
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

David, Isaac Mayowa 194441IVSB

An Evaluation Framework for Smart Contract
Vulnerability Detection Tools on the Ethereum

Blockchain

Bachelor Thesis

Technical Supervisor
Alexander Norta

PhD
Academic Supervisor

Toomas Lepikult
PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

David, Isaac Mayowa 194441IVSB

Nutilepingute haavatavuste tuvastamise
tööriistade hindamisraamistik ethereum

blockchainis

Bakalaureusetöö

Juhendaja
Alexander Norta

PhD
Kaasjuhendaja

Toomas Lepikult
PhD

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: David, Isaac Mayowa
Date: May 16, 2022

1

Abstract

Blockchain technology has gained traction in a variety of industries due to its potential
to revolutionize how data is stored and transactions are processed. Ethereum, the second
most popular blockchain platform, has drawn developers to its platform for the purpose of
developing smart contracts. These contracts are self-executing programs that reside on the
blockchain and are intended to automate specific tasks. The number of smart contracts
established over the last few years has been steadily increasing. These contracts are used
for a variety of functions, from electronic voting to the storage of medical information and
decentralized financial systems. Although the popularity of smart contracts has increased,
there has been a corresponding increase in the number of vulnerabilities found in these
contracts. Due to the fact that these vulnerabilities have resulted in the loss of millions of
dollars in cryptocurrency assets, early vulnerability discovery is critical for mitigating the
hazards posed by vulnerable smart contracts.

While numerous tools have been developed to address various types of vulnerabilities, an
efficient evaluation framework for determining the utility of smart contract vulnerability
detection tools remains lacking. For many smart contract developers, determining which
tool or combination of tools is best suited for vulnerability detection remains a challenge.

This thesis addresses the existing gap by proposing an efficient evaluation framework
to determine the utility of smart contract vulnerability detection tools. The proposed
framework is then evaluated against a set of open-source vulnerability detection tools used
in smart contract development. In addition, a state of art review of the most common
Ethereum smart contract vulnerabilities is also presented.

This thesis is written in English and is 86 pages long, including 7 chapters, 11 figures and
10 tables.

2

List of abbreviations and terms

API Application Programming Interface
CGI Control Flow Graph
CLI Command Line Interface
dApps Decentralized applications
DASP Decentralized Appliaction Security Project
DeFi Decentralized Finance
DSR Design Science Research
DoS Denial of Service
EVM Ethereum Virtual Machine
GUI Graphic User Interface
IOT Internet Of Things
IS Information Science
POC Proof of Concept
UI User Interface
VM Virtual Machine

3

Table of Contents

1 Introduction . 9
1.1 Thesis Objectives . 9
1.2 Existing body of knowledge . 10

1.2.1 Introduction to Blockchain Technology 10
1.2.2 Ethereum . 10
1.2.3 Smart Contracts . 11
1.2.4 Vulnerabilities in smart contracts 11
1.2.5 Smart Contract Vulnerability Detection Tools 12

1.3 Research Gap . 12
1.4 Research Methodology and Research Questions 12

1.4.1 Design Science Research Theory 13
1.4.2 Design as an Artifact . 13
1.4.3 Problem Relevance . 14
1.4.4 Design Evaluation . 14
1.4.5 Research Contribution . 15
1.4.6 Research Rigor . 15
1.4.7 Design as a Search Process . 16
1.4.8 Communication of Research . 16

1.5 Research Questions . 16
1.6 Thesis Structure . 17

2 Preposition . 18
2.1 Running Case . 18
2.2 Importance of Early Vulnerability Detection in Smart Contract Development 19
2.3 The Evaluation Framework . 20
2.4 The Utility Evaluation Web Application 21

3 Smart Contract Vulnerabilities on the Ethereum Blockchain 22
3.1 Introduction . 22
3.2 Smart Contract Vulnerability Taxonomy 22
3.3 The DASP Top 10 . 24

3.3.1 Reentrancy . 25
3.3.2 Access Control . 28
3.3.3 Arithmetic Issues . 30
3.3.4 Unchecked Return Values For Low Level Calls 32
3.3.5 Denial of Service . 33
3.3.6 Bad Randomness . 34

4

3.3.7 Front Running . 34
3.3.8 Time Manipulation . 35
3.3.9 Short Address Attack . 36
3.3.10 Unknown Unknowns . 36

3.4 Discussion . 37
3.5 Conclusion . 37

4 Evaluation Requirements for Smart Contract Vulnerability Detection Tools on
the Ethereum blockchain . 39
4.1 Introduction . 39
4.2 Requirement Specification of a Smart Contract Vulnerability Detection Tool 39

4.2.1 Functional Requirement . 39
4.2.2 Non-functional Requirement . 43

4.3 Utility Evaluation of Smart Contract Vulnerability Detection Tools 44
4.3.1 Utility Equation . 46
4.3.2 Using the Utility Evaluation Framework 46

4.4 Discussion . 49
4.5 Conclusion . 49

5 Features of Existing Open-Source Vulnerability Detection Tools 51
5.1 Introduction . 51
5.2 Smart Contract Vulnerability Detection Tools on the Ethereum Blockchain 51

5.2.1 Tool Selection Criteria . 52
5.3 Tool Overview . 53

5.3.1 Conkas . 53
5.3.2 Manticore . 54
5.3.3 TeEther . 54
5.3.4 Mythril . 55
5.3.5 Slither . 56

5.4 Tool Comparison . 56
5.5 Discussion . 59
5.6 Conclusion . 59

6 Evaluation . 61
6.1 Introduction . 61
6.2 Proof of Concept Implementation . 61
6.3 Prototype Evaluation . 64

6.3.1 Scenario 1 . 65
6.3.2 Scenario 2 . 67

6.4 Related Work . 68
6.5 Discussion . 69
6.6 Conclusion . 69

5

7 Conclusion and Future Work . 71
7.1 Conclusion . 71
7.2 Answering The Research Questions . 72

7.2.1 RQ1: What are the common vulnerabilities affecting smart con-
tracts on the Ethereum blockchain? 72

7.2.2 RQ2: What are the evaluation requirements for vulnerability detec-
tion tools on the Ethereum blockchain? 72

7.2.3 RQ3: What are the features of the existing open-source vulnerabil-
ity detection tools on the Ethereum blockchain? 73

7.3 Limitations . 73
7.4 Future Work . 74

References . 75
Appendix 1 – Non-exclusive license for reproduction and publication of a graduation

thesis . 81
Appendix 2 - Utility Calculation Script . 82

6

List of Figures

Figure 1 DSR Theory Overview [20]. 13

Figure 2 Benefits of the framework. 20

Figure 3 Smart Contract Vulnerability Classification by Zulfiqar et al [33]. . 24
Figure 4 Recursive loop of a reentrancy attack. 27

Figure 5 Requirements Specification Hierarchy 45
Figure 6 Utility Evaluation Framework . 47

Figure 7 Weights Tab. 62
Figure 8 Evaluate Tab. 63
Figure 9 Score Card. 63
Figure 10 Prototype Utility Score Card . 66
Figure 11 Prototype Utility Score Card (2) 68

7

List of Tables

Table 1 Guidelines for conducting DSR [20]. 14
Table 2 DSR Evaluation Methods [20]. 15

Table 3 Taxonomy of Smart Contract Vulnerabilities [32]. 23

Table 4 Requirement Scoring Guideline 48

Table 5 Tool Selection Criteria . 52
Table 6 Comparison of Vulnerability Detection Tools 57
Table 7 Vulnerability Detected By Tool . 58

Table 8 Requirement Specification for Selected Tools 64
Table 9 Scenario 1 Utility Scores . 66
Table 10 Scenario 2 Utility Scores . 67

8

1. Introduction

Blockchain is a shared distributed ledger that uses a list of ordered entries and records
known as blocks to keep track of transactions. Each block is interconnected and times-
tamped, forming a chain. This enables blockchain databases to securely record data
transactions without the assistance of a central administrator [1]. Satoshi Nakamoto intro-
duced the concept of the blockchain in 2008, and it was implemented when a new digital
currency known as Bitcoin was created using the technology [2]. Blockchain technology
is not limited to cryptocurrencies; it has a plethora of applications in a variety of industries.
These applications cover a broad spectrum of industries, from banking and finance to
healthcare and logistics. Ethereum, the second most popular cryptocurrency, was launched
in 2015 by Vitalik Buterin with the goal of enabling smart contracts, since then, the
Ethereum blockchain has been used to implement millions of smart contracts. [3]. Smart
contracts have a variety of use cases, including multi-signature accounts, data storage, and
financial data encoding. Smart contracts are created by encoding rules and instructions in
code and then deploying them to the Ethereum blockchain, where they become immutable
and enforced by the Ethereum network. Smart contracts have facilitated the development
of decentralized applications, or dApps, that are functionally equivalent to traditional
software applications, however most smart contracts being computer programs are prone
to vulnerabilities, these weaknesses have resulted in the loss of millions of dollars’ worth
of cryptocurrency holdings.

1.1 Thesis Objectives

Thus, the objective of this thesis is to develop a comprehensive evaluation framework for
tools for detecting smart contract vulnerability on the Ethereum blockchain. The following
research objectives have been formulated to this end:

1. To conduct a comprehensive review of the most common Ethereum smart contract
vulnerabilities

2. To develop an evaluation framework for smart contract vulnerability detection tools
3. To identify and evaluate smart contract vulnerability detection tools that are com-

monly used on the Ethereum blockchain.

9

1.2 Existing body of knowledge

The proceeding sections provide a review of existing work on blockchain technology, smart
contracts and Ethereum, and then a review of the existing body of knowledge on smart
contract vulnerability detection tools.

1.2.1 Introduction to Blockchain Technology

In 2009, the first blockchain was created to serve as the foundation for Bitcoin, the world’s
first cryptocurrency. Bitcoin is a decentralized digital currency that can be used to purchase
and sell both physical and digital goods and services. Bitcoin is a peer-to-peer network,
with transactions verified by nodes, or computers that keep a copy of the blockchain. [2].
Blockchain technology has advanced tremendously since its inception in 2009, due to the
popularity of Bitcoin and other cryptocurrencies such as Ethereum and Litecoin, blockchain
technology has been adopted in a variety of other fields. A traditional database stores
data centrally and is administered by a central authority. As a result of this centralization,
the database becomes susceptible to data breaches and manipulation. By storing data
in a distributed manner, blockchain technology circumvents these vulnerabilities. In a
blockchain database, data is stored in blocks, and each block is chained to the previous
block, forming a chain. This chain is replicated across a network of computers, with each
computer maintaining its own copy. Due to the immutability and distributed nature of
blockchain, it is impenetrable to tampering, as any attempt to modify data in a single
block results in a discrepancy in the copy of the chain stored on other computers [4].
Blockchain technology enables the development of a diverse range of applications, from
digital currencies to supply chain management. [5].

1.2.2 Ethereum

Ethereum is a blockchain that enables the execution of smart contracts, which are decen-
tralized applications that execute exactly as programmed without the need for intermedi-
aries. Vitalik Buterin, a Russian-Canadian programmer, proposed Ethereum in 2013 [6].
Ethereum was funded through a crowdsourcing campaign in 2014 and launched on 30 July
2015 [7]. Ethereum, like Bitcoin, is based on a blockchain, but Ethereum’s blockchain is
more versatile, allowing for the creation of smart contracts and decentralized applications,
or dApps. Ethereum makes use of its own cryptocurrency, Ether, to pay for transaction
fees and gas [8].

Ethereum has attracted developers from all over the world who build decentralized applica-

10

tions on the Ethereum blockchain. These decentralized applications have a wide range of
applications, from storage and management of medical records to decentralized financial
systems [9].

The popularity of Ethereum has resulted in the development of many tools and frameworks
to facilitate the development of decentralized applications. These tools and frameworks
include Truffle, Embark, and Hardhat.

1.2.3 Smart Contracts

On the blockchain, smart contracts are self-executing contracts. A smart contract is made
up of a series of rules and conditions that must be satisfied for the contract to be executed.
[10].

Nick Szabo proposed the idea of smart contracts in 1996. Szabo described smart contracts
as "a set of promises, specified in digital form, including protocols within which the parties
perform on these promises" [11]. Decentralized applications, or dApps, are frequently
built using smart contracts. A decentralized application (dApp) is a program that runs
on a decentralized network. The Ethereum Blockchain is a popular choice for many
decentralized application developers [8].

The use of smart contracts eliminates the need for a third party to mediate a contract, such
as a bank or a lawyer. This not only reduces the contract’s cost, but also the time required
to complete the contract. Smart contracts are stored on the blockchain and are immutable,
which means they cannot be modified once deployed. [10].

1.2.4 Vulnerabilities in smart contracts

Despite their numerous benefits, smart contracts are not without flaws. These flaws can
be used by attackers to take control of the contract or steal the funds contained within.
Due to the blockchain’s immutability, the majority of smart contracts cannot be modified
to address vulnerabilities. This demonstrates how critical it is to identify and mitigate
vulnerabilities prior to deploying a smart contract.

In June 2016, one of the earliest widely publicised smart contracts on the Ethereum
blockchain, known as the DAO, was attacked, approximately $50 million in ETHER was
lost as a result. The attacker took advantage of a recursive call bug to gain control of
the DAO contract and drain its funds. This hack prompted the Ethereum community’s

11

contentious decision to hard-fork the Ethereum blockchain, resulting in the blockchain
being split into two branches in order to recover funds lost in the attack [12].

Numerous studies have been conducted in the past attempting to analyze the security risks
associated with smart contracts [13][14][15], however the majority of the research work
doesn’t delve into the technical details of the most prevalent vulnerabilities.

Reentrance attacks, indirect execution of unknown code via a fallback function, interface
naming issues, and time component attacks are just a few examples of common smart
contract vulnerabilities [13].

1.2.5 Smart Contract Vulnerability Detection Tools

To address the vulnerabilities in smart contracts, several tools for detecting these vulnera-
bilities have been developed. These tools are classified as static analysis tools or dynamic
analysis tools.

Static analysis tools examine a smart contract’s source code and do not require the contract
to be deployed on a blockchain. Oyente, Mythril, and Securify are all popular examples
[16], while contracts that have been deployed on a blockchain are analysed using dynamic
analysis tools. An example of a dynamic analysis tool is Manticore. Existing research
focuses more on the requirements and methods for developing new vulnerability scanners
but very few details are provided on how to access their utility [14], [15], [17]–[19].

1.3 Research Gap

The existing gap lies in the lack of an evaluation method to determine the utility of the
numerous smart contract vulnerability tools available for use to smart contract developers.

1.4 Research Methodology and Research Questions

The design science research method was chosen for this study because it is a systematic and
iterative method for developing, evaluating, and applying innovative solutions to real-world
problems. [20]. In design science research the design process involves a set of expert
activities with the end goal being an innovative product. DSR utilizes a knowledge base
and a business need around a subject and then iteratively develops theories and artefacts in
order to arrive at a viable solution. [20].

12

1.4.1 Design Science Research Theory

Figure 1. DSR Theory Overview [20].

The visualization in Figure 1 depicts the framework for the DSR process for the evaluation
framework use case [20], the goal of the design science research is utility, the realm of IS
research focuses on the intersection of people, organisations, and technology. [20], the
people in this case are smart contract developers, smart contract bug bounty hunters and
academic researchers.

The middle column in Figure 1 shows the affiliation to IS research where either an artifact
or a theory is produced through iterations of development and evaluation, for this thesis an
artifact in the form of an evaluation framework for smart contract vulnerability detection
tools is produced. The knowledge base pillar provides the foundation for developing this
framework, and the methodology applied is the validation criteria in which the framework
developed is used to evaluate the existing opensource tools.

Guidelines for conducting DSR have been provided by Hevner et al [20]. The following
sections will show how those guidelines are applicable to the work done in this thesis

1.4.2 Design as an Artifact

The artifact of this DSR project is the evaluation framework for smart contract vulnerability
detection tools, The framework consists of a set of metrics and indicators that can be used
to evaluate the utility of these tools.

13

Table 1. Guidelines for conducting DSR [20].

1.4.3 Problem Relevance

Generally, DSR should focus on problems that need to be solved in order to improve
the state of practice or knowledge in a specific domain. The problem addressed by this
DSR project is how can we effectively evaluate and compare the numerous smart contract
vulnerability detection tools available for use by developers.

1.4.4 Design Evaluation

Throughout the DSR process, evaluation should be conducted. Evaluation is a critical
component of DSR because it enables researchers to determine the effectiveness of their
designs and whether they achieved their objectives [20]. According to Hevner et al "IT

artifacts can be evaluated in terms of functionality, completeness, consistency, accuracy,

performance, reliability, usability, fit with the organization, and other relevant quality

attributes" [20]. Table 2 represents the various existing methodologies to evaluate the
utility of the artifact

The evaluation framework is subjected to a descriptive review by determining the utility of
existing open-source smart contract vulnerability detection tools.

14

Table 2. DSR Evaluation Methods [20].

1.4.5 Research Contribution

This thesis seeks to contribute to the body of knowledge in three significant areas. Firstly,
a comprehensive review of the most common Ethereum smart contract vulnerabilities is
presented. Secondly, an evaluation framework for smart contract vulnerability detection
tools on the Ethereum blockchain is proposed. Finally, a systematic review of existing
smart contract vulnerability detection tools is conducted, and the findings are summarized
and presented.

1.4.6 Research Rigor

The DSR process should be conducted in a rigorous and systematic manner. In order to
ensure the rigor of this research, the following methods were employed:

■ A comprehensive review of existing work was conducted in order to gain a better un-
derstanding of blockchain technology, smart contracts, Ethereum and smart contract
vulnerability detection tools.

■ The proposed evaluation framework was evaluated by conducting an experimental
review on existing open-source smart contract vulnerability detection tools.

15

1.4.7 Design as a Search Process

DSR should be seen as a search process in which researchers iteratively develop and
evaluate designs in order to find an effective solution to a problem [20]. The proposed
evaluation framework was developed iteratively, with the first iteration focusing on the
creation of metrics and indicators for evaluating smart contract vulnerability detection
tools. The second iteration utilized the proposed framework to conduct an experimental
review of existing open-source smart contract vulnerability detection tools.

1.4.8 Communication of Research

The research findings are communicated in the form of a written report and a presentation.
The report details the research process, the proposed evaluation framework, and the
experimental review findings. The presentation summarizes the research process and
results.

1.5 Research Questions

Based on the previous sections the main research question is formulated: How can
Ethereum Smart Contract Vulnerability Detection tools be evaluated? In order to
answer this question, the following research questions were formulated to guide this
research:

1. RQ1: What are the common vulnerabilities affecting smart contracts on the
Ethereum blockchain?

2. RQ2: What are the evaluation requirements for vulnerability detection tools on
the Ethereum blockchain?

3. RQ3: What are the features of the existing open-source vulnerability detection
tools on the Ethereum blockchain?

RQ1 is answered by conducting a comprehensive review of existing work on Ethereum
smart contract vulnerabilities.

RQ2 is answered by developing an evaluation framework for smart contract vulnerability
detection tools that can be used to assess the utility of these tools.

RQ3 is answered by conducting a review of open-source smart contract vulnerability
detection tool.

16

1.6 Thesis Structure

The remainder of the thesis is structure as follows, Chapter 2, sets the preliminaries of the
work and also describes the running case, In Chapter 3 an analysis of the common smart
contract vulnerabilities on the Ethereum blockchain will be conducted, Chapter 4 develops
the framework and a suitable matrix for evaluating smart contract vulnerability tools on
the Ethereum blockchain, In Chapter 5, we explore the features of existing smart contract
vulnerability detection tools, In Chapter 6 a prototype of the evaluation framework will be
developed and lastly Chapter 7 discusses the limitations and future work possibilities.

17

2. Preposition

The following sections presents an overview of the prepositions and concepts applied to
this thesis, Section 2.1 explains the running case, and problem the thesis is trying to solve,
Section 2.2 highlights the importance of early vulnerability detection in smart contract
development, Section 2.3 describes the framework’s use case in-depth

2.1 Running Case

Smart Contract security is a significant impediment to adoption, as evidenced by
blockchain’s immutability and the fact that no one writes perfect code. Solidity is
the most widely used programming language for developing Ethereum-based smart con-
tracts. [21]. Solidity was proposed in 2014 by Gavin Wood and was released to the public
in August 2015 [22], while Solidity, a high-level Turing-complete language, has gained
popularity due to its ease of use and flexibility for developers, Solidity is error-prone and
has been cited as a significant reason for the error-prone implementation of smart contracts
due to its lack of centralized vulnerability documentation and blockchain domain specific
constructs [23]. Researchers estimate that approximately 45% of Solidity-based smart
contracts are vulnerable [24]. It should be noted that vulnerability does not always imply
exploitability [25]. Daniel et al. discovered that only 1.98 percent of 23,327 vulnerable
contracts were exploited, resulting in a loss of only 2% of the 3 million Ether at stake [25].
This may appear to be good news, but over $400 million was lost in the first quarter of
2022 due to smart contract vulnerabilities, with the majority of losses occurring on Defi
platforms.

Decentralized finance, or Defi, is a new category of decentralized applications (DApps)
built on Ethereum and other blockchains that provide financial services such as lending,
borrowing, derivatives trading, and payments. One of the most popular types of Defi is
Decentralized Exchanges (DEXs), which allow for the decentralized trading of cryptocur-
rencies and other financial assets [26]. Decentralized exchanges have gained popularity
among investors and traders because they eliminate the need for a third party to hold or
process transactions. Decentralized Exchanges are built on top of existing decentralized
protocols and operate using smart contracts to store and process transactions. Due to the
rapid growth of Defi as a result of the rapid growth of Ethereum’s value and the growing

18

popularity of non-fungible tokens (NFTs), on the Ethereum blockchain, the number of
smart contracts implemented has risen dramatically. On Ethereum, over 1.5 million smart
contracts have been deployed [27], the majority of which are on Defi platforms. The
popularity of Defi can be attributed to several factors, including the fact that it is a trustless
system, it is transparent, and it is accessible to anyone with an Internet connection.

The Defi ecosystem was valued at $240 billion in December 2022, up from $18 billion in
January 2021, a staggering 1222% jump, in a single year [28]. There are currently over
$100 billion in Ethereum smart contract assets [29]. Defi and Ethereum are expected to
continue growing in popularity as more people recognize the potential of decentralized
finance in providing permissionless financial services. Defi’s popularity has attracted a lot
of attention from hackers, and as a result, several smart contract vulnerabilities have been
exploited.

Defi platforms are usually launched hastily without a proper security audit, running a full
audit before launch can cost a lot, and since most Defi projects are early and without a
budget the amount needed can be out of reach for early Defi companies, this leaves most
defi projects vulnerable to hacks and attacks.

Since the well-publicized DAO hack in 2016, the number of hacks as a result of smart con-
tract vulnerabilities has increased. Because smart contracts typically store cryptocurrencies
and financial assets, smart contract exploits typically result in financial losses. From 2020
to November 2021, Elliptic estimates that over $12 billion was lost to Defi hacks as a
result of smart contract vulnerabilities [30]. Most of these vulnerabilities could have been
detected and prevented earlier in the development cycle. This data sheds light on Defi’s
growth and sends a message about the critical nature of smart contract security.

2.2 Importance of Early Vulnerability Detection in Smart Contract
Development

Security is of utmost importance in the blockchain ecosystem, most blockchain developers
understand the importance of auditing the security of their contracts before deploying them
to the mainnet, due to constraining factors such as the high cost of auditing, they only
conduct a full audit at launch. These security audits frequently reveal serious vulnerabilities
that could have been avoided if they were identified earlier in the development cycle. The
importance of early detection of vulnerabilities in smart contracts has been demonstrated
by a number of high-profile hacks. The DAO hack in 2016, which resulted in the loss of
$60 million [12], could have been prevented if the vulnerabilities in the code had been

19

identified earlier. The Parity Wallet hack in 2017 [31], which resulted in the loss of $30
million, was also the result of vulnerabilities that could have been identified earlier. These
hacks have demonstrated the importance of early detection of vulnerabilities in smart
contracts

Early detection of vulnerabilities is essential to the success of any software development
project. Early detection is even more critical in the case of smart contracts due to the
blockchain’s immutability. Once a smart contract is deployed, changing the code is
extremely difficult, if not impossible. This means that any vulnerabilities in the code
that exist at the time the smart contract is deployed will persist until the smart contract
is retired. Numerous tools have been developed in recent years to assist developers with
early vulnerability detection. For example, static analysis tools such as Mythril and Oyente
can assist developers in identifying a variety of vulnerabilities, including those in the
Solidity code itself and the underlying Ethereum Virtual Machine (EVM). Additionally, a
few studies have been conducted to examine the feasibility of using machine learning to
conduct vulnerability research on smart contracts.

In general, as more work is done and more tools are released to improve smart contract
vulnerability detection, a method for determining the utility of the numerous tools available
is required.

2.3 The Evaluation Framework

This thesis proposes a methodology for evaluating smart contract security tools. A set of
metrics for evaluating the performance of smart contract security tools is also provided.

Evaluation
Framework for
Smart Contract

Vulnerability
Detection Tools

Matrix for tool evaluation
Insights into common
vulnerabilities
Reduced development
time
Improved smart contract
security
Requirement specification
for future EVM
vulnerability detection tool
development

Lack of tool
evaluation
framework
Lack of tool
selection guide
Lack of matrix for
tool evaluation

More secured contracts
Reduced financial loses
due to hacks

Increased adoption of smart
contracts solutions

Reference material for future
work

Consumers

Society / Companies

Researchers

Figure 2. Benefits of the framework.

20

Figure 2 illustrates how developers, businesses, researchers, consumers, and the broader
community can benefit from a framework for evaluating the utility of Ethereum smart
contract vulnerability detection tools.

On the left column, developers are presented with a Matrix for tool selection when creating
a new smart contract on the Ethereum blockchain, this reduces development time because
developers can already determine which tool is appropriate for their use case; additionally,
the Thesis can serve as a requirement specification for future EVM vulnerability tool
development. This can result in a reduction in financial losses due to hacks for smart
contract consumers as more secure smart contracts are released. In general, when smart
contracts are more secure, confidence is increased, and adoption may increase. Finally,
academic researchers can benefit from this thesis’s work because it can be used as a
reference for future work.

2.4 The Utility Evaluation Web Application

On the basis of the issues outlined above, a web application prototype will be developed.
The web application prototype will be based on the ideas developed in this thesis and
will allow smart contract developers and general users to easily evaluate the utility of
a smart contract vulnerability detection tool. The web application will be developed as
a fully functional and usable web application that developers can use to determine the
effectiveness of a smart contract vulnerability detection tool based on the evaluation metric
developed in this thesis.

Retool and JavaScript will be utilized to create the web application’s user interface. The
web application will include a tab for weights, a tab for evaluation, and a page for results.
The weights tab will be used to assign weights. On the evaluation tab, details of the smart
contract vulnerability detection tool to be evaluated will be entered. The evaluation results
will be displayed on the results page.

21

3. Smart Contract Vulnerabilities on the Ethereum
Blockchain

This chapter discusses the various vulnerability classification taxonomies on the Ethereum
blockchain. Additionally, a holistic analysis of the various types of smart contract vulnera-
bilities on the Ethereum blockchain will be conducted. Also, each vulnerability will be
paired with a plausible exploit scenario including methods for mitigation and remediation.

3.1 Introduction

The objective of this section is to answer Research Question RQ1 - What are the common
vulnerabilities affecting smart contracts on the Ethereum blockchain?

In Section 3.2, we review prior research on smart contract vulnerabilities, Section 3.3,
will discuss the most common vulnerabilities affecting smart contracts on the Ethereum
Network using the DASP Top 10 taxonomy, we also provide details on real-world attack
scenarios and discuss common remediation techniques.

3.2 Smart Contract Vulnerability Taxonomy

Numerous research has been done on how to group and classify smart contract vulnerabili-
ties, one of the prominent taxonomy is proposed by Atzei et al [32]. In the research done
by Atzei et al [32], vulnerabilities are grouped into 3 classes, which are Solidity, EVM
bytecode, or blockchain. The classes represent the level in which the vulnerability occurs,
In the first class (Solidity), the vulnerabilities reside in the smart contract programming
language, In the second class (EVM bytecode), vulnerabilities are in the bytecode produced
by the Solidity compiler and are executed on the Ethereum blockchain by the EVM, In the
third class(Blockchain) vulnerabilities occur at a higher level and take advantage of the
features of the Ethereum. Table 3 summarizes the vulnerabilities and their causes.

22

Level Cause of Vulnerability

Solidity

Call to the unknown
Gasless send
Exception disorders
Type casts
Reentrancy
Keeping secrets

EVM
Immutable bugs
Ether lost in trasfer
Stack size limit

Blockchain
Unpredictable state
Generating randomness
Time constraints

Table 3. Taxonomy of Smart Contract Vulnerabilities [32].

The Taxonomy proposed by Atzei et al [32] is a bit outdated as issues such as Stack size
limit is now fixed on the EVM.

In the work done by Zulfiqar et al [33], smart contract vulnerabilities are classified into
six categories based on the domain knowledge of the operations involved, vulnerabilities
are classified into six classes: inter-contractual vulnerabilities, contractual vulnerabilities,
arithmetic bugs, gas related issues, transactional vulnerabilities, depreciated vulnerabilities
and randomization vulnerabilities.

■ Inter-contractual vulnerabilities occur as a result of faulty communication between
two contracts.

■ contractual vulnerabilities are bugs that affect the contract itself.
■ arithmetic bugs refer to vulnerabilities that occur as a result of faulty arithmetic

operations.
■ gas related issues refer to vulnerabilities that result from the misuse of gas.
■ transactional vulnerabilities refer to vulnerabilities that arise as a result of faulty

transaction processing.
■ depreciated vulnerabilities refer to vulnerabilities that result from the use of depre-

cated ERC standards and finally, randomization vulnerabilities refer to vulnerabilities
that result from the use of random numbers in the contract.

23

Smart Contract Vulnerability
Classification

Reentrancy
Denial of
Service
Mishandled
Exception
Gasless Send
Call Transfer All
Gas

Frozen Ether
SelfDestructible
Stealing Ether

Unchecked Maths
Integer Overflow

DoS
Integer Overflow
Causing
Out of gas Exception
Wallet Griefing
Causing
Out of Gas Exception
Gasper Patterns

TOD
TSD
Tx.Origin

Call Stack Depth
Type
Interference (Integer
Overflow)
Type Interference
(Out of Gas)

Figure 3. Smart Contract Vulnerability Classification by Zulfiqar et al [33].

The classification is summarized in Figure 3. While Zulfiqar et al [33] taxonomy is more
comprehensive and up to date, it lacks the organization and level of abstraction necessary
for effectively classifying vulnerabilities.

According to another study conducted by Sergei et al [34], vulnerabilities are classified
into security, functional, operational, and developmental issues. By security issues, we
mean flaws that can be abused to gain access to a user’s data or assets. By functional
issues, we mean flaws that result from an incorrect implementation of the business logic
in the smart contract. By operational issues we refer to vulnerabilities that result from
the incorrect operation of the smart contract, for example, if a contract is intended to be
used for a limited period and the contract is not programmed to automatically close after
that period then we have an operational issue. Finally, developmental issues are easily
remedied vulnerabilities that are typically the result of poor coding practices.

The Decentralized Appliaction Security Project (DASP) Top 10 taxonomy developed by
the NCC group was created with the aim of providing a high-level overview of the most
common smart contract vulnerabilities [35]. The taxonomy is based on the OWASP Top
10 taxonomy used to classify the most common web application security vulnerabilities.
The DASP Top 10 also contains a list of updated issues affecting smart contracts.

3.3 The DASP Top 10

In this section, we present the DASP Top 10 and discuss some of the most common
vulnerabilities affecting smart contracts.

24

3.3.1 Reentrancy

Reentrancy is a flaw in smart contracts that allows an attacker to repeatedly call a function
in order to trigger the execution of multiple transactions in a single transaction. Simply
put, reentrancy attacks occur when an attacker reenters a smart contract and repeats the
same action prior to the contract’s state being updated. The DAO hack, which is regarded
as one of the earliest smart contracts exploits on the Ethereum blockchain, occurred as a
result of a reentrancy attack.

When a contract is vulnerable to a reentrancy attack, an attacker can launch an attack by
invoking the vulnerable function and passing a malicious contract as a parameter. After
the original contract updates its state, the malicious contract is programmed to execute its
own code and then call the vulnerable function again. The attacker can repeat this action
until the transaction runs out of gas or until the attacker’s specified endpoint is reached.
Consider the example contract in Listing 3.1, The Donation contract enables anyone to
donate any amount of Ether to the smart contract, the deposit() function in line 10, enables
users to deposit Ether to the contract and then updates the contract balance, the withdraw()

function enables users to withdraw the Ether deposited by the user. In the withdraw()

function, the Ether is returned to the user before the contract balance is deducted.

1 pragma solidity ^0.4.24;

2 contract Donation {

3 uint balance;

4 address owner;

5 constructor() public {

6 owner = msg.sender;

7 balance = 0;

8 }

9
10 function deposit() public payable {

11 require(msg.value > 0);

12 balance += msg.value;

13 }

14 function withdraw(uint _amount) public {

15 require(msg.sender == owner);

16 msg.sender.call.value(_amount)();

17 balance -= amount;

18 }

19 }

Listing 3.1. Contract vulnerable to reentrancy attack.

25

In an attack scenario, a malicious contract can be deployed that invokes a fallback function
which subsequently makes invokes the withdraw() function of the Donation smart contract,
Listing 3.2 illustrates an example of such a malicious contract.

1 pragma solidity ^0.4.24;

2
3 contract ReentranceAttack {

4 Donation public donation;

5
6 constructor(address _donationAddress) {

7 donation = Donation(_donationAddress);

8 }

9
10 function() external payable {

11 if(address(donation).balance >= 1 ether) {

12 donation.withdraw(1);

13 }

14 }

15
16 function attack() external payable {

17 donation.deposit{value: 1 ether}();

18 donation.withdraw(1);

19 }

20
21 }

Listing 3.2. Reentrancy malicious contract.

To exploit the donation contract the attacker would call ReentranceAttack.attack() to donate
1 Ether to the Donation contract, the attacker would immediately invoke a withdrawal
of 1 Ether from the Donation contract in line 18, this triggers the reentrancy as the
Donation.withdraw() function invokes ReentranceAttack fallback function in line 10, and
triggers a withdrawal loop; withdrawals will continue until the transaction gas is exhausted
or the donation contract balance falls below 1. Figure 4 illustrates the iterative process.

26

Withdraw Ether
Donation.withdraw()

Ether Sent

Fallback Function Invoked
ReentrancyAttack.fallback()

Withdrawal Requested from
Malicious Contract

ReentrancyAttack.attack()

Reentrancy Loop

Figure 4. Recursive loop of a reentrancy attack.

There are several mitigations for reentrancy attacks. A common mitigation is to use a
mutex, which is a type of lock that is used to ensure that only one thread can execute a
critical section of code at a time. In Listing 3.3, a mutex is applied to patch the reentrancy
vulnerabilities of the Donation contract. When the contract is invoked for the first time,
a variable lock is set to true, and a check is implemented in line 12; if the contract
is invoked again while lock is still true, the withdrawal does not go through to the
malicious contract.

1 pragma solidity ^0.4.24;

2 contract Donation {

3 uint balance;

4 address owner;

5 constructor() public {

6 owner = msg.sender;

7 balance = 0;

8 }

9
10 function deposit() public payable {

11 require(!lock);

12 lock = true;

13 require(msg.value > 0);

14 balance += msg.value;

15
16 }

17
18 function withdraw(uint _amount) public {

19 require(!lock);

20 lock = true;

21 require(msg.sender == owner);

22 msg.sender.call.value(_amount)();

27

23 balance -= _amount;

24 lock = false;

25 }

26 }

Listing 3.3. Reentrancy mitigation via mutex

Another preventive measure is by using the Checks-effects-interactions pattern, which
involves executing internal calls and updating the state before making any external calls.
An example is show in Listing 3.4, the balance of the contract is updated in line 3 before
the transfer is made to the 3rd party.

1 function withdraw(uint _amount) public {

2 require(msg.sender == owner);

3 balance -= _amount;

4 msg.sender.call.value(_amount)();

5 }

Listing 3.4. Check effects pattern mitigation.

3.3.2 Access Control

Access control is a type of security mechanism that restricts a user’s access to resources
based on the user’s identity. When a user attempts to access a resource, the access control
system checks the user’s identity and authorization level to determine whether the user is
allowed to access the resource. Access control is used in the context of smart contracts
to restrict access to specific functions of the contract. Access control is a critical security
mechanism that is used to prevent unauthorized access to a smart contract.

The two widely publicised Parity exploits were caused by an access control vulnerability,
which resulted in financial losses in the first case [36] and an accidental lock of $280
Million worth of ETHER in the second case [37].

Consider the example in Listing 3.5. A conceptual Savings contract has been deployed
which ideally should allow only the owner of the contract withdraw Ether from the smart
contract, but since no access control is implemented anyone could call withdraw() and
drain the contract.

1 pragma solidity ^0.4.24;

2 contract Savings {

3 address owner;

4 uint balance;

28

5
6 constructor() public {

7 owner = msg.sender;

8 balance = 0;

9 }

10
11 function deposit() public payable {

12 require(msg.value > 0);

13 balance += msg.value;

14 }

15
16 function withdraw(uint amount) public {

17 balance -= amount;

18 msg.sender.call.value(amount)();

19 }

20 }

Listing 3.5. Contract vulnerable to access control bypass.

Modifiers can be used to implement access control in smart contracts. Modifiers are
typically used to restrict access to certain functions of a smart contract. A function modifier
can be added to the Savings contract to grant only the owner or deployer of the contract
access to withdraw the Ether in the contract, Listing 3.6 shows an example of a function
Modifier in solidity. The "_;" in line 3 serves as a check, if the owner invokes the contract
then it runs without issues, else it throws an exception.

1 modifier onlyOwner() {

2 require(msg.sender == owner);

3 _;

4 }

Listing 3.6. A function modifier in solidity [38].

The Modifier can then be appended to any function, In the case of the vulnerable Savings
contract in Listing 3.5, the modifier is applied to the withdraw() contract and shown in
Listing 3.7.

29

1 function withdraw(uint _amount) public onlyOwner {

2
3 require(msg.sender == owner);

4 balance -= _amount;

5 msg.sender.call.value(_amount)();

6 }

Listing 3.7. A modifier applied to a vulnerable function.

3.3.3 Arithmetic Issues

Arithmetic issues occur when a smart contract performs unsafe arithmetic operations on
integers. Due to the general lack of support for floating-point values in smart contracts,
integers are used to represent values. Generally, arithmetic issues are referred to as integer
overflows and underflows [38].

Listing 3.8 illustrates an example of integer overflow. The Timelock contract is intended
to allow users to deposit and lock their Ether for a specified period of time. The user can
also extend the locktime by invoking increaseLockTime() and specifying the number of
seconds to add to the lock. If by any chance an attacker is able to obtain the private key
to the user wallet, they can call the withdraw function regardless of the lock time due to
a lack of integer overflow checks, to exploit this an attacker will first query the current
locktime from the contract and then pass an argument

2256 − locktime

since the maximum value for an unsigned integer(uint) is

2256 − 1

this triggers an overflow and returns 0, which resets the locktime of the contract to 0,
allowing the attacker to take all the funds stored in the contract.

1 contract TimeLock {

2
3 mapping(address => uint) public balances;

4 mapping(address => uint) public lockTime;

5
6 function deposit() public payable {

7 balances[msg.sender] += msg.value;

8 lockTime[msg.sender] = now + 1 weeks;

9 }

30

10
11 function increaseLockTime(uint _secondsToIncrease) public {

12 lockTime[msg.sender] += _secondsToIncrease;

13 }

14
15 function withdraw() public {

16 require(balances[msg.sender] > 0);

17 require(now > lockTime[msg.sender]);

18 uint transferValue = balances[msg.sender];

19 balances[msg.sender] = 0;

20 msg.sender.transfer(transferValue);

21 }

22 }

Listing 3.8. A Vulnerable smart contract with integer overflow issues [39].

An effective way to prevent arithmetic issues is by making use of trusted Maths libraries
during development. SafeMath is a popular maths library designed by Openzeppelin to
address this vulnerability. Listing 3.9 shows how the add() function from the SafeMath
library is used to address the vulnerability in the TimeLock contract.

1 library SafeMath {

2 function add(uint256 a, uint256 b) internal pure returns (uint256) {

3 uint256 c = a + b;

4 assert(c >= a);

5 return c;

6 }

7 }

8
9 contract TimeLock {

10 using SafeMath for uint;

11 mapping(address => uint256) public balances;

12 mapping(address => uint256) public lockTime;

13
14 function increaseLockTime(uint256 _secondsToIncrease) public {

15 lockTime[msg.sender] = lockTime[msg.sender].add(

_secondsToIncrease);

16 }

17 }

Listing 3.9. Addressing overflow issues using SafeMath [39].

Real world examples of exploits due to arithmetic issues include the proof of weak hands
exploit (PoWHC) [39] and the batch transfer overflow vulnerability (CVE-2018-10299)
[40].

31

3.3.4 Unchecked Return Values For Low Level Calls

Low level calls are those that are made to the internal functions of a smart contract.
call(), callcode(), delegatecall() and send() are all low-level calls
in Solidity. Unchecked return values refer to the practice of not verifying a low level
call’s return value prior to using it. This can result in vulnerabilities if the low level call’s
return value is not as expected. For instance, if a contract calls the send() function of
an external contract without checking the return value, the contract may be vulnerable to
a reentrancy attack. It is usually advised to avoid low level calls entirely. Consider the
example Lottery contract in Listing 3.10 , if for some reasons ‘winner.send()‘ fails the, the
payedOut variable is set to true, effectively locking the prize money in the contract, since
no checks are implemented to verify the return value of ‘winner.send()‘.

1 contract Lottery {

2
3 bool public paid = false;

4 address public winner;

5 uint public prize;

6
7 function sendPrize() public {

8 require(!payedOut);

9 winner.send(10);

10 payedOut = true;

11 }

12
13 }

Listing 3.10. Unchecked low level calls

In the case that a low level call cannot be avoided it is essential to check the return value to
handle any possible exceptions. A mitigation is shown in Listing 3.11 by checking for the
return value of send() before setting payedOut to true, this way the win amount never gets
locked in the contract.

1 contract Lottery {

2
3 bool public paid = false;

4 address public winner;

5 uint public prize;

6
7 function sendPrize() public {

8 require(!payedOut);

9 if (winner.send(10)) {

32

10 payedOut = true;

11 }

12 else {

13 throw;

14 }

15 }

16 }

Listing 3.11. Implementing checks for low level calls

A popular real world example is the King of Ether exploit in 2016 [41].

3.3.5 Denial of Service

Denial of service (DoS) attacks are a type of attack that attempts to make a system or
network resource unavailable to its intended users. DoS attacks are usually launched by
flooding the target system with requests that consume all the system’s resources. A DoS
attack, in the context of smart contracts, is a type of attack that aims to render a smart
contract inaccessible to its intended users. The attack surface for DoS vulnerabilities is
large and can be triggered unintentionally as a result of poor coding practices; the second
parity hack is a real-world example of how a DoS attack was triggered unintentionally,
resulting in the permanent locking of $280 Million in the smart contract [36].

Listing 3.12 illustrates a vulnerable smart contract that allows users to invest a specified
amount of Ether and receive back five times the amount invested. An attacker can choose to
invest using multiple wallets, flooding the investors array in the process, and can continue
doing so until the gas required to execute the distribute() function exceeds the block gas
limit [39].

1 contract DistributeTokens {

2 address public owner; // gets set somewhere

3 address[] investors; // array of investors

4 uint[] investorTokens; // the amount of tokens each investor gets

5
6 // ... extra functionality, including transfertoken()

7
8 function invest() public payable {

9 investors.push(msg.sender);

10 investorTokens.push(msg.value * 5); // 5 times the wei sent

11 }

12

33

13 function distribute() public {

14 require(msg.sender == owner); // only owner

15 for(uint i = 0; i < investors.length; i++) {

16 // here transferToken(to,amount) transfers "amount" of

tokens to the address "to"

17 transferToken(investors[i],investorTokens[i]);

18 }

19 }

20 }

Listing 3.12. Smartcontract vulnerable to DoS [39].

A suitable mitigation for this issue would be to alter the distribution logic and add logic
that enables users to withdraw Tokens independently of the forloop.

3.3.6 Bad Randomness

Bad randomness is a vulnerability that allows an attacker to predict the output of a random
number generator. This can be exploited to manipulate the outcome of a contract. For
example, consider a contract that generates a random number and then uses the random
number to determine the winner. If an attacker can predict the output of the random number
generator, the attacker can manipulate the outcome of the game.

Numerous applications on the Ethereum blockchain require randomness, ranging from
lottery decentralized applications to gambling and some financial decentralized applica-
tions. However, because everything on the blockchain is designed to be publicly visible,
generating a true random number is challenging.

The source of randomness in blockchain should be external to the blockchain, one way of
mitigating the issue of bad randomness is by using external oracles and entities as a source
of truth. The CryptoPuppies Dapp was exploited as a result of bad randomness [42].

3.3.7 Front Running

Front Running is a type of attack that involves an attacker observing a transaction and then
executing a transaction that is dependent on the original transaction. Front running attacks
are common in decentralized exchanges.

Ethereum utilizes a Proof of Work (PoW) consensus algorithm, which means that miners
are in charge of validating and adding transactions to the blockchain. Miners are compen-

34

sated for their efforts through a fee that is paid by the transaction’s sender. An attacker can
monitor pending transactions. Consider Listing 3.13, in which the first person to solve the
puzzle wins 1000 ether. The attacker could simply monitor the pending transaction pool,
obtain the solution, and then submit the transaction with a higher gas fee. The miner will
then accept the transaction with the highest gas fee, thereby awarding the prize money to
the attacker.

1 contract FindThisHash {

2 bytes32 constant public hash = 0

xb5b5b97fafd9855eec9b41f74dfb6c38f5951141f9a3ecd7f44d5479b630ee0a

;

3
4 constructor() public payable {} // load with ether

5
6 function solve(string solution) public {

7 // If you can find the pre image of the hash, receive 1000

ether

8 require(hash == sha3(solution));

9 msg.sender.transfer(1000 ether);

10 }

11 }

Listing 3.13. Simple puzzle contract [39].

Mitigating this vulnerability is difficult because it is influenced by two factors: users and
miners. Miners can reorder and process transactions as they see fit, but their use as an
attack vector is typically limited because they cannot predict when they will mine a block.

On the other hand for users, a gas threshold can be implemented in the smart contract
to prevent front running. Front running attacks are popular on the major DEX on the
Ethereum blockchain [43].

3.3.8 Time Manipulation

Time manipulation also known as Timestamp Dependence or Time Constraints is a type
of attack that involves a miner manipulating the time of a transaction in order to exploit
a vulnerability in a smart contract [38]. Time manipulation attacks are possible in smart
contracts that use the block.timestamp variable for generating random numbers. The
block.timestamp variable is a timestamp that is associated with each block in the
Ethereum blockchain. The timestamp is used to determine when a transaction was mined.
Consider Listing 3.14, the miner can manipulate the timestamp to fit the condition in line 9

35

10 in order to receive the Ether reward.

1 pragma solidity ^0.4.24;

2
3 contract Play {

4 uint public pastTime;

5 constructor() payable {}

6
7 function play() external payable {

8 require(msg.value == 10 ether);

9 require(block.timestamp >= pastTime);

10 pastTime = block.timestamp;

11 // if pastTime is divisible by 9 you win the Game

12 if(block.timestamp % 9 == 0) {

13 msg.sender.transfer(1500 ether);

14 }

15 }

16 }

Listing 3.14. Vulnerable to time manipulation.

To mitigate this vulnerability blockchain timestamp should not be used to generate entropy
or random numbers. A real world example is the GovernMental exploit [39].

3.3.9 Short Address Attack

Short Address is a type of vulnerability that occurs as a result of the EVM accepting
incorrect arguments, for example, the Ethereum Virtual Machine (EVM) uses 20-byte
addresses to identify accounts. When a transaction is sent to an address that is shorter than
20 bytes, the EVM will pad the address with zeros. This can result in the loss of funds
if the address is padded with zeros that were not originally part of it. To mitigate this
vulnerability, it is essential to validate input on the clients side before sending the inputs to
the blockchain.

3.3.10 Unknown Unknowns

Unknown unknowns are vulnerabilities that have not been discovered or disclosed. Un-
known unknowns are difficult to mitigate, as there is no known way to prevent or detect
them. Unknown unknowns can only be mitigated by continual auditing of smart contracts.

36

3.4 Discussion

To begin, Section 3.2 conducts a state-of-the-art evaluation of existing research on smart
contract vulnerability classification; we compare the classification provided in each study
to the DASP Top 10, and we discuss the limitations of past research.

As seen in Section 3.3, Solidity is prone to errors, and even minor errors can have catas-
trophic repercussions, resulting in large financial loss. Furthermore the simplified versions
of real life exploit scenarios provided for each vulnerability, shows how easy it is to exploit
some of the vulnerabilities. The common vulnerabilities discussed in Section 3.3 aligns
with previous research done by Naoma et al [44], although the research by Naoma et al
covers 8 classes of vulnerabilities mentioned in section 3.3, attack techniques such as front
running and time manipulation are not covered. In another study by Huashen et al [45],
similar results are produced but the vulnerabilities shown in section 3.3, are divided into
additional subgroups, For example Denial of Service is broken into two subgroups namely,
Frozen Ether and Unprotected Suicide [45].

3.5 Conclusion

This chapter was focused on identifying the common smart contract vulnerabilities on
the Ethereum Blockchain, previous research work done on Smart Contract Vulnerability
taxonomy domain were analysed in Section 3.2, and the process of selecting a suitable
taxonomy was also explained.

The research question What are the common vulnerabilities affecting smart contracts
on the Ethereum blockchain? has been answered using the DASP Top 10 taxonomy,
Common vulnerabilities on the Ethereum blockchain include Reentrancy attacks a vulner-
ability which is caused as a result of a smart contract making insecure external calls, this
also tops the list of attack vectors as seen in [44], [45], Access Control vulnerability as a
result of improper access checks, Arithmetic vulnerabilities which refer to flaws intro-
duced as a result unsafe arithmetic operations, Unchecked Return Values for Low Level
Calls due to inappropriate calls to low level functions such as call(), callcode()

delegatecall() and send(), Denial of Service (DoS) attacks as a result of poor
coding practices, Bad Randomness which refers to vulnerabilities as a result of improperly
generated random numbers, Front running vulnerabilities as a result of miners taking
advantage of pending transactions in the mempool, Time Manipulation as a result of
depending on block timestamp which can be manipulated by miners, Short Address
attack as a result of improper user input validation and finally Unknown Unknowns which

37

are vulnerabilities not discovered or known yet.

There are a number of limitations in our approach. First, our approach only identifies a
subset of all possible vulnerabilities. Second, our approach only assesses a subset of all
possible exploit examples. Finally, our approach is limited to Solidity, and therefore is not
applicable to smart contracts written in other languages. In the future, we plan to expand
our approach to identify more vulnerabilities, We also plan to extend our approach to smart
contracts written in other languages.

38

4. Evaluation Requirements for Smart Con-
tract Vulnerability Detection Tools on the
Ethereum blockchain

The following chapter presents a utility evaluation process for smart contract vulnerability
detection tools. The requirement specification of smart contract vulnerability detection
tools are presented, furthermore, a scoring guideline for each requirement is provided, and
a utility evaluation equation is presented. Finally, the evaluation process is deconstructed
and discussed in detail.

4.1 Introduction

The objective of this section is to answer the Research Question RQ2 - What are the eval-
uation requirements for vulnerability detection tools on the Ethereum blockchain?

In Section 4.2, we will establish the requirements specification of a vulnerability detection
tool and also provide a guideline on how to assign scores to each requirement. Section 4.3
will explore how to evaluate the utility of the vulnerability detection tools.

4.2 Requirement Specification of a Smart Contract Vulnerability De-
tection Tool

The bedrock of vulnerability detection tools are the functionalities they offer, we explore
some of the important features of smart contract vulnerability detection tools, within the
context of Ethereum smart contracts.

4.2.1 Functional Requirement

There are different kinds of functional requirements that a smart contract vulnerability
detection tool should meet.

39

a. Method of Analysis

Vulnerability detection should involve at least one security testing methodology, smart
contract security testing methodologies include:

i. Static Analysis: Static code analysis is the process of analyzing code without executing
it. Smart contract analysis can be beneficial for identifying potential vulnerabilities in
smart contracts as well as for understanding how the code works. Static analysis enables
automated security reviews and may run more quickly on large contract files, it is also
believed to be a cost-effective method of discovering vulnerabilities, as smart contracts
cannot be modified once they are deployed on the blockchain. There are usually three
stages in static analysis [46].

1. Building an intermediate representation
2. Enrichment of Intermediate Representation using algorithms such as symbolic

execution and abstract interpretation
3. Vulnerability detection

ii. Dynamic Analysis: Dynamic analysis is the analysis of code during the execution of the
code. Dynamic analysis has the advantage of identifying issues that may not be identified
by static analysis, since static analysis can not identify every possible execution path of the
code. However, dynamic analysis is a more expensive approach to security testing than
static analysis.

b. Level of Abstraction

Vulnerability analysis should begin either from the Solidity source code or bytecode. The
bytecode of contracts is the preferred option due to the lack of formal semantics in solidity
and behavioural change across different compiler versions.

c. Bulk Analysis Support

Vulnerability detection tools should also provide support for bulk analysis, for example,
tools should support detection of vulnerabilities for smart contracts already deployed on
the Ethereum blockchain. Bulk analysis is important for analysing smart contracts in a
distributed manner.

d. Detection Methodology

Vulnerability detection methodology is an important aspect of vulnerability detection tools.
The various methods for vulnerability detection include:

40

i. Code Instrumentation: Code instrumentation is a method of modifying code to insert
hooks or tracers in order to monitor code execution. Code instrumentation is used in the
context of security testing to check assertions and monitor performance of the contract
under analysis.

ii. Symbolic Execution: Symbolic execution is a technique for analysing programmes
in which logical formulas representing the program’s execution are created and solved.
In the context of smart contract security testing, symbolic execution is a technique that
utilises constraint solvers to attempt to calculate a concrete input by exploring all possible
execution paths in the code [47].

iii. Constraint Solving: Constraint solving is the process of solving logical formulas by
assigning values to variables such that the formula is true. Constraint solving is used in the
context of smart contract security testing to find input values that satisfy a logical formula.

iv. Abstract interpretation: Abstract interpretation is a program analysis technique where a
program is analyzed by calculating abstractions of the program instead of analyzing the
concrete program. Abstract interpretation is used in the context of smart contract security
testing for performing data flow analysis of smart contracts

v. Model Checking: Model checking is a formal verification technique where a model of a
system is checked against requirements. Model checking is used in the context of smart
contract security testing to automatically verify properties of smart contracts.

Vulnerability detection tools need to be able to detect vulnerabilities using one of the
methods discussed above

e. Code Transformation Support

Code transformation is used in the context of security testing to improve the performance
and accuracy of code analysis. Code transformation can be used to improve the accuracy of
programme analysis by converting the code to a more easily-analyzed format. Vulnerability
detection tools employ a variety of code transformation techniques, including the following
[48]:

i. Disassembly: Disassembly is a technique used in transforming the Smart contract’s
bytecode into human readable instructions. Disassembly is used in the context of smart
contract security testing to improve the accuracy of smart contract code analysis.

41

ii. Decompilation: Decompilation is the process of reverse engineering compiled code,
this is important in order to provide contextual feedback on vulnerabilities. Decompilation
is used in the context of smart contracts to convert EVM bytecode to a higher abstraction
level, such as solidity code, in order to improve code readability and data flow analysis.

iii. Abstract Syntax Tree: This refers to a tree representation of the code, it is used to
represent the structure of the code and can be used for various purposes such as data flow
analysis, verification and validation. Smart contract security testing tools use Abstract
Syntax Tree for the purpose of data flow analysis.

iv. Control flow graph: A control flow graph is a graph representation of the code that is
used to highlight the paths that may be traversed during code execution [49].

v. Contextualization Support: This refers to the feedback of where an issue was detected
in the solidity code or bytecode of a contract, a vulnerability detection tool should be able
to point to the vulnerable part of the code either by specifying the line in the code or the
problematic function [48].

g. Vulnerability Detection Support

Vulnerability detection tools should also be able to detect security issues in smart contracts,
using the Dasp Top 10 as a reference [35], some of the vulnerabilities that should be
detected by a smart contract vulnerability detection tool include:

i. Reentrancy (RE): Reentrancy is a type of vulnerability that allows an attacker to call a
function of a smart contract recursively. This type of vulnerability can be used to exploit
vulnerabilities in other smart contracts that use the contract with the RE vulnerability.

ii. Access Control: Access control is the process of limiting a resource’s accessibility.
Access control can be used to restrict access to certain functionality within a smart contract,
such as restricting the ability to withdraw funds to the contract owner only, when access
control is not implemented correctly it can lead to devastating consequences.

iii. Arithmetic Issues: Arithmetic issues occur when a smart contract performs unsafe
arithmetic operations on integers.

iv. Unchecked Return Values For Low Level Calls: Unchecked return values can occur
when a smart contract does not check the return value of a low level call. This can lead to
vulnerabilities in the smart contract.

42

v. Denial of Service: Denial of Service (DoS) is a type of attack in which legitimate users
are denied access to a resource. This is a type of vulnerability in which the smart contract
is overburdened with computations that take a long time to complete.

vi. Bad Randomness Bad randomness is an issue that can occur when a smart contract uses
an insecure source of randomness.

vii. Front Running Front Running is a type of attack in which an attacker observes a
transaction and then executes another transaction that is dependent on the original.

viii. Timestamp Manipulation: Timestamp manipulation is a type of vulnerability in smart
contracts that occurs when the value of a timestamp is used to determine the contract’s
behaviour. Dependence on timestamps can be used to exploit flaws in smart contracts.

ix. Short Address Attack: Short Address Attack is a type of vulnerability that occurs as a
result of lack of input validation, It can also be as a result of EVM accepting improperly
padded arguments.

4.2.2 Non-functional Requirement

For smart contract vulnerability tools, Non-functional requirements refers to the attributes
of the tool that are important, but are not related to the functionality of the tool, these may
refer to attributes that cannot be out-rightly observed during execution of the tool. The
non-functional requirements considered in this thesis include:

h. Integrability

Integrability refers to the ability of a tool to be integrated with other tools, this is important
for the purpose of security testing. For example, a security testing tool may be integrated
with a testing framework to enable automated testing of smart contracts, or a security
testing tool may be integrated into the CI/CD process in order to discover vulnerabilities
during development.

g. Robustness

Robustness refers to a tool’s ability to gracefully handle errors and cope with erroneous
input. How frequently a tool fails to decompile or parse a smart contract without errors is
important for security testing purposes. Security tools should be able to point out when an
error has occured in the smart contract and in some cases the line in which the error occurs.

43

i. Usability

Usability refers to how easy it is to make use of a vulnerability tool. Vulnerability tools
should have clear usage instructions and documentations. Interaction with the tool should
be made easy using either a CLI, GUI or API.

j. Ease of Setup

Ease of setup refers to the ease with which a tool can be installed and configured by a user,
as well as the ease with which users can utilize the said security tool. This is important
for the purpose of security testing because if a tool is difficult to set up, users may be
dissuaded from testing their smart contracts for vulnerabilities.

k. Flexibility

Flexibility refers to a tool’s ability to be extended and customized by users. It also refers
to a tool’s ability to adapt to changes and customization’s without compromising its utility,
this is a desirable characteristic for tools that detect smart contract vulnerability.

4.3 Utility Evaluation of Smart Contract Vulnerability Detection
Tools

Utility evaluation is the process of assessing the usefulness of a tool within a specific
context, Utility is a function of both functional and non-functional requirements. Figure 6
depicts how utility is at the root of all functional and non functional requirements. Below,
we propose a utility equation using the requirements specifications in Section 4.2.

44

Utility

Non- functional Requirements

Functional Requirements

Integrability

Robustness

Usability

Code Transformation Support

Vulnerability Detection Support

Bulk Analysis Support

Method of Analysis

Detection Methodology

Level of Abstraction

 Dynamic Analysis

Static Analysis

Ease of Setup

Flexibility

Bytecode

Solidity Source Code

Code Instrumentation

Symbolic Execution

Constraint Solving

Abstract interpretation

Model Checking

Disassembly

Decompilation

Abstract Syntax Tree

Control flow graph

Contextualization Support

Reentrancy (RE)

Access Control

Arithmetic Issues

Unchecked Return Values For Low Level Calls

Denial of Service

Bad Randomness

Front Running

Timestamp Manipulation

Short Address Attack

Figure 5. Requirements Specification Hierarchy

45

4.3.1 Utility Equation

For computing the utility u of a tool t, we consider Equation 4.1, in which each requirement
r receives a score on the scale of {3|2|1|0}. Where 3 means a vulnerability detection tool has
an excellent support for a requirement, 2 means good support, 1 means minimal support
and 0 means a requirement is not applicable for the specific vulnerability detection tool.
A scoring guideline for each requirement Scoresi is presented in Table 4.

ut =
r∑

i=1

Scoresi ∗Weighti (4.1)

Where:

r = Total number of requirements

Scoresi = Score of a requirement

Weighti = Weight of a requirement

The Weighti refers to the weight of each requirement. This weight is used to compute the
importance of each requirement within the context of a specific vulnerability detection
tool.

4.3.2 Using the Utility Evaluation Framework

The utility of a tool can be determined using the methodology described here. Given a job
J and a vulnerability detection tool T , the utility evaluation process entails allocating a
weight W to all functional and nonfunctional requirements of the tool and then allocating
a score to each requirement using the scoring guidelines in Table 4. The Three phases can
be summarized as follows:

46

Evaluation Framework for Smart
Contract Vulnerability Detection Tools

Define Vulnerability
Detection Use-Case

Tool
Selection

Review
Tool

Documentation

Deploy and Use
 Tool to Determine

Features

Review
Previous

Feedback and
Research

Engage
Stakeholders

Assign Weight Based on
Vulnerability Need

Assign Scores Based on
Scoring Guideline

Compute
Utility Score

Phase 1: Gather
Tool Features

Phase 2: Weight
Assignment

Phase 3: Score
Assignment

Phase 4: Utility
Computation

Figure 6. Utility Evaluation Framework

Phase 1: User outlines the respective features of the chosen smart contract vulnerability
detection tool, this can be done by analyzing the tool creator’s documentation or by running
the tools themselves.

Phase 2: The user assigns a weight to each specification based on its relevance to the job
at hand. Since two jobs may not require the same functionality or assign the same level of
importance to each requirement, the weight may differ across various jobs, for instance,
if a user is responsible for integrating vulnerability detection scans into the continuous
integration pipeline for developing smart contracts, he or she may wish to prioritize the
Integrability requirement over the Usability requirement. i.e {wintegrability > wusability}

Phase 3: Users assign scores to each requirement using the scoring guideline in table 2 as
a reference.

Phase 4: Users compute the utility of T to J by multiplying each score by the weight for
each feature and then summing up all the values.

Based on this framework the utility of a tool T to a job J can be said to be: ut =∑r
i=1 Scoresi ∗Weighti, using this, we can compare the utility of different tools for a job.

Figure 6 depicts the steps and phases involved in the utility evaluation process.

47

3 - Exc
ell

en
t Suppor

t

2 - Goo
d Suppor

t

1 - M
inim

al
Suppor

t

0 Not
Applic

ab
le

Desc
rip

tio
n

Method
of Analysis

2 or more method
of analysis

1 method of
analysis

Not Applicable

Refers to the Security
Testing methodology,
Options include:
1. Static Analysis
2. Dynamic Analysis

Level
of Abstraction

2 or more levels
of abstraction

1 level of
abstraction

Not Applicable

Indicates the starting
point for vulnerability
analysis, available
options include:
1. Bytecode
2. Solidity source code

Bulk
Analysis
Support

Supports multithreading
analysis
in its entirety,
including for smart
contracts that have
already been
deployed on chain.

Limited support for
multi-threading and
vulnerability analysis
for on chain
smart contracts

Minimal Support
for Bulk
scanning

Not Applicable

Refers to support
for multi thread
scans and support
for vulnerability detection
for on chain smart
contracts.

Detection
Methodology

The tool supports 3
or more
detection methods

Supports up to 2
detection methods

Supports 1
detection
method

Not Applicable

Refers to the vulnerability
methodology supported
by the vulnerability tool.
options include:
1. Code Instrumentation
2. Symbolic Execution
3. Constraint Solving
4. Abstract Interpretation
5. Model Checking

Code
Transformation
Support

The tool supports 3
or more code
transformation
methods.

Supports up to 2
code transformation
methods

Supports 1
code transformation
methods

Not Applicable

Refers to the code
transformation technique
used by the tool;
available options include:
1. Disassembly
2. Decompilation
3. Abstract Syntax Tree
4. Control flow graph
5. Contextualization Support

Vulnerability
Detection
Support

Detects 7 or more
type
of vulnerabilities

Detects 4-6 types
of vulnerabilities

Detects 1-3 types
of vulnerabilities

Detects 0 – 1
type of vulnerability

Refers to the type
of vulnerability
that the tool will
detect. According to
the DASP top 10,
some of the vulnerabilities
include the following:
1. Reentrancy
2. Access Control
3. Arithmetic Issues
4. Unchecked Return Values
5. Denial of Service
6. Bad Randomness
7. Front Running
8. Timestamp Manipulation

Integrability
Tool can be easily
integrated with
other tools

Integrity is largely
supported,
with some caveats.

Integrability support
is limited Not Supported

Refers to the ability
of a tool to be
integrated with other tools

Robustness

Errors are properly
handled and parsing
and decompilation
run flawlessly.

While errors are
properly handled,
decompilation and
parsing
occasionally fail.

In most cases,
errors are not
properly handled,
and
decompilation
and parsing
fail.

Not Applicable

Robustness refers to
the ability
of a tool to handle
errors gracefully.

Usability
Supports CLI, GUI
and API for
user interaction.

Supports 2 Options
Supports either GUI
CLI or API Not Applicable

Usability refers to
how easy it
is to make use
of a vulnerability tool.

Ease of Setup

Proper and Complete
Installation instructions
and documentations
are provided

Simple to configure,
with only a
few details
missing from
the documentation

Installation is
challenging,
and there is
a deficiency
in the
documentation.

Ease of setup refers
to the ease
with which a
tool can be
installed and
configured by a user

Table 4. Requirement Scoring Guideline

48

4.4 Discussion

This chapter answers the Research question What are the evaluation requirements
for vulnerability detection tools on the Ethereum blockchain? We conclude that to
efficiently evaluate the utility of a tool, the features of the tool needs to be examined
individually as functional and non functional requirements based on the vulnerability
detection use-case for a particular job. The functional features that make up the overall
utility are: Method of analysis, level of abstraction, bulk analysis support, detection

methodology, code transformation support, and vulnerability detection support. The non-
functional requirements refer to attributes of the tool that cannot be out-rightly observed
during its execution, they include: integrability, robustness, usability, ease of set up and
flexibility of the tool.

A scoring guideline that can be applied to these requirements where presented in Table
4. The scoring guideline serves as a reference document to assign and weigh the distinct
functional and non-functional features of a vulnerability detection tool, each feature is
assign a score on the scale of {3|2|1|0}. Where 3 means a vulnerability detection tool has
an excellent support for a requirement, 2 means good support, 1 means minimal support
and 0 means a requirement is not applicable for the specific vulnerability detection tool.

Nevertheless, the requirements presented and scoring guide provided are just guidelines to
follow, a user may use a different set of requirements and assign various weights to each
requirement based on their vulnerability detection use-case.

4.5 Conclusion

Chapter 4 presented a requirement specification for smart contract vulnerability detection
tools based on previous research by Monika et al [48], Moona et al [50], and the author’s
experience. Additionally, Figure 6 was presented to further explain how the functional and
non functional requirements of a tool makes up its utility. A utility tree was developed
producing two branches from the tree root: Functional and Non-Functional requirements.

The Functional branch of the tree includes: Method of analysis, level of abstraction, bulk

analysis support, detection methodology, code transformation support, and vulnerability

detection support. The non-functional branch refer to attributes of the tool that cannot be
out-rightly observed during its execution, they include: integrability, robustness, usability,

ease of set up and flexibility of the tool.

49

Furthermore, a novel evaluation method to determine the utility of a smart contract vulner-
ability detection tools using the utility equation was presented in Section 4.3, the utility
equation 4.1 is used to calculate the overall utility score by using the scores and individual
weights assigned to each feature. Finally, we presented and provided usage instructions for
the evaluation framework, and also developed Figure 6 which divides the utility evaluation
process into 4 phases namely:

1. Phase 1: Gathering of Tool Features.
2. Phase 2: Assigning weight to features based on vulnerability detection needs.
3. Phase 3: Score assignment using the scoring guideline in Table 4.
4. Phase 4: Utility Computation using Equation 4.1.

Future work includes extending the requirement specifications highlighted in Section 4.2
to cover for more tool features that may be available.

50

5. Features of Existing Open-Source Vulnerabil-
ity Detection Tools

The following chapter presents an overview of the existing smart contract vulnerability
detection tools on the Ethereum blockchain, we present some of the major features of
these tools, we also explore their capabilities, furthermore we compare these tools using
categories such as the method of analysis, detection methodology, level of abstraction,
usability, code transformation method and vulnerability type detected.

5.1 Introduction

The objective of this chapter is to answer the final research question RQ3 - What are the
features of the vulnerability detection tools on the Ethereum blockchain?

In Section 5.2, we will establish a set of criterion for tools to be included in this research,
Section 5.3 will provide an overview of the existing vulnerability detection tools on the
Ethereum blockchain. In Section 5.4 we will compare each tools based on six distinct
categories.

5.2 Smart Contract Vulnerability Detection Tools on the Ethereum
Blockchain

Smart contract vulnerability detection tools are used to identify potential vulnerabilities in
smart contracts developed on the Ethereum blockchain. These tools can be used at various
stages of the software development cycle to identify vulnerabilities in smart contracts,
including before, during, and after contract deployment. Smart contract vulnerability
detection tools analyse smart contracts using a variety of techniques, including static code
analysis, symbolic execution, dynamic analysis, and formal verification. Security analysis
of smart contracts using these tools typically entails analysing source code, bytecode, and
transaction traces, as well as the generation of a report containing the analysis results. The
methodology used by each tool varies, as does the vulnerability detected by each tool.
According to the research done by Rameder et al [51] there are over 140 smart contract
vulnerability detection tools available, out of which 83 are open source tools.

51

5.2.1 Tool Selection Criteria

To gain a better understanding of the state of the art in terms of smart contract vulnerability
detection tools, we first review the previous research done by Rameder et al [51] In the
research done by Rameder et al [51], it was discovered that there are 140 different smart
contract vulnerability detection tools available, To streamline this research, the following
criteria for selecting the tools to be reviewed have been established:

■ Selection Criterion 1: The tool is published or updated within the year 2021 -
Present.

■ Selection Criterion 2: The tool accepts either Solidity Code or Bytecode.
■ Selection Criterion 3: The tool is able to detect security vulnerabilities.
■ Selection Criterion 4: The tool is able to perform security analysis with only a single

input of either a soldity sourcecode or bytecode.

After applying Selection Criterion 1 (SC1), we are left with sixteen tools that have been
recently updated or published between 2021 and the present. Selection Criterion 2-4 are
then used to refine the list further. Following the application of Selection Criteria 1-4, we
identified five tools that satisfy each criterion; these tools are Conkas, Manticore, teEther,
Mythril, and Slither. Table 5 provides an overview of the tools that meet each selection
criteria and the final list of selected tools.

Selection Criteria Tool Reviewed

Published or updated
from 2021 - Present (IC1)

Conkas, Echidna, ETHBMC, Ethersplay,
ETHIR,Gigahorse, GNNSCVulDetector,
Kevm, Manticore, Smartbugs, Solidfi,
SolidityCheck, teEther, Vertigo, Mythril,
Slither

Solidity Code
or Bytecode Input (IC2)

Conkas, Echidna, ETHBMC, Ethersplay,
ETHIR,Gigahorse, GNNSCVulDetector,
Kevm, Manticore, Smartbugs, Solidfi,
SolidityCheck, teEther, Vertigo, Mythril,
Slither

Able to detect
security vulnerabilities (IC3)

Conkas, ETHBMC, GNNSCVulDetector,
Manticore, SolidityCheck, teEther,
Mythril, Slither

Requires only Sourcecode or
Bytecode for analysis (IC4)

Conkas, Manticore, teEther,
Mythril, Slither

Selected Tools
Conkas,
Manticore, teEther,
Mythril, Slither

Table 5. Tool Selection Criteria

52

5.3 Tool Overview

The following section provides an overview of the five tools selected for this research, the
five tools selected for this research are Conkas, Manticore, teEther, Mythril and Slither.

5.3.1 Conkas

Conkas is a static analysis smart contract that detects vulnerabilities by utilising the sym-
bolic execution model. Conkas constructs a Control Flow Graph (CFG) using the Ryan
Stortz-developed Rattle engine, which is then transformed to an Intermediate Representa-
tion (IR) and passed down to the symbolic execution engine, which then generates traces,
which are passed down to the Conkas detector modules.

Conkas currently supports five vulnerability categories: Time Manipulation, Reentrancy,
Arithmetic, Front-Running, and Unchecked Low Level Calls. Conkas can scan vulnerabili-
ties in both EVM bytecode and Solidity code. It is critical to understand that, while Conkas
supports Solidity source code, analysis is performed at the bytecode level. Conkas includes
a Command Line Interface (CLI), additionally, it is possible to specify the vulnerability
category to check for. Users can specify the depth and intensity of a scan.

Conkas’s primary known limitation is its inability to detect smart contract dependency files,
which means that it may be unable to effectively detect vulnerabilities in smart contract
dependencies and library files, unless specifically specified by the User during the analysis
procedure.

Conkas was created by researchers at Portugal’s Instituto Superior T’ecnico and is available
as an open source tool via GitHub [52].

Features

■ Solidity Code and Bytecode input support.
■ Command Line Interface Support.
■ Support for custom vulnerability scanning where you can specify the type of vulner-

ability to search for.
■ Support for custom modules.
■ Support for EVM instructions.
■ Unit test support.

53

5.3.2 Manticore

Manticore is a dynamic symbolic execution engine developed by Trail of Bits that can
be used to analyse smart contracts for vulnerabilities, Manticore utilises the symbolic
execution engine to generate traces of all possible execution paths in a smart contract; these
traces are then passed to the Manticore core engine modules responsible for identifying
vulnerabilities.

Manticore employs the SMT solver Z3 to discover unique computational paths, then
identifies the input that will initiate that path, and finally records the executional traces.
Manticore is able to identify vulnerabilities such as reentrancy, arithmetic vulnerabilities,
and selfdestruct operations by analysing the recorded executional traces.

Manticore supports contracts written in Solidity and Vyper and also provides a CLI and
Python API. Using the API it is also possible to perform custom analysis. Manticore is
developed by Trail of Bits and is available as an open source project on Github.

Features

■ Supports Solidity and Vyper programmed smart contracts.
■ Support for analysis using symbolic inputs.
■ Automatic test input generation.
■ Supports Error identification and handling in Solidity contracts.
■ Provides a Python API for easy integration with other tools.

5.3.3 TeEther

TeEther is a static symbolic executioner tool for automatically generating exploits for
vulnerable smart contracts. The teEther Control Flow Graph (CFG) module decompiles
the EVM bytecode and then constructs a CFG interpretation. The CFG is then scanned for
state changes and critical instructions and passed to the exploit generation module, which
generates exploits for the vulnerable paths. [53].

TeEther uses the SMT-solver Z3 to generate multi-transactional exploits, teEther deploys
the specified smart contract to a private blockchain in order to test the generated exploit
and also to prevent false positives [48]. Vulnerability analysis is performed on the bytecode
level, although teEther accepts the Solidity code and then transforms that into bytecode
before passing it down to the SMT-solver. TeEther focuses on transactional flaws that can
result in a payout to arbitrary addresses.

54

TeEther neither supports a CLI or GUI, Users have to manually compile the Python code
and input the contract to be scanned manually inorder to perform security analysis.

TeEther was developed by researchers from CISPA, Saarland University and it available
online as an opensource tool on GitHub [53].

Features

■ Exploit Generation Support.
■ Solidty to EVM bytecode transformation support.
■ EVM bytecode dissembly support.
■ CFG plotting support.

5.3.4 Mythril

Mythril is an open source smart contract analysis tool developed by the company Con-

senSys. Mythril analyses smart contracts using its symbolic execution engine, LASER-
Ethereum. The Control Flow Graph is used by LASER to organise the programme states,
each node in the graph represents a block of code and each node has a set of path formulas
[54]. To compute exploits for each identified vulnerability, the SMT solver Z3 is used.

Mythril protects against a variety of vulnerabilities, including reentrancy, integer over-
flow/underflow, arithmetic, and unchecked low level [55]. Mythril accepts an Ethereum
smart contract address or solidity code as input and converts it to bytecode. Mythril
employs the SMT solver Z3 to identify bytecode vulnerabilities.

At the moment, Mythril only includes a Command Line Interface (CLI) and a Dissembler
for bytecode and on-chain smart contracts. Mythril also supports blockchain exploration,
which enables users to scan a smart contract automatically by providing Mythril with only
the smart contract’s address.

Mythril was developed by ConsenSys is available for use to smart contract developers on
GitHub.

Features

■ Concolic testing support.
■ Supports bytecode, solidity code and smart contract address input.
■ Disassembler for bytecode strings.
■ Blockchain exploration support.

55

■ Supports remote smart contract scanning.

5.3.5 Slither

Slither is a static analysis tool for detecting smart contracts vulnerabilities. It accomplishes
this by "converting solidity smart" contract code to an "intermediate representation (IR)
called SlithIR" [56]. Slither takes the smart contract’s Solidity Abstract Syntax Tree (AST)
from the solidity compiler and converts it to SlithIR, Slither’s internal representation
language. SlithIR identifies smartcontract vulnerabilities through the use of static single
assessment (SSA).

Slither is capable of detecting a broad range of security vulnerabilities, including reentrancy,
tx-origin, timestamp, and unchecked low level calls. Slither analyses vulnerabilities in
solidity source code. It currently supports 76 vulnerability detectors and enables users to
specify the type of vulnerability they want to monitor.

Slither currently provides a Python API and a command-line interface. The API enables
the creation of custom analyses. Slither also includes code linting capabilities and is
capable of determining the location of an error in a smart contract. Continuous integration
and Truffle builds are also supported by Slither.

Slither was developed by Trail of Bits in conjunction with researchers from the Northern

Arizona University and its available as an open source tool on GitHub.

Features

■ Supports CI Integration.
■ Custom analysis support.
■ Python API support.
■ Code linting support.
■ Automated code optimization detection.

5.4 Tool Comparison

In this section we compare the tools in Section 5.3. The tools are compared based on the
following categories:

■ i. Method of analysis.
■ ii. Detection Methodology.

56

■ iii. Level of Abstraction.
■ iv. Usability type.
■ v. Code Transformation method.
■ vi. Vulnerability type detected.

Table 6 shows the comparison between the selected tools in Section 5.3 using the categories
mentioned above.

Tools Method Detection Level Usability Transformation Method

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

Sy
m

bo
lic

A
na

ly
si

s

C
on

st
ra

in
tS

ol
vi

ng

D
at

a
de

pe
nd

en
cy

an
al

ys
is

B
yt

ec
od

e

So
lid

ity
C

od
e

G
U

I

C
L

I

A
PI

D
is

as
se

m
bl

y

D
ec

om
pi

la
tio

n

A
bs

tr
ac

tS
yn

ta
x

Tr
ee

C
on

tr
ol

Fl
ow

G
ra

ph

C
on

te
xt

ua
liz

at
io

n
Su

pp
or

t

Conkas ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Manticore ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
teEther ✓ ✓ ✓ ✓ ✓ ✓
Mythril ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Slither ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6. Comparison of Vulnerability Detection Tools

i. Method of Analysis: This refers to the type of analysis that the tool performs; Conkas,
Mythril, and Slither are all static analysis tools, whereas Manticore is a dynamic analysis
tool. TeEther provides support for both static and dynamic analysis of smart contracts [48].

ii. Detection Methodology: This refers to how the tool detects vulnerabilities, Conkas,
Mythril, Manticore all employ symbolic execution methodology and constraint solving to
detect vulnerabilities, teEther employs only constraint solving for vulnerability discovery
[48], Slither uses data dependency analysis using its static single assessment transformer
engine.

iii. Level of Abstraction: This is the level of abstraction at which vulnerability analysis
begins. Manticore, Mythril, and teEther all support bytecode abstractions [48], whereas
Conkas supports both bytecode and solidity code abstractions [52]. Slither currently only
supports the Solidity source code.

iv. Usability type: This refers to the level of usability supported by the tool, Manticore and
Slither both support both a graphical user interface (GUI) and an API, whereas Conkas and

57

Mythril only support a command line interface. teEther does not include a command-line
interface, graphical user interface, or API, instead, teEther requires users to manually
modify the Python script that compiles each smart contract to scan [53].

v. Code Transformation Method: This is the method by which the tool transforms the
code during the analysis process. Conkas supports code transformation methods such as
disassembly, abstract syntax tree (AST), and control flow graph (CFG) [52]. Manticore
is limited to disassembly and code contextualization, teEther is limited to disassembly
and CFG, Mythril is limited to disassembly, decompilation, and CFG [48], and Slither is
limited to AST, CFG, and code contextualization.

vi. Vulnerability Type Detected: This refers to the type of vulnerabilities detected by the
tool. Table 7 shows the vulnerabilities detected by each tool based on the DASP top 10
vulnerability.

Tool A
cc

es
sC

on
tr

ol

A
ri

th
m

et
ic

D
en

ia
lo

fS
er

vi
ce

Fr
on

tR
un

ni
ng

R
ee

nt
ra

nc
y

Ti
m

e
M

an
ip

ul
at

io
n

U
nc

he
ck

ed
L

ow
L

ev
el

C
al

ls

Conkas ✓ ✓ ✓ ✓ ✓
Manticore ✓ ✓ ✓ ✓ ✓
teEther ✓ ✓
Mythril ✓ ✓ ✓ ✓ ✓
Slither ✓ ✓ ✓ ✓ ✓

Table 7. Vulnerability Detected By Tool

Conkas can identify five distinct types of vulnerabilities (Arithmetic, Front Running,
Reentrancy, Time Manipulation, and Unchecked low level calls) [52]. Manticore is capable
of identifying five distinct types of vulnerabilities (Access Control, Arithmetic, Reentrancy,
Time Manipulation and Unchecked low level calls) [48]. TeEther is capable of detecting
three types of vulnerabilities (Access Control, Arithmetic, and Reentrancy) [53], as it
is primarily focused on exploit generation for transactional vulnerabilities. Mythril is
capable of identifying five distinct types of vulnerabilities (Access Control, Arithmetic,
Front Running, Reentrancy, Unchecked Low Level Calls) [55]. Additionally, Slither is
capable of detecting five distinct types of vulnerabilities (Access Control, Denial of Service,
Reentrancy, Time Manipulation and Unchecked Low Level Calls) [38].

58

5.5 Discussion

This chapter answer the Research question RQ-3 What are the features of Ethereum
smart contract detection tools? We can conclude that all the tools have a strong focus on
the types of vulnerabilities that are listed in the DASP top 10 vulnerability taxonomy. It is
also clear that the tools have a fair amount of overlap in terms of the type of vulnerabilities
detected by each tool. It is also clear from the comparison that the tools are implemented
using different methodologies, and each tool focuses on a slightly different area.

In terms of usability, there are many Ethereum smart contract detection tools that sup-
port a graphical user interface (GUI), command line interface (CLI), and/or application
programming interface (API)(Conkas, Manticore, Mythril, Slither). However, there are
also Ethereum smart contract detection tools that neither support a command line inter-
face, graphical user interface, or API (teEther). In terms of the level of abstraction, most
Ethereum smart contract detection tools support bytecode abstractions (Conkas, Manticore,
teEther, Mythril). However, some Ethereum smart contract detection tools support only
solidity code abstractions (Slither). While some tools support both Bytecode and Solidity
code abstractions (Conkas). In terms of the code transformation method, the popular
options used across multiple tools are Disassembly and CFG (Conkas, teEther, Mythril
and Manticore). Only one tool Mythril supports code decompilation. Access control,
arthimetic, reentrancy, time manipulation, and unchecked low level calls are the most
frequently detected vulnerability types by the tools compared. Conkas, Manticre, teEther,
and Mythril all discover a similar number of vulnerability types, however, teEther is only
capable of detecting two types of vulnerabilities: Access Control and Arithmetic issues.
The least discovered vulnerability type is Denial of Service, only Slither is able to discover
DoS vulnerabilities across the multiple tools compared.

There are currently no tools that support all the DASP top 10 vulnerabilities, That said,
it is clear that the field is evolving. We can conclude that the security of Ethereum smart
contract is in the early stage of development, and many tools are not mature enough to
provide a comprehensive security analysis

5.6 Conclusion

Chapter 5 presented an overview of smart contract vulnerability detection tools on the
Ethereum blockchain, We began our research from the paper released by Rameder et al
[51], in which 140 Ethereum smart contract vulnerability detection tools were analysed,
to streamline the list we established four criteria for selecting the tools to be reviewed

59

in this research, each criterion was based on factors such as the year in which each tool
was published or last updated, the abstraction level for each tool, the purpose of each tool
and the input type required by each tool to perform security analysis. After applying each
criterion we were left with five tools: Conkas, Manticore, teEther, Mythril and Slither.

Next we highlighted the features of each tool and compared each tool based on six distinct
categories: Method of analysis, Detection methodology, Level of Abstraction, Usability
type, Code Transformation and Vulnerability type detected.

There are a number of limitations in our approach to reviewing smart contract analysis
tools. One such limitation is that the criteria we used to select the tools may not have been
the most effective, for instance, we only selected tools that were published or updated from
2021 - Present, this may have resulted in some tools that could have made our final cut
being excluded from the review. Another limitation is that the tools we chose to review
were all open-source tools, it is possible that some proprietary tools could have been more
effective at detecting vulnerabilities in smart contracts, however, the amount of information
available on proprietary tools is very limited, which made it difficult to compare proprietary
tools in the same way we compared open-source tools.

For future work additional tools could be reviewed, and an increased emphasis could be
placed on proprietary tools.

60

6. Evaluation

In the following chapter an evaluation of the proposed framework is performed using the
design science research descriptive evaluation method. Section 6.2 provides an overview of
the framework’s real-world implementation in the form of a proof of concept (PoC), Finally,
in Section 6.3, an evaluation of the PoC prototype is conducted using two constructed
scenarios.

6.1 Introduction

According to Hevner et al. [20], the evaluation process for design science research
establishes a set of guidelines for presenting and justifying the design artifact. The
descriptive evaluation method is the preferred method of evaluation for this study, it
involves "constructing detailed scenarios around the artifact to determine its utility" [20].
Section 6.2 contains a proof of concept (PoC) implementation of the proposed framework
for the purpose of evaluating it. The proof-of-concept implementation will be used to
assess the framework’s ability to meet the requirement of determining the utility of a
vulnerability detection tool. Section 6.3 will evaluate the PoC implementation using two
constructed scenarios. Both scenarios will be used to assess the framework’s ability to
accurately determine the utility of various vulnerability detection tools. The tools chosen
for this research are Conkas, Manticore, teEther, Mythril, and Slither.

6.2 Proof of Concept Implementation

The purpose of this Proof of Concept (PoC) is to develop a simple web application that
smart contract developers, academic researchers, bug bounty hunters, and anyone else
interested in evaluating the utility of smart contract vulnerability detection tools can use to
evaluate their utility. The proof-of-concept prototype is implemented in two stages. To
begin, the utility calculation is implemented in Javascript, a snippet of the code is included
in Appendix 2. Second, a frontend is constructed using Retool, a low-code platform for
the development of internal tools [57]. Retool was chosen as the platform for the PoC due
to its simplicity of use and ability to quickly create forms and execute scripts.

61

Three (3) tabs are developed with retool, namely:

1. Weights Tab: This tab contains a weight assignment form, which contains a list
of functional and non-functional tool specification requirements, as well as sliders
ranging from 1 to 10. Using the sliders, users can adjust the weight assigned to
each requirement based on the vulnerability detection use case. Hovering over each
specification requirement also displays a definition of the requirements and outlines
some of the options, for example hovering over the level of abstraction requirement,
displays the definition and the available options such as bytecode and solidity source

code. Figure 7 illustrates the Weights tab.

Figure 7. Weights Tab.

When the user clicks the Submit button, the assigned weight is saved to the user’s
browser’s local storage and the user is redirected to the Evaluation Tab.

2. Evaluate Tab: The evaluation tab contains check boxes containing options for each
specification requirement, the user selects each option that applies to the tool being
evaluated. Figure 9 illustrates the evaluation tab.
When the user clicks on the Submit button, the overall utility of the tool is calculated

62

Figure 8. Evaluate Tab.

using the evaluation framework described in Chapter 4, the result is then displayed
as a modal, Figure 5 displays an example result.

Figure 9. Score Card.

63

3. Scoring Guideline: The Scoring guideline tab contains a scoring reference for each
requirement specification, the PoC makes use of the scoring guideline displayed in
Table 4.

The PoC is currently available at https://cutt.ly/QGhliVa

6.3 Prototype Evaluation

For evaluation of the prototype, the prototype will be used to evaluate five vulnerability
detection tools based on the criteria outlined in Section 5.2.1 of this thesis. The tools
selected are Conkas, Manticore, teEther, Mythril and Slither.

First the requirement specification options applicable or supported by each tool are outlined
in Table 8.

Tools
Objective Criteria Subject Criteria

M
et

ho
d

De
te

ct
io

n

Le
ve

l

Us
ab

ili
ty

Tr
an

sfo
rm

at
io

n
M

et
ho

d

Vu
ln

er
ab

ili
ty

De
te

ct
ed

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

Sy
m

bo
lic

A
na

ly
si

s

C
on

st
ra

in
tS

ol
vi

ng

D
at

a
D

ep
en

de
nc

y
A

na
ly

si
s

B
yt

ec
od

e

So
lid

ity
C

od
e

G
U

I

C
L

I

A
PI

D
is

as
se

m
bl

y

D
ec

om
pi

la
tio

n

A
bs

tr
ac

tS
yn

ta
x

Tr
ee

C
on

tr
ol

Fl
ow

G
ra

ph

C
on

te
xt

ua
liz

at
io

n
Su

pp
or

t

A
cc

es
sC

on
tr

ol

A
ri

th
m

et
ic

D
en

ia
lo

fS
er

vi
ce

Fr
on

tR
un

ni
ng

R
ee

nt
ra

nc
y

Ti
m

e
M

an
ip

ul
at

io
n

U
nc

he
ck

ed
L

ow
L

ev
el

C
al

ls

B
ul

k
A

na
ly

si
sS

up
po

rt

In
te

gr
ab

ili
ty

R
ob

us
tn

es
s

E
as

e
of

Se
tu

p

Con
kas

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0 2 2 3

M
an

tic
or

e

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3 3 3 3

teE
ther

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3 2 2 2

M
yth

ril

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0 2 3 3

Slith
er

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0 3 3 3

Table 8. Requirement Specification for Selected Tools

The specifications are split into two groups:

1. Objective Criteria: The applicable options are deduced from past research work [48],

64

https://cutt.ly/QGhliVa

[51]–[53], [55], [56] done on the tools by academic researchers, and documentation
provided by the tool creators.

2. Subjective Criteria: Each requirement in this category is assigned a score based on
the evaluation framework proposed in Chapter 4. The scores range from 0 to 3, with
0 indicating that the feature is not applicable to the tool in question, 1 indicating
that the tool provides minimal support for a requirement, 2 indicating that the tool
provides good support, and 3 indicating that the tool provides excellent support for a
requirement. It is critical to emphasise that the subjective criteria group scores are
based on personal experience working with the tools and also on a review of the tool
creator’s documentation.

Secondly, for each of the constructed scenarios in the subsequent sections, weights are
assigned to each of the specification requirement based on the needs of the vulnerability
detection job and inputted into the Weights tab of the prototype. For this PoC prototype
we have have set a range of 1-10 for the weights, where 1 means feature is less important
to the vulnerability detection job and 10 means the feature is extremely important to the
job. The features that apply to the tool being evaluated are entered into the evaluate tab
in accordance with Table 8. Finally, the submit button is clicked, and the result output
containing the utility score for each tool is recorded.

6.3.1 Scenario 1

Job Description: A newly launched decentralised cryptocurrency exchange is looking

for a smart contract vulnerability detection tool that can be easily integrated into their

continuous integration/continuous delivery process to identify vulnerabilities during devel-

opment. Additionally, the selected tool should be capable of simultaneously scanning a

large number of smart contracts.

As implied by the job description, we can presume the most critical features relevant to the
job at hand are integrability, vulnerability detection, and ease of use. Table 9 illustrates
how the requirement specification is weighted according to the job description, and also
shows the respective scores assigned based on the scoring guideline in Table 4.

65

Requirements Vulnerability Detection Tool

C
on

ka
s

M
an

tic
or

e

te
E

th
er

M
yt

hr
il

Sl
ith

er

W
ei

gh
t

Method of Analysis 2 2 3 2 2 8
Level of Abstraction 3 2 2 2 2 6
Bulk Analysis Support 0 3 3 0 0 10
Detection Methodology 2 2 1 2 1 5
Code Transformation Support 3 2 2 3 2 5
Vulnerability Detection Support 2 2 1 2 2 10
Integrability 2 3 2 2 3 10
Robustness 2 3 2 3 3 7
Usability 1 2 0 1 2 8
Ease of Setup 3 3 2 3 3 5
Utility Score 136 188 135 137 145

Table 9. Scenario 1 Utility Scores

Manticore scores demonstrate a strong focus on all of the requirements, and as a result, we
can conclude that Manticore provides more utility for the job described. Figure 10 depicts
the prototype’s utility score output for each tool.

Figure 10. Prototype Utility Score Card

66

6.3.2 Scenario 2

Job Description: A web3 bug bounty platform that is developing a smart contract security

training course for solidity developers is looking for a smart contract vulnerability detec-

tion tool to use as a benchmark for testing smart contracts. It is expected that developers

will be required to install and use the selected tool to test a number of vulnerable smart

contracts during the course.

From the Job description, we can presume that ease of use and vulnerability detection
are the most important features relevant to the job at hand, Table 10 shows how various
weights are assigned to the requirement specification based on the job description.

Requirements Vulnerability Detection Tool
C

on
ka

s

M
an

tic
or

e

te
E

th
er

M
yt

hr
il

Sl
ith

er

W
ei

gh
t

Method of Analysis 2 2 3 2 2 5
Level of Abstraction 3 2 2 2 2 5
Bulk Analysis Support 0 3 3 0 0 6
Detection Methodology 2 2 1 2 1 6
Code Transformation Support 3 2 2 3 2 7
Vulnerability Detection Support 2 2 1 2 2 10
Integrability 2 3 2 2 3 8
Robustness 2 3 2 3 3 6
Usability 1 2 0 1 2 8
Ease of Setup 3 3 2 3 3 10
Utility Score 144 172 121 145 148

Table 10. Scenario 2 Utility Scores

For scenario 2, Manticore once again demonstrates a strong focus on requirements, owing
to its ease of setup, integrability, and vulnerability detection capabilities. Additionally,
Manticore’s support for bulk analysis of smart contracts puts it ahead of other tools with
limited bulk analysis support. Based on the evaluation results, we can conclude that
Manticore is more useful for the job at hand. Figure 11 depicts the utility score output
from the prototype.

67

Figure 11. Prototype Utility Score Card (2)

6.4 Related Work

As described in Chapter 1, a number of smart contract vulnerability detection tools are
available for use. Liu and Liu [58] explore the various smart contract verification methods
and highlight a number of smart contract vulnerability detection tools, but do not directly
compare the tools. In addition to examining the security and performance of smart
contracts, Rouhani and Deters [59] compare the performance of nine different vulnerability
detection tools. However, the comparison does not take the features of the tools into
account, relying instead on performance analysis. A systematic mapping and taxonomy
of smart contract vulnerabilities is proposed by Zeli Wang et al [60]. Details of some
vulnerability detection tools are provided but not compared. In the research conducted
by Kim and Ryu [61], 27 vulnerability detection tools are evaluated in terms of their
ability to detect known vulnerabilities from a specified dataset. However, the evaluation is
solely based on vulnerability detection and does not account for usability or vulnerability
detection use case. In a separate study by Vacca et al. [62], the characteristics of 26 tools
are described, but they are not compared.

Luu et al [24] describes various smart contract vulnerabilities on the Ethereum blockchain,
including code snippets and examples, but makes no use of any taxonomy or classification.

68

Atzei et al [32] created one of the first Ethereum vulnerability taxonomies, which also
categorizes vulnerabilities into three classes. However, the proposed taxonomy is somewhat
out of date, as issues such as the Stack size limit have since been resolved on the EVM.

As stated previously, numerous studies have been conducted on smart contract security
tools and vulnerability classification taxonomies. However, to the author’s knowledge, the
work proposed in this thesis is the first time a utility evaluation framework which can be
applied to the available tools to determine their utility has been developed.

6.5 Discussion

In this section, we evaluated the proposed framework using the descriptive evaluation
method used in design science research. One method for evaluating the artefact of the thesis
using the descriptive evaluation method is to create scenarios based on the artefact. To
properly evaluate the artefact, we created a prototype in JavaScript and a web application
using Retool, we chose retool for its simplicity and ease of use. On the UI, we included
three tabs: Weights tab for assigning weight to each requirement, Evaluate tab for selecting
features applicable to each tool, and Scoring guideline tab for referencing a scoring
guideline to help users understand the score assigned to each option. Additionally, two
scenarios are constructed around the artefact, scenario 1 is a vulnerability detection job
that requires a tool that prioritises integrability, vulnerability detection, and ease of use,
and scenario 2 is a vulnerability detection job that prioritises ease of use and vulnerability
detection. While we have assigned weights to each requirement, it is critical to remember
that the weights are subjective, and a user may choose to assign different weights based on
the implied importance of each requirement specification to the job at hand. Finally, the
tool’s weights and options are entered into the prototype for utility evaluation.

6.6 Conclusion

The purpose of this chapter was to evaluate the framework and prototype using the de-

scriptive evaluation method in design science research. To this end, we constructed two
scenarios in which the framework would be used to evaluate the utility of a smart contract
vulnerability detection tool. We created a prototype using retool and evaluated the utility
of five smart contract vulnerability detection tools. The evaluation results are displayed in
Table 9 and Table 10 Based on the evaluation of the prototype, with weighting assigned
to each functional and non-functional requirement specification, it can be concluded that
the framework provides a fair and accurate method for evaluating the utility of a smart
contract vulnerability detection tool. However, it is important to note that the framework is

69

subject to the same limitations as any evaluation framework, the weights assigned to each
requirement specification is subjective, and it is the responsibility of the user to assign
weights that are appropriate to their situation.

70

7. Conclusion and Future Work

The following chapter concludes the research done in this thesis and answers the research
questions in Chapter 1, Section 7.1 provides a general conclusion of the thesis, Section 7.2
presents answers to the research questions, furthermore Section 7.3 provides limitations of
the thesis and finally, future work is discussed in Section 7.4.

7.1 Conclusion

This thesis proposed a novel evaluation framework for determining the utility and suitability
of a vulnerability detection tool. The framework is intended to determine a tool’s utility by
examining its features as functional and non-functional requirements. Additionally, the
framework was designed to be adaptable, as it enables users to customise the evaluation
options.

To aid in the framework’s development, we examined the various available smart contract
vulnerability taxonomies and chose the DASP Top 10 taxonomy due to its high-level
overview of Ethereum vulnerabilities and also its similarity to the OWASP Top 10. We
analysed the DASP Top 10 vulnerabilities by providing real-world attack scenarios and
also discussed remediation techniques.

Following that, we presented a process for evaluating the utility of smart contract vulnera-
bility detection tools by analysing the requirement specification for an ideal smart contract
vulnerability detection tool. The requirement specifications are divided into functional and
non-functional requirements and then discussed in detail. A utility evaluation equation is
then presented and a scoring guideline for each requirement is provided.

After establishing the evaluation framework, we presented an overview of existing smart
contract vulnerability detection tools on the Ethereum blockchain, discussed their capabili-
ties, and then compared the tools based on categories such as analysis method, detection
methodology, level of abstraction, usability, code transformation method, and vulnerability
type detected. Then, using JavaScript and Retool, we created a proof-of-concept prototype
and evaluated the chosen tools using the framework’s prototype.

71

7.2 Answering The Research Questions

The main research question for this thesis is: How can Ethereum Smart Contract
Vulnerability Detection tools be evaluated? As stated in Chapter 1, we divided the main
question into three sub-questions, the following subsections provides answers to them.

7.2.1 RQ1: What are the common vulnerabilities affecting smart
contracts on the Ethereum blockchain?

Based on the DASP Top 10 taxonomy we discovered that Reentrancy, Access Control,
Arithmetic, Unchecked Return Values for Low Level, Denial of Service (DoS), Bad
Randomness, Front Running, Time Manipulation, Short Address, and Unknown
Unknown vulnerabilities are the most prevalent vulnerabilities on the Ethereum blockchain.
We discovered that reentrancy is the most frequently used attack vector against smart
contracts, and we demonstrated real-world attack scenarios for each vulnerability, including
the DAO hack, the proof of weak hands exploit, and the cryptopuppies hack.

Additionally, we provided solidity code examples of vulnerable smart contracts and dis-
cussed possible mitigation strategies. Additionally, we learned the critical nature of early
vulnerability detection and secure coding practises in avoiding smart contract exploits.

7.2.2 RQ2: What are the evaluation requirements for vulnerability
detection tools on the Ethereum blockchain?

We concluded that to efficiently evaluate the utility of a tool, the features of the tool needs
to be examined individually as functional and non-functional requirements based on the
vulnerability detection use-case for a particular job. The The functional features that make
up the overall utility are: Method of analysis, level of abstraction, bulk analysis support,

detection methodology, code transformation support, and vulnerability detection support.
The non-functional requirements refer to attributes of the tool that cannot be out-rightly
observed during its execution, they include: integrability, robustness, usability, and ease of

set up of the tool.

Next, we proposed the utility equation shown in Equation 4.1 and also provided a scoring
guideline shown in Table 4 that assigns a score to each requirement, on the scale of
{3|2|1|0}. Where 3 means a vulnerability detection tool has an excellent support for a
requirement, 2 means good support, 1 means minimal support and 0 means a requirement
is not applicable for the specific vulnerability detection tool.

72

7.2.3 RQ3: What are the features of the existing open-source vulnera-
bility detection tools on the Ethereum blockchain?

We discovered over 140 smart contract vulnerability detection tools available on the
Ethereum blockchain. We established a selection criteria for tools to analyse in this
research, which included tools published or updated from 2021 to the present, tools that
accept solidity code or bytecode as input, tools that focus exclusively on vulnerability
detection, and finally, tools that require only solidity source code or bytecode for analysis,
the tools that met our criteria were Conkas, Manticore, teEther, Mythril and Slither.

We conclude that that all the tools have a strong focus on the types of vulnerabilities that
are listed in the DASP top 10 vulnerability taxonomy. we showed that the tools have a fair
amount of overlap in terms of the type of vulnerabilities detected by each tool. In terms
of usability, we discovered that there are many Ethereum smart contract detection tools
that support a graphical user interface (GUI), command line interface (CLI), In terms of
the level of abstraction, we discovered that most Ethereum smart contract detection tools
support bytecode abstractions.

We also learnt that there are currently no tools that support all the DASP top 10 vulnerabil-
ities, we can conclude that the security of Ethereum smart contract is in the early stage of
development, and many tools are not mature enough to provide a comprehensive security
analysis.

7.3 Limitations

The primary limitation of this thesis is that it is limited to the Ethereum blockchain, there
are several other blockchain available, including EOS, Cosmos, and Avalanche. While
the work in this thesis may still be applicable to EVM-based chains, the thesis’s sole
focus was on the Ethereum blockchain, which means that some of the vulnerabilities
discussed in this thesis may not be applicable to other blockchains, secondly, the scope
of this thesis is limited to smart contracts written in Solidity language, although there are
several other programming languages, including Vyper, YUL+, and FE used in developing
smart contracts on the Ethereum blockchain.

Although the DASP Top 10 vulnerability was chosen for this thesis, there are several other
vulnerability taxonomies available, which limits our approach to a subset of all possible
vulnerabilities. Additionally, our framework in its current form examines only a subset of
tool features, and the framework’s weight assignment process is subjective, which means

73

that the result may vary across different users.

Concerning the tools evaluated in this study, the selection criteria could be expanded to
allow for the evaluation of additional tools using the framework, additionally, the scenarios
constructed to evaluate the prototype are limited to two examples, which may not cover all
use case scenarios.

7.4 Future Work

There are numerous avenues for future research in this area, some of which building on
the work presented in this thesis. One such future research is expanding the scope of the
framework to allow for the evaluation of additional blockchain smart contract detection
tools, this will allow for a comprehensive analysis of all available smart contract detection
tools.

Another area of future work is the development of an improved method of weight as-
signment based on the requirements, which will reduce subjectivity when conducting the
evaluation process. Additionally, the tools evaluated in this thesis used a subset of the
DASP Top 10 vulnerabilities, which means that the tools may have a higher or lower
detection rate for additional vulnerabilities. To accurately evaluate the utility of a tool, the
tool needs to be evaluated using the evaluation framework prototype using a larger set of
scenarios.

The framework presented in this thesis can be extended to include additional features, for
instance, the framework can be extended to support the evaluation of tools that are not
available on the Ethereum blockchain, also, the framework can be extended to support
additional vulnerability taxonomies. The framework only evaluates the capabilities of a
tool and does not provide an evaluation of the tool’s accuracy, but it is possible to extend
the evaluation framework to test the accuracy of the tools.

To enable the evaluation of additional smart contract vulnerability detection tools, a tool
repository needs to be created that contains all open-source tools available on the Ethereum
blockchain. Such a repository needs to be accessible through a web interface that can be
used to query tools based on the type of vulnerability detected, tool features, and other
criteria, this will enable users to easily select the most suitable tool for a specific job.

74

References

[1] Synopsys. “Blockchain.” (2022), [Online]. Available: https://www.synopsys.
com/glossary/what-is-blockchain.html.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” in Bitcoin: A Peer-

to-Peer Electronic Cash System, 2008.

[3] N. Reiff, Bitcoin vs. ethereum: What’s the difference? [Accessed: 18-03-2022].
[Online]. Available: https://www.investopedia.com/articles/
investing/031416/bitcoin-vs-ethereum-driven-different-

purposes.asp.

[4] M. D. Pierro, “What Is the Blockchain?” Computing in Science and Engineering,
vol. 19, no. 5, 2017, ISSN: 15219615. DOI: 10.1109/MCSE.2017.3421554.

[5] C. Catalini, “The Potential for Blockchain to Transform Electronic Health Records,”
Harvard Business Review, 2017.

[6] V. Buterin. “Ethereum: A next-generation smart contract and decentralized ap-
plication platform.” (2015), [Online]. Available: https://ethereum.org/
669c9e2e2027310b6b3cdce6e1c52962/Ethereum_White_Paper_-

_Buterin_2014.pdf.

[7] S. Tual. “Ethereum launches.” (2015), [Online]. Available: https://blog.
ethereum.org/2015/07/30/ethereum-launches/.

[8] C. Staff. “Why are most dapps built on ethereum?” (2021), [Online]. Available:
https : / / www . gemini . com / cryptopedia / dapps - ethereum -

decentralized-application.

[9] M. Faizan, T. Brenner, F. Foerster, C. Wittwer, and B. Koch, “Decentralized bottom-
up energy trading using ethereum as a platform,” Journal of Energy Markets, vol. 12,
no. 2, 2019, ISSN: 17563615. DOI: 10.21314/JEM.2019.193.

[10] W. Zou, D. Lo, P. S. Kochhar, et al., “Smart Contract Development: Challenges and
Opportunities,” IEEE Transactions on Software Engineering, vol. 47, no. 10, 2021,
ISSN: 19393520. DOI: 10.1109/TSE.2019.2942301.

[11] N. Szabo, “Smart Contracts : Building Blocks for Digital Markets,” EXTROPY: The

Journal of Transhumanist Thought, vol. 18, no. 2, 1996.

75

https://www.synopsys.com/glossary/what-is-blockchain.html
https://www.synopsys.com/glossary/what-is-blockchain.html
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
https://www.investopedia.com/articles/investing/031416/bitcoin-vs-ethereum-driven-different-purposes.asp
https://doi.org/10.1109/MCSE.2017.3421554
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_White_Paper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_White_Paper_-_Buterin_2014.pdf
https://ethereum.org/669c9e2e2027310b6b3cdce6e1c52962/Ethereum_White_Paper_-_Buterin_2014.pdf
https://blog.ethereum.org/2015/07/30/ethereum-launches/
https://blog.ethereum.org/2015/07/30/ethereum-launches/
https://www.gemini.com/cryptopedia/dapps-ethereum-decentralized-application
https://www.gemini.com/cryptopedia/dapps-ethereum-decentralized-application
https://doi.org/10.21314/JEM.2019.193
https://doi.org/10.1109/TSE.2019.2942301

[12] O. G. Güçlütürk, “The DAO Hack Explained: Unfortunate Take-off of Smart Con-
tracts,” Medium.com, 2018. [Online]. Available: https://medium.com/
@ogucluturk/the-dao-hack-explained-unfortunate- take-

off-of-smart-contracts-2bd8c8db3562.

[13] Y. Ni, C. Zhang, and T. Yin, A Survey of Smart Contract Vulnerability Research,
2020. DOI: 10.19363/J.cnki.cn10-1380/tn.2020.05.07.

[14] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “TXSPECTOR: Uncovering attacks in
ethereum from transactions,” in Proceedings of the 29th USENIX Security Sympo-

sium, 2020.

[15] D. Wang, B. Jiang, and W. K. Chan, “WANA: Symbolic Execution of Wasm Byte-
code for Cross-Platform Smart Contract Vulnerability Detection,” arXiv, 2020, ISSN:
23318422.

[16] M. Staderini and A. Bondavalli, “Investigating Static Analyzers Detection Capabil-
ities on Ethereum Smart Contracts,” Proceedings of the 28th Mini-Symposium of

the Department of Measurement and Information Systems, Budapest University of

Technology and Economics, 2021.

[17] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, Smart contract security: A software

lifecycle perspective, 2019. DOI: 10.1109/ACCESS.2019.2946988.

[18] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards Automated Reen-
trancy Detection for Smart Contracts Based on Sequential Models,” IEEE Access,
vol. 8, 2020, ISSN: 21693536. DOI: 10.1109/ACCESS.2020.2969429.

[19] A. López Vivar, A. L. Sandoval Orozco, and L. J. García Villalba, “A security
framework for Ethereum smart contracts,” Computer Communications, vol. 172,
2021, ISSN: 1873703X. DOI: 10.1016/j.comcom.2021.03.008.

[20] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly: Management Information Systems, vol. 28, no. 1,
2004, ISSN: 02767783. DOI: 10.2307/25148625.

[21] E. Sunday, Top 5 smart contract programming languages for blockchain? [Accessed:
18-03-2022]. [Online]. Available: https://blog.logrocket.com/smart-
contract-programming-languages/.

[22] N. Mehrotra, An introduction to solidity, the language that runs ethereum, [Accessed:
18-03-2022]. [Online]. Available: https://www.opensourceforu.com/
2019/08/an-introduction-to-solidity-the-language-that-

runs-ethereum/.

[23] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart
contracts (sok),” in POST, 2017.

76

https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://medium.com/@ogucluturk/the-dao-hack-explained-unfortunate-take-off-of-smart-contracts-2bd8c8db3562
https://doi.org/10.19363/J.cnki.cn10-1380/tn.2020.05.07
https://doi.org/10.1109/ACCESS.2019.2946988
https://doi.org/10.1109/ACCESS.2020.2969429
https://doi.org/10.1016/j.comcom.2021.03.008
https://doi.org/10.2307/25148625
https://blog.logrocket.com/smart-contract-programming-languages/
https://blog.logrocket.com/smart-contract-programming-languages/
https://www.opensourceforu.com/2019/08/an-introduction-to-solidity-the-language-that-runs-ethereum/
https://www.opensourceforu.com/2019/08/an-introduction-to-solidity-the-language-that-runs-ethereum/
https://www.opensourceforu.com/2019/08/an-introduction-to-solidity-the-language-that-runs-ethereum/

[24] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart contracts
smarter,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’16, Vienna, Austria: Association for Computing
Machinery, 2016, pp. 254–269, ISBN: 9781450341394. DOI: 10.1145/2976749.
2978309. [Online]. Available: https://doi.org/10.1145/2976749.
2978309.

[25] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnerable does not imply
exploited,” in 30th USENIX Security Symposium (USENIX Security 21), USENIX
Association, Aug. 2021, pp. 1325–1341, ISBN: 978-1-939133-24-3. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity21/
presentation/perez.

[26] Coinbase, What is a dex? [Accessed: 18-03-2022]. [Online]. Available: https:
//www.coinbase.com/learn/crypto-basics/what-is-a-dex.

[27] G. A. Pierro, R. Tonelli, and M. Marchesi, “An organized repository of ethereum
smart contracts’ source codes and metrics,” Future Internet, vol. 12, p. 197, Nov.
2020. DOI: 10.3390/fi12110197.

[28] J. Baltrusaitis, Total value locked in defi surges over 1,200% in 2021 to surpass $240

billion, [Accessed: 20-03-2022]. [Online]. Available: https://finbold.com/
total-value-locked-in-defi-surges-over-1200-in-2021-

to-surpass-240-billion.

[29] G. Keyes, “Defi tops $100 billion for first time as cryptocurrencies surge",” en,
in Bloomberg. Archived from the original on 2021-11-04, Retrieved 2022-03-20.,
Oct. 20, 2021.

[30] Elliptic, Defi: Risk, regulation, and the rise of decrime, [Accessed: 20-03-2022].
[Online]. Available: https://www.elliptic.co/resources/defi-
risk-regulation-and-the-rise-of-decrime.

[31] S. Dhyan Raj, What financial institutions can learn from the ethereum parity hack,
[Accessed: 20-03-2022]. [Online]. Available: https://www.synechron.
com/sites/default/files/white- paper/what- financial-

institutions-can-learn-from-the-thereum-parityhack.pdf.

[32] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart
contracts (sok),” in Principles of Security and Trust, M. Maffei and M. Ryan, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 164–186, ISBN: 978-3-
662-54455-6.

[33] Z. A. Khan and A. S. Namin, A survey on vulnerabilities of ethereum smart contracts,
2020. DOI: 10.48550/ARXIV.2012.14481. [Online]. Available: https:
//arxiv.org/abs/2012.14481.

77

https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.coinbase.com/learn/crypto-basics/what-is-a-dex
https://www.coinbase.com/learn/crypto-basics/what-is-a-dex
https://doi.org/10.3390/fi12110197
https://finbold.com/total-value-locked-in-defi-surges-over-1200-in-2021-to-surpass-240-billion
https://finbold.com/total-value-locked-in-defi-surges-over-1200-in-2021-to-surpass-240-billion
https://finbold.com/total-value-locked-in-defi-surges-over-1200-in-2021-to-surpass-240-billion
https://www.elliptic.co/resources/defi-risk-regulation-and-the-rise-of-decrime
https://www.elliptic.co/resources/defi-risk-regulation-and-the-rise-of-decrime
https://www.synechron.com/sites/default/files/white-paper/what-financial-institutions-can-learn-from-the-thereum-parityhack.pdf
https://www.synechron.com/sites/default/files/white-paper/what-financial-institutions-can-learn-from-the-thereum-parityhack.pdf
https://www.synechron.com/sites/default/files/white-paper/what-financial-institutions-can-learn-from-the-thereum-parityhack.pdf
https://doi.org/10.48550/ARXIV.2012.14481
https://arxiv.org/abs/2012.14481
https://arxiv.org/abs/2012.14481

[34] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” in 2018

IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB), 2018, pp. 9–16.

[35] N. Group et al., Decentralized application security project (dasp) top 10, 2018.

[36] P. Technologies, A postmortem on the parity multi-sig library self-destruct. [Online].
Available: https://www.parity.io/blog/a-postmortem-on-the-
parity-multi-sig-library-self-destruct/.

[37] R. Browne, ’accidental’ bug may have frozen 280millionworthofdigitalcoinetherinacryptocurrencywallet,
Nov. 2017. [Online]. Available: https://www.cnbc.com/2017/11/08/
accidental-bug-may-have-frozen-280-worth-of-ether-on-

parity-wallet.html.

[38] A. P. C. Monteiro, “A study of static analysis tools for ethereum smart contracts,”
2019.

[39] D. A. Manning, Solidity security: Comprehensive list of known attack vectors

and common anti-patterns, Oct. 2018. [Online]. Available: https://blog.
sigmaprime.io/solidity-security.html#ouflow.

[40] NVD, Cve-2018-10299 detail, Apr. 2018. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2018-10299.

[41] KotET, Post-mortem investigation (feb 2016), Feb. 2016. [Online]. Available:
https://www.kingoftheether.com/postmortem.html.

[42] Y. Smaragdakis, Bad randomness is even dicier than you think, Mar. 2019. [Online].
Available: https://media.dedaub.com/bad-randomness-is-even-
dicier-than-you-think-7fa2c6e0c2cd.

[43] B. Powers, New research sheds light on the front-running bots in ethereum’s dark

forest, Dec. 2020. [Online]. Available: https://www.coindesk.com/
tech/2020/12/29/new-research-sheds-light-on-the-front-

running-bots-in-ethereums-dark-forest/.

[44] N. F. Samreen and M. H. Alalfi, “A survey of security vulnerabilities in ethereum
smart contracts,” 2021. DOI: 10.48550/ARXIV.2105.06974. [Online]. Avail-
able: https://arxiv.org/abs/2105.06974.

[45] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum systems
security: Vulnerabilities, attacks, and defenses,” ACM Comput. Surv., vol. 53, no. 3,
Jun. 2020, ISSN: 0360-0300. DOI: 10.1145/3391195. [Online]. Available:
https://doi.org/10.1145/3391195.

78

https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://blog.sigmaprime.io/solidity-security.html#ouflow
https://blog.sigmaprime.io/solidity-security.html#ouflow
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://nvd.nist.gov/vuln/detail/CVE-2018-10299
https://www.kingoftheether.com/postmortem.html
https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd
https://media.dedaub.com/bad-randomness-is-even-dicier-than-you-think-7fa2c6e0c2cd
https://www.coindesk.com/tech/2020/12/29/new-research-sheds-light-on-the-front-running-bots-in-ethereums-dark-forest/
https://www.coindesk.com/tech/2020/12/29/new-research-sheds-light-on-the-front-running-bots-in-ethereums-dark-forest/
https://www.coindesk.com/tech/2020/12/29/new-research-sheds-light-on-the-front-running-bots-in-ethereums-dark-forest/
https://doi.org/10.48550/ARXIV.2105.06974
https://arxiv.org/abs/2105.06974
https://doi.org/10.1145/3391195
https://doi.org/10.1145/3391195

[46] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and
Y. Alexandrov, “Smartcheck: Static analysis of ethereum smart contracts,” in 2018

IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering

for Blockchain (WETSEB), 2018, pp. 9–16.

[47] W. Zhang, S. Banescu, L. Pasos, S. Stewart, and V. Ganesh, “MPro: Combining
static and symbolic analysis for scalable testing of smart contract,” in 2019 IEEE

30th International Symposium on Software Reliability Engineering (ISSRE), IEEE,
Oct. 2019. DOI: 10.1109/issre.2019.00052. [Online]. Available: https:
//doi.org/10.1109%2Fissre.2019.00052.

[48] M. di Angelo and G. Salzer, “A survey of tools for analyzing ethereum smart
contracts,” in 2019 IEEE International Conference on Decentralized Applications

and Infrastructures (DAPPCON), 2019, pp. 69–78. DOI: 10.1109/DAPPCON.
2019.00018.

[49] F. E. Allen, “Control flow analysis,” in Proceedings of a Symposium on Compiler

Optimization, Urbana-Champaign, Illinois: Association for Computing Machinery,
1970, pp. 1–19, ISBN: 9781450373869. DOI: 10.1145/800028.808479.
[Online]. Available: https://doi.org/10.1145/800028.808479.

[50] A. Moona and R. Mathew, “Review of tools for analyzing security vulnerabilities in
ethereum based smart contracts,” Jan. 2021. DOI: 10.2139/ssrn.3769774.

[51] H. Rameder, M. di Angelo, and G. Salzer, “Review of automated vulnerability
analysis of smart contracts on ethereum,” Frontiers in Blockchain, vol. 5, 2022,
ISSN: 2624-7852. DOI: 10.3389/fbloc.2022.814977. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fbloc.2022.

814977.

[52] N. Veloso, “Conkas: A modular and static analysis tool for ethereum bytecode,”
2021.

[53] J. Krupp and C. Rossow, “teEther: Gnawing at Ethereum to Automatically Exploit
Smart Contracts,” in 27th USENIX Security Symposium (USENIX Security 18),
USENIX Association, 2018. [Online]. Available: https://publications.
cispa.saarland/2612/.

[54] B. Mueller, “Smashing ethereum smart contracts for fun and real profit,” HITB

SECCONF Amsterdam, vol. 9, p. 54, 2018.

[55] R. Fontein, “Comparison of static analysis tooling for smart contracts on the evm,”
in 28th Twente Student conference on IT, 2018.

79

https://doi.org/10.1109/issre.2019.00052
https://doi.org/10.1109%2Fissre.2019.00052
https://doi.org/10.1109%2Fissre.2019.00052
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.2139/ssrn.3769774
https://doi.org/10.3389/fbloc.2022.814977
https://www.frontiersin.org/article/10.3389/fbloc.2022.814977
https://www.frontiersin.org/article/10.3389/fbloc.2022.814977
https://publications.cispa.saarland/2612/
https://publications.cispa.saarland/2612/

[56] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for smart
contracts,” in 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in

Software Engineering for Blockchain (WETSEB), 2019, pp. 8–15. DOI: 10.1109/
WETSEB.2019.00008.

[57] Retool, Build internal tools, remarkably fast. [Online]. Available: https://
retool.com/.

[58] J. Liu and Z. Liu, “A survey on security verification of blockchain smart contracts,”
IEEE Access, vol. 7, pp. 77 894–77 904, 2019. DOI: 10.1109/ACCESS.2019.
2921624.

[59] S. Rouhani and R. Deters, “Security, performance, and applications of smart con-
tracts: A systematic survey,” IEEE Access, vol. 7, pp. 50 759–50 779, 2019.

[60] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum smart contract
security research: Survey and future research opportunities,” Frontiers of Computer

Science, vol. 15, no. 2, pp. 1–18, 2021.

[61] S. Kim and S. Ryu, “Analysis of blockchain smart contracts: Techniques and
insights,” in 2020 IEEE Secure Development (SecDev), IEEE, 2020, pp. 65–73.

[62] A. Vacca, A. Di Sorbo, C. A. Visaggio, and G. Canfora, “A systematic literature
review of blockchain and smart contract development: Techniques, tools, and open
challenges,” Journal of Systems and Software, vol. 174, p. 110 891, 2021.

80

https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://retool.com/
https://retool.com/
https://doi.org/10.1109/ACCESS.2019.2921624
https://doi.org/10.1109/ACCESS.2019.2921624

Appendix 1 – Non-exclusive license for reproduction
and publication of a graduation thesis1

I David, Isaac Mayowa

1. Grant Tallinn University of Technology free license (non-exclusive license) for my
thesis "An Evaluation Framework for Smart Contract Vulnerability Detection Tools
on the Ethereum Blockchain", supervised by Alexander Norta and Toomas Lepikult
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive license.

3. I confirm that granting the non-exclusive license does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

May 16, 2022

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

81

Appendix 2 - Utility.js

1
2 const evaluation = {

3
4 methodOfAnalysis: {

5 1: 2, // number of options selected : score for each option

6 2: 3

7 },

8 levelOfAbstraction: {

9 1: 2,

10 2: 3,

11
12 },

13 bulkAnalysisSupport: {

14 "Excellent Support (3 Points)": 3,

15 "Good Support (2 Points)": 2,

16 "Minimal Support (1 Point)": 1,

17 "Not Applicable (0 Point)": 0

18 },

19 detectionMethodology: {

20 1: 1,

21 2: 2,

22 3: 3

23 },

24 codeTransformationSupport: {

25 1: 1,

26 2: 2,

27 3: 3

28 },

29 vulnerabilityDetectionSupport: {

30 0: 0,

31 2: 1,

32 4: 2,

33 7: 3

34 },

35 integrability: {

36 "Excellent Support (3 Points)": 3,

37 "Good Support (2 Points)": 2,

38 "Minimal Support (1 Point)": 1,

39 "Not Applicable (0 Point)": 0

40 },

82

41 robustness: {

42 "Excellent Support (3 Points)": 3,

43 "Good Support (2 Points)": 2,

44 "Minimal Support (1 Point)": 1,

45 "Not Applicable (0 Point)": 0

46 },

47 usability: {

48 1: 1,

49 2: 2,

50 3: 3

51 },

52 easeOfSetup: {

53 "Excellent Support (3 Points)": 3,

54 "Good Support (2 Points)": 2,

55 "Minimal Support (1 Point)": 1

56 }

57 }

58
59 function getScorePerUtility(groupName) {

60 let score = 0;

61 let valueLength = groupName.value.length

62
63 switch (true) {

64 case vulnerabilityDetectionSupport === groupName:

65 let evalDict = evaluation[groupName.formDataKey]

66
67 if ([0, 1].includes(valueLength)) {

68 score = evalDict[0]

69 } else if ([2, 3].includes(valueLength)) {

70 score = evalDict[2]

71 } else if ([4, 5, 6].includes(valueLength)) {

72 score = evalDict[4]

73 } else {

74 score = evalDict[7]

75 }

76 break;

77
78 case [bulkAnalysisSupport, integrability, robustness, easeOfSetup].

includes(groupName):

79 score = evaluation[groupName.formDataKey][groupName.value[0]]

80 break;

81
82 default:

83 let length = valueLength >= 3 ? 3 : valueLength

84 score = evaluation[groupName.formDataKey][length]

85 }

86

83

87 return score

88
89 }

90
91 function calculateScore(){

92 let weights = Object.keys(form1.data)

93 let utilities = [methodOfAnalysis, levelOfAbstraction,

bulkAnalysisSupport, detectionMethodology,

codeTransformationSupport, vulnerabilityDetectionSupport,

integrability, robustness, usability, easeOfSetup]

94
95 let results = utilities.map((k, i) => (getScorePerUtility(k) || 0) *

form1.data[weights[i]])

96
97 // Sum up results and return total

98 // return results.reduce((a, b) => a + b, 0)

99 return results

100
101 }

102
103 return calculateScore()

84

	Introduction
	Thesis Objectives
	Existing body of knowledge
	Introduction to Blockchain Technology
	Ethereum
	Smart Contracts
	Vulnerabilities in smart contracts
	Smart Contract Vulnerability Detection Tools

	Research Gap
	Research Methodology and Research Questions
	Design Science Research Theory
	Design as an Artifact
	Problem Relevance
	Design Evaluation
	Research Contribution
	Research Rigor
	Design as a Search Process
	Communication of Research

	Research Questions
	Thesis Structure

	Preposition
	Running Case
	Importance of Early Vulnerability Detection in Smart Contract Development
	The Evaluation Framework
	The Utility Evaluation Web Application

	Smart Contract Vulnerabilities on the Ethereum Blockchain
	Introduction
	Smart Contract Vulnerability Taxonomy
	The DASP Top 10
	Reentrancy
	Access Control
	Arithmetic Issues
	Unchecked Return Values For Low Level Calls
	Denial of Service
	Bad Randomness
	Front Running
	Time Manipulation
	Short Address Attack
	Unknown Unknowns

	Discussion
	Conclusion

	Evaluation Requirements for Smart Contract Vulnerability Detection Tools on the Ethereum blockchain
	Introduction
	Requirement Specification of a Smart Contract Vulnerability Detection Tool
	Functional Requirement
	Non-functional Requirement

	Utility Evaluation of Smart Contract Vulnerability Detection Tools
	Utility Equation
	Using the Utility Evaluation Framework

	Discussion
	Conclusion

	Features of Existing Open-Source Vulnerability Detection Tools
	Introduction
	Smart Contract Vulnerability Detection Tools on the Ethereum Blockchain
	Tool Selection Criteria

	Tool Overview
	Conkas
	Manticore
	TeEther
	Mythril
	Slither

	Tool Comparison
	Discussion
	Conclusion

	Evaluation
	Introduction
	Proof of Concept Implementation
	Prototype Evaluation
	Scenario 1
	Scenario 2

	Related Work
	Discussion
	Conclusion

	Conclusion and Future Work
	Conclusion
	Answering The Research Questions
	RQ1: What are the common vulnerabilities affecting smart contracts on the Ethereum blockchain?
	RQ2: What are the evaluation requirements for vulnerability detection tools on the Ethereum blockchain?
	RQ3: What are the features of the existing open-source vulnerability detection tools on the Ethereum blockchain?

	Limitations
	Future Work

	References
	Appendix 1 – Non-exclusive license for reproduction and publication of a graduation thesis
	Appendix 2 - Utility Calculation Script

