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Introduction

Internal gravity waves

Internal gravity waves (IGWs), more often called internal waves (IWs), are one
of the key components of both linear and nonlinear wave motions in stratified
basins. The formation of IWs requires the presence of vertical density
stratification of the water bodies as a critical background factor. They may be
excited by a variety of external forces that disturb such a stratified fluid
(surface pressure gradient, diverging or converging surface layer motion, sea-
level variations, flow over topography, etc.). The restoring force is the
difference between buoyancy and gravity force, frequently called net gravity.
Differently from surface waves, even large-amplitude IWs in the ocean or
atmosphere do not necessarily need massive amounts of energy for their
generation. This is because the density differences between the water masses in
natural conditions are small compared with the drastic density jump (about
1000 times) between the air and water, as for surface waves. Therefore the
amplitude of IWs can easily be by one order of magnitude greater than that of
surface waves with comparable energy.

IWs do not produce noticeable sea-level displacements. They still
frequently become evident due to the movement of water particles: the IW
motion creates convergence and divergence bands on the sea surface. Floating
material and/or surfactant films are accumulated in the convergence bands,
marking the existence of IWs. IWs also cause changes in the reflectivity of the
sea surface (slicks and rips) due to changes in capillary wave properties owing
to the associated velocity fields.

Similarly to surface waves, IWs play several important roles in the
dynamics of water masses. The propagation of small-amplitude, practically
linear IWs leads to a negligible impact on the water body. In natural conditions
IWs usually propagate in basins of variable depth. The wave field often
experiences transformation from large basin-wide scales to smaller scales.
Similarly to surface waves, IWs become shorter and steeper in this process. As
long as the associated changes to wave properties do not lead to wave breaking
and local instability, nothing dramatic will happen. However, if a combination
of vertical density gradient and shear of horizontal currents in some layers
owing to the IW propagation leads to a sufficiently small Richardson number
Ri (Ri< },), the lighter water will mix with the deeper heavier water, giving

rise to vertical diffusion of substances into lower depths. This mixing is chiefly
responsible for the ventilation of the deeper waters and the homogenization of
the water through the basin depth (Babu et al., 2010; Grimshaw et al., 2011;
Hutter, 2012). These processes are usually addressed in physical and dynamical
oceanography or meteorology, but they play an important role also in the
ecological and geological development of the basin.

Large-amplitude IWs are highly significant for sediment resuspension and
transport (Bogucki and Redekopp, 1999; Stastna and Lamb, 2008; Reeder et



al., 2011) and for the biology on the continental shelf (Sandstrom and Elliott,
1984). The accompanying currents cause strong forces on marine platforms and
submersibles, the associated strong distortion of the density field has a severe
impact on acoustic signalling (Chin-Bing et al., 2009; Warn-Varnas et al.,
2009; Sridevi et al., 2010) and their capacity to break and impact the local
microstructure has major consequences for the understanding of interior ocean
mixing (Muller and Briscoe, 2000).

IWs are believed to be responsible for substantial damage (Chakrabarti,
2005; Osborne 2010). Large water velocities in intense IWs can create
enormous local loads and bending moments and represent a potential danger to
off-shore structures, such as oil platforms, drill rigs, etc. They have been
reported to displace oil platforms as much as by 200 m in horizontal direction
and 10 m in vertical direction. Nonlinear IWs may cause significant (up to a
factor of 2) increases in anchor tensions (Osborne et al., 1978; Song et al.,
2011). The maximum force caused by such a wave associated with a peak
horizontal velocity of 2.1 m/s compares with the force exerted by a surface
wave with a wavelength of 300 m and a height of 18 m (Du et al., 2007). Using
limited observational data of IWs in the northern South China Sea, Cai et al.
(2003) conclude that intensive IWs can exert much larger forces and torques on
a structure than surface waves. The danger from IWs is considered so critical
that, similar to the systems of tsunami warning, the potential for automated
detection systems for large-amplitude IWs (internal soliton early warning
system) is being discussed now. Such systems were even tested to support
drilling campaigns and guarantee the safety of drilling platforms (Stober and
Moum, 2011).

An interesting phenomenon, called deadwater and known to seamen for
centuries, is also directly connected to I[Ws. When travelling into a fiord, or
near a melting ice sheet, ships seemed to come to a halt, and even at full power
they would only make very slow progress. The polar explorer Fridtjof Nansen,
the leader of the Norwegian North Polar expedition to the Arctic in 1893—-1896
reported the following experience aboard the small research vessel Fram, as he
was tracking the ice drift across the Arctic: ‘On Tuesday, August 29th, 1893,
the Fram got into open water in the sound between the Island of Taimyr and
the Almgqvist Islands and steamed in calm water through the sound to the north-
east... . We took a course to ice edge to pull in to it, but the Fram had got into
“dead-water”, and made hardly any way, in spite of the engine going at full
pressure. It was such slow work that I thought I would row ahead to shoot
seals... . The speed must have reduced to 1-1.5 knots in the dead-water... The
water at the surface was almost fresh, whereas through the bottom-cock of the
engine room we got perfectly salt water’ (Nansen, 2007). Later, scientists
discovered the cause of this phenomenon: the radiation of energy through the
so-called internal wake wave, a system of IWs created by the ship’s movement
similar to wake waves on the sea surface (Mercier et al., 2011).

There has been speculation that the loss of the submarine USS Thresher in
1969 came from an intensive IW impulse carrying the submarine rapidly into
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water deeper than its crush depth. ‘The nuclear submarine USS Thresher was
lost with all hands on board. Prior to the sinking there had been no indication of
equipment malfunction or unusual storm weather. While submerged,
submarines attain neutral buoyancy by flooding or jettisoning seawater from a
series of ballast tanks. An effective way for a submarine to avoid being
detected by surface vessels is to dive and cruise silently along density
pycnoclines, which tend to reflect the engine noise downward and sonar pulses
from above upward. US Navy scientists speculate that the USS Thresher was
probably cruising along a pycnocline when it encountered a large IW. Because
of its neutral buoyancy, it is thought that the submarine suddenly slid down the
wave's back side, down to greater depths. Unable to compensate for this sudden
fall, the submarine exceeded its design depth and imploded with loss of all life’
(Pinet, 1992, 2003). Osborne (2010) describes another incident in the Strait of
Gibraltar. A possible explanation for the damage to the Victor class Russian
submarine was that it might have been carried to the surface by an IW of posi-
tive polarity, followed by an impact with a surface ship. Although both possi-
bilities are unconfirmed they do illustrate the potential for energetic IWs to in-
fluence submarine ballasting. Atmospheric IGWs can intensify tornado gener-
ation (http://science.nasa.gov/science-news/science-at-nasa/2008/19mar_grits/).

Solitary internal gravity waves in shallow seas

This thesis focuses on large-amplitude localized IWs, which propagate in
relatively shallow areas of oceans, shelf regions or semi-sheltered seas. A
fascinating feature of many waves of this kind is that they propagate for a long
time without any significant change of their energy or shape as solitons do.
They can be interpreted and adequately described as solitary internal waves
(SIWs) and are often referred to as internal solitons. Strictly speaking, the term
‘soliton’ is reserved for elastically interacting solitary waves in integrable
systems (Drazin and Johnson, 1989), but we will nevertheless follow the
widely used custom (Soomere, 2009) and call these waves internal solitons.
Such a terminology is particularly justified here because, as a first
approximation, these waves can be successfully modelled by integrable
equations of Korteweg—de Vries (KdV) type. Observations of large-amplitude
IWs are presented in many original research papers and reviews (Ostrovsky
and Stepanyants, 1989; Jeans, 1995; Grimshaw, 2002; Holloway et al., 2002;
Jackson, 2004; Ostrovsky and Stepanyants, 2005; Sabinin and Serebryany,
2005; Vlasenko et al. 2005; Helfrich and Melville, 2006; Apel et al., 2007;
Grimshaw et al., 2007).

Various appropriate mathematical models have been developed to describe
nonlinear IWs (Grimshaw, 2002; Grimshaw et al., 2007; Pelinovsky et al.,
2007). The first study of internal solitons was based on the nonlinear boundary
problem for the stream function (Dubriel-Jacotin, 1932; Long, 1953). This
approach is based on the Dubreil-Jacotin—Long (DJL) equation that is formally
equivalent to the full set of Euler equations and remains popular in numerical
simulations of large-amplitude solitons (see Vlasenko et al., 2005; Helfrich and
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Melville, 2006; Dunphy et al., 2011 and references therein). The unsteady
dynamics of small-amplitude soliton-like IWs was first analysed in the
framework of the KdV equation (Benney, 1966). More complicated models
based on the extended versions of the KdV and Boussinesq equations have
been developed for moderate- and large-amplitude waves. Now the direct
numerical simulation of IWs in the framework of the basic 2D and 3D Euler
equations is being actively carried out (Grue et al., 1999; Lamb, 2002;
Vlasenko et al., 2005, Maderich et al., 2010, 2012) to study the generation,
propagation and breaking of internal solitons.

Outline of the thesis

Chapter 1 presents an overview of theoretical concepts and asymptotic
techniques used to address unidirectional IWs in a stratified medium and
expands further towards detailed analysis of IWs in a generic three-layer
environment and in several specific cases (the Baltic Sea and the South China
Sea). As the relevant derivations are usually presented in the scientific
literature for specific cases, it is instructive to describe this technique in a
general manner. Doing so makes it possible to naturally distinguish different
balances of nonlinear and dispersive terms from a unique framework and also
to specify different regimes of wave propagation. The presented material is to a
large extent classical but several developments in Papers I, IV and V are
highlighted as well.

In Chapter 2, based on Papers IV and V, the theory described in Chapter 1
is extended to higher orders for lower-mode IWs in one special stratified
medium because of vanishing lower-order nonlinear terms, and the higher-
order extension of weakly nonlinear theory is considered. A key development
is the derivation of a new so-called (2+4)KdV-like equation for IWs in a
symmetric three-layer fluid. Its solitary wave solutions are found and their
behaviour is analysed.

Chapters 3 and 4 extend further the analysis of the properties of IWs in
realistic conditions. Chapter 3 mostly follows Papers III and VI. It first presents
an overview of existing observational evidence of IWs in the Baltic Sea. The
key development of this chapter is a thorough description of the spatial and
seasonal variability of the basic average kinematic and nonlinear parameters
governing the propagation and transformation of IWs in this basin. In
particular, different nonlinear wave regimes are mapped in detail together with
estimates of potential values of horizontal velocities excited by various IW
regimes. Finally, the basic properties of extreme surface wave conditions in the
southern Baltic Sea (probably the most intense IW generation area in the
Baltic) are analysed.

Chapter 4 focuses on the propagation and transformations of IWs in the
Baltic Sea and two other strongly stratified basins of the World Ocean. In the
South China Sea IWs are regularly excited by tidal flows while the excitation



of IWs in the Barents Sea is substantially modified by the effects of the Earth’s
rotation. The presentation follows the material published in Papers I and II.
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1 Theoretical models for nonlinear internal waves
in shallow seas

In this chapter the basic theory of weakly nonlinear unidirectional IGWs in
shallow and coastal waters, properties of SIWs and velocity fields induced by
them are briefly reviewed in the framework of equations of the KdV family.
Although a large part of the material is classical, the relevant derivations are
usually presented in the scientific literature in much narrower context. One of
the aims of this chapter is to describe the appropriate asymptotic technique in a
general and systematic manner. The theory was used and the relevant results
are presented in Papers I and I11.

The derivation of equations of the KdV family in the context of IGWs
propagating over a horizontally homogeneous sea and in a variable background
is shortly reproduced in Section 1.1. Single-soliton solutions of the specified
integrable equations are given in Section 1.2. The structure of local currents
induced by these waves is discussed in Section 1.3.

1.1 Weakly nonlinear models of unidirectional internal
waves based on equations of the KdV family

The main advantage of weakly and moderately nonlinear models of IWs in the
stratified basins based on the KdV-family equations is the use of average
properties of the water column to understand the wave motion. The operation
of averaging eliminates the vertical coordinate and leads to certain (1+1)-
dimensional [(1+1)D] equations that depend only on the horizontal coordinate
and time. In the case of the unidirectional wave propagation, the main
properties of nonlinear IWs can be analysed analytically. Numerical simulation
in the framework of such models does not require excessive computational
time, and various scenarios of the IW dynamics taking into account the variable
depth, horizontal variability of the density stratification and wave energy
dissipation can be studied.

In general, one has to consider a nonstationary three-dimensional (3D)
hydrodynamic problem for the description of IWs in realistic conditions. It is
well known that for idealized conditions (in particular, for basins of constant
depth) the IW field can be presented as a superposition of wave components
with different vertical structure (modes) and propagating with different speeds.
If the generation of IWs has a local character, the different modes far from the
generation area will be separated from one another due to dispersion (the
difference in propagation speeds). Therefore, they will not interact any more
and can be analysed independently. This property makes it possible to
eliminate the dependence of the particular wave component on the vertical
coordinate. Consequently, the evolution equation describing the dynamics of a
selected mode with a fixed vertical structure includes only the horizontal
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coordinates and time and is incommensurably simpler than the initial (3+1)D
hydrodynamic system.

This idea to simplify the hydrodynamic equations is employed in this
section for unidirectional IW propagation. The basic model here is the Gardner
equation (an extended version of the KdV equation). While the KdV equation
contains one quadratic nonlinear term, the Gardner equation contains a
quadratic and a cubic nonlinear term. The main properties of the nonlinear [IWs
can be analysed analytically in the framework of the Gardner equation. In this
model a travelling IW in the stratified water can have various shapes such as
solitary wave (soliton) of elevation or depression, multi-soliton pulse or
oscillating wave packet (breather). They can appear from various initial finite-
length disturbances.

For the interpretation of the observed dynamics of IWs it is necessary to
take into account the variable depth, horizontal variability of the vertical
stratification in density and shear flow. Such effects are incorporated in the
theoretical model leading to the wvariable-coefficient Gardner equation.
Interesting effects become evident here when the coefficients (one or both) at
the nonlinear terms of the Gardner equation vanish. For example, the soliton
solution is generally destroyed at such critical points and looses its identity.

Derivation of the Korteweg—de Vries equation and its extensions for
unidirectional IWs in a horizontally homogeneous sea. Weakly nonlinear
models for long [Ws are actively used to describe IW propagation in seas and
lakes. They are based on the KdV equation and its generalizations (Benney,
1966; Kakutani and Yamasaki, 1978; Lamb and Yan, 1996; Holloway et al.,
2001; Grimshaw et al., 2002). Such equations are derived by using a multiple
scale method (Engelbrecht et al., 1988; Nayfeh, 2004) for an asymptotic
analysis of the governing Euler equations for an inviscid incompressible
stratified fluid. We shortly bring here the procedure of the derivation of the
KdV-like equations in 2D (vertical plane) geometry (Pelinovsky et al., 2000;
Grimshaw et al., 2002). A similar procedure is applied in Papers [V and V for
the derivation of more complicated equations for certain specific situations.

The Euler equations for an inviscid incompressible stratified fluid in terms
of the stream function i and buoyancy b are written as

JAy db

= T s Jy.,Ay), ,
ot ox WAy (1.1

ob PN 14

—+N —=J(v,b), 1.2
o (2) ™ (w.b) (1.2)

where (u,v)=(dw/dz,0w/dx) are the horizontal and the vertical components
of the velocity field, respectively, b= p'/gp, is density disturbance (often

called buoyancy parameter), the z-axis is vertical and positive against the
direction of the gravity force, g is the gravity acceleration, po(z) is the
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undisturbed density of fluid, J(4,B)= A, B, — A_B, is the Jacobian and N(z)
is the buoyancy (Brunt-Viisild) frequency

N(z)= }—% (1.3)
Podz

The fluid (Fig. 1.1) is assumed to be confined between two rigid boundaries:
z=—h (bottom) and z=0 (free surface). In fact, the ‘rigid lid’ assumption on
the free surface works very well in natural water basins due to the weak
variation of the water density compared with the density jump on the surface.
Thus, the boundary conditions for Egs. (1.1) and (1.2) have the form:

W e
ax( —0)—ax( h)=0. (1.4)

It is convenient to introduce the isopycnal (Lagrangian) coordinate
y=z-{(x,z,1), (1.5)

where {'(x,z,7) is the vertical displacement of a fluid particle from its rest
position. Thus, the density p(x,z,t) = p, (y) is ‘frozen’ in this representation.
Vertical coordinates y and z coincide in an undisturbed state and are equivalent
to represent background quantities. We also assume that the horizontal velocity
field u(x,z,t) can be decomposed into the unperturbed horizontal shear flow
velocity U (y) and its perturbation u'(x,z,t): u=U +u'.

Considerable simplifications of Egs. (1.1) and (1.2) are possible if waves
are relatively small and long. Let us consider the weakly nonlinear limit when
the wave amplitude a is finite and small relative to the water depth 7,

equivalently, when € =a/h <<1. Another small parameter ZZ =h/L (L is the

characteristic wavelength), or more convenient x = f7° , characterizes the weak

z surface
0
—p
l w(x,z,t)
g9
u(x,z,t)
po(z)
U(z)
h > X
bottom

Fig. 1.1. Coordinate system and the background flow showing the undisturbed density
distribution py(z), the horizontal velocity U(z), the coordinates x, z and the components
of the velocity field, # and w
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dispersion of the long waves. These parameters can be naturally used to define
the slow variables: X =gix, T=gmt. It is well known that the leading

nonlinear and dispersive corrections to the linear wave equation are of the same
order of magnitude (smallness) when

E=U.

This relationship is sometimes called the KdV scaling. In order to construct a
hierarchy of higher-order corrections, we introduce the set of new temporal

variables 7, = £'T in powers of £ of the slow time 7. The relevant derivatives

are:
0 0 ) d 0 0
—_—=—C— _—, _ _+...’
oT os dr dr dr; 07T,
(1.6)
i:i’ s=X-cT.
0X Os

The co-moving coordinate s contains the linear long-wave speed ¢, which is
yet to be determined and is treated as a constant in what follows.

After tedious but straightforward calculations it is possible to reduce Egs.
(1.1) and (1.2) to one equation with respect to the vertical displacement ¢ :

2
i{po(c—U)zﬁ}ﬂoONzaa—g=R-
S

dy 0sdy (1.7)

Here N(y) is the Brunt—Viisild (buoyancy) frequency profile described by
(1.3) and R is a complicated expression containing nonlinear and dispersive
terms of different orders, see for instance (Grimshaw et al., 2002). The
boundary conditions for Eq. (1.7) are é'y=_h =0 at the bottom and on the
surface ¢ _,=0.

Next, we assume that the isopycnal displacement ¢ is represented by the
asymptotic series

C(5,,7) = EA(s, T)P(Y) + €2 (5,0, T) + 283 (5, 1, T) + -+ . (1.8)

The unknown functions {;(s,y,7) can be subsequently determined by

substituting series (1.8) into Eq. (1.7) and collecting the terms of the same
order of £. To the lowest order, the linear eigenvalue problem for the modal
function ®(y) is

chEi{(c—U(y))zﬂ}rNZ(y)q):o, (1.9)
dy dy
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with zero boundary conditions on the bottom and the surface of the fluid.
Equation (1.9) may be further simplified by using the Boussinesq
approximation p, (v)= P, - Physically, this means neglecting the weak density
variation and setting the density constant in most of the natural water column.
Doing so is usually acceptable in relatively shallow water (except for the jump
layers) and will be used hereafter.

Real solutions (stable IWs) of Eq. (1.9) can be obtained only for

‘supercritical’ values of the Richardson number Ri=N 2/ U2 >1/4 (see, for
instance, (Miropolsky, 2001; Vlasenko et al., 2005)). It is well known that the
eigenvalue problem (1.9) has, in general, a countable infinite sequence of
modes @ with corresponding linear wave speeds (eigenvalues) c;

(n=0,1,2,...). Here it is understood that c,f characterizes the wave

propagation speed with respect to the background current. A formal theory can
be developed for any of these modes, but the amplitudes of wave components
belonging to higher modes gradually decrease due to the energy transfer to
radiated shorter lower-mode dispersive waves (Akylas and Grimshaw, 1992).
This is why theories are developed mainly for solitary waves of the lowest
(n=0) mode only', which has the greatest speed c¢. The corresponding modal

function ®(y) is defined by Eq. (1.9). We choose the normalization of the
modal function in a way that its extreme value is unity, i.e. &, =1at y . .

The compatibility conditions to solve on each order of the inhomogeneous
problem (1.7) (their physical meaning is avoiding secular terms) give the
moving coordinate s for the wave amplitude to different orders of accuracy. At

the 0(82) level, we obtain the famous KdV equation, derived first in this
context in (Benney, 1966),

04 04 934
X3 os P s’ ( )

where

3 0 2 3 1 0 252
o= —U)2(dD /dy)’dy, =— —U)’®%dy,
-0 @iy dy, B[ (c=U) Dy i

0 2
I= L (c—U)(d®D/dy)>dy

and all integrals are calculated over the fluid depth. The KdV equation is a
popular model in the physics of nonlinear waves. It is often applied in physical
oceanography and limnology to demonstrate the soliton properties of both the
surface and IW field in oceans, seas and lakes.

" In some basins the second and third modes of internal waves have also been observed
(Boegman et al., 2003; Vidal et al., 2005; Yang et al., 2010).
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After solving the compatibility condition for Eq. (1.7) at 0(82) one obtains
for £, the expression

) 94
$r=4 LOH—7Ta0), (1.12)
S
in which 7, (y) is the first nonlinear and T, d (y) the first dispersion correction
to the modal structure ®(y) of the IW. These two functions are solutions of

corresponding inhomogeneous boundary problems, namely:

2
ol e—tn@® | 34|
LT, = ady{(c U) dy}_Zdy[(C U) (dyj ], (1.13)
and
LT, :—Z,Bi[(c—U)@}—(c—U)de, (1.14)
dy dy

with zero boundary conditions at the bottom and the surface of the fluid. In
these expressions, L is the Sturm—Liuville operator given by Eq. (1.9). It is
important to note that solutions of the boundary-value problems (1.13) and
(1.14) are unique only up to additive multiples of ®. It is convenient to let
A(S,T) represent the isopycnal displacement at level y,.. . Hence, we choose
the auxiliary conditions 7, (y,. )= Ty (Vma ) =0 . In this case, at level y=y,
series (1.8) gives:

£(5, Ymax» 7) = EA(5,7) + O(42) . (1.15)
Other normalizations can be also used if convenient (Lamb and Yan, 1996).
Along with Egs. (1.6) and (1.10), the compatibility condition for (1.7) at
0(83 leads to the second-order KdV equation:

04 04 934 ,04 ,0°4 9°4 04 9°4
—tod—+f—= A* = A
+ +4 % +z{al ~ + 5 Y +7 P + 7 % 252

Sred s J:o. (1.16)

The new coefficients may be expressed as quadratures of the modal function
@ and its corrections 7, and 7, ; for example

o = % j_oh dy{s(c ~U)? [3(dTn /dy)— 2(dq>/dy)2](dc1>/dy)2

T e ~U)|S(d®  dy)? —4(dT,  dy)[d®/ dv) - o (d® / dy)? . (1.17)

The next terms towards an extended KdV equation are important if
coefficients of Eq. (1.10) become small. The coefficient of dispersion [ is
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always positive, see (1.11). However, the coefficient of quadratic nonlinearity
o can have either sign and may vanish (Djorjevich and Redekopp, 1978;
Kakutani and Yamasaki, 1978; Koop and Butler, 1981; Liu et al., 1985; Liu,
1988). Such a situation is typical for ocean shelves (Holloway et al., 1997;
Grimshaw et al., 2007), especially at river estuaries (Pelinovsky et al., 1995). It
is also frequent for inland seas and lakes (Ivanov et al., 1992; Talipova et al.,
1998; Boegman et al., 2005).

In the limit & — 0, when the above scaling in Eq. (1.16) is violated, we
have o =¢y, where y is 0(1). With the new scalings for the length and time

S=+es, T=eer, (1.18)
Eq. (1.16) is replaced by

04 5104 9°4 9°4 040°4) , 04
il o 4=+ p A—=+Vh—c=s —5 0.
8T+(Z T 8S+ﬂE)S3+€[% 255 295 os” +€ﬂ‘ass (1.19)

It is evident that the terms representing nonlinear dispersion and dispersion of

the 5th degree are 0(8) and 0(82), respectively. In the zeroth order of £ we
may keep only the term with the cubic nonlinearity from among the higher-
order terms. After keeping O(l) terms with respect to the small coefficient &£

and returning to the usual notation we obtain the following equation in its
recognized form (Holloway et al., 1999):

d d 0’
a—?+(c+an+alnz)a—;7+ﬂa—737:0,

(1.20)
in which 4 is replaced by 7, ¥ by a and (S,TN" ) by (x,t). This equation is
called the extended KdV equation with combined nonlinearity or the Gardner
equation. The coefficients of this equation are calculated as integrals (1.11) and
(1.17) depending on the eigenmode @ of the problem (1.9) and its nonlinear
correction 7, a solution of Eq. (1.13). Both functions must be calculated in the
undisturbed state of the stratified fluid, i.e. when y =z. Therefore further on
we shall consider ®@ and 7, as functions of the vertical coordinate z.

The long-wave eigenvalue problem for Eq. (1.9) can yield nearly identical
sets of eigenvalues for different background density profiles (Llewellyn Smith
and Young, 2002; Dunphy et al., 2011). However, numerical experimentations
described in (Dunphy et al., 2011) showed that a near match between long-
wave speeds does not guarantee that parameters o, f# and ¢, are even close
for lower-mode IWs. Nevertheless, they were able to find matches between
several sets of qualitatively different density profiles to provide very close
values of ¢, @ and . The numerical simulations showed qualitatively

different IW dynamics for these backgrounds, even though they were nearly
identical from the point of view of weakly nonlinear theory in the KdV
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approximation. The use of the Gardner equation (1.20) can improve the
situation, but it is far from clear now whether the Gardner theory would yield
the same result as the one found via the DJL theory for fully nonlinear
stationary localized solutions.

Variable-coefficient Korteweg—de Vries-like models for IWs in waters with
variable background. Variable depths are usual in natural basins. Their
presence leads to a much more complex behaviour of wave fields due to
transformation, refraction and diffraction. Moreover, vertical profiles of water
density and background flow may vary in different domains. Formally, it is
straightforward to account for a variable depth in Eqgs. (1.1)-(1.4): only the
bottom boundary condition (1.4) must be replaced by a condition of no water
penetration through the bottom z =—#A(x). It is convenient to choose the x-axis

on the unperturbed water surface (Fig. 1.2). In this case Eq. (1.4) should be
replaced by

w—iiVh=0, (1.21)

where u = (u,v), as above, contains horizontal and vertical components of the

velocity field.

A much more complicated problem is to account for ambient velocities and
density patterns, which may vary in the horizontal and/or vertical directions. In
the context of the Euler equations the gravity force provides a stationary
vertical inhomogeneity of the density and background motions. In general, a
consistent inclusion of external forces (to parameterize the real physical factors,
such as geostrophic currents, circulation, wind stress, slow waves like Rossby
waves) into the governing equations is necessary to produce and maintain
horizontal non-uniformities. For this reason, in most numerical models of the

z surface X
o >
—
l w(x,z,t)
g
u(x,z,t)
po(z,X) U(z,x)
h(x)
-h(x)
bottom
'\

Fig. 1.2. Schematic of the coordinate system and the background flow on a variable
bottom showing the undisturbed density distribution py(z), the horizontal velocity U(z),
the coordinates x, z and the components of the velocity field, # and w
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basic hydrodynamic equations for wave motions in a stratified fluid only the
variable depth is usually accounted for, but not the horizontal variability of the
density and velocity fields (Lamb, 1994; Vlasenko and Hutter, 2002; Vlasenko
et al., 2005).

A considerable simplification to this problem is possible if the water
density, background flow and basin depth vary in the horizontal direction
slowly and very smoothly on a wavelength scale. This frequently happens
under common natural conditions. The advantage of the use of asymptotic
methods, usually based on the energy balance equation, to explore such cases is
that it is not necessary to know the nature of the external forces but only to
suppose their presence. Let us illustrate this point by a simple example of a
long linear IW (Pelinovsky et al., 1994).

Assuming that the horizontal inhomogeneities in the density stratification
and depth are sufficiently smooth, one can neglect the wave reflection® and
consider wave propagation in one direction only. In a smooth, weakly
inhomogeneous non-moving medium, the wave energy flux through any cross-
section must be constant. This is one of the basic physical principles, which is
not violated by the asymptotic theory (see for details, (Miropolsky, 2001)). For
long linear IWs, the energy flux S through a cross-section is

0
S = | pud:z. (1.22)

—-h

Locally, the relationship between the horizontal velocity u# of the water
particles and the wave pressure p can be expressed based on the linear theory of
long IWs in a fluid with horizontally constant density stratification. On the one
hand, from the linear Euler equation

ou dp (1.23)
—+—=0 :
P o
for a wave propagating with a speed c, it follows that
P = poc . (1.24)

On the other hand, from the continuity equation and the definition of the
vertical velocity through the isopycnal displacement in the linear long wave
approximation we find:

¢ (1.25)

u=c—

oz

Restricting consideration in Eq. (1.8) to the lowest (linear) order and further re-
scaling, we use the classical ansatz of separating the variables

? In fact, wave reflection can be very weak on certain bottom profiles even when they
are not smooth (Krauss, 1966; Pelinovsky and Talipova, 2010).
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§(x,2,0) =n(x,)P(2) . (1.26)

Note that due to the smooth horizontal inhomogeneity, the modal function ® is
also a slowly varying function of the horizontal coordinate. Finally, we obtain
the relations

2, dP (1.27)

u=cn P:Pocﬂz-

dz’
Of course, Egs. (1.27) can be obtained from the formulations of the zeroth
order approximation in the framework of the asymptotic method. After
substitution of Eqgs. (1.27) into Eq. (1.22), the energy flux conservation can be
expressed (in the Boussinesq approximation) as

S= poc3M772 =const, (1.28)
where
9 2 1.29
M(x)= j[dipj dz . (1.29)
“u\ dz

By virtue of the conservation of S along the x-axis, relation (1.28) can be
converted to the partial differential equation

8_77+778(M03)/8x: (1.30)

ox 2Me?

So, the equation for IWs in a horizontally smoothly inhomogeneous basin can
be obtained without an exact description of the specific physical nature
responsible for this variability. Using the speed of propagation ¢ in a smoothly
non-uniform medium, Eq. (1.30) can be rewritten more formally with the
introduction of the small parameter ¢, which now characterizes the
smoothness of the horizontal inhomogeneity (it is of the same order as
parameters of nonlinearity and dispersion):

on on n d(c’M)
1 X)—L — =0
ot +el )ax +(C{2Mcz dx ' (1.31)

0.

where X =é&x is a slow coordinate. Equation (1.31) is the basic tool for the
analysis of long linear IWs in a basin with variable depth and smoothly
variable density field.

Accounting for nonlinearity and dispersion leads to the Gardner equation
(1.20) for IWs in a basin with a fixed vertical density stratification, which in
the present coordinate system is as follows:

0 0 0 0’
a—7+ca—;7+e((an+alﬂ2)a—;7+ﬂ&c—?]=0- (1.32)
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It is clear now that simultaneous consideration of weak nonlinearity,
dispersion and smooth density inhomogeneity in the first approximation must
lead to certain additional small terms in the equations. Thus, Eqgs. (1.31) and
(1.32) must be combined to give:

M oy 20, gy O
5, A0 +z((a<)0n+al(xm 1o AN

n dc’M)
2ME dX

]=0. (1.33)

In a reference frame co-moving with the linear long-wave variable speed ¢ we
have:

5=] a__,

Finally, after eliminating the small parameter, the evolution equation appears in
the equivalent form:

(a0, aX) 29, fX) Pn, n_dem) _,
X () A )i Aot oM dx '

(1.35)

Equation (1.35) is called the generalized Gardner equation. All its coefficients
are calculated using the local undisturbed stratification structure and depth, so
that it is not necessary to change the procedure of their computation for moving
disturbances.

The physical, heuristic approach was used here to derive the nonlinear
evolution equations (Pelinovsky et al., 1994). The governing equations can, of
course, be corroborated by systematic perturbation analyses in the framework
of the asymptotic theory (Pelinovsky et al., 1977; Djordjevic and Redekopp,
1978).

The presence of a horizontal shear flow leads to a modification of the
function M in Eq. (1.35) (Zhou and Grimshaw, 1989; Holloway et al., 1999)
(compare e.g. with (1.29)):

0 2
M= [1— U(Z)j@i)J dz | (1.36)
“h

C zZ

The last term in the left-hand expression of Eq. (1.35) governs wave
behaviour in the framework of the linear non-dispersive theory. Therefore it is
convenient to perform the change of variable

N, X)=0(X)E(5,X), (1.37)
where
_ (MCS)O
0(X) =[50 (138)
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is the amplification factor of long linear waves along the way of propagation.
The variables with zero subscript correspond here to their initial values at
X =0. After substitution of Eq. (1.37) into Eq. (1.35) we reach the variable-

coefficient Gardner equation:

% a(X)Q(X)f al(X)Q (X)f 85 BX) 9%
ox A(X) A(X) % ¢ Y(X) 053

=0. (1.39)

This equation is not integrable (except when it can be reduced to an equation
with constant coefficients); however, it has two important conservation laws:
mass flow

T E(F,X)ds = T E(r, X )dt =T n(2,0)dt (1.40)
and energy flux
f &5, X)ds = sz(t,X)dt =+j°'° 1’ (,0)dt . (1.41)

Let us briefly discuss the applicability of the variable-coefficient Gardner
equation. The most important condition is that the horizontal nonuniformities
of the density stratification must be smooth and slow, so that the linear wave
speed c(x) would change slowly on a scale of the typical wavelength of the

IWs. In this case wave reflection in such an inhomogeneous medium can be
neglected. The wave speed cannot vanish (e.g. when a wave propagates into
unstratified waters or approaches the shore). Such a situation is singular.
Physically, the wave must either be reflected or destroyed (analogously to
surface wave reflection, run-up or breaking). Formally, the remaining
coefficients of the Gardner equation can change arbitrarily, even very rapidly.
Unlike the wave speed, they may vanish. The zero-crossing points of some
coefficients are critical for the propagation of solitons since solitary waves can
be destroyed at such points. The presence of such points does not affect the
applicability of the variable-coefficient Gardner equation.

In general, for an arbitrary stratification the eigenvalue problem (1.9)
(which determines the modal structure and linear long-wave speed) and all the
coefficients of the Gardner equation have to be evaluated numerically. The
same applies to the boundary problem (1.13) for the nonlinear correction to the
linear mode. In studies of IWs in geophysical water bodies, the assumption of
piece-wise constant density and shear flow is popular and the parameters of the
nonlinear evolution equation can be considered as explicit functions of
background conditions.

For the important case of two-layer stratification (without shear flow)
explicit expressions of the coefficients are known (Djorjevich and Redekopp,
1978; Kakutani and Yamasaki, 1978; Koop and Butler, 1981). The analytical
estimate of the influence of shear flow on the parameters of IWs in a two-layer
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flow whose upper layer is moving with constant velocity was considered in
detail in (Pelinovskii et al., 2000) for a Boussinesq fluid with the rigid lid
assumption. The set of examples of analytical expressions for the coefficients
of the Gardner equation is very limited. A few cases are given in (Grimshaw et
al., 1997, 2002).

1.2 Solitary internal waves

Solitons, defined as solitary waves that are stable not only when propagating
but also when interacting with each other, are fascinating examples of
nonlinear wave processes. Internal solitons are an important part of nonlinear
wave motion in natural stratified basins. They have been frequently observed in
nature; see for instance reviews and books (Ostrovsky and Stepanyants, 1989;
Vlasenko et al., 2005) and references therein. As it was shown above, internal
solitons in shallow water can be described, to the leading order, by the KdV
equation and its extended versions. As discussed in Section 1.2, the coefficients
at both quadratic and cubic nonlinear terms can have either sign, depending on
the fluid stratification, while the dispersive coefficient is always positive. In the
framework of the Gardner equation the possibility of a sign change for the
cubic nonlinearity results in a variety of wave regimes.

The Gardner equation (1.20) is an integrable nonlinear evolutionary
equation, which possesses stationary localized solutions (solitary waves) for all
combinations of the signs of the nonlinearities (except when both are zero, and
one must move to a higher-order approximation). Its multi-soliton solutions can
be found using modern techniques of nonlinear waves such as the inverse
scattering method, Hirota—Darboux transformation, etc. (Slyunyaev and
Pelinovsky, 1999; Slyunyaev, 2001; Grimshaw et al., 2002a, 2010). This
equation also possesses one more type of localized solution, the breather,
which is a periodically pulsating, or oscillating, isolated wave form (Pelinovsky
and Grimshaw, 1997; Chow et al., 2005).

Below we shall frequently speak about solitons of certain equations, having
in mind the relevant soliton (or solitonic) solutions to these equations. The
properties of solitons of the KdV equation (which contains only one quadratic
nonlinear term) are well known. The inclusion of a cubic nonlinearity into this
equation substantially modifies the appearance of its soliton solutions. The
single-soliton solution of the Gardner equation (1.20) is given by the formula:

A
1+ Beosh(y(x = V1))

n(x,t) = (1.42)

The soliton velocity V =c+ ,37/2 is expressed through the inverse width y of

the soliton. The parameters 4 and B depend on the coefficients of Eq. (1.20)
and determine the soliton amplitude a or the extreme of the function (1.42):
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2
a:i, A:ﬂ, BZ:1+M. (1.43)
1+ B o o
The possible combinations of the signs of the nonlinear coefficients in the
Gardner equation correspond to different wave propagation regimes.

1) Zero cubic nonlinearity: soliton of the KdV equation

When the quadratic nonlinear term is nonzero and the cubic nonlinear term
vanishes (¢, =0), solution (1.42) will transform into

n(x,n:asech{ /%(x_ct_%tﬂ. (1.44)

The polarity of the KdV soliton is defined by the sign of the quadratic
nonlinearity coefficient ¢ . In particular, for the lowest IW mode, when a >0,
the isopycnals of the solitary wave are shifted upwards (and we have a soliton
of elevation, or of positive polarity). On the other hand, when a <0, the
isopycnals of the solitary wave are shifted downwards (soliton of depression, or
of negative polarity). By contrast, solitary surface waves in shallow water
described by the KdV equation can have only positive polarity as the quadratic
nonlinearity coefficient for surface waves is always positive.

2) Zero quadratic nonlinearity: soliton of the modified KdV equation

When quadratic nonlinearity’ vanishes (@ =0) and cubic nonlinearity is
positive, soliton (1.42) will reduce into a soliton solution of the modified KdV
(mKdV) equation (Lamb, 1980):

2 2
n(x,t) = asech “a_ x—ct— aat . (1.45)
6/ 6

It can have either polarity.
No soliton solutions on nonzero pedestal exist when the coefficient of
cubic nonlinear term in the mKdV equation is negative.

3) Negative cubic nonlinearity

When the coefficient ¢, at the cubic nonlinearity is negative (this is the case
for a two-layer fluid), soliton solutions of a single polarity, with a7 >0, exist
with amplitudes between zero and a limiting value

? For brevity, the expressions *quadratic nonlinearity’ etc. are used to denote the values
of coefficients at the relevant terms in various equations.
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P
lim al : (146)
The shapes of solitons for different combinations of signs of the nonlinear
parameters are shown in Fig. 1.3. This family corresponds to 0< B <1. At
small amplitudes (B — 1) soliton (1.42) transforms into a KdV soliton (1.44).
An increase in the soliton amplitude to the limiting value (1.46) when B — 0
leads to an unlimited increase in its width. The solitary wave becomes ‘wide’
or ‘table-shaped’. It has a flat crest and its slopes are shock-like waves or kinks.
The inclusion of only one (cubic) nonlinear term into the governing
equation gives rise to several principally new phenomena that do not occur in
the KdV environment. While the increase in the energy for the KdV soliton is
associated with a higher and narrower wave profile, a similar process for the
relevant class of solutions of the Gardner equation results in a widening of the
wave profile and in the formation of a plateau-like entity with a steep front and
back and a very gently sloping upper part. Such appearance of large-amplitude
solitary waves has been repeatedly observed in both laboratory and field
conditions (Michallet and Barthelemy, 1998; Holloway et al., 1999; Talipova et
al., 1999).

4) Positive cubic nonlinearity

!

Fig. 1.3. Gardner equation soliton shapes for different combinations of the signs of
nonlinear coefficients. Situations with a positive cubic nonlinearity correspond to
panels (a) and (b) in the upper half-plane and with a negative cubic nonlinearity
correspond to panels (c) and (d) in the lower half-plane
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If o, >0, solitons of either polarity exist (Fig. 1.3a, b, upper half-plane). One
of these families with an >0 has 1< B <oo; therefore, its amplitude is not
bounded. In the limit of small amplitudes these solitons also become KdV
solitons (1.44). For large amplitudes ( B — <) the solitons become similar to
the solitons of the mKdV equation (1.45).

Another family of solitons (with an <0) corresponds to —co< B<—1. If
B — —oo , the soliton will transform into an mKdV soliton (2.9). However, the
waves of this family have a minimum amplitude

2
Qalg = o (1.47)
At the near-critical amplitude (when B — —1) soliton (1.42) acquires power-
law tails and tends to the so-called algebraic soliton, which (in a reference
system moving with the linear wave speed) is given by

al
m(x )—m V=0. (1.48)

The algebraic soliton (1.48) is structurally unstable (Pelinovsky and Grimshaw,
1997).

No soliton family of (1.42) similar to the above-described structures exists
if —1<B<0. In this range, when the polarity of the soliton is opposite to the
sign of the quadratic nonlinearity (filled areas in Fig. 1.3a, b), only breathers
exist (Pelinovsky and Grimshaw, 1997; Grimshaw et al., 2010). This type of
solution of the Gardner equation (1.20) exists when ¢, >0. It has no

limitations on its amplitude.

1.3 Velocity field induced by solitary internal waves

With the use of the Gardner equation (1.20), or its variable-coefficient forms
(1.35) and (1.39), the velocity components (u, w) of fluid particles in the

vertical section (x,z) can be expressed as follows:

u(x,z,t)=cn(x, t)—+[—— jr]
dz 2 dz dz ’ (1'49)
w(x,z,t) = —c—a D(z) - (0@(2)+20T (Z))?]—a }
9& a n a : (150)

The horizontal velocity u gives the greatest contribution into the local current
speed. This is a typical property of long waves. This feature of an IW field may
greatly contribute to the local sediment transport and/or resuspension (Reeder
etal., 2011).
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The first terms in Egs. (1.49) and (1.50) correspond to the leading order of
the asymptotic expansion. The remaining additives reflect the first nonlinear
correction in the asymptotic series. Thus, to forecast the local current speed one
has to determine (i) the isopycnal displacement n(x,t) at the level of z___ (see
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Fig. 1.4. Velocity field in a long SIW with a nondimensional amplitude a/H = 0.1 in
almost two-layer water (p=p,—A, tanh[(z -2, )/d], o = 1015kg/m’, A, =
5 kg/m®, d =5 m, total depth H is 100 m): upper panel (modified from (Lamb. 1997)) —

negative polarity of SIW (shallow pycnocline, zy = —30 m), lower panel — positive
polarity of SIW (deep pycnocline, zy =—70 m)
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Eq. (1.15)), (ii) the vertical IW mode ®(z) and (iii) its nonlinear correction
T (z). The amplitude of 7(x,z) is not known a priori. It depends upon

background conditions of IW generation and can be found by means of a
detailed simulation.

The velocity field induced by a SIW was studied in (Lamb, 1997) in the
context of larval migrations on the sea surface. If the density variation is
predominantly in the upper half of the fluid column, SIWs are waves of
depression. The largest horizontal currents associated with these waves are at
the surface where they are in the direction of wave propagation and at the
bottom where the direction is the opposite.

Both the surface current u,(x,z) and the wave propagation speed V are

typically of the order of 10—100 cm/s (sometimes up to 300 cm/s for deep areas
or strong stratifications). Bottom currents are weaker for this type of
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Fig. 1.5. Maps of the geographical locations (white points) where the pycnocline
(position of maximum buoyancy frequency (1.3)) is situated in the lower half of the
water column: upper panel — January, lower panel — July. Hydrological data to
calculate the density and buoyancy profiles are from the climatological atlas GDEM
V3.0 (Teague et al., 1990)
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stratification. Surface currents associated with the wave will carry objects near
the surface forward with the wave. This will increase the amount of time the
objects are in the wave, which is an important factor in increasing their
advection distance. Objects near the bottom are swept back and out of the
wave, resulting in smaller advection distances. A scheme of such a SIW in a
continuously stratified but almost two-layer fluid is given in Fig. 1.4a. The
maximum of surface and near-bottom currents occurs at the centre of the wave
(equivalent to the crest or trough of surface waves). Ahead of the wave centre
the near-bottom currents are divergent and behind the wave center they are
convergent. Solitary waves are symmetric at about the vertical line passing
through their centre.

The change in the polarity of such a SIW gives patterns reflected with
respect to half-depth (Fig. 1.4b). Such density stratifications often occur in
shelf regions and especially in shallow seas (such as the Baltic Sea) and coastal
waters when the pycnocline (the location of the maximum of buoyancy
frequency (1.3)) is situated in the lower half of the fluid (Fig. 1.5)*. For this
situation the strongest horizontal currents are at the bottom, and objects near
the bottom are extensively carried by the wave. Therefore IWs propagating in
domains where the pycnocline is located relatively close to the seabed can
strongly affect bottom sediments. Confirming this, instrumental observations of
very large subaqueous sand dunes on the upper continental slope of the South
China Sea generated by episodic, shoaling SIWs were recently reported
(Reeder et al., 2011). Such a situation apparently is typical in autumn and
winter for many parts of the Gulf of Finland (Soomere et al., 2008; Leppéaranta
and Myrberg, 2009).

The contribution from second-order terms into the horizontal velocity in Eq.
(1.49) can be estimated for the model of three-layer stratification. Such a
situation again frequently occurs in the Baltic Sea. The water masses in its
central part often consist of a mixed upper layer, a well-defined seasonal
thermocline at a depth of about 2040 m, an intermediate layer and the main
halocline at a depth of about 80-100 m. In many cases the total depth is 120—
140 m and density changes between the layers are more or less equal (Soomere,
2003). We model this sort of three-layer density profile using the formula

z—2z

z—2z,
— A, tanh P (1.51)
1 2

pzpo—Apltanh

where the parameters are chosen to reproduce the profiles presented in
(Soomere,  2003):  p, =1007 kg/m’, A=A, =2 kgm’, d,=3m,
d, =10 m, z;, =20 m, z, =—-80 m, total depth H is 130 m.

The density, buoyancy, mode ®(z) and correction 7,(z) profiles for the
chosen parameters are illustrated in Fig. 1.6. Such background conditions give

* The maps here and further are drawn using Ocean Data View software
(Schlitzer, 2004).
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positive signs of both nonlinear parameters (&, ¢,), and solitons of both

polarities can exist. The isopycnal displacements and horizontal velocity
contours induced by the passage of the lowest-mode solitons (1.42) of positive
and negative polarities with approximately equal amplitudes (@ =13.4 m) are
demonstrated by Fig. 1.6, lower panel, and Fig. 1.7. The horizontal velocity
fields have a quasi-three-layer structure with thin transition layers of
thicknesses d, and d,. The fields of horizontal velocities in elevation and

depression solitons are positive and negative, respectively, in the lower near-
bottom layer, and have the reversed direction in the middle and the upper layer.
Near-bottom and near-surface velocities have the greatest values whereas the
velocity in the mid-layer is insignificant.

The influence of the nonlinear correction manifests itself firstly in the
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Fig. 1.6. Upper panel: model of an almost three-layer density stratification and the
corresponding profiles of buoyancy frequency N(z), lowest vertical mode ®(z) and its
nonlinear correction 7,(z). Lower panel: isopycnal displacement and horizontal velocity
contours (for the leading order of Egs. (1.8) and (1.49)) while the soliton of
positive(left half)/negative(right half) polarity propagates. Contour interval is H/20 for
isopycnals and 0.025¢ for velocity. Solid/dashed lines correspond to positive/negative
values of velocity, thick lines are the lines of zero horizontal velocity. The velocity is
positive when the fluid particles move in the direction of soliton propagation (to the
right) and negative in the opposite case
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Fig. 1.7. Isopycnal displacement and horizontal velocity contours (when the nonlinear
correction terms are taken into account in Egs. (1.8), (1.12) and (1.49)) while the
soliton of positive(left half)/negative(right half) polarity propagates. Notations are the
same as for Fig. 1.6, lower panel

shape of the lines of zero horizontal velocity: they are curved in the opposite
direction to the soliton polarity while for the leading-order wave field they are
horizontal. Also the wavefield accounting for the nonlinear correction has
smaller maximal absolute values of negative velocities (near-surface for the
soliton of elevation, and near-bottom for the soliton of depression) and larger
maximums of positive velocities.

The accuracy of the approximate expressions (1.49) and (1.50) from the
point of view of near-bottom and near-surface IW-induced currents was
estimated in (Vlasenko et al., 2000; Rouvinskaya et al., 2011), where the
vertical structure of fully nonlinear SIWs was compared to weakly nonlinear
solitary wave solutions for KdV and mKdV models, respectively, for different
profiles of sea water density stratification. It was shown that for SIWs of
positive polarity weakly nonlinear theory overestimates the near-bottom
velocities and underestimates the near-surface current. For solitary waves of
negative polarity, which are the most typical for hydrological conditions of low
and middle latitudes, the situation is the opposite. For the Gardner equation no
such estimations are available.

Concluding remarks

Although contemporary numerical methods and fully nonlinear approaches
such as the method of conjugate flows allow for extensive studies into
properties of highly nonlinear IWs, many specific features can still be
recognized, analysed and understood using classical methods for analytical
studies into IWs in the weakly nonlinear framework. Such fully analytical
methods make it possible to exactly establish the qualitative appearance of
disturbances of different shapes and amplitudes, and, more importantly, to
understand the specific features of the behaviour of waves corresponding to the
situation where a substantial change in the overall regime of wave propagation
is possible.
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2 Higher-order (2+4) Korteweg-de Vries-like
equation for interfacial waves in a symmetric
three-layer fluid

The properties of internal solitons are addressed in this chapter in the
framework of the widely used concept of layered fluid. Models of wave motion
for such environments are attractive for both theoretical research and
applications because of their ability to mirror the basic properties of the actual
IW systems using model equations of stratified media containing small number
of parameters and in many cases allowing for extensive analytical studies of the
properties of solutions.

Here, the theory described in Chapter 1 is extended to higher orders in one
special (but frequent in natural conditions) stratified medium because of
vanishing lower-order nonlinear terms in the commonly used IW equations.
The presentation follows Papers IV and V. The chapter is organized as follows.
Section 2.1 describes the state-of-the-art of the relevant research and describes
a frequently occurring situation in some basins of the World Ocean that
requires more detailed analysis. Section 2.2 presents the basic equations of
motion for the three-layer model and then focuses on the modification of the
derivation of the mKdV equation towards expressing the balance between
nonlinear and dispersive terms in the case the coefficients of both the leading
nonlinear terms vanish. The basic properties of solitary solutions to the
resulting equation and their nonlinear interactions are discussed in Section 2.3.
Discussion and conclusions are presented at the end of this chapter.

2.1 Failure of the Gardner equation for a symmetric three-
layer environment

The need for systematically accounting for higher nonlinearities stems from the
nature of the nonlinear evolutionary equations for IWs. While the coefficients
of similar equations in some other environments can be expressed in terms of
simple combinations of governing scales for the particular problem (Ablowitz
and Clarkson, 1991; Gorshkov et al., 2004), the coefficients of nonlinear
evolution equations for IWs are defined by the particular vertical distribution of
water density, properties of shear flow and boundary conditions at the water
surface (Funakoshi, 1985; Lamb and Yan, 1996; Pelinovsky et al., 2000;
Grimshaw et al., 2002a). A specific property of such equations is that some
coefficients at the nonlinear terms may vanish for certain symmetric situations
(Kakutani and Yamasaki, 1978; Grimshaw et al., 1997). In such cases it is
necessary to account for higher-order nonlinearities to adequately describe the
motion. This process not only leads to the necessity of inclusion of some
additional terms into the governing equations but naturally highlights a variety
of qualitatively new phenomena in the dynamics of localized, solitonic (non-
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radiating) IWs — solutions to such equations (Grimshaw et al., 1999, 2002b,
2010; Slyunyaev and Pelinovsky, 1999; Slyunyaev, 2001).

The simplest system basically representing the key properties of IWs is the
two-layer model. Various properties of IWs in this approximation have been
addressed in numerous analytical and numerical studies as well as by means of
in situ observations and laboratory experiments (Kakutani and Yamasaki, 1978;
Koop and Butler, 1981; Funakoshi, 1985; Funakoshi and Oikawa, 1986; Mirie
and Pennel, 1989; Choi and Camassa, 1996, 1999; Pullin and Grimshaw, 1998;
Craig et al., 2004; Guyenne, 2006; Zahibo et al., 2007; Camassa et al., 2010).
These studies cover a wide range of different regimes of wave motion from
ideally linear systems and weakly nonlinear models up to fully nonlinear
phenomena.

The two-layer model and the KdV equation and its generalizations have
been widely used as a simple but instructive model to demonstrate the richness
of IW phenomena compared to long weakly nonlinear surface waves. For
example, for IWs the coefficient at the quadratic nonlinearity in the KdV
equation vanishes for the naturally occurring symmetric situation when the
layers have equal thicknesses in the Boussinesq approximation. The leading
nonlinear term in almost symmetric situations is the cubic one and the Gardner
equation (or its generalizations) has to be used to describe the wave motion
(Benney and Ko, 1978; Kakutani and Yamasaki, 1978; Miles, 1979, 1981;
Koop and Butler, 1981; Gear and Grimshaw, 1983; Funakoshi and Oikawa,
1986).

The two-layer fluid is, in fact, quite a simplified representation of the
natural stratified flows. For example, in many areas of the World Ocean the
vertical stratification has a clearly pronounced three-layer structure with well-
defined seasonal thermocline at a depth of ~100 m and the main thermocline at
much larger depths (Knauss, 1996; Yang et al., 2010). Several basins such as
the Baltic Sea host more or less continuously a three-layer vertical structure
(Leppéranta and Myrberg, 2009). In order to reveal the basic features of the IW
field in such environments it is necessary to introduce a three-layer model.
Such models are considerably more complex than the two-layer systems;
however, they allow for much more analytical progress compared to the
arbitrary stratified situation.

A generalization of the mKdV equation for the three-layer stratification,
presented in this chapter based on Paper IV, is basically straightforward, albeit
cumbersome and technically complicated. The resulting equation admits
solitary wave solutions for a certain range of parameters. The focus of the study
is an almost symmetric situation in which the lower-order nonlinear terms
vanish and higher-order contributions govern the behaviour of wave
phenomena in the system. A simple symmetric situation corresponds to the
equal thicknesses of the uppermost and the lowermost layers provided the
density differences between the layers are also equal. This situation can
naturally occur in shallow strongly stratified seas like the Baltic Sea where the
interplay of fresh water discharge to the surface and irregular salt water
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Fig. 2.1. Definition sketch of a symmetric three-layer fluid

intrusion in the bottom layers frequently gives rise to two density jumps of
comparable size and sharpness and an almost symmetric three-layer structure
(Leppéranta and Myrberg, 2009) and may lead to the vanishing of several
interactions between baroclinic Rossby waves (Soomere, 2003).

The key difference of such an environment from those addressed in
previous studies is the possibility of having the cubic nonlinearity with a
positive coefficient. This is impossible in the two-layer medium. Moreover,
this coefficient may change its sign in different domains and may even vanish
under certain conditions (Grimshaw et al., 1997). As a result, the dynamics of
IWs in such environments is much richer in content and reveals several features
that cannot become evident in two-layer flows. In particular, the possibility of
the simultaneous vanishing of the coefficients at both the quadratic and cubic
nonlinear terms makes it possible to naturally generalize the mKdV equation
towards accounting for the quadratic nonlinearity and towards even more
detailed analytical description of the properties of the IW dynamics in layered
fluids.

2.2 Nonlinear equations of motion and an extended version
of mKdV equation
Let us consider a model situation of irrotational motions in a three-layer
inviscid fluid of total thickness H overlying a flat horizontal bottom in the
approximation of a rigid lid on the surface of the fluid (Fig. 2.1). We consider
the symmetric case in which the thicknesses /4 of the surface and the bottom
layer are equal and assume that the density differences between the layers are
also equal; then the densities in the layers are p,=p+Ap, p,=p,

p;=p—Ap, where p is the density in the middle layer. As usual, we employ
the Boussinesq approximation and assume that densities in the layers differ
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insignificantly (Ap/p <<1). In this case, the equations of the motion are
Laplace equations for the velocity potential in each layer:

VO, =0,i=123. 2.
1y
The vertical velocities at the bottom and at the fixed upper boundary will
obviously vanish:

@, (z=0)=0, &, (z=H)=0, Q.
2)

where the subscript x, y or z denotes a partial derivative. The classical
kinematic and dynamic boundary conditions at the interfaces between the
layers complete the setup of the problem:

7,+®, 7, -®,=0, 17,+®, n, -0, =0

1 1 z=h+n(x,t),
pl(q)lt+5(VCI)1)2+g77j=p2(q)2t+5(vq)2)2+g77j 70x.1)

(4@, 0 —P,, =0, {+P3 0 —D; =0 (2.3)

1 2
—(V
pz(q)2t+2( D,) +g§] z=H-h+{(x0).

= Py s+ (VO P+ g¢
(2430 F et

Here the unknown functions 77(x,7) and {(x,f) denote the instantaneous

position of the interface between the bottom and the middle layer and between
the upper and the middle layer, respectively.

We consider long waves with a small amplitude (as compared to the depth
of the fluid) and introduce small parameters of nonlinearity (£ =a/H ) and

dispersion (Z=H /L, pu=m"), where a is the characteristic scale of the

amplitude of displacements of the interfaces between the layers and L is the
characteristic horizontal scale of wave motions. There are two modes of IGWs
in a fluid with a symmetric three-layer stratification, which can also be found
established in the most general form for a three-layer fluid by Rusas and Grue
(2002) and Mercier et al. (2011).

The details of the asymptotic expansion of Egs. (2.1)~(2.3) can be found in
Paper IV and in (Rouvinskaya et al., 2010). For the lowest mode (interfaces for
which are displaced in the same direction), the quadratic nonlinearity
coefficient and one of the nonlinear dispersion coefficients are identically zero
for any combination of the thicknesses of the layers. The vanishing of the
quadratic nonlinearity coefficient means that the classical hierarchy of small
terms in the asymptotic expansion is no more valid. To derive a refined
(extended) mKdV equation using asymptotic expansions for symmetric
stratifications, the standard scaling (i.e., the relationship € = 1 between small
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nonlinearity and dispersion parameters) of the KdV equation should be
modified to £ =y in order to balance the dispersion and nonlinear effects. In
this case, the role of the next nonlinear terms in the asymptotic expansion of
the wave field should increase. Performing scaling with the relation &° = u
between the small parameters, we arrive at the equation:

;t +C§x +a1§2;x +ﬂ;xxx +€(0!;é/3§x + 7;§x§xx) (24)
+82(a3§4é/x + J/3lé/,3 + y32§§x§xx + y33é/2§x.xx +ﬂ1§5x )+ 0(83)= 0’

where the coefficients are given in Paper IV. Equation (2.4) contains not only
the terms of the mKdV equation but also higher-order (O(g) and O(g?))
correction terms (representing nonlinearity, nonlinear dispersion and linear
dispersion). The equation for 77(x,¢) differs from Eq. (1.55) only in the
opposite signs of the coefficients marked with an asterisk.

The cubic nonlinearity coefficient ¢, vanishes at h=h, =9H/26.
Expanding the expressions for the coefficients of Eq. (2.4) into a Taylor series
near the point 4, (A=(h—h,)/H) and changing again the scaling of the
parameters for the balance between nonlinearity and dispersion, we obtain the
following extended mKdV equation with combined nonlinearity:

gt +a1§2§x +a3§4§x +ﬂ§xxx = O . (25)

Note that to account for dispersion and nonlinear effects on the same order for
the stratification parameters close to those considered here, the relationship

between small parameters A and & should have the form A=¢”. The
coefficients in Eq. (2.5) are as follows:
_3(26/-9)

_ 9(13247° —1508° + 5131 —45)
8 - ’

a,H* c= -
128/

, a,H'/c

4]* =31
(cH?) = ,
BI(cH") D

and /=h/H . The fourth-order nonlinearity coefficient &, changes sign at

h=h, and is small near this point. In the described scaling, the term with the

coefficient &, is of a higher smallness order than the terms retained in Eq.
(2.5).

The auxiliary equations such as Eq. (2.4) derived in the process of the
asymptotic analysis have different appearances for different interfaces.
Remarkably, Eq. (2.5), as well as the classical mKdV equation for symmetric
three-layer stratification, is universal, i.e. identical for both interfaces. Equation
(2.5) more accurately describes the wave dynamics near the point of zero cubic
nonlinearity (A <<1) owing to the fifth-order nonlinear term. Continuous
stratifications with similar properties also occur under natural conditions
(Leppéranta and Myrberg, 2009).
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Equation (2.5) differs from the classical Gardner equation (1.20) (which is
frequently used for motions in situations containing zero-crossing of the
coefficient at the quadratic nonlinearity, e.g. in two-layer media with almost
equal layers) in the absence of quadratic nonlinearity and the presence of
quintic nonlinearity. This equation belongs to the family of generalized
Gardner equations (Hamdi et al., 2011a, b) used to describe different properties
of IWs. Following the nomenclature of different extensions of the KdV
equation, Eq. (2.5) may be called 2+4 Korteweg—de Vries-like equation,
abbreviated 2+4KdV.

As equations ¢, +¢"¢ +¢ ... =0 with n>2 are nonintegrable (in

particular, with respect to the Zakharov—Shabat method (Novikov et al., 1984;
Ablowitz and Segur, 2000)), it is likely that Eq. (2.5) is also nonintegrable. The
question about its integrability is, however, out of the scope of the current

study. In spite of nonintegrability, it always conserves the mass M = f ¢ dx

and energy E = r 4 *dx , which are generally not conserved in Eq. (2.4). The

signs of the coefficients of the nonlinear terms in Eq. (2.5) are important for
wave dynamics. In particular, the cubic nonlinearity coefficient ¢, changes

sign at h=h, /H whereas the coefficient at the fifth-order nonlinearity o; is
negative near this point.

2.3 Solitary solutions of the 2+4KdV equation and their
interactions

An important feature of Eq. (2.5) is that it has solitary wave solutions. The
relevant analysis of their existence and appearance (incl. the impact of the
quintic nonlinearity on their shape compared to that of the classical mKdV
equation) follows material in Papers IV and V.

It is known that the solitary solutions of KdV-hierarchy equations

containing a higher-order nonlinearity ¢, +¢"{ . +¢ ., =0 are unstable for

n =4 (Ablowitz and Segur, 2000). For such equations, smooth localized initial
conditions evolve to singular perturbations in a finite time (or at a finite
distance). Equation (2.5) contains combined nonlinearity (third- and fifth-order
terms). At the time of writing this thesis no investigations of the integrability
and/or stability of solitons for an equation of this form existed in the scientific
literature. Hamdi et al. (2011a, b) obtained two partial invariants and single-
soliton solutions for a more general class of equations including Eq. (2.5).
However, the general properties of such equations have not been established.
Nevertheless, all numerical calculations of the evolution of smooth localized
initial conditions performed for Eq. (2.5) demonstrate fairly stable wave
dynamics without any singularities or collapses. A natural conjecture is that
cubic nonlinearity in this equation plays a stabilizing role, but the problem
undoubtedly requires a stricter theoretical consideration.
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Localized steady solutions ¢ (x—V?) of Eq. (2.5) are expressed in terms of
the integral

Vg *%
r-n =B (v Aot -efirt) ar 26

where V is the velocity of the wave and Y =x—F%. This integral at ¢, >0 can
be calculated analytically

60V
Y)=+ |
“ \/50!1+\/250!12+2400(3Vcosh(2Y V/ﬂ) (2.7

It is easy to demonstrate that Eq. (2.7) describes localized (solitonic) solutions
to Eq. (2.5) with an amplitude

. 60V -,
Sat, ++/2507 + 2400, 8)

Similarly to the solutions of the Gardner equation, the propagation speed of
such solutions
%

V="lg'+2
6 15

a 4
3a

depends on their amplitude @. The natural limit for the wave speed for
physically meaningful solutions stems from the request that the expressions
under the inner square root in Egs. (2.7) and (2.8) must be non-negative. This
condition means that the wave speed V has an upper limit

S

im— . 29
: 43¢, (2.9)

Consequently, the amplitude of the solutions is also limited by the following

value:
Aim : ! 2.10
i 2 —053 . ( ' )

The limiting amplitude in Eq. (2.10) can be expressed using the relative
thickness / =4/ H (the ratio of the lower and upper layers thickness to the total
fluid depth):

ay,. 2, 926/
i~ \/15\/ : 2.11
H 3 13247° —1508/% + 5131 - 45 @11)
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The limiting amplitude reaches a maximum value of g, =0.0864H
when//H =0.286. The highest possible position of the lower interface
h+a,, forsuch a soliton of elevation corresponds to z = 0.397H . In this case,

h=0.3243H , i.e., very close to &, .

Figure 2.2 shows the profiles of solitary waves of the mKdV equation (1.45)
and solitons (2.7) for various amplitudes of the velocity V for the following
parameters of the medium: total depth A =100 m, depth of the uppermost and
lowermost layers 4 =30 m and the relative change in the density
Ap/p =0.01. For such a stratification the coefficients of Eq. (2.5) and the

parameters of its solitary wave solutions are given in Table 2.1. For low
velocities, solutions of Eq. (2.5) are similar to the classical solitons of the
mKdV equation. For larger wave speeds (larger amplitudes) the two sets of
solutions considerably differ from each other. The key difference is that large-
amplitude solutions to Eq. (2.5) form a table-like wide signal that may,
theoretically, infinitely widen in the process V' — V.. whereas their amplitude

asymptotically tends to ;. Solitary wave solutions of both positive and
negative polarity are possible for ¢, >0 in Eq. (2.5).

Similar table-like solutions are characteristic for some other equations
containing higher-order nonlinear terms. For example, they exist for the
Gardner equation (1.20). Its soliton, given by Eq. (1.42), describes motions in
the two-layer fluid where the cubic nonlinearity is of the leading order. The
existence of such wide table-like solitons and the possibility of their
propagation in combinations with other solitons have been demonstrated for
several other classes of nonlinear wave models (Miyata, 1988, 2000; Mirie and
Pennel, 1989; Michallet and Barthelemy, 1998).

The described table-like appearance of relatively large-amplitude and
rapidly moving solutions with steep fronts may have substantial consequences
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Fig. 2.2. The shape of solitary wave solutions (1.45) to the classical mKdV equation (a)
and (2.7) for Eq. (1.56) (b), for solitary wave speeds of V= 0.001, 0.005, 0.01, 0.0125,
0.015,0.0172,0.017294, 0.01729412, 0.01729412063 and 0.01729412063364 m/s. The
smaller speeds correspond to the lower-amplitude waves. Note that several lines for
large-amplitude waves in panel (a) are not separable from one another
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Table 2.1. Values of kinematic and nonlinear parameters of IWs in a symmetric
three-layer fluid used for numerical modelling

Parameter Value
¢, m/s 1.72
a, 1/s 0.0
B m’/s 771.98
ay, 1/(m-s) 0.002859
as, 1/(m’-s) —0.00004924
Alim, M 8.5194
Viim, M/ 0.01729

in practical applications. Their propagation is similar to the motion of smooth
bores, which poses a considerable danger to objects on their way. Such
horizontal motions (sometimes called conjugate flows) are frequent in
vertically inhomogeneous fluids (Benjamin, 1971; Makarenko, 2004;
Makarenko et al., 2009). The performed analysis shows that such flows can
naturally occur in three-layer fluids for some combinations of the layers’
thicknesses and density variations.

Generally speaking, interactions and collisions of solitary solutions to
nonintegrable evolution equations are inelastic. It is, therefore, not unexpected
that solitary solutions to Eq. (2.5) interact inelastically with each other and with
the background wave fields. As a demonstration of this feature, we present an
example of numerically simulated collision of two solitonic solutions
corresponding to the values of coefficients given in Table 2.1.

The numerical code used to integrate the 2+4KdV equation (2.5) employs
an implicit pseudo-spectral method (Fornberg, 1998) that conserves the mass M
and energy E. The spatial domain was chosen based on the analytically
estimated propagation speed of solitons and interaction time, and was extended
as occasion required. The numerical code was tested against exact analytical
multi-soliton solutions to the classical mKdV equation and by means of long-
term tracking of the propagation of exact solitary solutions to Eq. (2.5) in the
absence of other disturbances. The results of the latter test did not change when
the spatial step was decreased by a factor of two. For simplicity, we use the
nondimensional form of Eq. (2.5):

Qo+ 4’0, =40y + 4y, =0, (2.12)

where
3/4 S|4
o

B, =2

3

1/2

c. (2.13)

3
a, _ a,
0= %)) 1/zx, q= adt

3 3

The space and time steps were Ay =0.2 and Af=0.1, respectively. The
numerical accuracy of the scheme with the chosen parameters is of the order of
107° (the small parameter 1 was not less than 0.04).
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Fig. 2.3. Interaction of solitary wave solutions of elevation to Eq. (1.63) in
nondimensional coordinates: space—time plot (above); cross-section of the wave field at
6 =0 (solid lines) and after the collision (8 = 4000, dotted line, below)

The initial state was composed of two solitary waves with nondimensional
amplitudes 1 and £0.5. The nondimensional limiting amplitude for the

parameters in use is VJ5/2=1.118. The corresponding dimensional amplitudes
would have been 7.62 m and +3.81 m, respectively. The evolution of each of
the counterparts was first integrated until 8 =4000. During this interval, the
total error of the numerical solution (caused, e.g., by small distortions of the
amplitude of the numerical solution owing to its discrete representation and by
radiation of wave energy) did not exceed 1x107°. The initial state for studies
of the interaction of these solitary waves was composed simply as a linear
superposition of the counterparts. The smaller wave was placed ahead of the
larger one, at a distance (counted as the distance between the relevant
maximums) of 150 nondimensional units of length. The simulation was
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performed until & =4000, that is, quite a long time after the interaction of the
highest parts of the waves terminated (Figs. 2.3, 2.4).

The evolution of solitary waves of elevation resembled the typical
scenarios for similar soliton interactions in the classical KdV and mKdV
frameworks in which the higher wave overtakes the smaller one (Drazin and
Johnson, 1989; Soomere, 2009). The counterparts usually lose their identity
and merge into a composite structure at a certain instant. After a while, the
counterparts emerge again whereas it is impossible to say whether they
propagate through each other as waves do or collide as particles do. The
interaction process is accompanied, as in the case of KdV solitons, by a clear
decrease in the amplitude of the composite structure during the merging phase
and by a substantial phase shift.

Differently from processes governed by integrable equations, the
numerically simulated collision was accompanied by the generation of a very
long and almost stationary localized depression area. The entire process was

0.5
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Fig. 2.4. Interaction of solitary waves of different polarity in the framework of Eq.
(1.63) in nondimensional coordinates: space—time plot (above); cross-section of the
wave field at 8 = 0 (solid lines) and after the collision (€= 4000, dotted line, below).
The right bottom panel is a zoomed version of the left bottom panel
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also accompanied by a modest radiation of wave energy from the interaction
region. The amplitude of wavelike disturbances was about 4x1072, that is, by
several orders of magnitude larger than the level of numerical errors (<1x107).
This level of wave generation signifies the effects of dispersion on the
evolution of the system. Note that the amplitude of the disturbances matches
the magnitude of the relevant dispersive terms O(u) = O(A), which is also
about 4x107.

The collision of solitary waves of different polarity has a similar
appearance. Both the counterparts largely survive the collision but the phase
shift for the wave of depression is more pronounced (Fig. 2.4). The amplitude
of radiated waves is much smaller than in the above case and does not exceed
1x107*. Test simulations with a twice higher spatial resolution led to practically
identical results. Therefore, the described side effects such as wave radiation in
both cases and the formation of a long depression area in the collision of waves
of elevation evidently are an inherent part of interactions of solitary waves in
the framework of Eq. (2.5).

Consequently, collisions of solitary wave solutions of Eq. (2.5) are
basically of inelastic nature although both the intensity of wave radiation and
changes in the amplitudes of the solitons are fairly minor. The collision of
waves of elevation led to an increase in the nondimensional amplitude of the
higher soliton from 1 to 1.002 and to an accompanying decrease in the smaller
soliton from 0.5 to 0.477. The collision of waves of different polarity led to
much smaller changes: the post-collision amplitudes of the waves were 1.001

and —0.499, respectively. Note that this effect does not exceed the order of
O(u) either. The effects caused by interactions of different solitary waves with
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Fig. 2.5. Space—time plot of interacting solitary waves of the same polarity one of
which has amplitude close to the limiting value in the framework of Eq. (1.63) in

nondimensional coordinates
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Fig. 2.6. Space—time plot of interacting solitary waves of different polarity one of
which has amplitude close to the limiting value in the framework of Eq. (1.63) in

nondimensional coordinates

similar entities and background could, of course, be much larger during longer
time intervals and/or caused by multiple collisions. As expected for non-
integrable equations, such interactions should finally lead to the decay or
damping of solitary waves to a level at which they are either practically linear
and/or are governed by a different balance of nonlinear and dispersive terms.
To simulate interactions of a wide soliton with a moderate-amplitude
soliton, the time and space steps were reduced to A@=0.01 and Ay =0.1,
respectively. The numerical error in the simulation of the propagation of the
wide soliton throughout the calculation region does not exceed 10°. The
interaction of solitary waves of the same polarity (Fig. 2.5), one of which has
an amplitude close to the limiting value, differs from the case considered
above. First, the smaller solitary wave changes its polarity during passing over
the crest of the wide soliton. Second, the change in the amplitude of the smaller
wave is about 40% (from 0.5 to 0.298), which is much larger than that in the
preceding cases. The amplitudes of the waves emitted in the process of
interaction are comparable with the amplitude of the smaller soliton.

In the interaction of solitons of different polarities (Fig. 2.6), one of which
has an amplitude close to the limiting value, the change in the amplitude of the
smaller soliton with negative polarity is somewhat larger (from 0.5 to 0.498)
than that in the calculations for solitons with amplitudes far from the limiting
value. The amplitudes of the waves emitted in the interaction are about 8x107,
which does not exceed the small parameter.

As already mentioned, the interaction of solitons of Eq. (2.5) is
accompanied by the shift of their phases. The change in the phases of solitons
of the same polarity occurs according to the classical scenario for the KdV-
hierarchy equations (Lamb, 1980). The phase shift of the faster soliton in the
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interaction of solitons of different polarity can have a different sign depending
on its amplitude. For small amplitudes, the dynamics is close to the mKdV case
and the shift is positive. For large amplitudes, when the soliton becomes wide,
the change in its phase is negative (Figs. 2.4, 2.6).

Concluding remarks

The performed analytical investigation of different regimes of wave
propagation in a relatively simple but frequently occurring in nature symmetric
three-layer environment (Papers IV, V) reveals several interesting features of
wave shapes that are usually hidden in the analysis of nonsymmetrical
situations. The key development is the derivation of a new nonlinear evolution
equation that describes the wave motion in situations where all the leading-
order nonlinear terms in the classical mKdV equation vanish simultaneously.
Such situations may often happen in relatively shallow nontidal strongly
stratified basins such as the Baltic Sea. In this case the evolution equation
governing wave motion contains two nonlinear terms (cubic and quintic
nonlinearities) of the same magnitude. This equation is obtained using the
basically standard asymptotic procedure that is widely used in similar problems
and is of the second order of accuracy as the mKdV equation for the
nonsymmetrical situation.

The resulting equation differs from the mKdV equation in two important
aspects. First, it reflects a different balance between the (higher-order)
nonlinear terms and the dispersive terms compared to that used in the mKdV
equation. More importantly, this equation contains two nonlinear terms of the
same magnitude: the cubic and quintic nonlinearities, the latter distinguishing
the resulting equation from the mKdV equation. The resulting equation has
solitary wave solutions. As this equation probably is not integrable, the
possible solitonic nature of these solutions and the existence of multi-soliton
solutions are a subject of further research.

The presence of quintic nonlinearity does not substantially modify the
shape of the solitons of relatively small amplitude but leads to radical changes
in the appearance of larger-amplitude solitary waves. Their amplitude and
propagation speed are limited. Larger-amplitude solitons have a table-like
shape with very steep fronts. The motion of such solitary waves may be
accompanied by high water speeds and strong hydrodynamic loads in the areas
where the structure of the medium is favourable for their existence. It is likely
that the classical solitary solutions to the mKdV equation are transformed into
such structures when they approach sea areas where the coefficients at the
lower-order nonlinear terms vanish.

Numerical calculations confirm that the collision of solitons of the derived
equation is inelastic. Inelasticity is the most pronounced in the interaction of
unipolar pulses. The direction of the shift of the phase of the higher-amplitude
soliton owing to the interaction of solitons of different polarities depends on the
amplitudes of the pulses.
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3 High-frequency internal waves in the Baltic Sea

The material presented in chapters 1 and 2 vividly demonstrates that not only
the formal appearance of IWs but specifically their impact on the bottom
sediments, coastal and offshore engineering structures and the marine
ecosystem substantially depends on the typical stratification in the particular
sea area. The key property of the marine environment here is the potential
asymmetry of the location of the pycnoline(s). This asymmetry naturally
generates an associated asymmetry in the velocity field excited by IWs.
Further, it underlines the importance of regional aspects in IW studies as the
vertical stratification of the ocean is highly inhomogeneous in the horizontal
direction.

One of the most interesting basins in this aspect is the Baltic Sea. It is quite
a shallow shelf sea with predominant depths from 40 to 100 m (Leppéaranta and
Myrberg, 2009). The presence of a particularly strong stratification and
associated buoyancy effects cause extensive mesoscale variability of
hydrological fields with typical horizontal scales of 520 km. The mesoscale
dynamics is particularly complex in the Gulf of Finland and in the south-
western Baltic Sea where the typical values for the baroclinic Rossby radius are
well below 5 km (Alenius et al., 2003; Osinski et al., 2010). As it is micro-tidal
but strongly influenced by wind forcing (in terms of frequent local storm surges
and occasionally occurring severe windseas), various wind-driven phenomena
are the most probable source of IWs in this basin.

The focus of this chapter is the geographical and seasonal distributions of
kinematic parameters of long IWs derived from the Generalized Digital
Environmental Model (GDEM) climatology in the Baltic Sea region. This data
set reflects the climatology of the temperature and salinity of the global oceans.
The key outcome is an express estimate of the expected IW parameters for
different regions of the Baltic Sea. A complementary topic is the variability in
the surface wave fields in this basin, in particular, extreme surface wave fields
in strongly stratified shallow-water domains where IW generation by surface
waves is feasible.

The chapter reflects the results published in Papers III and VI. Some results
from Paper I are provided occasionally for comparison. Section 3.1 describes
some existing (remote sensing and in situ) observations of IWs in the Baltic
Sea. The behaviour of prognostic kinematic and nonlinear characteristics of IW
field in the Baltic Sea is examined in Section 3.2. Branches of SIWs and their
amplitudes, which are possible in this basin, are discussed in Section 3.3. Near-
bottom and near-surface horizontal velocities induced by IWs are mapped and
analysed in Section 3.4. Statistics of surface wave conditions in the south-
western Baltic Sea based on waverider data and two long-term numerical
simulations is described in Section 3.5.
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3.1 Observations of IWs in the Baltic Sea

Since the stratification of the Baltic Sea is stable, IWs must be a common
feature there, even though the number of studies into such waves is relatively
small (Leppéaranta and Myrberg, 2009). Several kinds of IWs can exist in this
water body because of the variety of forcing factors and the complexity of its
bathymetry. The relevant field data are limited. In the existing studies the
generation of IWs in the Baltic Sea is mainly explained by the strong winds.
Tidal oscillations of the Baltic Sea level are extremely small: from 4 cm
(Klaipeda) up to 10 cm in some sections of the Gulf of Finland (Alenius et al.
1998). The associated current speed, however, cannot be neglected. It reaches
about 10 cm/s in the middle of the Gulf of Finland (Lilover, 2012) but still
remains much below the level of motions driven by IWs. Generation of IGWs

65°N ] Fig. 3.1. Locations of
observations 1-5 (Table 3.1) of
surface manifestations of IWs on
satellite SAR images of the
e Baltic Sea on the background of
60°N bathymetry.
100 m
55°N i
§l 250 m

" 15°E 20°E  25°E  30°E

Table 3.1. Parameters of IW packets detected on satellite radar images of the
Baltic Sea in 2009-2010.

Date and Coordinates Maximal Front Number
time, UTC  of the center wavelength length of  of waves
of the packet [m] the leading in the
wave [m] packet
05/08/2009  54°57’57” N 900 23 500 4
09:03:28 15°46’58” E
01/07/2009  60°47°34” N 875 16 500 3
09:03:50 18°15"26” E
12/07/2010  60°48'10" N 300 14 600 3
20:13 18°33'50" E
24/07/2010  59°58'53" N 900 15 800 4
09:07 19°43'00" E
30/07/2010  62°49'00" N 760 15 500 3
09:20 20°06'11" E
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in microtidal seas is possible due to several other dynamic processes such as

the development and relaxation of coastal upwelling, vortices of different

scales, surge phenomena, oscillations of hydrological fronts, etc. Several
studies are devoted to in situ observations and numerical modelling of the
generation and propagation of short-period IWs in microtidal and nontidal seas,

based on experimental data obtained by contact probes (Ivanov et al., 1987;

Vlasenko et al., 1998; Ivanov and Lisichenok, 2002).

In recent years the number of remote sensing observations of surface
manifestations of IWs has increased significantly, including observations for
nontidal seas (Mityagina and Lavrova, 2009, 2010; Lavrova et al., 2009, 2010,
2011). These observational data suggest that:

1) although IWs in non-tidal seas are less intense compared with IWs
generated by the tidal flow on oceanic shelves, mechanisms of their origin
are much more diverse;

2) significant seasonal and interannual variability of both the IW activity and
its manifestations is evident in the Synthetic Aperture Radar (SAR) images of
the sea surface;

3) a clear correlation exists between the frequency of occurrence of surface
manifestations of IWs in SAR images and the pycnocline position: frequent
occurrence of surface manifestations of IWs corresponds to a sharp and
shallow pycnocline.

4 - 5

Fig. 3.2. Surface manifestations of IWs (subimages of Envisat ASAR images from
http://www.iki.rssi.ru/asp/iw_images/index.html) in Table 3.1
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SAR observations of surface manifestations of IWs over the Baltic Sea area
are quite difficult because of unstable meteorological conditions. A number of
factors such as intensification or weakening of wind (calm, windless regions),
development of choppiness, rough sea, algal blooms, heavy precipitation,
passage of sharp atmospheric and wind fronts or appearance of atmospheric

potential density [kg/m’]
¢ 6 8 10 12

buoyancy frequency [s”']
002 0.04

potential density [kg/m’]
0.06 02 3 4 5

buoyancy frequency [s”']
002 0.04 006

10 5

w
S
=3

w
=3
vy

depth [m]
o w &
= =3 =

=
=]

%
3

depth [m]
W NN
s & 3

©w
S

.
S

potential density [kg/m3] buoyancy frequency [s']] potential density [kg/m3] buoyancy frequency [s']]
o 4 5 0.02 0.04 o 4 5 6 0.02 0.04
10,
50|
20
B E
= 30 < 100]
o o
) 5
= =
40
150
50,
60 200!
potential density [kg/m3] buoyancy frequency [s']]
o 4 5 6 002 0.04  0.06
10]
20
30
=
= 40
o
3
50,
60
70|
80/

Fig. 3.3. Density and buoyancy profiles for the locations in Table 3.1

IWs undermine the identification of surface manifestations of sea IWs. They
can be masked by the processes in the near-water layer of the atmosphere
(Mityagina and Lavrova, 2010). Therefore it is not surprising that events of
surface manifestations of IWs are relatively rare for the Baltic Sea, and that
only a few of them were detected from satellite SAR images.
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As an example, the main characteristics of five IW events reconstructed
from SAR images are presented (Table 3.1, Figs. 3.1, 3.2). Density and
buoyancy profiles for geographical locations of these observations (Fig. 3.3)
are calculated from the monthly averaged long-term temperature and salinity
fields calculated using the Rossby Centre Ocean circulation model (Meier et
al., 2003; Meier, 2007; Soomere et al., 2011). Note that four of the five
stratification profiles have quite a sharp and shallow pycnocline (5-10 m from
the surface, while the total depth was 40-200 m).

Lavrova et al. (2010) detected 11 events of surface manifestations of IWs
in the Baltic Proper and in the Gulf of Bothnia and 12 events in the Danish
Straits in 2009—2010. The IWs in the Danish Straits are generated by tides. The
number of waves in the trains was usually <10, maximal wavelength did not
exceed 1 km, and the length of the leading wave front was less than 25 km. In
July 2010 surface manifestations of IWs were periodically detected in the
southern part of the Gulf of Bothnia and to the north and north-west of
Gotland.

In situ measurements in the Baltic Sea show fluctuations in current
velocities and motions of isotherms on different timescales (Leppédranta and
Myrberg, 2009). Periods of 1-30 min have been observed in the Kiel Bight,
while periods of 5-6 h have been reported from the Gulf of Finland, the Arcona
Basin and the Darss Sill area. The resulting temperature (Fig. 3.4) and velocity
(Fig. 3.5) variations can be quite large. The largest changes are usually found at
the pycnocline. When there is both a thermocline and a halocline, two IW
structures can be observed in the resulting three-layer medium.

Cyclones providing winds of 10—15m/s in the Baltic Sea cause the
generation of IWs with amplitudes of 11-15m. The associated current
velocities in the upper layer are about 11-15 cm/s and in the lower layer about
5-8 cm/s (Chernysheva, 1987). The characteristics of IWs and internal seiches
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Fig. 3.4. Isotherms for a 16-day period in July-August 1978 in the Sea of Bothnia, from
(Leppéranta and Myrberg, 2009)
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Fig. 3.5. Density profile (left) and records of the absolute value of horizontal velocity
(right) on 16 June, 2010 near the coast of Curonian Spit in the south-eastern part of the
Baltic Sea (Kurkina et al., 2011).

measured in the Baltic Sea are given in (Kol'chitskii et al., 1996; Golenko and
Mel'nikov, 2007). In particular, IWs with periods of 0.1-1 h, observed in the
central part of the Gotland Deep formed IW trains with duration of several
hours and current amplitudes of about 3 cm/s. IWs in the inertial frequency
range can induce currents reaching 20 cm/s.

3.2 Average kinematic and nonlinear parameters of IWs in
the Baltic Sea

Horizontal variability of hydrological fields is represented in the weakly
nonlinear IW theory as spatial variation of the coefficients of the corresponding
nonlinear evolution equations (1.35) and (1.39). These coefficients (the
propagation speed, the coefficients at the quadratic and cubic nonlinearities and
the dispersion term) govern the kinematic and nonlinear characteristics of the
IW field. Horizontal variability of vertical stratification is especially
pronounced in the shelf zone and shallow-water basins of estuarine type.

10°E 15°E  20°E  25°E  30°E

Fig. 3.6. Maps of the maximal value in the buoyancy frequency profile Ny [s'] (left
panel: January, right panel: July)
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When [Ws are modelled numerically, an important problem is to specify
the hydrological conditions that govern the density variations with depth to
initialize the numerical models. An adequate way is to use gridded tempera-
ture—salinity data from international hydrological atlases. This approach allows
reproducing the internal wave ‘climate’ of the considered basin, because
hydrological atlases represent the long-term mean density stratification.

The first such estimations for the Baltic Sea are given in (Talipova et al.,
1998) for the region of the Gotland Basin. Analogous maps for specific regions
of interest can be found in (Ivanov et al., 1994) for the Black Sea, in
(Pelinovsky et al., 1995) for the coast of Israel, in (Poloukhin et al., 2003,
2004) for the Arctic Sea (the last paper also accounts for the background
currents) and in Paper I for the South China Sea.

We used long-term mean temperature and salinity profiles from GDEM-
V3.0 (Teague et al., 1990) to calculate density stratification for the Baltic Sea.
The GDEM climatology at a 10" resolution has been developed for selected
regions (incl. the Baltic Sea) where the data are sufficient to support this high
resolution.
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Fig. 3.7. Top: depth p, [m] of the maximal value in the buoyancy frequency profile;
bottom: maps of its values p,/h normalized by the total sea depth (left column:
January, right column: July)
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Mean density profiles for each month were computed from temperature and
salinity profiles using the International Equation for State of Sea Water
(Fofonoff and Millard, 1983). With these density profiles, the speed of
propagation and dispersive and nonlinear parameters of the Gardner equation
for IWs of the lowest mode were presented in the form of charts with a
resolution of 10"x10” along latitudes and longitudes in Paper III. This paper
also discusses spatial and seasonal (July and January) variations in these
parameters.

The eigenvalue problem (1.9) was solved numerically at each grid point for
the first eigenvalue ¢ (long linear IW phase speed for the lowest vertical mode
IWs) and the first eigenfunction @ (z) (vertical structure of a wave). The
dispersion and quadratic nonlinearity parameters were evaluated next from Eq.
(1.11). Further, the boundary-value problem (1.13) for the nonlinear correction
T,(z) was solved numerically by the method of variation of parameters.

Finally, the coefficient at the cubic nonlinearity (1.17) was calculated.
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Fig. 3.8. Top: maps of long linear IW speed ¢ [m/s]; bottom: scatterplots of ¢ as a
function of sea depth, colours indicate values of N, [1/s] for the corresponding grid
point (left column: January, right column: July)
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Fig. 3.9. Top: maps of the long linear IW dispersion parameter S [m’/s]; bottom:
scatterplots of f as a function of sea depth, colours indicate values of Ny, [s] for the
corresponding grid point (left column: January, right column: July)

The bathymetry of the Baltic Sea (Fig.3.1) and charts representing the
magnitude of seasonal variability in the density stratification in terms of
maximums of buoyancy frequency N, (Fig.3.6), the depth p, where the
maximum of buoyancy frequency occurs (usually equivalent to the depth of the
main pycnocline) and its value p, /A normalized by the total water depth (Fig.
3.7) can help in the interpretation of obtained results and in explaining the
features of the geographical distribution of kinematic and nonlinear parameters
of the IW field. Consistently with the extensive seasonal variation in the Baltic
Sea dynamics the stratification data strongly depend on the particular season.
An interesting feature is the increase in the maximal buoyancy frequency
values during summer simultaneously with a decrease of their depths. In the
light of the above research, one can expect an increase in the impact of IWs
upon bottom sediments in shallow-water regions of the Baltic Sea in late
summer and autumn.

Seasonal variations in the linear parameters ¢ and [ (the relevant
coefficients at the linear terms in Egs. (1.20), (1.35), (1.39); Figs. 3.8 and 3.9)
are not very significant.
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Fig.3.10. Top: maps of the quadratic nonlinearity parameter « [1/s]; bottom:
scatterplots of « as a function of sea depth, colours indicate values of p,/h for the
corresponding grid point (left column: January, right column: July).

The main features of their geographical distribution almost do not change
from season to season. The maximal value of c¢ is about 90 cm/s. These
parameters apparently are mostly determined by the bathymetry. As expected,
the linear phase speed and the linear dispersive coefficient scale approximately
with power laws of the total sea depth (Figs. 3.8 and 3.9). Hence, as is well
known, the SIWs of the largest amplitude will generally be found in shallow
areas, including the coastal zone. For the Baltic Sea conditions the sets of data

points for ¢(h) and B(h) form three clearly expressed branches depending on
the values of N,,, and signifying the presence of three different populations of

IWs.
The nonlinear parameters « and ¢, (the relevant coefficients at the

X

nonlinear terms; Figs. 3.10 and 3.11) are more sensitive with respect to the fine
structure of the density stratification. They show considerable variability. Their
seasonal variability is significant, and they can even change their signs at the
same place from season to season. The presence of many sign changes
emphasizes once more the importance of determining the critical points.
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Fig. 3.11. Top: maps of the cubic nonlinearity parameter ¢; [1/(m-s)]; bottom:
scatterplots of ¢ as a function of sea depth, colours indicate values of Ny, [1/s] for the
corresponding grid point (left column: January, right column: July)

The quadratic nonlinearity parameter (Fig. 3.10) changes from —0.02 to
0.03 1/s. For July it is mainly positive in the southern part of the Baltic Sea (the
Arcona Basin, the Bornholm Basin and the Slupsk Furrow). In the central part
(the Gotland Basin) there are spots with different signs of «. The Gulf of
Finland and the Bothnian Sea are characterized by negative values of this
parameter. In the winter season the zone of positive values of « broadens and
includes the central part of the Baltic Sea and most of the Gulf of Finland.

The plots of the quadratic nonlinearity parameter (Fig. 3.10) show the
tendency for its absolute value to decrease with the increasing depth (for depths
of 100 m and more). Negative values of @ are mainly observed for depths over
150 m. Larger absolute values of « are typical for the locations with larger
values of N, . From Fig. 3.10 it follows that in January the normalized
pycnocline depth p,/h is mainly responsible for the sign of the quadratic
nonlinearity coefficient: « <0 if the pycnocline is situated near the surface
(small p,/h) and normally & >0 for deeper locations of the pycnocline. In

July (Fig. 3.10) this relationship is not so clearly expressed because of a more
complex pattern of density profiles.
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Fig. 3.12. Parameters (¢, o) for different areas of the Baltic Sea. Colours of the points
indicate values of p,/h for the corresponding grid point (left panel: January, right panel:
July)

The cubic nonlinear parameter (Fig. 3.11) changes in the range from —
0.003 to 0.004 1/(m-s) in the Baltic Sea (Paper III). Its spatial distribution has a
spotty character with interspersed zones with positive and negative values, with
a certain predominance of negative values in winter and of positive values in
the Bothnian Sea in summer. The scatterplots of this quantity against water
depth show that sufficiently deep (% >100 m) locations have small absolute

values of this coefficient (<107 1/(m's)) where it is mainly negative in
January, and can have both signs in July. No clear pattern is evident for ¢,

against N, p, or p,/h.

3.3 Nonlinear wave regimes

Combinations of nonlinear parameters (¢, ;) are shown in Fig. 3.12 for
hydrological conditions in the Baltic Sea in January and July. A comparison
with Fig. 1.3 reveals the possibility for all the branches of soliton solutions of
different polarities of the Gardner equation (see Section 1.2) to exist in the
Baltic Sea either in winter or in summer. Therefore, various dynamic scenarios
for IW interactions and transformations are possible here. In addition, there
exist a number of cases with very small values of both & and «,. The IW field
in such cases cannot be described by the Gardner equation, and certain higher-
order nonlinear terms have to be taken into account to properly describe the
SIWs.

Figures 3.13 and 3.14 illustrate geographical distributions of amplitudes
i (Eq. (1.46)) for the points with ¢, <0 and a,, (Eq. (1.47)) for the points

with ¢, >0 in the Baltic Sea. The range for the values of these amplitudes is
about £40 m.

alg

59



Ocean Data View

0°E

25°E  30°E 10°E 15°E  20°E  25°E 3

Fig. 3.13. Limiting amplitudes [m] of ‘top-table’ solitary waves (for negative cubic
nonlinearity values, left panel: January, right panel: July)

Note that KdV, mKdV and GE+ (Gardner equation with positive cubic
nonlinearity) equations, formally, do not restrict the amplitude of large-
amplitude SIWs (1.44), (1.45) and (1.42). The only restriction is that the
amplitude must be small enough for the equations to be applicable.

To understand the role of the nonlinearity (is it weak or not) in the IW

dynamics, three values should be compared: ¢, aa and oa’, where a is the
amplitude of the soliton. In deep water nonlinear effects are usually small, but
in the coastal waters they can be comparable with and even exceed the linear
term. Nevertheless, the Gardner model may be used as demonstrated in
(Maderich et al., 2009, 2010). Consequently, the relevant soliton solutions can
have amplitudes at which waves break for any stratification, including those for
which solutions of the DJL equation broaden and reach the limit of a flat
centred solitary wave well below breaking. The amplitude of the solutions to
the GE— (Gardner equation with negative cubic nonlinearity) is bounded, but
the limitation is not always physically adequate: the amplitude may even

"Ocean Data View
Ocean Data View

15°E  20°E  25°E  30°E

Fig. 3.14. Amplitudes [m] of algebraic solitons (left panel: January, right panel: July)
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exceed the total sea depth.
A reasonable upper bound for the amplitude of SIWs can be found from the
condition that the wave does not break:

U
—eesl, 3.1
% (.1)

where U, =max u(x,z,t) is maximal horizontal velocity induced by the
internal soliton (see Eq. (1.49)) and V' is the propagation speed of this soliton.
The latter is the propagation speed ¢ of a linear long IW plus a nonlinear
correction, whose formulation depends on the approximation used (KdV,
mKdV or GE) and which is always expressed through the amplitude and the
parameters of nonlinearity:

aa’ o o

oa
Vegw =Cc+—, V. =c+ , Vep=c+—+ (3.2)
Kdv 3 Kdv 6 GE 3

m

For the largest-amplitude soliton Eq. (3.1) reduces to U, =V . As was

discussed in Section 1.3, the maximum horizontal velocity excited by a lower-
mode weakly nonlinear soliton is attained on the bottom or on the surface,
therefore

do (o dd dT \ ,
Upax = —Vt)—+| ——+c—= —Vt
ma zI—l{qoa;l—)%}{cn(x ) dz (2 dz ¢ dz ]77 x )}

= cad;q).k gd;q)_i.cﬂ a2
zrzr{loez,} dz 2 dz dz ’

(3.3)

where only the leading-order term is appropriate for the KdV approximation. A
continuation of the research towards establishing more exact estimations for
such limiting amplitudes is planned for the future.

3.4 Horizontal velocity in internal waves

Velocity components in IWs of the lowest mode are described in Section 1.3
for two- and three-layer examples of vertical density profiles. Horizontal
velocity is the most significant component. It can be calculated using Eq.
(1.49). The largest horizontal currents associated with these waves are at the
surface or at the bottom depending on the vertical location of the most
significant density variations. Such wave-induced near-surface and near-bottom
currents can provide an effective means of particle transport, affecting
pollutants, admixtures, nutrients, sediments etc. and having an impact on eco-
and biosystems, offshore structures and their mooring devices.

The central characteristic of an IW field is the near-bottom velocity in IWs
in areas where the density jump layers are located in the vicinity of the seabed.
In such areas IWs are the major driver of sediment resuspension and erosion
processes (Stastna and Lamb, 2008; Carr et al.,, 2010). They may be also
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responsible for destroying the laminated structure of the sedimentation regime
in affected areas. As the pycnocline is in many cases located at a depth of only
a few metres in some areas of the Baltic Sea during spring and summer
(Leppéranta and Myrberg, 2009), the impact of IWs on sedimentation
processes frequently extends to the coastal zone and overlaps with the
nearshore affected by surface waves. Such a situation often happens in partially
sheltered sub-basins of the Baltic Sea like the Gulf of Finland where the role of
high near-bottom velocities, eventually created by high-amplitude IWs, has
been systematically underestimated in engineering applications (Erm et al.,
2010).

For the analysis of the geographical features of the near-bottom and near-
surface velocity distribution it is convenient to consider a normalized quantity
u/n (Figs. 3.15 and 3.16). To the leading order, it is independent of 77 .

The largest values of normalized near-bottom velocities (Fig. 3.15) can be
expected along the coasts, in the eastern part of the Gulf of Finland and
especially in the south-western part of the Baltic Sea (the Arcona Basin and the
Bornholm Basin) with the tendency for small values to increase in the warm
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Fig. 3.15. Top: maps of leading-order normalized near-bottom velocity u,/77 [1/s], in the
IW field; bottom: scatterplots of u,/7 as a function of sea depth (left column: January,
right column: July)
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season.

The largest values of normalized near-surface velocities (Fig. 3.16) are
found in the central part of the Baltic Proper (eastern Gotland Basin, in the
domains to the north, north-east and north-west of the Gotland Island), in the
deepest part of the Gulf of Bothnia, and to the east and north-east of Bornholm
Island. They also increase noticeably in summer.

The scatterplots of u,/7 against sea depth (Fig. 3.15) show a general

decrease in this quantity for increasing depths in the Baltic Sea, while u /7

(Fig. 3.16) exhibits a contrary trend to increasing for larger depths. Thus, for
IWs of equal amplitude the wave-induced horizontal currents predominate near
the bottom in shallow regions and near the surface in deep basins.

A specific feature for many relatively shallow regions of the Baltic Sea is
that the normalized near-bottom velocities in IWs are almost twice as large as
the corresponding near-surface velocities. This follows from the property of
many winter-time density profiles. In January the pycnocline is usually located
in the lower part of the water column (Fig. 3.7) and this affects the shape of
®(z). Stratification in July is usually characterized by quasi-three-layer
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Fig. 3.16. Top: maps of leading-order normalized near-surface velocity uy/n [1/s], in
the IW field; bottom: scatterplots of u/7 as a function of sea depth (left column:
January, right column: July)
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density profiles with two pronounced pycnoclines with comparable values of N
(see, for example, Fig. 3.3, panel 1). Therefore, even for a relatively strong
upper pycnocline the vertical mode ®(z) can have larger gradient near the

bottom.

It is interesting to note that three points of IW observations (points 1, 4, 5)
out of the five in Fig. 3.1 are located near the local maximums of normalized
near-surface velocity (Fig. 3.16).

3.5 Statistics of extreme surface waves in the south-
western Baltic Sea

The local surface wave climate of the Baltic Sea is analysed in Paper VI on the
example of the Darss Sill area, south-western Baltic Sea, based on 20 years
(1991-2010) of waverider data and results of two long-term numerical
simulations. This analysis is particularly important in the context of
establishing potential sources of IWs in this basin. The key outcome is the
demonstration that high-frequency hydrodynamic activity, which could
partially replace the tidal IW generation, is quite large in the Baltic Sea.

Wave measurements have been carried out at a 20 m deep location
(54°41.9'N, 12°42.0' E, Fig. 3.17) in the area of the Darss Sill since 29 January
1991 using a Datawell directional waverider. The device is operated by the
Institute for Coastal Research, the Helmholtz-Zentrum Geesthacht, Germany.
An overview of the recorded wave data and their climatological analysis is
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Fig. 3.17. Location scheme of the wave measurement site at the Darss Sill in the SW
Baltic Sea
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presented in (Soomere et al., 2011).

The measured wave data are compared with two numerically simulated
wave data sets, both calculated using the third generation wave model WAM
(Komen et al., 1994) covering the entire Baltic Sea with a spatial resolution of
about three nautical miles (5.5 km x 5.5 km) and a directional resolution of
15°. One of the simulations (called AW below) was peformed for the period of
1958-2002 using 28 frequency bins ranging from about 0.05 to 0.66 Hz
(Augustin, 2005; Weisse et al., 2009). The model was forced by wind fields
derived from a reconstruction using a regional atmosphere model (Feser et al.,
2001) driven by the NCEP/NCAR (National Center for Environmental
Prediction and the National Center for Atmospheric Research) weather
reanalysis (Kalnay et al., 1996, Kistler et al., 2001). The model considered
wave fields from a corresponding North Sea hindcast (Weisse et al., 2007) as
lateral boundary conditions.

Another set of simulations (called RS below) was performed for 1970—
2007 for the Baltic Sea only (Rdimet and Soomere, 2010) using adjusted
geostrophic winds and assuming that the wave energy flux through the Danish
Straits can be ignored. This hindcast used an extended frequency range up to
about 2 Hz (wave periods down to 0.5s, 42 frequencies) to ensure realistic
wave growth rates in low wind conditions after calm situations (Soomere,
2005). Wave data for comparisons are calculated for the grid point with
coordinates 54°42' N; 12°42"' E for both models. The basic integrated wave
parameters such as significant wave height, mean wave direction, and different
wave periods are available every hour for each of the models. As the RS
simulations with using relatively low-resolution wind information (once in 3 or
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Fig. 3.18. Frequency of occurrence of different mean wave periods based on all
measurements (1991-2011, white framed bars) and RW modelling results (1957-2002,
grey bars). Circles and squares indicate the relevant values of these data sets for the
overlapping period of 1991-2002. Rhombuses indicate the frequency of occurrence of
peak periods reduced by 15% from AR simulations for 1970-2007
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6 h), the timing of the simulated and measured wave events was poor but the
wave statistics was reconstructed adequately.

The wave climate of the Darss Sill region (Fig. 3.17) reveals several well-
known features of the Baltic Sea waves in semi-sheltered basins of this water
body: relatively modest long-term wave heights, periods usually in the range of
2—4 s (Fig. 3.18) and the most frequent wave heights around 0.5 m (Fig. 3.19).
Contemporary wave models reasonably reproduce both the average wave
heights and the distributions for the frequency of occurrence of different wave
heights (Fig. 3.19). Also, the detailed temporal course of the wave heights is
adequately reproduced by the AW simulations. Models forced by low-
resolution (e.g. geostrophic) wind data also reproduce the basic wave statistics
although they frequently fail to reflect wave fields in strong storms. Therefore,
wave data modelled even using low-resolution wind fields can be successfully
used for such applications that rely exclusively on the statistical distributions of
wave parameters (e.g. estimates of the intensity of coastal processes or the net
longshore transport of sediment using the CERC method).

There is a major discrepancy between the measured and modelled
distributions of wave periods (Fig. 3.18), especially for periods occurring in
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relatively rough wave conditions. The difference between measured and
modelled periods in strong storms is up to 2 s, which may considerably affect
the estimates of wave—bottom interactions and refraction patterns for certain
depths and, consequently, the estimates of the frequency of nonlinear
interactions between crossing wave systems.

The sawtooth-like behaviour of the modelled annual highest waves (Fig.
3.20), although it contains a large level of interannual variability, suggests that
a major shift in storm properties occurred in the southern Baltic Sea at the
beginning of the 1990s. Given 6.23 m as the maximum modelled wave height
in RS simulations and the match of modelled and measured wave conditions in
many storms, the sea area in question apparently hosts more severe wave
climate than, for example, the Gulf of Riga or even the Gulf of Finland. The
basic reason is that, differently from these basins, the Darss Sill area and the
adjacent Arkona Basin are oriented along the wind directions prevailing during
strong storms. This feature becomes evident as an about 20% difference of the
all-time highest waves (5.2 m measured in the Gulf of Finland, 6.23 m hindcast
in the Darss Sill area) and has a potential for even larger wave heights in the
Arkona Basin.

Another highly interesting feature is the mismatch between the temporal
changes in the average wave heights, typical properties of modestly high waves
(the threshold for the top 10% of the waves) and the properties of the highest
waves. While the properties of average and modestly high waves have shown
identifiable changes over the last half-century (Soomere et al., 2011), the
threshold for the 1% of the highest waves, estimated from measurements, has
considerably decreased over the two latter decades. This process is opposite to
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the recently identified increase in this threshold in the north-eastern Gulf of
Finland (Soomere et al., 2010) on the background of no changes in the average
wave heights. Still, both the patterns of changes are consistent with the gradual
increase in the frequency of south-western and western winds at the ‘expense’
of other wind directions (Jaagus, 2009; Lehmann et al., 2011) in a large section
of the Baltic Sea basin: the Darss Sill. The analysis also shows some evidence
(albeit statistically not significant) that the wave heights in the strongest storms
have not changed over the last 20 years whereas the frequency of storms
exciting very severe waves might have increased.

Concluding remarks

The presented overview of the spatial variability of the basic parameters and
several interesting features of the underlying hydrophysical fields (such as the
depth of the maximal value in the buoyancy frequency profile and the maximal
values of the buoyancy frequency over such profiles for different months) and
the derived average values of the coefficients of the Gardner equation allow
producing the estimations of nonlinear IW shapes and limiting amplitudes
before numerical simulations. The critical points (where the coefficients at the
quadratic or the cubic nonlinear term vanish) define the locations of special
interest where SIWs may undergo dramatic transformation, often involving a
polarity change and disintegration into a wave train. The spatial and seasonal
distributions of the kinematic and nonlinear parameters governing the IW field
in a frame of the Gardner equation are constructed on a 10"x10” grid from the
GDEM V3.0 climatological average hydrographic data set for the Baltic Sea in
Paper III. Geographical variations of the climatological averages of parameters
together with the effects of stratification and water depth apparently describe
the main elements of the distributions of IW features in the Baltic Sea.

Seasonal (January and July) maps indicate that seasonal variations in the
hydrophysical fields are insignificant for the linear (phase speed and
dispersion) parameters. The coefficients at nonlinear terms of the Gardner
equation ¢ and ¢, are less stable. Their relatively strong variations and even

changes in their sign are possible. The presented data and technique enable to
systematically estimate limiting amplitudes for SIWs and to highlight the
possible soliton branches. As an application of the technique of the Gardner
equation, maps of the leading-order near-bottom and near-surface amplitude-
scaled horizontal velocities have been constructed. This descriptive study as
well as the database of IW parameters for the Gardner model in the Baltic Sea
will eventually provide a useful resource for a variety of dynamic studies. The
established kinematic parameters can be used for express evaluations of the
possible polarities and shapes of solitary IWs, their limiting amplitudes,
propagation speeds etc. They also can help to set up and initialize more
complex full nonlinear multidimensional models for IGWs.

The properties of extreme waves in relatively shallow domains of the Baltic
Sea are analysed on the example of the Darss Sill area, SW Baltic Sea, based
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on 20 years (1991-2010) of waverider data and results of numerical
simulations. The largest measured significant wave height is 4.46 m. Numerical
modelling indicates that wave heights over 6 m have occurred in this area
within the last half-century. A major discrepancy (difference up to 2s) is
identified between the measured and modelled distributions of wave periods.
The temporal course of the modelled annual highest waves has sawtooth-like
behaviour, with gradual increase for 1958—1990 from about 4 m to about 5 m, a
drastic decrease in 1991-1992 and an increase since then again. These changes
may be reflected in the field of IWs in the Baltic Sea.
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4 Propagation of nonlinear internal waves in
shallow seas

This chapter presents several examples of modelling of IWs in realistic
conditions based on results published in Papers I and II. The central goal is to
demonstrate how the theoretical results presented in Chapter 1 can be applied
for realistic oceanic conditions, such as those found in the South China Sea.

SIW transformations in the framework of models presented in Chapter 1 in
zones including sign changes of nonlinear parameters are described in Sections
4.1 and 4.2 for the South China Sea and the Baltic Sea, respectively. Although
the Baltic Sea is situated in middle and rather high latitudes, these calculations
do not account for the Earth’s rotation effects, which are discussed in Section
4.3. The relevant impact is negligible because the considered waves are
relatively short in comparison with tidal and inertial waves, and we do not
solve the problem of the generation of such waves. This approach is not
applicable at even higher latitudes as described in Section 4.3. The situation
presented in Section 4.4 requires another approach in modelling based on the
direct solving of primitive Euler equations for a rotating basin, because the
evolution of long tidal IWs is considered in supercritical latitudes in the
Barents Sea.

4.1 Transformations of solitary internal waves in the South
China Sea

In a typical oceanic situation, where there is a relatively sharp near-surface
pycnocline, a SIW of depression is generated in the deep water and it
propagates shorewards along generally decreasing depth until it reaches a
critical point. For a simple two-layer model, the pycnocline at such a location is
close to the mid-depth (Koop and Butler, 1981). The theory (Grimshaw et al.,
1998) predicts that this wave will be destroyed in the vicinity of the critical
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Fig. 4.1. Displacement of the isotherms as measured in the South China Sea, from (Liu
et al., 2006)
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Fig. 4.2. Time series of IWs in the South China Sea, from (Duda et al., 2004)

point. It will be replaced in the shallow water shorewards of the critical point
by one or more SIWs of elevation riding on a negative pedestal. This basic
scenario has been observed many times in several places in the ocean, in lakes
and in estuaries. Elsewhere in the ocean, where there are no such critical points,
the shoreward propagating small-amplitude SIWs are expected to deform
adiabatically (at least within the framework of the Gardner equation).
Examples of this behaviour often occur. See Paper I for detailed references of
both the scenarios.

The South China Sea is well known as a location where SIWs have been
commonly observed. The dynamics of IWs in this basin has been intensively
studied both experimentally and through numerical simulations (Paper I).
Typically, large-amplitude IWs are generated by barotropic tidal currents,
possibly combined with the extension of the Kuroshio Current, interacting with
the topography in Luzon Strait. Solitary waves with amplitudes up to 80 m (in
sea areas with a water depth of 300 m) have been observed at two underwater
mountain ridges in Luzon Strait. The resulting wave field in Fig. 4.1 is taken
from (Liu et al., 2006). These waves cross the deep basin and then shoal on the
continental shelf where the water depth is 400-200 m. See, for example, the
reports of the ASTAEX experiment (Duda et al., 2004; Liu et al., 2004; Ramp et
al., 2004). Wave amplitudes can reach 100 m and their shapes compare well
with theoretical solitary wave shapes. See (Klymak et al., 2006) and Fig. 4.2
from Liu et al. (2006).

Numerical modelling of the SIW transformation on the continental slope

Fig. 4.3. Bathymetry of the
South China Sea, with the
chosen cross-sections
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Fig. 4.4. Contour maps of the coefficients of the variable-coefficient Gardner equation
for the South China Sea. The plots are those for the phase speed ¢, the dispersion
coefficient f (upper panels), the quadratic coefficient ¢ and the cubic coefficient o
(lower panels)

and shelf of the South China Sea has often been based on the variable-
coefficient KdV and Gardner models, using mainly two-layer representations
of the density stratification. The results have been used to interpret the
observed solitary wave evolution and especially the polarity changes (Liu et al.,
1998, 2004; Orr and Mingerey, 2003; Zhao et al., 2003, 2004). There are also a
few numerical simulations that use the full Euler equations for stratified flow
(Buijsman et al., 2008; Du et al., 2008; Scotti et al., 2008; Warn-Varnas et al.,
2010; Vlasenko et al., 2010).

A set of numerical simulations of the variable-coefficient Gardner equation
(1.39) for two typical cross-sections of the South China Sea (Fig. 4.3) is
performed in Paper 1. One cross-section is close to the conditions for ASTAEX
2001, where the SIWs are generated by westward tidal currents in Luzon Strait
(Liu et al., 2006; Zhao and Alford, 2006). The other cross-section is chosen to
have a positive cubic nonlinear coefficient along the whole wave path. Contour
maps of the linear long wave speed, the coefficients at the quadratic and cubic
nonlinear terms and the coefficient at the linear dispersive term in the variable-
coefficient Gardner equation (1.33) are shown in Fig. 4.4. They are based on
the vertical density profiles from the GDEM database for January, while the
bathymetry is taken from the GEBCO database. As expected, the linear wave
speed ¢ and the dispersion coefficient f correlate well with the depth &
(Talipova and Polukhin, 2001; Polukhin et al., 2003). The quadratic nonlinear
coefficient ¢ is negative in the deep part of the South China Sea but changes to
positive on the continental slope of the South China Sea (Orr and Mignerey,
2003; Zhao et al., 2003, 2004). The coefficient at the cubic nonlinearity ¢ is
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Fig. 4.5. Coefficients of the variable-coefficient Gardner equation (1.39) along cross-
section 1

very small and positive in the deep part of the sea, but its sign changes in some
parts of the continental slope to negative, while in other places it stays positive
and grows in absolute value.

To understand the role of quadratic and cubic nonlinearity in the IW
dynamics three values should be compared: ¢, oa and oqa”. In the deep part of
the South China Sea, the wave speed ¢ = 2.5 m/s and even if the IW amplitude
is taken as 80 m (it is usually much less in deep water), oa = 0.48 m/s and
oua® =0.13 m/s. Hence, nonlinear effects are small in the deep part of the
South China Sea. But on the continental slope c is less than 0.5 m/s and for the
same [W amplitude of about 80 m, ou =0.48 m/s, comparable with ¢, and
oud® = 1.28 m/s, which is much larger than the quadratic nonlinear term. Thus
in the shelf zones the waves are strongly nonlinear. Indeed, the ratio of the
nonlinear terms to the speed of propagation is about 3.5. Although the Gardner
model may be still used in such conditions as demonstrated by Maderich et al.
(2009, 2010), several other higher-order KdV-type models have been proposed
(Apel et al., 2007) to more adequately describe the IW dynamics.

Numerical results for cross-section 1. The wave path is close to the
conditions of the ASIAEX 2001 experiment on the shelf (Ramp et al., 2004)
and is here extended to Luzon Strait to the site where the westward propagating
solitary waves were observed (Liu et al., 2006; Zhao and Alford, 2006). The
model coefficients are shown in Fig. 4.5. The depth decreases from 2.5 km to
200 m, the linear long wave speed ¢ varies from 2.5 m/s to 0.2 m/s, the linear
modification factor Q is equal to 1 initially, then decreases to 0.5 at the location
x =250 km, before increasing to 2.5 on the shelf. Corresponding to the change
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in depth, the dispersion coefficient f decreases along the cross-section. The
nonlinear quadratic coefficient « is negative for most of the wave path, but
changes sign once only at a depth of about 100 m. The cubic nonlinear
coefficient ¢ is positive in the deep water and becomes negative at a depth of
about 400 m. Hence there are two critical points here, both on the shelf. The
amplitude of the initial solitary wave (1.42) is chosen as 49 m at x =0 in Figs.
4.6 and 4.7. This is less than that mentioned by Liu et al. (2006) where the
amplitude of an observed solitary wave was estimated at 140 m but large
enough for our purposes.

During the solitary wave evolution (Fig. 4.6) the leading wave amplitude
has decreased by a factor of 2 at x =220 km, from 49 m to 25 m. Over this
same distance, the cubic nonlinear coefficient is almost constant, the quadratic
nonlinear coefficient and the dispersive coefficient have decreased, and the
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Fig. 4.6. Transformation of a SIW along cross-section 1
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Fig. 4.7. Contour plot
in the space—time
domain of a SIW
20 transformation along
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linear modification factor has decreased by a factor of 1.5; together these have
the effect that the initial wave has started to deform with the formation of a
trailing tail. At the location x =350 km the linear modification factor is
decreasing, the cubic nonlinear coefficient changes sign and the quadratic
nonlinear coefficient tends to zero. The leading solitary wave now has an
amplitude of about 35 m and is wider than at the location x =220 km. At
x =400 km the quadratic nonlinear coefficient changes sign. At this location
the typical destruction of the solitary wave of depression takes place, followed
by the generation of several solitary waves of elevation. The space—time
contour plot of this IW transformation is shown in Fig. 4.7.

Numerical results for cross-section 2. On this cross-section, the initial point
is in deep water (depth 2 =3 km), and the last point lies near Hainan Island.
The cubic nonlinear coefficient is positive everywhere, while the quadratic
nonlinear coefficient changes sign on the shelf (Fig. 4.8). The depth decreases
from 3 km to 200 m non-monotonically, producing analogous tendencies for
the dispersion coefficient £ and the linear long wave speed c. The linear
modification factor Q is initially close to one, and then decreases before
increasing after the location x =700 km. The quadratic coefficient & grows
after x=400 km in absolute value. After x=580 km it tends to zero,
changing sign at x =700 km. The cubic coefficient ¢ is positive everywhere,
but grows by an order of magnitude.

This is a scenario when we might expect the formation of a breather from a
solitary wave at the location of the zero-crossing of the quadratic nonlinearity
coefficient, provided the leading wave amplitude is large enough. Two runs
with initial solitary wave amplitudes of 23 m and 41 m were performed to
verify the conjecture.

The solitary wave transformation for the first run is shown in Fig. 4.9. Due
to the increase in the cubic nonlinearity coefficient the initial solitary wave
becomes narrower and a trailing tail emerges, developing oscillations after
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x =600 km. This occurs without a significant change in the leading wave
amplitude because the modification factor increases slowly. At the location
x =700 km a ‘sech’-like solitary wave is developed. Then, at x =730 km the
quadratic nonlinear coefficient changes sign. The leading wave amplitude is
not large enough for the transformation into a ‘sech’-like solitary wave of
depression that would correspond to a positive coefficient of quadratic
nonlinearity. Instead, the wave disintegrates and at x =760 km we see the
formation of secondary solitary waves of opposite polarity. The space—time
contour plot of this run is shown in Fig. 4.10.

The initial disturbance in the second run (Fig. 4.11) has an amplitude of
41 m. Again a ‘sech’-like solitary wave emerges (this time at the location
x =500 km) and its amplitude grows to 60 m. At x =600 km a secondary
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Fig. 4.8. Coefficients of the generalized Gardner equation (1.39) along cross-section 2

solitary wave begins to form. Due to the increase in the linear modification
factor O, the amplitude of the leading wave decreases to about 45 m. Then, as
the coefficient of quadratic nonlinearity tends to zero, the cubic nonlinear
coefficient grows rapidly, and the destruction of the leading solitary wave
begins around the location x =700 km. Until the location x =750 km there is
a strong indication that an internal breather has formed in association with an
oscillatory trailing wave train. The division of the initial solitary wave into two
entities is evident in the space—time contour plots (Fig. 4.12). This happens at a
section from x =400 km to the location x =650 km, with breather formation
after x =700 km.
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4.2 Solitary internal wave evolution in the Baltic Sea

It is feasible to derive examples of possible SIW transformations in the Baltic
Sea from the existing databases. The hydrological data for the sections are
taken from the GDEM database for July. The sections are choosen so as to
show changes of signs for nolinear coefficients (passage through critical
points). As the Baltic Sea is an almost nontidal sea and does not host major jet-
like currents with substantial horizontal or vertical shear (Leppdranta and
Myrberg, 2009), the direction of IW propagation depends almost entirely on
the source of their generation listed in Section 3.1 and on refractive properties
of bathymetry. Therefore a large variety of paths of IW propagation in the
Baltic Sea may exist, and we are not limited in the choice of sections for the
modelling. Furthermore, each transformation of a SIW can be inverted to
demonstrate the possibility of a reverse metamorphosis: focusing of a wave
train into a SIW. An example of the transformation of IW group with a
moderate amplitude along a cross-section in the Baltic Sea with a specific
behaviour of cubic nonlinearity can also be found in the recent paper by
Talipova et al. (2011) where the effect of the modulation instability of
wavepackets is shown to occur in natural conditions and lead to the appearance
of anomalously large internal rogue waves.

Calculations of the conditions for IW propagation were performed for the
sections in the Baltic Sea shown in Fig. 4.13. The initial problem for the
variable-coefficient Gardner equation was solved using an implicit pseudo-
spectral numerical scheme with periodic boundary conditions in the variable
S . The atlases of IW kinematic and nonlinear parameters for July described in
Chapter 3 were used.
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Fig. 4.13 Bathymetry of
the Baltic Sea, with the
chosen cross-sections
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An example of variable environmental parameters for the modelling of IWs
in the framework of Eq.(1.39) along cross-section 1 is demonstrated in
Fig. 4.14. This cross-section of approximately 100 km length has depths in the
range 50—125 m and is characterized by a gradual increase of the depth after a
25 km long segment of a small decrease of the depth. The linear amplification
factor O, which is equal to 1 in the initial point of the cross-section, then
increases, and after x =25 km decreases to 0.4, as consistent with the depth
changes along the cross-section. The linear IW parameters, long wave phase
speed ¢ and dispersion coefficient £, correlate well with the depth, increasing
from x =25 km.
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Fig. 4.14. Coefficients of the variable-coefficient Gardner equation (1.39) along cross-
section 1

80



The nonlinear parameters o and o, determining the solitonic regime in the
framework of the Gardner equation (see Section 1.2), are very sensitive to the
shape of density stratification and therefore they have a complex behaviour
along the cross-section. The coefficient of quadratic nonlinearity o is negative
at the beginning of the cross-section and is almost constant about —1x1072 1/s
upto x =38 km, then it rapidly decreases in absolute value, changes the sign
around x =43 km, and stays then positive with the values of about 1x107 1/s.
The cubic nonlinearity parameter o is positive along a small segment at the
beginning of the cross-section, then it almost linearly decreases, changes sign
around x =4 km and stays negative thereafter. It has a few local maximums
and minimums along the cross-section. As oo <0 and o, > 0 at the initial point
of the cross-section, two soliton branches are possible here. One of the
branches has polarities corresponding to the sign of ¢, and the other branch has
the opposite polarity. The latter family has a lower limit in the amplitude. This
is physically inappropriate for the chosen conditions: the solitons of this family
must have the amplitude a = 166 m. Therefore for the initial condition the
former branch was taken: soliton (1.42) of negative polarity with the amplitude
ofa=-7m.

The transformation of this disturbance is shown in Figs. 4.15 and 4.16 in
the reference frame (5, x). The soliton of negative polarity weakly changes

until the point where or= 0, i.e. over almost 40 km, but then it transforms into a
dispersive oscillating wave tail, propagating over a negative pedestal. The
amplitude of the wav field gradually decreases after the transformation from
the initial value of 7 m to 1 m at the end of the cross-section. In terms of IW-
induced near-surface currents these amplitudes correspond to velocities of 0.15
and 0.04 m/s, respectively. The velocities of the near-surface currents can be
used in studies of surfactant dynamics in a field of IWs or for estimations of
hydrodynamic contrasts of the sea surface. They also provide effects used by
the remote sensing to detect the IW surface manifestations.
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Fig. 4.16. Transformation of a SIW along cross-section 1

Variability of the coefficients of the generalized Gardner equation (1.39)
for the cross-sections 2 and 3 is shown in Figs. (4.17) and (4.18), respectively.
The numerical results of simulations for IW propagation along them are shown
in Figs. (4.18), (4.19) and (4.21), (4.22). The complex behaviour of IWs can be
observed there, including adiabatic adjustment, wave amplification,
transformation of a wide solitary wave into a sequence of narrow ones, change
of their polarity, appearance of multiple breather-like disturbances and
radiation of oscillatory dispersive tails of small amplitude. All of these
nonstationary and nonlinear effects developed due to the inhomogeneity of the
environment lead to the formation of complex field of IW-induced currents,
which can be easily reconstructed and further used as an input for models of the
near-bottom boundary layer, as well as for advective—diffusive models of
pollution dynamics.
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Fig. 4.18. Coefficients of the generalized Gardner equation (1.39) along cross-section 3
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Fig. 4.22. Transformation of a SIW along cross-section 3

4.3 Effect of the Earth’s rotation for internal waves

Several important issues affecting the propagation of SIWs have not been
included into the standard theoretical models described in Section 1.2. Most
notably, the stability, transverse structure, the effect of the background Earth
rotation and the effect of friction may modify their appearance. Technically, all
the listed issues can be incorporated into weakly-nonlinear models (Craig,
1991; Holloway et al., 1997; Grimshaw, 2001; Holloway et al., 2001) but their
joint analysis is extremely complicated.

The majority of the results presented in this thesis have been derived for
relatively short-period (with periods less than 2 h) IGWs. One of the main
mechanisms of their generation is the transformation of internal tides
(Vlasenko et al., 2005). Therefore, a proper theoretical IGW model should be
able to describe this process of transformation of long waves into a train of
short waves. An important point here is that the Earth’s rotation can notably
affect these initially long waves. This impact apparently is particularly large at
higher latitudes and in the case of wave propagation over long distances. The
effect of background rotation generally causes a solitary wave to decay through
the radiation of inertia-gravity waves, see the review (Helfrich and Melville,
2006) and the recent studies (Grimshaw and Helfrich, 2008; Sanchez-Garrido
and Vlasenko, 2009). In practice, the time scale for this decay is one or two
inertial periods.
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Several studies (Ostrovsky, 1978; Holloway et al., 1997, 1999, 2001;
Talipova et al., 1999) address theoretical models that include rotational effects
on the same level (of weakness) as effects of nonlinearity and dispersion. An
extension of the variable-coefficient Gardner model (1.39) that accounts for the
Coriolis forcing due to the Earth’s rotation is the Gardner—Ostrovsky (GO)
equation (also known as the extended rotation-modified KdV equation):

¢ (a0 . a0’ )& BIE_ 1. - (4.1)
a)(+(c25+ ¢’ gJafc“aw_Zchs’

where f'is the Coriolis parameter, which depends on the period of the Earth’s
rotation 7, = 24 h and the geographical latitude ¢:

f=4T—7[sing0. (4.2)

e

The question of the applicability of Eq. (4.1) for basins at different
latitudes is worth a more detailed discussion. In the framework of the linear
theory, the exact dispersion relation for IWs is determined from the eigenvalue
problem

d*® N N? - &’
de a)Z _fZ

Kd=0 (4.3)

with zero boundary conditions at the sea surface and bed. Here @ is the wave
frequency and £ is the horizontal wavenumber. We consider only long waves.
At this limit @ << N, and Eq. (4.3) can be simplified as follows:

2 2
d (D+N—c1>:0, (4.4)
d> &
where
2@ f (4.5)
==

Obviously in this limit the eigenvalue problem for Eq. (4.4) does not depend on
the Coriolis parameter and coincides with the eigenvalue problem for Eq. (1.9)
considered in Section 1.2. In the framework of Eq. (4.4) the long-wave linear
phase speed ¢ can be calculated numerically for arbitrary stratification.
However, the dispersion relation will be a more complex relationship when the
Earth’s rotation is taken into account:

& =K+ £, (4.6)

or
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o -1 (4.7)

Thus for the rotating and non-rotating environments the eigenvalue problems
and the eigenvalues themselves are identical, but the dispersion relations are
different.

Let us consider now the linear version of Eq. (4.1) in the original variables:

i(%+0£):f_25 (438)
ox\ot ox) 27

By substituting the monochromatic wave solution
& =aexp(wt — kx) , (4.9)
into Eq. (4.8) the corresponding dispersion relation can be obtained in the form

2
a):ck+2f—k. 4.10)
C

Equation (4.10) represents two lowest-order terms in the Taylor expansion of
the exact dispersion relation (4.6) in terms of the small parameter f/m.
Therefore, the problem of a correct description of the Earth’s rotation can be
reduced to a simpler problem of comparison of the exact and approximate
dispersion relations.

It is convenient to rewrite Eq. (4.10) in another form with the same

accuracy
2
k:Q(l— A j @.11)

c 200

which also corresponds to the Taylor expansion of the exact dispersion relation
3.7.

The ratio of wavenumbers obtained from the exact (3.7) and approximate
(3.11) dispersion relations is

k AV
kapprzil_szzj/ 1_1;2_ (4.12)

Apparently, the difference is not large for high-frequency waves but it may
increase considerably for longer waves of low frequencies (e.g. such as internal
tides with the basic M, period 7,=12.4 h). For waves with a period of T
relationship (3.12) can be written in the form:

k (1-2T%sin* ¢/ T?)

appr

ko \[1-4T?sin 9/ T2

(4.13)
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Thus the accuracy of the model equation (4.1) depends only on the
geographical latitude where IWs propagate. Due to the difference between the
period of the Earth’s rotation 7, and M, tidal period 7, the exact dispersion
relation (4.7) can be solved for latitudes less than 74.5°. This is a well-known
critical latitude for tidal IWs (LeBlond and Mysak, 1978). Internal M, tides
cannot propagate to even higher latitudes and they also rapidly decay with the
distance from the continental slope or underwater ridges. The relationship
(4.13) is shown in Fig. 4.23 for periods 7;=12.4 h and 7= 6 h. For tidal IWs at
latitudes lower than 55° the difference does not exceed 20%, and the
approximate dispersion relation is acceptable. For this reason the above-
described model based on Gardner-Ostrovsky equation was successfully used
for the modelling of internal tide transformation on Australian and European
shelves. For latitudes higher than 63° the difference between the solutions to
the dispersion relations exceeds 47%, and the use of approximation (4.11) is
unacceptable. The described effect is minor for shorter waves. For example, for
waves with the period of 6 h the error of approximation does not exceed 1% for
any latitude; therefore short-period waves can be investigated using Eq. (4.1).

There are two possible ways of improving the theoretical models for the
description of IWs in high-latitude basins. One of them is related to the direct
numerical solution of primitive equations of hydrodynamics for stratified fluids
(Wood and Grue, 2002). This approach is used below for the study of
baroclinic wave motions in the Barents Sea (Section 4.4).

Another approach can be developed to adapt the existing IW model (4.1)
for the conditions of Arctic basins. The basic idea is to introduce a
phenomenological coefficient ¢ into the term that describes the Earth’s rotation
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Fig. 4.23. Ratio of approximate and exact dispersion relations for waves with periods
of 124hand 6 h
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k=9[1—Qf ] (4.14)

c 20

The particular values of this adjustable parameter do not affect the dispersion
curve in the high-frequency domain, thus all the properties of high-frequency
IWs, including SIWs, hold true. Its role is important in the domain of tidal
frequencies. For example, at ¢ =2 both the exact (Eq. (4.7)) and the
phenomelogical (Eq. (4.14)) dispersion relations give the same value of
wavenumber (k = 0) at @ — f. An optimum choice of the adjustable parameter
g can be made through the minimization of the functional representing the
squared difference between the curves specified by Egs. (4.7) and (4.14):

g =T{gf—;—(w—«/w2 - f? )wa. (4.15)
5

This procedure yields the following expression:

g= 2]( \/:de (4.16)

This integral can be estimated numerically to give g = 1.14. The variations of
the values of ¢ in the range 1-1.14 influence the dispersion curve only in the
vicinity of the Coriolis frequency f. The actual dispersion of IWs due to the
Earth’s rotation is very strong in the neighbourhood of this point. In the
framework of the approximate dispersion relation this dispersion is much
weaker. It can result in strengthening the possible nonlinear effects in the
framework of the Gardner—Ostrovsky equation (4.1). In this sense one can
produce upper bounds from the point of view of nonlinear effects for long IW
evolution using this model equation.

4.4 Numerical modelling of baroclinic motions at high
latitudes

The focus in this section is the Barents Sea and the IWs generated to the north
of the critical latitude (74.5°N) for the semidiurnal (M) tide. As it was
mentioned above, the critical latitude is determined as the latitude ¢ where the
tidal frequency is equal to the local inertial frequency /= 2Qsing (cf. Eq. 4.2),
where Q= 0.00007292 1/s is the frequency of the Earth’s rotation. The linear
theory of baroclinic tide generation predicts that no baroclinic wave generation
should occur to the north of this latitude (LeBlond and Mysak, 1978).
Nevertheless, observations show the existence of IWs of very large amplitudes
here.

We reproduce briefly the description of results in (Pisarev, 1996; Morozov
and Pisarev, 2002). Special measurements of IWs with distributed temperature
sensors were carried out from drifting ice in 1983 in Saint Anna Trough and in
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1986—1989 in Franz Victoria Trough. The latitude of the measurements was
80°-81° N and the depths were in the range 200-500 m. In addition to the other
phenomena, very short and localized semidiurnal IWs were found. Their
lengths were within 2—6 km. They propagated from the slope of the trough and
their amplitudes reached 40 m. When the measuring instruments drifted from
the slopes of the trough to a distance of 20—40 km toward flat bottom regions,
the amplitude of these waves significantly decreased. Under certain
stipulations, these semidiurnal waves were classified as internal tides.

The possibility of the generation of internal tidal waves by the topography
to the north of the critical latitude was demonstrated in (Nakamura et al., 2000)
with the use of the fully nonlinear nonhydrostatic model. These waves are
generated and trapped by the barotropic tidal flow at the lee side of a sill. They
were called unsteady lee waves. Their amplitudes depend on the amplitude of
the tidal flow speed and the steepness of the bottom topography. Nonlinear
generation of IWs near and to the north of the critical latitude was first
modelled in (Vlasenko et al., 2003) for the Barents Sea conditions (near Bear
Island) and propagating short nonlinear IWs with amplitudes of about 20 m
was demonstrated.

The aim of this section is to explain the nature of large-amplitude
baroclinic motions observed over the critical latitude in the Franz Victoria
Trough, using the numerical results in the framework of the fully nonlinear
Euler equations for stratified water, and to forecast dangerous underwater
events for this region.

The numerical model by Lamb (1994) is applied in Paper II for simulating
the generation and propagation of IWs in the Barents Sea. The model equations
are two-dimensional (vertical section) fully nonlinear Euler equations on a
rotating f-plane under the Boussinesq approximation. The coordinates are
defined as follows: x is along the section, y is perpendicular to the section, and
z is the vertical axis. The equations of the model are

IZ‘F(VV)V—WXE:—VP—Epg, (417)
p,+I7Vp=O, VI7=0,

where I7(u,v, w) is the velocity vector, V is the 3D gradient operator, subscript

t denotes the time derivative, p is the density, P is the pressure, g is the
gravitational acceleration, = 1.425x10"* 1/s is the Coriolis parameter for the

latitude of 78.5° and k is the unit vector along the z-direction. The normal to
the section velocity is included in the model, but no variation with the
coordinate y is allowed. Thus, in the 3D equations (4.17) the partial derivatives
with respect to y are neglected, i.e., d/dy(-)=0.

The equations are transformed to the terrain-following coordinate system
(sigma-coordinates). Doing so makes it possible to naturally increase the
vertical resolution over the shallower regions. The equations are solved over a
domain bounded below by the topography and a rigid lid above. The flow is
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forced by a semidiurnal tidal inflow at the left boundary of the form V7 sin(wf)
where @ is the M, tidal frequency with a period 7=12.4 h. At the right
boundary an outflow condition is used. The water column is initially resting
and has a horizontally uniform density. The horizontal grid size is 90 m and the
vertical sigma-coordinate resolution consists of 80 grid points. The time step is
tied to the Courant—Friedrichs—Levy condition and varies from 2 to 5 s.

The modelling efforts were performed for a cross-section in the Barents
Sea close to the Franz Victoria Trough (Fig. 4.24). The whole wave path is
located to the North of the critical latitude (74.5°N). The bathymetry along this
cross-section was taken from the GEBCO database (solid line in Fig. 4.25). It is
splined for the purpose of modelling by 8 Fourier components for a better
description of the middle portion of the domain as

8
H(x)=ay+ Y |a, cos(mix)+b, sin(max)], (4.18)
m=1
where ¥ =0.03398 1/m and a,, and b,, are the Fourier coefficients (dotted line
in Fig. 4.25). The double humped sills along the modeling path remind of the
double ridge structure in Luzon Strait where tidally generated IWs are widely
observed.
The typical vertical density profile in this area is taken from the GDEM
climatology for July. It is fitted by the exponential function

p =1000+ g exp(ri2) + g, exp(ryz) , (4.19)

with ¢, =27.93, 5 =1.64x10" [1/m], ¢, =—12, r, =—0.02844 [1/m], and

the buoyancy frequency N(z) (Fig. 4.26) is calculated.

The considered region is characterized by strong tidal currents and
underwater mountain ridges. The map of the mean tidal velocities in the Arctic
Ocean (with the 8 tidal components) calculated with the help of the Arctic
Ocean Tidal Inverse Model (AOTIM) is presented in (Padman and Erofeeva,
2004). Four major tidal components M,, S,, K; and O, contain up to 79%, 10%,
5% and 1% of the total (8-components) potential energy of the tide,
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50— ; ; ; : : : Fig. 4.25. Bottom
relief of the area
cross-section shown in
Fig. 4.24 (solid line
denotes data from the
GEBCO, dotted line is
the approximation).
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respectively. Thus, the semi-diurnal tide M, dominates in the tidal velocities in
this region of the Arctic Ocean.

The largest mean values of the tidal velocities approach 1 m/s in the
southern Barents Sea near the entrance to the White Sea and around Bear
Island in the western Barents Sea south of Svalbard. The maximal velocities
exceed the mentioned values of the mean velocities as much as twice, at least.
The barotropic tidal wave is presented in the model in Paper II only by the
semidiurnal tide M,. As the mean tidal current in the study area is about
0.5 m/s, the maximal barotropic tidal velocity constitutes 1 m/s, and we use this
value for Vrto set up the model.

The calculated density fields and total (barotropic and baroclinic)
horizontal velocity values are shown in Fig. 4.27 for various tidal phases
together with the normalized density (o — 0)/1000. Vlasenko et al. (2005)
mentioned that full periodicity of the process is formed after 23 tidal periods
T,,, for M,.

-p, [kg/m’ 2ol . .
P-pylieml N'Is7] Fig.4.26. The typical
2 -1 0 4 . .
Y 0 vertical density profile (a)
and the Brunt-Viisild
50 50 frequency (b) in the
studied area taken from
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53 53
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The time moment 37,,, corresponds to the end of the ebb phase and the
beginning of the flood phase. The velocity of the tide at 37,,, is zero and there

are large displacements of isopycnals over the left side of the largest hill.
Intensive IWs are generated on the slopes of the highest central hill (located
between 200 and 300 km with the crest at 230 km). Their amplitudes decrease
when they propagate out of this zone.

After a quarter of the tidal period ¢=3.25T,,,, the maximum of the tidal
phase comes; velocities reach their maximums, and the zone of generation
moves to the right lee slope of the central hill. At the time instant ¢ =3.57,,,

the phase of the tide finishes and the tide velocity vanishes; [Ws are developed
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Fig. 4.27. Snapshots of the normalized density (left panel) and horizontal velocity [m/s]
(right panel).
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Fig. 4.28. The contour plot in the space—time domain for the displacement of the
isopycnal located at the 70 m depth in the undisturbed state

well on the right side of the central hill. When the ebb is maximal (at
t=3.75T,,, ) the zone of generation is also shifted to another (left) lee side of

the hill and the waves gain the largest amplitude at ¢ =4T,,, when the velocity

of the tide vanishes.

Thus the generated IWs are mainly unsteady lee waves that are generated
by the tide and ebb currents near the lee slope of the hill with the phase shift of
about a quarter of the tidal period between the maximal tide velocity and
maximal isopycnal displacement. The wave velocities are evident at the time
moments 37,,,, 3.57,,, and 4T,,,, when the tidal current is zero. Their values

do not exceed 0.4 m/s. The process is well illustrated in the Hovmuller plot (or
x—t diagram) for the displacement of the isopycnal located at the 70 m depth in
the undisturbed state (Fig. 4.28). The more intensive IWs with amplitudes of
50 m and total heights (crest-to-trough height) of about 80 m appear regularly
in the strip of about 40 km in width and the central position approximately at
230 km. Their length may be evaluated using displacements in Fig. 4.29: about
6—12 km. The typical periods of the modelled waves are 0.2-0.357,,,.

Vlasenko et al. (2005) suggest a classification of the processes of W
generation based on the magnitude of the Froude number Fr = uy,x/c. Here
is the maximal velocity of the barotropic tidal flow in the x-cross-section
(Umax = VrH(x0)/H(x)) and c¢ is the phase speed of the lowest-mode long IWs.
This speed is numerically calculated from the eigenvalue problem for Eq. (1.9).
In ‘supercritical’ regime Fr> 1 the generation of strong nonlinear internal lee
waves by tide is possible at any latitude whereas there is no IW generation
when Fr << in the area to the north of the critical latitude. Therefore, waves
shown in Figs. 4.27, 4.28 and 4.29 can be interpreted as internal lee waves.
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Fig. 4.29. Displacement of the 70 m isopycnal for different times

The spatial variation of the Froude number along the studied section is
shown in Fig. 4.30 together with other characteristic quantities: linear phase
speed of IWs, maximal tidal velocity and depth of the defined area of the sea.
The zone where Fr > 1 lies between the points 225 km and 237 km. The most
intensive IWs appeared in numerical runs exactly within this interval.

Concluding remarks

The presented examples confirm that largely different forcing mechanisms may
generate large-amplitude, horizontally propagating IWs in coastal seas and
straits. Typically these waves occur in regions of variable bottom topography,
with the consequence that they are often modelled by nonlinear evolution
equations of KdV-type with variable coefficients or by contemporary
numerical models of full equations of hydrodynamics. The above material

100
E

£ 200/
a
300

N

Phase speed [m/s]
—
é
L

N O

[ms]

u
'max
—_
g
L

N O

Froude number
—

50 100 150 200 250 300
X [km]

o

Fig. 4.30. The Froude number and auxiliary characteristic parameters against the
distance along the section.
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demonstrates how these models are used to describe the propagation,
deformation and disintegration of SIWs in horizontally inhomogeneous shallow
domains.

The highly complicated process of SIW propagation and transformations in
the zones with critical points has been studied in detail for several cross-
sections of the coastal shelf of the South China Sea and in the Baltic Sea. The
properties of the background hydrophysical fields have been extracted from the
GDEM database of stratification and the GEBCO bathymetry database.

The theory predicts that various scenarios of SIW structure transformation
are possible. Several such scenarios have been illustrated in detail for two
contrasting cross-sections of the coastal shelf of the South China Sea.One
cross-section was taken across the shelf where the ASIAEX 2001 experiment
took place, and we have simulated the transformation of a SIW generated in
Luzon Strait, propagating across the deep part of the sea to the opposite shelf,
where a change in its polarity takes place. The other cross-section was taken
across a region where the cubic nonlinear coefficient is positive everywhere. In
this case an initial solitary wave of moderate amplitude transforms into two
solitary waves. The first wave is a ‘sech’-like solitary wave, and the two waves
interact near the location where the quadratic nonlinear coefficient changes
sign, with transformation into a breather. This demonstrates the possibility of
internal breather generation from an initial solitary wave in a realistic ocean
situation. It is the second example of such a transformation after a simulation
for the North West Australian Shelf (Grimshaw et al., 2007).

The influence of the Earth’s rotation on IWs and the applicability of the
Gardner—Ostrovsky model equation are discussed in the context of the
possibility of the generation of strong nonlinear unsteady lee IWs by barotropic
tide in the Barents Sea above the critical latitude. A numerical simulation using
2D incompressible Euler equations on a rotating f-plane showed that the
modelled waves had the same amplitudes as the observed ones, 40 m, and the
similar wavelengths, 6—12 km. They preserved significant amplitudes of
isopycnal displacements at a distance of 20 km from the zone of generation.
They appeared twice per semidiurnal tide period and persisted about 6.2 h,
slowly propagating out of the peak of the underwater hill. More intensive
waves were generated in the ebb phase and when the ebb velocity vanished.
The largest observed height between the crest and trough (about 80 m)
appeared at the end of the ebb phase each 12.4 h.
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Conclusions

Summary

The presented research focuses on weakly nonlinear models that approximately
describe the generation, propagation and transformation of relatively short-
period internal waves in stratified horizontally inhomogeneous environment in
the framework of long wave approximation. This framework allows using the
Gardner equation and its generalizations for an adequate description of the
features of internal wave trains and solitons on the ocean shelves. Both
horizontal variability of the stratification and the impact of uneven seabed on
the motion can be described using a variable-coefficient version of the Gardner
equation. Its coefficients may be found, for example, from the available
hydrological atlases of sea stratification. Exact solutions of the integrable
version of this equation not only help to verify the numerical models and
interpret the obtained results but also make it possible to get a realistic
description of the propagation of large-amplitude solitary internal waves over
the ocean shelves. The waves may have different shapes and polarities
depending on the details of stratification.

Several coefficients of the Gardner equation vanish for a specific (but
relatively often occurring in the Baltic Sea) three-layer symmetric stratification.
For more adequate description of nonlinear wave dynamics in such situations it
is necessary to extend the asymptotic analysis of the leading processes of wave
propagation. It is shown that an extended modified Korteweg—de Vries
equation (so-called 2+4KdV equation) that includes two nonlinear terms (of the
third and fifth order) applies to such situations. As the obtained equation is
apparently not integrable, the existence of soliton solutions is unlikely. It still
possesses a variety of analytical solitary wave solutions characterized by
limited amplitude, which is also calculated analytically. These solutions
broaden with an increase in their energy and obtain a table-like shape for large
amplitudes.

The interaction of solitary solutions of this equation with various polarities,
in particular, of wide table-lake solitary waves, has been analysed numerically.
The propagation of single solutions in an otherwise calm environment
resembles the propagation of solitons. The collisions of such solitary waves
are, however, weakly inelastic. The amplitude of radiated wavelike “tails”
generated in this case depends on the amplitudes and polarities of the
interacting components. The intensity of radiation is the largest for interactions
of solitons with the same polarity and increases with the amplitudes of
interacting waves. A principally new type of interaction is the collision of a
wide table-like solution with solutions resembling the KdV soliton of the
opposite polarity. This situation is impossible for the known equations of the
KdV hierarchy. In this case, the large table-like solitary wave acquires a
negative phase shift after the interaction.
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Spatial and seasonal variability of the properties of the variable-coefficient
Gardner model is analyzed for the Baltic Sea. The maps of its coefficients are
built using the GDEM hydrological atlas. Seasonal variations of the underlying
hydrological fields are mainly reflected in the variability of coefficients of
quadratic and cubic nonlinearity, while the linear parameters (long IW phase
speed and the coefficient at the dispersion term) have insignificant seasonal
changes. The established kinematic and nonlinear parameters can be used for
express evaluations of possible polarities and shapes of solitary internal waves,
their limiting amplitudes, propagation speeds, etc. They also can help to set-up
and initialize more complex full nonlinear multidimensional models for
internal gravity waves. Normalized near-surface and near-bottom currents,
which are the largest for the lowest mode of internal waves, are also mapped
and analyzed for the entire Baltic Sea. They can be important for estimations of
the impact of internal waves on bottom boundary layer, pollutant transport,
visibility of internal waves by means of remote sensing, etc.

Surface wave climate is analyzed for the Darss Sill region, SW Baltic Sea.
The results of two datasets from numerical calculations are compared to 20-
year observational data. The local wave climate reveals several well-known
features of semi-sheltered basins of the Baltic Sea: relatively modest long-term
wave heights, the most frequent wave periods 2—4 s and heights around 0.5 m.
The amplitude of the modelled annual highest waves has sawtooth-like
behaviour in time, with a gradual increase for 1958—1990 from about 4 m to
about 5 m, a drastic decrease in 1991-1992 and an increase since then again.
The measured annual average and maximum wave heights have changed
insignificantly for 1991-2010 but the threshold for the top 1% of waves has
considerably decreased. This analysis is particularly important in the context of
the establishing of potential sources of internal waves in this basin. In
particular, high-frequency hydrodynamic activity in the Baltic Sea could
partially replace the tidal generation of internal waves.

The processes of the propagation and transformation of solitary internal
waves are further analysed in the framework of the generalized variable-
coefficient Gardner equation for the hydrological conditions of cross-sections
containing critical points in the South China Sea and the Baltic Sea. Different
scenarios of wave metamorphoses are illustrated, such as adiabatic adjustment,
wave amplification, transformation of a wide solitary wave into a sequence of
narrow ones, change in their polarity, appearance of breather-like disturbances,
and radiation of oscillatory dispersive tails of small amplitude.

A more adequate description of internal gravity waves can be obtained by
means of direct solving of the primitive, fully three-dimensional equations of
hydrodynamics under realistic density stratification. This approach was used to
study the nonlinear baroclinic wave motions generated by M, barotropic tide in
the Barents Sea. The possibility of generation of large-amplitude lee internal
waves was shown for latitudes to the north of the critical latitude for linear
internal waves.
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Main conclusions proposed to be defended

L.

A new nonlinear evolution equation (2+4 Korteweg—de Vries equation) is
derived for the internal wave motion in a symmetric three-layer
environment where all the leading-order nonlinear terms in the classical
modified Korteweg—de Vries equation vanish simultaneously. Such
situations may often happen in relatively shallow nontidal strongly
stratified basins such as the Baltic Sea.

The 2+4 Korteweg—de Vries evolution equation for a symmetric three-layer
environment expresses the specific balance of wave motion in which two
nonlinear terms (cubic and quintic) are of the same magnitude as the
dispersion term.

The 2+4 Korteweg—de Vries equation has solitary wave solutions, whose
amplitude and propagation speed are limited. Larger-amplitude solitons
have a table-like shape with very steep fronts. Numerical calculations
confirm that their collision is only weakly inelastic.

The spatial and seasonal distributions of the kinematic and nonlinear
parameters (incl. maps of the leading-order near-bottom and near-surface
amplitude-scaled horizontal velocities) have been constructed governing
the IW field in a frame of the Gardner equation on a 10"x10" grid for the
Baltic Sea. The presented data and technique enable to systematically
estimate the limiting amplitudes for solitary internal waves and to highlight
the possible soliton branches.

Seasonal variations in the hydrophysical fields of the Baltic Sea are
insignificant for the phase speed and the dispersion parameter of the
Gardner equation. Relatively strong variations and even changes in the sign
of the nonlinear terms are possible.

The properties of extreme surface waves in relatively shallow domains of
the Baltic Sea are analysed on the example of the Darss Sill area. The
largest measured significant wave height was 4.46 m in 1991-2010 but
wave heights over 6 m apparently have occurred in this area within the last
half-century.

The theoretically predicted variety of the processes of solitary internal
wave propagation and transformations in the zones with critical points has
been studied and illustrated for several cross-sections of the coastal shelf of
the South China Sea and in the Baltic Sea. A change in polarity and
transformation of an initial solitary wave of moderate amplitude into two
interacting solitary waves demonstrate the possibility of internal breather
generation from an initial solitary wave in a realistic ocean situation.

The possibility of the generation of strong nonlinear unsteady internal lee
waves by barotropic tide above the critical latitude has been demonstrated
numerically using 2D incompressible Euler equations on a rotating f~plane
in the Barents Sea conditions. The largest crest-to-trough height (about
80 m) appears at the end of the ebb phase each 12.4 h.
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Recommendations for further work

As typical for wave processes, propagation of IW provides a mechanism of the
transfer of massive quantities of energy between different sea areas. This
energy is mostly released in regions where the pycnocline is located so close to
the sea surface or the bottom that the large-amplitude IW will break. In the
Baltic Sea conditions, this location may vary considerably and frequently
occurs in areas where upper layers of soft sediments are substantially polluted
(Verta et al., 2007).

Water velocities in breaking IWs usually largely exceed the threshold for
suspension of such sediment. The dimensions of resulting plume are basically
determined by the above-considered limiting parameters of large-scale IW. The
frequent upwellings (that have high chances to occur simultaneously with the
presence of intense IW field) bring the pollution to the upper layers of the sea
where surface currents redistribute it over a large sea area (Leppdranta and
Myrberg, 2009).

The largest uncertainty of this multi-step process is currently connected
with the insufficient knowledge about the IW fields in the Baltic Sea.
Therefore, in connection with detailed studies into upwelling (Lehmann and
Myrberg, 2008) and current-driven transport of different adverse impacts
(Soomere et al., 2011), our study paves the way towards much better
understanding the functioning of key features of the entire Baltic Sea
(eco)system and has a large potential to contribute into mitigation and
management marine-induced hazards, especially problems connected with
coastal pollution and coastal zone management.

In essence, the performed research is a step on the way towards systematic
incorporation of the information about IW fields into engineering applications.
First of all, it is necessary to estimate the influence of IWs upon the sediment
erosion processes on the sea bed in the locations of major installations on the
seabed such as pipelines, oil rigs or deep-water wind energy devices. At the
present time several such projects have been already realized and much more
are planned for the future in the Baltic Sea. Estimations of IWs and their
impact, as it can be judged by the literature, are virtually absent for such
problems for the Baltic Sea. A feasible way forward requires integration of the
presented models for IWs with engineering models of sediment dynamics.
Given the ever increasing amount, resolution and quality of hydrological data
and rapid development of computational facilities suggests that this can be
done in the near future.

An important direction in the study of the IW field in the Baltic Sea is the
investigation into the surface manifestations of [Ws. Progress in this direction
would considerable improve the methods of their detection by means of remote
sensing, including satellite observations, and, consequently, lead to much more
comprehensive understanding of the IW climatology and its spatio-temporal
variations. The number of such observations is relatively small (for example, in
comparison to other non-tidal seas such as the Black Sea or the Caspian Sea),
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and it is necessary to estimate the threshold of visibility of IWs by means of
remote sensing in the context of the Baltic Sea wave climate. A less explored
reason for such an infrequent manifestation could be the specific multi-layer
structure of the sea in which large velocities (and associated effects) are
concentrated either at certain depths or at the sea bottom.

The study of the potential influence of the pronounced IW activity on
regional biogeochemical and ecological problems (functioning and resilience of
ecosystems, vertical mixing of oxygen and nutrients, various exchange
processes through the sea surface, etc.) is equally important. Here possible
applications of the developed model of IWs are also promising.

Surprisingly little is known about generation mechanisms of IWs in
microtidal seas. Although the tidal range is very limited in the Baltic Sea, the
tidal flows are still substantial in some parts of the sea and may excite quite
energetic IWs waves under certain circumstances. The options of direct IW
generation in strongly stratified sub-basins of the Baltic Sea are not explored at
all. Frequent sources of IWs apparently are intense water exchange events
through the straits connecting the Baltic Sea and the North Sea. Such episodic
events can substantially influence the characteristics of the IW field in the
Baltic Sea.

Finally, the ever improving computational facilities have made it possible
to use 3D models of IWs in the regions with complex bathymetry, where the
interaction of different systems of IWs is possible. The technique developed
and equations derived in the thesis can be widely used to test 3D models. All
these issues can help in developing engineering models of IWs, which will be
able to solve regional problems arising in the preparation of large-scale
engineering projects in the Baltic Sea.
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Abstract

Nonlinear dynamics of long internal gravity waves is studied for model
examples of stratified water as well as for realistic shallow sea conditions. A
higher-order (2+4) Korteweg—de Vries—like equation for interfacial waves is
derived for a symmetric three-layer stratification. Its coefficients are
determined analytically as functions of the properties of the layers. Solitary
wave solutions are derived for this equation. The derived equation apparently is
non-integrable. Numerical investigation of the properties and propagation of its
solutions with different polarities reveals several features characteristic to
solitons but their interaction is still weakly inelastic.

Average kinematic and nonlinear parameters of long high-frequency
internal waves in a frame of Gardner equation are calculated for the Baltic Sea
hydrological conditions. Possible nonlinear wave regimes, polarities and
limiting amplitudes of solitary internal waves are analysed. The leading-order
weakly-nonlinear near-bed and near-surface amplitude-scaled velocities of
horizontal currents induced by internal waves have been mapped. Spatial and
seasonal distributions of the listed parameters and effects of stratification and
water depth on the IW propagation are discussed for the entire Baltic Sea.
Statistics of extreme surface wave conditions has been derived for the south-
western part of the Baltic Sea.

Various regimes of propagation and transformation of long nonlinear
internal waves along cross-sections with contrasting properties in different
regions of the World Ocean are illustrated in detail by means of mathematical
modeling for the South China Sea, the Baltic Sea and the Barents Sea. Weakly
nonlinear model based on the variable-coefficient Gardner equation for long
internal waves in non-rotating basins was used for the South China Sea and the
Baltic Sea. Using the concept of the critical points, where the coefficient of the
quadratic, or of the cubic, nonlinear term is zero, it is demonstrated how a
solitary wave may undergo a dramatic transformation, involving a polarity
change and a disintegration into a wave train. For the non-tidal seas, such as the
Baltic Sea, such a transformation can be inverted to reveal the possibility of a
reverse metamorphosis and wave train focusing into a SIW. A full nonlinear
numerical model for simulating the generation and propagation of internal
waves based on the two-dimensional (vertical section) inviscid, incompressible
Boussinesq equations on a rotating f~plane was used for the Barents Sea. The
possibility of generation of strong nonlinear unsteady lee internal waves by the
barotropic tide in the Barents Sea above the critical latitude has been
demonstrated.
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Resilimee

To66s on analiiiisitud pikkade mittelineaarsete siselainete diinaamikat nii
monedel praktilist huvi pakkuvatel erijuhtudel kui ka veemasside realistlike
stratifikatsioonide jaoks. On tuletatud uus vorrand, nn. (2+4) Korteweg—
de Vriesi vorrand — Gardneri vorrandi {ildistus — lainelevi jaoks kolmekihilises
simmeetriliselt stratifitseeritud meres. Selline veemasside struktuur esineb
sageli Ladnemeres, kuid olemasolevad vdrrandid ei vdimalda analiilisida
lainelevi isedrasusi taolises keskkonnas. Tuletatud vorrandi koigi liikmete
koefitsiendid on leitud analiiitiliselt veekihtide parameetrite alusel. On
niidatud, et tuletatud vorrandil eksisteerivad erilahendid iiksiklainete néol ning
analiiisitud nende omadusi. Kuna konesolev vorrand tdendoliselt pole
integreeruv, ei ole alust oodata, et selle lahendite seas oleks solitone. Saadud
lahendite numbrilise analiiiisi alusel on ndidatud, et iiksiklainete interaktsioon
pole perfektselt elastne, kuid sellel on siiski on mitmeid Gardneri vorrandi
solitonlahendite interaktsiooni omadusi. Interaktsiooni kdigus séilub
komponentide identiteet ja kuju ning kiiratakse vaid véike kogus energiat.

On leitud pikkade suhteliselt vidikese perioodiga siselainete levikut
kirjeldava Gardneri vorrandi kinemaatiliste ja mittelineaarsuse maiéra
iseloomustavate parameetrite keskmised vidrtused Laidnemere erinevate
piirkondade jaoks. Saadud ruumiliste jaotuste alusel on analiiiisitud voimalikke
mittelineaarsete lainete leviku reziime, héirituste polaarsust ja maksimaalseid
amplituude. Nende alusel on leitud pohjaldhedaste kiiruste dimensioonitud
amplituudid. Kdnesolevate suuruste viértused on kaardistatud kogu Léénemere
jaoks lahutusvdimega 10’ (ligikaudu 10-20 km). On analiiisitud nende
vaidrtuste sesoonset muutlikkust juuli- ja jaanuarikuule vastavate kaartide
vordluse alusel ning vastava muutlikkuse véimalikku moju siselainete leviku
tingimustele Lé&nemeres. Lisaks on leitud Lddnemere edelaosas (mis on liks
toendolisemaid siselainete tekkimise piirkondi) esinevate kdorgeimate
tormilainete statistika.

Pikkade mittelineaarsete siselainete erinevate levikureziime ning lainete
transformeerumise mehhanismide paljusust maailmamere erinevates osades on
analiiiisitud arvutisimulatsioonide abil Louna-Hiina mere, Ld4nmere ja Barentsi
mere radikaalselt erinevates tingimustes. Mittekonstantsete kordajatega
Gardneri voOrrandil baseeruva ndrgalt mittelineaarse mudeli abil on
demonstreritud, et kriitiliste punktide ldhistel (kus selle vorrandi ruut- voi
kuupliige on null) vdivad siselained dramaatiliselt iimber kujuneda. Vdimalik
on laine polaarsuse muutumine, aga ka iiksiklaine konverteerumine lainete
jadaks. Praktiliselt tGusu-mddnavabade merede puhul (nt. Li&nemeres) on
voimalik poordsituatsioon, kus siselainete jada fokuseerub vdimsaks
iiksiklaineks. Barentsi mere jaoks rakendati pdorleva f-tasandi ldhendust ja
mittelineaarset Boussinesq’i vOrrandit siselainete tekkimise ja leviku
reprodutseerimiseks teatavas kahemdotmelises lébildikes. Demonstreeriti, et
mittelineaarsete siselainete tekkimine on lineaarsete lainete jaoks kriitilisest
laiusest pohja pool siiski voimalik.
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Abstract. In coastal seas and straits, the interaction
of barotropic tidal currents with the continental shelf,
seamounts or sills is often observed to generate large-
amplitude, horizontally propagating internal solitary waves.
Typically these waves occur in regions of variable bottom
topography, with the consequence that they are often
modeled by nonlinear evolution equations of the Korteweg-
de Vries type with variable coefficients. We shall review
how these models are used to describe the propagation,
deformation and disintegration of internal solitary waves as
they propagate over the continental shelf and slope.

1 Introduction

Solitary waves are nonlinear localized waves of permanent
form, first observed by Russell (1844) as a free surface
solitary wave in a canal, and then in a series of experi-
ments. Later, analytical studies by Boussinesq (1871) and
Rayleigh (1876) for small-amplitude water waves confirmed
Russell’s observations. Then Korteweg and de Vries (1895)
derived their well-known equation, which contains the
“sech” solitary wave as one of its main solutions. But it
was not until the second half of the twentieth century that
it was realised that the Korteweg-de Vries (KdV) equation,
was, on the one hand, a notable integrable equation, and
on the other hand a universal model for weakly nonlinear
long waves in a wide variety of physical contexts. The
KdV equation, together with various extensions, describes a
balance between nonlinear wave-steepening and linear wave
dispersion.

Correspondence to: R. Grimshaw
BY (r.h.j.grimshaw@lboro.ac.uk)

Of principal concern in this paper are the large-amplitude
internal solitary waves which propagate in the shallow water
of coastal oceans. It is now widely accepted that the basic
paradigm for internal waves in shallow seas is based on the
KdV equation, first derived in this context by Benney (1966)
and Benjamin (1966) and subsequently by many others;
for recent reviews see, for instance, Grimshaw (2001),
Holloway et al. (2001), Ostrovsky and Stepanyants (2005),
Helfrich and Melville (2006), Apel et al. (2007), Grimshaw
etal. (2007), or the book by Vlasenko et al. (2005). However,
in the coastal ocean, the waves are propagating in a region
of variable depth and also through regions of horizontally
varying hydrology. In this situation, the appropriate model
equation is the variable-coefficient KdV equation

Cc
A,+ch—Ag£A+uAAx+8AMX:O, (1

Here A(x,t) is the amplitude of the wave, and x, ¢ are
space and time variables, respectively. The coefficient c(x)
is the relevant linear long wave speed, while Q(x) is the
linear modification factor, defined so that Q~2 A2 is the wave
action flux for linear long waves. The coefficients p(x) and
8(x) of the nonlinear and dispersive terms respectively, are
determined by the properties of the basic state. All these
coefficients are slowly-varying functions of x. The variable-
coefficient KdV equation for water waves was developed by
Ostrovsky and Pelinovsky (1970) and later systematically
derived by Johnson (1973b), while Grimshaw (1981) gave
a detailed derivation for internal waves (see also Zhou and
Grimshaw, 1989 and Grimshaw, 2001). The first two terms
in (1) are the dominant terms, and hence we can make the
transformation

*dx
= —,

c

A=QU, s=E&—t. )
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Substitution into (1) yields, to the same leading order of
approximation where (1) holds,

U§+QU Us +AUsss =0 (3)
)

o= 22 )
c C

The coefficients «, A are functions of & alone. Note that &
measures travel time along the spatial path of the wave, while
s is a temporal variable measuring the wave phase.

However because internal solitary waves are often of
large amplitudes, it is sometimes useful to include a
cubic nonlinear term in (1) and (3), which then become,
respectively (see the review by Grimshaw, 2001),

cQOx

A +cAy— 0 A+MAAx+M1A2Ax+5Axxx:0, Q)

Us +U Us + BU Uy 4+ AUgs =0, (6)
2

where ﬂ:Qi‘m. @)

Equations (3) and (6), sometimes with various modifications
such as with an additional dissipative term, or with a term
taking account of the Earth’s rotation, have been applied to
the study of internal solitary wave wave transformation in
the coastal zone by many authors (for instance Cai et al.,
2002; Djordjevic and Redekopp, 1978; Grimshaw et al.,
2004, 2006, 2007; Holloway et al., 1997, 1999; Hsu et al.,
2000; Liu et al., 1988, 1998, 2004; Orr and Mignerey, 2003;
Shroyer et al., 2009 and Small, 2001a, b, 2003).

In Sect. 2, we shall present a more detailed description
of the derivation of these model equations. Then in Sect. 3,
we shall describe the slowly-varying solitary wave solutions
of the evKdV equation (6) and in particular examine the
behaviour at certain critical points where either « or 8 vanish.
Then in Sect. 4 we shall indicate how these theoretical results
can be applied for realistic oceanic conditions, such as those
found in the South China Sea.

2 Evolution equations
2.1 Constant depth

The KdV equation is obtained by a weakly nonlinear long
wave expansion from the fully nonlinear equations (see
Grimshaw, 2001 or Grimshaw et al., 2007). We shall
consider only a two-dimensional configuration, see Fig. 1,
but initially we assume that the fluid has constant depth 4. In
the basic state the fluid has density py(z), a horizontal shear
flow u¢(z) in the x-direction, and a pressure field po(z) such
that po, = —gpo. The density stratification is described by
the buoyancy frequency N (z), where

_ 8PP0z
£0

N2 (2)= (8)
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Fig. 1. Coordinate system.

Then, relative to this basic state, the outcome is, to leading
order in the small parameter € characterizing the long wave
approximation,

[~EAX, TP +..., X=e(x—ct), T=€t.  (9)

Here ¢ is the vertical particle displacement relative to the
basic state and the modal function ¢ (z) satisfies the system

[poc—u0g.} +poN20=0, for —h<z<0, (10)

$=0 at z=—h, (c—ug)’¢,=g¢ at z=0, (11)

Equation (10) is the long-wave limit of the Taylor-Goldstein
equation, and with the boundary conditions (11), determines
the modal function and the linear long wave speed c.

Typically, this boundary-value problem (10, 11) defines
an infinite sequence of regular modes, ¢>,,i (z),n=0,1,2,...,
with corresponding speeds cF, where “£” indicates waves
with c,‘;’ > uy =maxug and ¢, < uy =minug, respectively.
Note that it is useful to let n = 0 denote the surface gravity
waves for which ¢ scales with /gh, and then n =1,2,3,...
denotes the internal gravity waves for which ¢ scales with
Nh. In general, the boundary-value problem (10, 11) is
solved numerically. Typically, the surface mode ¢ has no
extrema in the interior of the fluid and takes its maximum
value at the surface z =0, while the internal modes ¢ni(z),
n=1,2,3,..., have n extremal points in the interior of the
fluid, and vanish near z =0 (and, of course, also at z = —h).
Since the modal equations are homogeneous, a normalization
condition can be imposed. Here we choose ¢ (zm) = 1 where
|¢(z)| achieves a maximum value at z = z;, with respect to
z. In this case the amplitude €2 A is uniquely defined as the
amplitude of ¢ (to leading order in €) at 7.

It can then be shown that, within the context of linear long
wave theory, any localised initial disturbance will evolve
into a set of outwardly propagating modes, each propagating
with the relevant linear long wave speed. Assuming that
the speeds ¢ of each mode are distinct, it is sufficient for
large times to consider just a single mode, as expressed
by (9) Then, as time increases, the hitherto neglected
nonlinear terms come into play and cause wave steepening.
However, this is opposed by the terms representing linear
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wave dispersion, also neglected in the linear long wave
theory. A balance between these effects emerges as time
increases, technically obtained as a compatibility condition
at the second order in the expansion. The outcome is the
Korteweg-de Vries (KdV) equation for the wave amplitude

Ar+pnA Ax+8Axxx =0. (12)

The coefficients . and § are given by

0
=3[ pric—mP iz, (13)
—h
0
Is= [ polc—ug)ddz, (14)
—h
0
1:2/ po(cfuo)qﬁzzdz. (15)
—h

Note that after reverting to the original variables x and ¢, and
using (9) Eq. (12) is equivalent to (1) for the case when all
coefficients are constant and Q, = 0. The KdV equation (12)
is integrable and the long-time evolution from a localized
initial condition is a finite number of solitary waves (solitons)
and dispersing radiation.

A vparticularly important special case arises when the
nonlinear coefficient u defined by the expression (13) is close
to zero. In this situation, a cubic nonlinear term is needed,
and this can be achieved with a rescaling. The optimal choice
is to assume that w is O(¢), and then replace A with A/e in
(9); in effect the amplitude parameter is € in place of €2.
The outcome is that the KdV equation (12) is replaced by
the extended KdV equation, widely known as the Gardner
equation,

Ar+pAAx+piA2Ax +8Axxx =0,. (16)

Again, after reverting to the original variables in (9) Eq. (16)
is equivalent to (5) (with Q, =0). Expressions for the
coefficient p; are available, see Grimshaw et al. (2002)
and the references therein. Like the KdV equation, (16) is
integrable and has solitary wave solutions. There are two
independent forms of the eKdV equation (16), depending on
the sign of 8.

The solitary wave family of the eKdV equation (16) is
given by

H
A= , 17)
1+ BeoshK (X —VT)
H 6811 K>
where V="T—sk? B2=14 0 (18)
%

characterized by a single parameter B. The wave amplitude
isa=H/(1+B). Fordu; <0, 0 < B <1, and the family
ranges from small-amplitude waves of KdV-type (“sech?”-
profile) (B — 1) to a limiting flat-topped wave of amplitude
—u/pm1 (B — 0), the so-called “table-top” wave, see the
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Fig. 2. Solitary wave family (17). The upper panel is for p; <0
and the lower panel is for ;] > 0; in both panels u > 0, § > 0.

upper panel in Fig. 2. For §u; > 0 there are two branches;
one branch has 1 < B < 0o and ranges from small-amplitude
KdV-type waves (B — 1), to large waves with a “sech”-
profile (B — 00). The other branch with —oo < B < —1,
has the opposite polarity and ranges from large waves with a
“sech”-profile when B — —o0, to a limiting algebraic wave
of amplitude —2u /1 when B — —1, see the lower panel
in Fig. 2 Solitary waves with smaller amplitudes cannot
exist, and from the point of view of the associated spectral
problem are replaced by breathers, that is, pulsating solitary
waves, see, for instance, Pelinovsky and Grimshaw (1997),
Grimshaw et al. (1999, 2010), Clarke et al. (2000), Lamb et
al. (2007). When p; — 0, B — 1 and the family reduces to
the well-known KdV solitary wave family

v:%:mmz. (19)

A=asech®>(K(X—VT)),
Here we have replaced a, K with 2a, 2K to conform with
the usual KdV notation.

2.2 Variable background

The derivation sketched above was for the case of constant
depth, and when the basic state hydrology is independent
of x. But in the ocean, the depth varies and the basic state
hydrology may also vary in the propagation direction. These
effects can be incorporated into the theory by supposing
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that the basic state is a function of the slow variable y =
€3x. Thatis, h = h(x), uop =uo(x,z) with a corresponding
vertical velocity field e3w0(z,x), a density field po(z, x)
a corresponding pressure field po(x,z) and a free surface
displacement 1o (). This basic state is assumed to satisfy the
full equation set possibly with body forces in the momentum
equations. With this scaling, the slow background variability
enters the asymptotic analysis at the same order as the weakly
nonlinear and weakly dispersive effects. As noted in the
Introduction, it is now necessary to replace the variables x,
t with &, s (2), where it is also convenient to replace the
slow variable x with £. An asymptotic analysis analogous
to that described above then produces the vKdV equation (1)
(Grimshaw, 1981; Zhou and Grimshaw, 1989). The modal
system is again defined by (10, 11), but now ¢ =c(§) and
¢ = ¢(z,€), where the £-dependence is parametric. The
analysis then proceeds as in the constant depth case, but
with extra terms corresponding to the slow variability in
the basic state, while the compatibility condition then yields
the vKdV equation (1) now with variable coefficients u =
w(&),8 =8(&), but which are again defined by (13, 14, 15)
(but the upper limit in the integrals is now z = ng replacing
z=20). For the present case of internal waves, we find
that the linear modification factor is given by, see Zhou and
Grimshaw (1989),

0*= 1 20)

I’

where I is defined by (15). Note also that the expression for
Q can also be simply determined by requiring that Q~2A2
should be the wave action flux in the linear long wave
limit. The variable-coefficient extended KdV equation (5)
is obtained in a similar manner.

We shall conclude this section with some illustrative
examples. First consider the case of surface waves. We put
the density p =constant so that then N2 =0 (8). Then, for
the case when there is no background flow so that ug =0,
no = 0, we obtain the well-known expressions

z+h

¢:T for —h<z<0, c=(gh)'?. @D
3 h? 1

and so ,u:—c, 8:6—, 2 — | 22)
2h 6 2gc

Similarly, for interfacial waves in a two-layer fluid, let the
density be a constant p; in an upper layer of height /) and
p2 > p1 in the lower layer of height 4, =h —h. That is

p0(2)=p1H(EZ+h)+p2H(=z—hy),
sothat poN? =g (o2 —p1)8(z+h1).

Here H(z) is the Heaviside function and §(z) is the Dirac §-
function. Again we assume that there is no background flow
(uo =0, no =0). and we replace the free boundary with a
rigid boundary so that the upper boundary condition for ¢ (z)
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becomes just ¢(0) =0. This is a good approximation for
oceanic internal solitary waves. Then we find that

- +h .
¢>:—Z+ for —h<z<hy, <,z$:—i for —h1 <z<0,
hy hi
—p1)hh
2o 8z py)hihy 23)
prha+p1hy

Substitution into (13, 14, 15) yields

. 3¢ (pahi — p1h3) _ chihy(p2ha+pihy)
2h1hy (p2h1+prha) 6(p2h1 + p1h2)
1
LS — (24)
2g(p2—p1)c

Note that for the usual oceanic situation when p; — p; K p2,
the nonlinear coefficient o for these interfacial waves is
negative when /| < h (that is, the interface is closer to the
free surface than the bottom), and is positive in the reverse
case. The case when hj = h, leads to the necessity to use
the extended KdV equation (16), where the coefficient ] is
given by

3¢
H1=—
8h2h3 (p1hy+ p2h1)?
2 2\? 2
(p1h2—02h1> +8p1p2h1hy(h1+ha)" ¢ . (25)

Note that i1 < 0, and so the eKdV equation (16) for a two-
layer fluid always has 641 < 0.

However, in a three-layer fluid there are parameter regimes
where one or two modes may have ;11 > 0 (Grimshaw et al.,
2002), and there are many cases for real oceanic conditions
with smooth stratification and background shear when the
parameter i1 > 0, see Grimshaw et al. (2004, 2007).

3 Deformation of internal solitary waves
3.1 Slowly varying solitary wave

In general the evKdV equation (6) with variable coefficients
a=a(§), f=pB(E)L=1r(&) must be solved numerically.
However, it is first instructive to consider the slowly-varying
solitary wave. This is described in detail in review article
by Grimshaw et al. (2007), but for convenience we shall
present a brief summary here. The slowly-varying solitary
wave is an asymptotic solution based on the assumption
that the background state varies slowly relative to a typical
wavelength. Formally, we suppose that

a=wa(0), B=B(0), A=r(0), 0 =k&, kKL1. (26)

We then invoke a multi-scale asymptotic expansion of the
form (see Grimshaw, 1979)

U=Uy(,0)+kUi(Y,0)+..., 27
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w:s—%/aV(o)dU. @8)

Here  is a temporal variable in a frame moving with the
speed V. U is defined over the domain —oco < ¢ < oo, and
we will require that U remain bounded in the limits ¥ —
+o00. Since we can assume that A > 0 small-amplitude waves
will propagate in the negative s-direction, and so we can
suppose that U — 0 as ¥ — co. However, it will transpire
that we cannot impose this boundary condition as i — —o0.
This procedure is well-known for the vKdV equation (see
Johnson, 1973a for the case of water waves, and Grimshaw,
1979 for the general case) and is readily extended to the
evKdV equation (see the recent reviews by Grimshaw, 2007
and Grimshaw et al., 2007).
Substitution of (27) into (3) yields,

— VUoy+aUoUpy+BUEUy+2Ugyyy =0, 29)
—VUiy+aUoU1)y +B (UgUl)v/ FAU gy = —~Uts.  (30)

Equation (29) has the solitary wave solution

D
Upy=———, 31
0 1+ BcoshKyr @b
D 6ABK?
where v:‘%:mz, B =1+ ’32 . (32)
o

When the coefficients are constants, this is just the eKdV
solitary wave (17). Here it is a slowly-varying solitary wave
as the parameter B = B(o) andhencea=D/(1+B) =a(o),
V =V(o), K =K(o). The main aim of the analysis is
then to determine how these parameters vary, and this is
determined at the next order of the expansion.

We now seek a solution of (30) for U — 0, ¥ — oo
and for which U; is bounded as ¥ — —oco. In order to
determine the conditions that need to be imposed on the
right-hand side of (30) to ensure that such a solution can
be obtained, we need to consider the adjoint equation to the
homogeneous operator on the left-hand side of (30), which is
for the dependent variable U,

—V01¢+(xU001¢+,3U30111/+)»01|/“/“/,=0. (33)

The required compatibility conditions are then that the
right-hand side of (30) should be orthogonal to all linearly
independent solutions of the adjoint Eq. (33) which decay at
infinity. Two linearly independent solutions of the adjoint
Eq. (33) are 1, Uy. While both of these are bounded, only
the second solution satisfies the condition that U; — 0 as
Y — oo. The third solution is unbounded as ¢ — +oo0.
Hence only one compatibility condition can be imposed,
namely that the right-hand side of (30) is orthogonal to Uy,
which leads to

o0
Poo =0 where Py= / vdady . (34)
o0
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Thus Py is a constant, and as the solitary wave (19) has just
one free parameter B, this condition suffices to determine its
variation.

However, the evKdV equation (6) has two conservation
laws

aM o0

== =, M:/ Uds., 35)
0 00

aP °

-0, P=| Uls, (36)
& 00

for “mass” and “momentum” respectively. In physical terms,
(35) is an approximation to the conservation of physical
mass, while (36) expresses conservation of wave action
flux at the leading order. The condition (34) is easily
recognized as the leading order expression for conservation
of momentum (36). But since this completely defines the
slowly-varying solitary wave, we now see that this cannot
simultaneously conserve mass. This is also apparent when
one examines the solution of (30) for Uy, from which it is
readily shown that although U; — 0 as ¢ — oo, U} — Dj as
Y — —oo where

o0

VD1 =—Moy,, where MO:/ Updyr. 37

oo

This non-uniformity in the slowly-varying solitary wave
has been recognized for some time, see, for instance,
Knickerbocker and Newell (1978, 1980), Grimshaw (1979)
or Grimshaw and Mitsudera (1993) and the references
therein. The remedy is the construction of a trailing shelf
U® of small amplitude O (k) but long length-scale O(1/«),
which thus has O (1) mass, but O (k) momentum. It resides
behind the solitary wave, and to leading order is given by

U®=xU"N(T), for T:KS<‘~IJ(U)=/G V(o)do. (38)

Here T = W (o) defines the location of the solitary wave.
USNT) is independent of o, and is determined so that the
shelf amplitude is just D1 (o) at the location of the solitary
wave, that is U®) (W (o)) = D{(¢) (37). At higher orders
in k the shelf itself will evolve and may generate secondary
solitary waves, see El and Grimshaw (2002) and Grimshaw
and Pudjaprasetya (2004). The slowly-varying solitary wave
and the trailing shelf together satisfy conservation of mass.

Substitution of the solitary wave (31) into the expression
(34) for Py yields

D? [ du
Py=— T (39)
K J_ (14 Bcoshu)
312
G(B)=Py|— R 40
or (B)="Po|y 5 (40)
3/2 [ du
here G(B)=|B>—1 / —_ . 41
where (8) ‘ ‘ _oo (14 Bcoshu)? “h
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The expression (40) determines the variation of the
parameter B since P is a constant, determined by the initial
conditions. The integral term in G(B) can be explicitly
evaluated,

B—1
B*>1: G(B)=2(B>-1)?x4arctan,/ ——, 42
> (B)=2( ) qtarcan,/BJrl (42)
1I-B 1/2
0<B<1: G(B)=4darctanh,/—— —2(1—-B%) . (43
<B< (B) = 4arctan 7B ( ) (43)

The alternative signs in (42) correspond to the cases B > 1 or
B < —1. Next, the trailing shelf is found from (37, 38) where

(8 B—1
B >1: M, ::|:|F|1/24arctan‘/ Bl (44)

0<B<1: MO::tlﬂll/24arctanh I_—B (45)
B 1+B

Here the alternative signs in (44) and (45) correspond to the

casesaB >0oraB <0.

The expression (40) provides an explicit formula for the
dependence of B on the basic state parameters «, 8, A, v. Itis
readily shown that G(B) (42) is a monotonically increasing
function of |B| for 1 < |B| < oo, and is a monotonically
decreasing function of B for 0 < B <1 (43). Thus as
|83 /Aa?| — oo, then so does G(B). If B <0 so that 0 <
B <1, B— 0 and the wave approaches the limiting “table-
top” shape. On the other hand if 8 > 0 and 1 < | B| < co then
| B| — oo and the wave shape approaches the “sech”-profile,
The behaviour of the wave amplitude in these limits depends
on the behaviour of each of the parameters «, B, A. But since
we can usually expect B to be finite and A(> 0) to be non-
zero, we see that these limiting shapes are usually achieved at
the critical point where & — 0. This case is discussed below
in Sect. 3.2. On the other hand, if |8%/Aa?| — 0, then so
does G(B). In this case B— 1, G(B) ~|B — 13/2 (see (42,
43)) and the wave profile reduces to the KdV “sech®”-shape,
provided that either § <0 when 0 < B < 1, or if 8 > 0, then
the wave belongs to the branch defined by 1 < B < co. These
scenarios are usually achieved at the alternative critical point
where 8 =0, discussed below in Sect. 3.2.

3.2 Passage through a critical point

The adiabatic deformation of a solitary wave discussed above
in Sect. 3.1 shows that the critical points where « =0, or
where 8 =0, are sites where we may anticipate a change
in the wave structure. First we recall the vKdV model (3)
where 8 = 0. In this case the adiabatic law (40) collapses to
a® oc /) where a is the solitary wave amplitude (19), and
the expression (37) collapses to D = a,/2AK3. Suppose
that =0 at o = 0, where, without loss of generality, we
can assume that « passes from a negative to a positive value
as o increases through zero. Initially the solitary wave is
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Fig. 3. Numerical simulation of the vKdV equation (3) with § =1
and as « varies from —1 to +1. The upper panel is when o =0
and the lower panel is when o = 1. The simulation shows a strong
deformation of the initial solitary wave of depression at o =0,
followed at « = 1 by the emergence of a number of solitary waves
of elevation riding on a negative pedestal.

located in ¢ < 0 and has negative polarity, corresponding
to the usual oceanic situation. Then, near the transition
point, the amplitude of the wave decreases to zero as a ~
—|a|'/3, while K ~ |a|*/3; the momentum of the solitary
wave is of course conserved (to leading order), but the
mass of the solitary wave increases (in absolute value) as
1/]|'/3, its speed decreases as |«|*/?, and the amplitude
D1 > 0 of the trailing shelf just behind the solitary wave
grows as |o|~%/3; the total mass of the trailing shelf is
positive and grows as 1/|«|'/3, in balance with the negative
mass of the solitary wave, while the total mass remains a
negative constant. Since the tail grows to be comparable
with the wave itself, the adiabatic approximation breaks
down as the critical point is approached. Nevertheless,
we can infer that the the solitary wave itself is destroyed
as the wave passes through the critical point « =0. The
structure of the solution beyond this critical point has been
examined numerically by Knickerbocker and Newell (1980)
and revisited by Grimshaw et al. (1998a), who showed
that the shelf passes through the critical point as a positive
disturbance, which then being in an environment with & > 0,
can generate a train of solitary waves of positive polarity,
riding on a negative pedestal, see Fig. 3.
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Fig. 4. Numerical simulation of the evKdV equation (6) with § =1,
B =—0.083 and as « varies from 1 to —1. The upper panel shows
the initial condition of a “table-top” solitary wave of elevation at
a = —1, the middle panel shows a strong deformation at @ =0, and
the lower panel shows the leading wave at « = —1. This wave is a
“table-top” wave of depression riding on a small positive pedestal.

We next take account of the cubic nonlinear term in (6)
and suppose again that o passes through zero at o =0 but
that B # 0 at the critical point. First, let us suppose that
B<0,0<B <1. Then as « — 0, we see from (40) and
(43) that G(B) ~ 1/|a|, and B — 0 with B ~2exp(—G/2).
Thus the approach to the limiting “table-top” wave is quite
rapid. From (31) K ~ |«| in this limit, and the amplitude
approaches the limiting value a ~ —«/B. Thus the wave
amplitude decreases to zero, and, interestingly, this is a more
rapid destruction of the solitary wave than for the case when
B =0. The mass My (45) of the solitary wave grows as o] 7!
and so the amplitude D; of the trailing shelf (37) grows as
1/]a|*. The overall scenario after « has passed through zero
is similar to that described above for the vKdV equation (3)
and has been discussed in detail by Grimshaw et al. (1999);
see Fig. 4 for a case when a “table-top” solitary wave is
converted to another such wave of opposite polarity, riding
on a pedestal.

Next, let us suppose that § > 0 so that 1 < |B| < oo
There are two sub-cases to consider, B > 0 or B < 0, when
the the solitary wave has the same or opposite polarity to
a. Then as @ — 0,|B| — oo as |B|~ 1/|a|. It follows
from (31) that then K ~1, D ~ 1/]a|,a~1, My~ 1. It
follows that the wave adopts the “sech”-profile, but has finite
amplitude, and so can pass through the critical point « =0
without destruction. But the wave changes branches from
B>0to B<0as|B|— oo, or vice versa. An interesting
situation then arises when the wave belongs to the branch
with —co < B < —1 and the amplitude is reducing. If the

www.nonlin-processes-geophys.net/17/633/2010/
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Fig. 5. Numerical simulation of the evKdV equation (6) for the
case when § =1, $=0.3, v =0 and « varies from 1 to —1. The
initial wave (not shown) is a solitary wave of elevation belonging
to the branch for which B > 0. It then passes adiabatically through
the critical point, changing the sign of B to B <0, and arrives at
the location @ = —1 where § = T with only a small deformation.
However, at this stage its amplitude is below that allowed for a
steady solitary wave, and so it deforms into a breather, shown in
the middle panel for £ =27 and the lower panel for £ =4T.

limiting amplitude of —2«//f is reached, then there can be
no further reduction in amplitude for a solitary wave, and
instead a breather will form. An example of this outcome is
shown in Fig. 5, where the wave has entered this regime after
passing through the critical point.

Finally, consider the case when 8 — 0, « # 0. This case
has been studied by Nakoulima et al. (2004) using both an
asymptotic analysis similar to that used here, and numerical
simulations. As already noted above, in this case B — 1,
G(B) ~ |B —1>/2 (42, 43), and it then follows from (40)
that G ~ |B]3/? and so |B — 1| ~|B|. There are three sub-
cases to consider. First, suppose that initially 8 < 0 and so
0<B<1. As|B|— 0, 1—B~|B| and the wave profile
becomes the familiar KdV “sech?”-shape. It is readily shown
from (31) that then K, a, My, D1 ~ 1 and so the wave can
pass through the critical point 8 = 0 without destruction.
However, after passage through the critical point, the wave
has moved to a different solitary branch (see Fig. 2), and this
may change its ultimate fate. A typical scenario is shown
in Fig. 6, which shows the transformation of a “table-top”
solitary wave (upper panel in Fig. 2) to a KdV “sech?”-KdV
solitary wave at the critical point, and further evolution as
a solitary wave of the upper branch in the lower panel of
Fig. 2. Second, suppose that initially >0 and 1 < B <
oo. Now B —1~ B and again the wave profile becomes
the familiar KdV “sechz”-shape, while K, a, My, D1 ~ 1,
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Fig. 6. Numerical simulation of the evKdV equation (6) witha =1,
A =1 and B varies from —1 to 1, showing the transformation of a
“table-top™ solitary wave to a KdV “sech?”-KdV solitary wave at
the critical point, and further evolution as a solitary wave tending to
a “sech”-profile.

allowing the wave to pass through the critical point 8 =0
without destruction, but moving now from the upper branch
in the lower panel of Fig. 2 to the “table-top” branch in the
upper panel of Fig. 2. Third, suppose that initially g > 0 and
—1 > B > —o0. In this case it an be shown from (42) that
G (B) decreases from oo to a finite value of 27t as B increases
from —oo to —1. Consequently the limit 8 — 0 in (40)
cannot be achieved. Instead as B decreases the limit B = —1
is reached, when the wave becomes an algebraic solitary
wave, and a further decrease in 8 generates a breather.
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4 Application to internal solitary waves in the South
China Sea

In a typical oceanic situation, where there is a relatively
sharp near-surface pycnocline, an internal solitary wave of
depression is generated in the deep water and propagates
shorewards until it reaches a critical point. For a simple
two-layer model, this is where the pycnocline is close to
the mid-depth, see (24). The theory described above then
predicts that this wave will be destroyed in the vicinity of this
critical point and replaced in the shallow water shorewards
of the critical point by one or more internal solitary waves
of elevation riding on a negative pedestal. This basic
scenario has been observed in several places in the ocean,
For instance, this phenomena has been reported by Salusti
et al. (1989) in the Eastern Mediterranean, by Holloway et
al. (1997, 1999) and Grimshaw et al. (2004) in the North
West Shelf of Australia, by Hsu et al. (2000) in the East
China Sea, during the ASIAEX experiment in the South
China Sea by Duda et al. (2004), Liu et al. (1998, 2004), Orr
and Mignerey (2003), Ramp et al. (2004), Yang et al. (2004),
Zhao et al. (2003, 2004) and Zheng et al. (2003), and on
the New Jersey shelf by Shroyer et al. (2009). Further,
numerical simulations of the full Euler equations predict
polarity reversal in Lake Constance (Vlasenko and Hutter,
2002), in the Andaman Sea (Vlasenko and Staschuk, 2007)
and in the Saint Lawrence estuary (Bourgault et al., 2007).
But elsewhere in the ocean, where there are no such critical
points, the shoreward propagating small-amplitude internal
solitary waves are expected to deform adiabatically (at least
within the framework of the vKdV equation). Examples
of this behaviour occur on the Malin Shelf off the North
West coast of Scotland (Small, 2003; Grimshaw et al., 2004;
Small and Hornby, 2005), in the Laptev Sea in the Arctic
(Grimshaw et al., 2004) and in the COPE experiment on the
Oregon shelf (Vlasenko et al., 2005).

The South China Sea (SCS) is well known as a location
where internal solitary waves have been commonly observed,
and has been intensively studied both experimentally and
through numerical simulations, see for instance the reports
based on the 2001 ASIAEX experiments by Duda et
al. (2004), Ramp et al. (2004) and Liu et al. (2004).
Typically, large amplitude internal waves are generated by
the barotropic tidal currents, possibly combined with the
Kuroshio current extension, interacting with the topography
in Luzon Strait, see Liu et al. (1998), Cai et al. (2002), Ramp
et al. (2004, 2006). Solitary-like waves with amplitudes up
to 80m (in a depth of 300m) have been observed at the
two underwater mountain ridges in Luzon Strait, see the
bathymetry in Fig. 7 and the wave field in Fig. 8, taken
from Liu et al. (2006). These waves cross the deep basin
and then shoal on the continental shelf in water of depth
400-200m, see for example the reports of the ASIAEX
experiment by Duda et al. (2004), Ramp et al. (2004) and
Liu et al. (2004). Wave amplitudes can reach to 100 m
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Fig. 7. Bathymetry of the northern part of the South China Sea, from Liu et al. (2006).
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Fig. 8. Displacement of the isotherms as measured in the South China Sea, from Liu et al. (2006).
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Fig. 9. Time series of internal waves in the South China Sea, from
Duda et al. (2004).

and their shapes compare well with theoretical solitary wave
shapes, see Klymak et al. (2006) and Fig. 9 from Liu et
al. (2006). Numerical modeling of internal solitary wave
transformation on the continental slope and shelf of the SCS
has often been based on the vKdV and evKdV models, using
mainly two-layer representations of the density stratification,
and the results have been used to interpret the observed
solitary wave evolution and especially the observed polarity
changes, see Orr and Mingerey (2003), Zhao et al. (2003,
2004), Liu et al. (1998, 2004). There are also a few
numerical simulations using the full Euler equations for
stratified flow, see Buijsman et al. (2008), Du et al. (2008),
Scotti et al. (2008), Warn-Varnas et al. (2010) and Vlasenko
et al. (2010) for instance.

www.nonlin-processes-geophys.net/17/633/2010/

Fig. 10. Bathymetry of the South China Sea, with the chosen cross-
sections.

We shall supplement these studies by a set of numerical
simulations of the evKdV equation (6) for two typical cross-
sections of the SCS, shown in Fig. 10. The first cross-
section is close to the conditions for ASTAEX 2001, where
the internal solitary waves are generated by westward tidal
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Fig. 12. Coefficients of the evKdV equation (5) along cross-section 1.

currents in Luzon Strait, see Liu et al. (2006) and Zhao
and Alford (2006) for instance. The second cross-section is
chosen to have a positive cubic nonlinear coefficient along
the whole wave path. Contour maps of the linear long wave
speed, the coefficients of the quadratic and cubic nonlinear
terms and the coefficient of the linear dispersive term in
the evKdV equation (5) are shown on Fig. 11. They are
based on the vertical density profiles from the database
GDEM for January (GDEM), while the bathymetry is taken
from GEBCO. The speed ¢ and the dispersion coefficient §
correlate well with the depth & as expected, see Talipova and
Polukhin (2001) and Polukhin et al. (2003). The quadratic
nonlinear coefficient p is negative in the deep part of the
SCS, and changes its sign to positive everywhere on the
continental slope, as expected in the SCS, see Orr and
Mignerey (2003) and Zhao et al. (2003, 2004) for instance.
The cubic nonlinear coefficient, ;1] is very small and positive
in the deep part of the sea, but its sign changes in some parts
of the continental slope to negative, while in other places it
stays positive and grows in absolute value. To understand
the role of quadratic and cubic nonlinearity in internal wave

dynamics three values should be compared, ¢, n A, w1A2. In
the deep part of the SCS ¢ = 2.5 ms~! and even if the internal

wave amplitude is taken as 80m (usually much less in

deep water) uA =0.48 ms~! and A2=0.13ms"!; hence

nonlinear effects are small in the deep part of the SCS. But on
the continental slope c is less than 0.5 ms~! and for the same
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Fig. 13. Transformation of an internal solitary wave along cross-section 1.

0.5
Q
a2
o
-0.5
1k
-1.5¢
2k
-2'50 100 200 300 400
x, km

Fig. 14. Contour plot in the space-time domain of an internal
solitary wave transformation along cross-section 1.
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internal wave amplitude of about 80m, uA = 0.48ms~ !,
comparable with ¢, and 117 A% =1.28 ms™!, much large than
the quadratic nonlinear term. Thus in the the shelf zones
the waves are strongly nonlinear. Indeed the ratio of the
nonlinear terms to the speed of propagation is about 3.5.
Nevertheless, the eKdV (Gardner) model may be used as
demonstrated by Maderich et al. (2009, 2010). However, it
is pertinent to note that several other higher-order KdV-type
models have been proposed, see the recent review by Apel et
al. (2007) for instance.

4.1 Numerical results for cross-section 1

The wave path is close to the conditions of the ASIAEX
2001 experiment on the shelf (Ramp et al., 2004) and is here
extended to the Luzon Strait to the site where the westward
propagating solitary waves were observed see (Liu et al.,
2006; Zhao and Alford, 2006 for instance). The model
coefficients are shown on Fig. 12. The depth decreases from
2.5km to 200 m, the linear long wave speed ¢ varies from
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2.5ms~! to 0.2ms~!, the linear modification factor Q is
equal to 1 initially, then decreases to 0.5 at the location x =
250 km, before increasing to 2.5 on the shelf. Corresponding
to the change of depth, the dispersion coefficient § decreases
along the cross-section. The nonlinear quadratic coefficient
w is negative for most of the wave path, but changes sign
once only at a depth about 100m. The cubic nonlinear
coefficient w; is positive in the deep water and becomes
negative at a depth of about 400 m. Hence here there are
two critical points, both on the shelf. The amplitude of the
initial solitary wave (17) is chosen as 49 m at x = 0 in Fig. 14.
This is less than that mentioned by Liu et al. (2006) where
the amplitude of an observed solitary wave was estimated as
140 m, but it is large enough for our purposes.

The solitary wave evolution is shown in Fig. 13. The
leading wave amplitude has decreased by a factor of two at
x =220km from 49 m to 25 m. Over this same distance, the
cubic nonlinear coefficient is almost constant, the quadratic
nonlinear coefficient has decreased, the dispersive coefficient
has decreased, while the linear modification factor has
decreased by a factor of one-half; together these have
the effect that the initial wave has started to deform with
formation of a trailing tail. At the location x =350 km the
linear modification factor is decreasing, the cubic nonlinear
coefficient changes sign and quadratic nonlinear coefficient
tends to zero. The leading solitary wave now has an
amplitude of about 35 m and is wider than at the location x =
220km. At x =400km the quadratic nonlinear coefficient
changes sign, and we see the typical destruction of the
negative solitary wave, and the consequent generation of
several positive solitary waves. The space-time contour plot
of this internal wave transformation is shown in Fig. 14.

4.2 Numerical results for cross-section 2

On this cross-section, the initial point lies in deep water of
depth 4 =3 km, and the last point lies near Hainan Island.
Here, the cubic nonlinear coefficient is positive everywhere,
while the quadratic nonlinear coefficient changes sign on the
shelf. The model coefficients are shown in Fig. 15. The depth
decreases from 3 km to 200 m non-monotonically, producing
the analogous tendencies for the dispersion coefficient &,
and the linear long wave speed c¢. The linear modification
factor Q is initially close to one, and then decreases before
increasing after the location x = 700km. The quadratic
coefficient p grows after x =400 km in absolute value and
after x = 580 km tends to zero, changing sign at the location
x =700km. The cubic coefficient w is positive everywhere,
but grows by an order of magnitude.

This is a scenario when we might expect the formation
of a breather from a solitary wave at the location of where
the quadratic coefficient changes sign, provided the leading
wave amplitude is large enough. Here we did two runs
with initial solitary wave amplitudes of 23 m and 41 m. The
solitary wave transformation for the first run is shown in

Nonlin. Processes Geophys., 17, 633-649, 2010

R. Grimshaw et al.: Internal solitary waves

-0.008
.5SE+006—

5, m3s
o

C

c, m/s
P

h, km

R O

T T T T T T T T
0 200 400 600 800
distance, km

Fig. 15. Coefficients of the evKdV equation (5) along cross-section 2.

Fig. 16. Due to the increase of the cubic nonlinear coefficient
the initial solitary wave becomes narrower and a trailing
tail emerges, developing oscillations after x = 600 km. This
process occurs without a significant change in the leading
wave amplitude because the modification factor increases
slowly. At the location x = 700km a “sech”-like solitary
wave has appeared. Then, at the location x = 730km the
quadratic nonlinear coefficient changes sign, but the leading
wave amplitude is then not large enough for transformation
into a “sech”-like solitary wave of negative polarity, but
with a positive quadratic coefficient. Instead, the wave
disintegrates and at the location x = 760km, we see the
formation of secondary solitary waves of opposite polarity.
The space-time contour plot of this run is shown in Fig. 17.
The second run has an initial amplitude of 41 m. The
solitary wave transformation is shown in Fig. 18. Again a
“sech”-like solitary wave forms by the location x = 500 km,
and its amplitude grows to 60 m. At the location x =600 m
a second solitary waves begins to form, and due to the
increase of the linear modification factor Q, the amplitude
of leading wave decreases to about 45m. Then as the
quadratic nonlinear coefficient tends to zero, the cubic
nonlinear coefficient grows rapidly, and the leading solitary
wave begin to destruct around the location x = 700 km,
until at the location x = 720 km there is a strong indication
that an internal breather has formed in association with an
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oscillatory trailing wave train. The division of the initial
solitary wave into two is clearly shown in the space-time
contour plots in Fig. 19, from the location x = 400km
to the location x = 650km, with breather formation after
x=700km.

5 Discussion

As we have mentioned in the Introduction, the vKdV
equation (3) and its extension to allow for cubic nonlinearity,
the evKdV equation (6) have been widely used to model
the propagation of large amplitude internal solitary waves
in coastal seas. In this review article we have presented
a brief outline of the derivation of these models by an
asymptotic expansion from the full Euler equations. Then
we have described how an examination of the slowly-
varying solitary wave solutions lead to the concept that
the critical point where the coefficient of the quadratic,
or of he cubic, nonlinear term is zero defines a location
of special interest where a solitary wave may undergo a
dramatic transformation, often involving a polarity change
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and a disintegration into a wave train. We have illustrated
this in detail for two contrasting cross-sections of the coastal
shelf of the South China Sea. Each cross-section is based on
the GDEM database of sea stratification, and the bathymetry
database GEBCO. The first cross-section is taken across the
shelf where the ASIAEX 2001 experiment took place, and
we have simulated the transformation of an internal solitary
wave generated in the Luzon Strait, propagating across the
cross deep part of the sea to the opposite shelf, where a
change in its polarity takes place, The second cross-section
is taken across a region where the cubic nonlinear coefficient
is positive everywhere. In this case an initial solitary
wave of moderate amplitude transforms into two solitary
waves. Th first wave is a “sech”-like solitary wave, and
the two waves interact near the location where the quadratic
nonlinear coefficient changes sign, with transformation into
a breather This demonstrates the possibility of internal
breather generation from an initial solitary wave in a realistic
ocean situation. It is the the second example of such a
transformation, the first being a simulation for the North
West Australian Shelf, see Grimshaw et al. (2007).

www.nonlin-processes-geophys.net/17/633/2010/
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There are several important issues relating to internal
solitary waves, which we have not considered here, notably
stability, transverse structure, the effect of the background
earth rotation and the effect of friction. An extension of the
evKdV model (6) which takes into account of the last three
factors could be

{A, FeAr— ch A+uA AX+M1A2AX+8AXXX+V|A|A}
X
c f2
+3 (Ayy— c2A) —0. (46)

The transverse term Ayy is just that which converts the KdV
equation into its well-known two-dimensional extension,
the KP equation, while the rotation term contains the
Coriolis parameter f and was originally introduced by
Ostrovsky (1978) and later by Grimshaw (1985) with the
transverse term added as well. It is known that the effect
of background rotation is to cause a solitary wave to decay
through the radiation of inertia-gravity waves, see the review
by Helfrich and Melville (2006) and the recent studies by
Grimshaw and Helfrich (2008) and Sanchez-Garrido and
Vlasenko (2009). In practice, the time-scale for this decay
is one or two inertial periods. In (46) we have chosen Chezy
friction, as this is the one most commonly used, although
other forms of friction such as boundary-layer friction or
Burgers-type friction have been proposed. The friction
coefficient is given by

Iv=poCp(c—ug)|¢->, at z=—h, 47)

where Cp is the usual drag coefficient, while the modal
functions and the integral / are defined by (10, 11, 15).
Clearly friction will cause the solitary wave to decay, but
as oceanic internal solitary waves are observed to be long-
lived, this decay is evidently quite slow. There have been
several recent observational studies of the decay of shoaling
internal solitary waves from which we infer that the time
scale is around an inertial period, and the decay process
itself is complicated by the generation of localized shear
instability, see for instance Moum et al. (2007) and Shroyer et
al. (2010). We also note the interesting theoretical prediction
by Grimshaw et al. (2003) that a decaying solitary wave
with the parameter B < —1 (which requires that §u; > 0)
may transform into a breather. Finally, we comment that
although solitary waves are stable in the framework of the
KdV or eKdV equations, in practice they can be unstable
due to localized shear instability. This is a high-wavenumber
phenomenon, which is not captured in the present long-
wave asymptotic models. There have been several laboratory
studies of shear instabiity of internal solitary waves, see
Fructus et al. (2009) for a recent study, and several analogous
ocean observations, see Moum et al. (2003, 2007).
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Abstract. The generation of huge amplitude internal waves
by the barotropic tide in the Barents Sea at high latitudes is
examined using the numerical model of the Euler 2-D equa-
tions for incompressible stratified fluid. The area considered
is located between the Spitsbergen (Svalbard) Island and the
Franz-Victoria Trough with a cross-section of 350 km length.
There are two underwater hills about 100-150 m high on the
background depth of about 300 m. It is shown that inten-
sive nonlinear internal waves with amplitudes up to 50 m and
lengths of about 6-12 km are generated in this zone. The to-
tal height of such waves is huge and they must be considered
as a significant factor of the environment in this basin.

1 Introduction

Internal waves in the shelf zones are generated mainly by
tidal forcing. Very often they have huge amplitudes reach-
ing sometimes a hundred meters and are observed over and
over again everywhere in coastal zones of the World oceans
(Morozov, 1985; Ostrovsky and Stepanyants, 1989; Hel-
frich and Melville, 2006; Vlasenko et al., 2005; Apel et al.,
2007; Duda et al., 2004). Intensive internal waves generated
over the shelf edge and continental slope are an important
source of strong currents, vertical mixing (Babu and Rao,
2010), bottom erosion (Bogucki and Redekopp, 1999). They
strongly impact on acoustic fields and significantly reduce
the distance of acoustic pulse propagation (Apel et al., 2007;
Warn-Varnas et al., 2009; Sridevi et al., 2010), and may be
dangerous for underwater vehicles and underwater parts of
oil platforms and pipelines. The prediction of underwater
weather is becoming a branch of hydrometeorology now and

Correspondence to: O. E. Kurkina
BY (oksana.kurkina@mail.ru)

the analysis of the baroclinic disturbances periodically gen-
erated by barotropic tide over topography is the first and prin-
cipal step in this problem. Detection of zones where internal
waves have amplitudes large enough can be done with help
of numerical modeling methods.

The modeling of tidal internal waves on various shelves of
the World oceans is carried out now using numerical models
of different levels (see, for example, Helfrich and Melville,
2006; Vlasenko et al., 2005; Holloway et al., 1999; Warn-
Varnas et al., 2005, 2010). We are focusing here on the Bar-
ents Sea, and moreover, on internal waves generated over the
critical latitude (74.5° N) for the semidiurnal (M>) tide. The
critical latitude is determined as the latitude ¢ where the tidal
frequency equals the local inertial frequency f = 2Qgsing,
Qg = 0.00007292 57! is the frequency of the Earth’s rota-
tion. The linear theory of baroclinic tide generation predicts
that there is no baroclinic wave generation over this lati-
tude (LeBlond and Mysak, 1978). Nevertheless observations
show existence of internal waves of very large amplitudes
here.

We reproduce briefly the description of results (Morozov
and Pisarev, 2002; Pisarev, 1996): “Special measurements
of internal waves with distributed temperature sensors were
carried out from drifting ice in 1983 in Saint Anna Trough
and in 19861989 in Franz Victoria Trough. The latitude of
the measurements was 80°-81° N and the depths were within
bounds of 200-500m. In addition to the other phenomena,
very short and localized semidiurnal internal waves were

found. Their lengths were within 2—6 km. They were prop-

agating from the slope of the trough and their amplitudes
reached 40 m. When the measuring instruments drifted from
the slopes of the trough to a distance of 20—-40 km toward flat
bottom regions, the amplitude of these waves significantly de-
creased. Under certain stipulations, these semidiurnal waves
were classified as internal tides.”.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Fig. 1. Area map with the cross-section (red strip) between the
points 34.11° E, 77.57° N and 28.61° E, 80.58° N.
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Fig. 2. Bottom relief of the area cross-section shown in Fig. 1 (blue

line is GEBCO, dotted line is the spline).

The possibility of the generation of internal tidal waves by
topography above the critical latitude was shown by Naka-
mura et al. (2000), with the use of the fully nonlinear nonhy-
drostatic model. These waves are generated and trapped by
the barotropic tidal flux at the lee side of the sill. They were
called unsteady lee waves and their amplitudes depend on the
amplitude of the tidal flow speed and steepness of the bottom
topography. Vlasenko et al. (2003) were the first who mod-
eled the nonlinear generation of internal waves near and over
the critical latitude in the Barents Sea near Bear Island and
found propagated short nonlinear internal waves with ampli-
tudes about 20 m.

The aim of this paper is to explain the nature of large
amplitude internal waves observed over the critical latitude

Nat. Hazards Earth Syst. Sci., 11, 981-986, 2011
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Fig. 3. The typical vertical density profile (a) in the studied area and
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July.
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Fig. 4. The mean tidal current speed (cm s~ 1) based on the simu-
lation of 14 days of hourly total tidal speed from the 8-constituent
inverse solution AOTIM.

(mainly in the Franz Victoria Trough), using the numeri-
cal results within the framework of fully nonlinear Euler
equations for stratified water, their features and to carry out
the forecast of dangerous underwater events for this region.
The paper is organized as following: the numerical model
is briefly described in Sect. 2, model input is discussed in
Sect. 3 and in Sect. 4 the results of the numerical modeling
are presented. They are discussed in Sect. 5.

www.nat-hazards-earth-syst-sci.net/11/981/2011/
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Fig. 6. The Hovmuller plot for the displacement of the isopycn
located at 70 m depth in the undisturbed state.

2 Numerical model

The Lamb (1994) model is taken for simulating the gener-
ation and propagation of internal waves in the Barents Sea.
The model equations are the two-dimensional (vertical sec-
tion) inviscid, incompressible Boussinesq equations on a ro-
tating f-plane. The coordinates are defined as follows: x is
along a section, y is perpendicular to section, and z is the
depth. The equations of the model are

Vi+(VV)V—fVxk=-VP—kpg 1)
0 +VVp=0 @)
VvV =0 3)

where V(u,v,w) is the velocity vector, V is the three-
dimensional vector gradient operator, subscript ¢ denotes the
time derivative, p is the density, P is the pressure, g is the
gravitational acceleration, f is the Coriolis parameter taken
as 1.425x 10~*s~! for the latitude of 78.5 degrees, and k
is the unit vector along the z-direction. The normal to the
section velocity is included in the model, but no variation
with coordinate y is allowed. So, in the three-dimensional
Egs. (2)—(4) the partial derivatives with respect to y are ne-
glected, i.e., %() =0.

The equations are transformed to the following terrain co-
ordinate system (sigma-coordinates) which leads to higher
vertical resolution over the bank regions. The equations are
solved over a domain bounded by the topography below and
a rigid lid above. The flow is forced by specifying a semidi-
urnal tidal inflow at the left boundary of the form V7 sin(wt)
where w is the M> tidal frequency assumed to have a 12.4-h
period (7). The value Vr is discussed below. On the right
boundary an outflow condition is used. The initial conditions

Nat. Hazards Earth Syst. Sci., 11, 981-986, 2011

comprise the undisturbed equilibrium state with uniform hor-
izontal density.. The horizontal grid size is 90 m, and the ver-
tical sigma-coordinate resolution consists of 80 grid points.
The time step is tied to the Courant-Levi condition and varies
from2sto Ss.

3 Input for the modeling

For the modeling we chose the cross-section close to the
Franz Victoria Trough in the Barents Sea shown on Fig. 1.
It starts from point 34.11° E, 77.57° N and finishes at point
28.61°E, 80.58° N. A whole wave path lays over the critical
latitude (74.5° N). The bathymetry along this cross-section
taken from GEBCO is marked in Fig. 2 by the blue line. It is
splined for the purpose of modeling by 8 Fourier components
for a better description of the middle portion of the domain
as
8
H(x)=a0+ Z (am cos(mix)+ by, sin(mix)) 4)

m=1

where ¥ =0.03398 m~! and a,, and b,, are the Fourier coef-
ficients. The approximation is shown in Fig. 2 by the dotted
line. Typical vertical density profile in this area is taken from
GDEM climatology for July. It is fitted by the exponential
functions

p =10004g1exp(r12) +q2exp(r22) (%)

(q1=27.93; ri=1.64x107% gy =—1.2; r, = —2.844 x
102) and the Brunt-Viisild frequency N(z) is calculated,
both p(z) — po (po is 1027.48 kg m~3) and N(z) are shown
in Fig. 3.

The region in question is characterized by strong tidal cur-
rents and underwater mount ridges. The map of the mean
tidal velocities in the Arctic Ocean (with the 8 tidal com-
ponents) calculated with the help of the Arctic Ocean Tidal
Inverse Model (AOTIM) is presented in Padman and Ero-
feeva (2004) and represented in Fig. 4. A logarithmic color
scale is used to resolve speed variability in both weak and
energetic regions. It is mentioned that four tidal components
Mo, S», K1+ Oq contain up to 79%, 10%, 5% # 1% of total
(8-components) potential energy of the tide, respectively. So
the semi-diurnal tide M, dominates in the variability of tidal
velocities in Arctic Ocean.

The largest mean values of the tidal velocities approaches
100cms~! in the southern Barents Sea near the entrance to
the White Sea and around Bear Island in the western Barents
Sea south of Svalbard. The maximal velocities exceed the
mentioned values of the mean velocities as much as twice, at
least.

The barotropic tidal wave is presented only by the semidi-
urnal tide, and taking into account that the mean tidal cur-
rent in the studied area is about 50cms™', the maximal
barotropic tidal velocity constitutes 1 ms~!, and we use this
value for V7 to setup the model.

www.nat-hazards-earth-syst-sci.net/11/981/2011/
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Fig. 7. Displacement of 70 m isopycn for different times.
4 Results of the modeling

The calculated density fields (left) and total (barotropic and
baroclinic) horizontal velocity values (right) are shown in
Fig. 5 for various tidal phases. Normalized density (p —
00)/1000 is given, where p is sea water density [kgm™3].
In the book by Valsenko et al. (2005) it was mentioned that
the full periodicity of the process is formed after 2-3 T (T is
tidal period for M).

The time moment 3 7 corresponds to the ending of the
ebb phase and starting of the flood phase. The velocity of the
tide at this moment is zero and there are large displacements
of isopycnes over the left side of the largest hill. The more
intensive internal waves are generated on the slopes of the
highest central hill (between 200 and 300 km with the crest
at 230 km); their amplitudes decreases when they propagate
out of this zone.

After a quarter of the tidal period (r = 3.25T), the max-
imum of the tidal phase comes; velocities reach their max-
imums, the zone of generation moves to the right lee slope
of the central hill. At the time moment r =3.57 the phase of
the tide finishes and the tide velocity vanishes; internal waves
are developed well on the right side of the central hill. When
the ebb is maximal (at r =3.757T) the zone of generation is
also shifted to another (left) lee side of the hill and the waves
become maximal at time r =47 when the velocity of the tide
vanishes. So, the internal waves generated are mainly the un-
steady lee waves generated by the tide and ebb currents near
the lee slope of the hill with the phase shift of about quarter of
the tidal period between the maximal tide velocity and maxi-
mal isopycnal displacement. The wave velocities are evident
at the time moments 3 7', 3.5 7 and 4 T, when the tidal cur-
rent is zero, and their values do not exceed 0.4ms~!. The
process is well illustrated in the Hovmuller plot (or x —¢ dia-
gram) for displacement of the isopycn located at 70 m depth

www.nat-hazards-earth-syst-sci.net/11/981/2011/
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in the undisturbed state (Fig. 6). The more intensive inter-
nal waves with amplitudes of 50m and total heights (crest-
to-trough height) of about 80 m appear regularly in the strip
of about 40 km width and central position approximately at
230 km. Their length may be evaluated using displacements
presented in Fig. 7; they are about 612 km long. The typical
periods of the modeled waves are 0.2-0.35T.

In the book by Vlasenko et al. (2005), the classifica-
tion of the processes of internal wave generation is sug-
gested. The classification is based on the magnitude of
the Froude number, Fr=umax/Cph, Where umax is maximal
velocity of the barotropic tidal flow in the x-cross-section
(4max = Vr H(x0)/H (x)) and Cpy, is the phase speed of long
internal waves. It is calculated from the eigenvalue problem
numerically (Grimshaw et al., 2002; Holloway et al., 1997).
It was stated that when Fr > 1, a generation of strong non-
linear internal lee waves by tide is possible at any latitude,
whereas there is no internal wave generation when Fr < 1
above the critical latitude. So the conclusion that the waves
shown in Figs. 5, 6, and 7 are the internal lee waves should
be drawn.

Spatial variation of the Froude number along the studied
section is shown in Fig. 8 together with other characteristic
quantities: phase speed of internal waves, maximal tidal ve-
locity, and depth of the defined area of the Sea. The zone
where the Froude number is greater than 1 lies between the
points 225 km and 237 km; there the intensive internal waves
were discovered.

5 Conclusions
The possibility of generation of strong nonlinear unsteady
lee internal waves by the barotropic tide in the Barents Sea

above the critical latitude has been demonstrated through nu-
merical simulation. The chosen area for the modeling was

Nat. Hazards Earth Syst. Sci., 11, 981-986, 2011
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Fig. 8. The Froude number and other characteristic quantities
against the distance at the defined area of the Sea.

close to the Franz Victoria Trough; the parameters of the
calculated internal waves in the chosen region agree quali-
tatively to those observed in the Trough. The modeled waves
had the same amplitudes as the observed ones, 40 m, and
the close wavelengths, 612 km. They preserved significant
amplitudes of isopycn displacements at a distance of 20 km
from the zone of generation. They appeared two times per
semidiurnal tide period and live about 6.2 h slowly propagat-
ing out of the peak of the underwater hill. More intensive
waves were generated in the ebb phase and at the end of the
ebb phase, when the ebb velocity vanished. The largest ob-
served drop between the crest and trough was about 80 m; it
appeared at the end of the ebb phase each 12.4 h.
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The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves
obtained on a base of GDEM climatology in the Baltic Sea region are examined. The considered parameters
(phase speed of long internal wave, dispersion, quadratic and cubic nonlinearity parameters) of the weakly-
nonlinear Korteweg-de Vries-type models (in particular, Gardner model), can be used for evaluations of the
possible polarities, shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key
outcome is an express estimate of the expected internal wave parameters for different regions of the Baltic Sea.
The central kinematic characteristic is the near-bottom velocity in internal waves in areas where the density jump
layers are located in the vicinity of seabed. In such areas internal waves are the major driver of sediment
resuspension and erosion processes and may be also responsible for destroying the laminated structure of
sedimentation regime (that frequently occurs in certain areas of the Baltic Sea).
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equation

INTRODUCTION

Large-amplitude internal waves (IW) are often very energetic
events in stratified and coastal marine environments. They have a
significant role in particle transport and mixing of water masses,
as well as affecting acoustic propagation. Understanding the
impact of large IW is of key importance in the coastal marine
environment. The regional aspect is essential in IW studies as the
vertical stratification of the ocean is highly inhomogeneous in the
horizontal direction. Here the attention is drawn t the Baltic Sea
which is strongly influenced by wind forcing and buoyancy, that
causes mesoscale variability of hydrological fields with horizontal
scales of 5-20 km. The Baltic Sea is known as non tidal region
and generation of IW is mainly accounts for the strong winds. The
cyclones propagating with the winds of 10-15 m/s here cause the
generation of IW with amplitudes of 11-15 m, while the current
velocities in the upper layer are about 11-15 cm/s, and in the
lower layer, they are about 5-8 cm/s (Chernysheva, 1987). The
characteristics of IW measured in the Baltic Sea are given in
(Kol’chitskii et al., 1996; Golenko and Mel’nikov, 2007). In
particular, IW with periods of 0.1-1 h, observed in the central part
of the Gotland Deep, formed internal wave trains with duration of
several hours and current amplitudes of about 3 cm/s. IW in the
inertial frequency range can induce wave currents with velocities
reaching 20 cm/s.

The horizontal variability of hydrological fields becomes
evident in the weakly nonlinear internal wave theory (Talipova et
al., 1998; Holloway et al, 1999; Pelinovsky et al, 2007) as spatial
variability of the coefficients of the corresponding nonlinear
evolution equations. These coefficients, such as propagation
speed, quadratic and cubic nonlinearities and dispersion, represent
the kinematic characteristics of internal wave field. Horizontal

variability of vertical stratification is especially evident in the sea
shelf zones and shallow-water basins of estuary type.

When IW are modeled numerically, an important problem is to
specify the hydrological conditions determining density variations
with depth to initialize the numerical models. An adequate way is
to use gridded temperature-salinity data from international
hydrological atlases. This approach allows reproducing the
internal “weather” of the considered basin, because hydrological
atlases represent the long-term mean density stratifications.

The aim of this study is to examine the geographical and
seasonal distributions of kinematic parameters of long IW
obtained on a base of GDEM (Generalized Digital Environmental
Model) climatology in the Baltic Sea region. This data set reflects
the global climatology of the temperature and salinity of the global
oceans.

The first such estimations for the Baltic Sea are given in
(Talipova et al., 1998) for the region of the Gotland Basin. The
considered kinematic parameters can be used for express-
evaluations of the possible polarities, shapes of solitary IW, their
limiting amplitudes, propagation speeds, etc. They also can help to
set-up and initialize more complex models for internal gravity
waves (IGW, MIT GCM, POM).

We present overview of spatial variability of the listed
parameters and several interesting features of the underlying
hydrophysical fields such as the depth of the maximal value in the
Brunt-Vaisala frequency (BVF) profile and the maximal values of
the BVF over such profiles for different months. The averaged
values of coefficients of the Gardner equation allow producing the
estimations of nonlinear IW shapes and limiting amplitudes before
numerical simulations.

Journal of Coastal Research, Special Issue 64, 2011
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Figure 1. Bathymetry of the Baltic Sea. The triangle shows the
location of measurements presented in Fig. 12.

The key outcome of our calculations is an express estimate of
the expected internal wave parameters for different regions of the

Figure 2. Maximal value in the BVF profile [s"] (left panel:
January, right panel: July).

Baltic Sea. The central IW field characteristic is the near-bottom
velocity in IW in areas where the density jump layers are located
in the vicinity of seabed. In such areas IW are the major driver of
sediment resuspension and erosion processes and may be also
responsible  for destroying the laminated structure of
sedimentation regime (that frequently occurs in certain areas of

Figure 3. Depth [m] of maximal value in the Brunt-Vaisala
frequency profile (left panel: January, right panel: July).

the Baltic Sea). As the pycnocline is in many cases located at a
depth of only a few meters in some areas of the Baltic Sea during
spring and summer (Leppdranta and Myrberg, 2009), the impact
of IW on sedimentation processes frequently extends to the coastal

Figure 4. Long linear IW speed [m s™'] (left panel: January, right
panel: July).

zone and overlaps with the nearshore affected by surface waves.
Such situation often happens in partially sheltered sub-basins of
the Baltic Sea (Figure 1) such as the Gulf of Finland where the
role of high near-bottom velocities, eventually created by high-
amplitude IW, has been systematically underestimated in
engineering applications (Erm ez al., 2010).

INTERNAL WAYVES IN STRATIFIED BASINS

The weakly nonlinear theory of long IW in a vertical section of
stratified basin assumes, that the internal wave field (in particular,
the vertical isopycnal displacement ¢(z,x,t) ) can be expressed as

a series (up to the 2™ in nonlinearity) (Pelinovsky et al., 2007):

{(z.x.0) =n(x.0®(2) + 7 (x.0)F (2) (M)
where x is horizontal axis, z is vertical axis directed upward, ¢ is
time, 77(x,7) describes the transformation of a wave along the axis
of propagation and its evolution in time. Function ®(z) (the
vertical mode) describes vertical structure of long internal wave,
and F(z) is the first nonlinear correction to ®(z). ®(z) is a solution
of an eigenvalue problem, which can be written in the form (in

Boussinesq approximation usually valid for natural sea
stratifications):
’o N2
—t— O©=0, ®O)=DH)=0 2
d
4 c

here eigenvalue c is the phase speed of long linear internal wave,
H is the total water depth, N(z) is the Brunt-Viisild frequency
(BVF) determined by the expression:
_8 dp(d) 3)
p(z) dz
g is gravity acceleration and p(z) is undisturbed density profile. It
is well known, that problem (2) has an infinite number of
eigenvalues c;>c,>c3>... and corresponding eigenfunctions @,
®,, ®;,... We consider only the first (lowest) mode, when the
function @ has a single zero at z=0 and z=H. This mode is usually
the most energetic in the internal wave spectrum. It is convenient
to normalize the solution so that the maximum of ®(z) is
D max = q)(zmax ) =1.

In this case the leading order solution 7)(x, f) coincides with the
isopycnal surface displacement at zp,x :

6(x, Zmax.1) =7(x,1) )
Function F(z) can be found as a solution of the inhomogeneous
boundary problem:

d’F N?
+_

d22 2

Nz(z)=—

2 2
ad® 3d|(dd
== 2 [—] , ®)

¢ 472 dz
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Figure 5. Long linear IW dispersion parameter [m® s'] (left

panel: January, right panel: July).

F)=F(H)=0,
where the auxiliary normalization condition F(z,,)=0 is used to
determine the solution uniquely.
In this model, the function 7(xf) satisfies the nonlinear

evolution equation (extended Korteweg-de Vries (KdV) or
Gardner equation):
3
n ( 2091, g7
—+lct+tan+a +p—=0. 6
2 mEor L+ B P ©)

This equation contains cubic nonlinearity, the presence of which
provides better predictions of wave form, especially in the coastal
zone. The coefficients of this equation are determined through the

O(z) and F(z):
H
_ ¢ a2 _ 3¢ d® d®
B=>5 jq> dz, a=—o [d J dz, D= j(dzj dz (7)
H
e b (2] ol ofn)
2D dz dz

dF d® o [dtbj
4o =2

8
dz ®

In the present paper we construct and discuss the geographical
charts for parameters ¢, § «and ¢; of the Gardner equation (6) in
the Baltic Sea region, using climatological oceanographic data and
calculating Brunt-Viisidld frequency (3) from temperature and
salinity profiles.

KINEMATIC CHARACTERISTICS OF THE
INTERNAL WAVE FIELD IN THE BALTIC
SEA

We use long-term mean temperature and salinity profiles from
GDEM-V3.0 (Teague et al, 1990) to calculate density
stratifications for the Baltic Sea. With these profiles speed of
propagation, dispersive and both nonlinear parameters of the
Gardner equation are computed and presented in the form of
charts with a resolution of 10°x10’ along latitudes and longitude.
We also discuss spatial and seasonal (July and January) variations
of these parameters. GDEMs at 10 minute resolution have been
developed for selected regions where data is sufficient to support
the higher resolution; particularly, such data are available for the
Baltic Sea.

Visualization of results was done using the software Ocean Data
View (Schlitzer, 2010).

The bathymetry of the Baltic Sea (Figure 1) and charts
representing the magnitude of seasonal variability of the density

Figure 6. Quadratic nonlinearity parameter [s'] (left panel:
January, right panel: July).

stratification (in terms of maxima of BVF (Figure 2) and the depth
where the maximum of BVF occurs (Figure 3)) can help in the
interpretation of obtained results and in explaining the features of
the geographical distribution of kinematic parameters of the IW
field. Figures 2 and 3 demonstrate that stratification data strongly
depend on the particular season. Note the increase in the maximal
BVF values during summer simultaneously with a decrease of
their depths. So, in general one can expect an increase in the
impact of IW upon the sediment transport in shallow-water
regions of the Baltic Sea in late summer and autumn.

Seasonal variations in the linear parameters ¢, £ (Figures 4 and
5) are not very significant. Also the main features of their
geographical distribution do not change from season to season.
The maximal value of ¢ is about 90 cm/s. These parameters
apparently are mostly determined by the bathymetry. However the
nonlinear parameters ¢, ¢ (Figures 6 and 7) are more sensitive to
the fine structure of the density stratification. Their seasonal
variability is significant, and they can even change their signs
from season to season. The quadratic nonlinearity parameter
changes from —0.02 to 0.03 s™' and for July (Figure 6, right panel)
it is mainly positive in the southern part of the Baltic Sea (the
Arcona Basin, the Bornholm Basin and the Slupsk Furrow), in the
central part (the Gotland Basin) there are the spots of different
signs of ¢, and the Gulf of Finland and the Bothnian Sea are
characterized by the negative value of this parameter. In winter
season (Figure 6, left panel) the zone of positive values broadens
including the central part of the Baltic Sea and most of the Gulf of
Finland. The cubic nonlinear parameter (Figure 7), which changes
from —0.003 to 0.004 m’s”, shows the spotty character of the
zones with positive and negative values with the predominance of
negative values in winter (Figure 7, left panel) the positive values
in the Bothnian Sea in summer (Figure 7, right panel).

SHAPES OF NONLINEAR INTERNAL WAVES
Let us consider the single-soliton solution of Eq. (6):
A

) = b (V). @

where the soliton velocity V =c+ ﬂ72 is expressed through the

inverse width of soliton, v, and the soliton amplitude, a, or the
extremum of the function (9), is
2 2
68y 2_,, Spy
———, B =1+—"—
o o?
Let us consider in detail now the possible combinations of the
signs of the nonlinear coefficients in the Gardner equation.

and A= (10)

A
a=—-,
1+B
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Figure 7. Cubic nonlinearity parameter [m™-s'] (left panel:
January, right panel: July).

Korteweg-de Vries soliton
When the cubic nonlinearity vanishes (¢q = 0), the solution (9)
is reduced to the classical Korteweg-de Vries (KdV) soliton:

n(x,t) = ased}zu%[x - [c + %}IH

It has only one polarity defined by the sign of quadratic
nonlinearity .

a1

Gardner soliton
When the cubic nonlinear coefficient ¢ is negative, soliton

Figure 8. Limiting amplitudes [m] of “top-table” solitary waves
(for negative cubic nonlinearity values, left panel: January, right
panel: July).

solutions of single polarity, with an > 0, exist with amplitudes
between zero and a limiting value
o

@ (12)
Jen|

Alim =

The soliton shapes for different combinations of signs of
nonlinear parameters are discussed in details in (Pelinovsky et al,
2007). The increase in the soliton amplitude to the limiting value
(12) (B — 0) leads to the unlimited increase of its width. The
solitary wave becomes “wide”, or “table-shaped.” It has a flat
crest, and its slopes are shock-like waves, or kinks.

If >0, soliton families of either polarity exist. One of these
families with a7 > 0 has 1 < B < oo, and the amplitude is not
bounded. For large amplitudes (B — o) the solution has the shape
of the soliton of the modified KdV equation:

2 2
7o) =asech| | A9 | | AL | (13)
64 6
Another family of solitons (with an < 0) corresponds to
negative B (—e» < B < —1). At B — —oo such solitons are
transformed into the modified KdV soliton (13). Waves of this

family have a minimum amplitude @, =22/,

At near-critical amplitudes (B— —1) soliton (9) tends to so-
called “algebraic” soliton:
ﬂ(x)z%, V=c. (14)

I+ (x—ct)“16f
Note that its speed is equal to linear long wave speed. In the gap
between the zero and ay, there are no any solitons.

Figures 8 and 9 illustrate geographical distributions of
amplitudes a;;,, (12) for the points with negative cubic nonlinearity
and a,, (15) for the points with positive cubic nonlinearity values
in the Baltic Sea. The range for the values of these amplitudes is
about +40 m.

Figure 9. Amplitudes [m] of algebraic solitons (left panel:
January, right panel: July).

HORIZONTAL VELOCITY
With the use of Eq. (1) the components of velocities of fluid
particles (u, w) in the vertical section (x, z) can be expressed as
follows:

- o (edd  dF) o
Uz =enen +[2 - +Cdz)n , 15)
Wit 20) = - XL () — ((2) + 2eF () 2L, (16)
ox ox

The horizontal velocity component u gives the greatest
contribution into the local current speed. This is typical for long
waves and this characteristic of internal wave field must be
considered in the analysis of near-bottom processes connected
with sediment transport.

The first terms in Eqgs. (15) and (16) correspond to the leading
order of the asymptotic expansion. The remaining additives reflect
the first nonlinear correction in the asymptotic series. Thus, for the
forecast of the local current speed one has to determine the
isopycnal displacement 7(x, 7) at the level of z,,,x (see (4)), the
vertical IW mode ®(z) and its nonlinear correction F(z). The
amplitude of 77(x, ) is not known a priori, it depends upon a large
number of background conditions of internal wave generation, and
can be found by means of the detailed simulation.

For the analysis of the geographical features of the near-bottom
velocity distribution it is convenient to consider a normalized
quantity u/n (Figurel0). To the leading order, it is independent of
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7. The largest values of near-bottom velocities can be expected
along all the coasts, especially in the eastern part of the Gulf of
Finland and in the south-western part of the Baltic Sea (the
Arcona basin and the Bornholm Basin) with the tendency to
increase in the warm season.

The contribution from second-order terms in the horizontal
velocity (Eq. (19)) can be estimated for the model of a three-layer
stratification — a situation that frequently occurs in the Baltic Sea.
The water masses in its central part often consist of a mixed upper
layer, well-defined seasonal thermocline at a depth about 20-40
m, an intermediate layer and main halocline at a depth about 80—
100 m. In many cases the total depth is 120-140 m and density
changes between the layers are more or less equal (Soomere,
2003). We model this sort of three-layer density profile using the
formula

=7

a7)

z2—-2z
p:pO—Apltanh -4, tanhTQ

2
1 2
where the parameters are chosen to reproduce the profiles
presented in (Soomere, 2003): gy = 1007 [kg/m3], Apy =Ap =2
[kg/m3], d; =3 [m], d, = 10 [m], z; = =20 [m], z, = =80 [m], total

degth is 130 m. Fi%ure 11a Rresents the BVF groﬁle and
sswl— . 3 ;

Figure 10. The value of leading-order near-bottom velocity in
internal wave field divided by 7 (x, #) in [1/s] (left panel:
January, right panel: July).

corresponding lowest vertical mode ®(z) and the nonlinear

correction F(z) profiles. Such background conditions give positive
signs of both nonlinear parameters (¢, ¢), and the solitons of both
polarities can exist. The isopycnal displacements and horizontal
velocity contours induced by the passage of the lowest-mode
solitons (9) of positive and negative polarities with approximately
equal amplitudes (¢ = 13.4 m) are demonstrated by Figure 11b-e
(for the leading order of the Eqgs. (1) and (15)) and by Figure 12
(where the nonlinear correction terms are taken into account in
Eqgs. (1) and (15)). These figures show quasi-three-layer structure
of horizontal velocity fields with thin transition layers of
thicknesses d; and d,. Notice that the velocity is positive when the
fluid particles move in the direction of soliton propagation (to the
right), and negative in the opposite case. The fields of horizontal
velocities in elevation and depression solitons are positive and
negative, respectively, in the lower near-bottom layer, and have
the reversed in the middle and upper layer. Near-bottom and near-
surface velocities reach the greatest values whereas the velocity in
the mid-layer is not significant. The influence of the nonlinear
correction manifests itself firstly in the shape of the lines of zero
horizontal velocity: they are curved oppositely to the soliton
polarity while for the leading order wave field they are horizontal.
Also the wavefield accounting for the nonlinear correction has
smaller maximal absolute values of negative velocities (near-
surface for the soliton of elevation, and near-bottom for the soliton
of depression) and larger maximal values of positive velocities.

DISCUSSION AND CONCLUSIONS

In essence, the performed research is a step on the way towards
systematic incorporation of the information about internal wave
fields into engineering applications. As typical for wave processes,
propagation of IW provides a mechanism of the transfer of
massive quantities of energy between different sea areas. This
energy is mostly released in regions where the pycnocline is
located so close to the sea surface or the bottom that the large-
amplitude IW will break. In the Baltic Sea conditions, this location
may vary considerably and frequently occurs in areas where upper
layers of soft sediments are substantially polluted (Verta et al.,
2007).

Water velocities in breaking IW usually largely exceed the

a b
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Figure 11. (a) Model of almost three-layer density stratification and corresponding profiles of Brunt-Viisild frequency N(z), lowest
vertical mode ®(z) and its nonlinear correction F(z); leading order of isopycnal displacements (b, d) and horizontal velocity (c,e) contours
while the soliton of positive/negative polarity propagates. In panels b, d contours are given with H/20 interval; in panels d, e solid/dashed
lines correspond to positive/negative horizontal velocities, thick lines are the lines of zero horizontal velocity, the interval between

contours is 0.025¢.
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Figure 12. Isopycnal displacements (a, ¢) and horizontal velocity (b,d) contours while the soliton of positive/negative polarity propagates.
In panels a, ¢ contours are given with H/20 interval; in panels ¢, d solid/dashed lines correspond to positive/negative horizontal
velocities, thick lines are the lines of zero horizontal velocity, the interval between contours is 0.025¢.

threshold for suspension of such sediment. The dimensions of
resulting plume are basically determined by the above-considered
limiting parameters of large-scale IW. The frequently occurring
process of upwelling (that has high chances to occur
simultaneously with the presence of intense internal wave field)
brings the pollution to the upper layers of the sea where surface
currents redistribute it over a large sea area (Leppiranta and
Myrberg, 2009).

The largest uncertainty of this multi-step process is currently
connected with insufficient knowledge about the internal wave
fields in the Baltic Sea. Therefore, in connection with detailed
studies into upwelling (Lehmann and Myrberg, 2008) and current-
drive transport of different adverse impacts (Soomere et al., 2011),
our study paves the way towards much better understanding the
functioning of key features of the entire Baltic Sea (eco)system
and has a large potential to contribute into mitigation and
management marine-induced hazards, especially problems
connected with coastal pollution and coastal zone management.
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We address a specific but possible situation in natural water bodies when the three-layer stratification
has a symmetric nature, with equal depths of the uppermost and the lowermost layers. In such case,
the coefficients at the leading nonlinear terms of the modified Korteweg-de Vries (mKdV) equation
vanish simultaneously. It is shown that in such cases there exists a specific balance between the
leading nonlinear and dispersive terms. An extension to the mKdV equation is derived by means of
combination of a sequence of asymptotic methods. The resulting equation contains a cubic and a
quintic nonlinearity of the same magnitude and possesses solitary wave solutions of different polarity.
The properties of smaller solutions resemble those for the solutions of the mKdV equation, whereas
the height of the taller solutions is limited and they become table-like. It is demonstrated numerically
that the collisions of solitary wave solutions to the resulting equation are weakly inelastic: the basic
properties of the counterparts experience very limited changes but the interactions are certainly
accompanied by a certain level of radiation of small-amplitude waves. © 2011 American Institute of

Physics. [doi:10.1063/1.3657816]

I. INTRODUCTION

Internal gravity waves serve as one of the most impor-
tant constituent of nonlinear wave motions in stratified envi-
ronment.' Internal waves often play the decisive role in
various processes in geophysical and other similar media
where they may serve as major agents carrying energy from
remote areas to specific domains in the ocean. For example,
energy release into local turbulent motions and subsequent
mixing caused by internal waves apparently is an important
source of the potential energy that is needed to bring deep,
dense bottom water to the surface.”™ Their impact on the
functioning of the ocean has been relatively well understood
in shelf regions where high-amplitude, nonlinear, or breaking
internal waves frequently contribute to localized highly ener-
getic motions that not only are able to substantially affect
offshore engineering activities” but also cause resuspension
and transport of bottom sediments® or release of nutrients
and pollution into the water column. Extensive patches of
turbulence associated with propagation and breaking of such
waves are hypothesized to be an important source of vertical
mixing of water masses and, consequently, a key mechanism
supporting penetration of various substances (including
adverse impacts) from bottom layers up to the ocean surface.
Changes to the properties of water at some depths may sub-
stantially modify acoustic properties of the environment.

The most interesting phenomena in this respect are inter-
nal solitons—localized, long-living disturbances that can carry
wave energy and momentum far from the place of their gener-
ation, survive collisions with similar entities along their

1070-6631/2011/23(11)/116602/13/$30.00
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journey, and release the energy in certain specific conditions.
The existence such phenomena has been recognized for a long
time and their generic representatives have received a lot of
attention.”® Still there are major gaps in our understanding of
the conditions of existence, properties, appearance, and dy-
namics of long-living solitonic internal waves and wave pack-
ets. Most of the relevant research has addressed their
properties in a greatly simplified environment; usually in the
framework of different versions of the two-layer fluid and/or
solitonic solutions of integrable evolution equations. The sim-
plest equation of this class is the well-known Korteweg-de
Vries (KdV) equation that describes the motion of weakly
nonlinear internal waves in the long-wave limit.” Later on, a
variety of its extensions have been introduced, for example,
the modified Korteweg-de Vries (mKdV) equation'®'" and
Gardner equation (sometimes called the KdV equation with
combined nonlinearity'>~'* as it accounts for both quadratic
and cubic nonlinearity).

The need for systematically accounting for higher nonli-
nearities stems from the nature of these equations. While the
coefficients of similar equations in some other environments
can be expressed in terms of simple combinations of govern-
ing scales for the particular problem,'>' the coefficients of
nonlinear evolution equations for internal waves are defined
by the particular vertical distribution of water density, proper-
ties of shear flow, and boundary conditions at the water
surface.” " A specific property of such equations is that
some coefficients at the nonlinear terms may vanish for cer-
tain symmetric situations.'®?! In such cases, it is necessary to
account for higher-order nonlinearities to adequately describe

© 2011 American Institute of Physics
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the motion. This process not only leads to the necessity of
inclusion of some additional terms in the governing equations
but also naturally highlights a variety of qualitatively new
phenomena in the dynamics of localized, solitonic (non-radi-
ating) internal waves — solutions to such equations,'>~'#*%2?

In this paper, we shall analyze properties of internal soli-
tons in the framework of the widely used concept of layered
fluid. Models of wave motion for such environments are
attractive for both theoretical research and applications
because of their ability to mirror the basic properties of the
actual internal wave systems using model equations of strati-
fied media containing small number parameters and in many
cases allowing for extensive analytical studies of the proper-
ties of solutions. As mentioned above, the simplest system
basically representing the key properties of internal waves is
the two-layer model. Various properties of internal waves in
this approximation have been addressed in numerous analyti-
cal and numerical studies as well as by means of in situ
observations and laboratory experiments.'”*"**=* These
studies cover a wide range of different regimes of wave
motion, from ideally linear systems and weakly nonlinear
models up to fully nonlinear phenomena.

The two-layer model and the family of the KdV equa-
tion and its generalizations have been used as a simple but
instructive model to demonstrate the richness of internal
wave phenomena compared to long weakly nonlinear surface
waves. Namely, for internal waves, the coefficient at the
quadratic nonlinearity in the KdV equation vanishes for the
naturally occurring symmetric situation when the layers have
equal thicknesses in Boussinesq approximation. The leading
nonlinear term in almost symmetric situations is the cubic
one and the Gardner equation (or its generalizations) has to
be used to describe the wave motion.”"*****=7 The inclu-
sion of only one (cubic) nonlinear term gives rise to several
principally new phenomena that do not occur in the KdV
environment. For example, if the coefficient at the cubic
term is negative (this is the case for the two-layer fluid), the
amplitude of solitons has an upper limit. While the increase
in the energy for the KdV soliton is associated with a higher
and narrower wave profile, the similar process for the rele-
vant class of solutions of the Gardner equation results in a
widening of the wave profile and formation of a plateau-like
entity with steep front and back and very gently sloping
upper part. Such appearance of large-amplitude solitary
waves has been repeatedly observed in both laboratory and
field conditions.'"**-%

The two-layer fluid is, in fact, quite a simplified repre-
sentation of the natural stratified flows. For example, in
many areas of the World Ocean, the vertical stratification
has a clearly pronounced three-layer structure, with well-
defined seasonal thermocline at a depth of ~100m and the
main thermocline at much larger depths.***' Several basins
such as the Baltic Sea host more or less continuously three-
layer vertical structure.*” In order to reveal the basic features
of the internal wave field in such environments it is neces-
sary to introduce a three-layer model. Such models are con-
siderably more complex than the two-layer systems;
however, they allow for much more analytical progress com-
pared to the fully stratified situation.

Phys. Fluids 23, 116602 (2011)

In this paper, we address a generalization of the mKdV
equation for the three-layer stratification. This procedure is
basically straightforward, albeit cumbersome and technically
complicated. The resulting equation admits solitary wave
solutions for a certain range of parameters. The focus of the
study is almost symmetric situations in which the lower-
order nonlinear terms vanish, and the higher-order contribu-
tions govern the behavior of wave phenomena in the system.
A simple symmetric situation corresponds to the equal thick-
nesses of the uppermost and the lowermost layers provided
the density differences between the layers are also equal.
This situation can naturally occur in shallow strongly strati-
fied seas as the Baltic Sea where the interplay of fresh water
discharge to the surface and irregular salt water intrusion in
the bottom layers frequently give rise to two density jumps
of comparable size and sharpness and an almost symmetric
three-layer structure and may lead to vanishing of several
interactions between baroclinic Rossby waves.**** The key
development through the research into such an environment
(that is impossible in the two-layer medium) is the possibility
of having the cubic nonlinearity with a positive coefficient.
Moreover, this coefficient may change its sign in different
domains and may even vanish under certain conditions.'® As
a result, the dynamics of internal waves in such environ-
ments is much richer in content and reveals several features
that cannot become evident in two-layer flows. In particular,
the possibility of simultaneous vanishing of the coefficients
at both the quadratic and cubic nonlinear terms makes it pos-
sible to naturally generalize the mKdV equation towards
accounting for the quadric nonlinearity and towards even
more detailed analytical description of the properties of in-
ternal wave dynamics in layered fluids.

Almost zero values of the coefficients of quadratic and
cubic nonlinear terms of the mKdV equation and its general-
izations (see Eq. (6) below for an example), albeit not very
usual in the World Ocean, can still be found for real sea strati-
fications in certain regions. The maps of the geographical
points where the coefficient o of quadratic nonlinearity is small
(ll < 1 x 107*, while the usual values of this parameter are of
order of 1 x 1072), and at the same time the coefficient o of
cubic nonlinearity is also small and non-negative (0 < oy
< 1 x 1072, usual values of order of 1 x 1073) (Fig. 1) reveals
that such situations occur during some months in selected shelf
seas and in the North Atlantic. Hydrological data to calculate
the numerical values of the nonlinear parameters on a base of
integral expressions for continuous stratification** were taken
from the climatological atlas GDEM V3.0.** Horizontal shear
flow was not accounted for. The maps in Figs. | and 2 are
drawn using OCEAN DATA VIEW software.*®

Three-layer density stratification (and its symmetric
examples as well) frequently appears in the Baltic Sea. The
density structure of the central part often consists of a mixed
upper layer, well-defined seasonal thermocline, an intermedi-
ate layer, and main halocline (Fig. 2). Importantly, the den-
sity changes between the layers are more or less equal.42
There is evidence that this stratification will be more fre-
quent in the Baltic Sea for some climate change scenarios.

The paper is organized as follows. Section II presents
the basic equations of motion for the three-layer model.
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FIG. 1. Maps of the geographical locations (white points) where the coeffi-
cient of quadratic nonlinearity is small and the coefficient of cubic nonli-
nearity is small and non-negative (Iul <1 x 107, 0 < 2 < 1 x 10™°): upper
panel — January, lower panel — July.

Asymptotic analysis of the equations for the interfaces of the
three-layer model is provided in Sec. III up to the 4th order
with respect to the small parameters in the system. Section
IV focuses on the modifications of the derivation of the
mKdV equation towards expressing the balance between
nonlinear and dispersive terms in the case when the coeffi-
cients of the leading nonlinear terms vanish. The basic prop-
erties of solitary solutions to the resulting equation are
discussed in Sec. V and their nonlinear interactions in Sec.
VL Section VII presents discussion and conclusions and Ap-
pendix—the analytical expression of the coefficients of the
derived equations and parameters of numerical simulations.

II. NONLINEAR EQUATIONS OF MOTION

Let us consider a model situation of irrotational motions
in a three-layer inviscid fluid of total thickness H overlying a
flat horizontal bottom in the approximation of a rigid lid on
the surface of the fluid (Fig. 3). We consider the symmetric
case in which the thicknesses /1 of the surface and bottom
layer are equal and assume that the density differences
between the layers are also equal; then densities in the layers
are py=p, p2=p+Ap, p3=p2+Ap=p+2Ap, where p is
the density in the bottom layer. As usual, we employ the
Boussinesq approximation and assume that densities in the
layer differ insignificantly (Ap/p < 1). In this case, the equa-
tions of the motion are Laplace equations for the velocity
potential in each layer
V20, =0, i=1,23. M
The vertical velocities at the bottom and at the fixed upper
boundary obviously vanish
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FIG. 2. (Color online) Upper panel: vertical density profiles in the Baltic
Sea (based on GDEM V3.0 climatology for July). The profile number M is
shifted to the right by M-1 density units. Middle panel: corresponding verti-
cal buoyancy frequency profiles. The profile number M is shifted to the right
by 0.02(M—1) s~ '. Lower panel: map of the geographical locations (white

points) of the profiles above.

D.(z=0)=0, D3,(z=H)=0, 2)
where the subscript x, y, or z denotes a partial derivative. The
classical kinematic and dynamic boundary conditions at the
interfaces between the layers complete the setup of the
problem

z

H
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H-h e
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h
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FIG. 3. Definition sketch of the three-layer fluid.
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N+ Py, — @ =0

n,+ Oy, — 0y, =0

, | z=h+n(xt),
Py (CDn +5(Von)? +gn> =0, (CDz, +5(V®)? +gn>
L4+ Dl —Dy =0
Gt @s b= 03 =0 z=H—h+{(x0). 3)

1 . 1 .
P2 <(Dz/ + 5 (V(Dz)z +gé> =p3 <q)3/ + 5 (VC[)3)2 +gg>

Here, the unknown functions #(x, ) and {(x, ¢) denote the in-
stantaneous position of the interface between the bottom and
the middle layer and between the upper and middle layer,
respectively.

lll. ASYMPTOTIC EXPANSION

In order to derive an evolution equation for wavelike
motions of relatively small amplitude in the described envi-
ronment, it is convenient to introduce characteristic scales of
both the environment and the waves, and to perform the
analysis in nondimensional form. The system of motions has
one obvious length scale—the fluid depth H. Wave motions
provide two more natural scales—the typical horizontal scale
of motions L and amplitude a (understood here as the typical
magnitude of deviation of the interfaces from their undis-
turbed location). Following the underlying assumptions usu-
ally made in derivation of the KdV equation and its
generalizations, we focus on long waves, that is, on the situa-
tion L > H where the typical wave length considerably
exceeds the depth of the fluid. In this case, small parameter
it =H/L naturally enters the system. Long-living wave
motions usually exist in the system if the amplitude of such
motions is small compared to the fluid depth, equivalently,
when the parameter of nonlinearity ¢ = a/H < 1. Finally,
the parameter characterizing the role of dispersion in wave
propagation p = ji> becomes evident in the process of
nondimensionalisation.

As long-living wave motions and solitary waves usually
exist when the magnitude of the terms representing nonlinear
and dispersive is balanced, we assume that & ~ p. This implies
that ji ~ /e.

The asymptotic analysis is straightforward under
assumption that all the above-discussed parameters are
small. As it is quite cumbersome and largely follows that in
Ref. 24, we omit the details and depict only the major steps.
All unknown functions are expanded into Taylor series in
the vicinity of one of the interfaces. The constituents of the
resulting series are then expanded into power series with
respect to powers of ¢ = a/H < 1. In order to use the tech-
nique of multiple time and spatial scales,******* we introduce
the “slow” time and “stretched” coordinate along the x-axis

1 “

where c is the phase speed. Substitution of these expansions
and expressions (4) into nondimensionalised Egs. (3) leads

3/2

E=eP(x—ct), T=c¢

to an infinite system of equations. This system can be solved
recursively until any desired order. Details of the relevant
derivation are available in Ref. 49.

The system of equations for the leading order (~¢") terms
has a relatively simple form and describes the field of linear
internal waves in the three-layer environment in question. One
of the two wave modes that exist in this system has a com-
pletely symmetric nature and results in synchronous in-phase
movements of both the interfaces #(x, 1) ={(x, 7). The other
mode is antisymmetric: the motions of the interfaces are syn-
chronous but have opposite signs 7(x, t) =— {(x, 1).

Below, we shall consider only the nonlinear motions of
the symmetric mode corresponding to the following expres-
sion for the phase speed (similar to that of the classical inter-
facial waves in two-layer medium):

2 ghlAp
="
p
The outcome of the asymptotic procedure at the first order
(~¢") is, as expected, the well-known KdV equation that
describes the motion of both the interfaces.
Combining of lower-order equations leads to the follow-
ing generalization of the KdV equation for the interfaces
(presented here in the original coordinates for {):

(6))

G+ ey + 2Ll + Bl + 0188 + Brlsy + 7180w + %54
+ 0500+ Balae + a1 Lol + 7220l + 72305
+ 7318+ 700l + 13 e 00 L+ Balo
+ 741 Gler + Vi lalse + i lealeen + 751 {00l

5 chcucmdx 53l + 75480 + 735 e
+ y56£,ﬂ:§x + 721‘44/3 + y22§2(:,\'€x,\' + }YZ3C3CXXX =0. (6)

The coefficients of Eq. (6) are given in Appendix. The equa-
tion for # has a similar structure and differs from Eq. (6)
only by signs of a few additives marked by *.

An interesting, important, and rich in content particular
case occurs when the coefficients « at quadratic terms and
the coefficient reflecting the role of nonlinear dispersion 7y,
vanish simultaneously. This always happens for the symmet-
ric distribution of layers in the three-layer medium for an
arbitrary ratio of the layers’ thicknesses. This case, as men-
tioned above, is not very common, but eventually occurs in
natural conditions in some domains of micro-tidal estuaries
and shelf seas and thus needs more detailed analysis.
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IV. MODIFIED KdV EQUATION (mKdV)

In essence, the vanishing of the coefficient o at quadratic
terms in the resulting evolution equations means that some
other terms largely govern the motion and that the straight-
forward asymptotic expansion introduced above becomes in-
valid. It is easy to see that, formally, the reason for the
failure is that the assumption of equivalence of the contribu-
tions of nonlinearity and dispersion (¢ ~ u) to the formation
of motion patterns is no more valid. In such situations, it is
first necessary to establish which from the higher-order terms
provides the largest contribution to the motion. As the pres-
ence of solitonic solutions in the system in question normally
is associated with a specific balance of nonlinear and disper-
sive terms, it is natural to keep this balance also in the
higher-order modifications to the KdV equation. The appear-
ance of Egs. (6) suggests that such a balance in symmetric
stratified media is possible if &* ~ . This property actually
means that the higher-order nonlinear terms provide a rela-
tively large contribution to the governing equation compared
with the dispersive terms. ~

Introducing variables n = &1, { = &{, X = jix, f = juit, Eq.
(6) can be presented as follows (for simplicity we omit
tildes):

gt + L{x + SOCCCX + :uﬂCXXX + Szalézgx + MzﬁICi\
+ el (YI é‘:.x‘xx + V;CXCL\') + 83‘“;(3&; + H3ﬁ2C7.\'
+ ‘(:.LLZ(VZIC'XXCXXX + VZZL:‘(()'X,L\' + V23 é/ch)
2 (n 3 v 2¢ 4., v4e 4
+ & /1())314/)( + }'32QC,xC,u + 7’33( Sx,x;\') +é& 36 Cyx + n ﬂ}C‘)x
+ E:us (VZ] 4’)5&6); + sz Z.:XXCS/\‘ + N/Z3 é’x.\‘):Cxx.\'x)

+ ‘(:2//12 (}'Slé'(xxé'xxx + V52 Jg.xéxxéxxxdx + V53 ICCX'CXXXX

+ "})54(:24,51 + VSSC\ng,vx+V56€xé,%x>

+ 81750 + 1500+ 760 ) = 0. ©)

Making Making use of assumption &% = u leads to the follow-
ing equation:
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Gt el + Pl A+ Pl + e(B 00 + 1300w

+ “:2 (O{3C4CX + VSIC:: + V3ZCQ,V(:XX + V}:‘)CZC/\‘XX + ﬂlé’Sx)
+0(&*) =0, ®)
where the analytical expressions for the coefficients are pre-
sented in Appendix and, as above, in the equation for n(x, 7)
the signs of coefficients o3 and y5 are reversed. The lowest
order terms in Eq. (8) form well-known modified KdV equa-
tion (mKdV) that are complemented with terms describing
the contribution of higher-order (O(¢) and 0(£%)) nonlinear-
ities, nonlinear dispersion and also linear dispersion f3; (s,.

It is interesting and instructive to analyze the depend-
ence of the coefficients of Eq. (8) on the ratio of the layers’
thicknesses in our case of symmetric stratification. Figure 4
demonstrates that the coefficient «; at the cubic nonlinear
term and the coefficient o, at the highest-order quadratic
nonlinearity vanish simultaneously at #/H=9/26 = h./H.
For both coefficients, this is the zero-crossing point at which
their sign is reversed. Only the coefficient o3 at the quintic
nonlinearity is always negative. The coefficients f, f3;
reflecting the contribution from linear dispersive terms as
well as the coefficient y, characterizing nonlinear dispersion
are always positive. Finally, the coefficients at nonlinear dis-
persive terms y31, y32, and 33 have one zero-crossing point,
whereas these points coincide neither with each other nor
with the point 4,.,/H.

The performed analysis shows that although the higher-
order terms of the mKdV are usually small in comparison
with the leading-order nonlinear and dispersive terms, in the
symmetric stratification the coefficients at the two leading
nonlinear terms vanish simultaneously. Although this situation
evidently does not happen very often, its presence is likely in
some domains in natural conditions™ and it is, therefore, im-
portant to analyze the behavior of internal waves in conditions
when the contribution from these two terms is negligible and
the motion is governed by higher order additives.

It is convenient to start the detailed analysis of this case
from expansion of the coefficients of Eq. (8) into Taylor series
in the vicinity of the zero-crossing point for the coefficients of
the leading-order nonlinearities A, (A = (h — h,,)/H)

© %8 o 0.05 © 40
3 10 = o 20
e S as)
gt = ¢ 0
- 0
0 0.5 0 0.5 0 0.5
h/H h/H h/H
1 04 FIG. 4. (Color online) The dependence
—_ N OX T 10 of coefficients of Eq. (8) on the ratio of
% 5 + 5 L 5 the thicknesses of the layers in the case
k(; :m b E N\ of symmetric stratification. Horizontal
=0 3 -10 0 dotted lines indicate the zero-crossing
0 0.5 0 0.5 0 0.5 points of the relevant coefficients and
h/H h/H h/H the vertical dotted lines—the point
-3 he/H.
10 0 — Paprel —
L5 L un
20 8- / <2
-10 =0
0 0.5 0 0.5 0 0.5
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¢ 57122

2 ~ 2
o = —}?%Aﬁ‘O(A ) :d1A+O(A ),
pocr (-2 1A +0(A*) = +0(A)
7 \1352 ' 52 '
¢ 5940688 N )
o :I?WA+O(A ) = @A+ 0(A%),
»n_ 7 15 2
cH 13 18A+O(A)’
asH* 47411260 12084101978 )
- _ A+0(A
c 59049 saaar Ao,
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73 109 30589 )
. =23 918 AT OA),
B 66291 1099 5
cH* 18279040 + A+0(a%).
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The extension of the mKdV equation towards inclusion of
the higher-order terms for small values of A (equivalently, in
the vicinity of the point 4,,) is as follows:

Gt el + O AL+ Bl + e(BACL + T30 L)
+ “:2 (5‘34‘4{,*( + 773143 + ?32&4’)((:” + ?33‘:2@,‘0\' + ﬁl£5x)
+0(&%) =0. )

It is easy to see that in this particular case of the symmetric
three-layer stratification a balance between nonlinear and
dispersive effects exists when the small parameters A and ¢
are related as follows A~ 2. After performing rescaling
X = [ix, t = fit and removing the “hats,” we have

it + 82 (&IEZC,\‘ + &3€4Cx) + :u/ECxx;\' + SH?;C,\';\'X
+ 82# (?31(2 + ?32@’(}(@’)’){ + ?33€2£xxx) + .uzﬁl éSx
+ 0(&:37 w2, e,uz) =0,

where, as above, the equation for #(x, #) only differs from the
above one by the reversed sign of the coefficient }3.

Summarizing the above considerations, in this particular
case the balance between the leading (nonzero) dispersive
and nonlinear terms occurs when &= y. In the coordinate
system consisting of slow time and stretched x-axis
X =x—ct, t = ¢&t, the relevant equation for any of the inter-
faces is (the “hats” omitted)

G @8+ 300+ Bl = 0. (10)

Equation (10) provides a description of motions and phe-
nomena occurring in situations when the leading-order non-
linear and dispersive terms of the mKdV equation are
negligible. In this case, the resulting equation contains two
leading nonlinear terms of the same magnitude: the cubic
and quintic nonlinearities. Both the terms consist of the prod-
uct of a power (2nd or 4th) of the unknown function and its
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first-order spatial derivative. The resulting equation differs
from the classical Gardner equation (that is frequently used
for motions in situations containing zero-crossing of the
coefficient at the quadratic nonlinearity, for example, in two-
layer media with almost equal layers) by the presence of the
quintic nonlinearity. This equation, obviously, belongs to the
family of generalized Gardner equations®™>" used to describe
different properties of internal waves. Following the nomen-
clature of different extensions of the KdV equation, Eq. (10)
may be called 2 44 Korteweg-de Vries-like equation, abbre-
viated 2 +4 KdV.

The above has shown that auxiliary equations derived in
the process of the asymptotic analysis had different appear-
ances for different interfaces. Remarkably, Eq. (10) is uni-
versal in the sense that it is identical for both the upper and
the lower interfaces. This feature is not completely unex-
pected as the classical mKdV equation is also universal for
both the interfaces. Therefore, we can analyze only one
equation (10) without the loss of generality. We shall do this
for the upper interface {(x, 7).

As equations {,+ ("{,+ {,a=0 with n>2 are non-
integrable (in particular, with respect to the Zakharov-Shabat
method®>>%), it is likely that Eq. (10) is also non-integrable.
The question about its integrability is, however, out of the
scope of the current study.

Differently from Eq. (8), Eq. (10) has two conservation
laws of mass and energy

M:r Cdy, E:Jm Cdx. a1

—00

The decisive parameters for wave motion in media described
by Eq. (10) are the signs of the coefficients at its nonlinear
terms. As mentioned above, the coefficient o at the cubic
nonlinearity is sign-variable in the vicinity of h./H. The
coefficient o3 at the quintic nonlinearity is negative in this
region but may change its sign at i/H < (423 — 31/6641)/
1324 = 0.1348. The analysis of the stratification correspond-
ing to these values of the layers’ thicknesses is out of the
scope of this paper, mostly because it corresponds to quite
large values of A but Eq. (10) is valid in the neighborhood of
A=0.

An important feature of Eq. (10) is that it has solitary
wave solutions. The relevant analysis of their existence and
appearance (including the impact of the quintic nonlinearity
on their shape compared to that of the classical mKdV equa-
tion) is presented in the following sections. It is well-known
that solitons of the extensions of KdV equations of the form
&+ ("4 Coe =0 with n > 4 are unstable,> and that for such
equations both smooth and localized initial conditions develop
singularities within finite time (or at finite distances). To our
knowledge, neither integrability of Eq. (10) nor stability of
solitary wave solutions for Eq. (10) (or its analogues with
combined (cubic and quintic) nonlinearity) has been addressed
in literature. But all our numerical simulations of the initial
problem for Eq. (10) with smooth and localized initial condi-
tions showed a stable wave dynamics, with no evidence of
instabilities or collapses even in interactions. Therefore, it
seems plausible that the cubic nonlinearity plays a stabilizing
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role. This conjecture, however, requires a more detailed study,
which is out of scope of this paper.

V. SOLITARY WAVE SOLUTIONS

Let us consider steady-state (in a properly chosen mov-
ing coordinate system) localized solutions ((x — V7) to Eq.
(10). Such solutions can be expressed in implicit form in
terms of the integral

o o -1/2
rev= VB[ (ve - ee) e a

Vs

where V is the propagation speed of the disturbance and
Y =x — Vt. The substitution A = > would reduce Eq. (12) to
a similar expression for the Gardner equation, and the soli-
tary wave solutions can be derived. For o; >0 these solu-
tions can be expressed explicitly

60V

Sa1 + /2597 + 240 Veosh (2, f§)

It is easy to demonstrate that Eq. (13) describes localized sol-
utions to Eq. (10). The maximum amplitude a of the excur-
sions of the interface is obviously

{ry==

13)

Yy 60V . (14)
501 + /2502 + 24003V

Similarly to the solutions of the Gardner equation, the propa-
gation speed of such solutions depends on their amplitude @
o 2 o3 4

a +—a'.

V=3 15

The natural limit for the wave speed stems from the request
that expressions under the square root in Eqs. (13) and (14)
must be non-negative for physically meaningful solutions.
This condition means that the wave speed V has an upper
limit

503

Vim = — —L.
lim 480(’;

s)

Consequently, the amplitude of solutions is also limited by

the following value:
1[50
ﬂum:*\lfl- (16)
2 —0o3

The limiting amplitude in Eq. (16) can be expressed using
the relative thickness of the lower and upper layers (equiva-
lently, using the ratio / = h/H):

aim 2, \/ 9 — 26l
am _ZP2V15 . 17
H 3 1324F — 15082 4 5131 —45° 17

The limiting amplitude reaches its maximum values daj,
~ 0.0864 H at h/H ~ 0.286. This corresponds to the highest
possible location 4 + ay;, =~ 0.397 H of the lower interface,
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FIG. 5. (Color online) Nondimensional values of limiting amplitudes of sol-
itary wave solutions to Eq. (10) (thick line) and nondimensional amplitudes
of deviations of interfaces in three-layer symmetric flows with conjugate
flows (thin lines, a(b) in Ref. 60). The upper and lower thin lines show the
deviation of the lower and the upper interfaces, respectively, for the positive
disturbances. The situation is reversed for the negative solitary waves.

whereas the relevant & =~ 0.3243 H insignificantly differs
from A,

The dependence of the limiting amplitude ay;,, on the rel-
ative thickness of layers #/H has quite a complicated appear-
ance (Fig. 5). This amplitude increases slowly with the
increase in 4/H and reveals a very gently sloping maximum at
h/H =~ 0.286. Further increase in A/H is first accompanied
with a gentle decrease in ay;, that is replaced by almost explo-
sive decrease in the limiting amplitude near the zero-crossing
point h/H = 9/26.

For relatively low solitary wave speeds (equivalently,
relatively low amplitudes), the profiles of solitary solutions
to Eq. (10) resemble similar solutions to the mKdV equation
(Fig. 6; see the expressions for the relevant parameters in

a b
9
8
7
6
ES
N4
3
2
1
—5%00 0 5000 -5000 0 5000
Y [m] Y [m]

FIG. 6. The shape of solitary wave solutions to the classical mKdV equation
(a) and for Eq. (10) (b), for solitary wave speeds of V=0.001, 0.005,
0.01, 0.0125, 0.015, 0.0172, 0.017294, 0.01729412, 0.01729412063,
0.01729412063364 (m/s). The smaller speeds correspond to the lower-
amplitude waves. The parameters for the calculations are indicated in
Appendix. Note that several lines for large-amplitude waves in panel (a) are
not separable from each other.
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Appendix). For larger wave speeds (larger amplitudes), the
two sets of solutions considerable differ from each other.
The key difference is that large-amplitude solutions to Eq.
(10) form a table-like wide signal that may, theoretically,
infinitely widen in the process V — Vi, whereas their ampli-
tude asymptotically tends to ay;,,. Both positive and negative
solitary wave solutions are possible for each combination of
the signs of the coefficients of Eq. (10).

Similar table-like solutions are characteristic for some
other equations containing higher-order nonlinear terms, for
example, they exist for the Gardner equation that describes
motions in the two-layer fluid and where the cubic nonlinearity
is of the leading order. The existence of such wide table-like
solitons and the possibility of their propagation in combina-
tions with other solitons have been demonstrated for several
other classes of nonlinear wave models.?’*>%

The solutions in question have several features similar
to Gardner solitons; in particular, their amplitude is limited
and the increase in the amplitude is accompanied by virtually
unlimited widening of the wave profile. The set of Gardner
solitons has much more rich in content variety of properties
compared to the KdV and mKdV solitons. For example, this
set allows for propagation of smaller solitons along the wide
table-like crest of large solitons the amplitude of which is
close to the limiting one, or the possibility of formation of
two trains of solitons of different polarity during the process
of dispersion of disturbances with amplitudes exceeding the
limiting amplitude. Moreover, the development of the sys-
tem of solitons is very much different for rectangular and
smooth initial pulses of otherwise equivalent properties. It is
natural to expect that the set of solutions to Eq. (10) also pos-
sesses a larger variety of different features compared to the
ensembles of KdV or mKdV solitons.

The described table-like appearance of solutions for the
relatively large-amplitude and rapidly moving disturbances
with steep fronts may have substantial consequences in prac-
tical applications. The propagation of such disturbances is
similar to the motion of smooth bores that possess consider-
able danger for objects on their way. Such horizontal
motions (smooth bores, sometimes called conjugate flows)
are frequent in vertically inhomogeneous fluids.”*>® The
performed analysis shows that such flows can naturally occur
in three-layer fluids for some combinations of the layers’
thicknesses and density variations.

Numerical simulations of flows in media with continu-
ous vertical stratification with two pycnoclines and with a
simplified three-layer model have been performed by several
authors.”*™®" A comparison of the results of the theory of
conjugate fluxes in symmetric three-layer environment with
the values of the limiting amplitude based on Eqgs. (16) and
(17) is presented in Fig. 5. For the situations in which the
thicknesses of the upper and lower layers are close to /.., the
amplitudes of deviations of the interfaces from their undis-
turbed locations are relatively small and almost equal for all
the presented cases, for conjugate fluxes in the nonlinear
model and for the above derived estimate of a,, in the
weakly nonlinear model. If the thicknesses of the layers are
considerably different from #4,,, the amplitudes of deviations
of the upper and lower interfaces become substantially
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different. It is remarkable that the estimate of the deviation
ajim in the weakly nonlinear framework practically coincides
with one of those for the fully nonlinear case for a wide
range of i/H. The similarity occurs for the deviation of the
interface that bends into the thinner outer (the uppermost or
the lowermost) layer.

For the range of layers’ depths 4 > &, (A > 0), a solution
exists neither for our weakly nonlinear approach nor in the
theory of conjugate flows.

VI. INTERACTIONS OF SOLITARY SOLUTIONS
OF THE 2 + 4 KdV EQUATION

Generally speaking, interactions and collisions of soli-
tary solutions to non-integrable evolution equations are
inelastic. It is, therefore, not unexpected that solitary solu-
tions to Eq. (10) interact inelastically with each other and
with the background wave fields. As a demonstration of this
feature, we present an example of numerically simulated col-
lision of two solitonic solutions corresponding to the values
of coefficients given in Appendix.

The numerical code used in integration of Eq. (10)
employs an implicit pseudo-spectral method®” that conserves
the integrals presented in Eq. (11). The spatial domain was
chosen based on the analytically estimated propagation speed
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FIG. 7. (Color online) Interaction of solitary wave solutions of elevation to
Eq. (10) in nondimensional coordinates: space-time plot (above); cross-
section of the wave field at 0 =0 (solid lines), and after the collision
(0 =4000, dotted line, below).
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of solitons and interaction time and was extended as occasion
required. The numerical code was tested against exact analyti-
cal multisoliton solutions to the classical mKdV equation and
by means of long-term tracking of propagation of exact soli-
tary solutions to Eq. (10) in the absence of other disturbances.
In particular, the results of the latter test did not change when
the spatial step was decreased by a factor of two. For simplic-
ity, we use the nondimensional form of Eq. (10)

Ww+aaGy— 40+ a4, =0, (18)
where
33/4 31/4 1/2
Y —1/2 | ~1/2 o
= |- t = |-t — <
WP =B a=
(19)

The step in the x-direction was set to 0.2 and the step in time
to 0.1. The performed tests indicated that the numerical inac-
curacies for this choice of parameters is of the order of 10~°
whereas the value of the small parameter p > 0.04.

The initial state was composed from two solitary
waves with nondimensional amplitudes of 1 and =0.5. The
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nondimensional limiting amplitude for the parameters in use
is V5 /2~ 1.118. The corresponding dimensional ampli-
tudes would have been 7.62 m and =3.81 m, respectively.
Before integrating this constellation, evolution of each of the
counterparts was integrated until 0 =4000. During this inter-
val, the total error of the numerical solution (caused, e.g., by
small distortions of the amplitude of the numerical solution
owing to its discrete representation and by radiation of wave
energy) did not exceed 1 x 107°.

The initial state for studies of interaction of these soli-
tary waves was composed simply as a linear superposition of
the counterparts. The smaller wave was placed ahead of the
larger one, at a distance (counted as the distance between the
relevant maxima) of 150 nondimensional units of length.
The simulation was performed until 0 =4000, that is, quite a
long time after the interaction of the highest parts of the
waves was terminated (Fig. 7).

The evolution of solitary waves of elevation resembled
the typical scenarios for soliton interactions of similar type
in the classical KdV and mKdV frameworks in which the
taller wave overtakes the smaller one.**** In such interac-
tions, the counterparts usually lose their identity and merge
into a composite structure at a certain instant. After a while,

FIG. 8. (Color online) Interaction of sol-
itary waves of different polarity in the
framework of Eq. (10) in nondimen-
sional coordinates: space-time plot
(above); cross-section of the wave field
at 0 =0 (solid lines), and after the colli-
sion (0 =4000, dotted line, below). The
right bottom panel is a zoomed version
400 . of the left bottom panel.

0.5
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the counterparts emerge again whereas one cannot say
whether the counterparts propagate through each other as
waves do or collide as particles do. The interaction process
is accompanied, as in the case of KdV solitons, by a clear
decrease of the amplitude of the composite structure during
the merging phase and by a substantial phase shift.

Differently from processes governed by integrable equa-
tions, the collision was accompanied by generation of very
long and almost stationary localized depression area. The
entire process was also accompanied by a modest radiation
of wave energy from the interaction region. The amplitude
of wavelike disturbances was about 4 x 1072, that is, by sev-
eral orders of magnitude larger than the level of numerical
errors (<1 x 107°). This level of wave generation signifies
the effects of dispersion on the evolution of the system. Note
that the amplitude of the disturbances matches the magnitude
of the relevant dispersive terms O(p) =O(A) that also is
about 4 x 1072,

The collision of solitary waves of different polarities has
a similar appearance. Both the counterparts largely survive the
collision but the phase shift for the wave of depression is
more pronounced (Fig. 8). The amplitude of radiated waves
is, however, much smaller than in the above case and does not
exceed 1 x 1072 Test simulations with a twice higher spatial
resolution led to practically identical results. Therefore, the
described side effects such as wave radiation in both cases
and the formation of a long depression area in the collision of
waves of elevation evidently are an inherent part of interac-
tions of solitary waves in the framework of Eq. (10).

Consequently, collisions of solitary wave solutions of
Eq. (10) basically have inelastic nature although both the in-
tensity of wave radiation and changes to the amplitudes of
the solitons are fairly minor. For example, the collision of
waves of elevation led to the increase in the amplitude of the
taller soliton from 1 to 1.002 and an accompanying decrease
in the smaller solution from 0.5 to 0.477. The collision of
waves of different polarity led to much smaller changes: the
post-collision amplitudes of the waves were 1.001 and
—0.499, respectively. Note that this effect also does not
exceed the order of O(u). The effects caused by interactions
of different solitary waves with similar entities and with the
wave background could, of course, be much larger during
longer time intervals and/or caused by multiple collisions.
As expected for non-integrable equations, such interactions
should finally lead to damping of solitary waves to a level of
magnitude at which they are either practically linear or are
governed by a different balance of nonlinear and dispersive
terms.

VIl. CONCLUSIONS AND DISCUSSION

Although contemporary numerical methods and fully
nonlinear approaches such as the method of conjugate flows
allow for extensive studies into properties of highly nonlin-
ear internal waves, many specific features can still be recog-
nized, analyzed, and understood using classical methods for
analytical studies into internal waves in ideal layered fluids
and in the weakly nonlinear framework. Such fully analytical
methods make it possible to exactly establish qualitative

Phys. Fluids 23, 116602 (2011)

appearance of disturbances of different shapes and ampli-
tudes, and, more importantly, to understand the specific fea-
tures of the behavior of waves corresponding to situation
where a substantial change in the overall regime of wave
propagation is possible.

The performed analytical investigation of different
regimes of wave propagation in a relatively simple but fre-
quently occurring in nature symmetric three-layer environ-
ment reveals several interesting feature of wave shapes that
are usually hidden in the analysis of non-symmetric situa-
tions. The key development is the derivation of a new non-
linear evolution equation that describes the wave motion in
situations where all the leading-order nonlinear terms in the
classical modified Korteweg-de Vries (mKdV) equation van-
ish simultaneously. Such situations may happen quite fre-
quently in relatively shallow non-tidal strongly stratified
basins such as the Baltic Sea. In this case, the evolution
equation governing wave motion contains two nonlinear
terms (cubic and quintic nonlinearities) of the same magni-
tude. This equation is obtained using the basically standard
asymptotic procedure that is widely used in similar problems
and is of the second order of accuracy as the mKdV equation
for the non-symmetric situation.

The resulting equation differs from the mKdV equation
in two important aspects. First, it reflects a different balance
between the (higher-order) nonlinear terms and the disper-
sive terms compared to that exploited in the mKdV equation.
More importantly, this equation contains two nonlinear terms
of the same magnitude—the cubic and quintic nonlinearities,
the latter one distinguishing the resulting equation from the
mKdV equation. The resulting equation has solitary wave
solutions. As this equation probably is not integrable, the
possible solitonic nature of these solutions, the persistence of
these solutions in interactions and the existence of multisoli-
ton solutions is a subject of further research.

The presence of the quintic nonlinearity does not sub-
stantially modify the shape of the solitons of relatively small
amplitude but leads to radical changes in the appearance of
larger-amplitude solitary waves. Their amplitude and propa-
gation speed are limited. Larger-amplitude solitons have a
table-like shape with very steep fronts. The motion of such
solitary waves may be accompanied by high water speeds
and strong hydrodynamic loads in the areas where the struc-
ture of medium is favorable for their existence. It is likely
that the classical solitary solutions to the mKdV equation are
transformed into such structures when they approach sea
areas where the coefficients at the lower-order nonlinear
terms vanish.
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The coefficients for the first-order terms and for the quadratic
nonlinearity for the symmetric three-layer medium have
been obtained in Ref. 22 and presented here only for
completeness.

In calculations, we use the following parameters of the
medium: total depth =100 M, depth of the uppermost and
lowermost layers #=30m and the relative change in the
density Ap/p=1x 1072 The corresponding values of the
linear wave speed and the coefficients of Eq. (10) are as
follows:

Parameter Value

¢ (m/s) 1.72

o (s 0.0

B (m’/s) 771.98

oy (mes)”! 0.002859
oz (ms)”! —0.00004924
@im (M) 8.5194
Viim (m/s) 0.01729
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CTATHUCTHKA 3KCTPEMAJIbHOI'O BOJIHEHUA
B IOTI'O-3AITA/THOU YACTH BAJITUUCKOI'O MOPSI

CBoiicTBa 3KCTpEeMANBHBIX IITOPMOB B paiioHe mopora Jlapc roro-3amnajaHoit yactu banruiicko-
ro MOps IPOAHAIU3UPOBAHBI HA OCHOBE 3amucel BosHoMepHoro Oys 3a 20 ser (1991-2010) u
pe3yJIbTaTOB YHCICHHBIX AKCHEPUMEHTOB. Jlonrocpounas cpenHsis 3HaUMTEIbHAs BBICOTA
BonH Hy cocraBmsier ~0.7 M, a xapaktepHbie nepuoasl — 2—4 c¢. HaunGonsimas usmepennast Hy
coctaBuia 4.46 M. Hanbonbiee pacxoskaeHne (pasHuIa 10 2 ¢) yCTaHOBJIEHO MEXy Xapak-
TEpHBIMH W3MEPEHHBIMH M MOJENBHBIMU MEPHOJaMHU BOJH. BpeMeHHas quHAMUKa TOJOBBIX
HaWBBICIINX BOJIH UMEET MII000pa3HbIi XapakTep ¢ yBenudeHneM B 1958—1990 rr., naunnas
¢ 1993 r., u pe3kum cHmxkeHneM B 1991-1992 rr. Mi3MepeHHbIE CpeJHErOA0BBIE 1 MAKCUMAITh-
HBIC BBICOTHI BOJIH HE3HAUUTENIHHO M3MeHsuch B 1991-2010 rr., Ho mopor B 1 % Hauboiee
BBICOKHX BOJIH CYIIECTBEHHO CHH3MJICS.

KiroueBsie ci10Ba: BETpOBOE BOJHEHHUE, SKCTPEMAIIbHBIC BOJIHBI, MATEMAaTHYECKOE MOCIUPOBaHKE, HYHKINT
pacrpesieneHus..

BonHoBo# kimmMatr banTuiickoro Mops XapakTepu3yeTcsi HeKOTOPBIMH CHEHU(PHUECKIMI
0COOEHHOCTSIMH, TaKMMHM KaK €ro BeCbMa HECTallMOHApPHBIA XapakTep, JOKAIM3alus IMepHosa
IITOPMOB B HECKOJIBKO OCEHHMX W 3UMHHUX MECSIEB, 3HAUUTENbHAas MPOCTPAaHCTBEHHAs M Bpe-
MEHHasi N3MEHYMBOCTh CBOWICTB BOJIHEHHS, Pe00IaaHie CPaBHUTEIBHO KOPOTKUX M KPYTBIX
BOJIH, a TaK)KXC CYIIECTBOBAHWE BOJIH IMTOYTHU TaKoM ke BBICOTHI, KaK B 3HAYUTCIIbHO GOHBHICM Io
pasmepam Cpenmzemaom mope [1, 2]. O6prarO OoMNBIIYI0 KpYyTU3HY BONMH B banmrtuiickom mope
CBSI3BIBAIOT C €ro HEOONBINMHE TITyONHAMH (B cpeqHeM 54 M), 0JJHAKO B OOJBIIMHCTBE CIIYYacB
yBEIWYEHHE KPYTHU3HBI €CTh PE3yJbTaT KOPOTKUX, HO CHJIBHBIX IITOPMOB C OTPaHUYCHHOMN IJIH-
HOH pasroHa BoJH. Takue MTOpPMBI TeHEPUPYIOT 0Y€Hb KPYThIE BOJHBI 1aKe B INTYOOKOBOJHBIX
00J1acTsX, U IPH 3TOM OrpaHUYEHHas TITyOHHa c1a00 BIMAET Ha XapaKTep BOJH.

[ToTenuaneHy0 pois Maioi TITyOMHBI HEKOTOPHIX akBatopuil bamTwmiickoro Mops ass
0€301acCHOCTH CY/IOXOJICTBA M APYIOH AEATEIHHOCTH B MOPE M MPUOPEKHBIX pailoHax MOKHO
OoJiee YETKO OIPEETUTh B TEPMHUHAX T'€HEpAIMy BOJH-yOMHIl [3] ¢ MOMOIIbI0 MEXaHU3MOB,
JJI1 KOTOPBIX MEJIKOBOJHOCTDH ABJIACTCA OCHOBOITOJIAraroImum q)aKTOpOM. OZ[I/IH U3 TaKUX ME-
XaHU3MOB — HEJIMHEIHOE B3aMMOJEHCTBUE IUIOCKUX BOJIH Ha MEJIKOW BOJE, PACIIPOCTPAHSIO-
IIUXCS TIOJ YIIIOM OPYT K IpyTy [4], — IEeHCTBYET MTUIIb B YCIOBHUSIX OTPAHWYCHHON TITyOUHBI U
BBICOKHX UTMHHBIX BOJH. BO3MOXXHOCTB 4acTOTO BBIOJHEHHS YCIOBHUI ISl 3TOTO MEXaHHU3Ma
U no0OyAuIa Hac K MCCIeJOBaHUIO BOJIHOBOTO KJIMMaTa B paiioHe mopora Jlapc, OT/InYaroniero-
CSl HHTEHCUBHBIM CYI0XOACTBOM U UMEIOIIET0 TIyOHHY Bcero okoio 20 M.

OnHO 13 BO3MOXKHBIX ONPEEICHNIN BOIH-YOUHI] OCHOBAHO JIMIIb HA OTHOIICHUN BBICOTHI
WHIIMBUIyalbHOW BOJHBI K ()OHOBOW 3HAYMTENBHOW BbIcOTe BOJIH (Hs — cpemHsst BbICOTa
OJTHOHM TpeTH HamOOJIBIINX BOJIH). Takoe ompenesneHre MO3BONISET M3ydaTh BOJIHBI-YOUHIIBI B
CaMbIX pa3HBIX YCIOBHAX: OT BOJIH C XapakTepHbIMU BbicoTamu 10-20 cM [5] 10 Takux MOHCT-
POB, KaK «HOBOTOIHSISI BOJHA», BOSHUKINAS CPEeOH BOJH C TUIHYHOH BhicoToi B 10 M [6]. U
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XOTA UCCIICAOBAHUA MeJ'IKOMaCLHTa6HI)IX aHaJIOroB ((BOHH-y6HﬁH)) OIPEACIICHHO BHOCAT BKJIaQ
B NOHMMAaHHE TaKWX SBICHUH, OOJBIIMHCTBO MPAKTHYECKUX 3a]ad CBA3aHO C OOBSICHEHHEM
BHE3AITHOTO TOSBICHHUS HEOXKUAAHHO BBHICOKMX BOJIH CPEIU BOJIH C JIOCTAaTOYHO OOJBIION BBI-
coroii. Hanbosee onmacHbl cuTyalyu, Korja JNeHCTBHE ONpEIENIEHHBIX MEXaHW3MOB KOHIICH-
Tpal¥ BOJIHOBOM SHEPTUU U COOTBETCTBYIOIIEIO YBEIWYECHUS BBICOT BOJH B IIEJIOM B OTAEIb-
HBIX 00JacTsIX (Hanpumep, pedpakuus Ha TeueHuH [7] M Ha HEOTHOPOAHOCTSIX JHA) couyeTa-
ercs co crnenu(pUUECKIMH AWHAMUYECKUMH (DaKTOpaMH (HampuMep, HEMMHEHHOE YCHIIEHHE
JUITMHHBIX TTOBEPXHOCTHBIX BOJH Ha MEJKOH BOZE); 3TO MOXET NMPHBOANTH K BO3ZHUKHOBEHHIO
HEOOBIYafHO BBHICOKMX WJIM KPYTBHIX BOJHOBBIX NMUKOB [4, 7]. Takue ycrnoBust MOTyT OBITH HC-
TOYHMKAMH PUCKA B MEJIKOBOJHBIX U MPUOPEKHBIX 007acTsaX (Ie OHM MOTYT MPHBOJAUTH TaK-
e K BHE3aITHOMY PEe3KOMY POCTY NMPHUIOHHBIX CKOPOCTEH, HOSBICHUIO BOJIH-YOUHI MM yCH-
JICHUFO BOJH OT MPOXOJSIINX CyHIOB Ha Oepery [8]), 0coOeHHO B MeCTax ¢ HMHTCHCUBHBIM JIBU-
YKEHHEM BOJTHOTO TPAHCIIOPTA.

[Mpouecc rerepaiii BEICOKUX JIOKATM30BaHHBIX I'peOHEl, OonMcaHHbli B [4], BecbMa 4yB-
CTBUTEIICH K YCJIOBHSM, B KOTOPBIX IIPOUCXOJUT B3aUMOJICHCTBHE BOJIH: TIIyOHMHA MOps, BBICO-
Ta BOJH, YIJIBI TIEPECEUSHISI JOIDKHBI OBITh CBSI3aHBI OCOOBIM 00pa30M, YTOOBI BOSHHKIIA JKC-
TpemanbHas BonHA [9]. IloaToMy HEOOXOIMMBIM YCIOBHEM BCECTOPOHHETO MOHUMAHUS II0-
TEHIMAILHON OMACHOCTH BOJIH-YOMMII SIBIISIETCSl aIeKBaTHOE 3HAHHE CBOWCTB AKCTPEMAIEHOTO
BOJIHEHUSI B COOTBETCTBYIOLIMX OOJacTsAX. DTOT BONPOC PAacCMaTPUBAJICS B KIACCHYECKHX
BOJIHOBBIX aTJIacax, CIPaBOYHUKAX M MPAKTHUECKUX PYKOBOJCTBAX MPEUMYILECTBEHHO C TOY-
KM 3pEHUS BBICOTHI BOJH. AHanu3 [4] MoKa3bIBaeT, YTO HANPABICHUE PacIpOCTPAHEHNS BOIH 1
0COOCHHO MHOXECTBEHHOCTh HAIPABJICHUH B BOJHOBOM IT0JI€ SIBJSIETCS Jaske Oosiee BasKHBIM
rapameTpoM. B peanbHBIX YCIOBHUSX €Ile OAHUM KJIIOYEBBIM MapameTpoM OyAeT JiIuHA (Win
NepHo/) BOJH: OHA JOJDKHA OBITh JOCTaTOYHO OOJBIIOW, YTOOBI CTalmM 3aMeTHBI ((PEKTHI
B3aUMOJICHCTBUSI HEIMHENHBIX BOJIH HA MEJIKOW BoJe. B cBf3M ¢ mOCIE€qHUM aclieKTOM BEpO-
SITHOCTh BO3ZHHKHOBCHHS aHOMAIBHBIX BOJIH OOJBIIOW KPYTH3HBI JOJDKHA yYMEHBIIATHCS C
POCTOM JJIMHBEI BOJIHBI, HO pe3Koe (TI0YTH BOCHMUKPATHOE) YBEIMYEHHE KPYTH3HBI BOJIHBI,
BO3HHKAIONIEH NP HEJIMHEHHBIX B3aUMOJICUCTBHAX, OJJHOBPEMEHHO IMPHBOAUT K POCTY PUCKa
TIOSIBJICHUS BOJH-YOUHIL [9].

[lepeuncnennsie (akTopbl Hanboiee BaXHBI UIS BBITSHYTBIX CPaBHHUTEIBHO MEIKHX
GacceliHOB (T/e CBOWCTBA BOJIH 3aBHUCAT TIIABHBIM 00pa3oM OT HAIPaBJICHUs BETPa M MEHbIIE —
OT €ro CKOpOCTH), 0COOEHHO ISl MTOTY3aKPHITBIX MOPCKHUX akBaTOpHi. B HUX 00BIYHO mpeod-
JIAIAl0T OTHOCHTENBHO KOPOTKHE JIOKAJbHO BO30YXIaeMbIe BOJIHBI, HO pPaclpOCTpaHEHUE
JUIMHHBIX BOJH M3 COCEACTBYIOIINX O0JacTEl MOXKET NMPHUBOAUTH K CUTYAIMsIM, OJIaromnpusT-
HBIM U1 BOSHUKHOBEHHUS BOJH-yOMHIl. B 3TOM cMbIcne nBe momy3akpsiTeie oOmacti bamTuii-
CKOTO MOpsI, BEPOSITHO, HanboJee MOABEP>KEHBI BO3ACHCTBHIO BHICOKUX M JJIHHHBIX BOJH MpPU
HEKOTOPBIX PEIKUX IITOpMax, npuxomsmux u3 LlentpanbHoit bantuku. B BocTOuHOM wactu
@duHckoro 3a1MBa 0OBIYHO MPE0OIaTat0T KOPOTKHE BOJHBI C Mepuoaamu 2—4 ¢, Bo30yxnae-
MbI€ TOCIIOJICTBYIOIIMMHE IOTO-3anaHbIMi BeTpamy [10], HO MepHOANYECKH OUYEHb JITMHHBIE
BOJIHBI, 3aPOXKAAIOIIMECS B LEHTPAIBHOM YacTu banTuilckoro Mopsi, MOI'yT IPOHUKATh B 3TOT
Oacceitn [11]. HemaBHMe nccne0BaHMs MOKA3aIH, YTO 1a)KE€ CPABHUTEIHHO MaJIbie H3MEHEHHS
THJIPOMETEOPOJIOTHYECKHX yciaoBuil B HeBckoii rybe n Ha MpHIIEralonmx yq9acTKax mooepexns
MOTYT CYIIECTBEHHBIM 00pa30M IMOBJIHTH Ha MPOIECCH, MPOUCXOASAIINE B TPUOPEKHOI 30HE
[10, 12]. ITogo6Hast o cBOMCTBaM 00JIACTh PacIoioKeHa MeKAy o.Proren u modepexxbeMm [la-
HUW B IOTO-3amajgHoi dactu banrtuiickoro mops. IlpeoGmagaromue B 3TOM OacceifHe Oro-
3araiHbIe U 3aIaIHbIe BETPHI OOBIYHO BO30YXKJAI0T OTHOCHTEIHHO KOPOTKHE M KPYTHIC BOJIHBI,
a Oojiee penKHe CeBEpO-BOCTOYHBIE BETPHI MOTYT BiIE€Yb 3a cO0OW ropaszo Oojee JUIMHHBIC
BOJIHBI TOH e (WK Jake OoJbieid) BoICOTHI. O0e 3T 00JIaCTH JIOBOJIBHO MEJIKHE, C Xapak-
TepHBIMH I'TyonHaMu MeHee 20 M, T03TOMY BOJIHBI C TIEPHOJAMH OKOJIO 5—8 C YK€ MOTYT pas-
BUBATbh CBOICTBA, HEOOXOAMMBIE IS HETUHENHBIX B3aNMOAEHCTBAM BOIH Ha MEIKOH BOJE.
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XoT4 CymiecTByeT HECKOJIbKO MOKOJISHUH aTiacoB BoMHeHUs st bantuiickoro mops [1,
13], B ntuTeparype O4EHb MaJIO CBEJICHHUN O CTATUCTUKE M3MEPEHHBIX BOJH IJISI MEJIKOBOIHBIX
yacTel 3Toro Oacceiina. TeopeTndyeckne ONEHKH HKCTPEMAIBHBIX BETPOBBIX W BOJHOBBIX YC-
nosuii duHCKOro 3amuBa npeacrasieHsl B [14]. HekoTopsle pe3yabTaThl peTpOCHEKTHBHOIO
BOJIHOBOT'O TPOTHO3a CPEAHEro pa3pelleHns U COOTBETCTBYIOIIAsl CTaTUCTHYECKasi o0paboTka
B paMKax ucciefoBanuii [15] ms Bcero bantuiickoro mops onucansl B [16]. B aTux uccneno-
BaHMSIX, OJHAKO, YIEJISIIOCh MaJl0 BHUMAHHSI IEPHOAAM BOJIH.

CymiecTByeT BO3MOKHOCTh MPOJIUTH CBET HA KOMOMHAIMIO CBOMCTB AKCTPEMAIbHBIX BOJIH
JUISL 10TO-3araHON YacTn banTuiickoro Mopsi, riie XapakTepPUCTHUKH BOJIHEHHWS Haj IOpPOrOM
Jlapc u3MepsroTCs C MOMOIIBIO BOJTHOM3MEPHUTEIbHOTO Oys «Seawatch Directional Waverider» ¢
1991 r. [17]. Kpome ToOTO, UIST JAHHOTO PETHOHA OBUIH BBIIOJIHEHBI PAacueThl C CETKOW CPETHETO
pa3perieHus (OKOJIO TPpeX MOPCKHMX MWIIb) B paMKaxX HMCCIICOBAaHUHN Bcero bamruiickoro mops,
OCHOBaHHBIX Ha PETPOCIIEKTUBHOM MOJIEIIMPOBAHNY IEMEHTOB BonHeHus [ 15, 18, 19].

[Mopor Jlapc pacrionoxeH MEXAy IBYMS IOJY3aKpHITBIMH aKBAaTOPHSIMH IOT0-3araHOM
yactu bairuiickoro Mopst u pasaenser Mope benbT u Oacceiin Apkona (puc. 1). Pasmeps atoit
obmacTr, oObeAMHSIONIEH BOCTOYHYIO YacTh Mops bernbr (MekieHOyprckas OyxTa, BKIIOUYast
JIrobexckyro) u GacceliH ApKoHa, TPHOIU3UTENIFHO COBITA/IAIOT € pazMepami DUHCKOTO 3aJIvBa:
obmras jmrHa okono 300 kM, a mupuHa Bapeupyercs oT 50 1o 100 kM. Tak kak IpOTSKEHHOCTh
obnacTi 00pa3oBaHMs BOJIH OTpaHHYCHA B OOJBIIMHCTBE HANPABICHUN U COCTABJISIET OKOJIO
100 kM, oXraeMble BOJTHOBBIE YCIOBHS B ATOM 00JaCTH COOTBETCTBYIOT OIPaHUYEHHOMY pa3-
roHy. Jlpyrumu cioBamMH, XapakTepHBIE COYETaHUS BEICOT M IEPHOIOB BOTHEHHS JOJDKHBI OIIpe-
jensatbes criektpoM JONSWAP [1], a xapakTepHas kpyTHU3HA JOJDKHA IIPEBBINATH KPYTH3HY
MIOJTHOCTBIO PAa3BUTOTO BOJHEHHS CO CreKTpoM IlnmpcoHa—MockoBHIia (KOTOpPBIH a/IeKBaTHO
OTIHCHIBAET BOJIHOBBIE TIOJISl HA CEBEPE IIEHTpallbHOM YacTu bantuiickoro Mops [2]).
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Puc. 1. Kapra MecTononoxeHns: TOYKH H3MepeHnii B paiione mopora Jlapc
B I0T0-3anajHoi yactu banruiickoro Mops.
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I'maBHas ECJIb HaCTOSILI_Ieﬁ CTaTbH — BBISIBJICHHUC HOTeHLIPIaJ]I)HOﬁ BO3MOXHOCTH CYHIECCTBOBA-
HHUA BBICOKUX W JUIMHHBIX BOJIH B ITOJIY3aKPBITBIX CPABHUTECIIBHO MEJIKUX obOnacTsax banTuiickoro
MOps Ha IPUMEPE €T0 IOFO-BaHaﬂHOﬁ JacCTH. EH.Ie OJHHUM Ba>XHBIM MOMCHTOM SABJIACTCS BBISICHC-
HUEC aICKBATHOCTU COBPEMCHHBIX MO}.'[GJ'IGfI BOJIHCHUA B CMBICJIC BOCIPOU3BCACHUA UMW SMIIUPU-
YECKOM CTaTUCTHKU XapaKTCPHbIX BOJTHOBBLIX COCTOSIHMM PEKOHCTPYKIIUUN SKCTPEMAJIBHBIX BOJI-
HOBBIX yCHOBHﬁ, BO3HHUKAIOIIUX HECKOJIBKO Pa3 3a ACCATUIIETUC B TAKUX obmacTsax MOops.

JlaHHBbIe M3MepeHUH M pe3yabTaThl MOAEJIMPOBAHMS BOJHeHMs. l3mepenus mapa-
METpPOB BOJIHEHUS BHIIONHSINCH B TOUKe ¢ TiryonHoi 20 M, pacnonoxeHHo# Ha 54°41.9' c.ar.,
12°42.0" B.1. (puc. 1) B paiione nopora dapc ¢ 29 sHBaps 1991 r. ¢ HOMOIIBIO BOJIHOM3MEPH-
tenpHOTO Oyst «Seawatch Directional Waverider» ¢upmer Datawell. 3naunTenbHas BbicoTa
BOJIH M3MEpSETCS HemocpecTBeHHO OyeM 1o 1600-ceKyHAHOMY BPEMEHHOMY DSy CMELICHU
BOHON moBepxHOCTH. OCHOBHBIE MapaMeTPhl BOJHEHMS, TAKHE KaK 3HAYWTENIbHAs BBICOTA U
CpeiHUIl epuo, TOCTYIHBI ¢ Hayajla u3MepeHnii. HekoTopele Apyrue XxapakTepHCTHKH, Kak,
HarpuMep, NMUKOBAasl 4acTOTa, MPEICTABICHBI B 0a3e MaHHBIX JIMIIb YAaCTUYHO M MOITOMY HE
UCIIOJIb30BAIUCH B HACTOSIIECH paboTe.

0030p 3THX IKCIEPUMEHTAIBHBIX JAHHBIX U MX KIMMATOJIOTMYECKUI aHAIN3 MPEIICTaB-
nensl B [17]. B MaccuBe maHHBIX TPOITYIIEHO J1Ba MIepro1a OOIIeH [UINTEIIEHOCTEI0 B HECKOIb-
KO MecsineB: 7 pekabps 1991 r. — 23 anpenst 1992 r. (B ¢BsA3M ¢ TEXHUUECKUMH HENOIAKaMA) 1
01 depans — 01 mas 1996 r. (u3-3a 0Opa3oBaHMs JICAOBOrO MOKPOBa). B 11e51oM 3a mpomMexy-
ToK ¢ 29 saBaps 1991 no 31 mexabps 2010 r., paccMaTpuBaeMblif B HACTOSIIEH cTaThe, B Ha-
6ope manHbIXx uMmeercs 190 305 3ammceit, 3a 6198 mHelt — XoTs OBl onHA 3amuch, U 3a 1107
THeH 3amuced He ObU10. HamMeHBIIUI TPOICHT THEH, B KOTOPBIC MPOBOJWIACE U3MEPCHHUS,
NPUXOJUTCS Ha SIHBAph U OKTSOPh, a TAKXKE anpesib—Maid, KOraa ecTh 3alliuCH JIUIIb Juid 15 et
3 20 [17]. O6pem 3aperucTpupoBaHHBIX JaHHBIX ¢ 8—10 M3MepeHuii B CyTKU B MEPBHIE TOIBI
uccienoBanuil ysenmuupaercs 10 48 — 20 mas 1997 r., konebnercs ot Hyns no 50 ¢ anpens
1999 no mapra 2003 r., mocne 4ero crabmIM3upyeTcsi OKOJI0 YpoBHS 48 M3MEpEeHH B CYTKH.
CpenHee 4yuCIIO U3MEPEHUH B CYTKU COCTABJIAET MPUMEPHO 26.

[IpoBeneHo cpaBHEHME W3MEPEHHBIX [IapaMeTPOB BOJHEHHS C AByMS HabOpaMmu pe3yib-
TaTOB YMCIICHHOTO MOJIETMPOBAHMS BOJHOBBIX MOJEH, PACCUUTAHHBIX C MCIIOIb30BAHHEM MO-
JIENTA BOJHEHMSI TpeThero nmokoneHnss WAM [20]. Pacuersl BeimonHsuMCH aist Becero banTwmii-
CKOT'O MOPSI C TPOCTPAHCTBEHHBIM pa3pelieHueM OKOJIO TPEX MOPCKUX MHIIb (5.5 X 5.5 kM) u ¢
[IaroM I10 HaIlpaBJIEHUIO, paBHEIM 15°. OquH U3 pacdeToB (qanee Ha3zpiBaeMblii AW) mpousBe-
neH it iepuonaa ¢ 1958 mo 2002 r. ¢ ucronmp3oBanueM 28 yacToT B nuana3one ot 0.05 xo 0.66
I'a (1.5-20 c) [19, 21] u BeTpOBBIX IOJICH, PEKOHCTPYUPOBAHHBIX C MTOMOILIBIO PETHOHAIBHON
Mmozenu atmochepsl [22] Ha ocHoBe oOpaboranHbix MeTeomaHHbix NCEP/NCAR (National
Center for Environmental Prediction and the National Center for Atmospheric Research) [23,
24). BoxHBI Ha MOPCKO# TpaHUIIE 33aBAJINCh HA OCHOBE PETPOCIIEKTHBHOTO mporHo3a 1 Ce-
BepHoro mops [18]. [yt cpaBHEHUS ¢ SKCIIEPUMEHTAIEHBIMI MBI UCIIOJIB30BAIH JaHHBIC MO-
JIeJH JIJIs1 TOYKU CETKU ¢ KoopAauHatamu 54°42' c.ur., 12°42' B.71.

Jpyroit Habop pacueToB (manmee HasbiBaeMblii RS, cM. Taxke B [16]), BBITOIHESHHBIX
TOJBKO 17151 banTuiickoro Mops ¢ HCIOJIB30BaHUEM IeocTPO(QUIECKOTO BETpa, B IPEIIIONIONKe-
HUM, 9TO IIPOHUKHOBEHHEM BOJH 4epe3 /laTckue mponrBel MOXKHO NMPEHEOPEyb, COOTBETCTBYET
nepuoay ¢ 1970 no 2007 r. [l onpeaeneHus CKOPOCTU BETpa Ha CTaHAAPTHOH BbIicoTe 10 M
reocTpoduueckas CKopocTh Oblia yMHOXKeHa Ha (.6 1 HampaBieHa Ha 15° BmeBo. UToOb 0Oec-
MIEYUThH NIPaBUIIbHBIE CKOPOCTH HApaCTaHUs BOJH IPH cIa0OM BeTpe rmocie mTuis [25], B pac-
Yyerax HCIOJIBb30BAJICS PACIIMPEHHBIH Jquana3oH 4actoT ao 2 ['m (mepwoasl BoiH mo 0.5 c,
42 3HaueHus yacToTel). JlaHHBIE JJIs1 CPaBHEHMS OBUIM B3ATHI B TOUKE CETKH C KOOpIUHATAMU
54°42' c.m., 12°42'B.n. OcCHOBHBIC MHTETPANBHBIC MapaMeTpPbl BOJIHEHHWS, TaKHE KaK 3HAYH-
TEJIbHAsI BHICOTA, CPE/IHEE HANPABICHHE U PA3JIMYHbBIC TIEPHOJIBI BOJIH JOCTYITHBI C BPEMEHHBIM
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pa3pelieHreM B OIMH Yac Ul Kaxaoi u3 moneneil. Tak kak B pacyeTrax HCIOJIb30BAIaCh UH-
(hopmarms 0 BeTpe CO CPpaBHUTEIHHO HU3KUM pasperieHueM (pa3 B 3 uiu 6 9), TO Bpemsl BO3-
HUKHOBEHHS OTACIBHBIX HanOoiee BHICOKAX BOJH MOXKET OTIMYATBCS JUIL MOJCIBHBIX M W3-
MEpEHHBIX BOJIH, HO CTATUCTHKA BOJHEHHS BOCIIPOM3BOANTCS a/I€KBATHO.

BoaHoBoii kiauMaT. Tak Kak OCHOBHBIE CBOMCTBa BOJIHOBOI'O KJIMMaTa MOXHO HaTu B
HMCTOYHHKAX B OTKPHITOM foctyre [17], mpuBenaem 3/1ech TOJIBKO caMble BayKHbIE olleHkH. Hau-
OoJiee 4acTO MCHONB3YeMbI ITapaMeTp IUIsi MOBEPXHOCTHBIX BOJIH — JIOJATOCPOYHAsl CPEeIHSA
3HAYMTENIbHAsT BBICOTA IO BCEM JOCTYIHBIM JaHHBIM — cocTtaBisier 0.753 M ans nzMepeHui
(mmm 0.757 M, ecn paccCUUTHIBATH €€ 0 CYTOYHBIM CPEIHHM BBICOTaM BoiH), 0.836 M — 1o
pesynprataMm AW-monemuposanuss u 0.80 M — mo pesynpratam RS-pacueros. ITockonbky
Cpe/Hssl BBICOTA HE MMEET JIOJITOCPOYHOr0 TPEeHAa BO BCeX Habopax AaHHBIX, 3TH pa3sIduus
03HaYaloT, 4TO 00a MOJENBHBIX JKCIEPUMEHTa BIIOJIHE aJeKBaTHbI. HeOobmias 3aBblmieH-
HOCTh OLIEHOK BBICOT BOJIH B MOJEJAX, OYEBHIHO, IIPOUCTEKAET U3 cHeluduKy BeIOOpa HMH-
¢opmarm o BeTpe 11 pacyetoB. CpaBHEHHE pe3ynbTaToB RS-MonennpoBanus ¢ BU3yalbHBI-
MU HaOJIOICHUSMH BOJH Ha 1odepexse [15] ToBopuT 0 TOM, YTO 3TH pacueThl Hel0OICHUBA-
IOT BBICOTHI BOJIH IpUMepHO Ha 15 % (cM. Hamp., [16] 1 cchUIKH OTTYy/a, colepiKaline 00Cyxk-
JICHHE JIOCTOBEPHOCTH BU3YaJIbHOTO HaOIOJIeHNs] BOJIHEHHS Ha nobepexbe banruiickoro mo-
psi), TO3TOMY MOXKHO JyMaTh, YTO HMCHOJb30BAaHHBIE CKOPOCTH BETpa CJIErKa 3aHMKECHBI IS
OTKpPBITOM LEeHTpalbHOM Yactu bantuiickoro mops. Xopolliee COBHAJECHUE AO0ITOCPOYHOU
CpezHel BBICOTHI BOJIH HaJ 1moporoM Jlapc mokasslBaeT, OHAKO, YTO TOYHOCTDH OIpEeICHUs
ckopocTH BeTpa Juisi RS-pacueroB u3 Monmenn reoctpoduyeckoro BeTpa ageKBaTHa Ui IOro-
3anasHou yactu bantuiickoro mops.

AMIIIUTYIa CyTOYHBIX N3MEHEHUH B M3MEPCHHBIX BBICOTAX BOJIH COCTaBIIsIeT 2.6 cM., T.€.
moutH 3.5 % OT TONTOCPOYHOTO CpefHero. B uioHe u uroie, KOraa BEICOKHE BOJHBI MOSIBIISIOT-
sl B IHEBHOE BPEMsI, aMIUIMTyAa HaMHOTo OoJbie, mpumepHo Ha 11 u 14.5 %, cooTBeTCTBEH-
HO. B HOs10pe n exabpe cyToYHbIE BapHUallK IPOTHBOIIOIOXKHBI — 00Jiee BLICOKHE BOJIHBI BO3-
HUKAaIOT B BedepHee BpeMs. Takoi ypoBeHb KOIeOaHHA TOKA3bIBAET, YTO TOJITOCPOYHBIE OIICH-
KM TTapaMeTpOB BOJIHEHUS JOJDKHBI, BOOOIIE TOBOPS, BHIYMCIATHCS HA OCHOBAHMH CYTOYHBIX
CpefHUX 3HauYeHHUH. DTO, OJJHAKO, HE KACaeTCs OIIEHOK CBOWCTB HKCTPEMAaIbHBIX BOJIH.

Menuana i Bcex U3MEPEHHBIX BBICOT BOJH cocTaBisieT 0.64 M, a mopor mia 10, Su 1 %
BBICOKUX BOJH paBeH 1.43, 1.68 u 2.22 M cooTBeTcTBeHHO. T€ K€ 3HaYeHUs, pacCUNTaHHbIE HA
OCHOBE CPETHHUX CYTOYHBIX BBICOT BOJH, paBHHI 0.68, 1.36, 1.58 u 2.02 m coorBercTBeHHO. [lo-
9TOMY BOJIHOBBIE YCJIOBHS, IPH KOTOPBIX Hg > 2 M, yXKe SBISIIOTCS TOCTATOYHO SKCTPEMATTbHbI-
MH JUTS 3TOTO pailOHa M 4acTOTa MX BOSHUKHOBEHUs IPUMEPHO paBHa 1 %, uTo naet npubnm3u-
tenbHO 100 4 B roa. [TogoOHOE nmoporoBoe 3HaueHHE I LEHTPAIbHOM YacT bantuiickoro Mo-
pst paBHO 4 M [2]. BonHsl Beimie 3 M nosBISIIOTCS ¢ 9acToToi okoino 0.15 %, T.e. B Teuenue 13 u
B rony. Bomnel, npeBenmatomue 4 M, 3a nocinegane 20 JeT peruCTPUPOBAIICH JIHIIH BO BPEMs
TpeX MTOPMOB (MOAPOOHOCTH NaHbl HKe). Hanbomblmas, JOCTOBEPHO 3aperucTprupoBaHHAS
BOJIHA UMea BeICOTY 4.46 M 1 Habmonanack 03 Hos0pst 1995 .

Pacnipenenenns 4acToT BOZHUKHOBEHHS BOJH Pa3JIMYHON BBICOTHI (pHC. 2) KaueCTBEHHO
CXOJKH JJIS1 BCEX TPEX MACCHBOB JaHHBIX. OHU UMEIOT O0IINE YEePTHI C PACTIPENCICHUAMH IS
OTKpPBITBIX dacTel banruiickoro mops [2]. Cyrounas cpenHsist n3MepeHHas: BBICOTa BOJHEHUS
XapaKkTepHu3yeTcs, Kak U OKUAAIO0Ch, 3aMETHO MEHBIIIEH 4acTOTON HauMeHbIIeH W HauOOJIb-
el BBICOTHI BOJIH TI0 CPABHEHHIO C TAHHBIMU BCETO HA0OPA, TaK KaK IIOCYTOYHOE yCPEIHEHHE,
BUJIMMO, CIVIXKHMBAeT KpaiHue 3HadeHus. Hanbomnee yacTo BCTpedaroTCst BOJIHBI B JTUANa3oHe
BeicoT 0.25-0.625 M. Paznuuus B popme pacnpeseneHuii Ha puc. 2 CTAaHOBUTCS OUYEBUIHOW B
TEpPMHHAX MapaMeTPOB COOTBETCTBYIONINX pacipezeneHuii BeiiOymia (Tabu. 1). Otu paznuuus
MOTYT IPUBOJHTH K 3aMETHOH pa3HUIIE B OI[CHKAaX BEPOSTHOCTH BO3HUKHOBEHUS HEOJIAromnpu-
SITHBIX MOPCKHX YCJIOBHH.
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Puc. 2. YacToTa BO3HUKHOBEHHS BOJIH PAa3INYHON BBICOTHI B paiioHe mopora [lapc
¢ marom 0.125 m.
@ — 110 BceM M3MepeHHsM (Oelble NPSIMOYTrOIbHUKH) U 110 CYTOYHBIM CPEIHUM (TEMHBIE IPSIMOYTOJIbHHUKH);
0 — pe3ynbTaThl AW-MoznenupoBanus (0esble IpsIMOYroibHUKH) U RS-pacyeToB (TeMHbIC NPSMOYTOJIbHUKH).

Pacripenenennst BBICOT BOJMHEHHS B paMKax o0eMX Mojeled O4eHb OJM3KH, CO 3HAYH-
TEITHHON pa3HMIICH JHUIIH JJIs BOMH BEICOTON MeHee 0.5 M. PacueTsl ¢ MCHONB30BaHHUEM TE€O-
CTPO(HUUECKOT0 BETPa 3aBHINIAIOT JOIIO BONH ¢ BbicoTamMu 0.25-0.5 M, HO JarOT pe3yiabTaThl,
Ooutee OIM3KKE K M3MEPEHUSIM ISl O4€Hb HU3KKX BhICOT BoHeHUs (MeHee 0.125 m). HanbGonee
3aMETHOE Pa3iIM4Yhe PaCHpeACICHHM, PACCUNTAHHBIX 0 U3MEPEHUSIM U MOJEIBHBIM JIaHHBIM,
MIPOSIBIIICTCS. B TOM, YTO 00€ MOJEIH IEPEOIICHUBAIOT YaCTOTY BOJIH C BBICOTOW B JMAla3oHE
0.375-0.5 ™M u HenmoonenuBaroT B nuanazone 0.125-0.25 M. RS-pacuers Takke HECKOIBKO
3aBBIMAIOT 4acTOTy BoJH ¢ BbicoTamu 0.25-0.375 m. OOmiast BEpOsITHOCTh BOJIH BBICOTOH <
0.5 M mouTH oxuHaKoBa A 00eux Mozeneill. Cy>KeHHOCTb pacIpelleNIeHUs BHICOTHI BOJIH IIPH
RS-monenupoBanuy, 04eBUAHO, OOYCIOBIICHA HU3KUM Pa3pelieHHeM IeocTpopUUecKux BeT-
POB, KOTOpBIE MPEACTABIAIOT YCPEAHEHHBIE CBOMCTBA BETpa HAaJ JOBOJBHO OOMIMPHBIMU 00-
nacTsMH (IpuMepHO 1Xx1°) M M0ITOMY MMEIOT TeHACHIHUIO CIIAKUBATh OYEHb HU3KUE U OYECHb
BBICOKHE JIOKAJIbHBIE 3HAYEHHsI CKOPOCTH BETPA.
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Heo0xoauMo OTMETUTh, 4TO 00a BHJIa PACYETOB BIIOJHE KOPPEKTHO BOCIIPOM3BOJAT U3-
MEpEHHBIE pacIipeleIeHNs] YaCTOT BOSHUKHOBEHUS BOJH C BbIcOTOH > 0.5 M. Mozenu npeacka-
3BIBAIOT UyTh MEHBIIYIO JOIIO BOJH ¢ BEICOTON 0.625—1.125 M 11 9yTh OOJBIIYIO JOIIO C BBICO-
TOM, TIPEBHIIAIONIEH | M, IO CPaBHEHHIO C pacIpeielIeHHeM H3MEPEHHBIX BOJIH, HO 3TH Pa3iIH-
yus HeBeNWKHU. [1loaToMy MOAEIMpoBaHHe — Kak ¢ HCIOJIb30BAaHHEM T'e0CTPOPHUYECKOTO BETPA,
TaK ¥ C BETPOBBIMH [JAaHHBIMH, MOJIYYEHHBIMH IIyTEM JOBOJBHO CJIOKHOTO aHaln3a
NCEP/NCAR, — maeT oInHaKOBOE B IIEJIOM Ka4eCTBO BOCIIPOU3BEICHHUS CTATHCTUKHA BHICOT B
YCIIOBHUSX YMEPEHHOTO BOJHEHUS (37ech B nuanasone 0.5-3 m).

Pacnipenenenust 4acTOTEl MOBTOPSAEMOCTH BOJIH PA3JIMYHOMN BBICOTHI CXOAHBI C ABYXIapa-
METPUYECKUM pacmpeneiienueM BeliOyiuia, Mmo3ToMy Takoe Pachpee/icHUE ¢ MHTErpaibHON
(byHKUMeH pacipenesieHus BUaa

k
F(x,k,b)=1-exp —[z)

MOJKET OBITh MCIOJIB30BAHO /ISl OLIEHOK IIOPOTOB BCTPEYaEMOCTH BBICOKHX BOJIH, OJ0OHO TO-
MY KaK 3TO 4acTO JieJaeTcsl Ul CKopocTH BeTpa. [Ipn 3aganHbIX 3HaYeHUSIX apaMmeTpoB ¢op-
MBI ¥ Maclutaba, k 1 b, BEpOATHOCTb TOTO, YTO BBICOTA BOJIHBI /i IPEBBICUT 33JaHHBIH YPOBEHb

H, HaxomuTcs Kak
k
H
Ao (2]

[Tapamerpsl k£ 1 b 17151 BOJH U3 TPEX pacCMaTpUBAEMBIX MacCHBOB JaHHBIX (Tabum. 1) pas-
JMYHBI MEXIy COOOH, a TakKe CHIBHO OTIMYAIOTCA OT pacupenenenus Pases ¢ k = 2, kotopoe
YacTO UCIIOJIB3YETCS JUIsl OIMCAHUs PACIIPEICIICHUSI CKOPOCTH BETpa B CEBEPO-BOCTOYHON EB-
porie. VIHTepecHO, YTO OTKJIOHEHHWS JOBOJBHO BENHMKH /IS TMapaMerpa k, OTBEYAIOMIEro 3a
(dopmy, HO OrpaHHUYEHBI IS TapaMeTpa MacurabupoBanus b. I[loaromy B oTanume oT momo6-
HBIX pacIpeeJICHUui I CKOPOCTH BETpa Ha NMPUOPEKHBIX CTAHIMIX B CEBEPO-BOCTOYHOM
yactu banrtuiickoro mops [26], HaubopIINe pa3Iundus B CPEAHUX BBHICOTaX BOJHEHHS OOBSIC-
HSIOTCS PAa3HBIMU 3HAYCHUSMH IapameTrpa k. OTa 0COOEHHOCTh TOBOPHUT O TOM, YTO «XBOCTBID»
COOTBETCTBYIOIIMX TEOPETUYECKHX PpacIpee]IeHnHi MOTYT CYIIECTBEHHO pa3iMuaThbes. JTa
TUIIOTE3a TIOATBEPIKIACTCS JAaHHBIMU Ta0Jl. 2: TEOPETHUECKHE OLEHKH MOpOra JJjisi OUYeHb BbI-
COKHMX BOJH 3aMETHO OTJIMYAIOTCS Ul TPeX MAacCHBOB JaHHBIX. boiee Toro, TeopeTHyeckue
OLICHKH ITOPOTOBBIX 3HAYECHHH CYLIECTBEHHO OTIMYAIOTCS M OT BHIYMCICHHBIX HA OCHOBE H3Me-
PEHHBIX, M OT ITOJIYYCHHBIX II0 pe3yJibTaTaM MOAEIUpoBaHus BenuuuH. [loaToMy pacmpenese-
HUSl PACCYMTAHHBIX M MOJEJBHBIX BBICOT BOJIH B ILIEJIOM HE IOAYMHSIOTCS pacIpeiesIeHUI0
BeiiOymra, 1 OHO HE MOAXOIMT JAJS PEKOHCTPYKIUH MapaMeTPOB JKCTPEMaJbHBIX BOJH MO
9KCIIEPUMEHTAILHBIM U YHCIICHHBIM JAHHBIM, JlaXKe Ul palloHOB MOps ¢ OTpaHUYEHHBIMHU yC-
JOBHSAMH TPH pasroHe BoiH. O4eBUIHAS MPUYNHA HECOCTOATEIBHOCTH TaKOH TEOPETHYECKOI
MOJIENT KPOETCsl B TOM, YTO IPH ONPE/EICHHBIX YCIOBHIX B paccMaTpUBaeMylO aKBaTOPHUIO
MOTYT TIPUXOJIUTh JUIMHHBIE U BBHICOKHE BOJIHBI, TEHEPHPYEMbIE B IIEHTPaIbHOM dacTu banrtuii-
CKOro Mops (CO CBOﬁCTBaMH, HE OIMUCBIBACMBIMU CTATUCTUYCCKUMU PACHPCACICHUAMU JIs
JIOKaJIbHO 00pa3yIOLIUXCs BOJIH).

Emne Gomnbiive pa3nuyus B CTATUCTHYECKUX CBOIMCTBAX M3MEPEHHBIX U MPOTHO3UPYEMBIX
BOJIH BUJHBI [IPH aHAJIM3E PacIIpeleIeHni CpeqHUX epHoI0B BOIH (puc. 3). DTH pacmpenene-
HUsI ACHMMETPUYHBI CO CIBUTOM B 00Jiee KOPOTKHE BOJNHBI M IIOKa3bIBAIOT, YTO HanboIee yac-
TO BCTPEYAIOTCSl BOJIHBI C IepHoAaMu okoio 3 c¢. Pactipenenenus miust AW-MolenupoBanus u
9KCHEPUMEHTAIBHBIX JaHHBIX 04YeHb Y3Ku: 70 % BOJH UMEIOT Iepuojbl B AnanasoHe 2.5-4 c.
OTMeTHM, 4TO YacTasi BCTPeYaeMOCTh BOJH ¢ nepuogamu 2—4 ¢ BooOIIe XapakTepHa JUis pH-
OpesxHbBIX akBaTopuil bantuiickoro mops [2, 27]. IByXIHuKOBas CTPYKTypa paclpeneieHuit A
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000X MOZAENBHBIX HAOOPOB JAHHBIX €llle pa3 MOATBEPXKIaeT BBICKa3aHHOE MPEIOI0KEHHE O
TOM, YTO PEKUM BOJHEHHS B PacCMaTpHBAEMOM MeECTE — CYNEpPHO3HIUS JIBYX DPa3IHMYHBIX
KOMITOHEHTOB: JIOKATBHBIH (TIPUOPEKHBIN) PEKAM BOJHEHHS, BO30YKIa€MOTO HETIOCPEICT-
BEHHO B JJaHHOM OacceliHe, IIII0C COBOKYITHOCTh APYTUX BOJHOBBIX COCTABISIOIINX, IPOUCXO-
JKJIEHHE KOTOPBIX CBS3aHO C IIEHTPAILHON 4acThio banTuilckoro Mopst ¥ OTHOCSIIIUXCS K BOJI-

HOBOMY PEKHUMY OTKPBITOI'O MODSL.

Tabnuya 1
[MTapameTpsl pacnpezeneHus BeiiOyia aiis pa3audHbIX HAOOPOB TaHHBIX
Bricora
HOpOI‘ JUIA Hanbosiee BBICOKHX BOJIH, %
g BOTHET Tonosoit
= 1 05 0.1 A
<=): = MAKCUMVM
& = k| b
3 ) E o < o < o < o <
g = | E = |5 |2 |5 |E |5 |E |3
= g s B = g = z = z =
15} & = o = o = o = o
W3mepenust 0.64 | 075 | 1.59 | 0.84 | 2.22 | 2.18 | 2.51 | 2.39 | 3.19 | 2.82 | 3.37 | 3.50
AW- 0.68 | 0.84 | 1.41 | 0.83 | 2.74 | 2.32 | 3.06 | 2.55 | 3.86 | 3.05 | 4.01 | 3.66
MOﬂeﬂHpOBaHI/IC
RS-pacuer 0.6 | 0.80 | 1.38 | 0.82 | 2.89 | 2.50 | 3.29 | 2.76 | 4.19 | 3.35 --- | 4.09

IIpumeuyanue. JlaHHbIE — BBIYUCIIEHUS] HA OCHOBE COOTBETCTBYIOLIEr0 HAOOpPA, OLIEHKA — BBIYUCIEHUS C MC-
oJIb30BaHHEM pacnpeneenus Beitbyiia. IToporosbie 3HaueHus Uit BOJIH, HOSIBIISIOLIMXCS C BEPOSTHOCTBIO 1,
0.5 u 0.1 %, Ha ocHOBaHUHM pacnpeneneHus: BelOyiia ¢ mporHo3upyeMbIMU apaMeTpamu. ['010BOM MakCUMyM
BBICOT BOJIH paCCUMUTAH KaK CPEAHEE COOTBETCTBYIOIINUX I'OOBbIX HANBBICIINX BOJIH.

OueHb penkas BCTpedaeMocTb BoJH ¢ nepuonamu Hike 2 ¢ (0.02 %) B HabiaromaeMbIx
BOJIHOBBIX IIOJISIX B OCHOBHOM, OYEBH/IHO, CBSI3aHA C OrPAHUYEHHBIMUA BO3MOXKHOCTSIMU BOJIHO-
HU3MEPHUTEIBHOTO OYs1, KOTOPBIA paboTaeT B auamna3oHe mepuoaoB BosH 1.6-30 ¢. AHaIOru4HO
oOpe3anne nuana3oHa MEepHoAOB BOJH OT 1.5 ¢ i HIke B AW-BBIUNCIIEHUSX OOBSICHACTCS OT-
pPaHWYEHHBIM WHTEPBAJIOM YacCTOT B 3TOW MOJENN: Hanboee KOPOTKUE BOJHBI, YIUTHIBACMbIC
B pacuerax, UMEIT Mepuo okoyio 1.5 ¢. DTo pacxoxaeHue, BUIUMO, TPUBOJUT K YCUIIEHUIO
MUKa JJIs BOJH C MEpPHOJOM HIKEe 3 ¢ B paccMarpuBaeMoM pacnpenenenuu. B RS-pacyerax
YUUTBIBAIOTCSI BOJHBI ¢ TieproaoM oT 0.5 c. IlockoiabKy HaMMEHBIIUH MEpHOJ, KyJaa MPUXO-
IuTCs MUK pactpeneneHus st 1970-2007 rr., pasen 1.03 ¢, To, 0 Bceld BUIUMOCTH, HET HE-
00XOIMMOCTH BBIOMPATH TAKOW INMHMPOKHUH IHANa3oH IEepHOAOB IPHU IPOTHO3UPOBAHUH BOJIHE-
Husl, HO niepuojsl B 0.7-0.8 ¢ HeCOMHEHHO HEOOXOIMMBI JIJIsI IPABUIIBHOTO PAa3pEIIeHHUs BBICO-
KOYaCTOTHOW YacTH BOJHOBOT'O CIIEKTpa B 3TOM OacceifHe. DTH pe3yJbTaThl TAKXKe TOKa3bIBa-
0T, 4TO B pacCMaTpUBAaEMO aKBaTOPUH YacTO POKAAIOTCS BOJIHBI CO CPEIHIMH MEPHUOJAMHU B
nuamnasone 1.5-2.2 ¢, kotopele He (PUKCHUPYIOTCS B HATYpPHOM 3KCIICPUMEHTE U HE BOCHPOM3-
BoJsITCS Tpu AW-MOJIeTMpOBaHUY.

Hawnbonee nHTEpecHONH 0COOEHHOCTBIO paclipeesIeHns IEPUO/I0B Ha PHC. 3 B KOHTEKCTE
BO3HUKHOBEHUS JJIMHHBIX M BEICOKMX BOJIH SIBJIIETCS OOJIBILIOE PACXOXKACHUE MEXKAY YacTOTOH
MOJIETUPYEMBIX W N3MEPEHHBIX BOJH C EPHOAAMH, ITpeBhIIIaonmMu 4 ¢. Pactipenenenue mo-
JIeTTUPYEMBIX TIEPHOJIOB TOpa3o 0ojIee OTKIOHEHO B CTOPOHY OOJBIINX 3HAUYCHHUH, U TIEPHO/IBI
CBBIIIE 6 C BCTPEYAIOTCS C 3aMETHOW 4acTOTOW. BOJHBI TaKMX IEPHOIOB HE MOTYT T€HEPHPO-
BaThCA JIOKAJIBHO H3-3a OFpaHH‘ICHHOﬁ JJIMHBI pasroHa v, 1o Bcel BUAUMOCTHU, MPUXOOAT U3
LeHTpaIbHOH yacTH bantuiickoro Mops. B obmem, monennpyemoe pactpeaeicHne MOXKeT OT-
pakaTh CyINEpPIO3UIHUIO IBYX BOJTHOBBIX PEKMMOB: JIOKAJIbHO TEHEPUPYIOMINXCS BOJH C XapaK-
TEPHBIMH TIEPHOIAMH OKOJIO 3 C M IOCTATOYHO YacTO ITOSIBIISIOIIMXCS] BOJTHOBBIX CHCTEM C Tie-
puogamu > 4 c, 3apokaaroIuxcst B Apyrux pailonax bantuiickoro mops. Taxxke cTout cka-
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3aTh, YTO 3TA YACTh PACHPEICIICHHUS MEPUOJI0OB BOJH MOYTH COBIMAMACT JII 000UX MOIEITBHBIX
HaOOPOB MaHHBIX C HACTOJIBKO Pa3HBIMU BHEUTHHMHU BO3JCHCTBHAMHU. DTa YepTa emie pa3 Mmoj-
TBEP)KIAET, YTO IPOTHO3HOE MOJEIHPOBAHWE BOJHCHUS C IIOMOIIBIO MPOCTEHINTNX YTOYHCH-
HBIX TEOCTPO(UYECCKAX BETPOBBIX IMOJICH BOCHPOM3BOMUT OOJBIIYIO YacTh CTaTUCTHUYCCKUX
CBOICTB BOJIHOBBIX ToJiel B banTtuiickom mope.

10

9

YacTtoTa,
[4;]

Mepuog sonH, ¢

Puc. 3. Pacnipenenenue cpefHIX MEPUOIOB BOJH MO JAHHBIM U3MEPEHUI.
Pesynbratel AW-monenupoBanus: 1991-2010 rr. — cBetible npsiMoyroibHuku; 19572002 rr. — TeMHble
npsIMOYyTroTbHUKH. KpyKku U kBagpatsl — 3HaueHus i nepuoaa 1991-2002 rr., mOKpBHITOro 000MMH HabopaMu
nmanHbIX. PoMObI — manubie RS-moaenuposanus st 1970-2007 rr.

CxoACTBO pacnpeiesieHuil IepuoA0B MoAeIupyeMbIX BosH 3a 1957-2002 rr. u 3a mo-
neiaTepBai 1991-2002 rr., korjna AOCTYIHBI U U3MEPEHHbIE, U MojielibHble (AW) naHHbBIE, ro-
BOPHUT O TOM, YTO 3TO PaCIHpe/eIEeHUE ABISIETCS] YCTOMUMBBIM B T€UEHHE MHOTHX JECSTUIECTHH.
AHaNoTHYHOE 3aKITI0UYCHUE MPUMEHUMO W K IKCIEPHUMEHTANBHBIM JaHHBIM 3a 1991-2010 u
1991-2002 rr. 3TO MpEenIoNoKEHNE COBIAAaeT C MOAOOHBIM 3aKJIIOYEHHUEM O TOM, YTO Cpejl-
HUE Nepuojsl BoJH B bantuiickom mMope u3MeHsoTcs odeHb ciabo [27]. [TosTromy moTeHu-
JIbHBbIE U3MEHEHUS TIEPHO/IOB BOJTH B MOpPE HE MOTYT OBITh IPUUMHON pa3iIHuuii B pacnpese-
JICHUSX MOJETBHBIX U U3MEPEHHBIX MIEPUOJIOB BOJIH. IIpOMyCKH B MOTOKE JaHHBIX ¢ Oys UMEIOT
00IIyI0 TPOIOIDKUTENHLHOCTE OKOJIO 8 MEC. M HE MOTYT SIBJIATHCSI HCTOYHUKOM Takoro OOJIbIIo-
ro pa3iuyus B pacrpesesieHny neproaos. Kpome npobieM mMozenu Wi HEUCIIPaBHOCTH Oys
IIPU OTIPEJENICHHBIX YCJIOBUSAX BO3MOYKHOM NPHYMHOM pa3nuyuii MOTYT OBITh pa3Hble MHTEp-
MIpEeTalliy BOJHOBBIX KOMIIOHEHT, MPUXOAAIINX C Pa3IMYHbIX HalpasleHUH. AHanu3 B paboTe
[17] mo3BomseT cuenath BRIBOABI O TOM, YTO JaHHEBIE ¢ Oys MAlOT 3aHWKCHHBIC TIEPUOIBI IS
JOCTaTOYHO BBICOKUX (> 1.5 M) u jumHHBIX (11epuos > 4.5 ¢) BOJH.

JKCcTpeMATbHbIE YCIOBHA. AHAIN3 COBMECTHBIX PACIPEICICHUN BHICOT M IEPHOIOB
BOJH [17] moka3piBaeT, 4To B OOJBIIMHCTBE ciaydaeB ¢ H¢ >1 M KOMOWHAILIMK BBICOT U Cpel-
HUX TICPUOJIOB BOJIH 0O0Jiee MM MCHEE COOTBETCTBYIOT BOJIHEHHUIO cO criekTpoM JONSWAP.
JpyruMu cioBamMu, THITMYHBIE IITOPMOBBIE YCIOBUSI COOTBETCTBYIOT OOJIbIIEH KPYTH3HE BOJIH,
YeM UL pa3BUTOTO BONHEHUS co cnekTpom [Impcona—Mockosuna (IIM). [Tostomy mrTopmo-
BOE BOJIHEHHUE 3]IeCh OOBITHO MMEET TOBOJIHHO OONBIIYIO KPYTH3HY U TEM CAMBIM OIIACHO IS
CYJIOXOJICTBA U APYTOM MOPCKOH JEATETBHOCTH. DTO CBOMCTBO HE OBLIO CIUIIKOM HCOXKUIaH-
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HBIM, TaK KaK MOJ00Has YyepTa B OCHOBHOM IPUCYIIIa BOJHOBBIM NOJISIM B bantuiickom Mope, a
T10JI€ BOJTHEHUS B PACCMATPHUBACMOM aKBaTOPUH UMEET OIPaHUIEHHBIC YCIOBHUS JUIA Pa3roHa.

B oTnmune sKcriepuMEHTaNbHBIX JaHHBIX 3HAYUTEIFHOTO BOJTHEHHS, TapaMeTphl KOTOPO-
r'O XOpOIIO ONMHUCHIBArOTCS criekTpoM [IM, Hambosee BBICOKHE MOIEIHPYEMBIE BOJHBI UMEIOT
NepHOABI TPUMEPHO Ha 2 C JUIMHHEE, YEM aHaJIOTUYHOE BOJHEHHE co criekTpoM [TM.

OKCIIepHUMEHTAIbHbBIC TaHHBIE, KaK 3TO OOBIYHO OBIBAaET, COIEPIKAT HECKONBKO HEIpPaB-
JIOTIOIOOHBIX 3amicel BRICOKMX BoH. OHM OBLTH MCKITIOUEHBI 3 aHamm3a. B tabmn. 2 man 0630p
CBOHMCTB BOJIHEHHS BO BpeMsI TPHHAALATH HanboJee Cephe3HbIX MTOPMOB B pacCMaTpHBaEeMOi
aKBaTOPWH, HAYMHAS C U3BECTHOTO IMKIIOHA «[ yapyH» B ssHBape 2005 1., BO BpeMsi KOTOPOTo
BO30YK/IAINCh SKCTPEMaJIbHO BHICOKME BOJIHBI [11], ¥ ObLI yCTaHOBIICH PEKOP]] HATOHA YPOBHS
BOJIbl B CEBEPO-BOCTOUHOM YacTu banTuiickoro mopsi.

HauOonpmme mocToBepHBIE BBICOTHI BOJH 3apETHCTPUPOBAHBI Hajx moporoM Jlapc
3 HostOpst 1995 r., KOTNa 3HauUMTeNbHAs BBICOTa BOJH mocturana 4.46 m (puc. 4). CpoiicTBa
AW-MozienupyeMbIX BOJIH B COBEPIIECHCTBE BOCIIPOU3BOMSAT pacIipeelIeHue BBICOTHI BOJIH BO
BPEMEHU M TOJIbKO HEMHOI'O 3aHWXKAIOT ee o0umi MakcumyM (3.93 m). MakcumyM mTopma
JOCTHTAJICS TIPU CEBEPO-BOCTOYHOM BeTpe. AKBAaTOpHs B paiioHe mopora Jlapc mouyTtu momHo-
CTBIO OTKpBITA MO 3TOMY HampasieHuio (puc. 1). MakcumanbHas CKOPOCTh BETpa COCTaBHIIA
20.1 m/c. OT™MeTHM, 4TO MOJENIBbHBIN NieproA BosH (7.7 ¢) ObLI mouTH Ha 2 ¢ OoJbIIe B anoree
mTOpMa, YeM U3MepeHHbIi repuon (6.2 c).

ITopM mouTH TaKoii ke CHiIbl pousolien 14 Hosopst 1993 r., korna oro-3amnajHon Be-
Tep OBICTPO mocTUT ckopocTu okoio 21 m/c. BHoB B AW-pacderax IMOYTH TOYHO BOCIIPOH3-
BEZICHO M3MEHEHHE BBICOTHI BOJIH CO BPEMEHEM, HO JUIMTEIFHOCTD CHIIBHOTO BOJTHEHUS CJIETKA
3aBblllIeHa. BoHOM3MEpUTENh MIPH 3TOM, KaK 00CYX/Ialoch BBIIIE, SIBHO HEJIOOICHUBAET Iie-
pUOAbLI BOJIH BO BpEMA 3TOT'0 HITOPMA.
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Puc. 4. lItopmoBoe BostHeHne Hax moporoM [lapc B ssaBape 1993 u HostOpe 1995 rr.
)KPIpHaSI JIMHUSA — DKCIICPUMEHTAJIBHBIC IaHHBIC, IYHKTUPHAA — AW—MO,I[CJ'II/IpOBaHI/IC.

B paccmarpuBacMoM paiioHe MOpsI BETPbl MOTYT OBbITh M CHJIbHEE, YEM yKa3aHHBIC B
Tab1. 2, MO3TOMY €CTECTBEHHO OKHAATh, YTO OITOCPOYHBI MaKCHMyM BBICOTBI BOJIH MOJKET
OBITH CYIIECTBEHHO OOJIBIINM, YeM MaKCUMaJIbHbIC 3HAYCHUS, YKa3aHHbIC B Ta0JI. 2. DTO moa-
TBepxkIaeTcsi AW-MOAeIMpOBaHUEM: TPECKa3bIBAEMbI OOIIMI MakCHMYM BBICOTHI BOJH B
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paitone nopora [lapc 3a mepuon ¢ 1957 mo 2002 r. cocrapnser 6.23 M (26 ssuBaps 1990 r.). Otu
pacyersl, OJJHAKO, HE YYUTHIBAIOT BO3MOXKHOTO OOPYILEHHS BOJIH 32 CUET B3aMMOJEHCTBUS C
JITHOM U MOT'YT B HEKOTOPOUW CTEIEHH 3aBBIIIATH BBICOTY IKCTPEMAIbHBIX BOJIH. TeM He MeHee
OYEHb BEPOSITHO, YTO Ha JIAHHOM aKkBaTOPHH BO3MOXXHBI OJMHOYHBIE, OUYCHb CHIIBHBIE IITOPMBI
Y 4TO 3HAYUTENbHAs BHICOTA BOJH BIIOJIHE MOJKET MPEBHIIATh 5 M Aaxe Haj noporom Japc u
OBITH CYIIECTBEHHO BbIIIE B OacceitHe ApKOHa.

Tabnuya 2
MakcumanbpHble XapaKTepPUCTUKH BOJTHEHHUS U BETpa BO BpeMsI HanboJiee CUIIbHBIX IITOPMOB
B MecTe u3Mepenuii, 1991-2002 rr.

JlanHble u3MepeHnit AW-MonenupoBanue Betep
Tlata cpeaHui cpenHui
H,™m epUoOa H,™m nepuos CKOPOCTh HaIpaBJICHUE
T c T c

14.01.1993 3.86 5.97 3.73 6.45 21.0 10 n0 103
03.11.1995 4.46 6.56 3.92 7.45 20.1 CB
04.12.1999 3.86 5.71 3.87 6.65 21.1 103 510 3
21.02.2002 3.76 6.06 3.68 6.65 21.1 CB o C

Tabnuya 3
MakcuManbHbIe H3MEpEHHbBIe XapaKTepUCTHKU BOJH BO BpeMs Han0oJee CHIBHBIX IITOPMOB
B MecTe u3Mepenuii, 20032010 rr.

)IaTa I[aHHbIe M3Mepeﬂuﬁ HanpaBneHHe HpI/IXO}la BOJIHBI
H, M T, c H,
18.11.2004 3.54 5.56 103 10 3
08.01.2005 3.47 5.63 103
13.02.2005 >3.52 - _
23.02.2005 4.01 6.90 BCB
31.12.2006 3.63 5.80 10 10 3
27.06.2007 3.71 5.56 3103
22.03.2008 3.68 6.15 CB
10/11.01.2010 4.01 6.90 CCB
30.01.2010 3.65 6.02 CCB

Bapuanun xapaktepucTuk HamGosee BHICOKUX BOJH. [1o naHHBIM Talbi. 2, necsats u3
TpPHUHAILATH HauOoJiee CHIIbHBIX IITOPMOB (BKIIIOYAs JIBA U3 TPEX CIy4aeB, KOTJa 3HAUYUTEIb-
Hasl BbICOTA BOJIH JIOCTHTasla 4 M) 3aperHCTPUPOBaHbI BO BTOPOM JECATHIIETHH M3MEPEHUM.
OnHaKo YMCIIO TaKHUX IITOPMOB HEIOCTATOYHO BEJHMKO JUIS TOTO, YTOOBI AETaTh JOCTOBEPHBIE
BBIBO/IBI 00 YKECTOUEHHH BOJHOBOTO KJIMMaTa B pacCMaTpUBaeMoil 001acTH.

AmHanu3, npoBeeHHBIN B padote [17], mokasaiu, 4To He ObUIO 3aUKCHPOBAHO CTATHUCTH-
YEeCKH 3HaYMMBIX H3MEHEHUH CPEeHEroI0BBIX XapaKTEPUCTUK MOACTHUPYEMBIX U IKCIIEPUMEH-
TaJIbHBIX JAHHBIX HU JUIS OJHOTO M3 TpeX HaOOpOB AaHHBIX. VI3MEpEHHBIE BEICOTHI BOJIH U3ME-
HSIIOTCSI KBa3WNEPHOANIECKN: CaMble BBHICOKHE BOJIHBI (PHUKCHPOBAINCH Okoio 1995, 2005 n
2010 rr., Torna kak Ha pyOexe BEKOB OTMEYaeTCsl CHUIKEHHE BOJHOBOI aKTHBHOCTH. Takue
BapHalliy BBICOT MOBTOPSIIOT aHAJIOTHYHBIE 3aKOHOMEPHOCTH, 3apETHCTPHUPOBAHHbBIE MO JaH-
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HBIM BH3YyaJbHBIX HAOJIIOMCHUI Ha JTUTOBCKOM mobepexbe [28]. dopmaibHO TPEHI BBICOT U3-
MEpEHHOTO BOJIHEHHS MOHMKaerca (Ha 18 MM 3a mecsatmierne). B oTnmume ot curyanuu B
@unckom 3anuse [16], mopor mst 10 % camMbIX BEICOKHX BOJH, XOTS U HOABEPKEH HEKOTOPBHIM
MEXXTOJIOBBIM BapHAIUAM, TAKXKE HE BBISBISCT HU JOJITOCPOYHOTO TPECH/A, HA SIBHO BBIPAXKCH-
HOW MHOTOJICTHEH W3MeHYMBOCTH. CpPETHErOIOBBIC 3HAYCHHS 3THX XAPAKTCPUCTHK OJM3KU
IpYyT K JIpYTy A BCEX TpeX HCCIeNyeMbIX HaOOpOB AaHHBIX. VX MEXrogoBoe MOBEACHUE
TaK)Ke OYEHB CXOJHO MEXIY COOOW M C TOIOBOIl CpeaHel BBICOTOI BOJH, 32 MCKIIOYCHHEM
1995 r., korna U3MEHEHUS IPOUCXOIMIN TI0-pasHoMy [17].

Mo cpaBHEHUIO ¢ YCPEAHEHHBIMU 3HAYCHUSIMU TOJIOBasi MAKCUMAJTbHAsI BEICOTA BOJHBI U TO-
JIOBBIEC 3HauYeHHs MOporoB st 1 % Hanbosee BHICOKMX BOJH JEMOHCTPHPYIOT, KaK U OXKHUAAIIOCH,
JOCTAaTOYHO OOJBITYI0 MEKIYTOANYHYI0 H3MEHUHBOCTh, 1 OCOOCHHO BBICOKHE IHUKH (COOTBETCT-
BYIOIIME OTAEIBHBIM CHIIBHBIM ITOpMaMm) (puc. 5). MHTEpecHo otMeTnTh, uTo mopor st 1 % ca-
MBIX BBICOKMX BOJH MMEET Pa3IMIHBIA TPEH IUTI MOJCIMPYEMBIX U U3MEPEHHBIX BOJH. Ero 3Ha-
YeHus o pe3yabTaraM AW-MoJlenupoBaHus IOUYTH He MeHstoTcs B Teuenue 1958-2002 rr., Torna
KaK 3Ha4YEHHsI, OIICHECHHBIE TT0 U3MEPEHUSIM, YMEHBILIAIOTCS CO CPABHUTEIBHO BBICOKOM CKOPOCTBIO
—Ha 72 MM 3a aecstuiieTre. CKOPOCTh 3TOrO CHIXKEHHs ObLIa ObI eriie OoublieH, eciu Obl He 3a-
metHbIH K 2010 1. (puc. 5). B pamkax ducieHHON MOAENH IMOpoTH, 1Mo JaHHBM 1 AW-, u RS-
pacyeroB, COBIAAIOT MEX/I1Y COOOH M € TIOpOTraMu, MOTyYEHHBIMH Ha OCHOBAaHMY M3MEPEHUI IS
Hayana 1990-x rogoB. M3mMepeHHbIe 3HaUeHUST OTKIIOHSIOTCS OT MOJAENBHBIX K KOHIY 1990-x ro-
JIOB, CTRHOBSICh IPIMEPHO Ha | M (T.e. moutu Ha 50 %) HiKe, YeM oLeHKH Mozenu. [IpranHb! Ta-
KOTO pPAcXOXICHHS HE BIIOJHE SICHBI, HO HECOMHEHHO TPEOYIOT NaJbHEHIero HCCIeOBAHMS
CBOWCTB BOJIHEHHS B 3TOM paiioHe U Bo BceM bantuiickoM mope.
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Puc. 5. XapakTepructuku Hanbosee BBICOKHX BOJTH.
1- TOAOBBIE MAKCUMYMBI BBICOT, U3MEPEHHBIX, 2- MOJCIUPYEMBIX BOJIH, 3- TOOOBBIC ITOPOTHU
s 1 % Haunbonee BbICOKHX BOJIH: 3 — u3Mepenust, 4 — AW-pacuertsl, 5 — RS-pacuersr.

MHorouieTHss IMHAMHUKa MAaKCUMAJIbHBIX TOJOBBIX CPEJHHUX BBICOT BOJIH B AW-pacuerax
XapaKkTepHu3yeTcsl MII000pa3HO CTPyKTypoi. BennumHa 3TOT0 mapaMeTrpa MOCTEIIEHHO BO3-
pactaet ¢ 1960-x romoB 10 1990 r. (OT XapaKkTepHBIX 3HAYCHUH, paBHBIX OKOJIO 3.5 M0 MOYTH
4.5 M), 3aTeM pe3ko cHuxkaeTcs B 1991-1992 rr. u nanee omsiTh MOCTENEHHO YBEIMYHUBAETCA.
Takoe moBeeHNE TOBOPUT O CYIIECTBEHHOM M3MEHEHWH YCJIOBHI T'eHepalluy BOJIH, KOTOPOE,
MTO-BHIMMOMY, TIPOHM30IUIO B paccMaTpuBaeMoM paiioHe B Hawane 1990-x romoB. OTmeTnM,
YTO UMEHHO B 3TO BPEMs CPEIHEroJ10Basi BHICOTA BOJH 3aMETHO BBIPOCTA Ha 3aIaJHOM Io0e-
peXbe DCTOHMU, HO 3HAYMTENBHO ynaia Ha modepexbe JIuTeel [28]. YMo3puTenbHoe 00bsic-
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HEHHE 3/IeCh MOXKET OBITh CBS3aHO C TE€M, YTO HAMPABJICHUE BETPA BO BPEMs CHIIBHBIX IITOP-
MOB CYIIECTBEHHBIM 00pa30M H3MEHHJIOCH NMPHMEPHO Ha AECATHIIETHE. DTO MPEIIOI0KECHHE
COrJIacyeTcss C JaHHBIMH O IIOBCEMECTHOM W3MCHCHUHW HAIPAaBIICHUI BeTpa B CEBEPO-
BOCTOYHOM Yactu bantuiickoro mops [16, 29].

Eme omHa mHTepecHas OCOOCHHOCTh — TOZOBas MaKCHMajdbHas BBICOTA HM3MEPCHHBIX
BOJIH MTOYTH TOYHO COBIIAJAET ¢ Ipeacka3zaHusMu RS-monenuposanus B 1992—-1995 rr., Ho 3a-
METHO pa3ifyacTcs B IMocleayromee Bpems. JIFDOOIBITHOE CBOMCTBO COCTOHT €Ile U B TOM,
YTO TPEHJ] TOJOBBIX CAMBIX BHICOKHX M3MEPEHHBIX BOJH U mopor s | % BBICOKUX BOJIH, pac-
CUMTAHHBIN MO JaHHBIM U3MEPEHUH, CYLIECTBEHHO pa3auydHbl. B cepeaune 1990-x ronosB Mak-
CHUMaJibHas BHICOTA BOJIH MOCTETICHHO YBEJIMYUBAIOTCS, TOra Kak 1 %-HbIil Opor CyIiecTBeH-
HO yMeHbIIaercs ¢ 2.8 1o 2-2.2 m.

sksksk

BonHoBo# knumar B paiioHe mnopora Jlapc moBTOPsiIET HEKOTOPbIE XOPOILIO H3BECTHBIC
0COOEHHOCTH BOJIH B TIONTY3aKPBITHIX OacceifHax banTuiickoro Mops: OTHOCHTEIFHO yMEpeH-
HBI€ JIOJITOCPOYHBIE 3HAYEHHS BEICOTHI BOJIH, IIEPHOBI OOBIYHO B AnamnazoHe 2—4 ¢ u Hanbosee
yacTasi BBICOTa BOJIH — 0Kk0j0 0.5 M. Mozenu BOJIHEHHsI Pa3yMHO BOCIPOM3BOAAT KakK Cpell-
HIOIO BBICOTY BOJIH, TaK M pacIpeleeHUe BOJIH pa3IM4YHBIX BBICOT. MOAENIsIMH, YIUTHIBAO-
IIMMH BO3/EHCTBUE BETpa C BHICOKUM Pa3pelICHUEM, TaKkKe aJleKBaTHO BOCIIPOM3BOIMTCS Jic-
TaJIbHOE TIOBE/ICHHE BBICOTHI BOIHBI BO BPEMEHU. MoO/1e/i, BKITIOYAOIIIE BETPOBBIC OIS HU3-
KOTO paspenieHus (Hampumep, reoCTpo(UUecKHi BETEp), TaKXKe BOCIPOM3BOIAT OCHOBHYIO
CTaTUCTUKY BOJHEHUS, HO YaCTO HE MOTYT BOCIIPOM3BECTH BOJHOBBIE TIOJISI BO BPEMSI CHIIBHBIX
mTopMoB. [loaToMy pe3yapTaThl MOACTHPOBAHMS J1a)kKe Ha OCHOBE BETPOBBIX IOJIEH HU3KOTO
pa3pelIeHnss MOTYT C YCIIEXOM HCIIOJIB30BAThCS Ul MPHIOKEHUH, KOTOpble 0a3UpyIoTCs HC-
KIIOYNTEPHO HA CTATHCTHYECKHMX PACHpPEAEICHHUSIX IapaMeTpoB BOJHEHHS (Hampumep, Mmpu
OLIEHKaX MHTEHCHBHOCTH IMPUOPEKHBIX MPOIECCOB MIH CyMMapHOTO BJOJIBOEPETOBOTO TpaHC-
noprta HaHocoB MerojioM CERC).

W3mepeHHbIE U MOJENbHBIE JJAHHBIE CBUACTEIBCTBYIOT O 3aMETHBIX OTIMYMAX B pacipe-
JIETICHNSAX MEPUOJIOB BOJH, OCOOCHHO IPH 3HAYUTEIHHOM BOJHEHHH. PacxokaeHne n3MepeH-
HBIX ¥ PACCYMTAHHBIX IEPHOAOB IPH CHIBHBIX IITOPMAX JTOXOIHT 10 2 C, YTO MOXKET 3aMETHO
BIIMSATH Ha OLEHKH CTENIEHU WHTEHCHBHOCTH B3aMMOJIEHCTBHS BOJIH C JHOM, a TaKkxke pedpak-
IIHOHHBIE XapaKTEPUCTHKH Il HEKOTOPBIX TJIYOUH U, CIIeJ0BATENbHO, HA OIICHKN YacTOTHI He-
JUHEWHOW TeHepaIii 3KCTPEeMalbHO BBICOKHMX TpeOHEH Mpu B3aMMOJAEHCTBHIX IEpeceKaro-
IUXCSI CHCTEM BOJH [4].

[Tunoobpa3Hoe moBeneHNEe MOJETUPYEMBIX TOJOBBIX MaKCHMAJIBHBIX BOJIH, XOTS M 00y-
CJIOBJIEHO B 3HAYUTEIBHON Mepe MEXroJO0BOH M3MEHYMBOCTHIO, MOKAa3bIBAET, YTO OCHOBHOI
CKauOK CBOWCTB IITOPMOB B I0)KHOW yacTh bantuiickoro mops mpousomien B Hadane 1990-x
rogoB. Tak Kak MakcuMaJbHas BBICOTA BOJHBI B paMKax MOJENbHBIX RS-pacdyeroB cocraBmia
6.23 M, ¥ TIpH 3TOM HMEJI0O MECTO COBIIA/ICHIE MOJCIBHBIX M M3MEPEHHBIX YCIOBUI BOJIHEHUS
JUI MHOTHX IITOPMOB, 3TO O3HAYAET, YTO 37IECh MOXET BO3HUKATH O0Jiee SKCTpEMaJIbHOE BOJI-
HEeHHe, yeM, Hampumep, B Pikckom wim naxke B duHckoM 3anuBax. OCHOBHAs NMpHYMHA 3a-
KJIIOYAeTCs B TOM, YTO B OTJIMYME OT 3TUX AKBAaTOpUW paioH mopora [lapc um Haxondmuics
BOJIM3M OacceltH ApKOHa OPHEHTHPOBAHbI BJIOJIb MPEOOTAJAFONINX IPH CHIBHBIX IITOPMax Ha-
MIpaBJIeHUI BeTpa. JTa 0COOEHHOCTH HATJIIHO Tpossisiercs B 20 %-Ho# pa3Huie Hanboiee
BBICOKHX BOJIH 3a BCE BpeMs HaOmoaeHui (5.2 M usmepeno B @unckoM 3anuse [2], 6.23 M —
PETPOCIIEKTUBHBIH NMPOrHO3 HaJ moporoM Jlapc), mpudeM B OacceiiHe ApKOHA elle COXpaHsieT-
Csl HEKOTOPBIH MOTEHIMAI AaXe AT OONBIINX BBICOT BOJIH.

Takxe 09eHb WHTEPECHAs YepTa CPABHUBAEMBIX IAHHBIX — HECOBIAACHHE BPEMEHHBIX H3-
MEHEHHMH U1l CpefHel BBICOTHI BOJIH, XapaKTEPHBIX CBOMCTB YMEPEHHO BBICOKHX (TIOPOT JUIs
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10 % HamOoIee BHICOKHMX) M CBOMCTB HanOoJiee BHICOKHX BOJIH. CBOMCTBA CPEAHUX U YMEPEHHO
BBICOKMX BOJIH JIEMOHCTPUPYIOT HACHTU(HUIHPYEMbIe H3MEHEHHUS 3a MoCcIeHIe moiBeka [17], a
nopor it 1 % Hambosee BEICOKHMX BOJIH, OLICHWBAEMBII MO SKCIEPUMEHTAIbHBIM JaHHBIM, 3a-
METHO T13/1aeT B MOCJIEHHE /1B JCCATUIETHS. JTOT MpoliecC MPOTUBOIOIOKEH HEAaBHO 0OHa-
PYXEHHOMY JUIA CeBEpO-BOCTOYHOM yacTi PDUHCKOrOo 3ajIMBa YBEIMYEHHIO 3TOro nopora [16] Ha
(oHe OTCYTCTBUS U3MEHEHHI B CpeIHHX BBICOTaX BONH. TeM He MeHee 00a BapHaHTa M3MEHe-
HUM COTJIACYIOTCSl C TIOCTCTICHHBIM YBEIMYEHHEM I10 CPaBHEHHIO C APYTMMH HANpPaBICHUSIMU
YaCTOTHI FOTO-3aIaIHBIX 1 3aMaaHbIX BeTpoB [29, 30] Ha Gonpomx ydactkax banruiickoro Mopsi.
AHanM3 Takke yKa3blBaeT Ha HEKOTOPBIE ITPU3HAKU (XOTS M CTaTHCTUYECKH HE 3HAYMMBbIE) TOTO,
YTO BBICOTA BOJH INpH Haubosee CHJIBHBIX IITOPMAaX HE M3MEHSETCS B TEUCHHUE IIOCIEIHUX
20 €T, HO YBEIMYMBACTCS aCTOTA IITOPMOB C OUEHD BHICOKHMH BOJTHAMH.

Aemopui gvipadicarom 61azooapHocms 3a npedocmasienHvie dannvie: Panvghy Beucce (Institute for Coastal
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Paboma noodepocana yenegvim ¢punancuposanuem Munucmepcmea obpazoéanus u Hayku ICmoHUU
(epanm SF0140007s11), Hayunoim ponoom Dcmonuu (epaum Ne 7413), BONUS+ npoexm BalticWay u Poccuii-
cKUM poHOOM hyHOamenmanbHwix uccredosanuil (2panmol Ne 10-05-00199-a, 09-05-00204, 11-0200483).

Jurepatypa

1. Jlonamyxun JI.U., Byxanoeckuii A.B., Heanos C.B., Yepnvuuesa E.C. CripaBouHbIe TaHHBIE IO PEXKUMY BETpa
u BosiHeHus Banruiickoro, CeBeproro, UepHoro, A3zosckoro u Cpemmsemuoro mopeit / Poccuiickuii Mop-
ckoit peructp cynoxoncrsa. CII6., 2006. 450 c.

2. Soomere T. Extremes and decadal variations of the northern Baltic Sea wave conditions // Extreme Ocean
Waves. Pelinovsky E., Kharif Ch. (eds.). Springer. 2008. P.139-157.

3. Kharif C., Pelinovsky E. Physical mechanisms of the rogue wave phenomenon // Eur. J. Mech. B Fluids.
2003. 22. P.603-634.

4. Peterson P., Soomere T., Engelbrecht J., van Groesen E. Interaction soliton as a possible model for extreme
waves in shallow water // Nonlin. Proc. Geophys. 2003. V.10. P.503-510.

S.  Didenkulova 1. Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay) // Boreal Env.Res.
2011. V.16 (Suppl. A). P.138-148.

6. Walker D.A.G., Taylor P.H., Taylor R.E. The shape of large surface waves on the open sea and the Draupner
New Year wave // Appl. Ocean Res. 2004. V.26. P.73-83.

7. Lavrenov LV., Porubov A.V. Three reasons for freak wave generation in the non-uniform current // Eur. J.
Mech. B Fluids 2006 V.25. P.574-585.

8. Soomere T. Rogue waves in shallow water // Eur. Phys. J. Special Topics 2010. V.185. C.81-96.

9. Soomere T., Engelbrecht J. Weakly two-dimensional interaction of solitons in shallow water // Eur. J. Mech.
B Fluids 2006. V.25. P.636-648.

10. Ryabchuk D., Kolesov A., Chubarenko B., Spiridonov M., Kurennoy D., Soomere T. Coastal erosion processes
in the eastern Gulf of Finland and their links with long-term geological and hydrometeorological factors //
Boreal Env. Res. 2011. V.16. (Suppl.A.) P.117-137.

11. Soomere T., Behrens A., Tuomi L., Nielsen J.W. Wave conditions in the Baltic Proper and in the Gulf of
Finland during windstorm Gudrun // Nat. Hazards Earth Syst. Sci. 2008. V.8. P.37-46.

12. Ryabchuk D., Leont’yev I, Sergeev A., Nesterova E., Sukhacheva L., Zhamoida V. The morphology of sand
spits and the genesis of long-shore sand waves on the coast of the eastern Gulf of Finland // Baltica. 2011.
V.24. C.13-24.

13. Arnac BonHeHus u Betpa @unckoro 3anusa / Ots. pea. I'.B.Pxemnunckuit JI.: I'uapomereounsnar, 1967. 48 c.

14. Jlonamyxun JI.U., Muponos M.E., Ilomepaney K.C., Tpanesnuxog FO.A., Yepnviuwesa E.C. OueHKH 3KCTpe-
MaJbHOTO BETPa M BOJHEHHUs B BOCTOYHO# yactu PuHckoro 3anua // M3s. BHUUI'. 2006. 245. C.145-155.

15. Rddmet A., Soomere T. The wave climate and its seasonal variability in the northeastern Baltic Proper // Esto-
nian J. Earth Sci. 2010. V.59. P.100-113.

16. Coomepe T., 3aiiyesa-Ilapnacme HU., Paamem A., Kypennou /[. O npocTpaHCTBEHHO-BPEMEHHONW U3MEHUUBO-
ctu noneit BonmHeHuss ®uHckoro 3anuBa // dyHaaMeHTan bHas W npukiIagHas ruapodusuka. 2010. V.4(10).
C.90-101.

17. Soomere T., Weisse R., Behrens, A. Wave climatology in the Arkona basin, the Baltic Sea // Ocean Sci.
Discus. 2011. 8 (6). P.2237-2270.

56



18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

CrarucTuka IKCTPEMAJbHOI0 BOJTHCHHUA ...

Weisse R., Giinther H. Wave climate and long-term changes for the Southern North Sea obtained from a high-
resolution hindcast 1958-2002 // Ocean Dyn. 2007. V.57. P.161-172.

Weisse R., von Storch H., Callies U. et al. Regional meteorological marine reanalyses and climate change
projections: results for Northern Europe and potential for coastal and offshore applications // Bull. Am. Me-
teor. Soc. 2009. V.90. P.849-860.

Komen G.J., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S. Janssen P.A.E.M. Dynamics and mod-
elling of ocean waves. Cambridge Univ. Press, 1994. 339 p.

Augustin, J. Das Seegangsklima der Ostsee zwischen 1958-2002 auf Grundlage numerischer Daten (Sea state
climate of the Baltic Sea 1958-2002 based on numerical data) // Diploma Thesis. Institute for Coastal Re-
search, GKSS Research Center Geesthacht, Geesthacht, Germany [in German]. 2005.

Feser F., Weisse R., von Storch H. Multi-decadal atmospheric modeling for Europe yields multi-purpose data
// Eos Transactions. 2001. V.82. P.305-310.

Kalnay E., Kanamitsu M., Kistler R. et al. The NCEP/NCAR reanalysis project // Bull. Am. Meteorol. Soc.
1996. V.77. P.437-471.

Kistler R., Kalnay E., Collins W. et al. The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and
documentation // Bull. Am. Meteorol. Soc. 2001. V.82. P.247-267.

Soomere T. Wind wave statistics in Tallinn Bay // Boreal Env. Res. 2005. V.10. P.103-118.

Soomere T., Keevallik S. Directional and extreme wind properties in the Gulf of Finland // Proc. Estonian
Acad. Sci. Eng. 2003. V.9. P.73-90.

Soomere T., Ridmet A. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland //
Oceanologia 2011. V.53(1-TI). P.335-371.

Zaitseva-Pdrnaste I., Soomere T., TribStok O. Spatial variations in the wave climate change in the eastern part
of the Baltic Sea // J. Coast. Res. 2011. Special Issue 64. P.195-199.

Jaagus J. Long-term changes in frequencies of wind directions on the western coast of Estonia. Institute of
Ecology, Tallinn University. Publications. 2009. [in Estonian]. V.11. P.11-24.

Lehmann A., Getzlaff K., Harlass J. Detailed assessment of climate variability in the Baltic Sea area for the
period 1958 to 2009 // Clim. Res. 2011. V.46. P.185-196.

Cratbs nocrynuia B pegakuuto 10.09.2011 r.

57



10.

11.

12.

13.

14.

15.

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON
CIVIL ENGINEERING

Heino Molder. Cycle of Investigations to Improve the Efficiency and
Reliability of Activated Sludge Process in Sewage Treatment Plants. 1992.

Stellian Grabko. Structure and Properties of Oil-Shale Portland Cement
Concrete. 1993.

Kent Arvidsson. Analysis of Interacting Systems of Shear Walls, Coupled
Shear Walls and Frames in Multi-Storey Buildings. 1996.

Andrus Aavik. Methodical Basis for the Evaluation of Pavement
Structural Strength in Estonian Pavement Management System (EPMS).
2003.

Priit Vilba. Unstiffened Welded Thin-Walled Metal Girder under Uniform
Loading. 2003.

Irene Lill. Evaluation of Labour Management Strategies in Construction.
2004.

Juhan Idnurm. Discrete Analysis of Cable-Supported Bridges. 2004.

Arvo lital. Monitoring of Surface Water Quality in Small Agricultural
Watersheds. Methodology and Optimization of monitoring Network. 2005.

Liis Sipelgas. Application of Satellite Data for Monitoring the Marine
Environment. 2006.

Ott Koppel. Infrastruktuuri arvestus vertikaalselt integreeritud raudtee-
ettevotja korral: hinnakujunduse aspekt (Eesti peamise raudtee-ettevotja
nditel). 2006.

Targo Kalamees. Hygrothermal Criteria for Design and Simulation of
Buildings. 2006.

Raido Puust. Probabilistic Leak Detection in Pipe Networks Using the
SCEM-UA Algorithm. 2007.

Sergei Zub. Combined Treatment of Sulfate-Rich Molasses Wastewater
from Yeast Industry. Technology Optimization. 2007.

Alvina Reihan. Analysis of Long-Term River Runoff Trends and Climate
Change Impact on Water Resources in Estonia. 2008.

Ain Valdmann. On the Coastal Zone Management of the City of Tallinn
under Natural and Anthropogenic Pressure. 2008.

206



16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Ira Didenkulova. Long Wave Dynamics in the Coastal Zone. 2008.

Alvar Toode. DHW Consumption, Consumption Profiles and Their
Influence on Dimensioning of a District Heating Network. 2008.

Annely Kuu. Biological Diversity of Agricultural Soils in Estonia. 2008.

Andres Tolli. Hiina konteinerveod 1dbi Eesti Venemaale ja Hiinasse
tagasisaadetavate tiihjade konteinerite arvu vihendamise vdimalused. 2008.

Heiki Onton. Investigation of the Causes of Deterioration of Old
Reinforced Concrete Constructions and Possibilities of Their Restoration.
2008.

Harri Moora. Life Cycle Assessment as a Decision Support Tool for
System optimisation — the Case of Waste Management in Estonia. 2009.

Andres Kask. Lithohydrodynamic Processes in the Tallinn Bay Area.
20009.

Loreta Kelpsaité. Changing Properties of Wind Waves and Vessel Wakes
on the Eastern Coast of the Baltic Sea. 2009.

Dmitry Kurennoy. Analysis of the Properties of Fast Ferry Wakes in the
Context of Coastal Management. 2009.

Egon Kivi. Structural Behavior of Cable-Stayed Suspension Bridge
Structure. 2009.

Madis Ratassepp. Wave Scattering at Discontinuities in Plates and Pipes.
2010.

Tiia Pedusaar. Management of Lake Ulemiste, a Drinking Water
Reservoir. 2010.

Karin Pachel. Water Resources, Sustainable Use and Integrated
Management in Estonia. 2010.

Andrus Ridmet. Spatio-Temporal Variability of the Baltic Sea Wave
Fields. 2010.

Alar Just. Structural Fire Design of Timber Frame Assemblies Insulated
by Glass Wool and Covered by Gypsum Plasterboards. 2010.

Toomas Liiv. Experimental Analysis of Boundary Layer Dynamics in
Plunging Breaking Wave. 2011.

Martti Kiisa. Discrete Analysis of Single-Pylon Suspension Bridges.
2011.

Ivar Annus. Development of Accelerating Pipe Flow Starting from Rest.
2011.

Emlyn D.Q. Witt. Risk Transfer and Construction Project Delivery
Efficiency — Implications for Public Private Partnerships. 2012.

207






