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Abstract 

In telecommunication systems, the requirements for network optimization and scheduling 

quality are constantly increasing. One solution is to use data-driven machine learning 

(ML) instead of a model-based approach to control the optimization and scheduling of a 

network. In this thesis, the suitability of machine learning is explored as a first step 

towards developing a network optimization algorithm that is suitable to run on resource 

constrained devices (e.g., Raspberry Pi), that will use information obtained when 

monitoring the activities of the transport layer in the OSI network architecture model. 

The suitability of both unsupervised and supervised learning methods is investigated, i.e. 

PCA and k-means for unsupervised learning, and linear regression for supervised 

learning. For the analysis, a dataset is extracted from a network setup consisting of up to 

five Raspberry Pi (RPi) Pico W-s connected to a RPi 4 over Wi-Fi, using Wireshark to 

capture the transmission control protocol (TCP) trace data. 

It is found that unsupervised learning is limited in separating clusters or finding principal 

components that would categorize the network setup. On the other hand, it is found that 

the linear regression model predicts a determination coefficient of 66% when using three 

parameters for the regression analysis and the combined dataset of different induced 

network constraints, and a 99,75% determination coefficient for a non-constrained 

network dataset; these coefficients are used to predict the number of devices connected 

to the network. The minimal amount of data required to develop a (near) optimal 

algorithm is found to be dependent on the dataset used for the algorithm training. 

The final algorithm is deployed onto the RPi to monitor the network traffic and predict 

the number of devices connected to the network. Experimental results show an overall 

accuracy of 94,67% for an unconstrained network and a capture time window of 10 s, 

which is close to the model’s prediction. 

This thesis is written in English and is 89  pages long, including 6 chapters, 44 figures 

and 16 tables. 
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Annotatsioon 

Masinõppel põhinev TCP andmete modelleerimine Raspberry Pi-l 

Nõuded võrgu optimeerimise ja planeerimise kvaliteedi jaoks 

telekommunikatsioonisüsteemides kasvavad pidevalt. Üks lahendus on kasutada 

andmepõhist masinõpet mudelipõhise lähenemise asemel, juhtimaks võrgu optimeerimist 

ja planeerimist. Selles töös vaadeldakse masinõppe sobivust esimese osana töötamaks 

välja võrgu optimeerimise algoritmi, mis töötaks piiratud ressurssidega seadmetel 

(näiteks Raspberry Pi). Algoritmi väljatöötamiseks kasutatakse OSI võrguarhitektuurist 

transpordikihi andmeid. 

Algoritmi väljatöötamiseks uuritakse nii juhendamata kui ka juhendatud masinõppe 

meetodeid – PCA ja k-means algoritmid juhendamata ja lineaarne regressioon juhendatud 

masinõppe jaoks. Analüüsi jaoks kogutakse andmed jälgides liiklust võrgus, mis koosneb 

kuni viiest Raspberry Pi Pico W-st ja Raspberry Pi 4-st, mis on omavahel Wi-Fi’ga 

ühendatud. TCP andmete jälgimiseks kasutatakse programmi Wireshark. 

Juhendamata masinõppimise puhul leitakse, et on piiratud edu klastrite eraldamises või 

peamiste komponentide leidmises, mis kirjeldaks võrgu ülesehitust. Teisest küljest 

leitakse, et lineaarse regressiooni modelleerimine ennustab määramiskoefitsiendiks 66%, 

kui kasutatud on kolm parameetrit analüüsi jaoks ja kombineeritud andmekogum sisaldab 

erinevaid võrku sisse viidud piiranguid, ja 99,75% kui kasutatud on piiramata võrgu 

andmekogum, ennustamaks võrku ühendatud seadmete arvu, kasutades leitud 

koefitsiente. Minimaalne andmete kogum, mis on vajalik optimaalse algoritmi 

väljatöötamiseks, sõltub andmetest, mida on mudeli häälestamiseks kasutatud. 

Lõplik algoritm käivitatakse RPi 4 peal, jälgimaks võrgu liiklust ja ennustamaks võrku 

ühendatud seadmete arvu. Eksperimentide tulemus näitab algoritmi 94,67% täpsust 

piiramata võrgu ja 10 s ajavahemiku jaoks, mis on lähedal väljatöötatud mudeli täpsusele. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 89 leheküljel, 6 peatükki, 44 

joonist, 16 tabelit.  
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1 Introduction 

In telecommunications, the requirements to the networks’ parameters are increasing 

rapidly with the introduction and implementation of more complex, higher throughput 

technologies [1]. The classical model-based approach used to optimize and control the 

network parameters are proving to be increasingly more difficult to apply due to the 

complexity and heterogeneity of the networks, and the difficulty to obtain the system 

parameters and lossless block decomposition [2]. Therefore, Machine Learning (ML) 

based data-driven methods, i.e. data-driven machine learning (DDML), are increasingly 

preferred to exploit the online and offline data for the controller design and network 

optimization. 

Network optimization involves monitoring and improving the key process indicators 

(KPIs) of a network. The parameters that are optimized can include bandwidth (data 

transfer rate), delay (the time a packet travels from source to destination), loss (the amount 

of data lost), jitter (variation in data transfer rate), transmission power (power required to 

transmit data with acceptable loss). The goal of network optimization is to find a balance 

between these parameters based on the amount of traffic in the network and e.g. target 

quality of service. To be able to optimize a network, the network elements and their 

relationships need to be defined and this can be done either by using a model-based 

approach (creating the model first based on artificial assumptions) or data-driven 

approach (building the model using available data). 

Indeed, the classical model-based approach is proving more difficult to apply due to the 

increase in network complexity and even though a network is divided into multiple layers, 

attaining optimal or near-optimal results may prove difficult due to dependencies, 

including opposing ones (for example channel modulation, detection and coding, which 

should be separately optimized) among those; such compromising problems are further 

amplified in 5G and beyond.. By using DDML methods, it is possible to use the data from 

the whole network instead of the relation of the network elements to predict different 

patterns and scenarios. Figure 1 (a) shows an overview of ML in relation to artificial 
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intelligence (AI). AI involves the concept of using computer systems to perform tasks 

that require human intelligence. ML is a part of AI and it involves using different 

techniques to enable the computers to learn or improve on a task based on experience 

without relying on explicit instructions. A subset of ML is deep learning (DL) which uses 

algorithms that have an artificial neural network (ANN) structure that consists of multiple 

layers. In ML, there exist many methods which can be divided into supervised, 

unsupervised, and reinforcement learning.  Figure 1 (b) illustrates the three different types 

of ML, with a more detailed overview provided in Chapter 3. For network optimization 

and scheduling improvement, methods from all three different areas have been used and 

reported in the scientific literature. 

         

                   (a)                                                                     (b) 

Figure 1. (a) relation between AI, ML and DL, (b) the three machine learning types. 

 

The main developments so far have been to exploit the quantity of available data to 

develop the algorithms [3]; however, not much research has been carried out for 

determining the minimum amount of data required to develop the optimal operation 

algorithms [4]. Additionally, most of the research has focused on the development of the 

optimization algorithms but has not delved much into implementing the algorithms, for 

example on different resource constrained devices [5]. 

1.1 Research Statement 

To control and possibly optimize the network performance by reducing losses in the 

network, network congestions, power consumption, and by improving the bitrate, a light-
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weight algorithm utilizing the data-driven technique should be identified and optimized. 

This thesis focuses exclusively on the transport layer and the layers above it in the OSI 

network architecture model when acquiring and analysing the data and developing the 

network optimization techniques. The algorithm should be suitable to run on devices with 

low computing resources and power consumption, such as single board computers; one 

potential application for the developed algorithm could be a portable bioanalytical device 

(for example the PRG620 project-based flow cytometry device). The quality and quantity 

of the data (minimum amount of data) required for the algorithm to achieve the desired 

performance should also be evaluated. 

Given the above, the three research questions of the thesis are expressed as: 

 

- RQ1: As a first step towards network performance control and (near) 

optimal scheduling, can there be proposed an algorithm for predicting the 

occurring network constraints or the number of client devices towards using 

unsupervised (e.g., PCA) and supervised learning (e.g., linear regression) 

methods? 

- RQ2: Can the minimal amount of data required for (near) optimal 

scheduling be identified? 

- RQ3: Can the algorithm be deployed on an SBC (for example Raspberry Pi) 

and what will be its impact on the performance? 

 

1.2 Thesis organization 

Chapter 1 provides an overview of the motivation of the work and the research questions. 

Chapter 2 gives a state-of-the-art overview of the DDML-based techniques for network 

optimization and control. 



16 

Chapter 3 contains an overview of the background of data-driven techniques, network 

optimization, and how data-driven techniques are used for network optimization and 

transmission control protocol. 

In Chapter 4, the design and implementation of the proposed DDML algorithm, the 

selection of the dataset and the hardware platform are explored. 

The corresponding experimental results and the analysis thereof are given in Chapter 5.  

Finally, Chapter 6 provides a conclusion for the performed work, lessons learned, and 

suggestions for future research directions.
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2 State of the Art Overview 

This chapter provides an overview of the recent trends in data-driven techniques that can 

be used for network control and optimization, and for using TCP data for network 

parameter analysis. 

During the past few decades, the rapid development of communication technologies has 

been accompanied by a need for improved techniques for network control, scheduling 

and optimization [3]. One of the proposed directions for the development of network 

control techniques is to use DDML. Several works have been published which discuss 

possible approaches for data-driven network optimization, control, and scheduling using 

different machine learning methods and acquired datasets. This chapter gives an overview 

of representative examples of such works and highlights their overall main limitations, 

which this MSc thesis aims to address. 

In [5], Salh et al. provides an overview of different ML techniques that can be used for 

network optimization – see Table 1. The main technique to be improved that is discussed 

for the application of ML-based solutions is Ultra-Reliable and Low Latency 

Communication (URLLC). For example, support vector machine (Table 1 – row 5) from 

the supervised learning technique was proposed to improve the prediction of propagation 

path loss in wireless networks; the self-organizing map (Table 1 – row 11) from the 

unsupervised learning technique was proposed to improve the capacity and user 

experience in small cells; and Q-learning (Table 1 – row 14) from the reinforcement 

technique was proposed to provide the users with a better ability to predict the return 

function in order to improve data rate. The paper explores URLLC and its enhancements 

and suggests further research directions, i.e. computation efficiency, hardware 

development for 6G, scalability and robustness, THz communication, energy 

management, channel estimation. While the above work provides suitable options from 

different ML model types out of the proposed ML techniques (supervised, unsupervised 

and reinforcement learning), this thesis mainly focuses on unsupervised and supervised 

learning to investigate the possibility of using these techniques for solving the proposed 

problem, in order to determine the possibility of using these techniques on an SBC and 
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because the supervised learning (regression models) and unsupervised learning 

(dimensionality and clustering models) provide a useful comparison on the performance 

of different approaches. Furthermore, unsupervised learning is featured less frequently in 

papers [6], which provides an opportunity to explore potential new approaches. 

Table 1. Summary of ML techniques and their applications in wireless communication, adapted and 

expanded from [5]. 

ML Technique Learning Model 
Mobile and Wireless 

Communication 
Year 

Supervised 
Learning 

Self-Organizing 
Networks (SON) 

Optimizes network management 
location, maximizes the capacity 
[7] 

2017 

Linear reversion 

Facilitates energy harvesting and 
prediction by equipping the 
harvesting node with adaptation to 
the current energy using  real-time 
power measurements [8] 

2016 

Supervised Classifier 

Enables autonomous network 
management aware of quality of 
experience to improve prediction 
of the network demand and 
network sensitivity [9] 

2018 

Support Vector 
Machines 

Predicts propagation path loss in 
wireless networks [10] 

2015 

Quantum ML 

Increases performance through 
enabling technologies at the 
network edge, air interface, and on 
the user's end [11] 

2019 

Unsupervised 
Learning 

Latent function with 
unsupervised DL 

Reduces problems regarding the 
QoS constraint of URLLC [12] 

2019 

K-means clustering 

Neural-network prediction to 
provide increased capacity for 
users [13] 

2017 

K-means technology 
Low latency data access and 
storage of data blocks using DL [14] 

2019 

Unsupervised 
clustering 

Used to decide low and high-power 
node allocation to reduce latency 
and power [15] 

2018 

Self-organizing map 

Increases capacity and improves 
user experience for coverage 
planning and performance 
optimization [16] 

2018 

Reinforcement 
learning Framework 

dynamically predicts 

Guarantees long term reliability 
and latency for every user, by 
balancing E2E reliability, latency, 
and data rate [17] 

2019 

 

 

 



19 

 

 

 

ML Technique Learning Model 
Mobile and Wireless 
Communication 

Year 

Reinforcement 
learning Markov decision 

process 

Enables vertical handoff decisions 
based on network parameters, e.g. 
minimum bandwidth, delay, and 
battery level of terminal [18] 

2008 

 

Q-learning 

Maximizes data rate and enables 
users to predict their return 
function [19] 

2018 

Deep Q-network 

Increases Signal-to-Noise-Plus-
Interference Ratio (SNIR) and 
efficacy, selects optimal anti-
jamming communication policy 
[20] 

2017 

Deep-RL 

Reduces system cost by applying 
joint optimum caching and 
estimating allocation [21] 

2018 

 
Dueling deep-Q 

Improves probability of QoS level 
approval, data rate of the network 
and learning effectiveness [22] 

2022 

Deep deterministic 
policy gradient (DDPG) 

Reduces energy costs while still 
ensuring that there are no 
unacceptable delays [23] 

2022 

 

 

Furthermore, in [24], Ma et al. gives an overview of data-driven 5G network optimization 

techniques with ML, including proposals for different network traffic prediction models 

and correlation to network KPIs. Table 2 shows the different proposed ML models for 

network prediction. 
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Table 2. Network traffic prediction ML models, adapted and expanded from [24]. 

Model 
Traffic 
type 

Prediction Type Reference Year 

Deep learning Cellular Temporal 

Network level 

[25] 2017 

LSTM Cellular Temporal [26] 2018 

Exponential smoothing Cellular 
Temporal 
+ spatial 

(TS) 

Cell level 

[27] 2007 

Statistics Cellular TS [28] 2011 

ARMA Cellular TS [29] 2016 

α-stable Online TS [30] 2017 

LSTM Cellular TS [31] 2018 

Neural network, GP Cellular TS [32] 2018 

Markov chain Cellular TS 

Online data 

[33] 2011 

ARMA, decision tree Cellular TS [34] 2017 

Statistics Online TS [35] 2016 

RF-GRU-NTP Online TS  [36] 2022 

Regression Online TS  [37] 2015 

Random forest Online Temporal  [38] 2021 

k-means, neural network Online TS 

Anomaly 
detection 

[39] 2017 

k-means, GP Cellular TS [40] 2018 

k-means, NARX Online TS [41] 2018 

 

The work presented in [2] provides an overview of why data-driven networks are 

advantageous over model-based solutions. Data-driven networks do not require exact 

network models, have a uniform architecture which makes them easier to transpose, are 

less sensitive to system parameters and do not require block decomposition (dividing the 

network into multiple layers, which in turn are consisting of separate blocks). In the paper, 

a typical use scenario is provided for data-driven control, optimizing network load 

balancing using machine learning that uses a sequence of successive predictions. In [4], 
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Baggio et al. proposes a data-driven network control method, using finite data, to 

optimally direct the network nodes’ state to a desired one within a finite-time space. Their 

experiments show that the data-driven control has advantages compared to model-based 

solutions, i.e. the results show that the computational time can be approximately 10 to a 

100 times smaller for the data-driven control compared to the model-based one, 

depending on the network size and the final stage error for a fixed amount of control 

nodes, and increasing network size can be up to 105 times smaller for the data-driven 

control method, and it can be applied for controlling actual networks. The limitations and 

the possibility for future improvements of the provided solutions are that the results are 

provided with the assumption that the dynamics of the networks are linear, the results 

were calculated with engineering and scientific routines (for which the precision could be 

improved upon), a point-to-point control strategy was used instead of a closed-loop one, 

and the reconstruction error is not provided with a non-asymptotic guarantee. In [42], 

Zhang et al. gives potential challenges for using DDML for network management (in the 

form of SON) – data imbalance, data insufficiency, cost insensitivity, non-real-time 

response, multisource data fusion. Additionally, they suggest potential solutions and 

related methods, including unsupervised learning. Furthermore, a case study is provided, 

illustrating the relevance of the proposed methods.  

These above works demonstrate that the use of DDML methods for complex networks 

where the network dynamics are unknown is advantageous over a model-based approach, 

but some potential disadvantages need to be taken into consideration. In what follows, 

works related to ML techniques used in network control and optimization are presented. 

In [12], Sun et al. proposes a framework, using unsupervised deep learning, to learn the 

underlying function of a system, which is applicable in both variable and functional 

optimization problems and demonstrates this solution for a URLLC optimization 

problem. The DNN is changed to unsupervised learning by using the property itself (e.g. 

optimal bandwidth allocation) instead of the label of the property and the proposed 

optimization methods are stochastic gradient descent (SGD) and stochastic gradient 

ascent (SGA). Using training parameters of 1000 times training, with 10000 iterations 

each, and a training reliability requirement of εD = 10-6 (with the overall reliability being 

εmax = 10-5), then the availability achieved was 98,9% and bandwidth loss was 3,3%. 

Additionally, in [43], Sun et al. proposes an unsupervised deep learning approach also 

based on SGD for solving a QoS constrained optimization problem for bandwidth and 



22 

 

power. Their results show that the ML-based solution can achieve the same performance 

as the optimal solution and outperforms existing policies, by saving 40% of the bandwidth 

consumption. In [44], Ferriol-Galmés et al. proposes graph neural network (GNN) model 

for network optimization that can estimate QoS parameters. The custom GNN model, 

named TwinNet, consists of message-passing and readout modules and is able to achieve 

a mean absolute percentage error (MAPE) of 6,3% with a real test application. In [45], 

Farthofer et al. provides a dataset of mobile drive tests, a tool chain for the data analysis 

and illustration for its usage. The suggested analysis method involves a feed forward 

neural network and autoencoder neural network to analyse the data and different scenarios 

are simulated to demonstrate the behaviour and results of the network. In [1], Jaffry et al. 

suggests an approach for network anomaly detection, using a data-driven method, which 

involves iteratively comparing the probability density function (PDF) to a threshold value 

and then recalculating the PDF. Their algorithm displayed a high accuracy of 98,08% 

between neighbouring grids and reduced accuracy the further away the predicted grid 

was. In [46], Delimargas et al. explores the possibility of using principal component 

analysis (PCA) for network trace data analysis and anomaly detection. As the classical 

PCA is prone to giving false positive and false negative results because of the method’s 

sensitivity to noise, then the PCA algorithm has been modified to overcome this problem. 

Their results show that the algorithm is in some cases able to detect TCP network scan 

anomalies with an intensity (defined in the paper as the ratio of flows with anomalies to 

the average number of flows in a time window) of 5% and in most cases with an intensity 

of 20%. 

For the TCP data analysis, in [47], Chaudry explores the possibility of using ML to find 

hidden connections between round-trip time (RTT) and the throughput for Wi-Fi 

connections. The PCA, linear regression and random forest (RF) techniques are used to 

explore these relationships. For their analysis, the physical and data-link layer 

parameters’ measurements were extracted from the available dataset. Their results show 

that RTT alone might not be enough to predict the Wi-Fi throughput, but there is indirect 

confirmation that RTT can have a significant impact on Wi-Fi throughput. The PCA 

shows that RTT has a variance ratio of 0,876 for the principal component (PC) 1, that 

itself had a proportion of variance of 0,984, when used with the RF method. In [48], Arlitt 

et al. research the possibility to predict latency from information obtained from TCP 

traces for short transfers (defined by transfer length in bytes). Their results show that, 
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depending on the maximum segment size (MSS), the RTT has a correlation to bandwidth 

of up to -0,370 and with latency up to 0,511, depending on the maximum segment size 

(MSS) and the trace file used. This suggests that RTT alone might not be enough to 

predict bandwidth or latency and other parameters from the traces could be included for 

the analysis. 

Despite their valuable contributions, the solutions and proposed methods provided in the 

above papers do not consider the application of the optimization and scheduling 

algorithms on a low power device (e.g., RPi), which is why additional research is required 

in this direction; this is one of the goals of this thesis. The base chosen to be explored for 

developing the algorithm to be used for network control on a low-powered device were 

unsupervised learning, as it gives the possibility to use unlabelled network trace data for 

optimizing the network parameters, and linear regression.  

The main algorithms chosen for the network data analysis from unsupervised learning 

were principal component analysis (PCA) and k-means because these algorithms provide 

dimensionality reduction for extensive trace data, reduce the computational time needed 

for the analysis and will be able to provide a basis for the final data analysis, to indicate 

the final algorithms suitable for characterize the data. 

This chapter gave an overview of recent trends in the DDML techniques that can be used 

for network optimization and control and the TCP data analysis possibilities. The next 

chapter presents the details of the background theory for DDML techniques, network 

optimization, using DDML techniques for network optimization and TCP.
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3 Background Theory Overview 

3.1 Data-driven techniques 

AI is the intelligence of machines or software, a field of study that develops and studies 

intelligent machines. ML is a part of AI and studies the programs that can improve the 

performance of a task automatically, by discovering their own algorithms.  

ML is divided into three main approaches, based on the learning paradigms: supervised 

learning, unsupervised learning, and reinforcement learning.  

In brief:  

Supervised learning uses labelled data, with given inputs and corresponding outputs to 

learn the rule of how the input and output are related.  

Unsupervised learning does not have labels on the data and the algorithm should develop 

the relation of the data itself, by finding patterns in the data or learning the features behind 

the data.  

Reinforcement learning involves the algorithm that interacts with an environment 

dynamically in order to learn to achieve a certain goal and based on feedback from the 

actions performed, the program tries to maximize the rewards.  
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An overview of selected possible DDML techniques by learning type is provided in 

Figure 2, adapted from [49]. 

 

Figure 2. Classifications of DDML, adapted from [49]. This thesis focuses on one method of supervised 

learning (i.e. linear regression) and two methods of unsupervised learning (k-means clustering and principal 

component analysis), which are highlighted with yellow borders in the figure.  

3.1.1 Unsupervised learning 

Unsupervised learning can be categorized based on the approach that is used for the 

analysis: 

- Clustering; 

- Anomaly detection; 

- Dimensionality reduction. 

Clustering involves the segmentation or grouping of features with similar attributes, to 

better distinguish between possible groups of datasets. It can be used, for example, for 
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anomaly detection when a data point does not fit in a group. Some examples of clustering 

algorithms are k-means [50], hierarchical clustering [51], density-based spatial clustering 

of applications with noise (DBSCAN) [51], ordering points to identify the clustering 

structure (OPTICS)[52] and multivariate normal distribution [53]. 

Anomaly detection is used to find data or observations that do not fit in a normal operation 

of a process. Anomaly detection techniques include isolation forest [54] and local outlier 

factor [55]. 

Dimensionality reduction encompasses the transformation of data from a higher 

dimensional space to a lower-dimensional space. In this process, there should remain 

relevance of the low-dimensional space, so that it can represent the data of the original 

high-dimensional space, but there will be losses of data representation during the 

transformation. Dimensionality reduction techniques include principal component 

analysis (PCA) [56] and non-negative matrix factorization (NMF) [51]. 

3.1.1.1 Unsupervised learning method 1: PCA 

PCA is a dimensionality reduction technique that performs linear mapping of data to the 

low-dimensional space. In the process, the variance of data representation in the resulting 

space is maximized, resulting in new components that represent the original features, 

without losing relevance to the original information. To perform the PCA, the covariance 

matrix is constructed and the eigenvectors are computed for this matrix. Based on the 

eigenvectors that have the largest eigenvalues, the original data can be represented by the 

recalculation of the matrix using the eigenvectors with the larger eigenvalues. In practice, 

the first eigenvalue often contributes for the majority of the representation of the 

behaviour of the system, but it should be validated based on the actual system being 

analysed. The PCA technique is sensitive to outliers and anomalies in the data. 

3.1.1.2 Unsupervised learning method 2: K-means 

K-means clustering is a method used for grouping of data by partitioning n observations 

into k clusters. Each observation belongs to the cluster with the nearest mean. For the 

method, there is needed to first define the amount of cluster that the algorithm should 

categorize the data into. The algorithm defines randomly the centroids, calculates the 

distance from each point to each centroid, associate the points with the closest centroid 

and recalculate the centroid positions. This process is run until the centroid positions do 
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not move. For the distance calculation between the points and the centroids, there is 

generally used squared Euclidean distance calculation. 

3.1.2 Supervised learning 

Supervised learning involves training a model using labelled data, i.e. for a known 

combination of input data, the algorithm should be able to provide an expected output 

value. Supervised learning can be split into classification (separates the data into specified 

categories) and regression (models the correlation between input and output parameters) 

types. 

3.1.2.1 Supervised learning method 1: Linear regression 

Linear regression is a method of modelling the relationship between dependent and 

independent variables. The dependent variable is the expected outcome of the modelling 

and the independent variables are the input values for the model. When there is more than 

one independent variable, then the process is called multiple linear regression.  

The multiple linear regression can be expressed as: 

𝑦𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖1 + ⋯ + 𝛽𝑘 ∙ 𝑥𝑖𝑘 + 𝜀𝑖,                                                                                   (1)  

where yi is the dependent variable, xi1…xik are the independent variables, β1… βk are the 

coefficient parameters, β0 is the intercept term and εi is the error variable. The goal of the 

linear regression method is to find the coefficients β0… βk so that the error term is 

minimized. This process is called fitting of the model. 

3.2 Network optimization 

A network can be a wired or wireless connection of different devices, used to share data. 

Network optimization is monitoring, maintaining, and improving the performance of the 

network, using different tools, techniques and practices. It is usually done by combining 

a network model and an optimization algorithm. The model is responsible for the 

prediction of performance for a specific configuration and the algorithm generates the 

configurations that could meet the expected performance. For network optimization, there 

should be considered that optimization is possible only for a process or structure that has 

been modelled. According to [44], the most common network modelling techniques are 
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i) analytical models, ii) fluid models, and iii) packet-level simulators. A short description 

of these three techniques is provided in what follows.  

The analytical model based on queuing theory is commonly used, but it struggles to 

accurately model real-life networks with multi-hop routing [44].  

Fluid models are popular alternatives, and they are quite simple and useful for several 

optimization tasks (e.g., link utilization balancing). However, the disadvantage of fluid 

models is limited accuracy in networks with high utilization regimes and complex 

queuing policing because these models assume constant per-link delays and do not 

consider the effects of queuing delays, scheduling policies, network losses [44].  

Packet-level simulators are the most accurate in comparison to traditional network models 

but have a high computational cost and therefore they are not optimal for real-time 

scenarios with large traffic volumes [44].  

To combat these issues, ML-based techniques could provide more effective modelling of 

networks, by training them on online and offline real-world data from the entire range of 

the network characteristics. 
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In Figure 3, adapted from [57], different network optimization objective classes are 

shown. For this thesis, the focus is on i) QoS parameters, especially bit rate, delay, packet 

loss, and ii) congestion control, as highlighted in the figure. 

 

Figure 3. Classification of network optimization objectives for IoT networks, adapted from [57]. As 

highlighted with blue circles, in this thesis, the focus is on QoS parameters (bit rate, delay, packet loss), 

and on congestion control.  
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3.3 Applying ML for network optimization 

ML-based network optimization techniques are promising, as they could provide more 

accurate network modelling by using real-world data for training and additionally could 

be used to develop a more accurate optimization algorithm. For this reason, the ML 

algorithm could be utilized in the following two steps: 

1) Using unsupervised learning to find relationships in the existing data, perform 

dimensionality reduction and apply clustering; 

2) Using another learning technique to optimize the parameters based on the selected 

data from Step 1), to provide the control information for the device controlling or 

optimizing the network parameters. 

To be able to select or cluster the data from the available data, the two possible methods 

are PCA and k-means clustering. PCA (see additional information in Section 3.1.1.1) can 

help to reduce the number of features used for the calculations and k-means (see 

additional information in Section 3.1.1.2) clustering can help to define the clusters of data.  

Another option is to use supervised learning methods, for example, to determine the 

relation of the observed data by applying regression modelling techniques (such as linear 

regression explained in Section 3.1.2.1), to find out if the observed input data correlates 

to the expected output data. 

3.4 Transmission Control Protocol 

To improve transferability of the algorithm to be developed, the target for this thesis is to 

use the trace information obtained from the transport or the layers above it from the 

network OSI model. One of the most common protocols from the transport layer is TCP. 

Compared to user datagram protocol (UDP), which is used for time-critical application 

like streaming or DNS lookups and does not have error correction or packet sequencing, 

TCP is a protocol which has a goal of making sure the packets have been successfully 

delivered. TCP uses error correction, packet ordering, retransmissions of lost packets, 

sliding window flow control and congestion control to improve the reliability of the 

connection and the delivery of data. For the data to be transferred, the protocol divides it 

into segments and includes the TCP header to the segment.  
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Figure 4 shows the TCP header composition, followed by Table 3 which describes 

selected fields of the header. 

 

Figure 4. TCP header composition [58]. 

 

Table 3. TCP header elements description [58]. 

Field name Size (bits) Description 

Source port 16 Sending port ID 

Destination port 16 Receiving port ID 

Sequence 
number 

32 
Initial seq number if SYN flag raised, otherwise 
accumulated seq number 

Acknowledgment 
number 

32 
Acknowledges that all previous data has been received 

DO 4 Data offset, defines the size of the TCP header 

RSV 4 Reserved, not used 

Flags 

8 

Contains the flags: CWR (Congestion window reduced), ECE 
(Explicit Congestion Notification Echo), URG (Urgent), ACK 
(Acknowledgment), PSH (Push), RST (Reset), SYN 
(Synchronize), FIN (Final) 

Window 
16 

Defines size of window that the receiver is willing to 
receive 

Checksum 16 Checksum for the header, data and IP pseudo-header 

Urgent pointer 16 Indicates last urgent data byte, if URG flag is raised 

Options 
0-320 

Variable field with different options, size determined by 
DO 

 

 



32 

 

The TCP connection diagrams for normal conditions can be divided into three variants: 

connection establishment, data transfer, and connection termination. Simplified diagrams 

of different the three connection variants of TCP [59] are shown in Figure 5. 

     

                      a)                                              b)                                         c) 

Figure 5. TCP diagrams for connection variants a) connection establishment, b) data transfer, c) 

connection termination, adapted from [59]. 

 

For acquiring and analysing the datasets used in this thesis, the software Wireshark and 

its command line utility tshark were used; this enables capturing traces from a network 

interface of the device it is installed on. The Wireshark software includes additional TCP 

analysis tools, which provide the following example metrics that can be extracted from a 

TCP trace file, which were used for the data analysis for this thesis: duplicate ACK 

packets, suspected retransmission packet and previous segment not captured indicator. 

 

This chapter gave an overview of the background theory for data-driven techniques, 

network optimization, using data-driven techniques for network optimization and TCP. 

The next chapter presents the details of the design and implementation of the proposed 

learning algorithms, including the choice of hardware and the obtaining of the datasets.
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4 Design and Implementation of the Proposed  Algorithms 

This chapter presents the algorithms that have been developed in this thesis, their 

implementation and the method of acquiring the datasets for analysis and algorithm 

development. 

4.1 Algorithm development 

In this thesis, two possibilities of algorithm development have been investigated, i.e. 

unsupervised learning with PCA and k-means and supervised learning with linear 

regression.  

4.1.1 Unsupervised learning algorithm development 

For unsupervised learning, the parameters listed below from the TCP trace files were 

examined, to determine any noticeable patterns that could be used to determine different 

network conditions. To create the traces, several constraining conditions were applied to 

the network which the observed devices were connected to. These constraints are 

described in Section 4.2. 

The datasets were examined using both PCA and k-means clustering, to determine if the 

dimensionality could be reduced and if the different simulated conditions could be 

separated from the data. 

The parameters and different combinations of these parameters used for the analysis 

during PCA are as follows: 

- Measurement time (s) 

- Time between segments for same transmission (s) 

- Length of packet (bytes) 

- Length of data (bytes) 

- Size of packet (bytes) 

- Window size (bytes) 

- Relative acknowledgement number 

- Timestamp value 

- Timestamp echo reply value 

- Number of suspected retransmission packets 
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- Number of duplicate ACK packets 

- Number of suspected lost packets 

 

For applying the k-means clustering method, the same parameters were used as for PCA. 

Figure 6 shows the proposed flow-chart of the unsupervised learning algorithm, 

containing the steps 10 to 110. 

The Step 10 involves the initialization of the variables and constants. The Steps 20, 30 

and 40 correspond to the capturing of the trace data, converting it to .csv and opening it 

as a dataframe correspondingly. The Step 50 involves processing the data, transforming 

it into a suitable format for the algorithm. In Step 60, the PCA is applied to transform the 

data into suitable principal components. In Step 70, k-means clustering is applied to the 

transformed PCA data. In Step 80, the output of the algorithm is calculated based on the 

clustering result. In Step 90, the result is compared to the previous iteration of the 

algorithm. If the result is not changed, the algorithm goes to Step 110 to save the result 

in a log file and start a new cycle from Step 20. If the algorithm outcome has changed, 

then the Step 100 is executed, which includes updating of the network parameters to 

optimize the network.  
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Figure 6. Flow-chart of the proposed unsupervised learning algorithm. 

4.1.2 Supervised learning algorithm development 

For the second approach, a linear regression analysis was carried out to examine the 

relationship expressed in Equation (2). 

𝐹 =  𝑓(𝐶, 𝑇𝑎, 𝑇𝑚, 𝐿, 𝐷, 𝑅),                                                                                                           (2) 

where F is the number of devices connected to the observed network, C is the count of 

measured packets, Ta is the Average of RTT, Tm is the Median of RTT, L is the number 

of suspected dropped packets, D is the number of duplicate ACKs, and R is the number 

of suspected retransmission packets. All of these parameters should be considered to be 

monitored over a time period, to have more stable results. 

When applying the linear regression formula, an ideal case would be as per Equation 3. 

𝐹 =  𝛽0 + 𝐶 ∙ 𝛽1 + 𝑇𝑎 ∙ 𝛽2 + 𝑇𝑚 ∙ 𝛽3 + 𝐿 ∙ 𝛽4 + 𝐷 ∙ 𝛽5 + 𝑅 ∙ 𝛽6.                                       (3) 
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To execute the algorithm onto the RPi, it would be needed to periodically capture the 

data, analyze it, and provide an output to update the necessary network parameters. Figure 

7 shows the proposed algorithm flow graph, comprising of Step 10 to Step 90. 

Initially, in Step 10, the constants and variables are initialized. During Step 20, Wireshark 

CLI utility tool tshark is used to capture specific TCP packet data during a specified time 

window and saved as a temporary pcap (packet capture file, which stores network capture 

data, which can later be used to analyze network parameters and troubleshoot for potential 

issues) file. In Step 30, the data collected in Step 20 is saved as a temporary csv file. Step 

40 involves opening the csv file from Step 30 as a pandas dataframe (two-dimensional 

table, with a variable size [60]). Step 50 processes the data in the dataframe, sorting out 

relevant data and replacing empty rows with corresponding data. Step 60 includes the 

calculation of the selected values and additionally the regression output value. Step 70 

checks if the predicted number of devices has been changed compared to the previous 

iteration and runs either Step 80, which updates the network parameters correspondingly 

or Step 90, which saves the required data to a log file and starts a new cycle. 
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Figure 7. Flow chart of the proposed algorithm with linear regression. Details of the steps are provided in 

text. 

4.2 Dataset 

The dataset that was chosen for analysing the problem was collected using a real-world 

setup with different constraints to the network applied. For the data collection, all 

connected devices had the same software (SW) for simulating the network traffic 

programmed. The five main steps of the data collection system flow are shown in Figure 

8. 

 

Figure 8. The five main steps of the data collection system flow. 

 

Configure
access point

(AP)

Apply
constraints
(if needed)

Connect 
devices to

AP

Capture
data with
Wireshark

Export data 
as .csv
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The different constraints that were simulated: 

- Bandwidth limitation, ranging from not limited to 10 kbit/s; 

- Network loss, ranging from 0% to 25%; 

- Network delay for packets leaving the ethernet interface, ranging from 0 ms to 

500 ms. 

 

The constraints were partially inspired by recommendations presented in International 

Telecommunication Union document Y.1541 [61]. The values of these parameters were 

obtained by using Wireshark to monitor network traffic TCP packets. 

4.3 Hardware 

Hardware selection involves two parts: i) hardware for training, and ii) hardware for 

deployment.  

For training, the device should have high computational power, which is why Google 

Colaboratory was chosen for this task. At the time of performing the analysis, there was 

available the GPU NVIDIA Tesla T4 (with 16 GiB GDDR6) and CPU Intel Xeon with 

Google Colaboratory entry tier. 
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For the deployment hardware, there were different SBC-s available for the AP device, 

which are listed in Table 4.  

Table 4. List of SBC-s available for algorithm deployment on the AP device. 

Device 
name Processor Memory Price 

Network 
connectivity 

Raspberr
y Pi 4 
Model B 
[62] 

Broadcom BCM2711, 
quad-core Cortex-A72 
(ARM v8) 64-bit 
SoC @ 1,5 GHz 

1 GiB, 2 GiB, 4 GiB or 
8 GiB LPDDR4 €31,62 

2,4 GHz and 
5,0 GHz IEEE 
802.11ac, 
Gigabit 
Ethernet 

NVIDIA 
Jetson 
Nano [63] 

ARM® Cortex® -A57 
MPCore (Quad-Core) | 
1,43 GHz 

Dual Channel | 
LPDDR4 
| 1600 MHz | 25,6 
GB/s |4 GiB €89,44 

Gigabit 
Ethernet 

Google 
Coral 
DevBoard 
[64] 

NXP i.MX 8M SoC (quad 
Cortex-A53, Cortex-
M4F) 1 or 4 GiB LPDDR4 €117,46 

Gigabit 
Ethernet 
port, Wi-Fi 
2x2 MIMO 
(802.11b/g/n
/ac 2,4/5 
GHz) 

Raspberr
y Pi Zero 
W [65] 1 GHz, single-core CPU 512 MiB RAM €13,55 

802.11 b/g/n 
wireless LAN 

 

For the reasons of availability, accessibility, price, computational power, the Raspberry 

Pi 4 model B [62] with 4 GiB of RAM has been selected for the initial testing and 

validation of the algorithm on the AP device. Figure 9 shows a photograph of this device. 

 

Figure 9. Raspberry Pi 4 model B [66] used for hardware deployment of the algorithm on the AP device. 
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For the simulation of the network client devices, Raspberry Pi Pico W [67] units were 

used to generate network traffic. The specifications for the RPi Pico W are as follows: 

Microcontroller RP2040, dual-core ARM Cortex-M0+ processor, 254 kiB on-chip 

SRAM, 2 MiB on-board flash, 2,4 GHz 802.11n wireless LAN. Figure 10 shows a 

photograph of this device.  

 

Figure 10. Raspberry Pi Pico W [68] used as network clients. 
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The structure of the measurements’ setup is shown in Figure 11. The number of RPi Pico 

W devices connected to the RPi 4 can be changed from 1 to n (as will be shown later on, 

n is limited to 5 in this setup). 

 

 

 

 

 

 

 

 

 

 

Figure 11. Measurement and validation setup. The RPI Pico W devices act as the network clients and 

generate the network traffic. They are connected, over WiFi (802.11n 2,4 GHz), to the RPI4 which acts as 

the AP and implements the proposed algorithm. The RPI4 is connected over a wired Ethernet (Gigabit 

Ethernet) link to the router.  

 

 

 

 

 

 

 

Raspberry Pi 4 

RPi Pico 

W 
RPi Pico 

W 
RPi Pico 

W 

Router 

Wired 

Wi-Fi Wi-Fi Wi-Fi 



42 

 

Figure 12 shows a photograph of the real-life setup of the network corresponding to 

Figure 11, with 10 RPi Pico W boards used as network clients. 

 

Figure 12. Photograph of the network measurement and validation system setup, corresponding to the 

diagram shown in Figure 11 As in Figure 11, the RPI Pico W devices act as the network clients and generate 

the network traffic. They are connected, over WiFi (802.11n 2,4 GHz), to the RPI4 which acts as the AP 

and implements the proposed algorithm. The RPI4 is connected over a wired Ethernet (Gigabit ethernet 

connections with supplied maximum bandwidth of 100 Mbit/s) link to the router. 

 

This chapter gave an overview of the design and implementation of the proposed learning 

algorithms, including the choice of hardware and the obtaining of the datasets. The next 

chapter presents the details of the results obtained while using different algorithms and 

the analysis of the results.
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5 Results and Analysis 

The measurements and validation were performed with a RPi 4B 4 GiB model, running 

Ubuntu Desktop 64bit OS version 23.10 and Wireshark version 4.0.8. The results are 

divided into two parts: i) results for the unsupervised learning and ii) results for 

supervised learning. The unsupervised learning approach presented in Section 5.1 did not 

provide enough convincing results to proceed with this method, and therefore it was 

decided to focus on the supervised learning approach; the results for the supervised 

learning approach are presented in Section 5.2 and are according to expectations. 

Moreover, Section 5.3 provides an overview of different observed classification 

parameters (memory usage, time delay). 

5.1 Unsupervised learning approach (PCA and k-means) 

To determine the suitable number of principal components for the PCA, the scree plot 

method was applied; it is a graphical method that uses the “elbow” of the graph to 

determine the number of PCA principal components necessary for the analysis. Figure 13 

shows an example scree plot, which suggests that for this example the number of features 

to be used is approximately 4 (i.e. the Eigenvalues of components 1 to 4 are above the 

value ‘1’, whereas the Eigenvalues of the components 5 to 10 are below ‘1’). The scree 

plot was made using a dataset that combines periodically applied constraints to the 

network, as suggested in Section 4.2, with non-constrained and each constrained scenario 

applied in 25% of the observation time.  
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Figure 13. Example scree plot for PCA which suggests that for this example the number of features to be 

used is approximately 4. 

 

Figure 14 shows the PCA plot for the first two principal components. From the figure, it 

was found that there are no distinguishable groups that could be used for further analysis. 

 

Figure 14. Example two component PCA plot. As can be seen, it was found that there are no 

distinguishable groups that could be used for further analysis. 

 

Table 5 shows a list of principal components, with their corresponding variance ratio 

displayed. Table 6 shows a list of principal components with their corresponding 

explained variance ratio for each initial parameter. The results show that the combined 

first four principal components have a low variance ratio (0,28 + 0,12 + 0,09 + 0,09 = 

0,58, i.e. 58%), when actually it would be desirable to have at least 80% variance 

explained by these four components. Furthermore, for the main principal components, 

there is no suggestion that there is a major parameter that is corresponding to the majority 

of their variance. 
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Table 5. Variance ratio of principal components for a combined dataset, which includes added delay and 

bandwidth constraints. 

Principal 
component Variance ratio 

PC_1 0,28 

PC_2 0,12 

PC_3 0,09 

PC_4 0,09 

 

Table 6. Principal components’ explained variance ratio for each parameter for combined dataset. TBP – 

Time between packets, Ret – Suspected retransmission packets, Dup – Duplicate ACK-s, Lost – Suspected 

lost packets. 

  TBP Length Seq Ack Win Len Tsval Tsecr Ret Dup Lost 

PC_1 0,04 0,53 0,29 0,22 0,20 0,53 0,38 0,31 0,03 0,15 0,01 

PC_2 0,08 0,04 0,12 0,38 0,61 0,05 0,28 0,51 0,33 0,08 0,01 

PC_3 0,68 0,02 0,01 0,02 0,10 0,02 0,00 0,12 0,35 0,53 0,33 

PC_4 0,12 0,02 0,02 0,08 0,04 0,02 0,04 0,04 0,32 0,19 0,92 

 

Next, to determine the number of clusters to use for the k-means clustering, the elbow 

method was also used and the result is displayed in Figure 15. The figure suggests that 

the number of clusters should be 7. But as the number of applied known scenarios was 4, 

then this method was also deemed not suitable for further investigation. 

 

Figure 15. Elbow curve for k-means for a combined dataset case. 
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The results of the above investigations show that the dimensionality cannot be 

significantly reduced, because it was found that the principal components do not have 

significant variance ratios and there is no clear parameter that has a weight that is 

significant enough. Additionally, it was also found that there are no clearly 

distinguishable clusters that could be distinguished to correspond to the scenarios 

expressed by the dataset. Appendix 1 provides additional results for the unsupervised 

learning approach, which consist of further combinations of input parameters and number 

of components used for the PCA, but it was also found that these results do not provide a 

clear conclusion. Appendixes 6 and 7 contains the source codes for the PCA and k-means 

algorithms, respectively, that were used to analyse the datasets. 

Due to these results, despite the efforts spent in trying various combinations, the 

unsupervised learning approach with the PCA and k-means techniques was not pursued 

any further in this thesis. Instead, the focus was changed to a supervised learning 

approach, i.e. linear regression analysis, presented in what follows. 

5.2 Supervised learning 

During capturing of the different datasets, it was discovered that the hardware and 

software combination only supported the connection and monitoring of five network 

client devices2 out of the 10 available client devices. Due to this technical limitation, the 

datasets were collected for one to five devices connected to the network with different 

applied constraints. The constraints were applied using the netem tool, which is a Linux 

network emulation tool that provides functionality to emulate different network 

conditions (bandwidth, delay, loss, jitter, packet reordering). At first, the datasets were 

analysed for each parameter separately, to see which parameters had larger correlation to 

the number of devices connected to the network. The analysis was done with sampling 

the data at different time windows, to observe its impact on data stability. The source code 

 

 

2 The constraint was discovered during experimental activities and there was no indication beforehand 

that this would become an issue. Research in the RPI community fora shows that there might be an upper 

limit to the number of devices connected, but it should not be as low as five; at the time of writing, this 

issue remains open. 
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for calculating the regression coefficients and the coefficient of determination is displayed 

in Appendix 7. 

 

The results are shown in Table 7. The results show that the count of measured packets, 

median of RTT, and number of suspected retransmission packets had the highest 

correlation to the number of devices connected to the network.  

Table 7. Regression coefficients for different parameters for several network constraint scenarios. 

Network traces captured with 1 to 5 client devices connected. 

 

No 
constraints 

10 kbit/s 
bandwidth 
constraint 

25% 
added 
loss 

25% loss 
and non-
constrained 

All datasets (non-
constrained, 25% 
additional loss, 10 
kbit/s bandwidth 
constraint) 
combined 

Count of measured 
packets 1 0,44 0,52 0,74 0,63 

Average of RTT 0,42 0,83 0,02 0,16 0,05 

Median of RTT 0,81 0,59 0,01 0,25 0,13 

Count of duplicate 
packets 0,02 0,09 0,44 0,16 0,14 

Count of suspected 
retransmission 
packets 0,32 0,09 0,62 0,46 0,3 

 

Regarding the observation time window, there were examined options from 1-30 s (the 

time windows were chosen empirically, as suitable references could not be found in the 

literature). It was determined from the initial analysis that a time window from 5-15 s 

would achieve a suitable compromise between model accuracy and how fast the device 

would periodically produce output from the algorithm.  

 

Figure 16 shows a summary of this analysis. Although in the PCA analysis it is desirable 

to have 80% of explained variance from the principal components, it is not applicable to 

linear regression coefficient of determination and therefore it was decided that a 

coefficient of determination lower than 80% would also be suitable for linear regression. 

Furthermore, there were no concrete requirements found in the literature for the suggested 

value of this parameter, as it depends on the system and field of study analysed. 
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Figure 16. Coefficient of determination vs time window for 3 parameters used for regression analysis for 

different conditions. It can be seen in the graphs that the slope of the graphs starts to even out after 5 - 15 

s, which is why this region was focused on in the development of the algorithm. 

 

Figure 17, Figure 18, and Figure 19 show the result of the regression analysis with a time 

window of 10 s for the parameters that had the highest correlation factor – normalized 

count of measurements, median of RTT and normalized count of retransmission packets, 

respectively. Appendix 5 presents additional regression results for other capture time 

windows (5 s, 15 s) and additional parameters for a 10 s time window (average of RTT, 

count of duplicate packets) for a combined dataset. 

0

5

10

15

20

25

30

35

0 0,2 0,4 0,6 0,8 1 1,2

Ti
m

e 
w

in
d

o
w

 (
s)

Coefficient of determination

Coefficient of determination vs time window for 3 
parameters used

25% added loss

10kbit/s bandwidth
restriction

Unconstrained

Combined unconstrained
and added 25% loss

all conditions



49 

 

 

Figure 17. Count of measured packets vs number of devices, for a capturing time window of 10 s. 
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Figure 18. Count of retransmission packets vs number of devices, for a capturing time window of 10 s. 
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Figure 19. Median of RTT vs number of devices, for a capturing time window of 10 s. 

 

In ML it is advisable to split the dataset into training, validation, and testing sub-datasets, 

to check the accuracy of the model being trained [69]. But as the sklearn library used for 

linear regression calculation does not have hyperparameters to tune, the datasets were 

also examined with the k-fold cross validation method, to see how the error rate would 

differ when selecting different sections of the dataset for analysis. For the k-fold cross 

validation, 10 folds were used, which means that the dataset was split into 10 folds (sub-

datasets) and for each of those 10 folds, the parameters of the model were calculated using 

that part of the dataset. Table 8 presents the results for this analysis. 
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Table 8. k-fold cross validation results for different datasets. MAE – Mean absolute error. RMSE – Root 

mean square error. R2 – Coefficient of determination. 

Dataset used 
Average MAE 
of 10 folds 

Average 
RMSE of 10 
folds 

R2 across 
whole 
dataset 

Average R2 
of 10 folds 

Unconstrained 0,05 0,0052 0,9975 0,9973 

Combined 0,6424 0,6895 0,6554 0,6476 

 

The analysis was also performed by splitting the dataset into 80%-20% (training-testing) 

and 80%-10%-10% (training-validation-testing), to verify whether there would be a 

significant difference in the results. The results showed that there was no significant 

difference in the parameters (unconstrained dataset training MAE varying from 0,0503 to 

0,0628, RMSE from 0,0733 to 0,1185, R2 from 0,9974 to 0,9975 when using the 80%-

20% and 80%-10%-10% split method, respectively) and based on this it was decided to 

use the whole dataset for the linear regression algorithm training. 

To determine whether it would be possible to further reduce the number of parameters 

used, an additional PCA was performed for these latest parameters. The results for this 

experiment are provided in Appendix 4. In the results, there appear to be clusters 

corresponding to the expected output of the algorithm, but there is also additional noise 

in the resulting plots, so this additional PCA possibility was not pursued any further.  

For deploying the algorithm to the device, capture windows of 5 ,10 and 15 s were used. 

Based on these results, the linear regression was finalized as per Equation 4. 

𝐹 =  𝛽0 + 𝐶 ∙ 𝛽1 + 𝑇𝑚 ∙ 𝛽3 + 𝑅 ∙ 𝛽6,                                                                                        (4) 

 

Table 9 shows the regression parameters for 5, 10 and 15 s capture time windows. 

Table 9. Correlation parameters for 5, 10, 15 s capture time windows. 

Capture time window (s) β0 β1 β2 β3 

5 -0,4 0,0028 90,4 -0,0008 

10 -1,04 0,0039 280,7 0,1111 

15 0,3 0,0021 -20,2 0,0299 
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In Table 10, the coefficients of determination for 5, 10 and 15 s capture time windows are 

shown, for the combined dataset.  

Table 10. Coefficients of determination for 5, 10, 15 s capture time windows, for the combined dataset. 

Capture time window (s) Coefficient of 

determination 

5 0,53 

10 0,66 

15 0,71 

 

The model was deployed and run on the AP device with different number of client devices 

connected to the network. The source code for the algorithm that was run on the AP device 

can be seen in Appendix 2. The source code that was run on the client devices is displayed 

in Appendix 3. Figure 20 is an example of the output log file. 

 

 

Figure 20. Algorithm output log file. 
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Table 11 shows the results for the algorithm accuracy for the 5, 10, 15 s capture time 

windows, when using a non-constrained network setup. 

Table 11. Algorithm mean accuracy for 5, 10, 15 s capture window, for non-constrained network setup. 

Capture time window (s) Algorithm mean accuracy 

5 29,75% 

10 94,67% 

15 93,62% 

 

The accuracy was calculated by dividing the number of correct predictions by the total 

number of measurements. The accuracy is acceptable to be used for further development. 

Figure 21, Figure 22, Figure 23 plot the algorithm number of devices estimation results 

for 5, 10 and 15 second capturing time windows, respectively.  

 

Figure 21. Estimated vs actual number of devices, time window 5 seconds. Model mean accuracy is 

29,75%. 
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Figure 22. Estimated vs actual number of devices, time window 10 seconds. Model mean accuracy is 

94,67%. 

  

Figure 23. Estimated vs actual number of devices, time window 15 seconds. Model mean accuracy is 

93,62%. 

 

Testing with different amounts of data, the results show that when randomly decreasing 
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to decrease significantly. On the other hand, it was observed that the minimal amount of 

data required for acceptable algorithm performance depends on the dataset used, which 

means that it might be affected by the variation expressed in the data. Figure 24 shows 

the amount of data used compared to the accuracy of the algorithm for an unconstrained 

dataset, where the accuracy of the algorithm starts to decrease significantly when the 

amount of data is below 10 datapoints. For this experiment, the dataset was split into 
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reduced, while the testing dataset would be used for the accuracy estimations by using 

the algorithm coefficients calculated from the training dataset. 

 

Figure 24. Accuracy vs amount of data used for the linear regression algorithm, using an unconstrained 

dataset. 

While the proposed linear regression-based algorithm provides suitable results in terms 

of accuracy, it is also important to consider its implementation cost in terms of memory 

and execution time usage, which is discussed in what follows.  
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5.3 Linear regression-based algorithm memory and time usage 

classification 

For the supervised learning classification estimation, both time and memory usage 

estimation tests have been performed. Figure 25 shows the execution time delay 

(summation of the data processing and of the result calculation) of the algorithm. 

 

Figure 25. Time for data processing and result calculation. Mean time 0,042 s. 

 

Moreover, Table 12 shows the time delays of different parts of the algorithm. 

Table 12. Time delays of different parts of the algorithm. 

Total cycle 
time (s) 

Capture time 
window (s) 

Capturing auxiliary 
time (s) 

Data saving 
time (s) 

Data 
manipulation 
time (s) 

7,98 5 1,66 1,29 0,034 

13,05 10 1,77 1,24 0,034 

17,94 15 1,60 1,31 0,035 

 

It can be seen that for a fixed capturing time window of 5, 10, and 15 s, the algorithm 

(data manipulation and data saving rows) plus the tshark functions (capturing auxiliary 

time) add approximately 3 s of delay, resulting in total cycles times of 7,98, 13,05, and 

17,94 s. Depending on the final application requirements, this could be an acceptable 

overhead in terms of delay. 

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0 50 100 150 200 250

Ti
m

e 
(s

)

Measurement number

Algorithm data processing and result calculation 
running time



58 

 

Figure 26 shows the memory usage results for different scenarios. The plot shows that 

the idle usage case has the lowest amount of memory usage, followed by the RPi working 

as an AP and with the highest memory usage when the RPi is working as an AP and also 

running the number of devices prediction script, which is according to the expectation. 

Furthermore, the periodical higher usage values occur when the Wireshark program is 

capturing the packets. As the memory usage parameter for the RPi command “top” 

command is updating every 1 s, this can explain the fluctuations that can be seen in the 

period of the memory usage for the use cases where the algorithm is running on top of 

the access point functionality. 

 

 

Figure 26. Memory usage of different scenarios. 
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In Table 13, the mean and maximum memory usage of different scenarios are shown.  

Table 13. Mean, maximum and minimum memory usage of different scenarios. 

  Memory usage (MiB) 

Scenario Mean Max Min 

Idle 1042,1 1061,3 1034,0 

1 dev AP 1110,2 1113,8 1106,6 

5 dev  AP 1119,2 1131,5 1106,7 

1 dev AP + 
algorithm 

1277,4 1291,5 1193,2 

5 dev AP + 
algorithm 

1279,3 1295,5 1217,1 

 

It can be seen that the memory usage when five client devices are connected to the RPi 

AP is on average 1,9 to 9,0 MiB higher than when only one device is connected, which 

is consistent with the expected result. Also, it can be seen that the algorithm adds on 

average 160,1 to 167,2 MiB of additional memory usage to the device. 

5.4 Summary of the results 

For the part of unsupervised learning (PCA and k-means), despite efforts with multiple 

combinations of observed input parameters, no currently usable representative 

relationship between the initially used parameters could be determined, nor any ways to 

reduce the dimensionality of the dataset where those parameters were used could be 

found. This means that the combination of the parameters monitored on a resource 

constrained device may benefit from further refinement to enhance their usability in the 

algorithm development, given the observed scenarios. 

On the other hand, for the supervised learning method (linear regression), the main 

contributor to determining how many devices were connected to the network was the 

count of data traces obtained during a time period. This corresponds to the expectation, 

because each device’s network traffic is added on top of the rest of the traffic and the 

more devices connected to the network, the more packets will be transferred. There were 

not many lost packets detected from the network traces, which can be attributed to the 

TCP’s error handling capabilities. The average and median values of RTT did not play a 

significant role in the effect to the number of devices connected to the network, which 

might be due to the network not being constrained enough for these values to change. The 

algorithm running on a capture window of 5 s had a much lower accuracy value of 29,75% 
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compared to 10 s and 15 s capture windows (which had accuracy values of 94,67% and 

93,62%, respectively), which is corresponding to the model estimations and the fact that 

the longer the collection and averaging time, the more stable the result will be. 

Applying the same method but adding more connected client devices and applying more 

intense traffic to the network seemed to cause issues for the RPi, as it was not able to keep 

up with the traffic and it appeared to start to throttle from a certain amount of traffic; 

experiment done with higher speed devices, resulted in limits to output speed/packets 

transferred. Figure 27 illustrates this aspect, where it can be seen that with five devices 

connected, the count of measurements starts to decrease: When the median of the count 

of measurements increases from 1 to 4 devices (from 19536 to 29819), then for 5 devices 

it lower (29655), which is more closely corresponding to the range between 3 (32900) 

and 4 devices. This might be due to the limited computational power of the RPI4 device 

and additionally running both the AP and data monitoring tasks at the same time. 

 

Figure 27. Count of measurements vs number of devices. 
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6 Conclusion 

6.1 Summary  

This thesis addressed the issue of using a DDML approach as a first step towards 

performing network control and scheduling. The goal of the work was to develop a 

suitable algorithm, evaluate its performance, and deploy it on an RPi device. The minimal 

amount of data required to achieve (near) optimal algorithm performance was also 

evaluated based on the available data. 

Given the research questions presented in the first chapter of this thesis, the answers found 

during the thesis are as follows: An algorithm can be proposed for network performance 

monitoring using supervised learning (e.g., linear regression); on the other hand, using 

unsupervised learning (e.g., PCA) proved to be inconclusive. The minimal amount of data 

required for (near) optimal operation of the algorithm was determined to be dependent on 

the dataset based on which the training would be performed. The proposed algorithm 

using linear regression can be deployed on an SBC  and the impact on the memory usage 

and algorithm time consumption has been recorded. 

The dataset for the analysis was obtained via real-life testing using a network setup with 

variable devices connected and different constraints applied to the network. The analysis 

and training the algorithm was done using Google Colaboratory and the implementation 

and testing (deployment) was done an a RPi 4. 

The results showed that the unsupervised learning approach was not sufficiently 

compelling, as there were no clear cluster visible with k-means clustering and the PCA 

did not provide conclusive results with which to proceed with further analysis. To 

overcome this, several alternative methods were investigated, and linear regression was 

selected as a supervised learning approach. Linear regression using three parameters 

showed a mean accuracy of 94,67% for estimating the number of devices connected to 

the network using a 10 s capture time window.  The average memory usage of the 

algorithm was measured as 160,1 MiB to 167,2 MiB and the average time usage of the 
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algorithm, when using a 10 s capture time window, was measured as 13,05 s, from which 

the algorithm output calculation time was 0,034 s. 

While the obtained results illustrate the feasibility of the proposed approach, some 

limitations have also been identified. To improve and expand on the results, the next 

sections briefly summarize the lessons learned and provide future work prospects. 

6.2 Lessons learned 

Working on data analysis with moderately sized datasets and a moderate number of 

datasets, it is preferable to develop an automated solution for file analysis and 

visualization, as would be the case with large datasets, as this can save a significant 

amount of time. General results show that even if selecting the hardware is done based 

on some research, there may still appear some unexpected challenges that are not 

mentioned in the scientific literature, for which creative solutions are needed. Considering 

state of the art, some problems require creating new datasets and creating or adjusting 

algorithms to suit the specific problem, as often the information that is available is quite 

general and difficult to apply on a specific problem.  

Taking into account both the results and lessons learned, the future work perspectives are 

provided in the next section. 

6.3 Future work  

To expand on and improve the problem solving considered in this thesis, the first option 

is to use a compatible Wi-Fi adapter that supports monitoring, access point modes and a 

larger amount of network client device connections (at least 25) in access point mode. 

This solution would give the opportunity to first test a larger amount of device 

connections in access point mode, to verify if the algorithm will indeed work with more 

than five connected client devices. Additionally, using the AP device with an external 

adapter only in monitoring mode might reduce memory usage and possibly current 

consumption, as then the device does not have to additionally act as a hotspot. One of the 

challenges with using monitoring mode will be to handle encrypted data, for which there 

is a possibility in Wireshark to include the encryption keys extracted from a known 
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network’s devices, but this remains to be investigated if and what impact this might have 

on the algorithm’s performance. 

Further perspectives could be to adapt the algorithm to additional SBC devices, to assess 

how transferrable the algorithm is and if there are other devices that might provide 

improved performance.  

Also, it could be considered to use different devices with different traffic patterns 

connected to the network and determine how transferrable the algorithm will be for those 

situations. This will additionally allow to acquire more datasets with increase variation, 

to better adjust the algorithm.  

Using devices or adapters with extended possibilities could provide an opportunity to 

explore the usability of alternative methods and algorithms, to potentially improve the 

solution.  

Another further future work opportunity might be to use alternative libraries and 

frameworks for the training and deployment of the ML models, to further optimize the 

algorithm.  

Energy consumption impact of the developed solution and possible alternative solutions 

could be explored in future work as well as optimizing the existing algorithm to work 

with a shorter capturing time window to enhance the reaction time of the algorithm.  

Finally, the algorithm could be upgraded by improving and adding the network 

controlling and scheduling functionalities. 
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Appendix 1 – PCA additional results 

In Figure 28 is the PCA scree plot for 9 parameters used. The parameters used can be 

seen in . 

 

Figure 28. PCA Scree plot for 9 parameters. 

In Figure 29 is the 2 component PCA plot for 9 parameters used. 

 

 

Figure 29. 2 component PCA for 9 parameters. 
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In Table 14 is the summary of variance ratios for the principal components separately and 

the explained variance for each parameter. 

Table 14. PCA results for 9 parameters. 

  
Var 

ratio Delay Length Seq Ack Win Len Ret Dup Lost 

PC_1 0,28 0,04 0,59 0,37 0,26 0,24 0,59 0,05 0,18 0,01 

PC_2 0,12 0,14 0,03 0,03 0,54 0,56 0,03 0,60 0,03 0,05 

PC_3 0,11 0,69 0,01 0,04 0,11 0,15 0,01 0,01 0,33 0,61 

PC_4 0,11 0,33 0,02 0,02 0,24 0,14 0,02 0,31 0,46 0,71 

 

 

In Figure 30 is the PCA scree plot for a dataset with added 500 ms delay for 50% of the 

measurement time. 

 

 

Figure 30. PCA Scree plot for dataset with added 500 ms delay for 50% of the time. 
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In Figure 31 is the 2 component PCA for a dataset with added 500 ms delay for 50% of 

the measurement time. 

 

 

Figure 31. 2 component PCA for dataset with added 500 ms delay for 50% of the time. 

In Table 15 is the summary of variance ratios for the principal components separately and 

the explained variance for each parameter for a dataset with added 500 ms delay for 50% 

of the measurement time. 

Table 15. PCA variance results for datset with added 500 ms delay for 50% of the time. 

 

Var 
ratio Time 

Lengt
h Seq Ack Win Len TSval 

TSec
r Ret Dup 

PC_
1 

0,40
6 

0,04
2 0,448 

0,29
9 

0,27
8 

0,27
1 

0,44
9 

0,40
9 

0,40
9 

0,00
1 

0,14
4 

PC_
2 

0,11
6 

0,58
7 0,196 

0,18
5 

0,36
1 

0,33
1 

0,18
9 

0,10
9 

0,01
7 

0,53
7 

0,08
0 

PC_
3 

0,09
8 

0,51
7 0,048 

0,13
4 

0,10
5 

0,16
4 

0,04
7 

0,06
6 

0,02
3 

0,66
8 

0,47
1 

PC_
4 

0,09
3 

0,43
0 0,011 

0,15
1 

0,14
7 

0,20
9 

0,01
4 

0,07
7 

0,06
1 

0,28
3 

0,79
8 
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Appendix 2 – Linear Regression python algorithm source 

code 

import time, os, sys 

import pandas as pd 

from datetime import datetime 

 

#parameters 10s 

a1 = 0.0028318019 

a2 = 90.3946069 

a3 = -0.000750874772 

a4 = -0.4 

F = 0.0 

 

#tshark commands for pcap capture and csv save 

command1 = "sudo tshark -w /tmp/test1.pcap -a duration:10 -i wlan0 -f 
tcp -T fields -e frame.number -e ip.proto -e ftp -e ftp-data -e 
tcp.analysis.ack_rtt -e tcp.analysis.retransmission -E header=y -E 
separator=, -E quote=d -E occurrence=f" 

command2 = "sudo tshark -r /tmp/test1.pcap -i wlan0 -f tcp -T fields -
e frame.number -e ip.proto -e ftp -e ftp-data -e tcp.analysis.ack_rtt 
-e tcp.analysis.retransmission -Y ip.proto==6 -E header=y -E 
separator=, -E quote=d -E occurrence=f > /tmp/test1.csv" 

 

while True: 

    #Initial timestamp 

    time3 = time.time() 

    os.system("/bin/bash -c \"" + command1 + "\"") 

    #Timestamp after tshark capturing 

    time4 = time.time() 

    os.system("/bin/bash -c \"" + command2 + "\"") 

     

    #Timestamp after tshark save to csv 

    time1 = time.time() 

    #Read csv to dataframe 

    df = pd.read_csv('/tmp/test1.csv', encoding = "ISO-8859-1") 

 

    #Dataframe filter out required data 

    df = df[df['ip.proto'] == 6] 

    df = df[df['ftp'] != 'ftp'] 

    df = df[df['ftp-data'].isna()] 

 

    #add "0" and "1"  

    df['tcp.analysis.retransmission'] = 
df['tcp.analysis.retransmission'].notnull().astype('int') 
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    #Count rows, calculate median of RTT, sum of retransmission 
packets 

    Count = len(df) 

    Median = df['tcp.analysis.ack_rtt'].median() 

    Retransmission_count = df['tcp.analysis.retransmission'].sum() 

     

    #Calculate number of devices 

    F = a1 * Count + a2 * Median + a3 * Retransmission_count + a4 

    #Timestamp after calculations 

    time2 = time.time() 

     

    #Count different delays 

    totaltime = time2 - time1 

    totaltime2 = time2 - time3 

    totaltime3 = time2 - time4 

    #Round final value 

    roundF = round(F) 

    print('Count of rows', Count, 'Median', Median, 'Count of 
retransmission packets', Retransmission_count) 

     

    #Current date and time acquiring and printing 

    dt = datetime.now() 

    str_dt = dt.strftime("%d-%m-%Y, %H:%M:%S") 

    str_dt2 = dt.strftime("%d-%m-%Y,%H:%M:%S") 

    strstats = str_dt2 + ",Count," + str(Count) + ",Median," + 
str(Median) + ",Retransmission," + str(Retransmission_count) + 
",No_of_devices," + str(roundF) + ",time_delay," + str(totaltime) + 
",total_time_delay," + str(totaltime2) + 
",total_time_delay_minus_capture," + str(totaltime3) + "\n" 

 

    L = "Number of connected devices - " + str(F) +"\n" 

    s = "   " 

    #Print number of devices 

    print(dt, ' - ', L) 

    tt = " - time - " + str(totaltime) 

 

    #Save to log 

    file1 = open("/home/john/logfile.txt", "a") 

    file1.writelines(str_dt) 

    file1.writelines(s) 

    file1.writelines(tt) 

    file1.writelines(s) 

    file1.writelines(L) 

    file1.close 

    file2 = open("/home/john/stats.txt", "a") 

    file2.writelines(strstats) 

    file2.close 

 

Figure 32. RPi algorithm source code
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Appendix 3 – Raspberry Pi Pico W MicroPython source code 

import network 

import socket 

from time import sleep 

from picozero import pico_led 

import machine 

from ftplib import FTP 

#Raspberry Pi Foundation tutorial code used as a basis 

 

ssid = "RPi_test" 

password = "Password" 

 

#Connect to Wi-Fi hotspot 

def connect(): 

    wlan = network.WLAN(network.STA_IF) 

    wlan.active(True) 

    wlan.connect(ssid, password) 

    while wlan.isconnected() == False: 

        print('Waiting for connection...') 

        sleep(1) 

    ip = wlan.ifconfig()[0] 

    print(f'Connected on {ip}') 

    return ip 

     

#Open IP socket     

def open_socket(ip): 

    address = (ip, 80) 

    connection = socket.socket() 

    connection.bind(address) 

    connection.listen(1) 

    return(connection) 

 

#Periodically download 80KB file 

def serve (connection): 

    pico_led.off() 

    while True: 

        file=open("data2.csv","wb") 

        print('Testing') 

        pico_led.on() 

        ftp = FTP('ftp.rebex.net', 21, 'demo', 'password') 

        ftp.retrbinary('RETR ' +'/pub/example/WinFormClient.png', 
file.write) 

        file.close() 

        ftp.quit() 

        pico_led.off() 
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        sleep(0.5) 

 

#Run defined functions 

try: 

    ip = connect() 

    connection = open_socket(ip) 

    serve(connection) 

except KeyboardInterrupt: 

    machine.reset() 

 

Figure 33. RPi Pico W MicroPython source code.
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Appendix 4 – Linear Regression PCA analysis 

In Figure 34 is the resulting scatter plot for 4 principal components for a combined 

dataset. In Figure 35 is a 2 component PCA plot for a final set of parameters for a capture 

time window of 10 s, with added device number indicators. 

 

Figure 34. Scatter matrix for 4 component PCA for final set of parameters with time window of 10 

seconds for a combined dataset. 
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Figure 35. 2 component PCA plot for final set of parameters with time window of 10 seconds for a 

combined dataset with added device number indicators. 

Table 16 displays the summary of variance ratios for the principal components separately 

and the explained variance for each parameter. 

Table 16. 4 component PCA details for final set of parameters with time window of 10 seconds for a 

combined dataset. 

  
variance_rat

io 
Count Average Median dup_count retrans_cou

nt 

PC_
1 0,444341874 

0,3810420
32 

0,3667926
41 

0,2429998
46 

0,5840446
92 0,565785 

PC_
2 0,290423077 

0,1528723
13 

0,5597522
01 

0,6320719
41 

0,3512438
17 0,374727 

PC_
3 0,15987833 

0,8829440
79 

0,0729606
59 

0,3707832
96 

0,1463008
21 0,23707 

PC_
4 0,089158006 

0,2100177
13 

0,7359346
98 

0,6327408
44 

0,1080107
33 0,047596 
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Appendix 5 – Linear Regression additional plots 

1. For 5 s time window 

Figure 36 shows the count of measured packets vs number of devices for a 5 s capture 

window and combined dataset. 

 

Figure 36. Count of measured packets vs number of devices for a 5 s capture window and combined 

dataset. 
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Figure 37 shows the count of suspected retransmission packets vs number of devices for 

a 5 s capture window and combined dataset. 

 

Figure 37. Count of retransmission packets vs number of devices for a 5 s capture window and combined 

dataset. 
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2. For 10 s time window 

Figure 38 shows the count of duplicate ACKs vs number of devices for a 10 s capture 

window and combined dataset. 

 

Figure 38. Count of duplicate ACKs vs number of devices for a 10 s time window and combined dataset. 
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Figure 39 shows the average of RTT vs number of devices for a 10 s capture window 

and combined dataset. 

 

 

Figure 39. Average RTT vs number of devices for a 10 s time window and combined dataset. 
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3. For 15 s time window 

Figure 40 shows the count of measured packets vs number of devices for a 15 s capture 

window and combined dataset. 

 

Figure 40. Count of measured packets vs number of devices for a 15 s capture window and combined 

dataset. 
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Figure 41 shows the count of suspected retransmission packets vs number of devices for 

a 15 s capture window and combined dataset. 

 

 

Figure 41. Count of retransmission packets vs number of devices for a 15 s capture window and 

combined dataset. 
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Appendix 6 – PCA source code 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

 

#Open the dataset and load it to the dataframe 

url = 
'https://raw.githubusercontent.com/kaarel2/test/main/RPi_Traces/Combin
ed3_retransmission.csv' 

df = pd.read_csv(url, names=['Delay', 'Length', 'Seq', 'Ack', 'Win', 
'Len', 'Retransmission', 'Duplicate', 'Lost_packets', 
'cat_technology']) 

 

#Define features 

features = ['Delay', 'Length', 'Seq', 'Ack', 'Win', 'Len', 
'Retransmission', 'Duplicate', 'Lost_packets'] 

 

# Separate features and the target value 

x = df.loc[:, features].values 

 

# Feature standardization 

x = StandardScaler().fit_transform(x) 

 

#Define PCA for 4 comopnents 

pca = PCA(n_components=4) 

#Fit the data to the model 

principalComponents = pca.fit_transform(x) 

 

#Print principal components' variance ratios 

print("Variance ratio") 

print(pca.explained_variance_ratio_) 

 

#Add PCA parameter variance results to new dataframe and print it 

dataset_pca = pd.DataFrame(abs(pca.components_), columns=['Delay', 
'Length', 'Seq', 'Ack', 'Win', 'Len', 'Retransmission', 'Duplicate', 
'Lost_packets'], index=['PC_1', 'PC_2', 'PC_3', 'PC_4']) 

print(dataset_pca) 

 

#Print eigenvectors and eigenvalues 

print('\neigenvectors’,pca.components_) 

print(‘\neigenvalues’,pca.explained_variance_) 

 

Figure 42. PCA source code. 

 



85 

 

Appendix 7 – K-means source code 

import pandas as pd 

from matplotlib import pyplot as plt 

import numpy as np 

from sklearn.cluster import KMeans 

from sklearn.preprocessing import StandardScaler 

 

#Open the dataset and load it to the dataframe 

url = 
'https://raw.githubusercontent.com/kaarel2/test/main/RPi_Traces/Combin
ed3_retransmission.csv' 

df = pd.read_csv(url, names=['Delay', 'Length', 'Seq', 'Ack', 'Win', 
'Len', 'Retransmission', 'Duplicate', 'Lost_packets', 
'cat_technology']) 

 

#Define features 

features = ['Delay', 'Length', 'Seq', 'Ack', 'Win', 'Len', 
'Retransmission', 'Duplicate', 'Lost_packets'] 

 

# Separate features from the target value 

x = df.loc[:, features].values 

 

# Separate the target value 

y = df.loc[:,['cat_technology']].values 

 

# Feature standardization 

x = StandardScaler().fit_transform(x) 

scaled_x = x 

 

#Define arguments for k-means model 

kmeans_kwargs = {"init":"random", "n_init": 10, "max_iter":300, 
"random_state": 42} 

 

#Calculate SSE for different number of clusters 

sse = [] 

for k in range(1, 8): 

   kmeans = KMeans(n_clusters=k, **kmeans_kwargs) 

   kmeans.fit(scaled_x) 

   sse.append(kmeans.inertia_) 

 

#Plot SSE vs number of clusters 

plt.plot(range(1, 8), sse) 

plt.xticks(range(1, 8)) 

plt.ylabel("SSE - Sum of the Squared Error") 

plt.xlabel("Number of Clusters") 
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plt.show() 

 

#Perform k-means analysis for 6 clusters 

kmeans_clusters = KMeans(n_clusters=6, **kmeans_kwargs) 

kmeans_clusters.fit(scaled_x) 

#Print kmeans parameters 

print('k-means SSE',kmeans_clusters.inertia_) 

print('centroid locations',kmeans_clusters.cluster_centers_) 

print('Iterations to converge',kmeans_clusters.n_iter_) 

 

#Print kmeans labels to file 

df_results = pd.DataFrame(kmeans_clusters.labels_) 

with pd.ExcelWriter('kmeans_labels.xlsx', engine='xlsxwriter') as 
writer: 

    df_results.to_excel(writer, sheet_name='Sheet1') 

 

Figure 43. k-means source code.
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Appendix 8 – Linear regression parameters calculation source 

code 

import pandas as pd 

from sklearn.linear_model import LinearRegression 

 

#Open file with data, load to dataframe 

df2 = pd.read_excel('Regression_data.xlsx', sheet_name = 'Leht2') 

 

#Define linear regression models 

model2 = LinearRegression() 

model3 = LinearRegression() 

model4 = LinearRegression() 

model5 = LinearRegression() 

model6 = LinearRegression() 

model7 = LinearRegression() 

model8 = LinearRegression() 

model9 = LinearRegression() 

 

#Define dependent, independent variables 

X2, y2 = df2[['Count']], df2.No_of_devices 

X4, y4 = df2[['Average']], df2.No_of_devices 

X5, y5 = df2[['Median']], df2.No_of_devices 

X6, y6 = df2[['dup_count']], df2.No_of_devices 

X7, y7 = df2[['retrans_count']], df2.No_of_devices 

X8, y8 = df2[['Count','Median','retrans_count']], df2.No_of_devices 

X9, y9 = df2[['Count','Median','dup_count','retrans_count']], 
df2.No_of_devices 

X3, y3 = df2[['Count', 'Average', 'Median', 'dup_count', 
'retrans_count']], df2.No_of_devices 

 

#Fit models for different variable combinations 

model2.fit(X2, y2) 

print('\nCount of RTT intercept, coefficient, score') 

print(model2.intercept_, model2.coef_, model2.score(X2, y2)) 

model4.fit(X4, y4) 

print('\nAverage of RTT intercept, coefficient, score') 

print(model4.intercept_, model4.coef_, model4.score(X4, y4)) 

model5.fit(X5, y5) 

print('\nMedian of RTT intercept, coefficient, score') 

print(model5.intercept_, model5.coef_, model5.score(X5, y5)) 

model6.fit(X6, y6) 

print('\nCount of duplicate packets intercept, coefficient, score') 

print(model6.intercept_, model6.coef_, model6.score(X6, y6)) 
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model7.fit(X7, y7) 

print('\nCount of retransmission packets intercept, coefficient, 
score') 

print(model7.intercept_, model7.coef_, model7.score(X7, y7)) 

model8.fit(X8, y8) 

print('\nCount, Median of RTT; count of retransmission packets 
intercept, coefficient, score') 

print(model8.intercept_, model8.coef_, model8.score(X8, y8)) 

model9.fit(X9, y9) 

print('\nCount, Meidan of RTT; count of duplicate and retransmission 
packets intercept, coefficient, score') 

print(model9.intercept_, model9.coef_, model9.score(X9, y9)) 

print('\nAll parameters intercept, coefficient, score') 

model3.fit(X3, y3) 

print(model3.intercept_, model3.coef_, model3.score(X3, y3)) 

 

#Create dataframe for printing of regression models' results 

d = {'Intercept': [model2.intercept_, model4.intercept_, 
model5.intercept_, model6.intercept_, model7.intercept_, 
model8.intercept_, model9.intercept_, model3.intercept_], 
'Coefficient(s)': [model2.coef_, model4.coef_, model5.coef_, 
model6.coef_, model7.coef_, model8.coef_, model9.coef_, model3.coef_], 
'Score': [model2.score(X2, y2), model4.score(X4, y4), model5.score(X5, 
y5), model6.score(X6, y6), model7.score(X7, y7), model8.score(X8, y8), 
model9.score(X9, y9), model3.score(X3, y3)]} 

df_excel = pd.DataFrame(data = d, index = ['Count of RTT', 'Average of 
RTT', 'Median of RTT', 'Count of duplicate ACKs', 'Count of 
retransmission packets', '1,3,5 parameter', '1,3,4,5 parameter', 'All 
parameters']) 

 

#Print regression parameters' results to excel file 

with pd.ExcelWriter('summary_regression.xlsx', engine='xlsxwriter') as 
writer: 

    df_excel.to_excel(writer, sheet_name='Sheet1', startrow = 1, 
float_format = "%0.2f") 

    worksheet = writer.sheets['Sheet1'] 

    worksheet.write(0, 0, 'Regression analysis for different 
combinations')     

    writer.sheets['Sheet1'].set_column(0, 0, 29) 

    writer.sheets['Sheet1'].set_column(2, 2, 72) 

 

Figure 44. Linear regression parameters calculation source code.
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