
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Herman Õunapuu 142797

MANAGING INTEL CPU AND GPU

PERFORMANCE ON LINUX BASED

OPERATING SYSTEMS

Bachelor’s thesis

Supervisor: Ago Luberg

 MSc

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Herman Õunapuu 142797

INTELI CPU JA GPU JÕUDLUSE

HALDAMINE LINUXI-PÕHISTEL

OPERATSIOONISÜSTEEMIDEL

Bakalaureusetöö

Juhendaja: Ago Luberg

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Herman Õunapuu

21.05.2018

4

Abstract

This thesis aims to solve Intel CPU and GPU related issues on Linux, such as overheating

and a short battery life. To solve the issues, two solutions were created, consisting of a

service and a client to control the service. Testing sections of this thesis aim to measure

the impact of the solutions created.

GPU manager testing includes 2D, 3D workload testing and video playback tests with

1080p and 4K video samples. The analysis of the results found that by limiting the GPU

performance great improvements in power savings and efficiency can be achieved.

CPU manager testing consists of stress testing and timed Linux kernel build testing over

various configurations, including tests with no CPU manager, Linux CPU manager and

Linux Thermal Daemon. Thermal throttling results and analysis demonstrated that Linux

CPU manager did limit the CPU temperatures and was more performant when compared

to Linux Thermal Daemon with the same limits, confirming the findings of previous work

on optimal thermal throttling methods. Further investigation into Linux Thermal Daemon

revealed the possible issue and quick tests with the improved configuration did show an

improvement when compared to the stock Linux Thermal Daemon configuration.

Comparison between different governors offered by Linux CPU manager revealed that

by limiting the CPU performance the power usage and CPU temperatures can be greatly

reduced. Furthermore, the CPU efficiency can also be noticeably improved and overall

CPU energy use lowered, which translates to an improvement in battery life.

This thesis is written in English and is 64 pages long, including 4 chapters, 45 figures and

6 tables.

5

Annotatsioon

Inteli CPU ja GPU jõudluse haldamine Linuxi-põhistel

operatsioonisüsteemidel

Antud lõputöö käsitleb Inteli protsessorite ning graafikalahendustega seotud

ülekuumenemist ning kõrget energiakulu Linuxi-põhistel operatsioonisüsteemidel. Töö

käigus loodi kaks eraldiseisvat programmi, mis lubavad kasutajal hallata nii CPU kui

GPU jõudlust. Lahendused pakuvad erinevaid jõudlustasemeid ning sisaldavad endas

ülekuumenemisvastast komponenti, mis piirab ennetavalt CPU või GPU jõudlust.

Lahenduste loomisele järgneb nende testimine, mõõtmaks eesmärkide saavutamist.

GPU lahenduse testid hõlmavad endas 2D ning 3D koormustesti, lisaks testiti ka

lahenduse mõju 1080p ning 4K resolutsiooniga videofailide taasesitusel. Testimisel

selgus, et GPU lahenduse kasutamine võimaldab märgatavat energiakulu ning CPU kiibi

temperatuuri vähendamist ning efektiivsuse tõstmist jõudluse arvelt.

CPU lahenduse testimiseks kasutati lihtsat koormustesti ning ajavõtmisega Linuxi kerneli

ehitamist. Analüüsides temperatuurimuutusi, leiti, et CPU lahendus suudab temperatuure

piirata ning on sama temperatuurilimiidi juures parema jõudlusega, kui alternatiivne

lahendus Linux Thermal Daemon, kinnitades mitmete eelnevate teadustööde leide CPU

optimaalse kiiruse piiramise viisi osas. Võrdlus CPU lahenduse erinevate jõudlusvalikute

osas näitas, et CPU kiiruse piiramisega on võimalik energiakulu ning temperatuure

märgatavalt vähendada. Samuti oli piiramisega võimalik suurendada CPU efektiivsust

ning vähendada üldist energiakulu, tänu millele on võimalik pikendada aku eluiga.

Uurides Linux Thermal Daemon’i ebastabiilset ning volatiilset käitumist, õnnestus autoril

leida võimalik probleemi põhjus. Peale ühe võimaliku lahenduse testimist sai põhjus

kinnitust ning muudetud konfiguratsiooniga Linux Thermal Daemon’i käitumine oli

stabiilsem ja CPU keskmine taktsagedus suurem.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 64 leheküljel, 4 peatükki, 45

joonist, 6 tabelit.

6

List of abbreviations and terms

CPU Central Processing Unit

GPU Graphics Processing Unit

TDP Thermal Design Power

PC Personal Computer

GUI Graphical User Interface

IPC Inter-process communication

USB Universal Serial Bus

UEFI Unified Extensible Firmware Interface

RAM Random Access Memory.

TIM Thermal Interface Material

OS Operating System

API Application Programming Interface

RAPL Running Average Power Limit

CLI Command-line Interface

LCM Linux CPU Manager. Abbreviation of the CPU solution created

as part of this thesis.

LTD Linux Thermal Daemon. Abbreviation of the alternative CPU

throttling solution.

7

Table of contents

1 Introduction ... 13

2 Linux GPU manager .. 15

2.1 Introduction .. 15

2.2 Issues .. 16

2.2.1 High power usage .. 16

2.2.2 Lack of power management features on Linux ... 17

2.2.3 GPU induced overheating .. 18

2.3 Current power saving methods ... 19

2.3.1 Intel Power Control ... 19

2.3.2 Kernel driver options ... 20

2.4 Linux GPU manager implementation ... 22

2.4.1 Overview ... 22

2.4.2 Technology overview .. 23

2.4.3 Architecture ... 24

2.4.4 Algorithm .. 25

2.5 Testing .. 26

2.5.1 Test device ... 27

2.5.2 Overview of tests ... 28

2.6 Results and analysis .. 28

2.6.1 2D workload test results .. 29

2.6.2 2D workload test conclusions .. 30

2.6.3 3D workload test results .. 31

2.6.4 3D workload test conclusions .. 33

2.6.5 1080p video playback test results .. 34

2.6.6 4K video playback test results ... 35

2.6.7 Video playback test conclusions ... 36

3 Linux CPU manager .. 37

3.1 CPU related issues .. 37

3.1.1 Overheating ... 37

8

3.1.2 Noise and battery life issues .. 38

3.2 Technical background ... 38

3.2.1 CPU power usage characteristics .. 38

3.2.2 Optimal throttling method ... 39

3.3 Intel CPU throttling methods on Linux .. 40

3.3.1 Intel P-state Driver .. 41

3.3.2 Intel Powerclamp driver .. 43

3.3.3 RAPL Controller ... 44

3.4 Existing solutions ... 45

3.4.1 Simple scripts and GUI applications ... 46

3.4.2 Linux Thermal Daemon .. 47

3.5 Linux CPU manager implementation ... 48

3.5.1 Overview ... 48

3.5.2 Architecture ... 48

3.5.3 Algorithm .. 50

3.6 Testing .. 50

3.6.1 Thermal throttling tests .. 51

3.6.2 Performance tests ... 53

3.6.3 Improved Linux Thermal Daemon results .. 53

3.6.4 Linux CPU manager governor testing ... 56

3.7 Conclusions .. 58

4 Summary .. 59

Acknowledgements .. 61

References .. 62

9

List of figures

Figure 1. Desktop operating system marketshare according to StatCounter as of April

2018. ... 15

Figure 2. Intel HD Graphics Control Panel power usage controls. 17

Figure 3. Intel Ivy Bridge microarchitecture die layout. Image released by Intel for

marketing purposes, image copy taken from AnandTech [6]. 19

Figure 4. Screenshot of the Intel Power Control application. .. 20

Figure 5. Effect of kernel driver options on performance and power usage with a 3D

workload, as tested by Michael Larabel at Phoronix [9]. ... 21

Figure 6. Contents of i915 driver related controls found in sysfs. Commands are run on

a PC with Intel HD 4000 graphics running Linux kernel version 4.16.8. 22

Figure 7. Example of GPU manager client setting the governor from the default one to

“powersave”.. 23

Figure 8. Example of writing values to i915 driver related sysfs files. 24

Figure 9. Architectural overview of the GPU manager solution. 25

Figure 10. Linux GPU manager program flow diagram. ... 26

Figure 11. Average scores for the 2D workload test. ... 29

Figure 12. CPU package average temperature during 2D workload testing. 30

Figure 13. Average power usage of various CPU components during a 2D workload. . 30

Figure 14. Average frame rate during 3D testing with different modes......................... 31

Figure 15. CPU package average temperature during 3D workload. 32

Figure 16. Average power usage for various CPU components during 3D workload

testing. .. 32

Figure 17. Relative efficiency for the 3D workload over different GPU modes............ 33

Figure 18. CPU package average temperature during 1080p video playback test. 34

Figure 19. Average power usage of CPU components during 1080p video playback test.

 .. 35

Figure 20. Average CPU package temperature during 4K video playback test. 35

Figure 21. Average power usage of CPU components during 4K video playback test. 36

Figure 22. The relationship between voltage and frequency [22, p. 37]. 39

10

Figure 23. Effect of CPU throttling on CPU frequency on a test system with Intel i7-

3820QM CPU. .. 40

Figure 24. Intel P-state driver controls and their values. .. 41

Figure 25. Screen capture of s-tui showing the effect of limiting CPU P-states to its

minimum value using intel_pstate. ... 42

Figure 26. Screen capture of s-tui demonstrating the effect of disabling turbo mode

using intel_pstate driver. .. 43

Figure 27. Screen capture of s-tui demonstrating the effect of Intel Powerclamp with

50% idle time. ... 44

Figure 28. Demonstration of an attempt to change power limit values and timings on a

system with those values locked. .. 45

Figure 29. Screen capture of a GNOME 3 CPU power manager extension [31]. 46

Figure 30. Example of erratic Linux Thermal Daemon behaviour on the test machine.

The target temperature was set to 87°C in the configuration file. 47

Figure 31. Architecture of the Linux CPU manager. ... 49

Figure 32. Linux CPU manager service program flow. ... 50

Figure 33. CPU package temperature comparison between Linux Thermal Daemon and

Linux CPU manager. .. 51

Figure 34. Thermal behaviour of Linux Thermal Daemon with its default settings under

load. Note the variance in temperature and failure to prevent hitting temperatures over

100°C. ... 52

Figure 35. Comparison of average CPU frequency under load with the same

temperature targets. .. 52

Figure 36. Comparison of Linux kernel build test results between the stock

configuration, Linux Thermal Daemon and Linux CPU Manager. 53

Figure 37. Comparison of CPU frequency between Linux Thermal Daemon with a

shorter and longer polling interval.. 54

Figure 38. Comparison of CPU package temperatures under load with Linux Thermal

Daemon poll interval of 1 second and 4 seconds. .. 54

Figure 39. Comparison of average and maximum CPU package temperatures while

under heavy load. .. 55

Figure 40. Comparison of average CPU frequency under a heavy load. 55

Figure 41. Comparison of Linux kernel build test results. ... 56

Figure 42. Comparison of CPU cores power usage between LCM governors............... 56

11

Figure 43. Comparison of total energy usage between different CPU governors during

the Linux kernel build test. ... 57

Figure 44. Comparison of total power use when taking into account a hypothetical

system components power usage of 5W... 57

Figure 45. Comparison of total simulated system energy use over 1 hour. The workload

run during this hypothetical scenario is the Linux kernel build test which takes around

3-10 minutes to finish. .. 58

12

List of tables

Table 1. GPU power usage while idling and under load. ... 17

Table 2. GPU power usage and clock speed ranges as measured by OCCT and

OpenHardwareMonitor. .. 18

Table 3. Test machine specifications. ... 27

Table 4. Overview of GPU mode names and their descriptions. 29

Table 5. Breakdown of CPU components power usage during a heavy 3D workload for

the stock GPU configuration. ... 34

Table 6. Linux CPU manager governors and their clock speed range, scaling governor

and description. ... 49

13

1 Introduction

CPU and GPU temperatures and various heat dissipation methods have been under the

attention of researchers, chip makers and device manufacturers for decades. Work on

features, such as dynamic frequency and voltage scaling, on-chip thermal protection

abilities, turbo mode and increased monitoring, has greatly improved performance,

efficiency, and reliability. However, badly designed devices with insufficient cooling

capabilities can still get too warm to touch and even overheat and cause loss of work for

the user because the on-chip thermal protection features are only used when the

temperatures get very close to the critical temperature trip point.

A lot of work has gone into software solutions that try to pre-emptively throttle the CPU

in a way that least affects the performance. These include improved CPU schedulers,

dynamic thermal management modules in the kernel and user space tools that allow the

user to change the performance levels of the CPU and GPU. However, some solutions are

either difficult to implement and maintain, don’t function optimally or don’t exist on

Linux based operating systems at all, leaving the user with little control over the

performance and thermal management, causing issues like overheating and a short battery

life.

This thesis aims to solve the problems associated with overheating and short battery life

by creating two user space programs that allow for finer control over the CPU and GPU

performance on Intel CPU-s and GPU-s. The CPU solution must be able to provide

different levels of performance that can be chosen to improve CPU efficiency, battery life

and provide good pre-emptive throttling to prevent overheating. The GPU solution must

offer multiple different operating modes in order to control the GPU related power usage,

improve GPU efficiency and to prevent GPU induced overheating.

The first half of the thesis focuses on the integrated graphics solution found on most Intel

CPU-s, going over the issues and current power saving methods, and proposes a solution

for solving the issues with high power usage and overheating. Implementation details are

followed by testing, test results and analysis to measure the effectiveness of the solution.

14

The second half of the thesis discusses the CPU related problems in detail, brings up

current methods and solutions for controlling the CPU performance and presents the

proposed solution for managing overheating and battery life issues. As with the GPU

solution, the CPU solution is followed by testing, test results and analysis, which gives

an overview of the behaviour and performance of the proposed solution.

15

2 Linux GPU manager

The GPU power and performance management portion of this thesis gives an overview

of the Intel GPU and GPU related issues. This is followed by the solution implementation

details, testing the solution and analysis of the results.

2.1 Introduction

Most modern Intel CPU-s ship with integrated graphics known as Intel HD, UHD or Iris

Pro graphics. According to Firefox Hardware Report, as of April 2018 about 89% of

Firefox users have an Intel CPU and 66% use the Intel integrated graphics [1]. The

difference between those two statistics is easily explained by the presence of dedicated

GPU-s by AMD and Nvidia used in some desktops and laptops which account for about

28% of Firefox users.

Finding the true market share of Linux based operating systems is not simple due to the

different statistic provided by various sources. For example, StatCounter reports Linux

usage as of April 2018 at 1.66% [2], as shown on Figure 1.

Figure 1. Desktop operating system marketshare according to StatCounter as of April 2018.

16

Other market share statistics providers, such as NetMarketshare, show that Linux market

share is closer to 2%, at 1.93% [3]. Firefox hardware report puts the market share of Linux

to 2.73% as of April 2018, possibly due to Firefox being the default browser in most

Linux distributions.

Even though the general market share of Linux users is low, a sizeable part of those users

could benefit from an Intel GPU manager solution that provided the user with more

control over the performance and power usage.

2.2 Issues

Intel integrated graphics solutions can cause some issues during normal usage, such as

overheating and high power usage. This section focuses on the GPU related issues and

gives a better overview of why these problems are an issue and how to potentially solve

them.

2.2.1 High power usage

Intel GPU-s are mostly intended for providing basic support for desktop graphics and

graphically less intensive workloads, like office work, browsing the internet and watching

movies. 3D workloads, such as video games, generally have poor performance compared

to GPU-s by AMD and Nvidia.

Popular browsers, such as Firefox and Chromium, make use of GPU acceleration and are

continuing utilising the GPU even further. One example of this is the upcoming Firefox

component called WebRender which accelerates the rendering of web pages by

offloading some of the work to the GPU [4]. With the increasing emphasis on making use

of the GPU, its power usage is also increased, leading to higher temperatures and lower

battery life. A decrease in battery life is disadvantageous in situations where image quality

and frame rate are not as important as battery life.

Table 1 illustrates the general power usage figures that can be seen on an Intel HD 4000

GPU found on the Intel i7-3820QM under a heavy 3D workload. The chosen workload

was a short run of FurMark with turbostat running in the background with a polling

interval of 5 seconds.

17

Table 1. GPU power usage while idling and under load.

Clock speed (MHz) State (idle, load) Average power usage (W)

350 idle 0.85

350 load 4.80

1250 idle 1.10

1250 load 20.80

From the power usages reported it is clear that the GPU contributes noticeably to the

system overall power usage. According to specifications by Intel the CPU TDP (thermal

design power) is rated at 45W [5] and its maximum power usage has been observed to

reach this with a heavy load. This means that the GPU can contribute 10-45% to the

overall CPU package power usage when under load.

2.2.2 Lack of power management features on Linux

Intel HD Graphics Control Panel is a Windows program that allows the user to control

various GPU related settings, including power usage modes. Figure 2 shows the three

power related options offered by the control panel: maximum battery life, balanced and

maximum performance. A power mode can be set for when the PC (personal computer)

is running on battery or when plugged in.

Figure 2. Intel HD Graphics Control Panel power usage controls.

18

To find out what the power usage and clock speed ranges are for the different modes, two

programs are used. OCCT is used for monitoring the GPU clock speed, temperature and

for generating a heavy 3D workload. OpenHardwareMonitor, a free open source program

for monitoring system sensors, is used to measure the GPU power usage in watts. Results

of the quick testing are shown on Table 2. It is clear that running the GPU at a lower clock

speed will have a huge positive impact on the power usage, reducing the power usage by

up to 62.8% when comparing maximum performance and maximum battery life modes.

Table 2. GPU power usage and clock speed ranges as measured by OCCT and OpenHardwareMonitor.

Mode GPU average power usage (W) Clock speed range (MHz)

Maximum battery life 8.3 350-650

Balanced 21.6 350-1250

Maximum performance 22.3 350-1250

Intel HD Graphics Control Panel is not available under Linux, meaning that there is no

easy way to control the power used by the GPU. By default, the Intel HD GPU runs at its

maximum speed, being roughly equivalent to the maximum performance mode of the

control panel found on Windows. This does mean that the power usage is also increased

and battery life decreased. This is non-ideal for situations where maximum GPU

performance is not explicitly needed. Such workloads include taking notes in a lecture,

reading a document, navigating simple webpages and instant messaging.

2.2.3 GPU induced overheating

Most Intel CPU-s have an on-die graphics solution that provides basic 2D and 3D

graphics workload performance. The GPU portion of the CPU is positioned on the same

die, as shown on Figure 3.

19

As demonstrated in section 2.2.1 of this thesis, the GPU portion of the package can utilise

a considerable amount of power and thus contribute significantly to the total heat output.

Due to the positioning of the integrated graphics, the CPU cores closest to the GPU can

be affected by the sudden increase in temperatures, possibly causing an unexpected

shutdown if the CPU core temperature is past the critical threshold.

GPU induced overheating can be prevented by limiting the GPU performance so that it

never exceeds a certain temperature threshold, such as 80°C on a system with a CPU

throttling point at 100°C.

2.3 Current power saving methods

While there is no direct alternative to the control panel found on Windows, there do exist

some methods to control the integrated graphics performance and improve power savings.

This section introduces one GUI (graphical user interface) application and kernel options

for controlling the GPU.

2.3.1 Intel Power Control

Intel Power Control is a GPU power management tool that features sliders for GPU clock

speeds, a brightness slider and an automatic GPU throttling feature [7]. In addition to that

it includes CPU online state toggles and information about CPU package temperatures.

The GUI (graphical user interface) component of the application makes use of Python 3

and Qt 5, a framework for building graphical applications, while the helper program is

written in C.

Figure 3. Intel Ivy Bridge microarchitecture die layout. Image released by Intel for marketing purposes,

image copy taken from AnandTech [6].

20

While it offers a lot of options and sliders, as visible on Figure 4, it has no recommended

set of settings that is found in the Windows program for controlling the GPU performance,

making it potentially confusing for less experienced users. In its current state the program

requires installing necessary dependencies and building the application yourself, further

complicating the install procedure.

2.3.2 Kernel driver options

Intel GPU-s support various methods that can increase power savings and can be

configured on the kernel driver level. These include framebuffer compression, LVDS

downclocking, enabling RC6 low power states and PCI-e power management [8]. Such

features may work on some systems, but can cause problems on other hardware or cause

unwanted power usage increases, as demonstrated in a test carried out by Michael Larabel

at Phoronix where some options had a negative effect on power usage when running

different workloads [9]. The increase in power usage was mostly caused by an increase

in performance, as shown on Figure 5.

Figure 4. Screenshot of the Intel Power Control application.

https://www.phoronix.com/scan.php?page=michaellarabel

21

Since then some features mentioned above have been enabled by default on supported

hardware, such as RC6 sleep states. However, even more power can be saved by simply

limiting the speed the GPU can run at. This can be achieved by manipulating GPU related

sysfs paths. For example, on a system with Intel HD 4000 GPU the controls are located

at /sys/class/drm/card0/. The driver allows to change the minimum, maximum and

boost frequencies in steps of 50MHz by writing the proper value to gt_min_freq_mhz,

gt_max_freq_mhz and gt_boost_freq_mhz. In addition to that the current active frequency

can be read from gt_cur_freq_mhz and stock frequency steps from gt_RP0_freq_mhz

(boost clock speed), gt_RP1_freq_mhz (maximum clock speed) and gt_RPn_freq_mhz

(minimum clock speed), as shown on Figure 6.

Figure 5. Effect of kernel driver options on performance and power usage with a 3D workload, as tested by

Michael Larabel at Phoronix [9].

22

2.4 Linux GPU manager implementation

This section gives an overview of the implementation of the GPU manager solution,

covering the architecture, the GPU managing algorithm and an overview of the supported

hardware.

2.4.1 Overview

Linux GPU manager is a service that allows any D-Bus capable client application to

change the current operating mode. Currently the three modes try to emulate the options

provided by Intel HD Graphics Control Panel by offering power modes designed for

maximum battery life, balanced (good performance with moderate power usage) and

maximum performance.

The current implementation comes with a service with three governor implementations

and a simple CLI (command-line interface) program that demonstrates the ability of a

client to call a method on the service. When the service is running, the client can set a

suitable power mode by giving the power mode name as an argument. An example of the

program in action is shown on Figure 7.

Figure 6. Contents of i915 driver related controls found in sysfs. Commands are run on a PC with Intel HD

4000 graphics running Linux kernel version 4.16.8.

23

Due to the choice of test machines by the author the current implementation of the GPU

manager is confirmed to support Sandy Bridge and Ivy Bridge generation integrated

graphics solutions. The implementation may already support newer Intel GPU-s, but that

hasn’t currently been tested and its effects haven’t been measured. This issue can be

alleviated with access to newer hardware and feedback from future users of this solution.

An explanation of the i915 driver suggests that the newer GPU models have similar path

names with the only change being the RPe frequency which marks the most efficient

frequency, being the equivalent to RP1 frequency found on current test hardware [13].

Linux GPU manager is free open source software licensed under GPLv3 [10] and

available on GitHub at https://github.com/Hermanio/linux-gpu-manager.

Packaging the program so that it can be used in popular Linux distributions, such as

Ubuntu, Debian, Fedora, Arch Linux and others, is going to be implemented in the future

along with the GUI component and configuration file support, as these features are not in

the scope of this thesis.

2.4.2 Technology overview

This section describes the choice and reasoning behind software components used in the

implementation of the GPU solution.

For implementing the server and client portions of the proposed solution, Python 3 was

chosen for the programming language. Since all major Linux distributions come with

Python 3 already installed, the solution can run out of the box on most Linux installations.

Development is also much faster with Python 3 as it makes a lot of tasks very simple with

its vast standard library and simple but powerful syntax.

Figure 7. Example of GPU manager client setting the governor from the default one to “powersave”.

https://github.com/Hermanio/linux-gpu-manager

24

D-Bus is a software bus that allows for IPC (inter-process communication), meaning that

multiple concurrent processes can send and retrieve information and signals between each

other via the software bus [11]. This is useful for implementing a server-client solution

where there exists one server and one or many separate client implementations. This was

chosen for the IPC part of the implementation due to it being present in most Linux

distributions, and being easy to work with as it has existing language bindings for Python

3.

sysfs is a virtual file system that provides access to information about various parts of

the kernel, including hardware devices and device drivers [12]. This provides access to

the Intel GPU i915 driver. Using the interfaces provided we can control the GPU

performance with ease by limiting the allowed clock speed frequency range. Controlling

the performance is achieved by writing a value to a virtual file which then passes the value

to the proper method in the driver. An example of writing various clock speed values for

boost frequency limit is shown on Figure 8.

2.4.3 Architecture

The architecture of the implementation consists of two parts: a D-Bus service that handles

the GPU management, and a client program that can interact with the service using

various D-Bus methods. Different behaviours, such as power saving and performance

mode, are implementations of a common class called Governor. Diagram of the

architecture is shown on Figure 9.

Figure 8. Example of writing values to i915 driver related sysfs files.

25

Access controls for the client are defined by the D-Bus service configuration file. In its

current state the service allows any user to call the setMode() method which allows for a

non-administrator user to control the GPU power mode. The D-Bus service itself runs on

System Bus, giving it root access that is required for writing the GPU clock speed range

values.

2.4.4 Algorithm

The GPU manager implementation service starts the D-Bus service and loads the default

governor which limits the GPU clock speed to its most efficient frequency, as noted by

an Intel GPU driver developer [13]. The existence of an efficient frequency is also present

in a utility called intel_gpu_frequency which is found in intel-gpu-tools [14]. Other

governors include the power saver mode, which locks the GPU to its lowest clock speed,

and performance mode which allows the GPU to utilise the full frequency range. The

program flow diagram is shown on Figure 10.

Figure 9. Architectural overview of the GPU manager solution.

26

In addition to simple frequency management the governors can also utilise throttling after

a temperature trip point is reached. The temperature is read from the CPU package

temperature as it provides the maximum of all temperature sensors on the package. If the

temperature is too high, then the GPU clock speed range will automatically be reduced

by a multiple of 50 as 50MHz is the smallest allowed change in frequency. The correction

depends on the temperature: the higher the temperature the bigger the correction.

2.5 Testing

Testing of the proposed GPU manager solution takes place over 4 tests: heavy 2D

workload, heavy 3D workload, 1080p 60FPS video playback and 4K 60FPS video

playback. During the tests the power usage of CPU package components (whole package,

CPU cores, GPU) and the CPU package temperature is measured. Each test will be run

with the GPU solution disabled to get the baseline performance and after that with each

GPU manager governor.

Due to the degradation of the laptop battery on the test machine and battery runtime

variance that can be caused by other system components during testing, the effect on

Figure 10. Linux GPU manager program flow diagram.

27

battery life is measured using power consumption numbers reported by the CPU package

and accessed via turbostat, a tool that can measure various CPU metrics, including

frequency, power usage, temperatures and C-state residency [15]. This will give a more

precise overview of the GPU related energy savings as the turbostat program can output

package, CPU and GPU power usage separately.

Initially more realistic tests were planned for measuring GPU load in various scenarios

using benchmarking tools similar to PassMark BatteryMon and PCMark 8 that emulate

real life workloads, including web browsing, office suite work and productivity

application interactions. Unfortunately, such tools do not exist yet on Linux and tools that

attempt to emulate similar workloads are difficult to compile on some distributions or

don’t work correctly. One example of such software is gnome-battery-bench which had

trouble compiling on Ubuntu 18.04 and relied heavily on an “en-US” keyboard layout

and GNOME 3 desktop environment features.

2.5.1 Test device

The testing is done on a ThinkPad T430 with an upgraded quad-core CPU and a liquid

metal thermal compound for optimal heat dissipation. The CPU has a TDP of 45W [5]

while the T430 is designed for a 35W CPU, such as the i5-3320M [16] , making this test

PC a good example of an overheating laptop. Testing is done on a fresh Ubuntu 18.04

install which is booted off an external SSD and connected via an USB 3.0 port. Secure

Boot is disabled and UEFI mode is enabled. Specifications are shown on Table 3.

Table 3. Test machine specifications.

Device model ThinkPad T430

CPU Intel i7-3820QM

GPU Intel HD 4000

RAM 16GB DDR3 1333MHz

Display resolution 1600x900

TIM (thermal interface material) Thermal Grizzly Conductonaut (liquid metal

based thermal compound)

Operating system Ubuntu 18.04 (minimal install)

28

2.5.2 Overview of tests

Heavy workload testing will be carried out using benchmarks offered by Phoronix Test

Suite, an open source testing solution with a vast array of different tests designed to

measure all aspects of the PC hardware, including CPU, GPU, networking and storage

performance [17]. During the test a temperature and power usage monitoring program

turbostat will run in the background and log the package temperature and the power

usage of the package, CPU and GPU.

2D performance is measured using the test pts/j2dbench which draws various 2D

graphical elements, implemented in Java and using the OpenGL API [18].

3D performance is measured using pts/unigine-sanctuary, an older version of the Unigine

benchmark software, which puts a heavy load on the GPU by displaying various 3D

scenes [19]. Older version of the benchmark was chosen due to the poor 3D performance

of the integrated graphics solution when running newer versions of the benchmark.

Video playback testing measures the power consumption during the video playback of a

video file while utilising GPU accelerated video decoding. The media files are obtained

from http://bbb3d.renderfarming.net/download.html in two formats: x264-encoded

1080p 60FPS (frames per second) and 4K 60FPS. Video playback is done using the mpv

media player which has hardware acceleration support for video playback enabled on the

build found in Ubuntu 18.04, as specified in the Ubuntu wiki [20]. This test can give an

idea of power savings during a low to moderate GPU load.

2.6 Results and analysis

This section covers the test results and conclusions that can be drawn from them. In the

graphs shown below the different GPU performance modes are marked with a short

keyword. Keywords and their meanings are explained on Table 4.

http://bbb3d.renderfarming.net/download.html

29

Table 4. Overview of GPU mode names and their descriptions.

GPU mode name Clock speed

range (MHz)

Explanation

stock 350-1250 The default configuration that is applied on a

clean Ubuntu install.

powersave 350 (locked) Limits the performance to the lowest available

level as defined by

/sys/class/drm/card0/gt_RPn_freq_mhz.

normal 350-650 Limits the performance to max efficiency level as

defined by

/sys/class/drm/card0/gt_RP1_freq_mhz.

performance 350-1250 Enables full range of the available GPU

performance. Similar to mode “stock”.

2.6.1 2D workload test results

Figure 11 shows the effect that the different power modes have on performance.

Performance mode matches the stock configuration while modes “normal” and

“powersave” have a score that is 45.9% and 68.4% lower, respectively.

Modes “powersave” and “normal” have similar thermal performance, being only 1.57°C

apart. Stock configuration and “performance” mode, however, boost the average CPU

package temperature significantly, as shown on Figure 12 below.

Figure 11. Average scores for the 2D workload test.

885860.68

279700.25

478796.27

884325.91

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

stock powersave normal performance

U
n

it
s

p
er

 s
ec

o
n

d

GPU mode

pts/j2dbench average score
higher is better

30

Power usage, which directly affect the CPU package temperatures, shows a similar

picture. “powersave” and “normal” modes have the lowest power usage on both the CPU

cores and GPU while “stock” and “performance” modes have nearly double or even triple

the power usage, as can be seen on Figure 13.

2.6.2 2D workload test conclusions

The 2D workload test results clearly show that controlling the GPU power usage can have

a huge effect on the power usage not only on the GPU but also on the CPU. This is caused

by the increased number of draw calls. The CPU compiles information about the visuals

Figure 12. CPU package average temperature during 2D workload testing.

Figure 13. Average power usage of various CPU components during a 2D workload.

75.11

59.94 61.51

76.14

0

10

20

30

40

50

60

70

80

stock powersave normal performance

Te
m

p
er

at
u

re
 (

°C
)

GPU mode

CPU package average temperature
lower is better

19.68

10.16

6.17

11.36

6.28

1.88

12.50

6.55

2.71

20.58

10.77

6.44

0

5

10

15

20

25

CPU package CPU cores GPU

P
o

w
er

 (
W

)

Average power usage
lower is better

stock powersave normal performance

31

that are going to be rendered and feeds it to the GPU which then draws the frame [21].

An increased number of frames means more draw calls, meaning more work for the CPU

to do and causing the power usage of the CPU to go up. In this particular test the CPU

cores power usage can be reduced by 41% simply by going from “performance” mode to

“powersave” mode.

When comparing “powersave” and “normal” mode, we can see that the average score is

increased by 71% while the GPU power usage increase is only 44.15%. Furthermore, the

CPU package temperature is only increased by 2.62% and the package power by 10%,

making “normal” mode a good choice for a performance and power usage balanced

configuration.

The 2D workload results show that a huge reduction in power usage can be achieved in a

heavy workload by simply limiting the GPU performance, making the proposed solution

a good choice for scenarios where power savings are more important than performance.

2.6.3 3D workload test results

Performance of the 3D workload is measured in frames per second (FPS). Figure 14

shows that the different GPU power modes have a similar effect on performance when

compared to the 2D workload results. Dropping the performance to “normal” and

“powersave” modes shows a 39.24% and 66.17% drop in performance, respectively.

CPU package temperature changes are also similar to the previous test, with the

“powersave” and “normal” modes showing the best results with only a difference of

Figure 14. Average frame rate during 3D testing with different modes.

39.25

13.33

23.94

39.4

0

10

20

30

40

50

stock powersave normal performance

Fr
am

es
 p

er
 s

ec
o

n
d

 (
FP

S)

GPU mode

Average frame rate
higher is better

32

2.57°C. However, the “stock” and “performance” modes show a much higher CPU

package temperature, as can be seen on Figure 15, with the “performance” mode nearing

83°C and “stock” mode being at 85.53°C.

When comparing the power usage results to 2D workload tests, it is apparent that the

power usage numbers have increased, especially for the GPU. For the 3D workload the

reduction in performance can bring a power usage decrease of 61.53% or even 77.46%

for the GPU. Package power also sees a great reduction as the “normal” mode uses

roughly half the power and “powersave” mode a third of the power when compared to

“performance” mode, as can be seen on Figure 16.

Figure 15. CPU package average temperature during 3D workload.

Figure 16. Average power usage for various CPU components during 3D workload testing.

85.53

57.26 59.83

82.94

0

10

20

30

40

50

60

70

80

90

stock powersave normal performance

Te
m

p
er

at
u

re
 (

°C
)

GPU mode

CPU package average temperature
lower is better

27.92

10.58
13.52

9.45

3.14 3.04

12.91

4.28 5.19

27.75

10.44
13.49

0

5

10

15

20

25

30

CPU package CPU cores GPU

P
o

w
er

 (
W

)

Average power usage
lower is better

stock powersave normal performance

33

Relative efficiency is calculated by taking the performance indicator (frames per second)

and dividing by the average power usage for the CPU package, cores and the GPU, giving

us an indicator of the amount of work that the CPU and GPU can do per watt. From the

results in Figure 17we can see that both “powersave” and “normal” modes have a greater

efficiency for both CPU and GPU components. “normal” mode, which limits the GPU

performance to the range of 350-650MHz on the test machine, has the best result which

aligns with the statement that the upper limit for this governor is said to be the most

efficient frequency for the GPU [13].

2.6.4 3D workload test conclusions

As with the 2D workload testing, limiting the performance in heavy 3D workloads has a

noticeable effect for both power usage and CPU package temperature. The effect on

efficiency is also noticeable, with “normal” mode having 31.21% better efficiency when

compared by the package power and 59.31% when compared by the GPU power usage.

“powersave” mode also sees a boost in efficiency, but the package power efficiency

results are less pronounced. This is caused by the various surrounding components of the

CPU package that also consume power. When taking the total package power and

subtracting the CPU cores and GPU power usage, we get the remainder which is around

3-4W, as shown on Table 5. A smaller relative reduction in power usage does not boost

the efficiency indicator as much for the whole package.

Figure 17. Relative efficiency for the 3D workload over different GPU modes.

1.41 1.41
1.85

1.42

3.71
4.25

5.59

3.77

2.90

4.39 4.62

2.92

0

1

2

3

4

5

6

stock powersave normal performance

FP
S

(f
ra

m
es

 p
er

 s
ec

o
n

d
)

p
er

 w
at

t

Relative efficiency
higher is better

CPU package CPU cores GPU

34

Table 5. Breakdown of CPU components power usage during a heavy 3D workload for the stock GPU

configuration.

GPU mode stock

Package power usage (W) 27.92

CPU Cores power usage (W) 10.58

GPU power usage (W) 13.52

Remainder (W) 3.82

As with 2D workload testing, sacrificing performance can greatly increase power savings

in situations where it is truly needed. Temperature decrease of 25-27°C also has a great

positive impact on user experience as the CPU fan can run at lower speeds and the laptop

surface is cooler, making the device more comfortable to use.

2.6.5 1080p video playback test results

Unlike the heavy workloads described earlier, the video playback test shows a difference,

but a much smaller one. Figure 18 shows that the temperature difference is minimal, most

likely affected by other factors.

Power usage also shows small differences, as seen on Figure 19, with “powersave” mode

at best reducing the GPU power usage by 0.03W and CPU package power usage by

0.13W. Percentage-wise this is a 2.1% reduction in CPU package power usage.

Figure 18. CPU package average temperature during 1080p video playback test.

51.90 50.45 50.10 50.71

0

10

20

30

40

50

60

stock powersave normal performance

Te
m

p
er

at
u

re
 (

°C
)

GPU mode

CPU package average temperature
lower is better

35

This is most likely caused by the low processing power demands of the video file in

question and the stable frame rate that the video offers, allowing the GPU to go into the

RC6 sleep state more often and limiting the active time of the GPU. Less active time in

turn limits the time that Linux GPU manager can apply its effect.

2.6.6 4K video playback test results

4K 60FPS video playback shows a more pronounced difference in CPU package

temperatures, with the “powersave” and “normal” modes giving the best results by having

an average CPU package temperature that is 3°C lower when compared to the stock

configuration, as evident in the results shown on Figure 20.

Figure 19. Average power usage of CPU components during 1080p video playback test.

Figure 20. Average CPU package temperature during 4K video playback test.

6.34

1.65 1.42

6.21

1.54 1.39

6.23

1.55 1.40

6.41

1.69 1.44

0

1

2

3

4

5

6

7

CPU package CPU cores GPU

P
o

w
er

 (
W

)

1080p video playback average power usage
lower is better

stock powersave normal performance

55.04
51.58 51.51

54.36

0

10

20

30

40

50

60

stock powersave normal performance

Te
m

p
er

at
u

re
 (

°C
)

GPU mode

CPU package average temperature
lower is better

36

Comparing the modes by power usage we can see that “powersave” and “normal” mode

offer good results, decreasing the CPU package power usage by 18.4%. CPU cores and

GPU power usage is reduced by 35.6% and 18.4%, respectively. Figure 21 gives a more

visual overview of the power usage numbers.

While the “stock”, “normal” and “performance” modes showed no degradation in video

playback quality, the “powersave” mode experienced 240 dropped frames during

playback. With the video runtime of 636 seconds this amounts to 0.6% of frames being

dropped, affecting the user experience negatively.

2.6.7 Video playback test conclusions

As can be seen from the results, on 1080p video playback the power savings are not that

significant, mostly due to the low GPU load that the playback caused, allowing the GPU

to utilise RC6 sleep states. This means that the GPU was active a lot less and the effect

of the GPU clock speed limit is less visible.

The increased load on the GPU and CPU by the 4K video playback the effect of the GPU

manager is more visible, as the GPU spends less time in sleep states. However, even in

this case the decrease in CPU power usage contributes about twice as much to the power

usage decrease than the GPU.

Dropped frames with the “powersave” mode indicate that “normal” mode is the best

choice for a balanced experience with good performance and power savings. Small but

measurable improvements in power usage indicate that the GPU solution can help save

power even in lighter workloads.

Figure 21. Average power usage of CPU components during 4K video playback test.

8.63

2.78
2.28

7.22

1.79 1.86

7.21

1.67 1.97

8.81

2.91
2.33

0

2

4

6

8

10

CPU package CPU cores GPU

P
o

w
er

 (
W

)

4K video playback power usage
lower is better

stock powersave normal performance

37

3 Linux CPU manager

This section is structured similarly to section 2 of this thesis, containing background

information about CPU related issues, technologies, existing solutions, overview of the

implementation and finally testing and results.

3.1 CPU related issues

Most CPU related issues that crop up are related to excessive CPU fan noise, overheating

and a short battery life. This section goes over these issues in more detail.

3.1.1 Overheating

Most, if not all modern CPU-s have thermal protections implemented on the hardware

level. If the temperature is over the set limit, the CPU will begin throttling itself, which

reduces performance and power usage to bring the chip temperatures down. On modern

Intel CPU-s such throttling can start very late. For example, an Intel Ivy Bridge series

CPU will start throttling at 100°C and will instantly shut down at 105°C to prevent further

damage to the CPU. On-chip throttling is a great feature, but the throttling point can’t be

configured by the user and the small thermal headroom carries a high risk of an

unexpected system shutoff, which can cause loss of work and file system corruption.

In some configurations the CPU on a laptop can be changed for another model provided

that the socket is the same and the CPU is supported by the motherboard. It is common

among hardware enthusiasts to replace their dual core CPU-s with quad core models in

selected laptops which brings a huge boost in performance, especially in multithreaded

workloads due to the doubling of the core count. While it is recommended to pick a CPU

with the same TDP as the old one, some users opt for higher TDP models due to pricing

or availability of replacements on the used computer equipment market. If the cooling

system is designed for a 35W TDP CPU, but the new CPU has a TDP of 45W, heat

dissipation will become an issue. On extended workloads the CPU will start throttling

and can potentially overheat if the cooling is not sufficient.

38

3.1.2 Noise and battery life issues

With the increase in CPU temperatures the system must be able to dissipate the heat

properly. In most cases this means increasing the fan speed, which increases airflow and

effective heat dissipation. Some laptop manufacturers, such as Lenovo and Dell, allow

the CPU fan speed to be controlled by the operating system if the necessary drivers are

loaded and a special utility is running. Such examples include thinkfan and i8kutils for

Lenovo ThinkPad laptops and selected Dell systems, respectively.

However, on most systems there is no straightforward way to directly control the fan

speed, meaning that the only way to lower the fan speed is by lowering the CPU

temperatures. This can only be achieved by reducing the power usage of the CPU. This

approach is perfectly acceptable for workloads that take considerable time to complete,

such as video rendering, software compiling and scientific calculations. If these are run

during the night, when fan noise is most audible and noticeable, then it will make sense

to run the workload slower if it reduces the noise output of the computer and finishes in

time.

In less CPU heavy tasks, like writing down notes, reading an article or using a messaging

client, very little processing power is needed to complete the task. However, the usual OS

installation has a lot of processes running in the background, which includes system

services, file synchronization programs, music players and many browser tabs with

different levels of CPU usage. The background programs can have a noticeable negative

effect on battery life, as they ask for a lot of compute power without any regard for power

usage and efficiency. This negative effect could be reduced by limiting the speed the CPU

can run at which in turn limits the amount of power the background tasks can use.

3.2 Technical background

This section explains some technical concepts that the implementation and its behaviour

is based on. The first half focuses on CPU power usage characteristics and the second

half gives an overview of optimal throttling methods.

3.2.1 CPU power usage characteristics

To reduce the CPU temperatures without any additional cooling devices present we need

to consider the power usage of the CPU. CPU power usage is linked to the operating

39

frequency. As the frequencies get higher, the voltage of the CPU must be increased. This

increase in voltage is directly responsible for the increase in power usage. The

relationship between the operating frequency and voltage is not linear. At lower

frequencies an increase in frequency may only mean a small bump in voltage. However,

at higher frequencies a relatively modest increase in frequency may need a huge increase

in voltage [22, p. 36].

The relationship between voltage and frequency depends on the CPU model, generation

and architecture, but generally follows the rule that voltage scales with the square of the

frequency [22, p. 36]. Figure 22 shows that in order to increase the frequency at higher

frequencies, a much higher increase in voltage is required. An exponential curve means

that the most efficient frequency of the CPU is not at the lowest or highest frequencies,

but somewhere in-between. The exact point depends heavily on the CPU itself, but can

be determined by running tests in each performance state.

Modern CPU-s have a number of P-states (performance states) which determine the CPU

frequency and voltage. P-states are usually managed by the operating system and are in

steps of base clock frequency which is commonly 100MHz on modern Intel and AMD

CPU-s [22, pp. 49-50]. Limiting the number of available P-states can reduce CPU

temperatures and power usage because voltage is also reduced. Furthermore, the

efficiency of the CPU can also be improved because the operating system can’t request

higher performance states which are less efficient.

3.2.2 Optimal throttling method

The default throttling behaviour of a CPU relies on a trip point at which it starts throttling,

commonly 100°C but can vary between models. At 100°C the CPU will attempt to reduce

Figure 22. The relationship between voltage and frequency [22, p. 37].

40

temperatures by limiting power usage and performance. Figure 23 shows an example of

the effect of CPU thermal throttling on frequency. During the load the CPU temperatures

are generally in the range of 100-102°C.

Previous work on CPU cooling and optimal throttling methods has found that running the

CPU near a set temperature limit is the most optimal throttling method as it provides the

best performance compared to alternative throttling methods. This is backed by [23]

where system-throttling, a method of throttling where the CPU clock speed is reduced

when over the temperature limit and increased when under it, provided better performance

to alternative throttling methods. Test results in [24] also demonstrate that slightly

increasing or decreasing the clock speed near the temperature limit yields better

performance compared to an alternative throttling method while keeping the temperatures

in control. A similar method of throttling has also been successfully used on ARM-based

CPU-s in previous work where the authors made use of existing Linux infrastructure to

throttle the CPU when it reached a set temperature limit, such as 50°C [25].

3.3 Intel CPU throttling methods on Linux

Several effective throttling methods exist on Linux based operating systems. This section

introduces the Intel P-state driver, Intel Powerclamp and RAPL (Running Average Power

Limit) controller that can all be used to limit the CPU performance and power usage.

Figure 23. Effect of CPU throttling on CPU frequency on a test system with Intel i7-3820QM CPU.

2900

3000

3100

3200

3300

3400

3500

3600

Fr
eq

u
en

cy
 (

M
H

z)

Time

CPU frequency under load
higher is better

41

3.3.1 Intel P-state Driver

Intel P-state driver is a CPU hardware driver and governor that manages the power states

of the CPU. It is enabled by default on white-listed CPU-s from the Sandy Bridge

generation onwards [26].

P-state driver offers two governors: “powersave” and “performance”. These are

accessible through CPUFreq subsystem and chosen by writing the value to

/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor. Performance governor

makes the CPU always choose the highest P-state with little care for energy usage.

“powersave”, however, attempts to balance performance with energy savings [26].

Voting for a P-state among cores which share the same voltage domain is simple: highest

P-state among a set of cores wins. For example, if on a dual core system one core requests

the lowest P-state and the other core a higher P-state then the higher P-state will be applied

for both cores [22, p. 51].

Minimum and maximum P-states can be controlled via sysfs interface on path

/sys/devices/system/cpu/intel_pstate by writing the value to max_perf_pct and

min_perf_pct [22, p. 288].

In this example case for a ThinkPad X230 with an Intel i5-3320M CPU the intel_pstate

driver exposes various information about maximum and minimum performance states,

turbo mode status and information about the number of performance states and the turbo

mode start percentage, as shown on Figure 24.

Figure 24. Intel P-state driver controls and their values.

42

If we set the max_perf_pct value to 36 (default value of min_perf_pct for this CPU)

during a heavy load then we can observe a huge drop in CPU frequency and power usage,

as is visible on Figure 25. The software used for demonstrating the effect is s-tui, a CLI

(command-line interface) application that can display CPU frequency, power usage,

utilisation and temperature. In addition to that s-tui can also be used to stress test the

CPU which is useful for showing the effect of changing performance states.

From Figure 25 we can observe that the clock speed is set to the minimum clock speed

for that CPU (1200MHz) and with that the power usage is also dropped to an average of

7W from about 18W previously.

The intel_pstate driver also exposes an interface for controlling turbo mode with the

no_turbo interface. By writing the value “1” to

/sys/devices/system/cpu/intel_pstate/no_turbo we can turn off the turbo boost

functionality of the CPU and run it at its rated base clock speed which locks this particular

Figure 25. Screen capture of s-tui showing the effect of limiting CPU P-states to its minimum value using

intel_pstate.

43

CPU to 2.6GHz and lowers the power usage to around 13W in our example case, as seen

on Figure 26.

With the simple controls offered by the intel_pstate driver and the immediate power

usage results it is a good candidate for user-defined thermal throttling.

3.3.2 Intel Powerclamp driver

Intel Powerclamp driver is a method of injecting idle time to the system in order to reduce

performance and power usage [27]. The driver accepts input as a percentage of idle time,

from 0 to a maximum of 50%. The driver can be accessed as a separate cooling device

under the path /sys/class/thermal/cooling_deviceX, where X is an integer.

In this example the Intel Powerclamp driver is under

/sys/class/thermal/cooling_device5 and can be enabled by writing an integer to

cur_state with the command “echo 50 >

/sys/class/thermal/cooling_device5/cur_state”.

Figure 26. Screen capture of s-tui demonstrating the effect of disabling turbo mode using intel_pstate

driver.

44

As we can see from Figure 27, the average power usage dropped by half, indicating that

Powerclamp works as intended. There do exist limitations, as mentioned in the kernel

documentation, regarding interrupts, which may make the Powerclamp method less

effective. Furthermore, the observed CPU power usage is a bit higher when compared to

the effect that the Intel P-state driver has.

3.3.3 RAPL Controller

Running Average Power Limit is a feature on Intel CPU-s from Sandy Bridge generation

onwards that offers power monitoring and controlling tools that can be used to measure

currently used power, maximum and minimum power supported for domains (package,

core devices, DRAM) and methods to set power limits in short term or long term [28].

The general ideal of RAPL is to offer maximum performance provided that CPU thermals

and power delivery allow for it. It does this by defining different power levels which have

a time constant and a power limit value associated with it [22, pp. 58-59]. For example, a

Figure 27. Screen capture of s-tui demonstrating the effect of Intel Powerclamp with 50% idle time.

45

CPU with a TDP of 45W can use 56.25W for a very short time period (0.000977 seconds

for Intel i7-3820QM) and 45W over a longer time period (28 seconds for Intel i7-

3820QM).

Power usage monitoring is useful for determining CPU package power usage during

various workloads. Setting CPU short term and long-term power limits is helpful in

situations where a lower power usage is needed. On Linux this can be achieved with tool

rapl-set which can set various constraints and power limits [29]. For example, for setting

a short-term power limit of 40W over the period of 1 millisecond for constraint 0 the

command would be “rapl-set -c 0 -l 40000000 -s 1000”.

However, this feature is not available on every platform, as some vendors lock the values

on the BIOS level. To check for this, load the intel_rapl kernel module with “modprobe

intel_rapl”, then try enabling the feature or setting a limit. If rapl-set returns an error

then the limits are most likely locked, as illustrated on Figure 28.

Some laptops, such as ThinkPad T430 and ThinkPad X230, have the limits locked and

unavailable for modification. As such using Intel RAPL for controlling and limiting

power usage for throttling is not guaranteed to work on all machines using Intel CPU-s,

making it a non-ideal candidate for a generic throttling method. The monitoring methods

are still available and can be useful for measuring the power usage of the CPU package,

including the CPU cores and GPU separately.

3.4 Existing solutions

To overcome the CPU related issues mentioned in this thesis, some solutions have been

already created. Performance controlling solutions, such as scripts and extensions, and

pre-emptive thermal throttling software are covered in this section.

Figure 28. Demonstration of an attempt to change power limit values and timings on a system with those

values locked.

46

3.4.1 Simple scripts and GUI applications

Current solutions for controlling the CPU behaviour are generally simple scripts of

varying quality that can be found on GitHub or GUI applications in the form of desktop

environment extensions and GTK+ or Qt based graphical applications. The solutions are

simple in functionality as they simply write the values once and offer no other features or

recommendations for a less experienced user. Furthermore, the presentation layer and the

logic that does the actual CPU controlling are heavily tied together in the case of

extensions and GUI applications.

Some solutions are also very limited in their support. For example, running a GNOME 3

extension is only possible on that particular desktop environment, effectively leaving out

users of other desktop environments, such as KDE, MATE, XFCE and others.

One example of a GUI solution is a GNOME 3 extension made by Martin Koppehel called

“CPU power manager” that allows for configuring the minimum and maximum CPU

power states [30]. The interface is shown on Figure 29.

Using this extension, it is possible to configure various profiles and set different

performance levels. It does help with managing power usage and temperatures, but

unfortunately this extension is only available on GNOME 3 and it provides no throttling

functionality.

Figure 29. Screen capture of a GNOME 3 CPU power manager extension [31].

47

3.4.2 Linux Thermal Daemon

Linux Thermal Daemon is an open source project by Intel that aims to offer a user mode

daemon for thermal management. Its description mentions that it is aimed towards system

developers who manage thermal dissipation in various configurations, including

desktops, laptops, smartphones and embedded devices [32].

The project makes use of existing kernel infrastructure and aims to keep the temperatures

under control while maintaining optimal performance. It does so by getting input data

from various sensors and activating various cooling devices after a trip point has been

reached [32].

Cooling devices include performance states (P-states), the RAPL (Running Average

Power Limit) controller, Powerclamp driver, T-states and additional cooling devices,

such as fan controllers, that can be managed from the configuration file.

With the default configuration the thermal daemon reads temperature information from

/sys/devices/platform/coretemp.0 and calculates a temperature trip point using

temp1_max and temp1_crit values. For example, Intel i5-3320M reports temp1_max as

87000 and temp1_crit as 105000 (87°C and 105°C), resulting in a trip point of 96°C.

As observed by the author in some hardware configurations and demonstrated in Figure

30, the behaviour of Linux Thermal Daemon can be erratic and have negative

consequences, such as hardware damage due to overheating and jumps in performance

manifested by stutter, dropped frames, low responsiveness.

Figure 30. Example of erratic Linux Thermal Daemon behaviour on the test machine. The target

temperature was set to 87°C in the configuration file.

65

70

75

80

85

90

95

100

Te
m

p
er

at
u

re
 (

°C
)

Time

CPU package temperature
lower is better

48

3.5 Linux CPU manager implementation

This section goes over the implementation of the CPU manager solution, going over the

technology used, the general architecture, different governors offered and details about

the throttling algorithm and hardware support.

3.5.1 Overview

Linux CPU manager is a D-Bus service that allows the user to limit the available CPU

performance to achieve better thermals, increase efficiency and improve battery life. The

service offers multiple CPU governors that limit the performance and throttle the CPU

automatically to prevent overheating. The client application can control the service using

the specified API.

The general structure of the CPU manager is based on Linux GPU manager

implementation discussed in section 2.4 of this thesis, meaning that it is written in Python

3 and makes use of D-Bus language bindings and the sysfs virtual filesystem. The

difference is in the driver it controls and the method of throttling used. The CPU

performance is managed using the intel_pstate driver by controlling the allowed

performance states range and the turbo mode status.

Linux CPU manager is supported on all Linux based operating systems which have the

intel_pstate driver enabled. In future iterations support for other cooling methods, such

as RAPL, Powerclamp and CPUFreq, can easily be added.

Linux CPU manager is a free open source project licensed under GPLv3 [10] and

available at https://github.com/Hermanio/linux-cpu-manager.

3.5.2 Architecture

Architecturally the Linux CPU manager is very similar to the GPU manager due to the

similar method of limiting performance. CPU manager, however, provides four different

governors and controls intel_pstate driver controls which can limit the performance

states of the CPU and toggle the turbo mode state. Figure 31 shows a diagram of the

architecture of the CPU manager.

49

Linux CPU manager has many different governors that aim to offer choices for running

the CPU with minimal power usage, at efficient speeds or at maximum performance with

optimal throttling enabled. Their codenames and descriptions are shown on Table 6.

Table 6. Linux CPU manager governors and their clock speed range, scaling governor and description.

Mode

CPU clock

speed range

on test CPU

(MHz)

Scaling governor

for intel_pstate

driver

Description

powersave

locked

1200 powersave Locks the CPU to the lowest

performance level available.

powersave 1200-2000 powersave Sets the available range from

minimum to middle point between

lowest and turbo performance level

(around 55pct).

noturbo 1200-2700 powersave Sets the available range from

minimum to maximum non-turbo

clock speed (also known as the base

clock speed). Throttling enabled at

CPU max temperature (87°C for this

test CPU).

performance 1200-3700 performance Allows the CPU to run at its full clock

speed range.

75°C target,

96°C target

1200-3700 performance Quick modifications to performance

governor to test CPU throttling

behaviour at 96°C and 75°C targets.

Temporary governors until

temperature limit setting and

configuration file support is finished.

Figure 31. Architecture of the Linux CPU manager.

50

3.5.3 Algorithm

Linux CPU manager service starts the default governor “stock” which limits the

performance of the CPU to its base clock speed, meaning that turbo mode is disabled. A

CLI client can be used to change the governor in a way similar to Linux GPU manager.

Each governor has a set polling period: 5 seconds for “powersave locked” and 0.25

seconds for other governors. The loop action flow is shown on Figure 32.

3.6 Testing

All CPU tests are done on the test machine described in section 2.5.1 of this thesis. The

testing of the Linux CPU manager component focuses on two aspects: the throttling

component and the effect on performance, power usage and efficiency of its different

governors.

Figure 32. Linux CPU manager service program flow.

51

The throttling component is observed while running a CPU stress test with 16 active

threads over 10 minutes in different configurations. This gives an overview of the thermal

throttling behaviour at different temperature targets and mechanisms. The throttling

behaviour is also compared to the stock configuration and Linux Thermal Daemon.

The performance component is measured using the CPU heavy Linux kernel build test

provided by Phoronix Test Suite. This gives a comparison of Linux CPU manager and

Linux Thermal Daemon performance and the effect of pre-emptive throttling on

performance when compared to no pre-emptive throttling. Kernel build test also measures

the performance, power usage and efficiency of the different CPU governors.

In the following test descriptions and results Linux CPU manager will be referred to as

LCM and Linux Thermal Daemon as LTD.

3.6.1 Thermal throttling tests

When running the CPU without any user-space throttling software running the CPU

eventually hits the 100°C temperature limit and starts thermal throttling. The temperatures

are stable due to the nature of CPU thermal throttling. However, at some points the

temperature can peak at 103°C, being dangerously close to the 105°C critical temperature

shutoff point. If a process suddenly put load on the on-die GPU then an overheating

induced shutdown would be very likely.

LTD thermal behaviour seems to be very close to LCM when comparing the average

temperature. Looking at the temperature graphs shows a different picture, however, as it

is very clear that LTD has a dramatic variance in temperatures, as shown on Figure 33.

Figure 33. CPU package temperature comparison between Linux Thermal Daemon and Linux CPU

manager.

70

80

90

100

Te
m

p
er

at
u

re
 (

°C
)

Time

CPU package temperature under load
lower is better

LCM (87°C target) LTD (87°C target)

52

LCM crosses the set temperature limit by 1-3°C, rarely by 3-5°C, while LTD does this

very often, going over the limit by 5-10°C, effectively not respecting the temperature

limit. In its stock temperature configuration this means going over the 96°C trip point and

reaching temperatures of up to 102°C, as visible on Figure 34.

LCM also has a higher average CPU clock speed, as shown on Figure 35, meaning more

work being done with same thermal limit. This aligns with previous research that suggests

that running the CPU near its thermal limits is the best approach performance wise.

Figure 34. Thermal behaviour of Linux Thermal Daemon with its default settings under load. Note the

variance in temperature and failure to prevent hitting temperatures over 100°C.

Figure 35. Comparison of average CPU frequency under load with the same temperature targets.

65

70

75

80

85

90

95

100

105

Te
m

p
er

at
u

re
 (

°C
)

Time

CPU package temperature under load
lower is better

LTD (96°C target)

3076.68 3177.70

0

500

1000

1500

2000

2500

3000

3500

LTD (96°C target) LCM (96°C target)

Fr
eq

u
en

cy
 (

M
H

z)

CPU average frequency under heavy load
higher is better

53

3.6.2 Performance tests

When comparing the results strictly by performance then having no throttling software

running gets the best results at the risk of an abrupt shutdown. Figure 36 shows this during

kernel build testing as the CPU is allowed to run at maximum performance with a 100°C

throttling point enforced by the CPU itself. Both LTD and LCM are on average slower

by 6.05% and 4.03%, respectively, but LCM is consistently faster than LTD.

LCM consistently beats LTD in terms of performance and thermal behaviour as it is more

stable at a set temperature limit while also being more performant. On average, LCM is

1.9% faster than LTD.

3.6.3 Improved Linux Thermal Daemon results

Previous CPU test results show that LTD exhibits erratic behaviour and seemingly

overcorrects when under a heavy load, resulting in inferior performance and less effective

throttling. The main cause of this could be a default polling interval of 4 seconds which

doesn’t allow for LTD to have an accurate overview of the system temperatures.

A proposed solution for this is to shorten the poll interval. To test this out, the poll interval

was set to 1 second and the trip point is set to 87°C. Figure 37 shows that LTD with the

shorter poll interval has a positive effect on the CPU frequency as it is much more stable

and less volatile.

Figure 36. Comparison of Linux kernel build test results between the stock configuration, Linux Thermal

Daemon and Linux CPU Manager.

203.23
201.50 202.85

205.33

215.52

207.13

216.00

223.42

211.43

204.60

212.34

217.34

190

195

200

205

210

215

220

225

230

Average time Run 1 Run 2 Run 3

Ti
m

e
(s

)

pts/build-linux-kernel test results
lower is better

stock LTD (96°C target) LCM (96°C target)

54

As the CPU frequency is directly related to power usage and CPU package temperatures,

the reduced volatility also has a positive effect on CPU temperature variance, as shown

on Figure 38.

While the average temperature of LTD with a shorter poll interval is at the same level as

LCM and LTD with the default poll interval, the maximum temperature reading during

testing is lowered from 97°C to 91°C, as visible on Figure 39.

Figure 37. Comparison of CPU frequency between Linux Thermal Daemon with a shorter and longer

polling interval.

Figure 38. Comparison of CPU package temperatures under load with Linux Thermal Daemon poll interval

of 1 second and 4 seconds.

1200

1700

2200

2700

3200

3700

Fr
eq

u
en

cy
 (

M
H

z)

Time

CPU frequency under load
higher is better

LTD poll interval 1s LTD poll interval 4s

60

65

70

75

80

85

90

95

100

Te
m

p
er

at
u

re
 (

°C
)

Time

CPU package temperature under load
lower is better

LTD poll interval 1s LTD poll interval 4s

55

The improved LTD configuration saw great improvements, but LCM still had a higher

average CPU frequency, as shown on Figure 40.

During testing it was observed that LTD controls the intel_pstate driver by reducing

the max_freq_pct in steps of 10 while the smallest value that influences performance is

3. This comes from the step calculation in LTD which doesn’t seem to calculate the

number of steps correctly for this CPU. Further improvement regarding the number of

steps may improve the performance of the LTD P-state cooling device implementation.

Figure 39. Comparison of average and maximum CPU package temperatures while under heavy load.

Figure 40. Comparison of average CPU frequency under a heavy load.

87.63

97.00

86.63

91.00

86.40

91.00

80

82

84

86

88

90

92

94

96

98

100

average maximum

Te
m

p
er

at
u

re
 (

°C
)

CPU package temperature under load
lower is better

LTD (87°C target) LCM (87°C target) LTD poll interval 1s

2819.47

2886.13

2849.61

2700

2720

2740

2760

2780

2800

2820

2840

2860

2880

2900

LTD (87°C target) LCM (87°C target) LTD poll interval 1s

Fr
eq

u
en

cy
 (

M
H

z)

CPU average frequency under load
higher is better

56

3.6.4 Linux CPU manager governor testing

Kernel build testing was also carried out using all the governors that LCM offers. As

expected, the slower governors exhibited the lowest performance, as shown on Figure 41.

Figure 42 also shows a predictable pattern as lower performance governors use less

power.

Comparing the efficiency of the modes by CPU cores average power usage the most

efficient mode is “powersave”, as seen on Figure 43. The task may take a longer time to

finish, but the total amount of energy used by CPU cores is considerably smaller.

Figure 41. Comparison of Linux kernel build test results.

Figure 42. Comparison of CPU cores power usage between LCM governors.

557.35

330.27

248.80
281.38

228.72 211.43

0

100

200

300

400

500

600

powersave
locked

powersave noturbo limit 75°C limit 87°C limit 96°C

Ti
m

e
(s

)

pts/build-linux-kernel average build time
lower is better

8.21

13.14

19.51
16.61

24.07

29.50

0

5

10

15

20

25

30

35

powersave
locked

powersave noturbo limit 75°C limit 87°C limit 96°C

P
o

w
er

 (
W

)

CPU cores average power usage
lower is better

57

However, when considering the total system power usage, the situation changes.

Governors with higher clock speeds have an advantage as a 5W addition to the total

system power usage shows that the “noturbo” mode is the most efficient, as shown on

Figure 44. The lowest performance governor is the least efficient according to this

calculation as the rest of the system components are running for a longer time.

Workloads in normal use don’t follow this model. Efficiency should be measured over a

longer time. For example, if the computer must run for 1 hour and during that time a short

but intensive workload is run it would make more sense for it to run at a lower speed.

Figure 43. Comparison of total energy usage between different CPU governors during the Linux kernel

build test.

Figure 44. Comparison of total power use when taking into account a hypothetical system components

power usage of 5W.

1.27 1.21
1.35 1.30

1.53

1.73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

powersave
locked

powersave noturbo limit 75°C limit 87°C limit 96°C

To
ta

l e
n

er
gy

 u
se

 (
W

h
)

CPU cores energy usage
lower is better

3.32

2.43
2.28 2.35 2.39

2.54

0

0.5

1

1.5

2

2.5

3

3.5

powersave
locked

powersave noturbo limit 75°C limit 87°C limit 96°C

To
ta

l e
n

er
gy

 u
se

 (
W

h
)

Simulated system energy use
lower is better

58

Considering the approximate system components power usage and the CPU idle power

usage we see that lower power modes are once again more efficient, as shown on Figure

45. During idling the CPU package will consume at most 4W and other system

components will consume a constant rate of power over time (5-15W, depending on

system components, brightness settings, network connectivity etc.). If the background

system power usage is constant over all modes then the only difference is caused by the

CPU power usage.

3.7 Conclusions

When comparing the thermal behaviour between LTD and LCM it is clear that the LCM

implementation is superior, as it provides better performance at the same temperature

limit. LTD with a shorter polling period confirms this as the temperature variance was

significantly reduced and the average clock speed was increased. These results confirm

the findings of previous work that found that the optimal throttling method was to run the

CPU at the maximum speed as long as the temperature is below a set limit.

Due to these findings an issue has been created at the Linux Thermal Daemon GitHub

page and the author of this thesis will collaborate with the maintainer to improve the

performance of the Linux Thermal Daemon with the proposed solution.

Power savings related findings for Linux CPU Manager indicate that running the CPU at

lower speeds does increase the efficiency of the CPU. The results align with efficiency

curves on CPU-s that are covered in section 3.2.1 of this thesis.

Figure 45. Comparison of total simulated system energy use over 1 hour. The workload run during this

hypothetical scenario is the Linux kernel build test which takes around 3-10 minutes to finish.

10.15 10.15
10.31 10.26

10.50

10.71

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

powersave
locked

powersave noturbo limit 75°C limit 87°C limit 96°C

To
ta

l e
n

er
gy

 u
se

 (
W

h
)

Simulated system energy use over 1 hour
lower is better

59

4 Summary

This thesis aimed to solve issues with poor battery life under Linux and both CPU and

GPU induced overheating. To solve these issues, two services were created with an

accompanying client program implementation. The services allow the user to control the

performance of the CPU and GPU in order to achieve better energy efficiency, improve

battery life and prevent overheating with the included pre-emptive throttling

functionality.

Testing of the GPU manager solution found that for heavier graphical workloads the

power usage of both CPU and GPU components can be reduced significantly. For

example, the GPU power usage saw a decrease of 77.46% with a heavy 3D workload

while the package power usage was only a third of the power usage when compared to

running the workload without the GPU manager. Lighter workloads also had an

improvement in power usage, albeit a smaller one due to the workloads being not that

demanding and the GPU manager being able to influence the power usage less. GPU

manager can also be used to improve efficiency by up to 31%, as seen in section 2.6.3 of

this thesis. The results aligned with sources that suggested that Intel GPU-s have a known

so-called “efficient frequency”.

CPU manager solution testing focused on thermal throttling behaviour and performance

testing of its numerous governors. Thermal throttling tests found that the throttling

behaviour and performance was noticeably better than its alternative, the Linux Thermal

Daemon, exhibited. During testing the author decided to investigate the erratic behaviour

of Linux Thermal Daemon and found that the problem is caused by a polling interval that

is too long and a flaw in calculations which results in the applied correction being too

severe. Tests with a shorter polling period confirmed the issue as the thermal throttling

behaviour was much less erratic and the average CPU clock speed was slightly increased.

CPU manager solution performance testing found that limiting the CPU performance

states can be used to lower CPU temperatures and power usage. Furthermore, the tests

also demonstrated that the CPU efficiency can be increased as the total energy usage

60

during a workload was lower with the low performance governors. The results aligned

with CPU efficiency curves covered in section 3.2.1 of this thesis.

Future work on the solutions created in this thesis focuses on testing on a wider range of

hardware, packaging the solution into an easily installable package, the creation of GUI

clients that can make use of the services and adding configuration file support. The author

will also continue discussing the issues found with Linux Thermal Daemon with the

project maintainer on GitHub and hopes to help solve them.

61

Acknowledgements

I would like to thank Kristjan Kukkur from Flex Sülearvutikeskus for providing access

to a couple of laptops with Intel 8th generation CPUs for testing and analysis purposes.

62

References

[1] Mozilla Corporation, “Firefox Hardware Report,” 22 April 2018. [Online].

Available: https://hardware.metrics.mozilla.com/. [Accessed 22 April 2018].

[2] StatCounter, “Desktop Operating System Market Share Worldwide | StatCounter

Global Stats,” StatCounter, [Online]. Available: http://gs.statcounter.com/os-

market-share/desktop/worldwide/#monthly-201804-201804-bar. [Accessed 22

April 2018].

[3] NetMarketShare, “Operating System Market Share,” [Online]. Available:

https://netmarketshare.com/operating-system-market-share.aspx. [Accessed 22

April 2018].

[4] L. Clark, “The whole web at maximum FPS: How WebRender gets rid of jank –

Mozilla Hacks - the Web developer blog,” 10 October 2017. [Online]. Available:

https://hacks.mozilla.org/2017/10/the-whole-web-at-maximum-fps-how-

webrender-gets-rid-of-jank/. [Accessed 16 May 2018].

[5] Intel Corporation, “Intel® Core™ i7-3820QM Processor (8M Cache, up to 3.70

GHz) Product Specifications,” [Online]. Available:

https://ark.intel.com/products/64889/Intel-Core-i7-3820QM-Processor-8M-

Cache-up-to-3_70-GHz. [Accessed 16 May 2018].

[6] A. L. Shimpi and R. Smith, “Die Size and Transistor Count - The Intel Ivy

Bridge (Core i7 3770K) Review,” 23 April 2012. [Online]. Available:

https://www.anandtech.com/show/5771/the-intel-ivy-bridge-core-i7-3770k-

review/3. [Accessed 29 April 2018].

[7] J. Mechnich, “intel-power-control: GPU power management for Intel hardware

on Linux,” 20 September 2014. [Online]. Available:

https://github.com/jmechnich/intel-power-control. [Accessed 26 April 2018].

[8] Arch Linux Wiki, “Intel graphics - ArchWiki,” 4 April 2018. [Online]. Available:

https://wiki.archlinux.org/index.php/intel_graphics#Module-

based_Powersaving_Options. [Accessed 26 April 2018].

[9] M. Larabel, “Tweaks To Extend The Battery Life Of Intel Linux Notebooks -

Phoronix,” 24 August 2011. [Online]. Available:

https://www.phoronix.com/scan.php?page=article&item=intel_i915_power.

[Accessed 16 May 2018].

[10] B. Widawsky, “A bit on Intel GPU frequency,” 8 May 2015. [Online]. Available:

https://bwidawsk.net/blog/index.php/2015/05/a-bit-on-intel-gpu-frequency/.

[Accessed 16 May 2018].

[11] Free Software Foundation, Inc., “The GNU General Public License v3.0 - GNU

Project - Free Software Foundation,” 29 June 2007. [Online]. Available:

https://www.gnu.org/licenses/gpl-3.0.en.html. [Accessed 16 May 2018].

63

[12] freedesktop.org project, “Introduction to D-Bus,” 14 July 2013. [Online].

Available: https://www.freedesktop.org/wiki/IntroductionToDBus/. [Accessed 16

May 2018].

[13] P. Mochel and M. Murphy, “sysfs - _The_ filesystem for exporting kernel

objects.,” 16 August 2011. [Online]. Available:

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt. [Accessed 22

April 2018].

[14] Intel Corporation, “intel_gpu_frequency.c\tools - xorg/app/intel-gpu-tools - Test

suite and tools for DRM/KMS drivers,” 2015. [Online]. Available:

https://cgit.freedesktop.org/xorg/app/intel-gpu-

tools/tree/tools/intel_gpu_frequency.c. [Accessed 16 May 2018].

[15] L. Brown, “turbostat -- show CPU frequency and C-state residency,” 18 October

2017. [Online]. Available:

https://github.com/torvalds/linux/blob/master/tools/power/x86/turbostat/turbostat.

c. [Accessed 16 May 2018].

[16] Intel Corporation, “Intel® Core™ i5-3320M Processor (3M Cache, up to 3.30

GHz) Product Specifications,” [Online]. Available:

https://ark.intel.com/products/64896/Intel-Core-i5-3320M-Processor-3M-Cache-

up-to-3_30-GHz. [Accessed 16 May 2018].

[17] Phoronix Media, “Phoronix Test Suite v7.8.0 Test Client Documentation,” 14

February 2018. [Online]. Available: https://www.phoronix-test-

suite.com/documentation/phoronix-test-suite.pdf. [Accessed 16 May 2018].

[18] Phoronix Test Suite, “OpenBenchmarking.org - Java 2D Microbenchmark Test

Profile,” 3 March 2018. [Online]. Available:

https://openbenchmarking.org/test/pts/j2dbench. [Accessed 22 April 2018].

[19] Phoronix Test Suite, “OpenBenchmarking.org - Unigine Sanctuary Test Profile,”

27 February 2018. [Online]. Available:

https://openbenchmarking.org/test/pts/unigine-sanctuary. [Accessed 22 April

2018].

[20] D. v. Vugt, “IntelQuickSyncVideo - Ubuntu Wiki,” 5 February 2018. [Online].

Available: https://wiki.ubuntu.com/IntelQuickSyncVideo. [Accessed 26 April

2018].

[21] T. Jukić, “Draw calls in a nutshell - Tonči Jukić - Medium,” 25 June 2015.

[Online]. Available: https://medium.com/@toncijukic/draw-calls-in-a-nutshell-

597330a85381. [Accessed 28 April 2018].

[22] C. Gough, I. Steiner and W. A. Saunders, Energy Efficient Servers - Blueprints

for Data Center Optimization, Apress, 2015, pp. 36-37.

[23] P. S. Y. Deepak Rajan, “Temperature-Aware Scheduling:,” in The Ninth

International Conference on Web-Age Information Management , Zhangjiajie

Hunan, 2008.

[24] R. Rao and S. Vrudhula, “Performance Optimal Processor Throttling Under

Thermal Constraints,” in Proceedings of the 2007 international conference on

Compilers, architecture, and synthesis for embedded systems, Salzburg, 2007.

[25] L. Zhou and S. Guo, “Thermal management of ARM SoCs using Linux CPUFreq

as cooling device,” COMPUTER MODELLING & NEW TECHNOLOGIES 2014,

vol. 18, no. 12D, pp. 162-167, 2014.

64

[26] “Intel P-State driver,” [Online]. Available:

https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt. [Accessed

17 May 2018].

[27] J. P. Arjan van de Ven, “INTEL POWERCLAMP DRIVER,” [Online].

Available:

https://www.kernel.org/doc/Documentation/thermal/intel_powerclamp.txt.

[Accessed 17 May 2018].

[28] S. Pandruvada, “Running Average Power Limit – RAPL,” 06 June 2014.

[Online]. Available: https://01.org/blogs/2014/running-average-power-limit-

%E2%80%93-rapl. [Accessed 17 May 2018].

[29] C. Imes, “Ubuntu Manpage: rapl-set - set RAPL configurations,” [Online].

Available: http://manpages.ubuntu.com/manpages/bionic/man1/rapl-set.1.html.

[Accessed 17 May 2018].

[30] M. Koppehel, “martin31821/cpupower: Gnome-Shell Extension for intel-pstate

driver,” [Online]. Available: https://github.com/martin31821/cpupower.

[Accessed 17 May 2018].

[31] M. Koppehel, “CPU Power Manager - GNOME Shell Extensions,” [Online].

Available: https://extensions.gnome.org/extension/945/cpu-power-manager/.

[Accessed 17 May 2018].

[32] Intel Corporation, “Introduction to Thermal Daemon | 01.org,” [Online].

Available: https://01.org/linux-thermal-daemon/documentation/introduction-

thermal-daemon. [Accessed 17 May 2018].

