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INTRODUCTION

There are several definitions of direct and inverse problems. In physics,
the direct problem means the determination of states using model param-
eters and the inverse problem means the determination of parameters of
models using given states. Often the model is described by differential or
integro-differential equations. Then the direct problem means the solution
of the equation subject to proper boundary and/or initial conditions. In
this narrower mathematical sense, the inverse problem means the identifi-
cation of parameters of the equation (e.g. coefficients, free terms, kernels)
or boundary or initial conditions on the basis of information available on
the solution of the direct problem. Different mathematical and physical
aspects of inverse problems for partial differential equations can be found
in monographs and articles [2, 8, 20, 22, 23, 26, 38, 39, 51, 59].

An important issue is the well-posedness of a posed problem. A prob-
lem is well-posed in the sense of Hadamard [17] if the solution exists, is
unique and continuously depends on the data (the latter one is the so-
called stability requirement). In case the problem is not well-posed, it is
called ill-posed. In case of nonexistence the problem is over-determined and
contradictive. The non-uniqueness or non-stability indicates lack of infor-
mation. Provided the solution exist, usually it is possible to find functional
spaces where it is unique and stable. However, for an inverse problem those
spaces often contain derivatives of data, which are not directly measurable.
This means ill-posedness from the practical viewpoint. In case the spaces
where the problem is well-posed contain derivatives up to some finite order
from the data then the problem is called moderately ill-posed. The highest
degree of the derivative involved in such a space is called the degree of ill-
posedness of the problem. In case such spaces involve all derivatives of the
data, the problem is called severely ill-posed. To solve ill-posed problems,
regularization techniques are used [9, 19, 38, 62].

Starting from ca 1970 models with memory to describe heat processes
were introduced and developed [6, 16, 36, 37, 49, 50, 52] (see also the
monographs [1, 57]). In those models the temperature satisfies parabolic
integro-differential equations that contain integral terms with kernels re-
lated to the ”memory” of the material. Incorporation of memory terms
brings along an inertia to the heat process and such models are more rel-
evant from the practical viewpoint. In parallel, models with memory were
introduced for mechanical processes, too (viscoelastic materials), leading
to hyperbolic integro-differential equations [10, 58].

The study of inverse problems for parabolic and hyperbolic integro-
differential equations with memory terms started in the middle of 1980s.
First series of papers [12, 14, 24, 30, 31, 32, 33, 34, 48, 64, 66] was devoted to
the identification of time-dependent kernels using information about certain
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traces of the solutions of the direct problems over the time. Such problems
are moderately ill-posed and can be reduced to Volterra equations of the
second kind. In case the parabolic equation is linear, the corresponding
Volterra equation contains nonlinearities that are only of convolution type.
In [24] a method of norms with exponential weights was proposed to prove
global (in time) existence and stability of the solutions of such problems.
This method was exploited in many subsequent papers.

Approximately in the middle of 1990s the study of inverse problems to
determine space- and time-dependent memory kernels in parabolic integro-
differential equations started. One class of treated problems consists in
identification of kernels that depend only on some part of the space vari-
ables or have radial or else symmetries under information about traces of
the solutions of the direct problems over the time, again [7, 11, 28]. Into
this group of results we can put also papers dealing with determination of
kernels representable in the form of finite sums of products of known space-
dependent and unknown time-dependent functions [35, 53, 54, 55]. It turns
out that those problems still admit the reduction to Volterra equations of
the second kind and can be treated as before, in particular the method of
weighted norms enables to prove global existence and stability.

In case the kernel depends on all space variables, the inverse prob-
lem may be posed on the basis of the Dirichlet-to-Neumann map. The
uniqueness of the solution of such a problem was proved in [25]. The
proof adjustes the celebrated method of Sylvester and Uhlmann [61] to
the integro-differential case.

Another direction is the treatment of problems to determine other
space-dependent parameters than the memory kernels. In case the un-
known parameter of the equation depends only on space variables, it is
natural to use an additional information of the same structure in the in-
verse problem, e.g. traces of solutions of direct problems at fixed time
values (instant conditions) or integrals over fixed time domains (integral
conditions). Those problem are not of Volterra type any more. For ex-
ample, the problem to determine a space-dependent free term in a usual
parabolic equation by means of final over-determination of the solution can
be reduced to a Fredholm equation of the second kind [21]. There are two
possibilities to handle such type of problems. One way consists in applying
the fixed point argument under certain smallness restrictions (local results).
This was exploited in papers [45, 47]. Another way is to avoid smallness
restrictions and to apply the Fredholm alternative. Then the uniqueness
implies the existence and stability. Actually, the latter one is the starting
point of the investigations of the present thesis.

The first aim is to prove uniqueness of the solution of the inverse
problem to determine a space-dependent component of a source term of
a parabolic integro-differential equation in case the solution of the direct
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problem is over-determined at the final moment of time (problem IP1)
without assuming smallness restrictions (global result). This was previ-
ously proved for the usual parabolic equation in [21] (see also [4] for the
semi-linear case). The proof uses a positivity principle for the direct prob-
lem (e.g. positivity of data implies the positivity of the solution) that is
an immediate consequence of the well-know maximum principle. Thus, in
the first step, we prove such a principle for parabolic integro-differential
equations. Further, by means of the positivity principle the uniqueness of
the mentioned inverse problem is shown. The assumptions contain certain
positivity and monotonicity restrictions on the time-dependent component
of the source term. Making use of the proved uniqueness and Fredholm-
type results for an analogous problem for the usual parabolic results, we
prove the existence and stability of the solution of the inverse problem.
We mention that the existence and stability was previously proved in [46]
under the assumption that the memory kernel is positive and the solution
of inverse problem is unique. We do not need the positivity of the kernel
in the Fredholm-type result.

The next aim is to prove the global uniqueness and local existence and
stability for inverse problems to determine a lower-order coefficient and a
coefficient of the time derivative involved in a parabolic integro-differential
equation from the final data concerning the solution of the direct problem
(problems IP2 and IP3). In this connection the previously obtained results
for the inverse source problem and the Banach fixed-point theorem can be
applied.

In addition to mentioned positivity and monotonicity assumptions, these
results require also sufficient smoothness of the data. The stability esti-
mates contain derivatives of the data up to the second order. Therefore,
these inverse problems are moderately ill-posed. This complicates the gen-
eralization of the results to non-smooth models (e.g. transmission prob-
lems). Inverse transmission problems for time-dependent kernels and given
additional information along the time axis can be treated assuming addi-
tional regularity of the problem in a neighborhood of the trace where the
additional information is given [29]. But this is not the case when this
information is given in an instant form over the space domain where the
direct problem is not regular.

In the second part of the thesis we consider inverse problems to deter-
mine parameters in parabolic integro-differential equations using instant
and integral additional data in such a manner that the solution is under-
stood in a non-exact sense, namely we deal with quasi-solutions of these
problems that minimize certain cost functionals. In this connection we pose
the direct problem in a non-regular (weak) form and treat inverse problems
to determine several parameters simultaneously.

More precisely, we consider:
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• an inverse problem to reconstruct several components of a free term
depending either on space or time variables making use of instant
conditions given at different time levels (IP4);

• an inverse problem to determine space-dependent components of the
free term and an initial condition from integral conditions over time
containing different weights (IP5);

• an inverse problem to determine two kernels and a lower order co-
efficient from a final condition and two conditions for traces of the
solution of the direct problem over time (IP6).

First two problems are linear and the latter one is nonlinear. The exis-
tence of the quasi-solutions may be proved making use of the Weierstrass
existence theorem [65]. The proof is easy for the problems IP4 and IP5,
but more complicated for the problem IP6. In latter case we have to show
the weak continuity of the solution of the direct problem with respect to
the parameters to be recovered. We will do it in the one-dimensional case.
In general, the uniqueness of the quasi-solutions may be proved using the
strict convexity of the cost functional. Unfortunately, the latter one may
not hold for the problems under consideration. However, corresponding
regularized problems have unique quasi-solutions due to the strict convex-
ity. The stability issue of quasi-solutions falls outside of the content of the
present thesis.

In addition, we prove the Fréchet differentiability of the cost function-
als and deduce formulas for the Fréchet derivatives in terms of solutions
of certain adjoint problems. To this end we introduce an integrated con-
volutional form for the weak direct problem. This form does not contain
the time derivative of a test function. Operating with such a form of di-
rect problem, we develop a general method to derive adjoint problems and
apply it in particular cases.

Finally, we discuss issues related to the gradient method to find the
quasi-solutions. The components of the gradient are expressed in terms
of the mentioned solutions of the adjoint problems. We will show mono-
tone convergence of the gradient method. This result is a generalization
of the former work [18] related to inverse problems for the usual parabolic
equation.

The main novelties of the thesis are:

1. a positivity principle for parabolic integro-differential equations is
proved;

2. the global existence, uniqueness and stability for an inverse prob-
lem to determine a space-dependent component of a free term of a
parabolic integro-differential equation in case of given final data are
proved;
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3. the global uniqueness and local existence and stability for inverse
problems to determine a lower-order coefficient and a coefficient of a
time derivative of a parabolic integro-differential equation in case of
given final data are proved;

4. a general method to derive adjoint problems for Fréchet derivatives
of cost functionals corresponding to inverse problems for parabolic
integro-differential equations in a weak form is developed and applied
particular inverse problems;

5. the existence of quasi-solutions to particular inverse problems with in-
stant and integral additional conditions for parabolic integro-differen-
tial equations in a weak form is proved in special cases.

Summing up, the thesis contains a systematical theoretical study of in-
verse problems for parabolic integro-differential equations with instant and
integral conditions, which has not been done before.

The results of the thesis have been presented in the following interna-
tional meetings:

1. the conference Direct, Inverse and Control Problems for PDE’s - DI-
COP, Cortona (Italy), 22 - 26.09.2008;

2. Chemnitz–RICAM Symposium on Inverse Problems, Linz (Austria),
14-15.07.2009;

3. 17th International Conference Mathematical Modelling and Analysis,
Tallinn, 6-9.06.2012;

4. 18th International Conference Mathematical Modelling and Analysis
and 4th International Conference Approximation Methods and Or-
thogonal Expansions, Tartu, 27-30.05.2013.

Let us give an overview of the contents of the thesis. Thesis contains
three chapters.

In Chapter I physical background of the problem is discussed and basic
parabolic integrodifferential equation is deduced. Moreover, notation used
throughout the thesis is introduced.

Chapter 2 contains results obtained in the smooth case when all terms
in the parabolic equation are regular functions. We start by proving basic
well-posedness results for the direct problem and establish the positivity
principle (§2.1, 2.2). Thereupon, in §2.3 we study the problem to determine
the space-dependent component of a free term and in §2.4 we treat the
inverse coefficient problems.
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Chapter 3 is devoted to the non-smooth case when the parabolic equa-
tion contains singular distributions. In §3.1 we prove well-posedness results
for the direct problem and introduce the weak convolutional form of the
direct problem. Further, in §3.2 we formulate three particular inverse prob-
lems in the sense of quasi-solutions, propose the general method to deduce
adjoint problems for Fréchet derivatives of cost functionals and apply this
method to the posed inverse problems. §3.3 is devoted to the existence of
quasi-solutions. In §3.4 briefly the discretization discussed.

14



1 PHYSICAL BACKGROUND AND NOTATION

1.1 Physical background and the integro-differential equa-
tion

Let us deduce the basic parabolic integro-differential equation that will
appear in our inverse problems in next chapters.

In linear theory of heat conduction with memory in a medium that is
generally inhomogeneous and anisotropic the following constitutive rela-
tions are assumed [3, 6, 13, 14, 16, 33, 50, 52, 54]:

qi(x, t) = −
n∑
j=1

aij(x)uxj (x, t) +

∫ t

−∞
m(t− τ)

n∑
j=1

aij(x)uxj (x, τ)dτ,

i = 1, . . . , n,

(1.1)

e(x, t) = β(x)
[
u(x, t) +

∫ t

−∞
µ(t− τ)u(x, τ)dτ

]
, (1.2)

where x is the space variable, t is the time, q = (q1, . . . , qn) is the heat
flux, e is the internal energy and u is the temperature. Moreover, aij is the
conductivity matrix that in the isotropic case has the form aij(x) = α(x)I
with some function α and the unity matrix I, and β is the heat capacity.
The functions m and µ are the heat flux relaxation kernel and the internal
energy relaxation kernel, respectively. They express the memory of the
material. We assume that the memory is synchronous in all points of the
medium, i.e. m and µ depend only on the time.

Further, we make use of the continuity equation

et(x, t) + div q(x, t) = χ(x, t), (1.3)

where χ is the source term. Inserting (1.1) and (1.2) into (1.3) and assuming
that u = 0 for t < 0 we come to the following parabolic integro-differential
equation:

β[u+ µ ∗ u]t = Au−m ∗Au+ χ, (1.4)

where A =
n∑

i,j=1

∂
∂xi

(
aij

∂
∂xj

)
.

Here and in the sequel the symbol ∗ stands for the time convolution,
i.e.

v1 ∗ v2(t) =

∫ t

0
v1(t− τ)v2(τ)dτ.

In this thesis we generalize this model mathematically. Namely, we
assume the operator A in Eq. (1.4) be of the form

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

aj(x)
∂

∂xj
+ a(x, t), (1.5)
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where aij , aj and a are some coefficients. If necessary, we write A(t) to
indicate the dependence of A on t.

We will consider the solution u of the integro-differential equation (1.4)
for the arguments

(x, t) ∈ Q = Ω× (0, T ),

where Ω ∈ Rn is an n-dimensional open domain and T > 0 is a fixed
number.

We are not going to specify the regularity of Ω. We simply suppose
that Ω is sufficiently smooth in order to guarantee our statements to hold.
We denote by Γ the boundary of Ω, by ν(x) = (ν1(x), . . . , νn(x)) the outer
normal of Γ at the point x ∈ Γ and by S the boundary cylinder, i.e.

S = Γ× (0, T ).

Throughout the thesis we assume that the x-dependent coefficient ma-
trix aij of the higher order part of the operator A is uniformly elliptic,
i.e.

n∑
i,j=1

aijλiλj ≥ ε|λ|2 in Ω for any λ ∈ Rn and some ε ∈ (0,∞) (1.6)

and x-dependent coefficient β is strictly positive:

β ≥ β0 in Ω with some β0 ∈ (0,∞). (1.7)

(In Sections 2.1 and 2.2 the relations (1.6) and (1.7) will be assumed in a
more general form).

1.2 Functional spaces

In this section we define most important functional spaces to be used in
the study of inverse problems and give some notation.

Firstly, we introduce the Lebesgue spaces of functions defined on a set
U ⊂ Rl, l ∈ N. They are

Lp(U) = {v : ‖v‖Lp(U) =
[∫

U
|v(y)|pdy

]1/p
<∞}, 1 ≤ p <∞,

L∞(U) = {v : ‖v‖L∞(U) = ess sup
y∈U
|v(y)| <∞}.

The space L2(U) is a Hilbert space with the inner product 〈v, w〉L2(U) =∫
U v(y)w(y)dy. The symbol C(U) stands for the space of functions, contin-

uous on U . In case U is compact, C(U) is a Banach space endowed with
the usual maximum norm ‖v‖C(U) = max

y∈U
|v(y)|.
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Next, let X be a Banach space. We generalize the Lebesgue spaces to
abstract functions v defined on the interval (0, T ) and having values in X:

Lp(0, T ;X) = {v : ‖v‖Lp(0,T ;X) =
[∫ T

0
‖v(t)‖pXdt

]1/p
<∞}, 1 ≤ p <∞,

L∞(0, T ;X) = {v : ‖v‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖v(t)‖X <∞}

and for 1 ≤ p ≤ ∞ and l ∈ N define the abstract Sobolev spaces:

W l
p(0, T ;X) =

{
v : ‖v‖W l

p(0,T ;X) :=

l∑
j=0

‖v(j)‖Lp(0,T ;X) <∞
}
.

In case X = R, we write merely W l
p(0, T ;R) = W l

p(0, T ).
Moreover, by C([0, T ];X) we denote the Banach space of abstract func-

tions, continuous on [0, T ].
The symbol L (X,Y ) stands for the space of linear bounded operators

from a Banach space X to another Banach space Y . In case X = Y we
write merely L (X).

In the first part of the thesis (devoted to smooth problems) we need
some spaces of fractional order and anisotropic spaces of x- and (x, t)-
dependent real-valued functions. To defined them, let us first introduce the
following notation for difference quotients of such functions with powers:

〈v〉p(x1, x2) := v(x1)−v(x2)
|x1−x2|p , 〈v〉p(x1, x2; t) := v(x1,t)−v(x2,t)

|x1−x2|p ,

〈v〉p(x; t1, t2) := v(x,t1)−v(x,t2)
|t1−t2|p .

For any real numbers p ∈ [1,∞) and l ∈ [0,∞) we define the Sobolev-
Slobodeckij spaces (cf. [43, 60])

W l
p(Ω) =

{
v : ‖v‖W l

p(Ω) :=
∑
|α|≤[l]

[∫
Ω |D

αv(x)|pdx
] 1
p

+Θl
∑
|α|=[l]

[ ∫
Ω×Ω

|〈Dαv〉n
p

+l−[l](x1, x2)|pdx1dx2

] 1
p
<∞

}
,

W
l, l

2
p (Q) =

{
v : ‖v‖

W
l, l2
p (Q)

:=
∑

2j+|α|≤[l]

[ ∫
Ω×[0,T ]

|Dj
tD

α
xv(x, t)|pdxdt

] 1
p

+Θl
∑

2j+|α|=[l]

[ ∫
Ω×Ω
×[0,T ]

∣∣〈Dj
tD

α
xv〉np+l−[l](x1, x2; t)

∣∣pdx1dx2dt
] 1
p

+Θ l
2

∑
0<l−2j−|α|<2

[ ∫
Ω×[0,T ]
×[0,T ]

∣∣〈Dj
tD

α
xv〉 1

p
+
l−2j−|α|

2

(x; t1, t2)
∣∣pdxdt1dt2] 1

p
<∞

}
.

Here α = (α1, . . . , αn) ∈ Nn is the multi-index with |α| = α1 + . . . + αn,
[l] is the greatest integer ≤ l and Θl = 0 and Θl = 1 in the cases of integer

17



l and non-integer l, respectively. We mention that in the case of integer l,
W l
p(Ω) is the usual Sobolev space of functions defined on Ω.

Furthermore, for any non-integer l > 0 we define the Hölder spaces

C l(Ω) =
{
v : Dαv ∈ C(Ω) for |α| ≤ [l],

‖v‖l :=
∑
|α|≤[l]

[
sup
x∈Ω
|Dαv(x)|+ sup

x1,x2∈Ω

∣∣〈Dαv〉l−[l](x1, x2)
∣∣ ]<∞},

C l,
l
2 (Q) =

{
v : Dj

tD
α
xv ∈ C(Q) for 2j + |α| ≤ [l],

‖v‖l, l
2

:=
∑

2j+|α|≤[l]

[
sup
(x,t)∈

Ω×[0,T ]

∣∣∣Dj
tD

α
xv(x, t)

∣∣∣+ sup
(x1,x2,t)∈
Ω×Ω×[0,T ]

∣∣∣〈Dj
tD

αv〉l−[l](x1, x2; t)
∣∣∣

+ sup
(x,t1,t2)∈

Ω×[0,T ]×[0,T ]

∣∣∣〈Dj
tD

αv〉 l−[l]
2

(x; t1, t2)
∣∣∣ ]<∞}.

The definitions of W
l, l

2
p and C l,

l
2 are in a standard manner extended from

Q to the boundary cylinder S (for details see [43]). For integer l ≥ 0 we
define

C2l,l(Q) = {v : Dj
tD

α
xv ∈ C(Q) for 2j + |α| ≤ 2l}.

Finally, we introduce specific notation related to comparison of real-
valued functions. Let U be an open subset or a closer of an open subset in
Rl, l ∈ N, and f, g : U → R. We write

f ≥ g in U if f(x) ≥ g(x) a.e. x ∈ U,

f > g in U if for any open set U1 such that U1 ⊆ U
there exists εU1

> 0 such that f ≥ g + εU1
in U1.

(1.8)
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2 SMOOTH PROBLEMS

In this chapter we will pose and study problems for (1.4) under the as-
sumption that this equation holds in the classical sense. The results with
some modifications are taken from Publication I.

The starting point is the following initial-boundary value problem

β[u+ µ ∗ u]t = Au−m ∗Au+ χ in Q, (2.1)

u = u0 in Ω× {0} , Bu = b in S , (2.2)

where u0, b are given functions, B is the boundary operator defined either
by

Bu = u (we call it case I) (2.3)

or by

Bu = ω · ∇u−m ∗ ω · ∇u (we call it case II), (2.4)

the operator ∇ stands for the gradient with respect to the vector of space
variables x ∈ Ω and ω(x) = (ω1(x), . . . , ωn(x)) is an x-dependent vector
satisfying the condition ω · ν > 0. We assume that ω ∈ (C1(Γ))n.

We define a number ϑ that depends on cases I and II as follows:

ϑ =

{
0 in case I
1 in case II.

This enables unified formulation of statements for direct and inverse prob-
lems in both cases (see e.g. Theorem 2.1).

Note that in case II the condition Bu = g is a generalized boundary
condition of the second kind. Indeed, if ωj =

∑n
i=1 aijνi then Bu = b takes

the form −q · ν = b. This is the physical flux condition.

Let us formulate the following inverse problems that use over-determined
final data at t = T of the solution of (2.1), (2.2) (an inverse free term prob-
lem and two inverse coefficient problems).

IP1: Let the free term be of the following form:

χ(x, t) = z(x)φ(x, t) + χ0(x, t). (2.5)

Given µ,m, β, aij , aj , a, u0, b, φ, χ0 and a function uT (x), x ∈ Ω, find z and
u so that the relations (2.1), (2.2), (2.5) and

u = uT in Ω× {T} (2.6)

hold.
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IP2: Let at = 0. Given µ,m, β, aij , aj , u0, b, χ and a function uT (x), x ∈ Ω,
find a and u so that the relations (2.1), (2.2) and (2.6) hold.

IP3: Given µ,m, aij , aj , a, u0, b, χ and a function uT (x), x ∈ Ω, find β and
u so that the relations (2.1), (2.2) and (2.6) hold.

It turns out that it is more convenient to treat the direct problem (2.1),
(2.2) in case the convolution is removed from the operator A. Let us trans-
form (2.1), (2.2) to such a form. Define the resolvent kernel m̂ of the kernel
m as the solution of the following Volterra integral equation:

m̂(t)−
∫ t

0
m(t− τ)m̂(τ)dτ = m(t), t ∈ (0, T ). (2.7)

It is well-known that in case m ∈ Lp(0, T ) with p > 1 the solution m̂ of(2.7)
exists, is unique and belongs to Lp(0, T ) (see e.g. [15]).

The equality (2.7) implies the following operator relation:

(I + m̂∗)(I −m∗) = I,

where I is the unity operator. Bringing the derivative with respect to t into
the integral µ∗u and applying the operator I+m̂ to the equation (2.1) and
the boundary condition (2.2) in case II we transform the relations (2.1),
(2.2) to the following form:

β(ut + k ∗ ut) = Au+ f in Q , u = u0 in Ω× {0} , B1u = g in S,(2.8)

where

k = µ+ µ ∗ m̂+ m̂, (2.9)

f = χ− βµu0 + m̂ ∗ (χ− βµu0), (2.10)

B1 = B , g = b in case I , (2.11)

B1u = ω · ∇u , g = b+ m̂ ∗ b in case II. (2.12)

Summing up, we can formulate the following lemma.

Lemma 2.1 In case all t-dependent data in (2.1) and (2.2) belong to the
space Lp(0, T ) with respect to t for any x with some p > 1, the problem
(2.1), (2.2) is equivalent to the problem (2.8) in a class of functions u such
that u, ut, uxi , uxi,xj belong to Lp(0, T ) with respect to t for any x.

2.1 Well-posedness results for direct problem

In present and the next section we prove existence, uniqueness, stability and
a positivity principle for the solution of the direct problem (2.8). These re-
sults are used in the study of inverse problems in the subsequent sections.
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To the author’s opinion, the positivity principle has a scientific value inde-
pendently of the inverse problems. Therefore, we try to prove it as generally
as we can. For that reason we allow the kernel k and the coefficients β, aij
and aj to depend both on the variables x and t in Sections 2.1 and 2.2.
This means that A has the form

A =
n∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

n∑
j=1

aj(x, t)
∂

∂xj
+ a(x, t), (2.13)

and the basic assumptions (1.6), (1.7) read

n∑
i,j=1

aijλiλj ≥ ε|λ|2 in Q for any λ ∈ Rn and some ε ∈ (0,∞), (2.14)

β ≥ β0 in Q with some β0 ∈ (0,∞). (2.15)

We start by formulating without a proof a technical lemma. It gives
two integral inequalities. Proofs of these inequalities are contained in Pub-
lication I, i.e. [27], p. 21 - 23.

Lemma 2.1 Define Qt = Ω × (0, t), t > 0. The following assertions are
valid.

(i) Let k ∈ L1(0, T ;L∞(Ω)) and v ∈ Lp(Q) with some p ∈ (1,∞). Then
k ∗ v ∈ Lp(Q) and

‖k ∗ v‖Lp(Qt) ≤
∫ t

0
‖k(·, t− τ)‖L∞(Ω)‖v‖Lp(Qτ )dτ, t ∈ (0, T ). (2.16)

(ii) Let k ∈ L
2

2−l (0, T ;C l(Ω)) and v ∈ C l,
l
2 (Q) with some l ∈ (0, 1). Then

k ∗ v ∈ C l,
l
2 (Q) and

‖k ∗ v‖
Cl,

l
2 (Qt)

≤ C0

[∫ t

0

{
‖k(·, t− τ)‖l ‖v‖

Cl,
l
2 (Qτ )

} 2
2−l
dτ

] 2−l
2

, (2.17)

t ∈ (0, T )

with some constant C0.

Now let us prove the existence, uniqueness and stability theorem for
the direct problem.

Theorem 2.1 Assume (2.14), (2.15). Then the following assertions are
valid.
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(i) Let β, aij , aj , a ∈ C(Q), k ∈ L1(0, T ;L∞(Ω)), f ∈ Lp(Q), u0 ∈

W
2− 2

p
p (Ω) and g ∈ W

2− 1
p
−ϑ,1− 1

2p
−ϑ

2
p (S) with some p ∈ (1,∞). More-

over, in case I let p 6= 3
2 and the consistency condition u0 = g hold in

Γ×{0} if p > 3
2 and in case II let p 6= 3 and the consistency condition

ω · ∇u0 = g hold in Γ × {0} if p > 3. Then the problem (2.8) has
a unique solution in the space W 2,1

p (Q). This solution satisfies the
estimate

‖u‖
W 2,1
p (Q)

≤ C1

{
‖f‖Lp(Q) + ‖u0‖

W
2− 2

p
p (Ω)

+ ‖g‖
W

2−ϑ− 1
p ,1−

ϑ
2−

1
2p

p (S)

}
,

(2.18)

where C1 is a constant depending on β, aij, aj, a and k.

(ii) Let β, aij , aj , a ∈ C l,
l
2 (Q) and k ∈ L

2
2−l (0, T ;C l(Ω)) with some l ∈

(0, 1). Moreover, let f ∈ C l,
l
2 (Q), u0 ∈ C2+l(Ω), g ∈ C2+l−ϑ,1+ l

2
−ϑ

2 (S)
and in case I the consistency conditions u0 = g, βgt = Au0 + f hold
in Γ× {0} and in case II the consistency condition ω · ∇u0 = g hold

in Γ × {0}. Then the solution of (2.8) belongs to C2+l,1+ l
2 (Q) and

satisfies the estimate

‖u‖2+l,1+ l
2
≤ C2

{
‖f‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ϑ,1+ l

2
−ϑ

2

}
(2.19)

with some constant C2 depending on β, aij, aj, a and k.

Proof. The assertions (i) and (ii) in the usual parabolic case when k = 0
were proved in [60]. The proof of the present theorem is based on the
Banach fixed point theorem considering the problem (2.8) as a perturbation
of the problem in case k = 0. The contraction is achieved in norms with
exponential weights.

Let us start with the assertion (i). By Theorem 5.4 in [60], under the
assumptions of (i) problem (2.8) in case k = 0 has a unique solution û in
the space W 2,1

p (Q). Thus, (2.8) for u ∈W 2,1
p (Q) in case k 6= 0 is equivalent

to the following problem for the difference v = u− û ∈W 2,1
p (Q):

βvt = Av − β(k ∗ (vt + ût)) in Q , v = 0 in Ω× {0} , B1v = 0 in S .
(2.20)

Let F stand for the operator that assigns to a function ψ the solution w of
the problem

βwt = Aw + ψ in Q , w = 0 in Ω× {0} , B1w = 0 in S . (2.21)

By Theorem 5.4 in [60], it holds F ∈ L (Lp(Q),W 2,1
p (Q)). On the other

hand, due to the properties of β and the assertion (i) of Lemma 2.1 we have
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β(k ∗ vt) ∈ Lp(Q) for any v ∈ W 2,1
p (Q). Consequently, the problem (2.20)

in W 2,1
p (Qt) is equivalent to the following fixed-point equation:

v = Fv + F û , where Fv = F (−β(k ∗ vt)) (2.22)

and F ∈ L (W 2,1
p (Q)).

Let t ∈ (0, T ) and define a cutting operator Pt by the formula

Ptv =

{
v in Qt
0 in Q \Qt

. Observing that Fv = FPtv in Qt and using (2.16)

we deduce the estimate

‖Fv‖
W 2,1
p (Qt)

= ‖F (β(k ∗ vt))‖W 2,1
p (Qt)

= ‖FPt(β(k ∗ vt))‖W 2,1
p (Qt)

≤ ‖FPt(β(k ∗ vt))‖W 2,1
p (Q)

≤ ‖F‖ ‖Pt(β(k ∗ vt))‖Lp(Q)

= ‖F‖ ‖β(k ∗ vt)‖Lp(Qt) ≤ C3

∫ t

0
‖k(·, t− τ)‖L∞(Ω)‖v‖W 2,1

p (Qτ )
dτ

with C3 = ‖F‖ ‖β‖C(Q). Now we define the weighted norms ‖v‖σ =

sup
0<t<T

e−σt‖v‖
W 2,1
p (Qt)

, σ > 0, in the space W 2,1
p (Q) and deduce the esti-

mate

‖Fv‖σ ≤ C3 sup
0<t<T

e−σt
∫ t

0
‖k(·, t− τ)‖L∞(Ω)‖v‖W 2,1

p (Qτ )
dτ (2.23)

= C3 sup
0<t<T

∫ t

0
e−σ(t−τ)‖k(·, t− τ)‖L∞(Ω)e

−στ‖v‖
W 2,1
p (Qτ )

dτ ≤ cσ‖v‖σ,

where cσ = C3

∫ T
0 e−στ‖k(·, τ)‖L∞(Ω)dτ . Since k ∈ L1(0, T ;L∞(Ω)), by the

dominated convergence theorem it holds cσ → 0 as σ → ∞. Thus, there
exists σ0 > 0 such that cσ0 <

1
2 . Consequently, (2.23) shows that F is a

contraction. We conclude that the equation (2.22), which is equivalent to
(2.8), has a unique solution in W 2,1

p (Q).
Further, from (2.22) and (2.23) we deduce

‖v‖σ0 ≤ ‖Fv‖σ0 + ‖F û‖σ0 ≤
1

2
(‖v‖σ0 + ‖û‖σ0).

This implies ‖v‖σ0 ≤ ‖û‖σ0 . Taking into account the equivalency relations
of norms e−σT ‖·‖0 ≤ ‖·‖σ ≤ ‖·‖0 = ‖·‖

W 2,1
p (Q)

we further have ‖v‖
W 2,1
p (Q)

≤
eσ0T ‖û‖

W 2,1
p (Q)

and by u = v+ û we get ‖u‖
W 2,1
p (Q)

≤ (1 + eσ0T )‖û‖
W 2,1
p (Q)

.

Recall that û is the solution of (2.8) in case k = 0. According to The-
orem 5.4 in [60], ‖û‖

W 2,1
p (Q)

is bounded by the right-hand side of (2.18).

Consequently, we obtain the estimate (2.18).
Secondly, we prove (ii). Here, in general words, we repeat the part

(i) of the proof, but in different spaces. Consider again the above-defined
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function û. By Theorem 4.9 in [60] it holds û ∈ C2+l,1+ l
2 (Q). This implies

that the problem (2.8) for u ∈ C2+l,1+ l
2 (Q) is equivalent to the problem

(2.20) for the difference v = u− û ∈ C2+l,1+ l
2 (Q).

Moreover, recall that F is the operator that assigns to an element ψ
the solution w of the problem (2.21). In order to guarantee that Fψ ∈
C2+l,1+ l

2 (Q), the element ψ must satisfy the consistency condition ψ = 0
in Γ × {0} in case I. To this end, let us define the following Banach space

(that is a subspace of C l,
l
2 (Q) in case I):

C
l, l

2
o (Q) = {ψ ∈ C l,

l
2 (Q) : ψ = 0 in Γ× {0} in case I}

with the norm ‖ψ‖
C
l, l2
o (Q)

= ‖ψ‖l, l
2
.

(2.24)

Due to Theorem 4.9 in [60], again, we have F ∈ L (C
l, l

2
o (Q), C2+l,1+ l

2 (Q)).
According to the assumed properties of β, k and the assertion (ii) of Lemma

2.1 we have β(k ∗ vt) ∈ C l,
l
2 (Q) for any v ∈ C2+l,1+ l

2 (Q). Moreover,

β(k ∗ vt) ∈ C
l, l

2
o (Q) for any v ∈ C2+l,1+ l

2 (Q), because the time convolution

is zero for t = 0. Now we see that the problem (2.8) for u ∈ C2+l,1+ l
2 (Q) is

equivalent to the fixed-point equation (2.22) for v = u− û ∈ C2+l,1+ l
2 (Q),

where F ∈ L (C2+l,1+ l
2 (Q)).

Let t ∈ (0, T ) and define a continuation operator P̃t by the formula

P̃tv(x, τ) =

{
v(x, τ) for (x, τ) ∈ Qt
v(x, t) for (x, τ) ∈ Q \Qt

. Then, it hold ‖P̃tv‖l, l
2

=

‖v‖
Cl,

l
2 (Qt)

and Fv = FP̃tv in Qt. Thus, using (2.17) we obtain

‖Fv‖
C2+l,1+ l

2 (Qt)
= ‖F (β(k ∗ vt))‖

C2+l,1+ l
2 (Qt)

= ‖FP̃t(β(k ∗ vt))‖
C2+l,1+ l

2 (Qt)
≤ ‖FP̃t(β(k ∗ vt))‖2+l,1+ l

2

≤ ‖F‖ ‖P̃t(β(k ∗ vt))‖l, l
2

= ‖F‖ ‖β(k ∗ vt)‖
Cl,

l
2 (Qt)

≤ C4

[∫ t
0

{
‖k(·, t− τ)‖l ‖v‖

C2+l,1+ l
2 (Qτ )

} 2
2−l
dτ

] 2−l
2

,

where C4 = C0‖F‖‖β‖l, l
2
. Defining the weighted norms ‖w‖σ
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= sup
0<t<T

e−σt‖w‖
C2+l,1+ l

2 (Qt)
, σ > 0, in the space C2+l,1+ l

2 (Q), we deduce

‖Fv‖σ ≤ C4 sup
0<t<T

e−σt
[∫ t

0

{
‖k(·, t− τ)‖l‖v‖

C2+l,1+ l
2 (Qτ )

} 2
2−l
dτ
] 2−l

2

= C4 sup
0<t<T

[∫ t

0

{
e−σ(t−τ)‖k(·, t− τ)‖l

×e−στ‖v‖
C2+l,1+ l

2 (Qτ )

} 2
2−l
dτ
] 2−l

2

≤ C4

[∫ T

0

{
e−στ‖k(·, t− τ)‖l

} 2
2−l dτ

] 2−l
2

‖v‖σ.

Since k ∈ L
2

2−l (0, T ;C l(Ω)), by the dominated convergence theorem, the

coefficient
[∫ T

0 {e
−στ‖k(·, t− τ)‖l}

2
2−l dτ

] 2−l
2

is small for large σ. Owing to

this, the proof can be finished as in case (i) making use of the fixed-point
argument and an estimate for ‖û‖2+l,1+ l

2
in Theorem 4.9 of [60].

2.2 Positivity principle

In this section we prove a positivity principle for the solution of (2.8).

Theorem 2.2 Assume (2.14), (2.15), k ∈W 1
1 (0, T ;L∞(Ω)), β, aij , aj , a ∈

C(Q) and

k ≥ 0, kt ≤ 0. (2.25)

Let u ∈ W 2,1
p (Q) with some p ∈ (1,∞) solve the problem (2.8) and

u0 ≥ 0, g ≥ 0, f ≥ 0. Then the following assertions are valid:

(i) u ≥ 0;

(ii) if, in addition, β, aij , aj , a ∈ C l,
l
2 (Q) with some l ∈ (0, 1) and there

exists an open subset Qf of Q such that f > 0 in Qf , then u(·, T ) > 0
in Ω in case I and u(·, T ) > 0 in Ω in case II.

Proof. It consists of 4 steps.

1. step. We prove the assertion (i) under the additional assumptions

u ∈ C2,1(Q), k ∈W 1
1 (0, T ;C(Ω)), a ≤ 0. (2.26)

Since u = u0 ≥ 0 in Ω× {0}, there exists

t0 = sup{t : u(x, τ) ≥ 0 for (x, τ) ∈ Ω× [0, t], 0 ≤ t ≤ T}.
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In case the assertion u ≥ 0 holds in Q, we have t0 = T. Suppose on the
contrary that t0 < T. Then, we fix some h ∈ (0, T − t0] and define the set
Vt0,h = Ω×(t0, t0+h]. Note that the closure of Vt0,h is Vt0,h = Ω×[t0, t0+h].
By the definition of t0 and Vt0,h, there exists (x∗h, t

∗
h) ∈ Vt0,h such that

u(x∗h, t
∗
h) < 0. Let us introduce the following function:

v(x, t) = u(x, t) + µh(t− t0 − h), where µh = −
u(x∗h, t

∗
h)

2h
> 0. (2.27)

Since −µhh ≤ µh(t− t0 − h) ≤ 0 for t ∈ [t0, t0 + h], we have

u(x, t)− µhh ≤ v(x, t) ≤ u(x, t) for (x, t) ∈ Vt0,h. (2.28)

Observing (2.28), the definition of µh and the inequality u(x∗h, t
∗
h) < 0, we

see that for all (x, t) ∈ Vt0,h such that u(x, t) ≥ 0, the relations

v(x, t) ≥ u(x, t)− µhh ≥ −µhh =
u(x∗h, t

∗
h)

2
> u(x∗h, t

∗
h) ≥ v(x∗h, t

∗
h)

are valid. They imply that

function v cannot attain its minimum over Vt0,h

in a point (x, t) where u(x, t) ≥ 0.
(2.29)

In particular, (2.29) implies that v cannot attain its minimum over Vt0,h
on the subset Vt0,h \ Vt0,h = Ω × {t0}, because there u ≥ 0 in view of the
definition of t0. Therefore,

∃(xh, th) ∈ Vt0,h : v(xh, th) ≤ v(x, t) for all (x, t) ∈ Vt0,h .

Moreover, v(xh, th) < 0, because v(xh, th) ≤ v(x∗h, t
∗
h) ≤ u(x∗h, t

∗
h) and

u(x∗h, t
∗
h) < 0.

Let us show that x = xh is the stationary minimum point of the x-
dependent function v(x, th), i.e.

∇v(xh, th) = 0 . (2.30)

This relation may fail only in case the minimum occurs in the lateral bound-
ary of Vt0,h, i.e. when xh ∈ Γ. In case I we have u = g ≥ 0 for x ∈ Γ and, by
statement (2.29), xh cannot belong to Γ. Thus, it remains to show (2.30)
for the case II when xh ∈ Γ. In this case ω · ∇v = ω · ∇u = g in Γ. Note
that then the inequality g(xh, th) > 0 cannot hold, because otherwise v is
strictly decreasing in the inner direction −ω(xh) at (xh, th) which implies
that v(xh, th) cannot be the minimum of v. Consequently, due to the as-
sumption g ≥ 0, it holds g(xh, th) = 0 and we have ω(xh) · ∇v(xh, th) = 0.
In addition, in case n ≥ 2 we also have τ · ∇v(xh, th) = 0, where τ is an
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arbitrary tangential direction of Γ at xh, because x = xh is the minimum
point of the x-dependent function v(x, th) over the set Γ. Summing up,
ξ · ∇v(xh, th) = 0, where ξ is any direction. We obtain (2.30).

Now we are going to estimate the operator Lu = β(ut + k ∗ ut) − Au
of the equation (2.8) termwise at the point (x, t) = (xh, th). By (2.27)
we have ut(xh, th) = vt(xh, th) − µh. Since th is the minimum point of
the t−dependent function v(xh, t) in the half-interval (t0, t0 + h], it holds
vt(xh, th) ≤ 0. Thus, we obtain

ut(xh, th) ≤ −µh. (2.31)

Substituting u by v − µh(t − t0 − h) in the right-hand side of (2.13) we

have Au =
N∑

i,j=1
aijvxixj +

n∑
j=1

ajvxj + a[v − µh(t − t0−h)]. Since x = xh

is the stationary minimum point of v(x, th) and the principal part of A is

elliptic (see (2.14)), the relations
n∑
j=1

ajvxj and
n∑

i,j=1
aijvxixj ≥ 0 are valid at

(x, t) = (xh, th). Thus, −Au(xh, th) ≤ a(xh, th)[µh(th − t0 − h)− v(xh, th)].
By the additional assumption a ≤ 0 and and the inequality v(xh, th) < 0
we further get −Au(xh, th) ≤ a(xh, th)µh(th−t0−h). Since |th−t0−h| ≤ h
we deduce the estimate

−Au(xh, th) ≤ C5µhh , (2.32)

where C5 = ‖a‖C(Q).

Finally, we estimate the term (k ∗ ut)(xh, th) in Lu(xh, th). Integrating
by parts we have

∫ th

0
k(xh, th − τ)uτ (xh, τ)dτ = k(xh, 0)u(xh, th)− k(xh, th)u0(xh)

+

∫ t0

0
kt(xh, th − τ)u(xh, τ)dτ +

∫ th

t0

kt(xh, th − τ)u(xh, τ)dτ.

Here −k(xh, th)u0(xh) ≤ 0 and
∫ t0

0 kt(xh, th − τ)u(xh, τ)dτ ≤ 0, because
k ≥ 0, kt ≤ 0, u0 ≥ 0 and u(xh, τ) ≥ 0 for τ ∈ [0, t0] by the definition of t0.
Consequently, we can estimate as follows:

∫ th

0
k(xh, th−τ)uτ (xh, τ)dτ ≤ k(xh,0)u(xh, th)+

∫ th

t0

kt(xh, th−τ)u(xh, τ)dτ.
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Substituting in the right-hand side u(xh, t) by v(xh, t)− µh(t− t0 − h), we
get∫ th

0
k(xh, th − τ)uτ (xh, τ)dτ (2.33)

≤ k(xh, 0)v(xh, th) +

∫ th

t0

kt(xh, th − τ)v(xh, τ)dτ −

−µh
[
k(xh, 0)(th − t0 − h) +

∫ th

t0

kt(xh, th − τ)(τ − t0 − h)dτ

]
.

In this relation we analyze separately the term
∫ th
t0
kt(xh, th − τ)v(xh, τ)dτ.

To this end, introduce the following subsets of [t0, th] :

U+
h = {τ ∈ [t0, th] : v(xh, τ) ≥ 0}, U−h = {τ ∈ [t0, th] : v(xh, τ) < 0}.

Taking account of kt ≤ 0 and the fact that v(xh, th) < 0 is the minimum of
v(xh, t) on the interval [t0, th], we deduce∫ th

t0

kt(xh, th − τ)v(xh, τ)dτ

=

∫
U+
h

kt(xh, th − τ)v(xh, τ)dτ +

∫
U−h

kt(xh, th − τ)v(xh, τ)dτ

≤
∫
U−h

kt(xh, th − τ)v(xh, τ)dτ ≤
∫
U−h

kt(xh, th − τ)dτ · v(xh, th)

≤
∫ th

t0

kt(xh, th − τ)dτ · v(xh, th) = (k(xh, th − t0)− k(xh, 0)) v(xh, th).

Using this estimate in (2.33) and taking into account k ≥ 0, v(xh, th) < 0
we obtain∫ th

0
k(xh, th − τ)uτ (xh, τ)dτ ≤ k(xh, 0)v(xh, th)

+ (k(xh, th − t0)− k(xh, 0)) v(xh, th)

−µh
[
k(xh, 0)(th − t0 − h) +

∫ th

t0

kt(xh, th − τ)(τ − t0 − h)dτ

]
≤ −µh

[
k(xh, 0)(th − t0 − h) +

∫ th

t0

kt(xh, th − τ)(τ − t0 − h)dτ

]
.

(2.34)

Let us put all pieces together. Making use of (2.31), (2.32), (2.34),
the assumption (2.15) and the relations µh > 0 and |τ − t0 − h| ≤ h for
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τ ∈ [t0, th] we obtain

Lu(xh, th) ≤ µh

{
−β(xh, th)− β(xh, th)

[
k(xh, 0)(th − t0 − h)

+

∫ th

t0

kt(xh, th − τ)(τ − t0 − h)dτ
]
+C5h

}
≤ µh

{
−β0 + h

(
‖β‖C(Q)

[
k(xh, 0) + ‖kt‖L1(0,T ;C(Ω))

]
+ C5

)}
.

In case h > 0 is sufficiently small, due to the inequalities µh > 0 and β0 > 0
the relation Lu(xh, th) < 0 holds. But this contradicts to the assumption
Lu = f ≥ 0. Consequently, the supposition t0 < T was not right. It holds
t0 = T, which by the definition of t0 implies u ≥ 0.

2. step. We prove the assertion (i) under the additional assumptions

u ∈ C2,1(Q), k ∈W 1
1 (0, T ;C(Ω)), u0 = 0. (2.35)

Let us define ũ = e−σtu, where σ =
‖a‖C(Q)

β0
and insert u = eσtũ to the

equation (2.8). Expressing the t-derivative as follows: ut = eσtũt + σeσtũ
and dividing the equation by eσt we obtain

β
(
ũt + σũ+ e−σtk ∗ [eσtũt + σeσtũ]

)
= Aũ+ e−σtf. (2.36)

Let us transform the term with k in this equation:

e−σtk ∗ [eσtũt + σeσtũ]

=

∫ t

0
e−σ(t−τ)k(x, t− τ)ũτ (x, τ)dτ + σ

∫ t

0
e−σ(t−τ)k(x, t− τ)ũ(x, τ)dτ

=

∫ t

0
e−σ(t−τ)k(x, t− τ)ũτ (x, τ)dτ + σ

∫ t

0

∫ t−τ

0
e−σηk(η)dη ũτ (x, τ)dτ

= k̃ ∗ ũt,

where k̃(x, t) = e−σtk(x, t) + σ
∫ t

0 e
−σηk(x, η)dη. Here we used the relation

ũ(·, 0) = u0 = 0 during the integration by parts.
Thus, the equation (2.36) takes the form β(ũt+ k̃ ∗ ũt) = Ãũ+ f̃ , where

f̃ = e−σtf , Ãũ =
n∑

i,j=1
aij ũxixj +

n∑
j=1

aj ũxj + ãũ and ã = a− σβ.

Summing up, ũ solves the problem

β(ũt + k̃ ∗ ũt) = Ãũ+ f̃ in Q , ũ = 0 in Ω× {0} , B1ũ = g̃ in S,

where g̃ = e−σtg. Since k ∈ W 1
1 (0, T ;C(Ω)), it holds k̃ ∈ W 1

1 (0, T ;C(Ω)).

The inequalities (2.25) yield k̃ ≥ 0, k̃t ≤ 0. Moreover, f̃ ≥ 0, g̃ ≥ 0, and
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due to the choice of σ and the condition (2.15), it holds ã ≤ 0. By means
of the part 1 of the proof, we get ũ ≥ 0. This implies u ≥ 0.

3. step. We prove the assertion (i) in the general case. It is enough to
prove this assertion for p ∈ (1, 3

2). Indeed, a solution u of (2.8) that belongs

to the space W 2,1
p (Q) for some p ∈ [3

2 ,∞) belongs to such a space for any

p ∈ (1, 3
2), too. Operating with solutions in W 2,1

p (Q), p ∈ (1, 3
2), we have

not to deal with consistency conditions.
Let us formulate two problems:

βūt = (A− k(·, 0)β)ū in Q , ū = u0 in Ω× {0} , B1ū = g in S, (2.37)

β(ũt + k ∗ ũt) = Aũ+ fū in Q , ũ = 0 in Ω× {0} , B1ũ = 0 in S, (2.38)

where fū = f − β(kt ∗ ū) + βku0.
Firstly, we establish the existence of solutions of these problems. Due

to u ∈ W 2,1
p (Q) and embedding theorems [43] we have u0 = u|Ω×{0} ∈

W
2− 2

p
p (Ω) and g = B1u|S ∈W

2− 1
p
−ϑ,1− 1

2p
−ϑ

2
p (S). Since k ∈W 1

1 (0, T ;L∞(Ω))
and β ∈ C(Q), the coefficient of the lower order term k(·, 0)β of the
parabolic equation in (2.37) belongs to L∞(Q). Using Theorem 5.4 in
[60] we conclude that problem (2.37) has a unique solution ū ∈ W 2,1

p (Q).
Further, due to β ∈ C(Q), k ∈ W 1

1 (0, T ;L∞(Ω)) ⊂ L∞(Q) and u0 ∈

W
2− 2

p
p (Ω) ⊂ Lp(Ω) we have βku0 ∈ Lp(Q). Moreover, in view of kt ∈

L1(0, T ;L∞(Ω)), ū ∈ W 2,1
p (Q) ⊂ Lp(Q) and the Young’s theorem for con-

volutions, we get kt ∗ ū ∈ Lp(Q), which implies β(kt ∗ ū) ∈ Lp(Q)). Con-
sequently, due to f ∈ Lp(Q) we obtain fū ∈ Lp(Q). By Theorem 2.1 (i),
problem (2.38) has a unique solution ũ ∈W 2,1

p (Q).
Adding the problems (2.37) and (2.38) and integrating by parts the

convolution term in fū, we see that the sum ū+ ũ solves (2.8). Hence, by
the uniqueness, it holds u = ū+ ũ. According to the well-known extremum
principle for parabolic equations (e.g. [43] Ch. 3, Theorem 7.2), we have
ū ≥ 0. This together with the assumptions of theorem implies fū ≥ 0. In
order to complete the step 3 it remains to show that ũ ≥ 0.

The idea to prove ũ ≥ 0 consists in approximation of the problem (2.38)
by a sequence of smooth problems and applying the result of step 2 to latter
ones. Let us choose some functions βm, amij , a

m
j , a

m, f̂m, k̂m ∈ C∞(Q) such
that

‖βm − β‖C(Q), ‖a
m
ij − aij‖C(Q), ‖a

m
j − aj‖C(Q), ‖a

m − a‖C(Q),

‖f̂m − fū‖Lp(Q), ‖k̂m − k‖W 1
1 (0,T ;L∞(Ω)) → 0 as m→∞

(2.39)

and f̂m = 0 in Γ× {0}. Due to (2.39), for sufficiently large m ≥Mε,β0 the

relations max
i,j
‖amij−aij‖C(Q) ≤

ε
2n and ‖βm−β‖C(Q) ≤

β0

2 are valid. There-

fore, from (2.14) and (2.15) we get the following ellipticity and positivity
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inequalities for the matrix amij and the coefficient βm in case m ≥Mε,β0 :

n∑
i,j=1

amij (x, t)λiλj ≥ ε
2 |λ|

2 for any x ∈ Ω, t ∈ (0, T ), λ ∈ Rn ,

βm(x, t) ≥ β0

2 for any x ∈ Ω, t ∈ (0, T ).

Further, on the basis of f̂m, let us define the nonnegative approximation

fm(x, t) = |f̂m(x,t)|+f̂m(x,t)
2 for the function fū. Due to fū ≥ 0 the inequality

|fm − fū| ≤ |f̂m − fū| holds. Therefore, in view of (2.39) we obtain

‖fm − fū‖Lp(Q) ≤ ‖f̂m − fū‖Lp(Q) → 0 as m→∞. (2.40)

The operation of taking the absolute value preserves the Hölder-continuity

of a function. Therefore, fm ∈ C l,
l
2 (Q) for any l ∈ (0, 1). The relation

f̂m = 0 in Γ× {0} yields fm = 0 in Γ× {0}.
Finally, on the basis of k̂m we define the new approximation for k:

km(x, t) =
∫ t
T κm(x, τ)dτ + qm(x),

where κm(x, t) =
k̂mt (x,t)−|k̂mt (x,t)|

2 and qm(x) = |k̂m(x,T )|+k̂m(x,T )
2 . Then

km ∈ W 1
1 (0, T ;C l(Ω)) for any l ∈ (0, 1) and km ≥ 0, kmt ≤ 0. Moreover,

since kt ≤ 0 and k ≥ 0, we obtain |κm − kt| ≤ |k̂mt − kt| and |qm −
k(·, T )| ≤ |k̂m(·, T ) − k(·, T )|. Observing these inequalities, the relation
k(x, t) =

∫ t
T kτ (x, τ)dτ + k(x, T ) and (2.39) we deduce

‖km − k‖L1(0,T ;L∞(Ω))

≤
∫ T

0 ess sup
x∈Ω

[∫ T
t |κ

m(x, τ)− kτ (x, τ)|dτ + |qm(x)− k(x, T )|
]
dt

≤ T
[
‖k̂mt − kt‖L1(0,T ;L∞(Ω)) + ‖k̂m(·, T )− k(·, T )‖L∞(Ω)

]
→ 0

as m→∞.

(2.41)

Now let us formulate the following sequence of approximating problems
for (2.38):

βm(umt + km ∗ umt ) = Amum + fm in Q ,

um = 0 in Ω× {0} , B1u
m = 0 in S,

(2.42)

where Amv =
n∑

i,j=1
amij vxixj+

n∑
j=1

amj vxj+a
mv. Observing the proved regular-

ity of the data of these problems and Theorem 2.1 (ii) we conclude that for

each integer m ≥Mε,β0 , (2.42) has the unique solution um ∈ C2+l,1+ l
2 (Q).

31



Subtracting (2.38) from (2.42) we obtain the following problems for the
differences vm = um − ũ:

β(vmt + k ∗ vmt ) = Avm + φm in Q , vm= 0 in Ω× {0} , B1v
m= 0 in S

where

φm = (Am −A)(vm + ũ)− (βm − β)[vmt + ũt + k ∗ (vmt + ũt)]

−(β + βm − β)[(km − k) ∗ (vmt + ũt)] + fm − fū.

Using the estimate (2.18) and the Young’s inequality for convolutions we
deduce

‖vm‖
W 2,1
p (Q)

≤ C1‖φm‖Lp(Q) ≤ C1‖fm − fū‖Lp(Q)

+C̃(m)(‖vm‖
W 2,1
p (Q)

+ ‖ũ‖
W 2,1
p (Q)

), where

C̃(m) = C6

[
‖amij − aij‖(C(Q))n×n + ‖amj − aj‖(C(Q))n + ‖am − a‖C(Q)

+‖βm − β‖C(Q) + (‖β‖C(Q) + ‖βm − β‖C(Q))‖km − k‖L1(0,T ;L∞(Ω))

]
and C6 is a constant independent of m. By virtue of (2.39) and (2.41)

we have C̃(m) → 0 as m → ∞. Hence, there exists M̃ ≥ Mε,β0 such

that C̃(m) ≤ 1
2 for m ≥ M̃ . We get ‖vm‖

W 2,1
p (Q)

≤ 2C1‖fm − fū‖Lp(Q) +

2C̃(m)‖ũ‖
W 2,1
p (Q)

for m ≥ M̃ . This in view of (2.40) implies

‖vm‖
W 2,1
p (Q)

= ‖um − ũ‖
W 2,1
p (Q)

→ 0 as m→∞. (2.43)

Recall that fm ≥ 0, km ≥ 0 and kmt ≤ 0. Thus, according to step 2 of the
proof, the solution of the problem (2.42) satisfies um ≥ 0. This with (2.43)
implies ũ ≥ 0. This yields u ≥ 0. Step 3 is completed. The assertion (i) of
the theorem is proved.

4. step. We prove (ii). According to (1.8), there exists an open ball
U ⊂ Qf and ε > 0 such that f ≥ ε in U . We can choose some f † ∈ C∞(Q)
so that f † = 0 in Q \ U and 0 < f † ≤ ε

2 in U . (For instance, we can set

f †(y) = ε
2e
− |y−y0|

2

ρ2−|y−y0|2 in U , where y = (x, t) and y0 and ρ are the center
and the radius of the ball U , respectively.) Then f † ≤ f in Q.

Further, let us define ck = ess sup
x∈Ω

k(x, 0) and formulate the following

problems:

βu†t = (A− ckβ)u† + f † in Q, u† = 0 in Ω× {0}, B1u
† = 0 in S, (2.44)

β(ût + k ∗ ût) = Aû+ f̂u† in Q, û = u0 in Ω× {0}, B1û = g in S, (2.45)

where f̂u† = f − f † − β(kt ∗ u†) + β(ck − k(·, 0))u†. By Theorem 2.1 (ii),

problem (2.44) has a unique solution u† ∈ C2+l,1+ l
2 (Q). Observing that
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f † ≥ 0 in Q and f † > 0 in U and using the well-known strong extremum
principles for parabolic equations (see e.g. Theorem 6.1.1 (ii) in [20]), we
obtain the relation

u†(·, T ) > 0 in Ω (Ω) in case I (II). (2.46)

As in step 3 we assume without restriction of generality that p ∈ (1, 3
2).

The components f †, β, u† of the function f̂u† are continuous in Q. Moreover,
kt ∈ L1(0, T ;L∞(Ω)), k(·, 0) ∈ L∞(Ω) and f ∈ Lp(Q). Thus, we have f̂u† ∈
Lp(Q). Moreover, as in step 3 we can show (by embedding theorems) that

u0 ∈ W
2− 2

p
p (Ω) and g ∈ W

2− 1
p
−ϑ,1− 1

2p
−ϑ

2
p (S). Therefore, due to Theorem

2.1 (i) the problem (2.45) has a unique solution û ∈ W 2,1
p (Q). Because

of f − f † ≥ 0, β > 0, kt ≤ 0, u† ≥ 0, ck − k(·, 0) ≥ 0 we have f̂u† ≥ 0.
Moreover, u0, g ≥ 0. Thus, the part (i) of the present theorem yields û ≥ 0.

Adding (2.44) and (2.45) and integrating by parts the term kt ∗ u† we
see that the function u† + û solves the problem (2.8). By uniqueness we
get u = u† + û. The relations (2.46) and û ≥ 0 imply the assertion (ii).
Theorem is completely proved

Remark 2.1 For k, depending only on t, the assumptions (2.25) read

k ∈W 1
1 (0, T ) , k ≥ 0 , k′ ≤ 0. (2.47)

A natural question is: which sufficient conditions should satisfy the original
relaxation kernels m and µ in order to guarantee (2.47)?

The simplest particular case occurs when m = 0. Then µ = k and the
conditions for k and µ coincide. In general case, let us firstly assume that
m,µ ∈ W 1

1 (0, T ) and m,µ ≥ 0. Then m ∈ C[0, T ] and the solution m̂
of (2.7) also belongs to C[0, T ] (see e.g. [15]). From (2.7) we deduce the
following relations for m̂ and its derivative:

m̂ = m ∗ m̂+m, m̂′ = m′ ∗ m̂+m(0)m̂+m′. (2.48)

Since m′ ∈ L1(0, T ) and m ∈ C[0, T ], the right-hand side of the second
equality in (2.48) belongs to L1(0, T ). Therefore, m̂ ∈ W 1

1 (0, T ). Iterating
the first relation in (2.48) we get the representation of m̂ in the form of
the Neumann series: m̂ =

∑∞
i=0m(∗m)i that converges in C[0, T ]. Due to

m ≥ 0, this series is nonnegative, hence m̂ ≥ 0. From (2.9) in view of µ, m̂ ∈
W 1

1 (0, T ), µ, m̂ ≥ 0 we obtain the desired relations k ∈W 1
1 (0, T ), k ≥ 0. It

remains to deduce sufficient conditions for the relation k′ ≤ 0. To this end,
let us perform the following computations. Observing (2.48) we substitute
the last addend m̂ in (2.9) by m ∗ m̂+m to get k = m+ µ+ (m+ µ) ∗ m̂.
Then we differentiate: k′ = m′ + µ′ + (m′ + µ′) ∗ m̂ + (m(0) + µ(0))m̂.
Substituting the term m̂ in the last addend again by m ∗ m̂+m we finally
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obtain k′ = l + l ∗ m̂, where l = m′ + µ′ + (m(0) + µ(0))m. Since m̂ ≥ 0,
the sufficient condition for k′ ≤ 0 is l ≤ 0. Summing up, the sufficient
conditions for (2.47) in terms of the original kernels m and µ are

m,µ ∈W 1
1 (0, T ), m, µ ≥ 0 , m′ + µ′ ≤ −(m(0) + µ(0))m. (2.49)

For instance, the widely used exponential kernels m(t) =
∑N

i=1 αie
−γit,

µ(t) =
∑N

i=1 βie
−γit satisfy the conditions (2.49) provided αi, βi ≥ 0, γi ≥

αi
αi+βi

∑N
j=1(αj + βj), i = 1, . . . , N .

2.3 Results for IP1

From now on, let the coefficients β, aij , aj depend only on x and k depend
only on t.

Due to Lemma 2.1, IP1 is in the class of pairs (z, u) of functions, whose
second component u together with its derivatives ut, uxi , uxixj belongs to
Lp(0, T ), p > 1, for any x, equivalent to the following inverse problem:

β(ut + k ∗ ut) = Au+ zr + f0 in Q,

u = u0 in Ω× {0}, B1u = g in S,
(2.50)

u = uT in Ω× {T}, (2.51)

where B1, g are given by (2.11), (2.12) and

r = φ+ m̂ ∗ φ , f0 = χ0 − βµu0 + m̂ ∗ (χ0 − βµu0). (2.52)

We continue to study the problem (2.50), (2.51).

2.3.1 Uniqueness

Firstly, we formulate a technical result.

Lemma 2.2 Let (1.6), (1.7) hold. Assume β ∈ C l(Ω) with some l ∈
(0, 1), aij , aj ∈ C(Ω), a ∈ C(Q), at ∈ Lp(Q), k ∈ Lp(0, T ) with some

p ∈ (1,min{3
2 ,

2
2−l}) and the problem (2.8) has a solution u ∈ W 2,1

p (Q)
such that B1u is continuous in a neighborhood of Γ × {0}. If ft ∈ Lp(Q),

u0 ∈ W 2
p (Ω), A(0)u0 + f(·, 0) ∈ W

2− 2
p

p (Ω) and gt ∈ W
2− 1

p
−ϑ,1− 1

2p
−ϑ

2
p (S)

then ut ∈W 2,1
p (Q).

This lemma is proved in Publication I, i.e. [27], p. 30-31.

Now we formulate a uniqueness theorem for the inverse problem (2.50),
(2.51).
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Theorem 2.3 Let (1.6), (1.7), (2.47) hold and β, aij , aj ∈ C l(Ω), a ∈
C l,

l
2 (Q), at ∈ Lp(Q) with some l ∈ (0, 1), p ∈ (1,∞). Moreover, let at ≥ 0

in Q, r ∈ C l,
l
2 (Q), rt ∈ Lp(Q) and

r ≥ 0 , rt + k ∗ rt − θr ≥ 0 in Q, (2.53)

where

θ = sup
x∈Ω

a(x,T )
β(x) . (2.54)

Finally, assume that

for all x ∈ Ω there exists an open subset Qx of Q such that
∃tx ∈ (0, T ) : (x, tx) ∈ Qx and rt + k ∗ rt − θr > 0 in Qx.

(2.55)

If (z, u) ∈ C l(Ω) × C2+l,1+ l
2 (Q) solves (2.50), (2.51) and f0, u0, g, uT = 0

then z = 0, u = 0.

Before proving this theorem we formulate and prove an additional technical
lemma.

Lemma 2.3 Under the assumptions of Theorem 2.3 the following assertion
is valid:

for all x ∈ Ω there exists an open subset Q̂x of Q such that

(x, tx) ∈ Q̂x and r > 0 in Q̂x.
(2.56)

Proof. Denote q = rt + k ∗ rt− θr. Integrating by parts the term k ∗ rt we
can transform this equality to the following ordinary differential equation
for r: rt + (k(0)− θ)r = r(x, 0)k − k′ ∗ r + q. The solution is

r = r(x, 0)e(θ−k(0))t + e(θ−k(0))t ∗ [r(x, 0)k − k′ ∗ r] + e(θ−k(0))t ∗ q. (2.57)

Let x be an arbitrary point in Ω. We can choose an open cylinder Q̂x = U×
(t1, t̃1) ⊂ Qx such that (x, tx) ∈ Q̂x. Due to (2.47), the continuity of r and
the inequality r ≥ 0 the first two addends in the right-hand side of (2.57)
are continuous nonnegative functions. Thus, r(y, t) ≥ e(θ−k(0))t ∗ q(y, t) for
any (y, t) ∈ Qx. According to the assumptions (2.53), (2.55) and (1.8) it
holds q ≥ 0 in Q and there exists ε > 0 such that q ≥ ε in Q̂x. Inside the
equivalence class corresponding to q, we can choose such a q that satisfies
q(y, t) ≥ 0 for any (y, t) ∈ Q and q(y, t) ≥ ε for any (y, t) ∈ Q̂x. Now for
any (y, t) ∈ Q̂x we estimate

r(y, t) ≥ e(θ−k(0))t ∗ q(y, t) =
∫ t

0 e
(θ−k(0))(t−τ)q(y, τ)dτ

≥
∫ t
t1
e(θ−k(0))(t−τ)q(y, τ)dτ ≥ min{1 ; e(θ−k(0))(t−t1)}ε · (t− t1).

35



This yields (2.56).

Proof of Theorem 2.3. The proof develops further a method that was
previously applied for usual parabolic inverse problems with final over-
determination in [21].

Suppose contrary that z 6= 0 and define z+ = |z|+z
2 , z− = |z|−z

2 . Note
that z± ∈ C l(Ω). (The operation of taking absolute value preserves the
Hölder-continuity of a function.) Firstly, let us show that

z+ 6= 0 and z− 6= 0. (2.58)

Let z− = 0. Then z = z+ ≥ 0 and zr ≥ 0. Moreover, by the supposition
z 6= 0 and the continuity of z there exists an open ball U in Ω such that
z > 0 in U . Let us choose some x1 ∈ U . Then, by virtue of (2.56) it holds
zr > 0 in the open set [U × (0, T )] ∩ Q̂x1 of Q. Observing the assumptions
f0, u0, g = 0 and applying Theorem 2.2 to the solution u of the problem
(2.50) we get u(x, T ) > 0, x ∈ Ω. But this contradicts to the assumption
uT = 0. Similarly, we reach the contradiction in case z+ = 0 making use of
Theorem 2.2 for −u.

Further, let us formulate the following problems for u±:

β(u±t + k ∗ u±t ) = Au± + z±r in Q, u± = 0 in Ω× {0}, B1u
± = 0 in S.

(2.59)
By virtue of the assumptions, the free term of (2.59) has the smoothness

property z±r ∈ C l,
l
2 (Q). In order to apply Theorem 2.1 (ii) to the problem

(2.59), it remains to show the consistency condition z±r = 0 in Γ × {0}
in case I. Due to u ∈ C2+l,1+ l

2 (Q), the equation in (2.50) can be extended
to Γ × {0}. In case I this implies the relation gt = Au0 + zr + f0, and
by g, u0, f0 = 0 the equality zr = 0 in Γ × {0}. Since the null-set of
z± is larger than the null-set of z, we get the desired relation z±r = 0 in
Γ×{0}. Consequently, by Theorem 2.1 (ii) problems (2.59) have the unique

solutions u± ∈ C2+l,1+ l
2 (Q).

Next step is to prove the following inequalities:

u± ≥ 0 , u±(·, T ) > 0 in Ω (Ω) in case I (II), (2.60)

u±t +k ∗u±t −θu± ≥ 0, (u±t +k ∗u±t −θu±)(·, T ) > 0 in Ω (Ω) in case I (II).
(2.61)

By z± ≥ 0 and (2.53) we have z±r ≥ 0. Moreover, since z± are continuous
and non-vanishing (see (2.58)), there exist open balls U± of Ω such that
z± > 0 in U±. Let us choose some x± ∈ U±. By virtue of (2.56) it holds
z±r > 0 in the open subsets [U± × (0, T )] ∩ Q̂x± of Q. Using Theorem 2.2
for solutions of problems (2.59) we immediately obtain (2.60).

Let us prove (2.61). Assume without restriction of generality that
p ∈ (1,min{3

2 ; 2
2−l}). Then the assumptions of Lemma 2.2 are satisfied
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for the solutions u± of the problems (2.59). (In particular, the assump-

tion z±r(·, 0) ∈ W
2− 2

p
p (Ω) follows from z±r(·, 0) ∈ C l(Ω) and the inequal-

ity l > 2 − 2
p .) Thus, we obtain u±t ∈ W 2,1

p (Q). We have immediately

u±tt , u
±
txi
, u±txixj ∈ Lp(Ω) and by Lemma 2.1 (i) we get k ∗ u±tt , k ∗ u

±
txi
, k ∗

u±txixj ∈ L
p(Ω), which implies k ∗ u±t ∈ W

2,1
p (Q). From (2.59) we deduce

the following problems for the functions v± = u±t +k∗u±t −θu± ∈W
2,1
p (Q):

β(v±t + k ∗ v±t ) = Av± + z±[rt + k ∗ rt − θr] + f±1 in Q ,

v± =
1

β
z±r in Ω× {0} , B1v

± = 0 in S,
(2.62)

where

f±1 (x, t) = at(x, t)u
±(x, t) +

∫ t

0
k′(t− τ)(a(x, τ)− a(x, t))u±(x, τ)dτ.

By virtue of the assumptions of theorem and z± ≥ 0 and u± ≥ 0 the free
term and initial condition in (2.62) are non-negative. Therefore, Theorem
2.2 (i) implies v± ≥ 0, i.e. the left relation in (2.61). Moreover, according
to (2.55) and the definition of U± we have z±[rt + k ∗ rt − θr] > 0 in the
open subset [U± × (0, T )] ∩ Qx± of Q. Using Theorem 2.2 (ii) deduce the
right relation in (2.61).

Since u+ is continuous in Q, there exists x∗ ∈ Ω such that

u+(x, T ) ≤ u+(x∗, T ) for any x ∈ Ω. (2.63)

Observing the relation u = u+ − u− and the assumption u(·, T ) = uT = 0,
we have u+(·, T ) = u−(·, T ), and (2.63) implies

u−(x, T ) ≤ u−(x∗, T ) for any x ∈ Ω. (2.64)

Let us show that the point x∗ is the stationary maximum of u±(·, T ), i.e.

∇u±(x∗, T ) = 0. (2.65)

The equality (2.65) may fail only when x∗ ∈ Γ. In case I we have the
boundary condition u+ = 0 in Γ, hence in view of (2.60) the function
u+(·, T ) cannot achieve its maximum on Γ, and we automatically get (2.65).
It remains to show (2.65) for the case II when x∗ ∈ Γ. In this case due the
vanishing boundary condition we have ω(x∗) ·∇u+(x∗, T ) = 0. (Recall that
ω(x) is an outer direction at x ∈ Γ). Furthermore, since u∗(·, T ) achieves
its maximum over Γ in the point x = x∗, we have τ ·∇u+(x∗, T ) = 0, where
τ is any tangential direction at x∗ (this applies when n > 1). Summing up,
we get ξ · ∇u+(x∗, T ) = 0, where ξ is any direction. This yields (2.65).

37



Now we are ready to present the final part of the proof. By the def-
initions of z+ and z−, it holds either z+(x∗) = 0 or z−(x∗) = 0. In case
z+(x∗) = 0 we have (z+r)(x∗, T ) = 0 and from the equation (2.59) we
obtain [

β(u+
t + k ∗ u+

t )− au+
]

(x∗, T ) = A0u
+(x∗, T ), (2.66)

where A0 = A − a. The left-hand side of (2.66) is strictly positive due to
the inequalities (1.7), (2.60), (2.61) and the definition of θ. Indeed:[
β(u+

t + k ∗ u+
t )− au+

]
(x∗, T ) = β(x∗)

[
u+
t + k ∗ u+

t −
a

β
u+
]
(x∗, T )

≥ β0

[
u+
t + k ∗ u+

t − θu+
]

(x∗, T ) > 0.

Therefore, the right-hand side of (2.66) is also strictly positive, i.e.

A0u
+(x∗, T ) > 0. (2.67)

On the other hand, since x = x∗ is the stationary maximum point of
u+(·, T ) and the principal part of A0 is elliptic (see (1.6)), we obtain

A0u
+(x∗, T ) =

n∑
i,j=1

aij(x
∗)u+

xixj (x
∗, T ) +

n∑
j=1

aj(x
∗)u+

xj (x
∗, T ) ≤ 0.

This contradicts (2.67). Analogously we come to a contradiction in case
z−(x∗) = 0. Hence, the assumption z 6= 0 was incorrect. We have z = 0.
Finally, whereas f0, u0, g = 0 by assumption, problem (2.50) is homoge-
neous. Thus, by the uniqueness of the solution (see Theorem 2.1) it holds
u = 0. Proof is complete.

2.3.2 Existence and stability

Let us impose the following additional assumptions on the function r:

r ≥ δ in Ω× (T − δ, T ) with some δ ∈ (0, T2 ) and

r = 0 in Ω× (0, δ).
(2.68)

Below we formulate and prove an existence and stability theorem for
IP1. We note that a Fredholm-type result of this theorem (i.e. the asser-
tion (i) of Theorem 3.8) was already obtained in [46], but under different
assumptions. Namely, in [46] µ = 0 was assumed and certain positivity
conditions on the original kernel m were imposed. We do not need such
assumptions in the assertion (i).

Theorem 2.4 Let (1.6), (1.7) hold, β, aij , aj ∈ C l(Ω), a ∈ C l,
l
2 (Q) and

at ∈ Lp(Q) with some l ∈ (0, 1), p ∈ (1,∞). Moreover, let at ≥ 0,
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r ∈ C l,
l
2 (Q), rt ∈ Lp(Q) and (2.68) hold. In addition, let f0 ∈ C l,

l
2 (Q),

u0 ∈ C2+l(Ω), g ∈ C2+l−ϑ,1+ l
2
−ϑ

2 (S), uT ∈ C2+l(Ω) and the consistency
conditions

(a) u0 = g , βgt = Au0 + f0 in case I,
ω · ∇u0 = g in case II in Γ× {0} (2.69)

(b) uT = g in case I,
ω · ∇uT = g in case II in Γ× {T} (2.70)

be satisfied. Then the following assertions are valid.

(i) (Fredholm-type result) If k ∈W 1
2

2−l
(0, T ),

r ≥ 0, rt − θr ≥ 0 in Q with θ given by (2.54),

for all x ∈ Ω there exists an open subset Q̃x of Q such that

∃t̃x ∈ (0, T ) : (x, t̃x) ∈ Q̃x and rt − θr > 0 in Q̃x

(2.71)

and the homogeneous inverse problem, i.e.

β(v0
t + k ∗ v0

t ) = Av0 + q0r in Q,

v0 = 0 in Ω×{0}, B1v
0 = 0 in S , v0 = 0 in Ω×{T}

(2.72)

has in C l(Ω) × C2+l,1+ l
2 (Q) only the trivial solution q0 = 0, v0 = 0,

then the inverse problem (2.50), (2.51) has a unique solution (z, u) in

the space C l(Ω)×C2+l,1+ l
2 (Q). Moreover, the solution (z, u) satisfies

the estimate

‖z‖l + ‖u‖2+l,1+ l
2
≤ Λ(β, aij , aj , a, k, r)

×
{
‖f0‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ϑ,1+ l

2
−ϑ

2
+ ‖uT ‖2+l

} (2.73)

with some constant Λ depending on the quantities shown in brackets.

(ii) (Full existence, uniqueness and stability result) If

k ∈W 1
2

2−l
(0, T ) , k ≥ 0 , k′ ≤ 0 (2.74)

and r satisfies (2.53), (2.55), (2.71) then the inverse problem (2.50),

(2.51) has a unique solution (z, u) in the space C l(Ω)×C2+l,1+ l
2 (Q).

The solution satisfies the estimate (2.73).

Proof. We note that the assertion (ii) follows from the assertion (i) and
Theorem 2.3. Indeed, the assumptions of (ii) contain the assumptions of
the uniqueness Theorem 2.3. This implies that the homogeneous problem

(2.72) has in C l(Ω)× C2+l,1+ l
2 (Q) only the trivial solution q0 = 0, v0 = 0.
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As a result, all assumptions of (i) are satisfied, and the desired existence,
uniqueness and stability result follows.

Thus, it remains to prove the assertion (i). We use a method that is
based on a proved Fredholm-type result for the usual parabolic case (when
k = 0). By means of this result we reduce the problem under consideration
to an equation of the second kind, and apply the Fredholm’s alternative.

So, let us start with the case k = 0. We mention that the general
assumptions of the theorem preceding the statement (i) (except for the
assumptions imposed on k) are sufficient for the following Fredholm-type
result: the inverse problem in case k = 0, i.e. the problem

βu1
t = Au1 + z1r + f0 in Q,

u1 = u0 in Ω× {0}, B1u
1 = g in S, u1 = uT in Ω× {T}

(2.75)

has a solution (z1, u1) in the space X l = C l(Ω) × C2+l,1+ l
2 (Q) and the

estimate

‖z1‖l + ‖u1‖2+l,1+ l
2
≤ Λ1(β, aij , aj , a, r)

×
{
‖f0‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ϑ,1+ l

2
−ϑ

2
+ ‖uT ‖2+l

} (2.76)

holds with some constant Λ1 depending on the quantities shown in brackets,
provided the corresponding homogeneous problem (i.e. the problem with
the data f0, u0, g, uT = 0) has only the trivial solution z1 = 0, u1 = 0. This
follows directly from Theorem 1.2 in [21]. But because of the additional
assumption (2.71) of (i) Theorem 2.3 (in case k = 0) implies that such a
homogeneous problem indeed has only the trivial solution. Therefore, we
can conclude that the unique solution (z1, u1) of (2.75) exists in the space
X l and the estimate (2.76) is valid.

For further discussion we introduce an additional Banach space of pairs
of functions, whose second components are zero at t = 0: X l0 = C l(Ω) ×
C

2+l,1+ l
2

0 (Q), where

C
2+l,1+ l

2
0 (Q) = {v ∈ C2+l,1+ l

2 (Q) : v = 0 in Ω× {0}}
with the norm‖v‖

C
2+l,1+ l

2
0 (Q)

= ‖v‖2+l,1+ l
2
,

Let us denote q = z − z1 and v = u − u1. Then the inverse problem
(2.50), (2.51) for (z, u) ∈ X l is equivalent to the following inverse problem
for the pair X = (q, v) ∈ X l0:

βvt = Av+qr−βk ∗ (u1
t +vt) in Q,

v = 0 in Ω× {0}, B1v = 0 in S, v = 0 in Ω× {T}.
(2.77)
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Let P stand for the operator that assigns to a given right-hand side
f0 the solution of the problem (2.75) with u0, g, uT = 0. In view of the

statements formulated before for (2.75), it holds P ∈ L(C
l, l

2
o (Q),X l0), where

the space C
l, l

2
o (Q) is defined in (2.24). (The domain of P is C

l, l
2

o (Q), because

the element f0 ∈ C l,
l
2 (Q) must satisfy the consistency condition f0 = 0 in

Γ × {0} in case I (cf. (2.69) in case u0, g, uT = 0).) According to (2.76)
‖P‖ ≤ Λ1(β, aij , aj , a, r).

By virtue of Lemma 2.1 (ii) and β ∈ C l(Ω) it holds βk ∗ wt ∈ C l,
l
2 (Q)

for any w ∈ C2+l,1+ l
2 (Q) and βk ∗wt|t=0 = 0. Thus, the operator (q, w)→

βk ∗ wt is well-defined from X l0 to C
l, l

2
o (Q), and in turn the operator T

defined by T (q, v) = P(−βk ∗ vt) is well-defined from X l0 to itself. Now we
see that the problem (2.77) is in X l0 equivalent to the operator equation

X = T X + Ψ, (2.78)

where Ψ = P(−βk ∗ u1
t ).

But thanks to the assumption k′ ∈ L
2

2−l (0, T ) we can even extend T to

the space L(U l,l
′

0 ,X l0), where U l,l
′

0 = C l
′
(Ω)× C l,

l
2

0 (Q),

C
l, l

2
0 (Q) = {v ∈ C l,

l
2 (Q) : v = 0 in Ω× {0}}

with the norm‖v‖
C
l, l2
0 (Q)

= ‖v‖l, l
2
,

and l′ is an arbitrary number in the interval (0, l). Indeed, taking into
account the relation T (q, v) = P(−βk∗vt) = P(−βk′∗v−βk(0)v), obtained
by integration by parts, and using (2.17) we deduce

‖T (q, v)‖X l0 ≤ ‖P‖‖βk
′ ∗ v + βk(0)v‖

C
l, l2
o (Q)

= ‖P‖‖βk′ ∗ v + βk(0)v‖l, l
2

≤ Λ2‖v‖l, l
2
≤ Λ2(‖q‖Cl′ (Ω) + ‖v‖

C
l, l2
0 (Q)

) = Λ2‖(q, v)‖U l,l′0

(2.79)

with Λ2 = Λ1‖β‖l
{
C0‖k′‖

L
2

2−l (0,T )
+ |k(0)|

}
. This proves T ∈ L(U l,l

′

0 ,X l0).

Since X l0 is compactly embedded in U l,l
′

0 , the operator T is compact in

U l,l
′

0 . Moreover, 1 is not an eigenvalue of T , because the equation X0 =
T X0 is in X l0 equivalent to the problem (2.72), whose solution X0 = (q0, v0)
is zero by the assumption. Consequently, by the Fredholm’s alternative,
the equation (2.78) has a unique solution in X l0. This proves the existence
assertion of (i).

It remains to prove (2.73). Since 1 belongs to the resolvent set of T ,

it holds (I − T )−1 ∈ L(U l,l
′

0 ) and ‖(I − T )−1‖L(U l,l
′

0 )
= Λ3(β, aij , aj , a, k, r)
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with some constant Λ3 depending on the parameters shown in brackets.
Thus, from (2.78) we immediately have

‖X‖U l,l′0

= ‖(I − T )−1Ψ‖U l,l′0

≤ Λ3‖Ψ‖U l,l′0

. (2.80)

Observing that ‖T ‖L(U l,l
′

0 ,X l0)
≤ Λ2 (in view of (2.79)) and ‖·‖U l,l′0

≤ C7‖·‖X l0
with some constant C7 (in view of the continuous embedding of X l0 in U l,l

′

0 )
and using (2.80) from (2.78) again we obtain

‖X‖X l0 ≤ ‖T ‖L(U l,l
′

0 ,X l0)
‖X‖U l,l′0

+ ‖Ψ‖X l0 ≤ Λ2Λ3‖Ψ‖U l,l′0

+ ‖Ψ‖X l0
≤ (C7Λ2Λ3 + 1)‖Ψ‖X l0 . (2.81)

Here ‖Ψ‖X l0 = ‖P(−βk ∗ u1
t )‖X l0 ≤ ‖P‖‖βk ∗ u

1
t ‖
C
l, l2
o (Q)

≤ Λ4‖u1‖2+l,1+ l
2

with Λ4 = Λ1‖β‖lC0‖k‖
L

2
2−l (0,T )

in view of (2.17). Consequently, from

(2.81) we deduce

‖X‖X l0 ≤ Λ4(C7Λ2Λ3 + 1)‖u1‖2+l,1+ l
2
. (2.82)

Recall that X = (q, v) with q = z − z1 and v = u− u1. Thus, by means of
(2.82) we deduce

‖z‖l + ‖u‖2+l,1+ l
2

= ‖(z, u)‖X l ≤ ‖(q, v)‖X l0 + ‖(z1, u1)‖X l

≤
{

Λ4(C7Λ2Λ3 + 1) + 1
}
‖(z1, u1)‖X l .

Here the term ‖(z1, u1)‖X l can be estimated by (2.76). We reach the desired
estimate (2.73).

Remark 2.2 The relationship between the conditions (2.53)&(2.55) and
(2.71) essentially depends on θ.

In case θ ≥ 0 provided k ≥ 0, the conditions (2.71) imply (2.53)&(2.55).
Indeed, then the relations r ≥ 0 and rt − θr ≥ 0 in (2.71) immediately
yield rt ≥ 0 and in turn k ∗ rt ≥ 0. Thus, adding the nonnegative term
k ∗ rt to the left-hand side of the inequalities in (2.71) we immediately
obtain (2.53)&(2.55). Consequently, the assumptions (2.53) and (2.55) in
the formulation of the statement (ii) of Theorem 3.8 are redundant in case
θ ≥ 0.

In case θ < 0 the situation is more complicated. Then it is possible
to find functions r that satisfy (2.71) but not (2.53)&(2.55). To construct
such a counter-example, we can make use of following ideas. Firstly, we
note that the kernel kα(t) = αe−αt with sufficiently large α > 0 approaches
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the Dirac delta-distribution. Indeed, let t ∈ (0, T ) and w ∈ L1(0, T ) be a
function satisfying w′ ∈ L1(t− ε, t) with some ε > 0. Then

(kα ∗ w)(t)− w(t) =

∫ t−ε

0
αe−α(t−τ)w(τ)dτ +

∫ t

t−ε
αe−α(t−τ)w(τ)dτ − w(t)

=

∫ t−ε

0
αe−α(t−τ)w(τ)dτ −

∫ t

t−ε
e−α(t−τ)w′(τ)dτ − e−αεw(t− ε).

Note that αe−α(t−τ)w(τ) → 0 as α → ∞ for a.e. τ ∈ (0, t − ε) and
|αe−α(t−τ)w(τ)| ≤ αe−αε|w(τ)| ≤ 1

eε |w(τ)| for any α > 0 and a.e. τ ∈ (0, t−
ε), where |w(τ)| is integrable on (0, t−ε). Due to the dominated convergence
theorem we have

∫ t−ε
0 αe−α(t−τ)w(τ)dτ → 0 as α → ∞. Similarly we get∫ t

t−εe
−α(t−τ)w′(τ)dτ → 0 as α→∞. Moreover, e−αεw(t−ε)→ 0 as α→∞.

Consequently, |(kα ∗ w)(t) − w(t)| → 0 as α → ∞. Now let us define the
function r = r(t) in the following manner:

r(t) = 0, t ∈ [0, δ] , r(t) = e−bt, t ∈ [T − δ, T ],

r(t) =
e−b(T−δ)

T − 2δ
(t− δ), t ∈ (δ, T − δ),

where b > 0 is a constant. Then r ≥ 0 in (0, T ) and rt ≥ 0 in (0, T − δ).
This in view of θ < 0 implies rt − θr ≥ 0 in (0, T − δ). Further, let
us choose b ∈ (− θ

2 ,−θ). Then [rt − θr](t) = (−b − θ)e−bt > 0 for any
t ∈ (T − δ, T ). The deduced inequalities show that (2.71) is valid. On the
other hand, with fixed t ∈ (T − δ, T ) in view of the choice of b we have
[2rt − θr](t) = (−2b − θ)e−bt < 0. Therefore, in case of sufficiently large
α it holds [rt + kα ∗ rt − θr](t) = [2rt − θr](t) + (kα ∗ rt)(t) − rt(t) < 0.
Consequently, (2.53) fails.

2.4 Results for inverse coefficient problems

In this section we deal with the nonlinear coefficient-type inverse problems
IP2 and IP3 making use of previously proved results concerning the linear
inverse free term problem (2.50), (2.51). For this purpose, we introduce the
following notation.

Let F̂β,a,r stand for the operator that assigns to the vector d =
(f0, u0, g, uT ) the solution of the inverse problem (2.50), (2.51). We have
shown that in case β, a, r and also aij , aj , k satisfy the assumptions of The-
orem 3.8 (incl. the additional assumptions of the assertion (ii) of this
theorem), the operator F̂β,a,r is well-defined from the space

D = {d : d ∈ C l,
l
2 (Q)× C2+l(Ω)× C2+l−ϑ,1+ l

2
−ϑ

2 (S)× C2+l(Ω) ,

d satisfy the consistency conditions (2.69), (2.70)}
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to the space C l∗(Ω)× C2+l,1+ l
2 (Q) and satisfies the estimate

‖F̂β,a,r(f0, u0, g, uT )‖
Cl(Ω)×C2+l,1+ l

2 (Q)
≤ Λ(β, aij , aj , a, k, r)

×
{
‖f0‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ϑ,1+ l

2
−ϑ

2
+ ‖uT ‖2+l

}
.

(2.83)

2.4.1 Results for IP2

Firstly, let us study IP2. Due to Lemma 2.1, IP2 is in the class of pairs (a, u)
of functions, whose second component u together with its derivatives ut,
uxi , uxixj belongs to Lp(0, T ), p > 1, for any x, equivalent to the following
inverse problem:

β(ut + k ∗ ut) = A0u+ au+ f in Q,

u = u0 in Ω× {0}, B1u = g in S,
(2.84)

u = uT in Ω× {T} , (2.85)

where f , B1 and g are given by (2.10) - (2.12) and

A0u =
n∑

i,j=1
aijuxixj +

n∑
j=1

ajuxj .

We are going to prove existence, uniqueness and stability results for the
inverse problem (2.84), (2.85) in spaces of pairs (a, u) whose first compo-
nents a belong to the following sets that depend on l, β and a given number
θ ∈ R:

Alβ,θ = {a ∈ C l(Ω) : sup
x∈Ω

a(x)
β(x) ≤ θ}.

The next theorem comprises two results for (2.84), (2.85): (i) a global
uniqueness; (ii) local conditional existence and stability. The meaning of
the latter one is the following: assuming the existence of the solution of
(2.84), (2.85) with certain data d, we prove the existence of solution to
(2.84), (2.85) with data d̃ that are sufficiently close to d and estimate the
difference of these solutions in terms of d̃− d.

Theorem 2.5 Let (1.6), (1.7) hold, β, aij , aj ∈ C l(Ω) with some l ∈ (0, 1)
and θ ∈ R. Then the following assertions are valid.

(i) If k satisfies (2.47) and the problem (2.84), (2.85) has the solutions

(a1, u1) ∈ C l(Ω)×C2+l,1+ l
2 (Q), (a2, u2) ∈ Alβ,θ×C

2+l,1+ l
2 (Q), where

u = u1 satisfies the conditions

u ≥ 0, ut + k ∗ ut − θu ≥ 0 in Q,

for all x ∈ Ω there exists an open subset Qx of Q such that

∃tx ∈ (0, T ) : (x, tx) ∈ Qx and ut + k ∗ ut − θu > 0 in Qx,

(2.86)

then a1 = a2 and u1 = u2.
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(ii) If k satisfies (2.74) and (2.84), (2.85) has a solution (a, u) ∈ Alβ,θ ×
C2+l,1+ l

2 (Q) such that u fulfills the conditions (2.86), the conditions
(2.86) with k replaced by 0 and the relations

u ≥ δ in Ω× (T − δ, T ),

u = 0 in Ω× (0, δ) with some δ ∈ (0, T2 ),
(2.87)

then for any data vector f̃ , ũ0, g̃, ũT such that

D := ‖f̃−f‖l, l
2

+ ‖ũ0‖2+l + ‖g̃−g‖2+l−ϑ,1+ l
2
−ϑ

2

+ ‖ũT−uT ‖2+l <
1

2λ2
with λ = Λ(β, aij , aj , a, k, u),

(2.88)

where Λ is the coefficient of the estimate (2.73) (note that u0 = 0 due
to the second relation in (2.88)),

(a) ũ0 = g̃ , βg̃t = (A0 + a)ũ0 + f̃ in case I,
ω · ∇ũ0 = g̃ in case II in Γ× {0} (2.89)

(b) ũT = g̃ in case I,
ω · ∇ũT = g̃ in case II in Γ× {T} (2.90)

and ũ0 = 0 in case I in Γ, the problem (2.84), (2.85) with f0, u0, g, uT
replaced by f̃0, ũ0, g̃, ũT has a unique solution (ã, ũ) in the ball

U =
{

(ã, ũ) : ‖ã− a‖l + ‖ũ− u‖2+l,1+ l
2
≤ 1

λ

(
1−
√

1− 2λ2D
)}

.

(2.91)

Remark 2.3 Since 1
λ(1 −

√
1− 2λ2D) ∼ λD as D → 0+, the relation

(2.91) implies that the solution operator of the problem (2.84), (2.85) is
locally Lipschitz-continuous in the neighborhood of (a, u).

Proof of Theorem 2.5. Let us prove (i). Subtracting the problems (2.84),
(2.85) for the pairs (a1, u1) and (a2, u2) we obtain the following problem
for the pair of differences z = a1 − a2, u = u1 − u2:

β(ut + k ∗ ut) = (A0 + a2)u+ zu1 in Q,

u = 0 in Ω× {0}, B1u = 0 in S,

u = 0 in Ω× {T}.

This problem satisfies the assumptions of Theorem 2.3. Indeed, we have
a2 ∈ C l(Ω) and a2,t = 0. Moreover, due to a2 ∈ Alβ,θ it holds θ2 :=

sup
x∈Ω

a2(x)
β(x) ≤ θ. In view of this inequality, the assumption (2.86) for u =
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u1 holds with θ replaced by θ2. This means that the assumptions (2.53)
and (2.55) are satisfied for r = u1. Applying Theorem 2.3 we obtain the
assertion z = a1 − a2 = 0, u = u1 − u2 = 0.

Let us we prove (ii). The proof is based on Banach fixed-point principle.

Note that the problem for (ã, ũ) ∈ C l(Ω) × C2+l,1+ l
2 (Q) is equivalent

to the following problem for the differences z = ã− a ∈ C l(Ω), w = ũ−u ∈
C2+l,1+ l

2 (Q):

β(wt + k ∗ wt) = (A0 + a)w + zu+ f0[zw] in Q ,

w = ũ0 in Ω× {0} , B1w = g̃ − g in S ,

w = ũT − uT in Ω× {T}
(2.92)

with f0[zw] = zw + f̃ − f . Since ũ0 = 0 in case I in Γ, any solution

S = (z, w) ∈ C l(Ω)×C2+l,1+ l
2 (Q) of (2.92) belongs to the following space:

S = {S = (z, w) ∈ C l(Ω)× C2+l,1+ l
2 (Q) : w = 0 in case I in Γ× {0}}.

We will transform (2.92) to a fixed-point equation in S .
Note that owing to the properties of β, a, u and also aij , aj , k, the oper-

ator F̂β,a,u is well-defined from D to C l(Ω)× C2+l,1+ l
2 (Q).

Let us show that the data vector of (2.92), i.e. (f0[zw], ũ0, g̃−g, ũT−uT )
belongs to D for any S = (z, w) ∈ S . Assume S ∈ S . From (2.88)

and z ∈ C l(Ω), u ∈ C2+l,1+ l
2 (Q) we immediately have f0[zw] ∈ C l,

l
2 (Q),

ũ0, ũT − uT ∈ C2+l(Ω) and g̃ − g ∈ C2+l−ϑ,1+ l
2
−ϑ

2 (S). Moreover, from
the smoothness of all terms of the equation (2.84) at the corners Γ × {0},
Γ × {T} and the initial, boundary and final conditions in (2.84),(2.85) it
follows that the consistency conditions (2.69), (2.70) (with βgt = f instead
of βgt = Au0 + f0 in case I in Γ × {0}) are satisfied. Subtracting these
conditions from (2.89), (2.90) and observing that zw = 0 in case I in Γ×{0}
(see the definition of S ) we obtain the following consistency conditions:

ũ0 = g̃ − g , β(g̃t − gt) = (A0 + a)ũ0 + f0[zw] in case I,
ω · ∇ũ0 = g̃ − g in case II in Γ× {0},
ũT − uT = g̃ − g in case I,
ω · ∇(ũT − uT ) = g̃ − g in case II in Γ× {T}.

Consequently, the vector (f0[zw], ũ0, g̃ − g, ũT − uT ) belongs to D .
Now we see that the operator

F̂(S) = F̂β,a,u(zw + f̃ − f, ũ0, g̃ − g, ũT − uT ) (2.93)

is well-defined for any S ∈ S . Moreover, it holds F̂(S ) ⊆ S , because the

second component of the element F̂(S) ∈ C l(Ω) × C2+l,1+ l
2 (Q) is zero at

Γ× {0} in case I.
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We can conclude that the problem (2.92) is in the space S equivalent
to the fixed-point equation

S = F̂(S).

Define the norm ‖S‖ = ‖z‖l + ‖w‖2+l,1+ l
2

in S and show that F̂ is a

contraction in the ball

U0 =
{
S ∈ S : ‖S‖ ≤ % := 1

λ

(
1−
√

1− 2λ2D
)}

. (2.94)

Using (2.93), (2.83) and the definitions of D and λ in (2.88) we deduce

‖F̂(S)‖ ≤ λ
{
‖zw‖l, l

2
+D

}
≤ λ

{
‖z‖l‖w‖2+l,1+ l

2
+D

}
≤ λ

{
1
2‖S‖

2+D
}
.

In case S ∈ U0 it holds ‖F̂(S)‖ ≤ λ
{

1
2%

2 +D
}

. Note that % defined in
(2.94) solves the quadratic equation λ

{
1
2%

2 +D
}

= %. Therefore, we have

‖F̂(S)‖ ≤ %. Hence, F̂(U0) ⊆ U0.

Similarly, for Sj = (zj , wj), j = 1, 2, in view of the relation

z1w1 − z2w2 = z1+z2

2 (w1−w2) + (z1−z2)w
1+w2

2
(2.95)

we obtain

‖F̂(S1)− F̂(S2)‖ = ‖F̂β,a,u(z1w1 − z2w2, 0, 0, 0)‖

≤ λ
∥∥∥S1+S2

2

∥∥∥ ‖S1 − S2‖ ≤ λ
2 (‖S1‖+ ‖S2‖)‖S1 − S2‖.

In case S1, S2 ∈ U0 we have ‖F̂(S1)− F̂(S2)‖ ≤ q‖S1−S2‖ with q = λ% =
1−
√

1− 2λ2D < 1. Therefore, by the contraction principle, the equation
S = F̂(S) has a unique solution in the ball U0. This yields (ii).

Remark 2.4 It is possible to deduce sufficient conditions for the data of
the direct problem (2.84) that imply the the conditions (2.86) and (2.87) for
solution u. The second relation in (2.87) simply follows from uniqueness
of the solution of the direct problem (2.84) restricted to Ω × (0, δ) if we
assume u0 = 0, g = 0 in S × (0, δ), f = 0 in Ω × (0, δ). The first relation
in (2.87) follows from Theorem 2.2 under the assumption that u0, g, f ≥ 0,
there exists an open subset Qf of Ω × (0, T − δ) such that f > 0 in Qf
and g ≥ δ in S × (T − δ, T ) in case I. This theorem has to be applied
for problems restricted to the domains Ω × (0, T1), where T1 ∈ [T − δ, T ]
to get the desired result. Finally, the inequalities for ut + k ∗ ut − θu in
(2.84) can be shown under certain assumptions on the data constructing a
direct problem for v = ut + k ∗ ut − θu and applying Theorem 2.2 to this
problem. Such a problem can be constructed similarly to the construction
of problems (2.62) in the proof of Theorem 2.3.
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2.4.2 Results for IP3

Finally, we study IP3. In view of 2.1, IP3 is in the class of pairs (β, u) of
functions, whose second component u together with its derivatives ut, uxi ,
uxixj belongs to Lp(0, T ), p > 1, for any x, equivalent to the problem

β(ut + k ∗ ut) = Au+ f in Q ,

u = u0 in Ω× {0} , B1u = g in S ,
(2.96)

u = uT in Ω× {T} , (2.97)

where f , B1 and g are given by (2.10) - (2.12). We assume here µ = 0.
Let us introduce the following set for the coefficients β that depends on

β0 > 0:
Blβ0

= {β ∈ C l(Ω) : inf
x∈Ω

β(x) ≥ β0}

and define θβ0 = max
{

0; 1
β0

sup
x∈Ω

a(x, T )
}
. Then we have sup

x∈Ω

a(x,T )
β(x) ≤ θβ0 for

any β ∈ Blβ0
.

Theorem 2.6 Let (1.6) hold, aij , aj ∈ C l(Ω), a ∈ C l,
l
2 (Q), at ∈ Lp(Q)

with some l ∈ (0, 1), p ∈ (1,∞), at ≥ 0 and β0 > 0. Then the following
assertions are valid.

(i) If k satisfies (2.47), the problem (2.96), (2.97) has the solutions

(β1, u1) ∈ C l(Ω) × C2+l,1+ l
2 (Q) and (β2, u2) ∈ Blβ0

× C2+l,1+ l
2 (Q)

such that u = u1 and û := ut + k ∗ ut satisfy the conditions

utt ∈ Lp(Ω) , û ≥ 0 , ût + k ∗ ût − θβ0 û ≥ 0 ,

for all x ∈ Ω there exists an open subset Qx of Q such that

∃tx ∈ (0, T ) : (x, tx) ∈ Qx and ût + k ∗ ût − θβ0 û > 0 in Qx,

(2.98)

then β1 = β2 and u1 = u2.

(ii) If k satisfies (2.74), Au0 +f = 0 in case I in Γ×{0} and the problem

(2.96), (2.97) has a solution (β, u) ∈ Blβ0
× C2+l,1+ l

2 (Q) such that u
and û = ut + k ∗ ut fulfill the conditions (2.98) and the conditions
(2.98) with k replaced by 0,

û ≥ δ in Ω× (T − δ, T ) and

ut = 0 in Ω× (0, δ) with some δ ∈ (0, T2 ),
(2.99)

then for any data vector f̃ , ũ0, g̃, ũT such that

D := ‖f̃−f‖l, l
2

+ ‖ũ0−u0‖2+l + ‖g̃−g‖2+l−ϑ,1+ l
2
−ϑ

2

+ ‖ũT−uT ‖2+l <
1

2λ̄2(1+‖k‖)
with λ̄ = Λ(β, aij , aj , a, k, û),

(2.100)

48



where Λ is the coefficient of the estimate (2.73), ‖k‖ = ‖k‖C[0,T ] and

(a) ũ0 = g̃ , βg̃t = Aũ0 + f̃ = 0 in case I,
ω · ∇ũ0 = g̃ in case II in Γ× {0} (2.101)

(b) ũT = g̃ in case I,
ω · ∇ũT = g̃ in case II in Γ× {T}, (2.102)

then the problem (2.96), (2.97) with f0, u0, g, uT replaced by f̃0, ũ0, g̃, ũT
has a unique solution (β̃, ũ) in the ball

Ū =
{

(β̃, ũ) : ‖β̃−β‖l + ‖ũ−u‖2+l,1+ l
2

≤ 1

λ̄(1+‖k‖)

(
1−
√

1−2λ̄2(1+‖k‖)D
)}

.
(2.103)

Remark 2.5 The relation (2.103) implies that the solution operator of the
problem (2.96), (2.97) is locally Lipschitz-continuous in the neighborhood
of (β, u).

Proof of Theorem 2.6. The proof is similar to the proof of Theorem
2.5. To prove (i), we subtract the problems for with the pairs (β1, u1)
and (β2, u2). Then we obtain the problem (2.50), (2.51) for the difference
z = β1−β2, u = u1−u2 that has the zero free term f0, zero initial, boundary
and final conditions and contains β2 and û = u1,t+k ∗u1,t instead of β and
r, respectively. Applying Theorem 2.3 to this problem, we immediately
obtain z = 0, u = 0.

Let us prove (ii). Note that (β, u) ∈ S̄ , where

S̄ = {S = (z, w) ∈ C l(Ω)× C2+l,1+ l
2 (Q) : wt = 0 in case I in Γ× {0}}.

Indeed, (β, u) ∈ C l(Ω) × C2+l,1+ l
2 (Q), by assumption. Setting t = 0 in

the equation (2.96) we get βut(·, 0) = A(0)u0 + f(·, 0). This due to the
assumption Au0+f = 0 in case I in Γ×{0} and β > 0 implies ut = 0 in case

I in Γ× {0}. Furthermore, any solution (β̃, ũ) ∈ C l(Ω)× C2+l,1+ l
2 (Q) also

belongs to S̄ . This can be shown analogously, making us of the assumption
Aũ0 + f̃ = 0 in case I in Γ× {0} (see (2.101)).

Subtracting the problems for (β̃, ũ) and (β, u) we see that the problem

for (β̃, ũ) ∈ C l(Ω)×C2+l,1+ l
2 (Q) is equivalent to the following problem for

the pair of differences (z, w) = (β − β̃, ũ− u) in the space S̄ :

β(wt + k ∗ wt) = Aw + zû+ f̄0[z, w] in Q ,

w = ũ0 − u0 in Ω× {0} , B1w = g̃ − g in S ,

w = ũT − uT in Ω× {T} ,
(2.104)
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where f̄0[z, w] = z(wt+k ∗wt)+ f̃ −f and û = ut+k ∗ut, as defined above.
Let us transform (2.104) to a fixed-point equation.

Note that the assumptions r ∈ C l,
l
2 (Q), rt ∈ Lp(Ω), (2.53), (2.55),

(2.68) and (2.71) are satisfied for the function r = û. Indeed, the relation

u ∈ C2+l,1+ l
2 (Q) and the assumption utt ∈ Lp(Q) with Lemma 2.1 imply

û ∈ C l,
l
2 (Q), ût ∈ Lp(Ω). Further, (2.53), (2.55), (2.71) and the first

relation in (2.68) for r = û automatically follow from the assumptions of the
assertion (ii). The second relation in (2.68) follows from the second relation
in (2.99). Observing also other assumptions of the present theorem, we see
that the assumptions of Theorem 3.8 are satisfied for the set of parameters
aij , aj , k, β, a and r = û. This means that the operator F̂β,a,û is well-defined

from D to C l(Ω)× C2+l,1+ l
2 (Q).

Further, for any S = (z, w) ∈ S̄ the data vector (f0[z, w], ũ0 − u0, g̃ −
g, ũT − uT ) of the problem (2.104) belongs to D . This can be shown by
means of arguments that are similar to arguments that we used in the proof
of Theorem 2.5. In particular, the consistency condition β(g̃−g)t = A(ũ0−
u0) + f̄0[z, w] in case I in Γ×{0} follows from the relations βgt = Au0 + f ,
βg̃t = Aũ0 + f0 and wt = 0 in case I in Γ× {0}.

Now we see that the operator

F̄(S) = F̂β,a,û(f̄0[z, w], ũ0 − u0, g̃ − g, ũT − uT ) (2.105)

is well-defined for any S ∈ S̄ . Moreover, it holds F̄(S̄ ) ⊆ S̄ , because
time derivative of the second component w1 of (z1, w1) = F̄(z, w) ∈ C l(Ω)×
C2+l,1+ l

2 (Q) is zero at Γ×{0} in case I for (z, w) ∈ S̄ . The latter statement
follows from the equality βw1

t = A(ũ0− u0) + z1û+ f̄0[z, w] that is derived
from the equation for w1 at Γ×{0} and the relations Au0+f = 0, Aũ0+f̃ =
0, û = 0, wt = 0 in case I in Γ× {0} and β > 0.

Summing up, the problem (2.104) is in S̄ equivalent to the following
operator equation:

S = F̄(S).

We use the norm ‖S‖ = ‖(z, w)‖ = ‖z‖l + ‖w‖2+l,1+ l
2

in S̄ and define the

following ball in S̄ :

Ū0 =
{
S ∈ S̄ : ‖S‖ ≤ %̄ := 1

λ̄(1+‖k‖)

(
1−

√
1− 2λ̄2(1 + ‖k‖)D

)}
.

By means of (2.105), (2.83) and (2.100) we obtain

‖F̄(S)‖ ≤ λ̄
{
‖z(wt + k ∗ wt)‖l, l

2
+D

}
≤ λ̄

{
(1 + ‖k‖)‖z‖l‖wt‖l, l

2
+D

}
≤ λ̄

{
1+‖k‖

2 ‖S‖2 +D
}
.
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In case S ∈ Ū0 it holds ‖F̄(S)‖ ≤ λ̄
{

1+‖k‖
2 %̄2 +D

}
. Since %̄ solves the

quadratic equation λ̄
{

1+‖k‖
2 %̄2 +D

}
= %̄, we have ‖F̄(S)‖ ≤ %̄. Conse-

quently, F̄(Ū0) ⊆ Ū0.
Moreover, for Sj = (zj , wj), j = 1, 2, in view of the relation (2.95) we

deduce

‖F̄(S1)− F̄(S2)‖ = ‖F̂β,a,û(z1(w1
t + k ∗ w1

t )− z2(w2
t + k ∗ w2

t ), 0, 0, 0)‖
≤ λ̄‖z1(w1

t + k ∗ w1
t )− z2(w2

t + k ∗ w2
t ‖l, l

2

= λ̄
∥∥∥ z1+z2

2 (w1
t − w2

t + k ∗ (w1
t − w2

t ) + (z1 − z2)
(w1

t+w2
t

2 + k ∗ w
1
t+w2

t
2

)∥∥∥
l, l

2

≤ λ̄(1 + ‖k‖)
∥∥∥S1+S2

2

∥∥∥ ‖S1 − S2‖ ≤ λ̄(1+‖k‖)
2 (‖S1‖+ ‖S2‖)‖S1 − S2‖.

In case Sj ∈ Ū0, j = 1, 2, it holds ‖F̄(S1) − F̄(S2)‖ ≤ q̄‖S1 − S2‖ with
q̄ = λ̄(1 + ‖k‖)%̄ = 1 −

√
1− 2λ̄2(1 + ‖k‖)D < 1. By the contraction

principle, the equation S = F̄(S) has a unique solution in the ball Ū0. This
proves (ii).

Remark 2.6 It is possible to establish conditions that guarantee (2.86)
and (2.87) for the solution u of the direct problem (2.96). To this end,
initial-boundary value problems for involved functions ut, û and v̂ = ût +
k ∗ ût−θβ0 û have to be constructed. The second condition in (2.99) follows
if we assume the initial data and boundary data of the problem for ut to
be zero for t ∈ (0, δ) and other conditions in (2.86) and (2.87) follow from
Theorem 2.2 under proper assumptions of of the data of the problems for
û and v̂.
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3 NON-SMOOTH PROBLEMS

In this chapter we deal with inverse problems for Eq. (1.4) in case this equa-
tion holds in a weak sense and analyze quasi-solutions of these problems.
Results are taken from Publications II and III.

Let (1.4) have the following form:

ut + (µ ∗ u)t = Au−m ∗Au+ f +∇ · φ+ ϕt in Q, (3.1)

where f , ϕ are regular scalar functions and φ is a regular vector function.
The functions φ and ϕ may not have classical derivatives with respect to
the space variables and the time, respectively. This means that the free
term χ = f +∇ · φ + ϕt is generally a singular distribution. Since we are
not planning to consider inverse problems to determine β, we assume β = 1,
for the sake of simplicity. Moreover, we assume that A is of the divergence
type and has symmetric principal part, i.e.

(Av)(x) =
n∑

i,j=1

(
aij(x)vxj

)
xi

+ a(x)v(x), aij = aji.

We are going to study problems with generally mixed boundary condi-
tions. To this end, we split the boundary of Ω into two parts. Namely, let
Γ = Γ1 ∪ Γ2 and we assume that meas Γ1 ∩ Γ2 = 0 and for any j ∈ {1; 2}
either Γj = ∅ or meas Γj > 0.

Let us return to Eq. (3.1) and complement it with the initial condition

u = u0 in Ω× {0} (3.2)

and the boundary conditions

u = g in Γ1 × (0, T ), (3.3)

−νA · ∇u+m ∗ νA · ∇u = h+ ν · φ in Γ2 × (0, T ), (3.4)

where the functions u0, g, h are given and

νA =
( n∑
j=1

aijνj

∣∣∣
i=1,...,n

)
is the co-normal vector to Γ. In case Γ1 = ∅ (or Γ2 = ∅) the boundary
condition (3.3) (or (3.4)) is omitted.

Summing up, (3.1) - (3.4) constitute a formal direct problem for the
function u.

Let us pose formal inverse problems. They use instant and integral data
of the solution of (3.1) - (3.4).
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IP4: Let the component f of the free term be of the form

f(x, t) = f0(x, t) +
N∑
j=1

γj(t)ωj(x) (3.5)

and µ = 0, ϕ = 0. Given m, aij , a, u0, f0, φ, g, h, γj , j = 1, . . . , N , and
functions uTi(x), x ∈ Ω, i = 1, . . . , N with 0 < T1 < T2 < . . . < TN ≤ T ,
find ωj , j = 1, . . . , N , such that the solution u of (3.1) - (3.4) satisfies the
following instant additional conditions:

u = uTi in Ω× {Ti}, i = 1, 2, . . . , N.

IP5: Let the component f of the free term be of the form (3.5) and µ = 0,
ϕ = 0. Given m, aij , a, f0, φ, g, h, γj , j = 1, . . . , N , and functions vi(x),
x ∈ Ω, i = 1, . . . , N+1, find ωj , j = 1, . . . , N , and u0 such that the solution
u of (3.1) - (3.4) satisfies the following integral additional conditions:∫ T

0
κi(x, t)u(x, t)dt = vi(x) , x ∈ Ω , i = 1, 2, . . . , N + 1, (3.6)

where κi, i = 1, . . . , N + 1 are given weights.

IP6: Let meas Γ2 > 0. Given aij , u0, f, φ, ϕ, g, h and functions uT (x),
x ∈ Ω, vi(t), t ∈ (0, T ), i = 1, 2, find a, m and µ such that the solution of
(3.1) - (3.4) satisfies the following final and integral additional conditions:

u = uT in Ω× {T}, (3.7)∫
Γ2

κi(x, t)u(x, t)dΓ = vi(t) , t ∈ (0, T ), i = 1, 2, (3.8)

where κi, i = 1, 2, are given weights and dΓ is the surface measure on Γ.

Remark 3.1 In case n = 1 and Ω = (c, d) the integral
∫

Γ2
z(x)dΓ is merely

the sum
∑L

l=1 z(xl), where xl ∈ Γ2 ⊆ {c; d} and L is the number of points
in Γ2 (i.e L ∈ {1; 2}). Then the conditions (3.8) read

L∑
l=1

κi(xl, t)u(xl, t) = vi(t) , t ∈ (0, T ), i = 1, 2. (3.9)

Remark 3.2 The conditions ϕ = 0 and µ = 0 in IP4 and IP5 is assumed
for the sake of simplicity. The inclusion of generally non-vanishing ϕ in
IP6 is natural due to the method we will use. Namely, an adjoint problem
corresponding to IP6 contains a singular time-derivative in a free term. We
have to prove well-posedness results both for (3.1) - (3.4) and the adjoint
problem. Therefore, it is natural to incorporate such a singular term in
(3.1) already from the beginning.
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3.1 Results concerning direct problem

3.1.1 Additional notation. Well-posedness of weak direct prob-
lem

In addition to cylinders Q, S and Qt = Ω× (0, t), t > 0, defined in §1.1 and
Lemma 2.1, we introduce t-dependent cylinders

St = Γ× (0, t), Γ1,t = Γ1 × (0, t), Γ2,t = Γ2 × (0, t)

for t > 0.

In the treatment of the weak direct problem we make use of the following
functional spaces:

U(Qt) = C([0, t];L2(Ω)) ∩ L2(0, t;W 1
2 (Ω)),

U0(Qt) =
{
η ∈ U(Qt) : η|Γ1,t = 0 in case Γ1 6= ∅

}
,

T (Qt) =
{
η ∈ L2(0, t;W 1

2 (Ω)) : ηt ∈ L2(0, t;L2(Ω))
}
,

T0(Qt) =
{
η ∈ T (Qt) : η|Γ1,t = 0 in case Γ1 6= ∅

}
,

where t ∈ (0, T ]. In case t = T we write merely U(Q), U0(Q), T (Q) and
T0(Q), because QT = Q.

We recall that the ellipticity condition (1.6) is assumed by default in
this thesis. Let us collect other regularity assumptions on the data of the
direct problem (3.1) - (3.4). They are

aij ∈ L∞(Ω), (3.10)

a ∈ Lq1(Ω), where q1 = 1 if n = 1, q1 >
n

2
if n ≥ 2, (3.11)

µ ∈ L2(0, T ), (3.12)

m ∈ L1(0, T ) , (3.13)

u0 ∈ L2(Ω), (3.14)

g ∈ T (Q), h ∈ L2(Γ2,T ), (3.15)

f ∈ L2(0, T ;Lq2(Ω)), where
q2 = 1 if n = 1, q2 ∈ (1, q1) if n = 2, q2 = 2n

n+2 if n ≥ 3,
(3.16)

φ = (φ1, . . . , φn) ∈ (L2(Q))n , (3.17)

ϕ ∈ U(Q) and in case Γ1 6= ∅ ∃gϕ ∈ T (Q) : ϕ = gϕ in Γ1,T . (3.18)

In case the additional conditions aij ∈ W 1
2 (Ω), ∂

∂xi
φi ∈ L2(Q), i =

1, . . . , n, ϕt ∈ L2(Q) hold and (3.1) - (3.4) has a classical solution u ∈ L2(Q)
such that ut, uxi , uxixj ∈ L2(Q), i, j = 1, . . . , n, then multiplying (3.1) with
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a test function η ∈ T0(Q) and integrating by parts we come to the relation∫
Ω

[
(u+ µ ∗ u− ϕ)(x, T )η(x, T )− (u0(x)− ϕ(x, 0))η(x, 0)

]
dx

−
∫ ∫
Q

(u+ µ ∗ u− ϕ)ηt dxdt

+

∫ ∫
Q

[ n∑
i,j=1

aij(uxj −m ∗ uxj )ηxi − a(u−m ∗ u)η
]
dxdt

+

∫ ∫
Γ2,T

hη dΓdt−
∫ ∫
Q

(fη − φ · ∇η) dxdt = 0.

(3.19)

Note that this relation makes sense also in a more general case when aij ,
φ, ϕ satisfy (3.10), (3.17), (3.18) and u ∈ U(Q).

We call a weak solution of the problem (3.1) - (3.4) a function that
belongs to U(Q), satisfies the relation (3.19) for any η ∈ T0(Q) and, in case
Γ1 6= ∅, fulfills the boundary condition (3.3).

The next aim is to show the existence, uniqueness and stability of the
weak solution. But before we prove a technical lemma.

Lemma 3.1 The following assertions are valid:

(i) U(Q) ↪→ L2(0, T ;Lq3(Ω)) where q3 =∞ if n = 1, q3 <∞ if n = 2 and
q3 = 2n

n−2 if n > 2; in the sequel we assume q3 ∈
( q1q2
q1−q2 ,∞

)
in case

n = 2, where q1 and q2 are given in (3.11) and (3.16), respectively;

(ii) if a satisfies (3.11) then for any u ∈ L2(0, T ;Lq3(Ω)) it holds au ∈
L2(0, T ;Lq2(Ω)) and ‖au‖L2(0,T ;Lq2 (Ω)) ≤ Ĉ0‖a‖Lq1 (Ω)‖u‖L2(0,T ;Lq3 (Ω)),

where Ĉ0 is a constant.

Proof. Since U(Q) ↪→ L2(0, T ;W 1
2 (Ω)), the assertion (i) follows from the

continuous embedding of W 1
2 (Ω) in Lq3(Ω). The assertion (ii) can be di-

rectly proved by means of the Hölder’s inequality.

Now we formulate and prove the main theorem of the subsection.

Theorem 3.1 Let (3.10) - (3.18) hold. Then the problem (3.1) - (3.4) has
a unique weak solution. This solution satisfies the estimate

‖u‖U(Q) ≤ Ĉ1

[
‖u0‖L2(Ω) + ‖f‖L2(0,T ;Lq2 (Ω)) + ‖φ‖(L2(Q))n

+ ‖ϕ‖U(Q) + θ1{‖g‖T (Q) + ‖gϕ‖T (Q)}+ θ2‖h‖L2(Γ2,T )

]
,

(3.20)

where θj = 0 in case Γj = ∅, θj = 1 in case Γj 6= ∅ and Ĉ1 is a constant
depending on aij , a, µ,m.
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Note that according to Remark 3.1, ‖h‖L2(Γ2,T ) =
[∫ T

0

L∑
l=1

h(xl, t)
2dt
]1/2

in case n = 1.

Proof. Firstly, we prove the assertion of the theorem in case µ = 0 and
ϕ = 0.

The assertion of the theorem in case µ = 0, ϕ = 0 and m = 0 is well-
known from the theory of parabolic equations (see e.g. [43]). Let Z be
the operator that assigns to the data vector d := (u0, f, φ, g, h) the weak
solution of the problem (3.1) - (3.4) in case µ = 0, ϕ = 0 and m = 0. Then
it holds

‖Zd‖U(Q) ≤ Ĉ2

[
‖u0‖L2(Ω) + ‖f‖L2(0,T ;Lq2 (Ω)) + ‖φ‖(L2(Q))n

+ θ1‖g‖T (Q) + θ2‖h‖L2(Γ2,T )

]
,

(3.21)

where Ĉ2 is a constant depending on aij , a.

Further, let in general m 6= 0 and formulate the problem for the differ-
ence v = u−Zd. Introducing the linear operator A by the formula

Aw = Z
(

0,−am ∗ w,−
n∑
j=1

aijm ∗ wxj , 0, 0
)
,

the problem (3.1) - (3.4) for the weak solution u ∈ U(Q) is equivalent to
the following operator equation for the quantity v ∈ U(Q):

v = Av +AZd . (3.22)

To analyze this equation, have to estimate the operator A. To this end,
we need the following auxiliary inequality:

‖m ∗ y‖L2(0,t;Lp(Ω)) ≤
∫ t

0
|m(t− τ)| ‖y‖L2(0,τ ;Lp(Ω))dτ, t ∈ (0, T ), (3.23)

for any p ≥ 1 and y ∈ L2(0, T ;Lp(Ω)). This was proved in Publication II,
i.e. [42], p. 4.

Let t be an arbitrary number in the interval (0, T ). As in the proof of

Theorem 2.1, we introduce the cutting operator Ptw =

{
w in Qt
0 in Q \Qt

.

Due to the causality we have Z(0, Ptf, Ptφ, 0, 0)(x, t) = Z(0, f, φ, 0, 0)(x, t)
for any (x, t) ∈ Ωt. Using these relations, the inequalities (3.21), (3.23) and

56



the boundedness of aij , we compute:

‖Aw‖U(Qt) =
∥∥∥Z (0,−am ∗ w,−

∑n
j=1 aijm ∗ wxj , 0, 0

)∥∥∥
U(Qt)

=
∥∥∥Z (0,−Pt[am ∗ w],−Pt

[∑n
j=1 aijm ∗ wxj

]
, 0, 0

)∥∥∥
U(Qt)

≤
∥∥∥Z (0,−Pt[am ∗ w],−Pt

[∑n
j=1 aijm ∗ wxj

]
, 0, 0

)∥∥∥
U(Q)

≤ Ĉ2

[
‖Pt[am ∗ w]‖L2(0,T ;Lq2 (Ω)) +

∑n
i=1

∥∥Pt[aijm ∗ wxj ]∥∥L2(Q)

]
= Ĉ2

[
‖am ∗ w‖L2(0,t;Lq2 (Ω)) +

∑n
i=1

∥∥aijm ∗ wxj∥∥L2(Qt)

]
≤ Ĉ3

∫ t

0
|m(t−τ)|

[
‖aw‖L2(0,τ ;Lq2 (Ω))+ ‖∇w‖(L2(Qτ ))n

]
dτ (3.24)

with some constant Ĉ3 depending on aij , a. Due to Lemma 3.1, obtain

‖aw‖L2(0,τ ;Lq2 (Ω)) ≤ Ĉ4‖a‖Lq1 (Ω)‖w‖U(Qτ )

with some constant Ĉ4. Using this relation in (3.24), we arrive at the
following basic estimate for A:

‖Aw‖U(Qt) ≤ Ĉ5

∫ t

0
|m(t− τ)|‖w‖U(Qτ )dτ , t ∈ (0, T ) , (3.25)

where the constant Ĉ5 depends on aij , a.

Let us define the weighted norms in U(Q): ‖v‖σ = sup
0<t<T

e−σt‖v‖U(Qt)

where σ ≥ 0. The estimate (3.25) implies the further estimate:

‖Aw‖σ ≤ Ĉ5 sup
0<t<T

e−σt
∫ t

0 |m(t− τ)| ‖w‖U(Qτ )dτ

= Ĉ5 sup
0<t<T

∫ t
0 e
−σ(t−τ)|m(t− τ)| e−στ‖w‖U(Qτ )dτ

≤ Ĉ5

∫ T
0 e−σs|m(s)|ds ‖w‖σ.

Since
∫ T

0 e−σs|m(s)|ds → 0 as σ → ∞, there exists σ0, depending on Ĉ5

and m, such that Ĉ5

∫ T
0 e−σ0s|m(s)|ds ≤ 1

2 . Thus, ‖Aw‖σ0 ≤ 1
2‖w‖σ0 .

The operator A is a contraction in U(Q). This implies the existence and
uniqueness assertions of the theorem in case µ = 0, ϕ = 0.

To prove the estimate (3.20) in case µ = 0, ϕ = 0, we deduce from
(3.22) the inequality ‖v‖σ0 ≤ ‖Av‖σ0 + ‖AZd‖σ0 ≤ 1

2 [‖v‖σ0 + ‖Zd‖σ0 ].
This implies ‖v‖σ0 ≤ ‖Zd‖σ0 , hence ‖u‖σ0 = ‖v+Zd‖σ0 ≤ 2‖Zd‖σ0 . Using
the equivalence relations e−σ0T ‖·‖0 ≤ ‖·‖σ0 ≤ ‖·‖0, where ‖·‖0 = ‖·‖U(Q),
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and (3.21), we reach

‖u‖U(Q) ≤ 2Ĉ2e
σ0T
[
‖u0‖L2(Ω) + ‖f‖L2(0,T ;Lq2 (Ω)) + ‖φ‖(L2(Q))n

+ θ1‖g‖T (Q) + θ2‖h‖L2(Γ2,T )

]
.

(3.26)

This is (3.20) in case µ = 0, ϕ = 0.
Secondly, we prove the theorem in the general case when µ and ϕ may

not vanish. Let us introduce the resolvent kernel µ̂ of µ that is the solution
of the Volterra equation of the second kind

µ̂+ µ ∗ µ̂ = µ in (0, T ). (3.27)

Since µ ∈ L2(0, T ), the equation (3.27) has a unique solution µ̂ ∈ L2(0, T )
[15]. Note that the relations

(I − µ̂∗)(I + µ∗) = (I + µ∗)(I − µ̂∗) = I (3.28)

are valid, where I is the unity operator. Moreover, we define the following
one-to-one connection between functions u ∈ U(Q) and û ∈ U(Q):

û = u+ µ ∗ u− ϕ ⇔ u = û+ ϕ− µ̂ ∗ (û+ ϕ) (3.29)

Now we note that the problem (3.1) - (3.4) for the weak solution u ∈ U(Q)
is equivalent to the following problem for the weak solution û ∈ U(Q):

ût = Aû− m̂ ∗Aû+ f̂ +∇ · φ̂ in Q,

û = û0 in Ω× {0},
û = ĝ in Γ1,T ,

− νA · ∇û+ m̂ ∗ νA · ∇û = h+ ν · φ̂ in Γ2,T ,

(3.30)

where

m̂ = m+ µ̂−m ∗ µ̂ , f̂ = f + aϕ− m̂ ∗ aϕ,

φ̂i = φi +

n∑
j=1

aijϕxj − m̂ ∗
n∑
j=1

aijϕxj ,

ĝ = g + µ ∗ g − gϕ , û0 = u0 − ϕ(·, 0).

This can be directly verified, inserting u by the right formula of (3.29) to
(3.19) and vice versa, inserting û by the left formula of (3.29) to the weak
form of the problem (3.30).

Taking the assumptions (3.10) - (3.18) and the relation µ̂ ∈ L2(0, T )
into account and making use of Lemma 3.1 and Young’s inequality of con-
volutions, we obtain m̂ ∈ L1(0, T ), f̂ ∈ L2(0, T ;Lq2(Ω)), φ̂ ∈ (L2(Q))n,
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û0 ∈ L2(Ω), ĝ ∈ U(Q). Moreover, the estimates

‖f̂‖L2(0,T ;Lq2 (Ω)) ≤ ‖f‖L2(0,T ;Lq2 (Ω)) + Ĉ6‖ϕ‖U(Q),

‖φ̂‖(L2(Q))n ≤ ‖φ‖(L2(Q))n + Ĉ6‖ϕ‖U(Q),

‖ĝ‖T (Q) ≤ Ĉ6‖g‖T (Q) + ‖gϕ‖T (Q),

‖û0‖L2(Q) ≤ ‖u0‖L2(Q) + Ĉ6‖ϕ‖U(Q),

(3.31)

where the constant Ĉ6 depends on aij , a, µ,m. Thus, the first part of the
proof applied to (3.30) implies that this problem has a unique weak solution
ŵ in U(Q). By the mentioned equivalence of the problems (3.30) and (3.1)
- (3.4) we conclude that the latter one has a unique solution u in U(Q).
Finally, we write the estimate (3.26) for the solution of the problem (3.30)
and use the relations (3.31) for the data in the right-hand side. This yields
‖û‖U(Q) ≤ RHS, where RHS is the right-hand side of the estimate (3.20).
Since due to (3.29) ‖u‖U(Q) ≤ (1+‖µ̂‖L1(0,T ))

[
‖û‖U(Q) +‖ϕ‖U(Q)

]
, we reach

(3.20).
We note the upper integration bound T in (3.19) can be released to be

any number t from the interval [0, T ]. Namely, (3.19) is equivalent to the
following problem:∫

Ω

[
(u+ µ ∗ u− ϕ)(x, t)η(x, t)− (u0(x)− ϕ(x, 0))η(x, 0)

]
dx

−
∫ ∫
Qt

(u+ µ ∗ u− ϕ)ηt dxdt

+

∫ ∫
Qt

[ n∑
i,j=1

aij(uxj −m ∗ uxj )ηxi − a(u−m ∗ u)η
]
dxdt

+

∫ ∫
Γ2,t

hη dΓdt−
∫ ∫
Qt

(fη − φ · ∇η) dxdt = 0, t ∈ [0, T ]

(3.32)

for any η ∈ T0(Q). This assertion can be proved using the standard tech-
nique defining the test function as follows:

ηε(x, t) =


η(x, τ) for τ ∈ [0, t],
η(x, τ)

(
1− τ−t

ε

)
for τ ∈ (t, t+ ε),

0 for τ ∈ [t+ ε, T ],

and letting the parameter ε to approach 0.

3.1.2 Convolutional form of weak direct problem

The test function η in (3.19) has stronger smoothness requirements than
the solution u: it must possess a regular time derivative. But in some
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cases we must operate with a test function that has the same regularity
as u, for instance in computations with adjoint problems in next sections.
Therefore, we have to generalize the formulation of the weak problem in a
proper manner. Since the original problem contains time convolutions, it
is convenient to present such a generalization also in a convolutional form.

Theorem 3.2 The function u ∈ U(Q) satisfies the relation (3.19) for any
η ∈ T0(Q) if and only if it satisfies the following relation∫

Ω
(u+ µ ∗ u− ϕ) ∗ η dx−

∫
Ω

∫ t

0
(u0(x)− ϕ(x, 0))η(x, τ)dτdx

+

∫
Ω

1 ∗
[ n∑
i,j=1

aij(uxj −m ∗ uxj ) ∗ ηxi − a(u−m ∗ u) ∗ η
]
dx

+

∫
Γ2

1 ∗ h ∗ η dΓ−
∫

Ω
1 ∗
(
f ∗ η −

n∑
i=1

φi ∗ ηxi
)
dx = 0, t ∈ [0, T ],

(3.33)

for any η ∈ U0(Q).

Proof. It is sufficient to prove that u ∈ U(Q) satisfies (3.32) for any
η ∈ T0(Q) if and only if it satisfies (3.33) for any η ∈ U0(Q). Suppose
that u ∈ U(Q) satisfies (3.32) and choose an arbitrary η ∈ T0(Q). Let
t1 be an arbitrary number on the interval [0, T ] and choose some function
ξt1 ∈ T0(Q) such that the relation

ξt1(x, t) = η(x, t1 − t) for t ∈ [0, t1] (3.34)

is valid. (For instance, it is possible to define ξt1 as a periodic function with
respect to t, i.e. ξt1(x, t) = η(x, t1 − t) for t ∈ [0, t1], ξt1(x, t) = η(x, t− t1)
for t ∈ [t1, 2t1], ξt1(x, t) = η(x, 3t1 − t) for t ∈ [2t1, 3t1] and so on.) Using
the relation (3.32) with η replaced by ξt1 and setting there t = t1 we obtain
the equality

K1(t1) +K2(t1) = 0, (3.35)

where

K1(t) =

∫
Ω

[
(u+ µ ∗ u− ϕ)(x, t)η(x, 0)− (u0(x)− ϕ(x, 0))η(x, t)

]
dx

+

∫
Ω

∫ t

0
(u+ µ ∗ u− ϕ)(x, τ)ηt(x, t− τ) dτdx,

K2(t) =

∫
Ω

[ n∑
i,j=1

aij(uxj −m ∗ uxj ) ∗ ηxi − a(u−m ∗ u) ∗ η
]
dx

+

∫
Γ2

h ∗ η dΓ−
∫

Ω

(
f ∗ η −

n∑
i=1

φi ∗ ηxi
)
dx.

(3.36)
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Note that the time derivative of η can be removed from K1 by integration.
Indeed, let t2 ∈ [0, T ]. Then with the notation û = u+ µ ∗ u− ϕ we get∫ t2

0
K1(t1)dt1 =

∫ t2

0

∫
Ω
û(x, t1)η(x, 0) dxdt1 −

∫ t2

0

∫
Ω
û(x, 0)η(x, t1) dxdt1

+

∫ t2

0

∫
Ω

∫ t1

0
û(x, τ)ηt1(x, t1 − τ) dτdxdt1.

Changing the order of the integrals over τ and t1 in the last term, we easily
obtain∫ t2

0
K1(t1)dt1

=

∫
Ω

∫ t2

0
û(x, τ)η(x, t2 − τ) dτdx−

∫ t2

0

∫
Ω
û(x, 0)η(x, t1) dxdt1.

(3.37)

Integrating now the whole equality (3.35) over t1 from 0 to t2, observing
(3.36), (3.37) and finally re-denoting t2 by t, we reach the desired relation
(3.33). Thus, we have proved that (3.33) holds for any η ∈ T0(Q). But all
terms in the right-hand side of (3.33) are well-defined for η ∈ U0(Q), too.
Since T0(Q) is densely embedded in U0(Q), we conclude that (3.33) holds
for any η ∈ U0(Q).

It remains to show that (3.33) implies (3.32). Suppose that u ∈ U(Q)
satisfies (3.33) and choose an arbitrary η ∈ T0(Q) and t1 ∈ [0, T ]. Again,
let ξt1 be a function from T0(Q) such (3.34) is valid. Inserting ξt1 instead
of η into (3.33), differentiating with respect to t and setting t = t1 we come
to the relation (3.32).

3.2 Quasi-solutions of inverse problems. Fréchet derivatives
of cost functionals

3.2.1 Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns ω =
(ω1, . . . , ωN ) in the space Z1 = (L2(Ω))N . Assume that µ = 0, ϕ = 0,
(3.10), (3.11), (3.13) - (3.15), (3.17) hold, f0 satisfies (3.16) and γj ∈
L2(0, T ), j = 1, . . . , N . Then, by Theorem 3.1, the problem (3.1) -
(3.4) with f of the form (3.5) has a unique weak solution u ∈ U(Q)
for any ω ∈ Z1. We denote this ω-dependent solution by u(x, t;ω).
Since U(Q) ⊂ C([0, T ];L2(Ω)), the traces u(·, Ti;ω) belong to L2(Ω).

Let M ⊆ Z1. Assume uTi ∈ L2(Ω), i = 1, . . . , N . The quasi-solution
of IP4 in the set M is an element ω∗ ∈ arg min

ω∈M
J1(ω), where J1 is

the following cost functional:

J1(ω) =

N∑
i=1

‖u(x, Ti;ω)− uTi(x)‖2L2(Ω).
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Similarly we define cost functionals and quasi-solutions for other inverse
problems, too.

(2) In IP5 we search for vectors z = (ω, u0) ∈ Z2 = (L2(Ω))N+1. Assume
that µ = 0, ϕ = 0, (3.10), (3.11), (3.13), (3.15), (3.17) hold, f0

satisfies (3.16) and γj ∈ L2(0, T ), j = 1, . . . , N . Then the problem
(3.1) - (3.4) with f of the form (3.5) has a unique weak solution
u = u(x, t; z) ∈ U(Q) for any z ∈ Z2. Further, let M ⊆ Z2 and
assume that κi ∈ L∞(Q), vi ∈ L2(Ω), i = 1, . . . , N + 1. The quasi-
solution of IP5 in the set M is z∗ ∈ arg min

z∈M
J2(z), where J2 is the

cost functional

J2(z) =
N+1∑
i=1

∥∥∥∫ T

0
κi(·, t)u(·, t; z)dt− vi

∥∥∥2

L2(Ω)
.

(3) In IP6 we look for the vector z = (a,m, µ) ∈ Z3 = L2(Ω)×(L2(0, T ))2.
Assume that n ∈ {1; 2; 3}. This guarantees that any a ∈ L2(Ω)
satisfies (3.11). Moreover, assume that (3.10), (3.14) - (3.18) hold,
where q2 ∈ (1, 2) in (3.16) in case n = 2. Under such assumptions the
problem (3.1) - (3.4) has a unique weak solution u = u(x, t; z) ∈ U(Q)
for any z ∈ Z3. The trace of this solution at Γ2,T belongs to L2(Γ2,T )
(in case n = 1, u(xl, ·) ∈ L2(0, T ), l = 1, . . . , L). Let M ⊆ Z3 and
assume that uT ∈ L2(Ω), κi ∈ L∞(Γ2,T ), vi ∈ L2(0, T ), i = 1, 2. The
quasi-solution of IP6 in the set M is z∗ ∈ arg min

z∈M
J3(z), where J3 is

the cost functional

J3(z) = ‖u(·, T ; z)− uT ‖2L2(Ω)+

2∑
i=1

∥∥∥∥∫
Γ2

κi(x, ·)u(x, ·; z)dΓ− vi
∥∥∥∥2

L2(0,T )

.

3.2.2 General procedure to deduce adjoint problems

Suppose that the solution u of the direct problem (3.1) - (3.4) depends on
a vector of parameters p that has to be determined in an inverse problem
making use of certain measurements of u. Let a quasi-solution of the inverse
problem be sought by a method involving the Fréchet derivative of a cost
functional (i.e. some gradient-type method). Usually in practice, a solution
of a proper adjoint problem (or solutions of adjoint problems) are used to
represent the Fréchet derivative.

We introduce a general procedure to deduce such adjoint problems in
case µ = 0 and ϕ = 0. Assume that ∆u is the difference of solutions
of the direct problem corresponding to a difference of the vector of the
parameters ∆p. More precisely, we suppose that ∆u is a solution of the
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following problem:

∆ut + (µ ∗∆u)t = A∆u−m ∗A∆u+ f † +∇ · φ† in Q,

∆u = ∆u0 in Ω× {0},
∆u = 0 in Γ1,T ,

− νA · ∇∆u+m ∗ νA · ∇∆u = h† + ν · φ† in Γ2,T ,

(3.38)

with some data f †, φ†, ∆u0, h† depending on ∆p. We restrict ourselves to
the case when the Dirichlet boundary condition of the state u is independent
on p. Therefore, ∆u|Γ1,T

= 0 in (3.38).

In practice, the adjoint parabolic problems are usually formulated as
backward problems. In our context, it is better to pose adjoint problems
in the forward form. The involved memory term with m is defined via a
forward convolution and from the practical viewpoint, it is preferable to
have the direct and adjoint problems in a similar form (e.g., to simplify
parallelization of computations).

Namely, let an adjoint state ψ be a solution of the following problem:

ψt + (µ ∗ ψ)t = Aψ −m ∗Aψ + f◦ +∇ · φ◦ in Q,

ψ = u◦ in Ω× {0},
ψ = 0 in Γ1,T ,

− νA · ∇ψ +m ∗ νA · ∇ψ = h◦ + ν · φ◦ in Γ2,T ,

(3.39)

where f◦, φ◦, u◦ and h◦ are some data depending on ∆u and the cost
functional under consideration.

Assume that (3.10), (3.11), (3.13) hold and the quadruplets f †, φ†,
∆u0, h† and f◦, φ◦, u◦, h◦ satisfy the conditions (3.14) - (3.17). Then,
due to Theorem 1, the problems (3.38) and (3.39) have unique weak solu-
tions in the space U(Q). Actually, it hold ∆u, ψ ∈ U0(Q) because of the
homogeneous boundary conditions on Γ1,T .

Let us consider the relation (3.33) for ∆u and take the test function
η = ψ. Then we obtain for any t ∈ [0, T ]∫

Ω
(∆u+ µ ∗∆u) ∗ ψ dx−

∫
Ω

∫ t

0
∆u0(x)ψ(x, τ)dτdx

+

∫
Ω

1∗
[ n∑
i,j=1

aij(∆uxj−m∗∆uxj ) ∗ ψxi − a(∆u−m∗∆u) ∗ ψ
]
dx

+

∫
Γ2

1 ∗ h† ∗ ψ dΓ−
∫

Ω
1 ∗
(
f † ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)
dx = 0.

(3.40)

Secondly, let us consider (3.33) for ψ and take the test function η = ∆u.
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Then we have for any t ∈ [0, T ]∫
Ω

(ψ + µ ∗ ψ) ∗∆u dx−
∫

Ω

∫ t

0
u◦(x)∆u(x, τ)dτdx

+

∫
Ω

1 ∗
[ n∑
i,j=1

aij(ψxj −m ∗ ψxj ) ∗∆uxi − a(ψ −m ∗ ψ) ∗∆u
]
dx

+

∫
Γ2

1 ∗ h◦ ∗∆u dΓ−
∫

Ω
1 ∗
(
f◦ ∗∆u−

n∑
i=1

φ◦i ∗∆uxi

)
dx = 0.

(3.41)

Subtracting (3.40) from (3.41), using the commutativity of the convolution,
the symmetricity relations aij = aji and differentiating with respect to t,
we arrive at the following basic equality:∫

Ω
u◦(x)∆u(x, t)dx−

∫
Γ2

h◦ ∗∆u dΓ +

∫
Ω

(
f◦ ∗∆u−

n∑
i=1

φ◦i ∗∆uxi

)
dx

=

∫
Ω

∆u0(x)ψ(x, t)dx−
∫

Γ2

h† ∗ ψ dΓ +

∫
Ω

(
f † ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)
dx,

t ∈ [0, T ]. (3.42)

This relation can be used to deduce proper representations for Fréchet
derivatives of cost functionals of various inverse problems. The procedure
starts with a derivation of a usual expression for the Fréchet derivative,
thereupon entries of the adjoint problem f◦, φ◦, u◦ and h◦ are chosen so
that the left hand side of (3.42) equals this expression. We will demonstrate
this scheme in next three subsections.

We mention that the last step of the derivation of the formula (3.42),
i.e. the differentiation of the difference of (3.41) and (3.40), is problematic
in case the free term of the integro-differential equation (3.40) contains a

singular addend ϕ†t , because in this case we have to differentiate a convolu-
tion ϕ† ∗ψ that may have not a regular time derivative. However, the step
of differentiation is necessary, because the antiderivative of (3.42) is useless
for inverse problems with instant conditions.

3.2.3 Derivative of J2

We start by analyzing J2, because this is the simplest of the functionals
J1, J2, J3.

Theorem 3.3 Let the assumptions listed in §3.2.1 (2) be satisfied. Then
the functional J2 is Fréchet differentiable in Z2 and J ′2(z)∆z = 〈%2,∆z〉Z2 ,
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where the z-dependent vector %2 = %2(x; z) consists of the components

%2,j(x; z)=

∫ T

0
γj(t)ψ(x, T−t; z)dt, j = 1, . . . , N,

%2,N+1(x; z)=ψ(x, T ; z),

(3.43)

ψ = ψ(x, t; z) ∈ U(Q) is the unique z-dependent weak solution of the fol-
lowing (adjoint) problem:

ψt = Aψ −m ∗Aψ

+ 2

N+1∑
i=1

κi(x, T − t)
[∫ T

0
κi(x, τ)u(x, τ ; z)dτ − vi(x)

]
in Q,

ψ = 0 in Ω× {0},
ψ = 0 in Γ1,T ,

− νA · ∇ψ +m ∗ νA · ∇ψ = 0 in Γ2,T

(3.44)

and 〈%2, z〉Z2 =
N∑
j=1
〈%2,j , ωj〉L2(Ω)+〈%2,N+1 , u0〉L2(Ω) is the inner product

of %2 and z in the space Z2.

Proof. Let us fix some z = (ω, u0) and ∆z = (∆ω,∆u0) in the space Z2.
One can immediately check that it holds

J2(z + ∆z)− J2(z) = 2

N+1∑
i=1

∫
Ω

∫ T

0
κi(x, t)

×
[∫ T

0
κi(x, τ)u(x, τ ; z)dτ − vi(x)

]
∆u(x, t; z)dtdx

+
N+1∑
i=1

∫
Ω

[∫ T

0
κi(x, t)∆u(x, t; z)dt

]2

dx,

(3.45)

where ∆u(x, t; z) = u(x, t; z+ ∆z)− u(x, t; z) ∈ U0(Q) is the weak solution
of the following problem:

∆ut = A∆u−m ∗A∆u+
N∑
j=1

γj∆ωj in Q,

∆u = ∆u0 in Ω× {0},
∆u = 0 in Γ1,T ,

− νA · ∇∆u+m ∗ νA · ∇∆u = 0 in Γ2,T .

(3.46)

Using the Cauchy inequality, the assumptions κi ∈ L∞(Q), γj ∈ L2(0, T )
and the estimate (3.20) for the solution of the problem (3.46) we deduce

65



the relation∣∣∣∣∣
N+1∑
i=1

∫
Ω

[∫ T

0
κi(x, t)∆u(x, t; z)dt

]2

dx

∣∣∣∣∣ ≤ Ĉ7‖∆u‖2U(Q)

≤ Ĉ8

[∥∥∥ N∑
j=1

γj∆ωj

∥∥∥2

L2(0,T ;Lq2 (Ω))
+‖∆u0‖2L2(Ω)

]
≤ Ĉ9‖∆z‖2(L2(Ω))N+1

(3.47)

with some constants Ĉ7, Ĉ8, Ĉ9. Therefore J2 is Fréchet differentiable and
the first term in the right-hand side of (3.45) represents the Fréchet deriva-
tive, i.e.

J ′2(z)∆z = 2

N+1∑
i=1

∫
Ω

∫ T

0
κi(x, t)

×
[∫ T

0
κi(x, τ)u(x, τ ; z)dτ − vi(x)

]
∆u(x, t; z)dtdx.

(3.48)

Comparing (3.46) with (3.38) we see that f † =
∑N

j=1 γj∆ωj , φ
† = h† = 0.

Consequently, the relation (3.42) has the form∫
Ω
u◦(x)∆u(x, t)dx−

∫
Γ2

h◦ ∗∆u dΓ +

∫
Ω

(
f◦ ∗∆u−

n∑
i=1

φ◦i ∗∆uxi

)
dx

=

∫
Ω

∆u0(x)ψ(x, t)dx+
N∑
j=1

∫
Ω
γj∆ωj ∗ ψdx, t ∈ [0, T ]. (3.49)

We note that the left hand side of (3.49) coincides with (3.48) if we define
f◦ in the in the following manner:

f◦ = 2

N+1∑
i=1

κi(x, T − t)
[∫ T

0
κi(x, τ)u(x, τ ; z)dτ − vi(x)

]
,

let u◦ = h◦ = φ◦ = 0 and set t = T in (3.49). The problem (3.39) with
such entries takes the form of (3.44). By Theorem 3.1, the latter one has a
unique solution ψ ∈ U(Q). Finally, the right-hand side of (3.49) at t = T
equals 〈%2,∆u〉Z2 where the components of %2 are given by (3.43). This
yields the equality J ′2(z)∆z = 〈%2,∆z〉Z2 .

3.2.4 Derivative of J1

Theorem 3.4 Let the assumptions listed in §3.2.1 (1) be satisfied. Then
the functional J1 is Fréchet differentiable in Z1 and J ′1(ω)∆ω = 〈%1,∆ω〉Z1 ,
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where the ω-dependent vector %1 = %1(x;ω) consists of the components

%1,j(x;ω) =
N∑
i=1

∫ Ti

0
γj(t)ψi(x, Ti − t;ω)dt, j = 1, . . . , N, (3.50)

ψi = ψi(x, t;ω) ∈ U(Q), i = 1, . . . , N , are the unique ω-dependent weak
solutions of the following (adjoint) problems:

ψi,t = Aψi −m ∗Aψi in QTi,

ψi = 2[u(x, Ti;ω)− uTi(x)] in Ω× {0},
ψi = 0 in Γ1,Ti ,

− νA · ∇ψi +m ∗ νA · ∇ψi = 0 in Γ2,Ti

(3.51)

and 〈%1, ω〉Z1 =
N∑
j=1
〈%1,j , ωj〉L2(Ω) is the inner product of %1 and ω in the

space Z1.

Proof. Let us fix some ω,∆ω ∈ Z1. It holds

J1(ω + ∆ω)− J1(ω) = 2
N∑
i=1

∫
Ω

[u(x, Ti;ω)− uTi(x)]∆u(x, Ti;ω)dx

+

N∑
i=1

∫
Ω

∆u(x, Ti;ω)2dx,

(3.52)

where ∆u(x, t;ω) = u(x, t;ω+∆ω)−u(x, t;ω) ∈ U0(Q) is the weak solution
of the following problem:

∆ut = A∆u−m ∗A∆u+

N∑
j=1

γj∆ωj in Q,

∆u = 0 in Ω× {0},
∆u = 0 in Γ1,T ,

− νA · ∇∆u+m ∗ νA · ∇∆u = 0 in Γ2,T .

(3.53)

Similarly to (3.47) we obtain the estimate

N∑
i=1

∫
Ω

∆u(x, Ti;ω)2dx ≤ Ĉ10‖∆u‖2U(Q) ≤ Ĉ11‖∆ω‖2(L2(Ω))N

with some constants Ĉ10, Ĉ11. This implies that J1 is Fréchet differentiable
and the first term in the right-hand side of (3.52) represents the Fréchet
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derivative, i.e.

J ′1(ω)∆ω =
N∑
i=1

σi with

σi = 2

∫
Ω

[u(x, Ti;ω)− uTi(x)]∆u(x, Ti;ω)dx.

(3.54)

We are going to deduce suitable representations for the addends σi. For
this purpose, we make use the method presented in Subsection 3.2.2, again.
Comparing (3.53) with (3.38) we see that f † =

∑N
j=1 γj∆ωj , φ

† = ∆u0 =

h† = 0. Therefore, the relation (3.42) reads∫
Ω
u◦(x)∆u(x, t)dx−

∫
Γ2

h◦ ∗∆u dΓ +

∫
Ω

(
f◦ ∗∆u−

n∑
i=1

φ◦i ∗∆uxi

)
dx

=

N∑
j=1

∫
Ω
γj∆ωj ∗ ψdx, t ∈ [0, T ]. (3.55)

Note that the left-hand side of (3.55) equals σi if we set u◦i = 2[u(x, Ti;ω)−
uTi(x)], h◦ = f◦ = φ◦ = 0 and t = Ti in (3.55). In such a case the initial
condition u◦i of the adjoint problem (3.39) depends on the index i, thus the
solution ψ depends also on i. Let us denote this solution by ψi. Rewriting
(3.39) for ψi we immediately get (3.51). Due to Theorem 3.1, the problem
(3.51) has a unique solution in U(Q).

From (3.55) we immediately get

σi =
N∑
j=1

∫
Ω

∫ Ti

0
γj(t)ψi(x, Ti − t;ω)dt∆ωj(x)dx. (3.56)

From (3.54) and (3.56) we obtain J ′1(ω)∆ω = 〈%1,∆ω〉Z1 , where the com-
ponents of %1 have the form (3.50).

We point out that the formulas of the components of %1 (3.50) contain
the solutions of the problems (3.51) in cylinders Ω×(0, Ti) = QTi of increas-
ing heights T1 < T2 < . . . TN . It turns out that we can reduce the solution
of such a family of solutions to a successive solution of a certain family of
N problems posed on the layers ΩTi−Ti−1 , i = 1, . . . , N . The computational
cost of the latter procedure is comparable with the cost of a solution of a
single problem on Ω× (0, TN ). Let us formulate a corresponding theorem.

Theorem 3.5 Let the assumptions listed in §3.2.1 (1) be satisfied. The
components of %1 can also be presented in the form

%1,j(x;ω) =

N∑
l=1

∫ Tl

Tl−1

γj(t)βl(x, Tl − t;ω)dt, j = 1, . . . , N, (3.57)
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where βl ∈ U0(QTl−Tl−1
) are the unique ω-dependent weak solutions of the

following sequence of recursive problems in the domains QTl−Tl−1
:

βl,t = Aβl −m ∗Aβl − af l −∇ · Φl in QTl−Tl−1
,

βl = ul0 in Ω× {0},
βl = 0 in Γ1,Tl−Tl−1

,

−νA · ∇βl +m ∗ νA · ∇βl = −ν · Φl in Γ2,Tl−Tl−1
,

where l = N,N − 1, . . . , 2, 1. Here

ul0(x) = 2 [u(x, Tl;ω)− uTl(x)] + Θlβl+1(x, Tl+1 − Tl;ω)

and the function f l and the vector Φl are defined via βN , βN−1, . . . , βl+1 as
follows:

f l = Θl

N−1∑
k=l

∫ Tk+1−Tk

0
m(Tk−Tl+t+τ)βk+1(x, Tk+1−Tk−τ ;ω)dτ ,

Φl = (Φl
1, . . . ,Φ

l
n), Φl

i =
∑n

j=1 aij
∂
∂xj

f l and ΘN = 0, Θl = 1 for l < N .

Proof of this quite technical result is contained in Publication II, p. 9-
11. The relation between ψi an βl is βl(x, t;ω) =

∑N
i=l ψi(x, Ti − Tl + t;ω)

for (x, t) ∈ QTl−Tl−1
(formula (71) in Publication II).

3.2.5 Derivative of J3

We prove the Fréchet differentiability and deduce a proper representation
formula for the cost functional J3 of the nonlinear inverse problem IP6 in
two steps.

Theorem 3.6 Let the assumptions listed in §3.2.1 (3) be satisfied. Then
the functional J3 is Fréchet differentiable in Z3 and

J ′3(z)∆z = 2

∫
Ω

[u(x, T ; z)− uT (x)] ∆u(x, T )dx

+ 2
2∑
i=1

∫ T

0

[∫
Γ2

κi(y, t)u(y, t; z)dΓ− vi(t)
] ∫

Γ2

κi(x, t)∆u(x, t)dΓdt,

(3.58)

for any where z = (a,m, µ),∆z = (∆a,∆m,∆µ) ∈ Z3, where ∆u ∈ U(Q)
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is the z- and ∆z-dependent weak solution of the following problem:

∆ut + (µ ∗∆u)t = A∆u−m ∗A∆u+ ∆a[u−m ∗ u]−∆m ∗ au

−∇ ·
[
∆m ∗

n∑
j=1

aijuxj

]
−(∆µ ∗ u)t in Q,

∆u = 0 in Ω× {0},
∆u = 0 in Γ1,T ,

− νA · ∇∆u+m ∗ νA · ∇∆u = −ν ·
[
∆m ∗

n∑
j=1

aijuxj

]
in Γ2,T .

(3.59)

Proof. Let us estimate the components of the free term of the integro-
differential equation in (3.59). Observing the inclusion u ∈ U(Q), Lemma
3.1 and using the Young and Cauchy inequalities we obtain

‖∆a[u−m ∗ u]−∆m ∗ au‖L2(0,T ;Lq2 (Ω))

≤ ĉ1‖u‖U(Q)

[
(1 + ‖m‖L2(0,T ))‖∆a‖L2(Ω) + ‖a‖L2(Ω)‖∆m‖L2(0,T )

]
≤ ĉ2(z, u)‖∆z‖,

(3.60)

where ĉ1 is a constant, ĉ2 is a coefficient depending on z, u and ‖ ·‖ denotes
the norm in Z3. Taking the boundedness of aij into account we similarly
get

‖∆m ∗
n∑
j=1

aijuxj‖(L2(Q))n ≤ ĉ3‖u‖U(Q)‖∆m‖L2(0,T ) (3.61)

with a constant ĉ3. Further, we estimate the term ∆µ ∗ u. Since u ∈
C([0, T ];L2(Ω)) and ∆µ ∈ L2(0, T ), it is easy to check that ∆µ ∗ u ∈
C([0, T ];L2(Ω)) and ‖∆µ∗u‖C([0,T ];L2(Ω)) ≤ T 1/2‖u‖C([0,T ];L2(Ω))‖∆µ‖L2(0,T ).

Similarly, ‖∆µ∗u‖L2(0,T ;W 1
2 (Ω)) ≤ T 1/2×‖u‖L2(0,T ;W 1

2 (Ω))‖∆µ‖L2(0,T ). Putting
these estimates together, we have

‖∆µ ∗ u‖U(Q) ≤ T 1/2‖u‖U(Q)‖∆µ‖L2(0,T ). (3.62)

Since u = g in Γ1,T , we find that

∆µ ∗ u = ∆µ ∗ g in Γ1,T . (3.63)

Using the assumption g ∈ T (Q) and the Young and Cauchy inequalities
again, we deduce

‖∆µ ∗ g‖T (Q) = ‖∆µ ∗ g‖L2(0,T ;W 1
2 (Ω)) + ‖(∆µ ∗ g)t‖L2(0,T ;L2(Ω))

= ‖∆µ ∗ g‖L2(0,T ;W 1
2 (Ω)) + ‖∆µ ∗ gt‖L2(0,T ;L2(Ω))

+ ‖∆µ g(·, 0)‖L2(0,T ;L2(Ω)) ≤ ĉ4‖∆µ‖L2(0,T )

(3.64)
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with a constant ĉ4. The relations (3.60) - (3.64) show that the assumptions
of Theorem 3.1 are satisfied for the problem (3.59). Consequently, (3.59)
has a unique weak solution ∆u ∈ U(Q). Moreover, applying the estimate
(3.20) for the solution of (3.59) we obtain

‖∆u‖U(Q) ≤ Ĉ1

[
‖∆a[u−m ∗ u] + ∆m ∗ au‖L2(0,T ;Lq2 (Ω))

+
∥∥∥∆m ∗

n∑
j=1

aijuxj

∥∥∥
(L2(Q))n

+‖∆µ ∗ u‖U(Q) + θ1‖∆µ ∗ g‖T (Q)

]
≤ ĉ5(z, u)‖∆z‖

(3.65)

with a coefficient ĉ5 depending on z, u.
Next, let us denote ∆̃u = u(x, t; z + ∆z) − u(x, t; z) and define ∆̂u =

∆̃u−∆u. Then we can represent the difference of J3 as follows:

J3(z + ∆z)− J3(z) = RHS + Θ, (3.66)

where RHS is the right-hand side of the equality (3.58) and

Θ = 2

∫
Ω

[u(x, T )− uT (x)] ∆̂u(x, T )dx

+ 2

2∑
i=1

∫ T

0

[∫
Γ2

κi(y, t)u(y, t)dΓ− vi(t)
] ∫

Γ2

κi(x, t)∆̂u(x, t)dΓdt

+

∫
Ω

{
(∆u+ ∆̂u)(x, T )

}2
dx+

2∑
i=1

∫ T

0

{∫
Γ2

κi(x, t)(∆u+ ∆̂u)(x, t)dΓ

}2

dt.

The function ∆̂u satisfies the following problem:

∆̂ut + (µ ∗ ∆̂u)t = A∆̂u−m ∗A∆̂u+ f̄ + f̂

+∇ · φ̄+∇ · φ̂+ ϕ̄t + ϕ̂t in Q,

∆̂u = 0 in Ω× {0},

∆̂u = 0 in Γ1,T ,

− νA · ∇∆̂u+m ∗ νA · ∇∆̂u = ν · φ̄+ ν · φ̂ in Γ2,T ,

(3.67)

where

f̄ = ∆a∆u− (m+ ∆m) ∗∆a∆u−∆m ∗ a∆u−∆m ∗∆au,

f̂ = ∆a∆̂u− (m+ ∆m) ∗∆a∆̂u−∆m ∗ a∆̂u,

φ̄ = −∆m ∗
n∑
j=1

aij∆uxj , φ̂ = −∆m ∗
n∑
j=1

aij∆̂uxj ,

ϕ̄ = −∆µ ∗∆u, ϕ̂ = −∆µ ∗ ∆̂u.
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Similarly to (3.60) - (3.62) we deduce the following estimates:

‖f̄‖L2(0,T ;Lq2 (Ω)) ≤ ĉ6

{
(1 + ‖m‖L2(0,T ) + ‖∆m‖L2(0,T ))‖∆a‖L2(Ω)

×‖∆u‖U(Q) + ‖∆m‖L2(0,T )‖a‖L2(Ω)‖∆u‖U(Q) + ‖∆m‖L2(0,T )‖∆a‖L2(Ω)

×‖u‖U(Q)

}
≤ ĉ7(z, u)

{ [
‖∆z‖+ ‖∆z‖2

]
‖∆u‖U(Q) + ‖∆z‖2

}
,

‖f̂‖L2(0,T ;Lq2 (Ω)) ≤ ĉ8(z)
[
‖∆z‖+ ‖∆z‖2

]
‖∆̂u‖U(Q),

‖φ̄‖(L2(Q))n ≤ ĉ9‖∆z‖‖∆u‖U(Q),

‖φ̂‖(L2(Q))n ≤ ĉ9‖∆z‖‖∆̂u‖U(Q),

‖ϕ̄‖U(Q) ≤ T 1/2‖∆z‖‖∆u‖U(Q),

‖ϕ̂‖U(Q) ≤ T 1/2‖∆z‖‖∆̂u‖U(Q)

with some coefficients ĉ6, . . . , ĉ9. Moreover, since ∆u = ∆̂u = 0 in Γ1,T , we
have ϕ̄ = ϕ̂ = 0 in Γ1,T . Applying the estimate (3.20) to the solution of
the problem (3.67) we get

‖∆̂u‖U(Q)

≤ ĉ10(z, u)
{ [
‖∆z‖+ ‖∆z‖2

] {
‖∆u‖U(Q) + ‖∆̂u‖U(Q)

}
+‖∆z‖2

}
with a coefficient ĉ10. Provided ‖∆z‖ is sufficiently small, i.e. ‖∆z‖ +
‖∆z‖2 ≤ 1

2ĉ10(z,u) , we have

‖∆̂u‖U(Q) ≤ 2ĉ10(z, u)
{ [
‖∆z‖+ ‖∆z‖2

]
‖∆u‖U(Q) + ‖∆z‖2

}
.

Due to (3.65), this yields

‖∆̂u‖U(Q) ≤ ĉ11(z, u)
[
‖∆z‖2 + ‖∆z‖3

]
(3.68)

with a coefficient ĉ11.
In view of (3.65), (3.68), the assumption κj ∈ L∞(Γ2,T ) and a trace

theorem, the RHS and the quantity Θ satisfy the estimates

|RHS| ≤ ĉ12(z, u)‖∆z‖, |Θ| ≤ ĉ13(z, u)
6∑
l=2

‖∆z‖l,

where ĉ12 and ĉ13 are some coefficients. Moreover, RHS is linear with
respect to ∆z. This with (3.66) shows that J3 is Fréchet differentiable in
Z3 and J ′3(z)∆z equals RHS.

Theorem 3.7 Let the assumptions listed in §3.2.1 (3) be satisfied. More-
over, assume g = 0. Then the Fréchet derivative of J3 admits the form
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J ′3(z)∆z = 〈%3,∆z〉Z3, where %3 = %̃3 +%3, the z-dependent vectors %̃3, %3 ∈
Z3 have the components

%̃3,1(x; z) =
[
(u−m ∗ u) ∗ ψ

]
(x, T ), %3,1 = 0, (3.69)

%̃3,2(t; z) =

∫
Ω

[ n∑
i,j=1

aijψxi ∗ uxj − au ∗ ψ
]
(x, T − t)dx, %3,2 = 0, (3.70)

%̃3,3(t; z) =

∫
Ω

[
au ∗ ψ ∗ (µ̂+m−m ∗ µ̂)− au ∗ ψ

+

n∑
i,j=1

aijψxi ∗ uxj −
n∑

i,j=1

aijψxi ∗ uxj ∗ (µ̂+m−m ∗ µ̂)
]
(x, T − t)dx,

(3.71)

%3,3(t; z) = −2

∫
Ω
{u(x, T )− uT (x)}

[
u− µ̂ ∗ u

]
(x, T − t)dx

− 2

2∑
i=1

∫ T

t

[∫
Γ2

κi(y, τ)u(y, τ)dΓ− vi(τ)
]

×
∫

Γ2

κi(x, τ)
[
u− µ̂ ∗ u

]
(x, τ − t)dΓdτ,

(3.72)

µ̂ is the solution of (3.27), ψ = ψ(x, t; z) ∈ U(Q) is the z-dependent weak
solution of the following (adjoint) problem:

∆ψt + (µ ∗∆ψ)t = A∆ψ −m ∗A∆ψ in Q,

∆ψ = 2[u(x, T ; z)− uT (x)] in Ω× {0},
∆ψ = 0 in Γ1,T ,

− νA · ∇∆ψ +m ∗ νA · ∇∆ψ = h◦ in Γ2,T ,

(3.73)

where

h◦(x, t)

= −2
2∑
i=1

κi(x, T − t)
[∫

Γ2

κi(y, T − t)u(y, T − t)dΓ− vi(T − t)
]

(3.74)

and 〈%3, z〉Z3 = 〈%3,1, a〉L2(Ω) + 〈%3,2,m〉L2(0,T ) + 〈%3,3, µ〉L2(0,T ) is the inner
product of %3 and z = (a,m, µ) in Z3.

Proof. We are going to make use of the method presented in Subsection
3.2.2, but firstly we have to eliminate the singular term (∆µ ∗ u)t from the
integro-differential equation (3.59). For this purpose, let us define a new
function ∆w via is the weak solution of (3.59) ∆u by means of the formula
∆w = ∆u + ∆µ ∗ u − µ̂ ∗ ∆µ ∗ u and deduce a problem for ∆w. Since
u,∆u ∈ U(Q), we have ∆w ∈ U(Q). Moreover, using (3.28) it is easy to
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check that ∆u+µ∗∆u+∆µ∗u = ∆w+µ∗∆w. Using this relation for the
time derivatives in (3.59) and the equality ∆u = ∆w−∆µ ∗ u+ µ̂ ∗∆µ ∗ u
for other terms containing ∆u in (3.59) we see that ∆w is the weak solution
of the following problem:

∆wt + (µ ∗∆w)t = A∆w −m ∗A∆w + f † +∇ · φ† in Q,

∆w = 0 in Ω× {0},
∆w = 0 in Γ1,T ,

− νA · ∇∆u+m ∗ νA · ∇∆u = ν · φ† in Γ2,T ,

(3.75)

where

f † = ∆a[u−m ∗ u]− a∆m ∗ u− a∆µ ∗ u
+ a∆µ ∗ u ∗ [µ̂+m−m ∗ µ̂],

φ†i = −∆m ∗
n∑
j=1

aijuxj −∆µ ∗
n∑
j=1

aijuxj

+ ∆µ ∗
n∑
j=1

aijuxj ∗ [µ̂+m−m ∗ µ̂].

Note that the integro-differential equation (3.75) doesn’t contain a singular
time derivative in its free term. In addition, let us rewrite the expres-
sion of J ′(z)∆z (3.58) in terms of ∆w. Using the formula ∆u = ∆w −
(u− µ̂ ∗ u) ∗∆µ, again, we obtain

J ′3(z)∆z = σ1 + σ2 with

σ1 = 2

∫
Ω

[u(x, T )− uT (x)] ∆w(x, T )dx

+ 2

2∑
i=1

∫ T

0

[∫
Γ2

κi(y, t)u(y, t)dΓ− vi(t)
] ∫

Γ2

κi(x, t)∆w(x, t)dΓdt,

σ2 = −2

∫
Ω

[u(x, T )− uT (x)]
[
(u− µ̂ ∗ u) ∗∆µ

]
(x, T )dx

− 2
2∑
i=1

∫ T

0

[∫
Γ2

κi(y, t)u(y, t)dΓ− vi(t)
]

×
∫

Γ2

κi(x, t)
[
(u− µ̂ ∗ u) ∗∆µ

]
(x, t)dΓdt.

The term σ2 has the form of the inner product σ2 = 〈%3,∆z〉Z3 , where
%3 = (0, 0, %3,3) and %3,3 is given by (3.72). It remains to represent σ1 in a
form of the inner product. Let us make use of the basic formula (3.42) with
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∆u replaced by ∆w. Comparing (3.75) with (3.38) we see that ∆u0 = 0
and h† = 0. Thus, (3.42) reads∫

Ω
u◦(x)∆w(x, t)dx−

∫
Γ2

h◦ ∗∆w dΓ +

∫
Ω

(
f◦ ∗∆w −

n∑
i=1

φ◦i ∗∆wxi

)
dx

=

∫
Ω

(
f † ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)
dx, t ∈ [0, T ].

The left-hand side of this expression equals σ1 if we choose u◦ = 2[u(x, T )−
uT (x)], define h◦ by (3.74), take f◦ = 0, φ◦ = 0 and set t = T . In this case

σ1 =
∫

Ω

(
f † ∗ ψ −

∑n
i=1 φ

†
i ∗ ψxi

)
dx
∣∣
t=T

. Substituting here the quantities

f † and φ† and rearranging the terms we reach the relation σ1 = 〈%̃3,∆z〉Z3 ,
where the components of %̃3 are given by (3.69) - (3.71). This proves the
assertion J ′3(z)∆z = 〈%3,∆z〉Z3 , where %3 = %̃3 + %3.

Finally, with the mentioned choice of u◦, h◦, f◦ and φ◦ the adjoint
problem (3.39) has the form (3.73). Since u ∈ U(Q) and κi ∈ L∞(Γ2,T ),
by trace theorems we get u◦ ∈ L2(Ω) and h◦ ∈ L2(Γ2,T ). Therefore, due to
Theorem 3.1, the problem (3.73) has a unique solution ψ ∈ U(Q).

3.3 Existence of quasi-solutions

Theorem 3.8 Let the assumptions listed in §3.2.1 (1) be satisfied and M ⊂
Z1 be compact. Then IP4 has a quasi-solution in M . Similar assertions
are valid for IP5 and IP6, too.

Proof. Since J1 is bounded from below, there exists m = inf
ω∈M

J1(ω) >

−∞. Let ωl ∈ M be a minimising sequence, i.e. limJ1(ωl) = m. By the
compactness, there exists a subsequence ωlj ∈M such that limωlj = ω∗ ∈
M . Due to the continuity of J1, following from the Fréchet differentiability,
we have lim J1(ωlj ) = J1(ω∗). Thus, J1(ω∗) = m and ω∗ ∈ arg min

ω∈M
J1(ω).

The element ω∗ is a quasi-solution.

Theorem 3.9 Let the assumptions listed in §3.2.1 (1) be satisfied and M ⊂
Z1 be bounded, closed and convex. Then IP4 has a quasi-solution in M .
The set of quasi-solutions is closed and convex. Similar assertion is valid
for IP5, too.

Proof. The existence assertion follows from Weierstrass existence theorem
(see [65], Section 2.5, Thm 2D) once we have proved that J1 is weakly
sequentially lower semicontinuous in F , i.e.

J1(ω) ≤ lim inf J1(ωn) as ωn ⇀ ω in M. (3.76)
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On the other hand, (3.76) is a consequence of the continuity and convexity
of J1 in M [65]. As mentioned before, J1 is continuous in Z1. Thus, it
remains to show that J1 is convex. In view of the linearity of u(x, t;ω) with
respect to ω and the convexity of the quadratic function we obtain

J1(λω̂ + (1− λ)ω̃) =
N∑
i=1

∫ T

0

{
u
(
x, Ti;λω̂ + (1− λ)ω̃

)
−uTi(x)

}2
dx

=

N∑
i=1

∫ T

0

{
λu(x, Ti; ω̂) + (1− λ)u(x, Ti; ω̃)− uTi(x)

}2
dx

=
N∑
i=1

∫ T

0

{
λ
[
u(x, Ti; ω̂)− uTi(x)

]
+(1− λ)

[
u(x, Ti; ω̃)− uTi(x)

]}2
dx

≤ λ
N∑
i=1

∫ T

0

{
u(x, Ti, ω̂)− uTi(x)

}2
dx

+ (1− λ)

N∑
i=1

∫ T

0

{
u(x, Ti, ω̃)− uTi(x)

}2
dx = λJ1(ω̂) + (1− λ)J1(ω̃)

for any λ ∈ [0, 1] and ω̂, ω̃ ∈ Z1. This shows the convexity of J1. The
closedness and convexity of the set of quasi-solutions also follows from the
continuity and convexity of J1.

Proof of a theorem analogous to Theorem 3.9 for IP6 is a more com-
plicated task, because in this problem u(x, t; z) is not linear with respect
to z and J3 may not be convex. We are able prove such a result in the
particular case n = 1.

Theorem 3.10 Let the assumptions listed in §3.2.1 (3) be satisfied. As-
sume that n = 1, Ω = (c, d), ϕ = 0, g(·, 0) = 0 and M be bounded, closed
and convex. Then IP6 has a quasi-solution in M .

Proof. Again, the assertion of the theorem follows from Weierstrass exis-
tence theorem [65] provided we are able to show that J3 is weakly sequen-
tially lower semi-continuous in M . We will prove that J3 is even weakly
sequentially continuous in M .

Let us choose some sequence zk = (ak,mk, µk) ∈M such that zk ⇀ z =
(a,m, µ) ∈M . Our aim is to show that J3(zk)→ J3(z).

Firstly, we mention that the relation zk ⇀ z immediately implies ak ⇀ a
in L2(c, d) and mk ⇀ m, µk ⇀ µ in L2(0, T ). The subsequent part of the
proof consists of several steps.

1. step. Let µ̂ ∈ L2(0, T ) be the solution of (3.27) and µ̂k ∈ L2(0, T ) be
the solution of the equation

µ̂k + µk ∗ µ̂k = µk in (0, T ).
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We are going to show that µ̂k ⇀ µ̂ in L2(0, T ).
To prove this convergence relation, we start by verifying the bounded-

ness of the sequence µ̂k in L2(0, T ). Multiplying the equation of µ̂k by e−σt,
σ > 0, observing that e−σt(µk ∗ µ) = (e−σtµk) ∗ (e−σtµ) and estimating by
means of the Young and Cauchy inequalities we get

‖e−σtµ̂k‖L2(0,T ) ≤ ‖e−σtµk ∗ e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T )

≤ ‖e−σtµk‖L1(0,T )‖e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T )

≤ ‖e−σt‖L2(0,T )‖µk‖L2(0,T )‖e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T ).

Since ‖e−σt‖L2(0,T ) → 0 as σ →∞ and the weakly converging sequence µk is
bounded in L2(0, T ), there exists σ > 0 such that ‖e−σt‖L2(0,T )‖µk‖L2(0,T ) ≤
1
2 . With such a σ we obtain

‖e−σtµ̂k‖L2(0,T ) ≤ 2‖e−σtµk‖L2(0,T ) ⇒ ‖µ̂k‖L2(0,T ) ≤ 2eσT sup ‖µk‖L2(0,T ).

This shows that the sequence µ̂k is bounded in L2(0, T ).
Further, the difference µ̂k − µ̂ can be expressed as

µ̂k − µ̂ = µk − µ− vk ∗ (µk − µ),

where vk = µ̂ + µ̂k − µ̂ ∗ µ̂k is a bounded sequence in L2(0, T ). With an
arbitrary ζ ∈ L2(0, T ) we have

〈µ̂k −µ̂, ζ〉L2(0,T ) = −〈µk −µ, ζ〉L2(0,T ) −Nk, (3.77)

Nk = 〈vk ∗ (µk−µ), ζ〉L2(0,T ) =

∫ T

0
vk(τ)

∫ T−τ

0
(µk − µ)(s)ζ(τ + s)dsdτ.

Since µk ⇀ µ and ζ(τ + ·) ∈ L2(0, T − τ) for τ ∈ (0, T ), it holds
∫ T−τ

0 (µk−
µ)(s)ζ(τ + s)ds → 0 for any τ ∈ (0, T ). Moreover, since µk is bounded

in L2(0, T ), the sequence of τ -dependent functions |
∫ T−τ

0 (µk − µ)(s)ζ(τ +
s)ds| is bounded by a constant. In view of the Cauchy inequality and the
dominated convergence theorem, we find

|Nk| ≤ ‖vk‖L2(0,T )

∥∥∥∥∫ T− ·

0
(µk − µ)(s)ζ(·+ s)ds

∥∥∥∥
L2(0,T )

→ 0.

Thus, from (3.77), due to µk ⇀ µ, we obtain µ̂k ⇀ µ̂.

2. step. We estimate J3(zk) − J3(z) in terms of the difference of ûk and
û, where

û = u+ µ ∗ u , ûk = uk + µk ∗ uk (3.78)

and u = u(x, t; z) and uk = u(x, t; zk) are the weak solutions of (3.1) - (3.4)
corresponding to the vectors z and zk, respectively.
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The relations u, uk ∈ U(Q) and µ, µk ∈ L2(0, T ) imply û, ûk ∈ U(Q).
Applying the operators I − µ̂∗ and I − µ̂k∗ to the left and right equality
in (3.78), respectively, and taking the relations (I − µ̂∗)(I + µ∗) = I and
(I − µ̂k∗)(I + µk∗) = I into account, we deduce the formulas

u = û− µ̂ ∗ û , uk = ûk − µ̂k ∗ ûk.

Subtracting we have

uk − u = ûk − û− µ̂k ∗ (ûk − û)− (µ̂k − µ̂) ∗ û.

Making use of the latter relation we express the difference of values of the
functional J3 as follows:

J3(zk)− J3(z) =

∫ d

c

(
uk − u

)2
(x, T )dx

+ 2

∫ d

c
[u(x, T )− uT (x)]

(
uk − u

)
(x, T )dx

+
2∑
i=1

∫ T

0

[
L∑
l=1

κi(xl, t)
(
uk − u

)
(xl, t)

]2

dt

+ 2

2∑
i=1

∫ T

0

[
L∑
l=1

κi(xl, t)u(xl, t)−vi(t)

][
L∑
l=1

κi(xl, t)
(
uk − u

)
(xl, t)

]
dt

= I1
k + I2

k + I3
k + I4

k ,

(3.79)

where

I1
k =

∫ d

c

(
ûk − û− µ̂k ∗ (ûk − û)− (µ̂k − µ̂) ∗ û

)2
(x, T )dx,

I2
k = 2

∫ d

c
[u(x, T )− uT (x)]

×
(
ûk − û− µ̂k ∗ (ûk − û)− (µ̂k − µ̂) ∗ û

)
(x, T )dx,

I3
k =

2∑
i=1

∫ T

0

[ L∑
l=1

κi(xl, t)

×
(
ûk − û− µ̂k ∗ (ûk − û)− (µ̂k − µ̂) ∗ û

)
(xl, t)

]2
dt,

I4
k = 2

2∑
i=1

∫ T

0

[
L∑
l=1

κi(xl, t)u(xl, t)− vi(t)

]

×

[
L∑
l=1

κi(xl, t)
(
ûk − û− µ̂k ∗ (ûk − û)− (µ̂k − µ̂) ∗ û

)
(xl, t)

]
dt.
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Let us estimate I1. We split the ingredient of the integral up as
(
ûk −

û− µ̂k ∗ (ûk− û)− (µ̂k− µ̂)∗ û
)2

=
(
ûk− û− µ̂k ∗ (ûk− û)

)2
−2
(
ûk− û− µ̂k ∗

(ûk − û)
)

(µ̂k − µ̂) ∗ û+
(

(µ̂k − µ̂) ∗ û
)2

. Using the Cauchy inequality, the

inclusions µ̂ ∈ L2(0, T ), ûk, û ∈ U(Q) and the boundedness of the sequence
µ̂k in L2(0, T ) we obtain

|I1
k | ≤ ‖

(
ûk − û− µ̂k ∗ (ûk − û)

)
(·, T )‖2L2(c,d)

+2‖
(
(µ̂k − µ̂) ∗ û

)
(·, T )‖L2(c,d)‖

(
ûk − û− µ̂k ∗ (ûk − û)

)
(·, T )‖L2(c,d) +R1

k

≤ Ĉ12

(
‖ûk − û‖2U(Q) + ‖ûk − û‖U(Q)

)
+R1

k,

where Ĉ12 is a constant and

R1
k =

∫ d

c

[∫ T

0
(µ̂k − µ̂)(τ)û(x, T − τ)dτ

]2
dx.

Since û ∈ U(Q) ⊂ L2(Q), by Tonelli’s theorem it holds û(x, ·) ∈ L2(0, T )
a.e. x ∈ (c, d) ⇒ û(x, T − ·) ∈ L2(0, T ) a.e. x ∈ (c, d). Thus, in view of

µ̂k ⇀ µ̂ in L2(0, T ) we have
∫ T

0 (µ̂k− µ̂)(τ)û(x, T −τ)dτ → 0 a.e. x ∈ (c, d).
Moreover, by the Cauchy inequality, the boundedness of µ̂k in L2(0, T ) and

û ∈ L2(Q) we get
[∫ T

0 (µ̂k − µ̂)(τ)û(x, T − τ)dτ
]2
≤ Ĉ13

∫ T
0 [û(x, τ)]2dτ ∈

L1(c, d) with a constant Ĉ13. Therefore, due to the dominated convergence
theorem we obtain R1

k → 0.
Similarly, for I2

k we get

|I2
k | ≤ 2‖u(·, T )− uT ‖L2(c,d)‖

(
ûk − û− µ̂k ∗ (ûk − û)

)
(·, T )‖L2(c,d) +R2

k

≤ Ĉ14‖ûk − û‖U(Q) +R2
k,

where Ĉ14 is a constant and

R2
k =

∫ d

c

∣∣u(x, T )− uT (x)
∣∣ ∣∣∣∫ T

0
(µ̂k − µ̂)(τ)û(x, T − τ)dτ

∣∣∣dx.
By the same reasons as above, it holds R2

k → 0.
Next, let us estimate I3

k . Performing the same splitting as in I1
k we

deduce

|I3
k |≤L2

2∑
i=1

max
1≤l≤L

[
‖κi(xl, ·)‖2L∞(0,T )‖

(
ûk − û− µ̂k ∗ (ûk − û)

)
(xl, ·)‖2L2(0,T )

]
+2L2

2∑
i=1

max
1≤l≤L

[
‖κi(xl, ·)‖2L∞(0,T )‖

(
(µ̂k − µ̂) ∗ û

)
(xl, ·)‖L2(0,T )

×‖
(
ûk − û− µ̂k ∗ (ûk − û)

)
(xl, ·)‖L2(0,T )

]
+R3

k

≤ Ĉ15

(
‖ûk − û‖2U(Q) + ‖ûk − û‖U(Q)

)
+R3

k,
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where Ĉ15 is a constant and

R3
k=L2

2∑
i=1

max
1≤l≤L

{
‖κi(xl, ·)‖2L∞(0,T )

∫ T

0

[∫ t

0
(µ̂k − µ̂)(τ)û(xl, t− τ)dτ

]2
dt
}
.

Since û(xl, t−·) ∈ L2(0, t) ∀t ∈ (0, T ) we get
∫ t

0 (µ̂k−µ̂)(τ)û(xl, t−τ)dτ → 0

∀t ∈ (0, T ). Moreover, the sequence |
∫ t

0 (µ̂k−µ̂)(τ)û(xl, t−τ)dτ | is bounded
by a constant. Consequently, R3

k → 0.
Finally, in an analogous manner we deduce the estimate for I4

k :

|I4
k | ≤ Ĉ16‖ûk − û‖U(Q) +R4

k, Ĉ16 - a constant,

R4
k = 2L

2∑
i=1

∥∥∥ L∑
l=1

κi(xl, t)u(xl, ·)− vj
∥∥∥
L2(0,T )

max
1≤l≤L

{
‖κi(xl, ·)‖L∞(0,T )

×
[∫ T

0

[∫ t

0
(µ̂k − µ̂)(τ)û(xl, t− τ)dτ

]2
dt
]1/2}

,

where R4
k → 0.

In view of (3.79) and the deduced estimates of I1
k , . . . , I

4
k it holds

|J3(zk)− J3(z)| ≤ Ĉ17

(
‖ûk − û‖2U(Q) + ‖ûk − û‖U(Q)

)
+Rk,

where Ĉ17 is a constant and Rk = R1
k + . . .+R4

k → 0.

3. step. We prove that ‖ûk − û‖U(Q) → 0. This would imply |J3(zk) −
J3(z)| → 0 and complete the proof.

The functions û and ûk are the weak solutions of the following problems
(cp. the derivation of (3.30) in the proof of Theorem 3.1):

ût = Aû− m̂ ∗Aû+ f + φx in Q,

û = u0 in (c, d)× {0},
û = ĝ in Γ1,T ,

− νA · ∇û+ m̂ ∗ νA · ∇û = h+ ν · φ in Γ2,T ,

(3.80)

ûk,t = Akûk − m̂k ∗Akûk + f + φx in Q,

ûk = u0 in (c, d)× {0},
ûk = ĝk in Γ1,T ,

− νA · ∇ûk + m̂k ∗ νA · ∇ûk = h+ ν · φ in Γ2,T ,

(3.81)

where Akv = (a11vx)x + akv and

m̂ = m+ µ̂−m ∗ µ̂ , m̂k = mk + µ̂k −mk ∗ µ̂k,
ĝ = g + µ ∗ g , ĝk = g + µk ∗ g.
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Let us show that m̂k ⇀ m̂ in L2(0, T ). With an arbitrary ζ ∈ L2(0, T )
we compute

〈m̂k − m̂, ζ〉L2(0,T ) = 〈mk −m, ζ〉L2(0,T ) + 〈µ̂k − µ̂, ζ〉L2(0,T ) −N1
k ,

where

N1
k = 〈mk ∗ µ̂k −m ∗ µ̂, ζ〉L2(0,T ) =

∫ T

0
µ̂k(τ)

∫ T−τ

0
(mk −m)(s)

× ζ(τ + s)dsdτ

+

∫ T

0
m(τ)

∫ T−τ

0
(µ̂k − µ̂)(s)ζ(τ + s)dsdτ.

We use the relations mk ⇀ m, µ̂k ⇀ µ̂ and treat the term N1
k similarly to

the term Nk above to get N1
k → 0. As a result we obtain 〈m̂k − m̂, ζ〉 → 0.

This yields m̂k ⇀ m̂.
Subtracting the problem of û from the problem of ûk we see that wk :=

ûk − û is a weak solution of the following problem:

wk,t = Awk − m̂ ∗Awk + f̃k + φ̃k,x in Q,

û = 0 in (c, d)× {0},
û = g̃k in Γ1,T ,

− νA · ∇wk + m̂ ∗ νA · ∇wk = ν · φ̃k in Γ2,T ,

(3.82)

where

f̃k = (ak − a)(ûk − m̂k ∗ ûk)− a(m̂k − m̂) ∗ ûk,
φ̃k = −a11(m̂k − m̂) ∗ ûk,x, g̃k = (µk − µ) ∗ g.

In order to use the weak convergence ak ⇀ a in forthcoming estimations
we have to introduce the functions ρk ∈W 2

2 (c, d) being the solutions of the
following Neumann problems:

ρ′′k − ρk = ak − a in (c, d) , ρ′k(c) = ρ′k(d) = 0.

Then ρk(x) =
∫ d
c G(x, y)(ak − a)(y)dy, x ∈ (c, d), where

G(x, y) =
1

2(ec−d − ed−c)

{
(ec−y + ey−c)(ed−x + ex−d) for y < x
(ec−x + ex−c)(ed−y + ey−d) for y > x

is a Green function that satisfies the properties G,Gx ∈ L∞((c, d)2). The
weak convergence ak ⇀ a in L2(c, d) implies 1

‖ρk‖W 1
2 (c,d) → 0. (3.83)

1This is the point we essentially use the assumption n = 1, because in case n ≥ 2 the
partial derivatives Gxi(x, ·) are not elements of L2(Ω).
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Using the relation ak−a = ρ′′k−ρ we rewrite the term (ak−a)(ûk−m̂k ∗ ûk)
in f̃k as follows:

(ak − a)(ûk − m̂k ∗ ûk) = [ρ′k(ûk − m̂k ∗ ûk)]x − ρ′k(ûk − m̂k ∗ ûk)x
−ρk(ûk − m̂k ∗ ûk)

and shift the addend [ρ′k(ûk − m̂k ∗ ûk)]x to the singular part φ̃k,x. As a
result, the problem for wk is transformed to the form

wk,t = Awk − m̂ ∗Awk + fk + φk,x in Q,

û = 0 in (c, d)× {0},
û = g̃k in Γ1,T ,

− νA · ∇wk + m̂ ∗ νA · ∇wk = ν · φk in Γ2,T ,

(3.84)

where

fk = −ρ′k(ûk + m̂k ∗ ûk)x − ρk(ûk + m̂k ∗ ûk)− a(m̂k − m̂) ∗ ûk,
φk = ρ′k(ûk + m̂k ∗ ûk)− a11(m̂k − m̂) ∗ ûk,x.

Let t be an arbitrary number in (0, T ). As in the proofs of Theorems

2.1 and 3.1 we make use of the cutting operator Ptw =

{
w in Qt
0 in Q \Qt

.

Let wtk stand for the weak solution of the problem (3.84) with fk and
φk replaced by Ptfk and Ptφk, respectively. Then, due to the causality
wtk = wk in Qt. Applying (3.20) to wtk we obtain

‖wk‖U(Qt) = ‖wtk‖U(Qt) ≤ ‖w
t
k‖U(Q)

≤ Ĉ1

[
‖Ptfk‖L2(0,T ;L1(c,d)) + ‖Ptφk‖L2(Q) + θ1‖g̃k‖T (Q)

]
= Ĉ1

[
‖fk‖L2(0,t;L1(c,d)) + ‖φk‖L2(Qt) + θ1‖g̃k‖T (Q)

]
.

(3.85)

We estimate the right-hand side of (3.85) term-wise. Using the rela-
tion a ∈ L2(c, d), Cauchy inequality, the inequality (3.23), the assumption
g(x, 0) = 0, the embedding W 1

2 (c, d) ↪→ C[c, d] and ûk = wk + û we deduce:

‖fk‖L2(0,t;L1(c,d)) ≤ Ĉ18

[
‖(m̂k − m̂) ∗ ûk‖L2(0,t;L2(c,d)) + ‖ρk‖W 1

2 (c,d)

×
(
1 + ‖m̂k‖L2(0,T )

)
‖ûk‖U(Qt)

]
≤ Ĉ18

[∫ t

0
|(m̂k − m̂)(t− τ)| ‖wk‖L2(Qτ )dτ

+‖ρk‖W 1
2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)
‖wk‖U(Qt)

]
+R

1
k, (3.86)
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‖φk‖L2(Qt) ≤ Ĉ19

[
‖(m̂k−m̂) ∗ ûk,x‖L2(Qt)+‖ρk‖W 1

2 (c,d)

(
1+‖m̂k‖L2(0,T )

)
×‖ûk‖L2(0,t;C[c,d])

]
≤ Ĉ19

[∫ t

0
|(m̂k − m̂)(t− τ)| ‖wk,x‖L2(Qτ )dτ

+‖ρk‖W 1
2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)
‖wk‖L2(0,t;C[c,d])

]
+R

2
k, (3.87)

‖g̃k‖T (Q) ≤ R
3
k, (3.88)

where

R
1
k = Ĉ18

[
‖(m̂k − m̂) ∗ û‖L2(Q) + ‖ρk‖W 1

2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)
‖û‖U(Q)

]
,

R
2
k = Ĉ19

[
‖(m̂k − m̂) ∗ ûx‖L2(Q)

+‖ρk‖W 1
2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)
‖û‖L2(0,T ;C[c,d])

]
,

R
3
k = ‖(µk − µ) ∗ g‖L2(Q) + ‖(µk − µ) ∗ gx‖L2(Q) + ‖(µk − µ) ∗ gt‖L2(Q)

and Ĉ18, Ĉ19 are constants. The quantities R
j
k, j = 1, 2, 3 contain terms

with the factor ‖ρk‖W 1
2 (c,d) and terms of the form ‖zk ∗ v̂‖L2(Q), where zk

is one of the functions m̂k − m̂, µk − µ or µ̂k − µ̂ and v̂ ∈ L2(Q) is one of
the functions û, ûx, g, gx or gt. The former terms converge to zero because
of the relation (3.83) and the boundedness of m̂k in L2(0, T ) and the latter
terms approach zero by virtue of the weak convergence zk ⇀ 0 in L2(0, T ).
More precisely, to prove that ‖zk ∗ v̂‖L2(Q) → 0 we write

‖zk ∗ v̂‖L2(Q) =
{∫ T

0

∫ d

c

[∫ t

0
zk(τ)v̂(x, t− τ)dτ

]2
dxdt

}1/2
.

The component
[∫ t

0 zk(τ)v̂(x, t − τ)dτ
]2

is bounded by an integrable with

respect to x in (c, d) function sup
k
‖zk‖2L2(0,T )‖v̂(x, ·)‖2L2(0,T ) and tends to

zero for all t ∈ (0, T ) and a.e. x ∈ (c, d), because zk ⇀ 0 and v̂(x, t − ·)
∈ L2(0, T ) for all t ∈ (0, T ) and a.e. x ∈ (c, d). (The latter relation
follows from v̂ ∈ L2(Q) and Tonelli’s theorem.) Thus, by the dominated
convergence theorem, it holds ‖zk ∗ v̂‖L2(Q) → 0. Summing up,

R
j
k → 0, j = 1, 2, 3. (3.89)

As in proof of Theorem 3.1, we use the norms ‖w‖σ = sup
0<t<T

e−σt‖w‖U(Qt)

with the weights σ ≥ 0 in the space U(Q). Then in view of (3.86) - (3.88)
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from (3.85) we deduce

‖wk‖σ ≤ Ĉ20

[
sup

0<t<T

∫ t

0
e−σ(t−τ)|(m̂k − m̂)(t− τ)| e−στ‖wk‖U(Qτ )dτ

+‖ρk‖W 1
2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)
‖wk‖σ +

3∑
j=1

R
j
k

]
≤ Ĉ21

[{
‖e−σt‖L2(0,T )‖m̂k − m̂‖L2(0,T )

+‖ρk‖W 1
2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)}
‖wk‖σ +

3∑
j=1

R
j
k

]
, (3.90)

where Ĉ20, Ĉ21 are constants. Since ‖e−σt‖L2(0,T ) → 0 as σ → ∞,
‖ρk‖W 1

2 (c,d) → 0 and the sequence ‖m̂k‖L2(0,T ) is bounded, there exist σ > 0
and K2 ∈ N such that

Ĉ21

{
‖e−σt‖L2(0,T )‖m̂k − m̂‖L2(0,T ) + ‖ρk‖W 1

2 (c,d)

(
1 + ‖m̂k‖L2(0,T )

)}
≤ 1

2

for k ≥ K2. This with (3.90) implies

‖wk‖σ ≤ 2Ĉ21

3∑
j=1

R
j
k and hence ‖wk‖U(Q) ≤ 2eσT Ĉ21

3∑
j=1

R
j
k

for k ≥ K2. Taking (3.89) into account we obtain the desired convergence
‖ûk − û‖U(Q) = ‖wk‖U(Q) → 0. The theorem is proved.

3.4 Discretization and minimization

In the final section of the thesis let us discuss some aspects of the discretiza-
tion and minimization of the cost functionals by means of the penalized
gradient method.

Let us consider any of the problems IP4, IP5 or IP6 and search for its
quasi-solution. This means that we have to minimize corresponding cost
functional Jk over a given set M ⊆ Zk, where k is some number in the set
{1; 2; 3}. In order to treat these problems in a common manner, we use the
notation z also for the solution ω of IP4.

Clearly, there are many possibilities to discretize IP4 - IP6. Here we
describe in detail an orthogonal discretization. Let us introduce a L-
dimensional subspace Zk,L of Zk (here L < ∞). Let PL stand for the
orthogonal projection to Zk,L. Then the L-dimensional analogue of the set
M is

ML = PLM ⊆ Zk,L.
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Now we replace the problem of minimization of Jk over M by the following
penalized discrete problem: find z† such that

z† ∈ arg min
z∈Zk,L

Φk,L(z), where Φk,L = ΠL + Jk (3.91)

and ΠL is a penalty function corresponding to the set ML. In order the
problem to be relevant, ΠL has to be small inside ML and large outside
ML. The mathematical conditions imposed on ΠL are

ΠL is coercive, convex, Fréchet differentiable ,

The Fréchet derivative Π′L of ΠL is

uniformly Lipschitz continuous in Z∗k,L.
(3.92)

Theorem 3.11 Let the assumptions listed in §3.2.1 (k) be satisfied. More-
over, let (3.92) hold. Then the problem (3.91) has a solution.

Proof. The proof is similar to the proof of Theorem 3.8. By coerci-
tivity and continuity, ΠL is bounded from below. Moreover, Jk is also
bounded from below. Thus, there exists m = inf

z∈Zk,L
[ΠL(z) + Jk(z)] =

inf
z∈Zk,L

Φk,L(z) > −∞. Let zl ∈ Zk,L be a minimizing sequence, i.e.

lim Φk,L(zl) = m. Due to the coercitivity of Πl, the sequence zl is bounded
(in case zl is not bounded, there is a subsequence zli such that ‖zli‖ → ∞,
hence by the coercitivity Φk,L(zli) → ∞, but this is in contradiction with
the relation lim Φk,L(zl) = m). In a finite-dimensional space every bounded
sequence is compact. Consequently, there exists a subsequence zlj such that
lim zlj = z∗. Due to the continuity of Φk,L, following from the Fréchet dif-
ferentiability, we have lim Φk,L(zlj ) = Φk,L(z∗). Thus, Φk,L(z∗) = m and
z∗ ∈ arg minz∈Zk,L Φk,L(z). The element z∗ is a solution of (3.91).

Further, we formulate an algorithm of the gradient method for the min-
imization of Φk,L. To this end, the representations of Fréchet derivatives of
Jk obtained in Theorems 3.3 – 3.7 are useful. According to these theorems,
J ′k(z)∆z = 〈%k,∆z〉Zk , where the z-dependent element %k = %k[z] ∈ Zk is
given by (3.57), (3.43) and (3.69) - (3.72) in cases k = 1, 2 and 3, respec-
tively. In order to construct an algorithm that remains inside the subspace
Zk,L, we have to find an analogue of %k in Zk,L. This is PL%k. Indeed, for
any ∆z ∈ Zk,L we have

〈%k,∆z〉Zk = 〈PL%k,∆z〉Zk + 〈%k − PL%k,∆z〉Zk = 〈PL%k,∆z〉Zk ,

because %k − PL%k ⊥ ∆z = 0 since PL is the orthogonal projection onto
Zk,L. Thus, PL%k can be used as a representative of Fréchet derivative of
Jk in Zk,L.
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Let the representative of Π′L(z) in Zk,L be πL[z], i.e. Π′L(z)∆z =
〈πL[z],∆z〉Zk for ∆z ∈ Zk,L. Then the Fréchet derivative of Φk,L at z
has the formula

Φ′k,L(z)∆z = 〈Gk[z],∆z〉Zk for ∆z ∈ Zk,L,
where Gk[z] = πL[z] + PL%k[z].

The gradient method is as follows. We choose some initial guess z0 ∈
Zk,L and compute successive approximate solutions by means of the formula

zs+1 = zs − csG[zs], (3.93)

where s = 0, 1, 2, . . . and cs > 0.

Theorem 3.12 Let k ∈ {1; 2}, i.e. we have either IP4 or IP5. Assume
that the assumptions listed in §3.2.1 (k) are satisfied and (3.92) hold. More-
over, let cs be chosen by the rule

inf
c>0

Φk,L (zs − cGk[zs])) ≤ Φk,L (zs − csGk[zs])

≤ inf
c>0

Φk,L (zs − cGk[zs]) + δs,

where δs ≥ 0,
∑∞

s=0 δs =: δ <∞. Then it holds dist(zs, S)→ 0 as s→∞,
where S is the set of solutions of (3.91)

Proof. Let us prove the theorem in case k = 1 (IP4). The proof in case
k = 2 is similar.

The assertion follows from Theorem 5.1.2 of [63] once we have proved
that G1 is uniformly Lipschitz-continuous with respect to z, the functional
Φ1,L is convex and the set M(z0) = {z ∈ Z1,L : Φ1,L(z) ≤ Φ1,L(z0) + δ} is
bounded. The convexity of Φ1,L follows from the convexity of its addends
ΠL and J1 (the latter one was shown in the proof of Theorem 3.9). The
boundedness of M(z0) is a direct consequence of the coercitivity of Φ1,L

following from the coercitivity of the addend ΠL.

It remains to show the uniform Lipschitz continuity ofG1[z] with respect
to z in Z1,L. The Lipschitz continuity of πL[z] in Z1,L follows from the
assumed Lipschitz continuity of Π′L[z] in Z∗1,L , because Z1,L and Z∗1,L are
isomorphic and πL[z] is the analogue of Π′L[z] in Z1,L. Thus, we have still
to prove the Lipschitz continuity of the term PL%1[z] with respect to z
occurring in the formula of G1[z].
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Using (3.50) we obtain for any z, z̃ ∈ Z1,L

‖PL%1[z̃]− PL%1[z]‖Z1 ≤ ‖PL‖‖%1[z̃]− %1[z]‖Z1

≤ C22

N∑
i=1

‖ψi(·, ·; z̃)− ψi(·, ·; z)‖L2(Q)

≤ C23

N∑
i=1

‖ψi(·, ·; z̃)− ψi(·, ·; z)‖U(Q),

where the constants C22 and C23 are independent of z and z̃. The functions
ψi(·, ·; z̃) and ψi(·, ·; z) solve the problems (3.51) with ω = z̃ and ω = z,
respectively. Applying the relation (3.20) of Theorem 3.1 to the problem
for the difference ψi(·, ·; z̃)− ψi(·, ·; z) we continue the estimate as follows:

‖PL%1[z̃]− PL%1[z]‖Z1 ≤ 2C23Ĉ1

N∑
i=1

‖u(·, Ti; z̃)− u(·, Ti; z)‖L2(Ω)

≤ C24‖u(·, ·; z̃)− u(·, ·; z)‖U(Q)

with a constant C24 independent of z and z̃. The function u(·, ·; z̃)−u(·, ·; z)

is a weak solution of the problem (3.1) - (3.4) with f(x, t) =
N∑
j=1

γj(t)[z̃j(x)−

zj(x)], φ = 0, ϕ = 0, u0 = 0, g = 0, h = 0. Using again (3.20) we obtain

‖PL%1[z̃]− PL%1[z]‖Z1 ≤ 2C24Ĉ1

∥∥∥ N∑
j=1

γj [z̃j − zj ]
∥∥∥
L2(0,T ;Lq2 (Ω))

≤ C25‖z̃ − z‖Z1

with a constant C25 independent of z and z̃. This proves the uniform
Lipschitz-continuity of PL%1. �

The convergence of zs in case k = 3 is an open issue. This case is more
complex because IP6 is nonlinear and the Fréchet derivative of J3 is not
uniformly Lipschitz-continuous.

The quasi-solutions of IP4 - IP6 are not expected to be stable with
respect to noise of the data, i.e. the problems under consideration may be
ill-posed. Nevertheless, from the intuitive viewpoint a discretisation should
regularize an ill-posed problem. Such a property of the discretization has
been proved in many cases [40, 56]. Alternatively, the index s of the gradient
method could be used as a regularization parameter (cf. [19]). Moreover,
the addend ΠL can be defined to be the stabilizing term of the Tikhonov’s
method instead of the penalty function, i.e. ΠL = α‖z‖2, where α > 0 is
the regularization parameter. Such a ΠL satisfies (3.92).
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ABSTRACT

Inverse problems for parabolic integro-differential equations with instant
and integral conditions. Kairi Kasemets. Doctoral thesis, 2016.

The aim of the thesis is to perform a systematical study of inverse prob-
lems for parabolic integro-differential equations containing time convolu-
tions with memory kernels in case space-dependent factors of free terms or
coefficients of the equations are unknown and observation conditions are
given either in the form of instant measurements over the space or inte-
grated with respect to time measurements over the space. In the second
part of the thesis a problem to determine kernels is also considered.

First part of the thesis contains an analysis of problems that are smooth
in the sense that all derivatives included in the integro-differential equa-
tions are regular functions. A positivity principle for parabolic integro-
differential equations is established. In case final data for a solution of a
direct problem are given, the global existence, uniqueness and stability for
an inverse problem to determine a space-dependent component of a free
term of the equation are proved. The proof of the uniqueness uses the
positivity principle and the proof of existence and stability exploits the
Fredholm alternative. Moreover, making use of results obtained for the
inverse free term problem, global uniqueness, local existence and stability
for inverse problems to determine a lower-order coefficient and a coefficient
at the time derivative occurring in the equation from final data are proved.
The main tool is the Banach fixed-point principle.

Second part of the thesis includes a treatment of problems in non-
smooth case, i.e. when higher order derivatives involved in an integro-
differential equation are singular distributions. A weak convolutional form
of the direct problem is introduced. Such a form does not involve time
derivatives of solutions or test functions. A general method to derive ad-
joint problems for Fréchet derivatives of cost functionals corresponding to
inverse problems for this equation is proposed. The method makes use of
the mentioned weak convolutional form. Further, this method is applied
to deduce adjoint problems for 3 particular inverse problems: a problem
to determine a finite number of space-dependent factors of a free term
from instant measurements; a problem to determine a finite number of
space-dependent factors of a free term and an initial condition from inte-
gral measurements; a problem to determine a lower-order coefficient and
two kernels from combined instant and integral measurements. The exis-
tence of quasi-solutions for the mentioned 3 inverse problems is established.
The existence result for the third inverse problem (that is nonlinear) in a
non-compact set is proved in the one-dimensional case.
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KOKKUVÕTE

Hetk- ja integraaltingimustega pöördülesanded paraboolsetele integrodifer-
entsiaalvõrranditele. Kairi Kasemets. Doktoriväitekiri, 2016.

Doktoritöö eesmärgiks on süstemaatiliselt analüüsida pöördülesandeid mälu-
tuumadega konvolutsiooniliikmeid sisaldavatele paraboolsetele integrodi-
ferentsiaalvõrranditele juhul, kui tundmatuteks on vabaliikmete ruumi-
muutujatest sõltuvad tegurid või kordajad ja vaatlused on antud kas hetk-
tingimustena üle ruumi või integreeritud mõõtmistena aja suhtes üle ruumi.
Töö teises osas on vaatluse all ka tuumade määramise ülesanne.

Töö esimeses osas analüüsitakse pöördülesandeid, mis on siledad selles
mõttes, et võrrandis sisalduvad kõrgemat järku tuletised on regulaarsed.
Tuletatakse positiivsusprintsiip paraboolsete integrodiferentsiaalvõrran-
dite jaoks. Juhul, kui ette on antud lõpptingimus, tõestatakse ruumimuu-
tujatest sõltuva vabaliikme komponendi määramise pöördülesande lahendi
globaalne olemasolu, ühesus ja stabiilsus. Ühesuse tõestamisel kasutatakse
positiivsusprintsiipi ja olemasolu ning stabiilsuse tõestamisel rakendatakse
Fredholmi alternatiivi. Kasutades vabaliikme pöördülesande jaoks saadud
tulemusi tõestatakse madalamat järku liikmes sisalduva kordaja ja aja-
tuletise ees seisva kordaja määramise ülesannete lahendite globaalne ühesus
ning lokaalne olemasolu ja stabiilsus, kui ette on antud lõpptingimus. Ra-
kendatakse Banachi püsipunktiprintsiipi.

Töö teises osas käsitletakse pöördülesandeid mittesiledal juhul, kui võr-
randis sisalduvad kõrgemat järku tuletised on singulaarsed distributsioonid.
Tuuakse sisse otsese ülesande nõrk konvolutsioonitüüpi seade. Selline seade
ei sisalda lahendi ega testfunktsiooni tuletisi ajamuutuja suhtes. Paku-
takse välja üldine meetod pöördülesannetele vastavate sihifunktsionaalide
Fréchet tuletiste leidmisel kasutatavate kaasülesannete tuletamiseks maini-
tud konvolutsioonitüüpi seadet kasutades. Meetodit rakendatake kolmele
pöördülesandele: ülesanne lõpliku arvu ruumimuutujatest sõltuvate korda-
jate määramiseks hetktingimuste alusel; ülesanne lõpliku arvu ruumimuu-
tujatest sõltuvate kordajate ja algtingimuse määramiseks integraaltingimus-
te alusel; ülesanne madalamat järku kordaja ja kahe tuuma määramiseks
kombineeritud hetk- ja integraaltingimuste alusel. Tehakse kindlaks kõigi
kolme ülesande kvaasilahendite olemasolu. Kolmanda ülesande (mis on
mittelineaarne) kvaasilahendi olemasolu tõestatakse ühemõõtmelisel juhul.
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Tööandja nimetuse Ametikoht

2008-. . . Matemaatikainstituut, TTÜ assistent
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