
Software Technology for
Cyber Security Simulations

ANDRES OJAMAA

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C119

TALLINN UNIVERSITY OF TECHNOLOGY
Institute of Cybernetics

Dissertation was accepted for the defence of the degree of Doctor of Philosophy
in Computer Science on October 25, 2016

Supervisors: Enn Tõugu, D. Sc.
Leading Researcher, Institute of Cybernetics
Tallinn University of Technology, Tallinn, Estonia

Jaan Penjam, PhD
Senior Researcher, Institute of Cybernetics
Tallinn University of Technology, Tallinn, Estonia

Opponents: Margus Veanes, PhD
Research in Software Engineering (RiSE) Group
Microsoft Research, Redmond, USA

Christian Czosseck, PhD
Head Laboratory at CERT Bw, Germany

Defence of the thesis: December 15, 2016

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achieve-
ment, submitted for the doctoral degree at Tallinn University of Technology has
not been submitted for any academic degree.

/ Andres Ojamaa /

Copyright: Andres Ojamaa, 2016
ISSN 1406-4731
ISBN 978-9949-83-051-0 (publication)
ISBN 978-9949-83-052-7 (PDF)

INFORMAATIKA JA S TEHNIKA C119ÜSTEEMI

Tarkvaratehnika k berturbe simulatsioonide jaoksü

ANDRES OJAMAA

Contents

List of Figures 8

List of Publications 9

1 Introduction 12
1.1 Software Engineering . 13
1.2 Modeling and Simulation . 15
1.3 Cyber Security . 16
1.4 Motivation and Objectives . 18
1.5 Contributions . 19
1.6 Organization of the Dissertation 21

2 Software Platform for Simulation 22
2.1 Introduction . 22
2.2 Design Principles . 23
2.3 Specification Language . 24
2.4 User Interface . 27

2.4.1 Class Editor . 27
2.4.2 Scheme Editor . 28
2.4.3 Decision Table Editor 29

2.5 Planner . 30
2.6 Toolbox . 32
2.7 Applications . 33

2.7.1 Simulation of Hydraulic Systems 33
2.7.2 Simulation of Automated Cyber Attack Response 34

2.8 Discussion and Related Work . 36
2.9 Conclusion . 37

3 OWL Ontologies in DSL Development Process 39
3.1 Using OWL Ontologies in DSL Design 39
3.2 Architecture and Prototypical Implementation 41
3.3 Evaluation: IT Security Risk Analysis Domain 43

3.3.1 The DSL Meta-Model Ontology 43
3.3.2 Example Application . 45
3.3.3 Advantages and Limitations 46

3.4 Conclusion . 48

5

4 Graded Security Expert System 50
4.1 Introduction . 50
4.2 Rational Security Design . 51
4.3 Graded Security Model . 52

4.3.1 Security Metrics . 53
4.3.2 Evolving Security Situations 53

4.4 Expert System . 55
4.5 Optimization . 56
4.6 Example . 57
4.7 Training Process . 59
4.8 Related Work . 60
4.9 Conclusion . 61

5 Conclusions and Discussion 62
5.1 Main Results . 62
5.2 Discussion . 62
5.3 Future Work . 64

References 65

Acknowledgments 73

Abstract 74

Kokkuvõte 75

A Listings and Figures 76
A.1 SPARQL query for finding visual classes 76
A.2 Listing of toolbox ontology in OWL functional syntax 77
A.3 Visualization of attack tree simulation DSL meta-model ontology 79

Publications 81
I CoCoViLa as a Multifunctional Simulation Platform 81
II Enhancing Response Selection in Impact Estimation Approaches . 91
III Hybrid Simulation of Large Networks 103
IV Rich Components of Extendable Simulation Platform 113
V Semi-Automated Generation of DSL Meta Models from Formal

Domain Ontologies . 123
VI Ontology-Based Integration of Software Artefacts for DSL Devel-

opment . 139
VII Semi-Automated Integration of Domain Ontologies to DSL Meta-

Models . 151
VIII Graded Security Expert System 153
IX Pareto-Optimal Situation Analysis for Selection of Security Measures163

6

X Managing Evolving Security Situations 173
XI Enterprise Security Analysis and Training Experience 183

Curriculum Vitae 194

Elulookirjeldus 198

7

List of Figures

1.1 Focus area of the dissertation . 13

2.1 Class Editor window (Publication I) 28
2.2 Scheme Editor window (Publication III) 29
2.3 Textual specification and synthesized algorithm (Publication III) . 30
2.4 Decision table editor (Publication I) 31
2.5 Visual specification of a response analysis problem in GrADAR

package (Publication II) . 35

3.1 Overview of the ontology based DSL development approach (Pub-
lication V) . 41

3.2 The extended CoCoViLa architecture (Publication VI) 42
3.3 Structure of the attack tree package 44
3.4 Attack tree domain ontology . 45
3.5 Minimal attack library ontology 46
3.6 An example attack tree . 47
3.7 Properties of an attack imported from library 48
3.8 A graph of simulation results . 48

4.1 Conceptual architecture of the graded security expert system (Pub-
lication VIII) . 56

4.2 Conventional graded security solution and Pareto optimality trade-
off curve (Publication X) . 57

4.3 Visual specification and the result of simulation (Publication VIII) 58
4.4 Ordering of training steps (Publication XI) 60

A.1 DSL meta-model ontology . 79
A.2 DSL meta-model ontology with inferred axioms 80

8

List of Publications

The work of this thesis is based on the following publications:

I Kotkas, Vahur; Ojamaa, Andres; Grigorenko, Pavel; Maigre, Riina; Harf,
Mait; Tyugu, Enn (2011). CoCoViLa as a Multifunctional Simulation Plat-
form. Proceedings of the 4th International ICST Conference on Simulation
Tools and Techniques: 21–25 March 2011, Barcelona, Spain, SIMUTools
2011. Brussels: ICST, 195–205.

II Klein, Gabriel; Ojamaa, Andres; Grigorenko, Pavel; Jahnke, Marko; Tyugu,
Enn (2010). Enhancing Response Selection in Impact Estimation Ap-
proaches. Concepts and Implementations for Innovative Military Commu-
nications and Information Technologies. Ed. Amanowicz, Marek. Warsaw:
Military University of Technology, 277–286.

III Ojamaa, Andres (2009). Hybrid Simulation of Large Networks. Proceed-
ings of the 2009 International Conference on Modeling, Simulation & Vi-
sualization Methods, MSV 2009. Ed. Arabnia, Hamid R.; Deligiannidis,
Leonidas. Las Vegas: CSREA Press, 219–225.

IV Ojamaa, Andres; Tyugu, Enn (2007). Rich Components of Extendable
Simulation Platform. Proceedings of the 2007 International Conference on
Modeling, Simulation & Visualization Methods, MSV 2007: June 25–28
2007, Las Vegas Nevada, USA. Ed. Arabnia, Hamid R. Las Vegas: CSREA
Press, 121–127.

V Ojamaa, Andres; Haav, Hele-Mai; Penjam, Jaan (2015). Semi-Automated
Generation of DSL Meta Models from Formal Domain Ontologies. Model
and Data Engineering: 5th International Conference, MEDI 2015, Rhodes,
Greece, September 26–28, 2015, Proceedings. Ed. Bellatreche, Ladjel;
Manolopoulos, Yannis. Springer, 3–15. (Lecture Notes in Computer Sci-
ence; 9344).

VI Haav, Hele-Mai; Ojamaa, Andres; Grigorenko, Pavel; Kotkas, Vahur
(2015). Ontology-Based Integration of Software Artefacts for DSL Develop-
ment. On the Move to Meaningful Internet Systems: OTM 2015 Workshops:
Confederated International Workshops: OTM Academy, OTM Industry Case
Studies Program, EI2N, FBM, INBAST, ISDE, META4eS, and MSC 2015,
Rhodes, Greece, October 26–30, 2015, Proceedings. Ed. Ciuciu, I. et al.
Cham: Springer, 309–318. (Lecture Notes in Computer Science; 9416).

9

VII Haav, Hele-Mai; Ojamaa, Andres (2016). Semi-Automated Integration of
Domain Ontologies to DSL Meta-Models. International Journal of Intelli-
gent Information and Database Systems. [accepted]

VIII Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009). Graded Security Ex-
pert System. Critical Information Infrastructures Security: Third Interna-
tional Workshop, CRITIS 2008, Rome, Italy, October 13–15, 2008, Revised
Papers. Ed. Setola, Roberto; Geretshuber, Stefan. Berlin: Springer, 279–
286. (Lecture Notes in Computer Science; 5508).

IX Ojamaa, Andres; Tyugu, Enn; Kivimaa, Jyri (2008). Pareto-Optimal Situ-
ation Analysis for Selection of Security Measures. MILCOM 08: Assuring
Mission Success: Unclassified Proceedings, November 17–19 San Diego.
3224–3230.

X Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009). Managing Evolving
Security Situations. MILCOM 2009: Unclassified Proceedings, October 18–
21, 2009, Boston, MA. Piscataway, NJ: IEEE, 1–7.

XI Ojamaa, Andres; Tyugu, Enn (2016). Enterprise Security Analysis and
Training Experience. Critical Information Infrastructures Security: 9th In-
ternational Conference, CRITIS 2014, Limassol, Cyprus, October 13–15,
2014, Revised Selected Papers. Ed. Panayiotou, C.G.; Ellinas, G.; Kyri-
akides, E.; Polycarpou, M.M. Cham: Springer, 200–208. (Lecture Notes in
Computer Science; 8985).

Author’s contributions to the publications

The author’s contributions to the publications are summarized here. The roman
numerals in front of the list items correspond to those in the list of publications.

I Introducing and prototyping the concept of rich components (related to Pub-
lication IV), proposing and implementing a hybrid network simulation tech-
nique (Publication III), CoCoViLa software development, design and imple-
mentation of example applications (e.g., Publication II), writing parts of the
paper, conference presentation.

II An implementation of the GrADAR method as a CoCoViLa package includ-
ing an optimizer component, writing parts of the paper.

III Proposing a hybrid approach to modeling and simulating large networks, de-
veloping a prototype, writing the paper, conference presentation.

IV Proposing a new type of software component, developing a prototype, writ-
ing parts of the paper, conference presentation.

10

V Proposing the idea to use OWL ontologies for generating DSL metamodels,
performing experiments and implementing a prototype, writing parts of the
draft, conference presentation.

VI Proposing the architecture for integrating software artefacts, performing ex-
periments and implementing a prototype.

VII Proposing the idea to use OWL ontologies for generating DSL metamodels,
developing the architecture for integrating software artefacts, performing ex-
periments and implementing a prototype, writing parts of the draft.

VIII Formalizing the graded security model originally conceived on the concep-
tual level by Dr Kivimaa, designing and implementing a prototype expert
system for supporting security investment optimization based on the graded
security model, developing visualization tools, finding and implementing an
efficient optimization algorithm, writing parts of the paper, conference pre-
sentation.

IX Developing an approach for designing optimal security solutions based on
the graded security model provided by Dr Kivimaa, developing software and
algorithms, writing parts of the paper, live demonstration at the conference
presentation.

X Extending the existing model and expert system to cover more general cases
and to support developing long-term security investment plans, developing
algorithms and software, writing parts of the paper, conference presentation.

XI Using and supporting the tools for teaching Cyber Security Master’s students
at Tallinn University of Technology, software development, writing parts of
the paper, conference presentation.

11

1 Introduction

Cyber security is a multi-disciplinary field. The view that cyber security is just a
technical issue might have been common a decade or two ago [80], but this view has
become less common and less true [81]. Securing IT systems of a modern organi-
zation requires effort from different roles and cooperation between all departments.

From the technical perspective, there is a general direction for IT systems to be-
come more connected, hence open to the external environment. The factors driving
this include the need to get information online, deploy software updates and per-
form diagnostics remotely [51]. This trend applies also to control systems that may
have the potential to cause physical damage in the real world. Therefore, cyber se-
curity is not just about assuring information confidentiality, integrity, availability
and protecting IT systems from abuse, but is also essential for maintaining safety
in physical space.

Cyber security experts need to analyze technical and non-technical aspects of
security, integrate data from multiple sources and communicate across the organi-
zation with people in different positions. This work can be facilitated by using the
support of flexible software tools for analyzing security situations, solving opera-
tional security issues, optimizing available resources and presenting the results to
decision makers in an efficient way.

Simulation is a universal technique for studying complex systems. In this work
the focus is on simulations performed on computers. Computer simulations require
the development of formal models of systems and allow to conduct simulation ex-
periments. This process can lead to a better understanding of the behaviour of the
simulated system. Simulation allows to experiment with different what-if scenar-
ios and to gain new knowledge. Getting a good understanding of a system is often
a very important first step in securing it.

Computer simulation is an established and a valuable practice in conventional
engineering disciplines. However, it seems the full potential of computer simu-
lation is not used in the cyber security field. An underlying assumption of this
work is that better software tools and technologies could help to increase the use of
computer simulation in the cyber security field leading to more efficient usage of
resources, better communication between stakeholders and, finally, a higher level
of cyber security.

The motivation for the work comes mainly from the following questions:
• What kind of simulation tools could help to counter increasing threats in the

cyber space?

• How could existing software engineering technologies be improved in order
to provide more value to cyber security practitioners?

12

Modeling and
Simulation

Cyber Security

Software
Engineering

Figure 1.1: Focus area of the dissertation

• Is there anything special in modeling and simulation in the cyber security
field compared to other more conventional fields?

Hence, the field of this thesis is related to the intersection of three different
domains—software engineering, modeling and simulation, and cyber security. The
area of this topic is illustrated in Figure 1.1. To provide a broader context for this
work, the three domains are briefly discussed in the following sections.

1.1 Software Engineering

This section discusses general aspects of software engineering, focusing on a par-
ticular approach to software development—model based software engineering. The
key issues of interest in the context of this work are software development produc-
tivity, flexibility of software products and reuse of software assets in the context of
cyber security simulation.

The term software engineering was coined in a 1967 talk [53] by Oettinger. In
this talk the essence of computer science and its relations to mathematics, logic
and classical engineering were discussed. Also, it was argued that the broad span
of software development from the most abstract mathematics to the dirtiest of un-
conventional engineering makes software development difficult and interesting. It
was recognized that the complexity and cost of software development is a major
engineering challenge.

The report [52] of the first software engineering conference in 1968 highlights
discussions raising concerns about inadequate productivity of software develop-
ment. Many of these discussions are still relevant. The relevant subjects include:

13

• “the problems of achieving sufficient reliability in the data systems which
are becoming increasingly integrated into the central activities of modern
society”;

• “the difficulties of meeting schedules and specifications on large software
projects”;

• “the education of software (or data systems) engineers”;

• the lack of best practices for software development.

An influential essay titled Essence and Accidents of Software Engineering [9] by
Brooks explains that the complexity of software is an essential property, not an ac-
cidental one, and essential complexity cannot be removed. Accidental complexity
can be reduced by using better tools, processes, methods, but orders of magnitude
productivity gains should not be expected from this.

The 2015 Standish Group CHAOS report [36] summarizes the results of the
study of 50 thousand software projects1. According to the report, only 29% of
the projects were successful, 52% were challenged in some way and 19% failed
completely. Although the methodology of the study has been criticised [4,20] there
still seems to exist a major engineering challenge.

The discipline of software engineering originates from the need to address poor
quality of software, get projects exceeding time and budget under control, and en-
sure that software is built systematically, rigorously, measurably, on time, on bud-
get, and within specification [64]. In this work the following definition of software
engineering is used [23]:

Software engineering is the systematic application of scientific and
technological knowledge, methods, and experience to the design, im-
plementation, testing, and documentation of software.

Better productivity of software development can arise from well-suited abstrac-
tions, better tools and processes, higher level of automation, and more efficient
reuse of existing artifacts [82]. The need to measure and improve software devel-
opment productivity has stimulated research in this field [62].

Model Based Software Engineering (MBSE) is a systematic approach to soft-
ware development where software models are used in order to improve the produc-
tivity and quality of software creation. In MBSE, software models, besides being
a part of documentation, become essential artefacts in the process of software de-
velopment. As a consequence, this forces the models to be formalized, complete
and precise. There are a number of ways for practicing MBSE which differ in var-
ious specific aspects. By and large, the goals in all cases include automation of
some development steps, higher flexibility, i.e., existing artefacts can be adapted

1http://www.infoq.com/articles/standish-chaos-2015

14

http://www.infoq.com/articles/standish-chaos-2015

for new purposes relatively easily, and working at an appropriate level of abstrac-
tion, hence increasing productivity. A number of frameworks, platforms and tools
for supporting MBSE approaches have been developed, for example, MetaEdit+,
Atom3, Eclipse EMF, OMG MDA, IBM Rational Rhapsody. It has been suggested
that model engineering can be considered a new sub-discipline to software engi-
neering [25]. Several studies have analyzed the advantages and disadvantages of
model based approaches [7, 67, 68]. Model based software engineering has been
found to be a useful methodology for handling the complexity in developing models
for simulation studies of complex systems [21].

Models can also represent other models. Models that describe a set of models
are called meta-models. A model is an instance of a corresponding meta-model.
Meta-models specify valid building blocks and the structure of models. In the con-
text of MBSE, a meta-model is a model of a modeling language including its ab-
stract syntax and static semantics used for describing domain concepts and relations
that constitute domains models. Explicit formal meta-models are an important part
of MBSE as they enable automation of software development (e.g., program code
generation).

A model based software engineering technology developed at the Institute of
Cybernetics at Tallinn University of Technology has been demonstrated to be suit-
able for engineering applications [33,35]. This technology is referred to as CoCoV-
iLa technology. An overview of the platform supporting this technology is given
in Chapter 2. One of the goals of this work is to verify the applicability of Co-
CoViLa technology to the cyber security domain and to suggest, based on practical
experiments, improvements to the technology.

1.2 Modeling and Simulation

A simulation is the imitation of the operation of a real-world process or a system
over time [6]. A model is an abstract and formal representation of a process or
system that includes the attributes and properties of the modeled object which are
relevant to the current study. In general, the purposes of modeling and simula-
tion may include: to explore possible options; communicate knowledge to others;
predict; explain existing data [79].

Simulations are used to study complex systems for gaining a better understand-
ing of the behavior of the systems and to analyze what-if scenarios. Simulations are
also often useful as educational tools. Simulated situations are helpful to prepare
for different scenarios. Often, a simulation can be the only way to experiment a
system, especially when the system is very expensive or dangerous.

There are, however, cases when simulation is not an appropriate approach. For
example, there is no reason to spend resources on simulation when a good analytical
solution exists. Other potential risks and problems include: the garbage in, garbage

15

out problem; high development cost; lack of input data; inability to perform proper
validation; interoperability issues.

“Most of the well-known modeling and simulation (M&S) methodologies state
the importance of conceptual modeling in simulation studies, and they suggest the
use of conceptual models during the simulation model development process. How-
ever, only a limited number of methodologies refers to how to move from a concep-
tual model to an executable simulation model. Besides, existing M&S methodolo-
gies do not typically provide a formal method for model transformations between
the models in different stages of the development process. Hence, in the current
M&S practice, model continuity is usually not fulfilled.” [12]

1.3 Cyber Security

Cyber security is a broad field that includes technical, economic, social and military
aspects. The general goal of cyber security is to protect the availability, confiden-
tiality and integrity of information (the classical CIA model of information secu-
rity) as well as ensure the availability and correct operation of computer systems
and the facilities controlled by these computer systems.

There are several definitions of “cyber security” and the relation of it to “in-
formation security”. Unfortunately, a universally accepted and consistently used
terminology does not exist in this field. In this work the concept “cyber security”
is used in the meaning as discussed in a paper by von Solms [78]. It is important to
note that although “cyber security” and “information security” have a substantial
overlap, the concepts are not totally analogous. For instance, cyber security also
covers incidents where IT infrastructure is abused but information security is not
compromised. In the context of this work the term “information technology (IT)
security” is a synonym of “cyber security”.

The term “science of cyber security” has appeared in the literature. It has
been defined [43] as “the study of relations—preferably expressed as theoretically-
grounded models—between attributes, structures and dynamics of: violations of
cyber security policy; the network of computing devices under attack; the defend-
ers’ tools and techniques; and the attackers’ tools and techniques where malicious
software plays the central role.”

In general, security is hard to model and often impossible to prove. On the one
hand, for any non-trivial real world system the absence of security issues cannot be
shown. The attacker, on the other hand, usually needs to find and exploit just a small
number of security holes to succeed. This property implies a strong asymmetry
between defensive and offensive sides.

Situation awareness is essential in cyber security operations. It depends on a re-
liable perception of the environment and comprehension of its semantic structures.
In this respect, cyber space presents a unique challenge to the situation awareness

16

of users and analysts, since it is a unique combination of human and machine ele-
ments, whose complex interactions occur in a global communication network [56].

The processes in the cyber space are very fast compared to human reaction time,
invisible to the naked eye and involve large amounts of data. However, the technical
side is just one part of the complete picture. As the cyber space has become an
universal medium in the global economy, social aspects and human behavior also
have to be taken into consideration.

For responding to cyber security incidents time is critical. Studies have con-
cluded [13,69] that the success rate of an intruder rises with the time he or she can
work undisturbed: a skilled attacker can perform an intrusion with an 80% success
rate if given 10 hours time before any response is launched.

Simulations in cyber security can be approached from different viewpoints. In
the context of this work, the following three characteristics of cyber security simu-
lations are of interest.

First, what are the properties of cyber security that make simulation as a method
usually well applicable to the problems in this field. A prominent reason is that our
normal everyday life depends heavily on IT systems. Therefore, on the one hand,
it would be impossible to take these systems offline for experiments and testing.
On the other hand, conducting experiments on an important live system can be too
risky. It would also be impractical to replicate such systems in a test lab due to
the cost of hardware, labour and maintenance. Hence, simulation mostly in soft-
ware might be the only feasible approach to study these systems. Experimenting
and testing, however, is a vital requirement to develop and deploy new technolo-
gies, protocols and defense measures in a quickly evolving cyber space. Another
reason to use simulations is, as discussed above, the fast and invisible nature of
the processes in computer systems. Simulation-based automated decision support
systems can help people in making correct decisions rapidly in critical situations.
Visualization and data analysis, which are parts of any simulation study, are also
invaluable in monitoring, understanding and predicting the behaviour of complex
computer systems.

Second, what are reasons why computer systems can be easier to model and
simulate compared to, for example, some biological systems. One crucial differ-
ence is that the cyber space is entirely artificial and human made, also often quite
deterministic and understandable in detail. As the cyber space is mostly digital and
discrete, it can modeled using logic. This can simplify the task of modeling by a
large factor. But still, for example, the modeling of some network protocols can
be far from trivial because of the built-in adaptiveness and the closed-loop design
of these network protocols. Nevertheless, verifying hypotheses and experimenting
with different configurations can be again relatively easy in the digital world, be-
cause most of the behaviour of the systems is determined by software which can be
modified on the fly without expensive equipment.

Third, what are the properties that make it hard to simulate cyber security. To
begin with, there are some fundamental reasons that cause cyber security to be

17

very hard to model accurately. One of the reasons being that the attacker can be
intelligent and possess information unknown to the defender. Attackers can also
be rational, seeking to maximize their financial benefits, or socially motivated and
behaving irrationally. The situation becomes even more interesting when human
adversaries with different motivations are combined with intelligent agent-based
malware [72]. Also, based on a survey taken in 2006, it has been estimated that
approximately 60% of security breaches were attributed to human error by security
managers [8].

Another fundamental aspect of security is that the overall success of an attack
is determined by the weakest link in the chain. This weakest link can be a minor
technical detail, maybe just one character in a program source code. It is not feasible
to model large-scale systems with that amount of details. Any simplification to the
model can, in principle, leave out crucial information. Besides these fundamental
problems, accurately simulating large computer systems tends to require processing
huge amounts of data which is computationally expensive. Unlike simulations of
other domains, in the case of a security incident it is not possible to wait for hours
or even days for the cyber security simulation to finish. By that time the results
may be out of date to the point of being completely unusable or misleading.

Having discussed the characteristics of cyber security simulation problems, it
can be concluded that while these problems share many properties with any other
simulation problem, the particular combination of characteristics sets certain re-
quirements to the tools and methodologies used in this field. That leads us to the
motivation and goals of this work stated in the following section.

1.4 Motivation and Objectives

As the real world and cyber space have become interdependent, the importance of
security concerns has also increased dramatically—a security breach in the cyber
space may have some serious implications in the real world (e.g., the KWC water
utility company incident [77]), and vice versa. It has been reported [16] that 90%
of large organisations and 74% of small businesses had an IT security breach in
2015 while 59% of respondents expect there will be more security incidents in the
next year. Hence, it is necessary to develop methodologies, techniques and tools
for advancing the state of the art in cyber security to keep up with the increased
level of risk.

This work is about using computer simulations in the cyber security domain for
helping to improve the overall safety of computer systems, individuals, organiza-
tions and states. As this field is relatively young and immature, there is a lack of
proven methodologies and smart simulation tools. Smart software tools are pro-
grams that take over some responsibility usually performed by intelligent users, for
example, specifying solution steps. This thesis is an attempt to broaden the avail-
ability of such methodologies and tools.

18

Despite the existence of large well-established simulation software packages
and powerful personal computers, accurate and efficient cyber security simulations
still remain a challenge. Therefore, new advanced techniques and tools are needed
which would accommodate the diverse requirements demanded by simulations in
the evolving cyber security domain. A suitable methodology combined with soft-
ware tools would conform to the following points.

• It should be possible to model and simulate every important aspect of a com-
plex cyber security related system.

• The tools have to be usable for domain experts without the need to write
program code.

• Multi-scale multifunctional simulations should be supported based on the
technology currently available.

• The tools should be open and flexible to be able to evolve together with the
tasks.

• Supporting educational exercises as well as solving large scale real world
problems is equally important.

Multi-functional and multi-paradigm modeling and simulation presents techni-
cal challenges—how to integrate different domain models, technologies and tools.
This can be solved with tools and technologies. In addition, there is a more fun-
damental issue of model validation. A model that integrates components built on
contradicting assumptions cannot give good results. This is a really hard problem
and it is unlikely an easy universal solution can be found.

The goal of the work is to develop smart cyber security simulation tools. This
includes methods, technology and freely available software tools for cyber security
simulation that will be applicable to wide set of problems and will be economical
and time-efficient, while still providing the required precision.

1.5 Contributions

This work resulted in three main contributions which are summarized here.

• First, a novel program synthesis based methodology for performing cyber
security simulations was proposed. This methodology was implemented in
a multifunctional simulation platform. This platform supports model based
software engineering, adds flexibility and improves productivity by employ-
ing automatic synthesis of programs, and provides the infrastructure for per-
forming complex multi-scale hybrid simulations. Another distinguishing
feature of this platform is the support of a new type of software building
blocks—rich components.

19

• Second, extensions to an existing model based software engineering tech-
nology were proposed. These extension introduce OWL ontologies into the
domain engineering process facilitating knowledge and software reuse, im-
proving consistency. Furthermore, the CoCoViLa modeling and simulation
environment’s specification capabilities were extended with the support of
OWL DL inference and production rules that increase expressiveness and
add flexibility.

• Third, testing the proposed approach and simulation platform for solving
practical problems. Three packages, including sophisticated optimization
methods, for solving different simulation tasks were developed as a part of
this work. One of these applications, an expert system for cyber security cost
optimization, is presented in detail in this dissertation.

These results have been used for several purposes. A graduate-level simulation
course was prepared and given at Tallinn University of Technology in Autumn 2008
to the Master’s students of the Cyber Defense module. The students solved practical
exercises using the software developed in the scope of this work. A similar but more
extensive simulation course was given in the Autumn 2012 semester.

The software and methods have also been used at the Cooperative Cyber De-
fence Centre of Excellence (CCD COE), as the Centre was one of the initiators and
supporters of this work. Furthermore, the results have been applied in pilot projects
in banks: the Estonian branches of SEB Bank and Swedbank [41].

The outcomes of this work has been a basis for further academic and research
projects. For example, several conference papers [3, 40, 42] have been published
describing new work based on the original contributions of this thesis.

Moreover, the outcomes of this work—including the formalization of the initial
graded security model originally conceived on the conceptual level by Dr Kivimaa
and later extended as joint work; graded security expert system design and im-
plementation; applying the model based software engineering approach to solving
the graded security cost optimization problem, the implementation of an efficient
optimizer—have provided groundwork for later developments and extensions of the
graded security model, graded security expert system and simulation experiments
used in Dr Kivimaa’s PhD thesis [41] and in several cyber security related Master’s
theses (e.g., [2, 39]) supervised by Dr Kivimaa. The author of this work was not
involved in the development of the graph-based graded security model that forms
a core part of Dr Kivimaa’s dissertation [41].

As a result of the work presented in this dissertation it was shown that:

• A general purpose model based software engineering tool CoCoViLa can be
used for several different simulation problems in the cyber security simula-
tions.

20

• Model based approach to software engineering combined with domain spe-
cific visual languages is well suited for the use by cyber security domain
experts.

• Component oriented technology with automatic synthesis of programs used
in CoCoViLa provides flexibility and supports the reuse of program compo-
nents and domain knowledge.

1.6 Organization of the Dissertation

The dissertation is based on the author’s publications and gives an overview of the
work done during his doctoral studies. The rest of the thesis is structured as follows.
First, the CoCoViLa simulation platform and the software engineering technology
is introduced in Chapter 2 (Publications I, II, III and IV). The chapter also briefly
discusses some application examples. Chapter 3 is focused on the ontology based
software development technology. The extensions of the technology developed by
the author are described there (Publications V, VI and VII). Next, in Chapter 4 an
example application is presented demonstrating the applicability of the technology
in the cyber security domain (Publications VIII, IX, X and XI). Finally, in Chap-
ter 5, the results are discussed and conclusions are drawn together with suggestions
for future research.

21

2 Software Platform for Simulation

This chapter presents the CoCoViLa platform with the focus on simulation appli-
cations in the cyber security domain. CoCoViLa is a general purpose software
development platform that has been used in various application areas like simu-
lation of hydraulic systems and automated composition of web services. In the
context of this work the goal is to study the applicability of the CoCoViLa software
development approach to cyber security simulations.

The CoCoViLa platform has been developed by the Modeling and Simulation
group at the Institute of Cybernetics at Tallinn University of Technology as a joint
effort since 2004. The author of this dissertation joined the group and CoCoViLa
development in 2006. An overview of the full platform, including parts of CoCoV-
iLa and some of its applications developed by other people, is given here as it is
necessary to present the contributions of this dissertation.

This chapter is structured as follows. Section 2.1 gives an overview of the Co-
CoViLa platform and Section 2.2 describes the key principles of the conceptual
design of the platform. The specification language is described in Section 2.3.
Section 2.4 presents the user interface of CoCoViLa. Section 2.7 contains applica-
tion examples and finally related work is described in Section 2.8. The contents of
this chapter is based on the following papers:

• CoCoViLa as a Multifunctional Simulation Platform (Publication I),

• Enhancing Response Selection in Impact Estimation Approaches (Publica-
tion II),

• Hybrid Simulation of Large Networks (Publication III),

• Rich Components of Extendable Simulation Platform (Publication IV).

2.1 Introduction

CoCoViLa [31] is a model based software engineering platform that is suitable
for performing modeling and simulation tasks. It provides tools for developing
reusable software components, constructing packages, specifying simulation prob-
lems and running them using pluggable simulation engines. The platform is in-
tended for end users who are domain experts. Therefore it provides visual spec-
ification capabilities so that programming skills are not required from end users.
CoCoViLa has visual tools, but most importantly, it supports full automatic pro-
gram construction from specifications that are given visually.

22

From a user’s point of view CoCoViLa consists of three programs with a graph-
ical user interface: Class Editor for the development of packages and components,
Scheme Editor for visual specification of computational problems and for execut-
ing generated programs (performing simulations), and Decision Table Editor for
managing knowledge modules.

CoCoViLa uses a component based software engineering approach. Simulation
packages consist of software components called rich components [55]. Rich com-
ponents are descriptions of domain specific concepts that are used in simulation.
In a nutshell, these components are composed of the following four parts. First,
there is a graphical representation of the concept (visual part) for interacting with
the user in a graphical user interface. Having such a representation, schemes of
simulation tasks can be built via visual composition of the components. Second,
the logical part or metainterface containing a high-level specification that enables
automatic composition of a simulation program. The specification language is de-
scribed in Section 2.3. The third part is a program component which defines Java
methods that implement computations. This part is called metaclass. Finally, a
rich component may have a daemon that provides interactive properties allowing
to develop sophisticated interfaces to simulation programs, enforce syntax rules of
visual schemes, implement agent-like behaviour etc.

It is expected that simulation problems are becoming not only computationally
heavier, but also considerably more complex in the sense that a single problem may
require orchestrated usage of different simulation engines, external data sources,
optimization programs as well as visualization and statistics software. CoCoViLa’s
visual component based approach supported by structural synthesis of programs
provides a solid foundation for developing complex simulations.

2.2 Design Principles

The design and implementation of CoCoViLa has been guided by several design
principles that will be summarized here.

First, a main design decision has been to rely on a completely automated pro-
gram construction approach that starts from a specification and uses a fast syn-
thesis method that outputs a source code ready for compilation and execution.
The program synthesis method used in CoCoViLa—structural synthesis of pro-
grams (SSP) [70]—has been implemented and used in several earlier software
tools [50, 73]. It uses essentially dataflow for composing a program, like, for in-
stance, Simulink [15] does. However, the usage of components in the form of
higher-order functions that take synthesized parts of a program as inputs makes
a significant difference over conventional dataflow techniques. The program syn-
thesis process uses dataflow recursively for solving so called subtasks—generating
inputs for the higher-order functions, i.e., for achieving the goals like “synthesize a
body for the loop in this particular component”. This makes the method universally

23

applicable—theoretically any algorithm can be synthesized in this way from a suit-
able specification and a fixed set of preprogrammed components [50]. A program is
synthesized piecewise and the pieces are bound together by preprogrammed higher-
order functions that realize required control structures. The planner is CoCoViLa’s
core part responsible for synthesis, it is described in more detail in Section 2.5.

The second design decision is using full capabilities of model based software
engineering: developing a complete model for each simulation problem that in-
cludes not only a description of a simulated system, but describes also the usage
of simulation engines and other tools—visualizers, optimizers etc.— needed for
the particular problem. A model based software engineering process consists of
two stages: domain engineering that provides assets for developing applications,
and application engineering that uses the assets for applications. The first phase re-
quires the work of domain analysts and software developers. In the second phase,
domain experts are the main users of existing software assets and the developers of
applications. Reusable assets of the CoCoViLa model based software engineering
approach are rich components—Java classes extended with specifications for pro-
gram synthesis and supplied with a visual representation (see Publication IV). A
rich component may have another class associated with it that defines a daemon—a
separate thread that supports user interaction during the problem description and
program execution phases. This allows to implement agent-like behaviour in rich
components. In the context of CoCoViLa technology and also this dissertation, the
term component is often used in place of rich component. A collection of com-
ponents for a problem domain constitute a package that is an implementation of a
domain specific language (DSL) for this particular domain.

Third, the Java programming language and platform has been chosen for imple-
menting CoCoViLa. This is justified by several useful properties of the Java ecosys-
tem: availability of solid development tools and a large number of libraries, porta-
bility and interoperability, support for distributed computing, open source ideology,
dynamic compilation and loading of program code. The CoCoViLa platform has
been developed in a way that does not restrict the usage of Java for programming of
classes that implement components. Moreover, it was straightforward to integrate
the specification language with the Java programming language. The specification
language will be introduced in the following section.

2.3 Specification Language

The CoCoViLa specification language is used for describing both components and
computational goals. This language is built on top of the Java programming lan-
guage and merged with Java in the following way: a specification is given as a
special comment included in the source code of a Java class. Here is an example
of a specification that shows the usage of equations in a specification:

class Complex {

24

/*@ specification Complex {

double re, im, arg, mod;

mod^2 = re^2 + im^2;

mod * sin(arg) = im;

} @*/

}

The connection between the specification and the Java code implementing com-
putations is through method names. The following example shows the usage of a
Java method (getMaxVal) as an implementation of a higher-order function in a
specification:

class Max {

/*@ specification Max {

int arg, val, maxval;

[arg -> val] -> maxval {getMaxVal};

} @*/

public int getMaxVal(Subtask sbt) {

...

return maxval;

}

}

The method getMaxVal is given a synthesized method that implements the in-
terface Subtask as the argument sbt.

Each Java method usable in synthesis must have a specification describing its
input and output conditions. These specifications are called axioms according to
the convention of structural synthesis of programs. The meaning of these axioms
can be explained in terms of dataflow. The example above includes the axiom

[arg -> val] -> maxval {getMaxVal};

This axiom has one input [arg -> val] that is a subtask describing a function for
computing val from given arg (this function has to be synthesized by the planner).
The axiom has an output maxval.

The specification language has a rather simple and conventional syntax. It en-
ables one to specify typed objects and bind them with each other by connecting
their attributes by equalities. Numeric variables can be bound also by algebraic
equations. Constant values can be assigned to variables of any type, as soon as
the value has a textual representation. The textual specification enables one also
to specify the usage of methods of the class where the specification is included by
writing axioms about their applicability, i.e., by giving their pre- and postcondi-
tions. Extensibility of the language is achieved by the introduction of new types.
The following is the core of the language.

25

1. Declaration of a component

type name;

This declaration specifies a component of a model with given type and name.

2. Binding

var1.field1 = var2.field2;

This statement specifies an equality between fields of components. The fields
may be represented by ports.

3. Valuation

var1.field = value;

This statement defines a functional dependency with no inputs and with one
output that receives a constant value.

4. Axiom

precondition→ postcondition{implementation};
The precondition of an axiom is a list of component names and subtasks.
The postcondition is a component name. The names in precondition show
components that are inputs of the computation given by the method name
implementation. Postcondition shows a component in output of the com-
putation. A subtask has the form [x1, . . . , xn → y1, . . . , ym] and defines a
function with inputs and outputs given on the left and right side of the arrow.
The function defined by a subtask has to be synthesized and given as an input
to the function described by the axiom.

5. Equation

AExpression = AExpression;

Equation defines one or more functional dependencies that are solving func-
tions for variables bound by the equations. Arithmetic expressions are the
ones supported by the Java platform, and can be solved only for the variables
that have one occurrence in an expression.

6. Tuple

alias id = (ListOfNames);

ListOfNames can include names with wildcards of the form ∗.name.
In this case all fields of components of a specification that have the name
name are included in ListOfNames. For example, alias state =

(*.state) describes a state vector consisting of states of components.
This feature is very useful in many situations, increasing flexibility and re-
usability of components. It allows to define new concepts that encapsulate
parts of other components dynamically in a natural way.

26

7. Inheritance
A super B1, . . . , Bn

The specification language supports object oriented inheritance. The key-
word super in the declaration of a concept A causes the declared concept to
inherit all variables, bindings and axioms defined in the list of parent con-
cepts B1, . . . , Bn. The parent concepts are also called superclasses.

The visual language describes schemes and, strictly speaking, uses only the first
two kinds of statements. However, through the graphical user interface of Scheme
Editor (see Subsection 2.4.2) one can add also valuations, aliases, equations and a
superclass to a scheme.

A full description of the specification language can be found at the CoCoViLa
web site [18].

2.4 User Interface

The graphical user interface of CoCoViLa consists of three applications. First,
Class Editor is for creating reusable components representing domain specific con-
cepts and organizing components into packages. Second, Scheme Editor is for
composing visual specifications using domain specific concepts from packages. It
is also used for defining the goals to be solved and the execution of synthesized
programs. Third, Decision Table Editor allows to manage collections of rules used
as knowledge modules for expert system features. A brief overview of these appli-
cations will be provided below.

2.4.1 Class Editor

In the Class Editor users can define visual aspects of rich components using draw-
ing capabilities or by importing corresponding image files. Figure 2.1 shows the
development of a component responsible for plotting charts in the window of the
Class Editor. The image of the chart contains two ports (red circles) for providing
data to the axis. A smaller pop-up window is for defining properties of a selected
port. Another window is for specifying attributes of the given component, e.g.,
class name, toolbar icon, description and a set of fields of visual interface with
types and default values. Functional properties of this component are implemented
in a Java class.

In other words, Class Editor supports a language designer in defining visual,
logical and interactive aspects of concepts. Moreover, it is a tool for binding visual
parts of a component with other parts developed as Java classes. It is also used for
developing packages—creating new packages, and importing and exporting com-
ponents.

The usage of Class Editor is described in more detail in the user manual available
from the CoCoViLa web site [17].

27

Figure 2.1: Class Editor window (Publication I)

2.4.2 Scheme Editor

The Scheme Editor is a multi-purpose tool. It allows to load a package created in the
Class Editor (user interface with toolbars and menus is determined from the pack-
age description) and to compose models in the form of visual schemes. Schemes
can be exported and used as components in other schemes. This feature allows
to model complex systems using hierarchical composition which is important for
helping the users to manage complexity.

From a visual description of a problem, an executable program is synthesized
automatically. There are also debugging capabilities (algorithm visualizer, viewer
for synthesized code, etc.). An executed simulation program can show results both
in a separate window or display the feedback directly on a scheme.

Figure 2.2 shows the Scheme Editor in use. In this screenshot a basic package
called Hns for simulating hybrid queuing networks is loaded. The scheme describes
a network of three traffic generators and a bounded buffer. This scheme has been
composed by connecting ports of components of the following types: TrafGen,
Buf, Clock and Graph. The toolbar at the top of the scheme is for adding objects
and connections to the scheme. The component Proc is a simulation engine that im-
plements a hybrid simulation process. It is specified as a superclass of the scheme
indicated by the green background color. A pop-up window and a pop-up menu are
also visible in the figure. The pop-up window is for instantiating object attributes,

28

the pop-up menu is for manipulating the scheme—deleting and arranging objects
etc.

Figure 2.2: Scheme Editor window (Publication III)

Figure 2.3 shows a textual specification obtained from the scheme of the exam-
ple shown in Figure 2.2. On the left in Figure 2.3, the specification of the class Hns
derived from the scheme is shown. On the right, the figure shows a fragment of
a simulation algorithm synthesized from the specification. This algorithm is com-
piled into a Java class that in the present case is 144 lines of code and is not shown
here. This Java class can be compiled and run in the Scheme Editor. The scheme
and the algorithm windows shown in Figure 2.3 are useful for debugging a speci-
fication, but they are not needed when solving simulation problems in CoCoViLa,
because during normal use the user interacts with a simulation program through
the main window of Scheme Editor shown in Figure 2.2.

Additional information about Scheme Editor can be found in the user manual
available from the CoCoViLa web site [17].

2.4.3 Decision Table Editor

For many applications it is useful to have the means for handling expert knowledge.
To cover this need, CoCoViLa supports decision tables which provide a compact
and a convenient way for representing application specific knowledge as sets of
rules. The Decision Table Editor is a standalone tool for editing these rule sets.

29

Figure 2.3: Textual specification and synthesized algorithm (Publication III)

Figure 2.4 shows the main window of Decision Table Editor opened in the expert
system management user interface.

Several decision tables can be used simultaneously in one scheme. For acquiring
data from decision tables, a forward chaining inference engine is used internally.
The support for using data from knowledge modules has been integrated into the
specification language via a dedicated @table keyword.

Further information about the usage of Decision Table Editor can be found from
the software user manual [30].

2.5 Planner

The planner is a core part of CoCoViLa. Its purpose is to transform declarative
specifications of computational problems into executable programs. The planner
determines computational paths from initial variables to required goal variables
(i.e., tries to solve a given computational problem “find values of V from given val-
ues ofU”, whereU and V are sets of input and output variables). The planner’s task
is not only to construct a linear dataflow, but also to solve subtasks (higher-order
dataflow) and to perform optimization of an algorithm. Generation of a resulting
program’s code from an algorithm is then a straightforward process.

30

Figure 2.4: Decision table editor (Publication I)

Let us have a small example of dataflow planning where a goal is to compute a
next state of a simulation from a current state. The computational problem can be
expressed with a following statement:

state -> nextstate; (1)

The problem can be solved only if a relation between state and nextstate is
specified. For simplicity, let us assume the state is just a numerical value and the
next state is an increment of a current state by a step which is obtained using a
method getStep:

nextstate = state + step; (2)

-> step {getStep};

out = nextstate;

In this case the planner produces the following dataflow if a value of the state is
given as input:

state = getStep();

nextstate = state + step;

Note that the calculation of a variable out in the previous listing is not included in
the dataflow because it is not required for solving the given problem (1). Another
statement including a control variable printed can be added into the specification
that prints the value of the nextstate using the method print:

nextstate -> printed {print}; (3)

The dataflow for (1) will not include (3) because (1) does not contain a control
variable printed in the set of outputs. To achieve this, another computational
problem has to be stated:

31

state -> printed;

The example above shows how to construct a linear dataflow, i.e., to compute the
value of the next state once. Simulation tasks require to compute states in a loop
until some satisfying final state is reached. To specify such a task in CoCoViLa,
subtasks have to be used. The following statement specifies that a final state can be
computed from a given initial state if there exists a function that calculates the next
state from a given state.

[state -> nextstate], initstate -> finalstate {proc};

To solve a topmost computational problem initstate -> finalstate, the sub-
task state -> nextstate must be solved. Having (2), the subtask is solvable
and a higher-order dataflow can be constructed by the planner. The synthesized
function state -> nextstate is passed as an argument to the method proc and
this method can iteratively call the function to increment the state as long as it is
needed.

Following the described technique, simulation engines that require loops and
other control structures are implemented using subtasks and the planner takes care
of synthesizing bodies of subtasks. In Publication III a hybrid simulation engine
is described. This engine supports the execution of continuous processes that also
include discrete parts modeled as discrete event simulation.

In addition, the planner can be invoked at runtime for generating new programs
to solve tasks on models that might have been changed dynamically during the
simulation process.

In general, the synthesis of an algorithm with subtasks has exponential time
complexity with respect to the number of subtasks in a specification, as the solvabil-
ity of one subtask may depend on the solvability on another subtask or it can be the
case that one and the same subtask has to be solved repeatedly in one and the same
branch. An implemented algorithm is incremental depth-first search with back-
tracking and additional heuristics, delivering good performance on typical practi-
cal problems. More details about the implementation and performance benchmarks
are presented in P. Grigorenko’s dissertation [29].

2.6 Toolbox

Toolbox is a package in CoCoViLa that contains a number of universal and reusable
components useful for building simulation programs. It includes several simulation
engines, visualization components and other helper components, such as tables and
sliders.

The toolbox includes basic simulation engines as components for driving
discrete-event, continuous time and hybrid simulations. Simulation engines are
used as superclasses of schemes, but they are not scheme or application specific.
Being a superclass, a simulation engine is able to collect parts of a state from the

32

underlying components automatically using aliases and wildcards. For visualiza-
tion the toolbox contains several components for plotting diagrams, two- and three-
dimensional charts.

In the conventional CoCoViLa domain engineering process users take individ-
ual components from the toolbox package and import them into their own simula-
tion packages. Essentially, this means the components are copied from the toolbox
and can be later modified as a part of a new package. Due to historical limitations
of the platform it has been impossible to develop CoCoViLa applications that use
components from more than one package. From the software engineering perspec-
tive this results in duplication of development effort and reduces maintainability of
packages. In this work an ontology based modular solution is proposed to alleviate
this limitation. The solution is described in Chapter 3.

2.7 Applications

The platform has been used for various software engineering and simulation ap-
plications. To provide a broader overview of the capabilities of the platform, two
applications from different domains are introduced in this chapter. The first one,
described in the following section, is about the simulation of specific hydraulic sys-
tems. This application is notable for its size and complexity. The second example,
presented in Section 2.7.2, is related to cyber security simulations and is intended
for the selection of optimal technical countermeasures to security incidents and
cyber attacks.

In addition to the applications presented in this chapter, the platform has also
been used for other purposes. For example, an application for automated compo-
sition of Estonian e-government web services [48,49] has been implemented. The
solution lets the users to think in terms of, and express computational goals us-
ing high level domain concepts from in e-government ontologies, such as Citizen,
CadastrialNumber and NationalIdCode. The output is a definition of a new com-
plex web service composed by the planner. This package shows the applicability
of the platform for general purpose software development, including applications
based on services oriented architecture. It demonstrates also the scalability of the
approach to models containing several hundreds of objects.

2.7.1 Simulation of Hydraulic Systems

An advanced and a relatively large application of CoCoViLa is a modeling and
simulation package for fluid power devices [34]. Fluid power systems assume a lot
of drive and control tasks in machinery because of their high power density, flexible
system character and required reliability. Computer modeling and simulation is an
important phase in the design of such systems.

Multi-pole mathematical models and signal-flow graphs of hydraulic elements
are used. This enables methodical, graphical representation of large and compli-

33

cated chain systems. Simulated systems are decomposed into subsystems and func-
tional elements. Multi-pole models of them may use different programs, depending
on the observed process (steady-state condition, frequency characteristics, transient
responses). Calculations are performed using multi-level method. In this way large
differential equation systems can be decomposed into smaller ones. First, calcula-
tions on the level of elements or subsystems are performed, thereafter variables
between elements and subsystems are made congruent by iteration methods.

The package contains over hundred multi-pole models of fluid power elements
that can be used for composing different schemes of fluid power devices and per-
forming simulations.

An example presented in Publication I considers simulation of a hydraulic load
sensing system. In this example, a hierarchically built model of the device includes
over 4500 dependencies represented by equations and Java methods. Typically,
two kinds of simulations are performed: calculating steady state conditions and
dynamic responses. Different simulation engines are used for calculating steady
state conditions, 3D simulations and dynamic transient responses.

A special technique is used for calculating variables in loop dependences that
can appear when a scheme of hydraulic device is composed from visual compo-
nents. This technique is called splitting and it takes initial approximate values and
uses iterative re-computing of the variables. Re-computing algorithms are con-
structed by the CoCoViLa planner as a result of solving corresponding subtasks.
This avoids solving large equation systems during simulations.

The typical simulating task for calculating transient responses of the load-
sensing system contains 37 classes, including 26 functional element classes, and
16 variables that have to be iterated during the computations. The automatically
synthesized Java code for solving the simulation task for calculating dynamic tran-
sient responses that mainly consists of calls of methods has 4449 lines and includes
4 algorithms for solving different subtasks. Its synthesis takes less than a second
on a typical 2 GHz laptop.

The application described above is aimed at giving the end user a convenient
tool for experimenting with different model configurations and varying parameters
of the models.

2.7.2 Simulation of Automated Cyber Attack Response

CoCoViLa has been applied in the cyber security domain for modeling and simu-
lation of cyber attacks and selection of optimal countermeasures (Publication II).
Graph-based Automated Denial-of-Service Attack Response (GrADAR) [38] is an
approach where the selection of attack responses is made according to an estimation
of an impact of simulated counter-attack measures. CoCoViLa was used to create
a GrADAR package for visual modeling and simulation of computer networks on
the basis of information such as dependencies between system resources and their

34

Figure 2.5: Visual specification of a response analysis problem in GrADAR pack-
age (Publication II)

availability and workload values. The optimizer component of the package imple-
ments algorithms for automatic selection and application of response measures.

Figure 2.5 shows a scheme in CoCoViLa representing a dependency graph of
network resources with connections for propagating workload and availability val-
ues. The goal is to simulate and analyze the effect of response measures. CoCoViLa
allows to enter the parameter values using the graphical user interface or query val-
ues from decision tables (see Subsection 2.4.3). Moreover, thanks to the absence
of restrictions on the usage of Java language and libraries, it also allows integration
with other systems, e.g., monitoring solutions or statistics databases to receive live
values into the running program synthesized from the scheme.

One of the potential uses of this application is the support of cyber security op-
erations where quick analysis and decisions support are needed in case of ongoing
attacks.

Another cyber security related CoCoViLa application is modeling and simula-
tion of graded security measures. This application is a main part of this work and
is discussed in detail in Chapter 4.

35

2.8 Discussion and Related Work

Modeling and simulation is a broad field and there exist hundreds of software tools
and products applicable for modeling and simulation. A paper by Leblanc et al.
presents an overview of cyber attack simulation tools [44], another paper by Ouyang
reviews tools and techniques for modeling and simulation of critical infrastructure
systems [58]. In many cases simulation tools are tailor made for solving a specific
problem in a narrow area. Therefore the tools can be very different and may not be
even directly comparable. The ones having common properties with CoCoViLa can
be roughly divided into three categories: general-purpose modeling and simulation
software (e.g., Simulink [15]), model based application development software (e.g.,
MetaEdit [66]) and large-scale discrete event simulation software (e.g., OPNET
Modeler [57], OMNet++ [76]). A universal feature of most of these tools is visual
specification capability by drawing schemes from components and connecting them
to each other.

General purpose simulation software products (Simulink [15], Scicos [11], Pto-
lemy II [46], etc.) typically possess built-in hybrid simulation engines and the sim-
ulation is flow-based—i.e., all the connecting arcs are directed and all the ports
are either inputs or outputs. The models can be composed hierarchically and the
components can be easily reused. Simulations are typically carried out on a virtual
machine. Also, model translators exist to get code in some programming language
(e.g., C) and to improve efficiency running the compiled code. Standard compo-
nents (blocks) are grouped into packages (palettes). There exists a large variety of
blocks and new blocks can be developed to cover missing pieces.

Model based application development tools such as MetaEdit [66] have com-
monly a rich set of tools for program specification, analysis and verification. Taking
the model based approach to simulation development, it is straightforward to com-
pose modeling and simulation applications with these tools. However, it typically
needs more effort than using a dedicated simulation tool.

Large-scale discrete event network simulation tools (OPNET Modeler [57],
OMNet++ [76], NS3 [60], etc.) are scalable simulators capable of handling large
number of nodes and events. Their main concern is simulation performance and
high-fidelity modeling of network devices and protocols. These tools are mostly
used for in-detail analysis of network behavior, simulation testbeds and embedded
systems, simulating all actions down to hardware level.

The CoCoViLa platform itself has been developed bearing in mind program-
ming of simulation problems. However, it has been used also in a more general
model based software development, e.g., for composing web services on large ser-
vice models [49]. In this sense it is similar to visual software development tools
like MetaEdit [66].

The CoCoViLa’s planner provides flow based analysis similar to Simulink or
Scicos, but its capability of constructing higher-order data flows provides addi-
tional flexibility compared to other tools, allowing, for example, the development

36

of model- and simulation-specific simulation engines. As the resulting simulation
is always compiled into a single program it allows to achieve good simulation per-
formance.

In comparison to other tools, CoCoViLa’s support for handling bindings is very
useful as this allows better reuse of rich components. For example, the ports are
not defined strictly as inputs or outputs like it is the case with the tools belonging
to the first two categories. It is up to the planner to decide which way the data flows
in order to match the needs of the given problem—like it is the case also in real
life—when defining a pipe it is not known beforehand in which direction the liquid
flows in it.

A simulation engine and other supporting tools are usually built into the simula-
tion platform. It is a common practice that a simulation problem itself is described
using a model based technology, mainly by specifying a model of the simulated
system. CoCoViLa takes this one step further—model based approach is used for
constructing and compiling a completely new program for every simulation, using
simulation engines, optimizers, visualizers etc. as components. Almost any aspect
of a simulation can be customized by replacing a component with another from a li-
brary or by implementing a new component. This feature allows to call CoCoViLa
multi-functional and makes it generally more broadly applicable than other similar
tools. This approach is feasible thanks to efficient automation of program construc-
tion from a given model.

A useful feature of the CoCoViLa platform is the ability to generate parts of
simulation programs automatically using structural synthesis of programs, even
at runtime, if needed. This adds flexibility in developing and reusing simulation
models, as, for example, functions (e.g., event handlers) can be synthesized lazily.

When comparing simulation tools there are other significant attributes to con-
sider such as the licensing costs, possibility to get support, availability of source
code, extendability, the freedom to modify the tools, the size of user base, availabil-
ity of documentation, the amount of community developed models and component
libraries etc. In case of simulation tools where small implementation details may
affect results in unexpected ways the availability of source code and the freedom
to inspect and modify it are crucial. This is especially important with security re-
lated simulations. Also, for wide adoption it is useful to have a tool with a free
license for all applications. Hence, a good choice for simulation software is an
open source platform with optional commercial support. The CoCoViLa platform
is developed as free and open source software but is currently lacking commercial
support offerings and a large enough user base.

2.9 Conclusion

This chapter gave an overview of the CoCoViLa platform and described its fea-
tures. In this platform a component based approach to software development is

37

used. The platform provides flexibility by supporting domain specific visual spec-
ification languages and allows to implement domain concepts and simulation en-
gines as reusable components. Moreover, a main feature is the support of struc-
tural synthesis of programs for translating declarative specifications of simulation
problems into executable code. The program synthesis method and the underlying
textual specification language provide convenient means for working with domain
concepts and defining new hierarchical components in a natural way. Reusable
components can be implemented in Java programming language without restric-
tions. Therefore, existing Java libraries are available, for example, to interface with
third party tools, databases, monitoring solutions, etc.

CoCoViLa serves as the infrastructure for supporting the model based software
engineering methodology. The extension developed in the scope of this work are
discussed in more detail in Chapter 3. This chapter also referred to various Co-
CoViLa applications in different domains, including the cyber security domain. A
cyber security application example for graded security cost optimization will be
presented in Chapter 4.

38

3 OWL Ontologies in DSL Development Process

Domain specific languages (DSLs) provide convenient and efficient means for de-
scribing systems using the concepts of a domain. The CoCoViLa software tech-
nology is based on user defined visual domain specific specification languages and
backed by automated synthesis of programs built into the platform. As discussed
in Chapter 1, achieving cyber security goals needs cooperation between different
departments of an organization. Situation awareness that requires accurate per-
ception of the environment and comprehension of its semantic structures is also a
prerequisite of successful cyber security planning and operations. In order to facili-
tate communication, interoperability of software tools and reuse of software assets,
shared and formalized conceptualizations are needed.

In CoCoViLa, DSLs are implemented as packages consisting of components
that represent concepts. CoCoViLa packages are, in essence, shared and formalized
conceptualizations of problem domains, similar to formal ontologies. The concepts
in CoCoViLa packages carry logical specifications called metainterfaces that ex-
press attribute semantics [32] of the models composed of DSL concepts. However,
the DSLs developed for CoCoViLa using the conventional approach cannot easily
reuse existing semantic assets nor are the resulting packages usable outside of the
platform.

To address the issues of communication and interoperability, and to facilitate
reusability, a new approach to DSL development that employs semantic web tech-
nologies was proposed in this work. The chapter first gives an overview of the
model based approach to software engineering. The rest of the chapter is dedicated
to describing the proposed DSL development process and the architecture of the
prototype implementation. This chapter is based on the following publications:

• Semi-Automated Generation of DSL Meta Models from Formal Domain On-
tologies (Publication V),

• Ontology-Based Integration of Software Artefacts for DSL Development
(Publication VI),

• Semi-Automated Integration of Domain Ontologies to DSL Meta-Models
(Publication VII).

3.1 Using OWL Ontologies in DSL Design

In this work three types of ontologies are introduced into the DSL development
process: domain ontologies, system ontologies and DSL meta-model ontologies.
This section describes the purpose and gives an overview of these ontology types.

39

First, the purpose of a domain ontology is to provide a specification of conceptu-
alization of domain knowledge. That is, a domain ontology provides the concepts of
the domain and defines relationships between concepts. A formal domain ontology
could be seen as a static part of a meta-model of a DSL that may also contain ref-
erences to computational resources. In the DSL design and implementation phase
information about domain concepts can be extracted from the ontology. This in-
formation can be utilized to generate skeletons (design templates) of visual classes
automatically, hence reducing manual work and helping to align DSL meta-models
to actual domain concepts.

Second, a system ontology describes the modeling language and the concepts
of the modeling software system. The purpose of the system ontology is to make
the system concepts and relations explicit in order to support interoperability with
new and existing semantic resources. For example, resources developed on one
modeling platform can be mapped and then automatically transformed for the use
in another modeling tool.

Third, a DSL meta-model ontology describes a domain specific language by
linking one or more domain ontologies to a system ontology and binding domain
concepts to system concepts. It can also include references to existing software as-
sets (e.g., software libraries) or general resources (e.g., images, fragments of spec-
ification). The concept of DSL meta-model ontology is central to the approach
proposed in this work.

In the context of the CoCoViLa technology, ontologies represented in OWL 2
Web Ontology Language [59] are used. OWL is built on the logical foundation
provided by Description Logics [5] which is a family of knowledge representation
formalisms. The use of OWL brings additional advantages such as interoperabil-
ity with (semantic) web technologies (existing tools, e.g., Apache Jena), network
transparency (generally no distinction between local and remote resources), global
naming (Uniform Resource Identifiers), etc. Another benefit of the proposed solu-
tion is that it removes in a natural way the current limitation of being able to use
components from only a single package (see Section 2.6). Existing packages, such
as the toolbox, can imported into the DSL meta-model ontology. When loading the
DSL meta-model ontology, all imported ontologies are found and loaded. Further-
more, the use of OWL DL reasoning capabilities help to ensure consistency of the
model and helps in debugging.

The general overview of the approach is shown in Figure 3.1. The CoCoViLa
system ontology is utilized in the implementation phase of a DSL. Individuals of
the system ontology classes together with their property values are used to store
knowledge about a particular DSL meta-model. These individuals are defined in
the DSL meta-model ontology that imports the CoCoViLa system ontology and
one or more domain ontologies. Apache Jena inference engine is applied to the
model in order to extend it with derived knowledge. SPARQL [37] queries are
used to extract the DSL meta-model from an extended graph representation of the
DSL meta-model ontology. Extended graph representation is obtained by running

40

Figure 3.1: Overview of the ontology based DSL development approach (Publica-
tion V)

OWL DL inference and applying production rules on the initial graph. Further
implementation details are presented in Section 3.2.

For automatic transformation of formal domain ontologies to DSL meta-models
corresponding mappings between a set of ontology representation language con-
structs and a DSL modeling language constructs need to be defined. These map-
pings have been described in publications V and VII.

3.2 Architecture and Prototypical Implementation

An overview of the CoCoViLa system was given in Chapter 2. Implementing a
DSL in the conventional CoCoViLa process required a domain expert to provide
the domain knowledge and a programmer able to convert such an informal repre-
sentation of knowledge into Java classes and annotate these classes with concept
specifications. Concept specifications include besides variables also functional de-
pendencies related to concepts. The implementations of functional dependencies
can be equations or Java methods implemented in corresponding Java classes. Steps
related to the DSL application for solving a particular problem are done automati-
cally by the planner.

A part of this work was to develop a CoCoViLa extension that integrates OWL
ontologies described in Section 3.1 into the DSL development process. Figure 3.2
depicts the architecture of the CoCoViLa system extended with ontology based

41

Figure 3.2: The extended CoCoViLa architecture (Publication VI)

DSL development facilities. The extension is mainly related to the improvement of
DSL development (domain engineering) while components of the original system
are used for a DSL application (application engineering).

The CoCoViLa extension provides facilities for DSL designers to carry out the
ontology based DSL development process that enables the usage of existing formal
domain ontologies in combination with the system ontology for a DSL construc-
tion. When loading a DSL, its meta-model ontology (created by DSL designers)
is loaded, extended via Jena inference and rule engine. SPARQL queries are used
to dynamically collect and semantically integrate all metadata about artefacts of
a DSL meta-model for instantiation of the computational model. Afterwards, the
DSL is ready to be used by application developers.

The listing in Section A.1 shows a SPARQL query used in the implementation
of the prototype. This query finds individuals representing visual classes. There
are five additional queries (packages, fields, all properties, superclasses, and ports)
needed for compiling the minimal amount of information required for a usable DSL
meta-model.

In this architecture, the internal and external representations of DSLs are de-
coupled and the mapping from DSL meta-model ontology to internal structures
of Scheme Editor is distilled from the CoCoViLa program source code and made
explicit as declarative queries.

Application developers build the problem specification using the DSL and trans-
late it into the computational model with the help of the CoCoViLa tool. Applying
a set of Jena rules enables to extend the computational model with additional rela-
tions between concepts in the model.

Computational model is an internal representation of the computational prob-
lem and concept specifications. It is used as an input for the CoCoViLa planner,
a theorem prover, which considers the computational model as a logical theorem

42

with axioms derived from the functional dependencies defined in the specifica-
tion. Since the prover is based on intuitionistic logic, the solution to the specified
computational problem, an algorithm, is extracted from the constructive proof. Co-
CoViLa generates the Java source code from the algorithm, compiles and executes
it at runtime and immediately presents the result of the computation to the user.
The generated code can be later (re)used, as it can be saved into the file system.

3.3 Evaluation: IT Security Risk Analysis Domain

In order to evaluate the proposed OWL ontology based approach to DSL devel-
opment process, a DSL for IT risk analysis was implemented. The DSL realizes a
multi-parameter attack tree method [10]. According to this method, attack trees are
used to estimate the cost and the success probability of attacks under the assump-
tion of a rational attacker. Elementary game theory is used to decide whether the
system under protection is a realistic target for gain-oriented attackers.

This particular DSL was chosen for evaluation because there exists an earlier im-
plementation of a DSL intended for modeling and simulation of IT security risks
using attack trees. The earlier version was developed using the conventional Co-
CoViLa process and it has been used in teaching for practical course work. The
new implementation of the DSL is based on OWL ontologies.

An example application for the DSL has been adapted from the original pa-
per [10]. In this example an attack is analysed where the primary threat is a fore-
stalling release of a software product. This threat is related to the situation where
a competitor of an IT company steals the developed source code and completes it
to its own product.

In the original example the attack tree is static and the outcome is calculated
once for a fixed set of parameter values. For a dynamic simulation experiment the
attack tree would be recalculated for different parameter values while visualizing
the outcome as a graph. Standard components such as Graph and Proc (simulation
engine) from the CoCoViLa toolbox package can be utilized.

3.3.1 The DSL Meta-Model Ontology

From the domain engineering perspective the desired DSL can be expressed by five
OWL ontologies. This is illustrated in Figure 3.3 where rectangles reprsesent OWL
ontologies and arrows show import relations.

The solution proposed here consists of the following five ontologies:

• CoCoViLaSystem (ccvl)—system concepts;

• Toolbox (tb)—generic reusable components;

• AttackTree (at)—domain ontology for the threat modeling method [10];

43

Figure 3.3: Structure of the attack tree package

• AttackLibrary (alib)—a library of attack models;

• AttackTreeSim (asim)—the DSL meta-model ontology.

The ontologies and their purposes will now be described in more detail in the
following paragraphs.

CoCoViLaSystem This is the CoCoViLa system ontology that contains system
concepts such as VisualClass, Icon, Field, etc. The ontology version used in
this experiment consists of 41 classes in total. It also defines 33 object proper-
ties (e.g., hasPort, isImplementedBy) and 19 data properties (e.g., hasIcon,
hasVisualClassName). The properties have their domains and ranges specified
where applicable. This allows to use a reasoner for classifying individuals defined
in other ontologies without specifying their classes explicitly. For example, the
range of object property ccvl:hasPort is asserted to be ccvl:Port. That is,
from the axioms:

ObjectPropertyDomain(ccvl:hasPort ccvl:VisualClass)

ObjectPropertyAssertion(ccvl:hasPort a:vc1 a:port1)

it follows that: ClassAssertion(ccvl:VisualClass a:vc1). This derived
fact is used in SPARQL queries for finding visual classes.

Toolbox This ontology imports the CoCoViLa system ontology and defines a
set of reusable components in CoCoViLa terms. The components are defined as
named individuals in the ontology. Datatype and object properties are assigned to
the individuals. The individuals are properly classified automatically by OWL DL
inference based on property domains and ranges defined in the system ontology. For
this experiment a minimal toolbox was developed that consists of three components:
Clock, Process, and Graph. The full definition of the toolbox ontology is given
in Section A.2.

44

AttackTree The ontology defines the following concepts from the risk analysis
method’s domain (see Figure 3.4): Threat, AtomicThreat, AndNode, OrNode,
and PrimaryThreat.

Figure 3.4: Attack tree domain ontology

The concept Threat is the domain of the following data properties: gains,
hasAveragePenaltyFailure, hasAveragePenaltySuccess, hasCost, has-
SuccessProbability, threatDescription. These data properties are auto-
matically mapped to fields of visual classes in CoCoViLa (see Publication V).

AttackLibrary The attack library contains a set of defined attacks with known
parameter values. It has imported and uses concepts from the AttackTree do-
main ontology and is independent of CoCoViLa system ontology. In this sim-
plified example the ontology contains just one individual representing a threat:
robberObtainsTheCode. This individual has values defined for its data prop-
erties that will be used as defaults in applications. Figure 3.5 shows the definition
of attack library ontology used in this example.

The values specified in the ontology can be seen in the object properties window
in Figure 3.7. Default values can be edited on the scheme via the object properties
window.

AttackTreeSim This is the DSL meta-model ontology that imports AttackTree,
AttackLibrary, Toolbox and CoCoViLaSystem ontologies and defines individ-
uals representing visual classes along with the parameter values. Figure A.1 and
Figure A.2 give an impression of the size of the ontology and the amount of re-
lations with and without inferred axioms. The DSL meta-model ontology can be
loaded in CoCoViLa Scheme Editor as a package and it results in a visual language
represented by the icons in the horizontal toolbar (palette) in Figure 3.6. The use
of this DSL is illustrated in the following section.

3.3.2 Example Application

Figure 3.6 presents a screenshot of the CoCoViLa Scheme Editor where the
DSL meta-model ontology AttackTreeSim is loaded. The concepts of the
visual language are visible in the horizontal palette (toolbar) as icons. The
palette also contains tools for selecting objects and connecting ports. The icons

45

1 P r e f i x (:=< h t t p : / / www. example . o rg / o n t o l o g i e s / 2 0 1 6 / a t t a c k l i b #>)
2 P r e f i x (a t :=< h t t p : / / www. example . o rg / o n t o l o g i e s / 2 0 1 6 / a t t a c k t r e e #>)
3 P r e f i x (xsd :=< h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>)
4 P r e f i x (r d f s :=< h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>)
5
6 Onto logy (< h t t p : / / www. example . o rg / o n t o l o g i e s / 2 0 1 6 / a t t a c k l i b >
7 Impor t (< h t t p : / / www. example . o rg / o n t o l o g i e s / 2 0 1 6 / a t t a c k t r e e >)
8 Anno t a t i o n (r d f s : comment ” L i b r a r y o f a t t a c k s ”)
9

10 D e c l a r a t i o n (NamedInd iv idua l (: r obbe rOb ta in sTheCode))
11
12 C l a s s A s s e r t i o n (a t : A tomicThrea t : r obbe rOb ta in sTheCode)
13 D a t a P r o p e r t y A s s e r t i o n (
14 a t : h a s A v e r a g e P e n a l t y F a i l u r e : robbe rOb ta in sTheCode ” 1 0 0 0 0 0 . 0 ” ˆ ˆ xsd :

doub l e)
15 D a t a P r o p e r t y A s s e r t i o n (
16 a t : h a s A v e r a g e P e n a l t y S u c c e s s : robbe rOb ta in sTheCode ” 1 0 0 0 0 0 . 0 ” ˆ ˆ xsd :

doub l e)
17 D a t a P r o p e r t y A s s e r t i o n (a t : h a sCos t : robbe rOb ta in sTheCode ” 1 0 0 0 . 0 ” ˆ ˆ xsd :

doub l e)
18 D a t a P r o p e r t y A s s e r t i o n (
19 a t : h a s S u c c e s s P r o b a b i l i t y : robbe rOb ta in sTheCode ” 0 . 5 ” ˆ ˆ xsd : doub l e)
20 D a t a P r o p e r t y A s s e r t i o n (
21 a t : t h r e a t D e s c r i p t i o n : robbe rOb ta in sTheCode ” Robber o b t a i n s t h e code ”)
22)

Figure 3.5: Minimal attack library ontology

from left to right and their origin (indicated by prefix, if not built-in): selection
tool (built-in), connection tool (built-in), tb:Process, tb:Graph, tb:Clock,
alib:RobberObtainsTheCode, at:PrimaryThreat, at:OrNode, at:Atomic-
Threat, and finally at:AndNode.

An example application is developed using this DSL. The goal is to specify the
attack tree example given in the original article [10] and to calculate the outcome
of this tree over a range of values of the global parameter gains. The visual speci-
fication of the simulation task is shown in Figure 3.6. In addition to the attack tree,
this scheme contains a Process object for running the simulation process, a Clock
object for changing the value of the gains parameter during the simulation, and
a Graph for visualizing the outcome. The result of a simulation as a graph can be
seen in Figure 3.8.

3.3.3 Advantages and Limitations

The proposed approach in general and the separation of the DSL into five ontolo-
gies has several significant benefits, including the following. First, domain con-
cepts are defined explicitly in a separate ontology that is independent of any system
specific definitions. The knowledge extraction process is separated into SPARQL
queries. Second, components from the toolbox can be reused by just declaring the
URI of the ontology as an import and all required resources can be loaded from

46

Figure 3.6: An example attack tree

the network. Third, there is no need to specify all axioms manually as some ax-
ioms can be derived. For example, if and individual someThreat has the prop-
erty hasComponentSpecification defined and the domain of this property is
MetaClass, then OWL DL inference engine derives the fact that the individual
someThreat is an instance of MetaClass. Fourth, a general purpose ontology val-
idator and a reasoner can be used for validating the DSL meta-model ontology for
finding inconsistencies, type mismatches etc. This helps to find and avoid mistakes
when developing a DSL. Finally, the use of semantic resources lays a foundation
for developing powerful tools that can automate refactoring and development steps.

Currently, there are also limitations. The prototype implementation is func-
tional, but not ready for production use as it does not attempt to cover all use cases
that would be needed in practical use. Implementing a production-ready system
would need significant effort. CoCoViLa tooling lacks a good user interface for
the DSL meta-model development process. For this reason the author used the

47

Figure 3.7: Properties of an attack imported from library

Figure 3.8: A graph of simulation results

Protégé ontology editor [22] instead for the development of this example. Protégé
has a comprehensive support for OWL ontology editing. While usable, this process
involving external tools is not friendly enough for end-users and would need better
software tool support to provide a more integrated user experience.

3.4 Conclusion

This chapter presented an approach that introduces OWL domain ontologies into
the DSL development process. A central concept of this approach—DSL meta-

48

model ontology—was introduced. This approach allows to automatically generate
design templates of a DSL meta-model that are consistent with a given domain
ontology represented in OWL DL.

The proposed approach creates several benefits, including formal consistency
checking of domain knowledge and DSL meta-model ontology, automated genera-
tion of design templates of a DSL meta-model that facilitates tracking the evolution
of the domain in a DSL. Moreover, it is possible to apply knowledge derived by on-
tology inference, the use of semantic web technologies improves interoperability
and removes some existing modularity and reusability limitations, the use of formal
domain ontologies in the early development phase facilitates communication and
consistency.

A prototype of this approach was implemented based on the CoCoViLa plat-
form. To evaluate the approach, a DSL meta-model prototype for modeling attack
trees was developed. This work demonstrates the applicability of formal ontologies
for semantic integration of software artefacts for building DSL meta-models.

49

4 Graded Security Expert System

This chapter presents the concept of rational security design and describes a
methodology for optimal long-term planning of security investments. A supporting
tool implemented using the CoCoViLa technology is also presented along with an
approach to teaching the methodology to security managers. This chapter summa-
rizes a series of conference papers:

• Graded Security Expert System (Publication VIII),

• Pareto-Optimal Situation Analysis (Publication IX),

• Managing Evolving Security Situations (Publication X),

• Enterprise Security Analysis and Training Experience (Publication XI).

The graded security model was originally conceived on the conceptual level
by Dr Kivimaa. The author of this dissertation formalized the model, designed
and implemented the graded security expert system. In further developments on
the model described in this chapter, we worked together both on the conceptual
and formal model. The implementation including the optimization algorithms was
developed by the author of the dissertation.

4.1 Introduction

Security is expensive. How much should an organisation spend resources on se-
curing an IT system? It is possible to invest large amounts into securing a system
by, e.g., implementing increasingly advanced security technologies and training
personnel. At some point, though, diminishing returns set in and allocating more
resources becomes wasteful. In general, it is unreasonable to spend more resources
on protecting a system than the total worth of the system or the potential damage
arising from a compromise of the system.

In most organisations the security budget is limited and aiming for absolute se-
curity is unrealistic. However, there might be regulations in effect that prescribe
a certain baseline security level for a given IT system. Security standards such
as NISPOM [54], ISKE [19], BSI [27] and Common Criteria [14] have been de-
veloped to ensure a baseline security of complex IT systems. The standards pre-
scribe security requirements as a set of graded security measures depending of the
nature or security class of the system to be secured, without including economic

50

parameters—the costs of implementing the measures. Implementing security mea-
sures to cover a full set of security requirements imposed by standards or regula-
tions may be problematic when the budget is limited. In that case priorities have
to be set and more important measures have to be handled first. Setting optimal
priorities manually for a large set of requirements is complicated and may require
a time consuming cost-benefit analysis.

An important aspect of planning and implementing security measures is the time
it takes. Comprehensive and detailed security cost-benefit analysis may require
months [28, 63]. Often, however, a coarse-grained but quick and good enough
solution is preferred to an almost perfect plan after months of effort.

The methodology described in this work provides a rational way of planning
security measures and calculating costs. This approach allows to model evolving
security situations and to find optimal security solutions based on previous invest-
ments and available budgets. Also, the solution includes priorities of security mea-
sures, that is, new investments are planned in an order that permits to achieve the
best possible security confidence level given the amount of available resources.

Modeling and simulation provides the means to analyse a key question in en-
terprise security planning of what would be a reasonable amount of resources to
invest into security and how to justify the decisions. Visualizations help to commu-
nicate the results. The method along with the software tool is primarily intended
for two purposes. First, it can be used in the security management as a means for
decision support, and second, it can be valuable in education for teaching security
specialists.

4.2 Rational Security Design

Security planning for an enterprise is aimed at finding a distribution of resources
for security measures to achieve the best security solution under given conditions.
This is called rational security design. Inputs for the rational security design are:
total amount of available money (maximal allowed costs), characterization of the
secured system, security requirements.

Finding a security solution assumes using a security metric that offers a pos-
sibility of comparing different solutions, and the possibility to express the quality
of the solution by a numeric value. An integrated security confidence is used for
this purpose that takes into account effects of applied security measures (see the
following section). Although security planning is performed as an optimization
process, the input data is approximate and mainly based on empirical observations
and expert knowledge. Therefore the result is called rational and is not necessarily
an optimal solution.

Security planning may require solving several partial problems: evaluating costs
required for implementing a selected solution, estimating the relative importance

51

of any taken security solution, detecting similar security measures and collecting
them in security measures groups (SMGs), etc.

4.3 Graded Security Model

The graded security model is intended to help to determine reasonable or optimal
sets of security measures according to the given security requirements. The model
describes how security measures are related to security goals, what are the costs to
apply security measures, and what is the confidence for guaranteeing the respective
security level. The essential concepts, variables and function used in the graded
security model will be introduced in this section.

The overall security of a system is described by a security class. It shows how
the security goals (confidentiality, integrity, availability, . . .) are satisfied. It is
determined by assigning security levels to security goals, and is denoted by a re-
spective tuple of pairs, e.g., C2-I1-A1-M2 for the system that has the second level
of confidentiality C, the first level of integrity I etc.

To achieve the security goals, proper security measures have to be taken. There
may be a large number (hundreds) of measures. It is reasonable to group them into
security measures groups g1, g2, . . . , gn. The grouping should be done in such a
way that measures of one and the same group will always be used for achieving
one and the same level of security. A function f produces a set of required security
measures f(l, g) for a given security measures group g and a security level l of the
group. A security class determines the required security level for each group of
security measures.

Let s denote a respective function that produces a security level s(K, g) for a
group g when the security class is K. An abstract security profile is an assignment
of security levels (0, 1, 2, or 3) to each group of security measures. This can be
expressed by the tuple p = (s(K, g1), s(K, g2), . . . , s(K, gn)), where p denotes
the abstract security profile and the elements of the tuple p are indexed and appear
in the tuple in the same order as the groups of security measures g1, g2, . . . , gn have
been indexed. Knowing the cost function h(l, g) that gives the costs r required for
implementing security measures of a group g for a level l, one can calculate the
costs of implementing a given abstract security profile:

costs(p) =

n∑

i=1

h(li, gi) ,

where p = (l1, l2, . . . , ln).
The goal is to keep the value costs(p) as low as possible, guaranteeing a required

security. It is assumed that by applying security measures, one achieves security
goals with some confidence. The security confidence c of a group g that satisfies
the security level l is given by a function e(l, g) and it is a numeric value between
0 and 100 for each group of security measures.

52

4.3.1 Security Metrics

The graded security model uses coarse-grained metrics differentiating usually three
or four security levels for each security goal. To compare security situations in
general, one needs a more precise metric that expresses the quality of a security
situation by one numeric value. It is reasonable to take into account influences of
all security measures on the overall security of the system.

The simplest choice would be to calculate the mean security confidence of all
groups. However, the influence of groups on the overall security is different. There-
fore, the best solution would be to use partial derivatives of the security measure
depending on the security confidences of the groups. These derivatives could be
used as coefficients of the security confidences when calculating their mean value.
Unfortunately, these derivatives are hard to determine. Instead of the derivatives,
one can use empirically found weights of the security confidences.

The overall security of a system is described by means of an integrated security
metric S that is a weighted mean security confidence, also called integral security
confidence:

S =
n∑

i=1

aici ,

where ci is security confidence of the i-th security measures group, ai is the weight
of the i-th group, and

n∑

i=1

ai = 1 .

Using a linear combination of security confidences of measures groups is rea-
sonable as long as a security situation does not change too rapidly.

4.3.2 Evolving Security Situations

To support long term planning, the model has to include former investments that in-
fluence the outcome of the planned investments as well as recurring costs of main-
taining already achieved security levels. The following extension to the graded
security model allows to take already achieved security level into account in the
optimization process. The extended model also accommodates recurring costs that
may be implied by some security measures such as licensing costs of antivirus soft-
ware.

Let us fix a security measures group and consider only one group of security
measures here. Then, a simplified form of the functions h and e can be used for
calculating costs r and security confidence c—without showing explicitly the se-
curity measures group:

r = h(l) ,

c = e(l) .

53

A function h−1 is used for calculating security level l for invested costs, which is
an inverse function of h:

l = h−1(r) .

Data is needed for already existing security:

l′ – existing level of security,
c′ – existing security confidence.

To continue the analysis of security investments, a function H is defined that calcu-
lates the additional investments r needed depending on the existing security level l′
and the required security level l:

r = H(l, l′) .

Instead of the function H another function h∗ could be used that calculates the
required resources for increasing security level by ∆l, where ∆l = l − l′:

r = h∗(∆l) .

In the case when no investments in the security have been done before, i.e., when
l′ = 0, the function h∗ coincides with the already known function h. However, in
the case of ∆l = 0 and l′ > 0 the degradation of security has to be considered
as well—the security level will decrease with time unless additional resources are
invested. This shows that the usage of h∗ instead of H would be quite a rough
approximation.

This analysis is valid for all security measures groups. In the general model an
argument g (group number) has to be introduces in each function considered here.
This gives the following functions:

r = H(l, l′, g) ,

r = h∗(∆l, g) .

These functions should be obtained from expert knowledge.
Another approach would be to use security confidence c instead of security level.

These variables are bound by the function e in the graded security model:

c = e(l) .

The relation between costs and security confidence is expressed by the formulas:

r = h(e−1(c)) , and
c = e(h−1(r)) .

Knowing the already achieved security confidence, additional investments for
achieving the new security confidence (or keeping the required confidence level)

54

can be calculated. This requires the knowledge of a new function E that gives the
costs r for achieving required security confidence c by upgrading the given security
confidence c′:

r = E(c, c′) .

As discussed above, it can sometimes be assumed that the costs depend only on the
difference ∆c of security confidences:

∆c = c− c′ ,

and use the function e∗ that calculates the costs:

r = e∗(∆c) .

Again, in the general model an argument g (group number) has to be introduced in
each function considered here. This gives the following functions for calculating
costs in the general case:

r = E(c, c′, g) ,

r = e∗(∆c, g) .

For taking into account the legacy security measures in calculating resources re-
quired for achieving a given security confidence, one of the functions H , h∗, E or
e∗ is needed. It is preferable to use H or E, because these describe the security
situation more precisely. In practice, these functions are represented in a tabular
form as expert knowledge. Solving the inverse problem—calculating achievable
security confidence for given resources—can be done using one of the inverse func-
tions H−1 or E−1 representable by the same tables as H and E:

l = H−1(r, l′, g) ,

c = E−1(r, c′, g) .

The functionsH , h∗,E, e∗,H−1 andE−1 are called legacy functions in this model.
The legacy values of l and r are bound by the functions h and h−1 as follows:

r′ = h(l′) , and
l′ = h−1(r′) .

Therefore, legacy resources r′ can be used instead of l′ as inputs of the calculations.

4.4 Expert System

An expert system with visual specification language for security situation descrip-
tion has been built on the basis of the CoCoViLa platform described in Chapter 2.
The conceptual architecture of the expert system is show in Figure 4.1. The system

55

Vi

GUI
Optimizer

Visual composer

Knowledge modules

Figure 4.1: Conceptual architecture of the graded security expert system (Publica-
tion VIII)

includes knowledge modules (rule sets) in the form of decision tables for handling
expert knowledge of costs and gains, as well as for selecting security measures
for each security measures group depending on the required security level. Other
components are an optimization program for calculation Pareto optimality curve
parameterized by available resources, and a visual user interface for graphical spec-
ification of the secured system, visual control of the solution process through a GUI,
and visualization of the results. These components are connected through a visual
composer that solves the specified problems on the request of the user.

The quality and usefulness of the results that can be produced using the method
rely on accurate input data—expert knowledge. Gathering and producing high
quality formalised expert knowledge is a complex problem on its own and is out-
side of the scope of this work. The developed solution provides technical means to
represent, store and use existing expert knowledge.

4.5 Optimization

The expert system allows to solve several security related optimization problems.
First of all, it enables one to find an optimal security solution for given resources,
and to determine the reachable security class. This problem concerns again only
one value of resources, and can be illustrated by the same picture as the conventional
graded security problem (Figure 4.2a).

To get a broader view of possible solutions, one should look at the optimal secu-
rity for many different values of usable resources. This service is provided by the
expert system by plotting a Pareto optimality tradeoff curve that binds resources
and the achievable security S. Figure 4.2b shows this curve for an interval of re-
sources from r1 to r2. The last value of resources r2 can be easily calculated as the
resources required for getting the security class C4-I4-A4-M4. The curve shows

56

S l

r

0

1

2

3

S*

r*

1, 2, 3, 6, 8, 9

4

5, 7

(a) Conventional graded security solu-
tion

S l

r

0

1

2

3

1

4

r1 r2

(b) Pareto-optimal solutions

Figure 4.2: Conventional graded security solution and Pareto optimality tradeoff
curve (Publication X)

also the respective security levels for selected security measures groups—in the
present case, for the groups number 1 and 4. The exhaustive search of optimal so-
lutions for q possible values of resources, n security measures groups and k security
levels requires testing (calculating weighted mean confidence) of qkn points.

Building optimal solutions gradually, for 1, 2, . . . , n security measures groups
allows to use discrete dynamic programming [71] and to reduce considerably the
search time. Indeed, the fitness function S defined on intervals from i to j as

S(i, j) =

j∑

s=i

asls

is additive on the intervals, because from the definition of the function S we have

S(1, n) = S(1, s) + S(s, n), 1 < s < n .

This means that an optimal resource assignment to security measures groups can
be built gradually, as a path in the space with coordinates x1, x2, where x1 equals
to the number of security measures groups that have got resource (i.e., x1 = s) and
x2 equals to the amount of used units of resources. This algorithm requires testing
of q2nk points (q is number of possible values of resources, n is number of security
measures groups and k is number of security levels).

4.6 Example

A simplified example will be shown next to illustrate the use of the system. Cur-
rently, there are four main security goals in the model: confidentiality (C), integrity
(I), availability (A) and satisfying mission criticality (M). For each goal, a certain
level (0-3) is attached to specify the security requirements defined by a particular
security class. As a simplified example, to achieve the security goals, the follow-
ing groups of security measures might be selected for consideration: user training,

57

Figure 4.3: Visual specification and the result of simulation (Publication VIII)

antivirus software, segmentation, redundancy, backup, firewall, access control, in-
trusion detection, and encryption. The relative importance of a measures group
can be specified by giving a weight value. In realistic scenarios studied so far the
number of measures groups has been between 30 and 40.

Figure 4.3 shows a screenshot of the graded security expert system which con-
sists of a visual specification language, implemented optimization algorithms and
knowledge modules in the form of decision tables. In this package, security situ-
ations are described using the visual language. Suitable optimizers are applied to
simulate all possible outcomes to find the Pareto-optimal set. During the simulation
the optimizer queries decision tables for specific values. In the lower right corner
of the figure the result of simulation, in the form of a Pareto curve and resource
distribution curves, is shown.

58

As optimization procedures are contained in regular rich components, the algo-
rithm used for a computation is easy to change by just replacing a component on the
scheme. It can be useful to have a package contain several optimizers. Then the one
making the most appropriate trade-offs for a particular experiment can be chosen
by the user. In case of this demo package two different optimizers have been imple-
mented: one employing brute-force and the other discrete dynamic programming
algorithms.

Larger examples can be found from Dr Kivimaa’s dissertation [41].

4.7 Training Process

The expert system is intended for building security models and solving security de-
sign problems: calculating the best distribution of given resources, checking reach-
ability of security goals, planning the evolving security for several years, etc. This
tool can be used for training security managers by offering a hands-on experience
with solving these problems in a training process.

Trainees are expected to solve a number of security design problems in the con-
ditions that are close to a realistic security planning situation. A suggested order
of training steps for these problems is shown in Figure 4.4. The first two are intro-
ductory steps. The third step—analysis of security measures groups is an activity
for experts. So are the following two steps of adjustment of parameters. Default
parameters given in the expert system can be used in training of general managers.
Calculating the best distribution of resources is the main training activity. It is
possible to concentrate on this activity immediately after introductory steps. Cal-
culating the evolving security continues the previous step and considers security as
a process continuing for several years. Checking the reachability of security goals
is an independent problem, but it can be solved by the same means as calculating
the best distribution of resources.

If a scheme from the scheme library is used, then the first five training steps
can be omitted, and one can immediately start solving the last three problems that
are training steps for managers as well as for security experts. The model based
security analysis is suitable for security training of people with different level of
experience. It relies on analytic capabilities of a person, and it introduces the ba-
sics of security in the form of a security model. The hands-on part of the training
is performed using an expert system. The aim of the presented security model and
of set of exercises is to help the trainee to build his or her mental model of cyber
security by combining 1) analytical approach where basic concepts and an explicit
security mode are introduced, and 2) hands-on experience by solving security de-
sign problems with the help of an expert system.

59

Figure 4.4: Ordering of training steps (Publication XI)

4.8 Related Work

Graded security policy is the basis for security protection programs of nuclear se-
curity and anti-terrorist security of US Department of Energy [47, 75], as well as
for several European information assurance standards. In particular, German BSI-
Standard 100-2 [27] and Estonian ISKE standard [19] are both based on the graded
security policy. This policy has been adopted in the graded security expert system
and the respective security model has been used.

There is a large number of methodologies and frameworks available for evaluat-
ing IT security risks. A common problem is that detailed security risk assessment
is complicated and time-consuming leading to organizations not meeting their de-
mands [63]. A paper by Patterson et al. [61] presents an approach to cyber security
cost optimization where individual attacks are decomposed into four elements: pre-
vention, detection, mitigation, and consequences. The model is probabilistic and
allows to optimize defence measures to meet cost limits. Matlab Optimization Tool-
box is used for implementing the optimization procedure. Compared to the graded
security expert system, the analysis is more detailed and depends on more accurate
data.

The graded security expert system presented here has been developed further
and extended with a new optimizer component utilizing an evolutionary algorithm
[40]. This illustrates the flexibility and extendability of solutions based on the tech-
nology proposed in this work.

Simulation has been found to be effective support in teaching. This is also true
in cyber security [26]. Moreover, the need to focus on experimental learning tech-
niques, including virtual labs and simulation, for building conceptual, tactical and

60

practical skills among cyber security professionals has been emphasized [1]. This
work aims to also contribute to this field.

A popular way to teach security concepts is to give some hands-on experience
by targeted video games like CyberSiege [65] from the Naval Postgraduate School,
or using games from the DISA online training catalogue, e.g., the CyberProtect [74]
game. These tools are intended for teaching security concepts for people with var-
ied backgrounds and different levels of expertise. They introduce essential secu-
rity measures by means of exercises in a more or less realistic situation, but give
trainees only implicitly a partial security model. There are also more advanced and
complex cyber security learning systems, such as CyberNEXS [45] from Leidos
(SAIC). The latter is aimed at development of skills on expert level. CyberNEXS
is an advanced cybersecurity training system that provides games for four scenar-
ios: network defense, forensics, penetration testing (attacks) and capture the flag.
The tools developed in this work provide a complementary approach to war games
for teaching cyber security that is based on the analysis and usage of a security
model.

4.9 Conclusion

This chapter introduced the concept of rational security design and presented a
methodology for optimal long-term planning of security investments. This method-
ology is based on a multi-level baseline security model and it treats security plan-
ning and implementation as a continuous process as opposed to a static state or a
one-time investment. A supporting tool—graded security expert system—for mod-
eling security situations and solving optimization problems was implemented using
CoCoViLa technology.

The graded security expert system and modeling methodology has two main
goals. The first is to provide security managers an efficient approach for planning
and optimizing cyber security investments, and the second is to serve as an educa-
tional tool for security training. In addition, the tool has been used by third parties
as a research platform.

The practical applicability of this methodology depends on the availability of
accurate expert data and this is the obstacle for all similar approaches. The avail-
ability of tools that can be used to process the data and add value might encourage
the collection of high quality input data.

This application has demonstrated the suitability of the CoCoViLa technology
for implementing such a tool. The visual interface and visualization including
Pareto sets of solutions is usable for security managers. A fast optimizer and inter-
active user interface support quick experimentation. Extensions developed by third
parties show the reusability of the components.

61

5 Conclusions and Discussion

This chapter concludes the dissertation. It contains a summary of the main results,
a discussion and some ideas for future work.

5.1 Main Results

The main results of this work can be summarized in the following three points.

• It was demonstrated that the CoCoViLa platform and its model based soft-
ware engineering technology can be used in the cyber security field for mod-
eling and simulation. Improvements and extensions to the platform (e.g.,
production rules, scheme superclasses, rich components, additional specifi-
cation language syntax, improved user interface, performance improvements,
flexible compiling class loader, graceful package evolution, many bug fixes)
were developed to better support cyber security simulations.

• The model based software engineering technology was extended with the use
of OWL ontologies for developing domain specific visual specification lan-
guages. A new concept—DSL meta-model ontology—was introduced and
the support of this concept was prototypically implemented in CoCoViLa.
This extension facilitates the semantic integration and reuse of existing soft-
ware artefacts and domain knowledge.

• An application example for analyzing security situations and optimizing cy-
ber security expenses was developed as a CoCoViLa package. This package
implements a graded security model based cost optimization approach. It
contains a novel and efficient optimizer which employs a discrete dynamic
programming algorithm. The software has a simple graphical user interface
and a visualization component that is easy to use for security experts. This
package has been used for teaching and in pilot projects in banks.

5.2 Discussion

Security is a complex topic and no single solution will mitigate or elliminate all
threats or fix all issues. Security is not a state or product. Keeping a system secure
is an evolving process that is composed of multiple layers and a variety of measures.
The availability of suitable tools, methodologies, and education enables the people
responsible for cyber security to better achieve their goals.

62

In security, generally the weakest link determines the overall security level. This
principle must be kept in mind while analyzing security situations using simulation
tools. An interactive simulation tool can be used, for example, in decision support
in a quickly changing environment for studying multiple scenarios and for simu-
lating several solutions to try out the effect of different values of parameters. A
simulation can provide valuable insights and help to discover hidden properties of
systems, but it cannot give strong guarantees like a formal verification tool could.
Hence, simulation is not a replacement for careful analysis via other means in appli-
cations where security matters. This is especially relevant in cyber security where
the adversaries may be resourceful, motivated and intelligent, therefore able to dis-
cover weak spots in the defense and carefully plan multi-stage attacks.

In this work some universal issues of simulation—model and simulation ver-
ification, and the quality of input data—were not discussed as these are separate
and complex topics in itself while not being unique to the cyber security domain.
However, the technology described here may have the potential to facilitate the se-
mantic integration of existing simulation resources. Open source simulation tools
and models are also a part of the solution. The availability of free and open source
tools that enable easy integration could motivate studies to gather high quality input
data for simulations. Moreover, the quality of models should improve over time as
they are reused and gradually refined.

All software developed in the scope of this work should be considered as a proof
of concept. Developing a production quality development environment requires a
strong product development team and a lot of resources and engineering work. A
prototype is, however, a solid starting point for beginning to develop a product.

A distinguishing feature of CoCoViLa is the use of structural synthesis of pro-
grams (SSP) which is a form of automatic synthesis of programs based on propo-
sitional calculus. SSP uses intuitionistic logic for describing the structure of a pro-
gram at the level of detail that allows to compose the program automatically from
pieces, including, for example, Java methods. This approach gives two main ad-
vantages. The first is the flexibility that comes from the ability to solve multiple
problems using the same model, hence supporting reuse and increasing the value of
models. The second advantage manifests in supporting users in quick development
and experimentation. When an expert user knows intuitively the available inputs
and desired outputs, the planner is able to figure out some intermediate computation
steps given only the specification of the goal. The user does not have to spend time
for specifying all intermediate steps, because CoCoViLa helps, within its limits,
to overcome the gap between intuition and actual implementation in an automated
way. In some situations this capability may, however, become a downside as the
user has little control over the path to the solution.

Observations from empirical experience with a limited number of end users sug-
gests that the CoCoViLa technology based cyber security simulation applications
have been usable for cyber security experts and students for solving complex simu-
lation problems. Visual specifications, the use of domain specific concepts and the

63

ability to run simulations without programming is generally well received by end
users. Therefore, from the perspective of application engineering, the approach
seems to be promising, worth developing further and applying in wider contexts.
From the perspective of domain engineering, however, the functionality currently
available is not yet satisfying. For example, debugging can be a time consuming
challenge and the support provided by the platform for debugging is still quite prim-
itive. Improving this aspect, in addition to several other enhancements, is part of
the work planned for future. Some of these ideas are discussed in the following
section.

5.3 Future Work

There are several possible directions for future work. Some areas are more of sci-
entific interest, others require software engineering effort to make the technology
more usable and robust.

The current version of CoCoViLa is a stand-alone application. This leads to
duplication of effort, as there are many features that are needed by any develop-
ment environment. CoCoViLa functionality should be ported to an existing and
well supported integrated development environment (IDE) such as Eclipse [24]. It
also relates to the debugging challenges. Integrating CoCoViLa into an IDE might
provide some synergy in implementing debugging facilities. Moreover, building
and supporting an active user community is necessary for the long term viability of
a software project. This may be easier if CoCoViLa was a part of a larger software
ecosystem.

CoCoViLa and its applications have been built on the Java platform that has
been solid and served its purpose well. The support of other languages, for ex-
ample Haskell and R, could be helpful in providing more options for developing
component libraries.

The future plans also include work related to combining rules represented in
Semantic Web Rule Language (SWRL) with domain ontologies. This will allow to
model behavioral aspects (e.g., equations) of a domain in DSL meta-model ontol-
ogy that is currently not supported.

Another area where research is needed is the visual representation of models.
Currently there is only one hierarchical visual representation of a model. While
hierarchy helps to manage the complexity of large models, there is a limit how
much information can be shown in a diagram for it to remain readable. Complex
models tend to push this limit. Other modeling tools handle this issue with the
support of multiple layers or different views, showing only some aspects of the
model at a time. A similar functionality could be useful in CoCoViLa.

64

Bibliography

[1] Sherly Abraham and Lifang Shih. Towards an Integrative Learning Approach
in Cybersecurity Education. In Proceedings of the 2015 Information Secu-
rity Curriculum Development Conference, InfoSec ’15, pages 11:1–11:1, New
York, NY, USA, 2015. ACM.

[2] Geert Alberghs. Improving the Graded Security Model & -Expert System.
Master’s thesis, École Supérieure d’Informatique Électronique Automatique,
2011.

[3] Geert Alberghs, Pavel Grigorenko, and Jüri Kivimaa. Quantitative system
reliability approach for optimizing IT security costs in an AI environment.
In Jaan Penjam, editor, Proceedings of the 12th Symposium on Programming
Languages and Software Tools, SPLST’11, pages 219–230, Tallinn, Estonia,
5–7 October 2011. TUT Press.

[4] Scott W. Ambler. The Non-Existent Software Crisis: Debunking the Chaos
Report. Dr. Dobb’s, Feb 2014.

[5] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, New York,
NY, USA, 2003.

[6] Jerry Banks, John Carson, Barry Nelson, and David Nicol. Discrete-Event
System Simulation. Pearson/Prentice Hall, 4th edition, 2005.

[7] N Md Jubair Basha, Salman Abdul Moiz, and Mohammed Rizwanullah.
Model based Software Develeopment: Issues & Challenges. Special Issue
of International Journal of Computer Science & Informatics (IJCSI), 2(1),
2012.

[8] Jim Blythe, Aaron Botello, Joseph Sutton, David Mazzocco, Jerry Lin, Marc
Spraragen, and Michael Zyda. Testing Cyber Security with Simulated Hu-
mans. In Innovative Applications of Artificial Intelligence, 2011.

[9] Frederick P. Brooks, Jr. No Silver Bullet Essence and Accidents of Software
Engineering. Computer, 20(4):10–19, April 1987.

[10] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson.
Rational Choice of Security Measures Via Multi-parameter Attack Trees. In

65

Javier Lopez, editor, Critical Information Infrastructures Security: First In-
ternational Workshop, CRITIS 2006, Samos, Greece, August 31–September
1, 2006. Revised Papers, pages 235–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

[11] Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine Nikoukhah.
Modeling and Simulation in Scilab/Scicos with ScicosLab 4.4. Springer, 2010.

[12] Deniz Çetinkaya, Alexander Verbraeck, and Mamadou D. Seck. Model Conti-
nuity in Discrete Event Simulation: A Framework for Model-Driven Develop-
ment of Simulation Models. ACM Trans. Model. Comput. Simul., 25(3):17:1–
17:24, April 2015.

[13] Fred Cohen. Simulating Cyber Attacks, Defenses, and Consequences. http:
//all.net/journal/ntb/simulate/simulate.html, March 1999.

[14] The Common Criteria. Common Criteria for Information Technology Se-
curity Evaluation. http://www.commoncriteriaportal.org/ (10 May
2016).

[15] James B. Dabney and Thomas L. Harman. Mastering SIMULINK. Prentice
Hall, 2001.

[16] Innovation & Skills Department for Business. Information security breaches
survey 2015. https://www.gov.uk/government/publications/

information-security-breaches-survey-2015.

[17] CoCoViLa development group. CoCoViLa documentation. http://

cocovila.github.io/documentation.html.

[18] CoCoViLa development group. CoCoViLa specification lan-
guage. https://github.com/CoCoViLa/CoCoViLa/wiki/

Specification-language, 2015.

[19] Estonian Information System Authority. Three-level IT baseline security sys-
tem ISKE. https://www.ria.ee/iske-en.

[20] J. Laurenz Eveleens and Chris Verhoef. The rise and fall of the Chaos report
figures. IEEE Software, 27(1):30–36, Jan 2010.

[21] Jose Evora, Jose Juan Hernandez, and Mario Hernandez. Advantages of
Model Driven Engineering for studying complex systems. Natural Comput-
ing, 14(1):129–144, 2014.

[22] Stanford Center for Biomedical Informatics Research (BMIR). Protégé.
http://protege.stanford.edu/, 2016.

66

http://all.net/journal/ntb/simulate/simulate.html
http://all.net/journal/ntb/simulate/simulate.html
http://www.commoncriteriaportal.org/
https://www.gov.uk/government/publications/information-security-breaches-survey-2015
https://www.gov.uk/government/publications/information-security-breaches-survey-2015
http://cocovila.github.io/documentation.html
http://cocovila.github.io/documentation.html
https://github.com/CoCoViLa/CoCoViLa/wiki/Specification-language
https://github.com/CoCoViLa/CoCoViLa/wiki/Specification-language
https://www.ria.ee/iske-en
http://protege.stanford.edu/

[23] International Organization for Standardization. Systems and software en-
gineering – Vocabulary. ISO/IEC/IEEE 24765:2010(E), pages 1–418, Dec
2010.

[24] The Eclipse Foundation. Eclipse desktop & web IDEs. http://www.

eclipse.org/ide/.

[25] Robert France and Bernhard Rumpe. Model engineering. Software and Sys-
tems Modeling, 2(2):73–75, 2003.

[26] Jose M. Garrido and Tridib Bandyopadhyay. Simulation Model Development
in Information Security Education. In 2009 Information Security Curriculum
Development Conference, InfoSecCD ’09, pages 21–26, New York, NY, USA,
2009. ACM.

[27] German Federal Office for Information Security (BSI). BSI-Standard 100-2
IT Grundschutz Methodology. https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_

e_pdf.pdf.

[28] Lawrence A. Gordon and Martin P. Loeb. Managing Cybersecurity Re-
sources: A Cost-Benefit Analysis. McGraw-Hill Education, 2006.

[29] Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. PhD
thesis, Tallinn University of Technology, 2010.

[30] Pavel Grigorenko. Software user manual for a lightweight and modular ex-
pert system shell for the usage in decision support system, version 1.7. Insti-
tute of Cybernetics at TUT, 2011. http://cocovila.github.io/files/
documentation/ExpSys_UserDoc_1.7.pdf.

[31] Pavel Grigorenko, Ando Saabas, and Enn Tyugu. COCOVILA - Compiler-
Compiler for Visual Languages. Electr. Notes Theor. Comput. Sci.,
141(4):137–142, 2005.

[32] Pavel Grigorenko and Enn Tyugu. Deep semantics of visual languages. In
E. Tyugu and T. Yamaguchi, editors, Proceedings of the Seventh Joint Con-
ference on Knowledge-based software engineering, volume 140 of Frontiers
in Artificial Intelligence and Applications, pages 83–95. IOS Press, 2006.

[33] Gunnar Grossschmidt and Mait Harf. Simulation of an electro-hydraulic
servo-valve in NUT programming environment. In Norbert Giambiasi and
Claudia Frydman, editors, Simulation in Industry ’2001: 13th European Sim-
ulation Symposium 2001 ESS’2001, October 18–20, 2001, Marseille, France,
pages 229–233. Ghent, Belgium: SCS Europe, 2001.

67

http://www.eclipse.org/ide/
http://www.eclipse.org/ide/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf.pdf
http://cocovila.github.io/files/documentation/ExpSys_UserDoc_1.7.pdf
http://cocovila.github.io/files/documentation/ExpSys_UserDoc_1.7.pdf

[34] Gunnar Grossschmidt and Mait Harf. COCO-SIM – object-oriented multi-
pole modelling and simulation environment for fluid power systems. Part 2:
Modelling and simulation of hydraulic-mechanical load-sensing system. In-
ternational Journal of Fluid Power, 10(3):71–85, 2009.

[35] Gunnar Grossschmidt and Mait Harf. Multi-pole modeling and simulation
of an electro-hydraulic servo-system in an intelligent programming environ-
ment. International Journal of Fluid Power, 17(1):1–13, 2016.

[36] Standish Group. CHAOS Report 2015. Report, Standish Group, 2015.

[37] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
Recommendation, 21 March 2013. Available at http://www.w3.org/TR/
sparql11-query/.

[38] Marko Jahnke, Gabriel Klein, Jens Tölle, and Peter Martini. Protecting Mil-
itary Networks with GrADAR - An Approach for Graph-based Automated
Denial-of-Service Attack Response. In Proceedings of the International
Military Communication Conference (MCC 2009), Prague, Czech Republic,
September 2009.

[39] Andres Järv. Integrating IT security system ISKE with the Graded Security
Model to enhance information systems audit prioritization. Master’s thesis,
Tallinn University of Technology, 2013.

[40] Toomas Kirt and Jüri Kivimaa. Optimizing IT security costs by evolutionary
algorithms. In Christian Czosseck and Karlis Podins, editors, Conference
on Cyber Conflict Proceedings, pages 145–160, Tallinn, Estonia, 15–18 June
2010. Cooperative Cyber Defence Centre of Excellence Publications.

[41] Jüri Kivimaa. A Cost Optimizing Model for IT Security. PhD thesis, Estonian
Business School, 2013.

[42] Jüri Kivimaa and Toomas Kirt. Evolutionary Algorithms for Optimal Selec-
tion of Security Measures. In Rain Ottis, editor, Proceedings of the 10th Eu-
ropean Conferences on Information Warfare and Security, ECIW’11, pages
172–184, Tallinn, Estonia, 7–8 July 2011. Academic Publishers.

[43] Alexander Kott. Network Science and Cybersecurity, chapter Towards Fun-
damental Science of Cyber Security, pages 1–13. Springer New York, New
York, NY, 2014.

[44] Sylvain P. Leblanc, Andrew Partington, Ian Chapman, and Mélanie Bernier.
An Overview of Cyber Attack and Computer Network Operations Simula-
tion. In Proceedings of the 2011 Military Modeling & Simulation Symposium,
MMS ’11, pages 92–100, San Diego, CA, USA, 2011. Society for Computer
Simulation International.

68

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

[45] Leidos. CyberNEXS Cyber Security Training. https://www.leidos.com/
cybersecurity/solutions/CyberNEXS.

[46] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The Ptolemy II Framework
for Visual Languages. In HCC, 2001.

[47] Georg Lobsenz. DOE Adopts New “Graded” Terrorist Protection Policy,
2008. http://pogoarchives.org/m/nss/energydaily-20080826.

pdf.

[48] Riina Maigre. Composition of web services on large service models. PhD
thesis, Institute of Cybernetics at Tallinn University of Technology, 2011.

[49] Riina Maigre, Peep Küngas, Mihhail Matskin, and Enn Tyugu. Handling
Large Web Services Models in a Federated Governmental Information Sys-
tem. In Internet and Web Applications and Services, 2008. ICIW ’08. Third
International Conference on, pages 626–631, June 2008.

[50] Grigori Mints and Enn Tyugu. The Programming System PRIZ. In Baltic
Computer Science, pages 1–17, 1991.

[51] National Infrastructure against Cybercrime (NICC). Process Control Security
in the Cybercrime Information Exchange NICC. TNO; Nationale Infrastruc-
tuur ter bestrijding van Cybercrime (NIC), 2009.

[52] Peter Naur and Brian Randell, editors. Software Engineering: Report of a
Conference Sponsored by the NATO Science Committee, Garmisch, Germany,
7–11 Oct. 1968, Brussels. NATO Scientific Affairs Division, 1969.

[53] Anthony G. Oettinger. The Hardware-software Complementarity. Commun.
ACM, 10(10):604–606, October 1967.

[54] U. S. Department of Defense. National Industrial Security Program Operating
Manual (NISPOM). 2006.

[55] Andres Ojamaa and Enn Tyugu. Rich Components of Extendable Simulation
Platform. In Hamid R. Arabnia, editor, MSV, pages 121–127. CSREA Press,
2007.

[56] Alessandro Oltramari, Lorrie Faith Cranor, Robert J. Walls, and Patrick Drew
McDaniel. Building an Ontology of Cyber Security. In Kathryn Blackmond
Laskey, Ian Emmons, and Paulo C. G. Costa, editors, Proceedings of the Ninth
Conference on Semantic Technology for Intelligence, Defense, and Security,
Fairfax VA, USA, November 18-21, 2014., volume 1304 of CEUR Workshop
Proceedings, pages 54–61. CEUR-WS.org, 2014.

[57] OPNET Technologies, Inc. OPNET Solutions. OPNET Modeler. http://

www.opnet.com/.

69

https://www.leidos.com/cybersecurity/solutions/CyberNEXS
https://www.leidos.com/cybersecurity/solutions/CyberNEXS
http://pogoarchives.org/m/nss/energydaily-20080826.pdf
http://pogoarchives.org/m/nss/energydaily-20080826.pdf
http://www.opnet.com/
http://www.opnet.com/

[58] Min Ouyang. Review on modeling and simulation of interdependent critical
infrastructure systems. Reliability Engineering & System Safety, 121:43–60,
2014.

[59] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009. Available at http:
//www.w3.org/TR/owl2-overview/.

[60] Stylianos Papanastasiou, Jens Mittag, Erik G Ström, and Hannes Hartenstein.
Bridging the Gap Between Physical Layer Emulation and Network Simula-
tion. In Proceedings of IEEE WCNC Conference, 2010, April 2010.

[61] Ike Patterson, James Nutaro, Glenn Allgood, Teja Kuruganti, and David Fu-
gate. Optimizing Investments in Cyber-security for Critical Infrastructure.
In Proceedings of the Eighth Annual Cyber Security and Information Intel-
ligence Research Workshop, CSIIRW ’13, pages 20:1–20:4, New York, NY,
USA, 2013. ACM.

[62] Kai Petersen. Measuring and predicting software productivity: A system-
atic map and review. Information and Software Technology, 53(4):317 – 343,
2011. Special section: Software Engineering track of the 24th Annual Sym-
posium on Applied ComputingSoftware Engineering track of the 24th Annual
Symposium on Applied Computing.

[63] Alireza Shameli-Sendi, Rouzbeh Aghababaei-Barzegar, and Mohamed
Cheriet. Taxonomy of information security risk assessment (ISRA). Com-
puters & Security, 57:14–30, 2016.

[64] Matti Tedre. The Science of Computing: Shaping a Discipline. Chapman &
Hall/CRC, 2014.

[65] Michael Thompson and Cynthia Irvine. Active Learning with the Cyber-
CIEGE Video Game. In Proceedings of the 4th Conference on Cyber Secu-
rity Experimentation and Test, CSET’11, Berkeley, CA, USA, 2011. USENIX
Association.

[66] Juha-Pekka Tolvanen and Steven Kelly. MetaEdit+: defining and using in-
tegrated domain-specific modeling languages. In Shail Arora and Gary T.
Leavens, editors, OOPSLA Companion, pages 819–820. ACM, 2009.

[67] Federico Tomassetti, Marco Torchiano, Alessandro Tiso, Filippo Ricca, and
Gianna Reggio. Maturity of software modelling and model driven engineer-
ing: A survey in the Italian industry. In Evaluation Assessment in Software
Engineering (EASE 2012), 16th International Conference on, pages 91–100,
May 2012.

70

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

[68] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and
Gianna Reggio. Relevance, benefits, and problems of software modelling and
model driven techniques—A survey in the Italian industry. Journal of Systems
and Software, 86(8):2110 – 2126, 2013.

[69] Thomas Toth and Christopher Kruegel. Evaluating the impact of automated
intrusion response mechanisms. In Proceedings of the 18th Computer Secu-
rity Applications Conference 2002, pages 301–310, 2002.

[70] Enn Tyugu. The structural synthesis of programs. Algorithms in Modern
Mathematics and Computer Science, pages 290–303, 1979.

[71] Enn Tyugu. Algorithms and Architectures of Artificial Intelligence, volume
159 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2007.

[72] Enn Tyugu. Command and Control of Cyber Weapons. In Christian Czosseck,
Rain Ottis, and Katharina Ziolkowski, editors, Proceedings of 4th Interna-
tional Conference on Cyber Conflict (CYCON), pages 333–343, Tallinn, Es-
tonia, 5–8 June 2012. CCD COE Publications.

[73] Enn Tyugu, Mihhail Matskin, and Jaan Penjam. Applications of Structural
Synthesis of Programs. In FM ’99: Proceedings of the Wold Congress on
Formal Methods in the Development of Computing Systems-Volume I, pages
551–569, London, UK, 1999. Springer-Verlag.

[74] U.S. DoD, Defense Information Systems Agency. CyberProtect, version 1.1.
http://iase.disa.mil/eta/.

[75] U.S. DoE, Office of Information Resources. DOE O 470.3B, Graded Se-
curity Protection (GSP) Policy. https://www.directives.doe.gov/

directives/0470.3-BOrder-b/view.

[76] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation
environment. In SimuTools, page 60, 2008.

[77] Verizon. Data breach digest. Scenarios from the field. Technical report, Ver-
izon, 2016.

[78] Rossouw von Solms and Johan van Niekerk. From information security to
cyber security. Computers & Security, 38:97–102, 2013. Cybercrime in the
Digital Economy.

[79] Eric Winsberg. Computer Simulations in Science. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Stanford University, summer 2015
edition, 2015.

71

http://iase.disa.mil/eta/
https://www.directives.doe.gov/directives/0470.3-BOrder-b/view
https://www.directives.doe.gov/directives/0470.3-BOrder-b/view

[80] Charles Cresson Wood. Why information security is now multi-disciplinary,
multi-departmental, and multi-organizational in nature. Computer Fraud &
Security, 2004(1):16–17, 2004.

[81] Peter Wood. The hacker’s top five routes into the network (and how to block
them). Network Security, 2006(2):5–9, 2006.

[82] Yong-liu and Aiguang-yang. Research and Application of Software-reuse. In
Software Engineering, Artificial Intelligence, Networking, and Parallel/Dis-
tributed Computing, 2007. SNPD 2007. Eighth ACIS International Confer-
ence on, volume 3, pages 588–593, July 2007.

72

Acknowledgments

I am grateful to my supervisors Enn Tõugu and Jaan Penjam for their guidance and
support.

I thank my colleagues at the Institute of Cybernetics—Pavel Grigorenko, Hele-
Mai Haav, Mait Harf, Vahur Kotkas, Riina Maigre—for many fruitful discussions
and their insightful ideas and comments. I am also grateful to Jüri Kivimaa and
Gabriel Klein for a successful and gratifying collaboration. I thank Riina Maigre,
Hele-Mai Haav and Eve Kann for proofreading parts of the manuscript and provid-
ing valuable feedback.

Thanks to the Estonian Information Technology Foundation, the Tiger Uni-
versity programme and the following projects for financial support of this work:
ERDF funded ICT national programme project MBJSDT (3.2.1201.13-0026), ESF
funded Estonian Doctoral School in ICT (1.2.0401.09-0081), Estonian Ministry of
Education and Research target-financed themes 0322709s06, 0140007s12 and in-
stitutional research grant IUT33-13, and Estonian Ministry of Defense contracts
508/0711, 372/0807.

73

Software Technology for Cyber Security Simulations

Abstract

Cyber security is a broad and multifaceted field that includes aspects related to
the security of IT systems starting from low level technical details and practical
software engineering problems to economic and even political considerations.

This dissertation studies the nature of the cyber security field from the perspec-
tive of developing computer simulations. New approaches are sought to improve
the state of the art of software engineering practices and simulation tools with the
goal to better support cyber security specialists in solving complex problems.

The complexity of the problems in the cyber security field demands high flex-
ibility and adaptability from the technologies used for simulation. The software
tools have to be multifunctional, extensible and easy to integrate with existing IT
infrastructure. The technology has to be usable by security specialists and analysts
who are not programmers and want to focus on solving problems, not writing code.

A model based software engineering technology and a supporting simulation
platform called CoCoViLa have been developed at the Institute of Cybernetics at
TUT. This technology and the simulation platform have been used successfully for
applications in the mechanical engineering field. In the context of the work done
for this dissertation, this approach was experimentally applied to problems from
the cyber security domain to demonstrate broader applicability of the CoCoViLa
technology.

As an application example a graded security based cost optimization method
was developed and implemented as software package. This package includes a
novel optimizer that helps to select the most efficient security measures for securing
an information system taking into account a set of prescribed security requirements
and a limited budget. It also helps to plan the implementation of the measures and
divide the costs of the security measures over a longer period spanning several years
in an optimal way.

Various experimental enhancements of the simulation platform and technology
were proposed and evaluated while developing applications related to the context
of this work. As one of the most significant outcomes, the existing model based
software engineering technology was extended with the support of using OWL on-
tologies for developing domain specific visual specification languages. This ex-
tension helps achieving the correctness of specifications, facilitates the reuse of
existing software artefacts and supports the semantic integration of applications
from different problem domains.

74

Tarkvaratehnika küberturbe simulatsioonide jaoks

Kokkuvõte

Küberturve on lai ja mitmekülgne valdkond, mis hõlmab IT-süsteemidega seotud
aspekte alates madala taseme tehnilistest üksikasjadest ja praktilistest tarkvaraaren-
duse küsimustest kuni majanduslike ja isegi poliitiliste kaalutlusteni.

Käesolevas väitekirjas uuritakse küberturbe valdkonna eripära arvutisimulat-
sioonide realiseerimise seisukohast ning otsitakse võimalusi simuleerimisvahendi-
te tarkvaratehnika edasiarendamiseks eesmärgiga toetada küberturbe spetsialistide
tööd komplekssete ülesannete lahendamisel.

Küberturbe valdkonna ja ülesannete komplekssus nõuab simulatsioone toe-
tavatelt tehnikatelt paindlikkust ja kohandatavust. Tarkvaralised tööriistad pea-
vad olema multifunktsionaalsed, laiendatavad ning kergesti lõimitavad olemasole-
va infotehnoloogilise taristuga. Tehnika arendamisel tuleb arvestada asjaoluga, et
küberturbe spetsialistid ja analüütikud ei ole tarkvaraarendajad ning nende huvi on
eelkõige lahendada oma valdkonna ülesandeid, mitte keskenduda programmeeri-
misele.

Doktoritöö käigus katsetati TTÜ Küberneetika instituudis välja töötatud ja inse-
neriarvutuste jaoks edukalt kasutatud simuleerimisplatvormi CoCoViLa rakenda-
tavust küberturbe valdkonnas. CoCoViLa toetab mudelpõhist tarkvaratehnikat, vi-
suaalseid valdkonnaspetsiifilisi spetsifitseerimiskeeli ning automaatset programmi-
de sünteesi. Katsetused näitavad, et CoCoViLa tehnoloogia sobib hästi mitmete
küberturbe valdkonna ülesannete lahendamiseks.

Ühe küberturbe valdkonna rakendusnäitena, mida väitekirjas kirjeldatakse, on
välja töötatud astmelisel andmeturbe mudelil põhinev küberturbe kulude optimee-
rimise metoodika ning seda toetav tarkvarapakett. Pakett sisaldab uudset opti-
meerijat, mis aitab piiratud eelarve tingimustes tagada infosüsteemide turvanõuete
võimalikult efektiivse täitmise ning võimaldab kulutusi optimaalselt planeerida
mitmeaastasele perioodile.

Doktoritöö jooksul realiseeritud küberturbe simulatsioonide arendamisel otsi-
ti võimalusi olemasoleva tehnoloogia ja platvormi edasiarendamiseks. Selle tu-
lemusel loodi mitmeid küberturbe simulatsioone toetavaid laiendusi. Üks olulis-
test täiendustest, mida väitekirjas käsitletakse, on uudne viis OWL ontoloogia-
te rakendamiseks valdkonnaspetsiifiliste visuaalsete spetsifitseerimiskeelte arenda-
misel, mis aitab tagada spetsifikatsioonide korrektsust, soodustab olemasolevate
ressursside paremat taaskasutust ning toetab eri valdkondade rakenduste semanti-
list lõimimist.

75

A Listings and Figures

A.1 SPARQL query for finding visual classes

1 PREFIX r d f : <h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns #>
2 PREFIX owl : <h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#>
3 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / rd f−schema#>
4 PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
5 PREFIX c c v l :
6 <h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / c o c o v i l a−sys tem #>
7
8 SELECT ? v c l a s s ? image ? i c on ? className ? d e s c r
9 ? e x t e n d s ? dc ? r e l c l a s s ? s p e c t e x t

10 WHERE {
11 ? v c l a s s r d f : t y p e c c v l : V i s u a l C l a s s ;
12 c c v l : i sRep r e s en t edBy Image ? image ;
13 c c v l : h a s I c on ? i con ;
14 c c v l : hasVisua lC las sName ? className .
15 OPTIONAL {
16 ? v c l a s s r d f : t y p e ? r e l c l a s s .
17 FILTER (? r e l c l a s s = c c v l : R e l a t i o n C l a s s)
18 }
19 OPTIONAL {
20 ? j a v a c l a s s r d f : t y p e c c v l : J a v a C l a s s ;
21 c c v l : hasClassName ? e x t e n d s .
22 ? v c l a s s c c v l : i s ImplementedBy ? j a v a c l a s s .
23 }
24 OPTIONAL {
25 ? v c l a s s c c v l : ha sSpecTex t ? s p e c t e x t .
26 }
27 OPTIONAL {
28 ? v c l a s s c c v l : h a s D e s c r i p t i o n ? d e s c r .
29 }
30 OPTIONAL {
31 ? v c l a s s r d f : t y p e ? dc .
32 FILTER NOT EXISTS {
33 ? v c l a s s r d f : t y p e ? t ype .
34 ? t ype r d f s : subC la s sOf ? dc .
35 FILTER NOT EXISTS {
36 ? t ype owl : e q u i v a l e n t C l a s s ? dc .
37 }
38 }
39 FILTER (
40 ! bound (? dc) | | (i s IRI (? dc)
41 && ! s t r s t a r t s (s t r (? dc) ,
42 ” h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / c o c o v i l a−sys tem #”)
43 && ? dc != owl : NamedInd iv idua l)
44)
45 }
46 }

76

A.2 Listing of toolbox ontology in OWL functional syntax

1 P r e f i x (:=< h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / t o o l b o x #>)
2 P r e f i x (t b :=< h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / t o o l b o x #>)
3 P r e f i x (xsd :=< h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>)
4 P r e f i x (c c v l :=< h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / c o c o v i l a−

sys tem #>)
5
6 Onto logy (< h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / t oo lbox>
7 Impor t (< h t t p : / / www. cs . i o c . ee / c o c o v i l a / o n t o l o g i e s / 2 0 1 5 / c o c o v i l a−system >)
8
9 D e c l a r a t i o n (NamedInd iv idua l (t b : f i e l d C l o c k I n i t S t a t e))

10 D e c l a r a t i o n (NamedInd iv idua l (t b : f i e l d C l o c k P e r i o d))
11 D e c l a r a t i o n (NamedInd iv idua l (t b : f i e l dGr aphSe r i e sName))
12 D e c l a r a t i o n (NamedInd iv idua l (t b : f i e l d P r o c e s s N u m S t e p s))
13 D e c l a r a t i o n (NamedInd iv idua l (t b : j c O b j e c t))
14 D e c l a r a t i o n (NamedInd iv idua l (t b : po r tC lockTime))
15 D e c l a r a t i o n (NamedInd iv idua l (t b : por tGraphX))
16 D e c l a r a t i o n (NamedInd iv idua l (t b : por tGraphY))
17 D e c l a r a t i o n (NamedInd iv idua l (t b : vcClock))
18 D e c l a r a t i o n (NamedInd iv idua l (t b : vcGraph))
19 D e c l a r a t i o n (NamedInd iv idua l (t b : v c P r o c e s s))
20
21 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasFie ldName t b : f i e l d C l o c k I n i t S t a t e ” i n i t s t a t e

”)
22 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sF i e l dType t b : f i e l d C l o c k I n i t S t a t e ” doub l e ”)
23
24 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasFie ldName t b : f i e l d C l o c k P e r i o d ” p e r i o d ”)
25 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sF i e l dType t b : f i e l d C l o c k P e r i o d ” doub l e ”)
26
27 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasFie ldName t b : f i e l dGr aphSe r i e sName ”

se r i e sName ”)
28 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sF i e l dType t b : f i e l dGr aphSe r i e sName ” S t r i n g ”)
29
30 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasFie ldName t b : f i e l d P r o c e s s N u m S t e p s ” numSteps

”)
31 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sF i e l dType t b : f i e l d P r o c e s s N u m S t e p s ” i n t ”)
32
33 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasClassName t b : j c O b j e c t ” Ob j e c t ”)
34
35 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasPortName t b : po r tC lockTime ” s t a t e ”)
36 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t X t b : po r tC lockTime ” 5 0 ” ˆ ˆ xsd :

i n t e g e r)
37 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t Y t b : po r tC lockTime ” 2 ” ˆ ˆ xsd :

i n t e g e r)
38 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sPo r tType t b : po r tC lockTime ” doub l e ”)
39
40 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasPortName t b : por tGraphX ”x ”)
41 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t X t b : por tGraphX ” 5 0 ” ˆ ˆ xsd : i n t e g e r)
42 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t Y t b : por tGraphX ” 8 6 ” ˆ ˆ xsd : i n t e g e r)
43 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sPo r tType t b : por tGraphX ” doub le ”)
44
45 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasPortName t b : por tGraphY ”y ”)
46 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t X t b : por tGraphY ” 1 4 ” ˆ ˆ xsd : i n t e g e r)
47 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t O f f s e t Y t b : por tGraphY ” 5 0 ” ˆ ˆ xsd : i n t e g e r)
48 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a sPo r tType t b : por tGraphY ” doub le ”)
49
50 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s F i e l d t b : vcClock t b : f i e l d C l o c k I n i t S t a t e)
51 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s F i e l d t b : vcClock t b : f i e l d C l o c k P e r i o d)
52 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t t b : vcClock t b : po r tC lockTime)

77

53 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : i s ImplementedBy t b : vcClock t b : j c O b j e c t)
54 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s D e s c r i p t i o n t b : vcClock ” Bas i c c l o ck ” ˆ ˆ xsd :

s t r i n g)
55 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s I c on t b : vcClock ” c l o ck . png ” ˆ ˆ xsd : anyURI)
56 D a t a P r o p e r t y A s s e r t i o n (c c v l : ha sSpecTex t t b : vcClock ” doub l e p e r i o d ;
57 doub l e i n i t s t a t e , s t a t e , n e x t s t a t e , f i n a l s t a t e ;
58 n e x t s t a t e = s t a t e + p e r i o d ;
59 s t a t e = f i n a l s t a t e ; ”)
60 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasVisua lC las sName t b : vcClock ” Clock ”)
61 D a t a P r o p e r t y A s s e r t i o n (c c v l : i sRep r e s en t edBy Image t b : vcClock ” c l o ck . svg ”)
62
63 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s F i e l d t b : vcGraph t b : f i e l dGr aphSe r i e sName)
64 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t t b : vcGraph t b : por tGraphX)
65 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s P o r t t b : vcGraph t b : por tGraphY)
66 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s D e s c r i p t i o n t b : vcGraph ” S i n g l e s e r i e s g raph

” ˆ ˆ xsd : s t r i n g)
67 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s I c on t b : vcGraph ” S i n g l e S e r i e s G r a p h . png ” ˆ ˆ xsd

: anyURI)
68 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasVisua lC las sName t b : vcGraph ”

S i n g l e S e r i e s G r a p h ”)
69 D a t a P r o p e r t y A s s e r t i o n (c c v l : i sRep r e s en t edBy Image t b : vcGraph ” graph . svg ”)
70
71 O b j e c t P r o p e r t y A s s e r t i o n (c c v l : h a s F i e l d t b : v c P r o c e s s t b : f i e l d P r o c e s s N u m S t e p s

)
72 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s D e s c r i p t i o n t b : v c P r o c e s s ” S i m u l a t i o n eng i n e

” ˆ ˆ xsd : s t r i n g)
73 D a t a P r o p e r t y A s s e r t i o n (c c v l : h a s I c on t b : v c P r o c e s s ” proc−i c on . png ” ˆ ˆ xsd :

anyURI)
74 D a t a P r o p e r t y A s s e r t i o n (c c v l : hasVisua lC las sName t b : v c P r o c e s s ” Proc ”)
75 D a t a P r o p e r t y A s s e r t i o n (c c v l : i sRep r e s en t edBy Image t b : v c P r o c e s s ” p roc . svg ”)
76)

78

A.3 Visualization of attack tree simulation DSL meta-model
ontology

Figure A.1: DSL meta-model ontology

79

Figure A.2: DSL meta-model ontology with inferred axioms

80

Publication I

Kotkas, Vahur; Ojamaa, Andres; Grigorenko, Pavel; Maigre, Riina; Harf, Mait;
Tyugu, Enn (2011).

CoCoViLa as a Multifunctional Simulation Platform

Proceedings of the 4th International ICST Conference on Simulation Tools and
Techniques: 21–25 March 2011, Barcelona, Spain, SIMUTools 2011. Brussels:
ICST, 195–205.

81

CoCoViLa as a Multifunctional Simulation Platform

Vahur Kotkas Andres Ojamaa Pavel Grigorenko
Riina Maigre Mait Harf Enn Tyugu

Institute of Cybernetics at Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia

{vahur, andres.ojamaa, pavelg, riina, mait, tyugu}@cs.ioc.ee

ABSTRACT
A flexible Java-based simulation platform that includes both
continuous-time and discrete event simulation engines and
is intended for applications in a variety of domains is pre-
sented. The platform supports visual and model-based soft-
ware development and uses structural synthesis of programs
for translating declarative specifications of simulation prob-
lems into executable code. Rich components are an impor-
tant concept of the work. They are implemented as Java
classes with additional specifications for program synthe-
sis, and include visual representations as well as daemons
supporting continuous interaction with the user during the
simulation. The platform is developed as an open-source
software, and its extensions can be written in Java and in-
cluded into simulation packages.

1. INTRODUCTION
We expect that simulation problems are becoming not

only computationally heavier, but also considerably more
complex in the sense that a single problem may require or-
chestrated usage of numerous simulation engines, optimiza-
tion programs as well as visualization and statistics soft-
ware. A simulation engine and other useful tools are usually
built into the simulation platform. It is a common prac-
tice that a simulation problem itself is described using a
model-based technology, mainly by specifying a model of
the simulated system. In the present work we propose to
use the model-based approach for constructing and compil-
ing a completely new program for every simulation, using
simulation engines, optimizers, visualizers etc. as prepro-
grammed components. In this case a simulation platform is
a model-based software development environment plus as-
sets (components, language, models) for specifying simula-
tion problems. This requires good automation of program
construction from a given model.

We have implemented CoCoViLa [4] as a suitable software
development environment. It has visual tools, but most im-
portantly, it supports full automatic program construction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2011 March 21–25, Barcelona, Spain.
Copyright 2011 ICST, ISBN .

from specifications that are given visually. The CoCoViLa
itself has been developed bearing in mind programming of
simulation problems. However, it has been used also in a
more general model-based software development, e.g., for
composing web services on large service models [11]. In this
sense it is similar to visual software development tools like
MetaEdit [17]. In our design and implementation, we have
paid special attention at flexibility. This allows us to call
the CoCoViLa platform multifunctional. In particular, it is
applicable for very different specialized problems as almost
every aspect (optimization algorithms, simulation engines,
etc.) of the simulation can be customized by replacing a
component with another from the toolbox or implementing
a new component.

The present paper is structured as follows. Section 2 de-
scribes the conceptual design of the simulation platform.
The specification language is described in Section 3. Sec-
tion 4 presents implementation aspects and Section 5 con-
tains application examples.

2. DESIGN PRINCIPLES
Our main design decision is that we rely on a completely

automatic program construction from a specification, and
use a fast synthesis method that gives out a source code
ready for compilation and execution. This program synthesis—
structural synthesis of programs (SSP) [18] is not new, it
has been implemented and used in several earlier software
tools [12, 19]. It uses essentially dataflow for composing a
program, like, for instance, Simulink [2] does. However, the
usage of components in the form of higher-order functions
that take synthesized parts of a program as inputs makes a
significant difference over conventional dataflow techniques.
The program synthesis process uses dataflow recursively for
solving so called subtasks—generating inputs for the higher-
order functions, i.e., for achieving the goals like“synthesize a
body for the loop in this particular component”. This makes
the method universally applicable – theoretically any algo-
rithm can be synthesized in this way from a suitable speci-
fication and a fixed set of preprogrammed components [12].
A program is synthesized piecewise and the pieces are bound
together by preprogrammed higher-order functions that re-
alize required control structures. The planner is CoCoViLa’s
core part responsible for synthesis, it is described in more
detail in Section 4.2.

The second design decision is using full capabilities of
model-based software development—developing a completes
model for each simulation problem that includes not only de-
scription of a simulated system, but describes also the usage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2011, March 21-25, Barcelona, Spain
Copyright © 2011 ICST 978-1-936968-00-8
DOI 10.4108/icst.simutools.2011.245553

198

of simulation engines and other tools—visualizers, optimiz-
ers etc. needed for the particular problem. A model-based
software development consists of two stages: domain en-
gineering that provides assets for developing applications,
and application engineering that uses the assets. Assets
of our model-based approach are rich components [13]—
Java classes extended with specifications for program syn-
thesis and supplied also with visual representation like Java
beans. A rich component may have another class associ-
ated with it—that specifies a daemon—a thread that runs
permanently and supports user interaction during the prob-
lem description and simulation phases. A component with a
daemon can behave as an agent and can be compared with
agents in simulation environment, for instance, provided by
AgentSheets [16].

A collection of rich components for a problem domain con-
stitute a package that is an implementation of a domain
specific language (DSL) for this particular domain. Nat-
urally, packages can be restructured using export/import
commands, and components of different packages can be
used for specifying a simulation problem. Generally appli-
cable components like simulation engines, optimizers, input-
output components are collected in a package called toolbox.

We have chosen Java as the implementation environment
of our simulation platform. This is justified by useful proper-
ties of Java: good portability and interoperability, support
for distributed computing, open source ideology, dynamic
compilation and loading of classes. Our platform has been
developed in a way that does not restrict the usage of Java
for programming of classes. And from the other side—all
Java types and classes can be used as types of objects in
specifications.

3. LANGUAGE
We have implemented one specification language for de-

scribing both components and simulation problems. This
gives immediately a possibility of developing hierarchical
descriptions—a part of a model of simulated system can eas-
ily be declared to be a component. This language is built
on top of Java and merged with Java in a simple way: a
specification is always a comment of a special form included
in a Java class. It may happen that a class has nothing else
than a specification in it. An important decision has been to
keep separated the namespaces of a procedural part written
in Java and of a specification inside a Java class. Here is
an example of a specification that shows also the form of a
specification, and the possibility of usage of equations in a
specification:

class Complex {/*@

specification Complex {

double re, im, arg, mod;

mod^2 = re^2 + im^2;

mod * sin(arg) = im;

} @*/

}

The only connection between the actual Java code and the
specification is through the method names that refer to im-
plementations of functions in a specification. The following
is an example of usage of a Java method (getMaxVal) as an
implementation of a higher-order function in a specification:

class Max {

/*@ specification Max {

int arg, val, maxval;

[arg->val]->maxval{getMaxVal};

} @*/

public int getMaxVal(Subtask sbt) {

...

return maxval;

}

}

Argument sbt of the method getMaxVal should get a syn-
thesized method that implements the interface Subtask.

Selection of program synthesis puts restrictions on the
specification language: each function usable in synthesis
must have a specification describing its input and output
conditions. We call these specifications axioms, as it has
been the convention for structural synthesis of programs.
These axioms have a precise logical meaning, but we are
able to explain them in terms of dataflow only. The exam-
ple above includes the axiom

[arg->val]->maxval{getMaxVal};

This axiom has one input [arg->val] that is a subtask de-
scribing a function for computing val from given arg (this
function has to be synthesized by the planner). The axiom
has an output maxval.

The platform supports a textual and a visual representa-
tion of the specification language. The specification lan-
guage has a simple and a rather conventional syntax of
declarative compositional languages. It enables one to spec-
ify typed objects and bind them with each other by connect-
ing their attributes by equalities. Numeric variables can be
bound also by algebraic equations. Constant values can be
assigned to variables of any type, as soon as the value has
a textual representation. The textual specification enables
one also to specify the usage of methods of the class where
the specification is included by writing axioms about their
applicability, i.e., by giving their pre- and postconditions.
Extensibility of the language is achieved by introduction of
new types. The following is core of the language:

1. declaration of a component:

type id;

This declaration specifies a component of a model with
given type and name.

2. binding:

var1.portA = var2.portB;

This statement specifies an equality between variables
(ports) of components.

3. valuation:

var1.portC = value;

This statement defines a functional dependency with
no inputs and with one output that receives a constant
value.

4. axiom

precondition→ postcondition{implementation};
The precondition of axioms is a list of component names
and subtasks. The postcondition is a component name.

199

The names in precondition show components that are
inputs and the name in postcondition shows a com-
ponent in output of the computation by the function
given by the method with the name implementation.
A subtask has the form [x1, . . . , xn → y1, . . . , ym] and
defines a function with inputs and outputs given on
the left and right side of the arrow. The function de-
fined by a subtask has to be synthesized and given as
an input to the function described by the axiom.

5. equation

AExpression = AExpression;

Equation defines one or more functional dependencies
that are solving functions for variables bound by the
equations. Arithmetic expressions are the Java ones,
and can be solved only for the variables that have one
occurrence in an expression.

6. tuple

alias id = (ListOfNames);

where ListOfNames can include names with wild-
cards of the form ∗.id. In this case all ports of com-
ponents of a specification that have the name id are
included in ListOfNames. For example, alias state

= (*.state) describes a state vector consisting of states
of components.

The visual language describes schemes and, strictly speak-
ing, uses only the first two kinds of statements. However,
through pop-up windows one can add also valuations, aliases
and equations to a scheme.

4. IMPLEMENTATION

4.1 The platform
From a user’s perspective, CoCoViLa consists of two vi-

sual editors: the Class Editor for creating simulation pack-
ages by developing domain-specific concepts and the Scheme
Editor for the visual composition of simulation problems and
their execution.

4.1.1 Class Editor
In the Class Editor users can define visual aspects of rich

components using drawing capabilities or by importing cor-
responding bitmaps. Figure 1 shows the development of a
component responsible for plotting charts in the window of
the Class Editor. The image of the chart contains two ports
(dots) for providing data to the axis. A smaller pop-up
window is for defining properties of a highlighted port. An-
other window is for specifying attributes of the given com-
ponent, e.g., class name, toolbar icon, description and a set
of fields of visual interface with types and default values.
Functional properties of this component are implemented in
a Java class.

4.1.2 Scheme Editor
The Scheme Editor is a multi-purpose tool. It allows to

load a simulation package created in the Class Editor (user
interface with toolbars and menus is automatically gener-
ated from the package description) and to compose visually
a simulation problem in a scheme. Schemes can be saved
and used as components in other schemes higher in the hi-
erarchy. This is due to the fact that each scheme is a Java

Figure 1: The Class Editor window

class. From a visual description of a problem, a simula-
tion program is synthesized automatically. There are also
debugging capabilities (algorithm visualizer, viewer for syn-
thesized code, etc.). An executed simulation problem can
show results both in a separate window or display the feed-
back directly on a scheme.

Figure 2: The Scheme Editor window

Figure 2 shows the Scheme Editor with a loaded package
for simulating simple dynamic systems. Such systems are
described by ordinary differential equations. The scheme
shown in the figure has been composed by connecting ports
of components of the following types: Integrator, Adder,
Multiplier, Inverter, Clock and Chart. A continuous-
time simulation engine (Pr) is added as a superclass of the
class ex2 of the scheme. The toolbar at the top of the
scheme is for adding objects and connections to the scheme.
A pop-up window is for specifying attributes of a selected
Multiplier object. The Scheme Editor is syntax directed

200

and the correctness of the scheme is forced during editing.

4.2 Planner
The planner is a core part of our platform. Its purpose is

to transform declarative specifications of simulation prob-
lems into executable programs. The planner determines
computational paths from initial variables to required goal
variables (i.e., tries to solve a given computational problem
“find values of V from given values of U”, where U and V
are sets of input and output variables). The planner’s task
is not only to construct a linear dataflow, but also to solve
subtasks (higher-order dataflow) and to perform optimiza-
tion of an algorithm. Generation of a resulting program’s
code from an algorithm is then a straightforward process.

Let us have a small example of dataflow planning where a
goal is to compute a next state of a simulation from a current
state. That is, a computational problem can be expressed
with a following statement:

state -> nextstate; (1)

The problem can be solved only if a relation between state

and nextstate is specified. Assume the state is just a nu-
merical value and the next state is an increment of a current
state by a step which is obtained using a method getStep:

nextstate = state + step;

-> step{getStep};

out = nextstate;

In this case the planner produces the following dataflow if a
value of the state is given as input:

state = getStep();

nextstate = state + step;

Note that the calculation of a variable out is not included
in the dataflow because it is not required for solving a given
problem (1). We can add another statement into our speci-
fication that prints the value of the nextstate

nextstate -> printed{print}; (2)

The dataflow for (1) will not include (2) because (1) does
not include a control variable printed in a set of outputs.
Another computational problem has to be stated:

state -> printed;

The example above shows how to construct a linear dataflow,
i.e., to compute the value of the next state once. Simulation
tasks require to compute states in a loop until some satisfy-
ing final state is reached. To specify such task in CoCoViLa,
subtasks have to be used. The following statement specifies
that a final state can be computed from a given initial state
if there exists a function that calculates the next state from
a given state.

[state -> nextstate], istate -> fstate{proc};

To solve a topmost computational problem istate->fstate,
the subtask state -> nextstate must be solved. Having
(2), subtask is solvable and higher-order dataflow can be
constructed by the planner. The synthesized function state

-> nextstate is passed as an argument to the method proc

and this method can iteratively call the function to incre-
ment the state as long as it is needed.

Following the described technique, simulation engines that
require loops and other control structures are implemented
using subtasks and the planner takes care of synthesizing
bodies of subtasks. In addition, the planner can be invoked
at runtime for generating new programs to solve tasks on
models that might have been changed dynamically during
the simulation.

In general, the synthesis of an algorithm with subtasks
has exponential time complexity with respect to the num-
ber of subtasks in a specification, as the solvability of one
subtask may depend on the solvability on another subtask
or it can be the case that one and the same subtask has to
be solved repeatedly in one and the same branch. The solv-
ability search is done on an and-or tree where and-nodes
are axioms and or -nodes are subtasks. An implemented al-
gorithm is incremental depth-first search with backtracking
and additional heuristics.

The planning algorithm can be explained also in terms
of logic, and vice versa—theorems of intuitionistic propo-
sitional calculus can be encoded as sets of axioms (axioms
can be considered as propositional formulas where arrows
denote implications and commas denote conjunctions). To
test planner’s performance, CoCoViLa has been compared
to several well-known theorem provers [6]. Full description
and results of the benchmark can be found in [3].

To give some details, a formula ((((A → B) → A) →
A) → B) → B (an intuitionistic analog of classical Peirce’s
law) was elaborated to a special form where it was possible to
include copies of parts of initial formula to create more levels
of nestedness. The results are summarized in the Table 1.

n-th level formula
Tool 2 4 6 7 10 11

CoCoViLa <0.01 0.05 36.24 1579.6 – –
STRIP (ch) <0.01 0.34 3781.3 – – –
STRIP (pr) 34.87 – – – – –
iLeanCoP – – – – – –
iLeanSeP – – – – – –
LJT <0.01 0.05 35.15 1572.3 – –
PITP 0.01 0.05 15.73 343.5 – –
Gandalf 0.02 0.19 0.53 0.9 7.6 –

Table 1: Proof search time (in seconds) of various
theorem provers

4.3 Rich components
Rich components are descriptions of domain-specific con-

cepts that are used in simulation. Rich components col-
lected into packages are the building blocks for computa-
tional problems and simulation tasks. Such components are
designed to consist of four different parts (views).

The first part is the graphical representation. Having such
representation we can build schemes of simulation tasks via
visual composition of the components.

The graphical representation can be translated into a tex-
tual specification—the second part. For textual specification
of components we use the composition language described
in Section 3. The automatic composition of simulation pro-
grams is supported by the transformation of textual spec-
ifications into the logical representation used by attribute
evaluation algorithms implemented in the simulation plat-

201

form.
The third part of a rich component is a metaclass [4]—the

Java class in our case that may contain methods that are the
realizations of dependencies described in textual specifica-
tion of a rich component. The textual specification included
into the metaclass is called a metainterface. Metainterfaces
appear in metaclasses as comments and are used only by
the simulation platform to facilitate automatic composition
of simulation programs.

The optional fourth part of a rich component is called a
daemon. The daemon is a Java class that describes a thread
that can be started by a user, if it is needed. Daemons enable
one to develop flexible interfaces to simulation programs. In
addition, daemons have the reference to the scheme being
composed by the user. This gives them full control over
the scheme enabling one to develop components that can
assist the user in the task of composing a simulation model
by displaying dialog windows and arbitrarily complex visual
feedback or directly modifying the model. For example, a
daemon can be used to enforce some complex syntax rules
on the structure of the visual scheme.

Simulation packages may contain simulation engines im-
plemented as rich components, in this case such components
can be of considerable size. From the other side, rich com-
ponents may be very small entities that are used intensively
in an internal loop of a simulation program. In other words,
depending on the implementation and the purpose of the
application, rich components can be very lightweight con-
taining only visual and metainterface part or heavyweight
including all four functional parts.

4.4 Toolbox
Toolbox is a package in CoCoViLa that contains a num-

ber of components useful for building simulation programs.
It includes several simulation engines and also visualization
components. Another feature implemented as a standalone
tool is an expert system environment (some simulation prob-
lems require handling of the expert knowledge).

4.4.1 Simulation engines
The toolbox includes basic simulation engines as compo-

nents for driving discrete-event, continuous time and hybrid
simulations. Simulation engines are used as superclasses of
schemes, but they are not scheme specific. Being a super-
class, a simulation engine is able to collect parts of a state
from the underlying components automatically using aliases
and wildcards.

An important feature of the CoCoViLa platform is the
ability to generate parts of the simulation program auto-
matically, even at runtime, if needed. This adds flexibility
in developing and reusing simulation models, as, for exam-
ple, components can be synthesized and/or initialized lazily
including fragments of event handlers.

4.4.2 Visualization
A visualization package in CoCoViLa consists of several

components for plotting diagrams, two- and three- dimen-
sional charts and also components for data input (sliders,
etc.). Users can take individual components, import them
into their own simulation packages and customize according
to their specific needs.

4.4.3 Expert system

The expert system in CoCoViLa is developed as a stan-
dalone tool which may contain a number of decision tables.
A decision table is implemented as a set of production rules.
Several decision tables can be used simultaneously in one
scheme. The expert system has the following features:

• XML format for storing tables in files;

• forward chaining inference engine for acquiring data
from tables;

• graphical user interface for creating and managing ta-
bles, see Fig. 3;

• API to support querying tables from specifications of
components.

Figure 3: An example decision table opened in the
expert system management GUI

5. APPLICATIONS

5.1 Simulation of hydraulic systems
The most sizable application of the CoCoViLa simulation

tool is a modeling and simulation system for fluid power de-
vices [5]. Fluid power systems assume a lot of drive and con-
trol tasks in machinery because of their high power density,
flexible system character and required reliability. Computer
modeling and simulation is an important phase in the design
of such systems.

Multi-pole mathematical models and signal-flow graphs
of hydraulic elements are used. This enables methodical,
graphical representation of large and complicated chain sys-
tems. Simulated systems are decomposed into subsystems
and functional elements. Multi-pole models of them may use
programs, depending on the observed process (steady-state
condition, frequency characteristics, transient responses).

Calculations are performed using multi-level method. In
this way we can decompose large differential equation sys-
tems into smaller ones. First, calculations on the level of
elements or subsystems are performed, thereafter variables
between elements and subsystems are made congruent by
iteration methods.

A library has been composed containing over hundred
multi-pole models of fluid power elements that can be used
for composing different schemes of fluid power devices and
performing simulations. In particular modeling and simula-
tion systems for hydraulic elements, electro-hydraulic servo
systems and load sensing hydraulic systems have been de-
veloped. This is a joint work of Institute of Machinery and
Institute of Cybernetics at Tallinn University of Technology.

202

PV – Pump; CJh – Clutch; M

– Electric motor; ZV – Posi-

tioning cylinder; VP – Displace-

ment of the pump control valve;

RVP – Meter-in throttle edge of

the control valve; RVT – Meter-

out throttle edge of the control

valve; Res1,. . . ,Res6 - Hydraulic

resistors; RIDVW – Measur-

ing valve with pressure compen-

sator; RSKZ – Check valve with

meter-in throttle edge of hy-

draulic motor; MH – Hydraulic

motor; RSKA – Meter-out throt-

tle edge of hydraulic motor;

CJhM – Clutch with drive

mechanism; Tube1,. . . ,Tube4 –

Tubes.

Figure 4: Functional scheme of the hydraulic-
mechanical load-sensing system

The example below considers simulation of a hydraulic
load sensing system shown in Figure 4. Hierarchically built
model of the device includes over 4500 dependencies repre-
sented by equations and Java methods. Typically, two kinds
of simulations are performed: calculating steady state con-
ditions and dynamic responses.

To give an impression of the visual features of CoCoViLa
we present in Figure 5 a screenshot of a top level description
of a hydraulic simulation problem of steady state conditions
together with visualization of results of simulation shown in
the lower right corner of the figure.

Figure 5: Simulation of a hydraulic-mechanical load-
sensing system

The lower left window shows a piece of a text in the knowl-

edge representation language. The text is obtained automat-
ically from the visual description. It includes declarations of
essential objects as well as logical rules for computing new
values from given ones (lines from 10 to 24) and some explic-
itly given values (lines from 26 to 29) that have been entered
through pop-up windows of the visual components. A tool-
bar with buttons RVP, VP etc. is scrollable and represents
the concepts of the domain specific language for simulation
of hydraulic systems.

Different simulation engines are used for calculating steady
state conditions, 3D simulations and dynamic transient re-
sponses.

A special technique is used for calculating variables in loop
dependences that can appear when a scheme of hydraulic
device is composed from visual components. Splitting, using
initial approximate values and iterative re-computing of the
variables is used. Re-computing algorithms are constructed
by the CoCoViLa program synthesizer as a result of solving
corresponding subtasks. This avoids solving large equation
systems during simulations.

The typical simulating task for calculating transient re-
sponses of the load-sensing system considered above con-
tains:

• 37 classes, including 26 functional element classes;

• 16 variables that have to be iterated during the com-
putations.

The automatically synthesized Java code for solving the
simulation task for calculating dynamic transient responses
that mainly consists of calls of methods has 4449 lines and
includes 4 algorithms for solving different subtasks. Its syn-
thesis takes less than a second on a typical 2 GHz laptop.
Application described above is aimed at giving to the end
user a convenient tool for experimenting with different model
configurations and varying parameters of the models.

5.2 Simulations in cyber security
CoCoViLa has been applied in the cyber security domain

for modeling and simulation of cyber attacks and selection of
optimal countermeasures. Graph-based Automated Denial-
of-Service Attack Response (GrADAR) [7] is an approach
where the selection of attack responses is made according to
an estimation of an impact of simulated counter-attack mea-
sures. CoCoViLa was used to create a GrADAR package for
visual modeling and simulation of computer networks on the
basis of information such as dependencies between system
resources and their availability and workload values. The op-
timizer component of the package implements algorithms for
automatic selection and application of response measures.
This is a joint work of Fraunhofer Institute for Communi-
cation, Information Processing and Ergonomics FKIE (Ger-
many), Cooperative Cyber Defence Centre of Excellence and
Institute of Cybernetics (Tallinn, Estonia) [9].

Figure 6 shows a scheme in CoCoViLa representing a de-
pendency graph of network resources with connections for
propagating workload and availability values. The goal is to
simulate and analyze the effect of response measures. Co-
CoViLa allows not only to enter the parameter values of
components using the graphical user interface, but thanks
to absence of restrictions on the usage of Java language and
libraries, it also allows integration with other software, e.g.,
back-end management systems to receive live values into the
running program synthesized from the scheme.

203

Figure 6: Visual specification of a response analysis
problem in GrADAR package

5.3 Simulating graded security
This section concerns a work [8] in the field of modeling

and simulation of graded security measures used in a bank-
ing security design. The graded security model is intended
to help to determine reasonable or optimal sets of security
measures according to the given security requirements. Cur-
rently, there are four main security goals in the model: con-
fidentiality (C), integrity (I), availability (A) and satisfying
mission criticality (M). For each goal, a certain level (0-3)
is attached to specify the security requirements defined by a
particular security class. As a simplified example, to achieve
the security goals, the following groups of security measures
might be selected for consideration: user training, antivirus
software, segmentation, redundancy, backup, firewall, access
control, intrusion detection, and encryption. The relative
importance of a measures group can be specified by giving a
weight value. In realistic scenarios studied so far the number
of measures groups has been between 30 and 40.

Figure 7 shows a screenshot of the graded security expert
system which consists of a visual specification language, im-
plemented optimization algorithms and knowledge modules
in the form of decision tables. In this package, security sit-
uations are described using the visual language. Suitable
optimizers are applied to simulate all possible outcomes to
find the Pareto-optimal set. During the simulation the opti-
mizer queries decision tables for specific values. In the lower
right corner of the figure the result of simulation, in the form
of a Pareto curve and resource distribution curves, is shown.

As optimization procedures are contained in regular rich
components, the algorithm used for a computation is easy
to change by just replacing a component on the scheme. It
can be useful to have a package contain several optimizers.
Then the one making the most appropriate trade-offs for a
particular experiment can be chosen by the user. In case of
this package we have implemented two different optimizers,
one employing brute-force and the other discrete dynamic
programming algorithms. Adding a component implement-
ing a genetic optimizer for the cases that cannot be handled
by existing optimizers is anticipated in the future.

Figure 7: Visual specification and the result of sim-
ulation

6. RELATED WORK
We are aware of a number of software products applicable

for modeling and simulation. The ones we are mostly inter-
ested can be roughly divided into three categories: general-
purpose modeling and simulation software, model-based ap-
plication development software and large-scale discrete event
simulation software. The common feature of most of these
tools is visual specification capability by drawing schemes
from components and connecting them to each other.

General purpose simulation products (Simulink [2], Sci-
cos [1], Ptolemy II [10], etc.) typically possess built-in hy-
brid simulation engines and the simulation is flow-based —
i.e., all the connecting arcs are directed and all the ports are
either inputs or outputs. The models can be composed hier-
archically and the components can be easily reused. Simula-
tions are typically carried out on a virtual machine but also
model translators exist to get code in some programming
language (e.g., C) and to improve efficiency running the com-
piled code. Standard components (blocks) are grouped into
packages (palettes). There exist large variety of blocks but
also new blocks can be developed.

Model-based application develpment tools (e.g., MetaEdit
[17]) have commonly a rich set of tools for program speci-
fication, analysis and verification. Taking the model-based
approach to simulation development, it is easy to compose
modeling and simulation applications with these tools. How-
ever, it typically needs more effort than using a dedicated
tool.

Large-scale discrete event simulation tools (OPNET Mod-
eler [14], OMNet++ [20], NS3 [15], etc.) are scalable simu-
lators capable of handling large number of nodes and events.
Their main concern is simulation performance and they are
mostly used for in-detail analysis of network behavior and
embedded systems, simulating all actions down to hardware
level.

204

The CoCoViLa’s planner provides flow based analysis sim-
ilar to Simulink or Scicos, but its capability of constructing
higher-order data flows allows us the development of model-
and simulation-specific simulation engines in contrast to the
mentioned tools. As the resulting simulation is always com-
piled into a single program it allows to achieve good simu-
lation performance.

In comparison to other tools, CoCoViLa’s support for han-
dling of equations is very useful as this allows better reuse
of rich components. For example, the ports are not defined
strictly as inputs or outputs like it is the case with the tools
belonging to the first two categories. It is up to the plan-
ner to decide which way the data flows in order to match
the needs of the given problem—like it is the case also in
real life—when defining a pipe it is not known beforehand
in which direction the liquid flows in it.

Thanks to the hybrid simulation engine included in the
toolbox, CoCoViLa’s functionality is comparable to the gen-
eral purpose simulation tools belonging to our first category.
The hybrid simulation engine also covers the basic function-
ality of the tools belonging to the third category. However,
it probably cannot always compete with specialized tools
performance-wise.

Thus, although by its nature CoCoViLa is closest to the
tools belonging to the second category, it is multifunctional
and is more broadly applicable.

7. CONCLUSION
In this paper we described a flexible Java-based simula-

tion platform CoCoViLa. It allows implementing simula-
tion engines and other domain-specific simulation concepts
as reusable components. The platform supports visual and
model-based software development and uses structural syn-
thesis of programs for translating declarative specifications
of simulation problems into efficient executable code. To
demonstrate the feasibility of our approach, several real-
world applications were presented. Based on our experience,
we suggest that CoCoViLa is suitable for creating and per-
forming simulations in various engineering domains.

8. ACKNOWLEDGMENTS
This work was partially supported by the Estonian Min-

istry of Defence (grant No. 372/0807) and the target-financed
theme No. 0322709s06 of the Estonian Ministry of Educa-
tion and Research. The second and the fourth authors would
like to thank the Estonian Information Technology Founda-
tion’s Tiger University+ program and the Estonian Doctoral
School in ICT for supporting this work.

9. REFERENCES
[1] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah.

Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4. Springer, 2010.

[2] J. B. Dabney and T. L. Harman. Mastering
SIMULINK. Prentice Hall, 2001.

[3] P. Grigorenko. Higher-Order Attribute Semantics of
Flat Languages. PhD thesis, Tallinn University of
Technology, 2010.

[4] P. Grigorenko, A. Saabas, and E. Tyugu. Cocovila -
compiler-compiler for visual languages. Electr. Notes
Theor. Comput. Sci., 141(4):137–142, 2005.

[5] G. Grossschmidt and M. Harf. COCO-SIM –
object-oriented multi-pole modelling and simulation
environment for fluid power systems. part 2:
Modelling and simulation of hydraulic-mechanical
load-sensing system. International Journal of Fluid
Power, 10(3):71–85, 2009.

[6] ILTP Library homepage.
http://www.cs.uni-potsdam.de/ti/iltp.

[7] M. Jahnke, G. Klein, J. Tölle, and P. Martini.
Protecting military networks with gradar - an
approach for graph-based automated denial-of-service
attack response. In Proceedings of the International
Military Communication Conference (MCC 2009),
Prague, Czech Republic, Sept. 2009.

[8] J. Kivimaa, A. Ojamaa, and E. Tyugu. Graded
security expert system. In CRITIS, pages 279–286,
2008.

[9] G. Klein, A. Ojamaa, P. Grigorenko, M. Jahnke, and
E. Tyugu. Enhancing response selection in impact
estimation approaches. In M. Amanowicz, editor,
Concepts and Implementations for Innovative Military
Communications and Information Technologies.
Military University of Technology, Warsaw, 2010.

[10] X. Liu, Y. Xiong, and E. A. Lee. The ptolemy ii
framework for visual languages. In HCC, 2001.

[11] R. Maigre, P. Küngas, M. Matskin, and E. Tyugu.
Handling large web services models in a federated
governmental information system. In ICIW, pages
626–631, 2008.

[12] G. Mints and E. Tyugu. The programming system
PRIZ. In Baltic Computer Science, pages 1–17, 1991.

[13] A. Ojamaa and E. Tyugu. Rich components of
extendable simulation platform. In H. R. Arabnia,
editor, MSV, pages 121–127. CSREA Press, 2007.

[14] OPNET Technologies, Inc. OPNET Solutions.
http://www.opnet.com/.

[15] S. Papanastasiou, J. Mittag, E. G. Ström, and
H. Hartenstein. Bridging the gap between physical
layer emulation and network simulation. In
Proceedings of IEEE WCNC Conference, 2010, April
2010.

[16] A. Repenning, A. Ioannidou, and J. Zola. Agentsheets:
End-user programmable simulations. J. Artificial
Societies and Social Simulation, 3(3), 2000.

[17] J.-P. Tolvanen and S. Kelly. Metaedit+: defining and
using integrated domain-specific modeling languages.
In S. Arora and G. T. Leavens, editors, OOPSLA
Companion, pages 819–820. ACM, 2009.

[18] E. Tyugu. The structural synthesis of programs.
Algorithms in Modern Mathematics and Computer
Science, pages 290–303, 1979.

[19] E. Tyugu, M. Matskin, and J. Penjam. Applications of
structural synthesis of programs. In FM ’99:
Proceedings of the Wold Congress on Formal Methods
in the Development of Computing Systems-Volume I,
pages 551–569, London, UK, 1999. Springer-Verlag.

[20] A. Varga and R. Hornig. An overview of the
OMNeT++ simulation environment. In SimuTools,
page 60, 2008.

205

Publication II

Klein, Gabriel; Ojamaa, Andres; Grigorenko, Pavel; Jahnke, Marko; Tyugu, Enn
(2010).

Enhancing Response Selection in Impact Estimation Approaches

Concepts and Implementations for Innovative Military Communications and Infor-
mation Technologies. Ed. Amanowicz, Marek. Warsaw: Military University of
Technology, 277–286.

91

Enhancing Response Selection in Impact
Estimation Approaches

Gabriel Klein1, Andres Ojamaa2, Pavel Grigorenko2,
Marko Jahnke1, Enn Tyugu3

1 Fraunhofer Institute for Communication, Information
Processing and Ergonomics FKIE

Neuenahrer Str. 20, 53343 Wachtberg, Germany

2 Institute of Cybernetics at Tallinn Technical University
Akadeemia tee 21, 12618 Tallinn, Estonia

3 Cooperative Cyber Defence Centre of Excellence
Filtri tee 12, 10132 Tallinn, Estonia

Abstract: The number of attacks against computer systems is steadily increasing. Network admi-
nistration personnel often have a wide variety of response measures against these attacks at their
disposal. In previous work, a methodology was introduced for efficiently assessing the effects of co-
untermeasures on network resources before their actual application and thus determining the most
appropriate response. Building on this, we now propose a method of dynamically weighting the me-
trics used to evaluate the different responses. Instead of a fixed linear combination of metrics we
introduce Pareto optimal combinations of the individual metrics and the combined cost measure.
This allows a more flexible way of emphasizing the importance of individual metrics in different
situations. The methodology was prototypically implemented in CoCoViLa, a powerful simulation
engine for visually specified optimization problems.
Keywords: Denial-of-service attacks, automated response, response evaluation, response metrics,
Pareto optimality

1 . Introduction

Along with the rising number of computer systems connected to the Inter-
net which are infected with malware, the danger of large-scale denial-of-service
attacks occurring also increases. To maximize the speed and reliability of response
measures against such attacks, it is desirable to select and apply response measures
automatically. In GrADAR (Graph-based Automated Denial-of-Service Attack
Response), the selection of responses is made according to an estimation of the
measures’ impact on the protected system. Here, the impact is estimated accord-
ing to different criteria, so-called metrics. Currently, the overall cost of a response

278 Concepts and Implementations for Innovative Military Communications...

measure is defined as a linear combination of the different metric values in which
each metric has a different weighting reflecting its relative importance. A higher flex-
ibility can be attained by performing a Pareto optimization of the individual metric
values as well as their linear combination. With this, multiple objectives regarding
the metrics can be achieved; for example, a response measure with a maximal value
for a certain metric can be chosen which also has a high overall rating.

The rest of this paper is structured as follows: Section 2 introduces related
work in which Pareto optimality is used for multi-objective optimization. Thereafter,
Section 3 gives a brief introduction to GrADAR. This is followed by a description
of how Pareto optimization can be used to select response measures more flex-
ibly and with regard to multiple objectives (Section 4). Section 5 gives details on
our implementation in CoCoViLa, a visual simulation system. This is followed by
Section 6 which presents first results of our work. Section 7 then summarizes our
work and provides an outlook on further activities.

2 . Related Work

In [1], Horn et al. introduce a Pareto criterion into the selection operator
of a genetic algorithm to enable multi-objective optimization. As opposed to a sca-
lar fitness function where the solution can be very sensitive to parameter changes,
this allows a more robust selection of non-dominated solutions.

Douligeris [2] studies Pareto optimality in a telecommunications context.
Here, flow control is managed by solving a problem with the two objectives maxi-
mal throughput and minimal delay. Pareto optimal solutions are then compared
according to fairness.

From a network security point of view, the following contributions are inter-
esting. Gu et al. [3] propose an intrusion detection system in which two different
feature extraction approaches are used to construct event classifiers. The combina-
tion of the advantages of both systems into a single objective would require advance
knowledge. Therefore, a multi-objective optimization is performed which yields
Pareto optimal solutions.

In [4] and [5], Ojamaa et al. describe a graded security expert system which
enables choosing security measures for information assurance. In the security model,
the combination of the two objectives low cost and high confidence is achieved by
an optimization technique based on dynamic programming. The user is presented
with a Pareto optimality trade-off curve permitting the choice of the most appro-
priate security measures.

3 . Graph-based Automated Denial-of-Service Attack Response

Graph-based Automated Denial-of-Service Attack Response (GrADAR, [6], [7])
is a framework for assessing the effect of response measures against denial-of-service

279Chapter 5: Information Assurance and Security

attacks on the availability of network services. This section describes the GrADAR
model and introduces the required terminology.

In GrADAR, the so-called dependency graph  ˆ ˆ ˆ,G V E models the ideal state
of a network. Its vertices V̂ correspond to the network resources and the edges Ê
signify availability dependency relationships between the resources. Vertices

ˆ
ir V are labeled with a dependency function

ir
D according to which, a resource’s

availability can be estimated based on the availability of antecedent resources. Ad-
ditionally, the edges ,

ˆ
i je E are labeled with a dependency weighting function

   , : 0,1 0,1i jw  which signifies the degree to which resource ir is dependent on
resource jr ().i jr r

A second graph  , ,G V E the so-called accessibility graph, reflects the actual
current state of the network. Its vertices ir V correspond to those in the depend-
ency graph but are labeled with an availability value    0,1 .iA r  The set of edges E
is a subset of Ê ˆ()E E and an edge ,i je E reflects the ability of resource ir
to access another resource .jr

Using information in both these graph structures now allows the estimation
of availability values of resources for which availability is not directly observable.
For a resource ,ir i jr r and ,i kr r the availability of ir can be predicted using
the following formula:

 , ,() ((((), ()))
ii r i j j i k kA r D w A r w A r

Figure 1 shows an example of both a dependency and an accessibility graph.
Here, a user D (also modeled as a network resource) us dependent on the availability
of a local operating system and a running HTTP service to perform some task,
e. g. browsing a Web shop. The HTTP service itself is again dependent on the avail-
ability of the IP stack, in turn dependent on the operating system. The accessibility
graph on the right shows a reduced availability of the IP resource, possibly due
to an overloaded link to the nearest router (not displayed in the graph). Because
of the availability dependency relationships between the resources, this results
in a reduced availability of the user node, manifested, for example, by a reduction
in speed of the user’s browsing experience.

Figure 1. Example of a dependency graph and a corresponding accessibility graph

280 Concepts and Implementations for Innovative Military Communications...

To estimate the effects of response measures on the availability of network
services, each response is virtually applied to the model. The effects are then quanti-
fied and the most appropriate response is applied to the real-world network.

Virtual application of response measures is performed by modifying the de-
pendency and accessibility graph in one or more of the following ways:

1. change availability values of nodes (G only),
2. adding/removing vertices (Ĝ and G), or
3. adding/removing edges (Ĝ and G).
After these changes have been made, the availability dependency relationships

in the dependency graph need to be used by an update algorithm (e. g. a recursive
depth-first search) to estimate the effect these changes have on the availability
of other resources. For a more detailed description of availability propagation,
please refer to [8].

Two possible response measures for the scenario depicted in Figure 1 could
be the following:

1. Dynamic reallocation of the available bandwidth on the IP link. This could
result in an increased availability of the local IP stack (corresponding to
item 1 above).

2. Utilization of a second IP link to perform a form of load balancing.
This would introduce a second IP node and a second MAC node into
the graph, along with the corresponding availability dependency relation-
ships (corresponding to items 2 and 3 above).

To select the most appropriate of the available response measures, they are evalu-
ated with respect to multiple criteria, or metrics. There are currently four different met-
rics: success (),S durability (),D application costs ()C and error-proneness ().E
These can be given individual weights by factors , , , .S D C Ew w w w 

Let  1, , n   be the set of all possible response measures. The best re-
sponse measure best is then determined by a suitability function which minimizes
the costs and the error-proneness and maximizes the success and durability, i. e.

  arg min ,best S


  

where          C C E E S S D DS w w w w             is the linear com-
bination of metric values and , , ,C E S D    are functions :i  which rep-
resent the metrics.

Figure 2 shows an overview of the GrADAR approach. The ideal state of the
network captured in the dependency graph is augmented with availability informa-
tion for some resources provided by an implemented intrusion detection or network
management system. An update algorithm utilizing the availability dependency
relationships between resources is used to estimate availability values for resources
for which no values were provided by the IDS/NMS.

281Chapter 5: Information Assurance and Security

Figure 2. Overview of the GrADAR approach

Real-world response measures correspond to transformations of the two graphs.
For each possible response measure, the graphs are individually modified. The result-
ing response graphs provide a measure for the resulting availability after the applica-
tion of the corresponding countermeasure. However, this is only one of the possible
metrics according to which countermeasures can be evaluated (see above). After
an appropriate response measure has been chosen and applied, the corresponding
response graph serves as dependency graph for the next iteration of GrADAR.

4 . Pareto Optimal Response Selection

Pareto optimality or efficiency is a concept originating in economics. Broadly
speaking, a Pareto optimum of a group of individuals is a state in which any
change to the benefit of an individual would at the same time be to the detri-
ment of another individual. More formally, an n-dimensional tuple 1, , nx x A
is a Pareto optimum of the set A if there is no tuple 1, , ny y A with i iy x
for 1, ,i n  where “≥” is a superiority relation. The set of all Pareto optimal
outcomes is called a Pareto set.

To extend the rather static assessment of response measures through
the weighted linear combination of individual metrics, we propose to also analyse
responses by presenting the results in the form of Pareto sets. This is theoreti-
cally possible for all available metrics, i. e. for all response measures ,i the tuple
          , , , ,C i E i S i D i iS         can be represented. Note that subsequently,

the weighted combination of metrics  S  will be treated as a metric as well, signi-
fying the overall “cost” of the response measure. However, to retain overall manage-
ability, analysis should be restricted to two or three metrics. We can, for example,
plot the best possible values of  S  for certain response vectors against the values

282 Concepts and Implementations for Innovative Military Communications...

of selected metrics, e. g. application costs, for these responses. A reasonable choice
would be to compose the metrics reflecting gains,      ,S DS      and
those reflecting the losses,      ,C ES      and to plot the curve relating
 S  and  .S  The final response choice will then explicitly take into account

both the overall quality and the costs.
It is important to have a convenient way of selecting different Pareto variables

and plotting different Pareto curves. The next section gives a brief overview of a tool
developed for this purpose.

5 . Model-based Implementation

The aim of the present approach is to develop an automatic response selection
method by experimenting with different ways of the response selection. To facilitate
the experiments, we have developed a visual model-based software tool for representing
accessibility graphs and problems on these graphs. This is a GrADAR software package
developed for the CoCoViLa platform [9]. The package provides assets for specifying
response selection problems and for high-level control of computations on the graph.
It contains components for resources, optimization methods and for visualization of re-
sults. CoCoViLa supports problem solving on higher-order constraint networks [10]
that can be easily used for propagating availability values on the accessibility graphs.

The first application of the software was to analyze the effect of response measures
by automatically propagating workload values (red arrows) and availability values (green
arrows) of resources. This is shown in Figure 3. The problem was visually specified
as a scheme that was a union of dependency and accessibility graphs extended with
an analysis component (Propagator). Nodes representing resources had a number
of parameters that were observed and adjusted in a property window of a node.

Figure 3. Visual specification of a response analysis problem

283Chapter 5: Information Assurance and Security

There are two possibilities for specifying resource availability values. On the one
hand, values can be manually entered in the resource properties window. This sup-
ports offline simulations of the effects of countermeasures on static resource scenarios
and can be useful for trial-and-error determination of novel countermeasures. On
the other hand, there are also interfaces to arbitrary back-end management systems
from which live values can be obtained. Thus, the simulation engine has a dual
use as a monitoring system operating on real-life values. This can aid in real-time
countermeasure evaluation for network administration personnel.

Figure 3 shows a visual specification of the response analysis problem. Its menu
bar contains buttons for all types of components and connectors. A specification
was built by using buttons of the menu bar, and by introducing parameter values
of components through their pop-up property windows. A properties window
for a resource node (Web-Server) is shown on the right side in Figure 4.

Figure 4. Properties window of the Web server resource

The problem can be specified in a textual language as well. In fact, a textual
specification is always automatically generated from a visual specification, if the lat-
ter has been given. The ability to generate the scheme in textual format is especially
useful because scheme generation can be automated and processed offline.

6 . First Results

The main application of the developed software is calculation of various Pareto
sets, using an optimization component for selecting the best solution from a given
set of possible response measures. This problem is described by accessibility graph,
extended with visualization, optimization and response measures nodes; see Fig-
ure 5 for a simplified example.

284 Concepts and Implementations for Innovative Military Communications...

The developed GrADAR package enables decision-making (choosing a re-
sponse) by first determining a set of admissible responses and thereafter either finding
the best response or plotting a Pareto curve to help with the choice. The computa-
tions are performed as follows. The set of possible responses Θ is a set of tuples con-
structed from possible response measures for the resource nodes of the accessibility
graph. A tuple of response measures constitute the description of a response θ, we
call it a response vector. The optimizing component is able to produce all required
values of the response vector and distribute its components to the resource nodes
for calculations. The results of calculations are collected from the resource nodes
and passed back to the optimizing component. This collection and distribution
of responses is described in the optimizing component simply by the following
CoCoViLa statement:

alias responseVector = (*.response);
where response must be the name of a response action in each resource node.

At the present stage we use a brute-force search for determining the best re-
sponse for given arguments, generating all possible values of response . A Pareto set
of pairs (,)x y is constructed as follows. Values x and y of the Pareto coordinates
are calculated for all possible values of . The response ' with the best value of y
is selected for each given value of .x A Pareto set (the set of selected points (,))x y
is plotted. Also, a table can be constructed with rows representing a response '
for each point (,).x y As we have noted in Section 3, different metrics can be used
as the variables x and .y Figure 5 shows a visual specification of a problem and
a Pareto set for x representing normalized gains S and 1 ,y S  where S
represents normalized costs. Another potentially interesting Pareto set is for x rep-
resenting S (success of the countermeasure) and y representing S, the overall cost
measure for the countermeasure. This would enable an administrator to choose
a response measure which maximizes the resulting network availability while
minimizing the overall cost.

We would like to emphasize that the user can quickly analyze multiple trade-off
situations by connecting various ports of the optimizer component outputting dif-
ferent metric values to the ports of the graph component. New, arbitrarily complex
metrics can be defined using equations and existing Java methods in the specifica-
tion window.

In order to be able to analyze responses that introduce new elements into
the graph, we use a supergraph of the accessibility graph that includes all possible
extensions, e. g. the servers that can be added as responses. When the availability
of all these resources is zero, we get the initial accessibility graph that can be ex-
tended. Actually, the node Backup Webserver in Figure 5 is just a node with zero
initial availability, i. e. it can be added to the network as a response.

The graph window in Figure 5 shows the points of the calculated Pareto set
as red rectangles (only the points with the highest y value for each x value are vis-
ible). Each point represents the estimated outcome of applying a response. The graph

285Chapter 5: Information Assurance and Security

displays a tool tip on each rectangle which contains the index and the exact x and y
values of the corresponding response (the tool tip also shows the values for points
with the same x value not in the Pareto set). The index can be used for looking up
the response steps leading to this outcome.

Figure 5. Plot of the Pareto set (gains, costs)

7 . Conclusion and Further Work

We have presented a methodology and prototypical implementation for dy-
namically modifying the weighting of metrics for evaluating the effects of pre-defined
countermeasures against computer network attacks. Instead of a fixed combina-
tion of metric values, Pareto sets now allow more flexible and more differentiated
determination of the most appropriate reaction to a detected attack.

Currently, only the evaluation of pre-defined countermeasures is supported.
However, it is possible that through recombination of elementary response steps,
new, more sophisticated responses can be generated. This includes the definition
of a permissible order in which response steps can be concatenated and the elimina-
tion of infeasible or erroneous results. This requires further research into the neces-
sary changes to the model.

Acknowledgements

The authors would like to thank the Federal Office for Information Manage-
ment and Information Technology of the German Armed Forces, the Cooperative
Cyber Defence Centre of Excellence, the Estonian Defence Forces Training and

286 Concepts and Implementations for Innovative Military Communications...

Development Centre of Communication and Information Systems, and the Estonian
Ministry of Defence (grant No. 372/0807) for the support of this work. The second
author would like to thank the Estonian Information Technology Foundation and
the Tiger University programme for partial support of this work.

REFERENCES

 [1] Horn J., Nafpliotis N., and Goldberg D., A niched pareto genetic algorithm
for multiobjective optimization. In: Proceedings of the 1st IEEE Conference on
Evolutionary Computation, IEEE World Congress on Computational Intelligence,
pages 82-87, 1994.

 [2] Douligeris C., Multiobjective flow control in telecommunication networks.
In: INFOCOM ’92. Eleventh Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE, volume 1, pages 303-312, May 1992.

 [3] Gu Y., Zhou B., and Zhao J., PCA-ICA ensembled intrusion detection system by
pareto-optimal optimization. Inform. Technol. J., 7:510-515, 2008.

 [4] Ojamaa A., Tyugu E., and Kivimaa J., Pareto-optimal situation analysis for selection
of security measures. In: Proceedings of the 4th IEEE Workshop on Situation
Management SIMA 2008, San Diego, CA, USA, November 2008.

 [5] Kivimaa J., Ojamaa A., and Tyugu E., Graded security expert system. In: R. Setola and
S. Geretshuber, editors, Critical Information Infrastructures Security, volume 5508
of LNCS, pages 279-286. Springer-Verlag, 2009.

 [6] Jahnke M., Tölle J., Thul C., and Martini P., Validating GrADAR – An Approach
for Graph-based Automated DoS Attack Response. In: Proceedings of the 34th IEEE
Conference on Local Computer Networks (LCN2009), Zurich, Switzerland, 2009.

 [7] Jahnke M., Klein G., Tölle J., and Martini P., Protecting Military Networks with
GrADAR – Graph-based Automated DoS Attack Response. In: Proceedings of the
Military Communication Conference 2009, Prague, Czech Republic, 2009.

 [8] Jahnke M., Graph-based Automated Denial-of-Service Attack Response. PhD thesis,
University of Bonn, 2009.

 [9] Grigorenko P., Saabas A., and Tyugu E., Visual tool for generative programming.
In: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM Press, 2005.

[10] Tyugu E. and Uustalu T., Higher-order functional constraint networks. In: Constraint
Programming, volume 131 of NATO ASI Series F: Computer and System Sciences,
pages 116-139. Springer-Verlag, 1994.

Publication III

Ojamaa, Andres (2009).

Hybrid Simulation of Large Networks

Proceedings of the 2009 International Conference on Modeling, Simulation & Vi-
sualization Methods, MSV 2009. Ed. Arabnia, Hamid R.; Deligiannidis, Leonidas.
Las Vegas: CSREA Press, 219–225.

103

Hybrid Simulation of Large Networks

Andres Ojamaa
Institute of Cybernetics

Tallinn University of Technology
Tallinn, Estonia

Abstract— In this paper a new method for hybrid simulation
of large computer networks is introduced. This technique
allows to combine two different existing simulation methods:
discrete event simulation and time-stepped continuous pro-
cess simulation. The blending of methods with distinct prop-
erties gives more options in choosing the appropriate trade-
off level between performance and accuracy that is needed
for scalability. The novelty is that the hybrid method uses
automatic synthesis of programs for generating parts of the
simulation program from high-level logical specifications.
A prototype implementation of a simulation environment
supporting the hybrid simulation method is also described.
The implementation is built on a Java-based simulation tool
CoCoViLa that supports visual specification of simulation
problems and program synthesis.

Keywords: Hybrid simulation, large-scale network simulation,
software components, visual specification, Java-based modelers

1. Introduction
Simulation of large computer networks has remained a

challenging task. This is the case despite many efforts that
have been made to develop efficient tools and accurate
methods. Although one can see some improvements in this
field, the growth of problems still outpaces the development
of the modeling and simulation methods and tools.

The prelevant approach to simulation of computer net-
works is discrete event simulation. Several well known dis-
crete event network simulators exist. Network simulators that
are popular in the academic community include, for example,
NS2/NS3 [1] and the INET Framework. The latter is based
on the OMNeT++ discrete event simulation environment [2].
From commercial offerings, besides others, there are OPNET
Modeler and the QualNet product family.

Packet-level discrete event simulations can produce very
accurate results provided that the used models are correct.
However, this accuracy comes with a relatively high com-
putational cost. While this is a workable solution for small
scale experiments, it is not commonly suitable for large
networks. The limiting factor of packet-based simulation
of large networks is that network sizes and bandwidths
are increasing rapidly but the average size of packets for
a certain protocol and workload is quite stable. Therefore
the number of packets traversing the simulated network also
increases very quickly with the growth of the network model.

The complexity of the simulation depends at least linearly
on the number of packets flowing in the simulation. While
packet-level discrete-event simulations can be executed in
parallel, it is hard to parallelize the simulation effectively
when many nodes are connected with high speed and low
latency links. This is because small propagation delays result
in time synchronization overhead becoming more and more
prohibitive.

Advanced techniques have been proposed to speed up
packet-level discrete-event simulations. The obvious way to
achieve that is to find solutions for reducing the number
of events that have to be processed. One solution from
this class is based on the observation that a large amount
of network traffic usually involves sequences of packets
positioned closely in time that are exchanged between the
same two endpoints. Therefore, instead of individual packets,
simulations can treat sequences of packets or packet trains
as the basic unit of network traffic to reduce processing
workload. A packet train model was introduced in [12].

One of the key qualities of large network simulations
is scalability. Better scalability is generally achieved by
abstracting away the low level details (e.g., simulation events
triggered by transmission of a single packet in a high
bandwidth link) where it can be done without affecting
fidelity of the results too much. The already mentioned
packet train method is one step in this direction. How-
ever, considering the limits of packet-based discrete-event
simulations a number of alternative approaches have been
developed over the years. These methods include giving up
the packet-level simulation and replacing it completely with
analytical approximations of network behavior, as well as
other simplifications. A common abstraction over packets is
so-called continuous fluid model and variations of it (see,
e.g., [14]).

The main focus of our work is on the integration of a
hybrid simulation method with automatic synthesis of pro-
grams. This approach gives all the benefits of hybrid simula-
tion. Adding automatic synthesis capabilities brings its own
benefits, mainly flexibility, faster development of simulation
experiments and efficiency of execution. Large simulation
program can be synthesized from compact, modular and
high-level specifications. Also programs with different em-
phasis (e.g., performance, accuracy) can be generated from
the same high-level specification. This hybrid technique is
rather general and applicable to different problem domains,

not restricted to just network simulations.
The details of modeling specific network protocols an-

alytically, methods for accounting of interactions between
packet and fluid flows, calculating end to end delays etc are
however out of the scope of this paper. These questions have
been covered in different papers, see, for example: [3], [15],
[17].

The hybrid simulation method presented here is based on
the assumption that most of the traffic volume is modeled
as fluid and simulated as a continuous process. It is also
assumed that the clocks of discrete event process and time-
stepped continuous process are not synchronized during a
time step, and this does not result in significant errors.

The rest of the paper is structured as follows. We will con-
tinue with a brief overview of related work and a discussion
of various approaches to hybrid network simulation. After
that the basics of the simulation environment CoCoViLa
are introduced. In the following part, Section 4, the hybrid
simulation method with automatic program synthesis is
presented along with a simplified example of hybrid network
simulation.

2. Related Work
A hybrid packet/fluid network simulation method and

environment is presented in [19]. The authors have integrated
slightly modified versions of two different simulation tools:
pdns for simulating foreground packet-based flows, and
HDCF-NS fluid simulator for simulating background traffic.
While experiments show considerable speed-ups in some
cases, the performance is not very good in cases where a
large number of minor fluctuations in flow rates (the “ripple
effect”) was triggered in the fluid simulator.

In [4] a general hybrid systems modeling framework of
describing the flow of traffic in communication networks is
presented. To characterize network behavior, these models
use averaging to continuously approximate discrete variables
such as congestion window and queue size. The results are
validated against results obtained with the NS2 simulator.
Hybrid models of TCP and UDP are described along with
the framework. A discussion on computational complexity
is also presented where the differences between hybrid and
pure packet-based simulations are outlined.

In [16] a design of a hybrid Java simulator, called HNS
is outlined. HNS simulates the movement of workload in
a queuing network, where transactions may be of two
types: traditional discrete packet transactions and continuous
fluid transactions. HNS introduces and utilizes a so-called
streamlining methodology to avoid situations where the
“ripple effect” causes slowdowns of the simulation. HNS
considers only static network models and, as fluid flow rate
changes are propagated without delays, loops in HNS fluid
flows are not allowed. The proposed method shows good
performance when there are few packet-based flows present
in the simulation.

A hybrid packet/fluid model where packet and fluid flows
coexist and interact is presented in [13]. The goal is to speed
up network simulations where background traffic is modeled
as fluid flows. Performance and accuracy is compared to
packet-level discrete-event simulations.

Another time-stepped hybrid simulation algorithm and
its implementation in a simulation environment NetScale is
presented in [5]. The authors claim to be able to simulate up
to one million competing flows and network elements. Re-
sults of example problems are compared to results published
elsewhere and scalability and excellent accuracy compared
to packet-level discrete-event simulations is reported.

PtolemyII [11] is a Java-based hybrid simulation envi-
ronment. It has a graphical user interface and reusable
components are used for composition of simulation pro-
grams. This framework features Higher Order Components
(HOCs) which can programmatically rewrite the scheme:
add and remove components, copy parts of the scheme,
etc. However, in HOCs there is no automatic synthesis of
programs involved as the implementation of HOCs is pre-
programmed.

To the best of our knowledge currently no other method
or tool uses hybrid simulation method with synthesis of
simulation programs.

Our implementation of the hybrid method is based on a
simulation environment CoCoViLa [6] that supports visual
specification of simulation problems and automatic synthesis
of programs. CoCoViLa has been proven to be an effective
tool for continuous simulation of large hydraulic systems [8].
The systems simulated there are essentially complex dy-
namic systems which have their behavior defined using
ordinary differential equations. The modeling and simulation
approach is similar to fluid models of computer network
simulations.

However, until recently the CoCoViLa system lacked the
concept of an event and as such was not useful for discrete-
event and hybrid simulations. A discrete-event simulation
engine was implemented and integrated into CoCoViLa sys-
tem to obtain the means for developing hybrid simulations.

3. Simulation Environment
Let us now describe the software environment that is used

as a basis of the implementation of the hybrid simulation
method. CoCoViLa is a model-based software development
and simulation platform. It provides tools for developing
reusable software components, constructing simulation pack-
ages, specifying simulation problems and running them as
hybrid processes.

Simulation packages in CoCoViLa consist of software
components called rich components [18]. Rich components
are descriptions of domain-specific concepts that are used in
simulation. In a nutshell, these components are composed of
the following four parts. First, there is a visual part for inter-
action with a user. Second, the logical part containing a high-

level specification that enables automatic composition of a
simulation program. The third part is a program component
which defines Java methods that implement computations.
Finally, a rich component may have a daemon that provides
interactive properties allowing to develop flexible interfaces
to simulation programs.

From a user’s point of view the toolbox consists of
two programs: Class Editor for the component/package
development and Scheme Editor for visual specification of
simulation problems and for performing the simulation.

3.1 Class Editor
Class Editor supports a language designer in defining vi-

sual aspects of concepts, and also their logical and interactive
aspects. In our terms — Class Editor is a tool for developing
visual parts of rich components and for binding them with
other parts developed as Java classes. It provides dialog
windows for defining properties of ports (connection points),
defining component properties, e.g., the fields that will be
shown in a dialog windows in the Scheme Editor.

3.2 Scheme Editor
Scheme Editor is a tool for performing simulations. It

is intended for developing schemes of simulated systems,
compiling a simulation program and running it. It is used
for compiling programs from the schemes according to
the specified semantics of a particular domain. It provides
an interface for visual programming — putting together
a scheme from visual images of concepts. After loading
a package into the Scheme Editor workspace, we get an
environment for a particular simulation domain that allows
a user to draw, edit and compose schemes through language-
specific menus and toolbars. It allows one to compile a
simulation program from a given scheme and to control the
simulation process through the daemons of rich components.

Fig. 1 shows the Scheme Editor in use, when a package for
simulating simple hybrid queuing networks has been loaded.
The scheme describes a network of three traffic generators
and a bounded buffer. This scheme has been composed
by connecting ports of components of the following types:
TrafGen, Buf, Clock and Graph. The toolbar at the top of the
scheme is for adding objects and connections to the scheme.
The component Proc implements the hybrid simulation
process which is discussed in detail in the following sections.
A pop-up window and a pop-up menu are also visible in
the figure. The pop-up window is for instantiating object
attributes, the pop-up menu is for manipulating the scheme
— deleting and arranging objects etc. The Scheme Editor is
fully syntax directed and the correctness of the scheme is
forced during editing.

Some words must be said about the compilation of a
simulation program. First of all, a scheme is translated into
a textual specification that represents the same information
that the scheme does. The textual specification language has

a precise semantics implemented by means of an attribute
technique. An efficient method of attribute evaluation for
specification languages [7] has been implemented in CoCoV-
iLa. This is dynamic evaluation of attributes on higher-order
attribute models that are used for describing the semantics
of visual languages.

Fig. 2 shows a textual specification obtained from the
scheme of the simple example shown in Fig. 1. In Fig. 2
in the window on the left, one can see that the specification
is created as a logical part of a rich class Hns. On the right,
the figure shows also a fragment of a simulation algorithm
synthesized from the specification. This is algorithm is
compiled into a Java class that in the present case is 144
lines of code and is not shown here. This Java class can
be compiled and run in the CoCoViLa environment. The
scheme and the algorithm windows shown in Fig. 2 are
useful for debugging a specification, but they are not needed
when solving simulation problems in CoCoViLa, because the
user interacts with a simulation program through the Scheme
Editor main window shown in Fig. 1.

3.3 Logical and Program Parts of a Rich Com-
ponent

Logical part, also called metainterface, and program com-
ponent constitute jointly a single Java class. The logical part
is intended for expressing attribute semantics of the model
described by means of a rich class or by a composition of
rich classes. It is included in the Java class as a comment,
another part of the class presents data and methods that can
be used as specified in the logical part. The logical part is a
specification written in a simple specification language that
includes:

• Specifications of variables
type id, [id, ...]

• Bindings
var1 = var2

• Axioms
precondition→postcondition{implementation}

Types can be primitive Java types (int, double etc),
Java classes or rich classes. Bindings are used for structural
composition, to specify the equality of two variables var1
and var2 (these can be components of other variables
declared in the specification).

Axioms are specifications of methods of the class. The
preconditions of axioms can be conjunctions of propositional
variables and implications of conjunctions of propositional
variables. The postconditions are conjunctions of proposi-
tional variables. Name of any variable from specification
can be used as a propositional variable, denoting that value
of the variable can be computed. An implication in a pre-
condition denotes a goal — a computational problem whose
algorithm has to be synthesized before the method with the
precondition can be applied. This logic has been tested in
several practically applied synthesizers, in particular, in the

Fig. 1: Scheme Editor window

NUT system [20]. Implementation is a name of a method of
the class being specified.

Aliases correspond to structural relations that binds tuples
of attributes, i.e. x = (x1, . . . , xm). This feature can be used
when more than one variable needs to be bound via a port.
It is also useful for hierarchical composition, as aliases may
contain other aliases, possibly defined using wildcards.

Wildcards are used for defining special aliases that dynam-
ically bind variables having the same name that are defined
in other metainterfaces of components declared on the same
level with the wildcard. For example:

Router r1, r2; alias x = (∗.queue).
For convenience of the user simple algebraic equations

have been included in the specification language:
expression1 = expression2,

where expressions are arithmetic expressions of a restricted
form that depends on the equation solver. An equation can be
considered as a specification both of methods and of axioms.
The methods represented by an equation are those that solve
the equation with respect to its variables.

Metaclasses also support object oriented inheritance.
Given a metainterface A, metainterface B inherits all the
variables, bindings, and axioms defined in A using the super
keyword at the declaration of the metainterface: B super A.
A superclass is an instance of a rich component from which
the scheme inherits the logical part and the program part.

A specification in this language describes a higher-order
attribute model. Higher order means that inputs of attribute
dependencies can be functions that must be synthesized
on the attribute model. The attribute evaluation on higher-
order attribute models is described in [7]. This method
provides a dynamically composed attribute evaluator for
a given attribute model and a given problem in the form
“given x1, . . . , xm compute y1, . . . , yn”. This technique is
efficient and reliable. In practice, composition of an attribute
evaluator takes a fraction of second.

4. The Hybrid Method
Let us now describe the hybrid simulation method. This

method integrates conventional discrete-event simulation and

Fig. 2: Textual specification and synthesized algorithm

continuous time-stepped simulation methods in order to be
able to simulate hybrid processes. As a novel feature, parts of
the hybrid simulation program are synthesized automatically.
The goal of developing this method is to make describing
large systems easier and more flexible. First, it is shown
how continuous and discrete processes are modeled in our
framework, and how program synthesis is used. After that,
integration of both modeling approaches is described.

4.1 Continuous Process
A continuous process is modeled as evolution of the

system state s in time. The state consists of the attribute
values of the system components. The process is computed
in discrete time steps using a transition function f . The
transition function is fixed, and it uses the state sn corre-
sponding to time step tn as an input to compute the next
system state sn+1 at the next time step tn+1:

sn+1 = f(sn) .

During computation of the transition function the simulation
time advances by a time quantum T to the next time step
value. The process is started at time step t0 using a given
initial system state s0. The process stops at time step tf after
computing the final state sf .

In our case, the transition function is synthesized from
logical specification. The computation is specified as an
axiom with an empty implementation in the following form:
state→nextstate, where state and nextstate are aliases.
If a corresponding function can be derived on the given
model, a Java class is generated that implements this com-
putation. This class can then be used as an input for other
methods where its compute method is invoked with specific
argument values.

The synthesized program represented by a Java object
is passed to a Java method that controls the execution of
the continuous simulation process. Typically this execution
loop is implemented in the superclass of a scheme. As an
example, in a simple case the metainterface of the superclass
contains the following specification:

alias initstate = (*.initstate);
alias state = (*.state);
alias nextstate = (*.nextstate);
alias finalstate = (*.finalstate);
long t, T;
[state -> nextstate], initstate, t, T

-> finalstate {proc_run};

The method proc_run might be implemented as follows:

public Object[] proc_run(Subtask f,
Object[] initstate, long t, long T) {

Object[] state = new Object { initstate };
try {
for (long i = 0; i <= t; i += T) {

state = f.run(state);
}

} catch (Exception e) {
e.printStackTrace();

}
return state;

}

In this example, four aliases are defined to bind state vari-
ables. All components that need to keep a state also define
attributes with the same names. State variables defined in
subcomponents are included in the top level state variables.

An implementation of the transition function specified
as state → nextstate has to be synthesized before the
method proc_run can be called. In addition, the values
of initstate, t, and T must be given or computed by a
generated algorithm. In the method proc_run the generated
transition function is called for each time step, until the final
state is reached and returned.

4.2 Discrete Process
In contrast to time-driven execution of continuous pro-

cesses, the execution of discrete processes is event-driven.
In case of discrete-event simulation there is a simulation
time ordered event queue. Events are added to the queue
and scheduled for processing at a specific point in simulation
time. After the event with the earliest timestamp is processed
by the simulation engine, the simulation time is advanced
up to the timestamp of the next event at the queue. New
events may get scheduled or already scheduled events may
get removed from the queue as a result of processing an
event.

It is important to note that while an event is processed
the simulation time does not advance. In other words, the
processing of an event is instantaneous with respect to the
simulation time.

A discrete event simulation engine Simulator was imple-
mented in CoCoViLa. The simulator is a Java class that has
the essential methods for implementing discrete processes.
The methods include: scheduleAt, getNextEventT ime,
step, and run. Also, a base class for implementing events
was added – SimEvent – which has a two argument
constructor. The arguments to the constructor are a reference

to a Runnable object and a timestamp. The simplest use
case of the simulation engine is

Simulator.scheduleAt(1.0, new MyEvent());
Simulator.run();

where MyEvent is a Java class that implements the
Runnable interface. The method run of this event class
instance is executed at simulation time t = 1.0. The method
Simulator.run blocks until all events have been processed
or the simulation is stopped explicitly by an event.

4.3 Hybrid Process
In order to integrate the two methods described above,

a protocol for interleaving the processing of discrete events
and continuous simulation steps and synchronizing the simu-
lation time has to be defined. Based on our assumptions and
goals the following approach was chosen. Before executing
the continuous transition function at tn to reach simulation
time tn+1 and corresponding state, all events scheduled
for the time interval [tn, tn+1) have to be processed. To
achieve that, the simulation loop presented in Section 4.1
was amended by adding the following lines of code at the
beginning of the for-loop:

while (Simulator.getNextEventTime() > -1
&& Simulator.getNextEventTime()

< i + T) {
Simulator.step();

}

Depending of the requirements of a particular simulation
task a different solution to this problem might be appropriate.
In our framework, it is easy to provide several imple-
mentations of the simulation process as rich components.
The implementation can then be changed by just replacing
the scheme superclass component. More about correctness
issues of integrating fluid and packet models is published
in [10].

The unique feature of our approach is that the tran-
sition function of the continuous process is synthesized
automatically. As the synthesized program is composed of
ordinary Java methods, it can utilize all the features of the
Java platform. Most importantly in this case, synthesized
programs are also able to schedule new events. Moreover,
events may invoke synthesized code blocks for calculation,
similarly to what was shown in Section 4.1.

5. Concluding Remarks
We have complemented the hybrid simulation method

with automatic synthesis of programs to facilitate the de-
velopment of large computer network simulations. Program
synthesis adds more flexibility to specifying simulation
problems and provides the means for raising the abstraction
level where it is beneficial. The paper presented a simplified
application example of this hybrid method and described
briefly the simulation environment CoCoViLa.

In order to get good performance, the CoCoViLa en-
vironment uses compilation instead of interpretation for
the simulation program. In essence, a simulation program
is synthesized as an attribute evaluator on the attribute
model, extracted from the simulation problem specification.
In addition, the program may contain event handlers that
are used for discrete part of the simulation. Infrastructure
to support discrete and hybrid simulations was implemented
and integrated into the CoCoViLa environment.

We have not discussed parallel and distributed simulation
here. However, the CoCoViLa system that is the kernel of
the simulation environment does not prohibit developing
Java programs as components that run in a distributed way.
There is an older programming environment NUTS [21]
that has a similar technique of program construction and is
a distributed computing system successfully used for large
simulations [9].

Acknowledgment
This work was partially supported by the grant

No. 372/0807 of the Estonian Ministry of Defence.

References
[1] The ns-3 network simulator. http://www.nsnam.org/,

[2/25/2009].
[2] OMNeT++ discrete event simulation system. http://www.

omnetpp.org/, [2/25/2009].
[3] François Baccelli and Dohy Hong. Flow level simulation of large IP

networks. In IEEE INFOCOM, 2003.
[4] Stephan Bohacek, João P. Hespanha, Junsoo Lee, and Katia Obraczka.

A hybrid systems modeling framework for fast and accurate simula-
tion of data communication networks. ACM SIGMETRICS Perfor-
mance Evaluation Review, 31(1):58–69, 2003.

[5] Laurent Fournié, Dohy Hong, and Florent Perisse. NetScale: scalable
time-stepped hybrid simulation of large IP networks. ACM SIGCOMM
Computer Communication Review, 36(5):35–38, 2006.

[6] Pavel Grigorenko, Ando Saabas, and Enn Tyugu. Visual tool for
generative programming. In ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 249–252, New York, NY, USA, 2005. ACM Press.

[7] Pavel Grigorenko and Enn Tyugu. Deep semantics of visual languages.
In E. Tyugu and T. Yamaguchi, editors, Proceedings of the Seventh
Joint Conference on Knowledge-based software engineering, volume
140 of Frontiers in Artificial Intelligence and Applications, pages 83–
95. IOS Press, 2006.

[8] G. Grossschmidt and M. Harf. Modelling and simulation of fluid
power systems in an intelligent programming environment. In ISC’08:
Proceedings of the 6th International Industrial Simulation Conference,
pages 224–230, Lyon, France, 2008. EUROSIS.

[9] G. Grossschmidt, J. Vanaveski, and M. Harf. Simulation of hydraulic
chains using multi-pole models in the NUT programming environ-
ment. In Proceedings of the 14th European Simulation Multicon-
ference on Simulation and Modelling, pages 709–713. SCS Europe,
2000.

[10] Yu Gu, Yong Liu, and Don Towsley. On integrating fluid models
with packet simulation. INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies,
4:2856–2866, March 2004.

[11] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, and
H. Zheng. Ptolemy II – heterogeneous concurrent modeling and
design in Java, 2003.

[12] Raj Jain and Shawn A. Routhier. Packet trains – measurement and a
new model for computer network traffic. IEEE Journal on Selected
Areas in Communications, 4(6), 1986.

[13] Cameron Kiddle, Rob Simmonds, Carey Williamson, and Brian
Unger. Hybrid packet/fluid flow network simulation. In PADS ’03:
Proceedings of the seventeenth workshop on Parallel and distributed
simulation, page 143, Washington, DC, USA, 2003. IEEE Computer
Society.

[14] Hongjoong Kim and Junsoo Lee. Variable step fluid simulation for
communication network. In Fernando Boavida, Thomas Plagemann,
Burkhard Stiller, Cédric Westphal, and Edmundo Monteiro, editors,
Networking, volume 3976 of Lecture Notes in Computer Science,
pages 87–97. Springer, 2006.

[15] Yong Liu, Francesco Lo Presti, Vishal Misra, Don Towsley, and
Yu Gu. Fluid models and solutions for large-scale IP networks.
In SIGMETRICS ’03: Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, pages 91–101, New York, NY, USA, 2003. ACM.

[16] Benjamin Melamed, Shuo Pan, and Yorai Wardi. HNS: A streamlined
hybrid network simulator. ACM Transactions on Modeling and
Computer Simulation, 14(3):251–277, 2004.

[17] David M. Nicol and Guanhua Yan. Discrete event fluid modeling
of background TCP traffic. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(3):211–250, 2004.

[18] Andres Ojamaa and Enn Tyugu. Rich components of extendable
simulation platform. In Hamid R. Arabnia, editor, MSV, pages 121–
127. CSREA Press, 2007.

[19] George F. Riley, Talal M. Jaafar, and Richard M. Fujimoto. Integrated
fluid and packet network simulations. In Proceedings of the 10th IEEE
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, MASCOTS 2002, pages
511–518, 2002.

[20] E. Tyugu and R. Valt. Visual programming in NUT. Journal of visual
languages and programming, 8:523–544, 1997.

[21] V. Vlassov, M. Addibpour, and E. Tyugu. NUTS: a distributed
object-oriented platform with high level communication functions.
Computers and Artificial Intelligence, 17(4):305–335, 1998.

Publication IV

Ojamaa, Andres; Tyugu, Enn (2007).

Rich Components of Extendable Simulation Platform

Proceedings of the 2007 International Conference on Modeling, Simulation & Vi-
sualization Methods, MSV 2007: June 25–28 2007, Las Vegas Nevada, USA. Ed.
Arabnia, Hamid R. Las Vegas: CSREA Press, 121–127.

113

Rich Components of Extendable Simulation Platform
Andres Ojamaa Enn Tyugu

Institute of Cybernetics Institute of Cybernetics
Tallinn University of Technology Tallinn University of Technology

Tallinn, Estonia Tallinn, Estonia

Abstract – We present a design and implementation of a
new type of components of Java based simulation envi-
ronment — a rich component. It can be considered as an
extension of a Java class like the Java bean is. Besides
visual and algorithmic parts, it has also a logical part
that can be used for guiding the automatic composition
of a simulation program. Its algorithmic part includes a
daemon that provides flexibility of user interface as well
as a convenient way for developing multithreaded simu-
lation programs. A toolbox for rich components has been
implemented as a programming environment CoCoViLa.

Keywords: Simulation, software components, visual
specification, Java-based modelers.

1 Introduction

The first object-oriented general purpose program-
ming language Simula-67 [3] was developed as a succes-
sor of a simulation language Simula [4], where the idea
of the object-oriented software development was present
in a nutshell. Since then, the object-oriented approach to
simulation software development has prevailed, even be-
fore it became a generally applicable technology. How-
ever, the general concepts of object and class are insuf-
ficient for todays component-based simulation software
development. There are two well-known extensions of
objects and classes — Java beans and software agents
that could be (and to some extent are) used as compo-
nents of simulation software. Java beans add a visual
dimension to components, and they are excellent means
for GUI development, but they are not widely used as ba-
sic components in simulation. Software agents can pos-
sess considerable intelligence and flexibility, but they are
rather heavy weight at runtime, and have still a limited
usage in simulation. In both cases, considerable over-
head is an obstacle of the usage of these components in
high-performance applications. In the present work we
pursue the extension of objects in the same direction as
beans, and propose rich components as building blocks

of simulation software. Like Java beans or agents, also
rich components require special middleware for their us-
age. However, they are designed in such a way that the
middleware acts mainly as a compiler, and does not de-
crease the runtime performance.

A number of simulation environments, often do-
main specific, have been developed around the con-
cept of reusable software components. AgentSheets
[10] is a commercial visual authoring tool for creating
agent based interactive simulations. The environment
enables the transformation of simulations to Java ap-
plets or Flash movies embeddable in web pages. Visual
Simulation Environment (VSE) [1] is another commer-
cial software product intended for developing and exe-
cuting general purpose discrete-event simulation appli-
cations. VSE includes a graphical tool called VSE Editor
that lets one to build simulation models using the object-
oriented paradigm with inheritance, encapsulation and
message passing. Once built, the VSE Simulator is used
to make experiments on the simulation model. While
AgentSheets and VSE both provide visual development
tools and interactive components as basic building blocks
of simulation models, the components are missing logi-
cal specifications. Without any logical description there
are less opportunities for generating parts of the simula-
tion model or program automatically.

There are also many academic projects aiming to
develop better solutions for simulation applications. For
example, the Ptolemy project that studies modeling, sim-
ulation and design of concurrent, real-time, embedded
systems has implemented a software framework named
Ptolemy II [8]. It is a component assembly frame-
work based on Java. Simulation models are composed
of reusable visual library components many of which
are data and domain polymorphic. Another approach is
taken by the J-Sim project [12] where components are
structured according to the autonomous component ar-
chitecture. This means that software components are de-
veloped like modern integrated circuit chips. A finished
component is a black box with full specification of input
and output signal patterns. Moreover, researchers have

proposed yet different types of reusable components for
easy composition of simulations. In the paper [9] a new
component architecture is described with the emphasis
on the communication abilities of the objects. The short-
comings of the approaches referred in this paragraph are
the lack of interactive properties in the first two cases.
The last one again does not provide logical specifications
for the components.

We are going here to present a software environ-
ment that implements the concept of rich components,
and is supplied with a collection of specific components
of this form for simulation purposes. First, we describe
the concept of rich component, thereafter we briefly dis-
cuss the toolbox CoCoViLa that supports these compo-
nents. In the following sections we discuss all parts of
rich components in more detail and give examples of
their application.

2 Rich components

Rich components are descriptions of domain-
specific concepts that are used in simulation. Before
going to explain rich components in more detail, we
shall briefly explain the context of their usage and out-
line the principal requirements in this way. Rich com-
ponents are collected into packages. A package together
with the middleware that is CoCoViLa programming en-
vironment [5] presents a domain-specific simulation tool.
These tools are built and extended just by creating a
package and adding new rich components to the pack-
age. In particular, a package should include a simula-
tion engine (or several simulation engines in the case of
hybrid simulation) that is also presented as a rich com-
ponent, and it can be of considerable size. From the
other side, rich components may be very small entities
that are used intensively in an internal loop of a simula-
tion program and their usage must not create significant
overhead. Graphical description of simulation objects
is a natural requirement. Hence, rich components must
have a graphical representation. The next requirement is
to have simple translation from graphical representation
into textual representation. This will guarantee the pos-
sibility of debugging on all levels. An important func-
tionality of a rich component is interaction with a user
during the simulation process. Finally, rich components
should have logical specification that will enable one to
compose a simulation program automatically. These fea-
tures, including the automatic composition of programs,
are supported by CoCoViLa. Considering these require-
ments, we have designed a rich component in four parts:

• visual part

• logical part (specification part)

• program component

• daemon.

The visual part is for interaction with a user. The logical
part and the program component are presented as a meta-
class, see also [5]. This is a Java class, where the logical
part is included as a comment, called a metainterface.
The daemon is a Java class that describes a thread started
by a user, if it is needed. Using daemons enables one to
develop flexible interfaces to simulation programs. Not
all rich components have to include daemons. Fig. 1 and
Fig. 2 show two views of a rich component Boiler. The
first is a user’s view where only visual representation and
some informal semantics are included.

The second is a developer’s view where all four
parts of the rich class are included. We see two Java
classes Boiler and BoileDaemon as well as visual im-
age of the rich class there. The Boiler class includes two
parts of the rich class: logical part and program compo-
nent.

In the following sections we are going to explain
the design and usage of all parts of the rich component
in more detail.

3 Toolbox

We have developed a toolbox CoCoViLa that is a
core platform for simulation packages [5]. It provides
tools for developing rich components, constructing sim-
ulation packages, specifying simulation problems and
running them. From a user’s point of view the toolbox
consists of two programs: Class Editor for the compo-
nent/package development and Scheme Editor for visual
specification of simulation problems and for performing
the simulation.

3.1 Class Editor

Class Editor supports a language designer in defin-
ing visual aspects of concepts, and also their logical and
interactive aspects. In our terms — Class Editor is a tool
for developing visual parts of rich components and for
binding them with other parts developed as Java classes.

inFlow — inflow, liter/min
outFlow — outflow, liter/min
q — quantity of water in the boiler, liters
∆q = in f low−out f low

The connection points (ports) are endpoints of tubes.
The boiler signals audibly out of limits quantity of water.
· · ·

Figure 1: User’s view of a rich class

Figure 2: Developer’s view of a rich class

Fig. 3 shows the development of a rich component Adder
in the window of the Class Editor. We can see the image
of Adder with three ports (connection points) and a pop-
up window for defining properties of a highlighted port.
Another pop-up window is for defining component prop-
erties, in particular, interactive properties of Adder, e.g.
the fields that will be shown in a dialog window in the
Scheme Editor.

3.2 Scheme Editor

Scheme Editor is a tool for performing simulations.
It is intended for developing schemes of simulated sys-
tems, compiling and running programs. It is used for
compiling programs from the schemes according to the
specified semantics of a particular domain. It provides
an interface for visual programming — putting together
a scheme from visual images of concepts. After loading
a package into the scheme editor workspace, we get an
environment for a particular simulation domain that al-
lows a user to draw, edit and compose schemes through
language-specific menus and toolbars. It allows one to
compile a simulation program from a given scheme and
to control the simulation process through the daemons of
rich components.

Fig. 4 shows the scheme editor in use, when a pack-
age for simulating simple dynamic systems has been
loaded. Such are systems described by ordinary differ-
ential equations. The scheme describes an oscillator that

has been composed by connecting ports of components
of the following types: Integrator, Adder, Clock and
Graph. The toolbar at the top of the scheme is for adding
objects and connections to the scheme. One pop-up win-
dow is for instantiating object attributes, another pop-up
window is for manipulating the scheme — deleting and
arranging objects etc. The scheme editor is fully syntax
directed and the correctness of the scheme is forced dur-
ing editing.

Some words must be said about the compilation of
a simulation program. First of all, a scheme is translated
into a textual specification that represents the same infor-
mation that the scheme does. The textual specification
language has a precise semantics implemented by means
of an attribute technique. We have developed and im-
plemented in CoCoViLa an efficient method of attribute
evaluation for specification languages [6]. This is dy-
namic evaluation of attributes on higher order attribute
models that are used for describing the semantics of vi-
sual languages.

Fig. 5 shows a textual specification obtained from
the scheme of the oscillator shown above. One can see
that the specification is created as a logical part of a rich
class Dif. The figure shows also a simulation algorithm
synthesized from the specification. This is algorithm is
compiled into a Java class that in the present case is 82
lines and is not shown here. This class can be compiled
and run in the CoCoViLa environment. The scheme and
the algorithm windows shown in Fig. 5 are useful for

Figure 3: Class Editor window

debugging a specification, but they are not needed when
solving simulation problems in CoCoViLa, because the
user interacts with a simulation program through the
Scheme Editor main window shown in Fig. 4.

4 Visual representation

The visual representation of a rich component con-
sists of several pieces. First, each component has a small
image attached that is displayed in the toolbar. The user
of the Scheme Editor can create new instances of a spe-
cific component by clicking the button decorated with the
corresponding icon. Second, the basic look of a scheme
object is represented in the package file using XML syn-
tax and simple shapes such as ovals, polygons and lines
as well as more advanced features like text elements and
transparency. The language used for representing graph-
ics is not very different from a small subset of SVG [2].

Components may also have one or more ports
which provide an interface for connecting objects and
their attributes to each other. Each port must have a
name and a type. Only ports of matching type can be
connected. Optionally, a port can have different looks
depending on whether it is open or connected to another
port. The definitions of the graphical representations of
a port and a component in the package file are similar.

Fields of a component can be declared to be ed-
itable through the properties window of the Scheme Edi-
tor. Like ports, different graphical representations may

be defined for known and unknown values of a field.
This feature lets the components to provide limited visual
feedback about the values of the fields in the Scheme Ed-
itor. For more detailed description of the package format
we refer to [11].

5 Logical part and program com-
ponent

Logical part and program component constitute
jointly a single Java class as shown in Fig. 2. The log-
ical part is intended for expressing attribute semantics
of the model described by means of a rich class or by
a composition of rich classes. It is included in the Java
class as a comment, another part of the class presents
data and methods that can be used as specified in the log-
ical part. The logical part is a specification written in a
simple specification language that includes:

• Specifications of variables
type id, [id, ...]

• Bindings
var1 = var2

• Axioms
precondition→ postcondition{implementation}

Types can be primitive Java types (int, double
etc), Java classes or rich classes. Bindings are used for

Figure 4: Scheme Editor window

structural composition, to specify the equality of two
variables var1 and var2 (these can be components of
other variables declared in the specification).

Axioms are specifications of methods of the class.
The preconditions of axioms can be conjunctions of
propositional variables and implications of conjunctions
of propositional variables. The postconditions are con-
junctions of propositional variables. Name of any vari-
able from specification can be used as a propositional
variable, denoting that value of the variable can be com-
puted. An implication in a precondition denotes a goal
— a computational problem whose algorithm has to be
synthesized before the method with the precondition can
be applied. This logic has been tested in several practi-
cally applied synthesizers, in particular, in the NUT sys-
tem [13]. Implementation is a name of a method of the
class being specified.

For convenience of the user we have included sim-
ple algebraic equations in the specification language:

expression = expression,
where expressions are arithmetic expressions of a re-
stricted form that depends on the equation solver. An
equation can be considered as a specification both of
methods and of axioms. The methods represented by an
equation are those that solve the equation with respect to
its variables.

A specification in this language describes a higher-
order attribute model. Higher order means that inputs of
attribute dependencies can be functions that must be syn-
thesized on the attribute model. The attribute evaluation

on higher order attribute models is described in [6]. This
method provides a dynamically composed attribute eval-
uator for a given attribute model and a given problem
in the form “given x1, . . . ,xm compute y1, . . . ,yn”. This
technique is efficient and reliable. In practice, composi-
tion of an attribute evaluator takes a fraction of second.

6 Daemon

The daemon is an optional part of a rich component
that is used to make the component interactive. Basically,
the daemon is just a class implementing a set of methods
with predefined signature. Before the first instantiation
of the rich component the framework explores the in-
terface declared by the daemon class through reflection.
After the discovery phase the methods that were recog-
nized as belonging to the daemon API are hooked to the
framework’s internal registry. This registry maps exten-
sion points provided by the framework to specific dae-
mon instances. Upon receiving an event which might be
for example the result of a GUI action taken by the user,
the framework consults the registry to find all daemons
interested in being notified about this particular type of
events. Then, each of these daemons is notified by call-
ing respective method on the instance.

The set of all possible events a daemon could want
to react is large starting from low level events such as
mouse movements and ending with high level semantic

Figure 5: Specification and algorithm of an oscillator

events, for example creation of a new rich component in-
stance. Therefore, it is essential to break the API into
small manageable subsets. In this way the developer of
a rich component needs only to implement the methods
that are really necessary. As a side effect, runtime over-
head is kept minimal by avoiding superfluous method
calls. Also, the reflective nature of the interface discov-
ery process frees the developer from describing the inter-
face twice.

A daemon can be started in a separate thread to
facilitate parallel background processing. This can be
achieved by just implementing the Runnable interface
with the run method. The middleware takes care of
spawning new threads. In addition, each daemon is given
the reference to the scheme being composed by the user.
Having the reference to the scheme gives the daemons
full control over the scheme. This enables one to develop
components that can assist the user in the task of com-
posing a simulation model by displaying dialog windows
and arbitrarily complex visual feedback or directly mod-
ifying the model. For example, a daemon can be used
to enforce some complex syntax rules on the structure of
the visual scheme. To restrict connecting incorrect ports
the daemon has to implement a boolean returning func-
tion that will be called each time the user tries to make
a new connection between ports. When the function re-
turns false, the action will be cancelled.

7 Conclusions

We have introduced rich components as a flexible
way to represent concepts of simulation domains. A rich
component has abstract properties described in a declar-
ative way in its logical part. It has algorithmic proper-
ties described by methods of a Java class. If needed,
it can have interactive properties described by another
Java class whose run method runs as a daemon in parallel
with the main simulation program. Finally, a rich class
has a visual representation whose components (ports) are
bound with the variables of the logical part.

In order to get good performance, we have used
compilation instead of interpretation for the simulation
program. In essence, a simulation program is synthe-
sized as an attribute evaluator on the attribute model, ex-
tracted from the simulation problem specification.

We have not discussed parallel and distributed sim-
ulation here. However, the CoCoViLa system that is the
kernel of the simulation environment does not prohibit
developing Java programs as components that run in a
distributed way. There is an older programming environ-
ment Nuts [14] that has a similar technique of program
construction and is a distributed computing system suc-
cessfully used for large simulations [7].

Acknowledgements

This work has been supported by the grant
No. 6886 of the Estonian Science Foundation.

References

[1] Osman Balci, Anders I. Bertelrud, Charles M. Es-
terbrook, and Richard E. Nance. A picture-based
object-oriented visual simulation environment. In
WSC ’95: Proceedings of the 27th conference on
Winter simulation, pages 1333–1340, 1995.

[2] World Wide Web Consortium. Scalable Vector
Graphics (SVG) 1.1 specification. http://www.
w3.org/TR/SVG11/, 2003.

[3] Ole-Johan Dahl. SIMULA 67 common base lan-
guage, (Norwegian Computing Center. Publica-
tion). 1968.

[4] Ole-Johan Dahl and Kristen Nygaard. SIMULA:
an ALGOL-based simulation language. Commun.
ACM, 9(9):671–678, 1966.

[5] Pavel Grigorenko, Ando Saabas, and Enn Tyugu.
Visual tool for generative programming. In
ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with
13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 249–
252, New York, NY, USA, 2005. ACM Press.

[6] Pavel Grigorenko and Enn Tyugu. Deep semantics
of visual languages. In E. Tyugu and T. Yamaguchi,
editors, Proceedings of the Seventh Joint Confer-
ence on Knowledge-based software engineering,
volume 140 of Frontiers in Artificial Intelligence
and Applications, pages 83–95. IOS Press, 2006.

[7] G. Grossschmidt, J. Vanaveski, and M. Harf. Simu-
lation of hydraulic chains using multi-pole models
in the NUT programming environment. In Proceed-
ings of the 14th European Simulation Multiconfer-
ence on Simulation and Modelling, pages 709–713.
SCS Europe, 2000.

[8] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorf-
fer, Y. Xiong, and H. Zheng. Ptolemy II – hetero-
geneous concurrent modeling and design in Java,
2003.

[9] Oray Kulac and Murat Gunal. Combat modeling
by using simulation components. Technical report,
Turkish Naval HQs R&D and Decision Support De-
partment, 2002.

[10] Alexander Repenning, Andri Ioannidou, and John
Zola. AgentSheets: End-user programmable sim-
ulations. J. Artificial Societies and Social Simula-
tion, 3(3), 2000.

[11] Ando Saabas. A framework for design and im-
plementation of visual languages. Master’s thesis,
Tallinn University of Technology, 2004.

[12] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou,
Lu-Chuan Kung, Ning Li, Hyuk Lim, Hung-Ying
Tyan, and Honghai Zhang. J-Sim: A simulation en-
vironment for wireless sensor networks. In ANSS
’05: Proceedings of the 38th annual Symposium
on Simulation, pages 175–187, Washington, DC,
USA, 2005. IEEE Computer Society.

[13] E. Tyugu and R. Valt. Visual programming in
NUT. Journal of visual languages and program-
ming, 8:523–544, 1997.

[14] V. Vlassov, M. Addibpour, and E. Tyugu. NUTS: a
distributed object-oriented platform with high level
communication functions. Computers and Artifi-
cial Intelligence, 17(4):305–335, 1998.

Publication V

Ojamaa, Andres; Haav, Hele-Mai; Penjam, Jaan (2015).

Semi-Automated Generation of DSL Meta Models from Formal Domain On-
tologies

Model and Data Engineering: 5th International Conference, MEDI 2015, Rhodes,
Greece, September 26–28, 2015, Proceedings. Ed. Bellatreche, Ladjel; Manolopou-
los, Yannis. Springer, 3–15. (Lecture Notes in Computer Science; 9344).

123

Semi-automated Generation of DSL Meta
Models from Formal Domain Ontologies

Andres Ojamaa, Hele-Mai Haav(&), and Jaan Penjam

Institute of Cybernetics, Laboratory of Software Science,
Tallinn University of Technology, Tallinn, Estonia

{andres.ojamaa,helemai,jaan}@cs.ioc.ee

Abstract. This paper addresses the problem of alignment of domain ontologies
and meta-models of Domain Specific Languages (DSL) in order to facilitate the
DSL development process by formal methods. The solution presented in this
paper automatically generates design templates of a DSL meta-model that are
consistent with a given domain ontology represented in OWL DL. Consistency
of alignment is ensured by predefined mapping rules between constructs of
ontology modelling language OWL DL and a modelling language used for
representing DSL meta-models. The approach is implemented as an extension to
the CoCoViLa system and the CoCoViLa modelling language is used for rep-
resenting DSL meta-models. The evaluation of the provided method is carried
out by developing the DSL for the IT risk analysis and management domain.

Keywords: Model-driven software engineering � Ontology-based modelling �
Model transformations � DSL meta-models

1 Introduction

In recent years, several approaches to incorporate ontologies into general frameworks
of Model Driven Software Engineering (MDSE) have been proposed [1, 9, 16, 19]. In
addition, an effort is put to using ontologies in the field of DSL engineering [5, 17–20].
However, in order to facilitate the DSL development process by utilization of formal
methods more attention needs to be paid to alignment of domain ontologies as formal
domain models with DSL meta-models. This creates a new challenging task for soft-
ware engineers not well supported by existing traditional and ontology-driven MDSE
methods. This paper provides a method and tools to perform this task.

The main contribution of the paper is an approach that focuses to partial automation
of the design and implementation phases of the DSL development process by intro-
duction of formal domain ontologies into this process and automatic generation of
design templates of a DSL meta-model from a given domain ontology. Ontology Web
Language (OWL) [14] is used for representing formal domain ontologies. The
approach is implemented as an extension to the CoCoViLa system [10] and the Co-
CoViLa modelling language is used for representing meta-models of DSLs. The Co-
CoViLa system enables automatic generation of executable Java programs according to
the given DSL meta-model. The evaluation of the provided method is carried out by
developing the DSL for the IT risk analysis domain.

© Springer International Publishing Switzerland 2015
L. Bellatreche and Y. Manolopoulos (Eds.): MEDI 2015, LNCS 9344, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-23781-7_1

Novelty of our approach comparing to other ontology-driven software development
methodologies lies in using formal domain ontologies as a basis for automatic gen-
eration of design templates of a DSL meta-model that are consistent with the given
domain ontology. This makes a DSL closely aligned with the domain for what it is
designed for. Consistency of alignment is ensured by predefined mapping rules
between constructs of the ontology modelling language OWL and a modelling lan-
guage for DSL meta-models (i.e. the CoCoViLa modelling language in our case).

The development of this new approach was motivated by practical needs of using
the CoCoViLa modelling tool for the development of different DSLs in the domains of
simulation of hydraulic systems as well as simulations of security measures for banking
and communication networks [10]. From these experiences we have learned that tighter
integration of domain knowledge with the corresponding DSL will create advantages in
achieving consistency of the DSL with domain knowledge and will ease maintenance
of applications developed by using the DSL.

The rest of the paper is structured as follows. Section 2 is devoted to related work
and Sect. 3 provides an overview of the CoCoViLa modelling language and the system
giving background knowledge for our approach. In Sect. 4, our approach for domain
ontology driven DSL engineering is presented. Section 5 is devoted to the evaluation of
the provided method by implementation of a prototype of the DSL for the IT security
risk analysis and management field. Section 6 concludes the paper.

2 Related Work

Ontologies in computer science represent computer-usable specifications of basic
concepts in a domain and relationships among them. Ontologies are usually expressed
in a logic-based language. There are several ontology languages available, but the most
widely used are the W3C standards OWL DL and OWL2 [14].

In software engineering, domain analysis plays an important role in understanding
the domain of interest. Nowadays, many researchers propose to use ontology engi-
neering methods in the domain analysis process [1, 4, 19, 20] and some of them
suggest to represent resulting model of domain analysis by domain ontology [4, 7, 20].
In these works, domain models are considered as descriptive models consisting of a set
of domain instances (ABox in Description Logics (DL) [2]) and a set of classes for
classifying these instances (TBox in DL). Comparing to traditional analysis models
formal ontologies have additional useful features like reasoning based on DL [2].

Most of existing ontology driven MDSE methodologies use ontological services for
performing model consistency checking and model transformations [16, 19]. Some of
the approaches use domain ontologies (e.g. represented in UML) as a part of Com-
putation Independent Models (CIM) [18]. Few works address also semantic search and
composition of models of software components [9].

Several proposals [1, 19, 20] are about integrating ontologies to the OMG
meta-pyramid of Model Driven Architecture (MDA) [15]. For example, in [1]
ontology-aware mega-model is provided for ontology integration to MDA. Another
approach in [19] shows that the Ecore meta-meta-model of the Eclipse Modelling
Framework [6] and OWL2 meta-model can be integrated in order to provide a

4 A. Ojamaa et al.

meta-meta-model for modelling DSLs. In [20] OWL2 ontologies are integrated into the
meta-meta-model level in order to support joint DSL and domain engineering.

Similarly to these works, we also introduce ontologies to the meta-meta-model
level but we are focused to partial automation of creation of DSL meta-models.

There are frameworks that examine domain ontologies as domain models that can
be automatically transformed to a DSL grammar [4, 5]. We were inspired by these
works but our approach uses predefined mapping rules.

3 The CoCoViLa Modelling Language and System Overview

The approach presented in this paper is developed as an extension to the CoCoViLa
modelling system1 that is implemented in Java. The CoCoViLa modelling language
consists of visual and textual declarative languages for developing DSLs for engi-
neering fields, where scientific and engineering computations play a crucial role.
Intended users of the CoCoViLa modelling language are DSL designers (together with
domain experts), who create meta-models and a DSL for a particular domain. DSL
designers can create textual and/or visual DSLs.

The most important construct of the textual declarative modelling language is a
concept specification that represents a collection of instances. Concept specifications
can be arranged into taxonomy. Concept specifications include descriptions of struc-
tural components of a concept as declarations of variables. In addition, they may
include relations that are specifications showing how to derive values of some variables
from the values of other variables. Relations are divided to equations and axioms.
Equations define dependencies between variables bound by the equation. Axioms
describe functional dependencies between variables and they differ from equations in
that they have realizations as Java methods.

Important feature of the modelling language is its grounding with a subset of
Intuitionistic Propositional Calculus (IPC) [13] that is used as a logical language for
representation of domain specific axioms. From the given concept specifications and
the task specification the CoCoViLa system automatically constructs the algorithm of
the program and generates the Java program that solves the computational problem
given by the task specification. The latter is a statement of a computational problem
that specifies what outputs are to be computed from given inputs. It does not have a
given realization but its realization is attempted to generate automatically from the
constructive proof of the corresponding theorem in IPC according to the inference rules
of Structural Synthesis of Programs (SSP) [12].

When using the CoCoViLa modelling language we distinguish between the DSL
meta-modelling and application specific modelling levels. In our terminology, a DSL
meta-model consists of a set of concept specifications and an application specific model
consists of a task specification and a set of valuations of variables. We explain the main
idea behind the language using a simplistic example from the geometry domain. The
geometry DSL may contain specifications of the Square and the Circle concepts
including all necessary variables and equations. If we are interested in calculating the

1 http://cocovila.github.io/.

Semi-automated Generation of DSL Meta Models 5

area that is difference of areas of a square and a circle where diagonal of a square is
equal to diameter of a circle, then we need to create a new concept specification (e.g.
SquareWithinCircle) as depicted in the following Fig. 1.

Dot notation is used to refer to inner concept specifications. As a result, the
geometry DSL is composed from the following concept specifications: Square,
Circle, and SquareWithinCircle.

On the application specific modelling level, we can use this DSL and specify
different task specifications (e.g. ->area_difference), which specify computa-
tional problems that need to be solved. Values of inputs are assumed to be given (e.g.
S.hasHeight = 10) or computable on the basis of the specification. If output
variables of a task are computable from (possibly empty) list of inputs, the task is
solved and the Java program is automatically generated. Besides equations, a Java
method could be declared to be as a realization of a given functional dependency. For
example, instead of the equation area_difference = C.area-S.area we may
write axiom C.area, S.area ->area_difference {<JavaMethod>}.

The syntax of the full CoCoViLa modelling language is presented in [10]. Using
the current system, DSL meta-models are created manually by DSL developers. In
practice, informal methods are used for representation of domain models.

4 An Approach to Domain Ontology-Driven DSL
Engineering

4.1 Introducing Formal Ontologies to the DSL Development Process

For improvement of the workflow of DSL development we introduce two types of
ontologies into the DSL development process: domain and system ontologies.

Purpose of domain ontology is to provide specification of conceptualization of
domain knowledge. Formal domain ontology could be seen as a static part of a
meta-model of a DSL, particularly a part of a CIM. Using formal ontologies as a part of
a CIM makes connections from CIM to Platform Independent Model (PIM) transparent
and methodical. We automate creation and maintenance of connections between CIM
and PIM by automatic generation of design templates of DSL meta-models from formal
domain ontologies. In our case (i.e. the CoCoViLa system extension), design templates
of a DSL meta-model are concept specifications that do not include specifications of
dynamic parts of a meta-model like axioms and equations (except binding, e.g. see
Table 1). These need to be added manually to the template.

Fig. 1. An example of the CoCoViLa modelling language

6 A. Ojamaa et al.

Purpose of system ontology is formally describing the modelling language and the
system concepts (see Fig. 2 for a part of a class hierarchy).

We utilize the CoCoViLa system ontology in the implementation phase of a DSL.
Individuals of the system ontology classes together with their property values are used
to store knowledge about a particular DSL meta-model. It is important to notice that
domain ontology and the system ontology are linked to each other for this purpose.

4.2 Mapping Formal Domain Ontologies to DSL Meta-Models

For automatic transformation of formal domain ontologies to DSL meta-models cor-
responding mappings between a set of ontology representation language constructs and
a DSL modelling language constructs need to be defined. As depicted in Fig. 3, in our
case we need to provide mappings between a subset of OWL DL constructs and a
subset of the CoCoViLa modelling language constructs.

Both languages are declarative languages intended to be used for knowledge rep-
resentation. OWL DL semantics is given by DL [2] and the CoCoViLa modelling
language semantics is based on a subset of IPC [13]. DL enables to reason whether
domain ontology is consistent and complete. Expressive power of SSP used for
deciding about computational correctness of a program automatically generated from a
given specification is equivalent to IPC [13].

Since semantical basis of both languages is different, then some restrictive condi-
tions must be placed on domain ontology structure in order to ensure that it can be
properly transformed into a set of constructs of the CoCoViLa modelling language.
These restrictions mainly concern OWL constructs for object property characteristics,
property restrictions and complex classes that cannot be mapped to the CoCoViLa
language.

Fig. 3. Mapping formal domain ontology to the CoCoViLa language

Fig. 2. A fragment of system ontology (a screen shot of the Protégé ontology editor)

Semi-automated Generation of DSL Meta Models 7

Table 1. Mappings between OWL and the CoCoViLa modelling language constructs

(Continued)

8 A. Ojamaa et al.

Semantic correspondence of mappings is given only indirectly via syntactic map-
pings in Table 1. Providing semantic mappings and a proof of the corresponding the-
orem are out of scope of this paper. In Table 1, OWL constructs that are allowed in the
CoCoViLa compatible ontologies are listed and mapping rules are provided. The given
mappings are used to automatically generate design templates of a DSL meta-model.
OWL constructs for what mappings are not defined are not allowed and the corre-
sponding OWL constructs are ignored in the automated model generation process.

Table 1. (Continued.)

Semi-automated Generation of DSL Meta Models 9

4.3 Implementation of the Approach

The approach takes into account important DSL development phases as follows: domain
analysis, design, implementation, deployment, testing and maintenance [11]. We sug-
gest using the iterative (agile) DSL development process that starts with building a core
of domain ontology by taking into account requirements of domain and a DSL. Domain
ontology is created according to an expert centric agile ontology development meth-
odology [8]. DSL design and implementation stages are supported by the tool that is an
extension to the existing CoCoViLa system and is also implemented in Java. The
implementation is designed to fit into general architecture of the CoCoViLa system. An
overall view of the structure of the extension is provided in Fig. 4.

Automatically generated templates of a DSL meta-model are implemented as Java
classes. For each concept specification from a template, the corresponding Java class is
generated. Java classes including concept specifications can be manually enhanced
with necessary equations and axioms. In addition, these Java classes may contain Java
methods that are the realizations of axioms described in the concept specification.
Currently, for each DSL its meta-model ontology is created that imports the CoCoViLa
system and domain ontologies. It also contains the DSL specific instances (ABox).
Consistency of the DSL meta-model ontology is checked by using OWL DL inference
provided by Apache Jena.2 When loading the DSL, its meta-model ontology is
dynamically loaded and SPARQL3 queries are used to find definitions of elements of

Fig. 4. A general view of the implementation of the approach

2 https://jena.apache.org/.
3 http://www.w3.org/TR/sparql11-query/.

10 A. Ojamaa et al.

the diagrammatical language and other DSL components in order to insert information
about them to the internal computational model of CoCoViLa. After that, the visual
part of the DSL is shown in the CoCoViLa DSL window and the DSL is ready to be
used by application developers.

5 Evaluation

5.1 A Problem: IT Security Risk Analysis

In order to solve IT security risk analysis problems, a threat modelling tool could be
useful. One of the ways to build a threat modelling tool is to develop a DSL for creation
of attack simulations using ontological modelling of security knowledge, dynamic
attack tree generation techniques and probabilistic models of threat agent behavior. In
order to build a particular threat modelling tool following the DSL development
approach presented in this paper, we adapted the multi-parameter attack tree method
proposed in [3]. Attack trees according to this method are used to estimate the cost and
the success probability of attacks. Elementary game theory is used to decide whether
the system under protection is a realistic target for gain-oriented attackers.

In the following example that is adapted from [3] a threat analysis for forestalling
release is considered. This threat is related to the situation where a competitor of an IT
company steals the developed source code and completes it to own product.

5.2 Development of a DSL for the IT Security Risk Analysis Domain

A visual DSL was developed for IT security risk analysis with attack trees method-
ology. The DSL consists of components to model attack trees and to perform com-
putations on the trees. An attack tree is basically an AND-OR tree that consists of three
types of components (nodes) – leaves (atomic threats where there are estimated values
for attack parameters), AND-nodes representing complex attacks that are considered
successful when all sub-trees are successful, and OR-nodes representing complex
attacks that are considered successful when any of the sub-attacks is successful. In
addition to the components used for specifying attack trees, there are two additional
components required as follows: a simulator component that performs computations on
the attack tree models and a visualized component for displaying results.

Formal Ontology of IT Risk Analysis for the Forestalling Release Domain. There
are several events necessary for a forestalling release that we consider as domain
knowledge. By the attack analysis method that we use, an attack is seen as a game
played by the rational attackers and the game is to be profitable for them. In order to
decide about the profitability, there are several characteristics related to threat events to
be taken into account by the attack game. These constitute domain knowledge related
to the particular threat analysis method. Both types of domain knowledge are captured
in formal domain ontology of IT security risk analysis. As a result, domain ontology of
the forestalling release domain consists of taxonomy of disjoint classes of threat events.

Semi-automated Generation of DSL Meta Models 11

Threat events have associated characteristics needed for the attack game. These are
described by data properties which domain is the Threat_event class. Main direct
subclasses of the Threat_event class and data properties that are inherited by its
subclasses are shown in Fig. 5.

Generation of DSL Design Templates. According to the given domain ontology and
the transformations given in Table 1, the DSL design templates are automatically
generated (see a fragment of automatically generated code in Fig. 6).

Enhancement of DSL Design Templates and DSL Meta-model Ontology. The
DSL implementation involves an enhancement of design templates, if necessary. For
example, equations used for calculating parameters of an attack game are added to the
Threat_event specification.

In the DSL meta-model ontology, Threat_event is declared as a subclass of the
class Metaclass from the system ontology. For each subclass of the Threat_e-
vent class an instance and links to the corresponding VisualClass instances are
created for capturing diagrammatical part of the DSL. Instances of the VisualClass
class become components of the attack tree diagram. The DSL is implemented so that
the same threat analysis method can be used for different IT risk analysis domains by
importing different domain ontologies to the DSL meta-model ontology. The DSL will
then be automatically aligned with new domain ontology.

Fig. 5. The forestalling release domain ontology (a screen shot of the Protégé ontology editor)

Fig. 6. A fragment of generated DSL meta-model in the CoCoViLa modelling language

12 A. Ojamaa et al.

5.3 Analysis of the Evaluation of the Approach

According to the evaluation of the approach by developing a DSL for the IT security
risk analysis domain, we identify the following advantages of the approach:

• Since domain analysis is done by developing formal domain ontology, then DL
reasoning services can be used for validation of domain models.

• Alignment of formal domain ontologies with DSL meta-models makes it possible to
automatically propagate changes in ontology to a DSL i.e. capture the evolution of a
domain. It also allows detecting and avoiding errors.

• Formal consistency checking of domain knowledge and a DSL meta-model
ontology using DL inference. This is also useful for debugging DSL meta-models.
In addition, other resources (e.g. images, multi-media, linked data etc.) could be
linked to a DSL meta-model and used as components of a DSL.

• Separation of different kinds of knowledge about the system, domain and a DSL
into modular OWL ontologies makes the knowledge more reusable.

However, as our approach is implemented as an extension to the existing Co-
CoViLa system only partial automation of mapping domain ontology to a DSL
meta-model can be provided. Another issue is related to productivity of the DSL
development process. We did not provide any productivity analysis yet. We think that
there might be problems of creation of formal domain ontologies as ontology engi-
neering techniques do not constitute a part of existing traditional software development
methodologies. This may create initial complexity.

6 Conclusion

In this paper, we presented an approach that introduces formal domain ontologies into
the DSL development process and allows to automatically generate design templates of
a DSL meta-model that are consistent with a given domain ontology represented in
OWL DL. The approach was implemented as an extension to the CoCoViLa system.
The provided method was tested by developing the DSL for IT risk analysis domain.

Our approach creates the following benefits: formal consistency checking of
domain knowledge and a DSL meta-model ontology, automatic generation of design
templates of a DSL meta-model and capture of evolution of the domain in a DSL.

Our future work will be related to integrating rules represented in Semantic Web
Rule Language (SWRL)4 to the framework. Rules combined with ontology will allow
us to model behavioral aspects (e.g. equations) of a domain and perform corresponding
transformations from SWRL to the CoCoViLa modelling language.

Acknowledgements. This research was supported by Estonian Research Council institutional
research grant no. IUT33-13, and by the ERDF through the ITC project MBJSDT and Estonian
national CoE project EXCS.

4 http://www.w3.org/Submission/SWRL/.

Semi-automated Generation of DSL Meta Models 13

References

1. Aßmann, U., Zschaler, S.: Ontologies, meta-models, and the model-driven paradigm. In:
Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and Software
Technology, pp. 249–273. Springer, Heidelberg (2006)

2. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
Cambridge (2003)

3. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security
measures via multi-parameter attack trees. In: López, J. (ed.) CRITIS 2006. LNCS, vol.
4347, pp. 235–248. Springer, Heidelberg (2006)

4. Čeh, I., Črepinšek, M., Kosar, T., Mernik, M.: Ontology driven development of
domain-specific languages. ComSIS 8(2), 317–342 (2011)

5. Fonseca, J.M.S., Pereira, M.J.V., Henriques, P.R.: Converting ontologies into DSLs. In:
Pereira, M.J.V., Leal, J.P., Simões, A. (eds.) 3rd Symposium on Languages, Applications
and Technologies (SLATE’14), pp. 85–92. Dagstuhl Publishing, Germany (2014)

6. Gronback, R.: Eclipse Modeling Project: a Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional, Boston (2009)

7. Guizzardi, G.: Ontology-based evaluation and design of visual conceptual modelling
languages. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Bettin, J., Cohe, S. (eds.) Domain
Engineering. Product Lines, Languages, and Conceptual Models, pp. 317–347. Springer,
Heidelberg (2013)

8. Haav, H.-M.: A practical methodology for development of a network of e-government
domain ontologies. In: Skersys, T., Butleris, R., Nemuraite, L., Suomi, R. (eds.) Building the
e-World Ecosystem. IFIP AICT, vol. 353, pp. 1–13. Springer, Heidelberg (2011)

9. Katasanov, A.: Ontology-driven software engineering: beyond model checking and
transformations. Int. J. Semant. Comput. 06, 205–242 (2012)

10. Kotkas, V., Ojamaa, A., Grigorenko, P., Maigre, R., Harf, M., Tyugu, E.: CoCoViLa as a
multifunctional simulation platform. In: Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques (SIMUTools 2011), pp. 198–205. ICST,
Brussels (2011)

11. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

12. Mints, G., Tyugu, E.: Justification of the structural synthesis of programs. Sci. Comput.
Program. 2(3), 215–240 (1982)

13. Mints, G., Tyugu, E.: Propositional logic programming and the PRIZ system. J. Log.
Program. 9(2&3), 179–193 (1990)

14. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. http://www.w3.org/TR/owl2-syntax

15. OMG. MDA Guide 1.0.1. http://www.omg.org/mda June 2003
16. Roser, S., Bauer, B.: Automatic generation and evolution of model transformations using

ontology engineering space. In: Spaccapietra, S., Pan, J.Z., Thiran, P., Halpin, T., Staab, S.,
Svatek, V., Shvaiko, P., Roddick, J. (eds.) Journal on Data Semantics XI. LNCS, vol. 5383,
pp. 32–64. Springer, Heidelberg (2008)

17. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-specific
languages. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 332–342.
Springer, Heidelberg (2009)

14 A. Ojamaa et al.

18. Vanden Bossche, M., Ross, P., MacLarty, I., Van Nuffelen, B., Pelov, N.: Ontology driven
software engineering for real life applications. In: Proceedings of the 3rd International
Workshop on Semantic Web Enabled Software Engineering, Innsbruck, Austria (2007)

19. Walter, T., Parreiras, F.S., Staab, S.: An ontology-based framework for domain-specific
modeling. Softw. Syst. Model. 13, 83–108 (2014)

20. Walter, T., Parreiras, F.S., Staab, S., Ebert, J.: Joint language and domain engineering. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138,
pp. 321–336. Springer, Heidelberg (2010)

Semi-automated Generation of DSL Meta Models 15

Publication VI

Haav, Hele-Mai; Ojamaa, Andres; Grigorenko, Pavel; Kotkas, Vahur (2015).

Ontology-Based Integration of Software Artefacts for DSL Development

On the Move to Meaningful Internet Systems: OTM 2015 Workshops: Confeder-
ated International Workshops: OTM Academy, OTM Industry Case Studies Pro-
gram, EI2N, FBM, INBAST, ISDE, META4eS, and MSC 2015, Rhodes, Greece,
October 26–30, 2015, Proceedings. Ed. Ciuciu, I. et al. Cham: Springer, 309–318.
(Lecture Notes in Computer Science; 9416).

139

© Springer International Publishing Switzerland 2015
I. Ciuciu et al. (Eds.): OTM 2015 Workshops, LNCS 9416, pp. 309–318, 2015.
DOI: 10.1007/978-3-319-26138-6_34

Ontology-Based Integration of Software Artefacts
for DSL Development

Hele-Mai Haav(), Andres Ojamaa, Pavel Grigorenko, and Vahur Kotkas

Laboratory of Software Science,
Institute of Cybernetics at Tallinn University of Technology, Tallinn, Estonia

{helemai,andres.ojamaa,pavelg,vahur}@cs.ioc.ee

Abstract. This paper addresses a high level semantic integration of software ar-
tefacts for the development of Domain Specific Languages (DSL). The solution
presented in the paper utilizes a concept of DSL meta-model ontology that is
defined in the paper as consisting of a system ontology linked to one or more
domain ontologies. It enables dynamic semantic integration of software arte-
facts for the composition of a DSL meta-model. The approach is prototypically
implemented in Java as an extension to the DSL development tool CoCoViLa.

Keywords: Semantic interoperability · Semantic integration · Ontology-based
modelling · DSL meta-models · DSL development

1 Introduction

Domain Specific Languages (DSLs) have been used for a long time in order to short-
en the software development lifecycle and make it cost effective in a particular do-
main of interest. There are many well-known DSLs available like XML for describing
data, HTML to mark-up web documents, Structured Query Language (SQL) for que-
rying relational databases, etc. There are also DSLs that are more specific like
WebDSL [4] and the Modelica modelling language [2]. In order to create a DSL,
several tools have been developed. For example, Xtext1, MS Visual Studio2, Metae-
dit3, and CoCoViLa4 are tools that enable the development of a DSL. However, issues
related to the integration of these tools and the corresponding DSL meta-models are
not entirely solved.

Currently, tools are in many cases integrated on the basis of XML or UML profile
SysML or via given transformations of different software artefacts related to DSL
models so that models can be imported or exported among tools. However, these re-
presentations of software artefacts or corresponding metadata do not formally and
explicitly capture semantics of described artefacts. Although model transformations
represent semantics, it is encoded into the set of transformation rules.

1 http://www.eclipse.org/Xtext
2 https://www.visualstudio.com/
3 http://www.metacase.com/mep/
4 http://cocovila.github.io/

310 H.-M. Haav et al.

In this paper, we provide a new approach to integration of software artefacts for
DSL development using the semantic representation of software artefacts in the form
of linked formal ontologies described in Ontology Web Language (OWL) [9]. The
role of OWL is to serve as a common language for representation of semantics of
software artefacts.

Novelty of our approach is twofold: the semantic integration of distributed soft-
ware artefacts into a coherent DSL meta-model as well as the simplification of the
development lifecycle and evolution of a DSL. In addition, our method also facilitates
the semantic integration between DSL meta-models created by different DSL devel-
opment tools in the case there exists a commitment by software developers to use a
common top level system ontology or to explicitly define and make available the
system ontology of their tool.

The approach presented in this paper is prototypically implemented as an extension
to the DSL development tool CoCoViLa [7]. It allows an automatic generation of
executable Java programs according to a DSL meta-model and a specification of an
application expressed in the corresponding DSL. In this paper and in CoCoViLa, the
term DSL is used to denote a specific type of DSLs i.e. Domain Specific Modelling
Languages. However, our approach is general enough to be applied for the develop-
ment of different kinds of DSLs.

The rest of the paper is structured as follows. Section 2 is devoted to the related
work and Section 3 provides background knowledge about the DSL development
process with CoCoViLa. In Section 4, our new approach for semantic integration of
software artefacts is presented. Section 5 provides an overview of a system architec-
ture supporting the approach. Section 6 concludes the paper.

2 Related Work

Ontologies are used in the existing ontology driven software engineering methodolo-
gies in several ways. In general, they are mostly used for the consistency checking of
software models and as tools for representing model transformations [13, 14]. Anoth-
er trend is to integrate ontologies to the OMG meta-pyramid of MDA [15] and to the
Ecore meta-meta-model of the Eclipse Modelling Framework [5] in order to provide
meta-meta-model for modelling DSL languages [14, 16].

Research that is tightly related to the approach provided in this paper express two
views. From the modelling point of view, semantic search and composition of models
of software components [6] are important. From the technical point of view, integra-
tion of OWL and Java is essential. For example, a hybrid modelling approach that
enables software models partially developed in Java and in OWL is given in [12].

However, to the best of our knowledge we do not know the DSL development ap-
proaches that use linked ontologies for semantic integration of software artefacts and
for dynamic building of DSL meta-models as presented in this paper.

 Ontology-Based Integration of Software Artefacts for DSL Development 311

3 Background: the DSL Development Process with CoCoViLa

The CoCoViLa system supports the CoCoViLa modelling language that consists of
visual and declarative languages for developing DSLs for domains, where scientific
and engineering computations play an important role. Expected users of the CoCoVi-
La modelling language are DSL designers, who create a meta-model of a DSL for a
particular domain. The syntax of the full CoCoViLa modelling language is presented
in [3]. The CoCoViLa tool was successfully used for the development of different
DSLs in the domains of simulation of hydraulic systems as well as simulations of
security measures for banking and communication networks [7].

Fig. 1. The meta-pyramid of models based on the CoCoViLa language and tool

In Fig. 1, the current DSL development process with the CoCoViLa system is
explained using the OMG MDA terminology [11] and its modelling pyramid. Exten-
sions that constitute the core of this paper are presented in the next sections.

The CoCoViLa modelling language (on the level M3 in Fig. 1) enables to describe
meta-models that define DSLs for various domains. Application specific models are
created by DSL users. These models of the level M1 are automatically transformed to
the corresponding valid logical representation in order to use the method of automatic
construction of algorithm of a program [8] and for efficient generation of the corres-
ponding Java source code. The CoCoViLa tool is implemented in Java; therefore the
system by default allows generating the Java code directly from an application specif-
ic model. Other platform dependent code can be generated from the Java source code.

In Fig. 1, a DSL is created manually taking into account users’ requirements and
domain knowledge. This corresponds to the previous method of DSL development
with CoCoViLa that did not include any special requirements concerning the repre-
sentation of domain models to be used. In practice, informal methods were used.

Recently, (in [10]) we have presented a method that allows formal domain ontolo-
gies presented in OWL to automatically transform to design templates of a DSL meta-
model in order to partially automate the DSL development process with CoCoViLa.
The current paper takes these transformations into account when extending the origi-
nal architecture of the CoCoViLa tool.

312 H.-M. Haav et al.

4 Semantic Integration of Software Artefacts

In order to semantically describe software artefacts used for the development and
implementation of a DSL and its meta-model, we use OWL ontologies that are widely
utilized in semantic web technological space and supported by well-known standards
by W3C. One of the effects of using semantic web standards is an opportunity to se-
mantically describe DSL artefacts and to link software artefacts developed by one
modelling tool to artefacts developed by other modelling tools or systems in a distri-
buted way over the Web. Another effect is possibility to use Description Logics (DL)
reasoning facilities [1] as ontologies are represented in OWL [9].

4.1 The Concept of DSL Meta-Model Ontology

Central to our approach to integration of software artefacts is the notion of DSL meta-
model ontology. We define a DSL meta-model ontology as a formal ontology that
links together the system ontology and one or more domain ontologies as well as may
include links to external software artefacts on the Web (see Fig. 2). In this paper, we
consider software artefacts that are needed for the DSL development and application
processes. These are for example several types of components of a DSL meta-model
like CoCoViLa specifications, Java classes from Java libraries, diagrams and their
elements, application packages, the Java source code, etc.

Fig. 2. The concept of DSL meta-model ontology

The System ontology formally describes concepts of a particular modelling lan-
guage and the corresponding software system as well as relationships among them.
For example, the CoCoViLa system ontology includes concepts like JavaClass,
MetaClass, ConceptSpecification, etc.

 Ontology-Based

The Domain ontology pr
For example, the geometry
Rectangle, etc.

The DSL meta-model o
facts for DSL development
system ontology may be re
mentation relationship or th
development. In addition,
nents of models created b
availability of the system o
sistency of a DSL meta-mo

4.2 The CoCoViLa Sys

We now explain how the
approach is implemented fo

The CoCoViLa system o
guage and system concepts
of this ontology includes O
data properties.

Fig. 3. A

The ConceptSpecifi
cations that are textual spec
includes definitions of va
are used to facilitate auto

Integration of Software Artefacts for DSL Development

rovides a specification of a conceptualization of a dom
domain ontology may contain concepts like 2DimSha

ontology facilitates semantic integration of software a
t and implementation. As shown in Fig. 2, concepts of
elated to the concepts of domain ontology via the imp
hey may provide links to external resources used for D
a part of system ontology concepts may refer to com

by the other DSL development tools. This case requ
ontology of these external tools. In order to ensure the c
del ontology, DL reasoning services are used.

stem Ontology

previously described general ontology-based integrat
or a particular system i.e. the CoCoViLa modelling tool.
ontology formally describes the CoCoViLa modelling l
(see Fig. 3 for a part of this ontology). The current vers

OWL descriptions of 40 classes, 21 object properties and

fragment of the CoCoViLa system ontology

ication class represents a collection of concept spec
cifications in the CoCoViLa modelling language. The la
ariables, constants, and relations. Concept specificati
omatic composition of an application. Individuals of

313

main.
ape,

arte-
f the
ple-

DSL
mpo-
uires
con-

tion
.
lan-
sion
d 16

cifi-
atter
ions
the

314 H.-M. Haav et al.

ConceptSpecification class are related to the automatically generated Con-
ceptSpecificationTemplate class instances via the hasTemplate object
property.

Concept specification templates are restricted forms of concept specifications that
do not include specifications of dynamic parts of a DSL meta-model like relations
(except equality relation). These templates are automatically generated from class
descriptions of domain ontology using transformation rules given in [10]. The corres-
ponding relationship is represented in ontology by the isGeneratedFrom object
property that provides links to domain concepts used in a DSL meta-model. Concept
specification templates can be later manually extended with the CoCoViLa language
statements that could not be covered by transformations (e.g. equations and relations).

Individuals of the MetaClass class are implemented on the basis of individuals
of the ConceptSpecification class and Java. The corresponding relationship is
expressed by the implements object property whose domain is the class MetaC-
lass that is a subclass of the class JavaClass collecting instances that are Java
classes. The MetaClass class collects individuals that are Java classes and may
contain Java methods that are realizations of relations described by the Con-
ceptSpecification class individuals.

It is possible to use diagrammatical elements for a DSL development. Therefore,
the CoCoViLa system ontology includes several classes for representing diagram
elements as subclasses of the DiagramElement class. Individuals of these ele-
ments can come from external sources and be linked via URIs to the DSL meta-model
ontology. However, diagrammatical language elements can be also created by the
CoCoViLa class editor.

For diagrammatical language of CoCoViLa the notion of a visual class is used. The
VisualClass class is a subclass of the MetaClass class. Its individuals are the
MetaClass class individuals that are extended with an image, ports and fields.
The VisualClass class individuals have the data property hasIcon that could
be URI to an image of an icon used for denoting a visual class on a toolbar of the
CoCoViLa DSL window.

4.3 An Example: the Geometry DSL Meta-Model Ontology

Let us consider a simple example of the creation of a meta-model ontology for the
Geometry DSL. In the following Fig. 4, a fragment of the geometry domain ontology
is depicted. All the data property ranges in Fig. 4 are xsd:double.

In order to create a DSL for calculations related to geometric shapes from the given
domain ontology of geometric shapes, the CoCoViLa system ontology (see Fig. 3)
and domain ontology (see Fig. 4) are imported to the Geometry DSL meta-model
ontology. For each (or selected) domain ontology class a corresponding instance of
the ConceptSpecificationTemplate class is created and linked to it via the
isGeneratedFrom object property value. This object property value indicates
from what domain ontology class the template is automatically generated. For exam-
ple, the following templates in Fig. 5 are generated from the OWL class Rectangle
and its super-classes.

 Ontology-Based Integration of Software Artefacts for DSL Development 315

Fig. 4. Domain ontology of geometric shapes (a fragment)

The generated concept specification template of the concept Rectangle can be
manually completed by corresponding equations for calculating for example a value
of the variable Diagonal. After that the template becomes the complete concept
specification for the concept Rectangle that is related to its template via the
hasTemplate object property value.

Fig. 5. A part of a concept specification template in the CoCoViLa textual modelling language.

Fig. 6. The DSL meta-model ontology classes and instances (a fragment)

316 H.-M. Haav et al.

Some of the Geometry DSL meta-model ontology classes and individuals are
represented in Fig. 6. Functional style syntax5 is used in this figure, where the prefix
“sys” denotes the CoCoViLa system ontology elements, the prefix “geo” denotes the
geometry ontology elements and the prefix “meta” denotes the Geometry DSL meta-
model ontology elements. The Fig. 6 basically shows that the concept specification
template CST1 is generated from the Rectangle class of the domain ontology and
it is the template for the concept specification CS1 that is implemented by the visual
class VC1.

The DSL meta-model makes it possible to link other domains in the analogous
way. The consistency of the DSL meta-model ontology is checked by using ontology
inference provided by Apache Jena6.

5 The System Architecture and its Prototypical Implementation

In order to implement a DSL, the original CoCoViLa required a domain expert to
transfer the knowledge and a programmer able to convert such informal representa-
tion of knowledge into Java classes and annotate these classes with concept specifica-
tions. Concept specifications include besides variables also functional dependencies
related to concepts. The realizations of functional dependencies can be equations or
Java methods implemented in corresponding Java classes. Steps related to the DSL
application for solving a particular problem are mostly done automatically by the tool.

The following Fig. 7 depicts the architecture of the CoCoViLa extension that is
mainly related to the improvement of a DSL development while components of the
previous system (about 80% of the whole system) are used for a DSL application.

The CoCoViLa extension provides facilities for DSL designers to carry out the on-
tology-based DSL development process that enables the usage of existing formal
domain ontologies in combination with the system ontology for a DSL construction.

When loading a DSL, its meta-model ontology (created by DSL designers) is
loaded and SPARQL7 queries are used to dynamically collect and semantically inte-
grate all metadata about artefacts of a DSL meta-model for instantiation of the com-
putational model. Afterwards, the DSL is ready to be used by application developers.

Application developers build the problem specification using the DSL and translate
it into the computational model with the help of the CoCoViLa tool. Applying a set of
Jena rules enables to extend the computational model with additional relations be-
tween concepts in the model. Components (re)used from the previous system are the
following: a computational model, the planner, an algorithm and the generated Java
code. For more details we refer to [7].

5 http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
6 https://jena.apache.org/
7 http://www.w3.org/TR/sparql11-query/

 Ontology-Based Integration of Software Artefacts for DSL Development 317

Fig. 7. The CoCoViLa architecture extended with ontology-based DSL development facilities

Computational model is an internal representation of the computational problem
and concept specifications. It is used as an input for the planner, a theorem prover,
which considers the computational model as a logical theorem with axioms derived
from the functional dependencies defined in the specification. Since the prover is
based on intuitionistic logic, the solution to the specified computational problem, an
algorithm, is extracted from the constructive proof. CoCoViLa generates the Java
source code from the algorithm, compiles and executes it at runtime and immediately
presents the result of the computation to the user. The generated code can be later
(re)used, as it can be saved into the file system.

6 Conclusion

This work demonstrates applicability of formal ontologies for semantic integration of
software artefacts for building DSL meta-models. Representing domain models and
the system model as OWL ontologies and linking them together to form a unified
DSL meta-model ontology makes it possible to effectively integrate software artefacts
that constitute a DSL meta-model as well as link it with external resources over the
Web. This facilitates dynamic loading (instantiation) of software artefacts of DSL
meta-models to a DSL development tool. We have prototypically implemented our
approach as an extension to the CoCoViLa DSL modelling tool.

Using the DSL meta-model ontology makes it possible to automatically check its
consistency using DL reasoning facilities used for debugging DSL meta-models. It is
also easy to incorporate the domain terminology into the DSL at the early develop-
ment stages due to formalization of domain ontology. Our approach makes it is easy
to capture the evolution of a domain in the DSL via automated transformations [10].
However, for semantic integration of artefacts from external tools and models, the
approach requires the commitment to a common system ontology or availability of
system ontologies of these tools.

318 H.-M. Haav et al.

Acknowledgements. This research was supported by Estonian Research Council institutional
research grant no. IUT33-13, and by the ERDF through the ICT project MBJSDT and Estonian
national CoE project EXCS.

References

1. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press
(2003)

2. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3:
A Cyber-Physical Approach. Wiley (2014)

3. Grigorenko, P., Saabas, A., Tyugu, E.: Visual tool for generative programming. In:
ESEC/FSE-13: Proceedings of the 10th European Software Engineering Conference Held
Jointly with 13th ACM, SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 249–252. ACM Press, New York (2005)

4. Groenewegen, D.M., Hemel, Z., Kats, L.C., Visser, E.: WebDSL: a domain-specific lan-
guage for dynamic web applications. In: Harris, G.E. (ed) Proceedings of OOPSLA 2008,
pp. 779–780. ACM (2008)

5. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional (2009)

6. Katasanov, A.: Ontology-driven Software Engineering: Beyond Model Checking and
Transformations. Int. J. Semantic Computing 06, 205–242 (2012)

7. Kotkas, V., Ojamaa, A., Grigorenko, P., Maigre, R., Harf, M., Tyugu, E.: CoCoViLa as a
multifunctional simulation platform. In: Proc. of the 4th Int. ICST Conference on Simula-
tion Tools and Techniques (SIMUTools 2011), pp. 198–205. ICST, Brussels (2011)

8. Mints, G., Tyugu, E.: Propositional Logic Programming and the Priz System. J. Log.
Program 9(2&3), 179–193 (1990)

9. Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 2 Web Ontology Language: Structural
Specification and Functional-Style Syntax. http://www.w3.org/TR/owl2-syntax

10. Ojamaa, A., Haav, H.-M., Penjam, J.: Semi-automated generation of DSL meta models from
formal domain ontologies. In: Bellatreche, L., Manolopoulos, Y., Zielinski, B., Liu, R. (eds.)
MEDI 2015. LNCS, vol. 9344, pp. 3–15. Springer, Heidelberg (2015)

11. OMG: MDA Guide 1.0.1 (June 2003). http://www.omg.org/mda
12. Puleston, C., Parsia, B., Cunningham, J., Rector, A.L.: Integrating object-oriented and on-

tological representations: a case study in java and OWL. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 130–145. Springer, Heidelberg (2008)

13. Roser, S., Bauer, B.: Automatic generation and evolution of model transformations using on-
tology engineering space. In: Spaccapietra, S., Pan, J.Z., Thiran, P., Halpin, T., Staab, S.,
Svatek, V., Shvaiko, P., Roddick, J. (eds.) Journal on Data Semantics XI. LNCS, vol. 5383,
pp. 32–64. Springer, Heidelberg (2008)

14. Staab, S., Walter, T., Gröner, G., Parreiras, F.S.: Model driven engineering with ontology
technologies. In: Aßmann, U., Bartho, A., Wende, C. (eds.) Reasoning Web. LNCS,
vol. 6325, pp. 62–98. Springer, Heidelberg (2010)

15. Walter, T., Parreiras, F.S., Staab, S., Ebert, J.: Joint language and domain engineering. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138,
pp. 321–336. Springer, Heidelberg (2010)

16. Walter, T., Parreiras, F.S., Staab, S.: An ontology-based framework for domain-specific
modeling. Software & Systems Modelling 13, 83–108 (2014)

Publication VII

Haav, Hele-Mai; Ojamaa, Andres (2016).

Semi-Automated Integration of Domain Ontologies to DSL Meta-Models

International Journal of Intelligent Information and Database Systems. [accepted].

The rules of the publisher prevent reprinting of Publication VII. A copy will be
provided to opponents and committee members.

151

Publication VIII

Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009).

Graded Security Expert System

Critical Information Infrastructures Security: Third International Workshop, CRITIS
2008, Rome, Italy, October 13–15, 2008, Revised Papers. Ed. Setola, Roberto;
Geretshuber, Stefan. Berlin: Springer, 279–286. (Lecture Notes in Computer Sci-
ence; 5508).

153

Graded Security Expert System

Jüri Kivimaa1, Andres Ojamaa2, and Enn Tyugu2

1 Estonian Defence Forces Training and Development Centre of
Communication and Information Systems, Tallinn, Estonia

juri.kivimaa@mil.ee
2 Institute of Cybernetics at TUT, Tallinn, Estonia

andres.ojamaa@cs.ioc.ee, tyugu@ieee.org

Abstract. A method for modeling graded security is presented and its
application in the form of a hybrid expert system is described. The expert
system enables a user to select security measures in a rational way based
on the Pareto optimality computation using the dynamic programming
for finding points of Pareto optimality curve. The expert system provides
a rapid and fair security solution for a class of known information systems
at a high comfort level.

1 Introduction

Graded security measures have been in use for a long time in the high-risk areas
like nuclear waste depositories, radiation control etc. [1]. Also in cyber security,
it is reasonable to apply a methodology that enables one to select rational secu-
rity measures based on graded security, and taking into account the available re-
sources, instead of using only hard security constraints prescribed by standards.

It is well known that complete (100%) security of an information system is
impossible to achieve even with high costs. A common practice is to prescribe the
security requirements that have to be guaranteed with a sufficiently high degree
of confidence for various classes of information systems. This is the approach
of most security standards, e.g. [2]. However, a different approach is possible
when protecting a critical information infrastructure against the cyber attacks
– one may have a goal to provide the best possible defense with given amount
of resources (at the same time considering the standard requirements). This
approach requires a considerable amount of data that connects security measures
with required resources and security measures with provided degree of security.

Practically, only a coarse-grained security can be analyzed in such a way at
present, using a finite number of levels (security classes) as security metrics.
This is a basis of the graded security methodology. This approach has been
successfully applied in the banking security practice and included at least in
one security standard [3]. The ideas of graded security are based on the US
Department of Energy security model from 1999 [4] and its updated version
from 2006 [5].

The graded security model itself is intended for helping to determine a reason-
able set of needed security measures according to security requirements levels.

R. Setola and S. Geretshuber (Eds.): CRITIS 2008, LNCS 5508, pp. 279–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 J. Kivimaa, A. Ojamaa, and E. Tyugu

However, in practice it can be the case that there are not enough resources to
achieve the baseline. In this case it is still desirable to invest the limited amount
of resources as effectively as possible, i.e. to find and apply an optimal set of
security measures.

The data required for estimating required resources and security measures can
be presented in the form of expert knowledge in an extendable expert system. At
present, this expert system can include at least the data that have been used in
the banking security design, in particular in a branch of the Swedish bank SEB.
Using an expert system has the advantage that it provides flexibility in selecting
the required values for the security analysis – the values can be selected based on
various input data, and even default values can be used in some non-critical places.

The present paper is organized as follows: the graded security model is pre-
sented in Section 2, the optimization method for finding a Pareto optimal curve
depending on available resources is described in Section 3, and Section 4 gives
a brief overview of the whole software system together with a demo example of
security analysis.

2 Graded Security Model

In the present section we briefly explain the basic concepts of the graded security
model: security goals, classes and measures as well as costs related to the security
measures. We use integrated security metrics for representing the overall security
of a system. We explain the way these entities are related.

Conventional goals of security are confidentiality, integrity, availability, and
non-repudiation. In this presentation, that is based mainly on banking security,
we use the following four slightly different security goals: confidentiality (C),
integrity (I), availability (A) and satisfying mission criticality (M). (The latter
two are in essence two aspects of availability.) The model can be extended by
including additional security goals. A finite number of levels are introduced for
each goal. At present, we use four levels 0, 1, 2, 3 for representing required
security, but the number of levels can vary for different measures. The lowest
level 0 denotes absence of requirements.

Security class of a system is determined by security requirements that have
to be satisfied. It is determined by assigning levels to goals, and is denoted by
respective tuple of pairs, e.g. C2I1A1M2 for the system that has second level of
confidentiality C, first level of integrity I etc.

To achieve the security goals, some security measures have to be taken. There
may be a large number of measures. It is reasonable to group them into se-
curity measures groups. Let us use the following nine groups in our simplified
examples which are based on an educational information assurance video game
CyberProtect [6]: user training (1), antivirus software (2), segmentation (3), re-
dundancy (4), backup (5), firewall (6), access control (7), intrusion detection (8),
and encryption (9).

The number of possible combinations of security levels for all security goals
is 44 = 256. This is the number of different security classes in our case, see

Graded Security Expert System 281

Fig. 1. Security classes of graded security model

Fig. 1. A security class determines required security levels for each group of
security measures. Abstract security profile is an assignment of security levels
(0, 1, 2 or 3) to each group of security measures. Hence, in the present example,
we have totally 49 = 2621144 abstract security profiles to be considered. The
number of security measures groups may be larger in practice, e.g. 20. This
gives a big number of abstract security profiles – 420 for 20 groups. Knowing the
costs required for implementing security measures of any possible level, one can
calculate the costs of implementing a given abstract security profile.

After selecting security levels for a security measures group, one can find a
set of concrete measures to be taken. This information is kept in the knowledge
modules of the expert system of security measures, see Section 4.

It is assumed that, applying security measures, one achieves security goals
with some confidence. The security confidence li is described by a numeric value
between 0 and 100 for each group of security measures i = 1, . . . , n, where n is
the number of groups.

We describe overall security of a system by means of an integrated security
metrics – the security is evaluated by weighted mean security confidence S:

S =

n∑

i=1

aili ,

where li is security confidence of i-th security measures group, ai is a weight of
the i-th group, i = 1, . . . , n, and

n∑

i=1

ai = 1 .

Information about costs, required security measures and confidence levels
needed for calculations is presented in the expert system that will be described
in Section 4.

Graded security methodology as it is generally accepted, enables one to find
required security measures and costs for a given security class. We add also the
value of weighted mean security confidence S. Fig. 2(a) shows a usual graded
security solution: the value of S for given resources r, and also selected security
levels of security measures groups. The levels for the groups numbered from 1
to 9 are shown on the right side scale.

282 J. Kivimaa, A. Ojamaa, and E. Tyugu

3 Optimization Technique

Our expert system allows us to solve several security related optimization prob-
lems. First of all, it enables one to find an optimal security solution for given
resources, and to determine the reachable security class. This problem concerns
again only one value of resources, and can be illustrated by the same picture as
the conventional graded security problem (Fig. 2(a)).

To get a broader view of possible solutions, one should look at the optimal
security for many different values of usable resources. This service is provided
by our expert system by plotting a Pareto optimality tradeoff curve that binds
resources and the achievable security S. Fig. 2(b) shows this curve for an interval
of resources from r1 to r2. The last value of resources r2 can be easily calculated
as the resources required for getting the security class C4I4A4M4. The curve
shows also the respective security levels for selected security measures groups –
in the present case, for the groups number 1 and 4. The exhaustive search of
optimal solutions for q possible values of resources, n security measures groups
and k security levels requires testing (calculating weighted mean confidence) of
qkn points.

Building optimal solutions gradually, for 1, 2, . . . , n security measures groups
enables us to use discrete dynamic programming, and to reduce considerably the
search. Indeed, the fitness function S defined on intervals from i to j as

S(i, j) =

j∑

s=i

asls

is additive on the intervals, because from the definition of the function S we
have

S(1, n) = S(1, s) + S(s, n), 1 < s < n .

This means that one can build an optimal resource assignment to security mea-
sures groups gradually, as a path in the space with coordinates x1, x2, where
x1 equals to the number of security measures groups that have got resource (i.e.

S l

r
0

1

2

3

S*

r*

1, 2, 3, 6, 8, 9

4

5, 7

(a) Conventional graded security
solution

S l

r
0

1

2

3

1

4

r1 r2

(b) Pareto-optimal solutions

Fig. 2. Conventional graded security solution and Pareto optimality tradeoff curve

Graded Security Expert System 283

x1 = s) and x2 equals to the amount of used units of resources. This algorithm
requires testing of q2nk points (q is number of possible values of resources, n is
number of security measures groups and k is number of security levels).

4 Security Expert System

A hybrid expert system with visual specification language for security system de-
scription has been built on the basis of a visual programming environmentCoCoV-
iLa [7]. The system includes knowledge modules (rule sets) in the form of decision
tables for handling expert knowledge of costs and gains, as well as for selecting se-
curity measures for each security group depending on the required security level.
Other components are an optimization program for calculation Pareto optimality
curve parameterizedby available resources, and a visual user interface for graphical
specification of the secured system, visual control of the solution process through
a GUI, and visualization of the results. These components are connected through
a visual composer that builds a Java program for each optimization problem, com-
piles and runs it on the request of the user, see Fig. 3.

Let us explain the usage of the expert system on the following simplified
example. We have nine security measures groups as given in Section 2. Two
groups – “user training” and “encryption” – have specific values of cost and
confidence related to security levels that must be given as an input. We can use
standard values of cost and confidence given in the expert knowledge modules
for other groups. We have to solve the problem in the context of banking and can
use resources measured in some units on the interval from 1 to 70. The security
class C2I1A1M2 is given as an input. The expected outcome is a graph that shows
the weighted mean security confidence depending on the resources that are used
in the best possible way. The graph should also indicate whether the security
goals specified by the security class can be achieved with the given amount of
resources. Besides that, the curves showing security confidence provided by user
training and redundancy must be shown.

The visual composer is provided by the CoCoViLa system that supports vi-
sual model-based software composition. The main window of the expert system
shown in Fig. 4 presents a complete description of the given problem. It in-
cludes also visual images of components of the expert system and a toolbar for

Vi

GUI
Optimizer

Visual composer

Knowledge modules

Fig. 3. Graded security expert system

284 J. Kivimaa, A. Ojamaa, and E. Tyugu

Fig. 4. Problem specification window

adding new components, if needed. In particular, new security measures groups
can be added by using the third and fourth button of the toolbar. Besides the
security measures groups there are three components – Optimizer, SecClass and
GraphVisualizer – shown in the window. The components in the main window
can be explicitly connected through ports. This allows us to show which val-
ues of security should be visualized (“user training” and “redundancy” in the
present case) etc. There are extended views of two security measures groups
– “user training” and “encryption” that have explicit values of costs and con-
fidence given as an input. Other groups use the standard values of costs and
confidence given in the expert knowledge modules as specified in the problem
description. The SecClass component is used for specifying security goals. Dur-
ing computations, this component also evaluates the abstract security profiles
calculated by the Optimizer against the actual security requirements using a
knowledge module from the expert system.

5 Optimization Results

As an example, in Fig. 5 there is a window showing the optimization results.
The upper curve (Confidence) represents the optimal value of weighted mean
security confidence depending on the resources that are used in the best possible
way. This curve is further divided into four parts to visualize to which degree the
optimal result satisfies the security requirements given by the security class. The
first part (black line) indicates the interval of resources where none of the four
(in our example) security goals can be achieved. The second part (grey line, three
separate segments) shows that at least one of the security goals is satisfied while
also at least one is not. The third part (thick black line) represents the amount of
resources that, when used optimally, would result in satisfying the requirements
exactly. One should note that this coincidence of the optimal security profile and

Graded Security Expert System 285

Fig. 5. Solutions window

the security requirements does not always exist. The last part of the graph (black
line, again) shows the amounts of resources that are more than is strictly needed
to satisfy the requirements. It is interesting to notice that on the interval of costs
from 36 to 45 units it is possible to satisfy all security goals, because already
spending 34 units enables one to do this. However, the solutions with highest
values of the weighted mean security confidence do not satisfy all security goals
on this interval.

The lower graphs indicate (on the right scale) the optimal levels of two mea-
sures groups corresponding to the given amount of resources. These graphs are
not necessarily monotonic as can be seen in this example at the resource values
35 and 36. When there are 35 units of resources available it is reasonable to
apply the measure “user training” at level 2. Having one more unit of resources
better overall security confidence level is achieved by taking all resources away
from “user training” and investing into the “redundancy” measures group to
achieve level 3.

6 Conclusions

The advantage of the expert system of the graded security is that it provides
a rapid security solution at a sufficiently high, although not 100%, confidence
level. Based on our previous experience, the graded security expert system allows
a typical security solution to be developed within approximately 8 hours, with
about half the time spent on security class identification and the other half on
manually analyzing available resources, accepted security risks, attack costs and
other optimization variables. Our method reduces the time for analysis to a few
seconds by automatic optimization and presenting a global view in the form of
a Pareto optimal solution. It includes:

286 J. Kivimaa, A. Ojamaa, and E. Tyugu

– graded security selection procedure that yields the security measures for a
given security class;

– high-level analysis of usage of resources for information security and accepted
risks based on advanced optimization technique.

We understand that wider application of this method will depend on the avail-
ability of expert knowledge that binds costs and security confidence values with
taken security measures. This knowledge can be collected only gradually, and
will depend on the type of the critical infrastructure that must be protected.

Acknowledgements. We thank the Estonian Ministry of Defence and the
Estonian Defence Forces Training and Development Centre of Communication
and Information Systems for the support of this work. The contribution of the
second author was partially supported by the Estonian Information Technology
Foundation and the Tiger University program.

References

1. Kang, Y., Jeong, C. H., Kim, D. I.: Regulatory approach on digital security of
instrumentation, control and information systems in nuclear power plants. Korea
Institute of Nuclear Safety. Daejeon, Korea,
http://entrac.iaea.org/IandC/TM IDAHO 2006/CD/

IAEA%20Day%202/Kang%20paper.pdf (August 31, 2008)
2. German Federal Office for Information Security (BSI): IT Baseline Protection Man-

ual (2005), http://www.bsi.de/gshb/ (August 31, 2008)
3. Estonian Information Systems Three-Level Security Baseline System – ISKE ver. 1.0
4. U. S. Department of Energy, Office of Security Affairs: Classified Information Sys-

tems Security Manual (1999)
5. U. S. Department of Defense: National Industrial Security Program Operating Man-

ual (NISPOM) (2006)
6. U. S. Department of Defense, Defense Information Systems Agency. CyberProtect,

version 1.1 (July 1999), http://iase.disa.mil/eta/product_description.pdf

(August 31, 2008)
7. Grigorenko, P., Saabas, A., Tyugu, E.: Visual tool for generative programming.

ACM SIGSOFT Software Engineering Notes 30(5), 249–252 (2005)

Publication IX

Ojamaa, Andres; Tyugu, Enn; Kivimaa, Jyri (2008).

Pareto-Optimal Situation Analysis for Selection of Security Measures

MILCOM 08: Assuring Mission Success: Unclassified Proceedings, November
17–19 San Diego. 3224–3230.

163

PARETO-OPTIMAL SITUATON ANALYSIS FOR SELECTION OF SECURITY MEASURES

Andres Ojamaa and Enn Tyugu
Institute of Cybernetics of

Tallinn University of Technology
Tallinn, Estonia

Jyri Kivimaa
Estonian Defence Forces Training and Development
Centre of Communication and Information Systems

Tallinn, Estonia

ABSTRACT

A methodology of selection of security measures is pre-
sented and a prototype implementation in the form of
a hybrid expert system is described. This expert system
is applicable, first of all, in the security management.
It enables a user to select security measures in a ra-
tional way based on the Pareto optimality computation
using a discrete dynamic programming method. This
enables one to select rational countermeasures taking
into account the available resources instead of using only
hard constraints prescribed by standards. The prototype
expert system is presented that provides a rapid secu-
rity solution for a class of known information systems.
Coarse-grained security can be analyzed in such a way at
present, using a finite number of levels (security classes)
as security metrics. This is a basis of the graded security
methodology.

1. INTRODUCTION

Selection of security measures is a complex problem due
to the fact that multiple objectives must be achieved at
the same time. Considering data security, the security
goals can be confidentiality, integrity and availability.
Besides that, a security officer may want to keep costs
reasonably low from one side, and reach the security
goals with as high confidence as possible. Low cost and
high confidence are two universal goals. The complexity
has been an obstacle to finding optimal solutions for
the security management problem. Another obstacle has
been the absence of reliable metrics for measuring the
said goals1.

1“Good metrics are those that are SMART, i.e. specific, measurable,
attainable, repeatable, and time-dependent, according to George Jelen
of the International Systems Security Engineering Association [1].
Truly useful metrics indicate the degree to which security goals, such
as data confidentiality, are being met, and they drive actions taken to
improve an organization’s overall security program [2].”

Graded approach has been applied earlier in standards
covering areas other than information security [3]. In re-
cent years a graded security method has been developed
and used in a number of areas, not necessarily in informa-
tion assurance [4]. This method relies on a coarse-grained
metrics for the security goals and achieved confidences.
It is successfully applied as a basis for security standards
that prescribe concrete security measures for achieving a
required level of confidence for each security goal [5, 6].
The method is not immediately applicable for finding an
optimal solution of the security problem.

We are going here to use the metrics of the graded secu-
rity method and build a model that binds taken security
measures with costs and confidences of achieving the
goals. We introduce a fitness function that presents by
one numeric value the integral confidence of achieving
the security goals. This allows us to formulate a prob-
lem of selecting security measures as an optimization
problem in precise terms. However, we still have two
goals: to minimize the costs and to maximize the integral
security confidence. This problem will be solved by
means of building a Pareto optimality tradeoff curve
that explicitly shows the relation between used resources
and security confidence. Then, knowing the available
resources, one can find the best possible security level
that can be achieved with the resources and find the
security measures to be taken. From the other side –
if the required security level is given one can find the
resources needed and the measures that have to be taken.
This requires solving an optimization problem for each
value of resources. As the number of possible security
measures (that are in principle the independent variables
of the optimization problem) is large, we have grouped
the measures into security measures groups that will be
characterized by security confidence levels. Taking the
confidence levels of the groups as independent variables,
we get an optimization problem of a reasonable size
that can be solved by means of a discrete dynamic
programming method.978-1-4244-2677-5/08/$25.00 c© 2008 IEEE

1 of 7

The presented method of finding optimal security mea-
sures is in principle applicable in different situations, in
particular, for designing overall security of a commu-
nication network, for designing a security of a critical
information infrastructure of a bank etc. However, the
method requires considerable amount of data that bind
costs and confidences with security measures groups as
well as expert knowledge that binds concrete security
measures with a selected security confidence require-
ments level of a group. In the end of the present paper
we give an example of an expert system developed for
banking security that has the data and has been used
for experimenting. Most of the expert knowledge of this
kind can be extracted from standards or internal security
policies of the bank or other organization that must have
them before trying to optimize the security.

2. GRADED SECURITY MODEL

In the present section we briefly explain the basic con-
cepts of the graded security model that gives functional
dependencies for our optimization method. We are go-
ing to use integrated security metrics for representing
the overall security of a system. Conventional goals of
security are confidentiality (C), integrity (I), availability
(A), and non-repudiation (N). The model can be extended
by including additional security goals. A finite number
of security levels are introduced for each goal. This
is a coarse-grained metrics, but the only available in
this context at present. We use four levels 0, 1, 2, 3
for representing required security, but the number of
levels can vary for different measures. The lowest level 0
denotes absence of special protective measures. Security
class of a system is determined by security requirements
that have to be satisfied. It is determined by assigning
levels to goals, and is denoted by a respective tuple of
pairs, e.g. C2I1A1N2 for the system that has second
level of confidentiality C, first level of integrity I and
availability A and second level of non-repudiation N.

To achieve the security goals, proper security measures
have to be taken. There may be a large number (hun-
dreds) of measures. It is reasonable to group them into
security measures groups g1, g2, . . . , gn. The grouping
should be done in such a way that measures of one and
the same group will be always used for achieving one and
the same level of security. We will need a function f that
produces a set of required security measures f(l, g) for
a given security measures group g and a security level l
of the group.

A security class determines the required security level for
each group of security measures. Let us denote by s a re-
spective function that produces a security level s(c, g) for
a group g when the security class is c. Abstract security
profile is an assignment of security levels (0, 1, 2 or 3) to
each group of security measures. This can be expressed
by the tuple p = (s(c, g1), s(c, g2), . . . , s(c, gn)), where
p denotes the abstract security profile an the elements
of the tuple p are indexed and appear in the tuple
in the same order as the groups of security measures
g1, g2, . . . , gn have been indexed.

For n security measures groups we have totally 4n

abstract security profiles to be considered. The number
of security measures groups may be in practice up
to 20 or even more. This gives a number of abstract
security profiles: 420. (If we had considered all security
measures without grouping them, then we had got an
incomprehensibly large number of security profiles – 4k,
where k is several hundreds.)

Knowing the cost function h that gives the costs h(l, g)
required for implementing security measures of a group g
for a level l, one can calculate the costs of implementing
a given abstract security profile:

costs(p) =
n∑

i=1

h(li, gi), where p = (l1, l2, . . . , ln) .

Our goal is to keep the value costs(p) as low as possible.

The information for calculating values of functions f , h,
c and s should be kept in the knowledge modules of an
expert system of security measures.

It is assumed that, applying security measures, one
achieves security goals with some confidence. The secu-
rity confidence q of a group g that satisfies the security
level l is given by a function q(l, g) and it is a numeric
value between 0 and 100 for each group of security
measures.

We describe overall security of a system by means
of an integrated security metrics that is a weighted
mean security confidence S, called also integral security
confidence:

S =
n∑

i=1

aiqi ,

where qi is security confidence of the i-th security

2 of 7

measures group, ai is a weight of the i-th group, and
n∑

i=1

ai = 1 .

In the simplest case ai = 1/n, and the integral security
confidence is the average confidence of security measures
groups. Also the information about the weights ai, as
well as about the function q must be presented in an
expert system.

3. OPTIMIZATION TECHNIQUE

Now we can formulate an optimization problem as
follows: “find the abstract security profile p with the
best (highest) value of integral security confidence S for
given amount of resources r, so that costs(p) ≤ r .” We
have introduced all functions needed for calculating S
and costs in the previous section. Independent variables
whose values have to be found by optimization are the
security levels assigned to security measures groups:
l1, l2, . . . , ln. If the security class c is given, then the
solution has to satisfy also the constraints

li ≥ s(ci, gi), i = 1, 2, . . . , n .

Remark. The graded security model presented in Sec-
tion 2 is usually used for finding (for a given security
class) the required security levels of security measures
groups and respective costs and concrete measures to
be taken. This problem is considerably simpler that the
optimization problem considered here.

Let us solve the optimization problem in the general
case when also a security class is given. First, a security
class prescribes only minimal security requirements and
respectively – spending of some minimal amount of
resources rmin. It is easy to calculate also resources rmax

that can be reasonably spent for achieving the maximal
possible integrated security level –

Smax =
n∑

i=1

aiqmax i ,

where qmax i is maximal security confidence of the i-th
group of security measures.

Applying some resources between the values rmin and
rmax, one can get better security in a rational way. Now
we have an optimization problem with two goals: to
minimize resources on the interval [rmin, rmax] and to

resources

security

Pareto Optimality
Tradeoff Curve

rmin rmax

Figure 1. Search of optimal security along resource
dimension

maximize security, guaranteeing at least the levels pre-
scribed by a given security class. We reduce this problem
to a simpler one that will be solved many times. We
find an optimal security solution – the solution that has
maximal value of S, for a fixed value of resources. We
repeat this optimization for as many values of resources
as needed. In this way we get a curve that shows the best
possible value of fitness function S for every value of
resources used, see Fig. 1. This curve is called a Pareto
optimality tradeoff curve for resources and security. In
the case when the minimal security requirements are not
strict for security measures groups, it is reasonable to
compute Pareto optimality even for resources less than
rmin. This can be done, if the optimization procedure is
sufficiently fast, like in our case.

The exhaustive search of optimal solutions for m possible
values of resources, n security measures groups and
k security levels requires testing (calculating weighted
mean confidentiality) of mkn points.

Building optimal solutions gradually, for 1, 2, . . . , n se-
curity measures groups enables us to use discrete dy-
namic programming, and to reduce considerably the
search. Indeed, the fitness function S defined on intervals
from j to k as

S(j, k) =
k∑

i=j

aili ,

is additive on the intervals, because from the definition
of the function S we have

S(1, n) = S(1, k) + S(k, n) .

3 of 7

Figure 2. Resource assignment by means of discrete
dynamic programming

This means that one can build an optimal resource as-
signment to security measures groups gradually, as a path
in the space with coordinates x1, x2, where x1 equals to
the number of security measures groups that have got re-
source (i.e. x1 = k) and x2 equals to the amount of used
units of resources (1, 2, . . . , 1000 in our example). The
discrete dynamic programming method requires using of
a finite number of values of a resource (x2). This number
of values depends on the precision that is required. A
precision that can be achieved using expert knowledge
is not very high, usually a hundred points is sufficient.
As our optimization procedure works sufficiently fast
we are using 1000 points. Fig. 2 shows a search step,
where known optimal partial solutions (assignments of
resources to already tested security measures groups) are
the paths from initial state a (where no resources are
assigned) to intermediate states s1, . . . , sv. The aim is to
find one step longer optimal paths from a to the states
t1, . . . , tw that follow the states s1, . . . , sv. This can be
done for each step by trying out all possible continuations
of the given partial optimal paths to s1, . . . , sv as shown
in Fig. 2. This algorithm requires testing of m2n points
(m is number of possible values of resources, n is
number of security measures groups).

In Fig. 3 it is shown how the number of search steps
(and consequently search time) depends on the number
of security measures groups for the number of groups up
to 10. Our method has linear complexity, the search time
grows linearly with the number of groups. The time for
exhaustive search grows exponentially.

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

ea
rc

h
st

ep
s

Number of security measures groups

Exhaustive search
Dynamic programming

Figure 3. Complexity of search

4. APPLICATION EXAMPLE

We have developed a prototype of a security expert
system for selecting security measures in banking. This
expert system has been developed in a visual program-
ming environment CoCoViLa [8]. Let us explain its
functioning on an example. Here we use the following
four security goals: confidentiality (C), integrity (I),
availability (A) and satisfying mission criticality (M). We
use the following nine security measures groups in our
simplified example which are based on an educational
information assurance video game CyberProtect [7]:

• firewall,
• access control,
• intrusion detection,
• encryption,
• user training,
• antivirus software,
• segmentation,
• redundancy,
• backup.

After selecting security levels for a security measures
group, one can find a set of concrete measures to be
taken. For example, in the case of the security level 1
for the group “User training” the following measures can
be found from the expert system:

• New employees must be instructed for security –
procedures and practice must be explained.

• An employee must know security related rights and
obligations, must understand security practice, know
about handling of passwords and keys.

4 of 7

• An employee must be instructed about security regu-
lations and should be motivated to follow the regula-
tions. Help about security must be available for all IS
users.

The main window of the expert system is presented in
Fig. 4. A menu bar in the upper part of the window
provides buttons for building a visual specification of
the problem to be solved. These are buttons for adding
different kinds of components, and tools for manipulating
components on the scheme and connecting components
through ports. From left to right the buttons are:

• selection tool,
• connection line,
• simple security measures group (uses default values

defined by its name and current context),
• expanded security measures group with explicit values,
• brute-force optimizer,
• dynamic programming optimizer,
• simple graph,
• multiple graphs,
• security class evaluator,
• extended security class evaluator.

The window includes a visual specification of our prob-
lem. The specification is a scheme where components
are security measures groups and other software com-
ponents that are used for solving the problem. The
scheme has been composed gradually by adding and
connecting new components and editing properties of
the components. In the given scheme we see images
of all security measures groups. Besides the security
measures groups there are three components Optimizer,
SecClass and GraphVisualizer shown in the scheme. Two
groups “User training” and “Encryption” are represented
by expanded components that have specific values of
cost and confidence related to security levels explicitly
given as an input. Standard values of cost and confidence
are used for other groups. They are given in the expert
knowledge modules. We have to solve the problem in
the context of banking and can use resources measured
in some units on the interval from 1 to 70 that is shown
in the Optimizer block. The security class C2I1A1M2
is given as a separate block as well. Some blocks in the
main window are connected through ports. This allows
us to show which values of security should be visualized
(“User training” and “Redundancy” in the present case)
etc. The expected outcome is a graph produced by the
GraphVisualizer that shows the weighted mean security
confidence depending on the resources that are used in

the best possible way. The graph should also indicate
whether the security goals specified by the security class
can be achieved with the given amount of resources.
Besides that, the curves showing security confidence
provided by user training and redundancy will be shown,
see the respective connection lines between the visual
images.

5. OPTIMIZATION RESULTS

In Fig. 5 there is a window showing the optimization
results. The upper curve (Confidence) represents the
optimal value of weighted mean security confidence
depending on the resources that are used in the best
possible way. This curve is further divided into four parts
to visualize to which degree the optimal result satisfies
the security requirements given by the security class.
The first part (thin black line for the costs up to 27)
indicates the interval of resources where none of the
four (in our example) security goals can be achieved.
The second part (thin grey line, three separate segments)
shows that at least one of the security goals is satisfied
while also at least one is not. The third part (thick black
line) represents the amount of resources that, when used
optimally, would result in satisfying the requirements
exactly. One should note that this coincidence of the
optimal security profile and the security requirements
does not always exist. The last part of the graph (thin
black line, again) shows the amounts of resources that are
more than is strictly needed to satisfy the requirements.
It is interesting to notice that on the interval of costs
from 36 to 45 units it is possible to satisfy all security
goals, because already spending 34 units enables one to
do this. However, the solutions with highest values of
the weighted mean security confidence do not satisfy all
security goals on this interval.

The lower graphs indicate (on the scale shown on the
right) the optimal levels of two measures groups corre-
sponding to the given amount of resources. These graphs
are not necessarily monotonic as can be seen in this
example at the resource values 35 and 36. When there are
35 units of resources available it is reasonable to apply
the measure “User training” at level 2. Having one more
unit of resources, a better overall security confidence
level is achieved by taking all resources away from “User
training” and investing into the “Redundancy” measures
group to achieve level 3.

5 of 7

HelpOptionsSchemePackageViewEditFile

optimization

100%

471, 10

Cost Confidence
0
4
8
12

0
30
60
65

User training

Redundancy

Access control

Antivirus software

Backup

Segmentation

Cost Confidence
0
2
4
7

0
60
80
95

Encryption

Firewall

Intrusion detection

DDP Optimizer

Context:

Resources:
min max

1 70

Banking

y

levels

s SecClass:

s
C2I1A1M2

S E BF DP SC1 SC2

Figure 4. Main window of security expert system

Confidence Redundancy User training

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Costs

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

C
on

fi
de

nc
e

0

1

2

3

4

5

6

L
evel index

Figure 5. Solution of the problem

6 of 7

6. CONCLUDING REMARKS

In the present work we have developed a method for
systematic design of a security solution of an information
or communication system, and the method is explained
on an example from the banking security. The method
relies on a graded security model used in practice in
different applications. The novelty of the method is,
first, the usage of an advanced optimization technique
based on discrete dynamic programming and, second,
the output of many alternative solutions in the form of a
Pareto optimality tradeoff curve that enables the user to
select the best security solution depending on availability
of resources.

Another novelty is introduction and usage of an integral
security measure in the form of a weighted mean secu-
rity confidence. The method performs security situation
analysis using coarse-grained metrics for security levels
of partial solutions (security measures groups) from one
side, and an integrated security metrics in the form
of weighted mean security confidence from the other
side. A tool developed as a prototype supports visual
presentation of a general view of a security situation
and enables one to perform the situation analysis on
different levels of details, e.g. using standard functions
of confidences and costs or presenting them as additional
inputs. Time required for automated analysis, when a set
of input data is given, is only a few seconds. This enables
one to perform the analysis rapidly for many different
assumptions.

We understand that wider application of this method
will depend on the availability of expert knowledge that
binds costs and security confidence values with taken
security measures. This knowledge can be collected only
gradually, and will depend on the type of the critical
infrastructure that must be protected. However, our ex-
pectation is that more expert knowledge will be collected
when interactive analysis applications with graphical user
interface such as the prototype presented in this paper
become available.

ACKNOWLEDGEMENTS

We thank the Estonian Ministry of Defence and the
Estonian Defence Forces Training and Development
Centre of Communication and Information Systems for
the support of this work. The first author would like to
thank the Estonian Information Technology Foundation
and the Tiger University program for partial support of
this work.

REFERENCES

[1] G. Jelen. SSE-CMM Security Metrics. NIST and
CSSPAB Workshop, Washington, D.C., 13–14 June
2000.

[2] S. C. Payne. A Guide to Security Metrics. SANS
Reading Room, 2006. http://www.sans.org/reading
room/whitepapers/ (10 Sep 2008)

[3] C. E. Pasterczyk. A graded approach to ISO 9000
implementation for records managers. Associa-
tion of Records Managers and Administrators inter-
national annual conference, Toronto (Canada), 25–
29 September 1994.

[4] Y. Kang, C. H. Jeong, D. I. Kim. Regulatory
approach on digital security of instrumentation,
control and information systems in nuclear power
plants. Korea Institute of Nuclear Safety. Daejeon,
Korea. http://entrac.iaea.org/I-and-C/TM IDAHO
2006/CD/IAEA%20Day%202/Kang%20paper.pdf
(10 Sep 2008)

[5] German Federal Office for Information Security
(BSI). IT Baseline Protection Manual. 2005.
http://www.bsi.de/gshb/ (10 Sep 2008)

[6] U. S. Department of Defense. National Industrial
Security Program Operating Manual (NISPOM).
2006.

[7] U. S. Department of Defense, Defense Information
Systems Agency. CyberProtect, version 1.1. July
1999. http://iase.disa.mil/eta/product description.pdf
(10 Sep 2008)

[8] P. Grigorenko, A. Saabas, E. Tyugu. Visual tool for
generative programming. ACM SIGSOFT Software
Engineering Notes, 2005, 30, 5, 249–252.

7 of 7

Publication X

Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009).

Managing Evolving Security Situations

MILCOM 2009: Unclassified Proceedings, October 18–21, 2009, Boston, MA.
Piscataway, NJ: IEEE, 1–7.

173

Paper ID# 900425.PDF

MANAGING EVOLVING SECURITY SITUATIONS

Jyri Kivimaa
Cooperative Cyber Defence

Centre of Excellence
Tallinn, Estonia

Andres Ojamaa
Institute of Cybernetics at

Tallinn University of Technology
Tallinn, Estonia

Enn Tyugu
Cooperative Cyber Defence

Centre of Excellence
Tallinn, Estonia

ABSTRACT

A method is described that takes into account the invest-
ments done in the security and/or achieved security con-
fidence in planning new security measures. The method
uses new integral security metrics and the well-known
graded security model. A precondition for the application
of this method is the availability of expert knowledge
or statistical data for the model in use that describes a
class of situations where the analyzed security situation
belongs to. For a number of situations at present, this
information has been extracted from standards of graded
security. For specific military communications applica-
tions the data must be collected from a log analysis of
characteristic attacks and security reports, as well as by
the traditional knowledge acquisition means.

1. INTRODUCTION

The security situation in cyber space is changing rapidly.
This requires continuous analysis of security situations
and continuous security management: selection of se-
curity measures, planning of investments for security
measures groups. Our goal is to provide a method for
planning security measures not only for a fixed time
point, but to do this for a longer time period, possibly, in-
vesting into the security gradually. This paper presents a
method that is an extension of the Pareto-optimal security
situation analysis implemented in an expert system [4]. It
takes into account the legacy systems and security levels
achieved by means of former investments. This enables
one to plan the usage of resources considering evolving
security situations over a longer time period.

Comprehensive security planning is a complex task.
This can be seen from the complexity of standards and
requirements like Common Criteria [7] or ISKE [1].
Standards prescribe minimal required measures, and usu-
ally do not include economic parameters—the costs of

implementing the security measures. A detailed cost-
benefit analysis of cyber security [2] may require months.
An alternative approach is to manage security on the
basis of security requirements. It is efficient, if reason-
ably good expert knowledge of security requirements and
goals is available. We have taken this approach.

A well-known graded security methodology [6, 8] is
based on a comprehensive but coarse grained model, and
provides a way of planning security and calculating costs.
In our paper [4] we have shown how to use the graded
security model for finding optimal solutions depending
on the given security situation. However, a description of
a situation there reflects neither the investments already
done into security nor the levels of security already
achieved. Based on the application of a discrete dy-
namic programming method described in [5], one can
solve rather complex security optimization problems on
ordinary PCs and laptops. This enabled us to extend the
optimization method for longer time intervals, solving
the optimization problem stepwise.

This paper is organized as follows. In the next section we
present briefly the graded security method that provides
the functional dependencies needed for calculations. A
separate section (Section 3) is devoted to the discussion
of the integral security metrics needed for comparing
the solutions. These metrics were introduced for the first
time in [4]. The following Section 4 includes a brief
description of the software used for making calculations.
Section 5 includes a discussion of the influence of the
legacy security on new security solutions. It presents
formulas needed for planning evolving security mea-
sures. Section 6 includes descriptions of solvable legacy
security problems and some solutions.

1 of 7

2. GRADED SECURITY MODEL

Here we briefly introduce variables and functions used
in the graded security model. The overall security of a
system is described by a security class. It shows how
the security goals (confidentiality, integrity, availability,
. . .) are satisfied. It is determined by assigning security
levels to security goals, and is denoted by a respective
tuple of pairs, e.g., C2I1A1M2 for the system that has
the second level of confidentiality C, the first level of
integrity I etc.

To achieve the security goals, proper security measures
have to be taken. There may be a large number (hun-
dreds) of measures. It is reasonable to group them into
security measures groups g1, g2, . . . , gn. The grouping
should be done in such a way that measures of one and
the same group will always be used for achieving one
and the same level of security. One uses a function f that
produces a set of required security measures f(l, g) for
a given security measures group g and a security level l
of the group. A security class determines the required
security level for each group of security measures. Let
us denote by s a respective function that produces a
security level s(K, g) for a group g when the security
class is K. An abstract security profile is an assign-
ment of security levels (0, 1, 2, or 3) to each group of
security measures. This can be expressed by the tuple
p = (s(K, g1), s(K, g2), . . . , s(K, gn)), where p denotes
the abstract security profile and the elements of the
tuple p are indexed and appear in the tuple in the same
order as the groups of security measures g1, g2, . . . , gn
have been indexed. Knowing the cost function h(l, g)
that gives the costs r required for implementing security
measures of a group g for a level l, one can calculate the
costs of implementing a given abstract security profile:

costs(p) =
n∑

i=1

h(li, gi) ,

where p = (l1, l2, . . . , ln).

The goal is to keep the value costs(p) as low as possible,
guaranteeing a required security. It is assumed that by
applying security measures, one achieves security goals
with some confidence. The security confidence c of a
group g that satisfies the security level l is given by a
function e(l, g) and it is a numeric value between 0 and
100 for each group of security measures.

3. INTEGRAL SECURITY METRICS

The graded security model uses coarse-grained metrics
differentiating three or four security levels for each secu-
rity goal. To compare security situations in general, one
needs a more precise metric that expresses the quality of
a security situation by one numeric value. It is reasonable
to take into account influences of all security measures
on the overall security of the system. The simplest choice
would be to calculate the mean security confidence of all
groups. However, the influence of groups on the overall
security is different. Therefore, the best solution would
be to use partial derivatives of the security measure
depending on the security confidences of the groups.
These derivatives could be used as coefficients of the
security confidences when calculating their mean value.
Unfortunately, these derivatives are hard to determine.
Instead of the derivatives, one can use empirically found
weights of the security confidences.

We have introduced a security metric in [4] that evaluates
a security situation on the basis of security confidences
provided by the security measures groups. We describe
the overall security of a system by means of an integrated
security metric S that is a weighted mean security
confidence, called also integral security confidence:

S =
n∑

i=1

aici ,

where ci is security confidence of the i-th security
measures group, ai is the weight of the i-th group, and

n∑

i=1

ai = 1 .

Using a linear combination of security confidences of
measures groups is reasonable as long as a security
situation does not change too rapidly. (The gradient of the
integral security confidence in the space of confidences of
security measures groups can be estimated in such a case
and its components used as the required coefficients.)

4. VISUALIZING A SECURITY SITUATION

In this section we very briefly present a tool for making
calculations on graded security models. This is a software
package with a visual language for specifying security
situations and problems. The package has been devel-
oped on the basis of the visual software development
environment CoCoViLa [3], and it has been described in
more detail in [4] and [5]. The package includes expert

2 of 7

knowledge for a particular class of security situations.
This expert knowledge is usable only for demonstrating
the method—it has been taken mainly from [9].

Fig. 1 shows a specification of a security planning prob-
lem. The toolbar has buttons for defining components
that will constitute a specification. It includes two buttons
for defining security measures groups: one for groups
with standard values of parameters, and another for
groups with parameters defined as inputs. It includes
also buttons for defining a security class, for selecting
an optimization method and for defining a graphical
output. All these components are also visible on the
scheme in Fig. 1. This scheme is a specification of
a problem for finding a Pareto-optimal solution for a
security class C2I1A1M2 and specific parameters given
for two security measures groups: User training and
Encryption. Each security measures group has a pop-up
window. This window is shown for the Encryption group
in Fig. 1.

We use this package for all calculations on the graded
security model. The package is extended with new
components for solving the legacy security problems
described in the following sections, see Sections 5 and 6.

5. LEGACY SECURITY INFLUENCE

The widely used graded security model is based on
the assumption that former investments into the security
and already existing security situation do not influence
the outcome of the investments planned. The former
investments are sometimes included in the total amount
of investments calculated. These investments may be
included with a factor less than one, but this is still a
rough approximation. We propose here an approach that
more precisely takes into account the already achieved
security.

Let us fix a security measures group and consider only
one group of security measures here. Then we can use a
simplified form of the functions h and e for calculating
costs r and security confidence c—without showing
explicitly the security measures group:

r = h(l) ,

c = e(l) .

We use also a function for calculating security level l for
invested costs, which is an inverse function of h:

l = h−1(r) .

We need data for already existing security:

l′ – existing level of security,

c′ – existing security confidence.

To continue analysis of security investments, we need a
function H that calculates the needed additional invest-
ments r depending on the existing security level l′ and
the required security level l:

r = H(l, l′) .

It may seem that instead of the function H one can use
a function h∗ that calculates the required resources for
increasing security level by ∆l, where ∆l = l − l′:

r = h∗(∆l) .

It is easy to see that in the case when no investments in
the security have been done before, i.e. when l′ = 0, the
function h∗ coincides with the already known function h.
However, in the case of ∆l = 0 and l′ > 0 we have
to consider the degradation of security as well—the
security level will decrease with time. This shows that
the usage of h∗ instead of H would be quite a rough
approximation.

This analysis is valid for all security measures groups.
But in the general model, we have to introduce an
argument g (group number) in each function considered
here. This gives us the functions:

r = H(l, l′, g) ,

r = h∗(∆l, g) .

These functions should be obtained from expert knowl-
edge.

Another approach would be to use security confidence c
instead of security level. These variables are bound by
the function e in the graded security model:

c = e(l) .

The relation between costs and security confidence is
expressed by the formulas:

r = h(e−1(c)) , and

c = e(h−1(r)) .

Knowing the already achieved security confidence, one
can ask to calculate additional investments for achieving
the new security confidence (or keeping the required
confidence level). This requires the knowledge of a new
function E that gives the costs r for achieving required

3 of 7

HelpOptionsSchemePackageViewEditFile

optimization

100%

471, 10

Cost Confidence

0
4
8
12

0
30
60
65

User training

Redundancy

Access control

Antivirus software

Backup

Segmentation

Cost Confidence

0
2
4
7

0
60
80
95

Encryption

Firewall

Intrusion detection

DDP Optimizer

Context:

Resources:
min max

1 70

Banking

y

levels

s SecClass:

s

C2I1A1M2

S E BF DP SC1 SC2

Figure 1. Visual specification of a security situation

security confidence c by upgrading the given security
confidence c′:

r = E(c, c′) .

As discussed above, one can sometimes assume that
the costs depend only on the difference ∆c of security
confidences:

∆c = c− c′ ,

and use the function e∗ that calculates the costs:

r = e∗(∆c) .

Again, in the general model we have to introduce an
argument g (group number) in each function considered
here. This gives us the functions for calculating costs in
the general case:

r = E(c, c′, g) ,

r = e∗(∆c, g) .

Concluding the analysis here we can say that, for taking
into account the legacy security measures in calculat-
ing resources required for achieving a given security
confidence, we need one of the functions H , h∗, E
or e∗. It is preferable to use H or E, because these
describe the security situation more precisely. In practice,
these functions are represented in a tabular form as

expert knowledge. One would like to solve an inverse
problem—calculate achievable security confidence for
given resources. This is done by using one of the inverse
functions H−1 or E−1 representable by the same tables
as H and E:

l = H−1(r, l′, g) ,

c = E−1(r, c′, g) .

Let us call the functions H , h∗, E, e∗, H−1 and E−1

legacy functions.

The legacy values of l and r are bound by the functions h
and h−1 as follows:

r′ = h(l′) , and

l′ = h−1(r′) .

Therefore we can use legacy resources r′ instead of l′ as
inputs of the calculations. We use this in an example in
Section 6.

6. OPTIMIZING EVOLVING SECURITY

Security planning can be performed in two different
ways. The traditional way is to decide somehow which

4 of 7

S l

r

0

1

2

3

S*

r*

1, 2, 3, 6, 8, 9

4

5, 7

(a) Optimal resource assignment for r∗

S l

r

0

1

2

3

1

4

r1 r2

(b) Pareto-optimal solutions

Figure 2. Solutions of the optimization problem of
finding the best assignments of resources to different

security measures groups

security levels are required, and to calculate the required
resources, using a function H or E. This is an application
of the well-known graded security method [6]. The
security levels are usually prescribed by some standards
in this case.

Another way is to solve the inverse problem: for given
resources find the best assignment of the resources to
different security measures groups. This is an optimiza-
tion problem that can be solved by means of discrete
dynamic programming as shown in [5]. The quality of
a solution is evaluated by the integral security metric S
introduced in [4] and described in Section 3. Fig. 2a
shows a solution of the inverse problem: the value of S
for given resources r, and also selected security levels
of security measures groups. The levels for the groups
numbered from 1 to 9 are shown on the right side scale.

Besides the value of S, one may have to consider
constraints put on the solution by the security class K, if
it is given—all security goals prescribed by K must be

satisfied. If priorities are assigned to the security goals,
then it is possible to solve a more general problem: find
the best possible security solution that satisfies the goal
with the highest priority and, if possible, then satisfies
also a goal with the next higher priority etc.

Our experiments have shown that the dynamic pro-
gramming method is fast enough for solving even a
more general problem: finding a Pareto-optimal set of
security solutions for a given range of resources. Simply
speaking, this means that the problem above must be
solved for many values of resource r and the result must
be plotted as a curve as shown in Fig. 2b.

Fig. 3 shows such a curve for resources from 1 to 70
units. It is obtained by using the expert system described
in [4] for the problem specified in Fig. 1. We can
see that the security class is C2I1A1M2 and that two
security measures groups (User training and Encryption)
get specific input values for the functions h and e. Other
measures groups use the values from the built-in expert
system.

In Fig. 3, the lower graphs indicate (on the scale shown
on the right) the optimal levels of two measures groups
(Redundancy and User training) corresponding to the
given amount of resources. These graphs are not mono-
tonic as can be seen in this example at the resource values
35 and 36. For a more detailed explanation see [5].

Let us consider now the inverse problem considering also
the legacy security: given a security class K, resources r,
existing security levels l′ and a legacy function H−1,
find the security solution with the highest value of mean
weighted security confidence S that satisfies all security
goals of K. This problem may or may not have a
solution. Even if it does not have a solution, the problem
without the constraint K (without the requirements on
security goals) will have a solution. It is interesting to
notice that, in the case when the problem has a solution,
this solution may be different from the solution obtained
without the constraint K.

Fig. 4 shows a solution for both cases: the red curve
presents a solution for the problem with a constraint K =
C3I1A1M2, and the green curve presents a solution for
the unrestricted problem. We can see the cases where
prescribing K gives worse values of S.

For solving the legacy problems we have extended the
expert system by adding the legacy information to the

5 of 7

Confidence Redundancy User training

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Costs

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85
C

o
n
fi

d
en

ce

0

1

2

3

4

5

6

L
ev

el in
d

ex

Figure 3. Solution of the problem

Constrained Unrestricted Redundancy User training

0 5 10 15 20 25 30 35 40 45 50

Costs

0

10

20

30

40

50

60

70

80

C
o

n
fi

d
en

ce

0

1

2

3

4

5

6

L
ev

el in
d

ex

Figure 4. Solutions with and without a constraint

6 of 7

Table 1. Values of legacy resource and decay

g r′ q

User training 4 0.3
Antivirus software 4 0.6
Segmentation 4 0.2
Redundancy 0 0.3
Backup 4 1.0
Firewall 4 0.5
Access control 4 0.2
Intrusion detection 4 0.5
Encryption 4 0.2

components representing security measures groups, and
adding the calculation of the legacy function

c = e(h−1(r0)) ,

where r0 = r + (1 − q)r′ is an effective resource that
takes into account both current resource r and decayed
value of the legacy resource r′; q is a decay of a resource,
q < 1. We have used the values of legacy resource r′ and
decay q given in Table 1.

Knowing the legacy function, we can plan optimal se-
curity measures for a number of time intervals (years)
in advance. The values l′ of existing security levels
must be given as initial data. The values of l′ for
each following year must be taken equal to the values
of l of the previous year. The Pareto-optimal set is a
surface in a multidimensional space with coordinates
r, y, l1, . . . , ln andS, where y is the year number in this
case.

Even if we consider Pareto-optimal solutions only for one
year, visualization of the Pareto-optimal set is possible
only in a special case when all security levels of all
security measures groups are equal. In this case, the
Pareto-optimal set is a surface in the three-dimensional
space r, S, l, where l is the confidence level of all
measures groups, and this can be visualized.

7. CONCLUDING REMARKS

The software developed in the present work for analyzing
security situations is easy to use for security experts.
The developed experimental tool has a simple graphical
interface and a visualization component that supports its
usage by security managers of all levels. The experi-
ments have also shown that stability of optimal solutions
found by the presented method is good. However, the
practical applicability of the software will depend on
the availability of good expert data representing the

legacy function as well as functional dependencies of
the graded security model. The developed software has
been designed as an expert system. It supports easy
inclusion of new expert knowledge, but expert knowledge
acquisition is always a complicated task. For specific
military communications applications the data must be
collected from a log analysis of characteristic attacks and
security reports, as well as by the traditional knowledge
acquisition means.

Finally, the contemporary security landscape is dynamic
and rapidly changing. This is the main reason for devel-
oping agile methods of security situation management.
The presented method of managing evolving security
situations is one of these.

ACKNOWLEDGMENTS

We thank the Cooperative Cyber Defence Centre of
Excellence, the Estonian Defence Forces Training and
Development Centre of Communication and Information
Systems, and the Estonian Ministry of Defence for the
support of this work.

REFERENCES

[1] Estonian Informatics Centre. Estonian Information
Systems Three-Level Security Baseline System – ISKE
version 4.01. http://www.ria.ee/27220 (10 Apr 2009).

[2] L. A. Gordon, M. P. Loeb. Managing Cybersecurity Re-
sources: A Cost-Benefit Analysis. McGraw-Hill, 2006.

[3] P. Grigorenko, A. Saabas, E. Tyugu. Visual tool
for generative programming. ACM SIGSOFT Software
Engineering Notes, 2005, 30, 5, 249–252.

[4] J. Kivimaa, A. Ojamaa, E. Tyugu. Graded security expert
system. CRITIS 2008: Third International Workshop
on Critical Information Infrastructure Security, Rome,
October 13–15 2008. Springer, LNCS, 2009.

[5] A. Ojamaa, E. Tyugu, J. Kivimaa. Pareto-optimal situation
analysis for selection of security measures. MILCOM
08: Assuring Mission Success: Unclassified Proceedings,
San Diego, November 17–19 2008, 7p.

[6] C. E. Pasterczyk. A graded approach to ISO 9000 im-
plementation for records managers. Association of
Records Managers and Administrators international annual
conference, Toronto (Canada), 25–29 September 1994.

[7] The Common Criteria.
http://www.commoncriteriaportal.org/ (10 Apr 2009)

[8] U. S. Department of Defense. National Industrial
Security Program Operating Manual (NISPOM). 2006.

[9] U. S. Department of Defense, Defense Information Sys-
tems Agency. CyberProtect, version 1.1. July 1999. http:
//iase.disa.mil/eta/product description.pdf (10 Apr 2009)

7 of 7

Publication XI

Ojamaa, Andres; Tyugu, Enn (2016).

Enterprise Security Analysis and Training Experience

Critical Information Infrastructures Security: 9th International Conference, CRITIS
2014, Limassol, Cyprus, October 13–15, 2014, Revised Selected Papers. Ed.
Panayiotou, C.G.; Ellinas, G.; Kyriakides, E.; Polycarpou, M.M. Cham: Springer,
200–208. (Lecture Notes in Computer Science; 8985).

183

Enterprise Security Analysis
and Training Experience

Andres Ojamaa(B) and Enn Tyugu

Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

{andres.ojamaa,tyugu}@cs.ioc.ee

Abstract. A holistic approach to security can be introduced by using a
model that binds security measures with costs and security metrics. We
describe exercises based on the graded security model, and supported by
an expert system that are used for training both general managers and
security experts. Trainees have to solve a number of problems under con-
ditions that correspond to a realistic critical information infrastructure
security planning situation, with the level of details depending on the
expertise of trainees.

Keywords: Security training · Graded security · Security model

1 Introduction

We present an approach to teaching managers, where first a small number of
basic concepts is explicitly introduced by defining a security model that includes
cost considerations as an essential part of the model. These concepts are then
used, based on the presented model, in a process that is close to real-life security
design situations for making decisions and aided by an expert system. This
process includes an abstract analysis section, followed by hands-on training that
is usually the favorite usage of the model for the trainees. Performing the analysis
of a security model that covers all the essential aspects of cybersecurity in a
generalized way helps trainees to get a general picture of the enterprise security.

An expert system for teaching cybersecurity for trainees with different exper-
tise levels was developed, and this expert system was based on a graded security
model [4]. It has been used since 2010 in the courses Information and Cyber
Security Assurance in Organizations and Foundations and Management of Cyber
Security of the international masters program in cybersecurity at Tallinn Uni-
versity of Technology [9].

This paper summarises the basics of rational security design and the graded
security model in Sects. 2 and 3, respectively. The security expert system used
in the training process is introduced in Sect. 4, followed by the description of the
training process in Sect. 5. References to related work are given in Sect. 6.

c© Springer International Publishing Switzerland 2016
C.G. Panayiotou et al. (Eds.): CRITIS 2014, LNCS 8985, pp. 200–208, 2016.
DOI: 10.1007/978-3-319-31664-2 21

Enterprise Security Analysis and Training Experience 201

2 Rational Security Design

Security planning for an enterprise is aimed at finding a distribution of resources
for security measures to achieve the best security solution under given conditions.
This is called rational security design. Inputs for the rational security design are:
total amount of available money (maximal allowed costs), characterization of the
secured system, security requirements.

Finding a security solution assumes using a security metric that offers a pos-
sibility of comparing different solutions, and the possibility to express the quality
of the solution by a numeric value. We use an integrated security confidence for
this purpose that takes into account effects of taken security measures (see the
following section). Although security planning will be performed as an optimiza-
tion process, one can use mainly empirical data and expert knowledge. Therefore
we call the result a rational and not necessarily an optimal solution.

Security planning may require solving several partial problems: evaluat-
ing costs required for implementing a selected solution, estimating the relative
importance of any taken security solution, detecting similar security measures
and collecting them in security measures groups, etc. The present set of exercises
is intended to offer hands-on experience for solving these partial problems, as
well as for constructing the complete solution.

3 Graded Security Policy and Model

The graded security policy uses a small number of security levels for character-
izing each security aspect. As another approximation of reality in the model,
we use a small number of security measures groups (about ten), instead of a
large number of security measures (hundreds). These simplifications are useful
in training, because they make the model comprehensible.

The security model describes how security measures are related to security
goals, what are the costs to apply security measures, and what is the confidence
for guaranteeing the respective security level. The concepts used in the graded
security model are the following.

3.1 Security Goals

There are three common security goals (or security aspects) that must be
achieved: Confidentiality (C), Integrity (I), Availability (A).

Confidentiality guarantees that secured information will be accessible only
to actors with the rights for using the information. Integrity means that secured
information remains intact (can not be corrupted). Availability means that infor-
mation can be accessed/used at any time when needed. It is possible to utilize
more security goals—for example, in our expert system, one can use Mission
criticality as an additional goal.

202 A. Ojamaa and E. Tyugu

3.2 Security Class

A security goal can be achieved only to some level, and can practically never
reach 100%. Therefore each security goal has a security level that describes how
strict the measures that are applied for achieving the goal must be. We use four
security levels: no requirements (0), low security level (1), medium security level
(2), high security level (3). Security class is a tuple of security goals with respec-
tive security levels, e.g., C0I3A3 denotes a security class with confidentiality (C)
equal to 0, integrity (I) 3 and availability (A) 3.

3.3 Security Measures Group

A key component of the graded security model is the security measures group
(SMG). It unites security measures with similar effects and is described by the
parameters: security level l, cost of the security measures c, set of security mea-
sures to be taken m and security confidence p. The security level of SMG deter-
mines the values of other parameters of the group.

The four parameters l, c, m, p of a group are bound by the four tabulated
functions: c = f1(l), l = f2(c), m = f3(l), p = f4(l) that are different for each
group. These functions are given by the expert system, and they depend also on
the environment (on a situation) where the security is applied. In our system,
SMG as a component of the security model can be used as a black box, because
the functions binding its parameters are hidden in the expert system.

A number of security measures groups may vary from one version of a model
to another. In the present training environment we have the following groups:
personnel training, firewalls, encryption, antivirus software, segmentation, redun-
dancy, backup, access control, and intrusion detection.

The concepts presented here: security goals, security class, security metrics
and security measures group constitute the basis of the security education for
managers and experts. The security experts, but not the managers, should under-
stand security groups in detail, including functional dependences between their
parameters.

3.4 Security Metrics

When security measures are applied, each security measures group i gets a value
pi of security confidence that is a percent to which the security is guaranteed
by measures of the group (practically always less than 100%). Overall security
(integral security confidence) s is a security metric that describes all security
aspects of the secured system by means of one single value. This value is calcu-
lated as a weighted mean of security confidences of security measures groups:

s =
∑

i

wipi, where
∑

i

wi = 1.

Enterprise Security Analysis and Training Experience 203

The weights wi characterize importance of each group i in the overall security
of system. They depend on a concrete situation and should be assigned by an
expert before the usage of the model. Our expert system has also functionality
for automatically assigning the weights wi depending on the type and properties
of the secured system.

There are other and more precise ways to define integral security metrics. In
particular, the integral security can be calculated analogously to reliability of a
system depending on structure of the system [3].

3.5 Security Model

A security model includes a component for each group, and shows also a security
class and formulas for calculating costs. Figure 1 in the following section shows
a model for 9 security measures groups.

4 Security Expert System

We apply an expert system developed in an earlier work [4] for building and
using graded security models based on empirical data from banking practice.
Two banks operating in Estonia, Swedbank and SEB, have been interested in
this development and have cooperated with us in the development. The expert
system is intended for building security models and solving security design prob-
lems: calculating the best distribution of given resources, checking reachability
of security goals, planning the evolving security for several years, etc. Solving
these problems in a training process will be discussed in the next section.

The expert system has been built on an open source visual programming
platform CoCoViLa that provides advanced visual interface for applications [8].
Figure 1 shows a window of the expert system for specifying security models. A
model is specified by selecting its components from the palette, putting them
in the scheme of the model, and adjusting their parameters. Components have
default values of parameters, but each of them has a popup window that can be
used for adjusting properties of the component. A popup window “Properties”
for the security class component is shown on the right side of the figure. It
includes a string C2I1A1M2 that is the security class value.

We can see nine components representing SMGs. Only two of them: Encryp-
tion and User training are presented in the extended way, so that the relation
between their costs and confidences is visible. Components for security class and
optimizer are also visible in the window. The latter is a control component for
calculations, it includes also calculation of total costs and overall security.

There is a component for visualisation of the results, and it is bound with
three SMGs: Antivirus software, User training and Antivirus software. Their
security levels will be visualised in a results window as it is shown below. Stan-
dard connections between the components of the security model (between each
group and the security class etc.) are established automatically, and are not visi-
ble. The scheme includes also two more components that are needed for adjusting

204 A. Ojamaa and E. Tyugu

Fig. 1. Visual representation of security model is input for the expert system

the weights wi for calculating the overall security: Weights expert and Weights
slider.

The scheme in Fig. 1 describes a graded security model of a bank. It is easy to
specify different security models, e.g., adding new security measures groups. As
we know, the largest model developed so far contains 40 groups [3]. A library of
models can be developed for different training situations that can cover essential
situations.

The expert system provides full automation of calculations on the speci-
fied model. The results created by the visualization component are shown in a
window shown in Fig. 2. This window can be viewed as an graphical dashboard
representing the whole security situation of an enterprise. It shows the following:

– an overall security curve: the Pareto set of pairs (costs, overall security);
– security levels of the SMGs connected to the visualizer component for each

value of costs;
– whether the specified security class can be achieved for given costs.

The main result is the topmost curve in the window. It represents a Pareto set
consisting of best achievable overall security values for different values of costs.
An optimization problem is solved for each point of the curve. This problem is
finding a distribution of costs between the SMGs that gives the best value of the
overall security for given costs.

The window shown in Fig. 2 includes more curves besides the overall security
curve. These curves show the calculated security levels for three SMGs: Antivirus
software, Redundancy and User training. To show security levels for some mea-
sures group, one has to connect the respective measures group with the levels
port of the graph object in the scheme as it is shown in Fig. 1.

Colour of the topmost curve gives additional information for each value of
costs: red—the requirements of the security class are unsatisfied, yellow—the

Enterprise Security Analysis and Training Experience 205

Fig. 2. A results window of the expert system (Color figure online)

requirements of the security class are partially satisfied, and blue—all require-
ments of the security class are satisfied, i.e., all security goals are achieved at
the required levels.

5 Training Process

Trainees are expected to solve a number of security design problems in the con-
ditions that are close to a realistic security planning situation. A suggested order
of training steps for these problems is shown in Fig. 3. The first two are introduc-
tory steps. The third step—analysis of SMGs is an activity for experts. So are
the following two steps of adjustment of parameters. Default parameters given in
the expert system can be used in training of general managers. Calculating the
best distribution of resources is the main training activity. It is possible to con-
centrate on this activity immediately after introductory steps. Calculating the
evolving security continues the previous step and considers security as a process
continuing for several years. Checking the reachability of security goals is an
independent problem, but it can be solved by the same means as calculating the
best distribution of resources.

If a scheme from the scheme library is used, then the first five training steps
can be omitted, and one can immediately start solving the last three problems
that are training steps for managers as well as for security experts. Below are
described some steps of using the expert system.

The model-based security analysis is suitable for security training of people
with different level of experience. It relies on analytic capabilities of a person,
and it introduces the basics of security in the form of a security model. The
hands-on part of the training is performed using an expert system. The aim of
the presented security model and of set of exercises is to help the trainee to

206 A. Ojamaa and E. Tyugu

Fig. 3. Order of training steps

build his/her mental model of cybersecurity by combining (1) analytical app-
roach where basic concepts and an explicit security mode are introduced, and
(2) hands-on experience by solving security design problems with the help of an
expert system.

6 Related Work

Graded security policy is the basis for security protection programs of nuclear
security and anti-terrorist security of US Department of Energy [7,12], as well
as for several European information assurance standards. In particular, German
BSI-Standard 100-2 [2] and Estonian ISKE standard [1] are both based on the
graded security policy. We adopt this policy in our expert system, and use the
respective security model. Evolving security analysis that we use here has been
investigated by Kivimaa et al. [5].

A popular way to teach security concepts is to give some hands-on experi-
ence by targeted video games like CyberSiege [10] from the Naval Postgraduate
School, or using games from the DISA online training catalogue, e.g., the well-
known game CyberProtect [11]. These tools are intended for teaching security
concepts for people with varied backgrounds and different levels of expertise.
They introduce essential security measures by means of exercises in a more or
less realistic situation, but give trainees only implicitly a partial security model.
There are also more advanced and complex cyber security learning systems, such
as CyberNEXS [6] from Leidos (SAIC). The latter is aimed at development of
skills on expert level. CyberNEXS is probably the most advanced of the cyber-
security training systems. It provides games for four scenarios: network defense,
forensics, penetration testing (attacks) and capture the flag. We presented here a
complementary approach to war games for teaching cybersecurity that is based
on the analysis and usage of a security model.

Enterprise Security Analysis and Training Experience 207

7 Conclusion

We have proposed a model-based technique and software of security training.
It relies on analytic capabilities of a person, and it introduces the basics of
security in the form of a security model. The hands-on part of the training is
performed using an expert system. The aim of the presented security model
and of set of exercises is to help the trainee to build his/her mental model of
cybersecurity by combining (1) analytical approach where basic concepts and an
explicit security mode are introduced, and (2) hands-on experience by solving
security design problems with the help of the expert system. Our four years
teaching experience on masters level at Tallinn University of Technology [9] has
validated the methodology.

Acknowledgements. The authors appreciate the support of the Estonian Academy
of Sciences, the target funding project SF0140007s12 of Estonian Ministry of Edu-
cation and Research, the European Regional Development Fund (ERDF) through
Estonian Centre of Excellence in Computer Science (EXCS) project and the project
No. 3.2.1201.13-0026 Model-based Java software development technology.

References

1. Estonian Information System Authority: Three-level IT baseline security system
ISKE. https://www.ria.ee/iske-en

2. German Federal Office for Information Security (BSI): BSI-Standard 100-2
IT Grundschutz Methodology. https://www.bsi.bund.de/SharedDocs/Downloads/
EN/BSI/Publications/BSIStandards/standard 100-2 e pdf.pdf

3. Kivimaa, J., Kirt, T.: Evolutionary algorithms for optimal selection of security
measures. In: Ottis, R. (ed.) Proceedigs of the 10th European Conferences on
Information Warfare and Security, pp. 172–184. Academic Publishers, Reading,
UK (2011)

4. Kivimaa, J., Ojamaa, A., Tyugu, E.: Graded security expert system. In: Setola,
R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 279–286. Springer,
Heidelberg (2009)

5. Kivimaa, J., Ojamaa, A., Tyugu, E.: Managing evolving security situations.
In: Unclassified Proceedings of the MILCOM 2009, 18–21 October 2009. IEEE,
Piscataway (2009)

6. Leidos: CyberNEXS Cyber Security Training. https://www.leidos.com/
cybersecurity/solutions/CyberNEXS

7. Lobsenz, G.: DOE Adopts New “Graded” Terrorist Protection Policy (2008).
http://pogoarchives.org/m/nss/energydaily-20080826.pdf

8. Modeling and Simulation Group at IoC: CoCoViLa model-based software develop-
ment platform. http://www.cs.ioc.ee/cocovila/

9. Tallinn University of Technology: Cyber security master’s programme. http://
www.ttu.ee/studying/masters/masters programmes/cyber-security/

10. Thompson, M., Irvine, C.: Active learning with the CyberCIEGE video game. In:
Proceedings of the 4th Conference on Cyber Security Experimentation and Test,
CSET 2011. USENIX Association, Berkeley (2011)

208 A. Ojamaa and E. Tyugu

11. U.S. DoD, Defense Information Systems Agency: CyberProtect, version 1.1. http://
iase.disa.mil/eta/

12. U.S. DoE, Office of Information Resources: DOE O 470.3B, Graded Secu-
rity Protection (GSP) Policy. https://www.directives.doe.gov/directives/0470.
3-BOrder-b/view

Curriculum Vitae

1. Personal data
Name: Andres Ojamaa

Date and place of birth: December 02, 1982, Tallinn, Estonia
Citizenship: Estonian

2. Contact information
Address: Akadeemia tee 21, 12618, Tallinn, Estonia

Phone: +372 620 4223
E-mail: andres.ojamaa@cs.ioc.ee

3. Education

Educational institution Graduation year Education (field of study/degree)

Tallinn University of
Technology 2007 Informatics/Master of Sci-

ence in Engineering

Tallinn University of
Technology 2005 Network software and intel-

ligent systems/diploma

4. Language competence/skills (fluent, average, basic skills)

Language Level

Estonian native

English fluent

5. Professional employment

Period Organisation Position

2009–... Institute of Cybernetics at Tallinn
University of Technology researcher

2006–2008 Institute of Cybernetics at Tallinn
University of Technology engineer

6. Scientific work

• Haav, Hele-Mai; Ojamaa, Andres (2016). Semi-automated integration of
domain ontologies to DSL meta-models. International Journal of Intelli-
gent Information and Database Systems. [to appear]

194

• Ojamaa, Andres; Tyugu, Enn (2016). Enterprise security analysis and
training experience. Critical Information Infrastructures Security : 9th In-
ternational Conference, CRITIS 2014, Limassol, Cyprus, October 13-15,
2014, Revised Selected Papers. Ed. Panayiotou, C.G.; Ellinas, G.; Kyri-
akides, E.; Polycarpou, M.M. Cham: Springer, 200−208. (Lecture Notes
in Computer Science; 8985).

• Ojamaa, Andres; Haav, Hele-Mai; Penjam, Jaan (2015). Semi-automated
generation of DSL meta models from formal domain ontologies. Model
and Data Engineering : 5th International Conference, MEDI 2015, Rhodes,
Greece, September 26-28, 2015, Proceedings. Ed. Bellatreche, Ladjel;
Manolopoulos, Yannis. Springer, 3−15. (Lecture Notes in Computer Sci-
ence; 9344).

• Haav, Hele-Mai; Ojamaa, Andres; Grigorenko, Pavel; Kotkas, Vahur
(2015). Ontology-based integration of software artefacts for DSL devel-
opment. On the Move to Meaningful Internet Systems: OTM 2015 Work-
shops : Confederated International Workshops: OTM Academy, OTM In-
dustry Case Studies Program, EI2N, FBM, INBAST, ISDE, META4eS,
and MSC 2015, Rhodes, Greece, October 26-30, 2015, Proceedings. Ed.
Ciuciu, I. et al. Cham: Springer, 309−318. (Lecture Notes in Computer
Science; 9416).

• Ojamaa, Andres; Lind, Uku-Rasmus (2014). Securing Customer Email
Communication in E-Commerce. Proceedings 2013 Sixth International
Conference on Developments in eSystems Engineering, DeSE 2013 : 16-
18 December 2013, Abu Dhabi, UAE. Ed. Hussain, A.; Al Jumeily, D.;
Radi, N.; Tawfik, H.; Radvan, R. Los Alamitos, Calif.: IEEE, 291−296.

• Ojamaa, Andres; Kotkas, Vahur; Spichakova, Margarita; Penjam, Jaan
(2013). Developing a lean mass customization based manufacturing. 2013
IEEE 16th International Conference on Computational Science and Engi-
neering (CSE 2013), Sydney, Australia, December 3-5, 2013. Piscataway,
NJ: IEEE, 28−33.

• Ojamaa, Andres; Düüna, Karl (2012). Assessing the security of Node.js
platform. 2012 International Conference for Internet Technology and Se-
cured Transactions (ICITST-2012) : 10-12 Dec.2012, [London, UK]. Pis-
cataway, NJ: IEEE, 348−355.
• Ojamaa, Andres; Düüna, Karl (2012). Security Assessment of Node.js

Platform. Information Systems Security : 8th International Conference,
ICISS 2012, Guwahati, India, December 15-19, 2012, Proceedings. Ed.
Venkatakrishnan, Venkat; Goswami, Diganta. 35−43. (Lecture Notes in
Computer Science; 7671).
• Kotkas, Vahur; Ojamaa, Andres; Grigorenko, Pavel; Maigre, Riina; Harf,

Mait; Tyugu, Enn (2011). CoCoViLa as a multifunctional simulation plat-
form. Proceedings of the 4th International ICST Conference on Simulation

195

Tools and Techniques : 21-25 March 2011, Barcelona, Spain, SIMUTools
2011. Brussels: ICST, 195−205.

• Klein, Gabriel; Ojamaa, Andres; Grigorenko, Pavel; Jahnke, Marko;
Tyugu, Enn (2010). Enhancing response selection in impact estimation ap-
proaches. Concepts and Implementations for Innovative Military Commu-
nications and Information Technologies. Ed. Amanowicz, Marek. War-
saw: Military University of Technology, 277−286.

• Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009). Managing evolving
security situations. MILCOM 2009 : Unclassified Proceedings, October
18-21, 2009, Boston, MA. Piscataway, NJ: IEEE, 1−7.

• Kivimaa, Jüri; Ojamaa, Andres; Tyugu, Enn (2009). Graded security ex-
pert system. Critical Information Infrastructures Security : Third Inter-
national Workshop, CRITIS 2008, Rome, Italy, October 13-15, 2008, Re-
vised Papers. Ed. Setola, Roberto; Geretshuber, Stefan. Berlin: Springer,
279−286. (Lecture Notes in Computer Science; 5508).

• Ojamaa, Andres (2009). Hybrid simulation of large networks. Proceed-
ings of the 2009 International Conference on Modeling, Simulation & Vi-
sualization Methods, MSV 2009. Ed. Arabnia, Hamid R.; Deligiannidis,
Leonidas. Las Vegas: CSREA Press, 219−225.

• Ojamaa, Andres; Tyugu, Enn; Kivimaa, Jyri (2008). Pareto-optimal situ-
ation analysis for selection of security measures. MILCOM 08 : Assuring
Mission Success : Unclassified Proceedings, November 17-19 San Diego.
3224−3230.

• Kaur, Kaiko; Ojamaa, Andres (2008). Service oriented database interface
for exchanging multi-format tabular data. Databases and Information Sys-
tems : Proceedings of the Eighth International Baltic Conference, Baltic
DB&IS 2008, Tallinn, June 2-5, 2008. Ed. Haav, Hele-Mai; Kalja, Ahto.
Tallinn: Tallinn University of Technology Press, 289−300.

• Kivimaa, Jüri; Ojamaa, Andres; Tyugu, Enn (2008). Graded security
expert system. CRITIS 2008 : Third International Workshop on Criti-
cal Information Infrastructure Security, Villa Mondragone, Monte Porzio
Catone, Rome, October, 13-15, 2008, (Pre-Proceedings). AIIC, ENEA,
333−339.

• Ojamaa, Andres; Tyugu, Enn (2007). Rich components of extendable sim-
ulation platform. Proceedings of the 2007 International Conference on
Modeling, Simulation & Visualization Methods, MSV 2007 : June 25-
28 2007, Las Vegas Nevada, USA. Ed. Arabnia,Hamid R. Las Vegas:
CSREA Press, 121−127.

• Eppendahl, A.; Ojamaa, A. (2006). Seeing empty space in an unknown
environment without silhouettes. Proceedings of the 3rd International

196

Symposium on Autonomous Minirobots for Research and Edutainment
(AMiRE 2005). Ed. Murase,K.; Sekiyama,K.; Kubota,N.; Naniwa,T.;
Sitte,J. Berlin: Springer, 27−32.

7. Defended theses

• Modular Simulation Platform. Institute of Cybernetics at Tallinn Univer-
sity of Technology, 2007. Supervisor Enn Tõugu.
• Seeing empty space in real time with a mobile camera using a light field

model. Tallinn University of Technology, Department of Computer Sci-
ence, 2005. Supervisors Adam Eppendahl, Juhan Ernits.

8. Main areas of scientific work/Current research topics

Cyber security, software engineering, algorithms, computer simulations, com-
puter vision.

197

Elulookirjeldus

1. Isikuandmed
Ees- ja perekonnanimi: Andres Ojamaa

Sünniaeg ja -koht: 2. detsember 1982, Tallinn, Eesti
Kodakondsus: Eesti

2. Kontaktandmed
Aadress: Akadeemia tee 21, 12618 Tallinn
Telefon: 620 4223

E-posti aadress: andres.ojamaa@cs.ioc.ee

3. Hariduskäik

Õppeasutus Lõpetamise aeg Haridus (eriala/kraad)

Tallinna Tehnikaülikool 2007 informaatika/tehnikateaduste
magister

Tallinna Tehnikaülikool 2005 võrgutarkvara ja intelligent-
sed süsteemid/diplom

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase

eesti keel emakeel

inglise keel kõrgtase

5. Teenistuskäik

Töötamise aeg Tööandja nimetus Ametikoht

2009–... Tallinna Tehnikaülikooli Küberneetika
instituut teadur

2006–2008 Tallinna Tehnikaülikooli Küberneetika
instituut insener

6. Teadustegevus

• Haav, Hele-Mai; Ojamaa, Andres (2016). Semi-automated integration of
domain ontologies to DSL meta-models. International Journal of Intelli-
gent Information and Database Systems. [to appear]

198

• Ojamaa, Andres; Tyugu, Enn (2016). Enterprise security analysis and
training experience. Critical Information Infrastructures Security : 9th In-
ternational Conference, CRITIS 2014, Limassol, Cyprus, October 13-15,
2014, Revised Selected Papers. Ed. Panayiotou, C.G.; Ellinas, G.; Kyri-
akides, E.; Polycarpou, M.M. Cham: Springer, 200−208. (Lecture Notes
in Computer Science; 8985).

• Ojamaa, Andres; Haav, Hele-Mai; Penjam, Jaan (2015). Semi-automated
generation of DSL meta models from formal domain ontologies. Model
and Data Engineering : 5th International Conference, MEDI 2015, Rhodes,
Greece, September 26-28, 2015, Proceedings. Ed. Bellatreche, Ladjel;
Manolopoulos, Yannis. Springer, 3−15. (Lecture Notes in Computer Sci-
ence; 9344).

• Haav, Hele-Mai; Ojamaa, Andres; Grigorenko, Pavel; Kotkas, Vahur
(2015). Ontology-based integration of software artefacts for DSL devel-
opment. On the Move to Meaningful Internet Systems: OTM 2015 Work-
shops : Confederated International Workshops: OTM Academy, OTM In-
dustry Case Studies Program, EI2N, FBM, INBAST, ISDE, META4eS,
and MSC 2015, Rhodes, Greece, October 26-30, 2015, Proceedings. Ed.
Ciuciu, I. et al. Cham: Springer, 309−318. (Lecture Notes in Computer
Science; 9416).

• Ojamaa, Andres; Lind, Uku-Rasmus (2014). Securing Customer Email
Communication in E-Commerce. Proceedings 2013 Sixth International
Conference on Developments in eSystems Engineering, DeSE 2013 : 16-
18 December 2013, Abu Dhabi, UAE. Ed. Hussain, A.; Al Jumeily, D.;
Radi, N.; Tawfik, H.; Radvan, R. Los Alamitos, Calif.: IEEE, 291−296.

• Ojamaa, Andres; Kotkas, Vahur; Spichakova, Margarita; Penjam, Jaan
(2013). Developing a lean mass customization based manufacturing. 2013
IEEE 16th International Conference on Computational Science and Engi-
neering (CSE 2013), Sydney, Australia, December 3-5, 2013. Piscataway,
NJ: IEEE, 28−33.

• Ojamaa, Andres; Düüna, Karl (2012). Assessing the security of Node.js
platform. 2012 International Conference for Internet Technology and Se-
cured Transactions (ICITST-2012) : 10-12 Dec.2012, [London, UK]. Pis-
cataway, NJ: IEEE, 348−355.
• Ojamaa, Andres; Düüna, Karl (2012). Security Assessment of Node.js

Platform. Information Systems Security : 8th International Conference,
ICISS 2012, Guwahati, India, December 15-19, 2012, Proceedings. Ed.
Venkatakrishnan, Venkat; Goswami, Diganta. 35−43. (Lecture Notes in
Computer Science; 7671).
• Kotkas, Vahur; Ojamaa, Andres; Grigorenko, Pavel; Maigre, Riina; Harf,

Mait; Tyugu, Enn (2011). CoCoViLa as a multifunctional simulation plat-
form. Proceedings of the 4th International ICST Conference on Simulation

199

Tools and Techniques : 21-25 March 2011, Barcelona, Spain, SIMUTools
2011. Brussels: ICST, 195−205.

• Klein, Gabriel; Ojamaa, Andres; Grigorenko, Pavel; Jahnke, Marko;
Tyugu, Enn (2010). Enhancing response selection in impact estimation ap-
proaches. Concepts and Implementations for Innovative Military Commu-
nications and Information Technologies. Ed. Amanowicz, Marek. War-
saw: Military University of Technology, 277−286.

• Kivimaa, Jyri; Ojamaa, Andres; Tyugu, Enn (2009). Managing evolving
security situations. MILCOM 2009 : Unclassified Proceedings, October
18-21, 2009, Boston, MA. Piscataway, NJ: IEEE, 1−7.

• Kivimaa, Jüri; Ojamaa, Andres; Tyugu, Enn (2009). Graded security ex-
pert system. Critical Information Infrastructures Security : Third Inter-
national Workshop, CRITIS 2008, Rome, Italy, October 13-15, 2008, Re-
vised Papers. Ed. Setola, Roberto; Geretshuber, Stefan. Berlin: Springer,
279−286. (Lecture Notes in Computer Science; 5508).

• Ojamaa, Andres (2009). Hybrid simulation of large networks. Proceed-
ings of the 2009 International Conference on Modeling, Simulation & Vi-
sualization Methods, MSV 2009. Ed. Arabnia, Hamid R.; Deligiannidis,
Leonidas. Las Vegas: CSREA Press, 219−225.

• Ojamaa, Andres; Tyugu, Enn; Kivimaa, Jyri (2008). Pareto-optimal situ-
ation analysis for selection of security measures. MILCOM 08 : Assuring
Mission Success : Unclassified Proceedings, November 17-19 San Diego.
3224−3230.

• Kaur, Kaiko; Ojamaa, Andres (2008). Service oriented database interface
for exchanging multi-format tabular data. Databases and Information Sys-
tems : Proceedings of the Eighth International Baltic Conference, Baltic
DB&IS 2008, Tallinn, June 2-5, 2008. Ed. Haav, Hele-Mai; Kalja, Ahto.
Tallinn: Tallinn University of Technology Press, 289−300.

• Kivimaa, Jüri; Ojamaa, Andres; Tyugu, Enn (2008). Graded security
expert system. CRITIS 2008 : Third International Workshop on Criti-
cal Information Infrastructure Security, Villa Mondragone, Monte Porzio
Catone, Rome, October, 13-15, 2008, (Pre-Proceedings). AIIC, ENEA,
333−339.

• Ojamaa, Andres; Tyugu, Enn (2007). Rich components of extendable sim-
ulation platform. Proceedings of the 2007 International Conference on
Modeling, Simulation & Visualization Methods, MSV 2007 : June 25-
28 2007, Las Vegas Nevada, USA. Ed. Arabnia,Hamid R. Las Vegas:
CSREA Press, 121−127.

• Eppendahl, A.; Ojamaa, A. (2006). Seeing empty space in an unknown
environment without silhouettes. Proceedings of the 3rd International

200

Symposium on Autonomous Minirobots for Research and Edutainment
(AMiRE 2005). Ed. Murase,K.; Sekiyama,K.; Kubota,N.; Naniwa,T.;
Sitte,J. Berlin: Springer, 27−32.

7. Kaitstud lõputööd

• Modulaarne simuleerimisplatvorm, Tallinna Tehnikaülikool, Küberneetika
Instituut, 2007, juhendaja Enn Tõugu.

• Valgusväljamudeli abil reaalajas tühja ruumi nägemine kasutades liikuvat
kaamerat. Tallinna Tehnikaülikool, Arvutiteaduse Instituut, 2005, juhen-
dajad Adam Eppendahl, Juhan Ernits.

8. Teadustöö põhisuunad

Küberturve, tarkvaratehnika, algoritmid, arvutisimulatsioonid, masinnägemine.

201

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

202

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

203

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

204

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

205

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

206

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-
Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of
Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astatpov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

207

	List of Figures
	List of Publications
	Introduction
	Software Engineering
	Modeling and Simulation
	Cyber Security
	Motivation and Objectives
	Contributions
	Organization of the Dissertation

	Software Platform for Simulation
	Introduction
	Design Principles
	Specification Language
	User Interface
	Class Editor
	Scheme Editor
	Decision Table Editor

	Planner
	Toolbox
	Applications
	Simulation of Hydraulic Systems
	Simulation of Automated Cyber Attack Response

	Discussion and Related Work
	Conclusion

	OWL Ontologies in DSL Development Process
	Using OWL Ontologies in DSL Design
	Architecture and Prototypical Implementation
	Evaluation: IT Security Risk Analysis Domain
	The DSL Meta-Model Ontology
	Example Application
	Advantages and Limitations

	Conclusion

	Graded Security Expert System
	Introduction
	Rational Security Design
	Graded Security Model
	Security Metrics
	Evolving Security Situations

	Expert System
	Optimization
	Example
	Training Process
	Related Work
	Conclusion

	Conclusions and Discussion
	Main Results
	Discussion
	Future Work

	References
	Acknowledgments
	Abstract
	Kokkuvõte
	Listings and Figures
	SPARQL query for finding visual classes
	Listing of toolbox ontology in OWL functional syntax
	Visualization of attack tree simulation DSL meta-model ontology

	Publications
	CoCoViLa as a Multifunctional Simulation Platform
	Enhancing Response Selection in Impact Estimation Approaches
	Hybrid Simulation of Large Networks
	Rich Components of Extendable Simulation Platform
	Semi-Automated Generation of DSL Meta Models from Formal Domain Ontologies
	Ontology-Based Integration of Software Artefacts for DSL Development
	Semi-Automated Integration of Domain Ontologies to DSL Meta-Models
	Graded Security Expert System
	Pareto-Optimal Situation Analysis for Selection of Security Measures
	Managing Evolving Security Situations
	Enterprise Security Analysis and Training Experience

	Curriculum Vitae
	Elulookirjeldus

