n
&; =¢¢+Zaij80x]- —ﬁl*zaij%:j,
j=1 j=1

G=9g+p*g—9gs, Uy =uy—®(-0).

=)

This can be directly verified, inserting u by the right formula of (3.29) to
(3.19) and vice versa, inserting u by the left formula of (3.29) to the weak
form of the problem (3.30).

Taking the assumptions (3.10) - (3.18) and the relation 7 € L?(0,T)
into account and making use of Lemma 3.1 and Young’s inequality of con-
volutions, we obtain m € L'(0,7T), f € L?(0,T;L%(Q)), ¢ € (L*(Q))",
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g € L*(2), g € U(Q). Moreover, the estimates

11l 220,729 ) < 1112200702 52)) + Cllelluc)s
H¢H L@ = ||¢>H 2@ + Cellellug)

(3.31)
1917 < Céllgllrq) + ||9<pHT(Q)

ol 22y < lluollrzq) + Collelluq):

where the constant Cg depends on a;j;, a, u, m. Thus, the first part of the
proof applied to (3.30) implies that this problem has a unique weak solution
w in U(Q). By the mentioned equivalence of the problems (3.30) and (3.1)
- (3.4) we conclude that the latter one has a unique solution u in U(Q).
Finally, we write the estimate (3.26) for the solution of the problem (3.30)
and use the relations (3.31) for the data in the right-hand side. This yields
4@y < RHS, where RHS is the right-hand side of the estimate (3.20).
Since due to (3.29) [ullu) < (11l 11 0.1y) [1lkec@y + I lhacay] we reach
(3.20). m

We note the upper integration bound 7" in (3.19) can be released to be
any number ¢ from the interval [0, 7]. Namely, (3.19) is equivalent to the
following problem:

/Q [ g = ) (. () = (o) = (w,0))(x, 0)|do

—//(u—i—u*u—(p)ntdxdt

3.32
// ij(Ug; — M * Ug; ), — au — M * u)n} dxdt (3:32)
1,j=1
//hndfdt // (fn—¢-Vn)dxdt =0, te0,T]
Tay

for any n € 7o(Q). This assertion can be proved using the standard tech-
nique defining the test function as follows:

n(x,T) for T € [0,t],
n(z,t) =9 n(z,7)(1-2) for 7€ (tt+e),
0 for 7€ [t+¢€,T],

and letting the parameter € to approach 0.

3.1.2 Convolutional form of weak direct problem

The test function 7 in (3.19) has stronger smoothness requirements than
the solution u: it must possess a regular time derivative. But in some
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cases we must operate with a test function that has the same regularity
as u, for instance in computations with adjoint problems in next sections.
Therefore, we have to generalize the formulation of the weak problem in a
proper manner. Since the original problem contains time convolutions, it
is convenient to present such a generalization also in a convolutional form.

Theorem 3.2 The function u € U(Q) satisfies the relation (3.19) for any
n € To(Q) if and only if it satisfies the following relation

/Q(“ bpsu— @) e nde — /Q /Ot(uo(x) — (@, 0))n(z, 7)drdz

+ /Q 1% [ZJZ:I aij(uxj —mx uxj) * Ny — CL(’LL —mx u) * 77] dz (333)

+/ 1*h>1<ndF—/1*(f*n—z¢i*nzi)dx:0, te[0,T7,
Ty Q i=1

for any n € Up(Q).

Proof. It is sufficient to prove that u € U(Q) satisfies (3.32) for any
n € To(Q) if and only if it satisfies (3.33) for any n € Up(Q). Suppose
that v € U(Q) satisfies (3.32) and choose an arbitrary n € Tp(Q). Let
t1 be an arbitrary number on the interval [0,77] and choose some function
&1 € T5(Q) such that the relation

' (x,t) = n(x,ty —t) for te[0,t] (3.34)

is valid. (For instance, it is possible to define £ as a periodic function with
respect to ¢, i.e. £ (x,t) = n(x,t; —t) for t € [0,t1], £ (x,t) = n(w, t —t1)
for t € [t1,2t1], €1 (z,t) = n(x,3t; — t) for t € [2t1,3t1] and so on.) Using
the relation (3.32) with n replaced by £ and setting there ¢ = ¢; we obtain
the equality

Ki(t) + Ko(t1) =0, (3.35)

where

Ko (t) = /Q [+ g = ) (2, ), 0) = (uo(x) = p(w,0))(z, 1) | de

t
+//(u+,u>ku—go)(:E,T)nt(w,t—T)de:L‘,
QJo

n

Ky(t) = /Q[Z ij(Ug, — M * Ug;) * Ny — au —m * u) *n}daj
ij=1

+/F2h*ndf—/g(f*77—;@*mi)d%-
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Note that the time derivative of n can be removed from K; by integration.
Indeed, let ty € [0,7]. Then with the notation © = u + p % u — ¢ we get

to t2 t2
K1 tl dtl —/ / u\x, tl l‘ 0 d(L‘dtl / / u\xr, 0 (L' tl)dwdtl
0
to t1
—i—/ // u(z, 7))y (x,t1 — 7) drdadt;.
0 QJo

Changing the order of the integrals over 7 and ¢; in the last term, we easily

obtain
to

K (t1)dt

to t2
:// u(z, 7)n(z, te — 1) dea:—/ /ﬂ(x,O)n(m,tl)d:rdtl.
aJo 0o Jo

Integrating now the whole equality (3.35) over ¢; from 0 to t3, observing
(3.36), (3.37) and finally re-denoting to by ¢, we reach the desired relation
(3.33). Thus, we have proved that (3.33) holds for any n € 7y(Q). But all
terms in the right-hand side of (3.33) are well-defined for n € Uy(Q), too.
Since To(Q) is densely embedded in Uy(Q), we conclude that (3.33) holds
for any n € Up(Q).

It remains to show that (3.33) implies (3.32). Suppose that u € U(Q)
satisfies (3.33) and choose an arbitrary n € 7p(Q) and ¢; € [0,7]. Again,
let £ be a function from 7o(Q) such (3.34) is valid. Inserting £t instead
of n into (3.33), differentiating with respect to t and setting ¢t = ¢; we come
to the relation (3.32). =

(3.37)

3.2 Quasi-solutions of inverse problems. Fréchet derivatives
of cost functionals

3.2.1 Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns w =
(w1,...,wy) in the space Z; = (L?(Q))". Assume that u =0, ¢ = 0,
(3.10), (3.11), (3.13) - (3.15), (3.17) hold, fy satisfies (3.16) and ~; €
L?(0,T), j = 1,...,N. Then, by Theorem 3.1, the problem (3.1) -
(3.4) with f of the form (3.5) has a unique weak solution u € U(Q)
for any w € Z;. We denote this w-dependent solution by u(zx,t;w).
Since U(Q) C C([0,T]; L3()), the traces u(-, T;;w) belong to L?(12).
Let M C Z;. Assume ug, € L*(Q),i=1,...,N. The quasi-solution
of IP4 in the set M is an element w* € arg gélj\r/l[ J1(w), where Jp is

the following cost functional:

N
=37 lul, Tisw) = ury (@) By
i=1
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Similarly we define cost functionals and quasi-solutions for other inverse
problems, too.

(2) In IP5 we search for vectors z = (w,ug) € Z2 = (L2(Q))V*!. Assume
that u = 0, ¢ = 0, (3.10), (3.11), (3.13), (3.15), (3.17) hold, f
satisfies (3.16) and ~; € L*(0,T), j = 1,...,N. Then the problem
(3.1) - (3.4) with f of the form (3.5) has a unique weak solution
u = u(z,t;z) € U(Q) for any z € Zy. Further, let M C Z5 and
assume that x; € L®(Q), v; € L2(Q), i = 1,...,N + 1. The quasi-
solution of IP5 in the set M is z* € arg greuj\r/} Ja2(z), where Jy is the

cost functional

N+1

ZH/ Ri( t)u(, t; z)dt — v;

2

L2(Q)

(3) In IP6 we look for the vector z = (a, m, u) € Z3 = L?(2) x (L?(0,T))?.
Assume that n € {1;2;3}. This guarantees that any a € L?(f)
satisfies (3.11). Moreover, assume that (3.10), (3.14) - (3.18) hold,
where ¢ € (1,2) in (3.16) in case n = 2. Under such assumptions the
problem (3.1) - (3.4) has a unique weak solution u = u(z,t; z) € U(Q)
for any z € Z3. The trace of this solution at I'y 7 belongs to L? (Ta7)
(in case n = 1, u(ay,-) € L*(0,T),1 =1,...,L). Let M C Z3 and
assume that ur € L2(Q), x; € L®(Tar), v; € L*(0,T), i = 1,2. The
quasi-solution of IP6 in the set M is z* € arg ?5\1/} J3(z), where J3 is

the cost functional

2 2

J3(2) = |lu(-, T; 2) = url| 720

/ ki(x,Ju(z,-; 2)dl — v;
I

L2(0,T) .

=1

3.2.2 (General procedure to deduce adjoint problems

Suppose that the solution u of the direct problem (3.1) - (3.4) depends on
a vector of parameters p that has to be determined in an inverse problem
making use of certain measurements of u. Let a quasi-solution of the inverse
problem be sought by a method involving the Fréchet derivative of a cost
functional (i.e. some gradient-type method). Usually in practice, a solution
of a proper adjoint problem (or solutions of adjoint problems) are used to
represent the Fréchet derivative.

We introduce a general procedure to deduce such adjoint problems in
case p = 0 and ¢ = 0. Assume that Awu is the difference of solutions
of the direct problem corresponding to a difference of the vector of the
parameters Ap. More precisely, we suppose that Awu is a solution of the
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following problem:

Aug+ (px Au)y = AAu—m s AAu+ fT+V-¢' inQ,
Au = Auy in Q x {0},

Au=0 inTy7,

—va-VAu+msvg-VAu=hl +v. ¢ in Iy 7,

(3.38)

with some data ff, ¢f, Aug, h' depending on Ap. We restrict ourselves to
the case when the Dirichlet boundary condition of the state u is independent
on p. Therefore, Aulr, . = 0 in (3.38).

In practice, the adjoint parabolic problems are usually formulated as
backward problems. In our context, it is better to pose adjoint problems
in the forward form. The involved memory term with m is defined via a
forward convolution and from the practical viewpoint, it is preferable to
have the direct and adjoint problems in a similar form (e.g., to simplify
parallelization of computations).

Namely, let an adjoint state ¢ be a solution of the following problem:

Y+ (pxp)y = AY —mx Ap+ f°+ V- ¢° inQ,
Y =u® in Q x {0},

=0 inTyp,
—va-V+m*vg-Vp=h"4+v-¢° inTarp,

(3.39)

where f°, ¢°, u° and h° are some data depending on Awu and the cost
functional under consideration.

Assume that (3.10), (3.11), (3.13) hold and the quadruplets fT, ¢,
Aug, ht and f°, ¢°, u°, h° satisfy the conditions (3.14) - (3.17). Then,
due to Theorem 1, the problems (3.38) and (3.39) have unique weak solu-
tions in the space U(Q). Actually, it hold Awu,1 € Uy(Q) because of the
homogeneous boundary conditions on I'y 7.

Let us consider the relation (3.33) for Au and take the test function
n = 1. Then we obtain for any ¢ € [0,7]

t
/ (Au+ p* Au) x ¢ da — / / Aug(x)p(x, 7)drdx
Q o Jo

+ /Ql* [Z aij(Aumj —m*Aum]’) * %1 - a(Au - m*Au) * ¢:| dz (340)

i.j=1

+/F21>khT*@Z)dF/Ql*<fT*¢ZZn;¢;f*¢xi)dx:0.

Secondly, let us consider (3.33) for ¢ and take the test function n = Au.
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Then we have for any ¢ € [0, 7T
t
/(1/) +px)x Audr — / / u®(x)Au(z, 7)drdz
Q QJo

s [ e [ i, e B, — el = s )+ By

1,j=1

°x A — °x Au — ; Ay, = U
+/1“21*h* udl’ /ﬂl*(f* u ZZ:;(;SZ* uz>d:1: 0

Subtracting (3.40) from (3.41), using the commutativity of the convolution,
the symmetricity relations a;; = aj; and differentiating with respect to ¢,
we arrive at the following basic equality:

/ u®(z)Au(z, t)dx — / h® * Audl’ + / (fo * Au — Z o7 * Auxi)daz
Q I’z Q i=1

:/S)Au[)(x)w(:c,t)dx—/rghT*ibdF-i-/g](fT*i/J—Zn:(bz*l/’xi)d%v

i=1

t€1[0,7). (3.42)

This relation can be used to deduce proper representations for Fréchet
derivatives of cost functionals of various inverse problems. The procedure
starts with a derivation of a usual expression for the Fréchet derivative,
thereupon entries of the adjoint problem f°, ¢°, u° and h° are chosen so
that the left hand side of (3.42) equals this expression. We will demonstrate
this scheme in next three subsections.

We mention that the last step of the derivation of the formula (3.42),
i.e. the differentiation of the difference of (3.41) and (3.40), is problematic
in case the free term of the integro-differential equation (3.40) contains a
singular addend cpi, because in this case we have to differentiate a convolu-
tion o' % 1) that may have not a regular time derivative. However, the step
of differentiation is necessary, because the antiderivative of (3.42) is useless
for inverse problems with instant conditions.

3.2.3 Derivative of Js

We start by analyzing Jo, because this is the simplest of the functionals
Ji, J2, Js.

Theorem 3.3 Let the assumptions listed in §3.2.1 (2) be satisfied. Then
the functional Jo is Fréchet differentiable in Z9 and Jj(2)Az = (02, Az) z,,
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where the z-dependent vector oo = p2(x; z) consists of the components

T
@Q,j(w;z)Z/ v (O (x, T—t;2)dt, j=1,...,N,
0

Q2,N+1(x; Z):w($aTa Z)a

(3.43)

Y = Y(x,t;2) € UQ) is the unique z-dependent weak solution of the fol-
lowing (adjoint) problem:

Yo = A —m s Ay
N+1 T
+2 Z ki(z, T —t) {/ ki(xz, T)u(x, 75 2)dT — vi(z)| in Q,
i=1 0 (3.44)
=0 1inQx{0},

1,[):0 Z"IlFLT,
—vA-VYy+m*vy-Viy=0 inTar

N

and (02, 2) 2z, = Y (02,5, wj) 12()+(02,N+1,U0) 2(q) i the inner product
j=1
of 02 and z in the space Zs.

Proof. Let us fix some z = (w,up) and Az = (Aw, Aug) in the space Zs.
One can immediately check that it holds

N+1

Jo(z + Az) — Jo(z _22// ki(z,1)
X [ /0 ' ki, T)u(z, 75 2)dr — vi(x)] Au(z, t; 2)dtdz (3.45)
N+1 2

+Z/[/ mxtAu(xtz)dt} dx,

where Au(z,t;2) = u(x,t; 2+ Az) —u(z, t; 2) € Up(Q) is the weak solution
of the following problem:

N
Aug = AAu —mx AAu + Z 7 Aw; in Q,
j=1
Au = Aug in Q x {0}, (3.46)
Au =0 in FLT?
—va-VAu+mx*vg-VAu=0 inTy7.

Using the Cauchy inequality, the assumptions x; € L®(Q), v; € L*(0,7T)
and the estimate (3.20) for the solution of the problem (3.46) we deduce

65



the relation

N+1

Z/ [/ mxtAu(xtz)dtrd:c <Gy
ﬁé[\\Zvj i,

A7 o)

(3.47)
"’HAUOH%%Q)} = ég|’AZ‘|%L2(Q))N+1

L2(0,T;L92(R2))

with some constants C’7, Cs, C’g. Therefore Jy is Fréchet differentiable and
the first term in the right-hand side of (3.45) represents the Fréchet deriva-
tive, i.e.

N+1

Jy(z Az—22// Ki(z,1)

(3.48)
« [ /0 Y il 7 2)dr Ui(x)} Au(z, t; 2)dtda.

Comparing (3.46) with (3.38) we see that ff = Zjvzl vjAw;, ¢f = AT = 0.
Consequently, the relation (3.42) has the form

/uo(w)Au(x,t)d:U—/ ho*AudI‘—l—/(fO*Au—Zgbf*Auxi)d:L‘
Q Iy Q

i=1
N
= / Auo(x)w(x,t)dx—i—Z/ viAw; * pdx, te0,T]. (3.49)
Q e

We note that the left hand side of (3.49) coincides with (3.48) if we define
f° in the in the following manner:

N+1

=23 m(e T —t) [/OT ki, Tl 7 2)dr — vilz))
1=1

let u® = h° = ¢° =0 and set t = T in (3.49). The problem (3.39) with
such entries takes the form of (3.44). By Theorem 3.1, the latter one has a
unique solution ¥ € U(Q). Finally, the right-hand side of (3.49) at t =T
equals (g2, Au)z, where the components of go are given by (3.43). This
yields the equality J5(2)Az = (02, Az)z,. =

3.2.4 Derivative of J;

Theorem 3.4 Let the assumptions listed in §3.2.1 (1) be satisfied. Then
the functional Jy is Fréchet differentiable in 21 and Ji(w)Aw = (o1, Aw) z,,
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where the w-dependent vector g1 = p1(x;w) consists of the components

N T
o1 (W) =Y /O vz, T — t;w)dt, j=1,...,N,  (3.50)
=1

Vi = Yi(z,t,w) € UQ), ¢ = 1,..., N, are the unique w-dependent weak
solutions of the following (adjoint) problems:

1/%’,15 = Aq/]l —m* Adjl n QTN
i = 2[u(z, Tj;w) — ur, (z)]  in Q x {0},

. (3.51)
;=0 inIg,
—vA-Vii+mxvy -V =0 inlyr
N
and (01,w)z, = Y (01,,wj)2(q) s the inner product of o1 and w in the
j=1

space Z1.

Proof. Let us fix some w, Aw € Z1. It holds

N
Ji(w+ Aw) — J1(w) = 2 Z /Q[u(x,Ti;w) —ur, (2)]Au(z, T;; w)dz
= (3.52)

N
+3° [ Mo T,
=1

where Au(z, t;w) = u(z, t;w+ Aw) —u(x, t;w) € Up(Q) is the weak solution
of the following problem:

N
Auy = AAu —m* AAu + Z 7 Aw; in Q,
j=1
Au=0 in Q x {0}, (3.53)
Au=0 1in Iy,
—va-VAu+mx*vg-VAu=0 inTy7.

Similarly to (3.47) we obtain the estimate
N A A~
Z/QAU(:U,E;W)2CZLU < ClOHAUHz{(Q) < Cll”AWH%m(Q))N
i=1

with some constants 010, 011. This implies that J; is Fréchet differentiable
and the first term in the right-hand side of (3.52) represents the Fréchet
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derivative, i.e.

N
Ji(w)Aw = Zai with
i=1 (3.54)

o = 2/{)[16(1‘,’1};&)) —ur, (z)|Au(z, T;; w)dz.

We are going to deduce suitable representations for the addends o;. For
this purpose, we make use the method presented in Subsection 3.2.2, again.
Comparing (3.53) with (3.38) we see that fT = Zjvzl vjAw;, ¢ = Aug =
ht = 0. Therefore, the relation (3.42) reads

/uo(fv)Au(:c,t)d:L“/ ho*AudFJr/(fo*AuZqﬁf*Auxi)daz
Q Iy f i=1

N
:Z/ v;Aw; * pdx, t € [0,T). (3.55)
j=17%

Note that the left-hand side of (3.55) equals o; if we set u{ = 2[u(z, Tj;w) —
ur,(z)], h° = f° = ¢° =0 and t = T; in (3.55). In such a case the initial
condition u{ of the adjoint problem (3.39) depends on the index 7, thus the
solution 1) depends also on i. Let us denote this solution by ;. Rewriting
(3.39) for ¢; we immediately get (3.51). Due to Theorem 3.1, the problem
(3.51) has a unique solution in U(Q).

From (3.55) we immediately get

N T;
o; = ]; /Q/O v )iz, T — t;w)dtAw;(x)da. (3.56)

From (3.54) and (3.56) we obtain J{(w)Aw = (01, Aw)z,, where the com-
ponents of p; have the form (3.50). m

We point out that the formulas of the components of p; (3.50) contain
the solutions of the problems (3.51) in cylinders Qx (0, T;) = Qr; of increas-
ing heights T7 < Ts < ...Tn. It turns out that we can reduce the solution
of such a family of solutions to a successive solution of a certain family of
N problems posed on the layers Q7,_7, ,,%=1,..., N. The computational
cost of the latter procedure is comparable with the cost of a solution of a
single problem on 2 x (0,7%). Let us formulate a corresponding theorem.

Theorem 3.5 Let the assumptions listed in §3.2.1 (1) be satisfied. The
components of p1 can also be presented in the form

N T

01,j(z;w) = Z /T v () Bz, T} — t;w)dt, j=1,...,N, (3.57)
=1 /T
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where B; € Up(Qr,—1,_,) are the unique w-dependent weak solutions of the
following sequence of recursive problems in the domains Qr,—1, ,:

By = AB—mxAB —af' =V - @ inQn_1 |,

B = ué in Q x {0},

6,=0 1in | RSy S

—vpA- VB +mx*xvy-VB =—v- o in Lom-1y
wherel = N, N —1,...,2,1. Here

up(z) = 2 [u(z, Tj;w) — ug ()] + OB (2, Trpr — Ti;w)

and the function f' and the vector ® are defined via By, BN-1,--.,Bi41 as
follows:

N-1 T Ty

l

fl=0,>" (T —Ty+t47) Brs1 (z, Thgr — T — T3 w)dr
k=l 0

1

Pl = (®),...,0.), d! = z;;laija%fl and Oy =0, ©; =1 forl < N.

Proof of this quite technical result is contained in Publication II, p. 9-
11. The relation between v; an f; is fi(x, t;w) = Zi\il Vi(x, T; — Ty + tw)
for (z,t) € Qry—7,_, (formula (71) in Publication II).

3.2.5 Derivative of J;3

We prove the Fréchet differentiability and deduce a proper representation
formula for the cost functional J3 of the nonlinear inverse problem IP6 in
two steps.

Theorem 3.6 Let the assumptions listed in §3.2.1 (3) be satisfied. Then
the functional J3 is Fréchet differentiable in Z3 and

Ji(2)Az = 2/9[u(:z:,T; z) —up(z)] Au(x, T)dx
T (3.58)
+2Z/ [/F Ki(y, t)u(y, t; Z)dF—vi(t)] /F ri(x, t) Au(z, t)dldt,

for any where z = (a,m, ), Az = (Aa, Am,Au) € 23, where Au € U(Q)
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s the z- and Az-dependent weak solution of the following problem:

Aug + (px Au)y = AAu —m* AAu+ Aalu — m * u] — Am * au
n
-V [Am * Za@-jux]} —(Ap*xu)y inQ,
j=1

Au=0 1nQx{0}, (3.59)
Au=0 inly7,
—va-VAu+mx*xvg - VAu=—v- {Am * Zaijuxj} in Do .

j=1

Proof. Let us estimate the components of the free term of the integro-
differential equation in (3.59). Observing the inclusion u € U(Q), Lemma
3.1 and using the Young and Cauchy inequalities we obtain

[Aalu —m * u] — Am * aul| 207,102 (2))
< arllulluie) [+ Imll 2ol Adllz) + llall a1 Aml 20.m)] (3.60)
< ea(z )] A,

where ¢; is a constant, ¢ is a coefficient depending on z, v and || - || denotes
the norm in Z3. Taking the boundedness of a;; into account we similarly
get

1Am Y~ aijua; [l z2qe < esllullulAmll L2, (3.61)
j=1

with a constant ¢é;. Further, we estimate the term Ay * u. Since u €
C([0,T); L*(2)) and Ap € L2(0,T), it is easy to check that Au x u €
C([0,T); L2()) and [| Apullco,ryc2 ) < T2 ulleqo.rrzz o A0 L2 0.1):
Similarly, | Apul 120 rava )y < TV Xull 20 mwp ) [ Aull 220,7)- Putting
these estimates together, we have

1Aw * ullugy < T2 lullulAu] 120 1 (3.62)
Since u = ¢ in I'1 7, we find that

Apxu = Apxg inTyp. (3.63)

Using the assumption g € 7(Q) and the Young and Cauchy inequalities
again, we deduce

A+ gllr@) = 1A * gll20,mwi) + 1A+ g)ellL207,22(0))
= |Ap*gll20,mmwp ) + 180 * gell 20,7, 02(0)) (3.64)
+ [[Ap g (-, 0)[| L2 0,7:22(02)) < CallApllp2(0,m)
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with a constant ¢4. The relations (3.60) - (3.64) show that the assumptions
of Theorem 3.1 are satisfied for the problem (3.59). Consequently, (3.59)
has a unique weak solution Au € U(Q). Moreover, applying the estimate
(3.20) for the solution of (3.59) we obtain

|Aullq) < Cr || Aafu = m s u] + Am = aul 2o 702 0))

n
+ HAm * Z QjjUy;
j=1
< 5(2,u)|| Az

sy 1 Ul + 1l gl | (369)

with a coefficient ¢5 depending on z, u.
_ Next, let us denote Au = u(z,t;2 + Az) — u(x,t;2) and define Au =
Au — Au. Then we can represent the difference of J3 as follows:

J3(z + Az) — J3(2) = RHS + O, (3.66)

where RHS is the right-hand side of the equality (3.58) and

0 =2 /Q [u(z,T) — up(z)] Au(z, T)dz

2

2% /0 ' [ /F il Dy, vi(t)} /F ) B )

=1

2

/{(Au+Au a:T dx+2/ {/m:z:t Au+£u)(x,t)dF}dt.

The function Au satisfies the following problem:

Aug+ (nxAu)y = AAu—mx AAu+ f+ f
+V-6+V-o+@+3 nQ,

Au=0 inQx {0}, (3.67)

Au=0 in I'y 7,

—UA'VEU—G—?TL*VA'VAUIU-QE—FV-&; in I'y 7,

where
f = AaAu — (m + Am) x AaAu — Am * aAu — Am * Aau,
f=AaAu— (m + Am) x AaAu — Am * aAu,
b =—Amx Z aijAug;, ¢ =—Amx Z aij Aty
j=1 j=1
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Similarly to (3.60) - (3.62) we deduce the following estimates:

1Nl 220,712 () < @6{(1 + [Iml z20,7) + 1AMl 2 0.10)) 1Al 20
<[ Aullug) + I Amll a0 myllall 2oy 1 Aullg) + | Amll 2o 7)1 Aal 2oy
<lullu@ } < ér(zw){ 1820+ 1A217] |Auluq) + 14212},

17l 2oy < () (1821 + 18217 | Rullue),
16l L2(@)n < CollAz|l | Aullyq),
H$H(L2(Q))" < éQHAZHHAUHM(Q)v
18lley < T2 A2 ][ Aullug)s
1Blliq) < T2 182 Aulyq)
with some coefficients ¢, . . ., 9. Moreover, since Au = Au=0in ' 7, we

have ¢ = @ = 0 in I'; 7. Applying the estimate (3.20) to the solution of
the problem (3.67) we get

1Al
< uoz,u){ (1821 + 18212 {I Aullug) + |1 Buluq) p+1A212}

with a coefficient é19. Provided [|Az|| is sufficiently small, i.e. ||Az] 4+

|Az||? < 26101(27@ , we have

1Bl < 26100z, w){ [1Az] + 18212 | Aulkig) + 14217 }.
Due to (3.65), this yields
1Bulluy < ez ) (1427 + | Az]°] (3.68)

with a coefficient ¢17.
In view of (3.65), (3.68), the assumption x; € LI’y ) and a trace
theorem, the RHS and the quantity © satisfy the estimates

6
IRHS| < é12(z, u)||Az]], 0] < é1a(z,u) Y [|Az],
=2

where ¢1o and é;3 are some coefficients. Moreover, RHS is linear with
respect to Az. This with (3.66) shows that Js is Fréchet differentiable in
Z3 and J5(2)Az equals RHS. =

Theorem 3.7 Let the assumptions listed in §3.2.1 (3) be satisfied. More-
over, assume g = 0. Then the Fréchet derivative of Js3 admits the form
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JL(2)Az = (03, Az) z,, where g3 = 03+ 03, the z-dependent vectors g3, 05 €
Z3 have the components

031(w;2) = [(u—mxu) « Y| (x,T), 03, =0, (3.69)

03,2(t; 2) [ Aij; * Uz, — U * ¢] (z,T — t)dx, 032 =0, (3.70)

/QZJ 1
033(t;2) = /[au*d) (L+m—mxp)—aux
Q
(3.71)
+ Z aijwaci *Ug; — Z %%1 * Ug, * (ﬁ+ m—=m *ﬁ):| (va - t)da:,
i,j=1 i,j=1

-2 Z /tT [/F kiy, T)u(y, 7)dl — Ui(T):| (3.72)
X /F2 ki, 7)[u = fix u] (z, 7 — t)dldr,

[ is the solution of (3.27), ¢ = (x,t;2) € U(Q) is the z-dependent weak
solution of the following (adjoint) problem:

Ay + (px A)y = AAY —mx AAY  in Q,
Ay =2[u(x,T; z) —ur(z)] in Q x {0},

AYp =0 inTyr,
—vaA-VAY+mxvy-VAY=h® inTorp,

(3.73)

where
h®(x,t)

oy, , | (3.74)
= —2; ki(z, T —t) {/Fz ki(y, T —t)u(y, T — t)dl' — v;(T —t)

and (03, 2) z; = (03,1, @) 12(0) + (03,2, M) 12(0,7) + (03,3, 1) L2(0,1) 15 the inner
product of o3 and z = (a,m,p) in Z3.

Proof. We are going to make use of the method presented in Subsection
3.2.2, but firstly we have to eliminate the singular term (Ap * u); from the
integro-differential equation (3.59). For this purpose, let us define a new
function Aw via is the weak solution of (3.59) Au by means of the formula
Aw = Au+ Ap *xu — i * Ap v and deduce a problem for Aw. Since
u, Au € U(Q), we have Aw € U(Q). Moreover, using (3.28) it is easy to
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check that Au+ p* Au+ Apxu = Aw+ p+ Aw. Using this relation for the
time derivatives in (3.59) and the equality Au = Aw — Apxu+ ix Ap*u
for other terms containing Aw in (3.59) we see that Aw is the weak solution
of the following problem:

Aw,+ (px Aw)y = AAw —m* AAw+ fT4+V-¢l inQ,
Aw =0 in Q x {0},

Aw=0 1inTy 7,

—VA-VAu—i—m*l/A-VAu:U-qu in Iy 7,

(3.75)

where

1= Aafu—mxu] —aAmxu—alp*u
+ alApxu [+ m—mx* [,

n

n
QSI = —Am=x Z Qi — Ap* Z QjjUy;

=1 =1

n
+AM*Zaijij x [+ m —m* fl.
j=1

Note that the integro-differential equation (3.75) doesn’t contain a singular
time derivative in its free term. In addition, let us rewrite the expres-
sion of J'(z)Az (3.58) in terms of Aw. Using the formula Au = Aw —
(u — 1% u) x Ay, again, we obtain

Ji(2)Az = 01 + 09 with

— /Q u(z, T) — ur(z)] Aw(z, T)ds

+22/T UF? ki (y, t)u(y, t)dl — v (t )] /F2 ki(z, t) Aw(z, t)dldt,

o9 = —2/ [w(z,T) — up(z)] [(u— [ *u)* Ap](z, T)dz
Q

—2Z/T[/F2m<y,>< T (1)
x /F ki@, ) [(u — % u) * A (2, t)dTdt.

The term o9 has the form of the inner product oo = (g3, Az)z,, where
03 = (0,0,05 3) and 95 3 is given by (3.72). It remains to represent o7 in a
form of the inner product. Let us make use of the basic formula (3.42) with
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Auw replaced by Aw. Comparing (3.75) with (3.38) we see that Aug = 0
and hf = 0. Thus, (3.42) reads

/uo(ac)Aw(ac,t)dx—/ ho*Ade‘—i—/(fO*Aw—Z@’*Awmi)dw
Q I’y Q i=1

:/Q(fuw—gdwm)dx, te o, 7).

The left-hand side of this expression equals o7 if we choose u® = 2[u(z,T) —
ur(z)], define h° by (3.74), take f° =0, ¢° = 0 and set ¢ = T'. In this case
o1 = fQ (fT *p— >0 gb;r * ¢r¢)dx‘t:T' Substituting here the quantities
f1 and ¢' and rearranging the terms we reach the relation o1 = (g3, Az) z,,
where the components of g3 are given by (3.69) - (3.71). This proves the
assertion J4(z)Az = (03, Az) z,, where g3 = 03 + 0s.

Finally, with the mentioned choice of w®, h°, f° and ¢° the adjoint
problem (3.39) has the form (3.73). Since u € U(Q) and k; € L>®(T'27),
by trace theorems we get u® € L?(Q) and h° € L?(I'y.r). Therefore, due to
Theorem 3.1, the problem (3.73) has a unique solution ¢ € U(Q). =

3.3 Existence of quasi-solutions

Theorem 3.8 Let the assumptions listed in §3.2.1 (1) be satisfied and M C
Z1 be compact. Then IP4 has a quasi-solution in M. Similar assertions
are valid for IP5 and IP6, too.

Proof. Since J; is bounded from below, there exists m = in& Ji(w) >
we

—o00. Let w; € M be a minimising sequence, i.e. limJj(w;) = m. By the
compactness, there exists a subsequence w;; € M such that limw;, = w* €
M. Due to the continuity of Ji, following from the Fréchet differentiability,
we have lim Jy (w;;) = Ji(w*). Thus, Ji(w*) = m and w* € arg félﬁ J1(w).

The element w* is a quasi-solution. m
Theorem 3.9 Let the assumptions listed in §3.2.1 (1) be satisfied and M C
Z, be bounded, closed and conver. Then IP4 has a quasi-solution in M.

The set of quasi-solutions is closed and convex. Similar assertion is valid
for IP5, too.

Proof. The existence assertion follows from Weierstrass existence theorem
(see [65], Section 2.5, Thm 2D) once we have proved that J; is weakly
sequentially lower semicontinuous in F, i.e.

J1(w) < liminf Jy(w,) as w, = w in M. (3.76)
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On the other hand, (3.76) is a consequence of the continuity and convexity
of Ji in M [65]. As mentioned before, J; is continuous in Z;. Thus, it
remains to show that J; is convex. In view of the linearity of u(x,t;w) with
respect to w and the convexity of the quadratic function we obtain

TG+ (1— A Z/ u(e T X0+ (1= X&) —ur,(2) ) da
— Z/ )\u (2, Ti; @) + (1 — Nu(x, Ti; @) — uTi(x)}2d;[;
= Z/ { u(z, Ty; @) — ur, ()] +(1 = N [u(z, Ti; @) — ur, ()] }Qdas

- W) —ur. (x 293
S)\;/O {u(z, T;,&) — ur,(z)}°d

N T
+(1-X) Z/o {u(z, T;, @) — uTi(a:)}2dx =Mi(@) + (1 =N (@)
i=1

for any A € [0,1] and w,w € 2Z;. This shows the convexity of J;. The
closedness and convexity of the set of quasi-solutions also follows from the
continuity and convexity of J;. m

Proof of a theorem analogous to Theorem 3.9 for IP6 is a more com-
plicated task, because in this problem u(z,t; z) is not linear with respect
to z and J3 may not be convex. We are able prove such a result in the
particular case n = 1.

Theorem 3.10 Let the assumptions listed in §3.2.1 (3) be satisfied. As-
sume that n =1, Q = (¢,d), ¢ =0, g(-,0) = 0 and M be bounded, closed

and convex. Then IP6 has a quasi-solution in M.

Proof. Again, the assertion of the theorem follows from Weierstrass exis-
tence theorem [65] provided we are able to show that J3 is weakly sequen-
tially lower semi-continuous in M. We will prove that Js is even weakly
sequentially continuous in M.

Let us choose some sequence zp = (ag, mg, pg) € M such that z, — z =
(a,m,p) € M. Our aim is to show that J3(z) — J3(2).

Firstly, we mention that the relation z; — z immediately implies ax — a
in L?(c,d) and my — m, pp — p in L?(0,T). The subsequent part of the
proof consists of several steps.

1. step. Let i € L?(0,T) be the solution of (3.27) and i € L*(0,T) be
the solution of the equation

[k 4 px * fir = px - in (0, 7).
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We are going to show that fi, — 7 in L%(0,7).

To prove this convergence relation, we start by verifying the bounded-
ness of the sequence iy in L?(0, T). Multiplying the equation of fiy by e~°%,
o > 0, observing that ™7 (uy, * u) = (e”“tug) * (e77%u) and estimating by
means of the Young and Cauchy inequalities we get

e Tkl 20,y < e e €7 ikl 20y + le™ prll 20,1

< lle= urllromlle " il 2 + e wrll 20m)

< HfUt”m(o,T)HMkHL2(o,T)HefatﬁkHH(o,T) + Hefatﬂk”m(o,Ty
Since [le= || 20,7 — 0 as o — oo and the weakly converging sequence iy, is

bounded in L?(0,T'), there exists o > 0 such that |le™"|| 20,7y [l k|| £2(0,7) <
%. With such a o we obtain

le™" Finll 20,y < 2lle™ ellzzom) = Wakllzz,ry < 27" sup [lukllz2(0.1)-

This shows that the sequence Jiy is bounded in L?(0,T).
Further, the difference ji — 1 can be expressed as

ik — [ = g — p— vg * (g — o),

where v, = i + [iy — [i * [ix, is a bounded sequence in L2(0,7). With an
arbitrary ¢ € L?(0,T) we have

(e =12, C) 20,7y = — {1k — 145 C) 2 (0,7) — Nk (3.77)
T T—1
N = (g * (e —11), O) 2 (0,7) 2/ Uk(T)/ (. — p)(8)C(T + s)dsdr.
0 0

Since py, — pand ((7+ -) € L*(0,T —7) for 7 € (0,T), it holds fOT*T(uk -
w)(s)¢(T + s)ds — 0 for any 7 € (0,7'). Moreover, since py is bounded
in L2(0,T), the sequence of 7-dependent functions | fonT(,uk — ) (s)C(T +
s)ds| is bounded by a constant. In view of the Cauchy inequality and the
dominated convergence theorem, we find

— 0.
L2(0,T)

[Nkl < llvellzeo.r)

T—.
/0 (i — 1)(S)C(- + 5)ds

Thus, from (3.77), due to pur — p, we obtain i — /.

2. step. We estimate Js(zx) — J3(z) in terms of the difference of 4y and
u, where

U=u+p*u, Up = ug-+ g *ug (3.78)

and u = u(x,t; z) and ug, = u(x,t; z;) are the weak solutions of (3.1) - (3.4)
corresponding to the vectors z and z;, respectively.
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The relations u,up € U(Q) and p, p € L*(0,T) imply u, U € U(Q).
Applying the operators I — fix and I — i+ to the left and right equality
in (3.78), respectively, and taking the relations (I — fix)(I 4+ p*) = I and
(I — pg*)(I + pkx) = I into account, we deduce the formulas

U=U—[gxu, Up = Up — g * Ug.
Subtracting we have
Up —u =Up —u — dg * (U, — u) — (x — ) * .

Making use of the latter relation we express the difference of values of the
functional J3 as follows:

d
J3(zk) — J3(z) = / (u — u)z(m,T)dm

d
+ 2/ [w(z,T) — up(z)](ux — u)(z, T)dz

2

2 .l L
+> / [Z ki, t) (up — u) (xg, 1) | dt (3.79)
i=1 70 =1
2 T L L
+2 Z/ ki(zy, t)u(zy, t)—vi(t)] [Z ki(zy,t) (u/yc — u) (7, t)] dt
=170 Li=1 =1

=0+ 41+ I,
where

d 2
= [ (@ s @ - 0) — (e~ )+ ) (2, D),
C

d
2= 2/ (. T) — up(@)]

x (= @ = fig = (@i — @) — (i — 1) * @) (2, T)da,

2
% (T =@ — i x (@ — ) — (7 — ) # @) (. )|t

o[ L
It :22/0 [ZM(MJ)U(@J)—W@)]

=1

L
~ [Z ka2, 1) (ak = T * (T — 0) — (i — 1) * a) (ml,t)] dt.

=1
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Let us estimate I;. We split the ingredient of the integral up as (ﬂk —
2 2
ﬂ—ﬁk*(ﬂk—a)—(ﬁk—ﬁ)*a> - (ak—a—ﬁk*(ak—a)) —2<ﬂk—ﬂ—ﬁk*
2
(U — iZ)) (hk — ) xu + ((ﬁk — 1) % ﬂ) . Using the Cauchy inequality, the

inclusions 71 € L?(0,T), g, u € U(Q) and the boundedness of the sequence
fir, in L2(0,T) we obtain

‘I]H < ||(ﬂk —u— //Zk * (ak - a))(7T)||2L2(c,d)
2/ (7 — 1) * @) (-, Dl p2 ey | @k — 8 — g * (e — @) (Dl p2(ea) + Bi
< Cra(llan — 3 q) + lan — llug)) +Bis

where C19 is a constant and

Rl = /Cd [/OT(ak @i, T — r)dr] de.

Since @ € U(Q) C L*(Q), by Tonelli’s theorem it holds u(z,-) € L(0,T)

ae. € (¢,d) = u(x,T —-) € L*(0,T) a.e. x € (¢,d). Thus, in view of

fir. — 11 in L%(0,T) we have fOT(ﬁk — ) () u(z, T —7)dT — 0 a.e. x € (¢,d).

Moreover, by the Cauchy inequality, the boundedness of fi;, in L?(0,T) and
2

@ € L3(Q) we get | [) (i = B)(7)i(e, T — 7)dr| < Cug [ [aw, 7)]dr €

LY(c,d) with a constant Ci3. Therefore, due to the dominated convergence

theorem we obtain R,l€ — 0.
Similarly, for I ,f we get

15| < 2llul T) = urll 2yl (@ — @ — Fiy * (@ — @) (5 T 22 (c,) + BE
< Cual|iy, — ) + Ri»

where C’14 is a constant and
Rk—/‘u:cT—uT H/ e — [ (xT—TdT’d.T

By the same reasons as above, it holds Rk — 0.
Next, let us estimate [ }2 Performing the same splitting as in [ ,i we
deduce

I3 < L? Z Jnax {Hm 215 Mo 0.y | (T — @ = ik % (@, = @)) (21, ) 17207

+2I7 Z max [Hm(:vz, ‘)||%oo(o,:r)|| ((ﬂk — 1) * a) (@1, ) L2(0,m)
=1

<@ — @ — i+ (@ — ) (21, ) |20y |+

< Crs (1@ — Ally o) + 18k — @lluuq)) + B3,
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where C15 is a constant and

3 5 T t 2
R}=L erglaX{Hm 20, )2 o1 /O [ /0 (i — ) (7).t = 7)dr | dt}.

Since @(xy, t—-) € L?(0,t) Vt € (0,T) we get fot(ﬁk—ﬁ)(T)a(xl,t—T)dT —0
vt € (0,T). Moreover, the sequence | fg(ﬁk—ﬁ)(T)iZ(xl, t—7)dr| is bounded
by a constant. Consequently, Ri — 0.

Finally, in an analogous manner we deduce the estimate for I,‘Cl:

1] < Crsllak — Ullug) + Bi,  Che - a constant,
Ry =2L ZHZ wi(zy, t)u(ey, -) — ‘ 200 1fgla<XL{||f%($l, Mze(o.1)

=1 I=1

9 /O i /0 (i - mma(xl,t—ﬂdffdt] 1

where Ri — 0.
In view of (3.79) and the deduced estimates of I ,i, e ,[,3 it holds

| J(2) — J3(2)| < Cur ([l — @7y + Ik — Tlleq)) + R,

where Ci7 is a constant and Ry, = R,lg 4+ ...+ R,‘i — 0.
3. step. We prove that [[uy — ullyq) — 0. This would imply |J3(2x) —
J3(z)| — 0 and complete the proof.

The functions @ and 4y, are the weak solutions of the following problems
(cp. the derivation of (3.30) in the proof of Theorem 3.1):

U = Au—m*xAu+ f+ ¢, inQ,
u=wugy in (c,d) x {0}, (3.80)
u=g inTyr7, '

—va-Vu+m*vg-Vu=h+v-¢ inlyrp,

Upt = Agur — my x Aguy + f + ¢, in Q,
up =wup in (¢,d) x {0}, (3.81)
up, =gr inTyr,
—va-VUup+my*xva-Vuy,=h+v-¢ inTarp,
where Apv = (a11v,), + axv and
M=m-+L—mx*[l, Mg=mg+ [l — My * [,

g=g+u*xg, gp =9+ *g.
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Let us show that my — m in L*(0,T). With an arbitrary ¢ € L?(0,T)
we compute

(e — M, ) 20y = (mr —m, Q) rzior) + ik — 1> C) r20m) — Nis

where

T T—1
Ny = (mp * ik, — m* 1, C) r2(0.7) :/0 ﬂk(T)/O (mg —m)(s)

X (1T + s)dsdT

T T—1
" /0 m(r) /0 (e — A)()C(r + s)dsdr.

We use the relations my — m, fix — @ and treat the term N ,i similarly to
the term N}, above to get N} — 0. As a result we obtain (7 — M, ) — 0.
This yields my — m.
Subtracting the problem of u from the problem of uy we see that wy, :=
uy, — u is a weak solution of the following problem:
wis = Awy —m * Awy, + fk + qzkw in Q,
=0 1in (¢,d) x {0},
L .( )0} (3.82)
U =g 1m FI,T;
—va-Vwg +Mm*xva- Vg =1 - @y in Iy p,
where
fr = (ax — a)(@y, — My, * Ug) — a(fg — M) * Uy,
O = —ar1 (Mg — M) * Ug g, Gr = (U — @) * g.
In order to use the weak convergence ar — a in forthcoming estimations

we have to introduce the functions py € W(c, d) being the solutions of the
following Neumann problems:

pr—pr=ar—a in(cd),  plc)=pi(d) =0.
Then pi(z) = [ G(x,y)(ax — a)(y)dy, « € (c,d), where

1 eV 4+ eV ) (e e ) fory < x
G(:L“,y) _ { ( )( ) Y

2(ec~d —ed=c) | (e“ + e ) (ed Y+ v fory>uw

is a Green function that satisfies the properties G, G, € L>¥((c,d)?). The
weak convergence aj — a in L?(c,d) implies !

ok llw; c.a) = O- (3.83)

IThis is the point we essentially use the assumption n = 1, because in case n > 2 the
partial derivatives G, (z,-) are not elements of L?(€2).
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Using the relation ay, —a = Py, — p we rewrite the term (ax —a)(Uy — My *Uy)
in fk as follows:

(ap — a)(Uy — My * Ug) = [p) (U — Mg * Up) ] — Pl (U — Mg * Ug)
— i (W, — My, * Uy,

and shift the addend [p}, (T — Mg * Up,)]. to the singular part ¢y .. As a
result, the problem for wy, is transformed to the form

Wit = Awy, — mx Awy, + fi, + o, in Q,
u=0 in (¢,d) x {0},

I (3.84)
U =g m FI,T;
—va-Vwg+m*vy- Vg =v-¢, inTar,
where
T = =P (U, + Mgy * U)o — pro(T + Mg * Ug,) — a(My — M) * Uy,

O = P (Wk + My * Uy) — a1 (Mg — M) * U g

Let t be an arbitrary number in (0,7"). As in the proofs of Theorems
w in Q¢

0 inQ\Q:
Let w! stand for the weak solution of the problem (3.84) with f, and
qﬁk replaced by P,f, and Pdy, respectlvely Then, due to the causality
wh = wy, in Q. Applying (3.20) to w}, we obtain

2.1 and 3.1 we make use of the cutting operator Paw = {

lwellu@n = lwillun < vkl

<G [\\Pt?kHLz(o,T;Ll(C,d)) + 1Pl L2 (@) + 91\\§kHT(Q)] (3.85)
= [\\7k|!L2(o,t;L1(c,d)) + 10kl 2. + 91”?%“7’(@)]
We estimate the right-hand side of (3.85) term-wise. Using the rela-

tion a € L?(c,d), Cauchy inequality, the inequality (3.23), the assumption
g(x,0) = 0, the embedding W3 (¢,d) < C|c,d] and 1y = wy, +u we deduce:

1Pl ey < Cus [ — ) % el 22 ey + Iokllws e
< (L4 1 20:0) Nkl | < € / (e — @) (¢ — )| il 20, dr
okl c,a) (L4 17l L20.1)) ”wkHu(Qt)} +Rkv (3.86)

82



[Bellz2(@0) < Cio |1 —) % ko 2@y + 19k g oy (1 Ik 220 )

t
<Nl 0oty | < Coo |1 = @) (¢ = 7)ol g i

~ —2
+lokllwy c.a) (14 lmell 22 0.1)) Hwk”L2(0,t;C[c,d])} +R, (3.87)
~ —3
gkl Q) < Ry, (3.88)
where

71 A ~ ~ -~ ~ Y
R, = Cis {H(mk — ) % r2q) + llokllwg e, (1 + 7l L2 0.)) HUHM(Q)]v
72 A —~ ~ ~
Rj. = Cag [k = 1) # Tl 12
ol e (L 17200 1l 20t

—3
Ry, = [[(k — 1) * gllz2) + (e — 1) * gzl 22y + 1| (e — 1) * gell 22

and C’lg, C’lg are constants. The quantities Ei, j = 1,2,3 contain terms
with the factor [|pg ||y (,q) and terms of the form ||zj * ]| 2(q), Where 2

is one of the functions g — M, ux — p or iy — i and © € L?(Q) is one of
the functions @, Uy, g, g. or ¢g;. The former terms converge to zero because
of the relation (3.83) and the boundedness of 7y, in L?(0,7T) and the latter
terms approach zero by virtue of the weak convergence z; — 0 in L%(0,7).
More precisely, to prove that ||zx * 0] z2(g) — 0 we write

T d t 2 1/2
|2 * Dl p2(0) = {/0 / [/0 Zk(T)’LA)(l',t—T)dT} d:cdt} .

2
The component [fg zi(T)0(x, t — T)d’i‘} is bounded by an integrable with
respect to x in (c¢,d) function sup szH%Q(O T)||1§($, -)H%Q(O ) and tends to
k‘ 9 9

zero for all ¢t € (0,T) and a.e. = € (¢,d), because zp — 0 and v(x,t — )
€ L*0,T) for all t € (0,T) and a.e. z € (c,d). (The latter relation
follows from © € L?(Q) and Tonelli’s theorem.) Thus, by the dominated
convergence theorem, it holds ||z, * 9[|2(g) — 0. Summing up,

R. -0, j=1,2,3. (3.89)

As in proof of Theorem 3.1, we use the norms |, = sup e~ |lwlly(q,)
0<t<T

with the weights o > 0 in the space U(Q). Then in view of (3.86) - (3.88)
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from (3.85) we deduce

t
Junls < Conl sup [ e = @)t = ) €l
0<t<T JO

3
ol e (1 [Pl o) loelle + - R
j=1

< 6'21 H HfUtHL?(o,T)Hmk - m”H(O,T)

3 .
okl ea U+ Il 20m) ol + S Fi], (3.90)
j=1

where Cy, C are constants. Since le= |20y — 0 as 0 — oo,
ok llw c,q) — O and the sequence ||| 2 (o, 7) is bounded, there exist o > 0
and K5 € N such that

_

021{”67025HL2(0,T)H7%16 — 7l 20,1) + lokllw e,y (1 + Hﬁ”&ka(o,T))}S 3

for k > K5. This with (3.90) implies

3 3
|wk|lo < 2C9 ZE{C and hence  [Jwg ||y (@) < 2e° T Cyy Zﬁi
j=1 j=1

for k > K. Taking (3.89) into account we obtain the desired convergence
1tk — lles(@) = llwkllu@) — 0. The theorem is proved. m

3.4 Discretization and minimization

In the final section of the thesis let us discuss some aspects of the discretiza-
tion and minimization of the cost functionals by means of the penalized
gradient method.

Let us consider any of the problems IP4, IP5 or IP6 and search for its
quasi-solution. This means that we have to minimize corresponding cost
functional Jj over a given set M C Zj, where k is some number in the set
{1;2;3}. In order to treat these problems in a common manner, we use the
notation z also for the solution w of IP4.

Clearly, there are many possibilities to discretize IP4 - IP6. Here we
describe in detail an orthogonal discretization. Let us introduce a L-
dimensional subspace Zj  of Zj (here L < oo). Let P, stand for the
orthogonal projection to Zj, . Then the L-dimensional analogue of the set
M is

My =P, MC Z,.

84



Now we replace the problem of minimization of Ji over M by the following
penalized discrete problem: find z' such that

2V € arg min @1 (2), where @5 =T+ Jj, (3.91)

2€Z 1,

and II;, is a penalty function corresponding to the set M. In order the
problem to be relevant, II; has to be small inside M and large outside
M. The mathematical conditions imposed on II; are

II;, is coercive, convex, Fréchet differentiable,
The Fréchet derivative IT’, of Il is (3.92)

uniformly Lipschitz continuous in Z ;.

Theorem 3.11 Let the assumptions listed in §3.2.1 (k) be satisfied. More-
over, let (3.92) hold. Then the problem (3.91) has a solution.

Proof. The proof is similar to the proof of Theorem 3.8. By coerci-

tivity and continuity, II; is bounded from below. Moreover, Jj is also

bounded from below. Thus, there exists m = inf [[I5(z) + Jk(2)] =
ze

Zk,L

igf P r(2) > —oo. Let 21 € Z 1 be a minimizing sequence, i.e.
2EZE, L

lim @, 1,(z;) = m. Due to the coercitivity of II;, the sequence z; is bounded
(in case z; is not bounded, there is a subsequence z;, such that ||z, || — oo,
hence by the coercitivity ® 1(2;,) — oo, but this is in contradiction with
the relation lim ®, ,(z;) = m). In a finite-dimensional space every bounded
sequence is compact. Consequently, there exists a subsequence z;; such that
lim z;; = z*. Due to the continuity of @ 1, following from the Fréchet dif-
ferentiability, we have lim ®y 1,(2,) = ®, 1(2*). Thus, @4 1(2*) = m and
2" € argmin,ez, ; Pk 1(2). The element 2* is a solution of (3.91). m

Further, we formulate an algorithm of the gradient method for the min-
imization of ®j, ;. To this end, the representations of Fréchet derivatives of
Jj. obtained in Theorems 3.3 — 3.7 are useful. According to these theorems,
Ji.(2)Az = (oi, Az) z,, where the z-dependent element g = ox[2] € 2 is
given by (3.57), (3.43) and (3.69) - (3.72) in cases k = 1,2 and 3, respec-
tively. In order to construct an algorithm that remains inside the subspace
2.1, we have to find an analogue of g in Zj, . This is Ppog. Indeed, for
any Az € Zj, 1, we have

ok, Az)z, = (Prok, Az)z, + (ox — Prok, Az)z, = (Prok, Az) z,,

because o — Pror 1. Az = 0 since Py, is the orthogonal projection onto
Zy.1- Thus, Proj can be used as a representative of Fréchet derivative of
Jk; in Zk,L'
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Let the representative of Il (z) in Zp be wr[z], ie. II7(2)Az =
(rp[2], Az)z, for Az € Z . Then the Fréchet derivative of ® 1 at z
has the formula

ro(2)Az = (Gylz], Az)z, for Aze 2y,
where Gy[z] = mp[z] + Prok|z].

The gradient method is as follows. We choose some initial guess zy €
2y, and compute successive approximate solutions by means of the formula

Zs+1 = 2zs — csGzs), (3.93)

where s =0,1,2,... and ¢; > 0.

Theorem 3.12 Let k € {1;2}, i.e. we have either IP4 or IP5. Assume
that the assumptions listed in §3.2.1 (k) are satisfied and (3.92) hold. More-
over, let cs be chosen by the rule

ggg P 1, (2s — cGilzs))) < P 1 (25 — csGrl2s])

< lgg q)k,L (Zs - CGk [ZS]> + 557

where §g > 0, Y50 0 =: 6 < 0o. Then it holds dist(zs, S) — 0 as s — oo,
where S is the set of solutions of (3.91)

Proof. Let us prove the theorem in case k = 1 (IP4). The proof in case
k = 2 is similar.

The assertion follows from Theorem 5.1.2 of [63] once we have proved
that (1 is uniformly Lipschitz-continuous with respect to z, the functional
®; 1, is convex and the set M(z29) ={z € Z11 : P11(2) < P1.1(20) + 0} is
bounded. The convexity of ®; 1 follows from the convexity of its addends
I, and J; (the latter one was shown in the proof of Theorem 3.9). The
boundedness of M (zg) is a direct consequence of the coercitivity of ®; 1,
following from the coercitivity of the addend IIy.

It remains to show the uniform Lipschitz continuity of G[z] with respect
to z in Z; 7. The Lipschitz continuity of 7 [z] in Z; 1 follows from the
assumed Lipschitz continuity of II} [z] in Z{ ; , because 21 1 and Z{ | are
isomorphic and 7[2] is the analogue of I [2] in Z; 1. Thus, we have still
to prove the Lipschitz continuity of the term Prpi[z] with respect to z
occurring in the formula of Gy[z].
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Using (3.50) we obtain for any 2,2 € Z; 1,

|1 PLo1[Z] — PLQ1[ Nz < 1Pelilloifz] — o1[#]l|z,
< 022 Z le )y R wl( s )HLQ(Q)
< 023 Z sz R wl( ) )HU(Q)

where the constants Cy and Cs3 are independent of z and Z. The functions
Yi(+,+; 2) and (-, ; z) solve the problems (3.51) with w = Z and w = z,
respectively. Applying the relation (3.20) of Theorem 3.1 to the problem
for the difference ¥; (-, -; 2) — 1;(+, -; 2) we continue the estimate as follows:

N
IPLe1[Z] = Proil2lllz, < 2Ca3Ch Y flul-, T 2) — ul-, Ti; 2) | 220y
i=1
< Coallul, 5 2) = ulss 5 2) lu)
with a constant Coy independent of z and Z. The function u(- . 5 Z)—ul-, 5 2)

is a weak solution of the problem (3.1) - (3.4) with f(x,t) = Z v (8)[Z(x)—
zj(z)], =0,90=0,up=0, g =0, h=0. Using again (3. 20) we obtain

IProilZ] - Praals])z, < 202401\\2% )|

L2(0,T;L92 ()

< Cosl|Z — 2| 2,

with a constant Cy; independent of z and Z. This proves the uniform
Lipschitz-continuity of Py o1. O

The convergence of z; in case k = 3 is an open issue. This case is more
complex because IP6 is nonlinear and the Fréchet derivative of .J3 is not
uniformly Lipschitz-continuous.

The quasi-solutions of IP4 - IP6 are not expected to be stable with
respect to noise of the data, i.e. the problems under consideration may be
ill-posed. Nevertheless, from the intuitive viewpoint a discretisation should
regularize an ill-posed problem. Such a property of the discretization has
been proved in many cases [40, 56]. Alternatively, the index s of the gradient
method could be used as a regularization parameter (cf. [19]). Moreover,
the addend IIy can be defined to be the stabilizing term of the Tikhonov’s
method instead of the penalty function, i.e. TI; = af/z|?, where a > 0 is
the regularization parameter. Such a II;, satisfies (3.92).

87



REFERENCES

1]

Amendola, G., Fabrizio, M., Golden, J. M. Thermodynamics of Ma-
terials with Memory. Theory and Applications. Springer, New York,
2012.

Anger, G., Inverse Problems in Differential Equations. Plenum Publ.,
London, 1990.

Baumeister, J., Boundary control of an integrodifferential equation. J.
Math. Anal. Appl. 93, 1983, 550-570.

E. Beretta, C. Cavaterra, Identifying a space dependent coefficient in
a reaction-diffusion equation. Inverse Probl. Imaging 5 (2011), 2, 285-
296.

I. Bushuyev, Global uniqueness for inverse parabolic problems with
final observation. Inverse Problems 11 (1995), L11-L16.

Coleman, B. D., Gurtin, M. E., Equipresence and consitutive equation
for rigid heat conductors. Z. Angew. Math. Phys. 18, 1967, 199—-208.

Colombo, F., Lorenzi, A., Identification of time- and space-dependent
relaxation kernels for materials with memory related to cylindrical
domains I, II. J. Math. Anal. Appl. 213, 1997, 32-62, 63—90.

Colton, D., Kress, R., Inverse Acoustic and Electromagnetic Scattering
Theory. Appl. Math. Sc. 93. Springer, New York, 1992.

Engl, H. W., Hanke, M. and Neubauer, A., Regularization of Inverse
Problems. Kluwer, Dodrecht, 1996.

Fabrizio, M., Morro, A., Mathematical Problems in Linear Viscoelas-
ticity. STAM, Philadelphia, 1992.

Favaron A., Lorenzi, A., Parabolic integrodifferential identification

problems related to memory kernels with special symmetries. J. In-
verse Ill-Posed Probl. 11, 2003, 18-28.

Gentili, G., Dissipativity conditions and inverse problems for heat con-
duction in materials with linear memory. Inverse Problems 7, 1991,

T77-84.

Grabmiiller, H., On linear theory of heat conduction in materials with
memory. Existence and uniqueness theorems for the final value prob-
lem. Proc. Royal Soc. Edinburgh, T6A, 1976, 119-137.

88



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Grasselli, M., An identification problem for a linear integro-differential
equation occurring in heat flow. Math. Meth. Appl. Sci. 15, 1992, 167—
186.

Gripenberg, G., Londen,S.-O., Staffans, O., Volterra integral and func-
tional equations. Cambridge University Press, Cambridge, 1990.

Gurtin, M. E., Pipkin, A. C.; A general theory of the heat conduction
with finite wave speeds. Arch. Rational Mech. Anal. 31, 1968, 113-126.

Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differ-
ential Fquations. Dover, New York, 1953.

Hasanov, A., Simultaneous determination of source terms in a linear
parabolic problem from the final overdetemination. J. Math. Anal.
Appl. 330, 2007, 766-779.

Hamarik, U., Palm, R., On rules for stopping the conjugate gradient
type methods in ill-posed problems. Math. Model. Anal. 12, 2007, 61-
70.

Isakov, V., Inverse Source Problems. American Mathematical Society,
New York, 1990.

Isakov, V., Inverse parabolic problems with final overdetermination.
Commun. Pure Appl. Math. 44, 1991, 185-209.

Isakov, V., Inverse Problems for Partial Differential Equations.
Springer, New York, 1998.

Ivanchov, M., Lorenzi, A., Saldina, N., Solving a scalar degenerate
multidimensional identification problem in a Banach space. J. Inverse
Ill-Posed Probl. 16 (2008), 397-415.

Janno, J., On an inverse problem for a model of radially wave propa-
gation in the media with memory, In: Numerical Methods and Opti-
mization (ed. G.Vainikko et al) 2, 1990, 4-19.

Janno, J., Determination of a time- and space-dependent heat flux
relaxation function by means of a restricted Dirichlet-to-Neumann op-
erator. Math. Meth. Appl. Sci. 27, 2004, 1241-1260.

Janno, J., Engelbrecht, J., Microstructured Materials: Inverse Prob-
lems. Springer, Berlin, 2011.

Janno, J., Kasemets, K., A positivity principle for parabolic integro-
differential equations and inverse problems with final overdetermina-
tion. Inverse Probl. Imaging 3 (2009), 1, 17-41.

89



28]

Janno,J., Lorenzi, A., A parabolic integro-differential identification
problem in a barrelled smooth domain. Z. Anal. Anw. 25, 2006, 103—
130.

Janno, J., Lorenzi, A., Recovering memory kernels in parabolic trans-
mission problems. J. Inv. Ill-Posed Probl. 16, 2008, 239-266.

Janno, J., Wolfersdorf, L. v., Inverse problems for identification of
memory kernels in heat flow, J. Inv. Ill-Posed Probl. 4, 1996, 39—66.

Janno, J., Wolfersdorf, L. v., Identification of weakly singular memory
kernels in heat conduction, Z. Angew. Math. Mech. 77, 1997, 243-257.

Janno, J., Wolfersdorf, L. v., Inverse problems for identification of
memory kernels in thermo- and poroviscoelasticity, Math. Meth. Appl.
Sci. 21, 1998, 1495-1517.

Janno, J., Wolfersdorf, L. v., Identification of memory kernels in gen-
eral linear heat flow, J. Inv. Ill-Posed Probl. 6, 1998, 141-164.

Janno, J., Wolfersdorf, L. v., Inverse problems for memory kernels by
Laplace transform methods, Z. Anal. Anw. 19, 2000, 489-510.

Janno, J., Wolfersdorf, L. v., Identification of a special class of memory
kernels in one-dimensional heat flow. J. Inv. Ill-Posed Probl. 9, 2001,
389-411.

Joseph, D. D., Preziosi, L., Heat waves. Rev. Mod. Phys. 61, 1989,
47-71.

Joseph, D. D.; Preziosi, L., Addendum to the paper ”"Heat waves”.
Rev. Mod. Phys. 62, 1990, 375-394.

Kabanikhin, S. I., Inverse and Ill-posed Problems : Theory and Appli-
cations. Inverse and Ill-Posed Problems Series, V. 55. W. de Gruyter
GmbH &Co, Berlin, 2012.

Kabanikhin, S. I., Lorenzi, A., Identification Problems of Wave Phe-
nomena. Theory and Numerics. VSP Publ., Utrecht, 1999.

Kaltenbacher,B., Regularization by projection with a posteriori dis-
cretization level choice for linear and nonlinear ill-posed problems. In-
verse Probl. 16 (2000), 1523-1539.

K. Kasemets, J. Janno, Recovery of a source term in a parabolic
integro-differential equation from final data. Math. Model. Anal. 16
(2011), 2, 199-219.

90



[42]

[43]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

K. Kasemets, J. Janno, Inverse problems for a parabolic integro-
differential equation in a convolutional weak form. Abstract and Ap-
plied Analysis, Article ID 297104 (2013), pp 1-16.

Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N., Linear and
Quasilinear Equations of Parabolic Type. Nauka, Moscow, 1967. En-

glish translation: American Mathematical Society, Providence, Rhode
Island, 1968.

A. Lorenzi, F. Messina, An identification problem with evolution on
the boundary of parabolic type. Adv. Differential Equations 13 (2008),
11-12, 1075-1108.

Lorenzi, A., Mola, G., Identification of unknown terms in convolution
integro- differential equations in a Banach space. J. Inverse Ill-Posed
Probl. 18, 2010, 321-355.

Lorenzi, A., Prilepko, A., Fredholm-type results for integrodifferential
identification parabolic problems. Diff. Int. Eq. 6, 1993, 535-552.

Lorenzi,A., Vrabie, I. 1., An identification problem for a linear evo-
lution equation in a Banach space and applications. Discrete Contin.
Dyn. Syst. Ser. S 4, 2011, 671-691.

Lorenzi, A., Sinestrari, E., An inverse problem in the theory of mate-
rials with memory. Nonlinear Anal. TMA 12, 1988, 1317-1335.

Lunardi, A., On the linear equation with fading memory. SIAM J.
Math. Anal. 21, 1990, 1213-1224.

Meixner, J. On the linear theory of heat conduction. Arch. Rat. Mech.
Anal. 39, 1970, 108-130.

Neto, F. D. M., Neto, A. J. S., An Introduction to Inverse Problems
with Applications. Springer, Berlin, 2012.

Nunziato, J. W., On heat equation in materials with memory. Quart.
Appl. Math. 29, 1971, 187-204.

Pais, E., Degenerate memory kernels identification problem with flux-
type additional conditions. J. Inv. [ll-Posed Problems 14, 2006, 397—
418.

Pais, E., Janno, J., Identification of two degenerate time- and space-
dependent kernels in a parabolic equation. FElectron. J. Diff. Eqns.
2005, 2005, No. 108, 1-20.

91



[55]

[61]

[62]

[63]

[64]

[65]

[66]

Pais, E., Janno, J. Inverse problem to determine degenerate memory
kernels in heat flux with third kind boundary conditions. Math. Model.
Anal. 11, 2006, 427-450.

Plato, R., Vainikko, G., On the regularization of projection methods
for solving ill-posed problems. Numer. Math. 57 (1990), 63-79.

Pruf3, J., Evolutionary Integral Equations and Applications. Birkhauser
Verlag, Boston, 1993.

Renardy, M., Hrusa, W. J., Nohel. J. A., Mathematical Problems in
Viscoelasticity. Longman S&T, New York, 1987.

Romanov, V. G., Inverse Problems of Mathematical Physics. VNU
Science Press, Utrecht 1987.

Solonnikov, V. A. On boundary value problems for general parabolic
systems of differential equations. Proc. Steklov Inst. of Math. 83, 1965.
(in Russian)

Sylvester J., Uhlmann G., A global uniqueness theorem for an inverse
boundary value problem. Annals of Math. 125, 1987, 153—169.

Tikhonov, A. N., Arsenin, V. Ya., Solution of Ill-Posed Problems.
Transl. from Russian. John Wiley&Sons, New York, 1977.

Vasil’ev, F. P., Methods of Solving FExtremum Problems. Nauka,
Moscow, 2nd edition, 1988. (in Russian)

Wolfersdorf, L. v., On identification of memory kernels in linear theory
of heat conduction. Math. meth. Appl. Sci. 17, 1994, 919-932.

Zeidler, E., Applied Functional Analysis. Main Principles and their
Applications. Springer, New York, 1995.

Anno, f., Cenenne omHou oOpaTHOM 3a4a4y HACJEACTBEHHON
cpennl K MHTerpaabHoMy ypasuenuto, Acta et Commentationes Uni-
versitatis Tartuensis. 715, 1985, 21-29.

92



Acknowledgements

I would like to thank my supervisor Prof. Jaan Janno. I am deeply grateful
for his time and patience, his guidance and understanding.

93



ABSTRACT

Inverse problems for parabolic integro-differential equations with instant
and integral conditions. Kairi Kasemets. Doctoral thesis, 2016.

The aim of the thesis is to perform a systematical study of inverse prob-
lems for parabolic integro-differential equations containing time convolu-
tions with memory kernels in case space-dependent factors of free terms or
coefficients of the equations are unknown and observation conditions are
given either in the form of instant measurements over the space or inte-
grated with respect to time measurements over the space. In the second
part of the thesis a problem to determine kernels is also considered.

First part of the thesis contains an analysis of problems that are smooth
in the sense that all derivatives included in the integro-differential equa-
tions are regular functions. A positivity principle for parabolic integro-
differential equations is established. In case final data for a solution of a
direct problem are given, the global existence, uniqueness and stability for
an inverse problem to determine a space-dependent component of a free
term of the equation are proved. The proof of the uniqueness uses the
positivity principle and the proof of existence and stability exploits the
Fredholm alternative. Moreover, making use of results obtained for the
inverse free term problem, global uniqueness, local existence and stability
for inverse problems to determine a lower-order coefficient and a coefficient
at the time derivative occurring in the equation from final data are proved.
The main tool is the Banach fixed-point principle.

Second part of the thesis includes a treatment of problems in non-
smooth case, i.e. when higher order derivatives involved in an integro-
differential equation are singular distributions. A weak convolutional form
of the direct problem is introduced. Such a form does not involve time
derivatives of solutions or test functions. A general method to derive ad-
joint problems for Fréchet derivatives of cost functionals corresponding to
inverse problems for this equation is proposed. The method makes use of
the mentioned weak convolutional form. Further, this method is applied
to deduce adjoint problems for 3 particular inverse problems: a problem
to determine a finite number of space-dependent factors of a free term
from instant measurements; a problem to determine a finite number of
space-dependent factors of a free term and an initial condition from inte-
gral measurements; a problem to determine a lower-order coefficient and
two kernels from combined instant and integral measurements. The exis-
tence of quasi-solutions for the mentioned 3 inverse problems is established.
The existence result for the third inverse problem (that is nonlinear) in a
non-compact set is proved in the one-dimensional case.
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KOKKUVOTE

Hetk- ja integraaltingimustega pdordilesanded paraboolsetele integrodifer-
entsiaalvorranditele. Kairi Kasemets. Doktorivaitekiri, 2016.

Doktorit6o eesmérgiks on siistemaatiliselt analiitisida pocrdiilesandeid malu-
tuumadega konvolutsiooniliikmeid sisaldavatele paraboolsetele integrodi-
ferentsiaalvorranditele juhul, kui tundmatuteks on vabaliikmete ruumi-
muutujatest soltuvad tegurid voi kordajad ja vaatlused on antud kas hetk-
tingimustena iile ruumi voi integreeritud mootmistena aja suhtes tile ruumi.
To6 teises osas on vaatluse all ka tuumade madramise iilesanne.

To606 esimeses osas analiilisitakse poordiilesandeid, mis on siledad selles
mottes, et vorrandis sisalduvad korgemat jarku tuletised on regulaarsed.
Tuletatakse positiivsusprintsiip paraboolsete integrodiferentsiaalvorran-
dite jaoks. Juhul, kui ette on antud lopptingimus, toestatakse ruumimuu-
tujatest soltuva vabaliikme komponendi méaramise poordiilesande lahendi
globaalne olemasolu, iithesus ja stabiilsus. Uhesuse toestamisel kasutatakse
positiivsusprintsiipi ja olemasolu ning stabiilsuse toestamisel rakendatakse
Fredholmi alternatiivi. Kasutades vabaliikme p&ordiilesande jaoks saadud
tulemusi toestatakse madalamat jarku liikmes sisalduva kordaja ja aja-
tuletise ees seisva kordaja maédramise iilesannete lahendite globaalne tihesus
ning lokaalne olemasolu ja stabiilsus, kui ette on antud lopptingimus. Ra-
kendatakse Banachi plisipunktiprintsiipi.

To0 teises osas kasitletakse poordiilesandeid mittesiledal juhul, kui vor-
randis sisalduvad korgemat jarku tuletised on singulaarsed distributsioonid.
Tuuakse sisse otsese iilesande nork konvolutsioonitiiiipi seade. Selline seade
ei sisalda lahendi ega testfunktsiooni tuletisi ajamuutuja suhtes. Paku-
takse valja iildine meetod poordiilesannetele vastavate sihifunktsionaalide
Fréchet tuletiste leidmisel kasutatavate kaasiilesannete tuletamiseks maini-
tud konvolutsioonitiiiipi seadet kasutades. Meetodit rakendatake kolmele
poordiilesandele: iilesanne 16pliku arvu ruumimuutujatest soltuvate korda-
jate madramiseks hetktingimuste alusel; iilesanne 16pliku arvu ruumimuu-
tujatest soltuvate kordajate ja algtingimuse maaramiseks integraaltingimus-
te alusel; iilesanne madalamat jarku kordaja ja kahe tuuma maéadramiseks
kombineeritud hetk- ja integraaltingimuste alusel. Tehakse kindlaks koigi
kolme iilesande kvaasilahendite olemasolu. Kolmanda iilesande (mis on
mittelineaarne) kvaasilahendi olemasolu toestatakse ihemootmelisel juhul.
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A POSITIVITY PRINCIPLE FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS AND INVERSE
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ABSTRACT. A positivity principle for parabolic integro-differential equations is
proved. By means of this principle, uniqueness, existence and stability for an
inverse source problem and two inverse coefficient problems are established.

1. Introduction. Inverse problems for parabolic differential equations with final
overdetermination have been studied by many authors [1, 2, 6, 7, 8, 12]. The
present paper represents an attempt to generalize some of these results to the case
of parabolic integro-differential equations. More precisely, we will be limited to
inverse problems for parabolic equations in the diffusion processes with memory
that involve time convolutions of a kernel m and an elliptic operator A of the
concentration or temperature u (equation (1) below).

A linear inverse problem to determine a source term in a parabolic integro-
differential equation by means of the final overdetermination was previously studied
in [11]. More precisely, in this paper the authors prove the existence and uniqueness
for the inverse problem under the assumption that the solution is unique. The proof
is based on Fredholm alternative.

The uniqueness is a more difficult issue. Its study requires a suitable positivity
principle for mentioned parabolic integro-differential equations. To the authors’
knowledge, such a positivity result has not been known in the literature. Our idea
to prove this principle is as follows. We transform the equation to a form that
contains a time convolution of the resolvent k of m and the time derivative of u
instead of Au. Then it is possible to integrate by parts in this convolution to remove
completely the derivatives of u. Owing to this possibility, we can use the classical
proof scheme of extremum principles. Handling the additional convolution term is
not very difficult, because we can operate with the sign of u instead of Au (see part 1
of the proof of Theorem 2). We prove the positivity principle in the cases of first and
second kind boundary conditions under the assumptions that the resolvent kernel

2000 Mathematics Subject Classification. 35B50,35R30.
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problem, final overdetermination.
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satisfies the conditions k > 0 and k; < 0. The problem with third kind boundary
conditions cannot be handled by the technique presented in the paper.

It turns out that the presence of a non-vanishing kernel k& with such properties
weakens other assumptions of the positivity principle. For instance, for the source
term Y, it is sufficient to assume x + k* x > 0. This assumption is weaker than the
assumption y > 0 that occurs in the case of usual parabolic differential equation.
Physically this is explained by an inertia of the medium. The same remark holds
for the second kind boundary condition, too. Details are given in Remark 2 below.

The analysis of inverse problems in this paper uses very much the technique of
paper [7]. In particular, the decomposition of z into 2™ and 2~ in Theorem 3 comes
from [7] and proof of Theorem 4 uses an analogous theorem from [7].

In this paper we prove existence, uniqueness and stability theorems for the linear
inverse source problem and two nonlinear inverse coefficient problems for parabolic
integro-differential equations. Existence and stability results for coefficient problems
are local. Again, the assumptions are in case k # 0 weaker than in the case k = 0.

The method of the paper works only in case the memory kernel m is independent
of spatial variables. Otherwise it falls into a divergence-nabla type operator and a
time resolvent is not applicable.

2. Formulation of problems. Notation. Linear non-homogeneous diffusion
processes with memory are subject to the constitutive relation [3, 4, 9, 13]

gi(x,t) = — ia,—j(a:)uxj (z,t) + /tm(t -7) Xn:aij(x)uwj (z,7)dr, i=1,....n,
j=1 0 j=1

where ¢ is the flux and w is the concentration (or temperature). The function m is
the memory kernel. We will consider the case when m is independent of x.

Using this relation in the continuity equation Su; + div ¢ = x which is assumed
to be valid in some open domain (z,t) € Q = Q x (0,7) C R**!, where 3 : @ — R
and x : @ — R are given functions, we arrive at the parabolic integro-differential
equation

(1) Bu; = Au—mx* Au+x in Q,

n
where A = 2 (q;; 22-) and % stands for the time convolution, i.e.
) dzx; J Oz
ij=

vew — / o(- = Yw(r)dr.

Jo

In this paper we generalize a bit this physical model. Namely, we consider the
equation (1) with the operator A of the form

n 52 n 9
(2) A= ijzzl G/”({L‘)M +]2::laj(l‘)6—x] +a(a7, t)

where a;;, a; and a are given cofficients. We assume that the principal part of A is
positive definite, i.c. the inequality

N
(3) Z aij N\ > €|\ forany 2 € Q, A€ R" and some € € (0,00)
ij=1

INVERSE PROBLEMS AND IMAGING VoLuME 3, No. 1 (2009), 17-41
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holds. Since the operator A depends on ¢, we will write A = A(t), if necessary.
Moreover, let the relation

(4) B> 0o>0 foranyze€Q andsome € (0,00)
be valid.

We supplement the equation (1) with initial and boundary conditions
(5) u=wuy nQx{0}, Bu=>b inS=Tx(0T)
where ug, b are some given functions, I' is the boundary of 2 and either
(6) Bu=wu (case T)
or

(7) Bu(z,t) =w(x) - Vyu(z,t) — /t m(t — 1) w(z) - Vyu(z,7)dr  (case II)

with w(z) - N(z) > 0, N(z) - outer normal of I' at . Note that case II is a
generalization of the second kind boundary condition —¢ - N = b. In the sequel we
denote by v the order of the boundary operator B, i.e v =0 in case I and v = 1 in
case II.

Throughout the paper we assume the boundary I' and the function w sufficiently
smooth.

The relations (1) and (5) form the direct problem for w. In this paper we will
study three following inverse problems:

IP1: Let the free term be of the following form:
(8) x(@,t) = z(@)d(w,t) + xo(2.1).
Given m, 8, a;;, a;, a,uo, b, d, xo and a function ur(z), x € Q, find z and u so that
the relations (1), (5), (8) and
9) u = up in Qx{T}
hold.
IP2: Let a; = 0. Given m, (3, a;j,a;, uo, b, x and a function ur(z), = € Q, find a
and v so that the relations (1), (5) and (9) hold.
IP3: Given m, a;;, aj, a,uo, b, x and a function ur(z), x € Q, find # and u so that
the relations (1), (5) and (9) hold.
Let us introduce the functional spaces we will use in the paper. Given the Banach

space X, p € [1,00) and an integer { > 0, we define the following abstract Sobolev
spaces:

1
l T »
W0.T5X) = { v e [0,T]= X : [olwiorx) :—Ej[ / |v<f><t>|§dm] <0
j=0 L70

In case [ = 0 they coincide with the abstract Lebesgue spaces, i.e. W’S 0,7;X) =
LP(0,T;X). If X = R, we merely write W;(O,T;R) = W;(O,T). In addition, we
need spaces of fractional order and anisotropic spaces. To this end, let us first
introduce the following notation for difference quotients of 2- and (z, ¢)-dependent
functions with powers:

(W)p(@1, ) 1= U= (1) (01, g3 8) = UEL(Z2l)
v(z,t1)—v(z,l2
(V)p(z3t1,t9) = %
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For any p € [1,00) and [ > 0 we define the Sobolev-Slobodeckij spaces (cf. [10, 14])

Wi(Q) = {U vllwye) = 2[” (o [D*v(z)|Pdx]

la
+6r 3 [fg dzy fo |(Dav>g+zf[z](371-,x2)|pd$2] "< 00}:
laf =1

al=[l]

T

L . . T i o
Wp2(Q) = {U : HU”W;,%(Q) = > [fo Ja |D§Dzv(1',t)|pdxdt]

2j+|al<[l]

=

e X [fOTdthdxlfQ|<D{D2v>;—L+Hz]($1,xg;t)lpdxz]p
2j+Hal=1

0<l—2j—|a|<2

T T\ ) 1y v
10, N fode f dt |<D§ng>%+l,2]{m.(x;tl.t2)|pdt2]” < oc}
Here [I] is the greatest integer < [ and ©; = 0 and ©; = 1 in the cases of integer

[ and non-integer [, respectively. Further, for any non-integer [ > 0 we define the
Hélder spaces

clQ) = {v s D% e C(Q) for |af <[,

[oll; == > [Sup|D°‘v(I)|+ sup |<D°‘v>17[l](xl,x2)|} <oo},
|a|<[l] LzER T1,L26Q

ChE(Q) = {v - DID2w € C(Q) for 25+ |a| < [1],
llolly ¢ == sup ’DfD‘;v(x,t)’ —+ sup ‘(D{D"v)l,m (21, m;t)‘
T 2j+al< [(w0EQ (21,1),(22,1)£Q

+ sup ‘(D{D"“v}w(ag;tl,tg)‘ < 00 p.
(z,t1),(z,t2)€Q 2

The definitions of W,ﬁ’% and Cb% are in a standard manner extended from @ to the
boundary cylinder S (for details see [10]). For integer { > 0 we define
C?(@Q) = {v : DID € C(Q) for 2j + |a| < 21}.

Finally, we introduce some additional notation. Let U be a finite-dimensional
manifold and f,g € LY(U). We write

f>g nU if f(x) > g(x) ae. x €U,

f>g¢ginU ifVU: U, CU Je,, €Re, >0 f2 g4, iU
It is not difficult to prove that
(11) f>g9,f#g nU = 30Uy CU:measUs #0, f>gin Us.

(10)

3. Results for direct problem. Positivity principle. The technique of the
paper is based on the representation of the memory kernel m in terms of its resolvent
k. Namely, we define k to be a solution of the following Volterra integral equation:

¢
(12) k(t) — /0 m(t — 7)k(t)dr =m(t), te (0,T)
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with given m. It is well-known that in case m € L?(0,7') with p > 1 the solution k
exists, is unique and belongs to L?(0,T) (see e.g. [5]).

It is possible to transform the direct problem (1), (5) to a form that contains the
kernel k instead of m. Indeed, observing the formula (I + kx)(I — mx) = I, where
I is the unity operator we get

Lemma 1. In case all t-dependent functions and their derivatives involved in equa-
tions (1) and (5) belong to the space LP(0,T) with respect to t for any x with some
p > 1, these equations are equivalent to

(13) Blur +kxw)=Au+f inQ, uwu=wuy inQx{0}, Biju=g inS,

where

(1) f =Xk

(15) Bi=B, g=b incasel,

(16) Biu=w-Vyu, g=b+kxb in case Il

Now we are going to prove certain basic results for the direct problem of the form
(13). For the sake of generality, we allow the kernel k and the coefficients 3, a;; and
a; to depend on both x and t in Theorems 1 and 2 below.

Theorem 1. Assume (3) and (4) in Q. Then the following assertions are valid.

2
(i) Let B,aij,aj,a € C(Q), k € LY(0,T; L=(Q)), f € LP(Q), uo € WZ‘E(Q) and
1 1 L

g€ Wp?_a_y’l_ S) with some p € (1,00). Moreover, in case I let p # %
and the consistency condition ug = g hold in T' x {0} if p > % and in case
II let p # 3 and the consistency condition w - Vyuy = g hold in I' x {0} if
p > 3. Then the problem (13) has a unique solution in the space W}f*l(Q).
This solution satisfies the estimate

HF
"

(17) ||uHW5,1(Q) < 4 {”f”LP(Q) + ”UOHij%(Q) + HgHWpQ—w%,l—%*ﬁ(S)} s

where Cy is a constant depending on 3, ai;, aj, a and k.

(i) Let B,a:5,a5.a € CY3(Q) and k € L%(O,T;CZ(Q)) with some | € (0,1).
Moreover, let f € CL5(Q), up € C2(Q), g € C*H=v1+5=%(8) and in case |
the consistency conditions ug = g, Bgr = Aug + f hold in T' x {0} and in case
II the consistency condition w - Vyug = g hold in I' x {0}. Then the solution
of (13) belongs to C2*1145(Q) and satisfies the estimate

18) oy < Ca{IIf

with some constant Cy depending on (3, a;j, aj, a and k.

g+ ol + lgllosi s sg—s }

Proof. Let us denote Q; = Q x (0,¢). To prove (i), we need the relation
t
(19)  Nkxvllr@) < /0 G t=T)lee@lvlr@dr, t€(0,T), veLl(Q).

Denoting k(t) = k(-,t), o(t) = v(-,2), [k@®)] = |k)llL<(0). 12O = 90|,
making use of the following property of the Bochner integral: || fos w(s, 7)d7||Lr () <
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fos lw(s, )|l e (o) dr for functions w(s, ) € L'(0,T: LP(2)) and the Holder’s inequal-
ity, the sought relation (19) can be deduced by means of the following computations:

kvl []0 1 fo k(r)o(s — 7 dTHlip(Q) ds]; <1, where
1= [Js (s IR (s = 7)llar)” ds)
= [ IR L2 155 = 7)1 (i 1R @I 1805 = )lldy)” " ddr |

< {f(fn/‘c(f)n [ ots = mlids] [ (s 1R s - )de)ws]’%dfr

1

E

1 .
T

s{fénl‘cmn[J*’Ha(smﬁds]%dfr[f (s VR (s = )lldw)” ds]

¢ 2=t

= [Jo 1= Dl oy lollinqa,ydr] < 157
By Theorem 5.4 in [14], under the assumptions of (i) problem (13) in case k = 0
has a unique solution @ in the space W2'(Q). Thus, (13) for u € W2'(Q) in case
k # 0 is equivalent to the following problem for the difference v = u—u € LV;J(Q):
(20)  Pvp=Av—pk*(ve+u) nQ, v=0inQx{0}, Bjov=0 inS.
Let F stand for the operator that assigns to a function f the solution of the
problem (13) in the case k = 0, up = 0, ¢ = 0. By Theorem 5.4 in [14], F €
Z(LP(Q), W2'(Q)). This implies that the problem (20) in W2(Q;) is equivalent
to the following fixed-point equation:
(21) v = Fv+Fu, where Fu=—F(B(kx*u))
and F € Z(W2(Q)). Let ¢t € (0,T) and define the cutting operator P; by the

formula Pv = { 8 :E gt\ 0, Observing that Fv = FPw in Q; and using (19)

we deduce the estimate
H‘F’UHVV,?‘I(Qt) = ||F(ﬁ(k*vt))||wﬁ-l(Qt) = [ E'P(B(k = vt))”wjvl(cgt)
< NEP(B(K o) lywzr ) < IFNIIP(B(E * ve))ll o)

t
= | FI 1Bk * v)l| () < Co / (= )l =@ ol gy dr

with Cy = || F|| 18]l c(g) and k(t) = k(-,t), as before. Now we define the weighted
norms |[v]lo = sup e |vllyy21,), 0 > 0, in the space W»'(Q) and deduce the
0<t<T Pt

estimate

t
(22) [|Fvll, < Co sup e"’t/ [kt = T)lle= @ Ivllwz 1 (g, d7
0<t<T 0

¢
=(Cy su / e TN EE — 7| oo e 0] 12, dr < ¢q||v
20<t£T ll( M=) Il ”Wpl(QT) slollo

where ¢, = Cgf e k(T)|| L~ (qydr. Since k € L'(0,T;L>(Q)), there exists
oo > 0 such that ¢,, < ; Consequently, F is a contraction and the equation
(21), which is equivalent to (13), has a unique solution in W2'(Q). Moreover, from
(21) and (22) we deduce [[v]lsy < [1Fvlla, + [|Flla, < 5([[vllsy + [[tllo). This
implies ||[v]|oo < ||U]|sy- Since ||ﬁ||W3,1(Q> is bounded by the right-hand side of (17)
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(see Theorem 5.4 in [14]) and ||.|[; is equivalent to the usual norm in W2'(Q), we
obtain the estimate (17).
To prove (ii), we need the relation

2-1
ot 2 157
2-1
@) oy g < O [{IkCt= Dl Il g g } ]
€(0,7), ve T (Q)
that holds with some constant Cs. It follows by splitting ||k v by = Ni+ No,
where
Ny = sup |(k*v)(x,s)|+ sup [(k xv) (21,215 8)]
(%,5)€Q¢ (z1,5),(22,5)€EQ:
< sup jo sup |k(z,s —7)| sup |v(z,n)|dr
s€(0,t)  zEQ (z,m)€Q~
+ s [[Fsuplk(zs =] sup |{wh(er,eiin)ldr
s€(0,t) (z1,m),(x2,m)€EQr
o s RnGarss o Dl s jo(.m)ldr]
T, xQEQ (z,n)€Q-
t
< MGt = el g g 7

L 227 2
<t [ Ikt =Dl Pl g, } 0]

Ny = sup [(k*v) (2351, 82)|
(@,51),(,52)EQy S
< sup L [2 k(z, 81 — 7)|[o(2, 7)|dT
o<sz<si<t [s1—s |z o2
+ sup L f:ll_s2 [k(z, 51 — 7)||v(z,7) —v(@, 80 — 81 + 7)|dT

0<<2<<1<t |s1— 32\2

< sup [[ {|k(x, 81 — 7)||v(z, 7)|} 71 ’dT]T

0<sp<sy<t,
zeQ

+  sup f;ll . sup|k(x s1—7)| sup [{v)
0<s2<s1<t z (z,m),(2,n2)€EQ~
—1

2 2
< {1t = Dleroy ol g g, } ]

with some constant C4. In these estimations we used the Hoélder inequality and
the fact that the convolution of a nonnegative and a nonnegative nondecreasing
function is nondecreasing. By Theorem 4.9 in[14] under the assumptions (ii) we
have @ € CH25+1(Q), F € Z(Ch5(Q),CH25+1(Q)), F € L(C25+1(Q)) and
the problem (13) for u € C*23+1(Q) in case k # 0 is equivalent to the fixed-
point equation (21) for v = u — @ € Cl”’%“(Q). Let ¢t € (0,T) and define the
operator P, such that P,v = v in Q; and Py(z,7) = v(x,t) for 7 € [t,T]. Then,
1 Broll and Fv = FPuv in Q. Thus, using (23) we obtain

(@571, m2)|dT

L
2

b~ ot

H]:’U”CL+2,%+1(Q‘) = ”Fﬁt(ﬂ(k * g )HCHZ l+1 < ”FPt( (k* Ut))HCHZ;éH(Q)
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< IFI NP0+ o) g ) = IFWIBCE < 0ot
2—1

o2 =
< G | {1kt = Dy Wl gon g, } |

Using the weighted norms ||w|l, = sup e “||w|| 41241, . ., 0 >0, in the space
0<t<T CTTETQ)
CH23+1(Q), we deduce

2-1
1 2 2
s <C5 s {—a(t—ﬂ-) t— —oT }24
1ol < s s | [ {e bt = Dllnme ol g g}

2—-1

T Y 2
<G / {e_ﬁlk(wt—f)llclm)}"’ldf} [[vllo-
0

2-1
o g2t

Since k € L77(0, T;CY(Q)), the coefficient [j;)T {e o k(.t — 7)oty dr} :
is small for large 0. Owing to this, the proof can be finished as in case (i) making
use of the fixed-point argument and an estimate for Hﬂ”CQHY%“(Q) in Theorem 4.9
of [14]. O

Theorem 2. Assume (3), (4), 6, a;j,aj,a € C(Q) and
(24) ke WHO0,T; L>=(Q)), k>0, k <0.
Letu € WI?"I(Q) with some p € (1,00) solve the problem (13) and ug >0, g >0,
f > 0. Then the following assertions are valid:

i) u>0;

(ii) if. in addition, B8, a;j,a;,a € Cl’%(Q) with some | € (0,1) and either f #0 or

g# 0, then u(-,T) > 0 in Q in case I and u(-,T) > 0 in Q in case II.

Proof. Tt consists of 4 steps.
1. step: proof the assertion (i) in case u € C*'(Q), a < 0 and k satisfies the
conditions
(25) ke W (0,T;C(Q), k>0, k <0.

Since u = ug > 0 in Q x {0}, there exists

to =sup{t: u(z,7) >0 for (x,7) € Qx[0,t],0<t<T}.

In case the assertion v > 0 holds in @, we have to = T. Suppose on the contrary that
to < T. Then, we fix some h € (0,7 — to] and define the sets Vi, , = Q x (to,to + h|

and Vi, j, = Q x [to, to + k). By this definition, there exists (z},t}) € Vi, » such that
u(zy.t;) < 0. Let

(26) v(z,t) = uw(@, t) + pp(t —to — h)., uh:7%>0‘

Then we have
(27) w(z,t) — pph < v(z,t) < u(z,t) for (x,t) € Vig.n.

Observing (27) and the inequality u(z},t;) < 0 we see that for all (x,t) € Vi, n
such that u(z,t) > 0, the relations

*7t* .
v(2, 1) > u(@,t) — puph > —pnh = ueht) w(zp. ) > v, )
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are valid. They imply that

(28) function v cannot attain its minimum over Vj, 5,
in a point (z,t) where u(z,t) > 0.

In particular, (28) implies that v cannot attain its minimum over V4, 5, on the subset

Vie.n \Vig.n = Qx{to}, because there u > 0 in view of the definition of ¢,. Therefore,

(@, tn) € Vign = v(zp,tn) < v(x,t) forall (z,t) € V.
Moreover, v(x, tp) < 0, because v(zp, ty) < v(w), 1)) < w(x), t),) and u(x), ;) < 0.
Let us show that z = x, is the stationary minimum point of v(z, tp), i.c.
(29) Vev(zp, ty) =0.

This relation may fail only in case the minimum occurs in the lateral boundary of
Vig.h» 1.6. when x;, € I'. In case I we have u = g > 0 for € I" and, by statement
(28), @, cannot belong to I'. Thus, it remains to show (29) for the case IT when
xp € I, In this case w-V,v =w-V,u = g in I'. Note that then the inequality
g(xh, tr) > 0 cannot hold, because otherwise v is strictly decreasing in the inner
direction —w(xzp) at (ap,tn) which implies that v(xp,t,) cannot be the minimum
of v. Consequently, due to the assumption g > 0, it holds g(zp,¢,) = 0 and we
have w(zy) - Vi v(xp, t,) = 0. In addition, we also have 7 -V, v(xp,t,) = 0, where
7 is an arbitrary tangential direction of I' at xj, because x = xp, is the minimum
point of the a-dependent function wv(a,t,) over the set I'. These relations yield
&-Vyvu(ap, ty) =0, where £ is any direction, hence (29).

Now we are going to estimate the operator Lu = B(u;+k*u;) — Au of the equation
(13) termwise at (x,t) = (25, tn). By (26) we have ug(xp, tn) = ve(@n, tp)— pn. Since
tp, is the minimum point of the ¢{—dependent function v(zp,¢) in the half-interval
(to, to + h, it holds vi(xp, ty) < 0. Thus, we obtain

(30) ut(Th, th) < —fin.

4,J=1 J
xp, is the stationary minimum point of v(z, ;) and the principal part of A is elliptic

3 n
(see (3)), it holds - ay(zn, th)ve,e, (T, th) > 0 and Y aj(zn, th)ve, (Th, th) = 0.
ij j=1

N n
By (2) and (26) we have Au = Y @ijVz,c;+ » Ve, +alv—pp(t—to—h)]. Since z =
=1

Moreover, in view of a < 0 and v(xp,tn) < 0 we have a(zp, ty)v(zn, tn) > 0. By
means of these relations and ¢, € (to,%o + h| we deduce the estimate

(31) — Au(xh,th) < a(l‘h,th)uh(th —to — h) < Csuph

where Cs = [|allo(g)-

It remains to deal with the term (k * w)(zp,tn) in Lu(xp, t). Integrating by
parts we have

th

k(@n.th — T)ur (Th. 7)dT = k(2h. 0)u(@h. th) — k(2h. th)uo(2h)
to th
+ ke(xp, th — m)u(zy, 7)dT + ki(zh, t, — T)u(xp, T)dT.
0 to

In this relation —k(xp, tp)uo(zn) < 0 and fot" ke(xn, th — 7)u(zn, 7)dr < 0, because
k>0, k <0, u >0 and u(zy,7) > 0 for 7 € [0,t] by the definition of ¢.
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Consequently,
th

th
k(zp, th — T)ur (zp, 7)dT < k(zh,0)u(zh, th) +/ ke(xn, th — T)u(zh, 7)dT.

0 to
Substituting here w(zy,t) by v(xp,t) — pn(t — to — h) (see (26)), we have

(32) /O " knstn — 7)ur (@, 7)dr

th
< k(zp, 0)v(zp, ty) + ke(zp, th — T)v(2h, T)dT —
t
’ th
—[th {k(zh, 0)(tn —to — h) + ke(zp,th — 7)(7 —to — h)dr| .
to
In this estimate we analyze separately the term ftto" ke(xp, th — 7)v(xp, 7)dr. To this
end, define the following subsets of [to, 1] :

U,‘Z' ={r: 7€to,tn], v(zn,7) =0}, U, ={7: 7€ [to,tn]. v(zn T) <0}

Taking account of k; < 0 and the fact that v(ap,t,) < 0 is the minimum of v(zy, t)
on the interval [to, ], we deduce

rth
/ ke(xp, th — T)v(zp, T)dT

to

th
< /7 k]f,(ﬂ?h,th—T)U(.Z'h,T)dTﬁ/ kt(ib'h.,th—T)dT'U(.Z‘h,th)

h to

) ke(xn, th — T)v(xp, T)dT +/ ke(xp, tn — 7)v(ap, 7)dT
Uy,

= (k(xn, th — to) — k(zn,0)) v(xp, th).
Thus, due to k > 0 we get
k(en, 0)u(@n. th) + :h Fe(n.tn — To(@n, T)dr < K(zh, tn — to)o(@n.t) < 0
and from (32) we ﬁnallyuobtain
(33) Oth k(@ th — T (zn, 7)dr

th

< —up {k(azh,())(th —to—h)+ ki(zp,th —7)(T —to — h)dT} .

to
Let’s return to the operator L. Making use of (30), (31), (33), the assumption
(4) and the relation 0 < ¢, — ty < h we obtain

Lu(zp, ty) < Mh{ﬂ(xh)

—B(xp) {k(zh,O)(th —to—h)+ / ' ke(xp, tp — 7)(T — to — h)dr

to,n

+ C@h}
< {*/30 +Crh (k(xhvo) &l L1 0,0 + Cﬁ)} :

In case h > 0 is sufficiently small, due to the inequalities pp > 0 and Gy > 0 the
relation Lu(zp, t,) < 0 holds. But this contradicts to the assumption Lu = f > 0.
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Consequently, the supposition ¢ty < T was not right. We have ¢ty = T', which by the

definition of ¢y implies u > 0.

2. step: proof of the assertion (i) in case u € C%'(Q), up = 0 and k satisfies (25).
Let us define @ = e~%u, k(z,t) = e="tk(z, t) + afot e~k(x,n)dn, [ = e tf,

~ “’JHBC@

g =e g, where 0 = . Then u solves the problem

B +k*uy)=Au+f inQ, G=u in Qx {0}, Bji=g in S,

- n n

where AU = Y7 ajjlie,e; + Y. ajl,; + U and

ij=1 j=1

t

a(z,t) = a(z,t) — of(x,t) [1 +/ e"”’k(x,n)dn] <0.
0
The kernel k satisfies (25) and g > 0, f > 0. Using part 1 of the proof, we get
w > 0. This implies u > 0.

3. step: proof of assertion (i) in the general case.

It is enough to prove this assertion for p € (1, %) Let us consider the problems

(34) Buy = (A—k(-,0)8)u in Q, u=wuy in Qx {0}, Biju=g in S,
(35) Bliy +k+iy) = Ali+ fz inQ, =0 in Qx {0}, Bja=0 in S,

where fu = f — B(ky * @) + Bk(-,0)uo. Since u € W2'(Q), by embedding theorems

2 1 1 v
[10] we have o = ulaxoy € Wy 7(Q) and g = Buuls € W, 7 "7 (g).
Thus, by Theorem 1 (i), problem (34) has a unique solution € W2*(Q). Further,
due to the assumptions of the theorem and @ € WZ?’l(Q), it holds fz € LP(Q) and
by Theorem 1 (i), again, problem (35) has a unique solution @ € Wg’l(Q). Adding
(34) and (35) and integrating by parts in the convolution term in f5, we see that
4+ @ solves (13), hence by the uniqueness, u = @ + .

By the well-known extremum principle for weak solutions of parabolic equations
(e.g. [10] Ch. 3, Theorem 7.2) we obtain @ > 0. This together with the assumptions
of theorem implies fz > 0.

Further, let us choose some functions 8™, a}}j, ", a™, f"", km e ¢ (@) such that
8™~ ﬂ“c@)- llaif = aijllc@)- llaj" — aille@: la™ = allog)-

7™ = fallLe@)s IE™ = Kllwy 0,50~y — 0 as m— o0

and f™ = 0in T x {0}. Then, by virtue of (3) and (4), for sufficiently large m there
hold the relations

n
Z agiNiNj > %\MZ for any A € R™ and (™ > %

i,j=1

in Q.
fra,t) if f(@,t) > 0 S
0 if fr(e ) <o 0 ohenS eeh@)

for any { € (0,1) and f™ =01in T x {0}. Moreover, due to the inequality fz > 0 it
holds |f™ — fa| < |f™ — fu| in Q. Therefore, using (36) we obtain

In addition, we define f™(x,t) = {

(37) 1™ = fallr@) < IF™ = fallog) — 0 as m — .
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Finally, we define k™ (x,t) = th K™(z, 7)dT 4 ¢™ () with

, ke, t) if km(x,t) <0 (e, T) if k™ (2, T) >0
m 1) = t ’ vt R m — ’ A ’ .
K@) { 0 i@y >0 T @ =0 if k™(2,T) <0
Then k™ € W(0,T;CHQ)) for any I € (0,1). Moreover, since k > 0 and k, < 0,
we obtain [K™ — k| < |k — k| in Q and |¢™ — k(-,T)| < |[k™(-,T) — k(-,T)| in Q.
Observing these relations and (36) we deduce

(38) [IK™ — kllLr0.m:L= ()

T T
< A ess sup [/t "™ (2, 7) — ke (2, 7)|dT + |¢" (2) — k(z,T)|

TEQ

dt

<T [‘lk{n — kel o,mip ) + k™ (- T) - k('aT)HLOC(Q)] —0 as m — oo.

Now let us consider the following approximating problems of (35):
B (u + k™ ) = A"+ f™ in Q)

39
(39) W =0 in Qx {0}, Biju" =0 in S,

i,7=1
the data of these problems and Theorem 1 (ii) we conclude that for each integer
m, (39) has the unique solution u™ € C2+1+%(Q). Subtracting (35) from (39) we

obtain the following problems for the differences v = u™ — u:

n n
where A™v = Y A Vg0, + Zl aj'vy; +a™v. Observing the proved regularity of
i=

B +kxv") =Av" +¢™ inQ, v"=0 in Qx {0}, Biv"=0inS
where

" = (A" = A"+ ) — (B = B+ + ko (v o+ Ge)]
—(B+ B = BIK™ = k)= (0" + @)+ f™ = fu

Using Theorem 1 (i) for these problems we deduce
o™ 210y < Callé™]

+ [l - asllo + 9} = aslleg + ™ = allegg) + 18™ = Blo)

(@ = Cillfm™ - fﬂHLT’(Q)

A8 = Blle@)IE™ =kl o=@ | (10" w21 ) + 1@llw2q))

with some constant C;. Taking here (36) - (38) into account, we get
(40) ||Um||W§=1(Q) = [Ju™ - ﬂﬂwgvl(Q) —0 as m— oo

Note that f™ > 0, ™ > 0 and k;* < 0, by the definitions. Thus, since ©™ = 0
on  x {0}, using step 2 of the proof for the solution of the problem (39), we get
u™ > 0. This with (40) implies @ > 0. Since @ > 0, we obtain u =@ + @ > 0. The
assertion (i) is proved.
4. step: proof of assertion (ii).

Firstly, let us consider the case f # 0. Then, due to (11) and (10), there exists
an open ball U C @ and ¢ > 0 such that f > ¢ in U, hence we can choose some
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ft € C®(@)sothat ff =0in Q\U and 0 < ff < £ in U. Further, let us define

¢, = esssup k(x,0) and consider the following problems:

z€Q
(41) Bul =(A—cpBul + T inQ, ut =0 in Qx {0}, Byul =0 in 8,
(42)  Blie+k*ty) = A+ fr nQ, 4 =uo in Qx {0}, Bia=g in S,

where f,i = f — f1 — B(k: * ul) + B(cx — k(-,0))ul. By Theorem 1 (ii), problem
(41) has a unique solution uf € C2+:1+%(Q). Observing that fi > 0 and fT #0
and using the well-known strong extremum principles for parabolic equations (see
e.g. Theorem 6.1.1 (ii) in [8]), we deduce the relation
(43) uf(,7) >0 in Q () in case I (II).

b 2 1 1 v
Since f,i € LP(Q), uo € Wy *(Q) and g € W * "% 5(8), by Theorem 1 (i)
the problem (42) has a unique solution @ € W2''(Q). Adding (41) and (42) we see
that u! + @ solves (13), hence u = u! + @. Observing the assumptions of theorem
and the relations f — fT > 0 and ¢, — k(+,0) > 0, following from the definitions of fT
and ¢y, we get f,r > 0. Since, in addition, uo > 0 and g > 0, assertion (i) implies
@ > 0. Finally, using (43) we prove assertion (ii) for v = uf + @.

Secondly, in case g # 0 we define a function g € C>(S) such that gt > 0,
g" # 0 and ¢g' < g. Then we set fT = 0 and replace the boundary conditions of the
problems (41) and (42) by Byuf = ¢t and Byi = g — g7, respectively. The other
arguments concerning the solutions of these systems are almost the same as in the
case f # 0. The proof is complete. O

From now on, let the given functions (3, a;j,a; and k have again the domains
specified in Section 2, i.e. 3, a,5,a; depend only on x and k depends only on t.

Remark 1. For k, depending only on ¢, the assumptions (24) read
(44) ke wlo,T), k>0, k<O0.

Let us deduce sufficient conditions for these assumptions in terms of the original
kernel m. Provided m € W] (0,T), the solution k of (12) belongs to W} (0,7) and
has the following representation in the form of Neumann series:

k=Y m(m), K= Z[m(O)m +m|(xm)".
i=0

=0
Thus, the sufficient conditions for (44) are
(45) meWhH0,T), m>0, m'(t)<-m(0)m(t).

N

For instance, the widely used exponential kernels m(t) = 3 aze=%? satisfy the
i=1

conditions (45) provided §; > «; > 0.

Remark 2. Let us return to the direct problem for u in the original form (1),
(5). Observing Lemma 1 and Theorem 2, we see that the assumptions for the
concentration (or temperature) u to be nonnegative are f = x + k% x > 0, up > 0
and g =b > 0incasel and g = b+kx*b > 0 in case II. In case of non-vanishing k£ > 0
the conditions x + k= x > 0 and b+ k= b > 0 are weaker than the conditions xy > 0
and b > 0 that occur in the case of vanishing k. (The latter case corresponds to the
usual parabolic problem without the integral term.) Physically, this phenomenon

INVERSE PROBLEMS AND IMAGING VoLuME 3, No. 1 (2009), 17-41



30 JAAN JANNO AND KAIRI KASEMETS

can be explained by a certain inertia of the medium with memory. For instance,
choosing the following source term

x=1in Qx(0,7-0) and x=—-€e<0 in Qx (T —-46,T),
where the numbers € > 0 and § > 0 are sufficiently small, so that
T—6 t
/ k(t—T1)dr > ¢ <1 +/ k(t — T)dT> for any te (T —6.T)
0 T-6
we have x + k* x > 0 in @ that implies v > 0 in Q.

4. Results for IP1. We start by proving a technical result.
Lemma 2. Let (3), (4) hold. Assume B € CY(Q) with some | € (0,1), a;j,a; €
C(Q), a € C(Q), a; € LP(Q), k € LP(0,T) with some p € (1,min{2,2;}) and
the problem (13) has a solution u € W2'(Q) such that Biu is continuous in a
2

neighborhood of T x {0}. If f, € L*(Q), uo € W2(), A(O)ug + f(-,0) € W, 7 (Q)
and g¢ € W}?i;iwiﬂig(S) then up € W2H(Q).
Proof. Let us consider the problem

Blve + k*v) = Av+ fi — k(A(0)uo + f(,0)) + ayu in Q.

v %(A(O)uo +7(~0)) in @ x {0}, Biv=g in 5.

Due to the assumptions imposed on 3, A(0)ug + f(+,0) and the relation p < % we

2

have %(A(O)uo + f(-,0)) € W’;_E(Q). Moreover, f; — k(A(0)uo + f(-.0)) + ayu €
LP(Q). Therefore, by Theorem 1 (i), the problem (46) has a unique solution v in
W2HQ). Let us define w(z,t) = fot oz, 7)dr + uo(z) € W2'(Q) and integrate
the integro-differential equation and boundary condition in (46) with respect time
from 0 to ¢t. Taking into account the initial values of v and w and the consistency
condition Biug = ¢(+,0), that holds in view of the continuity assumption of Bju,
we reach the following relations:

(A7) Bwi +k*w) =Aw+f+f nQ, w=u in Qx {0}, Bijw=g in S,
where f(x.t) = fot(a(x,T) —a(z,t))(ur(x,7) — we(x, 7))dr. Subtracting (47) from
(13) we obtain the problem for w = u —w

Blw +k*w)=Aw+f inQ, w=0in Qx {0}, Biw=0 inS.
Using the estimate (17) for the solution of this problem, we obtain ||w||sz.1(Qt) <

Cl||f\|Lp(Qt) for any ¢ € (0,7T), where @, = 2 x (0,t), as before. Further, observing
the continuity of a and the inequality (19) with k =1, we deduce

(46)

fllr @0 < 2llallogllt * will o @0

t t
< 2l / lorlln.ydr < 2llalleg) / lollwz g, dr

for any ¢ € (0,7"). Thus, we obtain the following integral inequality:

¢
||wHW3.1(Qt) < Const /0 ||“-’”W3~1(Q,)d7= te(0,T).
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By Gronwall’s lemma, the solution Hwsta(Qt) of this inequality is zero. Con-
sequently, w = u —w = 0. Since v = w, € W2'(Q), we prove the assertion
u € W2HQ). O
Due to Lemma 1, IP1 is equivalent to the following problem for (z,u):
(48) fBlus +k*u) =Au+zr+ fo inQ, u=wu in 2x {0}, Biju=g in S,
(49) uw = up in Qx {T},
where By, g are given by (15), (16) and
(50) r=0o+kxo, fo=xo+k*xo
Let us prove the following uniqueness result for the problem (48), (49):
Theorem 3. Let (3), (4), (44) hold and B, a;;, a; € CY(R), a € C12(Q), a, € LP(Q)
with some l € (0,1),p € (1,00). Moreover, leta; > 01inQ, r € Cl%(Q),rt € LP(Q),
(51) r>0, ret+kxry—0r>0 in Q
and
(52)  for any U C Q, measU >0, it holds r+kxr,—0r#0 inU x (0,T).
Here

- a(x,T)
e

If (z,u) € CLQ) x C2HIHE(Q) solves (48), (49) and fo,uo, g,ur = 0 then z =
0,u=0.

Proof. Note that (52) immediately implies that
(53) for any U C Q, measU >0, it holds r#0 in U x (0,7).

Suppose contrary that z # 0 and denote z+ =
Firstly, we show that
(54) 2t #0 and 2z~ #0.
Indeed, let z= = 0. Then zr = z"r > 0 and due to z # 0 and (53) it holds zr # 0.
Observing the assumptions fo,u0,9 = 0 and applying Theorem 2 to the solution
u of the problem (48) we get u(z,T) > 0, = € Q. But this contradicts to the
assumption ur = 0. Similarly, we reach the contradiction in case 2™ = 0 making
use of Theorem 2 for —u.
Further, let us consider the following problems for u=:

(55) Buf +k*ul)=AuT+25r nQ, v =0 in Qx {0}, Biju* =0 inS.

z2T =

By the assumptions of theorem, it holds z*r € C’l‘%(Q). Moreover, in case I the
assumption u € C2t41%2(Q) implies the consistency condition zr = 0 in T x {0}
for the right-hand side of (48). This yields 7 = 0 in I x {0}, too. Consequently,
assumptions of Theorem 1 (ii) are satisfied for problems (55). Hence, they have the
unique solutions u* € CQH’Hé(Q). Let us prove the following inequalities:

(56) uF >0, wF(,T)>0 in Q (Q)in case I (IT),

(57) Ui +ksxuf—0u™ >0, (uf+kruf—0u™)(-,T)>0 in Q () in case I (II).
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By (51) and z* > 0 we have z*r > 0. Moreover, by (53) and (54) we get 27 # 0.
Using Theorem 2 for solutions of problems (55) we immediately obtain (56). Let
us prove (57). Assume without restriction of generality that p € (1, min{2;3%5}).
Then the assumptions of Lemma 2 are satisfied for the solutions u™* of the problems
(55). Thus, we obtain u € W2HQ). From (55) we deduce the following problems

for the functions v* = uf + k x uff — fu* € W21(Q) N Ch3(Q):

B + kxvf) = AvE + 2% [r + ke — 0r] + fF in Q,
58
(58) vi:%zir in Q x {0}, Bivt =0 in S,

where

¢
[z, t) = az, tyut (,t) + / Et—7)(a(z,7) — a(z, t))u* (z,7)dr.
Jo
By the assumptions of theorem and (56), (54) we have 2% [r, +k* 1, — 0r] + fif > 0
and 2 [r; + kxr, — 0r] + fi© # 0. Consequently, Theorem 2 implies (57).

Let 2* € Q be such that

(59) ut(z,T) <ut(z*,T) forany z € Q.

Since u = u — v~ and u(z,T) = ur(z) =0, we have ut (2, T) =u (2, T), = € Q,
and (59) implies

(60) u(z,T) <u (¢, T) forany €.

Let us show that the point 2* is the stationary maximum of u® (2, T), i.c.

(61) Ve ut (2", T) =0.

The equality (61) may fail only when z* € T'. In case I we have the boundary
condition uw = 0 in T', hence in view of (56) the function u*(z,T) cannot achieve
its maximum on I', and we automatically get (61). It remains to show (61) for the
case IT when 2* € T'. In this case w(z*) -V, ut(2*,T) = 0, where w(z*) is an outer
direction at z*. Furthermore, since u*(z,T') achieves its maximum over I' in the
point & = z*, we have 7 -V, u™(2*,T) = 0, where 7 is any tangential direction at
z*. Summing up, we get & -V, ut(z*, T) = 0, where £ is any direction. This yields
(61).

By the definition of z* and z~, it holds either 2™ (z*) = 0 or 2~ (z*) = 0. In case
2T (z*) = 0 we have (zr)(z*,T) = 0 and from the equation (55) we obtain

(62) [Buf +k*uf) —au™] (2%, T) = Apu™ (2", T), Ay=A-a.

The left-hand side of (62) is strictly positive due to the inequalities (4), (56) and
(57). Indeed:

[Bud + k)~ au'] @, 1) = B [uf +kxuf — Gu*)@7)
> Bo [uf +kxuf — 0ut] (2%, T) > 0.
Therefore,
(63) Aut(z*,T) > 0.
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On the other hand, since x = z* is the stationary maximum point of u*(z,T) and
the principal part of Ay is elliptic (see (3)), we obtain
n n
Apu™(2*,T) = Z aij(aub,, (a5, T) + Zaj(x*)uj] (x*,T) < 0.
ig=1 =1

This contradicts (63). Analogously we come to a contradiction in case z~ (z*) = 0.
Hence, the assumption z # 0 was uncorrect. We have z = 0. Finally, whereas
fo, w0, g = 0 by assumption, problem (48) is homogeneous. Thus, by Theorem 1 it
holds u = 0. Proof is complete. O

Remark 3. We note that in case k is non-vanishing and satisfies (44) the conditions
(51) with (50) for the coefficient ¢ are weaker than in case k = 0 when the usual
parabolic problem occurs.

To deal with the existence and stability issues, we have to impose additional
assumptions on 7:

r>6inQx (T—6,T) with some d € (0,Z) and

(64) - o
either 7> 6 in Q% (0,9) (case (1)) or r =0 in Q x (0,0) (case (2)).

Note that in case I & (1) the following explicit relation for boundary values of z
from (48) can be obtained:

(65) 2z =1 g — Aug— f) inT x{0}.

In this case it is possible to reduce the inverse problem to the case when z =0 in I'.
Indeed, let us represent the term zr in (48) in the form zr = (z — Z)r + Zr, where 2
is an arbitrary function satisfying the condition = r~(g; — Aug — f) in I x {0},
shift the addend Zr into fo and consider the inverse problem for the unknown z — 2
in place of z. Then this new unknown is zero in I

Now we are going to prove an existence and stability theorem for (48), (49).
The Fredholm-type result of this theorem (i.e. the assertion (i) below) was already
obtained in [11], but under different assumptions. Namely, in [11] certain posi-
tivity conditions on the original kernel m where imposed. We do not need such
assumptions in the assertion (i).

Theorem 4. Let (3), (4) hold and 8, a:;,a;, 3 € CH(), a € C2(Q), a; € LP(Q),
with some | € (0,1),p € (1,00). Moreover, let a; > 0, r € C3(Q), ry € LP(Q)

and (64) hold. In addition, let f € C-%(Q), ug € C2H(Q), g € C2H-r1+5-5(g),
up € C**H(Q) and the consistency conditions

w =g, Bg=Auo+ fo incasel, w-Vyug=g ncasell inT x {0}
(66) upr =g incasel, w-Vyur=g incasell inT x{T}
Aup =0 in case I & (1) in T x {T}

be satisfied. Then the following assertions are valid.
(i) If ke W1l (0,T),r>0,r,—0r >0,
2—1

(67) for any U C Q, measU > 0, it holds r,—0r #0 inU x (0,T)
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and the homogeneous inverse problem, i.e.
(68) B +Ekxv)) = A® +¢"r in Q,
w0 =0 in Qx{0}, B’ =0 inS, v"=0 in Qx{T}

has in CL(Q) x C2H1L1F5(Q) only the trivial solution ¢° =0, v° = 0 then the
inverse problem (48), (49) has a unique solution (z,u) in the space C*(Q) x
C2HA+5(Q) and in case I & (1) it holds z = 0 in T'. Moreover, the solution
(z,u) satisfies the estimate

Izl + Nullagrags < A8, ag,a5.a.k,7)
< {5l
with some constant A depending on the quantities shown in brackets.
(ii) If
(70) keW%(O,T), k>0, K¥<0

(69)

g lolloss + 19leiya - + lurllan |

and r satisfies (51), (52) then the inverse problem (48), (49) has a unique
solution (z,u) in the space C1(2) x C2H1%5(Q) and in case I & (1) it holds
z =014 . The solution satisfies the estimate (69).

Proof. Evidently, the assertion (ii) follows from the assertion (i) and Theorem 3.
Therefore, let us prove (i). We note that, due the assumptions of the theorem, the
inverse problem in case k = 0, i.e. the problem

Bul = Aut + 2'r + foin Q,

ul =upin Qx {0}, Biu' =gin S, u' =urin Q x {T}

has a unique solution (z!,u!) € X! = CL(Q) x C2+L1+5(Q), where
Cl ) ={2:2€C (), 2=0inT incase [ & (1)},

and this solution satisfies the estimate

HZlHl + Hu1”2+l,1+% < Al(ﬁv Qij, Qj, Ay T)

(71)

(72)
X {\|f0||z,lE + lluollos + llgllosr -z -5 + HuT||2+l}-

This assertion follows from a known Fredholm-type result for the problem (71)
(Theorem 1.2 in [7]) and the related uniqueness result (Theorem 3 of the present
paper with k = 0).

Let us denote ¢ = z — z! and v = u — u'. Then the inverse problem (48),
(49) for (z,u) € X' is equivalent to the following inverse problem for the pair
X = (¢q,v) € XL
Buy = Avtqr—pBk * (uf +v;) in Q,
v=0in 2 x {0}, Bjv=0in S, v=0in Q x {T}.

Let P stand for the operator that assigns to a given right-hand side fy the solution

of the problem (71) with ug, g, ur = 0. Then the problem (73) is in X! equivalent
to the operator equation

(74) X =TX+0¥

(73)

1The uniqueness for (71) was proved also in [7], but under different assumptions.
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where 7 (g,v) = P(—Bk * v;) = P(—=Bk' xv — Bk(0)v) and ¥ = P(—Sk * u}).
Observing the assumptions of theorem and the implication k" € L%—l(&T),w €
Ch3(Q) = K +w e Ch2(Q), following from (23), we see that 7 € .Z(U", XY
and ¥ € X!, where UL = CY(Q) x C15(Q) and I is an arbitrary number in the
interval (0,1). Since X! is compactly embedded in Ul the operator 7 is compact
in ULl Moreover, 1 is not an eigenvalue of 7, because the equation X° = 7X0 is
in &' equivalent to the problem (68), whose solution X° = (¢°,4°) is zero by the
assumption. Consequently, by the Fredholm’s alternative, the equation (74) has a
unique solution in X’. This proves the existence assertion of theorem.

It remains to prove (69). Since 1 belongs to the resolvent set of 7, the operator
T depends on S, a;;, a;.a, k,r and the inequality || - ||,.r < Const|| - ||+ holds, we
get
(75) ”XHZ/{H’ < A2(ﬂa Qij, Qj, Q, k, T)H\Il”ul-l’ < Ag(ﬁv Qij, Qg A, k, T)HlIIHX"
Let us estimate the equation (74) taking the relations (75), (23) and (72) into
account:
(76) llall + vllagrags = I XNar S NTIX Mg + 1] 20

< {HTHAJ(Q Qij, Qg Qy k,?“) + 1}|I\I}HXI < A4(6$ Qg5 Qg y G,y ]{:,T’)”[)’k * u%“l,%
< N8, a5, 5,0, k) { ol g+ ol + 1o + urllasa )

Since z = 2! + ¢ and u = u! + v, the estimate (69) follows from (7 ‘) and (76). O

Let us denote by Fﬂ‘a,T the operator that assigns to the vector d = (fo, uo, g, ur)
the solution of the linear inverse problem (48), (49). Provided 3,a,r and also
a;j, aj, k satisfy the assumptions of Theorem 4 (incl. the additional assumptions of
the assertion (i) of Theorem 4), the operator Fj, . is well-defined from the space

7 = {d: deC"3(Q) x C*HH(Q) x C*H—r1+i-5(85) x C2H(Q),
d satisfy the consistency conditions (66)}
to the space C1(Q) x C2+1143(Q) and satisfies the estimate

”Fﬁ,a,r(.fo-,uOvgvuT)Hcl(Q)XczH 1+ 5@ = < A(ﬁvazwag a, k 7”)

< {lfol

5. Results for IP2 and IP3. By Lemma 1, IP2 is equivalent to the following
problem for (a,u):

(78) Blur+kxw)=Au+au+f inQ, uvu=1uy in Qx{0}, Biju=g in§,
(79) w=wur in Qx{T},

(77)

vy olloss + 19ler sy + lurllz

where f, By and g are given by (14) - (16) and Apu = E QijUs,e; + Z Ajy; .
i, j=1
Let us define the following set of the coefficients a that depends on 9 E R:

Alﬁ,g = {acCY(Q) : :Lelp 5233; < 6}.

We will prove a theorem that comprises global uniqueness and local conditional
existence and stability.
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Theorem 5. Let (3), (4) hold, (3, a;j,a; € CYQ) with some | € (0,1) and 0 € R.
Then the following assertions are valid.

(i) If k satisfies (44) and the problem (78), (79) has the solutions (a1,u1) €
CL(Q) x C2H145(Q), (ag, up) € Al g % C2HI45(Q), where u = uy satisfies
the conditions

uw>0, u+k*xu—0u>0,

for any U C Q, measU > 0, it holds w, + k+u; —6u#0 in U x (0,7T),

then a1 = as and uy = us.

(80)

(i) If k satisfies (70) and (78), (79) has a solution (a,u) € Al 5 x C2HLI+5(Q)
such that w fulfills (80),

(81) w>d inQx(T—6,T) and u=0 inQx (0.5) with some § € (0, %),

then for any ]77 o, g, ur such that

= ~ - _ 1
(82) D = Hf—f”zé + [0 —uol|241 + Hg_g”2+lfu,1+%—% + [Jur—ur|ari < e
where X = A(B, aij, a5, a. k. u),
=9, Bg = (Ap+ a)u +~mcasel,
(83) 0=9, Ba= (Ao +a)uo+ f

w-Vypg =9 in case I in T x {0},

(84) ur=g¢ incasel, w-Vyur=9g incasell inT x{T},
and~ﬁg = ug in case I in T, the problem (78), (79) with fo,uo,g,ur replaced
by fo, %o, g, ur has a unique solution (a,w) in the ball

®5)  u={@wn:[a—altfi-uls < (1-vi-2wD)}.

_2
If k satisfies (44), a € Al 5, ug € C2H(Q), Agug € W, 7 (), f € CL3(Q),

ol w1
fi € LP(Q), g € C2Hv145-5(8) g, € sz vrltETe (S) with some p €
(1,00),

uy = g, Bgr + Aoup + aug = f in case I,

L
2

(iii

=

86

(86) w-Vyug =g ncase II inT x {0},

- u >0, f>20,9>0, f+k*fr—0f >0, g+ kx*g —0g=>0,

BT fitkefi—07£0 or g kg 090
and

(88) (08 = a)uo < Aguo + f(-,0)
then the solution w of the direct problem (78) belongs to C2+1%5(Q) and
satisfies (80). If, in addition, f(-,t) = 0 and g(-,t) = 0 for ¢t € (0,dy) with
some &y € (0, L), ugp =0 and g > 0 in ' x {T'} in case I, then u satisfies (81),
too.

Remark 4.

1. Since $(1 —v1—=2X2D) ~ AD as D — 0%, the relation (85) implies that the
solution operator of the problem (78), (79) is locally Lipschitz-continuous in
the neighborhood of (a, u).
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2. In case up = 0 the assumptions of (iii) do not contain a, except for the
condition a € Aiw. Namely, in this case (88) is dropped and the consistency
conditions (86) read g =0, B¢, = f in case I and g = 0 in case IT in " x {0}.

Proof of Theorem 5. Subtracting the problems (78), (79) for the pairs (a1, u1) and
(ag,u2) we obtain the problem (48), (49) for the difference z = a1 — ag, u = w1 — us
that has the zero free term fy, zero initial, boundary and final conditions and
contains as and wu; instead of a and r respectively. Note that the conditions (80)
hold with € replaced by 65 = sup ﬂ( Theorem 3 to

the problem for z and u to obtam (i )
Let us prove (ii). Firstly, we note that the problem for (a, %) is equivalent to the
following problem for the differences z =a — a,w = v — w:

Blw, + kxw) = (Ao + Q)w+zutzw+ f— f inQ,

w=uy—up nNx{0}, Bju=g—¢g inS, w=ur —ur in Qx{T}.
Further, owing to the properties of 3, a,w and also a;j, a;, k, the operator Fgﬁa,u is
well-defined from 7 to C!(Q) x C**1+5(Q) (definitions of F' and Z can be found

at the end of Section 4). Since (zw + f — f, %o — wo,g — g, ur — ur) € Z for any
S = (z,w) € . where

7 = {8 : S CHQ) x C>*12(Q), w=0in case Lin ' x {0}},

we can define the operator .7:'(S) = Fgﬂ,u(zw +f = f. U0 — o, §— g, ur — ur) for any
S € .. Moreover, it holds F(.¢) C .&. Now we can immediately check that the
problem (89) is in the space . equivalent to the fixed-point equation S = F(S).
Defining ||S]| = ||z]l: + ”w”2+l,1+% and using the formula (77) and the definitions
of D and \ in (82) we estimate:

N 1
nfwmSA{me%+D}SAQMMWMHM%+D}SA{;WW+D}.

Similarly, for S7 = (27w7), j = 1,2, in view of the relation

1,2 1 2
2wt = 22uw? =2 te (w' —w?) + (21—22)u
2 2
we obtain
St 52

IF(5Y) = S| = [ Fpaulz'! = 2202,0,0,0)] < X | ==]||Is* - 52|,

Thus, by virtue of the assumed inequality D < Wv for any S, S, 8% € Uy, where
1
uU:{s cSe.s, || gg::x<1—\/1—2>\2D) }

we deduce the estimate || F(S)|| < M3$0°+ D} = p that implies the relation
F(Uo) € Uy and the inequality || F(ST) — F(S?)| < q||S* — 52|, where ¢ = Ao < 1.
Therefore, by the contraction principle, the equation S = F (S) has a unique solu-
tion in the ball Uy. This proves (ii).

It remains to prove (iii). Applying Theorems 1 and 2 to (78) we immediately get

(90) we C2143(Q), w>0, u(-T)>0 in Q (Q) in case I (II).
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Further, let us assume without restricting the generality that p € (1, min{%; 2%l})
Then the assumptions of Lemma 2 are satisfied for the solution u of (78). Applying
this lemma, we obtain us € W21(Q). Thus, the function v = uy + ks uy — fu belongs

to C3 (Q) x Wg’l(Q). One can immediately check that v solves the problem
Blog +kxv) =Agv+av+ fr+k*fr —0f inQ,

1
v = E[Aoqurer(a—GB)uo] inQx {0}, Bio=gi+kxg —0g inS.
Observing (87), (88) and Theorem 2 we obtain v > 0, v(z,T) > 0 for x € Q.
These relations with (90) imply (80). Finally, the relations (90) with the additional
assumptions g > 0 in I' x {T'} in case I and f(-,¢t) = 0, g(-,t) = 0 for ¢ € (0,d)
with some dy € (0, %) and ug = 0 imply (81) with some § < dg. [}

Finally, we study IP3. Due to Lemma 1, IP3 is equivalent to the following
problem for (53, u):

(91) Blug +kxuw) =Au+f inQ, u=wu in NVx{0}, Biju=g inS,
(92) u=ur in Qx{T},

where f, By and g are given by (14) - (16).
Let us introduce the following set for the coefficients § that depends on 5y > 0:

B, = {F€C(@) : inf 6(z) > fo}

“D) < gy for any

B(z)

and define 0, = max{O; % sup a(z,T)}. Then we have sup
zEQ zeQ

BeBy.

Theorem 6. Let (3) hold, a;j,a; € C(Q), a € Ch5(Q), ar € LP(Q) with some

1€ (0,1), pe (1,00), ar > 0 and Bo > 0. Then the following assertions are valid.

(i) If k satisfies (44), the problem (91), (92) has the solutions (31, u1) € C1(Q) x
C¥%5(Q) and (By, up) € BY x C2HI45(Q) where u = uy satisfies the

conditions
ug € LP(Q), we+kxu >0,
(93) U= (ue +kxug)e+k*(ug+k*w) — 0 (u+k*u) >0,

for any U C Q, measU > 0, it holds 4 #0 in U x (0,7T),
then B1 = Bo and up = us.

(i) If k satisfies (70), Aug — f = 0 in case I in T' x {0} and the problem (91),
(92) has a solution (B,u) € By x C2H+5(Q) such that u fulfills (93),

u+kxu, >0 in Qx (T—6T) and

(94) —
ur =0 in Q x (0,8) with some § € (0, L),
then for any ﬁﬂo,@ up such that
D<———— where A= A(B,aij,a;,a,k u+k*ug),
(95) D (8, a1y, 03,0, Ky e - Ko we)

Ikl = lkllcp,m  and D is defined by (32),
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(96) To=7, B = Ao+ f =0 in casel,
w- Vg =g in case Il inT x {0},

and (84) holds, the prob}fm (91), (92) with fo,uo0, g, ur replaced by ﬁh Uo, g, U
has a unique solution (3,w) in the ball

d = {B.w) : BBl + [Tl 114

(97) 1 =
< ST <1—1/1—2)\?(1+Hk\|)D> L

(iii) If k satisfies (44), B € Bl , ay = 0, wg € C2H(Q), A(Oyuo € W, 7 (Q),
f € CHHQ), fifu € THQ) fi(0) € Wy P (), g € CHHHITETE(S),

2-v-11-z_ L
9ty g € Wy e (9,
rrpi=fitkxf1 20, rg =g +kxg >0,
(98) Fri=rpi+ksxrp,—0s1p >0, g =1y +kxrg, —03ry >0,

Ty #0 orty #0,
the consistency conditions (86) and the relations

(Ao + 7(-0)) € W2(Q), AO)[5(AO)uo + £ 0)]e W7 (),

B 3
(99)  A(0)uo + f(-,0) = 0,

AO)[ 500+ F(.0)] =03, AO)u0 + £i(-0) = 05, £, 0) 2 0

hold, then the solution u of the direct problem (91) belongs to C*H:1+3(Q)
and satisfies (93). If, in addition,

fi(-, 1) =0, gi(-,t) =0 for t € (0,0d0) with some §y € (O, %),
A(0)uo + f(+,0) =0
andry >0 in T x {T} in case I, then u satisfies (94), too.

(100)

Remark 5.
1. The relation (97) implies that the solution operator of the problem (91), (92)
is locally Lipschitz-continuous in the neighborhood of (5, u).
2. If ug = 0 and f(-,0) = 0 then the assumptions of (iii) do not contain j3, except
for ¢ € B};O, Namely, the assumptions (99) are dropped and the consistency
conditions (86) read g(-,0) = 0, g¢(-,0) = 0 in case I and g(-,0) = 0 in case II.

Proof of Theorem 6. Subtracting the problems (91), (92) with the pairs (81, u;) and
(B2, u2) we obtain the problem (48), (49) for the difference z = 31 — B2, w = ug — us
that has the zero free term fy, zero initial, boundary and final conditions and
contains J2 and ui, + k * u1, instead of 3 and r, respectively. Applying Theorem
3 to this problem, we immediately deduce (i).

Let us prove (ii). The problem for (B, u) is equivalent to the following problem
for the differences z = 3 — B, w=u-—u:
(101) Blwy + kxwy) = Aw + z(ug + kxug) + z(we +kxwy) + f— f inQ,

w=7uy—u inVx{0}, Bjw=g—¢g inS, w=ur—ur in Qx{T}.
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Further, denoting S = (z,w), the problem (101) is in the space
7 ={5:8eCiQ)x C2+l’1+%(Q), wy =0in case Lin T' x {0}},
equivalent to the fixed-point equation S = F(S), where
F(S) = Epaputhoru ((w + kxw) + [ = [0 — w0, — 9,r — ur)-
Let, as before, ||S]| = ||z|l; + ||w||2+l,1+é. Using (77) we deduce for S = (3, w) and
ST = (67, w?), j = 1,2, the relations
z 3 [ LA K]
1#e) < A { =3 isie + o},
Sl +S2
2

Like in the proof of Theorem 5, these relations imply that F is the contraction in
the ball

_ _ 1 -
o = {s :5€ 7181 < s (1 —J1—22(1 + HkH)D) }

This implies (ii).

It remains to prove (iii). Assume p € (1, min{ % %}) Theorem 1 immediately
implies u € C2T4172(Q) for the solution of (91) and Lemma 2 yields u, € W2HQ).
Define v = ug + k*wu,. Then v belongs to C%(Q) NW2(Q) and solves the problem

Blog+kxv)=Av+ fi+k*fi inQ,
v:%(Au0+f) inQx {0}, Bjo=g:+kx*g inS.

IF(5") = F(S) < A+ ]| === 1" — 5211

(102)

Observing (98), (99) and Theorem 2 we obtain

(103) v>0, v(-T)>0 inQ (Q) in case I (II).

Further, observing the assumptions of (iii), we see that Lemma 2 holds for the
solution v of the problem (102), too. Consequently, v; € W2H(Q) = u, € W2(Q).
The function @ = v; + k * v, — 6, v satisfies the following problem:

Blig + k* i) = A+ 77 in Q,
1 1
a= B{A[B(Auo + f)} fs — 0 (Aug + f)} in Qx {0}, Biv=7, inS.
Observing the assumptions of (iii) and applying Theorem 2 we obtain @ > 0,
u(z,T) > 0 for z € Q. These relations with (103) imply the inequalities in (93). If,
additionally, r; > 0in I x {T'} in case I, then in view of (103) we get the inequality
v(-,T) > 0 in Q both in cases I and II. This yields the assertion wus + k * u; > ¢ in
Q x (T —4,T) of (94). Finally, in case (100) the initial condition, the right-hand
side and boundary condition of the problem of u;
Blugt + k* ug) = Aug + fr — k(A(0)uo + f(+,0)) in Q,

1
up = E(Auo +f) nQx{0}, Bijuy=¢; in S
are zero for ¢ € (0,0g). This implies the assertion u; = 0 in Q x (0,4) of (94). 0O
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We deduce formulas for the Fréchet derivatives of cost functionals of several inverse problems for a parabolic integrodifferential
equation in a weak formulation. The method consists in the application of an integrated convolutional form of the weak problem
and all computations are implemented in regular Sobolev spaces.

1. Introduction

Many methods to solve inverse problems (e.g., the Landweber
iteration, conjugate gradient method) use the Fréchet deriva-
tives of the cost functionals of these problems [1]. The explicit
formula for the Fréchet derivative in terms of the variation of
the unknowns of the inverse problem contains the solution of
an adjoint problem.

The derivation of the explicit formula for such a Fréchet
derivative includes testing the direct problem with the solu-
tion of the adjoint problem and vice versa: testing the adjoint
problem with the solution of the direct problem. In the
case of the parabolic weak problem, such a procedure is
cumbersome, because of the asymmetry of the properties of
the solution and the test function. In the classical formulation
of the parabolic weak problem (see, e.g., [2] and also (19)
below), the test function must have higher time regularity
than the weak solution. This means that in case of nonsmooth
coefficients neither the solution of the direct problem nor the
solution of the adjoint problem can be used as a test function.
Another formulation of the weak parabolic problem consists
in reducing the problem to an abstract Cauchy problem over
the time variable (see, e.g., [3]). In such a case, a partial
integration over the time has to be implemented within
singular distributions in the derivation procedure.

In this paper, we present a new method that enables
the deduction of the formulas for the Fréchet derivatives

for cost functionals of inverse problems related to weak
solutions of parabolic problems. The method is based on an
integrated convolutional form of the weak direct problem.
The requirements to the test function are weaker than in the
classical case and coincide with the properties of the solution
of the direct problem. All computations in the deduction
procedure can be implemented within usual regular Sobolev
spaces.

More precisely, we will consider inverse problems related
to a parabolic integrodifferential equation that occur in heat
flow with memory [4-6]. This equation contains a time
convolution. Therefore, the convolutional form of the weak
problem is especially suitable. Supposedly, the proposed
method can be generalised to parabolic systems, as well.

2. Formal Direct Problem: Notation

Let Q be an n-dimensional domain, where n > 1, and I be
the boundary of Q. Let I' = I} U T, where either I} or I, is
allowed to be an empty set. In case n > 2, we assume that I' is
sufficiently smooth, meas I, N I, = 0, and for any j € {1;2}
it holds either I'; = @ or meas I'; > 0. Denote

Q,=Qx(01), I, =T x(0,1), Ly =1, x(0,8),

@



for t > 0. Consider the problem (direct problem) to find
u(x,t) : Qp — R such that

u=Au-ms=Au+ f+V-¢ in Qr, 2)
u=u, in Qx{0}, (3)
u=g inrl,T’ (4)

Vo Vutmsv, -Vu=9%u+h+v-¢ inl,r, (5

where T' > 0 is a fixed number,

n

Av = Z (aijvxj)x[ + av,

ij=1

u (6)
Vo= <Zaijvj|i—l,...,n>’
j=1

v=(v,...,v,) - outer normal of I,

apauy c Q> R f:Qr > R¢:Qr - R%,g:
Ly - RI:T, - Rh:Ty - Rm:(0T) - R
are given functions, the subscripts ¢, x;, x; denote the partial

derivatives and

m*w(t):rm(t—r)w(r)dr (7)

0

denotes the time convolution. In case I} = 0 (I, = 0), the
boundary condition (4) and (5) is dropped.

The problem (2)-(5) describes the heat flow in the
body Q with the thermal memory. Concerning the physical
background, we refer the reader to [4, 6, 7]. The solution u is
the temperature of the body and m is the heat flux relaxation
(or memory) kernel. The boundary condition (5) is of the
third kind where the term —v, - Vu + m * v, - Vi equals the
heat flux in the direction of the conormal vector.

Let us introduce some additional notations. Let ¢ > 0. We
use the Sobolev spaces

Wi (Q) = «‘v 10— R ol

(®)
1/2
2
= [ z "Div"Lz(m] < oo]» .
lal<l
Here,1 = 0,1,2,...,a = («,...,0,) is the multiindex, |a| =

o+ +a, and D% = 9%v/0x" - - 9x%. Further, let X be a
Banach space. We denote by C([0, t]; X) the space of abstract
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continuous functions from [0, ¢] to X endowed with the usual
maximum norm [[vl¢jo,4.x) = Max,e (g, lv(s)ll. Moreover, let

LP((0,6); X) = ‘lv 2(0,8) — X : [[Vlloox)

> “(: ||v(s)||pals]1/17 < oo]»

for 1 < p < oo,

)
L®((0,£); X) = {v £(0,) — X : [0l

=ess sup [lv(s)| < oo} .
te(0,T)

By means of these spaces, we define the following important
functional spaces:

% (Q,) = C([0,1: L2 (@) n L* ((0,6): W, (),
(10)
Uy (Qy) = {;1 €% () :nly, =0 in case I #(0}.

Convention. In case n = 1, the integrals .[r. v(x)dl, j = 1,2
]

are equal to Z,If:l v(xg), where x;. € T; and K is the number
of points in I'j, and L ,(I';) is simply RK.

3. Weak Direct Problem and
Its Convolutional Form

Let us return to the direct problem (2)-(5). Throughout the
paper we assume the following basic regularity conditions
on the coefficients, the kernel, and the initial and boundary
functions:

a; €L°(Q), a;=a; 9eC(T,), 920,
(11)
ael?(Q), whereq, =1ifn=1, q >gifn22
(12)
meL (0,T),  gel’((0,T);W, (Q),
(13)
2
g €L (QT) >
fel*((0,T);L: (Q)), whereq, =1ifn=1,
(14)
g €(Lq) ifn=2, ©= if n>3,
¢=($-- ) € (L () (15)
uy € I* (Q), hel’ (L) (16)
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and the ellipticity condition

n
Yaghd zell’, x€Q, AeR" with some € > 0,
i,j=1

a7)

(for the sake of simplicity we introduced an assumption for
the extension of g onto Q).

The first aim is to reformulate the problem (2)-(5) in a
weak form. Let us suppose that a; € W, (Q), (0/0x;)¢; €
L*(Qp),i = 1,...,n and (2)-(5) has a classical solution u €
WZZ’I(QT). Then, we multiply (2) with a test function # from
the space

T (Qr) = {n e I ((0,T); W, () :
o€ I ((0,7); L (9)), (18)

nlp,, = 0 incaseT, #0}

and integrate by parts with respect to time and space varia-
bles. We obtain the following relation:

0= J [u(x,T)n (x, T)—uy (x) 17 (x,0)] dx—” un, dxdt
Q Qy

+«”0r |:Z a;; (uxj—m * uxj) Hy,—a (=1 * u) 11:| dxdt

ij=1

+”F2,T (u + h) ndTdt - ”QT (fn—¢ - V) dxdt.
(19)

This relation makes sense also in a more general case when
a; ¢ satisfies only (11) and (15) and u does not have regular
first-order time and second-order spatial derivatives.

We call a weak solution of the problem (2)-(5) a function
from the space % (Q) that satisfies the relation (19) for any
n € 7 (Qyp) and in case I} # 0 fulfills the boundary condition
(4).

Lemma 1. The following assertions are valid.

(i) U(Qp) — L*((0,T); L% (Q)) where gy = coifn =1, g, €
(9192/(q, —q3),00) ifn = 2 and g5 = 2n/(n—2) ifn > 2, where
q, and q, are given in (12) and (14), respectively;

(ii) for any u € L2((0,T); L(Q)) it holds au € L*((0,T);
L=(Q)) and laullpzoryn @y < Clall @yl omymes @)
where C is a constant.

Proof. Since %(Qp) < L*((0,T); WZI(Q)), the assertion
(i) follows from the continuous embedding of WZI(Q) in
L%(Q)). The assertion (ii) can be proved by means of Holder’s
inequality. g

Theorem 2. The problem (2)-(5) has a unique weak solution.
This solution satisfies the estimate

||u||%(n',4)
<G ["“o "LZ(Q) +|f "LZ((O,T);L"Z @t "‘/’"(Lzmr»”

+6, {||9||L2((0,T);w;(m) + "gt"Lz(ﬂT)} +6, "h”LZ(Fz,r)] >
(20)

where 0, = 0incasel), = 0,0, = 0incasel’, =0 and Cisa
constant depending on Q, T, ay;, a, 9 and m.

Proof. The assertion of the theorem in case m = 0 is well
known from the theory of parabolic equations (see, e.g., [2]).
Let Z be the operator that assigns to the data vector d :=
(tg> f>¢» g h) the weak solution of the problem (2)-(5) in case
m = 0. Then it holds

IZ dllyqq,, < RHS, (1)

where RHS is the right-hand side of (20).
Further, let us formulate the problem for the difference
v = u—Zd. Introducing the linear operator & by the formula

n
dJw=F (0, —am * w,—Za,»jm * wxj,0,0> , (22)
j=1

the weak problem (2)-(5) for the solution u € %(Qp)
equivalent to the following operator equation for the quantity
v:

v=9odv+dZd. (23)

We have to estimate /. For this purpose, we firstly prove the
following auxiliary inequality:

t
[l y”Lz((O,t);LP(Q)) < .[0 [m (¢ =) "y"LZ(((),T);LP(Q))dT’

te[0,T],
(24)

forany p > 1and y € L*((0, £); LP(Q)).

Denoting y(t) = y(-0), IYOI = I¥Ol; ) mak-
ing use of the following property of the Bochner integral:

I Jg w(s, T)dT"LP(Q) < IOS lw(s, )l (yd7 for functions w €
L'((0,T); LP(Q)) and the Cauchy’s inequality, the relation



(24) can be deduced by means of the following computations:

||m * y"LZ((O,t);L"(Q))

B |:J: LP(Q)
- “0 (], o - dr)zds]m

= Uot Im (7)] jt 70 L Im (2)| [7(s - 2)] dzdsdr] v

N[

([ (e orao] s
[(wal["vre] a]
(e 1)

t 1/2
B Uo Im ¢ =)y "Lz«o,rw(n»dr] xI'%,

2 12
ds] < I, where

rm(r)y(s—r)dr
0

1/2

1/4

(25)
Next, let ¢ € [0, T] and introduce the operator
in Q)
Pw= {w e (26)
0 in Qp\Q,.

Due to the causality we have Z(0,P,f, P,¢,0,0)(x,t) =
Z(0, f,¢,0,0)(x, t) for any (x, t) € Q,. Using these relations,
the continuity of the linear operator Z, the inequality (24),

and the boundedness of a;;, we compute the following:

||-ﬂw||9/(n,)

= 3°< , —am * W, — Zam*w 00>
£(Q,)

= Z(O,—Pt[am*w] [Za Mk w, ], O)

Zaijm * wxj] ,0,0)

uQ,)

IA

Zz <O, —P, [am * w],-P, [

«(Qr)

Ll(ﬂr)j|

[||P [am = w]”LZ((OT) L'?Z(ﬂ))+z|)P [u 1 We ]
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/ Ll(ﬂx)j|

[Ilam * Wl (st @) t Z"a Mk w,

t
<C L [m(t - 1) (||ﬂw||L2((o,r);qu(n)) + ||Vw||L1(OT))dT’
(27)

with some constants C and C depending on Q, I, ay,a, 9.
Using Lemma 1, we obtain

lawll 2o, ryze @) < Cillallis @ lwlzoomwi @y (28)

Using this relation in (27), we arrive at the following basic
estimate for /:

€ (0,71,
(29)

t
I/l < Cs [0 i (¢ = ) Ty d7,

where C, is a constant depending on Q, I}, a;, a, 9.
Let us define the weighted norms in cZJ(QT) flvl, =
sup0<t<Te"”||v||%(Q[) where o > 0. The estimate (29) implies
the further estimate

l/wll,

t
<C,supe™ J lm (t = D lwlloy o, d7
o

0<t<T

t
= Cysup [ € - 0l o e
0<t<T JO

T
<G, JO e " |lm(s)| dslwl,-
(30)

. T _ .
Since .[0 e “lm(s)lds — 0aso — oo, there exists gy,

depending on C, and m, such that C, JOT e %|m(s)|ds < 1/2.
Thus, |wl,, < (1/2)llwll,,. The operator & is a contraction
in %(Qy). This implies the existence and uniqueness asser-
tions of the theorem.

To prove the estimate (20), we firstly deduce from (23)
the inequality ||v||(,O < IIlelaﬂ + IIMZdII% < (1/2)[||v||(,O +
|Fd II(,O]‘ This implies ||U||00 <|Zd ”00' Using the equivalence
relations e Ty < - ll, < I o where I I = I buqa,)

and (21), we reach (20). O

We note the upper integration bound T in (19) can be
released to be any number ¢ from the interval [0, T]. Indeed,
(19) is equivalent to the following problem:

0= j [u(x, )17 (x,£) — Uy (x) 17 (x,0)] dx — ” un,dxdt
a Q

off, [£ e

j=1

—a(u—m = u)n:| dxdt
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+ ” (9u + h) ndTdt
rZ,t

- ”Q (fn—¢-Vn)dxdt, te[0,T],
(31)

for any n € 7 (Qy). This assertion can be proved using the
standard technique defining the test function as follows:

7 (x,T) for T € [0,t],
i (o t) = n(x,r)(l— —T_t) for e (tt+e),
€
0 forte[t+eT],

(32)

and letting the parameter € to approach 0.

Next we transform the weak direct problem (31) to a form
that does not contain a time derivative of the test function #.
This form enables the extension of the test space. This is useful
for treatment of problems for adjoint states of quasisolutions
of inverse problems in next sections.

Theorem 3. The function u € %(Qr) satisfies the relation

(19) for any n € T (Qr) if and only if it satisfies the following
relation:

O=Lu*r]dx—j Jtuo(x)n(x,r)drdx

QJo

n
SRR ——

i1
—a(u—m*u)*n] dx (33)

+J 1% (Yu + h) * ndl'
L,

_ng*<f*q—;¢i*qxi)dx, te0,T],

forany n € U, (Qrp).

Here, according to the definition of the time convolution
t
in the previous section, 1 * w(t) = Io w(t)dr.

Proof. 1t is sufficient to prove that u € % () satisfies (31)
for any # € I (Qr) if and only if it satisfies (33) for any 5 €
U ,(Qr). Suppose that u € %(Qy) satisfies (31) and choose an
arbitrary 7 € I (Qy). Let £, be an arbitrary number on the
interval [0, T] and choose some function & € J(Qy) such
that the relation

vty =n(xt, —t) forte[0] (34)

is valid. For instance, it is possible to define £t as a periodic
function with respect to ¢, that is, & (x,t) = #(x,t, — t) for

€ [0,t,], & (x,t) = nx,t —t)) for t € [t;,2t,], &1 (x.t) =
n(x,3t, —t) fort € [2t,,3t,] and so on. Using the relation (31)
with # replaced by & and setting there ¢ = ¢, we obtain the
equality

0=K, (1) +K, (1), (35)

where

K, (t) = L [u(x, 6) 17 (x,0) =ty (x) 17 (x, )] dx

t (36)
+ L .[0 u(x,7)n, (x,t — 1) drdx,
K, (1) = L |: Z“ij (”xl —mx uxj) * 1y,
ij=1
—a(u—m=*u) *17] dx
(37)

+I (9 + ) % T
T

2

Note that the time derivative of 77 can be removed from K, by
integration. Indeed, let £, € [0, T]. Then

J: K, (t,)dt, = J: JQ u (x,t,) 7 (x,0) dxdt,
[, e
S,

Changing the order of the integrals over 7 and ¢, in the last
term, we easily obtain

i
L K, (t,)dt,

b
J u(x,7)m, (.t — 7) drdxdt,.

0
(38)

- J rz u(x,1)n(x,t, - ) drdx (39)
alo

t
- j j ty (x) 17 (x, ) dxdt,.
b Ja

Integrating now the whole equality (35) over ¢, from 0 to £,
observing (37) and (39), and finally redenoting t, by t, we
reach the desired relation (33). Summing up, we have proved
that (33) holds for any 7 € 7 (Qr). But all terms in the right-
hand side of (33) are well defined for 7 € % j(Qr), too. Since
T (Qy) is densely embedded in % (), we conclude that
(33) holds for any n € % j(Qrp).

It remains to show that (33) implies (31). Suppose that
u € %(Qy) satisfies (33) and choose an arbitrary 7 € 5 (Qp)



and ¢, € [0,T]. Again, let &1 be a function from T (Qr) such
(34) is valid. Inserting £ instead of 7 into (33), differentiating
with respect to ¢ and setting t = ¢, we come to the relation
(31). Theorem is proved. O

Corollary 4. A functionu € %(Qy) is a weak solution of (2)-
(5) if and only if it satisfies the relation (33) for anyn € U ((Qr)
and in case T} # 0 fulfills the boundary condition (4).

4, Inverse Problems and Quasisolutions

In the sequel, let us pose some inverse problems for the weak
solution of (2)-(5). These problems are selected in order to
demonstrate the wide possibilities of the method that we will
introduce in Section 5.

Firstly, we suppose that (2)-(5) has the following specific
form:

N
ut:Au—m*Au+f0+V-¢+Zy]-(t)wj(x) in Qr,
j=1

u=u, in Qx{0},

u=g inlp,

Vo Vut+msvy -Vu=9%+h+v-¢ inl,p,

(40)

where w = (w;,...,wy) is unknown. The coefficients and
other given functions f, ¢, u,, g, h are assumed to satisfy

(11)-(17). Moreover, y € (LZ(O,T))N is prescribed.

IP1. Find the vector w € (L* (Q))N such that the weak solution
of (40) satisfies the following instant additional conditions:

u(xT) =ur (x), xe€Q i=12,...,N, (41

where 0 < T} < T, < -+ < Ty < Tanduy, € LH(Q),
i=1,...,N are given functions (observations of u).

Since Y1) yjw; € L*((0,T);L*(©)) ¢ L*((0,T); L(2))
forw € (LZ(Q))N,the weak solution u of (40) existsin % (Qr);
hence, it has traces u(-, T;) € I*(Q),i=1,...,N.In practice,
the term Zi\i | Yjw; may represent an approximation of a more
general function F(x, t) € L*(Qy), where Ypj=12,...form
a basis in L*(0,T).

Further, let 4, also be unknown.

IP2. Find the vector w € (LZ(Q))N and u, € L*(Q) such
that the weak solution of (40) satisfies the following integral
additional conditions:

T
J i Du(et)dt=v;(x), xe€Q,i=12,...,N+1,
o

(42)
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where v; € L*(Q),i = 1,...,N + 1 are given observation
functions and x;, i = 1,..., N are given weights that satisfy
the following condition:
|« e, )| <& (f) inQpi=1,...,N+1
(43)
with some & € L*(0,T).

Note that the integral jOT (> )u(-, t)dt in (42) belongs to

L*(Q) for any w € (LZ(Q))N and u, € L*(Q). Indeed, for
such w and 1, it holds u € %(Qy) ¢ L*(Qy), which implies

< &z 0, ull 20,y < 0o
1X(Q)

T
J K (1) u (x,t) dt
0

(44)

In practice, the weights x; are usually concentrated in neigh-
borhoods of some fixed values of time ¢ = T;.

Finally, let us pose a nonlinear inverse problem for the
coefficient a and the kernel m. Assume thatn € {1;2;3}. Then
any coefficient a that belongs to L*(Q) satisfies (12). Moreover,
letussetg, = 2ifn =2and T, # 0. The other coeflicients
and the given functions u,, f, ¢, g, h are assumed to satisfy
(11)-(17).

IP3. Find a € L*(Q) and m € L'(0,T) such that the weak
solution of (2)-(5) satisfies the following integral additional
conditions:

u(xT)=up(x), xeQ,

(45)
Jx(x,t)u(x,t)dl":v(t), t€(0,T),
r,

where u; € LX(Q), v € L*(0,T) are given observation func-
tions and « is a given weight function such thatx € L*((0, T);
L*(T,)).

As in IP1, we can show that the trace u(:,T) belongs
to L*(Q). Moreover, using the property u € %(Qy), the
embedding of WZI(Q) in LZ(FZ) and Hoélder’s inequality, one
can immediately check that the term J}z x(x, Ju(x,-)dT in

(45) belongs to L*(0,T).

Available existence, uniqueness, and stability results
for IP1-IP3 require stronger smoothness of the data than
imposed in the present paper. Let us cite some of these results.

In case N = 1, the well posedness of IP1 was proved in
[8]. Partial results were deduced earlier in [9]. A more general
problem involving both IPI and IP2 without the unknown
u, in case N = 1 was studied in [10] by means of different
techniques. IP1and IP2 in case m = 0 and N = 1 were treated
in many papers, for example, [11-14]. The case N > 1 is open
even if m = 0. Inverse problems to determine 1 with given a
were studied in a number of papers, for example, [7, 15-23].
The problem for a with given m was treated in [8].

In the present paper, we will deal with quasisolutions of
IP1-1P3 and related cost functionals. Denote Z; = (LZ(Q))N .
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Let M ¢ Z,. The quasi-solution of IP1 in the set M is an
elementw” € arg min . J; (w), where J; is the following cost
functional

N
T (@) = ) Jutx, Tis ) = ur (x) (46)
i=1

2
@)y’

and u(x, t;w) is the solution of (40) that corresponds to a
fixed element w.

Similarly, let M € Z, = (LZ(Q))NH. The quasi-solution
of IP2 in the set M is z* € arg min,,,J,(z), where J, is the
cost functional

N+1 2

Lz)=)

i=1

T
J K; (%, t) u(x, t;2) dt —v; (x) ,  (47)
o

L2(Q)

and u(x, t; z) is the weak solution of (40) that corresponds to
a given vector z = (w, uy).

Finally, defining M € % := L*(Q) x L*(0, T), the quasi-
solution of IP3 in M is an element z* € argmin,.,,/5(z),
where J; is the cost functional

I (2) = Ju (6 T:2) = iy ()
2 (48)

>

12(0,T)

+

J K (x, ) u(x,t;2)dl —v ()

L

and u(x, t;z) is the weak solution of the direct problem (2)-
(5) corresponding to given z = (a, m). Here, we restricted the
space for the unknown m to L*(0,T), because we will seek
for the Fréchet derivative of J; in a Hilbert space. Moreover,
the kernel of the second addend corresponding to m in the
representation formula of ]3' (90) is an element of L*(0, T) and
in general does not belong to the adjoint space L*(0, T).

According to the above-mentioned arguments, the func-
tionals Ji, k = 1,2,3, are well-defined in Z|, Z,, and Z3,
respectively.

5. The Fréchet Derivatives of Cost Functionals
of Inverse Problems

5.1. General Procedure. Suppose that the solution u of the
direct problem depends on a vector of parameters p that
has to be determined in an inverse problem making use
of certain measurements of u. Let the quasi-solution of the
inverse problem be sought by a method involving the Fréchet
derivative of the cost functional (i.e., some gradient-type
method). Usually in practice, a solution of a proper adjoint
problem is used to represent the Fréchet derivative.

We introduce a general procedure to deduce such adjoint
problems. Assume that Au is the difference of solutions of
the direct problem corresponding to a difference of the vector

of the parameters Ap. More precisely, we suppose that Au is
a solution of the following problem:

Ay = Ahu—-m+ Adu+ fT+V-¢"  inQp  (49)
Au = Auy in Q x {0}, (50)
Au=0 inT)p, (51)

vy VAu+mvy-VAu=9Au+h" +v-¢" inlq,
(52)

with some data f7, ¢', Aug, " depending on Ap. We restrict
ourselves to the case when the Dirichlet boundary condition
of the state u is independent of p. Therefore, the condition
(51) for Au is homogeneous.

In practice, the adjoint parabolic problems are usually
formulated as backward problems. In our context, it is better
to pose adjoint problems in the forward form. The involved
memory term with m is defined via a forward convolution
and from the practical viewpoint, it is preferable to have the
direct and adjoint problems in a similar form (e.g., to simplify
parallelisation of computations).

More precisely, let the adjoint state y be a solution of the
following problem:

Y, =Ay-mxAy+ fT+V-¢ in Qp,

y=u" in Qx{0},
(53)
y=0 inlg,

vy VY +msv, -Vy=9y+h +v-¢" inTyy,
where f°, ¢°, u°, and h° are some data depending on Au and
the cost functional under consideration.

Assume that the quadruplets f7, ¢, Auy, h', and £°, ¢,
u’, " satisfy the conditions (14)-(16). Then, due to Theorem 2,
the problems (49)-(52) and (53) have unique weak solutions
in the space %(Qp). Actually, we have Au,y € % (Qr)
because of the homogeneous boundary conditions on T ;.

Let us write the relation (33) for Au and use the test
function # = y. Then we obtain for any ¢ € [0, T]

t
0= J Au x ydx — j J Auy (x) y (x, 1) dtdx
Q alo
+ J;; 1 * [i;Iaij (Auxj —m Auxj) Yy
—a(Au—m x Au) * 1//;7} dx (54)

# | 1 (98ur ') yar
L

—| 1 T _nT dx.
Lz *<f R ;Q*q/xi) x



Secondly, let us write this relation for y and use the test
function # = Au. Then we have for any ¢ € [0, T]

t
O:J w*Audx—J J u’ (x) Au(x, 1) drdx
0 alo

+JQ 1 * |:Zn:aij (1//,() —mx V’x,) * Ay,

i1
—a(y-—m=y)* Au} dx (55)

+ J 1 s (99 + h*) * AudT
FZ

-1 1 "% Au— ;x Au, | dx.
Ll*<f* Do X)

Subtracting (54) from (55), using the commutativity of the

convolution, the symmetricity relations a; = a; and

differentiating with respect to £, we arrive at the following
basic equality that can be used in various inverse problems:

J u’ (x) Au (x,t)dx — J K % Audl
o

L

“xAu— )y ¢« Au, |d
+L<f* YL w) x

= I Aty () (5, £) dx — j B s ydl
Q T,

+L<ﬁ*‘/’_;¢:*%,>dx» te0,T].

(56)

5.2. Derivative of ],

Theorem 5. The functional ], is the Fréchet differentiable in
Q)" and

]{ (w) Aw

=§ j ij Y Oy (6T, -

sw) dtAw; (x) dx,

j=

(57)

wherey; € %(Qp), i =1,...,N, are the unique w-dependent
weak solutions of the followzng problems:

Vie = Ay —mx Ay, in Qr,
=2[u(xTyw) —ur, ()] in Qx{0},
(58)
v; =0 in rl,T;)

v Vy+mxv, - Vy, =9y, in s
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Proof. Let us fix some w, Aw € (LZ(Q))N
ately check that it holds

I (0 + Aw) = ], (w)

. One can immedi-

ZZJ [ (. T w) = g, ( x)] Au(x, T w) dx 59)

+ Z J- Au(x, Ty w) dx,

where Au(x, t;w) = u(x, t;w + Aw) — u(x, t;w) € % (Qr) is
the weak solution of the following problem:

N
A, = Abu—m = Abu+ Yy y;Aw,

in Qr,
=1
Au=0 in Qx{0}, (60)
Au=0 inl g,
V- VAu+m v, -VAu=9Au inT, .

Applying the estimate (20) to the solution of this problem
we deduce the following estimate for the second term in the
right-hand side of (59):

N

z L Au(x, T; w) dx < n||Au||%(Q )

i=1

2

N
n ZyjAw
j=1

2
< C4||w"(Lz
L2((0,T):L92(Q))

(n))m

(61)

with some constant C,. This implies that J, is the Fréchet
differentiable and the first term in the right-hand side of (59)
represents the Fréchet derivative, that is,

N
Ji (@) Aw = Y o,
i=1

with o; = ZJ [ (x, T @) = ur, ()] Au (x, T w) dx.
(62)

Further, let us use the method presented in Section 5.1
to deduce the proper adjoint problems. Comparing (60) with
(49)—(52) we see that fT = Zfil yihw), ¢" = Auy = h' = 0.
Therefore, the relation (56) has the form

J u’ (x) Au(x,t) dx — J h° s Audl
Q L
+L <f *Au—;(pi *Auxx>dx (63)

N
= Zj Yihw; x ydx, te[0,T].
Q

=1

-
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In order to deduce a formula for the component o; in the
quantity ]{(w)Aw, we set u” = u; = 2[u(x,T;w) - uTx(x)],
h = f"=¢ =0andt = T, in (63). Then we immediately
have

0; =

=

L yihw; * y;dx|, 1, (64)
i

where according to (53) and the definition of u;,h’,¢", the
function y; is the weak solution of the problem (58) in the
domain Qy instead of Q.. Due to Theorem 2, this problem
has a unique solution. From (62) and (64) we obtain (57). The
latter formula contains the values of y; in Q. Therefore, we
can restrict the problem (58) from Qr to Q.. O

To use the formula (57) one has to solve N weak
problems for the functions y; in domains Q. . In the following
theorem, we will show that computational work related to
the evaluation of the Fréchet derivative can be considerably
reduced. Actually, it is sufficient to solve N weak problems in
the smaller domains Qr. 5. ,i=1,...,N. Here, T, = 0.

Theorem 6. The Fréchet derivative of the functional J, can also
be written in the form

J; (@) Aw
N N T,
- L Z L Y (0 By (%, T — £, w) dtAw; (x) dx,
j=1 I=1 -1
(65)

where B € U(Qq,_y, ) are the unique w-dependent weak
solutions of the following sequence of recursive problems in the
domains Qr, . :
1 [
By =AB—mxAf—af -V-® inQp 5 ,
B =uy in Qx{0},
Bi=0 inlyp g,

vy VB +mv, -V =9 —v- D

(66)

in FZ,T,—T,_,’
wherel = N,N —1,...,2,1. Here,

“é (x) =2 [u (% Tsw) - ur, (x)] + 0B, (0. Ty = T))
(67)
and the function f' and the vector @ are defined via By,
BN-1>-- > Pri as follows:
. N=b (T =Ty
f:®zZJ m (T = T; + £ +7) By
k=1 70 (68)
X (x, Ty = Ty — 1) dr,

O = (O),..., ), O, = Y1, a;0/0x))f and Oy = 0,0, =
1forl < N.

Proof. Firstly, let us check that (66) indeed have unique
weak solutions f3; in %(Qy,_y, ). To this end we can use
Theorem 2. For the problem f3 this is immediate, because the
initial condition of the problem for 85 belongs to L*(Q2) and
other equations in this problem are homogeneous. Further,
we use the induction. Choose some [ in the range N > [ > 1
and suppose that fBi,; € %(Qq_ g ) for all k such that
N -1 > k > I The aim is to us to show that then the
problem for f3; has a unique weak solution in %(Qy,_y, ).
Let us represent the kth addend in (68) in the form

Ty =Ti
I = L m (T =Ty +t +7) By (o6 Ty = Ty — 1) dr

Ty —Ty+t
= L (T =Ty +7) By (% Ty = Ty +t = 7) dT.
(69)

For any k in the range N — 1 > k > [ we have

12 ||22((0,T,7T,,1);w;<m)

< Z J [J;TkH_TkH [m (T = T) + 7)]

o<1 70

TI_TI—I

2
DBt (T =T +t—T)"Lz(Q)dT] dt

T-Tp, T =Titt T =Tt
= z J “ _L |m(Tk_Tl+T)|Zk,a

Ja<1 70 t

2
(T —Tk+t—‘r)d‘r] dt

J‘TFTH T = Tie

2
Ut My (T) Zj o (t = T) d-r] dt,
0

Jag<1 ¥ Ter1 =Tk

(70)

where z; ,(t) = IIDzﬁkH(-,t)lle(m fort € [0,Ti,; — Tils
2y o(t) = 0for ¢ ¢ [0, Ty, — Tyl and my () = |m(Ty = T; + ¢)|.
Since m € L}(0,T) and Bri1 € L*((0, Ter — Tk);Wzl(Q)), we
have my. € L'(0,T; - Ty_, + Ty,, — T},) and Zq € L*(0, T, -
T)_ +Ti; —T}). Due to the Young’s theorem for convolutions,
we get my * z, € L*(0,T; — T_, + Ty, — Tj). Therefore,
"Ik”iz((o,Tl—Tl_l);W;(ﬂD < 0o0. This implies that f; belongs to
L*((0,T; = T)_,); W, (Q)). From the latter relation and a; €
L*°(Q) we immediately have o e (Lz(QT,—T,,,))”~ Using the
embedding theorem and Lemma 1 we see that af’ satisfies
the property (14). Finally, the initial condition ué belongs
to L*(€)), because u — g, By € C(0, Ty — T,], L*(€)).
All assumptions of Theorem 2 are satisfied for the problem

for f3,. Consequently, it possesses a unique weak solution in
U Q1)
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Secondly, let us define the functions

N
Bl (x,t) = Z;'Wi (T, =T +t) for (x,t) € Q¢ ,

(71)

where I = 1...,N and y; are the solutions of (58). We are
going to show that 3, = 3,1 = 1,..., N. From the definition
of " using the value of y;(x, 0) and simple computations, we
immediately get

Bz* (x,0) =2 [” (xTw) - ur, (x)] + 0,8/, (6T =),

I=1,...,N.
(72)

Letus fix | = 1,...,N and choose some n € T (Qf,_7, ).
We continue # by the formulae #(x,t) = n(x,T; - T)_,) for
t > T; = T,_, and n(x,t) = y(x,0) for t < 0. Further, let us
define #;(x,t) = 5(x, T, — T; + t) where i = I,...,N. By the
definition, it holds 77, € 7 Q).

Let us write down the weak form (31) for the problem for
y; (58) with the test function #;. We fix some ¢t € [0,T; —
T,_,] and compute the difference of this weak problem with ¢
replaced by T;—T,+t and ¢ replaced by T; - T} and take the sum
overi =1,...,N. This results in the following expression:

0=Z+Z,+Z3+ 27y, (73)

where

N
2= 3 | =T O (e T =40

[
=y; (%, T; = 1)) n; (x, T; = T)) | dx,

N

7, = jj —yin;
’ ; Qo \Or, 1, [ o

+ z A5 Vix Mix, — ‘W’i’7i1| dxdt

s,j=1

N
2 I j yn,dldt,
i=I B A P

i

N
Zy= Z j J am * yudxdt,
1Y 0\ Oy

i=

N

=2,

i=

n
z agm * q/i,qui,xsdxdt.

T,—T,H\QT[—T, s,j=1

(74)
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Using the definitions of # and f;" and the formula (72), we
have

2= | 18 0y (x0) - B (5,07 x,0)] dx

- | [# omeen
- {2 [“ (%, Ty @) ~ug, (x)]+®zﬁ1*+1 (6T -T))}
xn (x,0) ] dx.

(75)

Similarly, using the definitions of 77 and 3 and changing the
variable of integration in Z,, we deduce

z- | [—ﬁf’ n+ Y agfin, - apin | dxde
t s,j=1

(76)
+ J Jr 9B; ndld.

By the change of variable, the quantity Z, is transformed to

N
2= J L, () ;("’ # ;) (6 T, = Ty + 1) 1 (x, 1) dxd.

(77)

Let us consider the term Zf\:’l (m=y;)(x, T;—T;+t) in the latter
formula. We compute

N

Z(m*Wi)(x’Ti_Tl+t)

i=l

N

T-Tyt
ZJ m@)y; (x, T, - T, +t-1)dr
0

i=l

t N
J m(t) Zt//i (x,T,-T,+t—1)dr
0 i=l
N (Ti-Tp+t
+ZJ m@)y; (x, T, - T, +t—1)dt
i=l 7t
t
= J m(t) B (x,t —T)dT
0
Ni-1 Tiar—Tx

M|

i=lk=1 70

m (T -Ty+t+71)y; (x,T; - T, — 7)dt
=(m= ) (x1)

Tisr =Ty
J m (T, =T, +t+71)
0

)

N-1
k=1

N

X z v (2, T; =T, —7)dr

i=k+1
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= (mxB;) (x1)

N-1 Tesr =Ty
+ZJ m(T—T)+t+T)
k=1 70

x ﬁl;:l (x> Ty - Tk - T) dr.

(78)
Thus, (77) reads
Zy

= J J am = B ndxdt
Q

t

N=1 (T =Ty 79

+JJ a|:ZJ m(T,—T +1+7) 79)
Q, i Jo

Xﬁljﬂ (x’TkH -

-1) d-r] ndxdt.

Using similar computations, we obtain

n

Zy=— JJ Zasjm*ﬁlqudxdt—JJ Zav
Q gj=1 Q 5 j=1
N=b (T =Ti
X[ZJ m (T, =T, +t+1) (80)
k=1

Xﬁl:ﬂ,x/ (x’ Tjr — T — T) dT:| T’IXdedt.

Plugging (75), (76), (79), and (80) into (73), we arrive at a
certain weak problem for f; that coincides with the weak
problem for f3;. Moreover, since y; € % (Qy,), from (71) we
see that B € %(Qr,_1, ). But we have shown the uniqueness
of the weak solutions of the problems for 3, in %(Qy,_7, ).
This implies 8 = f3;.

Finally, from (57), we have

N

i (@) Aw = ]Zl L
21,2

j=

N

T;
J Y (O v; (0, T; = t) diAw; (x) dx

I
S

[v]z

ZJ i O y; (x, T, — t) dtAw; (x) dx.

=1l=1 -
(81)

Changing here the order of sums over i and / and observing
(71) with B replaced by f3,, we obtain (65). The proof is
complete. O

11

5.3. Derivative of ],
Theorem 7. Yhe functional J, is the Fréchet differentiable in
(L% Q))NH

! 3 T
I (2) Az = ]Zl L L Y (v (6T - 52) dt Aw; (x)dx
+J v (x, T; z) Auy (x) dx,
Q
(82)

where y € U (Qy) is the unique z-dependent weak solution of
the following problem:

Y, = Ay —m x Ay

N+1

+2) 5 (T —t)
i=1

T
X U K; (%, T)u(x, 7;2) dt — v; (x) in Qr,
0

y=0 in Qx{0},

y=0 inIy,
Va - Vy+mrv,-Vy=9y inl,r.
(83)
Proof. Let us fix some Az = (Aw, Aug) € (L2(Q))" . It holds
L (z+Az2) -], (2)
N+1
22 J J K; (%, 1)
T
X “ K (6 T)u(x,752)dt —v; (x)] (84)
o

X Au (x,t;z) dtdx

N+1 2

+ Z I “ i (x,t)Au(x,t;z)dt] dx,

where Au(x, t;z) = u(x, t; z+ Az) —u(x, t; z) € %, (Qy) is the
weak solution of the following problem:

N
Au, = AAu—m x AAu + ZyjAw

; in O,
j=1
Au = Auy in Q x {0}, (85)
Au=0 inTp,
V- VAu+m v, -VAu=9Au in T, 7.
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Using (43), the Cauchy inequality and estimate (20) from
Theorem 2 for the problem of Au(x,t;z), we come to the
estimate

2L

T 2
J- i (x, ) Au (x, t5 2) dt] dx
0

< (N + D IR 1Al

< Cs (N + D) [Rl72 1 1Aully g, < c6||Az||§L2(m)N+l,

(86)

with some constants C5 and Cg. Therefore, J, is the Fréchet
differentiable and the first term in the right-hand side of (84)
represents the Fréchet derivative, that is,

N+1
Ji(z) Az = 221 L JT K (%, 1)

0

T (87)
X “ ; (%, T)u (%, 732) dT — v; (%)

o
X Au (x, t;z) dtdx.

. . N
Comparing (85) with (49)-(52), we see that T = Yis1 Vihw;,
¢" = h' = 0. Consequently, the relation (56) has the form

J u’ (x) Au(x,t)dx — J k" % Audl
o I,

“wAu— Yy P A d
+L<f* u ;¢l* “x,) x

(88)
= J Auy (x) y (x, 1) dx
Q
N
+y J Yidw, * ydx, te[0,T].
j=170
To deduce a formula for ]2' (z)Az, we define
N+l T
f = ZZKi (x, T —t) “ i (6T u(x, 132)dt —v; (x) | »
i=1 0
(89)

u'=h"=¢ =0andt =T in (88). Then from (87) and (88),
we obtain (82), where due to (53), y; is the weak solution of
the problem (83). In view of Theorem 2, this problem has a
unique solution in % (Qy). O
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5.4. Derivative of J5

Theorem 8. The functional J; is the Fréchet differentiable in
L*(Q) x L*(0,T) and

J;(2) Az = L [(u—m*u)*y](x,T;2) Aa (x) dx
T " (90)
* JO JQ i’jz::la"juxj * Y, —auxy
X (x, T - t;z) dxAm (t) dt,

wherey € U (Qr) is the unique z-dependent weak solution of
the problem

v, = Ay —m=* Ay in Qr,
v =2[u(xT;z) - ur (x)] in Qx{0},
y=0 inlr,

v Vy+m=v, - Vy =9y
-2k (x, T —1t)

XUF x(1BT-0)u(y,T-t;2)dT-v(T —1t)| inTDyr.
(o1

Proof. Due to u(x,t;z) € %(Qp), x € L%((0, T);LZ(FZ)),
v € L*0,T), and urp € L*(Q), the problem (91) satisfies the
assumptions of Theorem 2. Therefore, it has a unique weak
solution in % ,(Qp).

Let Az = (Aa, Am) € L*(Q) x L*(0,T) and define Au =
u(x, t; z+Az)—u(x, t; z). We split Auas follows: Au = Au+Au,
where Au is the weak solution of the following problem:

Au, = AAu—m = AAu+ Aa[u—m + u] — Am = au

-V [Am * Zaijuxj:| in Qr,

in Q x {0}, ©2)

Au=0 inT g,

vy -VAu+m v, - VAu

n
=9Au-v- {Am * Zu,-jux]:| in T, .
=1

In view of Lemma 1(i), u € %(Qr), m € L'(0,T), and the
Young’s theorem, it holds u — m % u € L*((0,T); LB(Q)).
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Therefore, Lemma 1(ii) implies

Aa [u—m * ulll 2oy @) < Cs Wm) |Adlla (o)

< Cy (u,m) | Aall 2 )

where Cg and C, are some constants depending on u,m.
Moreover, since u € L*((0, T); WZI(Q)), by Young’s inequality
we have also

n
Am * Zuijuxj
j=1

< Cyg (W) 1Am o)
@) (94)

< Cyy (W) 1Amll 201>

with some constants C,, and C;; depending on u. The
obtained estimates show that assumptions of Theorem 2 are
satisfied for the problem (92) and it indeed has a unique weak
solution Au € %(Qp). Moreover, applying the relation (20)
from Theorem 2, we get

||Au||91(97) < Cy, (m,u) [”Aa"LZ(Q) + ||Am||Lz<0’T)]
(95)
=Cy, (m,u) Az,

where C,,(m, u) is a constant depending on m, u.
Further, writing the problem for Au and subtracting the
problem for Au, we obtain the following problem for Au:

Ay = ARu—m+ ARu+f+f+V-¢p+V-¢ inQp
Au=0 in Qx{0},
Au=0 inT,p,

vy VAu+msvy -VAu=98u+v-¢p+v-¢ inly,
(96)

where

f = AaAu— (m+ Am) * AaAu — Am * Aau — Am * alu,
f = Aahu — (m + Am) * AaAu — Am % aAu,
¢=—Amx Za,-jAux}, ¢ =—Amx Za,-jﬁuxj.

j=1 =1

(97)

13

Using again Lemma 1 and the Young’s inequality, we
deduce the estimates

If ”LZ((O,T);L‘?Z )
< Cis{[lAal 2y + {Imll o r) + 1AMl 2} 1Aall 2
+||Am||L2(0,T) ||11||L2(Q)] "Au”%(gT)
Hully o, 1Aal 20 1AMl 201y }

< Cyy (2 w) {[IA2]) + 18217 ] |Aully o, + 10217},

|7 Cis () [1821 + 1821 A

||‘/5||(L2(QT))” < CygllAmllpz o, 1 Autllgs

le((O,T);L"Z (@) = %Qr)’

< Cig Az 1Aullgy >

"‘Eli(LZ(QT))” < Cyllaz] ”&l"%(nr)’
(98)

with some constants C,5---C,,. Therefore, applying the
relation (20) to the solution of the problem (96) we obtain

134, q,
< Cig(z,u)
x {1821+ 182 ] {1aully ,y + |Bul, o b+ 18217}
(99)

with some constant C,g. In case [|Az| is small enough, that is,

Az| + |Az)* € ———
Izl + 182l < 5 ———

y (100)
we have

”514"%(97) < 2C 4 (z,u)

< {[IAzl + 1A217] I Aulyy ) + 10217}
(101)

In view of (95), this implies
18ulq,, < Cro @ (182 + 18], (102)

with a constant C.
Similarly, for the solution of the problem (92), we deduce
the estimate
1Aully .y < Cao (2 4) [Az]], (103)

with a constant C,.
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Now, we write the difference of J; in the following form:
Ji(z + Az) = J; (2)

= ZJ [u(x,T;2) —up (x)] Au(x, T z) dx
Q

+2 JT Lk(x,t) “rzx(y,t)u(y,t;z)df—v(t)

0

X Au (x,t;z) dTdt + ©,
(104)

where
®=2] [”(x»T;Z)‘”T(X)]ﬁu(x,T;z)dx
Q
T
+2L Lk(x,t)[LK(y,t)u(y,t;z)dr_v(t)]

x Au (x, t;z) dTdt

+ L {(Au + Zu) (x,T; z)}zdx

! 2
+ L {L K (x,1) (Au + Zu) (x,1;2) dl"} dt.
(105)

Using (102), (103), and the property x € L((0,T); L*(L,)), we
obtain the estimate |®| < C,,(z, u) Z?:z |Az| in case (100).
This shows that J; is the Fréchet differentiable and

Ji(z) Az =2 L [u(x,T;2) — up (x)] Au(x, T z) dx

+2 LT L K (x,t)

X “ k(y)u(y,t;2)dl — v (t)
L

X Au (x, t;z) dI'dt.
(106)

Finally, let us prove (90) and (91). Comparing (92) with
(49)-(52), we see that f' = Aa[u —m * u] — Am * au, gb;r =
—Amx Y0 ait,., and Augy = k' = 0. Thus, (56) reads

J u’ (x) Au(x,t) dx — J k" % Audl
Q I,
+Jn<f *Au—;(bi*Auxx)dx
:J <{Aa[u—m*u]—Am*au}*w
o

n
+Am * Za,-juxj * Y > dx, tel0,T].

ij=1
(107)
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In order to obtain a formula for the right-hand side in (106),
we set u” = 2[u(x, T;z) — up(x)],

W (x,t) = - 2K (x, T 1)

X [.[r k(T-tu(y,T-t;z)dl —v(T-1t)|,
' (108)

f°=¢° =0andt = T. Then, we obtain (90), where in view
of (53) the function y is the weak solution of (91). O

6. Further Aspects of Minimisation

6.1. Existence of Quasisolutions. For the convenience, we will
use also the symbol z to denote the argument w of J;.

Theorem 9. (i) Let k € {1;2} and M C Z be bounded,
closed, and convex. Then, IPk has a quasi-solution in M. The
set of quasisolutions is closed and convex.

(ii) Letk € {1;2;3} and M c Z 5 be compact. Then IPk has
a quasi-solution in M.

Proof. Let us prove (i). The existence assertion follows from
Weierstrass existence theorem (see [24, Section 2.5, Theo-
rem 2D]) once we have proved that J;, is weakly sequentially
lower semicontinuous in %, that is,
Jk (2) < liminfJ, (z,) asz, —zin Z. (109)
But (109) follows from the continuity and convexity of
Ji [24]. The convexity of J, can be immediately deduced
making use of the linearity of the ingredient u(x, t;z) with
respect to z inside the quadratic functional J, (for similar
computations see [25, Theorem 2]). The closedness of the
set of quasisolutions is again a direct consequence of the
continuity of J;. The convexity of the set of solutions follows
from the convexity of J.
Next, we prove (ii). Let m = inf, ) Ji(z) and z; € M
be the minimising sequence, that is, lim J,(z;) = m. By the
compactness, there exists a subsequence z, €M such that

*

lim 7, =z € M. Due to the continuity of J, we have
lim ]k(zlj) = Ji(z"). Thus, J,(z") = m. This proves (ii). O

In practice, the compact set M may be a bounded
and closed finite-dimensional subset of Z. The proof of
weak lower semicontinuity of J; may be harder because this
functional is not convex.

6.2. Discretisation and Minimisation. Let us consider the
penalised discrete problems

+

dearg min®; (), Oy =1L (2)+ i (@),
kL

(110)

where k € {1;2;3}, Z} is an L-dimensional subspace of
Zi (L € {1,2,...}) and II} is a penalty function related to
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the set M; = P, M with P; being the orthogonal projection
onto Z ;. The general assumptions for IT; are

I, -accretive, convex, Fréchet differentiable,
(111)
[T, -uniformly Lipschitz continuous in # kL

Theorem 10. The problem (110) has a solution.

Proof. The proof repeats the proof of the statement (ii) of
Theorem 9, because in view of the accretivity of @y, a
minimizing sequence is bounded and in a finite-dimensional
space any bounded sequence is compact. O

The Fréchet derivative of @, ;, that is, (D,'(, (2) = H'L(z) +

Ji(2) € Z}; = Z 1 can be identified by a certain element in
Z .1 thatis,

Oy (2)Az= (D (2),02),  VAzeZy,,  (112)

where ()¢, is the inner product of Z,. In particular, the
addend J, ,i(z) is identical to the element P, w, (z) where w.(z)
is the kernel of the functional ],i(z)‘ Thus, by virtue of (57),
(65), (82), and (90), it holds

N T,
w, (2) = (Z JO YOy (T, - t:2) dtlj:l,N.‘N)

i=1

N,
= (Z J v OB (T - t:2) dtlj:l,m,N) >

-1

w, (@) = y,(t)w( T-b2) il ¥ (2 T52)),

w; (2) = <(u m=u)«y(-,T),

J |:Za,ju * Y, —au 1//:| (x,T- )dx)
i,j=1
(113)

In w,, the functions y; and f3; are the z- (or, equivalently, w-)
dependent weak solutions of the problems (58) and (66),
respectively. In w, the function y is the weak solution of (83)
and in w; the functions u and y are the z-dependent weak
solutions of (2)-(5) and (91), respectively.

Example 11. Consider the case k = 1. Let M = {z € Z,
lzl < p}, where p > 0. Further, let &, j = 1,2,..., be an

orthonormal basis in L*(Q) and Z ; = (span(,,... EON.
Then J|(z) is in Z,; identical to the element

L N

T,
Pw, (z) = <; L z LH Y (1) By (x, Ty — t;2) dt

=1
(114)
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Moreover, it holds M; = {z € Z,| : |zl < p}. Define a
convex penalty function IT; € C*[0, 00) such thatIT; (z) = 0
for [z|| < pand IT;(2) = d(lz)* - pz) for ||z|| > p + & with
some d, & > 0. Then II; satisfies (111).

Let k € {1;2;3}. Choose some initial guess z, € Z ;.
Compute the approximate solutions by the gradient method
!

s qu)k,L (Zs) >

Zg =2 (115)

where s =0,1,2,...and ¢, > 0.

Theorem 12. Let k € {1;2} and c, be chosen by the rule

lcgg (Dk,L (zs - Cch’c,L (Zs)) = (Dk,L (Zs - CS(DI,(,L (Zs))

< ngg q)k,L (Zs - C(DIL,L (Zs)) + 65’
(116)

where 8, > 0, Yoo, 8, =: 8 < co. Then it holds dist(z,S) — 0
ass — 00, where S is the set of solutions of (110).

Proof. The assertion follows from Theorem 5.1.2 of [26] once
we have proved that (D,'(, ;. is uniformly Lipschitz continuous,
@, ; is convex, and the set M(z,) = {z € Z : Oy (2) <
@, 1 (zy) + 6} is bounded. The convexity of @, ; follows from
the convexity of its addends II; and J,. The boundedness
of M(z,) is a direct consequence of the accretivity of @ |
following from the accretivity of the addend IT;.

It remains to show the uniform Lipschitz continuity of J;
in Z 1 (sucha property for IT; isassumed in (111)). Letk = 1.
Then by (113) and J{(2) = Pw,(z) for any z,Z € Z, we
have

Vi@-n@|spdle @-w @l
N (117)
< szZ"‘//i 52 = G ';Z)”fzz(szr)’
i=1
where C,, is a constant independent of z and Z. Further,

observing (58) and (40), the estimate (20) of Theorem 2 and
z = w, we deduce

N
I @ -1 @] <2CCoY lu (- T52) - u (5 T 2) | 12
i=1

< Cullu(52) —u s 52)ly @,
<Cyulz-zl,
(118)

where C,;, C,, are independent of z and Z. This proves the
uniform Lipschitz continuity of J;. Such a property of J; can
be proved in a similar manner. O

The convergence of z in case k = 3 is an open issue. This
case is more complex because IP3 is nonlinear and the Fréchet
derivative of J; is not uniformly Lipschitz continuous.

The quasisolutions of IP1-IP3 are not expected to be stable
with respect to the noise of the data, that is, the problems
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under consideration may be ill posed. Nevertheless, from the
intuitive viewpoint, a discretisation should regularise an ill-
posed problem. Such a property of the discretisation has been
proved in many cases [27, 28]. Alternatively, the index s of the
gradient method could be used as a regularization parameter
(see [29, 30]). Moreover, the addend IT; can be defined to be
the stabilizing term of the Tikhonov’s method instead of the
penalty function, that is, [T, = allz|?, where a > 0 is the
regularisation parameter. Such a IT; satisfies (111).
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WEAK INVERSE PROBLEMS FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS CONTAINING
TWO KERNELS

KAIRI KASEMETS, JAAN JANNO

ABSTRACT. An inverse problem to determine a coefficient and two kernels in
a parabolic integro-differential equation is considered. A corresponding direct
problem is supposed to be in the weak form. Existence of the quasi-solution is
proved and issues related to Fréchet differentiation of the cost functional are
treated.

1. INTRODUCTION

Inverse problems to determine coefficients and kernels in integro-differential heat
equations are well-studied in the smooth case when the medium is continuous and
corresponding direct problems hold in the classical sense (selection of references:
(2, 4, 5,9, 10, 12, 13, 15, 16, 17, 19]). For instance, in [10] problems to determine
space-dependent coefficients by means of final over-determination of the solution
of the direct problem are dealt with. This paper exploits and generalizes methods
developed earlier in the usual parabolic case [3, 7].

Results are known for particular non-smooth cases, as well. For instance, identi-
fication problems for parabolic transmission problems are considered in [11] under
additional smoothness assumptions in neighbourhoods of observation areas. Several
papers deal with degenerate cases (see [8] and references therein). In [14] problems
to reconstruct free terms and coefficients in a weak parabolic problem containing
a single kernel (heat flux relaxation kernel) are considered. In particular, a new
method that enables to deduce formulas for Fréchet derivatives for cost functionals
of inverse problems is proposed.

In the present article we consider the inverse problem of determining two kernels
and a coefficient in a parabolic integro-differential equation. The corresponding
direct problem is posed in the weak form. We prove the Fréchet differentiability of
the cost functional related to the inverse problem and deduce a suitable form for
the Fréchet derivative in terms of an adjoint problem. In this connection we use an
integrated convolutional form of the weak direct problem that enables to use test
functions without classical time derivatives. Finally, we prove the existence of the
quasi-solution of the inverse problem under certain restrictions.

2000 Mathematics Subject Classification. 35R30, 80A23.
Key words and phrases. Inverse problem; parabolic integro-differential equation;
relaxation kernel; quasi-solution.
(©2014 Texas State University - San Marcos.
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Inverse problems for smooth models with two kernels were formerly considered
in [5, 12, 19].

2. FORMAL STATEMENT OF PROBLEMS

Let Q be a n-dimensional domain, where n > 1 and I' = 99Q. Further, let
I' =I'; UT'y; with measIT'y NI’y = 0, measI'y > 0 and either I'y = @) or measT'; > 0.
In case n > 2 we assume I' to be sufficiently smooth. Define

Qt =0 x (07t)7 Fl,t = Fl X (O,t)7 Fg‘t = F2 X (O,t)

for ¢t > 0.
Let T > 0. We pose the formal direct problem: find u(z,t) : Qr — R such that
u+ (uxu)y=Au—mxAu+ f+V-o+p, in Qr, (2.1)
u=1up inQ x {0}, (2.2)
u=g inTyr, (2.3)
—va-Vu+msxva-Vu=9%u+h+v-¢ inlyr, (2.4)
where N N
Av=>" (aijvs,),, +av, va= <Za"jl/j|z‘:1,.,.,n)’
ij=1 j=1
v = (v1,...,vy) is the outer normal of I'y, a;j,a,u0 : @ = R, fio : Qp — R,

¢:Qr =R, g:Qp - R, J9:T9 >R h:Tor — R, gym:(0,T) — R are given
functions and

zxw(t) = /0 2(t — T)w(T)dr

is the convolution with respect to the variable ¢. In the case I'y = ), the boundary
condition (2.3) is omitted. The second and third addend of the free term of the
equation (2.1); i.e., V - ¢ and ¢; may be singular distributions.

The problem (2.1)—(2.4) governs the heat conduction in the body  filled with
material with memory, where p and m are the relaxation kernels of the internal
energy and the heat flux, respectively and u is the temperature [1, 4, 5, 18]. Then
the condition (2.4) corresponds to the third kind boundary condition, namely it
contains the heat flux to the co-normal direction —v4 - Vu +m * v4 - Vu.

Let us formulate the inverse problem:

IP. Find a, m and g such that the solution of (2.1)—(2.4) satisfies the following
final and integral additional conditions:

u=ur inQx{T}, (2.5)
/ ki@, Ju(z,)dl =v; in (0,T), j =1,2, (2.6)
Jr,

where ur : Q@ = R, k; : To7 — R and v; : (0,T) — R are prescribed functions.

Remark 2.1. In the case n = 1 and Q = (¢, d), the integral fF2 z(z)dl is merely

the sum Zle z(z1), where z; € Ty C {c;d} and L is the number of points in I’y
(i.e L € {1;2}). Then the conditions (2.6) read

L
Z F\Z]‘(.’El, ')u(xla ) =y in (UvT)~ .] = 17 2. (27)
=1
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3. RESULTS CONCERNING DIRECT PROBLEM

Let us start by a rigorous mathematical formulation of the direct problem. Define
the following functional spaces:

U(Qy) = C([0,1]; L*(2)) N L2((0,8); Wy (),
Up(@) = {n €Ul s, =0 incase Ty £ 0},
T() = {n € L*((0,8); W5 (Q)) : . € L*((0,2); L*()) },
To(Q) = {n €T() :nlr,, =0 in case Iy £ 0}

and introduce the following basic assumptions on the data of the direct problem:

aij € LOO(Q) Qjj = Qji, 9 e C(fg) 9 >0, (31)

> ai@Aid > €A,z e, Ae R with some € > 0, (3.2)
ij=1

a€ LM(Q), wherequ=1ifn=1 ¢ >g ifn>2, (3.3)

pw€L?0,T), melL(0,T), (3.4)

Ug € LQ(Q), g e T(QT). he LZ(FQTT), (35)

f € L*(0,T); L®(Q)), where go = 1ifn=1,
) 3.6
Gelq)ifn=2 g=—"ifn>3, (3.6)
n+2

&= (1., 0n) € (LP(r)" (3.7)

@ eU(Qr), in case 'y # 0 (38)

139, €T(Qr) 1 p =g, in Ty 7. (3.9)

If we assume additional conditions a;; € W4 (Q), a%itm € L?(Qr),i=1,...,n,

@1 € L2(Qr) and suppose that (2.1)—(2.4) has a classical solution u € L?(Qr)
such that ug, Ug, , Uz,o; € L*(Qr), 4,5 = 1,...,n, then multiplying (2.1) with a test
function n € 7o(Qr) and integrating by parts we come to the relation

0= /n [(u+ pxu)(z, T)n(z, T) — uo(z)n(x,0)] dz — //QT(u + pok w)my da dt

+ // [Zn: Q5 (Ug; — T * U, ), fa(ufm*u)n} dx dt
JJar

i.j=1

+l//112)T(19u+h)77dthf.//QT(fn,é_vn)dxdt

- [ lete. T 1) = pta 0 0)ds + [ pmdz

(3.10)
This relation makes sense also in a more general case when a;;, ¢, ¢ satisfy (3.1),
(3.7), (3.8) and u € U(Qr).
We call a weak solution of the problem (2.1)—(2.4) a function belonging to U (Qr)
that satisfies the relation (3.10) for any n € 7o(Qr) and, in case I'y # 0, that fulfills
the boundary condition (2.3).
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Theorem 3.1. Problem (2.1)—(2.4) has a unique weak solution. This solution
satisfies the estimate

lulluor) < Co [||UOHL2(Q) F 1 F 20,092 () + N9l (2200 (3.11)

+ el + 0{lglr@n + I9ellT@n} + ||h||L2<r2,T>],
where @ = 0 in case I'y = 0 and Cy is a constant independent of ug, f, ,p, g, h.
Proof. Since u € L?(0,T), the Volterra equation of the second kind
O+pxp=—p in(0,7). (3.12)

has a unique solution i € L2(0,T') [6]. We call i the resolvent kernel of u. Further,
let us consider the following problem:

U= Au—m* AT+ f+V-¢ inQp, (3.13)

=1 inQx {0}, (3.14)

u=g inlir, (3.15)

—vp - Vi4@svy - Vi=00+90xU+h+v-¢ inTyp, (3.16)

where

m=m—f+m+i, f=/[+ap—in*ap,
N n n
G =G+ D Ajpa, — M Y i,
j=1 j=1

h=h+0p+0fixp, G=g+prg—gy, To=1uo—¢(-0).
By the properties of m and i we have m € L'(0,T). Further, [14, Lemma 1] yields
U(Qr) — L2((0,T); L%=(Q)), where g3 = o0 if n =1,
_Q1q2 2n (3.17)

ifn=2, g3 = ifn>3

qs >
q1—q2 n—2

and
av € L2((0,T); L=(Q)) if a € LT (Q), v € L2((0,T); L% (), (3.18)
llavll 20,7292 (2)) < CllallLay@yllvll 20,7095 (@) ’

where C is a constant. Using the relations (3.17), (3.18), the properties of m, @, the
assumptions (3.1)—(3.8), trace theorems and the Young theorem for convolutions
we obtain

Uo,g,h) € X
,T); L92(Q)) x (L2(Qr))" x L2(Q) x T(Qr) x L*(Ta.7),
|d]lx < Clldl & (3.19)
where d = (f, #,u0, 9. h, ¢, g,) and
X = L*((0,T); L=(Q)) x (L*(Q))" x L*(Q) x T(Qr) x L*(Ta.7) xU(Qr) x T(2r)

and C is a constant. It was proved in [14, Theorem 1] that problem (2.1)—(2.4) in
case u = 0 and ¢ = 0 has for any (f, ¢, uo, g, h) € X a unique weak solution and the
corresponding solution operator B belongs to L(X;U(Qr)). (Here £(X,Y) stands
for the space of linear bounded operators from a Banach space X to a Banach space
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Y'.) This implies that problem (3.13)—(3.16) is equivalent in ¢/ (Q7) to the following
operator equation:

@=0u with Qu=B(0,0,0,0,97 * )+ Bd. (3.20)

To study this equation, we will use the inequality

t
IIﬁ*yllem,,)S/O 5t =)yl dr, t€[0.T] (3:21)

that holds for any y € L%(Qr). This was proved in [14, inequality (3.12)].
Let ut, @2 € U(Qr), denote v = ut —u? and estimate Qu'—Qu? = 5(0,0,0,0, Ifi*
v). To this end, fix ¢ € [0, T] and define

inT
Pw={"Y M2 (3.22)
0 m FQ?T \ Fg’t

for w : Tor — R. Due to the causality, we have B(0,0,0, P,Ig * v)(z,7) =
B(0,0,0,9% * v)(z,7) for any (z,7) € Q. Since B € L(X;U(Qr)), the continu-
ity of 9, the trace theorem and the inequality (3.21) with y = v,v,,, i =1,...,n,
it follows that

”Qal - QaZ”M(ﬂt) = HB(0,0,QO,?%J* U)HZ/{(QL)
= ”8(070~,0~,07Pt'§ﬁ* /U)”Z/{(Q,,)
< HB(0,0,QO,Ptﬂﬁ* v)”u(QT)
< IBIPAIR = vl 2y 2y = IBIITE vl L2crs.,) (3.23)
< Cullii = vl 20,0 w2
¢
< Co [ 1A= Pl ol2(0y 03100 0
with some constants C; and Cy. Let us define the weighted norm in U(Qr):
lvle = supgcier € V]I, Where o > 0. In view of (3.23) and U(Qy) —
L2((0,t); W3 (Q)) we get
t
Q" — Q@?||, < C3 sup 67”‘/ 7t = D)l vllea.)dr
0<t<T 0

t
— Gy sup / Dt = )] € (ol dr
o<t<T Jo

T
<oy / e A(s)lds sup e [0luan
0 0<r<T

T
e / €=#|(s)ds [v]lo

with some constant C5. By the dominated convergence theorem, fOT e~ |u(s)|ds —
0 as 0 — oc. Thus, there exists o such that

T 1
Cg/ e 7%|n(s)|ds < =.
o 2

Therefore, ||Qu' — Qu?(ls, < i||@' — @?||s,. The operator Q is a contraction
in U(Qr). This implies that (3.13)—(3.16) has a unique weak solution in U (Qr).
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Moreover, observing (3.20) and the relation Q0 = Bd, for the solution of (3.13)—
(3.16) we obtain the estimate
~ ~ ~ - 1~ =
[alloy = 1Qu — Q0 + QOlloy < QU — Q0lloy + [IBdlloy < Fllullon + [IBdllo
which implies
@y < 21[Bdllo, < 2(1Bdllur) < 2(IBHd]x-

Observing the relation e=7°7 |||y, < ||@lls, and (3.19) we arrive at the estimate
[@lluor) < Calldl2 (3.24)
with a constant Cjy.
Further, let us define
u=u+@+pxU+e). (3.25)
Then @ is expressed in terms of u as
U=u+pxu— . (3.26)

One can immediately check that the implications u € U(Qr) < u© € U(Qr) are
valid. Moreover, it is easy to see that @ is a weak solution of (3.13)—(3.16) if and
only if u is weak solution of (2.1)—(2.4). In view of the above-presented arguments
we can conclude that (2.1)—(2.4) has a unique weak solution. From (3.25) we obtain

lulleory < Calli@llu@r) + lellu@r))
with a constant Cs. This with (3.24) implies (3.11). The proof is complete. O
It is possible to give an equivalent form to the relation (3.10) that does not

contain the derivative of the test function with respect to ¢. Namely, the following
theorem holds.

Theorem 3.2. The function u € U(Qr) satisfies the relation (3.10) for any n €
To(Qr) if and only if it satisfies the relation

0 :/Q(u+u*u7¢) *ndx,/ﬂ/ot(uo(x) — o(z,0)n(z, 1) dr dz

+/1*{E aij(uxj—m*uzj)*nzl—a(u—m*u)*n]dx (3.27)
i,5=1

+/ 1*(19u+h)*nd1"—/1*<f*n—z¢i*nzl)dx,
1) Q i=1

for any t € [0,T] and n € Up(Qr).

Proof. Tt is analogous to the proof of [14, Theorem 2] that considers the case ¢ = 0,
= 0. We have only to replace u by & = u+ p*u— ¢ in the term K;(t) appearing
in formulas [14, (3.19), (3.20)] to get the desired result. O

Remark 3.3. Theorems 3.1 and 3.2 remain valid also in the case I's = ). In this
case the terms ||h|r, » and sz 1% (Yu+ h) *ndl are missing in (3.11) and (3.27),
respectively.
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4. QUASI—SOLUTION OF IP. FRECHET DERIVATIVE OF COST FUNCTIONAL

Assume that n € {1;2;3}. Morcover, let us set ¢4 = 2 if n = 2. Then any
cocfficient a that belongs to L?(Q2) satisfies (3.3). For the weight functions r; we
assume that

;€ L®((0,T); LA (T)), j=1,2. (4.1)
In the case n = 1 this assumption is simply x(x;,-) € L>(0,T), &; € I's C {¢;d}.
According to Theorem 3.1, u € U(Qr), thus u(-, T') € L?(2), and the condition (2.5)
is well-defined for ur € L2(Q). Moreover, by a trace theorem we have u € L2(I'y ).
This implies that [i, #;(z, Ju(z,-)dl’ € L*(0,T), j = 1,2, hence the condition (2.6)
is well-defined for v; € L2(0,T), j = 1,2.

Let M C Z = L?(Q2) x (L%(0,T))?. We call the quasi-solution of IP in the set
M an element z* € argmin,eps J(2), where J is the cost functional

2
T(2) = Ju(Ts2) = urlBay + D | / (@ Yz, 2)dT — v o
j=1 7Tz

and u(w, t; z) is the weak solution of the direct problem (2.1)-(2.4) corresponding
to given z = (a,m,u). In case n = 1 the integral [.. x;(z,t)u(z,t;z)dl in the

definition of J is replaced by Zle Ky (@, ulay, t; 2).
Theorem 4.1. The functional J is Fréchet differentiable in Z and
J(2)Az

= 2/9 [u(z,T; z) — ur(z)] Au(z, T)dx s

2

2 22: /OT [/F K5 (y. hu(y, t; 2)dl — Uj(t)] / K;(z, t) Au(z, t)dldt,

where Az = (Aa, Am,Ap) € Z and Au € U(Qr) is the z- and Az-dependent weak
solution of the following problem:

Auy + (p* Au)y = AAu— m* AAu + Aafu — m x u] — Am * au

-V [Am * Z aijuz]} —(Apxu)y in Qp, (4.3)
=1
Au=0 1nQx{0}, (4.4)
Au=0 1in Fl,T: (45)
—va-VAu+mx*vy-VAu
(4.6)

=J9Au—v- [Am * i aiju%] in Ly p.
j=1

Proof. Denote Au = u(z,t;z + Az) — u(z,t; 2) and define Au = Au— Au. Then
we can represent the difference of J as follows:

J(z+Az)— J(z) = RHS + 0, 4.7)
where RHS is the right-hand side of the equality (4.2) and

0=2 / [w(z,T) — ur(2)| Au(z, T)dz
Q
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”]Z?;/OT [/F ;5 (Y, t)u(y, ¢)dl —vj(t)] / #j(x, t) Au(z, t)dldt

Iy

+ /Q {(Au + Au)(z, T)}de

+§;/OT{/ Hj(x?t)(Au+ﬁu)(wvt)dl—‘}2dt'

1)
Let us study problem (4.3)—(4.6). To this end we estimate the terms in the right-

hand side of (4.3). Observing the relations u € U(Qr), (3.17), (3.18), L?(Q) —
L7 (Q) and using the Young and Cauchy inequalities we deduce

lAalu — m * u] — Am * aul| 20,102 ()

< allullu@r) [(1+ Imllz2o,m)llAall 2 ) + lallz@) | Amll 20,7 (4.8)
< 62(2*“’)“AZ”
where ¢; is a constant, ¢y is a coefficient depending on z = (a,m, ), v and || - ||

denotes the norm in Z. Taking the boundendness of a;; into account we similarly
get

n
1Am Y aijuz,ll2 @ < esllullu@qp lAm] 120, (4.9)

j=1
with a constant cs. Next let us estimate the term Ay * u at the right-hand side of
(4.3). Since u € C([0,T]; L%(Q)) and Ap € L%(0,T), it is easy to check that Ay *
u e C([O, T] LQ(Q)) and ”AM * UHC([OA,T]:L'Z(Q)) < T1/2||UHC([O.T];L2(Q))”AN/”LQ(O,T)-
Similarly, [|Au * ull 2omywg ) < TV2[ull L2omyws @) |1 Aull20,r)-  Taking

these estimates together, we have

1A * uluiar) < T2l 1801 20,7 (4.10)
Since u = g in I'y, 7, we find that
Apsxu=Apxg inTyrp. (4.11)

Using the assumption g € 7(Qr) and the Young and Cauchy inequalities again, we
obtain

1A= gllT@r) = 1A * gll2(0.m):w@)) + (AR * g)ellL2(0,7);L2(2))
= [|Ap* gllL20.rywi ) + 181 * gell 20,7y L2()
F1Aw g(- 0)l| L2 ((0,7): L2 (02))
< C4||A#||L2(0,T)

with a constant ¢4. Relations (4.8)—(4.12) show that Theorem 3.1 holds for problem
(4.3)—(4.6), hence it has a unique weak solution Au € U(Qr). Using the estimate
(3.11) for the solution of this problem we obtain

||AU||u(QT)

(4.12)

§ Co [HAa[u — m* ’LL] + Am x au”L‘Z((O,T);Lq2(Q))

n (4.13)
FlAM Y aiju, 2@y + |1 A0 ullua,) + 0l Ap QHT(m)]

j=1
< es(z,u)||Az]]
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with a coeﬂicient~c,5 depending on z, u.
The function Awu satisfies the problem

A+ (uxAu)y = ADu—m+ ARu+F+F+V 6+ V-0+p + 3

in Qr, (4.14)

Au=0 inQx{0}, (4.15)

Au=0 inTy7, (4.16)
—VA~Vﬁu+m*uA-Vﬁu:ﬁ£u+u-¢+u-$ in Ty p, (4.17)

where
f=AaAu— (m+ Am) x« AaAu — Am x Aau — Am * aAu,
F=AaAu-— (m + Am) * AaAu — Am * aAy,
¢ =—Amx iaUAum], ;z;: —Am x iaijﬁuzﬂ
j=1 j=1
o=—ApxAu, P=—ApxAu.
Similarly to (4.8)—(4.10) we deduce the following estimates:
£l 20,7y p92 ()
< CG{(l +Imll20.1) + 1AM L2(0,1)) | Aal| L2 (o) | Aufee2r)
+llulle@m 1AM L20,7) | Aal| L2(0) + ”a”L2(Q)HAmHLQ(O,T)”AUHL{(QT)}
< erlew{ [1A] + [182] | Aulluge,) + 18202},
1220 mizoe () < es(2) [182] + A1) Al
l6llz2(@rn < coll Azl Aulleer,
19l 220 < eoll Azl Aulugerr),
lellucr) < T2 1Az Aullr).
1@ller) < T2 A2 Aullar)

with some coefficients cg,...,co. Moreover, since Au = Au =0 in I'y 7, we have
¢ =@ =0in Ty . Applying the estimate (3.11) to the solution of the problem
(4.14)—(4.17) we get

1Bulluer) < erolzw){ (18] + 1821 {I Al + | Bulluar) p+1A202}

with a coefficient cj9. Provided ||Az| is sufficiently small; i.c., |Az| + [|Az||2 <

1
TGy Ve have

1Bl < 2e10(z,0){ [182] + 1820%] [ Aulkaer) + 1A2]2 }.
Due to (4.13), this yields
|Bullar) < ez u) [1Az]? + 1Az (4.18)

with a coefficient ¢11.
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In view of (4.13), (4.18) and the assumption r; € L>((0,T); L?(T2)) the right-
hand side of (4.2) RHS and the quantity © satisfy the estimates

6
stRHS| < cia(z, w)[|Az], 0] < ers(z.u) Y [|Az], (4.19)
=2

st where ¢ and ¢13 are some coefficients. Moreover, RHS is linear with respect to
Az. This with (4.7) shows that J is Fréchet differentiable in Z and J'(z)Az equals
RHS. O

Theorem 4.2. Assume g = 0. Then the Fréchet derivative of J admits the form

T T
J'(Z)Az:/'yl(m)Aa(x)dx+/ 'yz(t)Am(t)dt-i-/ v3(t)Ap(t)dt,  (4.20)
Q 0 0
where

m(@) = [(u—m=u)x¢)(z,T), (4.21)

Ya(t) = —/ [au * )+ Z AUy, * uxj] (z,T — t)dz, (4.22)
Q

i,j=1

¥3(t)

:7/[au*w+au*w*[ﬁ7mfm*ﬁ]
Ja

n n
+ Z i, * Ug, + Z i, * Ug, * [ —m —m ﬁ]] (z,T —t)dx
ij=1 ig=1

- [I(u+ i * u) x ) (z, T — t)dl (4.23)

- 2/ {u(z,T) —up(x)}u+ g *ul(z, T — t)dz
Q

722/;[/11 K/j(y.,T)u(y,T)dF*'Uj(T)]'/F ki, 7)[u

+ fx ul(z, 7 — t)dldr,

where [i is the solution of (3.12), u(x,t) = w(z,t;2) and ¥ € U(Qr) is the z-
dependent weak solution of the following “adjoint” problem:

Aty + (p* A)y = AAY —mx AAY  in Qr, (4.24)
AY =2[u(-,T) —ur] in Q x {0}, (4.25)
Ay =0 inTyr, (4.26)
—vg VAV +m*vy-VAY =93AY +h° inTar, (4.27)
where
h°(z,t)
(4.28)

- —Qiﬁj(x,T - t)[/F ) (5, T — tyu(y, T — £)dl — v; (T — t)].
= 2
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Proof. Define Aw = Au + Ap*xu+ @ Ap x u. Since u, Au € U(Qr), we have
Aw € U(Qr). Moreover, using (3.12) it is easy to see that Au+ px Au+ Apxu =
Aw + p* Aw. Using this relation for the time derivatives in (4.3) and the equality
Au = Aw — Ap*u — i % Ap * u for other terms containing Aw in (4.3)—(4.6) we
see that Aw is the weak solution of the problem

Aw; + (u* Aw)y = AAw —m« AAw + fT 4+ V- o' in Qp, (4.29)
Aw =0 inQx {0}, (4.30)
Aw=0 inTyr, (4.31)
—va-VAu+mxvy-VAu=9Au+ht +v- ot in Ty 7, (4.32)
where
ff=Adu—mxul —aAm*u—aApsu—adpxux[i—m—mx*q], (4.33)
of = (ol 0},

n n n
</)Z —Am x Eaijuz7 — Ap* Zaijuzi — Apx Zaijuzj * [ —m—mx ],
j=1 j=1 j=1
(4.34)
Rt = —9Aw* [u+ 1 * u]. (4.35)

Let us write the weak form (3.27) for the problem for Aw and use the test function
n = . Then we obtain

n

0:/(Aw+M*Aw)*wdx+/ 1% [Z 055 (Awg; —m* Awg,) * Yy,
Q Q

i,j=1

—a(Aw—m*Aw)*w}da:Jr/ L+ (0Aw + hT) ¢ dl (4.36)
Ty

_/Q]_* (ff*zr/)—gd);r*z/g%)dx

Next we write the weak form (3.27) for the problem for ¢ and use the test function
n = Aw to get

0= '/Q(erMML‘)*Awdx72/0/0tu(x,T) — up(z)]Aw(z, 7)drd

+ / 1% {Z i (Yo, — M * Py,) ¥ Awy, *a(w*m*w)*ﬁw]dx (4.37)
JQ

ig=1
+ / 1% (Y +h°) « Awdl.
Jr,

Subtracting (4.36) from (4.37), differentiating with respect to ¢ and setting ¢ = T
we have

2 / [w(z,T) — ur(x)]|Aw(z, T)drdx — / (h® * Aw)(z, T) dT’
Ja Jr,

:/ﬂ(,vuw,i:@*%J(M)d%/ (' % ¥)(z, T) dT.

i=1 /T2
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Observing the relations Aw = Au+ Apxu+ g Ap*u, (4.28) and (4.2) we obtain
the formula

J(2)Az :/Q(fT *wad)Z *wzi)(x,T)dmf/F (ht + (2, T) dT
-2 /Q[u(yz;7 T) —up(@)|{ (Ap+ 1+ Ap) * u} (2, T)dw

_ Qi /OT [/F ki (y, t)u(y. t; z)dl — v,-(t)]

x / w(@, ) { (Ap + 1+ Ap) x u}(x, t)dldt.
Jr,
Rearranging the terms yields (4.20) with (4.21)-(4.23). 0

The formula (4.20) shows that the vector (71,72,y3) is a representation of .J'(z) in
the space Z. It can be used in gradient-type minimization algorithms (cf. [13, 14]).

5. EXISTENCE OF QUASI-SOLUTIONS
Theorem 5.1. Let M be compact. Then IP has a quasi-solution in M.

Proof. Tt coincides with the proof of [14, Theorem 7 (ii)]. We use the continuity of
J that is a consequence of the Fréchet differentiability of J proved in the previous
section. O

Theorem 5.2. Letn =1, Q = (c,d), ¢ = g, =0, g(x,0) =0 and M be bounded,
closed and convex. Then IP has a quasi-solution in M.

Proof. This theorem follows from Weierstrass existence theorem [20] provided we
are able to show that .J is weakly sequentially lower semi-continuous in M. We will
prove that J is in fact weakly sequentially continuous in M.

Let us choose some sequence z = (ax,mg,pur) € M such that zp — z =
(a,m,u) € M. Then it is easy to see that ay — a in L?(c,d) and my, — m,
ur — pin L2(0,T). As in the proof of Theorem 3.1, let i € L?(0,T) be the
solution of (3.12). Similarly, let &y, € L2(0,T) be the solution of the equation
Tk + pr * i = —pg in (0,T). Let us show that i, — @ in L2(0,7). To this end we
firstly verify the boundedness of the sequence fi. Multiplying the equation of fix
by 7%, o > 0, and estimating by means of the Young and Cauchy inequalities we
obtain

e k|l 20,1y < lle™ " pr * €™ hll 2o,y + lle™ 7 prll L2 0.1

<lle=" o lle™ " Bwll 20,1y + lle™ prll L2 0.1

< le™ 20,1y ikl 2 0.0 lle™ Bl 20y + lle™ " well 2o, m)-
Observing that [le=!|20,r) < 1/v20 and choosing o = o = 2[sup ||pe || z20,m)]?
we get

o o1 T

sup H.ukHL?(O,T)-

This shows that the sequence iy, is bounded. The difference fi, — & can be expressed
as

le™ " Bkl 20,1y < 2lle™ " uellr20r) = NikllL20.m) < 2e

A — 0= —(ur — p) — vg * (g — 1),
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where v, = [ + [ + [ * [i, is a bounded sequence in L2(0,T). Denote by (-, -) the
inner product in L2(0,7T). With an arbitrary ¢ € L?(0,T) we have

T T—1
(Fe—7,C) = —{k—p, Q)= Ny, Nic = / o) / (=) (8)C(r-+s)dsdr. (5.1)

Since ((t+ ) € L2(0,T —7) for 7 € (0,T), it holds 0 (ke — )(8)¢(T+8)ds — 0
for 7 € (0,T). Morcover, since uy, is bounded in L2(0,T), the sequence of 7-

dependent functions | fOTfT(uk — p)(8)C(T+ s)ds| is bounded by a constant. By the
Cauchy inequality and the dominated convergence theorem, we find

T—.
INel < oell 2o / (k. — ) ()G + 8)dsl 201 — 0.

Thus, from (5.1), in view of py — u, we obtain fix —
Let us define

U=u+pu*xu, Up=ug+ ur*ug,

where v = wu(z,t;z) and w, = wu(w,t;z;) are the weak solutions of (2.1)—(2.4)
corresponding to the vectors z and zi, respectively. The relations u, uj, € U(Q2r) and
w, pr, € L2(0,T) imply @, 4y, € U(Qr). Observing the definitions of the resolvent
kernels 2 and [y we deduce

U=u+pu*u, Up=uUg+ dr* U,
ukfu:ak7ﬂ+ﬁk*(ﬁkfﬂ)+(ﬁk7ﬁ)*ﬁ

In view of the latter relation we express the difference of values of the functional J
as follows:

J(zk) = J(2)

¢ d
:/ (uk—u)Q(x,T)derQ/ [w(z, T) — ur(@)](ux — v)(z, T)dz
62 T _ L ¢ ,
+2—:/0 [Zﬁj($l7t)(“k‘“)(‘”lvt)] dt (5.2)
+QZ/ Zﬁg @y, t)u(e, t) — v;(t HEL:KJ (1, t k_u)(érz,t)]dt
=1

B NN RN LN

where
d
1;:/ (armﬁk*(ara)ﬂukf )*u)Q(x,T)dx,
, Je
-2 / fuler, T) — (@) (8 — @+ B » (@5~ &)+ (3~ ) ) 2. T,

) 2 T L 2
1;3:2/0 3 k(@ t) (uk—ﬁJrﬁk*(ﬂk—ﬁ)+(ﬁk—ﬁ)*ﬂ)(xl,t)] dt,
j=1" =1
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2 T _ L
I :2; / [;~j<xl,t>u<xz,t>—vj<t>

L
x [Zﬁj(xl,t)<ﬁk — Ut ik (T —T) + (B — 1) * ﬁ)(zl,t)]dt.
=1

Using the Cauchy inequality, i € L?(0,T), @g,u € U(Q7) and the boundedness of
the sequence iy, in L?(0,T) we obtain

Zel < 1@k — @+ i * (@, — @) (Dl Z2(ea)
+ 20l = 1)+ @) (Dl e @k = @+ fi* (@ = @) (Dl z2(ea) + Bi
< Co(fa = @liZq,) + ik — @llun ) +Bi

with a constant él and

R. = /cd [/OT(ﬁk — )i T — T)d7]2d1'.

Since 4 € U(Qr) C L2(Qr), by Tonelli’s theorem it holds @(z, ) € L?(0,T) a.c.
x € (¢,d) = U(x, T —-) € L%(0,T) ae. x € (¢,d). Thus, in view of up —
in L?(0,T) we have fOT(ﬁk — )(7)i(z, T — 7)dr — 0 a.e. = € (c,d). Moreover,

2 N
[ I fﬁ)(r)ﬁ(:r,TfT)dT} < Gy [ [a(w, 7))%dr € LY(c,d) with a constant Cyy,
because the sequence fiy is bounded in L2(0,T). Therefore, by the dominated
convergence theorem we obtain Rj — 0. Similarly for I? we get

[R] < 2llu(-.T) — urll 2ol (@ — @+ bk * (@ — ) (. D)l 2.0y + B
< Colltk — Allugay + B
where C’g is a constant and

d T
stR: = / [u(z, T) — ur(x)] /0 (ox — p)(1)u(z, T — 7)drdz. (5.3)

st By the same reasons as above, it holds R% — 0. Next, let us estimate I;:f:

2
3 2 2 PPN NP~ 2
gl <L Z fgflsXL[Hﬁj(xla ')HLDO(Q,T)”(UIC — U+ iy, + (@, — @) (1, ‘)HL?(O,T)]
=

2
+20 [t B 0 (B = ) @) o

x u(uk — @+ i (@ — @) (@1, 2o | +RE
< Ca(llak — @l + Ik — @luian) +RE

where C3 is a constant and

R} = LZZ max {5 (@) [F 0,1 / ' [ / (e - Aot - rydr| dt}.

Here we also used the embedding U(Qr) — L?((0,T); C|e, d]) that holds in the case
n = 1. Since @(xy,t — ) € L*(0,¢) for all t € (0,T) we get [, (Ax — A)(7)a(ar,t —
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7)dr — 0 for all ¢t € (0,T). Moreover, the sequence |f0t(ﬁ;C — ) (T)u(z, t — 1)dr|
is bounded by a constant. Consequently, Ri — 0. Analogously we deduce the

estimate

IIi| < Cull@y — @llzy) + Ri,  where Cy is a constant,

2 L
RY— QLZHZ kj(z, )z, -) — UJ'HH(O,T) max {Hﬁj(fﬁu N e 0,1)

j=1 I=1 lsisk
=1 1=

X {/OT [/Ot(ﬁk — m)(r)a(z, t — T)dT]2dt] 1/2}7

where R{ — 0.

Note that if we manage to show that [[uy — @y o,y — O then the proof is
complete. Indeed, in this case by virtue of RZ — 0,47 =1,2,3,4, from the estimates
of If we get I} — 0, ¢=1,2,3,4 and due to (5.2) we obtain J(z) — J(z), which

implies the statement of the theorem.

As in the proof of Theorem 3.1 we can show that u and uy, are the weak solutions

of the following problems:
Uy =Au—mx*Au+ f+ ¢, in Qp,
u=up inQ x {0},
u=g inTyr,
—va-Vi+mxvg - Vu=90u+9a+xt+h+v-¢ inTlyrp,
Ukt = Aty — My * Agly + f + ¢ in Qr,
Up =up in Qx {0},
Up =gr inTyir,
—va Vg + My xva - Vug =0U, + g * Uy +h+v-¢ inlor,
where Agv = (a11vy). + axv,
m=m-—pg+mxp, M=mg— [+ mgx* i,
g=g+pxg, Ge=g+p*g.
We now show that My, — m. With any ¢ € L?(0,T) we compute
(g =, Q) = (mx — m, ¢) — (i — 11, C) + Ny,

N,i = ./OT (1) (/OTir(mk —m)(s)¢(7 + s)dsdr

T T—7
[ me) [ = e+ sdsr

We use the relations my — m, iy — @ and treat the term N,i similarly to the term
Nj in (5.1) to get N} — 0. As a result we get (Mg — M, ¢) — 0, hence My, — M.
Subtracting the problem of & from the problem of 4y we see that wy = Uy — U

is a weak solution of the problem
Wyt = Awy, — M * Awy, + fr + J)kz in Qr,
u=0 inQx {0},

U=gy inTyr,

(5.12)
(5.13)
(5.14)
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—vA - Vwg + M kv - Vg = 9w, + b +v- ¢ in Tyr, (5.15)
where
T = (ax — a)(@y, — My, * Ug) — a(My — M) * Ug,
bk = —axy (Mg, — M) % Uz, G = (e — 1) * g,
Ry = Ok * wi + (B — A1) * ).
To use the weak convergence ar — a in forthcoming estimations we have to in-

troduce the functions p, € W2(c, d) being the solutions of the following Neumann
problems:

d—pp—ar—a n(ed), A= phld) =0,
Then pi(x) = fcd G(z,y)(ax — a)(y)dy, = € (c,d), where
Gla.y) 1 {(eCy + e%’*e)(edﬂ” +e ) fory<uw
2(ec=d —ed=¢) | (e " + e ¢)(ed Y +e¥" ) fory>u
is a Green function that satisfies the properties G, G, € L*(Qr). The weak con-
vergence aj, — a in L?(c, d) implies
llpxllw; c.ay — O (5.16)
Using py we rewrite the term (ax — a)(Uy — My * Ux) in fr as follows:
(ar — a)(Ur — My * Uy)
= (o4 (T — P, % k)| — Pk Uk — g, % Uk )z — (T — T, * Tge).

According to this relation we change the form of the problem for wy as follows:

wg, = Awg, — M x Awy, + fe +$k71 in Qp, (5.17)

=0 inQx {0}, (5.18)

u=gy inTir, (5.19)

—va - Vwy + M kv - Vg = dwy + by + v - ¢, inTor, (5.20)

where
Fro = =@k + e % U)o — pr(Ur + T, % Ux) — @iy, — M) * Uy,
by = P (Ux + Mg * Uy) — ary (My, — M) * U z-
Let ¢ be an arbitrary number in [0, 7. To estimate wj, we will use the projection
w in O
0 inQr\Q
Let w!, stand for the weak solution of problem (5.17)~(5.20) with fy, &, and hy

replaced by P;f, P;¢;, and Ptﬁk., respectively. Then, due to the causality w! = wy,
in ;. Applying (3.11) for w}, we obtain

operators P;, defined in (3.22), and Pyw = . for w: Qp — R.

el = ekl < b lucr) < o[ IPFelleaqoryer e
Pz +Olaelir@n + IPRellza, o |

=Co [”?kHLZ((O,t);Ll(c‘d)) + 16xll 20 + 0kl 7y + HthL?(rz,t)]
(5.21)
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with a constant Cy. Using the relation a € L?(c,d), Cauchy inequality, the in-
equality (3.21), g(z,0) = 0, the embedding W3 (¢, d) — C|c,d] and @y, = wy, + U we
estimate:

I7ell20.00:L1 () < Cr [“(mk — M) * Ukl L2((0,0):L2(c,d))
+llprllwi e,y (1 + ||77lk||L2(o¢T))H%Hu(ng]
o (5.22)
< [/ (A — m)(t — )] [[wel 2, dr
0
~ =1
ol ey (1 + Lo, el |+ R
[Bl12(00) < Colln = ) * el 200
1ol ey (1 + I7elL2(0,0) B 20,70t
(5.23)

g@[/otuﬁzk —m)(t—7)
+lonllw c,ay(1 + ”ﬁlkHL2(0.T))Hwk”L2((O,t):C[c,d])] +R;.
13k < B, (5.24)
Ikl 22(rs.) < Ca [Hﬁk *wi || L2(0,0:w3 e,y + Il (k= 12) ﬁllm«o,t);wg(c,d))]
t
<Cu /0 (7 (t = D) lwnll L2 (0.7): w3 (e T + By,
(5.25)
where Cy, C5,C are constants and
R, =0 {H(mk = M) * Ul 20y + lorllwpea (1 + 17220, T))”uHZl(QT)]
Ry, = Ca 7 — ) * Tl 2y + okl e (1
+ 17ll L2 0.1)) ”a”LQ((OA,T);C[c,d])]y
R = = 1) * gllzear) + 1k = 1) % galliaor + 10ae = 12) % gill 2@

Ry = Cull(fin — ) + ll L2 ((0,1)W (c.a))
By the weak convergence My, — M, pux — pt, i — @ in L?(0,T) and the relation
HpkHVVZl(C’d) — 0 it holds .
R, —0, j=1,2,34. (5.26)
Indeed, to prove that ||z * 0|/ L2(q,) — 0, where zj is one of the functions m; —m
ur — poor fiy — i and & € L?(Qr) is one of the functions @, @y, g, g or g4, it is
possible to use the dominated convergence theorem, again. More precisely,

|z * 0l L2(2p) = / / / ()i, t — T)dT] & dt}m

where the component [ fot 2 (T)0(2,t — T)dT] is bounded by an integrable in x €

(¢, d) function sup ||zk\|L2<0 oz, )HL2 0,7 and tends to zero for all ¢ € (0,T') and
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a.e. @ € (¢, d), because z; — 0 and d(x,t — ) € L2(0,T) for all t € (0,T) and a.e.
x € (c,d). (The latter relation follows from % € L?(Qr) and Tonelli’s theorem.)
Thus, sz * 17||L2<QT) — 0.

As in proof of Theorem 3.1, we use the norms |||, = supg.s<r e " lw|lu(q,)
with the weights 0 > 0 in the space U(Q7). Then in view of (5.22)—(5.25) from
(5.21) we deduce

t
[lwelle < 05[ sup / e Ty (6 — 1) e 7T |lw |lu e, dT

0<t<T Jo

4 .
+ okl e,ay (X + 1Mkl L20,1)) l[will + Zﬁfc]
=1

< Cs [{lle=" Iz 0m ez + okllwyea (1 + Il z20.19) el
4 .
+Y R,
j=1

where C5 is a constant and 7, = |Ay — M| + |Gk|. Since |le=||z200r) — O as
0 — 09, ||prllwp(c.ay — 0 and the sequences ||7&||z2(0,), |7k |z2(0,7) are bounded,
there exist o9 > 0 and K5 € N such that

1

e~ 2okl 200y + Nowllwp .0y (L + 1Pkl L2 0,) < T

for k > Ky. This, along with the previous inequality, implies
4 ) 4 )
|lwglloy < 2C5 ZRi and hence |lwg ||y (,) < 2e72TCy Z R,
j=1 J=1

for k > K,. Taking (5.26) into account we obtain the desired convergence: ||uy —
Ullu(ary = llwelluoy) — 0. The theorem is proved. O
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