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Abstract 

This thesis aims to solve Intel CPU and GPU related issues on Linux, such as overheating 

and a short battery life. To solve the issues, two solutions were created, consisting of a 

service and a client to control the service. Testing sections of this thesis aim to measure 

the impact of the solutions created. 

GPU manager testing includes 2D, 3D workload testing and video playback tests with 

1080p and 4K video samples. The analysis of the results found that by limiting the GPU 

performance great improvements in power savings and efficiency can be achieved. 

CPU manager testing consists of stress testing and timed Linux kernel build testing over 

various configurations, including tests with no CPU manager, Linux CPU manager and 

Linux Thermal Daemon. Thermal throttling results and analysis demonstrated that Linux 

CPU manager did limit the CPU temperatures and was more performant when compared 

to Linux Thermal Daemon with the same limits, confirming the findings of previous work 

on optimal thermal throttling methods. Further investigation into Linux Thermal Daemon 

revealed the possible issue and quick tests with the improved configuration did show an 

improvement when compared to the stock Linux Thermal Daemon configuration. 

Comparison between different governors offered by Linux CPU manager revealed that 

by limiting the CPU performance the power usage and CPU temperatures can be greatly 

reduced. Furthermore, the CPU efficiency can also be noticeably improved and overall 

CPU energy use lowered, which translates to an improvement in battery life. 

This thesis is written in English and is 64 pages long, including 4 chapters, 45 figures and 

6 tables. 
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Annotatsioon 

Inteli CPU ja GPU jõudluse haldamine Linuxi-põhistel 

operatsioonisüsteemidel 

Antud lõputöö käsitleb Inteli protsessorite ning graafikalahendustega seotud 

ülekuumenemist ning kõrget energiakulu Linuxi-põhistel operatsioonisüsteemidel. Töö 

käigus loodi kaks eraldiseisvat programmi, mis lubavad kasutajal hallata nii CPU kui 

GPU jõudlust. Lahendused pakuvad erinevaid jõudlustasemeid ning sisaldavad endas 

ülekuumenemisvastast komponenti, mis piirab ennetavalt CPU või GPU jõudlust. 

Lahenduste loomisele järgneb nende testimine, mõõtmaks eesmärkide saavutamist. 

GPU lahenduse testid hõlmavad endas 2D ning 3D koormustesti, lisaks testiti ka 

lahenduse mõju 1080p ning 4K resolutsiooniga videofailide taasesitusel. Testimisel 

selgus, et GPU lahenduse kasutamine võimaldab märgatavat energiakulu ning CPU kiibi 

temperatuuri vähendamist ning efektiivsuse tõstmist jõudluse arvelt. 

CPU lahenduse testimiseks kasutati lihtsat koormustesti ning ajavõtmisega Linuxi kerneli 

ehitamist. Analüüsides temperatuurimuutusi, leiti, et CPU lahendus suudab temperatuure 

piirata ning on sama temperatuurilimiidi juures parema jõudlusega, kui alternatiivne 

lahendus Linux Thermal Daemon, kinnitades mitmete eelnevate teadustööde leide CPU 

optimaalse kiiruse piiramise viisi osas. Võrdlus CPU lahenduse erinevate jõudlusvalikute 

osas näitas, et CPU kiiruse piiramisega on võimalik energiakulu ning temperatuure 

märgatavalt vähendada. Samuti oli piiramisega võimalik suurendada CPU efektiivsust 

ning vähendada üldist energiakulu, tänu millele on võimalik pikendada aku eluiga. 

Uurides Linux Thermal Daemon’i ebastabiilset ning volatiilset käitumist, õnnestus autoril 

leida võimalik probleemi põhjus. Peale ühe võimaliku lahenduse testimist sai põhjus 

kinnitust ning muudetud konfiguratsiooniga Linux Thermal Daemon’i käitumine oli 

stabiilsem ja CPU keskmine taktsagedus suurem.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 64 leheküljel, 4 peatükki, 45 

joonist, 6 tabelit.  
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List of abbreviations and terms 

CPU Central Processing Unit 

GPU Graphics Processing Unit 

TDP Thermal Design Power 

PC Personal Computer 

GUI Graphical User Interface 

IPC Inter-process communication 

USB Universal Serial Bus 

UEFI Unified Extensible Firmware Interface 

RAM Random Access Memory. 

TIM Thermal Interface Material 

OS Operating System 

API Application Programming Interface 

RAPL Running Average Power Limit 

CLI Command-line Interface 

LCM Linux CPU Manager. Abbreviation of the CPU solution created 

as part of this thesis. 

LTD Linux Thermal Daemon. Abbreviation of the alternative CPU 

throttling solution. 
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1 Introduction 

CPU and GPU temperatures and various heat dissipation methods have been under the 

attention of researchers, chip makers and device manufacturers for decades. Work on 

features, such as dynamic frequency and voltage scaling, on-chip thermal protection 

abilities, turbo mode and increased monitoring, has greatly improved performance, 

efficiency, and reliability. However, badly designed devices with insufficient cooling 

capabilities can still get too warm to touch and even overheat and cause loss of work for 

the user because the on-chip thermal protection features are only used when the 

temperatures get very close to the critical temperature trip point.  

A lot of work has gone into software solutions that try to pre-emptively throttle the CPU 

in a way that least affects the performance. These include improved CPU schedulers, 

dynamic thermal management modules in the kernel and user space tools that allow the 

user to change the performance levels of the CPU and GPU. However, some solutions are 

either difficult to implement and maintain, don’t function optimally or don’t exist on 

Linux based operating systems at all, leaving the user with little control over the 

performance and thermal management, causing issues like overheating and a short battery 

life. 

This thesis aims to solve the problems associated with overheating and short battery life 

by creating two user space programs that allow for finer control over the CPU and GPU 

performance on Intel CPU-s and GPU-s. The CPU solution must be able to provide 

different levels of performance that can be chosen to improve CPU efficiency, battery life 

and provide good pre-emptive throttling to prevent overheating. The GPU solution must 

offer multiple different operating modes in order to control the GPU related power usage, 

improve GPU efficiency and to prevent GPU induced overheating. 

The first half of the thesis focuses on the integrated graphics solution found on most Intel 

CPU-s, going over the issues and current power saving methods, and proposes a solution 

for solving the issues with high power usage and overheating. Implementation details are 

followed by testing, test results and analysis to measure the effectiveness of the solution. 
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The second half of the thesis discusses the CPU related problems in detail, brings up 

current methods and solutions for controlling the CPU performance and presents the 

proposed solution for managing overheating and battery life issues. As with the GPU 

solution, the CPU solution is followed by testing, test results and analysis, which gives 

an overview of the behaviour and performance of the proposed solution.
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2 Linux GPU manager 

The GPU power and performance management portion of this thesis gives an overview 

of the Intel GPU and GPU related issues. This is followed by the solution implementation 

details, testing the solution and analysis of the results. 

2.1 Introduction 

Most modern Intel CPU-s ship with integrated graphics known as Intel HD, UHD or Iris 

Pro graphics. According to Firefox Hardware Report, as of April 2018 about 89% of 

Firefox users have an Intel CPU and 66% use the Intel integrated graphics [1]. The 

difference between those two statistics is easily explained by the presence of dedicated 

GPU-s by AMD and Nvidia used in some desktops and laptops which account for about 

28% of Firefox users.  

Finding the true market share of Linux based operating systems is not simple due to the 

different statistic provided by various sources. For example, StatCounter reports Linux 

usage as of April 2018 at 1.66% [2], as shown on Figure 1. 

 

Figure 1. Desktop operating system marketshare according to StatCounter as of April 2018. 
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Other market share statistics providers, such as NetMarketshare, show that Linux market 

share is closer to 2%, at 1.93% [3]. Firefox hardware report puts the market share of Linux 

to 2.73% as of April 2018, possibly due to Firefox being the default browser in most 

Linux distributions. 

Even though the general market share of Linux users is low, a sizeable part of those users 

could benefit from an Intel GPU manager solution that provided the user with more 

control over the performance and power usage.  

2.2 Issues 

Intel integrated graphics solutions can cause some issues during normal usage, such as 

overheating and high power usage. This section focuses on the GPU related issues and 

gives a better overview of why these problems are an issue and how to potentially solve 

them.  

2.2.1 High power usage 

Intel GPU-s are mostly intended for providing basic support for desktop graphics and 

graphically less intensive workloads, like office work, browsing the internet and watching 

movies. 3D workloads, such as video games, generally have poor performance compared 

to GPU-s by AMD and Nvidia. 

Popular browsers, such as Firefox and Chromium, make use of GPU acceleration and are 

continuing utilising the GPU even further. One example of this is the upcoming Firefox 

component called WebRender which accelerates the rendering of web pages by 

offloading some of the work to the GPU [4]. With the increasing emphasis on making use 

of the GPU, its power usage is also increased, leading to higher temperatures and lower 

battery life. A decrease in battery life is disadvantageous in situations where image quality 

and frame rate are not as important as battery life. 

Table 1 illustrates the general power usage figures that can be seen on an Intel HD 4000 

GPU found on the Intel i7-3820QM under a heavy 3D workload. The chosen workload 

was a short run of FurMark with turbostat running in the background with a polling 

interval of 5 seconds.  
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Table 1. GPU power usage while idling and under load. 

Clock speed (MHz) State (idle, load) Average power usage (W) 

350 idle 0.85 

350 load 4.80 

1250 idle 1.10 

1250 load 20.80 

 

From the power usages reported it is clear that the GPU contributes noticeably to the 

system overall power usage. According to specifications by Intel the CPU TDP (thermal 

design power) is rated at 45W [5] and its maximum power usage has been observed to 

reach this with a heavy load. This means that the GPU can contribute 10-45% to the 

overall CPU package power usage when under load.  

2.2.2 Lack of power management features on Linux 

Intel HD Graphics Control Panel is a Windows program that allows the user to control 

various GPU related settings, including power usage modes. Figure 2 shows the three 

power related options offered by the control panel: maximum battery life, balanced and 

maximum performance. A power mode can be set for when the PC (personal computer) 

is running on battery or when plugged in. 

 

Figure 2. Intel HD Graphics Control Panel power usage controls. 
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To find out what the power usage and clock speed ranges are for the different modes, two 

programs are used. OCCT is used for monitoring the GPU clock speed, temperature and 

for generating a heavy 3D workload. OpenHardwareMonitor, a free open source program 

for monitoring system sensors, is used to measure the GPU power usage in watts. Results 

of the quick testing are shown on Table 2. It is clear that running the GPU at a lower clock 

speed will have a huge positive impact on the power usage, reducing the power usage by 

up to 62.8% when comparing maximum performance and maximum battery life modes. 

Table 2. GPU power usage and clock speed ranges as measured by OCCT and OpenHardwareMonitor. 

Mode GPU average power usage (W) Clock speed range (MHz) 

Maximum battery life 8.3 350-650 

Balanced 21.6 350-1250 

Maximum performance 22.3 350-1250 

 

Intel HD Graphics Control Panel is not available under Linux, meaning that there is no 

easy way to control the power used by the GPU. By default, the Intel HD GPU runs at its 

maximum speed, being roughly equivalent to the maximum performance mode of the 

control panel found on Windows. This does mean that the power usage is also increased 

and battery life decreased. This is non-ideal for situations where maximum GPU 

performance is not explicitly needed. Such workloads include taking notes in a lecture, 

reading a document, navigating simple webpages and instant messaging. 

2.2.3 GPU induced overheating 

Most Intel CPU-s have an on-die graphics solution that provides basic 2D and 3D 

graphics workload performance. The GPU portion of the CPU is positioned on the same 

die, as shown on Figure 3. 
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As demonstrated in section 2.2.1 of this thesis, the GPU portion of the package can utilise 

a considerable amount of power and thus contribute significantly to the total heat output. 

Due to the positioning of the integrated graphics, the CPU cores closest to the GPU can 

be affected by the sudden increase in temperatures, possibly causing an unexpected 

shutdown if the CPU core temperature is past the critical threshold. 

GPU induced overheating can be prevented by limiting the GPU performance so that it 

never exceeds a certain temperature threshold, such as 80°C on a system with a CPU 

throttling point at 100°C.  

2.3 Current power saving methods 

While there is no direct alternative to the control panel found on Windows, there do exist 

some methods to control the integrated graphics performance and improve power savings. 

This section introduces one GUI (graphical user interface) application and kernel options 

for controlling the GPU. 

2.3.1 Intel Power Control 

Intel Power Control is a GPU power management tool that features sliders for GPU clock 

speeds, a brightness slider and an automatic GPU throttling feature [7]. In addition to that 

it includes CPU online state toggles and information about CPU package temperatures. 

The GUI (graphical user interface) component of the application makes use of Python 3 

and Qt 5, a framework for building graphical applications, while the helper program is 

written in C. 

 

Figure 3. Intel Ivy Bridge microarchitecture die layout. Image released by Intel for marketing purposes, 

image copy taken from AnandTech [6].  
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While it offers a lot of options and sliders, as visible on Figure 4, it has no recommended 

set of settings that is found in the Windows program for controlling the GPU performance, 

making it potentially confusing for less experienced users. In its current state the program 

requires installing necessary dependencies and building the application yourself, further 

complicating the install procedure. 

2.3.2 Kernel driver options 

Intel GPU-s support various methods that can increase power savings and can be 

configured on the kernel driver level. These include framebuffer compression, LVDS 

downclocking, enabling RC6 low power states and PCI-e power management [8]. Such 

features may work on some systems, but can cause problems on other hardware or cause 

unwanted power usage increases, as demonstrated in a test carried out by Michael Larabel 

at Phoronix where some options had a negative effect on power usage when running 

different workloads [9]. The increase in power usage was mostly caused by an increase 

in performance, as shown on Figure 5. 

 

Figure 4. Screenshot of the Intel Power Control application. 

https://www.phoronix.com/scan.php?page=michaellarabel
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Since then some features mentioned above have been enabled by default on supported 

hardware, such as RC6 sleep states. However, even more power can be saved by simply 

limiting the speed the GPU can run at. This can be achieved by manipulating GPU related 

sysfs paths. For example, on a system with Intel HD 4000 GPU the controls are located 

at /sys/class/drm/card0/. The driver allows to change the minimum, maximum and 

boost frequencies in steps of 50MHz by writing the proper value to gt_min_freq_mhz, 

gt_max_freq_mhz and gt_boost_freq_mhz. In addition to that the current active frequency 

can be read from gt_cur_freq_mhz and stock frequency steps from gt_RP0_freq_mhz 

(boost clock speed), gt_RP1_freq_mhz (maximum clock speed) and gt_RPn_freq_mhz 

(minimum clock speed), as shown on Figure 6. 

 

Figure 5. Effect of kernel driver options on performance and power usage with a 3D workload, as tested by 

Michael Larabel at Phoronix [9].  
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2.4 Linux GPU manager implementation 

This section gives an overview of the implementation of the GPU manager solution, 

covering the architecture, the GPU managing algorithm and an overview of the supported 

hardware. 

2.4.1 Overview 

Linux GPU manager is a service that allows any D-Bus capable client application to 

change the current operating mode. Currently the three modes try to emulate the options 

provided by Intel HD Graphics Control Panel by offering power modes designed for 

maximum battery life, balanced (good performance with moderate power usage) and 

maximum performance. 

The current implementation comes with a service with three governor implementations 

and a simple CLI (command-line interface) program that demonstrates the ability of a 

client to call a method on the service. When the service is running, the client can set a 

suitable power mode by giving the power mode name as an argument. An example of the 

program in action is shown on Figure 7.  

 

Figure 6. Contents of i915 driver related controls found in sysfs. Commands are run on a PC with Intel HD 

4000 graphics running Linux kernel version 4.16.8. 
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Due to the choice of test machines by the author the current implementation of the GPU 

manager is confirmed to support Sandy Bridge and Ivy Bridge generation integrated 

graphics solutions. The implementation may already support newer Intel GPU-s, but that 

hasn’t currently been tested and its effects haven’t been measured. This issue can be 

alleviated with access to newer hardware and feedback from future users of this solution. 

An explanation of the i915 driver suggests that the newer GPU models have similar path 

names with the only change being the RPe frequency which marks the most efficient 

frequency, being the equivalent to RP1 frequency found on current test hardware [13]. 

Linux GPU manager is free open source software licensed under GPLv3 [10] and 

available on GitHub at https://github.com/Hermanio/linux-gpu-manager. 

Packaging the program so that it can be used in popular Linux distributions, such as 

Ubuntu, Debian, Fedora, Arch Linux and others, is going to be implemented in the future 

along with the GUI component and configuration file support, as these features are not in 

the scope of this thesis. 

2.4.2 Technology overview 

This section describes the choice and reasoning behind software components used in the 

implementation of the GPU solution. 

For implementing the server and client portions of the proposed solution, Python 3 was 

chosen for the programming language. Since all major Linux distributions come with 

Python 3 already installed, the solution can run out of the box on most Linux installations. 

Development is also much faster with Python 3 as it makes a lot of tasks very simple with 

its vast standard library and simple but powerful syntax. 

 

Figure 7. Example of GPU manager client setting the governor from the default one to “powersave”. 

https://github.com/Hermanio/linux-gpu-manager
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D-Bus is a software bus that allows for IPC (inter-process communication), meaning that 

multiple concurrent processes can send and retrieve information and signals between each 

other via the software bus [11]. This is useful for implementing a server-client solution 

where there exists one server and one or many separate client implementations. This was 

chosen for the IPC part of the implementation due to it being present in most Linux 

distributions, and being easy to work with as it has existing language bindings for Python 

3. 

sysfs is a virtual file system that provides access to information about various parts of 

the kernel, including hardware devices and device drivers [12]. This provides access to 

the Intel GPU i915 driver. Using the interfaces provided we can control the GPU 

performance with ease by limiting the allowed clock speed frequency range. Controlling 

the performance is achieved by writing a value to a virtual file which then passes the value 

to the proper method in the driver. An example of writing various clock speed values for 

boost frequency limit is shown on Figure 8. 

2.4.3 Architecture 

The architecture of the implementation consists of two parts: a D-Bus service that handles 

the GPU management, and a client program that can interact with the service using 

various D-Bus methods. Different behaviours, such as power saving and performance 

mode, are implementations of a common class called Governor. Diagram of the 

architecture is shown on Figure 9. 

 

Figure 8. Example of writing values to i915 driver related sysfs files. 
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Access controls for the client are defined by the D-Bus service configuration file. In its 

current state the service allows any user to call the setMode() method which allows for a 

non-administrator user to control the GPU power mode. The D-Bus service itself runs on 

System Bus, giving it root access that is required for writing the GPU clock speed range 

values.  

2.4.4 Algorithm 

The GPU manager implementation service starts the D-Bus service and loads the default 

governor which limits the GPU clock speed to its most efficient frequency, as noted by 

an Intel GPU driver developer [13]. The existence of an efficient frequency is also present 

in a utility called intel_gpu_frequency which is found in intel-gpu-tools [14]. Other 

governors include the power saver mode, which locks the GPU to its lowest clock speed, 

and performance mode which allows the GPU to utilise the full frequency range. The 

program flow diagram is shown on Figure 10. 

 

Figure 9. Architectural overview of the GPU manager solution.  
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In addition to simple frequency management the governors can also utilise throttling after 

a temperature trip point is reached. The temperature is read from the CPU package 

temperature as it provides the maximum of all temperature sensors on the package. If the 

temperature is too high, then the GPU clock speed range will automatically be reduced 

by a multiple of 50 as 50MHz is the smallest allowed change in frequency. The correction 

depends on the temperature: the higher the temperature the bigger the correction. 

2.5 Testing 

Testing of the proposed GPU manager solution takes place over 4 tests: heavy 2D 

workload, heavy 3D workload, 1080p 60FPS video playback and 4K 60FPS video 

playback. During the tests the power usage of CPU package components (whole package, 

CPU cores, GPU) and the CPU package temperature is measured. Each test will be run 

with the GPU solution disabled to get the baseline performance and after that with each 

GPU manager governor. 

Due to the degradation of the laptop battery on the test machine and battery runtime 

variance that can be caused by other system components during testing, the effect on 

 

Figure 10. Linux GPU manager program flow diagram. 



27 

battery life is measured using power consumption numbers reported by the CPU package 

and accessed via turbostat, a tool that can measure various CPU metrics, including 

frequency, power usage, temperatures and C-state residency [15]. This will give a more 

precise overview of the GPU related energy savings as the turbostat program can output 

package, CPU and GPU power usage separately.  

Initially more realistic tests were planned for measuring GPU load in various scenarios 

using benchmarking tools similar to PassMark BatteryMon and PCMark 8 that emulate 

real life workloads, including web browsing, office suite work and productivity 

application interactions. Unfortunately, such tools do not exist yet on Linux and tools that 

attempt to emulate similar workloads are difficult to compile on some distributions or 

don’t work correctly. One example of such software is gnome-battery-bench which had 

trouble compiling on Ubuntu 18.04 and relied heavily on an “en-US” keyboard layout 

and GNOME 3 desktop environment features.  

2.5.1 Test device 

The testing is done on a ThinkPad T430 with an upgraded quad-core CPU and a liquid 

metal thermal compound for optimal heat dissipation. The CPU has a TDP of 45W [5] 

while the T430 is designed for a 35W CPU, such as the i5-3320M [16] , making this test 

PC a good example of an overheating laptop. Testing is done on a fresh Ubuntu 18.04 

install which is booted off an external SSD and connected via an USB 3.0 port. Secure 

Boot is disabled and UEFI mode is enabled. Specifications are shown on Table 3. 

Table 3. Test machine specifications. 

Device model ThinkPad T430 

CPU Intel i7-3820QM 

GPU Intel HD 4000 

RAM 16GB DDR3 1333MHz 

Display resolution 1600x900 

TIM (thermal interface material) Thermal Grizzly Conductonaut (liquid metal 

based thermal compound) 

Operating system Ubuntu 18.04 (minimal install) 
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2.5.2 Overview of tests 

Heavy workload testing will be carried out using benchmarks offered by Phoronix Test 

Suite, an open source testing solution with a vast array of different tests designed to 

measure all aspects of the PC hardware, including CPU, GPU, networking and storage 

performance [17]. During the test a temperature and power usage monitoring program 

turbostat will run in the background and log the package temperature and the power 

usage of the package, CPU and GPU. 

2D performance is measured using the test pts/j2dbench which draws various 2D 

graphical elements, implemented in Java and using the OpenGL API [18].  

3D performance is measured using pts/unigine-sanctuary, an older version of the Unigine 

benchmark software, which puts a heavy load on the GPU by displaying various 3D 

scenes [19]. Older version of the benchmark was chosen due to the poor 3D performance 

of the integrated graphics solution when running newer versions of the benchmark. 

Video playback testing measures the power consumption during the video playback of a 

video file while utilising GPU accelerated video decoding. The media files are obtained 

from http://bbb3d.renderfarming.net/download.html in two formats: x264-encoded 

1080p 60FPS (frames per second) and 4K 60FPS. Video playback is done using the mpv 

media player which has hardware acceleration support for video playback enabled on the 

build found in Ubuntu 18.04, as specified in the Ubuntu wiki [20]. This test can give an 

idea of power savings during a low to moderate GPU load. 

2.6 Results and analysis 

This section covers the test results and conclusions that can be drawn from them. In the 

graphs shown below the different GPU performance modes are marked with a short 

keyword. Keywords and their meanings are explained on Table 4. 

  

http://bbb3d.renderfarming.net/download.html
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Table 4. Overview of GPU mode names and their descriptions. 

GPU mode name Clock speed 

range (MHz) 

Explanation 

stock 350-1250 The default configuration that is applied on a 

clean Ubuntu install. 

powersave 350 (locked) Limits the performance to the lowest available 

level as defined by 

/sys/class/drm/card0/gt_RPn_freq_mhz. 

normal 350-650 Limits the performance to max efficiency level as 

defined by 

/sys/class/drm/card0/gt_RP1_freq_mhz. 

performance 350-1250 Enables full range of the available GPU 

performance. Similar to mode “stock”. 

 

2.6.1 2D workload test results 

Figure 11 shows the effect that the different power modes have on performance. 

Performance mode matches the stock configuration while modes “normal” and 

“powersave” have a score that is 45.9% and 68.4% lower, respectively. 

Modes “powersave” and “normal” have similar thermal performance, being only 1.57°C 

apart. Stock configuration and “performance” mode, however, boost the average CPU 

package temperature significantly, as shown on Figure 12 below. 

 

Figure 11. Average scores for the 2D workload test. 
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Power usage, which directly affect the CPU package temperatures, shows a similar 

picture. “powersave” and “normal” modes have the lowest power usage on both the CPU 

cores and GPU while “stock” and “performance” modes have nearly double or even triple 

the power usage, as can be seen on Figure 13. 

 

2.6.2 2D workload test conclusions 

The 2D workload test results clearly show that controlling the GPU power usage can have 

a huge effect on the power usage not only on the GPU but also on the CPU. This is caused 

by the increased number of draw calls. The CPU compiles information about the visuals 

 

Figure 12. CPU package average temperature during 2D workload testing. 

 

Figure 13. Average power usage of various CPU components during a 2D workload. 
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that are going to be rendered and feeds it to the GPU which then draws the frame [21]. 

An increased number of frames means more draw calls, meaning more work for the CPU 

to do and causing the power usage of the CPU to go up. In this particular test the CPU 

cores power usage can be reduced by 41% simply by going from “performance” mode to 

“powersave” mode. 

When comparing “powersave” and “normal” mode, we can see that the average score is 

increased by 71% while the GPU power usage increase is only 44.15%. Furthermore, the 

CPU package temperature is only increased by 2.62% and the package power by 10%, 

making “normal” mode a good choice for a performance and power usage balanced 

configuration. 

The 2D workload results show that a huge reduction in power usage can be achieved in a 

heavy workload by simply limiting the GPU performance, making the proposed solution 

a good choice for scenarios where power savings are more important than performance. 

2.6.3 3D workload test results 

Performance of the 3D workload is measured in frames per second (FPS). Figure 14 

shows that the different GPU power modes have a similar effect on performance when 

compared to the 2D workload results. Dropping the performance to “normal” and 

“powersave” modes shows a 39.24% and 66.17% drop in performance, respectively. 

CPU package temperature changes are also similar to the previous test, with the 

“powersave” and “normal” modes showing the best results with only a difference of 

 

Figure 14. Average frame rate during 3D testing with different modes. 
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2.57°C. However, the “stock” and “performance” modes show a much higher CPU 

package temperature, as can be seen on Figure 15, with the “performance” mode nearing 

83°C and “stock” mode being at 85.53°C. 

When comparing the power usage results to 2D workload tests, it is apparent that the 

power usage numbers have increased, especially for the GPU. For the 3D workload the 

reduction in performance can bring a power usage decrease of 61.53% or even 77.46% 

for the GPU. Package power also sees a great reduction as the “normal” mode uses 

roughly half the power and “powersave” mode a third of the power when compared to 

“performance” mode, as can be seen on Figure 16.  

 

Figure 15. CPU package average temperature during 3D workload. 

 

Figure 16. Average power usage for various CPU components during 3D workload testing. 
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Relative efficiency is calculated by taking the performance indicator (frames per second) 

and dividing by the average power usage for the CPU package, cores and the GPU, giving 

us an indicator of the amount of work that the CPU and GPU can do per watt. From the 

results in Figure 17we can see that both “powersave” and “normal” modes have a greater 

efficiency for both CPU and GPU components. “normal” mode, which limits the GPU 

performance to the range of 350-650MHz on the test machine, has the best result which 

aligns with the statement that the upper limit for this governor is said to be the most 

efficient frequency for the GPU [13]. 

2.6.4 3D workload test conclusions 

As with the 2D workload testing, limiting the performance in heavy 3D workloads has a 

noticeable effect for both power usage and CPU package temperature. The effect on 

efficiency is also noticeable, with “normal” mode having 31.21% better efficiency when 

compared by the package power and 59.31% when compared by the GPU power usage.  

“powersave” mode also sees a boost in efficiency, but the package power efficiency 

results are less pronounced. This is caused by the various surrounding components of the 

CPU package that also consume power. When taking the total package power and 

subtracting the CPU cores and GPU power usage, we get the remainder which is around 

3-4W, as shown on Table 5. A smaller relative reduction in power usage does not boost 

the efficiency indicator as much for the whole package. 

 

Figure 17. Relative efficiency for the 3D workload over different GPU modes. 
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Table 5. Breakdown of CPU components power usage during a heavy 3D workload for the stock GPU 

configuration. 

GPU mode stock 

Package power usage (W) 27.92 

CPU Cores power usage (W) 10.58 

GPU power usage (W) 13.52 

Remainder (W) 3.82 

 

As with 2D workload testing, sacrificing performance can greatly increase power savings 

in situations where it is truly needed. Temperature decrease of 25-27°C also has a great 

positive impact on user experience as the CPU fan can run at lower speeds and the laptop 

surface is cooler, making the device more comfortable to use. 

2.6.5 1080p video playback test results 

Unlike the heavy workloads described earlier, the video playback test shows a difference, 

but a much smaller one. Figure 18 shows that the temperature difference is minimal, most 

likely affected by other factors. 

Power usage also shows small differences, as seen on Figure 19, with “powersave” mode 

at best reducing the GPU power usage by 0.03W and CPU package power usage by 

0.13W. Percentage-wise this is a 2.1% reduction in CPU package power usage. 

 

Figure 18. CPU package average temperature during 1080p video playback test. 
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This is most likely caused by the low processing power demands of the video file in 

question and the stable frame rate that the video offers, allowing the GPU to go into the 

RC6 sleep state more often and limiting the active time of the GPU. Less active time in 

turn limits the time that Linux GPU manager can apply its effect.  

2.6.6 4K video playback test results 

4K 60FPS video playback shows a more pronounced difference in CPU package 

temperatures, with the “powersave” and “normal” modes giving the best results by having 

an average CPU package temperature that is 3°C lower when compared to the stock 

configuration, as evident in the results shown on Figure 20. 

 

Figure 19. Average power usage of CPU components during 1080p video playback test. 

 

Figure 20. Average CPU package temperature during 4K video playback test. 
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Comparing the modes by power usage we can see that “powersave” and “normal” mode 

offer good results, decreasing the CPU package power usage by 18.4%. CPU cores and 

GPU power usage is reduced by 35.6% and 18.4%, respectively. Figure 21 gives a more 

visual overview of the power usage numbers. 

While the “stock”, “normal” and “performance” modes showed no degradation in video 

playback quality, the “powersave” mode experienced 240 dropped frames during 

playback. With the video runtime of 636 seconds this amounts to 0.6% of frames being 

dropped, affecting the user experience negatively. 

2.6.7 Video playback test conclusions 

As can be seen from the results, on 1080p video playback the power savings are not that 

significant, mostly due to the low GPU load that the playback caused, allowing the GPU 

to utilise RC6 sleep states. This means that the GPU was active a lot less and the effect 

of the GPU clock speed limit is less visible.  

The increased load on the GPU and CPU by the 4K video playback the effect of the GPU 

manager is more visible, as the GPU spends less time in sleep states. However, even in 

this case the decrease in CPU power usage contributes about twice as much to the power 

usage decrease than the GPU. 

Dropped frames with the “powersave” mode indicate that “normal” mode is the best 

choice for a balanced experience with good performance and power savings. Small but 

measurable improvements in power usage indicate that the GPU solution can help save 

power even in lighter workloads. 

 

Figure 21. Average power usage of CPU components during 4K video playback test. 
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3 Linux CPU manager 

This section is structured similarly to section 2 of this thesis, containing background 

information about CPU related issues, technologies, existing solutions, overview of the 

implementation and finally testing and results. 

3.1 CPU related issues 

Most CPU related issues that crop up are related to excessive CPU fan noise, overheating 

and a short battery life. This section goes over these issues in more detail. 

3.1.1 Overheating 

Most, if not all modern CPU-s have thermal protections implemented on the hardware 

level. If the temperature is over the set limit, the CPU will begin throttling itself, which 

reduces performance and power usage to bring the chip temperatures down. On modern 

Intel CPU-s such throttling can start very late. For example, an Intel Ivy Bridge series 

CPU will start throttling at 100°C and will instantly shut down at 105°C to prevent further 

damage to the CPU. On-chip throttling is a great feature, but the throttling point can’t be 

configured by the user and the small thermal headroom carries a high risk of an 

unexpected system shutoff, which can cause loss of work and file system corruption. 

In some configurations the CPU on a laptop can be changed for another model provided 

that the socket is the same and the CPU is supported by the motherboard. It is common 

among hardware enthusiasts to replace their dual core CPU-s with quad core models in 

selected laptops which brings a huge boost in performance, especially in multithreaded 

workloads due to the doubling of the core count. While it is recommended to pick a CPU 

with the same TDP as the old one, some users opt for higher TDP models due to pricing 

or availability of replacements on the used computer equipment market. If the cooling 

system is designed for a 35W TDP CPU, but the new CPU has a TDP of 45W, heat 

dissipation will become an issue. On extended workloads the CPU will start throttling 

and can potentially overheat if the cooling is not sufficient.  
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3.1.2 Noise and battery life issues 

With the increase in CPU temperatures the system must be able to dissipate the heat 

properly. In most cases this means increasing the fan speed, which increases airflow and 

effective heat dissipation. Some laptop manufacturers, such as Lenovo and Dell, allow 

the CPU fan speed to be controlled by the operating system if the necessary drivers are 

loaded and a special utility is running. Such examples include thinkfan and i8kutils for 

Lenovo ThinkPad laptops and selected Dell systems, respectively. 

However, on most systems there is no straightforward way to directly control the fan 

speed, meaning that the only way to lower the fan speed is by lowering the CPU 

temperatures. This can only be achieved by reducing the power usage of the CPU. This 

approach is perfectly acceptable for workloads that take considerable time to complete, 

such as video rendering, software compiling and scientific calculations. If these are run 

during the night, when fan noise is most audible and noticeable, then it will make sense 

to run the workload slower if it reduces the noise output of the computer and finishes in 

time.  

In less CPU heavy tasks, like writing down notes, reading an article or using a messaging 

client, very little processing power is needed to complete the task. However, the usual OS 

installation has a lot of processes running in the background, which includes system 

services, file synchronization programs, music players and many browser tabs with 

different levels of CPU usage. The background programs can have a noticeable negative 

effect on battery life, as they ask for a lot of compute power without any regard for power 

usage and efficiency. This negative effect could be reduced by limiting the speed the CPU 

can run at which in turn limits the amount of power the background tasks can use. 

3.2 Technical background 

This section explains some technical concepts that the implementation and its behaviour 

is based on. The first half focuses on CPU power usage characteristics and the second 

half gives an overview of optimal throttling methods. 

3.2.1 CPU power usage characteristics 

To reduce the CPU temperatures without any additional cooling devices present we need 

to consider the power usage of the CPU. CPU power usage is linked to the operating 
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frequency. As the frequencies get higher, the voltage of the CPU must be increased. This 

increase in voltage is directly responsible for the increase in power usage. The 

relationship between the operating frequency and voltage is not linear. At lower 

frequencies an increase in frequency may only mean a small bump in voltage. However, 

at higher frequencies a relatively modest increase in frequency may need a huge increase 

in voltage [22, p. 36].  

The relationship between voltage and frequency depends on the CPU model, generation 

and architecture, but generally follows the rule that voltage scales with the square of the 

frequency [22, p. 36]. Figure 22 shows that in order to increase the frequency at higher 

frequencies, a much higher increase in voltage is required. An exponential curve means 

that the most efficient frequency of the CPU is not at the lowest or highest frequencies, 

but somewhere in-between. The exact point depends heavily on the CPU itself, but can 

be determined by running tests in each performance state.  

Modern CPU-s have a number of P-states (performance states) which determine the CPU 

frequency and voltage. P-states are usually managed by the operating system and are in 

steps of base clock frequency which is commonly 100MHz on modern Intel and AMD 

CPU-s [22, pp. 49-50]. Limiting the number of available P-states can reduce CPU 

temperatures and power usage because voltage is also reduced. Furthermore, the 

efficiency of the CPU can also be improved because the operating system can’t request 

higher performance states which are less efficient. 

3.2.2 Optimal throttling method 

The default throttling behaviour of a CPU relies on a trip point at which it starts throttling, 

commonly 100°C but can vary between models. At 100°C the CPU will attempt to reduce 

  

Figure 22. The relationship between voltage and frequency [22, p. 37].   
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temperatures by limiting power usage and performance. Figure 23 shows an example of 

the effect of CPU thermal throttling on frequency. During the load the CPU temperatures 

are generally in the range of 100-102°C. 

 

Previous work on CPU cooling and optimal throttling methods has found that running the 

CPU near a set temperature limit is the most optimal throttling method as it provides the 

best performance compared to alternative throttling methods. This is backed by [23] 

where system-throttling, a method of throttling where the CPU clock speed is reduced 

when over the temperature limit and increased when under it, provided better performance 

to alternative throttling methods. Test results in [24] also demonstrate that slightly 

increasing or decreasing the clock speed near the temperature limit yields better 

performance compared to an alternative throttling method while keeping the temperatures 

in control. A similar method of throttling has also been successfully used on ARM-based 

CPU-s in previous work where the authors made use of existing Linux infrastructure to 

throttle the CPU when it reached a set temperature limit, such as 50°C [25]. 

3.3 Intel CPU throttling methods on Linux 

Several effective throttling methods exist on Linux based operating systems. This section 

introduces the Intel P-state driver, Intel Powerclamp and RAPL (Running Average Power 

Limit) controller that can all be used to limit the CPU performance and power usage. 

 

Figure 23. Effect of CPU throttling on CPU frequency on a test system with Intel i7-3820QM CPU. 
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3.3.1 Intel P-state Driver 

Intel P-state driver is a CPU hardware driver and governor that manages the power states 

of the CPU. It is enabled by default on white-listed CPU-s from the Sandy Bridge 

generation onwards [26]. 

P-state driver offers two governors: “powersave” and “performance”. These are 

accessible through CPUFreq subsystem and chosen by writing the value to 

/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor. Performance governor 

makes the CPU always choose the highest P-state with little care for energy usage. 

“powersave”, however, attempts to balance performance with energy savings [26].  

Voting for a P-state among cores which share the same voltage domain is simple: highest 

P-state among a set of cores wins. For example, if on a dual core system one core requests 

the lowest P-state and the other core a higher P-state then the higher P-state will be applied 

for both cores [22, p. 51].  

Minimum and maximum P-states can be controlled via sysfs interface on path 

/sys/devices/system/cpu/intel_pstate by writing the value to max_perf_pct and 

min_perf_pct [22, p. 288]. 

In this example case for a ThinkPad X230 with an Intel i5-3320M CPU the intel_pstate 

driver exposes various information about maximum and minimum performance states, 

turbo mode status and information about the number of performance states and the turbo 

mode start percentage, as shown on Figure 24. 

 

Figure 24. Intel P-state driver controls and their values. 
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If we set the max_perf_pct value to 36 (default value of min_perf_pct for this CPU) 

during a heavy load then we can observe a huge drop in CPU frequency and power usage, 

as is visible on Figure 25. The software used for demonstrating the effect is s-tui, a CLI 

(command-line interface) application that can display CPU frequency, power usage, 

utilisation and temperature. In addition to that s-tui can also be used to stress test the 

CPU which is useful for showing the effect of changing performance states. 

From Figure 25 we can observe that the clock speed is set to the minimum clock speed 

for that CPU (1200MHz) and with that the power usage is also dropped to an average of 

7W from about 18W previously.  

The intel_pstate driver also exposes an interface for controlling turbo mode with the 

no_turbo interface. By writing the value “1” to 

/sys/devices/system/cpu/intel_pstate/no_turbo we can turn off the turbo boost 

functionality of the CPU and run it at its rated base clock speed which locks this particular 

 

Figure 25. Screen capture of s-tui showing the effect of limiting CPU P-states to its minimum value using 

intel_pstate. 
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CPU to 2.6GHz and lowers the power usage to around 13W in our example case, as seen 

on Figure 26. 

With the simple controls offered by the intel_pstate driver and the immediate power 

usage results it is a good candidate for user-defined thermal throttling. 

3.3.2 Intel Powerclamp driver 

Intel Powerclamp driver is a method of injecting idle time to the system in order to reduce 

performance and power usage [27]. The driver accepts input as a percentage of idle time, 

from 0 to a maximum of 50%. The driver can be accessed as a separate cooling device 

under the path /sys/class/thermal/cooling_deviceX, where X is an integer.  

In this example the Intel Powerclamp driver is under 

/sys/class/thermal/cooling_device5 and can be enabled by writing an integer to 

cur_state with the command “echo 50 > 

/sys/class/thermal/cooling_device5/cur_state”. 

 

Figure 26. Screen capture of s-tui demonstrating the effect of disabling turbo mode using intel_pstate 

driver. 
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As we can see from Figure 27, the average power usage dropped by half, indicating that 

Powerclamp works as intended. There do exist limitations, as mentioned in the kernel 

documentation, regarding interrupts, which may make the Powerclamp method less 

effective. Furthermore, the observed CPU power usage is a bit higher when compared to 

the effect that the Intel P-state driver has.  

 

3.3.3 RAPL Controller 

Running Average Power Limit is a feature on Intel CPU-s from Sandy Bridge generation 

onwards that offers power monitoring and controlling tools that can be used to measure 

currently used power, maximum and minimum power supported for domains (package, 

core devices, DRAM) and methods to set power limits in short term or long term [28]. 

The general ideal of RAPL is to offer maximum performance provided that CPU thermals 

and power delivery allow for it. It does this by defining different power levels which have 

a time constant and a power limit value associated with it [22, pp. 58-59]. For example, a 

 

Figure 27. Screen capture of s-tui demonstrating the effect of Intel Powerclamp with 50% idle time. 
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CPU with a TDP of 45W can use 56.25W for a very short time period (0.000977 seconds 

for Intel i7-3820QM) and 45W over a longer time period (28 seconds for Intel i7-

3820QM).  

Power usage monitoring is useful for determining CPU package power usage during 

various workloads. Setting CPU short term and long-term power limits is helpful in 

situations where a lower power usage is needed. On Linux this can be achieved with tool 

rapl-set which can set various constraints and power limits [29]. For example, for setting 

a short-term power limit of 40W over the period of 1 millisecond for constraint 0 the 

command would be “rapl-set -c 0 -l 40000000 -s 1000”. 

However, this feature is not available on every platform, as some vendors lock the values 

on the BIOS level. To check for this, load the intel_rapl kernel module with “modprobe 

intel_rapl”, then try enabling the feature or setting a limit. If rapl-set returns an error 

then the limits are most likely locked, as illustrated on Figure 28. 

Some laptops, such as ThinkPad T430 and ThinkPad X230, have the limits locked and 

unavailable for modification. As such using Intel RAPL for controlling and limiting 

power usage for throttling is not guaranteed to work on all machines using Intel CPU-s, 

making it a non-ideal candidate for a generic throttling method. The monitoring methods 

are still available and can be useful for measuring the power usage of the CPU package, 

including the CPU cores and GPU separately. 

3.4 Existing solutions 

To overcome the CPU related issues mentioned in this thesis, some solutions have been 

already created. Performance controlling solutions, such as scripts and extensions, and 

pre-emptive thermal throttling software are covered in this section. 

 

Figure 28. Demonstration of an attempt to change power limit values and timings on a system with those 

values locked. 
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3.4.1 Simple scripts and GUI applications 

Current solutions for controlling the CPU behaviour are generally simple scripts of 

varying quality that can be found on GitHub or GUI applications in the form of desktop 

environment extensions and GTK+ or Qt based graphical applications. The solutions are 

simple in functionality as they simply write the values once and offer no other features or 

recommendations for a less experienced user. Furthermore, the presentation layer and the 

logic that does the actual CPU controlling are heavily tied together in the case of 

extensions and GUI applications.  

Some solutions are also very limited in their support. For example, running a GNOME 3 

extension is only possible on that particular desktop environment, effectively leaving out 

users of other desktop environments, such as KDE, MATE, XFCE and others. 

One example of a GUI solution is a GNOME 3 extension made by Martin Koppehel called 

“CPU power manager” that allows for configuring the minimum and maximum CPU 

power states [30]. The interface is shown on Figure 29. 

Using this extension, it is possible to configure various profiles and set different 

performance levels. It does help with managing power usage and temperatures, but 

unfortunately this extension is only available on GNOME 3 and it provides no throttling 

functionality. 

 

Figure 29. Screen capture of a GNOME 3 CPU power manager extension [31].  
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3.4.2 Linux Thermal Daemon 

Linux Thermal Daemon is an open source project by Intel that aims to offer a user mode 

daemon for thermal management. Its description mentions that it is aimed towards system 

developers who manage thermal dissipation in various configurations, including 

desktops, laptops, smartphones and embedded devices [32]. 

The project makes use of existing kernel infrastructure and aims to keep the temperatures 

under control while maintaining optimal performance. It does so by getting input data 

from various sensors and activating various cooling devices after a trip point has been 

reached [32]. 

Cooling devices include performance states (P-states), the RAPL (Running Average 

Power Limit) controller, Powerclamp driver, T-states and additional cooling devices, 

such as fan controllers, that can be managed from the configuration file. 

With the default configuration the thermal daemon reads temperature information from 

/sys/devices/platform/coretemp.0 and calculates a temperature trip point using 

temp1_max and temp1_crit values. For example, Intel i5-3320M reports temp1_max as 

87000 and temp1_crit as 105000 (87°C and 105°C), resulting in a trip point of 96°C. 

As observed by the author in some hardware configurations and demonstrated in Figure 

30, the behaviour of Linux Thermal Daemon can be erratic and have negative 

consequences, such as hardware damage due to overheating and jumps in performance 

manifested by stutter, dropped frames, low responsiveness. 

 

Figure 30. Example of erratic Linux Thermal Daemon behaviour on the test machine. The target 

temperature was set to 87°C in the configuration file. 
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3.5 Linux CPU manager implementation 

This section goes over the implementation of the CPU manager solution, going over the 

technology used, the general architecture, different governors offered and details about 

the throttling algorithm and hardware support. 

3.5.1 Overview 

Linux CPU manager is a D-Bus service that allows the user to limit the available CPU 

performance to achieve better thermals, increase efficiency and improve battery life. The 

service offers multiple CPU governors that limit the performance and throttle the CPU 

automatically to prevent overheating. The client application can control the service using 

the specified API. 

The general structure of the CPU manager is based on Linux GPU manager 

implementation discussed in section 2.4 of this thesis, meaning that it is written in Python 

3 and makes use of D-Bus language bindings and the sysfs virtual filesystem. The 

difference is in the driver it controls and the method of throttling used. The CPU 

performance is managed using the intel_pstate driver by controlling the allowed 

performance states range and the turbo mode status. 

Linux CPU manager is supported on all Linux based operating systems which have the 

intel_pstate driver enabled. In future iterations support for other cooling methods, such 

as RAPL, Powerclamp and CPUFreq, can easily be added. 

Linux CPU manager is a free open source project licensed under GPLv3 [10] and 

available at https://github.com/Hermanio/linux-cpu-manager. 

3.5.2 Architecture 

Architecturally the Linux CPU manager is very similar to the GPU manager due to the 

similar method of limiting performance. CPU manager, however, provides four different 

governors and controls intel_pstate driver controls which can limit the performance 

states of the CPU and toggle the turbo mode state. Figure 31 shows a diagram of the 

architecture of the CPU manager. 
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Linux CPU manager has many different governors that aim to offer choices for running 

the CPU with minimal power usage, at efficient speeds or at maximum performance with 

optimal throttling enabled. Their codenames and descriptions are shown on Table 6.  

Table 6. Linux CPU manager governors and their clock speed range, scaling governor and description. 

Mode 

CPU clock 

speed range 

on test CPU 

(MHz) 

Scaling governor 

for intel_pstate 

driver 

Description 

powersave 

locked 

1200 powersave Locks the CPU to the lowest 

performance level available. 

powersave 1200-2000 powersave Sets the available range from 

minimum to middle point between 

lowest and turbo performance level 

(around 55pct). 

noturbo 1200-2700 powersave Sets the available range from 

minimum to maximum non-turbo 

clock speed (also known as the base 

clock speed). Throttling enabled at 

CPU max temperature (87°C for this 

test CPU). 

performance 1200-3700 performance Allows the CPU to run at its full clock 

speed range. 

75°C target, 

96°C target 

1200-3700 performance Quick modifications to performance 

governor to test CPU throttling 

behaviour at 96°C and 75°C targets. 

Temporary governors until 

temperature limit setting and 

configuration file support is finished. 

 

Figure 31. Architecture of the Linux CPU manager. 
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3.5.3 Algorithm 

Linux CPU manager service starts the default governor “stock” which limits the 

performance of the CPU to its base clock speed, meaning that turbo mode is disabled. A 

CLI client can be used to change the governor in a way similar to Linux GPU manager.  

Each governor has a set polling period: 5 seconds for “powersave locked” and 0.25 

seconds for other governors.  The loop action flow is shown on Figure 32. 

3.6 Testing  

All CPU tests are done on the test machine described in section 2.5.1 of this thesis. The 

testing of the Linux CPU manager component focuses on two aspects: the throttling 

component and the effect on performance, power usage and efficiency of its different 

governors.  

 

Figure 32. Linux CPU manager service program flow. 
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The throttling component is observed while running a CPU stress test with 16 active 

threads over 10 minutes in different configurations. This gives an overview of the thermal 

throttling behaviour at different temperature targets and mechanisms. The throttling 

behaviour is also compared to the stock configuration and Linux Thermal Daemon. 

The performance component is measured using the CPU heavy Linux kernel build test 

provided by Phoronix Test Suite. This gives a comparison of Linux CPU manager and 

Linux Thermal Daemon performance and the effect of pre-emptive throttling on 

performance when compared to no pre-emptive throttling. Kernel build test also measures 

the performance, power usage and efficiency of the different CPU governors. 

In the following test descriptions and results Linux CPU manager will be referred to as 

LCM and Linux Thermal Daemon as LTD. 

3.6.1 Thermal throttling tests 

When running the CPU without any user-space throttling software running the CPU 

eventually hits the 100°C temperature limit and starts thermal throttling. The temperatures 

are stable due to the nature of CPU thermal throttling. However, at some points the 

temperature can peak at 103°C, being dangerously close to the 105°C critical temperature 

shutoff point. If a process suddenly put load on the on-die GPU then an overheating 

induced shutdown would be very likely.  

LTD thermal behaviour seems to be very close to LCM when comparing the average 

temperature. Looking at the temperature graphs shows a different picture, however, as it 

is very clear that LTD has a dramatic variance in temperatures, as shown on Figure 33. 

 

Figure 33. CPU package temperature comparison between Linux Thermal Daemon and Linux CPU 

manager. 
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LCM crosses the set temperature limit by 1-3°C, rarely by 3-5°C, while LTD does this 

very often, going over the limit by 5-10°C, effectively not respecting the temperature 

limit. In its stock temperature configuration this means going over the 96°C trip point and 

reaching temperatures of up to 102°C, as visible on Figure 34. 

LCM also has a higher average CPU clock speed, as shown on Figure 35, meaning more 

work being done with same thermal limit. This aligns with previous research that suggests 

that running the CPU near its thermal limits is the best approach performance wise. 

 

Figure 34. Thermal behaviour of Linux Thermal Daemon with its default settings under load. Note the 

variance in temperature and failure to prevent hitting temperatures over 100°C.  

 

Figure 35. Comparison of average CPU frequency under load with the same temperature targets. 
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3.6.2 Performance tests 

When comparing the results strictly by performance then having no throttling software 

running gets the best results at the risk of an abrupt shutdown. Figure 36 shows this during 

kernel build testing as the CPU is allowed to run at maximum performance with a 100°C 

throttling point enforced by the CPU itself. Both LTD and LCM are on average slower 

by 6.05% and 4.03%, respectively, but LCM is consistently faster than LTD. 

LCM consistently beats LTD in terms of performance and thermal behaviour as it is more 

stable at a set temperature limit while also being more performant. On average, LCM is 

1.9% faster than LTD. 

3.6.3 Improved Linux Thermal Daemon results 

Previous CPU test results show that LTD exhibits erratic behaviour and seemingly 

overcorrects when under a heavy load, resulting in inferior performance and less effective 

throttling. The main cause of this could be a default polling interval of 4 seconds which 

doesn’t allow for LTD to have an accurate overview of the system temperatures. 

A proposed solution for this is to shorten the poll interval. To test this out, the poll interval 

was set to 1 second and the trip point is set to 87°C. Figure 37 shows that LTD with the 

shorter poll interval has a positive effect on the CPU frequency as it is much more stable 

and less volatile. 

 

Figure 36. Comparison of Linux kernel build test results between the stock configuration, Linux Thermal 

Daemon and Linux CPU Manager. 
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As the CPU frequency is directly related to power usage and CPU package temperatures, 

the reduced volatility also has a positive effect on CPU temperature variance, as shown 

on Figure 38. 

While the average temperature of LTD with a shorter poll interval is at the same level as 

LCM and LTD with the default poll interval, the maximum temperature reading during 

testing is lowered from 97°C to 91°C, as visible on Figure 39. 

 

Figure 37. Comparison of CPU frequency between Linux Thermal Daemon with a shorter and longer 

polling interval. 

 

Figure 38. Comparison of CPU package temperatures under load with Linux Thermal Daemon poll interval 

of 1 second and 4 seconds. 
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The improved LTD configuration saw great improvements, but LCM still had a higher 

average CPU frequency, as shown on Figure 40. 

During testing it was observed that LTD controls the intel_pstate driver by reducing 

the max_freq_pct in steps of 10 while the smallest value that influences performance is 

3. This comes from the step calculation in LTD which doesn’t seem to calculate the 

number of steps correctly for this CPU. Further improvement regarding the number of 

steps may improve the performance of the LTD P-state cooling device implementation.  

 

Figure 39. Comparison of average and maximum CPU package temperatures while under heavy load. 

 

Figure 40. Comparison of average CPU frequency under a heavy load. 
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3.6.4 Linux CPU manager governor testing 

Kernel build testing was also carried out using all the governors that LCM offers. As 

expected, the slower governors exhibited the lowest performance, as shown on Figure 41. 

Figure 42 also shows a predictable pattern as lower performance governors use less 

power. 

Comparing the efficiency of the modes by CPU cores average power usage the most 

efficient mode is “powersave”, as seen on Figure 43. The task may take a longer time to 

finish, but the total amount of energy used by CPU cores is considerably smaller. 

 

Figure 41. Comparison of Linux kernel build test results. 

 

Figure 42. Comparison of CPU cores power usage between LCM governors. 
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However, when considering the total system power usage, the situation changes. 

Governors with higher clock speeds have an advantage as a 5W addition to the total 

system power usage shows that the “noturbo” mode is the most efficient, as shown on 

Figure 44. The lowest performance governor is the least efficient according to this 

calculation as the rest of the system components are running for a longer time. 

Workloads in normal use don’t follow this model. Efficiency should be measured over a 

longer time. For example, if the computer must run for 1 hour and during that time a short 

but intensive workload is run it would make more sense for it to run at a lower speed. 

 

Figure 43. Comparison of total energy usage between different CPU governors during the Linux kernel 

build test. 

 

Figure 44. Comparison of total power use when taking into account a hypothetical system components 

power usage of 5W. 
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Considering the approximate system components power usage and the CPU idle power 

usage we see that lower power modes are once again more efficient, as shown on Figure 

45. During idling the CPU package will consume at most 4W and other system 

components will consume a constant rate of power over time (5-15W, depending on 

system components, brightness settings, network connectivity etc.). If the background 

system power usage is constant over all modes then the only difference is caused by the 

CPU power usage. 

3.7 Conclusions 

When comparing the thermal behaviour between LTD and LCM it is clear that the LCM 

implementation is superior, as it provides better performance at the same temperature 

limit. LTD with a shorter polling period confirms this as the temperature variance was 

significantly reduced and the average clock speed was increased. These results confirm 

the findings of previous work that found that the optimal throttling method was to run the 

CPU at the maximum speed as long as the temperature is below a set limit.  

Due to these findings an issue has been created at the Linux Thermal Daemon GitHub 

page and the author of this thesis will collaborate with the maintainer to improve the 

performance of the Linux Thermal Daemon with the proposed solution. 

Power savings related findings for Linux CPU Manager indicate that running the CPU at 

lower speeds does increase the efficiency of the CPU. The results align with efficiency 

curves on CPU-s that are covered in section 3.2.1 of this thesis. 

 

Figure 45. Comparison of total simulated system energy use over 1 hour. The workload run during this 

hypothetical scenario is the Linux kernel build test which takes around 3-10 minutes to finish. 
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4 Summary 

This thesis aimed to solve issues with poor battery life under Linux and both CPU and 

GPU induced overheating. To solve these issues, two services were created with an 

accompanying client program implementation. The services allow the user to control the 

performance of the CPU and GPU in order to achieve better energy efficiency, improve 

battery life and prevent overheating with the included pre-emptive throttling 

functionality. 

Testing of the GPU manager solution found that for heavier graphical workloads the 

power usage of both CPU and GPU components can be reduced significantly. For 

example, the GPU power usage saw a decrease of 77.46% with a heavy 3D workload 

while the package power usage was only a third of the power usage when compared to 

running the workload without the GPU manager. Lighter workloads also had an 

improvement in power usage, albeit a smaller one due to the workloads being not that 

demanding and the GPU manager being able to influence the power usage less. GPU 

manager can also be used to improve efficiency by up to 31%, as seen in section 2.6.3 of 

this thesis. The results aligned with sources that suggested that Intel GPU-s have a known 

so-called “efficient frequency”. 

CPU manager solution testing focused on thermal throttling behaviour and performance 

testing of its numerous governors. Thermal throttling tests found that the throttling 

behaviour and performance was noticeably better than its alternative, the Linux Thermal 

Daemon, exhibited. During testing the author decided to investigate the erratic behaviour 

of Linux Thermal Daemon and found that the problem is caused by a polling interval that 

is too long and a flaw in calculations which results in the applied correction being too 

severe. Tests with a shorter polling period confirmed the issue as the thermal throttling 

behaviour was much less erratic and the average CPU clock speed was slightly increased. 

CPU manager solution performance testing found that limiting the CPU performance 

states can be used to lower CPU temperatures and power usage. Furthermore, the tests 

also demonstrated that the CPU efficiency can be increased as the total energy usage 
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during a workload was lower with the low performance governors. The results aligned 

with CPU efficiency curves covered in section 3.2.1 of this thesis. 

Future work on the solutions created in this thesis focuses on testing on a wider range of 

hardware, packaging the solution into an easily installable package, the creation of GUI 

clients that can make use of the services and adding configuration file support. The author 

will also continue discussing the issues found with Linux Thermal Daemon with the 

project maintainer on GitHub and hopes to help solve them. 

 



61 

Acknowledgements 

I would like to thank Kristjan Kukkur from Flex Sülearvutikeskus for providing access 

to a couple of laptops with Intel 8th generation CPUs for testing and analysis purposes. 

 



62 

References 

 

[1]  Mozilla Corporation, “Firefox Hardware Report,” 22 April 2018. [Online]. 

Available: https://hardware.metrics.mozilla.com/. [Accessed 22 April 2018]. 

[2]  StatCounter, “Desktop Operating System Market Share Worldwide | StatCounter 

Global Stats,” StatCounter, [Online]. Available: http://gs.statcounter.com/os-

market-share/desktop/worldwide/#monthly-201804-201804-bar. [Accessed 22 

April 2018]. 

[3]  NetMarketShare, “Operating System Market Share,” [Online]. Available: 

https://netmarketshare.com/operating-system-market-share.aspx. [Accessed 22 

April 2018]. 

[4]  L. Clark, “The whole web at maximum FPS: How WebRender gets rid of jank – 

Mozilla Hacks - the Web developer blog,” 10 October 2017. [Online]. Available: 

https://hacks.mozilla.org/2017/10/the-whole-web-at-maximum-fps-how-

webrender-gets-rid-of-jank/. [Accessed 16 May 2018]. 

[5]  Intel Corporation, “Intel® Core™ i7-3820QM Processor (8M Cache, up to 3.70 

GHz) Product Specifications,” [Online]. Available: 

https://ark.intel.com/products/64889/Intel-Core-i7-3820QM-Processor-8M-

Cache-up-to-3_70-GHz. [Accessed 16 May 2018]. 

[6]  A. L. Shimpi and R. Smith, “Die Size and Transistor Count - The Intel Ivy 

Bridge (Core i7 3770K) Review,” 23 April 2012. [Online]. Available: 

https://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-

review/3. [Accessed 29 April 2018]. 

[7]  J. Mechnich, “intel-power-control: GPU power management for Intel hardware 

on Linux,” 20 September 2014. [Online]. Available: 

https://github.com/jmechnich/intel-power-control. [Accessed 26 April 2018]. 

[8]  Arch Linux Wiki, “Intel graphics - ArchWiki,” 4 April 2018. [Online]. Available: 

https://wiki.archlinux.org/index.php/intel_graphics#Module-

based_Powersaving_Options. [Accessed 26 April 2018]. 

[9]  M. Larabel, “Tweaks To Extend The Battery Life Of Intel Linux Notebooks - 

Phoronix,” 24 August 2011. [Online]. Available: 

https://www.phoronix.com/scan.php?page=article&item=intel_i915_power. 

[Accessed 16 May 2018]. 

[10]  B. Widawsky, “A bit on Intel GPU frequency,” 8 May 2015. [Online]. Available: 

https://bwidawsk.net/blog/index.php/2015/05/a-bit-on-intel-gpu-frequency/. 

[Accessed 16 May 2018]. 

[11]  Free Software Foundation, Inc., “The GNU General Public License v3.0 - GNU 

Project - Free Software Foundation,” 29 June 2007. [Online]. Available: 

https://www.gnu.org/licenses/gpl-3.0.en.html. [Accessed 16 May 2018]. 



63 

[12]  freedesktop.org project, “Introduction to D-Bus,” 14 July 2013. [Online]. 

Available: https://www.freedesktop.org/wiki/IntroductionToDBus/. [Accessed 16 

May 2018]. 

[13]  P. Mochel and M. Murphy, “sysfs - _The_ filesystem for exporting kernel 

objects.,” 16 August 2011. [Online]. Available: 

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt. [Accessed 22 

April 2018]. 

[14]  Intel Corporation, “intel_gpu_frequency.c\tools - xorg/app/intel-gpu-tools - Test 

suite and tools for DRM/KMS drivers,” 2015. [Online]. Available: 

https://cgit.freedesktop.org/xorg/app/intel-gpu-

tools/tree/tools/intel_gpu_frequency.c. [Accessed 16 May 2018]. 

[15]  L. Brown, “turbostat -- show CPU frequency and C-state residency,” 18 October 

2017. [Online]. Available: 

https://github.com/torvalds/linux/blob/master/tools/power/x86/turbostat/turbostat.

c. [Accessed 16 May 2018]. 

[16]  Intel Corporation, “Intel® Core™ i5-3320M Processor (3M Cache, up to 3.30 

GHz) Product Specifications,” [Online]. Available: 

https://ark.intel.com/products/64896/Intel-Core-i5-3320M-Processor-3M-Cache-

up-to-3_30-GHz. [Accessed 16 May 2018]. 

[17]  Phoronix Media, “Phoronix Test Suite v7.8.0 Test Client Documentation,” 14 

February 2018. [Online]. Available: https://www.phoronix-test-

suite.com/documentation/phoronix-test-suite.pdf. [Accessed 16 May 2018]. 

[18]  Phoronix Test Suite, “OpenBenchmarking.org - Java 2D Microbenchmark Test 

Profile,” 3 March 2018. [Online]. Available: 

https://openbenchmarking.org/test/pts/j2dbench. [Accessed 22 April 2018]. 

[19]  Phoronix Test Suite, “OpenBenchmarking.org - Unigine Sanctuary Test Profile,” 

27 February 2018. [Online]. Available: 

https://openbenchmarking.org/test/pts/unigine-sanctuary. [Accessed 22 April 

2018]. 

[20]  D. v. Vugt, “IntelQuickSyncVideo - Ubuntu Wiki,” 5 February 2018. [Online]. 

Available: https://wiki.ubuntu.com/IntelQuickSyncVideo. [Accessed 26 April 

2018]. 

[21]  T. Jukić, “Draw calls in a nutshell - Tonči Jukić - Medium,” 25 June 2015. 

[Online]. Available: https://medium.com/@toncijukic/draw-calls-in-a-nutshell-

597330a85381. [Accessed 28 April 2018]. 

[22]  C. Gough, I. Steiner and W. A. Saunders, Energy Efficient Servers - Blueprints 

for Data Center Optimization, Apress, 2015, pp. 36-37. 

[23]  P. S. Y. Deepak Rajan, “Temperature-Aware Scheduling:,” in The Ninth 

International Conference on Web-Age Information Management , Zhangjiajie 

Hunan, 2008.  

[24]  R. Rao and S. Vrudhula, “Performance Optimal Processor Throttling Under 

Thermal Constraints,” in Proceedings of the 2007 international conference on 

Compilers, architecture, and synthesis for embedded systems, Salzburg, 2007.  

[25]  L. Zhou and S. Guo, “Thermal management of ARM SoCs using Linux CPUFreq 

as cooling device,” COMPUTER MODELLING & NEW TECHNOLOGIES 2014, 

vol. 18, no. 12D, pp. 162-167, 2014.  



64 

[26]  “Intel P-State driver,” [Online]. Available: 

https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt. [Accessed 

17 May 2018]. 

[27]  J. P. Arjan van de Ven, “INTEL POWERCLAMP DRIVER,” [Online]. 

Available: 

https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt. 

[Accessed 17 May 2018]. 

[28]  S. Pandruvada, “Running Average Power Limit – RAPL,” 06 June 2014. 

[Online]. Available: https://01.org/blogs/2014/running-average-power-limit-

%E2%80%93-rapl. [Accessed 17 May 2018]. 

[29]  C. Imes, “Ubuntu Manpage: rapl-set - set RAPL configurations,” [Online]. 

Available: http://manpages.ubuntu.com/manpages/bionic/man1/rapl-set.1.html. 

[Accessed 17 May 2018]. 

[30]  M. Koppehel, “martin31821/cpupower: Gnome-Shell Extension for intel-pstate 

driver,” [Online]. Available: https://github.com/martin31821/cpupower. 

[Accessed 17 May 2018]. 

[31]  M. Koppehel, “CPU Power Manager - GNOME Shell Extensions,” [Online]. 

Available: https://extensions.gnome.org/extension/945/cpu-power-manager/. 

[Accessed 17 May 2018]. 

[32]  Intel Corporation, “Introduction to Thermal Daemon | 01.org,” [Online]. 

Available: https://01.org/linux-thermal-daemon/documentation/introduction-

thermal-daemon. [Accessed 17 May 2018]. 

 

 


