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INTRODUCTION 

The main component for success for manufacturing enterprises is efficiency in 
work flow that creates the bases for high productivity. Machinery’s high-level 
power and speed capabilities are only some indicators of workstation 
productivity. Another and even more important indicator is human activity and 
knowledge in arranging, planning and running a workstation. The key words of 
modern manufacturing system are small batches, flexibility, shortened 
production cycles, reduced work-in-progress, make-to-order, and almost 
instantaneous delivery [Viswanadham et al., 1997]. Fast and informative 
feedback is needed from shop floor to fulfil modern manufacturing system 
requirements. The need for a technology-based real-time wireless sensor 
network (WSN) monitoring system, employed by embedded computers, is 
getting more critical than ever before. This is the element that enables every 
interested party in a manufacturing enterprise to get vital information to make 
knowledge-based decisions according to real-time situations, which are 
cognitively hard to comprehend. Furthermore, monitoring increases 
sustainability by reducing waste. It is vitally important to make the monitoring 
system affordable also for small and medium enterprises (SMEs) that are main 
innovators and job creators. On the other hand, WSN without knowledge-based 
management can be disturbing and even increase idle time. Therefore, explicit 
models and techniques for comprehensive monitoring network are crucial to 
obtain expected utility. 

Changes in manufacturing methods, energy sources, machine tools, cutting 
tools, decision making processes, management tools, product development 
methods, products and customer position are just some and most visible 
changes over the time. Globalising competition between manufacturers, new 
technology sectors, advanced materials and increasing workforce cost have been 
main drivers behind these changes. In the last decade, developed countries have 
lost a lot of production work to developing countries with emerging economies, 
such as China, India, and Bangladesh. Manufacturing in developed countries 
has moved from mass production to mass customisation. Wide product ranges 
with frequent machine tool adjustments have historically been more workforce 
capacious. However, these days there is an opposite tendency to automate 
feedback and communication in the management of small batches and as a 
result to derive more profit. This is achieved by bringing more intelligent 
solutions to the manufacturing environment to promote the manufacturing of 
small batches with less cost.  

It is said that information and communication technology (ICT) is the 
foundation of innovation in all other economic sectors and ICT additionally 
functions as a growth accelerator for all key branches [Wahlster, 2007]. In the 
last decade, ICT development has been so fast that applications in production 
environment have not get the full integration with state of the art technology. It 
means that we basically have the technology but applications have not kept up 
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with latest technological developments. It shows high potential of real-time 
communication and monitoring applications in the shop floor. 

According to European Commission’s statistics, industrial production gives 
16% of Europe’s gross domestic product (GDP) and it continues being the key 
driver for innovation and job creation. In the EU, 31 million persons were 
working in the manufacturing sector in 2009. It is known that every position in 
the manufacturing sector creates a related position in the service sector. 
[European Commission, 2013] 

Main objectives and activities of research 

The main objective of research is to study and develop monitoring of machining 
processes, focussing on SMEs. The specific aims are to develop methodology to 
analyse machine tools status in real time, elaborate a demonstrator toolkit for 
testing the methodology, and find novel tools for automatic real-time 
monitoring in machining. 

The main activities of research are the development of planning and 
structuring of monitoring system; digital object memory (DOMe) integration 
into the automated quality control; suitable measuring and analysis methods 
evaluation and comparison; development, design and construction of a status 
monitoring and pause reasoning demonstration toolkit. 

Scope and limitations of research 

The main objects of research are machining processes monitoring applications 
in industrial SMEs. Main attention is on monitoring modules, such as machine 
tool status monitoring with pause reasoning, cutting process working mode 
detection, tool insert condition monitoring and part quality monitoring with on-
board data storage. So far, the most researched module ‒ machine tool health 
monitoring (condition monitoring) ‒ is observed as a part of the monitoring 
system. Therefore, it is out of the scope of a deeper investigation. Most 
experiments are carried out mainly based on lathes, but can be expanded also 
for other machine tools.  

Focus is on the wireless real-time data collection and distribution, where 
reasonable. Many of the experiments are implemented using wired solutions 
and posterior analysis. However, components in experiments are chosen 
according to further maximal usage in wireless solutions.  

Machine tool reconstruction for the monitoring purposes is out of the scope. 
Therefore, machine tool adaptive feedback is not researched. Instead, focus is 
on machine tool’s supportive components and infrastructure, such as smart 
cutting tools, intelligent manufacturing environment and increasing the situation 
awareness of operators and other related parties. 

Research focus is on monitoring modules of machining processes. Therefore, 
manual work station monitoring with workman performance tracking is not 
covered. Also logistics monitoring is beyond the scope.  

The concept of DOMe-based machining process monitoring is studied 
theoretically and does not include experiments.  
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Main hypothesis of research 

 Machining in-process vibrations and acoustic signals enable to evaluate 
machine tool status and working mode. 

 Wireless machining processes monitoring system can be built modularly 
and is easily adaptable to collect in-process data in real time. Monitoring 
modules can be added one by one (the monitoring system is expandable). 

 Monitoring modules can be adapted on existing machine tools. Additional 
changes by machine tool manufacturers are not needed. 

Novelty 

The following novel solutions are proposed and presented in the thesis. 

 A new approach to planning and structuring for the monitoring of 
machining processes.  

 New sensing, feature extraction and analysis combinations for various 
machine tools status detection in the shop floor.  

 A novel WSN-based status monitoring and pause reasoning demonstration 
toolkit with real-time graphical user interface (GUI). 

 The concept of DOMe integration into part and machining quality 
automatic real-time monitoring in turning.  

Contribution of the thesis and dissemination 

This research can be recommended for reading especially for production 
managers who wish to optimise machining processes through automatic real-
time informative feedback in industrial SMEs. It is also valuable for everybody 
who is interested of state-of-the-art industrial monitoring methodologies. 
Current research first introduces the field of industrial monitoring and its 
modules. It analyses and explains the features, architecture and sample solutions 
of knowledge-based monitoring application implementation in SMEs. This 
research is one milestone in industrial monitoring system development and is 
open for further investigation and development in line with technological 
evolution.  

The results of the thesis are internationally introduced. They were presented 
in 12 different peer-reviewed international conferences on three different 
continents. The author has published 15 international scientific papers directly 
associated with the research, of 11 of which as the first author. The papers are 
indexed in databases as ISI Web of Science, Scopus, and ScienceDirect. 
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1 LITERATURE REVIEW 

Together with overall industrial applications development, also monitoring of 
machining processes have been in continuous development. Different physical 
parameters have been detected and analysed using various methods to study in-
process signals and to transfer it into understandable shape. WSN and radio 
frequency identification (RFID) are used as technological bases for wireless 
data transmission and identification. DOMe is one of the RFID based solution 
that enables to personalise and enrich every single part with manufacturing 
related information. 

1.1 Background 

Continuous development of manufacturing systems and their technological 
bases have driven us close to the next industrial revolution (Figure 1.1). The 
first industrial revolution took place at the end of the 18th century when steam 
and water were taken into usage as energy carriers in mechanical production 
facilities. The second industrial revolution started through the introduction of 
mass production and the spread of electricity as energy carrier. The third 
revolution, which is also called digitalisation, brought further automation of 
manufacturing through the introduction of electronics and information 
technology (IT) solutions. Many of researchers find that we are close to the 
fourth industrial revolution that bases on cyber physical production system 
(CPPS) [Wahlster, 2013; Schlick, 2012].  
 

 Figure 1.1 Industrial revolutions 
 
According to an ASQ outlook survey in manufacturing enterprises [ASQ, 
2013], 29% of managers who are interested in using smart manufacturing 
systems, but do not implement them, say that cost is the main challenge. 79% of 
managers who use a smart manufacturing system answered to the question 
“What were the challenges of implementing smart manufacturing technologies 
at your organisation?” that cost was the biggest challenge to implement the 
system. At the same time, smart manufacturing system users are satisfied. Main 
benefits have been achieved in increased efficiency (82%) and increased 
product quality (56%). This survey shows how hard it is to implement a smart 
manufacturing system. At the same time it shows how much benefit 
implementation can give. 

1. revolution 
(steam and 

water)

2. revolution 
(electricity/ 

mass 
production)

3. revolution 
(electronics and 

IT)

4. revolution 
(CPPS)
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1.2 Monitoring applications in machining 

Machining processes have been the object of research for many decades. 
Changes in machine tool components, their performance quality and tool life 
have been investigated using different physical parameters. Vibration [You et 
al., 2011], acoustics [Ren et al., 2014], cutting force [Denkena et al., 2014], and 
temperature [Creighton et al., 2010] have been the main in-process sensing 
parameters to evaluate the condition of machining processes. Also visual in-
process detection has been used with a CCD camera [Otto et al., 2003]. For 
electrical motors, monitoring current [Philipp, et al., 2012] and voltage 
[Ottewill et al., 2013] have been used. In some cases sensor fusion is applied 
[Loutas et al., 2011]. 

The most used metal working machining processes, such as turning 
[Saravanan et al., 2006], drilling [Eckstein et al., 2012], and milling [Wright et 
al., 2008] have been mainly researched. In addition, laser cutting [Yilbas, 
1996], welding [Liu et al., 2014], water jet cutting [Goletti et al., 2013], wire 
electro-discharge machining [Cabanes et al., 2008], etc., processes have been 
covered. Also different types of production lines [Amos et al., 2008; Mokhtar et 
al., 2011] have been monitored. In principle, there is an unlimited number of 
machine tools and their processes that can be in-process sensed and evaluated 
for knowledge-based decision making. 

Condition monitoring helps prevent damage to components and predicts 
their degradation. The main components of rotating machine tools to cover with 
predictive maintenance have been engines [Philipp, et al., 2012], spindle 
bearings [Glavatskih, 2004], and gear-boxes [Ottewill et al., 2013].  

Machine tool working condition, cutting tool wear and part surface 
roughness are strongly related. They have been studied using different type of 
in-process signals and various analysis techniques combined with cutting input 
parameters. Vibrations, acoustics and cutting forces as in-process output 
parameters were evaluated in time domain according to maximum value, 
standard deviation, root mean square (RMS), and mean value [Aliustaoglu et 
al., 2009]. Condition-based tool wear has been analysed using in-process 
vibrations, acoustics and cutting forces together with wavelet analysis [Li et al., 
2007]. In-process prediction of surface roughness model has been developed in 
ball-end milling [Tangjitsitcharoen et al., 2010a] and computer numerical 
control (CNC) turning [Tangjitsitcharoen et al., 2010b]. Both of the models use 
inputs for regression analysis as in-process cutting forces and cutting input 
parameters. An artificial neural network (ANN) model has been developed to 
estimate in-process surface roughness and tool wear level [Ali, et al., 2010]. 
Models show reliable results but implementation in real time is problematic due 
to lack of automated information about cutting input parameters. 

For the analysis of results, mostly time domain and frequency domain 
solutions have been used. Linear correlation has been found between surface 
roughness and vibrations in end-milling [Wright et al., 2008].  
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During the last decade different research topics have focussed on wireless 
real-time monitoring in the shop floor. They all have a slightly different core 
idea but one of their main bases has been machine tool real-time monitoring and 
information distribution. 

K. Pister started the research and development of the so-called Smart Dust 
[Kahn et al., 1999] in 1997. A smart dust is a small wireless sensor node with 
processor, memory, wireless communication interface, and autonomous power 
supply. The aim was to reduce the size of the node to one cubic millimetre 
volume but a working entity with this size is still not realised.  

In the beginning of the 2000s, the concept of e-manufacturing [Koç et al., 
2005] was with high importance. The part related to e-manufacturing 
monitoring was called e-maintenance. Tools such as signal processing, feature 
extraction, performance assessment, performance prediction, performance 
diagnoses and right information distribution to right people in real time are 
considered in an e-manufacturing intelligent maintenance system [Lee et al., 
2006].  

Different machine tool monitoring systems have been proposed. A 
LabView-based smart machine supervisory system [Atluru et al., 2012] has 
been designed and implemented. It integrates and coordinates monitoring 
modules as cutting tool condition monitoring, on-machine probing, intelligent 
process planning, machine tool metrology, and machine tool health and 
maintenance. A PXI hardware and LabView software-based online broaching 
process monitoring system [Shi et al., 2006] has been developed. A smart 
sensor platform [Ramamurthy et al., 2007] has been developed to support 
communication and plug-and-play (PnP) capability. It includes specially 
designed smart sensor nodes, application integration software, and real-time 
control to achieve predictive maintenance of machine tools. 

Today, the vision of intelligent monitoring system in the factory of the future 
is based on CPPS [Zühlke et al., 2011]. The main idea of the CPPS is that 
physical manufacturing flow and digital information flow are parallel fully 
integrated inseparable phenomena. The core aim is that instead of operators, a 
product controls the machining processes through semantic context-based 
communication. Ontology languages such as web ontology language (OWL) are 
pioneers in semantic knowledge representation in manufacturing. 

1.3 Importance and application areas of wireless sensor network 
and radio frequency identification 

WSN and RFID technologies have been widely used in monitoring and tracking 
applications in various areas. Furthermore, for efficient value stream mapping in 
the shop floor, WSN and RFID integration is suggested to be performed 
[Ahmed et al., 2014]. 

High potential areas of WSN monitoring are medical care, home 
intelligence, military applications, environment monitoring, surveillance, 
scientific exploration, factory instrumentation monitoring, traffic and smart road 
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monitoring [Wang et al., 2006]. In the manufacturing industry, wireless sensors 
are mostly used for machine tool components condition monitoring to provide 
preventive maintenance and diagnostics, but also application for part tracking 
[Seitz et al., 2010] has been proposed. 

RFID is mostly used for identification, tracking, and tracing of items. For 
manufacturing control, RFID-based applications can be used in part procuring, 
manufacturing scheduling, inspection, warehousing, dispatching, and in 
maintenance [Brintrup et al., 2009]. It is also a tool for real-time coordination of 
material flows and manufacturing tools [Aruväli et al., 2012]. So far the most 
utility has been gained in logistics. 

Various manufacturing process monitoring applications have been used in 
the spreading of industrial manufacturing. Already many decades ago solutions 
such as andon lights, tracking sheets, reject, goal and variance counters were 
used that have outdated technical solutions today but their core idea has moved 
to the state-of-the-art monitoring solutions. Already 50 years ago, sensors were 
used on machine tools for the monitoring [Foster, 1967] purpose. In nowadays 
solutions, sensors equipped with processors and adaptive algorithms are capable 
of communicating with each other, with machines, and with environment. They 
perform analysis, study, take decisions, and activate actuators. At present, the 
keywords of high-level shop floor monitoring are real-time feedback, wireless 
connections and Internet of things (IoT). 

1.4 Concept of digital object memory 

According to the CPPS, every workpiece is equipped with a DOMe [Haupert, 
2012] that carries information about its manufacturing processes. In this way, 
every particular workpiece orders its machining processes based on the 
information in its related memory. Intelligent workpieces and intelligent 
machines can communicate with each other, optimise manufacturing processes, 
and control quality. Additionally, machining process monitoring information 
can be automatically saved to the DOMe after every operation to track its 
quality parameters all over the product life cycle. Hence, the DOMe can be used 
through a product life cycle [Schneider et al., 2008]. Only particles of this 
concept are implemented in corporate enterprises. This concept is developed 
mostly in manufacturer-independent research and a demonstration plant 
SmartFactory [SmartFactory, 2014]. 

The DOMe is a state-of-the-art technology tool that has great potential in 
machining process quality and part quality monitoring. Furthermore, it expands 
part and product related communication and enables real-time feedback. The 
DOMe usage is one component of utilising the CPPS in shop floor. The three 
pillars of the CPPS are smart machine tools, smart products, and an augmented 
operator. The DOMe focusses on a smart product with broad communication 
opportunities with related objects. The DOMe paves the way for the concept of 
IoT in the shop floor. 
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According to the CPPS, products are the most important things in the shop 
floor and every process performed is carried to service the products. The DOMe 
helps identify every particular workpiece, part, assembly, and product. It makes 
every one of them unique by adding object-related information storage space 
with communication supportive elements to every object. Instead of managing 
machining processes from an office, the DOMe gives more flexibility by 
utilising workpieces, such as machining processes managers. The idea is that 
when a workpiece enters the shop floor, it already knows which processes it has 
to follow and how to get manufactured. It means that a workpiece carries input 
information about its manufacturing processes, such as codes in the G 
programming language (G-code) and controller input codes. Workpieces are 
processed according to this data throughout the manufacturing processes. In 
principle, a workpiece becomes the centre of manufacturing and organises it by 
interactive communication. 

The DOMe usage gives the most utility when it is integrated already in the 
phase of workpiece or raw material and is used all over the product life cycle 
[Schneider et al., 2008]. It covers manufacturing, transportation, retailing 
[Maass et al., 2008; Haupert, 2011a], service, and recalls. So far, mainly the 
transportation cycle is investigated.  
Assembling parts to an assembly collects many DOMes into one object. For 
eliminating related disorders, a schema is developed for integrating particular 
object-related information into one. Compared with a random object-related 
storage place; the DOMe has a standardised structure (Figure 1.2) that is 
divided into blocks. This structure is called the object memory model (OMM) 
and it is a World Wide Web Consortium (W3C) standard [Haupert et al., 
2011b]. A determined structure enables to personalise specific data to specified 
group of objects. The DOMe is both machine- and human-readable, written in 
the extensible markup language (XML) [Barthel, et al., 2013]. It enables 
communication with machines and other objects that are suitably equipped.  In 
principle, a workpiece can give orders to machine tools, create changes in the 
intelligent environment, capture monitoring information, organise a production 
plan [Li et al., 2010], and order its transportation in the shop floor.  

 

 
Figure 1.2 General structure of the OMM. [Haupert et al., 2011b] 
 

The DOMe communication is mostly solved with the RFID technology but also 
a more expensive WSN solution has been proposed [Seitz et al., 2010]. A WSN 
equipped object can autonomously gather, store, and analyse information but it 
is unwieldy and not affordable or reasonable to use for every random 
workpiece. Oppositely, the RFID technology enables to hold the DOMe 
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lightweight and low cost. Passive read / write RFID tags in a sticker format can 
be used in low memory situations. Usually more storage space is needed to 
accommodate all manufacture-related data. For this reason, two types of storage 
space are proposed: on-board memory that is physically bonded with the object 
and object memory server-based memory [Haupert et al., 2012] that is virtually 
related and accessed with the uniform resource locator (URL). Using the 
memory server-based solution, a RFID tag is used for identification and linking 
with a specific DOMe in the memory server. Besides, also mixed solutions have 
been proposed. 

Many prototype solutions have been tested to demonstrate and design the 
applications. The DOMe is exploited in an advisory and controlling device of 
the medical pills usage [Schneider et al., 2010]; in the semantic product 
memory (SemProM) browser to visualise memory contents in a context 
sensitive way according to user abilities and goals [Brandherm et al., 2010]; in a 
flexible soap filling production line [SmartFactory, 2014]; in a supply chain 
demonstration [Stephan et al., 2010]. 

1.5 Ongoing stimulation programs 

The topic of intelligent manufacturing is highlighted all over the world. Leading 
developed industrial countries in the world have turned their focus onto 
improvements in manufacturing efficiency. They work for maintaining and 
recovering their competitiveness that is eroding in the manufacturing field.  

In the EU, the Framework Programme for Research and Innovation drives a 
programme called the Public Private Partnership (PPP) Factories of the Future 
(FoF). The budget for the programme is EUR 1.15 billion for seven years 
[European Commission, 2013]. This Horizon 2020 programme aims to support 
technologies that increase manufacturing enterprises’ competitiveness and 
sustainability through development of adaptive and smart manufacturing 
equipment and systems.  

The European horizontal technology platform Manufuture aims to create 
synergy in technology-specific action plans and technology platforms between 
member states. Its main pillars are connected with industrial innovation. 
[Manufuture platform, 2014.] 

In Germany, improvements in manufacturing methodology and 
technological bases are supported by a national programme called Industry 4.0. 
The budget for this government driven program amounts to EUR 500 million 
over three years. It is believed to increase industrial productivity by up to 30% 
[Nikolaus, 2013]. The idea is to achieve it by the growth of flexibility, 
integration of more intelligent high-tech IT solutions, and real-time feedback. 
Smart, green and urban productions are promoted for this programme. Its main 
idea is to develop further a concept of the so-called Smart Factory that bases on 
the IoT and CPPS. 

The Smart Manufacturing Leadership Coalition (SMLC) in the USA is a 
non-profit organisation of different industrial manufacture-related interested 
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parties. The SMLC aims to develop an infrastructure that is called the Smart 
Manufacturing Platform. [SMLC, 2014.] 

In developed countries, there are different programmes and initiatives to 
support the development of smart factories in order to increase the 
manufacturing productivity through flexibility and better communication 
solutions. They all look at the problem with a little different angle but the main 
idea is the same ‒ to increase the production efficiency by developing an 
intelligent manufacturing environment by using state-of-the-art technological 
bases. 

1.6 Objective of research 

The main problem as an indicator for research is the changed production 
environment with small batches, many similar one-offs, and frequent 
modifications of products. This environment requires high flexibility with fast 
and knowledge-based decisions to avoid decrease in productivity. Conversely, 
increased flexibility and interoperability can be seen as the next generation’s 
success factors in industrial SMEs. 

The main objective of research is to study and develop monitoring of 
machining processes, focussing on SMEs. The specific aims are to develop 
methodology for analyse machine tools status in real time, elaborate a 
demonstrator toolkit for testing the methodology, and find novel tools for 
automatic real-time monitoring in machining. 

The main activities of research are: 
 to research and develop an approach for planning and structuring for 

monitoring of machining processes, based on in-process signal and 
wireless communication; 

 to measure, analyse, evaluate, and compare machine tool working mode 
and machine tool status monitoring experimental data gathered in the 
Department of Machinery  in the TUT (Tallinn University of Technology) 
and in private companies; 

 to develop, design, and construct a machine tool status monitoring 
demonstration toolkit with real-time GUI; 

 to work out a concept for the RFID- and DOMe-based automated tracking 
solution integration into part machining performance monitoring system. 

The idea is to integrate wireless sensors and RFID-based solutions with the 
manufacturing environment to achieve Web-based monitoring for all interested 
parties without the installation of cable networks. Real-time information for 
manufacturing-related interested parties helps make fast knowledge-based 
decisions, decrease scrap, avoid unplanned pauses, analyse performance, save 
processing time, increase sustainability, and proactively fulfil customer needs.  
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2 METHODOLOGY OF REAL-TIME MONITORING 
APPLICATIONS IN THE SHOP FLOOR 

Fluent workflow in the shop floor creates bases for high productivity. 
Availability of clear knowledge-based information improves planning and 
utilisation of manufacturing processes. The purpose of monitoring is to avoid 
failures and achieve seamless, high-quality workflow. Information can be 
collected through monitoring modules and distributed according to monitoring 
cycles for every interested party. To develop efficient monitoring modules, a 
value-centric approach according to the manufacturing particularity must be 
utilised. The monitoring system is divided into modules to enable step-by-step 
implementation. Sensor equipped machine tool components, a sensors equipped 
cutting tool, a DOMe-equipped workpiece and the intelligent environment 
create broad-based synergy in the monitoring system. 

2.1 Monitoring cycles for performance improvement 

Productivity growth in the shop floor depends on the rate of losses in 
machining. According to the overall equipment effectiveness (OEE) eq. (2.1) 
[Nakajima, 1988], machining has three categories of losses: downtime loss, 
speed loss, and quality loss. Downtime loss is comprised of equipment failures, 
material shortage, and changeover time. Speed loss comprises machine wear, 
substandard materials, lower feed rates, and operator inefficiency. Quality loss 
is the loss of reworking and remanufacturing. In addition to productivity, the 
quality loss epiphenomenon is material loss. Eliminating the losses paves the 
way for seamless and efficient workflow. The OEE can be expressed as: 
 
ܧܧܱ  ൌ ܣ ൈ ܲ ൈ ܳ,   (2.1) 
 
where A is machine tool availability (%), P is machine tool performance 
efficiency (%), and Q is product quality rate (%). 

Relevant monitoring information must be distributed to every interested 
party in the shop floor, in the office, and in networked companies (service 
providers) to increase the overall efficiency. Downtime loss can be decreased by 
a mechanic, quality loss can be decreased by an operator, and speed 
(productivity) loss can be decreased by a production manager. Different parties 
need different monitoring information but their entire contribution is addressed 
to increase the efficiency of the enterprise, especially through their input for 
activities in the shop floor. According to a developed concept, “Monitoring 
cycles for performance improvement” (Figure 2.1), the main interested parties 
are the mechanic, operator, production manager, and the top manager. Every 
one of them has their main task that is fulfilled in the best way based on relevant 
monitoring information. 
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In many cases, in SMEs where a mechanic is rarely needed, machine tools 
maintenance service is ordered from a networked company. Based on the 
condition monitoring data, maintenance is scheduled and realised when it least 
affects everyday manufacturing. This is the base for machine tools availability 
for manufacturing. The second circle is the quality circle that works on real-
time machining data. During the machining process, the operator can execute 
real-time control and make improvements as changes in the feed rate, cutting 
speed, cutting tool or stop of machining. The third cycle is based on both real-
time and dataset-based information. This is called productivity monitoring; it 
helps production managers improve productivity. The last cycle can be called 
the efficiency cycle. An input for this cycle is mainly its status monitoring 
dataset-based information that helps the chief executive officer (CEO) make 
long-term decisions, such as machine tool purchases and movement to another 
building or location. Interested parties, mentioned in the cycles, are not 
eliminated from their neighbour cycles. Shared competence with expanded 
knowledge creates bases for the best decisions. The operator supports the 
mechanic with additional observations. The production manager supports the 
operator and vice versa. The CEO can intervene in case of productivity 
questions and needs feedback from the production manager for long-term 
decisions.  
 

 
 

Figure 2.1. Monitoring cycles for performance improvement 

2.2 Monitoring application requirements and design 

On the usual line, SMEs deem to be reasonable to adapt a monitoring system 
step-by-step due to limited budget. As the monitoring system should be 
affordable also for SMEs, a large monitoring system is divided into applications 
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that can detect and track specific machining related information. Monitoring can 
be adapted in manufacturing bottlenecks or in most critical processes at first and 
expanded over time. Knowledge-based feedback, such as output from 
monitoring applications requires value-centric and explicit evaluation of 
requirements as the bases input for monitoring modules design. 

To design an efficient system, at first there is a need to define various 
background information to value-centric approach [Randmaa et al., 2011] to 
keep the focus on the core problem. Background information comprises the 
following definitions: the objective of the observable section (1); the core 
problem in the observable section that  breaks its objective (2); solution to 
eliminate the defined problem (3); objective of the solution (4); requirements 
for the solution (5); constraints of the solution (6).  

The observable section in this case is the manufacturing section as the core 
of the manufacturing company participating in the supply chain. The problem 
definition should be explicit and not list several manufacturing shortcomings 
but focus on the core problem that works against the defined objective. The 
solution should reflect the defined problem. The objective of the solution should 
define what will be improved and how. All the requirements related to the 
solution should be brought out to keep the system vital and beneficial. Also, the 
inputs and outputs with other systems must be taken into account to fit the 
solution into the existing environment. Missing of some key factors may cause 
withdrawal of the solution by the interested parties. Constraints must avoid 
conflicts of the solution with existing systems. 

The background information for the manufacturing monitoring system is 
defined as follows: 

(1) maximise the productivity of the shop floor (supply chain); 
(2) lack of real time information about processes inside a factory and in the 

supply chain; 
(3) real-time feedback to interested parties in every process; 
(4) maximise the performance of the supply chain by providing tailored real-

time information to every interested party; 
(5) automated, compatible, flexible, cognitive, service-based, trustful, 

nonintrusive, safe, easy to install, intelligent, semantic, fast, affordable, mobile, 
tailored, goal oriented; future oriented, proactive, low power designed; 

(6) must not interrupt with the existing systems or processes in the supply 
chain. 

Next, one by one, the value-centric solution (application) requirements are 
listed, analysis is performed and possible technical solutions are proposed. 
 Automated ‒ automated feedback is faster and at the same time excludes 

options to manipulate with information. For example, it could be beneficial 
for the operator to show machine tool cutting time longer and set up time 
shorter to point on his professionalism. Therefore, sensor-based monitoring 
is preferred to manual feedback. 

 Compatible ‒ in different companies within the supply chain, different 
hardware and software combinations are often used to collect, analyse, and 
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store information. Today, the biggest problem from the ICT perspective is 
lack of compatibility between different manufacturers’ solutions. 
Therefore, it is essential to use standard solutions, which are supported by 
many producers to easily extend the system. Open source software is 
preferred. 

 Flexible ‒ easy to make corrections in the structure and analysis. 

 Cognitive ‒ appropriate information should be easy to find. The user 
interface (UI) should be user friendly and easy to adapt to make it usable. 
Data analysis should be at the level which is most informative but easy to 
catch. 

 Tailored ‒ all UIs should be tailored to the specific position in the supply 
chain and in company. Everybody should get access to only such 
information that is important for their tasks. 

 Safe ‒ it means safe for the environment, personnel, and company. Its 
ecological footprint should be minimised. It should not contain tasks that 
can harm personnel, like the need to observe a cutting tool too close while 
it is working. Moreover, information must be protected. Every company in 
the supply chain must be able to decide (and change, if necessary) which 
data is available over the supply chain or for a partner company.  

 Service based ‒ interested parties can be considered as service providers 
who act based on real-time information. 

 Trustful ‒ displayed data should be reliable and analysed using working 
solutions. If the algorithms are not working correctly in the controlled 
environment, they should be eliminated for the period of testing. Only 
partly working algorithms are causing frustration for their users and 
diminish applications’ overall reliability. As machine tools are in 
operation, metal parts in the environment and electromagnetic waves can 
cause interferences with the wireless signal distribution, router nodes must 
be used, where necessary, to guarantee the information flow. 

 Nonintrusive ‒ redundant messages from the system slow down the speed 
of the work rather than create extra value. Alarms and messages should be 
sent to the interested party only, on time and with valuable information. 

 Easy to install ‒ eliminating wires all around the shop floor and on 
machine tools that may interrupt logistics and machining. PnP type 
solutions are preferred. 

 Intelligent ‒ collected data should be transferred to knowledge, before 
displaying it to the interested parties. 

 Semantic ‒ focus must be on the meaning of the data, not on the process of 
collecting it. 

 Fast ‒ it has to be based on real-time information. Even real-time 
information has always some delays. However, if the delay is short enough 
and does not blur the meaning and relevance of information, it is allowed.  
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 Affordable ‒ relatively cheap to install and run. Short enough payback time 
to attract SMEs. 

 Mobile ‒ data must not be available in the exact workplace only but it 
should be possible to get access everywhere through mobile devices (smart 
phones, tablets, different smart wearable devices), which are connected to 
the Intranet or Internet. Basically relevant information should be available 
for any specific user anywhere, anytime, using any device. 

 Goal oriented ‒ specific, well-functioning task has to be on focus. 
Additional functions can be added or provided that do not harm the main 
focus. 

 Future oriented ‒ ready for expansions. It must take into account further 
developments in the shop floor and support the vision of a company. 

 Proactive ‒ data can be split into three main categories: historical (dataset), 
present (real-time), and future (forecasting) data. Historical and present 
data can be used as 100% trustful data (based on the belief that methods for 
capturing and analysis a data are adequate). Forecasting is based on a 
dataset which is analysed in a certain context that best describes oncoming 
events. The oncoming events that can harm a production, such as reaching 
cutting tool or some machine tool part critical wearing level, should be 
proactively predicted to prevent unplanned pauses and defective products.  

 Low power designed ‒ energy consumption rate determines the 
maintenance period of wireless monitoring devices. In wireless nodes, 
communication is the major energy consumer. Therefore, it is essential to 
analyse the collected raw data in a node on-board processor and send out 
only processed data. Moreover, the load in the radio frequency (RF) 
channel is lower and channel overload can be minimised. In energy 
consumption perspective, other important factors are processor type choice 
and hardware / software interaction [Karakehayov, 2006]. RFID tags can 
be active, battery-assisted passive or passive. Active tags use on-board 
energy source and periodically transmit identification (ID) signal. Battery-
assisted passive tags use on-board battery only in reader presence. Passive 
tag integrated circuit (IC) is powered by a RFID reader through a RF 
channel.  

2.3 Machining process monitoring modules 

For a more flexible adaptation of the monitoring system in the shop floor of 
SMEs, modularisation of monitoring applications has proposed. It allows 
beginning with the most necessary monitoring module for every specific 
company and to continue expansions of the system in time. A large system is 
more complicated to handle and often creates economic and also psychological 
barriers in its adaptation. 

Machine tool-related monitoring applications are divided into five modules 
according to their features. These modules are machine tool health monitoring, 
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status monitoring with pause reasoning, cutting process working mode 
detection, tool insert life monitoring and part quality monitoring with on-board 
data storage (Table 2.1). These modules are directly related with machine tools 
but the system can comprise also other shop floor-related monitoring 
applications as material flow tracking, worker tracking, manual work station 
monitoring, etc.  

 
Table 2.1 Utility of machining processes monitoring modules 

CAD (computer aided design), CAM (computer aided manufacturing) 
Monitoring 
module 

Information 
type

User Changes Utility

Machine tool 
health 
monitoring 

Dataset Mechanic Well-timed 
maintenance 
and 
components 
replacement 

1. Avoidance of 
unplanned pauses 
2. Better machining 
quality 
3. Maximum 
utilisation time of 
components 

Status 
monitoring 
with pause 
reasoning 

Real-time/ 
dataset 

Manager Better 
situation 
awareness 
about rate of 
utilisation, 
setup time, 
idle time with 
specific 
reason, and 
failures. 

1. Better planning 
of sales and shifts 
2. Operators 
comparison based 
addressed training 
3. OEE feedback 
4. Jigs ease of use 
5. Improvements in 
CAD/CAM files, in 
work orders flow 
and in raw material 
availability 

Working 
mode 
detection 

Real-time  Operator Cutting input 
parameters 
change/ 
stopping of 
machining

1. Improvement of 
parts quality 
2. Decrease of 
reworking 
3. Material saving 

Tool insert 
life 
monitoring 

Real-time  Operator Well-timed 
replacement of 
tool insert 

1. Better machining 
quality 
2. Maximum 
utilisation of tool 
insert

Part quality 
monitoring 
and data on-
board storage 

Real-time  Operator Automated 
quality check 

Every part is 
considered as 
unique 
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2.4 Status monitoring and pause reasoning 

For productivity analysis, machine tool status analysis is a tool of high 
importance. Status analysis gives basic information on whether a machine tool 
was working within a certain time frame. Furthermore, pause reasons 
identification analysis is a tool for improving utilisation in the future by 
learning from previous mistakes. Continuous work with status and pause 
identification analysis gives input for the improvement of decisions and 
productivity growth. Status monitoring is also an input for the OEE and total 
effective equipment performance (TEEP) calculation. 

Compared with other monitoring modules, status monitoring with pause 
identification is relatively easy to deploy. The results are clear and their utility is 
high. Additionally to full-scale productivity, it helps to analyse every particular 
workbench, every particular operator and also quality of other workbench 
servicing sections as maintenance, production planning, material purchasing, 
designing and engineering. If one of the servicing sections fails, workbench 
cannot be used. The monitoring brings out shortages in cooperation between 
sections and characterises their efficiency.  

In status monitoring, it is important to distinguish machining and stand still. 
The main engine working does not mean productive work yet. It only shows 
that the operator has arrived. For example, in lathe, spindle engine or spindle 
related parameters need to be measured. It allows to measure every cycle time 
and separate set up times. 

At present, most of the machine tool manufacturers add a status monitoring 
log to the machine tool. The machine tool processor stores the start and end 
time of every working cycle with a working file name. It is displayed in a table 
format and is not available over the network to all interested parties. The 
shortage is that every machine has to be analysed only in a particular working 
place. Besides, due to different monitoring logic approaches in different 
machine tools, their utilisation cannot be compared among each other. It does 
not give an overall picture and is complicated to use for the production 
manager. It is essential to gather utilisation data into one database. Besides, the 
monitoring logic approach needs to be uniform over the shop floor or even 
larger entity. 

2.5 Tool insert life monitoring and surface quality influence 

The condition of cutting tool insert is continuously changing input parameter in 
machining. It forms a part surface and it has direct contact with a workpiece. 
The tool insert wearing level has a significant influence on the machined part 
surface quality. Usually, cutting tool producers give an estimated life for tool 
insert but it is valid only with certain cutting input parameters and with certain 
workpiece material hardness. Harsh, but also too weak cutting parameters speed 
up the wearing. Furthermore, there are different wearing types and these all 
have different physics influencing the turning [Otto et al., 2003].  
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Taylor tool life equation, eq. (2.2) [Taylor, 1907], is a widely known model 
for tool insert life detection. It can be expressed as:  

 
ݒ   ൈ ܶɳ ൌ  ଵ,  (2.2)ܥ

 
where v is cutting speed (m/min), T is actual cutting time required to dull tool 
(min), ɳ is exponent which varies with workpiece material and cutting tool and 
 ଵis a constant which depends mainly on the size of cut, workpiece material andܥ
cutting tool. 

Nevertheless eq. (2.2) does not take into account many less significant 
influencing parameters, such as the feed rate, depth of a cut, or fluctuating 
parameters. There is also a more advanced extended version of the Taylor 
equation, eq. (2.3) [Woldman et al., 1951] that can be expressed as: 

 
ݒ  ൈ ܶɳ ൈ ݂

௬ ൈ ݀௫ ൌ  (2.3) ,ܥ
 

where v is the cutting speed (m/min), T is the actual cutting time required to dull 
a tool (min), ɳ is an exponent which varies with the workpiece material and 
cutting tool, ݂ is the feed rate (mm/rev), d is the depth of the cut (mm), C is a 
constant which depends on the work material and tool, x and y are exponents 
which vary with workpiece material and cutting tool. 

Equation (2.3) involves more parameters than eq. (2.2), but its disvalue is a 
high number of constants. On the one hand, the number of constants increases 
the accuracy but, on the other hand, a rough estimation of constants can 
conversely decrease the accuracy. 

There are many more probabilistic tool life models based on response 
surface methods. Nevertheless, there is no good model that is efficient, reliable 
and applicable in real-time in-process monitoring [Stephenson et al., 2006]. One 
option is to study the cutting insert reliability but it is time consuming and needs 
a large number of samples that are limited due to tool insert’s relatively short 
life. 

In stable working conditions, tool inserts wearing level is linearly related to 
the machined parts surface roughness. The theoretical depth of surface 
roughness, eq. (2.4) (Figure 2.2), that can be easily found characterises only the 
ideal condition that never appears in the shop floor. It can be expressed as: 

 

௧ݖܴ  ൌ ݂
ଶ ൈ

ଵ

଼ൈಶ
,   (2.4) 

 
where ܴݖ௧ is the theoretical ten-point mean roughness (µm),  ݂ is the feed rate 
(mm/rev), and ݎா is tool insert’s nose radius (mm). 
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Figure 2.2 Theoretical surface  
roughness in turning 

The equation does not take into account machine tool’s instability (rigidity 
level) and material type. It also does not take into account that inside the linear 
relationship there can be quite powerful fluctuations caused by material 
heterogeneity and elastic / thermal deformations [Aruväli et al., 2014]. 

Fluctuations and other related parameters influence the behaviour of the tool 
insert – workpiece contact point. According to Huang, the feed rate and 
vibrations have the biggest influence for part surface roughness [Huang et al., 
2001]. Feed rate is covered in eq. (2.4) but additional in-process vibration / 
acoustic signal features, eq. (2.5), makes the model more accurate and 
practically usable. It can be expressed as: 

௦ݖܴ ൌ ݂
ଶ ൈ

ଵ

଼ൈಶ
 ܵ ൈ ,ܥ (2.5)

where ܴݏݖ is the in-process signal-based estimated ten-point mean roughness 
(µm), 	 ݂ is the feed rate (mm/rev), and ݎா is tool insert’s nose radius (mm), 
	 ܵ 	is	the in-process signal feature, and ܥ is a constant which depends on in-
process signal features. 

Tool insert ‒ workpiece contact point carries the most sensitive data 
[Waschkies et al., 1994] that best characterises the in-process cutting quality. 
The cutting tool insert with a tool holder is the closest component to the cutting 
point. Therefore, placement of vibration and acoustic sensors inside the tool 
holder should be preferred to collect cutting in-process signal. It eliminates the 
need for manual installation of sensors. There is no need to make changes in the 
machine tool to implement it either. As changes in machine tool are related to 
machine tool manufacturers and history has shown that fast changes are not 
expected by manufacturers, an intelligent cutting tool holder is a more valuable 
solution. Parallel can be drawn with the Step NC compliant machine tool 
development. There has already been more than 15 years development and 
standardisation in the area of the Step NC compliant machine tool but no supply 
of these machine tools is recognised in the market. 



29 

2.6 Digital object memory in the machining process quality 
monitoring 

In the shop floor, experiments have been made to manufacture mostly module-
based products in the manufacturing cell [SmartFactory, 2014]. It is valuable for 
companies with a limited product range. However, these experiments do not 
cover, for example, subcontractors that manufacture a continuously changing 
range of products. Machinery industry mostly uses machine tools with a G-code 
input. The problem is that G-code requires more storage space than just a work 
number for the controller of manufacturing cell module. DOMe-based 
monitoring processes have not been studied by researchers so far, just 
production time collecting has been implemented. However, for automatic real-
time machining process’s quality monitoring, the machining in-process signal 
has to be evaluated. This is an indirect measuring method and is not as accurate 
as the direct measuring methods but is less time consuming and enables to give 
real-time feedback.  

A concept for RFID-based DOMe usage in part quality monitoring through 
machining process performance real-time evaluation [Paper IV] has been 
developed and proposed. The concept covers three artefacts (smart objects): the 
workpiece, the machine tool, and the cutting tool. All these artefacts are 
equipped with communication appliances (DOMe) and located in the intelligent 
environment. 

Machining, assembling and stock areas are like intelligent environment 
islands in CPPS. Meaning, these areas are equipped with a RFID reader, 
necessary number of antennas and a context-based semantic [Croisier, 2012] 
back end system. 

Context- and rule-based data sharing between the workpiece, cutting tool 
and machine tool composes bases for a particular in-process signal evaluation. 
Researchers have worked out different models and algorithms for workpiece 
surface finish and machining process quality measurement. Besides in-process 
signal, important input for most of the algorithms are cutting parameters as 
speed, feed rate and depth of cut; machine tool coefficient; workpiece material 
hardness; tool insert radius. All this information is covered by the mentioned 
objects (Figure 2.3). The machine tool sends its coefficient, cutting tool its 
insert radius and workpiece its diameter, material hardness and G-code related 
cutting parameters.  

As workpiece needs to carry G-code information for machining input, it can 
be used simultaneously in monitoring appliances. G-code covers information 
such as the cutting speed, feed rate, depth of cut, number of cuts, cutting tool 
number for particular cut, cooling liquid usage. Having DOMe information 
from all three cutting related artefacts and cutting tool sensors measurements, it 
is possible to distinguish between different cuts during one operation, select a 
suitable pattern for monitoring, and indirectly measure quality-related 
parameters such as cutting mode, part surface roughness [Paper IV], and cutting 
tool’s end of life.  
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Figure 2.3 Communication in intelligent environment of machining unit 
 

Researchers have carried out several successful experiments for quality 
parameter real-time estimation that can be used in the machining spot intelligent 
environment. In cooperation with DOMes, providing input data for algorithms, 
comparative quality parameters can be evaluated and stored (Figure 2.4). Many 
of the ANN and regression analysis based algorithms have been proposed 
(Chapter 1) that can be utilised in a DOMe based solution. 

DOMe based quality monitoring scheme works as follows. When a cutting 
tool is taken from the carousel and brought to the cutting position, intelligent 
environment activates schema. At first, relevant information is asked from all 
related objects (machine tool, cutting tool, workpiece). Simultaneously, cutting 
tool sensors are woken up and the first signal frame is collected. Every signal 
frame is first processed in the cutting tool processor to evaluate whether cutting 
has started (the signal frame value is bigger than defined 0-value). An analogue 
signal is converted to digital. According to the cutting input parameters, a 
pattern for evaluation is selected and previously digitalised data extracted to 
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evaluate and store in-process quality parameters. Immediately after every 
parameter saving, it is displayed directly to the operator. In process real-time 
knowledge base feedback gives operator the opportunity to make fast changes 
in the manufacturing process, if needed. Thereafter, a new frame is gathered and 
the loop starts again until a signal shows the end of the particular cut. After 
every cut, quality parameters, stored in intelligent environment memory, are 
sent to the workpiece DOMe. Successful response from the DOMe means that 
parameters can be deleted from the environment memory.  

 

 
Figure 2.4 DOMe driven monitoring scheme in machining 
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3 EXPERIMENTS AND PROTOTYPING 

Working mode detection, failure detection and status monitoring experiments 
were implemented in the Department of Machinery of the TUT and in private 
companies. Working modes and failure situations were studied through 
vibration- and acoustic-based measurements. Machine tool status was detected 
through current consumption, vibration and acoustic measurements. 
Experiments show high reliability in machining processes monitoring. 
Additionally, a prototype demonstration toolkit for machine tool status 
monitoring and pause reasoning with real-time GUI was developed and 
constructed. Most experiments were implemented using a wired solution but all 
measurement devices were chosen according to further usage in the wireless 
solution. 

Working mode and failure situation detection in turning is analysed using 
time domain in acceleration signal and frequency domain in acoustic signal. 
Additionally optimum measurement frequency and number of successive 
measurement values were found in in-process acceleration signal. Status 
monitoring acoustic and acceleration signals are analysed using feature 
extraction methods, such as Mel-frequency cepstral coefficients (MFCC) and 
spectral means. 

3.1 Working mode estimation and failure detection 

Real-time working mode monitoring is essential for a machine tool operator to 
be fully aware of the cutting process in every moment of time. Real-time 
knowledge-based feedback gathered with acoustic and acceleration sensors 
gives more reliable feedback than old-fashioned visible observation, perceptible 
sound, or sensed vibrations. Real-time reliable feedback allows the operator to 
make fast changes in machining input parameters to increase the part surface 
quality and cutting tool life through improvement of the working mode.  

The proposed machine tool working mode monitoring module can be 
implemented both in new machine tools but also in old machine tools. 30 ‒ 40 
year-old machine tools are typically massive and rigid. These machine tools 
efficiently suppress vibrations and can assure stable machining. These machine 
tools can be valuable for many more years. Their main disadvantage is their 
lack of monitoring functionality. Equipping them with modern monitoring 
appliances lengthen their life cycle and at the same time this is environment-
friendly behaviour and increases sustainability.  

In the same way, low-budget new machine tools are equipped with no 
monitoring appliances. In many cases the manufacturing equipment can harm 
itself either because of a wrong mode of operation or trivial component failures 
without any advance indication of potential problem from the on-board 
monitoring system. Hence, operation in an undesirable mode is a potential 
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source for the lack of part quality; raw material perversion; unplanned pauses; 
machine tool and cutting tool damages. 

In next experiments, turning with cutting input parameters recommended by 
the tool manufacturer is considered as a stable working mode. Turning with 
higher speeds and depth of cut is considered an unstable working mode. 

3.1.1 Acceleration signal-based failure detection 

Experiments to distinguish a tool failure from a stable working mode were 
conducted on the CNC lathe 16A20F3RM132 in the Department of Machinery 
of the TUT [Paper I]. Acceleration of the unit was measured with the three- 
dimensional MEMS accelerometer LIS3LV02DQ. The data acquisition (DAQ) 
device Atmel AVR XMEGA was used. A sampling frequency of 640 Hz was 
chosen. Experiments were implemented using a wired solution but all 
measurement devices were chosen according to further usage in the wireless 
solution. Results were analysed in a time domain using range values of signal 
frames.  

The range value of acceleration signal frame characterises vibrations during 
the cutting process. It is known that in a stable working mode, vibrations are 
smaller and they increase in unstable machining. The range values of 
acceleration were found for every test and compared as eq. (3.1): 

 
 ܴ ൌ ௫ݔ െ  , (3.1)ݔ

 
where R is range, ݔܽ݉ݔ is the maximum value and ݊݅݉ݔ is the minimum value 
in observed signal frame. 

According to the range values of acceleration signal in turning, it can be seen 
that spindle’s idle turning and stable cutting mode are similar. However, the 
range value increases in a failure situation, especially in y-axis. Thus, a failure 
situation can be detected from a stable working mode. 

The graphical representation of acceleration signal shows visible difference 
between a stable turning and turning with a failure that ended up with tool 
breakage. These comparable tests have been made with the same cutting speed 
(180 m/min) and feed rate (0.3 mm/rev). A difference was in the depth of cut 
that occurs with a failure in a higher value. Tool breakage at a higher cutting 
speed (723 m/min) generates unbalanced acceleration / time graph.  

The comparison of the acceleration signal range values in y-axes enables to 
distinguish failure from stable cutting mode (Table 3.1).  

 
Table 3.1 Range values in stable cutting and in failure situation 
Spindle 
speed 
(min-1) 

Feed  
rate 

(mm/rev) 

Cutting 
speed 

(m/min) 

Failure ܠ܀െܡ܀ ܛܑܠ܉െܢ܀ ܛܑܠ܉െܛܑܠ܉ 

600 0.3 180 No 125 161 89 
600 0.3 180 Yes 133 200 94 



34 

3.1.2 Acoustic signal based failure detection 

Experiments to distinguish tool failure from stable working mode were 
conducted on the CNC lathe 16A20F3RM132 in the Department of 
Machinery of the TUT [Paper I]. The acoustic of the unit was measured 
with the SM58 microphone. Roland’s Edirol UA-25EX audio signal 
processor was used. Sampling frequency 22050 Hz was chosen. In-
process audio signal was recorded through different working modes (main 
engine working, spindle idle turning, stable working mode and failure). 
Signal frames were analysed in the frequency domain using spectral analysis. 
Experiments were implemented using wired equipment but the results 
characterise the leverage of acoustic signal analysis. 

After the fast Fourier transform (FFT) according to sample frequency 
spectrums of signal frames, it can be concluded that spindle’s idle turning and 
stable working mode are not distinguishable. However, main engine’s working, 
a stable working mode and a failure situation are distinguishable.  

3.1.3 Acceleration signal-based working mode detection 

Experiments to distinguish an unstable working mode from a stable working 
mode were conducted on the CNC lathe Okuma OSP 2200 in a private metal 
working company [Paper II]. Additionally, optimisation of sampling frequency 
and signal length were performed to minimise energy consumption and 
maximise the speed of feedback. Acceleration of the unit was measured with the 
three-dimensional MEMS accelerometer LIS3LV02DQ. The DAQ device 
Atmel AVR XMEGA was used. Seven different sampling frequency, spindle 
speed and feed rate level combinations were tested. Tests 1 ‒ 3 were performed 
in a stable working mode (cutting input parameters near the lower limit 
recommended by tool insert producer), tests 4 ‒ 6 in an unstable working mode 
(cutting input parameters over the upper limit of recommendation) and test 7 
with spindle idle turning. Results were analysed in the time domain. 

The number of measured sample values in an analysed signal frame 
influences feedback time and computational operation efficiency. On the one 
hand, the more samples are gathered into the signal, the more reliable the result 
is. On the other hand, the longer the signal, the slower the feedback is. As raw 
material can be ruined within seconds, it is important to get fast feedback about 
ongoing machining to stop or change the current process, if needed. To find the 
optimal signal length, experiments were first analysed with 130, 260, 520 and 
640 successive samples and later more precisely with 60, 100, 130 and 160 
successive samples. Ten signals were studied from every length. To compare 
and evaluate the results, restrictions were created. To analyse signals reliability, 
three parameters were compared: arithmetic mean value of range values ‒ eq. 
(3.2); maximum range value of studied signals; and range value of studied range 
values ‒ eq. (3.3). The arithmetic mean value of range values was found as:  

ோݔ̅ ൌ
ଵ


∑ ܴ

ୀଵ , (3.2)
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where ̅ݔோ is the arithmetic mean of range values, n is the number of range 
values, and R is the range value. The range value of the studied range values 
was found as: 
 
 ܴோ ൌ ܴ௫ െ ܴ, (3.3) 

 
where ܴோ	is the range of range values, Rmax is the maximum range value, and 
Rmin is the minimum range value. 

Acceleration signals were compared based on range values. The used 
accelerometer’s smallest possible sampling frequency 160 Hz shows a sufficient 
difference between a stable and unstable working mode (Table 3.2). The 
smallest frequency of the used sensor was 160 Hz and due to that smaller 
frequencies were not tested. All axes show more than a double difference in 
range values. Experiments prove that a stable working mode and unstable 
working mode can be detected with an accelerometer and compared according 
to range values. Sampling frequency 160 Hz is sufficient.  
 

Table 3.2 Acceleration range values along different axes with depth of 
cut 2 mm and sampling frequency 160 Hz 

Spindle 
speed (min-1) 

Feed 
rate 

(mm/rev) 

Cutting speed 
(m/min) 

Acceleration range values  
x-axis  y-axis  z-axis  

220 0.25 155 40 22 44 
540 0.4 380 152 290 97 

 
According to the analysis, 130 successive measurement values with a 160 Hz 
frequency were reported as sufficient. It means the signal length of 0.8 sec is 
optimal to detect lathe’s in-process working mode. 

3.2 Status monitoring  

Machine tool’s real-time status can be measured using various physical 
parameters and different sensor types. Physical parameters such as current, 
vibrations and acoustics can be used for status detection. Also movements in 
working zone can give relevant feedback. A demonstration toolkit of status 
monitoring and pause reasoning gives a simple and effective overview of the 
monitoring module. It is a useful instrument in teaching and in cooperation 
approach with private companies. 

3.2.1 Current consumption based identification 

One option for status monitoring implementation is the usage of current sensors 
to evaluate its utilisation through power consumption. Current sensors were 
used in experiment with the CNC milling machine Dyna Mechtronics EM3116 
in the Department of Machinery of the TUT [Serg et al., 2014]. For data 
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acquisition, National Instruments (NI) WSN nodes, gateway and LabView 
programming environment were used.  

Experiments prove that in milling machine distinguishing switched off, the 
main engine working and spindle turning statuses according current signal, is 
possible (Figure 3.1). Milling machine is switched off within 0 ‒ 50 seconds, 
the main engine is working within a period of 51 ‒ 180 seconds, and the spindle 
is turning within 181 ‒ 330 seconds. Switching on the main engine, current 
consumption grows from 0 to 0.7 A. Turning on the spindle, current 
consumption grows near to 3.2 A. Spindle’s stopping decreases current 
consumption to the prior level of 0.7 A.  

Milling of steel S355J2 with the feed rate 90 mm/min (stable cutting mode) 
and spindle idle turning are visually distinguishable (Figure 3.2). The difference 
between current consumption is below 10 %, 3.2 A in a spindle idle turning and 
3.5 A in a stable cutting mode. The threshold value between the working status 
and stand still can be drawn in 2 A. This position leaves a safety area in both 
directions of current consumption (main engine working and spindle turning 
situations) and results are protected against fluctuations. 

 
Figure 3.1 CNC milling machine current consumption in switched off, main 

engine working and spindle idle turning positions 
 

 
Figure 3.2 Current consumption dynamics in milling of steel S355J2 
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3.2.2 Single point acceleration and acoustic signal based identification 

Vibration and acoustic signal monitoring experiments for machine tools status 
analysis were performed in the plastic working company Nordic Plast [Astapov 
et al., 2012]. The aim was to compare the reliability of status monitoring in 
different machine tools using different physical parameters and different 
analysis methods. All experiments were performed in the natural working 
environment. It means no machine tools were stopped to get silence during 
measurements. Noise can mostly interrupt acoustic measurements of relatively 
quiet machine tools, such as a laser cutting machine, if some noisy operation is 
performed nearby. Experiments were performed in the CNC laser cutting 
machine Vytek LST4896 and in the 3-axis CNC router AXYZ 6020.  

In experiments, the CNC laser cutting machine Vytek LST4896 was used for 
cutting 1 mm thickness polystyrene sheet plastic. Audio signal was measured 
with a Shure SM58 microphone and analogue-to-digital (A/D) converted with a 
Roland Edirol UA-25EX audio signal processor at 44.1 kHz sampling rate in 
mono channel mode, digitalised data was saved to a 16 bit waveform audio file 
(WAV)  format. Microphone was placed near the working zone (Figure 3.3). 
Vibration was measured with the analogue dual-axis accelerometer ADXL311. 
The DAQ device Agilent U2354A was used to A/D the signal at a sampling 
frequency of 1 kHz. An accelerometer was attached to the laser cutting 
machine’s X-axis. All the measurements data was taken using wired solutions. 
Later, analysis was performed using the Matlab programming environment. 

 

 
Figure 3.3 Measuring of acoustic signal in laser cutting 
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CNC router AXYZ 6020 was used for cutting 21 mm thickness plywood sheet 
material. Exactly the same measurement devices and methods were used as in 
laser cutting. An accelerometer was attached to the spindle. 

For data analysis, two feature extraction methods were used and compared, 
the MFCC [Davis et al., 1980] and spectral means. Both of the methods are 
frequency domain based and extract data from the spectrogram.  

The MFCC is an often used method in speech recognition. The MFCC is 
type of wavelet. To calculate the MFCC, the first FFT was applied and 
frequency power spectrum was found, thereafter frequency was converted to the 
Mel-frequency scale as eq. (3.4) [Wang et al., 2002]:  

 

ሺ݂ሻ݈݁ܯ  ൌ 2595 logଵ ቀ1 



ቁ, (3.4) 

 
where ݈݁ܯሺ݂ሻ is Mel-frequency scale and f is frequency (Hz).  

The Mel-frequency scale is similar with human ear, up to 1 kHz it is linear 
and frequencies above are logarithmic. The final step was the Mel spectrum 
conversion back to the time domain and cepstral coefficients were found. 
Discrete cosine transform was used for the conversion. 

Analytical analysis method spectral means is a combination of three main 
steps. At first, signal frame was transformed to the frequency domain using the 
FFT. Then the most distinguishable frequency intervals were found and finally 
the mean values of the frequency intervals were calculated during the analysis 
and concatenated to the feature vector.  

Two different class labelling methods were used for knowledge base 
creation: the correlation classifier and fuzzy classifier. Correlation-based 
classifier compares the received feature vector to knowledge based reference 
vectors. Every class was described with at least one knowledge-based reference 
vector. The highest correlation between the received feature vector and 
reference vector determined the class label. A fuzzy classifier also used 
reference vectors that derived rule base for classification. Degrees of 
memberships were calculated for received reference vectors to the feature 
subspaces. The highest membership in the feature subspace defined the class for 
every particular signal.  

Results show high reliability in most of the analysis combinations (Table 
3.3). It can be seen that an acoustic signal gives more reliable results in laser 
cutting. The reason is that a laser cutting machine generates a specific sound 
that is easily distinguishable but vibrations are low.  In milling, better results are 
achieved by monitoring with accelerometer. The reason is that CNC router’s 
main acoustic source is a vacuum pump that is used for fixing sheet material to 
the cutting table. Vacuum pump works longer than cutting lasts and can cause 
disarrays in analysis. Acoustic from spindle during the cutting is not that 
distinguishable as vibrations. The MFCC feature extraction method gives higher 
reliability than the method of spectral means. Both of the methods are frequency 
domain based and extract data from a spectrogram (Figure 3.4).  
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Figure 3.4 Audio signal and audio signal spectrogram in laser cutting [Astapov et 

al., 2012] 
 

Table 3.3 Percentages of correctly specified signal frames 
Measured 
parameter 

Correlation Fuzzy 
MFCC Spectral 

means 
MFCC Spectral 

means 
Router acoustic 91.76 95.72 98.68 98.72 
Router acceleration 98.39 99.85 99.85 99.49 
Laser acoustic 92.68 97.56 89.02 98.05 
Laser acceleration 91.80 65.80 73.40 87.65 

3.2.3 Multi channel acoustic signal based identification 

In the previously described machine tool status monitoring experiments only 
one sensor was used to collect data for analysis. Experiments with multi-
channel acoustic signal analysis (microphone arrays) that form a field of view 
(FoW) of 15 ‒ 25 mଶ were implemented [Astapov et al., 2014] to test sensing 
reliability from a longer distance in the Department of Machinery of the TUT. 
The idea is that one set of sensors can be used to detect the status in more than 
one machine tool. The uppermost goal would be the detection of all machine 
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tools in a shop floor using one set of sensors that lowers the installation cost and 
uniforms the solution even more. Nevertheless, efficiency growth can be 
achieved even using the same sensors for 2 ‒ 3 machine tools. The other benefit 
is physical independency from machine tool. Moving parts and permanent 
vibrations are harmful for on-board microphones. Furthermore, the extra weight 
of nodes and sensors can unbalance a cutting tool and increase the quality of the 
cutting process. 

Experiments were implemented on the CNC lathe 16B16T1 and on a 
conventional lathe. For measurements, the 16 Vansonic PVM-6052 condenser 
microphones were used on both machine tools. A total of four subarrays were 
used, every subarray has four sensors with a cap between 15 cm. The Agilent 
U2354A DAQ device with a sampling rate of 8 Hz was used for data collection 
and conversion. 

For localisation, the computational load reduction in global maximum 
calculation is performed by an initial search region reduction. For feature 
extraction, indicators such as band energy, central centroid, spectral roll-off, and 
central slope were found. For signal classification, fuzzy rule-based 
classification was used. For conventional lathe measurements, microphone 
arrays were placed angularly (two sub arrays linearly and other two sub arrays 
also linearly but in 90° angle compared with first two sub arrays).  

Optimised results show that linearly placed microphone arrays give 
reliability 90.5% in status monitoring. Angularly placed microphone arrays give 
reliability 94.5%. Angular placement of microphone arrays should be preferred 
according to higher reliability. Also observation of the steered response power 
(SRP) images gives visual synopsis of the machine tool status. As visual 
perception is intuitive and easily detectable, coloured real-time moving images 
such as the SRP are with high potential in machine tool status monitoring. 
Higher power of acoustic emission in the engine area (Figure 3.5) characterises 
main engine working and higher power of acoustic emission in the spindle area 
(Figure 3.6) characterises spindle turning. 

So far, the acoustic signal is mostly captured using wired equipment as in 
this experiment. Acoustic signal requires a high sampling rate and sets high 
requirements to the WSN nodes in case of wireless monitoring. The main 
benefit of microphone arrays is a larger sensitive area and lack of contact from 
machine tools. As wireless solution’s main benefit is to get rid of additional 
wires specially on machine tools to avoid disturbance but microphone arrays are 
physically disconnected from machine tools, making the data transmission 
wireless does not give any big effect. The problem is that so far the FOV is still 
relatively small and using 16 sensors instead of one is not efficient. Creating of 
SRP images is very calculation quantitative and expensive sensors with high 
sensitivity are needed for expanding the sensing area. 
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Figure 3.5 SRP image of lathe engine turned on 

 

 
Figure 3.6 SRP image of lathe spindle turning 
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3.3 Status monitoring and pause reasoning demonstration toolkit 

A novel machine tool status monitoring demonstration toolkit prototype was 
developed and constructed using NI WSN software and hardware components 
to introduce and evaluate machine tools status monitoring importance [Paper 
III]. There were two main reasons for the demonstration toolkit development 
and construction. The first purpose was to test developed solution’s feasibility. 
The second reason was to introduce and illustrate machine tool status 
monitoring application for students and also manufacturing related persons to 
popularise the usage of machine tool status monitoring. The aim was to show 
how simple the installation is and how much relevant real-time and dataset 
based information the monitoring module can collect for further improvements 
in shop floor.  

The demonstration toolkit’s main components are three old-fashioned lathe 
demonstration models with wireless nodes, gateway, and an industrial personal 
computer (PC) (Figure 3.7). Lathe demonstration model bodies are made of 
glossy polymethyl methacrylate (PMMA) sheet plastic to highlight the 
monitoring module’s attractiveness. The PMMA is easy to process and light 
weight thermo plastic. Laser cutting, thermoforming and bonding were used to 
construct the lathe bodies. Front and back sides are made of black PMMA to 
carry along the feeling of oily machine tool. Top, left and right sides are made 
of clear PMMA to hold wiring visible inside the model. Bottom was open for 
further improvements and more curious students. 

 

 
Figure 3.7 Status monitoring demonstration toolkit 
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Lathe models are equipped with energy source, micro motor, on / off / remote 
control switch, pause reasoning feedback buttons, relay, wireless 
communication capability (wireless node), led indicator and wiring between the 
components (Figure 3.8). Three AA batteries are used as energy source. Motor 
is installed at place of spindle to imitate turning spindle. Three position switch 
on / off / remote control was used. As name says, third position is remote 
control. It means, lathe models motors were also remotely wirelessly controlled 
from GUI in an industrial PC to present two directional communication. 

Wireless communication is driven by the NI WSN 3202 that uses a RF 
channel to communicate with the NI gateway 9791. The gateway is connected 
with the PC via an Ethernet cable. 

Voltage is the sensed phenomenon. As voltage in an unpowered cable is 
always bigger than 0.0 V, the threshold value 0.2 V is determined between the 
working and standstill status.  
 

 
Figure 3.8 Demonstration toolkit lathe model components 

 
Additionally to standstill detection, pause reasoning is emphasised. Therefore, 
three pause reasoning buttons are added to the lathe and used by the operator in 
the time of standstill in turning. Three buttons are named as “Planned 
maintenance”, “Fault” and “No order” and are available for operator to press, 
respectively. Planned maintenance is pressed in time of maintenance that is 
previously planned by maintenance mechanic and this stop is taken into account 
in production plan. Fault means unplanned pause that is caused by unexpected 
behaviour of the machine tool. It can be breakage of some machine tool 
components, malfunctioning of the machine tool or a sudden decrease in 
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machining quality. No order means lack of cutting file, engineering drawing, 
raw material or work order. This is directly related to the lack of preparation 
work in office. The number of buttons could be increased to specify the pause 
roots deeper and in more detail in implementation in shop floor. Led indicator 
starts to light, if lathe standstill between working cycles has been longer than 
specified normal setup time. It means, for continuing, the operator has to choose 
one of the buttons to specify the pause reason. Led turns off if one of the 
buttons is pressed as long as the signal moves from the lathe model to the 
control PC and a confirmation signal comes back to the led. 

The NI graphical programming environment LabView was used to design a 
virtual instrument with the GUI to detect real-time and also dataset based 
information. The programme defines relations and connections between 
components and the GUI, senses voltage threshold value and programme 
peculiarity (Figure 3.9). 

 

 
Figure 3.9. Fragment of block diagram of status monitoring program in LabView 

 
The GUI is divided into four views. In the main view, there is an activity 
indicator light for every workbench and this is lit when particular lathe motor is 
working. Additionally, remote control status is presented and there is a remote 
control. The second view is for pause reasoning monitoring and standstill 
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reasons are displayed in real-time for every lathe. The third view is for dataset- 
based information. The fourth view is important for maintenance as it shows 
error messages for debugging, battery load in voltages, and wireless 
communication quality in percentages.  

The designed demonstration toolkit has been introduced to mechanical 
engineering master students, who have been positively surprised to see 
physically and test state-of-the-art monitoring solutions. The demonstration 
toolkit has also been an icebreaker between the TUT and private manufacturing 
companies to start new projects together. 
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4 RESULTS AND DISCUSSION 

4.1 Results 

In CNC turning, both acceleration sensor based range value analysis in time 
domain and acoustic sensor based frequency spectrums analysis in frequency 
domain show a distinguishable difference between a failure situation and a 
stable working mode. Graphical representation of acceleration signal shows a 
visual difference between stable turning and turning with failure that ended up 
with tool breakage. In CNC turning stable working mode and unstable working 
mode are also distinguishable based on accelerometer measurements and range 
value analysis in the time domain. According to the analysis, 130 successive 
measurement values with 160 Hz frequency were reported as sufficient in 
accelerometer-based monitoring. 

In the CNC milling machine, current consumption monitoring, based on 
threshold values, enables to distinguish machining statuses as switched off, the 
main engine working, and the spindle turning. Whereas current consumption 
difference in spindle idle turning and in a stable cutting mode are lower than the 
accuracy of the measuring device. 

In laser cutting, acoustic signal-based status monitoring with spectral means 
extraction method and with a fuzzy classification algorithm shows high 
reliability, 98.05%. In CNC routing accelerometer-based monitoring, two 
analysis methods gave the same high result 99.85%: spectral means feature 
extraction with correlation based classification and the MFCC feature extraction 
with a fuzzy classification algorithm.  

In turning, multichannel acoustic signal monitoring shows that linearly 
placed microphone arrays give reliability 90.5% in status monitoring. Angularly 
placed microphone arrays give reliability 94.5%. 

4.2 Discussion 

Various machine tool status monitoring sensing methods with various analysis 
methods were experimented. Different methods have different benefits and 
drawbacks. Current consumption measurement-based method is easy to analyse 
through the threshold value. However, the drawback of this method is that the 
measuring device must be connected in series connection before the machine 
tool. It means that an ammeter must be between a plug and the machine tool, 
therefore electrical input for machining passes the measuring device first. It 
means failures in the ammeter can cause problems in machining and decrease 
the availability and reliability of machine tool. The benefit of acceleration 
sensor-based measurements is a wider usage of sensed data. The in-process 
vibration helps estimate also the working mode, cutting tool condition and the 
part surface roughness. On the other hand, the drawback is that accelerometer 
needs very close connection with cutting tool ‒ workpiece contact point but it 
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needs protection in case of cooling fluid usage in machining. Multi-channel 
acoustic sensors measurement based method has great potential if sensing area 
could be expanded to the whole shop floor. The benefit of multi-channel 
measurement is also a nonphysical contact with the machine tool that means 
easier installation. 

The proposed modular design of machining processes monitoring system 
allows implementation and installation of monitoring modules step by step. It 
makes the implementation of machining processes monitoring affordable also 
for low budget SMEs. Furthermore, wireless sensors are easier and cheaper to 
install than wired solutions. After obtaining increased efficiency in productivity 
and increased product quality with the first monitoring module, managers are 
probably in favour to expand the system with new modules.  

When using wireless sensors in monitoring it is important to be aware of 
some peculiarities. 
 Wireless sensors use batteries for energy consumption. It means that 

nodes are not purely maintenance free. The RF is the biggest energy 
consumer. Energy consumption can be diminished through on-board 
computing and transmission of analysed data only. For instance, NI WSN 
nodes are powered with four AA-batteries and offer up to three-year 
lifetime [NI, 2014].  

 Manufacturing environment decreases the broadcast area of transmission 
of wireless nodes. For instance, NI gateways use 2.4 GHz, IEEE 802.15.4 
radio to communicate with nodes up to a 300 meters outdoor range with 
line of sight [NI, 2014]. In metal working industry, interference by metals 
causes the noise that decreases the transmission area. In this reason, 
special router nodes must be used to shorten the transmission distances. 

 Wireless nodes sampling frequency must be in accordance with sensed 
data characteristics. Measuring vibrations or acoustics with sampling 
frequency 1 Hz does not give adequate information. According to test, 
160 Hz sampling frequency in a lathe working mode detection gives 
optimum results. In contrast, temperature monitoring on lathe spindle 
bearing with sampling frequency 1 Hz is sufficient.  

“Real-time” in monitoring manner means as soon as possible. Data 
collection, extraction, analysis, transmission and displaying – everything takes 
some time. For a working mode detection 0.8 seconds was found to be optimum 
time of vibration signal length for analysis. The time for data processing 
depends on a number of computational operations that are needed for achieving 
reliable results. Processor speed is characterised with Hz. For instance, 1 kHz 
processor can make 1000 computational operations per second. Transmission 
speed depends on nodes configuration in energy consumption point of view. If 
the node’s RF channel is held awake all the time, data is transmitted 
immediately. Being awake means continuous energy consumption even in 
operation break times such as lunch break. Another option is to configure nodes 
to wake up the RF module periodically to send out data periodically (for 
instance once per second). Optimum relationship between energy consumption 
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and transmission speed needs to be found for every monitoring module. 
Depending on previously described configurations, real-time monitoring delay 
is about 2 ‒ 3 seconds. 

In machine tool health monitoring, in status monitoring and in tool insert life 
monitoring a 2 ‒ 3 second delay is acceptable, while failure prevention on 
working mode monitoring is difficult by the operator. The operator also has 
reaction time needed for changing / stopping a process. Incorrect working 
parameters can cause a failure (tool insert breakage) with few seconds. For 
relatively unstable working condition control, adaptive feedback is more 
reliable than operator. However, in working mode smoothing for quality 
assurance and control, the operator is essential. 

For status monitoring module, different vibration, acoustics and current 
consumption based experiments were conducted. In some cases, spindle idle 
turning and stable cutting operation are hard to distinguish. But the main engine 
working and stable cutting mode are reliably distinguishable. Spindle idle 
turning situations are not productive and should be avoided in the 
manufacturing shop floor. Therefore, spindle idle turning and cutting status 
distinction is not crucial and does not affect reliability of machine tool status 
monitoring. 

In the same way as in WSN communication, the RFID communication can 
also be interfered by metals. Typical label-type tags with dipole-like antennas 
do not work efficiently on metallic surfaces. A metallic surface changes the 
radiation pattern, radiation efficiency, resonant frequency, and input impedance. 
Microstrip-based antennas have been modified to work on metal surfaces but 
these are considerably more expensive to manufacture. In metal industry 
sometimes RFID tags are separated from metal with thin low dielectric material 
as flexible foam layer. A 3.2 mm thick foam layer between metal surface and 
the RFID tag improves the reading distance by about 85% [Mohammed et al., 
2009]. Additionally, the Confidex Ironside on-metal Gen2 UHF tag [Confidex, 
2014] is invented for on-metal applications.  

The DOMe usage in machining operations as turning has been investigated 
only theoretically and its machining environment usability has not been tested 
so far. One of the challenges in the DOMe adaptation in turning is the RFID 
readability in high speed turning. This can be solved with workpiece DOMe G-
code related information copying and temporary storage into smart environment 
or cutting tool memory. The second challenge is G-code’s smooth recognition. 
The problem is that there are more than 5000 different dialects of the G-code. In 
principle, every machine tool controller – the CAM pair has a unique language. 
They are all called the G-code but they have slight differences and 
modifications. Mostly the main G and M codes are the same but there are 
differences in string numeration, number zero addition on front of some 
numbers, etc. The third challenge is the correct preservation of the RFID tag 
during operations and selection of the attachment area. The tag must not be 
attached to the surface which are worked during manufacturing processes or has 
to be repositionable between machining processes.  
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5 CONCLUSIONS 

Conclusions 
The general conclusions of the work are as follows.  

1. A new approach for wireless real-time machining processes monitoring
system development and implementation was introduced.

 It was found that appropriate monitoring system for SMEs is modular and
step by step expandable. Modularisation of the monitoring system was
performed based on application modules information characteristics. The
machine tool monitoring system was composed from five modules:
machine tool health monitoring, status monitoring with pause reasoning,
cutting process working mode detection, tool insert life monitoring and
part quality monitoring with on-board data storage.

 A value-centric approach in planning of monitoring modules enables to
keep the focus on the main problem and to obtain a knowledge-based
solution.

 The developed concept of Monitoring cycles for performance
improvement structures the monitoring system according to the main
interested parties, determines their main responsibility in the performance
improvement chain, and indicates the related relevant monitoring
information. It divides the main interested parties into four groups: the
mechanic, the operator, the production manager, and the top manager.

2. In status monitoring experiments, high reliability was achieved and a
demonstration toolkit was constructed.

 In laser cutting, the highest reliability 98.05% was achieved using the
acoustic signal-based spectral means extraction method with fuzzy
classification algorithm.

 In CNC routing, the highest reliability 99.85% was achieved in
acceleration based monitoring. Two analysis methods gave the same
result: spectral means feature extraction with correlation based
classification and MFCC feature extraction with fuzzy classification
algorithm.

 In CNC milling, threshold value 2 A was found to separate main engine 
working and spindle turning statuses.

 A novel demonstration toolkit model for machine tools status monitoring 
and pause reasoning with real-time GUI was successfully used in 
introducing of machinery monitoring system options for private 
companies to start new projects and also for master course students.
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3. Concept for the DOMe integration into part and machining quality automatic 
real-time monitoring and data storage was developed. According to the 
developed concept, every workpice DOMe contains its processing G-code 
that can be used together with smart cutting tool based in-process signal to 
evaluate tool condition, part surface roughness and cutting mode.  

 
Novelty 
Novel solutions as follows were proposed and presented: 

 A new approach in planning and structuring for monitoring of machining 
processes was presented. Novelty lies in the combination of following 
features: modularity of monitoring system, value-centric application 
design, in-process machining signal evaluation, wireless data collection, 
gathered data personalisation, and distribution to every interested party in 
real-time. Furthermore, a novel structuring concept of “Monitoring cycles 
for performance improvement” was introduced. 

 New sensing, feature extraction and analysis combinations for various 
machine tools status detection were experimented and analysed. For 
instance, laser cutting was monitored using acoustic sensor, spectral means 
feature extraction and fuzzy logic based class labelling method (reliability 
98.05 %); the CNC router was monitored using accelerometer sensor, 
MFCC-based feature extraction and fuzzy logic based class labelling 
method (reliability 99.85 %); the CNC lathe was monitored using set of 
acoustic sensors, multiple feature extraction methods and fuzzy rule-based 
classification method (reliability 90.5 %). 

 A novel WSN and LabView based status monitoring and pause reasoning 
demonstration toolkit with real-time GUI was developed, designed, and 
constructed. The demonstration toolkit is portable and easy to use in the 
class room and in meetings with potential project partners. 

 A concept of DOMe integration into part and machining quality automatic 
real-time monitoring in turning. Novelty lies in DOMe usage in machining 
process automated quality monitoring. Evaluation of the in-process signal 
is executed according to the presently running G-code. The relevant data is 
also stored in the related DOMe and the data is available all over the 
becoming product further life cycle.  

 
Further research 
Development of the CPPS continues to achieve the objective, 30% overall 
efficiency growth in the shop floor and to announce the beginning of the fourth 
industrial revolution. 

An intelligent manufacturing environment together with monitoring 
applications move towards the concepts of IoT and All IP. These concepts 
gather the idea that every component in the shop floor is equipped with an 
embedded computer, Internet protocol (IP) address and Internet connection 
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capability. It would allow direct online monitoring, without gateways as data 
collectors and distributors. Additionally to explicit technical solution, it also 
requires crossing of psychological barrier to enable switching over Internet and 
communication between components. Today, most of office-related information 
in companies has already held in cloud and managers are probably open for 
similar development for shop floor-related actions.  

Similar IP address-based solution is researched also in the field of electrical 
engineering. A concept of smart grid is introduced and developed to optimise 
energy consumption in constant change and volatile energy price situation. As 
prices of the energy stock are continuously changing, depending on the number 
of consumers (demand) and quantity of produced energy (supply), automatic 
production lines could be added to the smart grid system. 

Machining processes real-time wireless monitoring needs further research in 
next areas. 

 Connection of a smart grid with machine tool monitoring to optimise the 
company efficiency through diminishing the manufacturing input cost. 
Production lines could be run more in time of lower energy cost and 
maintenance served in energy cost peak times.  

 Further analysis and development of in-process signal related algorithms 
is needed to evaluate more precisely machine tools working modes and 
cutting tool condition.  

 Experimentation and evaluation of DOMe-based machining process 
monitoring with automated monitoring information storage on-board of a 
part. 

 Further improvement of semantic context based communication between 
components, machine tools, products and workers in shop floor is the 
topic with high importance. This is the key factor to achieve seamless 
automated flow of processes beyond all shop floor activities. 
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ABSTRACT 

Wireless Real-time Monitoring of Machining Processes 
 
Changes in customer expectations have led to changes in the manufacturing 
environment. High flexibility and mass customisation are considered as main 
trends in the shop floor. To avoid decrease in productivity and furthermore to 
turn the inevitable chances to the strength, fast and trustful feedback from 
machine tools is needed. A tool for its realisation is real-time monitoring of the 
machining in-process signals. 

The main objective of the research is to develop modules of wireless real-
time machining processes that form a monitoring system. The purpose of the 
new approach is to make modules of machining processes monitoring system 
easily implementable and affordable for industrial manufacturing SMEs, while 
retaining monitoring system reliability. To obtain the purpose, the following 
subtasks are in focus: development of monitoring modules based on machining 
processes in-process signals and wireless sensors; analysis and evaluation of 
machine tool working mode and machine tool status monitoring experimental 
data; construction of machine tools status monitoring prototype toolkit with 
real-time GUI; working out the concept for RFID and DOMe-based tracking 
solution integration into parts machining performance monitoring module. 

The new methodology composes a monitoring system from five independent 
modules: machine tool health monitoring, machine tool status monitoring with 
pause reasoning, cutting process working mode detection, tool insert life 
monitoring, and part quality monitoring with on-board data storage. The new 
concept of monitoring cycles for performance improvement bonds the modules 
into the enterprise level system and divides the modules between main 
interested parties according their main tasks for ensuring seamless and efficient 
manufacturing flow. The value-centric approach in planning and development 
keeps the focus in main problem and obtains knowledge-based solutions. 

Research analysis and compares various machine tool status monitoring 
techniques. Various in-process signals as vibrations, acoustics and current are 
analysed in time and frequency domain. Various feature extraction methods as 
MFCC, spectral means, band energy, spectral centroid, spectral roll-off and 
spectral slope are used in combination with various classification methods, such 
as fuzzy rule-based classification and correlation-based classification. High 
reliability is achieved in laser cutting, turning, and milling. Time domain range 
value based analysis is performed in working mode evaluation and optimum 
measuring parameters detection. Additionally, a novel status monitoring 
prototype demo toolkit with real-time GUI is introduced. 

The thesis proposes a new concept to integrate the DOMe into part and 
machining quality automatic real-time monitoring and data storage. Intelligent 
environment uses the on-board G-code with smart cutting tool based in-process 
signals to evaluate tool condition, part quality and cutting mode.  
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The new approach of machinery monitoring system gives instructions for the 
system reasoned implementation in SMEs. It enables to start with smaller cost 
that has been the main obstacle for many companies so far. Additionally, digital 
object memory implementation in monitoring system enables to make 
automated quality control and reuse the physical product-related information 
through the product lifecycle. 
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KOKKUVÕTE 

Juhtmevaba reaalajas lõiketöötluse monitooring 
 
Muutused klientide ootustes on avaldanud mõju ka protsessidele 
tootmiskeskkonnas. Paindlikkuse kasv ja väiksemaks muutuvad partiid on 
saanud peamisteks trendideks tootmistsehhis. Selleks, et need muutused ei tooks 
kaasa tootlikkuse langust, vaid vastupidi, tugevdaksid ettevõtte positsiooni, on 
hädavajalik saada kiiret ja usaldusväärset tagasisidet tootmisseadmetelt. 

Töö peamine eesmärk on arendada lõikeprotsesside juhtmevabu reaalajalisi 
monitooringu mooduleid, mis üheskoos moodustavad monitooringu süsteemi. 
Uudse lähenemisviisi eesmärk on muuta lõiketöötlusprotsesside monitooringu 
moodulid lihtsamalt evitatavaks ja esmase investeeringu summa poolest 
atraktiivsemaks väikese ja keskmise suurusega tootmisettevõtetele. Kuid samal 
ajal säilitades monitooringu süsteemi usaldusväärsuse. Eesmärgi saavutamiseks 
on fookus suunatud järgmistele tegevustele: lõikeprotsessi siseste signaalide ja 
juhtmevabadel anduritel põhinevate monitooringu moodulite arendus, 
tootmisseadmete töörežiimide ja tööaja jälgimisel põhinevate 
eksperimentaalsete tulemuste analüüs ja hindamine, tootmisseadmete tööaja 
jälgimise prototüüpmudeli valmistamine koos reaalajalise graafilise 
kasutajaliidesega, RFIDl ja digitaalsel objektimälul põhineva jälgimislahenduse 
integreerimine detaili lõikeprotsessi hindamise monitooringu moodulisse.  

Uudse metoodika kohaselt koosneb monitooringu süsteem viiest iseseisvast 
moodulist: tootmisseadmete seisundi jälgimine, tootmisseadmete tööaja 
jälgimine koos pausi põhjuste selgitamisega, lõikerežiimi jälgimine, lõiketera 
seisundi jälgimine ja detailide kvaliteedi jälgimine koos info salvestamisega 
detailile. Uudne lähenemisviis põhineb tulemuslikkust parendavail 
monitooringu tsükleil. Monitooringu tsüklid jagavad monitooringu moodulid 
kaasatud osapoolte vahel vastavalt iga osaleja peamisele tööülesandele ühtlase 
ja efektiivse tööprotsessi säilitamiseks. Väärtuskeskne lähenemine moodulite 
plaanimisel ja arendamisel hoiab fookuse põhiprobleemil ja võimaldab 
saavutada teadmuspõhist lahendust.  

Töös uuritakse ja võrreldakse erinevaid tootmisseadmete tööaja jälgimise 
tehnoloogiaid. Erinevat tüüpi protsessisiseseid signaale nagu vibratsioon, 
akustika ja voolutugevus analüüsitakse nii aja- kui ka sagedusvallas. Erinevad 
signaali iseloomustavate tunnuste väljavalimise meetodid on kombineeritud 
erinevate signaalide klassifitseerimise meetoditega ja omavahel võrreldud. Selle 
tulemusel on kõrge usaldusväärsusega tulemused saavutatud treimisel, 
laserlõikusel ja freesimisel. Töörežiimide hindamine ja optimaalsete 
mõõteparameetrite välja selgitamine on läbi viidud ajavallas kasutades 
peamiselt signaalide haaret. Lisaks sellele tutvustatakse uudset tootmisseadmete 
tööaja jälgimise ja pausi põhjuste tuvastamise prototüüpi, mis jagab reaalajalist 
infot graafilise kasutajaliidese vahendusel. 
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Töös pakutakse välja uudne kontseptsioon digitaalse objektimälu 
integreerimiseks detaili ja selle lõiketöötluse automaatseks reaalajaliseks 
monitooringuks ja saadud andmete salvestamiseks. Tooriku mälus oleva G-
koodi ja targa tööriista poolt mõõdetavad lõikeprotsessi sisesed signaalid 
seotakse omavahel intelligentse keskkonna vahendusel, et automaatselt hinnata 
tööriista olekut, detailide kvaliteeti ja lõikerežiimi ning salvestada saadud 
informatsioon tootele. 

Välja töötatud uudne lähenemine lõiketöötluse monitooringu süsteemile 
annab juhiseid selle läbimõeldud evitamiseks väike- ja keskmise suurusega 
ettevõtetes. See võimaldab alustada monitoorimist väiksemate algkulutustega, 
mis on siiani olnud paljudele ettevõtetele peamiseks takistuseks. Lisaks 
võimaldab objektimälu kasutusele võtmine lõiketöötluse monitooringus 
pakkuda automaatset kvaliteedikontrolli, mis seotakse füüsilise tootega kogu 
selle elutsükliks. 
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