
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Kaarel Koovit 221953IVEM

Machine Learning Based Modelling of

TCP Data on Raspberry Pi

Master's thesis

Supervisors: Yannick Le Moullec

 PhD

 Kanwal Ashraf

 MSc

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kaarel Koovit 221953IVEM

Masinõppel põhinev TCP andmete

modelleerimine Raspberry Pi-l

Magistritöö

Juhendaja: Yannick Le Moullec

 PhD

 Kanwal Ashraf

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kaarel Koovit

02.01.2024

4

Abstract

In telecommunication systems, the requirements for network optimization and scheduling

quality are constantly increasing. One solution is to use data-driven machine learning

(ML) instead of a model-based approach to control the optimization and scheduling of a

network. In this thesis, the suitability of machine learning is explored as a first step

towards developing a network optimization algorithm that is suitable to run on resource

constrained devices (e.g., Raspberry Pi), that will use information obtained when

monitoring the activities of the transport layer in the OSI network architecture model.

The suitability of both unsupervised and supervised learning methods is investigated, i.e.

PCA and k-means for unsupervised learning, and linear regression for supervised

learning. For the analysis, a dataset is extracted from a network setup consisting of up to

five Raspberry Pi (RPi) Pico W-s connected to a RPi 4 over Wi-Fi, using Wireshark to

capture the transmission control protocol (TCP) trace data.

It is found that unsupervised learning is limited in separating clusters or finding principal

components that would categorize the network setup. On the other hand, it is found that

the linear regression model predicts a determination coefficient of 66% when using three

parameters for the regression analysis and the combined dataset of different induced

network constraints, and a 99,75% determination coefficient for a non-constrained

network dataset; these coefficients are used to predict the number of devices connected

to the network. The minimal amount of data required to develop a (near) optimal

algorithm is found to be dependent on the dataset used for the algorithm training.

The final algorithm is deployed onto the RPi to monitor the network traffic and predict

the number of devices connected to the network. Experimental results show an overall

accuracy of 94,67% for an unconstrained network and a capture time window of 10 s,

which is close to the model’s prediction.

This thesis is written in English and is 89 pages long, including 6 chapters, 44 figures

and 16 tables.

5

Annotatsioon

Masinõppel põhinev TCP andmete modelleerimine Raspberry Pi-l

Nõuded võrgu optimeerimise ja planeerimise kvaliteedi jaoks

telekommunikatsioonisüsteemides kasvavad pidevalt. Üks lahendus on kasutada

andmepõhist masinõpet mudelipõhise lähenemise asemel, juhtimaks võrgu optimeerimist

ja planeerimist. Selles töös vaadeldakse masinõppe sobivust esimese osana töötamaks

välja võrgu optimeerimise algoritmi, mis töötaks piiratud ressurssidega seadmetel

(näiteks Raspberry Pi). Algoritmi väljatöötamiseks kasutatakse OSI võrguarhitektuurist

transpordikihi andmeid.

Algoritmi väljatöötamiseks uuritakse nii juhendamata kui ka juhendatud masinõppe

meetodeid – PCA ja k-means algoritmid juhendamata ja lineaarne regressioon juhendatud

masinõppe jaoks. Analüüsi jaoks kogutakse andmed jälgides liiklust võrgus, mis koosneb

kuni viiest Raspberry Pi Pico W-st ja Raspberry Pi 4-st, mis on omavahel Wi-Fi’ga

ühendatud. TCP andmete jälgimiseks kasutatakse programmi Wireshark.

Juhendamata masinõppimise puhul leitakse, et on piiratud edu klastrite eraldamises või

peamiste komponentide leidmises, mis kirjeldaks võrgu ülesehitust. Teisest küljest

leitakse, et lineaarse regressiooni modelleerimine ennustab määramiskoefitsiendiks 66%,

kui kasutatud on kolm parameetrit analüüsi jaoks ja kombineeritud andmekogum sisaldab

erinevaid võrku sisse viidud piiranguid, ja 99,75% kui kasutatud on piiramata võrgu

andmekogum, ennustamaks võrku ühendatud seadmete arvu, kasutades leitud

koefitsiente. Minimaalne andmete kogum, mis on vajalik optimaalse algoritmi

väljatöötamiseks, sõltub andmetest, mida on mudeli häälestamiseks kasutatud.

Lõplik algoritm käivitatakse RPi 4 peal, jälgimaks võrgu liiklust ja ennustamaks võrku

ühendatud seadmete arvu. Eksperimentide tulemus näitab algoritmi 94,67% täpsust

piiramata võrgu ja 10 s ajavahemiku jaoks, mis on lähedal väljatöötatud mudeli täpsusele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 89 leheküljel, 6 peatükki, 44

joonist, 16 tabelit.

6

Acknowledgment

I express my gratitude to both my supervisors and also to Senior Researcher Andrei

Krivošei for his support regarding the data analysis, in particular the linear regression

method. Our discussions provided additional insights on how to approach the topic.

7

List of abbreviations and terms

AI

ANN

AP

DL

GNN

KPI

LR

MAE

ML

PCA

PDF

RF

RMSE

RPi

RTT

SBC

SGA

SGD

SON

TCP

URLLC

Artificial Intelligence

Artificial Neural Network

Access Point

Deep Learning

Graph Neural Network

Key Performance Indicator

Linear Regression

Mean Average Error

Machine Learning

Principal Component Analysis

Probability Density Function

Random Forest

Root Mean Square Error

Raspberry Pi

Round Trip Time

Single Board Computer

Stochastic Gradient Ascent

Stochastic Gradient Descent

Self-Organizing Network

Transmission Control Protocol

Ultra Reliable Low Latency Communication

8

Table of contents

1 Introduction ... 13

1.1 Research Statement ... 14

1.2 Thesis organization ... 15

2 State of the Art Overview .. 17

3 Background Theory Overview .. 24

3.1 Data-driven techniques ... 24

3.1.1 Unsupervised learning ... 25

3.1.2 Supervised learning ... 27

3.2 Network optimization ... 27

3.3 Applying ML for network optimization ... 30

3.4 Transmission Control Protocol ... 30

4 Design and Implementation of the Proposed Algorithms .. 33

4.1 Algorithm development .. 33

4.1.1 Unsupervised learning algorithm development ... 33

4.1.2 Supervised learning algorithm development ... 35

4.2 Dataset .. 37

4.3 Hardware .. 38

5 Results and Analysis .. 43

5.1 Unsupervised learning approach (PCA and k-means) .. 43

5.2 Supervised learning .. 46

5.3 Linear regression-based algorithm memory and time usage classification 57

5.4 Summary of the results ... 59

6 Conclusion ... 61

6.1 Summary ... 61

6.2 Lessons learned... 62

6.3 Future work... 62

References .. 64

Appendix 1 – PCA additional results ... 69

Appendix 2 – Linear Regression python algorithm source code.................................... 72

9

Appendix 3 – Raspberry Pi Pico W MicroPython source code 74

Appendix 4 – Linear Regression PCA analysis.. 76

Appendix 5 – Linear Regression additional plots .. 78

Appendix 6 – PCA source code .. 84

Appendix 7 – K-means source code ... 85

Appendix 8 – Linear regression parameters calculation source code 87

Appendix 9 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 89

10

List of figures

Figure 1. (a) relation between AI, ML and DL, (b) the three machine learning types. .. 14

Figure 2. Classifications of DDML, adapted from [49]. This thesis focuses on one

method of supervised learning (i.e. linear regression) and two methods of unsupervised

learning (k-means clustering and principal component analysis), which are highlighted

with yellow borders in the figure. ... 25

Figure 3. Classification of network optimization objectives for IoT networks, adapted

from [57]. As highlighted with blue circles, in this thesis, the focus is on QoS

parameters (bit rate, delay, packet loss), and on congestion control. 29

Figure 4. TCP header composition [58]. .. 31

Figure 5. TCP diagrams for connection variants a) connection establishment, b) data

transfer, c) connection termination, adapted from [59]. ... 32

Figure 6. Flow-chart of the proposed unsupervised learning algorithm. 35

Figure 7. Flow chart of the proposed algorithm with linear regression. Details of the

steps are provided in text. ... 37

Figure 8. The five main steps of the data collection system flow. 37

Figure 9. Raspberry Pi 4 model B [66] used for hardware deployment of the algorithm

on the AP device. .. 39

Figure 10. Raspberry Pi Pico W [68] used as network clients. 40

Figure 11. Measurement and validation setup. The RPI Pico W devices act as the

network clients and generate the network traffic. They are connected, over WiFi

(802.11n 2,4 GHz), to the RPI4 which acts as the AP and implements the proposed

algorithm. The RPI4 is connected over a wired Ethernet (Gigabit Ethernet) link to the

router. .. 41

Figure 12. Photograph of the network measurement and validation system setup,

corresponding to the diagram shown in Figure 11 As in Figure 11, the RPI Pico W

devices act as the network clients and generate the network traffic. They are connected,

over WiFi (802.11n 2,4 GHz), to the RPI4 which acts as the AP and implements the

proposed algorithm. The RPI4 is connected over a wired Ethernet (Gigabit ethernet

connections with supplied maximum bandwidth of 100 Mbit/s) link to the router. 42

11

Figure 13. Example scree plot for PCA which suggests that for this example the number

of features to be used is approximately 4. .. 44

Figure 14. Example two component PCA plot. As can be seen, it was found that there

are no distinguishable groups that could be used for further analysis. 44

Figure 15. Elbow curve for k-means for a combined dataset case. 45

 Figure 16. Coefficient of determination vs time window for 3 parameters used for

regression analysis for different conditions. It can be seen in the graphs that the slope of

the graphs starts to even out after 5 - 15 s, which is why this region was focused on in

the development of the algorithm. .. 48

Figure 17. Count of measured packets vs number of devices, for a capturing time

window of 10 s. .. 49

Figure 18. Count of retransmission packets vs number of devices, for a capturing time

window of 10 s. .. 50

Figure 19. Median of RTT vs number of devices, for a capturing time window of 10 s.

 .. 51

Figure 20. Algorithm output log file. ... 53

Figure 21. Estimated vs actual number of devices, time window 5 seconds. Model mean

accuracy is 29,75%. .. 54

Figure 22. Estimated vs actual number of devices, time window 10 seconds. Model

mean accuracy is 94,67%. .. 55

Figure 23. Estimated vs actual number of devices, time window 15 seconds. Model

mean accuracy is 93,62%. .. 55

Figure 24. Accuracy vs amount of data used for the linear regression algorithm, using an

unconstrained dataset. ... 56

Figure 25. Time for data processing and result calculation. Mean time 0,042 s. 57

Figure 26. Memory usage of different scenarios. ... 58

Figure 27. Count of measurements vs number of devices. ... 60

12

List of tables

Table 1. Summary of ML techniques and their applications in wireless communication,

adapted and expanded from [5]. ... 18

Table 2. Network traffic prediction ML models, adapted and expanded from [24]....... 20

Table 3. TCP header elements description [58]. .. 31

Table 4. List of SBC-s available for algorithm deployment on the AP device. 39

Table 5. Variance ratio of principal components for a combined dataset, which includes

added delay and bandwidth constraints. ... 45

Table 6. Principal components’ explained variance ratio for each parameter for

combined dataset. TBP – Time between packets, Ret – Suspected retransmission

packets, Dup – Duplicate ACK-s, Lost – Suspected lost packets. 45

Table 7. Regression coefficients for different parameters for several network constraint

scenarios. Network traces captured with 1 to 5 client devices connected. 47

Table 8. k-fold cross validation results for different datasets. MAE – Mean absolute

error. RMSE – Root mean square error. R2 – Coefficient of determination. 52

Table 9. Correlation parameters for 5, 10, 15s capture time windows. 52

Table 10. Coefficients of determination for 5, 10, 15 s capture time windows, for the

combined dataset. ... 53

Table 11. Algorithm mean accuracy for 5, 10, 15 s capture window, for non-constrained

network setup. ... 54

Table 12. Time delays of different parts of the algorithm. ... 57

Table 13. Mean, maximum and minimum memory usage of different scenarios. 59

13

1 Introduction

In telecommunications, the requirements to the networks’ parameters are increasing

rapidly with the introduction and implementation of more complex, higher throughput

technologies [1]. The classical model-based approach used to optimize and control the

network parameters are proving to be increasingly more difficult to apply due to the

complexity and heterogeneity of the networks, and the difficulty to obtain the system

parameters and lossless block decomposition [2]. Therefore, Machine Learning (ML)

based data-driven methods, i.e. data-driven machine learning (DDML), are increasingly

preferred to exploit the online and offline data for the controller design and network

optimization.

Network optimization involves monitoring and improving the key process indicators

(KPIs) of a network. The parameters that are optimized can include bandwidth (data

transfer rate), delay (the time a packet travels from source to destination), loss (the amount

of data lost), jitter (variation in data transfer rate), transmission power (power required to

transmit data with acceptable loss). The goal of network optimization is to find a balance

between these parameters based on the amount of traffic in the network and e.g. target

quality of service. To be able to optimize a network, the network elements and their

relationships need to be defined and this can be done either by using a model-based

approach (creating the model first based on artificial assumptions) or data-driven

approach (building the model using available data).

Indeed, the classical model-based approach is proving more difficult to apply due to the

increase in network complexity and even though a network is divided into multiple layers,

attaining optimal or near-optimal results may prove difficult due to dependencies,

including opposing ones (for example channel modulation, detection and coding, which

should be separately optimized) among those; such compromising problems are further

amplified in 5G and beyond.. By using DDML methods, it is possible to use the data from

the whole network instead of the relation of the network elements to predict different

patterns and scenarios. Figure 1 (a) shows an overview of ML in relation to artificial

14

intelligence (AI). AI involves the concept of using computer systems to perform tasks

that require human intelligence. ML is a part of AI and it involves using different

techniques to enable the computers to learn or improve on a task based on experience

without relying on explicit instructions. A subset of ML is deep learning (DL) which uses

algorithms that have an artificial neural network (ANN) structure that consists of multiple

layers. In ML, there exist many methods which can be divided into supervised,

unsupervised, and reinforcement learning. Figure 1 (b) illustrates the three different types

of ML, with a more detailed overview provided in Chapter 3. For network optimization

and scheduling improvement, methods from all three different areas have been used and

reported in the scientific literature.

 (a) (b)

Figure 1. (a) relation between AI, ML and DL, (b) the three machine learning types.

The main developments so far have been to exploit the quantity of available data to

develop the algorithms [3]; however, not much research has been carried out for

determining the minimum amount of data required to develop the optimal operation

algorithms [4]. Additionally, most of the research has focused on the development of the

optimization algorithms but has not delved much into implementing the algorithms, for

example on different resource constrained devices [5].

1.1 Research Statement

To control and possibly optimize the network performance by reducing losses in the

network, network congestions, power consumption, and by improving the bitrate, a light-

15

weight algorithm utilizing the data-driven technique should be identified and optimized.

This thesis focuses exclusively on the transport layer and the layers above it in the OSI

network architecture model when acquiring and analysing the data and developing the

network optimization techniques. The algorithm should be suitable to run on devices with

low computing resources and power consumption, such as single board computers; one

potential application for the developed algorithm could be a portable bioanalytical device

(for example the PRG620 project-based flow cytometry device). The quality and quantity

of the data (minimum amount of data) required for the algorithm to achieve the desired

performance should also be evaluated.

Given the above, the three research questions of the thesis are expressed as:

- RQ1: As a first step towards network performance control and (near)

optimal scheduling, can there be proposed an algorithm for predicting the

occurring network constraints or the number of client devices towards using

unsupervised (e.g., PCA) and supervised learning (e.g., linear regression)

methods?

- RQ2: Can the minimal amount of data required for (near) optimal

scheduling be identified?

- RQ3: Can the algorithm be deployed on an SBC (for example Raspberry Pi)

and what will be its impact on the performance?

1.2 Thesis organization

Chapter 1 provides an overview of the motivation of the work and the research questions.

Chapter 2 gives a state-of-the-art overview of the DDML-based techniques for network

optimization and control.

16

Chapter 3 contains an overview of the background of data-driven techniques, network

optimization, and how data-driven techniques are used for network optimization and

transmission control protocol.

In Chapter 4, the design and implementation of the proposed DDML algorithm, the

selection of the dataset and the hardware platform are explored.

The corresponding experimental results and the analysis thereof are given in Chapter 5.

Finally, Chapter 6 provides a conclusion for the performed work, lessons learned, and

suggestions for future research directions.

17

2 State of the Art Overview

This chapter provides an overview of the recent trends in data-driven techniques that can

be used for network control and optimization, and for using TCP data for network

parameter analysis.

During the past few decades, the rapid development of communication technologies has

been accompanied by a need for improved techniques for network control, scheduling

and optimization [3]. One of the proposed directions for the development of network

control techniques is to use DDML. Several works have been published which discuss

possible approaches for data-driven network optimization, control, and scheduling using

different machine learning methods and acquired datasets. This chapter gives an overview

of representative examples of such works and highlights their overall main limitations,

which this MSc thesis aims to address.

In [5], Salh et al. provides an overview of different ML techniques that can be used for

network optimization – see Table 1. The main technique to be improved that is discussed

for the application of ML-based solutions is Ultra-Reliable and Low Latency

Communication (URLLC). For example, support vector machine (Table 1 – row 5) from

the supervised learning technique was proposed to improve the prediction of propagation

path loss in wireless networks; the self-organizing map (Table 1 – row 11) from the

unsupervised learning technique was proposed to improve the capacity and user

experience in small cells; and Q-learning (Table 1 – row 14) from the reinforcement

technique was proposed to provide the users with a better ability to predict the return

function in order to improve data rate. The paper explores URLLC and its enhancements

and suggests further research directions, i.e. computation efficiency, hardware

development for 6G, scalability and robustness, THz communication, energy

management, channel estimation. While the above work provides suitable options from

different ML model types out of the proposed ML techniques (supervised, unsupervised

and reinforcement learning), this thesis mainly focuses on unsupervised and supervised

learning to investigate the possibility of using these techniques for solving the proposed

problem, in order to determine the possibility of using these techniques on an SBC and

18

because the supervised learning (regression models) and unsupervised learning

(dimensionality and clustering models) provide a useful comparison on the performance

of different approaches. Furthermore, unsupervised learning is featured less frequently in

papers [6], which provides an opportunity to explore potential new approaches.

Table 1. Summary of ML techniques and their applications in wireless communication, adapted and

expanded from [5].

ML Technique Learning Model
Mobile and Wireless

Communication
Year

Supervised
Learning

Self-Organizing
Networks (SON)

Optimizes network management
location, maximizes the capacity
[7]

2017

Linear reversion

Facilitates energy harvesting and
prediction by equipping the
harvesting node with adaptation to
the current energy using real-time
power measurements [8]

2016

Supervised Classifier

Enables autonomous network
management aware of quality of
experience to improve prediction
of the network demand and
network sensitivity [9]

2018

Support Vector
Machines

Predicts propagation path loss in
wireless networks [10]

2015

Quantum ML

Increases performance through
enabling technologies at the
network edge, air interface, and on
the user's end [11]

2019

Unsupervised
Learning

Latent function with
unsupervised DL

Reduces problems regarding the
QoS constraint of URLLC [12]

2019

K-means clustering

Neural-network prediction to
provide increased capacity for
users [13]

2017

K-means technology
Low latency data access and
storage of data blocks using DL [14]

2019

Unsupervised
clustering

Used to decide low and high-power
node allocation to reduce latency
and power [15]

2018

Self-organizing map

Increases capacity and improves
user experience for coverage
planning and performance
optimization [16]

2018

Reinforcement
learning Framework

dynamically predicts

Guarantees long term reliability
and latency for every user, by
balancing E2E reliability, latency,
and data rate [17]

2019

19

ML Technique Learning Model
Mobile and Wireless
Communication

Year

Reinforcement
learning Markov decision

process

Enables vertical handoff decisions
based on network parameters, e.g.
minimum bandwidth, delay, and
battery level of terminal [18]

2008

Q-learning

Maximizes data rate and enables
users to predict their return
function [19]

2018

Deep Q-network

Increases Signal-to-Noise-Plus-
Interference Ratio (SNIR) and
efficacy, selects optimal anti-
jamming communication policy
[20]

2017

Deep-RL

Reduces system cost by applying
joint optimum caching and
estimating allocation [21]

2018

Dueling deep-Q

Improves probability of QoS level
approval, data rate of the network
and learning effectiveness [22]

2022

Deep deterministic
policy gradient (DDPG)

Reduces energy costs while still
ensuring that there are no
unacceptable delays [23]

2022

Furthermore, in [24], Ma et al. gives an overview of data-driven 5G network optimization

techniques with ML, including proposals for different network traffic prediction models

and correlation to network KPIs. Table 2 shows the different proposed ML models for

network prediction.

20

Table 2. Network traffic prediction ML models, adapted and expanded from [24].

Model
Traffic
type

Prediction Type Reference Year

Deep learning Cellular Temporal

Network level

[25] 2017

LSTM Cellular Temporal [26] 2018

Exponential smoothing Cellular
Temporal
+ spatial

(TS)

Cell level

[27] 2007

Statistics Cellular TS [28] 2011

ARMA Cellular TS [29] 2016

α-stable Online TS [30] 2017

LSTM Cellular TS [31] 2018

Neural network, GP Cellular TS [32] 2018

Markov chain Cellular TS

Online data

[33] 2011

ARMA, decision tree Cellular TS [34] 2017

Statistics Online TS [35] 2016

RF-GRU-NTP Online TS [36] 2022

Regression Online TS [37] 2015

Random forest Online Temporal [38] 2021

k-means, neural network Online TS

Anomaly
detection

[39] 2017

k-means, GP Cellular TS [40] 2018

k-means, NARX Online TS [41] 2018

The work presented in [2] provides an overview of why data-driven networks are

advantageous over model-based solutions. Data-driven networks do not require exact

network models, have a uniform architecture which makes them easier to transpose, are

less sensitive to system parameters and do not require block decomposition (dividing the

network into multiple layers, which in turn are consisting of separate blocks). In the paper,

a typical use scenario is provided for data-driven control, optimizing network load

balancing using machine learning that uses a sequence of successive predictions. In [4],

21

Baggio et al. proposes a data-driven network control method, using finite data, to

optimally direct the network nodes’ state to a desired one within a finite-time space. Their

experiments show that the data-driven control has advantages compared to model-based

solutions, i.e. the results show that the computational time can be approximately 10 to a

100 times smaller for the data-driven control compared to the model-based one,

depending on the network size and the final stage error for a fixed amount of control

nodes, and increasing network size can be up to 105 times smaller for the data-driven

control method, and it can be applied for controlling actual networks. The limitations and

the possibility for future improvements of the provided solutions are that the results are

provided with the assumption that the dynamics of the networks are linear, the results

were calculated with engineering and scientific routines (for which the precision could be

improved upon), a point-to-point control strategy was used instead of a closed-loop one,

and the reconstruction error is not provided with a non-asymptotic guarantee. In [42],

Zhang et al. gives potential challenges for using DDML for network management (in the

form of SON) – data imbalance, data insufficiency, cost insensitivity, non-real-time

response, multisource data fusion. Additionally, they suggest potential solutions and

related methods, including unsupervised learning. Furthermore, a case study is provided,

illustrating the relevance of the proposed methods.

These above works demonstrate that the use of DDML methods for complex networks

where the network dynamics are unknown is advantageous over a model-based approach,

but some potential disadvantages need to be taken into consideration. In what follows,

works related to ML techniques used in network control and optimization are presented.

In [12], Sun et al. proposes a framework, using unsupervised deep learning, to learn the

underlying function of a system, which is applicable in both variable and functional

optimization problems and demonstrates this solution for a URLLC optimization

problem. The DNN is changed to unsupervised learning by using the property itself (e.g.

optimal bandwidth allocation) instead of the label of the property and the proposed

optimization methods are stochastic gradient descent (SGD) and stochastic gradient

ascent (SGA). Using training parameters of 1000 times training, with 10000 iterations

each, and a training reliability requirement of εD = 10-6 (with the overall reliability being

εmax = 10-5), then the availability achieved was 98,9% and bandwidth loss was 3,3%.

Additionally, in [43], Sun et al. proposes an unsupervised deep learning approach also

based on SGD for solving a QoS constrained optimization problem for bandwidth and

22

power. Their results show that the ML-based solution can achieve the same performance

as the optimal solution and outperforms existing policies, by saving 40% of the bandwidth

consumption. In [44], Ferriol-Galmés et al. proposes graph neural network (GNN) model

for network optimization that can estimate QoS parameters. The custom GNN model,

named TwinNet, consists of message-passing and readout modules and is able to achieve

a mean absolute percentage error (MAPE) of 6,3% with a real test application. In [45],

Farthofer et al. provides a dataset of mobile drive tests, a tool chain for the data analysis

and illustration for its usage. The suggested analysis method involves a feed forward

neural network and autoencoder neural network to analyse the data and different scenarios

are simulated to demonstrate the behaviour and results of the network. In [1], Jaffry et al.

suggests an approach for network anomaly detection, using a data-driven method, which

involves iteratively comparing the probability density function (PDF) to a threshold value

and then recalculating the PDF. Their algorithm displayed a high accuracy of 98,08%

between neighbouring grids and reduced accuracy the further away the predicted grid

was. In [46], Delimargas et al. explores the possibility of using principal component

analysis (PCA) for network trace data analysis and anomaly detection. As the classical

PCA is prone to giving false positive and false negative results because of the method’s

sensitivity to noise, then the PCA algorithm has been modified to overcome this problem.

Their results show that the algorithm is in some cases able to detect TCP network scan

anomalies with an intensity (defined in the paper as the ratio of flows with anomalies to

the average number of flows in a time window) of 5% and in most cases with an intensity

of 20%.

For the TCP data analysis, in [47], Chaudry explores the possibility of using ML to find

hidden connections between round-trip time (RTT) and the throughput for Wi-Fi

connections. The PCA, linear regression and random forest (RF) techniques are used to

explore these relationships. For their analysis, the physical and data-link layer

parameters’ measurements were extracted from the available dataset. Their results show

that RTT alone might not be enough to predict the Wi-Fi throughput, but there is indirect

confirmation that RTT can have a significant impact on Wi-Fi throughput. The PCA

shows that RTT has a variance ratio of 0,876 for the principal component (PC) 1, that

itself had a proportion of variance of 0,984, when used with the RF method. In [48], Arlitt

et al. research the possibility to predict latency from information obtained from TCP

traces for short transfers (defined by transfer length in bytes). Their results show that,

23

depending on the maximum segment size (MSS), the RTT has a correlation to bandwidth

of up to -0,370 and with latency up to 0,511, depending on the maximum segment size

(MSS) and the trace file used. This suggests that RTT alone might not be enough to

predict bandwidth or latency and other parameters from the traces could be included for

the analysis.

Despite their valuable contributions, the solutions and proposed methods provided in the

above papers do not consider the application of the optimization and scheduling

algorithms on a low power device (e.g., RPi), which is why additional research is required

in this direction; this is one of the goals of this thesis. The base chosen to be explored for

developing the algorithm to be used for network control on a low-powered device were

unsupervised learning, as it gives the possibility to use unlabelled network trace data for

optimizing the network parameters, and linear regression.

The main algorithms chosen for the network data analysis from unsupervised learning

were principal component analysis (PCA) and k-means because these algorithms provide

dimensionality reduction for extensive trace data, reduce the computational time needed

for the analysis and will be able to provide a basis for the final data analysis, to indicate

the final algorithms suitable for characterize the data.

This chapter gave an overview of recent trends in the DDML techniques that can be used

for network optimization and control and the TCP data analysis possibilities. The next

chapter presents the details of the background theory for DDML techniques, network

optimization, using DDML techniques for network optimization and TCP.

24

3 Background Theory Overview

3.1 Data-driven techniques

AI is the intelligence of machines or software, a field of study that develops and studies

intelligent machines. ML is a part of AI and studies the programs that can improve the

performance of a task automatically, by discovering their own algorithms.

ML is divided into three main approaches, based on the learning paradigms: supervised

learning, unsupervised learning, and reinforcement learning.

In brief:

Supervised learning uses labelled data, with given inputs and corresponding outputs to

learn the rule of how the input and output are related.

Unsupervised learning does not have labels on the data and the algorithm should develop

the relation of the data itself, by finding patterns in the data or learning the features behind

the data.

Reinforcement learning involves the algorithm that interacts with an environment

dynamically in order to learn to achieve a certain goal and based on feedback from the

actions performed, the program tries to maximize the rewards.

25

An overview of selected possible DDML techniques by learning type is provided in

Figure 2, adapted from [49].

Figure 2. Classifications of DDML, adapted from [49]. This thesis focuses on one method of supervised

learning (i.e. linear regression) and two methods of unsupervised learning (k-means clustering and principal

component analysis), which are highlighted with yellow borders in the figure.

3.1.1 Unsupervised learning

Unsupervised learning can be categorized based on the approach that is used for the

analysis:

- Clustering;

- Anomaly detection;

- Dimensionality reduction.

Clustering involves the segmentation or grouping of features with similar attributes, to

better distinguish between possible groups of datasets. It can be used, for example, for

26

anomaly detection when a data point does not fit in a group. Some examples of clustering

algorithms are k-means [50], hierarchical clustering [51], density-based spatial clustering

of applications with noise (DBSCAN) [51], ordering points to identify the clustering

structure (OPTICS)[52] and multivariate normal distribution [53].

Anomaly detection is used to find data or observations that do not fit in a normal operation

of a process. Anomaly detection techniques include isolation forest [54] and local outlier

factor [55].

Dimensionality reduction encompasses the transformation of data from a higher

dimensional space to a lower-dimensional space. In this process, there should remain

relevance of the low-dimensional space, so that it can represent the data of the original

high-dimensional space, but there will be losses of data representation during the

transformation. Dimensionality reduction techniques include principal component

analysis (PCA) [56] and non-negative matrix factorization (NMF) [51].

3.1.1.1 Unsupervised learning method 1: PCA

PCA is a dimensionality reduction technique that performs linear mapping of data to the

low-dimensional space. In the process, the variance of data representation in the resulting

space is maximized, resulting in new components that represent the original features,

without losing relevance to the original information. To perform the PCA, the covariance

matrix is constructed and the eigenvectors are computed for this matrix. Based on the

eigenvectors that have the largest eigenvalues, the original data can be represented by the

recalculation of the matrix using the eigenvectors with the larger eigenvalues. In practice,

the first eigenvalue often contributes for the majority of the representation of the

behaviour of the system, but it should be validated based on the actual system being

analysed. The PCA technique is sensitive to outliers and anomalies in the data.

3.1.1.2 Unsupervised learning method 2: K-means

K-means clustering is a method used for grouping of data by partitioning n observations

into k clusters. Each observation belongs to the cluster with the nearest mean. For the

method, there is needed to first define the amount of cluster that the algorithm should

categorize the data into. The algorithm defines randomly the centroids, calculates the

distance from each point to each centroid, associate the points with the closest centroid

and recalculate the centroid positions. This process is run until the centroid positions do

27

not move. For the distance calculation between the points and the centroids, there is

generally used squared Euclidean distance calculation.

3.1.2 Supervised learning

Supervised learning involves training a model using labelled data, i.e. for a known

combination of input data, the algorithm should be able to provide an expected output

value. Supervised learning can be split into classification (separates the data into specified

categories) and regression (models the correlation between input and output parameters)

types.

3.1.2.1 Supervised learning method 1: Linear regression

Linear regression is a method of modelling the relationship between dependent and

independent variables. The dependent variable is the expected outcome of the modelling

and the independent variables are the input values for the model. When there is more than

one independent variable, then the process is called multiple linear regression.

The multiple linear regression can be expressed as:

𝑦𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖1 + ⋯ + 𝛽𝑘 ∙ 𝑥𝑖𝑘 + 𝜀𝑖, (1)

where yi is the dependent variable, xi1…xik are the independent variables, β1… βk are the

coefficient parameters, β0 is the intercept term and εi is the error variable. The goal of the

linear regression method is to find the coefficients β0… βk so that the error term is

minimized. This process is called fitting of the model.

3.2 Network optimization

A network can be a wired or wireless connection of different devices, used to share data.

Network optimization is monitoring, maintaining, and improving the performance of the

network, using different tools, techniques and practices. It is usually done by combining

a network model and an optimization algorithm. The model is responsible for the

prediction of performance for a specific configuration and the algorithm generates the

configurations that could meet the expected performance. For network optimization, there

should be considered that optimization is possible only for a process or structure that has

been modelled. According to [44], the most common network modelling techniques are

28

i) analytical models, ii) fluid models, and iii) packet-level simulators. A short description

of these three techniques is provided in what follows.

The analytical model based on queuing theory is commonly used, but it struggles to

accurately model real-life networks with multi-hop routing [44].

Fluid models are popular alternatives, and they are quite simple and useful for several

optimization tasks (e.g., link utilization balancing). However, the disadvantage of fluid

models is limited accuracy in networks with high utilization regimes and complex

queuing policing because these models assume constant per-link delays and do not

consider the effects of queuing delays, scheduling policies, network losses [44].

Packet-level simulators are the most accurate in comparison to traditional network models

but have a high computational cost and therefore they are not optimal for real-time

scenarios with large traffic volumes [44].

To combat these issues, ML-based techniques could provide more effective modelling of

networks, by training them on online and offline real-world data from the entire range of

the network characteristics.

29

In Figure 3, adapted from [57], different network optimization objective classes are

shown. For this thesis, the focus is on i) QoS parameters, especially bit rate, delay, packet

loss, and ii) congestion control, as highlighted in the figure.

Figure 3. Classification of network optimization objectives for IoT networks, adapted from [57]. As

highlighted with blue circles, in this thesis, the focus is on QoS parameters (bit rate, delay, packet loss),

and on congestion control.

30

3.3 Applying ML for network optimization

ML-based network optimization techniques are promising, as they could provide more

accurate network modelling by using real-world data for training and additionally could

be used to develop a more accurate optimization algorithm. For this reason, the ML

algorithm could be utilized in the following two steps:

1) Using unsupervised learning to find relationships in the existing data, perform

dimensionality reduction and apply clustering;

2) Using another learning technique to optimize the parameters based on the selected

data from Step 1), to provide the control information for the device controlling or

optimizing the network parameters.

To be able to select or cluster the data from the available data, the two possible methods

are PCA and k-means clustering. PCA (see additional information in Section 3.1.1.1) can

help to reduce the number of features used for the calculations and k-means (see

additional information in Section 3.1.1.2) clustering can help to define the clusters of data.

Another option is to use supervised learning methods, for example, to determine the

relation of the observed data by applying regression modelling techniques (such as linear

regression explained in Section 3.1.2.1), to find out if the observed input data correlates

to the expected output data.

3.4 Transmission Control Protocol

To improve transferability of the algorithm to be developed, the target for this thesis is to

use the trace information obtained from the transport or the layers above it from the

network OSI model. One of the most common protocols from the transport layer is TCP.

Compared to user datagram protocol (UDP), which is used for time-critical application

like streaming or DNS lookups and does not have error correction or packet sequencing,

TCP is a protocol which has a goal of making sure the packets have been successfully

delivered. TCP uses error correction, packet ordering, retransmissions of lost packets,

sliding window flow control and congestion control to improve the reliability of the

connection and the delivery of data. For the data to be transferred, the protocol divides it

into segments and includes the TCP header to the segment.

31

Figure 4 shows the TCP header composition, followed by Table 3 which describes

selected fields of the header.

Figure 4. TCP header composition [58].

Table 3. TCP header elements description [58].

Field name Size (bits) Description

Source port 16 Sending port ID

Destination port 16 Receiving port ID

Sequence
number

32
Initial seq number if SYN flag raised, otherwise
accumulated seq number

Acknowledgment
number

32
Acknowledges that all previous data has been received

DO 4 Data offset, defines the size of the TCP header

RSV 4 Reserved, not used

Flags

8

Contains the flags: CWR (Congestion window reduced), ECE
(Explicit Congestion Notification Echo), URG (Urgent), ACK
(Acknowledgment), PSH (Push), RST (Reset), SYN
(Synchronize), FIN (Final)

Window
16

Defines size of window that the receiver is willing to
receive

Checksum 16 Checksum for the header, data and IP pseudo-header

Urgent pointer 16 Indicates last urgent data byte, if URG flag is raised

Options
0-320

Variable field with different options, size determined by
DO

32

The TCP connection diagrams for normal conditions can be divided into three variants:

connection establishment, data transfer, and connection termination. Simplified diagrams

of different the three connection variants of TCP [59] are shown in Figure 5.

 a) b) c)

Figure 5. TCP diagrams for connection variants a) connection establishment, b) data transfer, c)

connection termination, adapted from [59].

For acquiring and analysing the datasets used in this thesis, the software Wireshark and

its command line utility tshark were used; this enables capturing traces from a network

interface of the device it is installed on. The Wireshark software includes additional TCP

analysis tools, which provide the following example metrics that can be extracted from a

TCP trace file, which were used for the data analysis for this thesis: duplicate ACK

packets, suspected retransmission packet and previous segment not captured indicator.

This chapter gave an overview of the background theory for data-driven techniques,

network optimization, using data-driven techniques for network optimization and TCP.

The next chapter presents the details of the design and implementation of the proposed

learning algorithms, including the choice of hardware and the obtaining of the datasets.

33

4 Design and Implementation of the Proposed Algorithms

This chapter presents the algorithms that have been developed in this thesis, their

implementation and the method of acquiring the datasets for analysis and algorithm

development.

4.1 Algorithm development

In this thesis, two possibilities of algorithm development have been investigated, i.e.

unsupervised learning with PCA and k-means and supervised learning with linear

regression.

4.1.1 Unsupervised learning algorithm development

For unsupervised learning, the parameters listed below from the TCP trace files were

examined, to determine any noticeable patterns that could be used to determine different

network conditions. To create the traces, several constraining conditions were applied to

the network which the observed devices were connected to. These constraints are

described in Section 4.2.

The datasets were examined using both PCA and k-means clustering, to determine if the

dimensionality could be reduced and if the different simulated conditions could be

separated from the data.

The parameters and different combinations of these parameters used for the analysis

during PCA are as follows:

- Measurement time (s)

- Time between segments for same transmission (s)

- Length of packet (bytes)

- Length of data (bytes)

- Size of packet (bytes)

- Window size (bytes)

- Relative acknowledgement number

- Timestamp value

- Timestamp echo reply value

- Number of suspected retransmission packets

34

- Number of duplicate ACK packets

- Number of suspected lost packets

For applying the k-means clustering method, the same parameters were used as for PCA.

Figure 6 shows the proposed flow-chart of the unsupervised learning algorithm,

containing the steps 10 to 110.

The Step 10 involves the initialization of the variables and constants. The Steps 20, 30

and 40 correspond to the capturing of the trace data, converting it to .csv and opening it

as a dataframe correspondingly. The Step 50 involves processing the data, transforming

it into a suitable format for the algorithm. In Step 60, the PCA is applied to transform the

data into suitable principal components. In Step 70, k-means clustering is applied to the

transformed PCA data. In Step 80, the output of the algorithm is calculated based on the

clustering result. In Step 90, the result is compared to the previous iteration of the

algorithm. If the result is not changed, the algorithm goes to Step 110 to save the result

in a log file and start a new cycle from Step 20. If the algorithm outcome has changed,

then the Step 100 is executed, which includes updating of the network parameters to

optimize the network.

35

Figure 6. Flow-chart of the proposed unsupervised learning algorithm.

4.1.2 Supervised learning algorithm development

For the second approach, a linear regression analysis was carried out to examine the

relationship expressed in Equation (2).

𝐹 = 𝑓(𝐶, 𝑇𝑎, 𝑇𝑚, 𝐿, 𝐷, 𝑅), (2)

where F is the number of devices connected to the observed network, C is the count of

measured packets, Ta is the Average of RTT, Tm is the Median of RTT, L is the number

of suspected dropped packets, D is the number of duplicate ACKs, and R is the number

of suspected retransmission packets. All of these parameters should be considered to be

monitored over a time period, to have more stable results.

When applying the linear regression formula, an ideal case would be as per Equation 3.

𝐹 = 𝛽0 + 𝐶 ∙ 𝛽1 + 𝑇𝑎 ∙ 𝛽2 + 𝑇𝑚 ∙ 𝛽3 + 𝐿 ∙ 𝛽4 + 𝐷 ∙ 𝛽5 + 𝑅 ∙ 𝛽6. (3)

36

To execute the algorithm onto the RPi, it would be needed to periodically capture the

data, analyze it, and provide an output to update the necessary network parameters. Figure

7 shows the proposed algorithm flow graph, comprising of Step 10 to Step 90.

Initially, in Step 10, the constants and variables are initialized. During Step 20, Wireshark

CLI utility tool tshark is used to capture specific TCP packet data during a specified time

window and saved as a temporary pcap (packet capture file, which stores network capture

data, which can later be used to analyze network parameters and troubleshoot for potential

issues) file. In Step 30, the data collected in Step 20 is saved as a temporary csv file. Step

40 involves opening the csv file from Step 30 as a pandas dataframe (two-dimensional

table, with a variable size [60]). Step 50 processes the data in the dataframe, sorting out

relevant data and replacing empty rows with corresponding data. Step 60 includes the

calculation of the selected values and additionally the regression output value. Step 70

checks if the predicted number of devices has been changed compared to the previous

iteration and runs either Step 80, which updates the network parameters correspondingly

or Step 90, which saves the required data to a log file and starts a new cycle.

37

Figure 7. Flow chart of the proposed algorithm with linear regression. Details of the steps are provided in

text.

4.2 Dataset

The dataset that was chosen for analysing the problem was collected using a real-world

setup with different constraints to the network applied. For the data collection, all

connected devices had the same software (SW) for simulating the network traffic

programmed. The five main steps of the data collection system flow are shown in Figure

8.

Figure 8. The five main steps of the data collection system flow.

Configure
access point

(AP)

Apply
constraints
(if needed)

Connect
devices to

AP

Capture
data with
Wireshark

Export data
as .csv

38

The different constraints that were simulated:

- Bandwidth limitation, ranging from not limited to 10 kbit/s;

- Network loss, ranging from 0% to 25%;

- Network delay for packets leaving the ethernet interface, ranging from 0 ms to

500 ms.

The constraints were partially inspired by recommendations presented in International

Telecommunication Union document Y.1541 [61]. The values of these parameters were

obtained by using Wireshark to monitor network traffic TCP packets.

4.3 Hardware

Hardware selection involves two parts: i) hardware for training, and ii) hardware for

deployment.

For training, the device should have high computational power, which is why Google

Colaboratory was chosen for this task. At the time of performing the analysis, there was

available the GPU NVIDIA Tesla T4 (with 16 GiB GDDR6) and CPU Intel Xeon with

Google Colaboratory entry tier.

39

For the deployment hardware, there were different SBC-s available for the AP device,

which are listed in Table 4.

Table 4. List of SBC-s available for algorithm deployment on the AP device.

Device
name Processor Memory Price

Network
connectivity

Raspberr
y Pi 4
Model B
[62]

Broadcom BCM2711,
quad-core Cortex-A72
(ARM v8) 64-bit
SoC @ 1,5 GHz

1 GiB, 2 GiB, 4 GiB or
8 GiB LPDDR4 €31,62

2,4 GHz and
5,0 GHz IEEE
802.11ac,
Gigabit
Ethernet

NVIDIA
Jetson
Nano [63]

ARM® Cortex® -A57
MPCore (Quad-Core) |
1,43 GHz

Dual Channel |
LPDDR4
| 1600 MHz | 25,6
GB/s |4 GiB €89,44

Gigabit
Ethernet

Google
Coral
DevBoard
[64]

NXP i.MX 8M SoC (quad
Cortex-A53, Cortex-
M4F) 1 or 4 GiB LPDDR4 €117,46

Gigabit
Ethernet
port, Wi-Fi
2x2 MIMO
(802.11b/g/n
/ac 2,4/5
GHz)

Raspberr
y Pi Zero
W [65] 1 GHz, single-core CPU 512 MiB RAM €13,55

802.11 b/g/n
wireless LAN

For the reasons of availability, accessibility, price, computational power, the Raspberry

Pi 4 model B [62] with 4 GiB of RAM has been selected for the initial testing and

validation of the algorithm on the AP device. Figure 9 shows a photograph of this device.

Figure 9. Raspberry Pi 4 model B [66] used for hardware deployment of the algorithm on the AP device.

40

For the simulation of the network client devices, Raspberry Pi Pico W [67] units were

used to generate network traffic. The specifications for the RPi Pico W are as follows:

Microcontroller RP2040, dual-core ARM Cortex-M0+ processor, 254 kiB on-chip

SRAM, 2 MiB on-board flash, 2,4 GHz 802.11n wireless LAN. Figure 10 shows a

photograph of this device.

Figure 10. Raspberry Pi Pico W [68] used as network clients.

41

The structure of the measurements’ setup is shown in Figure 11. The number of RPi Pico

W devices connected to the RPi 4 can be changed from 1 to n (as will be shown later on,

n is limited to 5 in this setup).

Figure 11. Measurement and validation setup. The RPI Pico W devices act as the network clients and

generate the network traffic. They are connected, over WiFi (802.11n 2,4 GHz), to the RPI4 which acts as

the AP and implements the proposed algorithm. The RPI4 is connected over a wired Ethernet (Gigabit

Ethernet) link to the router.

Raspberry Pi 4

RPi Pico

W
RPi Pico

W
RPi Pico

W

Router

Wired

Wi-Fi Wi-Fi Wi-Fi

42

Figure 12 shows a photograph of the real-life setup of the network corresponding to

Figure 11, with 10 RPi Pico W boards used as network clients.

Figure 12. Photograph of the network measurement and validation system setup, corresponding to the

diagram shown in Figure 11 As in Figure 11, the RPI Pico W devices act as the network clients and generate

the network traffic. They are connected, over WiFi (802.11n 2,4 GHz), to the RPI4 which acts as the AP

and implements the proposed algorithm. The RPI4 is connected over a wired Ethernet (Gigabit ethernet

connections with supplied maximum bandwidth of 100 Mbit/s) link to the router.

This chapter gave an overview of the design and implementation of the proposed learning

algorithms, including the choice of hardware and the obtaining of the datasets. The next

chapter presents the details of the results obtained while using different algorithms and

the analysis of the results.

43

5 Results and Analysis

The measurements and validation were performed with a RPi 4B 4 GiB model, running

Ubuntu Desktop 64bit OS version 23.10 and Wireshark version 4.0.8. The results are

divided into two parts: i) results for the unsupervised learning and ii) results for

supervised learning. The unsupervised learning approach presented in Section 5.1 did not

provide enough convincing results to proceed with this method, and therefore it was

decided to focus on the supervised learning approach; the results for the supervised

learning approach are presented in Section 5.2 and are according to expectations.

Moreover, Section 5.3 provides an overview of different observed classification

parameters (memory usage, time delay).

5.1 Unsupervised learning approach (PCA and k-means)

To determine the suitable number of principal components for the PCA, the scree plot

method was applied; it is a graphical method that uses the “elbow” of the graph to

determine the number of PCA principal components necessary for the analysis. Figure 13

shows an example scree plot, which suggests that for this example the number of features

to be used is approximately 4 (i.e. the Eigenvalues of components 1 to 4 are above the

value ‘1’, whereas the Eigenvalues of the components 5 to 10 are below ‘1’). The scree

plot was made using a dataset that combines periodically applied constraints to the

network, as suggested in Section 4.2, with non-constrained and each constrained scenario

applied in 25% of the observation time.

44

Figure 13. Example scree plot for PCA which suggests that for this example the number of features to be

used is approximately 4.

Figure 14 shows the PCA plot for the first two principal components. From the figure, it

was found that there are no distinguishable groups that could be used for further analysis.

Figure 14. Example two component PCA plot. As can be seen, it was found that there are no

distinguishable groups that could be used for further analysis.

Table 5 shows a list of principal components, with their corresponding variance ratio

displayed. Table 6 shows a list of principal components with their corresponding

explained variance ratio for each initial parameter. The results show that the combined

first four principal components have a low variance ratio (0,28 + 0,12 + 0,09 + 0,09 =

0,58, i.e. 58%), when actually it would be desirable to have at least 80% variance

explained by these four components. Furthermore, for the main principal components,

there is no suggestion that there is a major parameter that is corresponding to the majority

of their variance.

45

Table 5. Variance ratio of principal components for a combined dataset, which includes added delay and

bandwidth constraints.

Principal
component Variance ratio

PC_1 0,28

PC_2 0,12

PC_3 0,09

PC_4 0,09

Table 6. Principal components’ explained variance ratio for each parameter for combined dataset. TBP –

Time between packets, Ret – Suspected retransmission packets, Dup – Duplicate ACK-s, Lost – Suspected

lost packets.

 TBP Length Seq Ack Win Len Tsval Tsecr Ret Dup Lost

PC_1 0,04 0,53 0,29 0,22 0,20 0,53 0,38 0,31 0,03 0,15 0,01

PC_2 0,08 0,04 0,12 0,38 0,61 0,05 0,28 0,51 0,33 0,08 0,01

PC_3 0,68 0,02 0,01 0,02 0,10 0,02 0,00 0,12 0,35 0,53 0,33

PC_4 0,12 0,02 0,02 0,08 0,04 0,02 0,04 0,04 0,32 0,19 0,92

Next, to determine the number of clusters to use for the k-means clustering, the elbow

method was also used and the result is displayed in Figure 15. The figure suggests that

the number of clusters should be 7. But as the number of applied known scenarios was 4,

then this method was also deemed not suitable for further investigation.

Figure 15. Elbow curve for k-means for a combined dataset case.

46

The results of the above investigations show that the dimensionality cannot be

significantly reduced, because it was found that the principal components do not have

significant variance ratios and there is no clear parameter that has a weight that is

significant enough. Additionally, it was also found that there are no clearly

distinguishable clusters that could be distinguished to correspond to the scenarios

expressed by the dataset. Appendix 1 provides additional results for the unsupervised

learning approach, which consist of further combinations of input parameters and number

of components used for the PCA, but it was also found that these results do not provide a

clear conclusion. Appendixes 6 and 7 contains the source codes for the PCA and k-means

algorithms, respectively, that were used to analyse the datasets.

Due to these results, despite the efforts spent in trying various combinations, the

unsupervised learning approach with the PCA and k-means techniques was not pursued

any further in this thesis. Instead, the focus was changed to a supervised learning

approach, i.e. linear regression analysis, presented in what follows.

5.2 Supervised learning

During capturing of the different datasets, it was discovered that the hardware and

software combination only supported the connection and monitoring of five network

client devices2 out of the 10 available client devices. Due to this technical limitation, the

datasets were collected for one to five devices connected to the network with different

applied constraints. The constraints were applied using the netem tool, which is a Linux

network emulation tool that provides functionality to emulate different network

conditions (bandwidth, delay, loss, jitter, packet reordering). At first, the datasets were

analysed for each parameter separately, to see which parameters had larger correlation to

the number of devices connected to the network. The analysis was done with sampling

the data at different time windows, to observe its impact on data stability. The source code

2 The constraint was discovered during experimental activities and there was no indication beforehand

that this would become an issue. Research in the RPI community fora shows that there might be an upper

limit to the number of devices connected, but it should not be as low as five; at the time of writing, this

issue remains open.

47

for calculating the regression coefficients and the coefficient of determination is displayed

in Appendix 7.

The results are shown in Table 7. The results show that the count of measured packets,

median of RTT, and number of suspected retransmission packets had the highest

correlation to the number of devices connected to the network.

Table 7. Regression coefficients for different parameters for several network constraint scenarios.

Network traces captured with 1 to 5 client devices connected.

No
constraints

10 kbit/s
bandwidth
constraint

25%
added
loss

25% loss
and non-
constrained

All datasets (non-
constrained, 25%
additional loss, 10
kbit/s bandwidth
constraint)
combined

Count of measured
packets 1 0,44 0,52 0,74 0,63

Average of RTT 0,42 0,83 0,02 0,16 0,05

Median of RTT 0,81 0,59 0,01 0,25 0,13

Count of duplicate
packets 0,02 0,09 0,44 0,16 0,14

Count of suspected
retransmission
packets 0,32 0,09 0,62 0,46 0,3

Regarding the observation time window, there were examined options from 1-30 s (the

time windows were chosen empirically, as suitable references could not be found in the

literature). It was determined from the initial analysis that a time window from 5-15 s

would achieve a suitable compromise between model accuracy and how fast the device

would periodically produce output from the algorithm.

Figure 16 shows a summary of this analysis. Although in the PCA analysis it is desirable

to have 80% of explained variance from the principal components, it is not applicable to

linear regression coefficient of determination and therefore it was decided that a

coefficient of determination lower than 80% would also be suitable for linear regression.

Furthermore, there were no concrete requirements found in the literature for the suggested

value of this parameter, as it depends on the system and field of study analysed.

48

Figure 16. Coefficient of determination vs time window for 3 parameters used for regression analysis for

different conditions. It can be seen in the graphs that the slope of the graphs starts to even out after 5 - 15

s, which is why this region was focused on in the development of the algorithm.

Figure 17, Figure 18, and Figure 19 show the result of the regression analysis with a time

window of 10 s for the parameters that had the highest correlation factor – normalized

count of measurements, median of RTT and normalized count of retransmission packets,

respectively. Appendix 5 presents additional regression results for other capture time

windows (5 s, 15 s) and additional parameters for a 10 s time window (average of RTT,

count of duplicate packets) for a combined dataset.

0

5

10

15

20

25

30

35

0 0,2 0,4 0,6 0,8 1 1,2

Ti
m

e
w

in
d

o
w

 (
s)

Coefficient of determination

Coefficient of determination vs time window for 3
parameters used

25% added loss

10kbit/s bandwidth
restriction

Unconstrained

Combined unconstrained
and added 25% loss

all conditions

49

Figure 17. Count of measured packets vs number of devices, for a capturing time window of 10 s.

50

Figure 18. Count of retransmission packets vs number of devices, for a capturing time window of 10 s.

51

Figure 19. Median of RTT vs number of devices, for a capturing time window of 10 s.

In ML it is advisable to split the dataset into training, validation, and testing sub-datasets,

to check the accuracy of the model being trained [69]. But as the sklearn library used for

linear regression calculation does not have hyperparameters to tune, the datasets were

also examined with the k-fold cross validation method, to see how the error rate would

differ when selecting different sections of the dataset for analysis. For the k-fold cross

validation, 10 folds were used, which means that the dataset was split into 10 folds (sub-

datasets) and for each of those 10 folds, the parameters of the model were calculated using

that part of the dataset. Table 8 presents the results for this analysis.

52

Table 8. k-fold cross validation results for different datasets. MAE – Mean absolute error. RMSE – Root

mean square error. R2 – Coefficient of determination.

Dataset used
Average MAE
of 10 folds

Average
RMSE of 10
folds

R2 across
whole
dataset

Average R2
of 10 folds

Unconstrained 0,05 0,0052 0,9975 0,9973

Combined 0,6424 0,6895 0,6554 0,6476

The analysis was also performed by splitting the dataset into 80%-20% (training-testing)

and 80%-10%-10% (training-validation-testing), to verify whether there would be a

significant difference in the results. The results showed that there was no significant

difference in the parameters (unconstrained dataset training MAE varying from 0,0503 to

0,0628, RMSE from 0,0733 to 0,1185, R2 from 0,9974 to 0,9975 when using the 80%-

20% and 80%-10%-10% split method, respectively) and based on this it was decided to

use the whole dataset for the linear regression algorithm training.

To determine whether it would be possible to further reduce the number of parameters

used, an additional PCA was performed for these latest parameters. The results for this

experiment are provided in Appendix 4. In the results, there appear to be clusters

corresponding to the expected output of the algorithm, but there is also additional noise

in the resulting plots, so this additional PCA possibility was not pursued any further.

For deploying the algorithm to the device, capture windows of 5 ,10 and 15 s were used.

Based on these results, the linear regression was finalized as per Equation 4.

𝐹 = 𝛽0 + 𝐶 ∙ 𝛽1 + 𝑇𝑚 ∙ 𝛽3 + 𝑅 ∙ 𝛽6, (4)

Table 9 shows the regression parameters for 5, 10 and 15 s capture time windows.

Table 9. Correlation parameters for 5, 10, 15 s capture time windows.

Capture time window (s) β0 β1 β2 β3

5 -0,4 0,0028 90,4 -0,0008

10 -1,04 0,0039 280,7 0,1111

15 0,3 0,0021 -20,2 0,0299

53

In Table 10, the coefficients of determination for 5, 10 and 15 s capture time windows are

shown, for the combined dataset.

Table 10. Coefficients of determination for 5, 10, 15 s capture time windows, for the combined dataset.

Capture time window (s) Coefficient of

determination

5 0,53

10 0,66

15 0,71

The model was deployed and run on the AP device with different number of client devices

connected to the network. The source code for the algorithm that was run on the AP device

can be seen in Appendix 2. The source code that was run on the client devices is displayed

in Appendix 3. Figure 20 is an example of the output log file.

Figure 20. Algorithm output log file.

54

Table 11 shows the results for the algorithm accuracy for the 5, 10, 15 s capture time

windows, when using a non-constrained network setup.

Table 11. Algorithm mean accuracy for 5, 10, 15 s capture window, for non-constrained network setup.

Capture time window (s) Algorithm mean accuracy

5 29,75%

10 94,67%

15 93,62%

The accuracy was calculated by dividing the number of correct predictions by the total

number of measurements. The accuracy is acceptable to be used for further development.

Figure 21, Figure 22, Figure 23 plot the algorithm number of devices estimation results

for 5, 10 and 15 second capturing time windows, respectively.

Figure 21. Estimated vs actual number of devices, time window 5 seconds. Model mean accuracy is

29,75%.

0

2

4

6

8

0 50 100 150

N
u

m
b

er
 o

f
d

ev
ic

es

Measurement number

Estimated and actual number of devices,
time window 5 s

Estimated

Actual

55

Figure 22. Estimated vs actual number of devices, time window 10 seconds. Model mean accuracy is

94,67%.

Figure 23. Estimated vs actual number of devices, time window 15 seconds. Model mean accuracy is

93,62%.

Testing with different amounts of data, the results show that when randomly decreasing

the dataset size, then after a certain amount of data, the accuracy of the algorithm starts

to decrease significantly. On the other hand, it was observed that the minimal amount of

data required for acceptable algorithm performance depends on the dataset used, which

means that it might be affected by the variation expressed in the data. Figure 24 shows

the amount of data used compared to the accuracy of the algorithm for an unconstrained

dataset, where the accuracy of the algorithm starts to decrease significantly when the

amount of data is below 10 datapoints. For this experiment, the dataset was split into

training and testing datasets with a ratio of 80%-20% and the training dataset would be

0

2

4

6

0 20 40 60 80N
u

m
b

er
 o

f
d

ev
ic

es

Measurement number

Estimate vs actual number of devices, time
window 10s

Estimated

Actual

0

1

2

3

4

5

6

0 10 20 30 40 50

N
u

m
b

er
 o

f
d

ev
ic

es

Measurement number

Estimate vs actual number of devices, time
window 15s

Estimated

Actual

56

reduced, while the testing dataset would be used for the accuracy estimations by using

the algorithm coefficients calculated from the training dataset.

Figure 24. Accuracy vs amount of data used for the linear regression algorithm, using an unconstrained

dataset.

While the proposed linear regression-based algorithm provides suitable results in terms

of accuracy, it is also important to consider its implementation cost in terms of memory

and execution time usage, which is discussed in what follows.

57

5.3 Linear regression-based algorithm memory and time usage

classification

For the supervised learning classification estimation, both time and memory usage

estimation tests have been performed. Figure 25 shows the execution time delay

(summation of the data processing and of the result calculation) of the algorithm.

Figure 25. Time for data processing and result calculation. Mean time 0,042 s.

Moreover, Table 12 shows the time delays of different parts of the algorithm.

Table 12. Time delays of different parts of the algorithm.

Total cycle
time (s)

Capture time
window (s)

Capturing auxiliary
time (s)

Data saving
time (s)

Data
manipulation
time (s)

7,98 5 1,66 1,29 0,034

13,05 10 1,77 1,24 0,034

17,94 15 1,60 1,31 0,035

It can be seen that for a fixed capturing time window of 5, 10, and 15 s, the algorithm

(data manipulation and data saving rows) plus the tshark functions (capturing auxiliary

time) add approximately 3 s of delay, resulting in total cycles times of 7,98, 13,05, and

17,94 s. Depending on the final application requirements, this could be an acceptable

overhead in terms of delay.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 50 100 150 200 250

Ti
m

e
(s

)

Measurement number

Algorithm data processing and result calculation
running time

58

Figure 26 shows the memory usage results for different scenarios. The plot shows that

the idle usage case has the lowest amount of memory usage, followed by the RPi working

as an AP and with the highest memory usage when the RPi is working as an AP and also

running the number of devices prediction script, which is according to the expectation.

Furthermore, the periodical higher usage values occur when the Wireshark program is

capturing the packets. As the memory usage parameter for the RPi command “top”

command is updating every 1 s, this can explain the fluctuations that can be seen in the

period of the memory usage for the use cases where the algorithm is running on top of

the access point functionality.

Figure 26. Memory usage of different scenarios.

1000

1050

1100

1150

1200

1250

1300

1350

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

M
em

o
ry

 u
sa

ge
 (

M
iB

)

Measurement number, interval between measurements 50 ms

Memory usage for different conditions, over a 2 minute
period

Idle

1 dev AP

5 dev AP

1 dev AP + script

5 dev AP + script

59

In Table 13, the mean and maximum memory usage of different scenarios are shown.

Table 13. Mean, maximum and minimum memory usage of different scenarios.

 Memory usage (MiB)

Scenario Mean Max Min

Idle 1042,1 1061,3 1034,0

1 dev AP 1110,2 1113,8 1106,6

5 dev AP 1119,2 1131,5 1106,7

1 dev AP +
algorithm

1277,4 1291,5 1193,2

5 dev AP +
algorithm

1279,3 1295,5 1217,1

It can be seen that the memory usage when five client devices are connected to the RPi

AP is on average 1,9 to 9,0 MiB higher than when only one device is connected, which

is consistent with the expected result. Also, it can be seen that the algorithm adds on

average 160,1 to 167,2 MiB of additional memory usage to the device.

5.4 Summary of the results

For the part of unsupervised learning (PCA and k-means), despite efforts with multiple

combinations of observed input parameters, no currently usable representative

relationship between the initially used parameters could be determined, nor any ways to

reduce the dimensionality of the dataset where those parameters were used could be

found. This means that the combination of the parameters monitored on a resource

constrained device may benefit from further refinement to enhance their usability in the

algorithm development, given the observed scenarios.

On the other hand, for the supervised learning method (linear regression), the main

contributor to determining how many devices were connected to the network was the

count of data traces obtained during a time period. This corresponds to the expectation,

because each device’s network traffic is added on top of the rest of the traffic and the

more devices connected to the network, the more packets will be transferred. There were

not many lost packets detected from the network traces, which can be attributed to the

TCP’s error handling capabilities. The average and median values of RTT did not play a

significant role in the effect to the number of devices connected to the network, which

might be due to the network not being constrained enough for these values to change. The

algorithm running on a capture window of 5 s had a much lower accuracy value of 29,75%

60

compared to 10 s and 15 s capture windows (which had accuracy values of 94,67% and

93,62%, respectively), which is corresponding to the model estimations and the fact that

the longer the collection and averaging time, the more stable the result will be.

Applying the same method but adding more connected client devices and applying more

intense traffic to the network seemed to cause issues for the RPi, as it was not able to keep

up with the traffic and it appeared to start to throttle from a certain amount of traffic;

experiment done with higher speed devices, resulted in limits to output speed/packets

transferred. Figure 27 illustrates this aspect, where it can be seen that with five devices

connected, the count of measurements starts to decrease: When the median of the count

of measurements increases from 1 to 4 devices (from 19536 to 29819), then for 5 devices

it lower (29655), which is more closely corresponding to the range between 3 (32900)

and 4 devices. This might be due to the limited computational power of the RPI4 device

and additionally running both the AP and data monitoring tasks at the same time.

Figure 27. Count of measurements vs number of devices.

This chapter gave an overview of the results obtained while using different algorithms

and the analysis of the results. The next chapter presents the details of the summary,

lessons learned and future work.

0

1

2

3

4

5

6

0 10000 20000 30000 40000 50000

N
u

m
b

er
 o

f
d

ev
ic

es

Count of measurements

Count of measurements vs number of devices

61

6 Conclusion

6.1 Summary

This thesis addressed the issue of using a DDML approach as a first step towards

performing network control and scheduling. The goal of the work was to develop a

suitable algorithm, evaluate its performance, and deploy it on an RPi device. The minimal

amount of data required to achieve (near) optimal algorithm performance was also

evaluated based on the available data.

Given the research questions presented in the first chapter of this thesis, the answers found

during the thesis are as follows: An algorithm can be proposed for network performance

monitoring using supervised learning (e.g., linear regression); on the other hand, using

unsupervised learning (e.g., PCA) proved to be inconclusive. The minimal amount of data

required for (near) optimal operation of the algorithm was determined to be dependent on

the dataset based on which the training would be performed. The proposed algorithm

using linear regression can be deployed on an SBC and the impact on the memory usage

and algorithm time consumption has been recorded.

The dataset for the analysis was obtained via real-life testing using a network setup with

variable devices connected and different constraints applied to the network. The analysis

and training the algorithm was done using Google Colaboratory and the implementation

and testing (deployment) was done an a RPi 4.

The results showed that the unsupervised learning approach was not sufficiently

compelling, as there were no clear cluster visible with k-means clustering and the PCA

did not provide conclusive results with which to proceed with further analysis. To

overcome this, several alternative methods were investigated, and linear regression was

selected as a supervised learning approach. Linear regression using three parameters

showed a mean accuracy of 94,67% for estimating the number of devices connected to

the network using a 10 s capture time window. The average memory usage of the

algorithm was measured as 160,1 MiB to 167,2 MiB and the average time usage of the

62

algorithm, when using a 10 s capture time window, was measured as 13,05 s, from which

the algorithm output calculation time was 0,034 s.

While the obtained results illustrate the feasibility of the proposed approach, some

limitations have also been identified. To improve and expand on the results, the next

sections briefly summarize the lessons learned and provide future work prospects.

6.2 Lessons learned

Working on data analysis with moderately sized datasets and a moderate number of

datasets, it is preferable to develop an automated solution for file analysis and

visualization, as would be the case with large datasets, as this can save a significant

amount of time. General results show that even if selecting the hardware is done based

on some research, there may still appear some unexpected challenges that are not

mentioned in the scientific literature, for which creative solutions are needed. Considering

state of the art, some problems require creating new datasets and creating or adjusting

algorithms to suit the specific problem, as often the information that is available is quite

general and difficult to apply on a specific problem.

Taking into account both the results and lessons learned, the future work perspectives are

provided in the next section.

6.3 Future work

To expand on and improve the problem solving considered in this thesis, the first option

is to use a compatible Wi-Fi adapter that supports monitoring, access point modes and a

larger amount of network client device connections (at least 25) in access point mode.

This solution would give the opportunity to first test a larger amount of device

connections in access point mode, to verify if the algorithm will indeed work with more

than five connected client devices. Additionally, using the AP device with an external

adapter only in monitoring mode might reduce memory usage and possibly current

consumption, as then the device does not have to additionally act as a hotspot. One of the

challenges with using monitoring mode will be to handle encrypted data, for which there

is a possibility in Wireshark to include the encryption keys extracted from a known

63

network’s devices, but this remains to be investigated if and what impact this might have

on the algorithm’s performance.

Further perspectives could be to adapt the algorithm to additional SBC devices, to assess

how transferrable the algorithm is and if there are other devices that might provide

improved performance.

Also, it could be considered to use different devices with different traffic patterns

connected to the network and determine how transferrable the algorithm will be for those

situations. This will additionally allow to acquire more datasets with increase variation,

to better adjust the algorithm.

Using devices or adapters with extended possibilities could provide an opportunity to

explore the usability of alternative methods and algorithms, to potentially improve the

solution.

Another further future work opportunity might be to use alternative libraries and

frameworks for the training and deployment of the ML models, to further optimize the

algorithm.

Energy consumption impact of the developed solution and possible alternative solutions

could be explored in future work as well as optimizing the existing algorithm to work

with a shorter capturing time window to enhance the reaction time of the algorithm.

Finally, the algorithm could be upgraded by improving and adding the network

controlling and scheduling functionalities.

64

References

[1] S. Jaffry, S. T. Shah, and S. F. Hasan, “Data-Driven Semi-Supervised Anomaly

Detection Using Real-World Call Data Record,” in 2020 IEEE Wireless

Communications and Networking Conference Workshops, WCNCW 2020 - Proceedings,

2020. doi: 10.1109/WCNCW48565.2020.9124782.

[2] T. Wang, S. Wang, and Z. H. Zhou, “Machine learning for 5G and beyond: From model-

based to data-driven mobile wireless networks,” China Communications, vol. 16, no. 1,

2019.

[3] Z. Hou, H. Gao, and F. L. Lewis, “Data-driven control and learning systems,” IEEE

Transactions on Industrial Electronics, vol. 64, no. 5, 2017, doi:

10.1109/TIE.2017.2653767.

[4] G. Baggio, D. S. Bassett, and F. Pasqualetti, “Data-driven control of complex networks,”

Nat Commun, vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-21554-0.

[5] A. Salh et al., “A Survey on Deep Learning for Ultra-Reliable and Low-Latency

Communications Challenges on 6G Wireless Systems,” IEEE Access, vol. 9. 2021. doi:

10.1109/ACCESS.2021.3069707.

[6] S. Szott et al., “Wi-Fi Meets ML: A Survey on Improving IEEE 802.11 Performance

with Machine Learning,” IEEE Communications Surveys and Tutorials, vol. 24, no. 3,

2022, doi: 10.1109/COMST.2022.3179242.

[7] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey of Machine Learning

Techniques Applied to Self-Organizing Cellular Networks,” IEEE Communications

Surveys and Tutorials, vol. 19, no. 4. 2017. doi: 10.1109/COMST.2017.2727878.

[8] F. Azmat, Y. Chen, and N. Stocks, “Predictive modelling of RF energy for wireless

powered communications,” IEEE Communications Letters, vol. 20, no. 1, 2016, doi:

10.1109/LCOMM.2015.2497306.

[9] A. Martin et al., “Network resource allocation system for QoE-aware delivery of media

services in 5G networks,” IEEE Transactions on Broadcasting, vol. 64, no. 2, 2018, doi:

10.1109/TBC.2018.2828608.

[10] J. Liu, R. Deng, S. Zhou, and Z. Niu, “Seeing the unobservable: Channel learning for

wireless communication networks,” in 2015 IEEE Global Communications Conference,

GLOBECOM 2015, 2015. doi: 10.1109/GLOCOM.2014.7417805.

[11] S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary, and M. Asaduzzaman, “Quantum

Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the

Future,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2909490.

[12] C. Sun and C. Yang, “Learning to Optimize with Unsupervised Learning: Training Deep

Neural Networks for URLLC,” in IEEE International Symposium on Personal, Indoor

and Mobile Radio Communications, PIMRC, 2019. doi: 10.1109/PIMRC.2019.8904143.

65

[13] M. S. Parwez, D. B. Rawat, and M. Garuba, “Big data analytics for user-activity analysis

and user-anomaly detection in mobile wireless network,” IEEE Trans Industr Inform,

vol. 13, no. 4, pp. 2058–2065, Aug. 2017, doi: 10.1109/TII.2017.2650206.

[14] Z. Liao, R. Zhang, S. He, D. Zeng, J. Wang, and H. J. Kim, “Deep Learning-Based Data

Storage for Low Latency in Data Center Networks,” IEEE Access, vol. 7, 2019, doi:

10.1109/ACCESS.2019.2901742.

[15] E. Balevi and R. D. Gitlin, “Unsupervised machine learning in 5G networks for low

latency communications,” in 2017 IEEE 36th International Performance Computing and

Communications Conference, IPCCC 2017, 2018. doi: 10.1109/PCCC.2017.8280492.

[16] J. Gazda, E. Slapak, G. Bugar, D. Horvath, T. Maksymyuk, and M. Jo, “Unsupervised

Learning Algorithm for Intelligent Coverage Planning and Performance Optimization of

Multitier Heterogeneous Network,” IEEE Access, vol. 6, 2018, doi:

10.1109/ACCESS.2018.2847609.

[17] A. T. Z. Kasgari and W. Saad, “Model-Free Ultra Reliable Low Latency Communication

(URLLC): A Deep Reinforcement Learning Framework,” in IEEE International

Conference on Communications, 2019. doi: 10.1109/ICC.2019.8761721.

[18] Y. Ling, B. Yi, and Q. Zhu, “An Improved Vertical Handoff Decision Algorithm for

Heterogeneous Wireless Networks.”

[19] K. Hamidouche, A. T. Z. Kasgari, W. Saad, M. Bennis, and M. Debbah, “Collaborative

artificial intelligence (AI) for user-cell association in ultra-dense cellular systems,” in

2018 IEEE International Conference on Communications Workshops, ICC Workshops

2018 - Proceedings, 2018. doi: 10.1109/ICCW.2018.8403664.

[20] G. Han, L. Xiao, and H. V. Poor, “Two-dimensional anti-jamming communication based

on deep reinforcement learning,” in ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings, 2017. doi:

10.1109/ICASSP.2017.7952524.

[21] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing in vehicle

networks: A deep reinforcement learning,” IEEE Trans Veh Technol, vol. 67, no. 11, pp.

10190–10203, Nov. 2018, doi: 10.1109/TVT.2018.2867191.

[22] H. Yang, J. Zhao, K. Y. Lam, Z. Xiong, Q. Wu, and L. Xiao, “Distributed Deep

Reinforcement Learning Based Spectrum and Power Allocation for Heterogeneous

Networks,” IEEE Trans Wirel Commun, 2022, doi: 10.1109/TWC.2022.3153175.

[23] X. Kong et al., “Deep Reinforcement Learning-Based Energy-Efficient Edge Computing

for Internet of Vehicles,” IEEE Trans Industr Inform, vol. 18, no. 9, 2022, doi:

10.1109/TII.2022.3155162.

[24] B. Ma, W. Guo, and J. Zhang, “A Survey of Online Data-Driven Proactive 5G Network

Optimisation Using Machine Learning,” IEEE Access, vol. 8. 2020. doi:

10.1109/ACCESS.2020.2975004.

[25] S. Narejo and E. Pasero, “An application of internet traffic prediction with deep neural

network,” in Smart Innovation, Systems and Technologies, vol. 69, 2017. doi:

10.1007/978-3-319-56904-8_14.

66

[26] Y. Hua, Z. Zhao, Z. Liu, X. Chen, R. Li, and H. Zhang, “Traffic Prediction Based on

Random Connectivity in Deep Learning with Long Short-Term Memory,” in IEEE

Vehicular Technology Conference, 2018. doi: 10.1109/VTCFall.2018.8690851.

[27] D. Tikunov and T. Nishimura, “Traffic prediction for mobile network using Holt-

Winter’s exponential smoothing,” in 2007 15th International Conference on Software,

Telecommunications and Computer Networks, SoftCOM 2007, 2007. doi:

10.1109/SOFTCOM.2007.4446113.

[28] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, “Understanding traffic

dynamics in cellular data networks,” in Proceedings - IEEE INFOCOM, 2011. doi:

10.1109/INFCOM.2011.5935313.

[29] F. Xu et al., “Big Data Driven Mobile Traffic Understanding and Forecasting: A Time

Series Approach,” IEEE Trans Serv Comput, vol. 9, no. 5, 2016, doi:

10.1109/TSC.2016.2599878.

[30] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The Learning and Prediction of

Application-Level Traffic Data in Cellular Networks,” IEEE Trans Wirel Commun, vol.

16, no. 6, 2017, doi: 10.1109/TWC.2017.2689772.

[31] C. Qiu, Y. Zhang, Z. Feng, P. Zhang, and S. Cui, “Spatio-Temporal Wireless Traffic

Prediction with Recurrent Neural Network,” IEEE Wireless Communications Letters,

vol. 7, no. 4, 2018, doi: 10.1109/LWC.2018.2795605.

[32] L. V. Le, D. Sinh, L. P. Tung, and B. S. P. Lin, “A practical model for traffic forecasting

based on big data, machine-learning, and network KPIs,” in CCNC 2018 - 2018 15th

IEEE Annual Consumer Communications and Networking Conference, 2018. doi:

10.1109/CCNC.2018.8319255.

[33] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling internet traffic

dynamics of cellular devices,” ACM SIGMETRICS Performance Evaluation Review, vol.

39, no. 1, 2011, doi: 10.1145/2007116.2007148.

[34] S. Zhang et al., “Traffic Prediction Based Power Saving in Cellular Networks: A

Machine Learning Method,” in GIS: Proceedings of the ACM International Symposium

on Advances in Geographic Information Systems, 2017. doi: 10.1145/3139958.3140053.

[35] B. Yang, W. Guo, B. Chen, G. Yang, and J. Zhang, “Estimating Mobile Traffic Demand

Using Twitter,” IEEE Wireless Communications Letters, vol. 5, no. 4, 2016, doi:

10.1109/LWC.2016.2561924.

[36] S. S. Sepasgozar and S. Pierre, “Network Traffic Prediction Model Considering Road

Traffic Parameters Using Artificial Intelligence Methods in VANET,” IEEE Access, vol.

10, 2022, doi: 10.1109/ACCESS.2022.3144112.

[37] F. Botta, H. S. Moat, and T. Preis, “Quantifying crowd size with mobile phone and

Twitter data,” R Soc Open Sci, vol. 2, no. 5, 2015, doi: 10.1098/rsos.150162.

[38] A. Knapińska, P. Lechowicz, and K. Walkowiak, “Machine-Learning Based Prediction

of Multiple Types of Network Traffic,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2021. doi: 10.1007/978-3-030-77961-0_12.

67

[39] M. S. Parwez, D. B. Rawat, and M. Garuba, “Big data analytics for user-activity analysis

and user-anomaly detection in mobile wireless network,” IEEE Trans Industr Inform,

vol. 13, no. 4, pp. 2058–2065, Aug. 2017, doi: 10.1109/TII.2017.2650206.

[40] L. V. Le, D. Sinh, B. S. P. Lin, and L. P. Tung, “Applying Big Data, Machine Learning,

and SDN/NFV to 5G Traffic Clustering, Forecasting, and Management,” in 2018 4th

IEEE Conference on Network Softwarization and Workshops, NetSoft 2018, 2018. doi:

10.1109/NETSOFT.2018.8460129.

[41] M. Xu, Q. Wang, and Q. Lin, “Hybrid holiday traffic predictions in cellular networks,”

in IEEE/IFIP Network Operations and Management Symposium: Cognitive Management

in a Cyber World, NOMS 2018, 2018. doi: 10.1109/NOMS.2018.8406291.

[42] T. Zhang, K. Zhu, and E. Hossain, “Data-Driven Machine Learning Techniques for Self-

Healing in Cellular Wireless Networks: Challenges and Solutions,” Intelligent

Computing, vol. 2022, 2022, doi: 10.34133/2022/9758169.

[43] C. Sun and C. Yang, “Unsupervised deep learning for ultra-reliable and low-latency

communications,” in 2019 IEEE Global Communications Conference, GLOBECOM

2019 - Proceedings, 2019. doi: 10.1109/GLOBECOM38437.2019.9013851.

[44] M. Ferriol-Galmés et al., “Building a Digital Twin for network optimization using Graph

Neural Networks,” Computer Networks, vol. 217, 2022, doi:

10.1016/j.comnet.2022.109329.

[45] S. Farthofer, M. Herlich, C. Maier, S. Pochaba, J. Lackner, and P. Dorfinger, “An Open

Mobile Communications Drive Test Data Set and Its Use for Machine Learning,” IEEE

Open Journal of the Communications Society, vol. 3, 2022, doi:

10.1109/OJCOMS.2022.3210289.

[46] A. Delimargas et al., “Evaluating a modified PCA approach on network anomaly

detection,” in International Conference on Next Generation Networks and Services,

NGNS, 2014. doi: 10.1109/NGNS.2014.6990240.

[47] A. U. Chaudhry, “Using machine learning to find the hidden relationship between RTT

and TCP throughput in WiFi,” EURASIP J Wirel Commun Netw, vol. 2021, no. 1, 2021,

doi: 10.1186/s13638-021-02076-1.

[48] M. Arlitt, B. Krishnamurthy, and J. C. Mogul, “Predicting short-transfer latency from

TCP arcana: A trace-based validation,” in Proceedings of the ACM SIGCOMM Internet

Measurement Conference, IMC, 2005.

[49] G. Hu, T. Zhou, and Q. Liu, “Data-Driven Machine Learning for Fault Detection and

Diagnosis in Nuclear Power Plants: A Review,” Front Energy Res, vol. 9, 2021, doi:

10.3389/fenrg.2021.663296.

[50] Smola A and Vishwanathan S.V.N, Introduction to Machine Learning. 2008.

[51] G. S. Andreas C. Muller, Introduction to Machine Learning with Python: a guide for

data scientist. 2017.

[52] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS: Ordering Points to

Identify the Clustering Structure,” SIGMOD Record (ACM Special Interest Group on

Management of Data), vol. 28, no. 2, 1999, doi: 10.1145/304181.304187.

[53] “Lesson 4: Multivariate Normal Distribution.” Accessed: Dec. 29, 2023. [Online].

Available: https://online.stat.psu.edu/stat505/book/export/html/636

68

[54] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation forest,” in Proceedings - IEEE

International Conference on Data Mining, ICDM, 2008. doi: 10.1109/ICDM.2008.17.

[55] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A review of local outlier factor

algorithms for outlier detection in big data streams,” Big Data and Cognitive Computing,

vol. 5, no. 1. 2021. doi: 10.3390/bdcc5010001.

[56] R. Bro and A. K. Smilde, “Principal component analysis,” Analytical Methods, vol. 6,

no. 9. 2014. doi: 10.1039/c3ay41907j.

[57] N. N. Srinidhi, S. M. Dilip Kumar, and K. R. Venugopal, “Network optimizations in the

Internet of Things: A review,” Engineering Science and Technology, an International

Journal, vol. 22, no. 1. 2019. doi: 10.1016/j.jestch.2018.09.003.

[58] D. E. Comer and D. L. Stevens, “Internetworking with TCP/IP, Volume III: Client-

Server Programming and Applications, Second Edition,” IEEE Network, vol. 10, no. 4.

1996. doi: 10.1109/MNET.1996.527010.

[59] L. L. Peterson and B. S. Davie, “Computer Networks: A System Approach,” IEEE

Communications Magazine, vol. 36, no. 5, 2005, doi: 10.1109/mcom.1998.667947.

[60] “pandas.DataFrame — pandas 2.1.4 documentation.” Accessed: Dec. 29, 2023. [Online].

Available: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

[61] ITU-T, “Network performance objectives for IP-based services,” 2011.

[62] “Raspberry Pi 4 Model B – Raspberry Pi.” Accessed: Dec. 20, 2023. [Online].

Available: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[63] Nvidia, “DATA SHEET NVIDIA Jetson Nano System-on-Module Maxwell GPU +

ARM Cortex-A57 + 4GB LPDDR4 + 16GB eMMC,” 2014, Accessed: Dec. 20, 2023.

[Online]. Available: www.khronos.org/conformance.

[64] “Dev Board | Coral.” Accessed: Dec. 20, 2023. [Online]. Available:

https://coral.ai/products/dev-board/

[65] “Raspberry Pi Zero W – Raspberry Pi.” Accessed: Dec. 20, 2023. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-zero-w/

[66] “Raspberry Pi 4 Model B/4GB - PiShop.ca.” Accessed: Dec. 20, 2023. [Online].

Available: https://www.pishop.ca/product/raspberry-pi-4-model-b-4gb/

[67] “Raspberry Pi Pico – Raspberry Pi.” Accessed: Dec. 20, 2023. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-pico/

[68] “Raspberry Pi Pico W – Pi Australia.” Accessed: Dec. 20, 2023. [Online]. Available:

https://raspberry.piaustralia.com.au/products/raspberry-pi-pico-w

[69] P. Warden, TinyML : machine learning with Tensorflow Lite on Arduino, and ultra-low

power micro-controllers / Pete Warden and Daniel Situnayake. 2020.

69

Appendix 1 – PCA additional results

In Figure 28 is the PCA scree plot for 9 parameters used. The parameters used can be

seen in .

Figure 28. PCA Scree plot for 9 parameters.

In Figure 29 is the 2 component PCA plot for 9 parameters used.

Figure 29. 2 component PCA for 9 parameters.

70

In Table 14 is the summary of variance ratios for the principal components separately and

the explained variance for each parameter.

Table 14. PCA results for 9 parameters.

Var

ratio Delay Length Seq Ack Win Len Ret Dup Lost

PC_1 0,28 0,04 0,59 0,37 0,26 0,24 0,59 0,05 0,18 0,01

PC_2 0,12 0,14 0,03 0,03 0,54 0,56 0,03 0,60 0,03 0,05

PC_3 0,11 0,69 0,01 0,04 0,11 0,15 0,01 0,01 0,33 0,61

PC_4 0,11 0,33 0,02 0,02 0,24 0,14 0,02 0,31 0,46 0,71

In Figure 30 is the PCA scree plot for a dataset with added 500 ms delay for 50% of the

measurement time.

Figure 30. PCA Scree plot for dataset with added 500 ms delay for 50% of the time.

71

In Figure 31 is the 2 component PCA for a dataset with added 500 ms delay for 50% of

the measurement time.

Figure 31. 2 component PCA for dataset with added 500 ms delay for 50% of the time.

In Table 15 is the summary of variance ratios for the principal components separately and

the explained variance for each parameter for a dataset with added 500 ms delay for 50%

of the measurement time.

Table 15. PCA variance results for datset with added 500 ms delay for 50% of the time.

Var
ratio Time

Lengt
h Seq Ack Win Len TSval

TSec
r Ret Dup

PC_
1

0,40
6

0,04
2 0,448

0,29
9

0,27
8

0,27
1

0,44
9

0,40
9

0,40
9

0,00
1

0,14
4

PC_
2

0,11
6

0,58
7 0,196

0,18
5

0,36
1

0,33
1

0,18
9

0,10
9

0,01
7

0,53
7

0,08
0

PC_
3

0,09
8

0,51
7 0,048

0,13
4

0,10
5

0,16
4

0,04
7

0,06
6

0,02
3

0,66
8

0,47
1

PC_
4

0,09
3

0,43
0 0,011

0,15
1

0,14
7

0,20
9

0,01
4

0,07
7

0,06
1

0,28
3

0,79
8

72

Appendix 2 – Linear Regression python algorithm source

code

import time, os, sys

import pandas as pd

from datetime import datetime

#parameters 10s

a1 = 0.0028318019

a2 = 90.3946069

a3 = -0.000750874772

a4 = -0.4

F = 0.0

#tshark commands for pcap capture and csv save

command1 = "sudo tshark -w /tmp/test1.pcap -a duration:10 -i wlan0 -f
tcp -T fields -e frame.number -e ip.proto -e ftp -e ftp-data -e
tcp.analysis.ack_rtt -e tcp.analysis.retransmission -E header=y -E
separator=, -E quote=d -E occurrence=f"

command2 = "sudo tshark -r /tmp/test1.pcap -i wlan0 -f tcp -T fields -
e frame.number -e ip.proto -e ftp -e ftp-data -e tcp.analysis.ack_rtt
-e tcp.analysis.retransmission -Y ip.proto==6 -E header=y -E
separator=, -E quote=d -E occurrence=f > /tmp/test1.csv"

while True:

 #Initial timestamp

 time3 = time.time()

 os.system("/bin/bash -c \"" + command1 + "\"")

 #Timestamp after tshark capturing

 time4 = time.time()

 os.system("/bin/bash -c \"" + command2 + "\"")

 #Timestamp after tshark save to csv

 time1 = time.time()

 #Read csv to dataframe

 df = pd.read_csv('/tmp/test1.csv', encoding = "ISO-8859-1")

 #Dataframe filter out required data

 df = df[df['ip.proto'] == 6]

 df = df[df['ftp'] != 'ftp']

 df = df[df['ftp-data'].isna()]

 #add "0" and "1"

 df['tcp.analysis.retransmission'] =
df['tcp.analysis.retransmission'].notnull().astype('int')

73

 #Count rows, calculate median of RTT, sum of retransmission
packets

 Count = len(df)

 Median = df['tcp.analysis.ack_rtt'].median()

 Retransmission_count = df['tcp.analysis.retransmission'].sum()

 #Calculate number of devices

 F = a1 * Count + a2 * Median + a3 * Retransmission_count + a4

 #Timestamp after calculations

 time2 = time.time()

 #Count different delays

 totaltime = time2 - time1

 totaltime2 = time2 - time3

 totaltime3 = time2 - time4

 #Round final value

 roundF = round(F)

 print('Count of rows', Count, 'Median', Median, 'Count of
retransmission packets', Retransmission_count)

 #Current date and time acquiring and printing

 dt = datetime.now()

 str_dt = dt.strftime("%d-%m-%Y, %H:%M:%S")

 str_dt2 = dt.strftime("%d-%m-%Y,%H:%M:%S")

 strstats = str_dt2 + ",Count," + str(Count) + ",Median," +
str(Median) + ",Retransmission," + str(Retransmission_count) +
",No_of_devices," + str(roundF) + ",time_delay," + str(totaltime) +
",total_time_delay," + str(totaltime2) +
",total_time_delay_minus_capture," + str(totaltime3) + "\n"

 L = "Number of connected devices - " + str(F) +"\n"

 s = " "

 #Print number of devices

 print(dt, ' - ', L)

 tt = " - time - " + str(totaltime)

 #Save to log

 file1 = open("/home/john/logfile.txt", "a")

 file1.writelines(str_dt)

 file1.writelines(s)

 file1.writelines(tt)

 file1.writelines(s)

 file1.writelines(L)

 file1.close

 file2 = open("/home/john/stats.txt", "a")

 file2.writelines(strstats)

 file2.close

Figure 32. RPi algorithm source code

74

Appendix 3 – Raspberry Pi Pico W MicroPython source code

import network

import socket

from time import sleep

from picozero import pico_led

import machine

from ftplib import FTP

#Raspberry Pi Foundation tutorial code used as a basis

ssid = "RPi_test"

password = "Password"

#Connect to Wi-Fi hotspot

def connect():

 wlan = network.WLAN(network.STA_IF)

 wlan.active(True)

 wlan.connect(ssid, password)

 while wlan.isconnected() == False:

 print('Waiting for connection...')

 sleep(1)

 ip = wlan.ifconfig()[0]

 print(f'Connected on {ip}')

 return ip

#Open IP socket

def open_socket(ip):

 address = (ip, 80)

 connection = socket.socket()

 connection.bind(address)

 connection.listen(1)

 return(connection)

#Periodically download 80KB file

def serve (connection):

 pico_led.off()

 while True:

 file=open("data2.csv","wb")

 print('Testing')

 pico_led.on()

 ftp = FTP('ftp.rebex.net', 21, 'demo', 'password')

 ftp.retrbinary('RETR ' +'/pub/example/WinFormClient.png',
file.write)

 file.close()

 ftp.quit()

 pico_led.off()

75

 sleep(0.5)

#Run defined functions

try:

 ip = connect()

 connection = open_socket(ip)

 serve(connection)

except KeyboardInterrupt:

 machine.reset()

Figure 33. RPi Pico W MicroPython source code.

76

Appendix 4 – Linear Regression PCA analysis

In Figure 34 is the resulting scatter plot for 4 principal components for a combined

dataset. In Figure 35 is a 2 component PCA plot for a final set of parameters for a capture

time window of 10 s, with added device number indicators.

Figure 34. Scatter matrix for 4 component PCA for final set of parameters with time window of 10

seconds for a combined dataset.

77

Figure 35. 2 component PCA plot for final set of parameters with time window of 10 seconds for a

combined dataset with added device number indicators.

Table 16 displays the summary of variance ratios for the principal components separately

and the explained variance for each parameter.

Table 16. 4 component PCA details for final set of parameters with time window of 10 seconds for a

combined dataset.

variance_rat

io
Count Average Median dup_count retrans_cou

nt

PC_
1 0,444341874

0,3810420
32

0,3667926
41

0,2429998
46

0,5840446
92 0,565785

PC_
2 0,290423077

0,1528723
13

0,5597522
01

0,6320719
41

0,3512438
17 0,374727

PC_
3 0,15987833

0,8829440
79

0,0729606
59

0,3707832
96

0,1463008
21 0,23707

PC_
4 0,089158006

0,2100177
13

0,7359346
98

0,6327408
44

0,1080107
33 0,047596

78

Appendix 5 – Linear Regression additional plots

1. For 5 s time window

Figure 36 shows the count of measured packets vs number of devices for a 5 s capture

window and combined dataset.

Figure 36. Count of measured packets vs number of devices for a 5 s capture window and combined

dataset.

79

Figure 37 shows the count of suspected retransmission packets vs number of devices for

a 5 s capture window and combined dataset.

Figure 37. Count of retransmission packets vs number of devices for a 5 s capture window and combined

dataset.

80

2. For 10 s time window

Figure 38 shows the count of duplicate ACKs vs number of devices for a 10 s capture

window and combined dataset.

Figure 38. Count of duplicate ACKs vs number of devices for a 10 s time window and combined dataset.

81

Figure 39 shows the average of RTT vs number of devices for a 10 s capture window

and combined dataset.

Figure 39. Average RTT vs number of devices for a 10 s time window and combined dataset.

82

3. For 15 s time window

Figure 40 shows the count of measured packets vs number of devices for a 15 s capture

window and combined dataset.

Figure 40. Count of measured packets vs number of devices for a 15 s capture window and combined

dataset.

83

Figure 41 shows the count of suspected retransmission packets vs number of devices for

a 15 s capture window and combined dataset.

Figure 41. Count of retransmission packets vs number of devices for a 15 s capture window and

combined dataset.

84

Appendix 6 – PCA source code

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

#Open the dataset and load it to the dataframe

url =
'https://raw.githubusercontent.com/kaarel2/test/main/RPi_Traces/Combin
ed3_retransmission.csv'

df = pd.read_csv(url, names=['Delay', 'Length', 'Seq', 'Ack', 'Win',
'Len', 'Retransmission', 'Duplicate', 'Lost_packets',
'cat_technology'])

#Define features

features = ['Delay', 'Length', 'Seq', 'Ack', 'Win', 'Len',
'Retransmission', 'Duplicate', 'Lost_packets']

Separate features and the target value

x = df.loc[:, features].values

Feature standardization

x = StandardScaler().fit_transform(x)

#Define PCA for 4 comopnents

pca = PCA(n_components=4)

#Fit the data to the model

principalComponents = pca.fit_transform(x)

#Print principal components' variance ratios

print("Variance ratio")

print(pca.explained_variance_ratio_)

#Add PCA parameter variance results to new dataframe and print it

dataset_pca = pd.DataFrame(abs(pca.components_), columns=['Delay',
'Length', 'Seq', 'Ack', 'Win', 'Len', 'Retransmission', 'Duplicate',
'Lost_packets'], index=['PC_1', 'PC_2', 'PC_3', 'PC_4'])

print(dataset_pca)

#Print eigenvectors and eigenvalues

print('\neigenvectors’,pca.components_)

print(‘\neigenvalues’,pca.explained_variance_)

Figure 42. PCA source code.

85

Appendix 7 – K-means source code

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

#Open the dataset and load it to the dataframe

url =
'https://raw.githubusercontent.com/kaarel2/test/main/RPi_Traces/Combin
ed3_retransmission.csv'

df = pd.read_csv(url, names=['Delay', 'Length', 'Seq', 'Ack', 'Win',
'Len', 'Retransmission', 'Duplicate', 'Lost_packets',
'cat_technology'])

#Define features

features = ['Delay', 'Length', 'Seq', 'Ack', 'Win', 'Len',
'Retransmission', 'Duplicate', 'Lost_packets']

Separate features from the target value

x = df.loc[:, features].values

Separate the target value

y = df.loc[:,['cat_technology']].values

Feature standardization

x = StandardScaler().fit_transform(x)

scaled_x = x

#Define arguments for k-means model

kmeans_kwargs = {"init":"random", "n_init": 10, "max_iter":300,
"random_state": 42}

#Calculate SSE for different number of clusters

sse = []

for k in range(1, 8):

 kmeans = KMeans(n_clusters=k, **kmeans_kwargs)

 kmeans.fit(scaled_x)

 sse.append(kmeans.inertia_)

#Plot SSE vs number of clusters

plt.plot(range(1, 8), sse)

plt.xticks(range(1, 8))

plt.ylabel("SSE - Sum of the Squared Error")

plt.xlabel("Number of Clusters")

86

plt.show()

#Perform k-means analysis for 6 clusters

kmeans_clusters = KMeans(n_clusters=6, **kmeans_kwargs)

kmeans_clusters.fit(scaled_x)

#Print kmeans parameters

print('k-means SSE',kmeans_clusters.inertia_)

print('centroid locations',kmeans_clusters.cluster_centers_)

print('Iterations to converge',kmeans_clusters.n_iter_)

#Print kmeans labels to file

df_results = pd.DataFrame(kmeans_clusters.labels_)

with pd.ExcelWriter('kmeans_labels.xlsx', engine='xlsxwriter') as
writer:

 df_results.to_excel(writer, sheet_name='Sheet1')

Figure 43. k-means source code.

87

Appendix 8 – Linear regression parameters calculation source

code

import pandas as pd

from sklearn.linear_model import LinearRegression

#Open file with data, load to dataframe

df2 = pd.read_excel('Regression_data.xlsx', sheet_name = 'Leht2')

#Define linear regression models

model2 = LinearRegression()

model3 = LinearRegression()

model4 = LinearRegression()

model5 = LinearRegression()

model6 = LinearRegression()

model7 = LinearRegression()

model8 = LinearRegression()

model9 = LinearRegression()

#Define dependent, independent variables

X2, y2 = df2[['Count']], df2.No_of_devices

X4, y4 = df2[['Average']], df2.No_of_devices

X5, y5 = df2[['Median']], df2.No_of_devices

X6, y6 = df2[['dup_count']], df2.No_of_devices

X7, y7 = df2[['retrans_count']], df2.No_of_devices

X8, y8 = df2[['Count','Median','retrans_count']], df2.No_of_devices

X9, y9 = df2[['Count','Median','dup_count','retrans_count']],
df2.No_of_devices

X3, y3 = df2[['Count', 'Average', 'Median', 'dup_count',
'retrans_count']], df2.No_of_devices

#Fit models for different variable combinations

model2.fit(X2, y2)

print('\nCount of RTT intercept, coefficient, score')

print(model2.intercept_, model2.coef_, model2.score(X2, y2))

model4.fit(X4, y4)

print('\nAverage of RTT intercept, coefficient, score')

print(model4.intercept_, model4.coef_, model4.score(X4, y4))

model5.fit(X5, y5)

print('\nMedian of RTT intercept, coefficient, score')

print(model5.intercept_, model5.coef_, model5.score(X5, y5))

model6.fit(X6, y6)

print('\nCount of duplicate packets intercept, coefficient, score')

print(model6.intercept_, model6.coef_, model6.score(X6, y6))

88

model7.fit(X7, y7)

print('\nCount of retransmission packets intercept, coefficient,
score')

print(model7.intercept_, model7.coef_, model7.score(X7, y7))

model8.fit(X8, y8)

print('\nCount, Median of RTT; count of retransmission packets
intercept, coefficient, score')

print(model8.intercept_, model8.coef_, model8.score(X8, y8))

model9.fit(X9, y9)

print('\nCount, Meidan of RTT; count of duplicate and retransmission
packets intercept, coefficient, score')

print(model9.intercept_, model9.coef_, model9.score(X9, y9))

print('\nAll parameters intercept, coefficient, score')

model3.fit(X3, y3)

print(model3.intercept_, model3.coef_, model3.score(X3, y3))

#Create dataframe for printing of regression models' results

d = {'Intercept': [model2.intercept_, model4.intercept_,
model5.intercept_, model6.intercept_, model7.intercept_,
model8.intercept_, model9.intercept_, model3.intercept_],
'Coefficient(s)': [model2.coef_, model4.coef_, model5.coef_,
model6.coef_, model7.coef_, model8.coef_, model9.coef_, model3.coef_],
'Score': [model2.score(X2, y2), model4.score(X4, y4), model5.score(X5,
y5), model6.score(X6, y6), model7.score(X7, y7), model8.score(X8, y8),
model9.score(X9, y9), model3.score(X3, y3)]}

df_excel = pd.DataFrame(data = d, index = ['Count of RTT', 'Average of
RTT', 'Median of RTT', 'Count of duplicate ACKs', 'Count of
retransmission packets', '1,3,5 parameter', '1,3,4,5 parameter', 'All
parameters'])

#Print regression parameters' results to excel file

with pd.ExcelWriter('summary_regression.xlsx', engine='xlsxwriter') as
writer:

 df_excel.to_excel(writer, sheet_name='Sheet1', startrow = 1,
float_format = "%0.2f")

 worksheet = writer.sheets['Sheet1']

 worksheet.write(0, 0, 'Regression analysis for different
combinations')

 writer.sheets['Sheet1'].set_column(0, 0, 29)

 writer.sheets['Sheet1'].set_column(2, 2, 72)

Figure 44. Linear regression parameters calculation source code.

89

Appendix 9 – Non-exclusive licence for reproduction and

publication of a graduation thesis3

I Kaarel Koovit

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Machine Learning Based Modelling of TCP Data on Raspberry Pi”,

supervised by Prof. Yannick Le Moullec

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

02.01.2024

3 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

