
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Stanislav Nazmutdinov 163596IAPM

Automated provisioning of data

analytics platforms in the Estonian

Scientific Computing Infrastructure

Supervisors: Juhan-Peep Ernits, PhD

Ilja Livenson, MSc

Tallinn 2018

TALLINNA TEHNIKALIKOOL

Infotehnoloogia teaduskond

Stanislav Nazmutdinov 163596IAPM

Andmeanalüütika platvormide

automatiseeritud paigaldamine Eesti

Teadusarvutuste Infrastruktuuris

Juhendajad: Juhan-Peep Ernits, PhD

Ilja Livenson, MSc

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Stanislav Nazmutdinov

Date:

Signed:

Abstract

Data analytics has become increasingly important in the recent years. Analysis of data is

expected to reveal hidden knowledge and patterns. Cloud computing paradigm provides

a necessary infrastructure for executing data analytics workloads. However, to take

advantage of cloud computing, it is often required to deploy and configure complex

engines and development environments on remote virtual machines. The deployment

complexity hinders data analysts from adopting novel approaches and technologies.

In order to overcome some of these challenges, we first explore the most widely used

tools for data analytics in the industry and in Estonian academia. As a result we

decide to focus on Python-based single-node processing. Afterwards we design and

build services for provisioning and configuration management of Python development

environment and JupyterHub deployment. The services are built in the hybrid cloud

brokerage system Waldur1 which is used at Estonian Scientific Computing Infrastructure

organization 2. Throughout the thesis, we describe the design of the most crucial parts of

the proposed services as well as discuss possible ways of testing the implemented services

and introduce integration tests for comprehensive quality control. Once the services

are implemented and integrated into technical infrastructure of Waldur deployment at

Estonian Scientific Computing Infrastructure, we perform evaluation with the potential

users from academia. The gathered feedback from the users indicates that the services

are indeed relevant to their everyday work and have the potential to be adopted by the

university lecturers and researchers.

The thesis is in English and contains 73 pages of text, 5 chapters, 15 figures, 48 tables

and 2 appendices.

1https://opennodecloud.com/products/waldur.html
2http://etais.ee/

https://opennodecloud.com/products/waldur.html
http://etais.ee/

Annotatsioon

Andmeanalüütika platvormide automatiseeritud paigaldamine Eesti

Teadusarvutuste Infrastruktuuris

Andmeanalüütika on viimastel aastatel muutunud üha olulisemaks. Meetodeid

mis kasutatakse andmeanalüüsis lubavad avastada andmetes peidetud teadmisi

ja mustreid. Pilvandmetöötluse paradigma pakub vajaliku infrastruktuuri and-

meanalüütika töökoormuse teostamiseks. Aga pilvandmetöötluse ärakasutamiseks

on sageli vaja juurutada ja konfigureerida keerukaid tarkvarasid ja arenduskeskkon-

dasid virtuaalmasinatel. Juurutamise keerukus takistab andmeanalüütikuid kasu-

tusele võtta uudseid tehnoloogiaid.

Selleks, et lahendada mõned need probleemid me kõigepealt uurime kõige laiemalt

kasutatud andmeanalüütikutega seotud tööriistad Eesti akadeemilise maailma sees

ja väljaspool. Selle tulemusena me otsustame keskenduda Python-põhisele järjestikku

töötlemisele. Seejärel me kavandame ja loome automatiseeritud paigaldamise ja

konfiguratsiooni haldamise teenuseid Pythoni arenduskeskkonna ja JupyterHubi

jaoks. Teenused on ehitatud hübriidpilvehaldamise süsteemis Waldur3 mis kasu-

tatakse Eesti Teadusarvutuste Infrastruktuuri organisatsioonis 4. Antud töö käigus

me kirjeldame pakutavate teenuste kõige olulisemaid disaini osasid ning arutleme

rakendatud teenuste testimise võimaluste üle ja esitleme integratsiooni testisid,

et kindlustada kõikehõlmavat kvaliteedikontrolli. Kui teenused on rakendatud ja

integreeritud Walduri juurutamise tehnilise infrastruktuuriga Eesti Teadusarvu-

tuste Infrastruktuuri organisatsioonis, me hindame neid teenuseid akadeemiliste

ringkondade potentsiaalsete kasutajatega. Kasutajatelt kogutud tagasiside näitab,

et teenused on tõepoolest asjakohased nende igapäevasele tööle ning et teenustel on

olemas potentsiaal, et ülikooli õppejõud ja teadustöötajad hakkavad neid kasutada

oma töös.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 73 leheküljel, 5 peatükki,

15 joonist, 48 tabelit ja 2 lisa.

3https://opennodecloud.com/products/waldur.html
4http://etais.ee/

https://opennodecloud.com/products/waldur.html
http://etais.ee/

Acknowledgements

I would like to thank my university supervisor Juhan-Peep Ernits who guided me through

the writing part of the thesis. Furthermore, I want to express my gratitude to Ilja

Livenson, a key person at Waldur project, who assisted me with technical questions

regarding Waldur. I am also grateful to all who participated in the first survey and

in the final evaluation process. Finally, I want to thank Alexander Horst Norta who

provided a LaTeX template for the thesis. Last, but not least, I want to thank Victor

Mireyev, a developer from Waldur for his thorough reviews of my code.

iv

Contents

Abstract ii

Annotatsioon iii

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 Existing Body of Knowledge . 2

1.1.1 Cloud computing . 2

1.1.2 Data analytics . 4

1.1.3 Contribution - Detecting a Gap . 5

1.2 Research Questions and Research Methodology 6

1.2.1 Research Questions . 6

1.2.2 Design Science Research Framework 6

1.2.3 Design Science Research - Application 7

1.3 Thesis Structure . 10

2 Background 11

2.1 Cloud computing service models . 11

2.1.1 Platform as a Service . 11

2.1.2 Analytics as a Service . 12

2.1.3 Application provisioning services 13

2.2 Related work . 14

2.2.1 Application provisioning services for data analytics systems 14

2.2.2 Analytics as a Service platforms 15

3 State-of-the-art data analytics engines 19

3.1 Introduction . 19

3.2 General-purpose data processing engines 19

3.2.1 Python-based libraries . 20

v

Contents vi

3.2.2 R . 20

3.2.3 Hadoop ecosystem . 21

3.2.4 Apache Spark . 25

3.2.5 H2O . 25

3.2.6 Apache Mahout . 26

3.2.7 XGBoost . 26

3.2.8 Data streaming . 27

3.3 Deep learning libraries . 29

3.3.1 TensorFlow . 29

3.3.2 Caffe2 . 30

3.3.3 PyTorch . 30

3.3.4 MXNet . 31

3.3.5 Keras . 31

3.4 Survey . 32

3.5 Discussion . 35

3.6 Conclusion . 37

4 Services for management of data analytics tools 38

4.1 Introduction . 38

4.2 Requirements for the application provisioning services 39

4.2.1 Python libraries management scenarios 40

4.2.2 JupyterHub management scenarios 42

4.3 Waldur architecture . 42

4.3.1 Three-tier architecture . 44

4.3.2 Asynchronous tasks execution . 44

4.3.3 High availability and scalability . 45

4.4 Python management service architecture implementation 46

4.4.1 Prerequisites . 46

4.4.2 Cloud application deployment and management layer 46

4.4.3 Ansible - a configuration management tool 47

4.4.4 Python management service structure 48

4.4.5 Cloud application management process 51

4.4.6 Library name autocomplete functionality 52

4.5 JupyterHub provisioning service . 54

4.5.1 Prerequisites . 55

4.5.2 JupyterHub service architecture 56

4.6 Quality control of the built services . 58

4.7 Evaluation . 62

4.7.1 Feedback from the potential users 62

4.7.2 Comparison with services from other cloud providers 69

4.8 Discussion . 71

4.9 Conclusion . 72

5 Conclusion and Future Work 74

5.1 Conclusion . 74

5.2 Answering the Research Questions . 75

Contents vii

5.2.1 RQ-1: What are state-of-the-art data analytics engines used in
the industry and in Estonia? . 75

5.2.2 RQ-2: How to automate provisioning and management of data
analytics tools through hybrid cloud brokerage platform? 76

5.3 Limitations . 76

5.4 Future Work . 77

A Scenarios for Python management service 79

B Scenarios for JupyterHub management service 85

Bibliography 90

List of Figures

1.1 Design Science Research - Framework (Source: [1]) 7

2.1 Data analytics workflow (Source: [2]) . 13

3.1 Data analytics frameworks with survey results 36

4.1 High-level activity diagram of data analytics provisioning services in Waldur 41

4.2 Waldur deployment architecture (Source: based on internal Waldur doc-
umentation) . 43

4.3 Python Environment management service class diagram 49

4.4 Python environment management after provisioning on the virtual machine 50

4.5 Python environment management details screen. Scenarios are described
in Appendix A . 51

4.6 General application provisioning and management process 53

4.7 Python packages indexing batch task . 55

4.8 JupyterHub management service class diagram 56

4.9 JupyterHub environment management after provisioning on the virtual
machine . 57

4.10 JupyterHub management details screen. Scenarios are described in Ap-
pendix B . 58

4.11 Test pyramid (Source: [3]) . 60

4.12 Integration tests execution process . 61

viii

List of Tables

1.1 Design Science Research - Guidelines (Source: [1]) 8

1.2 Design Science Research - Evaluation Methods (Source: [1]) 9

3.1 Comparison of available distributed data processing engines (Source: [4]) 21

3.2 MapReduce data flow (Source: [5]) . 23

3.3 Comparison of available distributed data querying engines (Source: [6]) . 24

3.4 Provided features comparison table of XGBoost and other gradient boost-
ing solutions (Source: [7]) . 27

3.5 MXMNet comparison with other popular open-source deep learning li-
braries (Source: [8]) . 31

3.6 Survey responses to question 1: What organization do you belong to? . . 32

3.7 Survey responses to question 2: What programming language do you feel
comfortable with? . 33

3.8 Survey responses to question 3: What data analysis toolkits do you use? . 34

3.9 Survey responses to question 4: What deep learning libraries do you use? 35

4.1 Survey responses to question 1: The process of setting up a python de-
velopment environment through self-service is more convenient than via
SSH terminal . 62

4.2 Survey responses to question 2: Self-service enables me to rapidly set up
a python development environment on a remote virtual machine 63

4.3 Survey responses to question 3: JupyterHub management service provides
sufficient amount of configuration options 63

4.4 Survey responses to question 4: Python management service will help me
to improve courses that I teach . 64

4.5 Survey responses to question 5: JupyterHub management service will help
me to improve courses that I teach . 64

4.6 Survey responses to question 6: Python management service will help me
to solve data analysis tasks in cloud environment more efficiently 64

4.7 Survey responses to question 7: JupyterHub management service will help
me to solve data analysis tasks in cloud environment more efficiently . . . 65

4.8 Survey responses to question 8: What additional Jupyter extensions would
you like to be part of the deployment? . 65

4.9 Survey responses to question 9: Did you encounter any errors while man-
aging Python virtual environments or deploying JupyterHub? 65

4.10 Survey responses to question 10: What kind of errors did you encounter? 66

4.11 Survey responses to question 11: Provided log output of management
requests helped me to resolve the issues 66

ix

Contents x

4.12 Survey responses to question 12: After resolving the issues, Python man-
agement service worked in a stable way 66

4.13 Survey responses to question 13: After resolving the issues, JupyterHub
management worked in a stable way . 67

4.14 Survey responses to question 14: I will use Python management service
in my future work . 67

4.15 Survey responses to question 15: I will use JupyterHub management ser-
vice in my future work . 67

4.16 Survey responses to question 16: What is your overall satisfaction with
Python management service? . 68

4.17 Survey responses to question 17: What is your overall satisfaction with
JupyterHub management service? . 68

4.18 Jupyter as a Service systems comparison 71

A.1 Python management scenario to ensure portability across supported cloud
providers . 79

A.2 Python management scenario for installation and uninstallation of Python
libraries in dedicated virtual environments 80

A.3 Python management scenario for functionality to discover manually in-
stalled libraries . 80

A.4 Python management scenario to ensure parallel management of different
virtual environments on a virtual machine 81

A.5 Python management scenario for search of manually created virtual en-
vironments on a virtual machine . 81

A.6 Python management scenario for audit functionality 82

A.7 Python management scenario for library autocomplete feature in graphi-
cal user interface . 82

A.8 Python management scenario for uploading requirements file with list of
libraries to install . 83

A.9 Python management scenario for downloading list of installed libraries in
a virtual environment . 83

A.10 Python management scenario for removal of virtual environments 84

A.11 Python management scenario for provisioning up-to-date version of Python
environment . 84

B.1 JupyterHub management scenario to ensure portability across supported
cloud providers . 85

B.2 JupyterHub management scenario to ensure release of unused computing
resources on the virtual machine with instllaed JupyterHub 86

B.3 JupyterHub management scenario for configuring user authentication . . . 86

B.4 JupyterHub management scenario for integration of Python and Jupyter-
Hub management services . 87

B.5 JupyterHub management scenario for configuring OAuth2 authentication 87

B.6 JupyterHub management scenario to ensure secure connection to Jupyter-
Hub . 88

B.7 JupyterHub management scenario for audit functionality 88

B.8 JupyterHub management scenario for JupyterHub uninstallation 89

List of Abbreviations

UML Unified Modeling Language

API Application Programming Interface

PaaS Platform as a Service

AaaS Analytics as a Service

DSL Domain Specific Language

ETL Extract, Transform, Load

HDFS Hadoop Distributed File System

HPC High-performance computing

IAM Identity and Access Management

GPU Graphics Processing Unit

ASIC Application-specific integration circuit

REST REpresentational State Transfer

CLI Command-line interface

PyPi Python Package Index

IAM Identity and Access Management

VCS Version Control System

xi

Chapter 1

Introduction

Nowadays, technology is constantly advancing and infiltrating people’s everyday lives.

Volumes of collected data in both industry and research grow exponentially. By ana-

lyzing large volumes of data, researchers may discover hidden knowledge and relations,

which may support decision making in many areas [9].

Cloud computing paradigm provides efficient architecture, which helps overcome storage

and processing issues users face when performing large-scale computations: it provides

reliable storage capacities [10] and sufficient computing resources [11]. Moreover, cloud

computing services free users from the burden of building and maintaining complex

cluster infrastructure themselves.

Even though data analytics frameworks hide a lot of technical nuances, the main draw-

back of such toolkits, is that it is quite challenging and time-consuming to deploy, con-

figure and properly manage them. These engines can also be complemented with other

tools supporting data processing (for instance, interactive computing environments, vi-

sualization, monitoring, debugging tools). As the result, deployment complexity repels

researchers from using cloud computational resources, since it requires additional effort

and drives focus away from their main research goals.

The Estonian Scientific Computing Infrastructure is an organization that aims to pro-

vide computing and storage resources for the Estonian scientific community and R&D

companies. Until recently, the Estonian Scientific Computing Infrastructure organiza-

tion focused mainly on supporting High Performance Computing workloads, however,

the focus was shifted towards providing cloud computing services [12]. Waldur is an

open-source cloud brokerage platform and it is used by Estonian Scientific Computing

Infrastructure to provide cloud services [13].

1

Chapter 1. Introduction 2

As of today, Waldur provides its users mostly only infrastructure as a service model, thus

extending Waldur with services for provisioning and managing existing data analytics

engines is the main goal of this thesis. Suitable tools are identified by conducting a

literature analysis and a survey among industry practitioners and Estonian researches

from academia.

1.1 Existing Body of Knowledge

The following subsections describe the main concepts related to the thesis. First, we

give an overview of Cloud computing and its main concepts in Section 1.1.1. After-

wards, Section 1.1.2 introduces the main concepts of data analytics and last Section

1.1.3 identifies the research gap.

1.1.1 Cloud computing

Cloud computing is a novel approach for computing resources provisioning which utilizes

breakthrough technologies that emerged in the past years. Cloud concept definitions

may wary [14], but in a nutshell it is an architecture which provides its customers a

pool of resources with on demand availability and usage-based pricing (whether it is

hardware, development platforms or services). It enables high flexibility and leads to

greater efficiency and cost reduction for both cloud provider and clients. Moreover, each

customer is able to compose their personal cost plan and manage their resources through

self-service or API endpoints. Cloud computing paradigm relies on two main techniques:

Service-Oriented Architecture and Virtualization.

Service-Oriented Architecture is an architecture style that constitutes of design principles

for integrating a variety of loosely coupled, independent and self-contained components

that communicate with each other over a network. Collectively, all the involved services

support larger business workflows [15].

Virtualization is a corner stone of each cloud environment. Virtualization is a concept of

creating virtual versions of various resources, most notable examples include hardware

(virtual machines creation that act as if they were operation systems running on on

native hardware), memory (abstracting away internal implementation of memory), stor-

age (composing logical storage with added value on top of underlying physical storage)

and network (allowing users to configure network connectivity and addressing space in

the cloud). Virtualization provides numerous benefits to both cloud provider and its

users, which include increased efficiency (multiple virtual resources can be grouped on

Chapter 1. Introduction 3

one physical server), greater resource versatility and configurability and more reliable

resource availability [16].

Overall, cloud computing brings following benefits to the users [11]:

• Automated infrastructure management: the cloud provider is responsible for man-

aging low-level infrastructure. Moreover, all major cloud providers also offer value-

added services for automated applications deployment.

• Flexibility and scalability: users can adapt their usage of computing resources at

any time

• Pay per usage model: users are charged for cloud services on an hourly basis for

the resources that are solely used by them. Usually, cloud providers do not require

any advance payment.

1.1.1.1 Cloud deployment models

Cloud deployment strategies vary depending on the needs of the cloud provider’s tar-

get customer group. We list here only well-established deployment models, without

including any emerging techniques such as micro clouds/ad hoc clouds and cloudlets etc

[17].

• Public Cloud: it is a deployment model when a cloud provider makes its resources

available to to the general public over the Internet. Public Cloud combined with

Platform as a Service offered by Public Cloud provider facilitates rapid application

development and early market entry for the small and medium-sized companies.

• Private Cloud: this type of cloud is more secure than Public Cloud due to the

fact that whole infrastructure is owned and accessible by a particular organization

for its own purposes. The upfront cost of Private Cloud is much higher than in

case of Public Cloud, since organization not only requires to have all the required

infrastructure, but also qualified experts to maintain it. However, in long run,

Private Cloud can pay off the investments, especially for large organization [18].

• Hybrid Cloud: such deployment strategy takes the best of two previous models:

it allows users to combine Public and Private clouds and choose whichever type

of deployment is more suitable for the each application: critical services with high

security requirements can be hosted on Private Cloud while other less critical

services can reside on Public Cloud. Waldur cloud brokerage platform belongs to

the type of Hybrid Clouds. Hybrid cloud allows users to define disaster recovery

Chapter 1. Introduction 4

strategies involving several cloud providers in order to make users less vulnerable

to data center outages and other incidents 1 2 3.

1.1.1.2 Service delivery models

Different types of services offered by cloud providers can be categorized into 3 main

service models:

• Infrastructure as a Service: Cloud providers offering this service model provide

virtualized computing resources, for instance, virtual machines and storage over

the Internet.

• Platform as a Service: It is a service which can greatly simplify infrastructure oper-

ations of its customers by providing various platforms for application development,

testing, deployment. Waldur currently does not posses any of PaaS offerings, thus

one of the goals of this thesis is to fill this gap.

• Software as a Service: In this case cloud provider offers a software to their cus-

tomers which they can access through a thin client. Customers typically use pro-

vided application on pay-per-use basis.

1.1.2 Data analytics

Data analytics is the process of inspecting, processing and transforming data. By ana-

lyzing large volumes of data, researchers are able to discover hidden patterns, knowledge,

relations and other valuable information, which may bring benefits to both economy and

science by suggesting conclusions and supporting decision-making in many areas.

Data analytics is composed of multiple techniques, including machine learning, data

mining and visualization methods. These techniques are based on fundamental mathe-

matics, statistics and optimization methods [9]. Data analytics can be categorized into

3 categories:

• Descriptive analytics: Data mining and visualization techniques are widely used

in descriptive analytics which answers the question ”what is happening”? Data

mining - is a collection of methods and algorithms which are used to extract and

organize valuable information from various data sets. It involves great variety of

1https://www.readitquik.com/articles/cloud-3/top-7-aws-outages-that-wreaked-havoc/
2https://cloudstatus.eu/status/google-cloud/
3https://cloudstatus.eu/status/windows-azure

https://www.readitquik.com/articles/cloud-3/top-7-aws-outages-that-wreaked-havoc/
https://cloudstatus.eu/status/google-cloud/
https://cloudstatus.eu/status/windows-azure

Chapter 1. Introduction 5

methods including data pre- and post-processing, pattern analysis, data classifica-

tion, clustering methods and data fusion techniques and others [19]. Visualization

is another important approach used to create graphical representations of data

that help to better understand data under analysis.

• Predictive analytics: Machine learning algorithms and tools are essential in predic-

tive analytics which gives an answer to the questions ”What may happen?”, ”What

are possible future trends?”. Machine learning - is a set of self-learning algorithms

that can hidden detect patterns in data (i.e learn from the provided data) and

then use this ”experience” to perform some kind of decision making. [20]. Notable

subset of machine learning algorithms are deep learning algorithms that proved to

be very successful in many areas including image and video recognition, natural

language processing.

• Prescriptive analytics: this type of systems aim to assist and even automate deci-

sion making, thus prescriptive analytics tries to answer the question ”What actions

should be taken?” [21]. Prescriptive analytics systems are based on previously built

descriptive and predictive analytics in order to be able to come to valid conclusions.

Due to the flexibility that cloud computing paradigm brings to the users, there is an

emerging type of services called Analytics as a Service model which interrelates data

analytics applications with cloud computing environment. This model is considered to

be an alternative to traditional on-premise data analytics. We describe Analytics as a

Service model in more detail in Section 2.1.2.

1.1.3 Contribution - Detecting a Gap

The main goal of the thesis is to construct services for management of data analytics

platforms within Waldur - the hybrid cloud management system. While in the essence,

the idea for such platform is not new, to the best of our knowledge, there are no such

platforms which would possess following attributes:

• The platform is part of hybrid cloud brokerage system.

• Complete source code of the cloud management system is distributed under open

source license.

Throughout the course of the thesis we describe design and implementation of these

services. Instantiation of the design within technical infrastructure of Waldur will show

that such service is possible to build in hybrid cloud orchestration systems. It is one

Chapter 1. Introduction 6

of the first steps for Waldur to further widen its set of provided services beyond just

Infrastructure as a Service. Moreover, we discuss how the logic of the built services can

be proficiently tested.

1.2 Research Questions and Research Methodology

In order to structure the thesis and ensure its rigor, we follow design science research

methodology. It is a formal framework which describes how to apply design-science

paradigm in the context of information systems. [1].

1.2.1 Research Questions

The main research question is phrased as follows: How to dynamically manage

deployment and life cycle of data analytics platforms in the context of hybrid

cloud brokerage platform?

The main research question is divided into two subquestions:

• RQ-1: What are state-of-the-art data analytics engines used in the in-

dustry and in Estonia?

• RQ-2: How to automate provisioning and management of data analytics

tools through hybrid cloud brokerage platform?

Answer to the first research question is given through literature analysis and survey,

we provide an informative overview of available solutions. Based on the discovered

knowledge, we make a decision which tools exactly to provision and what kind of use

cases is sensible to automate. The proposed design for the second question is instantiated

and evaluated with potential customers.

1.2.2 Design Science Research Framework

The core of the Design Science Research process is presented in Figure 1.1 by Hevner

et al. [1]. According to this framework, the main output of the design science research

process is an artifact which can be defined as methods, models, constructs or instantia-

tions. The authors specify that methods may be algorithms and practices, models can

be seen as abstractions and representations, constructs are referred to vocabulary and

Chapter 1. Introduction 7

Figure 1.1: Design Science Research - Framework (Source: [1])

symbols. Instantiations can be implementation or a prototype [1].

The process of creation of an artifact should be based on the following aspects: firstly, it

should be relevant to the environment and be applicable there. Secondly, artifact should

be built on top of existing knowledge base. What is more, the provided artifact should

not only be useful to the environment where it is built, but also provide contribution to

the knowledge base.

1.2.3 Design Science Research - Application

The paper also provides guidelines which help researchers understands requirements of

design science research. These are illustrated in Table 1.1. In this section we describe

how these guidelines are applied in the context of the current thesis.

1.2.3.1 Design as an Artifact

The artifact produced throughout this thesis intends to solve the issue of provisioning

and management of data analytics platforms in hybrid cloud environment. The artifact

consists of a model and its instantiation. More thorough description of contributions is

presented in the previous Section 1.1.3.

Chapter 1. Introduction 8

Table 1.1: Design Science Research - Guidelines (Source: [1])

1.2.3.2 Problem Relevance

Addressed problem is relevant especially in the cloud environment context. Even though

modern data analytics frameworks hide a lot of technical nuances, the main drawback of

such toolkits is that it is quite challenging and time-consuming to deploy, configure and

properly manage them. As the result, deployment complexity repels researches from

using cloud computational resources, since it requires additional effort and drives focus

away from their main research goals.

1.2.3.3 Design Evaluation

Authors of design science research paper list evaluation methods which are summarized

in Table 1.2. The evaluation in the current thesis is done with several methods.

During this thesis we instantiate the proposed data analytics tools provisioning model

and integrated it with the existing technical infrastructure of Waldur cloud-brokerage

system. Afterwards, a case-study evaluation with potential users is performed.

Chapter 1. Introduction 9

Table 1.2: Design Science Research - Evaluation Methods (Source: [1])

1.2.3.4 Research Contribution

The thesis makes a contribution in a form of an implementation of services for Python

development environment management and JupyterHub configuration management on

a remote machine. These services make Waldur cloud services more accessible to users

who would like to execute Python-based single-node workloads in the cloud. The core

design of the application logic for application configuration management is general and

can be reused for the purpose of provisioning other cloud applications. We show this

reusability by implementing two services.

1.2.3.5 Research Rigor

Prior to selection of suitable data analysis tool for provisioning, we perform literature

analysis and conduct a survey among Estonian scientific community. During this thesis,

we use UML modeling language in order to document the proposed design.

As for practical part, the quality of the code is constantly controlled by the continuous

integration pipelines powered by Jenkins4. The pipelines includes tests and static code

analysis tools for identification of security vulnerabilities5 and for checking code style6.

4https://jenkins.io/
5https://wiki.openstack.org/wiki/Security/Projects/Bandit
6http://flake8.pycqa.org/en/latest/

https://jenkins.io/
https://wiki.openstack.org/wiki/Security/Projects/Bandit
http://flake8.pycqa.org/en/latest/

Chapter 1. Introduction 10

On top of that, the code is reviewed by other peers to ensure that the implementa-

tion adheres clean-code conventions, object-oriented design principles and that testing

requirements are fulfilled.

1.2.3.6 Design as a Search Process

As part of a search process, we perform a literature analysis and conduct a survey among

our target user group to identify what data analytics framework are most commonly used

in the industry and in the scientific community. Afterwards, we select the most promising

tool that will bring the most benefit to the target users. We then come up with the set

of use cases that the services should support. The appropriate services for provisioning

of these tools are then designed and built within the existing technical infrastructure of

Waldur cloud management system. Finally, the proposed solution is validated during

case-study evaluation with the users.

1.2.3.7 Communication of Research

The thesis is presented to the university examining committee and afterwards made

available to everyone on the Digital Collection of Tallinn University of Technology Li-

brary.

1.3 Thesis Structure

The rest of the thesis is structured as follows: Chapter 2 introduces state of the art

applications provisioning cloud solutions and Analytics as a Service solutions. In chapter

3 we describe available frameworks and engines for data analytics and report our survey

findings. Chapter 4 describes architecture of the service for provisioning data analytics

tools in Waldur and its case-study evaluation. Finally, Chapter 5 concludes the thesis

and provides a discussion of the achieved results.

Chapter 2

Background

The following chapter explains basic concepts used in this thesis. Section 2.1 describes

service models that support data analytics in the cloud environment. Subsequently

Chapter 2.2 introduces state of the art cloud applications provisioning solutions and

Analytics as a Service platforms which provide interactive computing capabilities to

perform data analytics in the cloud.

2.1 Cloud computing service models

In this Chapter we will further elaborate main concepts described in Sections 1.1.1, 1.1.2

and show how they are interdependent.

2.1.1 Platform as a Service

Nowadays Platform as a Service model is becoming increasingly significant to operators

and developers. Platform as a Service model is a middle ground between low-level

Infrastructure as a Service and high-level Software as a Service models. Cloud computing

has been initially introduced to free developers from burden of infrastructure issues,

PaaS, in turn, provides means to build and deploy cloud applications in more efficient

way. As the result, PaaS is widely used by start-ups and medium-sized companies who

strive to reduce time to market as much as possible [18].

According to Costache et al. [23] Platform as a Service model posesses three distinct

features:

11

Chapter 2. Background 12

• Deployment automation: meaning that PaaS is able to deploy supplied application,

properly configure runtime environment for it and upgrade the environment if

necessary.

• Monitoring: in other words, PaaS should be able to collect and retrieve both

application-level as well as PaaS-level logs to be able to conclude regarding current

state of the system.

• Resource provisioning: PaaS should be able to allocate required resources to the

running applications.

Naturally PaaS systems are not limited only to these features. Additionally, these

systems may offer graphical user interface, failure recovery and auto-scaling features

in order to ensure that service-level agreements are satisfied.

PaaS systems have found adoption in a wide range of domains, including High Perfor-

mance Computing applications, Data Analytics and Web Applications [23]. In this work

we will focus on data analytics workloads.

2.1.2 Analytics as a Service

Nowadays due to the great variety of the data that can be processed and analyzed, there

are numerous fragmented tools available for each type of workloads. These tools run

in disjointed environments, so it is very time-consuming and difficult to integrate these

tools with each other.

Moreover, with ever growing volumes of analyzed data, scalability of the available tools

becomes a problem. The issue is solved with parallel computing: spreading load across

multiple computing nodes. Cloud environment with possibility to request seemingly

limitless resources is a natural choice for this kind of workloads.

As the result, there is an emerging service model that a lot of cloud providers strive to

offer: Analytics as a Service. Analytics as a Service cloud solutions provide an envi-

ronment that attempts to unify numerous fragmented tools in one single environment.

Additionally, AaaS provides better scalability and availability of resources for data-

intensive analytical applications as well as higher cost savings by taking over low-level

infrastructure management [21]. Furthermore, some Analytics as a Service services help

to coordinate team activities by providing advanced IAM, project workspaces, datasets

and source code versioning. Analytics as a Service solutions may either follow Platform

as a Service model or can be application provisioning systems which are focused more

on deployment of data analytics engines.

Chapter 2. Background 13

Figure 2.1: Data analytics workflow (Source: [2])

A general overview of the data analytics workflow is depicted in Figure 2.1. First block

illustrates possible origins of data such as various database management systems (both

SQL and NoSQL), data warehouses, data streams. The second block depicts various

data cleaning and other transformation tasks. The processed data is used to train vari-

ous machine learning models. Once a model is built, it should be validated. Usually the

model is tested for various attributes using the original input and calibrated if required.

Afterwards, when model reaches scoring phase, it is ready to generate predictions and

recommendations. The results are then thoroughly analyzed and acted upon [2]. AaaS

systems aim to support all the major steps from this workflow: offer integration with

various data sources, provide effective tools for data management, model construction

and visualization of data. Each part of the workflow is usually powered by the partic-

ular open-source solution. When all of them are integrated together they form unified

Analytics as a Service system.

2.1.3 Application provisioning services

These are such services that provide automatic configurable deployment of application

in the cloud. The deployment strategy may vary a lot: from a simple installation

of the particular system packages on a single machine to a complicated cluster setup.

These systems are very useful to cloud users, since they allow rapid deployment of

various applications. At the same time these services leave users a possibility to access

provisioned virtual machines to perform additional manipulations if needed. Many of

Chapter 2. Background 14

such systems provide automatic deployment of data analytics tools. We ourselves build a

service which will offer automatic deployment and some degree of subsequent automated

configuration management.

2.2 Related work

In this section we introduce available cloud application provisioning systems and Ana-

lytics as a Service solutions from major providers on a cloud market.

2.2.1 Application provisioning services for data analytics systems

2.2.1.1 Amazon AWS

One way of provisioning software to cloud users is by distributing machine images with

pre-installed software packages. Amazon AWS hosts its own marketplace with a handful

of virtual machine images (called Amazon Machine Images) with different pre-installed

data analytics software1 (e.g GPU drivers, deep learning libraries, interactive notebooks

software, Anaconda environment, etc.). These machine images support a variety of

instance types, including multi-GPU instances. What is more, Amazon has also cre-

ated its own infrastructure management and provisioning engine with DSL called AWS

CloudFormation. Some products available on AWS Marketplace take advantage of AWS

CloudFormation templates to provision more complicated deployment topologies.

2.2.1.2 Google Cloud

Google Cloud Engine offers a service called Cloud Deployment Manager which enables

users to create their own automation templates for application provisioning 2. What

is more, Google also hosts a marketplace of common application deployment templates

that can be easily executed using Cloud Launcher 3. Depending on a chosen application,

it is possible to request either a cluster or a single machine deployment. Unfortunately,

Cloud Launcher provides no further configuration management capabilities once the

machines with the software are provisioned.

1https://aws.amazon.com/machine-learning/amis/
2https://cloud.google.com/deployment-manager/
3https://cloud.google.com/launcher/

https://aws.amazon.com/machine-learning/amis/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/launcher/

Chapter 2. Background 15

2.2.1.3 IBM Cloud

IBM Cloud is a cloud platform which is integrated with formerly known IBM Bluemix -

a Platform as a Service that allows users to deploy, run and manage application in the

cloud environment. The service comes with a centralized catalog of all the platforms and

tools that IBM has to offer, ranging from application deployments on virtual machines

to requesting access to artificial intelligence and Internet of Things platforms4. The

application deployment engine uses Cloud Foundry buildpacks to install the requested

software [24]. As distinct from Google Cloud Launcher, IBM Cloud offers high-level PaaS

experience to the users (due to the fact that it is based on Cloud Foundry). IBM Cloud

provides extensive application management once the application is deployed. In addition

to common functions such as access to log files, application lifecycle management and

configuration of virtual machine computational capacity, each application management

screen is specialized for the particular provisioned software.

2.2.1.4 Waldur

As of now, Waldur provides a generic service for one-time execution of Ansible Play-

books5. This service works in a similar fashion as Google Cloud Launcher does: users

can supply values for a predefined set of parameters that are passed to the Playbook

once its execution is triggered. As of today, the user interface is pretty basic. In order to

make these Playbooks available to the users, administrators should upload them through

Waldur admin console, regular cloud users are not allowed to upload their own Play-

books. By defualt, Waldur comes with a limited collection of Ansible Playbooks written

by Waldur developers. What is more, Waldur development team provides custom Ansi-

ble modules for calling Waldur API endpoints in order to perform various actions such

as provisioning of a new virtual machine, getting information about the virtual machine

from Ansible Playbook logic.

2.2.2 Analytics as a Service platforms

As for AaaS solutions, in the scope of the thesis we consider noteworthy AaaS systems

which provide automatic infrastructure provisioning and support interactive data ana-

lytics workloads, since our system which we built is heavily focused on those aspects.

Even though modern AaaS solutions are very broad and cover all the major steps in the

analytics workflow depicted in Figure 2.1, we believe that providing a brief description

4https://console.bluemix.net/catalog/?category=platform
5http://docs.ansible.com/ansible/latest/user_guide/playbooks.html

https://console.bluemix.net/catalog/?category=platform
http://docs.ansible.com/ansible/latest/user_guide/playbooks.html

Chapter 2. Background 16

of AaaS systems is useful, since they give ideas how it is possible to further develop

services built throughout this thesis into a full-blown AaaS solution.

2.2.2.1 Amazon AWS

Amazon Elastic MapReduce (EMR) is a system which enables users to process data-

intensive tasks using various MapReduce-based open source tools on the Amazon infras-

tructure. The service allows users to create resizable cluster without bothering them-

selves with its low-level setup and Hadoop configuration. Furthermore, Amazon EMR

deploys various supporting tools including interactive notebook servers such as Apache

Zeppelin, Apache Hue and Jupyter. Needless to say, that Amazon EMR integrates

with many other AWS services for data storage, cluster monitoring, identity and access

management, audit and job scheduling [27].

2.2.2.2 Microsoft Azure Notebooks

Microsoft Azure Notebooks6 is a PaaS solution which provides Jupyter notebook exe-

cution environment and a repository for sharing them. The environment is maintained

entirely by Microsoft Azure development team, thus users do not have access to the

underlying virtual machines and are not allowed to modify predefined set of supported

Jupyter kernels and extensions. However, users are permitted to install additional li-

braries to the existing kernels. Unfortunately, once the notebook server instance shuts

down, any additionally installed libraries are lost. Furthermore, the notebook server

instances have several limitations, for example, there is a 4 GB memory limit per user

and only 1 GB of accessible disk storage [28].

2.2.2.3 Google Colaboratory

Google Colaboratory 7 is another Platform as a Service system which provides Jupyter

notebook execution environment. Since it is a PaaS system, it completely abstracts away

underlying infrastructure. Pretty much like Microsoft Azure Notebooks, the system pro-

vides integration with GitHub and it own cloud storage solution (Google Drive). As of

today, Colaboratory only supports Python 2 and Python 38. A notable feature of the

service is that it is possible for a user to use their local computer as an execution runtime

for Jupyter notebooks managed by Colaboratory 9. Furthermore, multiple users may

6https://notebooks.azure.com/
7https://research.google.com/colaboratory
8https://research.google.com/colaboratory/faq.html
9https://research.google.com/colaboratory/local-runtimes.html

https://notebooks.azure.com/
https://research.google.com/colaboratory
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/local-runtimes.html

Chapter 2. Background 17

work on the same notebook, in a same manner as in Google Docs. In contrast to Mi-

crosoft Azure Notebooks, Colaboratory provides free GPU-based computing. However,

a 12 hour-limit applies to a GPU-powered working session [29]. Moreover, several users

usually share a single GPU which affects the performance. As of today, the following

computation and storage restrictions are applied to users: 13 GB of memory and 1 CPU

core 10.

2.2.2.4 IBM Watson Studio

Similarly to Microsoft Azure Notebooks, IBM Cloud provides its own PaaS solution for

powering interactive data analytics. The service is called Watson Studio. The platform

strives to integrate a variety of fragmented tools in a single platform. The system pro-

vides both RStudio and Jupyter notebook environments. Moreover, Watson Studio aims

to solve various issues that come with working in a team on a single project: difficulties

of data and source code sharing and versioning. To further accelerate project develop-

ment, it provides integration with a diverse set of datasources [30] as well as visibility

into the uploaded datasets. Moreover, the system also fosters knowledge sharing across

users by providing means to discover articles, tutorials and sample notebooks [31]. Nat-

urally, it is integrated with other IBM services from IBM Watson Data Platform, such as

Analytics Engine (big data processing in cluster), IBM Watson Machine learning (deep

learning workloads) and others.

2.2.2.5 Databricks

Another example of Analytics as a Service proprietary product is Databricks which was

founded by the creators of Apache Spark. Databricks is intended to solve several major

problems that come with large-scale machine learning using Apache Spark: (i) cluster

deployment complexity - the platforms enables not only on-demand cluster provisioning

and scaling, but it also keeps all the required software up to date. Moreover, Databricks

also provides third-party libraries installation and management in a cluster. (ii) Another

issue is lack of feature-rich multi-tenant visualization environment for Apache Spark -

Databricks provides its own interactive notebook environment with configurable IAM

roles and integration with version control systems. (iii) Third challenge is deploying

Apache Spark jobs into production which oftentimes involves writing additional scripts

to deploy job to production environment. Databricks closes this gap by allowing users

to seamlessly switch between production environment and interactive exploration note-

books [32]. Moreover, it is possible to execute GPU-enabled deep learning workloads in

10https://colab.research.google.com/notebook#fileId=1_x67fw9y5aBW72a8aGePFLlkPvKLpnBl

https://colab.research.google.com/notebook#fileId=1_x67fw9y5aBW72a8aGePFLlkPvKLpnBl

Chapter 2. Background 18

Databricks 11. Databricks can also be run in heterogeneous cloud environment. As of

now Databricks supports Amazon AWS and Microsoft Azure cloud providers.

11https://docs.databricks.com/applications/deep-learning/index.html

https://docs.databricks.com/applications/deep-learning/index.html

Chapter 3

State-of-the-art data analytics

engines

3.1 Introduction

The main goal of the Chapter 3 is to answer the first research question: What are

state-of-the-art data analytics engines used in the industry and in Estonia?

In order to give a comprehensive answer to this question, we split into three subquestions,

namely:

• RQ-1.1: What are general-purpose data processing engines are used in the indus-

try? - Section 3.2

• RQ-1.2: What deep learning libraries are used in the industry? - Section 3.3

• RQ-1.3: What data analytics tools are used in Estonia: conducting a survey. -

Section 3.4

3.2 General-purpose data processing engines

Nowadays there are a wide range of various tools available for executing data mining

and machine learning workloads. Different engines have their advantages and downsides,

many have overlapping use cases. In this section we will present an overview of available

tools for data analytics.

In this section we discuss data processing frameworks which can be used either for ETL,

data mining and machine learning workloads. We do not consider here any data storage

19

Chapter 3. State-of-the-art data analytics engines 20

solutions as well as we do not include here deep learning frameworks due to their specific

nature.

3.2.1 Python-based libraries

Python is an open source interpreted general-purpose programming language with dy-

namic type system and automatic memory management. Even though it is not entirely

focused on data analytics workloads, it provides a very expressive syntax which appeals

to many data analysts. There is available a collection of Python libraries for science and

mathematics use cases called SciPy1. The most notable example of machine learning

library is scikit-learn which provides implementation for many state-of-the-art machine

learning algorithms. It follows imperative programming principles which makes code

easier to debug and troubleshoot [33]. Due to the popularity of Python, many other

data analytics engines have Python API. In addition, Python can be used in interactive

development environments powered by Jupyter2 to compose notebooks which besides

code may include also formatted text, diagrams, graphics and other visualizations.

3.2.2 R

R is an open source interpreted programming language for statistical computing with

built-in visualization packages. R contains numerous extensions for performing numer-

ical computations with vectors, matrices etc. Moreover, dplyr3 package provides a set

of abstractions for storing data in Data frames that provide convenient and powerful

API for further data manipulation. R is widely used for data mining and data analysis

purposes. Unfortunately, R packages have pretty limited capacity for processing large

data, because the memory is limited to only one node. Moreover, R does not have any

native support for multithreading. In order to mitigate these flaws, there were developed

numerous packages to support analysis if large datasets. For instance, ff package4 which

allows to transparent access data stored on disk as if it was stored in memory. Besides,

there is also available snow package5 for simple parallel computing in a cluster. More-

over, a lot of data processing engines provide API in R [6]. As for interactive computing,

R is supported by both Jupyter and RStudio.

1https://www.scipy.org/
2http://jupyter.org/
3https://dplyr.tidyverse.org/
4https://cran.r-project.org/web/packages/ff/index.html
5https://cran.r-project.org/web/packages/snow/index.html

https://www.scipy.org/
http://jupyter.org/
https://dplyr.tidyverse.org/
https://cran.r-project.org/web/packages/ff/index.html
https://cran.r-project.org/web/packages/snow/index.html

Chapter 3. State-of-the-art data analytics engines 21

In subsequent sections we discuss various distributed data processing engines. The

engines can be split into 2 major execution models: batch and stream processing. In

case of batch workloads the processing is performed on the whole available dataset, for

example, to generate various reports. The batch processing jobs may take long time to

complete. Data streaming jobs, by contrast, process only the most fresh portions of data.

Stream processing solutions stress the importance of being able to process constantly

incoming data with low latencies. Table 3.1 provides an overview of available solutions

for distributed processing.

System Execution

model

Supported

languages

Available

ML tools

In-memory

processing

Low

latency

Fault tol-

erance

Hadoop

MapReduce

Batch Java Apache Ma-

hout

no no yes

Apache Spark Batch,

streaming

Scala,

Java,

Python,

R

MLlib,

Apache

Mahout,

H2O

yes yes yes

Apache Flink Streaming,

batch

Scala,

Java

FlinkML yes yes yes

Apache

Heron

Streaming Java,

Python

- yes yes yes

H2O Batch Scala,

Java,

Python,

R

H2O,

Mahout,

MLlib

yes yes yes

Table 3.1: Comparison of available distributed data processing engines (Source: [4])

3.2.3 Hadoop ecosystem

Apache Hadoop is a programming model used for distributed data processing in a cluster

environment. Hadoop tools are meant to solve several issues (i) problem of slow read-

/write disk operations by splitting the information across multitude of disks to achieve

parallelism and therefore performance boost when working with data stored on disks.

The second issue is (ii) hardware failure which is inevitable when computations are per-

formed on large amount of nodes (which is required to solve the first problem). Thirdly,

(iii) the problem of combining the results of computation which is challenging in dis-

tributed environment, thus a MapReduce model is proposed to abstract away low-level

Chapter 3. State-of-the-art data analytics engines 22

technical details [34]. MapReduce provides unified API regardless of whether the job is

executed on a local machine or in a cluster.

Multiple MapReduce-based engines and frameworks were adopted by the industry for

batch analytics over the past years: they are being developed independently and all

together form comprehensive ecosystem for Big Data processing.

The backbone of Hadoop stack is Hadoop Distributed File System (HDFS) which is

a data storage system that can be spread across hundreds of heterogeneous nodes. It

can store large volumes of structured and unstructured data. In order to ensure fault

tolerance, it replicates data across the cluster. However, file lookup operations in HDFS

suffer from substantial latencies which makes it not the perfect choice for real-time

processing, rather than for batch processing.

3.2.3.1 MapReduce

As it was mentioned before, MapReduce simplifies processing of large data volumes which

do not normally fit into a memory of general-purpose computers. MapReduce model

uses two main steps during computations: map and reduce phases [5]. The MapReduce

data flow is depicted in Figure 3.2.

Chapter 3. State-of-the-art data analytics engines 23

Table 3.2: MapReduce data flow (Source: [5])

• Firs of all, the input data is divided into separate partitions.

• Next, Map phase begins: the framework assigns each data partition to a specific

node and spawns Map tasks on the nodes. During Map phase data is transformed

and returned as a key-value entries.

• During Mapping phase, intermediate Shuffling and Sorting phases are continu-

ously called that fetch Mapping functions’ outputs and group key-value pairs in

groups by key. As the result, Reducer function gets input data in a form of

<key, (list of values)> [35].

• Afterwards, each group is processed by Reduce function and output is stored in

an output file.

One of the main impediments to using MapReduce is that it is not trivial to implement

all required algorithms in a form of MapReduce jobs. In a pursuit to overcome this issue

there were developed frameworks that provide abstractions on top of MapReduce such

as Apache Pig and Hive [4]. The summary of their characteristics is provided in Table

3.3.

Chapter 3. State-of-the-art data analytics engines 24

Properties Apache Hive Apache Pig

Language HiveQL (SQL-like) Pig Latin (script-based lan-

guage)

Type of language Declarative (SQL dialect) Data flow

Data structures Suited for structured data Scalar and complex data

types

Schema Enforced during read time Completely optional

Data access interface JDBC, ODBC PigServer

Table 3.3: Comparison of available distributed data querying engines (Source: [6])

3.2.3.2 Apache Pig

Apache Pig is a framework built on top of MapReduce engine which introduces a data

flow scripting language called Pig Latin which can be used to issue commands to a

interactive shell. Pig Latin is meant to decrease complexity and duration of development

cycle of MapReduces programs. As opposed to Apache Hive, Pig is able to process

unstructured data without any schema [6]. Even though Pig Latin operators resemble

SQL queries, there are several key differences. Firstly, SQL is a declarative programming

language and Pig Latin is dataflow langauge, that is, it is composed of a steps where

each step is a single data transformation. In case of SQL queries, user defines list of

constraints that when applied together and some output is returned. Moreover, Pig

Latin has better support for nested data structures as opposed to SQL which is more

suitable for flat structures [34].

3.2.3.3 Apache Hive

Apache Hive is a data warehouse and data analytics solution that runs on top of Hadoop

cluster using SQL-like language - HiveQL. It further abstracts users from underlying

low-level MapReduce code. It allows users to access and manipulate data stored in

HDFS or HBase. Unfortunately, Hive is not meant for real-time processing: it suffers

from big latencies even in case of simple queries and small volumes of data, since it

converts SQL queries into actualy MapReduce jobs. What is more, it is not suitable

for building complex machine-learning algorithms. Apache Hive is built to guarantee

scalability, fault-tolerance in context of big data analysis, exploration [34]. A notable

feature of Apache Hive is the fact it enforces schema at the time it reads the data (when

the engine loads it for further processing), not when the data is written into the store

[6]. As distinct from traditional Relational Database Management Systems that enforce

Chapter 3. State-of-the-art data analytics engines 25

schema when data is written into the store, such approach gives additional degree of

flexibility which is especially relevant in the context of big data where variety of data is

pretty substantial.

3.2.4 Apache Spark

Apache Spark is a general-purpose engine for distributed large-scale data processing.

Apache Spark exposes a comprehensive and efficient programming model for batch and

streaming analytics. It has built-in libraries for running SQL queries, machine learn-

ing and graph processing workloads along with functional programming API in several

languages such as Scala, Java, Python and R. Spark has integration with several clus-

ter management frameworks: standalone, Hadoop YARN, Apache Mesos and there is

ongoing effort to provide support for Kubernetes deployments 6. It also can run locally.

The distinct Apache Spark feature is in-memory processing: it is able to store interme-

diate computation results in memory which makes it efficient for iterative algorithms

which are common in machine learning and graph processing. In case of MapReduce

jobs, all intermediate computation results were written to external distributed file sys-

tem and memory was not used to the full extent. Internally, much like Apache Tez

execution engine, Apache Spark uses graph-oriented model where job is represented

as directed acyclic graph where nodes are computation units or Resilient Distributed

Datasets. Spark’s advanced execution engine may make in memory program executions

up to 100 times faster and disk executions up to 10 times faster [36].

3.2.5 H2O

H2O is an open source distributed data processing and analytics framework. H2O pro-

vides wide set of algorithms including generalized linear models, gradient boosting ma-

chine, random forest, naive bayes, deep learning and many more7. It provides API in

Scala, Java, Python and R. Underneath, H2O uses its own Map/Reduce engine built on

top of Java stack [37]. H2O can also be deployed on a Hadoop cluster, however, H2O

strives to perform computations in memory as much as possible. What is more, H2O

provides a library Sparkling Water which integrates H2O machine learning algorithms

with Apache Spark engine which enables Apache Spark users to take advantage of hav-

ing wider range of machine learning algorithms. Moreover, H2O framework comes with

6https://github.com/apache-spark-on-k8s/spark
7http://docs.h2o.ai/

https://github.com/apache-spark-on-k8s/spark
http://docs.h2o.ai/

Chapter 3. State-of-the-art data analytics engines 26

web-based interactive notebook environment8 for execution of ad-hoc scripts and data

visualization.

3.2.6 Apache Mahout

Apache Mahout has been until recently Hadoop MapReduce-only machine learning

framework. However, the project goals were reconsidered 9 and the project is currently

in a migration phase 10 from MapReduce to the new DSL on top of Scala. The frame-

work uses Apache Spark as a back end processing engine. The framework is focused

on providing math operations for linear algebra and statistics as well as some machine

learning algorithms such as collaborative filtering, classification, clustering, dimension-

ality reduction.

3.2.7 XGBoost

XGBoost is a distributed gradient tree boosting library. Boosting is an ensemble learn-

ing algorithm which aims to built many weak classifiers, with each new model trying

to correct the flaws of the previous model. XGBoost aims to provide efficient and scal-

able implementation for parallel tree boosting algorithm [7]. XGBoost supports GPU-

powered processing and can also run in distributed environment, for example, Hadoop

YARN. XGBoost offers Python, R and Julia API. The comparison table of major gra-

dient boosting implementations is shown in Table 3.4. XGBoost introduces its own

strategy for writing data on disk and reading it in efficient manner for out-of-core com-

putations. In order to boost computational efficiency in case of large datasets that do

not fit in memory, they offer global and local approximation methods for optimal split-

ting point search. In addition, to XGBoost introduces its own built-in sparsity-aware

approach to tackle the issue of missing data in datasets [7].

8http://docs.h2o.ai/h2o/latest-stable/h2o-docs/flow.html
9https://issues.apache.org/jira/browse/MAHOUT-1510

10http://mahout.apache.org/users/basics/algorithms.html

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/flow.html
https://issues.apache.org/jira/browse/MAHOUT-1510
http://mahout.apache.org/users/basics/algorithms.html

Chapter 3. State-of-the-art data analytics engines 27

System Parallel Exact

greedy

Approximate

global

Approximate

local

Out-of-

core

Sparsity

aware

XGBoost yes yes yes yes yes yes

Spark MLLib yes no yes no no partially

H2O yes no yes no no partially

scikit-learn no yes no no no no

R GBM no yes no no no partially

Table 3.4: Provided features comparison table of XGBoost and other gradient boost-
ing solutions (Source: [7])

3.2.8 Data streaming

Nowadays there is a growing interest towards stream processing frameworks [38] which

complement batch processing systems and form together so-called Lambda architecture.

This term describes a system which processes large volumes of data using both batch

and stream processing methods. The main goal of streaming layer is to make the most

recent data available to users within very low time frames. While the batch layer tries

to produce as accurate results as possible, the speed layer aims for performance: even

though the results produced by the streaming layer may not be as precise as those

produced by batch layer, they provide view on the most recent data [4]. The examples

of streaming datasets include11:

• End users interactions with mobile or web applications

• Physical sensors providing measurements (Internet of Things data)

• Data received from financial markets

• Log data

3.2.8.1 Apache Flink

Apache Flink is a dataflow engine that supports both high-throughput streaming and

batch workloads. It was designed to provide an alternative to micro-batch streaming

solutions. It has functional programming API for Java and Scala. It also has integration

with MapReduce stack: it can use both HDFS and MapReduce. Apart from Apache

Spark, Flink does not use micro-batch approach, but it dispatches single events, as

does Heron, thus achieving true real-time processing [4]. Apache Flink also provides its

11https://flink.apache.org/introduction.html#continuous-processing-for-unbounded-datasets

https://flink.apache.org/introduction.html#continuous-processing-for-unbounded-datasets

Chapter 3. State-of-the-art data analytics engines 28

own optimizer which analyzes the code to create semantically same but more efficient

execution plans. In order to achieve fault-tolerance, Flink makes consistent snapshots

of the data stream as well as operator states which it can use for recovery from failures

[39]. As for message delivery guarantees, Flink guarantees exactly-once delivery. Flink

has integration with various messaging queues, for instance, RabbitMQ, Apache Kafka,

user can also provide their own implementation.

Apache Flink has machine learning library called FlinkML. Unfortunately, the amount

of supported algorithms is pretty limited 12. It is useful for the use cases which deal

with continuously evolving massive quantities of data, for instance, spam detection.

In a study, Flink was compared to Apache Spark Streaming where it turned out that

Apache Spark showed better degree of fault tolerance as well as better support for

iterative algorithms while Flink had better performance, however, it consumed more

resources [4].

3.2.8.2 Apache Spark Streaming

Apache Spark Streaming is a stream-processing component which is built on top of the

Spark SQL engine. Spark Streaming supports 2 modes of processing incoming streams:

micro-batch processing and continuous processing. Apart from micro-batch processing,

continuous processing mode is able to achieve end-to-end latencies of a few milliseconds

[40]. Spark Streaming is exposed to the user through Spark DataFrame API, thus

streaming logic is expressed in the same way as batch processing logic. The core concept

of Spark Streaming relies on an unbounded table where the input data continuously

arrive [41]. The developer defines queries and transformations for the DataFrame as in

case of usual static data. Due to the unified API, developers have other Spark libraries

at their disposal. The component is able to ensure exactly-once mode of processing.

3.2.8.3 Apache Heron

Heron13 is a scalable stream-processing engine which was created by Twitter in order

to replace their previous stream processing solution Apache Storm. Apache Storm pos-

sessed numerous drawbacks that were hard to fix without complete rewrite. However,

they made an effort to keep compatibility with the existing Apache Storm API in order

to reduce impact of such migration [42].

12https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/ml
13https://apache.github.io/incubator-heron/

https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/ml
https://apache.github.io/incubator-heron/

Chapter 3. State-of-the-art data analytics engines 29

The core structure of Heron is topology, that is directed acyclic graph of spouts and bolts.

Spouts are connected to data sources such as Apache Kafka or Kestrel while bolts process

incoming data. These topologies are deployed to a generic service scheduler (which may

run on top of YARN, Mesos and Amazon EC2 Docker Container Service). Each topology

runs is composed of several containers: much like in RDBMS, before execution of a

topology, engine generates a physical execution plan taking into consideration parallelism

settings for spout and bolt tasks.

Another interesting feature of Heron is backpressure mechanism which dynamically ad-

justs the rate at which data is processed by the topology by blocking its spouts. This

strategy is important to increase the computing efficiency and stability of environments

where different components may process data at different speed [42]. Heron provides

two modes of processing:

• At least once - engine guarantees that each message is processed at least once,

however, they may also be processed several times. In this mode of processing, it

is crucial to ensure idempotent message processing.

• At most once - some incoming messages may be dropped, but all of them will not

be processed more than once.

3.3 Deep learning libraries

Since recently, deep neural networks have become one of the most promising areas of

machine learning. The general structure of neural networks was loosely inspired by

biological neurons and their connections. Deep learning has been successfully applied

to a number of fields, for example, computer vision, natural language processing and

speech recognition. Due to computation-intensive nature of the training process and

relatively simple operations performed during this process, it is sensible to perform

these computations using GPUs that are suitable for this kind of workloads. Executing

deep learning workloads on GPU becomes orders of magnitude faster. Computations

can be further accelerated by distributing them across GPU cluster [43].

3.3.1 TensorFlow

TensorFlow is an open-source machine learning library with focus on deep learning which

was developed by Google Brain, an internal research team at Google. It is meant to

replace its old predecessor - DistBelief. Besides running on both CPUs and GPUs,

Tensorflow supports both single-node as well distributed workloads.

Chapter 3. State-of-the-art data analytics engines 30

TensorFlow offers a dataflow programming interfaces using which users can compose

training pipelines with various phases some of which are reading input data, preprocess-

ing it, training and checkpointing state etc. Program execution can be divided into two

major stages: (i) building whole dataflow graph based on the provided source code, (ii)

building optimized version of a computation graph and its subsequent execution [44].

What is more, TensorFlow can be run in heterogeneous cluster which includes CPUs

and GPUs as well as ASICs that are specialized for deep learning workloads [44]. Al-

though, such ASICs are not yet currently commercially available, Google is in process

of building TensorFlow Research Cloud which would make these ASICs available to the

wide audience14.

When it comes to fault-tolerance in cluster environment, Abadi et al. state that deep

learning training process does not necessarily require strong consistency, so they provide

several replication strategies each with either consistency or performance trade-offs [44].

TensorFlow provides API in wide range of languages, for instance, Java, C++, Go and

Python.

3.3.2 Caffe2

Caffe2 is a successor to Caffe deep learning framework. Caffe was originally focused

mostly on Convolutional Neural Networks in a single-node environment. This fact in-

fluenced design decisions of the framework and made it harder to adapt to other use

cases such as distributed training, non-vision use cases, operation in mobile environ-

ment. It is stated, that Caffe2 is focused on execution on mobile environments and on

supporting battle-tested algorithms [45]. Caffe2 engine is exposed through Python API.

Unfortunately, as of today, Caffe2 has not yet been thoroughly studied by the academia.

3.3.3 PyTorch

Both PyTorch and Torch use same back end engine for low-level computations, how-

ever, PyTorch provides API in Python while Torch is a Lua wrapper. These frameworks

have an imperative programming model which allows users to heavily optimize exe-

cution process of the programs. It is an useful tool for power users, but it lacks in

terms of portability across different environments [44]. However, imperative way of

programming brings its own advantages, such as more straight-forward debugging and

meaningful exception stack traces. What is more, PyTorch provides greater flexibility

14https://www.tensorflow.org/tfrc/

https://www.tensorflow.org/tfrc/

Chapter 3. State-of-the-art data analytics engines 31

in terms of neural network structure. Unlike frameworks such as TensorFlow, Theano,

Caffe or CNTK, PyTorch provides an option to restructure existing neural network

without starting training process from the scratch [46]. Such level of flexibility fosters

experimentation and is great for trying out new architectures for neural networks [45].

As well as other deep learning libraries, it supports GPU acceleration.

3.3.4 MXNet

MXNet is a deep learning library which combines declarative and imperative program-

ming approaches when appropriate. The creators of MXNet claim that declarative

approach is suitable for describing structure of neural networks via computation graphs,

whereas imperative programming brings more advantages in case of parameters updates

(tensor computations). Besides, the engine also offers auto differentiation to derive gra-

dients which allows to define a new neural network structure each iteration while running

forward computation[47]. More efficient auto-differentiation is achieved with declarative

approach [48]. The library is able to run on heterogeneous systems: mobile devices,

CPU/GPU powered devices and distributed GPU clusters (parallelism is achieved with

the generic dependency engine15 which schedules the operations for execution if their

dependencies are computed) [8].

System Core

lang

Binding

lang

Devices (be-

yond CPU)

Distributed Imperative

program

Declarative

program

MXNet C++ Python/R/

Go/Julia

GPU/Mobile yes yes yes

TensorFlow C++ Python GPU/Mobile/

ASIC

yes no yes

PyTorch C,

C++

Python GPU yes yes no

Caffe2 C++ Python GPU/Mobile yes no yes

Table 3.5: MXMNet comparison with other popular open-source deep learning li-
braries (Source: [8])

3.3.5 Keras

Some deep learning libraries have sophisticated API: even though they might be quite

flexible, their API may be very low-level and tedious to work with. Therefore, there was

developed a library called Keras 16 which provides high-level API on top of TensorFlow,

15https://mxnet.incubator.apache.org/architecture/note_engine.html
16https://keras.io/

https://mxnet.incubator.apache.org/architecture/note_engine.html
https://keras.io/

Chapter 3. State-of-the-art data analytics engines 32

CNTK and Theano. Keras enables rapid development and experimentations without

going too deep into details of underlying neural network architectures. Keras provides

Pytohn API.

3.4 Survey

Due to the wide variety of tools available for data analytics, it is not obvious what set

of tools Waldur should provision first through its self-service. Therefore, we decided

to conduct a survey to identify what data analytics tools Estonian data analysts and

academia researchers use.

The questionnaire was spread among both Estonian researchers from academia and

practitioners from industry. We contacted each person only once, through a personal

email letter. The questionnaire was done in Google Docs. The answers were collected

in November, 2017. While each question was supplied with predefined set of answers,

people were given an option to write additional answers. Respondents could select

multiple choices in each question. Responses are anonymous. In total, we garnered 32

responses. To report the percentages, we round values to a whole number.

The following table 3.6 shows what organization the respondents belong to. While most

people belong to Estonian universities and other affiliated with the Estonian Scientific

Computing Infrastructure research groups, we managed to reach also industry practi-

tioners.

What organization do you belong to?

Research group from the ETAIS members

(UT, KBFI, TUT, HITSA)

25 78%

Private company 6 19%

Public sector (non-academic) 1 3%

Research group from non-ETAIS members

public university

0 0%

Table 3.6: Survey responses to question 1: What organization do you belong to?

Another important fact that we should know about our target users is their programming

language preferences 3.7. It turned out that majority of people (75%) have programming

experience with Python. About 62% of researchers also know R. Third popular language

is Java, however, it is much less popular than previous two languages.

Chapter 3. State-of-the-art data analytics engines 33

What programming language do you feel comfortable with?

Python 24 75%

R 20 63%

Java 11 34%

C++ 7 22%

C 4 13%

C# 2 6%

Bash 2 6%

Matlab 2 6%

Scala 2 6%

Wolfram Mathematica 2 6%

Elixir 1 3%

F# 1 3%

Fortran 1 3%

Julia 1 3%

J language 1 3%

Octave 1 3%

Php 1 3%

Stata 1 3%

Table 3.7: Survey responses to question 2: What programming language do you feel
comfortable with?

Third question 3.8 was about usage of data analytics tools. We tried to mention here

mostly self-contained engines, since many of them provide API in languages mentioned

in the first question 3.6.

When it comes to single-node tools, not surprisingly, Python-based tools are used by the

most people. We will consider, that R-based packages are used by all respondents who

mentioned R in the first question. This makes R packages second most popular tools.

On the third place is Weka.

The results imply that distributed solutions are not so widely used as single-node tools.

The most notable among them is Apache Spark which is used by 21% of respondents.

After it goes XGBoost which is used by 4 people. Apache Hive and Hadoop MapReduce

is used just by 9% of respondents.

Chapter 3. State-of-the-art data analytics engines 34

What data analysis toolkits do you use?

Scikit-learn 23 72%

Scipy stack 18 56%

Apache Spark 8 25%

Weka 7 22%

XGBoost 4 13%

Apache Hive 3 10%

Hadoop MapReduce 3 10%

Accord.NET 1 3%

Apache Flink 1 3%

Microsoft ML studio 1 3%

OpenCV 1 3%

Yolo 1 3%

JSoftware 1 3%

Wolfram Mathematica 1 3%

SQL Service Analysis Services 1 3%

Nothing from the list 1 3%

Apache Pig 0 0%

Apache SAMOA 0 0%

Apache SystemML 0 0%

GraphLab 0 0%

H2O 0 0%

Oryx 2 0 0%

Table 3.8: Survey responses to question 3: What data analysis toolkits do you use?

In the fourth question 3.9 we asked if respondents use deep learning libraries and which

ones exactly. The most popular deep learning framework is TensorFlow: half of the

respondents use it. It would be fair to conclude that the most researchers do not actually

use TensorFlow to its full extent, but rather use Keras which is a wrapper library for

TensorFlow and Torch. One third of pool respondents do not use deep learning in their

everyday work. Even though Theano and Caffe are considered to be deprecated, still

they reside on 4th and 5th places respectively.

Chapter 3. State-of-the-art data analytics engines 35

What deep learning libraries do you use?

TensorFlow 17 53%

Keras 16 50%

I do not use deep learning libraries 11 34%

Theano 8 25%

Caffe 5 16%

PyTorch 3 10%

Torch 3 10%

Caffe2 2 6%

MXNet 2 6%

PaddlePaddle 1 3%

Wolfram Mathematica 1 3%

dynet 1 3%

Deeplearning4j 0 0%

CNTK 0 0%

Table 3.9: Survey responses to question 4: What deep learning libraries do you use?

Finally, in the last question we asked if respondents have any suggestions or comments.

By the end of the survey, we received 5 opinions. 2 persons mentioned that they heavily

rely on GPU-based computing. One researcher pointed out that having the latest ver-

sions of libraries would be very nice, especially if this kind of infrastructure was kept up

to date. This request probably originates from the fact that HPC cluster of the Estonian

Scientific Computing Infrastructure provides Slurm17 batch processing payloads where

execution environment is not very flexible: available execution environments are defined

by Environment modules 18 and these are maintained by the system administrators.

3.5 Discussion

Collected answers to the first question 3.7 prompt that it makes sense to choose first

either Python or R. Furthermore, we observed that everybody who knows R also know

Python. It was not the case vice versa.

As for general-purpose data analytics toolkits 3.8 we can conclude that Python-based

libraries are the most widely used. The most popular distributed learning framework is

Apache Spark.

17https://slurm.schedmd.com/overview.html
18http://modules.sourceforge.net/index.html

https://slurm.schedmd.com/overview.html
http://modules.sourceforge.net/index.html

Chapter 3. State-of-the-art data analytics engines 36

Figure 3.1: Data analytics frameworks with survey results

Data collected about deep learning frameworks 3.9 clearly tells us that libraries with

Python API are the most numerous and at the same time the most commonly used. Very

few people selected libraries that do not come with Python API (e.g Torch, Deeplearn-

ing4j).

Based on the literature analysis and on survey results we can conclude that it is makes

sense to provision Python-based data analytics tools through Waldur self-service. Python

is not only the most widely used programming language among researchers, but there

are also a wide range of advanced and diverse set of Python-libraries that support data

mining, machine learning and deep learning workloads. These aspects make Python very

powerful programming language for data analytics. Such service will bring immediate

benefit to all researchers who are interested in doing data analytics using Python-based

tools in the cloud.

As shown in Figure 3.1, out of all data analytics tools that we described, the systems will

cover Python-based single-node processing and deep learning use cases (deep learning

will be even more fully supported if appropriate machine images with installed CUDA

drivers are used).

Chapter 3. State-of-the-art data analytics engines 37

3.6 Conclusion

Nowadays data analytics can be performed using great variety of tools. In this chapter

we described tools which are used in different domains. These engines were classified

into several categories depending on the set of features they provide. Besides, the tools

were compared with each other to identify their capabilities and limitations. The choice

of the appropriate engine depends to a great extend on the problem which it intends to

solve. For example, for performing comprehensive analysis of large datasets it is worth

to look at available batch processing engines. If there is a necessity to generate results

from the incoming data flow in real-time, then one should consider stream processing

tools. Deep learning libraries are positioned to be suitable for implementing computer

vision and speech recognition systems. To sum up, combination of all these technologies

will support more intelligent decision making in industry and academia.

Furthermore, we conducted a survey throughout which we collected data about usage of

various data analytics engines among Estonian researchers. The survey findings showed

that there is a great interest towards deep learning engines, most notably, Tensorflow.

The main programming languages used by Estonian researchers are Python and R.

Awareness of the available data analytics tools and the gathered survey data helped

us to make the informed decision about what areas our new cloud services should first

cover. We decided to focus on providing support for Python-based single-node processing

workloads.

Chapter 4

Services for management of data

analytics tools

4.1 Introduction

In the Chapter 3 we identified state of the art data analytics frameworks and revealed

what tools are used by Estonian researchers by conducting a poll. Based on this knowl-

edge, in the Chapter 4 we intend to answer the second research question mentioned in

Chapter 1: RQ-2: How to automate provisioning and management of data an-

alytics tools through hybrid cloud brokerage platform? We divide the research

question into three subquestions:

• What are the requirements of the application provisioning services? - Section 4.2

• How to design and implement the services for provisioning of Python development

environment and JupyterHub? - Sections 4.4 and 4.5

• How to design and implement integration tests for the application provisioning

services? - Section 4.6

The source code of the produced artifacts is available on GitHub in Waldur repositories.

Application back end logic: https://github.com/opennode/waldur-ansible, Ansible

playbooks: https://github.com/opennode/ansible-waldur-module, front end logic:

https://github.com/opennode/waldur-homeport.

38

https://github.com/opennode/waldur-ansible
https://github.com/opennode/ansible-waldur-module
https://github.com/opennode/waldur-homeport

Chapter 4. Services for management of data analytics tools 39

4.2 Requirements for the application provisioning services

In this section we explain what tools we intend to provision and compose the scenarios

that the services should fulfill.

We decided not to build our services in accordance to Platform as a Service service

model, since we place particular focus on modifiability aspect of the provisioned tools in

order to ensure that users would not be strictly limited to only the provided configuration

options, rather users should be able to adapt the default configuration according to their

needs. As a result, we came to a decision to build the services which would focus on

deployment stage of well-known open-source data analytics tools and their subsequent

configuration management on a remote virtual machine.

Jupyter1 is a environment which provides interactive computing capabilities in vari-

ous programming languages. It allows to execute the programs on remote machines

through convenient web-based user interface. Many researchers use interactive note-

books to present their work and share it with others. It covers a whole spectrum of

what Python provides: anything from simple scripting, to more sophisticated notebooks

which combine runnable code, data visualization and rich text. We believe that pro-

visioning JupyterHub is a good choice due to its popularity and great extensibility:

Jupyter supports many programming languages (Python, R, Scala) and there are many

third-party extensions available for it.

JupyterHub2 is a central server which provides authentication and multi-tenant access

to Jupyter notebooks. We decided to automate provisioning process of JupyterHub de-

ployment since it provides most needed authentication options to be able to use Jupyter

either when working in a team or for organizing workshops. Moreover, deployment of

JupyterHub may be quite challenging and error-prone process for people who do not

have much Linux administration experience.

Furthermore, we complement JupyterHub provisioning service with Python management

service which provides functionality to install Python libraries with specified versions

into isolated Python virtual environments3 through Waldur self-service. This service will

allow users to conveniently manage their development environment through self-service

and be able to switch between them in Jupyter notebooks. We chose not to provision

any predefined list of Python libraries, since the list may become obsolete quite soon,

especially the selected versions of the libraries. Instead, we decided to provide a service

1http://jupyter.org/
2http://jupyterhub.readthedocs.io/en/latest/
3https://virtualenv.pypa.io/en/stable/

http://jupyter.org/
http://jupyterhub.readthedocs.io/en/latest/
https://virtualenv.pypa.io/en/stable/

Chapter 4. Services for management of data analytics tools 40

which would allow users to configure their development environment on their own and

do not depend on Waldur maintainers.

As depicted in Figure 4.1, the life cycle of a managed application can be composed of

three stages:

• Initial application provisioning: it is the most time-consuming step since it

involves required software installation. The duration greatly depends on the vari-

ous factors such as network bandwidth, availability of remote installation packages

and virtual machine computing resources.

• Application management: in this stage the application is in operational state

and the system should provide an option to modify installed software configuration

without a complete reinstallation from the scratch due to the time-consuming

nature of the process. During this stage the system should ensure that all the

necessary packages are indeed properly installed.

• Application removal: this is the final stage of the life cycle when the application

is undeployed and removed.

To formalize scenarios and ensure that each scenario is well formed, we use Scenario

Refinement template described by Barbacci et al. in [49]. However, we do not strictly

stick to the template, rather use an adapted version of it which includes following scenario

descriptors:

• Relevant Quality Attributes - related quality attributes from ISO/IEC 250104

standard.

• Stimulus - the condition that should be handled by the system

• Environment - the context of the stimulus

• Artifact - the developed artifact which instantiates response

• Response - what actions are taken to cover the described scenario

4.2.1 Python libraries management scenarios

In this section we identify set of scenarios that Python management service should

cover. The main aim of the service is to enable users to manage their Python virtual

environments through a user-friendly graphical interface.

4http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Chapter 4. Services for management of data analytics tools 41

Figure 4.1: High-level activity diagram of data analytics provisioning services in
Waldur

For the list of the scenarios for Python management service please refer to Appendix A.

It is worth noting that Scenario 2 (described in Table A.2) specifies that libraries should

be installed into isolated Python virtual environments. It is important requirement, since

it does not only resolve potential conflicts between various libraries (for instance, if a

user works on several projects with different set of libraries), but it also provide basic

multitenancy support. For example, if several researchers share same GPU-powered

virtual machine: each can work in its own isolated environment without affecting other

environments (however, the computing resources are shared between all the tenants).

Waldur allows users to do that, since there may be multiple users assigned to a single

project (in the context of Waldur), thus several users may have access to an instance of

Python management service.

Chapter 4. Services for management of data analytics tools 42

As for the selected package manager, we decided to use pip because we wanted to keep

installation as light as possible. It means, however, that users will need to specify the

libraries that they want to use. Alternatively, we could go with Anaconda distribution

5 which would free users from specifying any additional libraries. On the other hand,

it would dramatically increase installation time. To validate this decision, we ask the

potential users appropriate question (described Table 4.2) during evaluation stage.

4.2.2 JupyterHub management scenarios

Jupyter is an environment which provides interactive computing capabilities in various

programming languages. Many researchers use interactive notebooks to present their

work and share it with others. It covers a whole spectrum of what Python provides:

anything from simple scripting, to more sophisticated notebooks which combine runnable

code, data visualization and rich text.

As a first step towards integration Jupyter nodebooks with Waldur, we intend to ease

the burden of JupyterHub server deployment and configuration management. That is,

we provide automated deployment and either Linux PAM6 or OAuth2 configuration

options. OAuth2 configuration, powered by oauthenticator7 extension, will allow re-

searchers to integrate JupyterHub with the existing authentication methods used at

their place of work. Furthermore, JupyterHub provisioning service is integrated with

previously described Python management service in Section 4.2.1.

All the scenarios for JupyterHub management service are listed in Appendix B.

4.3 Waldur architecture

Before we proceed any further, it is important to describe Waldur architecture: what

technologies and patterns are used there.

The Deployment Diagram in Figure 4.2 shows how Waldur components and artifacts

are deployed to hardware platforms and how they are connected with each other. Com-

ponent is a software artifact that works together with other components to implement

required functionality which is defined by the system requirements. Please note that

Monitoring solution (which collects various metrics from Waldur servers) is purely op-

tional and can be replaced with any other platform. Waldur deployment at the Estonian

Scientific Computing Infrastructure currently uses Zabbix.

5https://www.anaconda.com/what-is-anaconda/
6http://www.linux-pam.org/
7https://github.com/jupyterhub/oauthenticator

https://www.anaconda.com/what-is-anaconda/
http://www.linux-pam.org/
https://github.com/jupyterhub/oauthenticator

Chapter 4. Services for management of data analytics tools 43

Figure 4.2: Waldur deployment architecture (Source: based on internal Waldur doc-
umentation)

Chapter 4. Services for management of data analytics tools 44

4.3.1 Three-tier architecture

The system architecture follows 3-tier architecture pattern. Here we present a high-level

overview of Waldur architecture without describing internals of each tier.

Presentation tier: It implements user interface which translates the results of backend

logic into a user-friendly presentation. Presentation tier of Waldur is a single-page

web application which is built on top of AngularJS framework. This tier is currently

undergoing massive migration both in terms of used language and stack of technologies:

not only JavaScript is being substituted with TypeScript, but also all dialogs are being

rewritten on React-based stack of technologies.

Application tier: Application tier is the core of the application. It processes incoming

commands, enforces authentication and validation rules, manages transactions, performs

calculations and makes logical decisions in the business logic. All interactions with this

layer are performed through RESTful API. Source of requests may be the presentation

tier or CLI management tools. According to Richardson Maturity Model [50], RESTful

API of Waldur corresponds to the second level of maturity. Moreover, application logic

layer implements integration scenarios with other systems and executes regular batch

jobs that run in the background. The application tier is implemented using Python

technologies: the backbone of the application is Django framework. Waldur deployment

depends on two applications. Jira Service Desk which is used as a customer support

ticketing system.

Data tier: This layer interacts with data persistence mechanisms, for instance, database

management systems, in-memory key-value store. Moreover, this layer exposes an API to

the application logic tier to decouple it from the underlying storage mechanisms. While

Django supports wide range of database systems, Waldur uses in production PostgreSQL

as a DBMS. Data tier also contains a solution for fulfilling Waldur audit requirements.

Waldur uses ElasticSearch to store history of changes of data in the specific tables of

the database. The logging process is implemented using Django ORM callbacks that

are called when table row is updated, created or deleted.

4.3.2 Asynchronous tasks execution

Asynchronous Programming model plays major role in Waldur backend logic. The rea-

son is the fact that some cloud management tasks may imply high latencies, especially

those workflows which deal with configuring virtual machines. Asynchronous program-

ming model allows calling a potentially long-running logic without blocking the caller.

Such strategy allows to release request threads fast and provide rapid feedback to users.

Chapter 4. Services for management of data analytics tools 45

What is more, the separating server instances by different responsibilities (user requests

processing, asynchronous and batch tasks execution) provides higher throughput and

secures fine-granular scalability for the system architecture. Waldur application layer

supports two types of asynchronous tasks:

• Ad hoc jobs - these jobs are usually triggered during processing of user requests.

• Regular batch jobs - this kind of asynchronous tasks are triggered regularly in the

background according to the predefined schedule.

Execution of asynchronous tasks is achieved using message-oriented architecture. Wal-

dur utilizes a distributed task queue called Celery. Celery is able to distribute messages

across both threads and computer nodes for further processing. Celery uses a message-

oriented middleware to deliver messages from clients to Celery workers. The message

forwarding strategy follows Point-to-Point channel design pattern [51] (i.e each message

is processed only once). Celery deployment strategy is very flexible: it allows to run

the whole above-mentioned stack on a single machine which is very convenient for de-

velopment purposes. What is more, if high availability and performance is of concern,

Celery system can be scaled horizontally by adding more worker nodes and expanding

the broker [52]. As of today, Celery fully supports RabbitMQ and Redis as message

brokers. Waldur uses the latter.

Due to the fact that our services deal with software installation on remote virtual ma-

chines which is a time-consuming process, we decided to execute the installation logic

asynchronously on Celery workers, rather than on Waldur nodes which serve REST API

requests.

4.3.3 High availability and scalability

Every single deployment component of Waldur stack can be independently scaled de-

pending on the amount of managed cloud resources and offered service-level agreements.

What is more, if additional fault-tolerance is needed, components may even be dis-

tributed across multiple data centers.

This will require to introduce additional component to the deployment strategy between

different component groups: load balancers. Load balancers make interactions with

cluster of instances transparent: client components do not need to be aware of the

existence of the cluster, they always interact with just single API endpoint.

Chapter 4. Services for management of data analytics tools 46

4.4 Python management service architecture implementa-

tion

In this section we describe the architecture of Python environment management service

and how it is implemented. This service will be afterwards integrated with JupyterHub

service which we describe in more detail in Section 4.5.

4.4.1 Prerequisites

There are several important prerequisites that should be fulfilled so that this layer could

function.

First of all, the service has only been tested to work with the following Linux distri-

butions: Debian 9 and Ubuntu 16.04 LTS. It is not guaranteed that the service will

properly function on any other Linux-based operating systems. However, it might work

within the same families of previously mentioned Linux distributions.

As for firewall settings, a user should assign a rule to a virtual machine which allows

SSH connections. Naturally, the virtual machine should be also in a security group that

allows outgoing traffic, so that it would be possible to download required packages and

dependencies.

Another prerequisite is that, the virtual machine should have public key of a Waldur

Celery worker. It is needed so that Waldur Celery workers would be able to establish SSH

connection without providing any password, and thus without storing any passwords in

Waldur database.

4.4.2 Cloud application deployment and management layer

The process of automatic deployment and management of applications in the cloud

environment incorporates multiple areas. First, like any unit of functionality, it is im-

plemented using business logic which resides in the application tier. Business logic in

turn stores its state in data tier. However, since the ultimate goal is to manipulate state

on the virtual machine, business logic should be further enhanced with a new subprocess

execution layer which has following responsibilities:

• Maps data obtained from the business logic to CLI command parameters.

• Executes a new subprocess of a configuration management tool with the built

parameters.

Chapter 4. Services for management of data analytics tools 47

• Acts upon the output produced by the running configuration management tool.

Artifacts involved in this process include application logic for data mapping and output

parsing, the configuration management tool’s DSL code files for setting up infrastructure

on a target virtual machine.

By the time we started working on the thesis, this new layer had already been introduced.

Its description was provided in Section 2.2.1.4. Unfortunately, it did not fully satisfy our

requirements, thus we developed for our purposes a new extended layer which is based

on the old one.

4.4.3 Ansible - a configuration management tool

Apart from other cloud providers that invented their own infrastructure management

tools which were mentioned in Section 2.2.1 (e.g Google Cloud Deployment Manager,

AWS CloudFormation etc.), Waldur team has chosen to use Ansible as an underlying

configuration management tool for their pilot project of cloud application deployment

which is described in Section 2.2.1.4. There are many other open source tools available

that fulfill the same purpose (for instance, Chef8, Puppet9): each solutions has its trade-

offs and distinctive features, we, however, describe here only Ansible.

Ansible is an open-source configuration management platform which describes the in-

frastructure deployment process in a form of declarative YAML code. Ansible requires

Python 2.7, so does Waldur. Ansible manages machines in an agentless manner: it

does not require neither daemon processes, nor databases on both sides to operate: all

interactions are performed via standard SSH protocol.

Ansible DSL is instantiated in a form of Playbooks. It is a simple and intuitive inter-

preted language built on top of YAML. Essentially, Playbooks are composed of sequence

of Ansible module calls that perform certain actions on target machines. These Play-

books may be further structured into roles to increase readability and code reusability

[53]. Managed machines are defined in the Inventory which can be dynamically expanded

with new machines which is especially useful in cloud environment. Moreover, if Ansible

does not provide some functionality out of the box, it is possible to either execute a shell

command or write your own module. Ansible modules are written in Python. Waldur

team has already built several Ansible modules for integration with Waldur API. Being

able to describe infrastructure as code greatly reduces maintainability cost, since the

8https://www.chef.io/chef/
9https://puppet.com/

https://www.chef.io/chef/
https://puppet.com/

Chapter 4. Services for management of data analytics tools 48

deployment and provisioning processes are completely automated. As the result, state

and configuration of the servers become transparent and stable.

The main weakness of Ansible is that it is still in active development, thus a lot of

modules are still not marked as stable, meaning that backwards compatibility is not

guaranteed.

4.4.4 Python management service structure

Following class diagram in Figure 4.3 shows static structure of the system with the core

classes and their relations. On the diagram each class represents a structure for the data

that is stored in the database. These classes are used by application logic to access data.

The design decisions were influenced by the scenarios described in Appendix A: for

instance, due to the fact that there may be several requests running simultaneously

for the same Python Management (according to Scenario 4 in Table A.4) we decided

to create for each type of request its own model, rather than limit ourselves with just

PythonManagement model. It allows us to store output produced by Ansible for each

possibly simultaneously running request and keep fields specific to a particular request

in their own separate classes (as per Single Responsibility Principle [55]). Such design

ensures extendability, clear and modular application logic. What is more, since Waldur

is a hybrid cloud system, we ensured that our models depend on generic virtual machine

model, rather than on concrete cloud providers’ virtual machine models (in accordance

to Scenario 1 in Table A.1).

We decided to store current state of Python virtual environments in the database, be-

cause of the large latencies involved in the process of obtaining installed virtual environ-

ments from a virtual machine. That is the reason why executing these search operations

on the fly (each time when user visits Python Management screen) is not an option. The

disadvantage of storing list of installed Python virtual environments and libraries in the

database lies in the fact that this information may become out of sync with the actual

state on the virtual machine. For example, if user manually installs a library through

SSH. It is pretty challenging to provide a reliable solution to this synchronization prob-

lem, so we chose to let users themselves synchronize list of libraries when they think it is

needed (see scenario described in Table A.5). In addition, the synchronization with the

database takes place after execution of any of requests that modify state of a Python

virtual environment.

Chapter 4. Services for management of data analytics tools 49

Figure 4.3: Python Environment management service class diagram

We chose not to introduce additional batch jobs in Waldur application tier which could

regularly scan all virtual machines and bring the data stored in the database into con-

sistent state. There still will be a time frame when the state is inconsistent, furthermore

these jobs may take a long time to complete. In fact, the performance of application

provisioning process depends on how much computing and memory resources allocated

to a virtual machine. This approach may significantly increase hardware requirements

of Waldur system.

It is also important to provide the structure of Python Management environment on

the virtual machine, so we present a deployment diagram of Python Management en-

vironment in Figure 4.4. The diagram shows which tools are installed on the virtual

machine and what components are managed upon the environment deployment. The

modeling constructs of the following structure diagram are loosely based on ideas of

TOSCA standard [25].

As it can be seen in Figure 4.4, Ansible Playbooks called by Waldur application, interact

with virtualenvwrapper10 and local Pip 3 of the particular virtual environment. Python

10https://virtualenvwrapper.readthedocs.io/en/latest/

https://virtualenvwrapper.readthedocs.io/en/latest/

Chapter 4. Services for management of data analytics tools 50

Figure 4.4: Python environment management after provisioning on the virtual ma-
chine

virtual environment is essentially a directory which holds local Python and Pip binaries.

These binary files have access only to the locally installed libraries (we disallow access

to globally installed libraries to provide higher degree of isolation). Virtualenvwrapper

is an utility program which provides a set of convenient commands to manage Python

virtual environments (under the hood it delegates commands to virtualenv11 tool).

Figure 4.5 shows a Python management service details screen with scenarios described

in Appendix A. Not all scenarios are depicted in the figure, since some of them are

purely technical and do not correspond to any graphical user interface element.

11https://pypi.python.org/pypi/virtualenv

https://pypi.python.org/pypi/virtualenv

Chapter 4. Services for management of data analytics tools 51

Figure 4.5: Python environment management details screen. Scenarios are described
in Appendix A

4.4.5 Cloud application management process

The application provisioning process is composed of four major stages:

• Provisioning request creation and task submission to Message Broker:

Celery task can hold any serialized information. In our case, we store there name of

the request’s Django model (which corresponds to the actual table in the database)

and its primary key (steps 1.0-1.2 in Figure 4.6).

• Request deserialization and acquiring coarse-grained pessimistic write

lock: Once the task is received by Waldur Celery worker (step 1.3), the request

instance is fetched from the database (steps 1.4-1.5). Before proceeding any fur-

ther, it is crucial to ensure that no other conflicting request is running (steps

1.6-1.8 in Figure 4.6). For that, we use coarse-grained pessimistic write locking

mechanism[56]. The lock itself is represented as a key-value pair which is stored in

Redis. They key is a string which represents the particular subset of functionality

(for instance, related to a whole particular Python Management environment or

Chapter 4. Services for management of data analytics tools 52

to just a single Python Virtual Environment) and value a boolean flag. The lock

is stored in Redis only for specific time in order to ensure that if anything goes

wrong and the lock is not discarded at the step 1.19, it will be eventually released.

• Request processing: As described in Section 4.4.2, this part of functionality

executes external process, in our case Ansible (steps 1.10-1.12). Each output line

is persisted in the database (step 1.15) and the structured information is retrieved

from it (step 1.14). Once the process ends, additional callbacks are executed (steps

1.17-1.18).

• Task status update: Depending on the result of the previous stage (step 1.16:

whether the process completed successfully or an exception was thrown), Celery

worker updates request state in the database (step 1.18) and sends task status to

the broker (step 1.20) which afterwards stores it in its queue. Naturally, the lock

is also released (step 1.19).

The sequence diagram depicted in Figure 4.6 does not include all the involved Python

classes, rather provides an overview of the main stages of cloud application provisioning

process.

Same above-described strategy is used in both Python management and JupyterHub

management services. Different types of requests (depicted in Figures 4.3 and 4.8) only

redefine certain steps of the algorithm, for example, steps 1.6, 1.9, 1.14, 1.15, 1.17, 1.19.

Such code reusability is achieved using Template method pattern 12.

4.4.6 Library name autocomplete functionality

In order to assist users with library selection in Scenario 2 (see Table A.2), we decided

to introduce a library name autocomplete feature. There are several possibilities how to

implement it.

• Make a Remote Procedure Call to PyPIXmlRpc service13. Even though this ap-

proach is the simplest, it has two drawbacks. Firstly, the query latency is unac-

ceptable for this kind of use case and there is no way to decrease it, since the

package search operation does not even provide a possibility to limit the search

result size. Secondly, this PyPI XML-RPC interface is considered to be deprecated

and not recommended to use14.

12https://en.wikipedia.org/wiki/Template_method_pattern
13https://wiki.python.org/moin/PyPIXmlRpc?action=show&redirect=PyPiXmlRpc
14https://wiki.python.org/moin/PyPIXmlRpc

https://en.wikipedia.org/wiki/Template_method_pattern
https://wiki.python.org/moin/PyPIXmlRpc?action=show&redirect=PyPiXmlRpc
https://wiki.python.org/moin/PyPIXmlRpc

Chapter 4. Services for management of data analytics tools 53

Figure 4.6: General application provisioning and management process

Chapter 4. Services for management of data analytics tools 54

• Another approach is to regularly index PyPI package list and persist it either

in the SQL database or in the in-memory database. Despite the fact that this

approach requires more development effort and introduces pretty heavy batch task,

user experience will improve substantially. Another design decision that should be

made is where the indexed data should be held. Due to the fact that autocomplete

feature requires rapid response from the server, initially the batch task was storing

PyPI packages in Redis. The drawback of its approach is in its development and

maintenance complexity, since Redis offers very simplistic API which does not

support searching for data in SQL LIKE query fashion. In the end, we decided to

store data in SQL database which would provide decent performance if indices are

assigned to appropriate table columns.

High-level overview of the Python packages indexing batch task is depicted in the se-

quence diagram in Figure 4.7. As of March 20 2018, there are 132831 unique Python

packages in Python Package Index repository. Due to this large amount of data, there

were implemented following strategies in the batch logic:

• Autocommit mode of operation of a database connection. We decided not to

use transactions for several reasons. Firstly, the batch task does not need any

atomicity guarantees: if it is impossible to persist a package name in the database,

we just log the failure without reverting previously inserted entries. Besides, there

is no need to ensure isolation: we are perfectly fine with committing intermediate

results to the database making them instantly visible to all database users.

• Bulk inserts: inserting and committing CachedRepositoryPythonLibrary (see

Figure 4.3) entries one-by-one is clearly not the most optimal approach we can

take. Thus we implemented an algorithm which accumulates configurable amount

of package names in memory and afterwards performs bulk insert to the database

until all packages are persisted.

4.5 JupyterHub provisioning service

In this section we describe how we implement JupyterHub server deployment and con-

figuration management service. The new service is integrated with previously developed

Python Management service to enable users to fully prepare their programming envi-

ronment through Waldur self-service.

Chapter 4. Services for management of data analytics tools 55

Figure 4.7: Python packages indexing batch task

4.5.1 Prerequisites

Same prerequisites are applied to virtual machine configuration as in case of Python

management service which are described in Section 4.4.1. Additionally, an extra security

rule should be assigned to a virtual machine which permits access to 80 and 443 ports.

Furthermore, in order to use JupyterHub management service, first, there should be

created Python management environment for the given virtual machine.

Chapter 4. Services for management of data analytics tools 56

Figure 4.8: JupyterHub management service class diagram

4.5.2 JupyterHub service architecture

Figure 4.8 shows the class diagram of JupyterHub provisioning service. Similarly to

Python Management service, each JupyterHub configurable option is stored in the

database tables due to the reasons described in the Section 4.4.4. Needless to say,

that this approach possesses exact same advantages and weaknesses.

We designed JupyterHub management requests in a same way, as Python management

requests in Figure 4.3 to be able to reuse same code and preserve high degree of extend-

ability, maintainability of the architecture.

As shown in Figure 4.9, according to a deployment strategy, JupyterHub is installed

globally in the system. Waldur application logic ensures that only one JupyterHub is

installed on a particular virtual machine. Configurable HTTP proxy is a proxy server

which forwards incoming requests either to JupyterHub server or to a particular instance

of Jupyter. JupyterHub maps users to local Linux system users. JupyterHub users may

be either manually defined through Waldur self-service or come from OAuth2 service

provider. When a new user logs in, JupyterHub creates a new system user, then spawns

Chapter 4. Services for management of data analytics tools 57

Figure 4.9: JupyterHub environment management after provisioning on the virtual
machine

a new Jupyter process using systemd15 and the working directory of the newly created

Jupyter instance is set to the home directory of the corresponding Linux system user.

JupyterHub process runs with root permissions (systemd instance spawner requires that)

and separate Jupyter instances work with the permissions of the corresponding logged

in user.

Furthermore, Jupyter instances have access to managed by Waldur Python virtual en-

vironments that can be marked as globally accessible to all JupyterHub users in Waldur

self-service portal.

15https://github.com/jupyterhub/systemdspawner

https://github.com/jupyterhub/systemdspawner

Chapter 4. Services for management of data analytics tools 58

Figure 4.10: JupyterHub management details screen. Scenarios are described in
Appendix B

The screenshot in Figure 4.10 shows a JupyterHub management service details screen

with manual user definition mode. Additionally, we included a screenshot of OAuth2

form section. JupyterHub scenarios described in Appendix B are mapped to correspond-

ing graphical user interface elements. Similarly to Figure 4.5, purely technical scenarios

are not shown.

4.6 Quality control of the built services

The quality control in Waldur covers undoubtedly a wide range of aspects of the system.

However, we found ourselves in a need to introduce additional type of tests for compre-

hensive testing of the deployment logic described in Section 4.4.5. Even though we had

written component tests to test application logic and its interactions with the database,

there were no tests which ensured that Ansible provisioning logic works as expected.

Functionality of this type of services spans across multiple areas of responsibility (ap-

plication business logic - Ansible Playbooks - target operating system), thus we argue

that it is not enough to just write unit or component tests to test only application logic.

Chapter 4. Services for management of data analytics tools 59

What is more, Ansible provisioning logic is tightly coupled with the application logic

(application logic passes arguments to the Ansible playbooks and parses their output),

so we decided not to separate them during testing. This kind of tests can be classified

as integration tests and they reside on a next level after component tests in the test

pyramid shown in Figure 4.11.

There is definitely a need for integration testing due to the following reasons: firstly,

Ansible does not provide any means of testing Playbook logic. On top of that, it is very

hard to guarantee that the provisioning logic is applicable for various Linux distributions.

The reason is that various distributions come with different setups, thus some may

require extra steps. For instance, Ubuntu 16.04, as opposed to Debian 9, does not come

with Python 2 which is a required dependency of Ansible. What is more, the outcome

of the deployment process depends not only on the particular Linux distribution but

also on the tools which are used during installation and on the packages being installed.

If one of these tools or packages happen to introduce breaking changes, there is a great

chance that it will be discovered by the users on production and not during continuous

integration process.

Needless to say, that manual testing takes a lot of effort and should be automated as

much as possible. It would be very beneficial for further development and maintenance

of these services to have tests for each supported family of Linux distributions. Due

to the fact that integration tests cover quite a large scope of the system (application

logic - Ansible playbook logic - environment of the Linux distribution), they may require

substantial maintenance effort. Thus, amount of integration tests should be kept low.

In our own integration tests we cover only happy paths [57].

In order to simulate a provisioning process, integration tests need an empty Linux sys-

tem. For that we use Docker containerization system in order to ensure that the in-

tegration tests follow F.I.R.S.T principles [58]. Most importantly, the integration tests

should be fast, isolated and repeatable. The idea of using Docker in tests was inspired by

the Java library called test-containers16. However, we should mention that our Docker

images do not perfectly reflect actual virtual machines. Even though we use same op-

erating system images which are deployed by OpenStack cloud system of the Estonian

Scientific Computing Infrastructure, due to the nature of Docker, we need to manually

write container initialization logic in Dockerfiles (to run systemd, SSH server processes

and to create appropriate system users).

The main entities involved into the integration tests and their interactions are depicted

in Figure 4.12 can be split into following major stages:

16https://github.com/testcontainers/testcontainers-java

https://github.com/testcontainers/testcontainers-java

Chapter 4. Services for management of data analytics tools 60

Figure 4.11: Test pyramid (Source: [3])

• Docker image creation: Each integration test suite prepares required Docker

images by calling static method in Ubuntu1604Container class during setUpClass()

step. It is called once per test suite (steps 1.1-1.9 in Figure 4.12). On top of that,

to ensure that tests are fast, we make the process of Docker image creation lazy:

if image already exists, steps 1.6-1.8 are skipped.

• Execution of a test case: Once the required images are created in the sys-

tem, test runner executes test cases. During execution of a test case an object of

Ubuntu1604Container class is created and at some point it is wrapped in ”with”

block (which is a statement in Python syntax). Before code enters ”with” block,

the wrapped object runs Docker container (step 1.12). Naturally, the logic under

the test should be executed within this ”with” block. The logic under the test

spawns Ansible subprocess which connects to the Docker container and performs

all modifications (steps 1.14-1.15). All test assertions should also be performed

within the scope of ”with” statement (if access to the virtual machine is needed).

Once code exits ”with” block, instance of Ubuntu1604Container terminates the

container (steps 1.16-1.17).

For demonstration purposes we omit any additional non-related test logic executed

throughout 1.0- 1.17 steps.

Chapter 4. Services for management of data analytics tools 61

Figure 4.12: Integration tests execution process

Unfortunately, execution of integration test greatly depends on the host platform. For

example, we discovered that Ubuntu 16.04 Docker image does not work in a stable

way on CentOS 7 host. Because of the fact that Waldur team runs Jenkins server on

CentOS 7, this limitation blocked us from incorporating integration tests into Continuous

Integration pipeline of Waldur.

Chapter 4. Services for management of data analytics tools 62

4.7 Evaluation

4.7.1 Feedback from the potential users

According to the design science research methodology described in Section 1.2.3 the

proposed solution should be evaluated. In the scope of the thesis we perform evaluation

with potential users from academia. The evaluation process is organized as follows: first,

we organize one-on-one meeting with each potential user. If a user has not ever used the

cloud of the Estonian Scientific Computing Infrastructure before, we show them around

the self-service system. Afterwards, we give a brief informal introduction of what the

new services are and what kind of problems they intend to solve. During the testing

process we take the user through all the Scenarios descried in Appendices A and B.

Once the testing stage is over, the user was asked a few follow-up questions about their

general impression and what purposes they would use these services for. After that, the

user was asked to fill a feedback form. The results and analysis of the received feedback

are presented in this section.

In total, we conducted testing sessions with 5 university researchers and received feed-

back through survey form from 4 people. The feedback form consists of 18 questions.

Even though the amount of the responses is relatively small, we managed to reach exactly

the potential users who are interested in the services we built.

In the first question we asked if we made the right decision by providing the service

which allows to configure a development environment through web-based user interface

as an alternative to command-line execution. The following Table 4.1 shows that in

general Python management service was warmly accepted by the university researchers.

The process of setting up a python development environment through

self-service is more convenient than via SSH terminal.

Strongly agree 1 25%

Agree 3 75%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Table 4.1: Survey responses to question 1: The process of setting up a python devel-
opment environment through self-service is more convenient than via SSH terminal

The second question (Table 4.2) is meant to find out if the researchers believe that

the process of installation of libraries through self-service allows them to quickly setup

development environment on a virtual machine. The reason for this question was that

Chapter 4. Services for management of data analytics tools 63

we were not sure if our choice to use pip as a package manager (described in Python

management scenario 2 in Table A.2) was viable. The received responses show that

in general, respondents do not mind specifying libraries through self-service. However,

during testing session one researcher indicated that it would be nice to have already

predefined set of essential data science libraries for installation.

Self-service enables me to rapidly set up a python development

environment on a remote virtual machine.

Strongly agree 2 50%

Agree 2 50%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Table 4.2: Survey responses to question 2: Self-service enables me to rapidly set up
a python development environment on a remote virtual machine

When it comes to JupyterHub provisioning service, we wanted to know if the service

allows to configure sufficient amount of aspects of JupyterHub deployment (Table 4.3).

Several researchers took neutral stand in this question which indicates that further work

should be carried out to identify possible configuration options to allow fine-grained

customization of JupyterHub deployment.

JupyterHub management service provides sufficient amount of

configuration options.

Strongly agree 0 0%

Agree 2 50%

Neutral 2 50%

Disagree 0 0%

Strong disagree 0 0%

Table 4.3: Survey responses to question 3: JupyterHub management service provides
sufficient amount of configuration options

The next two questions (Tables 4.4 and 4.5) are related to improving quality of courses

that the researchers teach. Researchers believe that the new services may be helpful to

their teaching work.

Chapter 4. Services for management of data analytics tools 64

Python management service will help me to improve courses that I teach.

Strongly agree 0 0%

Agree 3 75%

Neutral 1 25%

Disagree 0 0%

Strong disagree 0 0%

Table 4.4: Survey responses to question 4: Python management service will help me
to improve courses that I teach

JupyterHub management service will help me to improve courses that I

teach.

Strongly agree 0 0%

Agree 3 75%

Neutral 1 25%

Disagree 0 0%

Strong disagree 0 0%

Table 4.5: Survey responses to question 5: JupyterHub management service will help
me to improve courses that I teach

In addition to teaching, our services are also aimed to support performing data analytics

in the cloud. In order to identify how well these two services actually fulfill their purpose,

we asked for opinion of the researchers in the following two questions (Tables 4.6 and

4.7). The results imply that our proposed services may be of benefit to conducting data

analysis in cloud environment.

Python management service will help me to solve data analysis tasks in

cloud environment more efficiently.

Strongly agree 0 0%

Agree 3 75%

Neutral 1 25%

Disagree 0 0%

Strong disagree 0 0%

Table 4.6: Survey responses to question 6: Python management service will help me
to solve data analysis tasks in cloud environment more efficiently

Chapter 4. Services for management of data analytics tools 65

JupyterHub management service will help me to solve data analysis

tasks in cloud environment more efficiently.

Strongly agree 0 0%

Agree 3 75%

Neutral 1 25%

Disagree 0 0%

Strong disagree 0 0%

Table 4.7: Survey responses to question 7: JupyterHub management service will help
me to solve data analysis tasks in cloud environment more efficiently

The next question (Table 4.8) is an open-ended one. Due to the broad range of available

JupyterHub extensions we wanted to know if researchers could suggest anything specific.

These suggestions we consider as possible directions of the future work. One researcher

specified that it would be nice to have an option to install R kernels through self-serivce.

What additional Jupyter extensions would you like to be part of the

deployment?

R kernel 1 25%

F# kernel 1 25%

No suggestions 2 50%

Table 4.8: Survey responses to question 8: What additional Jupyter extensions would
you like to be part of the deployment?

So as to assess how stable the implemented services work, we asked users if they had

encountered any errors while they had been using the services (Table 4.9). At the very

first evaluation we encountered serious issue in provisioning logic which was manually

resolved on the particular virtual machine and the provisioning process managed to

complete. During another evaluation session we stumbled upon a minor bug in the user

interface.

Did you encounter any errors while managing Python virtual

environments or deploying JupyterHub?

Yes 2 50%

No 2 50%

Table 4.9: Survey responses to question 9: Did you encounter any errors while man-
aging Python virtual environments or deploying JupyterHub?

The next question (Table 4.10) was intended so that users could describe in more detail

what kind of bugs they encountered while using the services. The first answer here is

Chapter 4. Services for management of data analytics tools 66

pretty general due to the fact that the bug in the graphical user interface has already

been known by the maintainer of the services. The second answer is related to bug

during provisioning process.

What kind of errors did you encounter?

Different bugs 1 50%

The errors were in an early stage and re-

lated to Ubuntu specific problems with

pip.

1 50%

Table 4.10: Survey responses to question 10: What kind of errors did you encounter?

Provided log output of management requests helped me to resolve the

issues.

Yes 1 50%

No 0 0%

The issues did not occur during processing

of management requests

1 50%

Table 4.11: Survey responses to question 11: Provided log output of management
requests helped me to resolve the issues

After resolving the issues, Python management service worked in a

stable way.

Strongly agree 1 50%

Agree 1 0%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Issues were not solved 0 0%

There were no further interactions with

the service

0 0%

Not applicable 1 50%

Table 4.12: Survey responses to question 12: After resolving the issues, Python
management service worked in a stable way

Chapter 4. Services for management of data analytics tools 67

After resolving the issues, JupyterHub management worked in a stable

way.

Strongly agree 1 50%

Agree 1 0%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Issues were not solved 0 0%

There were no further interactions with

the service

0 0%

Not applicable 1 50%

Table 4.13: Survey responses to question 13: After resolving the issues, JupyterHub
management worked in a stable way

When we asked potential users to say if they wish to use the built services in their

future work or not, it turned out that respondents were in general interested in these

services (as shown in Tables 4.14 and 4.15). The received responses imply that Python

management service did not receive as much praises as did JupyterHub management.

I will use Python management service in my future work.

Strongly agree 2 50%

Agree 2 50%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Table 4.14: Survey responses to question 14: I will use Python management service
in my future work

I will use JupyterHub management service in my future work.

Strongly agree 3 75%

Agree 1 25%

Neutral 0 0%

Disagree 0 0%

Strong disagree 0 0%

Table 4.15: Survey responses to question 15: I will use JupyterHub management
service in my future work

Chapter 4. Services for management of data analytics tools 68

The last two questions (Tables 4.16 and 4.17) are aimed to reveal how the implemented

services generally appeal to the participants. The participants were asked to assess the

services on a scale from one to five. Overall, the feedback was positive.

What is your overall satisfaction with Python management service?

5 0 0%

4 4 100%

3 0 0%

2 0 0%

1 0 0%

Table 4.16: Survey responses to question 16: What is your overall satisfaction with
Python management service?

What is your overall satisfaction with JupyterHub management service?

5 1 25%

4 3 75%

3 0 0%

2 0 0%

1 0 0%

Table 4.17: Survey responses to question 17: What is your overall satisfaction with
JupyterHub management service?

In the last questionnaire entry the respondents were asked to provide their feedback in

free form. One researcher requested a more restrictive permissions on home directories

of JupyterHub users in order to ensure that work of JupyterHub users remains hidden

from other users (useful in case of teaching). What is more, the fact that user should

first create Python management environment before JupyterHub deployment proved to

be somewhat inconvenient for those, who do not intend to program in Python. In future

this relation between Python and JupyterHub should be made optional.

Another researcher stressed the fact that degree of automation should be further in-

creased, that is, process of fulfilling the prerequisites described in Sections 4.4.1 and

4.5.1 should be performed by the system. Another suggestion was that it would be nice

if users could request provisioning of the managed tools on a new virtual machine di-

rectly via Python or JupyterHub services without having to preliminary create a virtual

machine themselves.

There was also a comment regarding Python management service. A user said that the

service is in general complex. He suggested that this complexity could be solved by

Chapter 4. Services for management of data analytics tools 69

using Anaconda distribution instead of pip or by providing a set of libraries which are

typically used for data analysis.

4.7.2 Comparison with services from other cloud providers

In order to compare our solution with other services that aim to achieve similar goals

(support interactive Python computing workloads in the cloud using Jupyter notebooks),

we compose following Table 4.18. First, we compare our service to Microsoft Azure

Notebooks. Another solution that we selected for comparison is Amazon EMR which

also provides a CLI tool for JupyterHub deployment. We are aware that Microsoft

Azure Notebooks and Google Colaboratory are PaaS systems, but still our Python and

JupyterHub services aim to achieve similar goals, hence we believe that it is valid to

compare our services to PaaS solutions.

In summary, the Table 4.18 identifies the main weaknesses of the built services: firstly,

the existing JupyterHub service should be complemented by other widely used kernels

such as R, Julia. Above that, JupyterHub should come with additional extensions.

We want to elaborate a little bit more on single user environment isolation aspect of

our service. We estimate it to be medium due to the following reasons: (i) Python

management service does not install libraries globally, but into isolated Python virtual

environments. (ii) Jupyter users do not have permissions to modify virtual environments

other than their own which they can create manually through terminal if needed (for

example, if they do not have access to Waldur self-service where corresponding Python

and JupyterHub service instances are managed). Even though we could achieve higher

level of isolation using JupyterHub’s Docker spawner17 or Kubernetes spawner18, we

decided not to introduce additional layer of abstraction in a form of containers, since we

want to keep infrastructure internals accessible to the users so that they could resolve

issues themselves if any occur. Docker containers add additional complexity which we

would like to avoid, since our target users are researchers and lecturers who do not

necessarily have advanced system administration skills.

Attributes Python and

JupyterHub man-

agement

Microsoft Azure

Notebooks19

Google Colabora-

tory20

JupyterHub

CLI on Ama-

zon EMR[59]

Type of service Application manage-

ment service in hy-

brid cloud

PaaS PaaS Managed cluster

platform

17https://github.com/jupyterhub/dockerspawner
18https://github.com/jupyterhub/kubespawner#kubespawner-jupyterhub-kubernetes-spawner

https://github.com/jupyterhub/dockerspawner
https://github.com/jupyterhub/kubespawner#kubespawner-jupyterhub-kubernetes-spawner

Chapter 4. Services for management of data analytics tools 70

Attributes Python and

JupyterHub man-

agement

Microsoft Azure

Notebooks19

Google Colabora-

tory20

JupyterHub

CLI on Ama-

zon EMR[59]

Supported lan-

guages

Python, additional

kernels should be in-

stalled manually

Python, R, F# Python Python, R, Scala,

Ruby, Julia

Libraries in-

stallation

to Jupyter

Python kernels

Using self-service,

manually or through

notebooks

Comes with Ana-

conda, other libraries

are installed using

notebooks or custom

ssh script, all in-

stalled libraries are

lost once a Jupyter

instance shutdowns

Additional libraries

are installed through

notebooks. Comes

with predefined list

of data science pack-

ages

Libraries can be in-

stalled with a CLI

tool, manually or

through notebooks.

Comes with prede-

fined list of data sci-

ence libraries

Additional ker-

nels installation

Manual installation Not possible Not possible Manual installation

Distributed

processing

No, required Jupyter

kernels should be

manually installed

No No Yes, platform pro-

vides cluster man-

agement capabilities

and appropriate ker-

nels

GPU support GPU drivers should

be installed sepa-

rately or come with

a Linux image

No Yes, but a single

GPU is shared by

multiple users

GPU instances

should be used [60]

Jupyter exten-

sions

Additional exten-

sions should be

installed manually

Comes with a pre-

defined list of exten-

sions

Environment is built

from scratch, no

Jupyter extensions

are supported

Comes with a pre-

defined list of exten-

sions, additional ex-

tensions can be man-

ually installed [59]

OAuth2 sup-

port

GitLab, Microsoft

Azure are con-

figurable through

self-service

Authentication using

Microsoft Account

Authentication using

Google Account

Should be manually

configured

Chapter 4. Services for management of data analytics tools 71

Attributes Python and

JupyterHub man-

agement

Microsoft Azure

Notebooks19

Google Colabora-

tory20

JupyterHub

CLI on Ama-

zon EMR[59]

Deployment

and configura-

tion manage-

ment

Using self-service or

manually adapting

configuration files

Deployment is en-

tirely handled by the

service

Deployment is han-

dled entirely by the

service

Initial deployment

via .sh script. After-

wards only manual

configuration man-

agement

Notebooks

sharing capa-

bilities

Manually using VCS Sharing capabilities

come out of the box,

integration with

GitHub

Integration with

Google Drive and

GitHub

Manually using VCS

Simultaneous

collaborative

notebook edit-

ing

No No Yes No

Single user en-

vironment iso-

lation degree

Medium High High Medium

Access to un-

derlying infras-

tructure

Yes Access only to a

file system through

Jupyter

Access only to a

file system through

Jupyter

Yes

Resource usage

limits

Restricted by the

particular virtual

machine resources

4 GB memory, 1 GB

storage per user

1 CPU core, 13 GB

memory21

Restricted by the

cluster and the

particular virtual

machine where

JupyterHub oper-

ates

Table 4.18: Jupyter as a Service systems comparison

4.8 Discussion

In general, the gathered feedback from the users is positive and some of them expressed a

wish to use the built services in their work. We discovered that JupyterHub management

was anticipated a bit more than Python management. The probable explanation is the

21https://colab.research.google.com/notebook#fileId=1_x67fw9y5aBW72a8aGePFLlkPvKLpnBl

https://colab.research.google.com/notebook#fileId=1_x67fw9y5aBW72a8aGePFLlkPvKLpnBl

Chapter 4. Services for management of data analytics tools 72

fact that there are alternative ways of installing libraries: it is possible to install Python

libraries through SSH or Jupyter notebooks. Another reason is that Python management

service is complicated to use. The comments received from the researchers indicate that

our requirements engineering process could have been improved if we had conducted

preliminary interviews with the target user group. Moreover, the best outcomes could

have been achieved if the potential users had been involved into the project to ensure

that all the developed functionality is appropriate and meets the expectations of the

users.

Comparison with other similar systems shows that the selected model of service (appli-

cation provisioning service) automates tedious deployment process of analytics software

and at the same time provides high degree of flexibility to the users who would like to

additionally customize the deployed software packages. In addition, due to the fact that

the services are built in the hybrid cloud system, users are not bound to any specific

cloud provider. Another benefit that Python management brings is that it enforces users

to follow the best practices that they may not be aware of: for example, to use isolated

Python virtual environments instead of installing libraries globally.

Nonetheless, there is still room for improvement. For instance, JupyterHub service

should offer more kernels and extensions. Furthermore, in order to assist data analysts,

Python management should provide a set of commonly used libraries for data analytics.

Moreover, the overall degree of automation ought to be further increased: currently

users should create virtual machines separately. The process of creation of a virtual

machine should be incorporated into Python and JupyterHub management services.

4.9 Conclusion

The process of building services for automatic management of data analytics tools on a

remote virtual machine was split into two phases.

First, we came up with usage scenarios. We placed particular focus on modifiability of

the provisioned tools to ensure that users would not be limited to only the supported

configuration options. Otherwise, the scenarios were composed based on our own usage

experience of the tools. We made effort to compose scenarios in such a way, which would

all together form a convenient and intuitive workflow for configuration management of

the given tools on a remote virtual machine.

Afterwards we presented a design and implementation of two services for configuration

management of Python development environment and JupyterHub deployment on a re-

mote machine through cloud self-service. The new functionality made cloud services

Chapter 4. Services for management of data analytics tools 73

more accessible to users with different backgrounds. Our main goal was to hide ap-

plication deployment and development environment configuration complexity from the

users as much as possible. We can state, that we managed to allow users to perform all

the essential infrastructure configuration management through Waldur self-service for

Python-based single-node general-purpose and deep learning workloads. It is possible to

install libraries into isolated Python virtual environments via self-service. JupyterHub

management service, in turn, allows users to deploy multitenant Jupyter notebook exe-

cution environment and use previously configured Python development environments in

it.

We can conclude that the services which deal with provisioning and application config-

uration management are brittle since the deployment relies on a lot of external depen-

dencies. The services ought to be maintained carefully and should be regularly checked

if they still function on the given Linux distribution. For this purpose, we developed

integration tests which should be configured to run as part of Continuous Integration

pipeline.

The gathered feedback from the potential users indicated that the services have the

potential to be adopted by the university lecturers and researchers: we managed to select

the relevant to their everyday work tools for provisioning in the cloud environment and

provide sufficient degree of deployment automation. At the same time, we identified

shortcomings of our services some of which were taken into account and corrected.

Chapter 5

Conclusion and Future Work

In Chapter 5 we summarize all the findings of the thesis. In Section 5.1 we provide a

brief recap what was achieved throughout the thesis. The answers to the main research

questions are provided in Section 5.2. Furthermore, we describe limitations of the built

services in Section 5.3 and outline directions for the future work in Section 5.4.

5.1 Conclusion

In the first part of the thesis we gave an overview of processing frameworks which can

be used either for ETL, data mining, machine or deep learning workloads. Afterwards,

we conducted a survey to discover what data analytics engines are used by Estonian

researchers from academia and industry practitioners. Acquired results helped us to

make an informed decision regarding what data analytics tools service Waldur should

first provide.

Subsequently, we constructed a design for dynamic configuration management of two

platforms. The first service is for management of Python development environments

and the second service is for managing JupyterHub deployment. Both front end and

back end of the services were implemented in the existing Waldur codebase and then

released to Waldur deployment at the Estonian Scientific Computing Infrastructure.

Furthermore, appropriate integration tests were developed for testing back end logic of

the built services with the help of Docker containers that ensure fast response, isolation

and repeatability of the tests. Once the design had been instantiated and released to

the production cloud environment of the Estonian Scientific Computing Infrastructure,

we introduced new services to university researchers and asked for their feedback. It

turned out that in general feedback was positive. The services have the potential to be

74

Chapter 5. Conclusion and Future Work 75

adopted by the university lecturers and researchers. Moreover, the gathered feedback

allowed us to identify possible future development directions.

5.2 Answering the Research Questions

The main research question was formed as follows: How to dynamically manage

deployment and life cycle of data analytics platforms in the context of hy-

brid cloud brokerage platform? The main research question was split into two

subquestions. In the following sections we provide the answers to each of them.

5.2.1 RQ-1: What are state-of-the-art data analytics engines used in

the industry and in Estonia?

In the scope of the thesis we distinguished 3 major groups of data analytics frameworks:

(i) single-node general-purpose tools, (ii) distributed general-purpose tools and (iii) deep

learning tools. Distributed general-purpose engines, in turn, can be further classified into

two categories: batch and stream processing. We identified the major tools for each field.

The most notable single-node data analytics tools are available in a form of Python

and R packages. As for distributed batch processing, MapReduce-based tools have been

dominating the area for long time. However, MapReduce does not use memory in an

efficient way, so there is a growing trend towards utilization of in-memory computations

for large scale processing. Most notable examples of such engines include Apache Spark

and H2O. There are several options available for stream processing such as Apache Flink,

Apache Spark Streaming and Apache Heron. As far as deep learning is concerned, there

is a great variety of engines available each providing its own notable features: imperative

or declarative programming approaches, high degree of flexibility during the training

process, support for distributed processing, GPU or mobile support, etc.

The survey findings showed us that majority of Estonian researchers use single-node

Python and R-based tools to perform data analysis tasks. Besides that, there is a great

interest towards deep learning engines. With that knowledge we concluded that it makes

sense to support first researchers that work with Python-based tools which include single-

node general-purpose libraries as well as deep learning engines that provide Python API.

Chapter 5. Conclusion and Future Work 76

5.2.2 RQ-2: How to automate provisioning and management of data

analytics tools through hybrid cloud brokerage platform?

Automated application provisioning service logic relies on a multitude of tools each of

which is used for a particular task. All in all, the logic spans across several environments.

Due to the long lasting nature of software installation process, the logic is executed asyn-

chronously with help of message-oriented architecture. In order to improve performance

when accessing the services, all the information related to the provisioned tools is held in

the database. The first steps of provisioning logic are performed in an application tier: a

worker receives a task from a message broker, obtains all the necessary information from

the database and locks the environment for processing using coarse-grained pessimistic

write lock. Next, the application tier spawns a new Ansible subprocess and delegates

infrastructure configuration to it. Ansible logic connects to a virtual machine via SSH

and brings the environment into a desired state. During this process the state in the

database of the cloud broker is updated by parsing logs produced by Ansible.

5.3 Limitations

There are several limitations that apply to our services. Firstly, users should manually

fulfill prerequisites described in Section 4.4.1 so that the services could function.

Another common limitation of these two services is that they may suffer from state

inconsistency issues if a user manually installs Python libraries and does not trigger

appropriate search for libraries through self-service or if JupyterHub configuration is

manually changed through SSH terminal. This limitation could have been eliminated

had we decided to build PaaS-type services, but we decided to provide more flexibility

and expose underlying infrastructure to the users.

Concerning scalability limitations of JupyterHub deployment, the current solution sup-

ports JupyterHub deployment on a single node. We considered it to be a valid solution

given the fact that OpenStack private cloud of the Estonian Scientific Computing In-

frastructure can provision virtual machines with up to 16 CPU cores and 32 gigabytes of

RAM. However, if it is expected that there will be hundreds of simultaneous JupyterHub

users then scalability might become an issue.

Both Python and JupyterHub management services have a common constraint: they

were tested only on Ubuntu 16.04 and Debian 9 operating systems, thus compatibil-

ity with other Linux distributions is not guaranteed. Neither of the services support

Microsoft Windows operating systems.

Chapter 5. Conclusion and Future Work 77

As for integration tests, even though we managed to implemented them to ensure that

they are fast, isolated and repeatable, they may not entirely reflect actual virtual ma-

chines provided by the cloud providers, due to the fact that developers should write

initialization logic in Dockerfiles themselves. Moreover, we discovered that execution

of integration tests depends on the host platform, for instance, when we tried to run

integration tests using Ubuntu 16.04 image on CentOS 7 host, the container froze unex-

pectedly in the course of the test. Our best guess is that it happens due to the fact that

Ubuntu 16.04 distribution requires more modern version of Linux kernel than CentOS 7

can provide. This prevented us from including integration tests into Waldur continuous

integration pipeline.

5.4 Future Work

In this section we discuss possible directions for the future work.

Firstly, actions should be taken to automate fulfillment of prerequisites described in

Section 4.4.1: it should be possible to specify that a new virtual machines should come

with public keys of Waldur Celery workers. In addition, an option of automatic creation

of a new virtual machine for the new deployment should be included into workflow of

Python and JupyterHub management services.

A further potential direction of development is to introduce cluster provisioning and

management service to support distributed processing use cases. From the survey re-

sults described in Chapter 3 we can conclude that it makes sense to build a service

around Apache Spark. We believe that we have laid the groundwork for future dis-

tributed processing services. Python management service currently allows configuring

development environment on a single virtual machine and it can be extended to work

with multiple nodes and keep environments on all nodes in a cluster in sync. Such ex-

pansion of Python management service may make it much more useful in the eyes of

users in comparison to single-node libraries installation. However, the concrete solution

of course depends on a distributed processing engine and design decisions taken during

implementation of a service.

As for future development directions for JupyterHub service, the survey results 4.3 imply

that the provided set of configuration options should be expanded. In order to further

enhance Jupyter user experience, additional Jupyter extensions and kernels should be

provided (see Table 4.8). On top of that, it should be possible to request provisioning of

JupyterHub without Python management - it will be especially useful when Waldur will

provide in addition, for example, R or F# Jupyter kernels. Besides, when it is expected

Chapter 5. Conclusion and Future Work 78

that JupyterHub will serve large amount of users it would beneficial to offer option

to scale JupyterHub deployment using Kubernetes - a cluster orchestration system.

JupyterHub provides appropriate user instance spawner1.

Furthermore, data staging functionality would be of assistance to lecturers who would

like to distribute the material across the students (i.e JupyterHub users). This will be

especially important in case of distributed Kubernetes deployment of JupyterHub since

infrastructure complexity will be too high for users with little system administration

experience. This will enrich application provisioning services with AaaS-like features

which many other cloud providers offer (see Section 2.2.2).

When it comes to development and deployment process of these services, proper migra-

tion strategies should be devised to ensure backward-compatibility of new releases with

the earlier deployed Python management and JupyterHub management environments.

In order to make the development process of the developed services more reliable and

less error-prone, there should be found a way of incorporating integration tests into a

continuous integration pipeline of Waldur.

1https://github.com/jupyterhub/kubespawner

https://github.com/jupyterhub/kubespawner

Appendix A

Scenarios for Python

management service

Scenario 1 Python management environment should be installed on a vir-

tual machine regardless of cloud provider.

Relevant Quality

Attributes

Portability

Stimulus Virtual machines may come from various cloud providers

Environment Hybrid cloud brokerage system

Artifact Backend logic

Response Backend logic should depend on unified virtual machines ab-

stractions, not on concrete virtual machines. Until Python

management environment is set up, no actions can be per-

formed by the user.

Table A.1: Python management scenario to ensure portability across supported cloud
providers

79

Appendix A. Scenarios for Python management service 80

Scenario 2 User wants to install, uninstall and reinstall (with different

version) python libraries in a dedicated virtual environments.

It is possible to delete virtual environments.

Relevant Quality

Attributes

Operability,

Stimulus Not user-friendly terminals and commands, conflicting Python

libraries

Environment Virtual machine with or without Python virtual environments

Artifact Self-service, backend processing, Ansible Playbooks

Response Appropriate logic for managing separate virtual environment

using pip1 package manager should be developed.

Table A.2: Python management scenario for installation and uninstallation of Python
libraries in dedicated virtual environments

Scenario 3 User wants to find installed libraries in the virtual environ-

ment

Relevant Quality

Attributes

Operability, fault-recovery

Stimulus Users may install some libraries manually through terminal

Environment Python virtual environments with installed libraries which

Waldur is not aware of

Artifact Self-service, backend processing, Ansible Playbooks

Response User-triggered logic for indexing installed libraries in the vir-

tual environment. All missing libraries are correctly identified,

removed libraries deleted from the database.

Table A.3: Python management scenario for functionality to discover manually in-
stalled libraries

Appendix A. Scenarios for Python management service 81

Scenario 4 User wants to manage each Python virtual environment in-

dependently from other virtual environments installed on the

same virtual machine.

Relevant Quality

Attributes

Operability, observation interval, processing rate

Stimulus Each virtual environment is independent of other virtual en-

vironments

Environment Waldur running in distributed computing environment with

plenty of workers for executing requests, virtual machines po-

tentially have multi-core processors.

Artifact Self-service, backend logic

Response Requests related to a specific environment are processed simul-

taneously and independently. In the meantime, user is able

to issue new requests for other virtual environments. Global

requests however block the whole screen.

Table A.4: Python management scenario to ensure parallel management of different
virtual environments on a virtual machine

Scenario 5 User wants to find existing virtual environments and their

installed libraries

Relevant Quality

Attributes

Operability, fault-recovery

Stimulus New virtual environments may be manually installed

Environment Actually existing Python virtual environments may differ from

the ones Waldur has indexed

Artifact Self-service, backend processing, Ansible Playbooks

Response Appropriate logic for indexing installed virtual environments

and their libraries should be implemented. All missing virtual

environments and installed libraries are correctly identified,

removed virtual environments and libraries are deleted from

the database.

Table A.5: Python management scenario for search of manually created virtual envi-
ronments on a virtual machine

Appendix A. Scenarios for Python management service 82

Scenario 6 User wants to see the history of issued requests and their out-

puts

Relevant Quality

Attributes

Operability, fault-recovery

Stimulus Some request may fail, some may succeed, user should be able

to investigate output of the executed requests to correctly

identify root cause of the problem

Environment Several requests are running simultaneously with different out-

puts

Artifact Self-service, backend processing

Response History of requests is shown with their output. Output of the

requests is updated periodically as new lines returned by the

command which is being executed.

Table A.6: Python management scenario for audit functionality

Scenario 7 Libraries form should have autocomplete feature. Only com-

patible with current environment libraries’ versions should be

shown.

Relevant Quality

Attributes

Operability, reliability

Stimulus Specific Python version or operation system dependent instal-

lation packages

Environment User entering library and selecting its version

Artifact Backend logic

Response Waldur should show only those library versions which have

compatible with current environment installation package.

Possible options of the library names and versions should be

visible within 1 second.

Table A.7: Python management scenario for library autocomplete feature in graphical
user interface

Appendix A. Scenarios for Python management service 83

Scenario 8 User wants to upload Requirements file2 which contains list

of libraries to install in the virtual environment.

Relevant Quality

Attributes

Operability, portability

Stimulus Possibility to rapidly install or migrate virtual environments

to another virtual machine

Environment Python Management is in an operational state with or without

virtual environments

Artifact Self-service

Response User interface should provide a button to upload list of li-

braries. Upload functionality should be performed purely on

the client side, no server communication is involved. To apply

modifications, user need to save Python management screen.

Table A.8: Python management scenario for uploading requirements file with list of
libraries to install

Scenario 8 User wants to download Requirements file3 which contains list

of installed libraries in the virtual environment.

Relevant Quality

Attributes

Operability, portability

Stimulus Possibility to share or migrate the setup configuration

Environment Exists Python virtual environment with some libraries

Artifact Self-service

Response User interface should provide a button to download list of

libraries. The functionality should be performed purely on

the client side, no server communication is involved.

Table A.9: Python management scenario for downloading list of installed libraries in
a virtual environment

Appendix A. Scenarios for Python management service 84

Scenario 9 User wants to delete Python environment management

Relevant Quality

Attributes

Operability

Stimulus User no longer needs to manage Python virtual environments

Environment Python Management is in an operational state with virtual

environments or virtual machine no longer exists, or Python

environment initialization operation failed

Artifact Self-service, backend logic, Ansible Playbook

Response Waldur should trigger deletion of Python virtual environ-

ments, however, Python itself should not be deleted (other

applications may depend on it).

Table A.10: Python management scenario for removal of virtual environments

Scenario 10 Python version should not be hard coded in the logic, rather

the latest available version should be installed.

Relevant Quality

Attributes

Adaptability

Stimulus We want to reduce maintainability burden on developers by

always provisioning the latest version of Python distribution

Environment New Python versions are constantly being released

Artifact Ansible Playbook

Response During Python environment installation phase, Playbook logic

should always install the latest available version of Python

from APT package manager

Table A.11: Python management scenario for provisioning up-to-date version of
Python environment

Appendix B

Scenarios for JupyterHub

management service

Scenario 1 JupyterHub management environment should be installed on

a virtual machine regardless of cloud provider.

Relevant Quality

Attributes

Portability

Stimulus Virtual machines may come from various cloud providers

Environment Hybrid cloud brokerage system

Artifact Backend logic

Response Backend logic should depend on unified virtual machines ab-

stractions, not on virtual machines of concrete cloud providers.

Until JupyterHub management environment is set up, no ac-

tions can be performed by the user.

Table B.1: JupyterHub management scenario to ensure portability across supported
cloud providers

85

Appendix B. Scenarios for JupyterHub management service 86

Scenario 2 It should be possible to define time to live for inactive in-

stances of JupyterHub notebook servers.

Relevant Quality

Attributes

Capacity

Stimulus In order to free up resources, it makes sense to shutdown in-

active instances

Environment Virtual machine with deployed JupyterHub

Artifact Python script

Response Python script which runs locally on a virtual machine with

frequency specified by the user. There should be no notebook

instances that are active longer than specified time to live.

Table B.2: JupyterHub management scenario to ensure release of unused computing
resources on the virtual machine with instllaed JupyterHub

Scenario 3 It should be possible to define JupyterHub users and admin-

istrators.

Relevant Quality

Attributes

Confidentiality, integrity

Stimulus Multiple users working with JupyterHub, JupyterHub is ex-

posed to the outer world

Environment Multi-tenancy environment exposed outside the cloud firewall

Artifact Self-service, backend logic, Ansible Playbook

Response JupyterHub configuration is adapted accordingly, removed

users are deleted from the database, new users are added.

Table B.3: JupyterHub management scenario for configuring user authentication

Appendix B. Scenarios for JupyterHub management service 87

Scenario 4 It should be possible to make managed Python virtual envi-

ronment available as Jupyter kernels to JupyterHub users.

Relevant Quality

Attributes

Operability

Stimulus Provide Python dependency management for JupyterHub

projects through Waldur self-service or API

Environment Existing virtual machine with Python management environ-

ment which contains virtual environments

Artifact Self-service, backend logic, Ansible Playbook

Response User is able to mark virtual environments whether they are

accessible as Jupyter kernels to all JupyterHub users or not

Table B.4: JupyterHub management scenario for integration of Python and Jupyter-
Hub management services

Scenario 5 It should be possible configure GitLab and Azure OAuth2 au-

thentication methods for JupyterHub. It is possible to define

admins and whitelisted users.

Relevant Quality

Attributes

Confidentiality, integrity, operability

Stimulus It is important to reduce maintainability effort required from

the owner of the JupyterHub server.

Environment Owner belongs to an organization which is integrated with an

OAuth2 provider.

Artifact Self-service, backend logic, Ansible Playbook

Response Possibility to configure OAuth2 configuration through a self-

service.

Table B.5: JupyterHub management scenario for configuring OAuth2 authentication

Appendix B. Scenarios for JupyterHub management service 88

Scenario 6 JupyterHub should be served over secure HTTPS connection.

Relevant Quality

Attributes

Confidentiality, integrity

Stimulus JupyterHub users may be subject to malicious attacks.

Environment Insecure Internet environment

Artifact Ansible Playbook

Response Self-signed SSL certificates are generated and JupyterHub is

configured to use them. User perform all interactions with

JupyterHub only through HTTPs connection.

Table B.6: JupyterHub management scenario to ensure secure connection to Jupyter-
Hub

Scenario 7 User wants to see the history of issued JupyterHub manage-

ment requests and their outputs

Relevant Quality

Attributes

Operability, fault-recovery

Stimulus Some request may fail, some may succeed, user should be able

to investigate output of the executed requests to correctly

identify root cause of the problem

Environment Several requests are running simultaneously with different out-

puts

Artifact Self-service, backend processing

Response History of requests is shown with their output. Output of the

requests is updated periodically as new lines returned by the

command which is being executed.

Table B.7: JupyterHub management scenario for audit functionality

Appendix B. Scenarios for JupyterHub management service 89

Scenario 8 User wants to delete JupyterHub management

Relevant Quality

Attributes

Operability

Stimulus User no longer needs JupyterHub and Jupyter

Environment JupyterHub is installed on a virtual machine or virtual ma-

chine no longer exists, or JupyterHub initialization operation

failed

Artifact Self-service, backend logic, Ansible Playbook

Response JupyterHub ans its main dependencies should be removed

from a virtual machine.

Table B.8: JupyterHub management scenario for JupyterHub uninstallation

Bibliography

[1] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science

in Information Systems Research. MIS quarterly, 28(1):75–105, 2004.

[2] Marcos D. Assuno, Rodrigo N. Calheiros, Silvia Bianchi, Marco A.S. Netto,

and Rajkumar Buyya. Big data computing and clouds: Trends and future di-

rections. Journal of Parallel and Distributed Computing, 79-80:3 – 15, 2015.

ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2014.08.003. URL http:

//www.sciencedirect.com/science/article/pii/S0743731514001452. Special

Issue on Scalable Systems for Big Data Management and Analytics.

[3] Anand Bagmar. Anand Bagmar - Behavior Driven Test-

ing (BDT) in Agile. https://www.slideshare.net/abagmar/

anand-bagmar-behavior-driven-testing-bdt-in-agile, 2012. [Online;

accessed 19-April-2018].

[4] Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter, and Tawfiq Hasanin.

A survey of open source tools for machine learning with big data in the hadoop

ecosystem. Journal of Big Data, 2(1):24, Nov 2015. ISSN 2196-1115. doi: 10.1186/

s40537-015-0032-1. URL https://doi.org/10.1186/s40537-015-0032-1.

[5] Tatiana Polunina Santhosh Konda. Big Data Tutorial 1: MapReduce. https:

//wikis.nyu.edu/display/NYUHPC/Big+Data+Tutorial+1%3A+MapReduce, 2018.

[Online; accessed 26-February-2018].

[6] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih.

Big data technologies: A survey. Journal of King Saud University - Computer

and Information Sciences, 2017. ISSN 1319-1578. doi: https://doi.org/10.1016/

j.jksuci.2017.06.001. URL http://www.sciencedirect.com/science/article/

pii/S1319157817300034.

[7] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,

abs/1603.02754, 2016. URL http://arxiv.org/abs/1603.02754.

90

http://www.sciencedirect.com/science/article/pii/S0743731514001452
http://www.sciencedirect.com/science/article/pii/S0743731514001452
https://www.slideshare.net/abagmar/anand-bagmar-behavior-driven-testing-bdt-in-agile
https://www.slideshare.net/abagmar/anand-bagmar-behavior-driven-testing-bdt-in-agile
https://doi.org/10.1186/s40537-015-0032-1
https://wikis.nyu.edu/display/NYUHPC/Big+Data+Tutorial+1%3A+MapReduce
https://wikis.nyu.edu/display/NYUHPC/Big+Data+Tutorial+1%3A+MapReduce
http://www.sciencedirect.com/science/article/pii/S1319157817300034
http://www.sciencedirect.com/science/article/pii/S1319157817300034
http://arxiv.org/abs/1603.02754

Bibliography 91

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,

Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems. CoRR, abs/1512.01274,

2015. URL http://arxiv.org/abs/1512.01274.

[9] C.L. Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges,

techniques and technologies: A survey on big data. Information Sciences, 275

(Supplement C):314 – 347, 2014. ISSN 0020-0255. doi: https://doi.org/10.1016/

j.ins.2014.01.015. URL http://www.sciencedirect.com/science/article/pii/

S0020025514000346.

[10] Rekha Nachiappan, Bahman Javadi, Rodrigo N. Calheiros, and Kenan M. Matawie.

Cloud storage reliability for big data applications: A state of the art survey. Journal

of Network and Computer Applications, 97(Supplement C):35 – 47, 2017. ISSN

1084-8045. doi: https://doi.org/10.1016/j.jnca.2017.08.011. URL http://www.

sciencedirect.com/science/article/pii/S1084804517302734.

[11] Sugam Sharma. Expanded cloud plumes hiding big data ecosystem. Future Gener.

Comput. Syst., 59(C):63–92, June 2016. ISSN 0167-739X. doi: 10.1016/j.future.

2016.01.003. URL http://dx.doi.org/10.1016/j.future.2016.01.003.

[12] Ilja Livenson. Estonian E-Infrastructure Marketplace. http://e-irg.

eu/documents/10920/394570/Estonian+E-Infrastructure+Marketplace+

Paradigm.pdf, 2017. [Online; accessed 10-November-2017].

[13] Recent success stories - Estonian Scientific Computing Infrastructure (ETAIS)).

https://opennodecloud.com/success.html, 2017. [Online; accessed 07-

December-2017].

[14] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break

in the clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39

(1):50–55, December 2008. ISSN 0146-4833. doi: 10.1145/1496091.1496100. URL

http://doi.acm.org/10.1145/1496091.1496100.

[15] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.

Prentice Hall Professional Technical Reference, Upper Saddle River, NJ, 2005. ISBN

0131858580 9780131858589.

[16] Lizhe Wang, R Ranjan, Jinjun Chen, and Boualem Benatallah. Cloud Computing:

Methodology, Systems, and Applications. 01 2011.

[17] Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New

trends and research directions. Future Generation Computer Systems, 79:849 – 861,

http://arxiv.org/abs/1512.01274
http://www.sciencedirect.com/science/article/pii/S0020025514000346
http://www.sciencedirect.com/science/article/pii/S0020025514000346
http://www.sciencedirect.com/science/article/pii/S1084804517302734
http://www.sciencedirect.com/science/article/pii/S1084804517302734
http://dx.doi.org/10.1016/j.future.2016.01.003
http://e-irg.eu/documents/10920/394570/Estonian+E-Infrastructure+Marketplace+Paradigm.pdf
http://e-irg.eu/documents/10920/394570/Estonian+E-Infrastructure+Marketplace+Paradigm.pdf
http://e-irg.eu/documents/10920/394570/Estonian+E-Infrastructure+Marketplace+Paradigm.pdf
https://opennodecloud.com/success.html
http://doi.acm.org/10.1145/1496091.1496100

Bibliography 92

2018. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2017.09.020. URL

http://www.sciencedirect.com/science/article/pii/S0167739X17302224.

[18] Z. Li, Y. Zhang, and Y. Liu. Towards a full-stack devops environment (platform-

as-a-service) for cloud-hosted applications. Tsinghua Science and Technology, 22

(01):1–9, February 2017. doi: 10.1109/TST.2017.7830891.

[19] Ruili Wang, Wanting Ji, Mingzhe Liu, Xun Wang, Jian Weng, Song Deng, Suying

Gao, and Chang an Yuan. Review on mining data from multiple data sources.

Pattern Recognition Letters, 2018. ISSN 0167-8655. doi: https://doi.org/10.1016/

j.patrec.2018.01.013. URL http://www.sciencedirect.com/science/article/

pii/S0167865518300199.

[20] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,

2012. ISBN 0262018020, 9780262018029.

[21] Kumar Ravi, Yogesh Khandelwal, Boora Shiva Krishna, and Vadlamani Ravi. Ana-

lytics in/for cloud-an interdependence: A review. Journal of Network and Computer

Applications, 102:17 – 37, 2018. ISSN 1084-8045. doi: https://doi.org/10.1016/j.

jnca.2017.11.006. URL http://www.sciencedirect.com/science/article/pii/

S1084804517303764.

[22] Ashish Singh and Kakali Chatterjee. Cloud security issues and challenges: A survey.

Journal of Network and Computer Applications, 79(Supplement C):88 – 115, 2017.

ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2016.11.027. URL http://

www.sciencedirect.com/science/article/pii/S1084804516302983.

[23] Stefania Costache, Djawida Dib, Nikos Parlavantzas, and Christine Morin. Re-

source management in cloud platform as a service systems: Analysis and opportu-

nities. Journal of Systems and Software, 132:98 – 118, 2017. ISSN 0164-1212. doi:

https://doi.org/10.1016/j.jss.2017.05.035. URL http://www.sciencedirect.com/

science/article/pii/S0164121217300845.

[24] Using buildpacks in IBM Cloud Private Cloud Foundry. https://www.ibm.com/

support/knowledgecenter/en/SSBS6K_2.1.0/cloud_foundry/buildpacks/

buildpacks_overview.html, 2018. [Online; accessed 23-February-2018].

[25] Chris Lauwers Paul Lipton. OASIS Topology and Orchestration Specification for

Cloud Applications (TOSCA) TC. https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=tosca, 2018. [Online; accessed 23-February-2018].

[26] M. Zimmermann, F. W. Baumann, M. Falkenthal, F. Leymann, and U. Odefey.

Automating the provisioning and integration of analytics tools with data resources

http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://www.sciencedirect.com/science/article/pii/S0167865518300199
http://www.sciencedirect.com/science/article/pii/S0167865518300199
http://www.sciencedirect.com/science/article/pii/S1084804517303764
http://www.sciencedirect.com/science/article/pii/S1084804517303764
http://www.sciencedirect.com/science/article/pii/S1084804516302983
http://www.sciencedirect.com/science/article/pii/S1084804516302983
http://www.sciencedirect.com/science/article/pii/S0164121217300845
http://www.sciencedirect.com/science/article/pii/S0164121217300845
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/cloud_foundry/buildpacks/buildpacks_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/cloud_foundry/buildpacks/buildpacks_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0/cloud_foundry/buildpacks/buildpacks_overview.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

Bibliography 93

in industrial environments using opentosca. In 2017 IEEE 21st International En-

terprise Distributed Object Computing Workshop (EDOCW), pages 3–7, Oct 2017.

doi: 10.1109/EDOCW.2017.10.

[27] Benefits of Using Amazon EMR. https://docs.aws.amazon.com/emr/latest/

ManagementGuide/emr-overview-benefits.html, 2018. [Online; accessed 29-

March-2018].

[28] Introduction - What is Azure Notebooks? https://notebooks.azure.com/help/

introduction, 2018. [Online; accessed 25-March-2018].

[29] Manikanta Yadunanda. Fast.ai Lesson 1 on Google Co-

lab (Free GPU). https://towardsdatascience.com/

fast-ai-lesson-1-on-google-colab-free-gpu-d2af89f53604, 2018. [On-

line; accessed 24-April-2018].

[30] Connection types. https://datascience.ibm.com/docs/content/manage-data/

conn_types.html, 2018. [Online; accessed 29-March-2018].

[31] Watson Studio overview. https://datascience.ibm.com/docs/content/

getting-started/overview-ws.html?context=analytics, 2018. [Online; ac-

cessed 29-March-2018].

[32] Databricks. Get the simplifying apache spark opera-

tions whitepaper. 2016. URL http://go.databricks.com/

spark-operations-with-databricks-whitepaper.

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu

Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning

in python. J. Mach. Learn. Res., 12:2825–2830, November 2011. ISSN 1532-4435.

URL http://dl.acm.org/citation.cfm?id=1953048.2078195.

[34] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 4th edition, 2015.

ISBN 1491901632, 9781491901632.

[35] MapReduce Tutorial. https://hadoop.apache.org/docs/r1.2.1/mapred_

tutorial.html, 2018. [Online; accessed 26-February-2018].

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

In Proceedings of the 9th USENIX Conference on Networked Systems Design and

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-benefits.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-benefits.html
https://notebooks.azure.com/help/introduction
https://notebooks.azure.com/help/introduction
https://towardsdatascience.com/fast-ai-lesson-1-on-google-colab-free-gpu-d2af89f53604
https://towardsdatascience.com/fast-ai-lesson-1-on-google-colab-free-gpu-d2af89f53604
https://datascience.ibm.com/docs/content/manage-data/conn_types.html
https://datascience.ibm.com/docs/content/manage-data/conn_types.html
https://datascience.ibm.com/docs/content/getting-started/overview-ws.html?context=analytics
https://datascience.ibm.com/docs/content/getting-started/overview-ws.html?context=analytics
http://go.databricks.com/spark-operations-with-databricks-whitepaper
http://go.databricks.com/spark-operations-with-databricks-whitepaper
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Bibliography 94

Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Associa-

tion. URL http://dl.acm.org/citation.cfm?id=2228298.2228301.

[37] Welcome to H2O 3. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/

welcome.html, 2018. [Online; accessed 27-February-2018].

[38] A real-time processing revival. https://www.oreilly.com/ideas/

a-real-time-processing-revival, 2015. [Online; accessed 26-February-2018].

[39] Sergio Ramrez-Gallego, Alberto Fernndez, Salvador Garca, Min Chen, and Fran-

cisco Herrera. Big data: Tutorial and guidelines on information and process fusion

for analytics algorithms with mapreduce. Information Fusion, 42(Supplement C):51

– 61, 2018. ISSN 1566-2535. doi: https://doi.org/10.1016/j.inffus.2017.10.001. URL

http://www.sciencedirect.com/science/article/pii/S1566253517305912.

[40] Joseph Torres, Michael Armbrust, Tathagata Das and Shixiong Zhu . In-

troducing Low-latency Continuous Processing Mode in Structured Stream-

ing in Apache Spark 2.3. https://databricks.com/blog/2018/03/20/

low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.

html, 2018. [Online; accessed 31-March-2018].

[41] Structured Streaming Programming Guide. https://spark.apache.org/docs/

latest/structured-streaming-programming-guide.html, 2018. [Online; ac-

cessed 28-February-2018].

[42] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kel-

logg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’15, pages 239–

250, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-2758-9. doi: 10.1145/

2723372.2742788. URL http://doi.acm.org/10.1145/2723372.2742788.

[43] Vctor Campos, Francesc Sastre, Maurici Yages, Mriam Bellver, Xavier Gir i Ni-

eto, and Jordi Torres. Distributed training strategies for a computer vision

deep learning algorithm on a distributed gpu cluster. Procedia Computer Sci-

ence, 108:315 – 324, 2017. ISSN 1877-0509. doi: https://doi.org/10.1016/

j.procs.2017.05.074. URL http://www.sciencedirect.com/science/article/

pii/S1877050917306129. International Conference on Computational Science,

ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

[44] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

http://dl.acm.org/citation.cfm?id=2228298.2228301
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/welcome.html
https://www.oreilly.com/ideas/a-real-time-processing-revival
https://www.oreilly.com/ideas/a-real-time-processing-revival
http://www.sciencedirect.com/science/article/pii/S1566253517305912
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://databricks.com/blog/2018/03/20/low-latency-continuous-processing-mode-in-structured-streaming-in-apache-spark-2-3-0.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://doi.acm.org/10.1145/2723372.2742788
http://www.sciencedirect.com/science/article/pii/S1877050917306129
http://www.sciencedirect.com/science/article/pii/S1877050917306129

Bibliography 95

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016. USENIX As-

sociation. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.cfm?id=

3026877.3026899.

[45] How is Caffe2 different from PyTorch? https://caffe2.ai/docs/

caffe-migration.html#null__how-is-caffe2-different-from-pytorch,

2018. [Online; accessed 4-March-2018].

[46] PyTorch — About. http://pytorch.org/about/, 2018. [Online; accessed 4-

March-2018].

[47] Automatic differentiation. https://mxnet.incubator.apache.org/tutorials/

gluon/autograd.html, 2018. [Online; accessed 02-April-2018].

[48] Why MXNet? - Symbolic Programming in MXNet. https://mxnet.incubator.

apache.org/faq/why_mxnet.html#symbolic-programming-in-mxnet, 2018.

[Online; accessed 02-April-2018].

[49] Mario Barbacci, Robert Ellison, Anthony Lattanze, Judith Stafford, Charles We-

instock, and William Wood. Quality attribute workshops (qaws). Technical Re-

port CMU/SEI-2003-TR-016, Software Engineering Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 2003. URL http://resources.sei.cmu.edu/library/

asset-view.cfm?AssetID=6687.

[50] Richardson Maturity Model. https://martinfowler.com/articles/

richardsonMaturityModel.html, 2010. [Online; accessed 12-March-2018].

[51] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing, Build-

ing, and Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2003. ISBN 0321200683.

[52] Introduction to Celery. http://docs.celeryproject.org/en/latest/

getting-started/introduction.html, 2018. [Online; accessed 14-March-2018].

[53] Ansible Documentation - Best Practices. http://docs.ansible.com/ansible/

latest/playbooks_best_practices.html, 2018. [Online; accessed 18-March-

2018].

[54] Infrastructure as Code. https://en.wikipedia.org/wiki/Infrastructure_as_

Code, 2018. [Online; accessed 19-March-2018].

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://caffe2.ai/docs/caffe-migration.html#null__how-is-caffe2-different-from-pytorch
https://caffe2.ai/docs/caffe-migration.html#null__how-is-caffe2-different-from-pytorch
http://pytorch.org/about/
https://mxnet.incubator.apache.org/tutorials/gluon/autograd.html
https://mxnet.incubator.apache.org/tutorials/gluon/autograd.html
https://mxnet.incubator.apache.org/faq/why_mxnet.html#symbolic-programming-in-mxnet
https://mxnet.incubator.apache.org/faq/why_mxnet.html#symbolic-programming-in-mxnet
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6687
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
http://docs.celeryproject.org/en/latest/getting-started/introduction.html
http://docs.celeryproject.org/en/latest/getting-started/introduction.html
http://docs.ansible.com/ansible/latest/playbooks_best_practices.html
http://docs.ansible.com/ansible/latest/playbooks_best_practices.html
https://en.wikipedia.org/wiki/Infrastructure_as_Code
https://en.wikipedia.org/wiki/Infrastructure_as_Code

Bibliography 96

[55] The Principles of OOD. http://butunclebob.com/ArticleS.UncleBob.

PrinciplesOfOod, 2018. [Online; accessed 21-March-2018].

[56] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321127420.

[57] Toby Chemson. Testing Strategies in a Microservice Architec-

ture. https://martinfowler.com/articles/microservice-testing/

#conclusion-test-pyramid, 2014. [Online; accessed 31-March-2018].

[58] Tim Ottinger, Jeff Langr, Brett Schuchert. F.I.R.S.T. http://agileinaflash.

blogspot.com.ee/2009/02/first.html, 2009. [Online; accessed 19-April-2018].

[59] Tom Zeng. Run Jupyter Notebook and JupyterHub on

Amazon EMR. https://aws.amazon.com/blogs/big-data/

running-jupyter-notebook-and-jupyterhub-on-amazon-emr/, 2016. [On-

line; accessed 27-March-2018].

[60] Jon Fritz. Run Deep Learning Frameworks with GPU Instance Types

on Amazon EMR. https://aws.amazon.com/blogs/machine-learning/

run-deep-learning-frameworks-with-gpu-instance-types-on-amazon-emr/,

2017. [Online; accessed 27-March-2018].

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid
https://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid
http://agileinaflash.blogspot.com.ee/2009/02/first.html
http://agileinaflash.blogspot.com.ee/2009/02/first.html
https://aws.amazon.com/blogs/big-data/running-jupyter-notebook-and-jupyterhub-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/running-jupyter-notebook-and-jupyterhub-on-amazon-emr/
https://aws.amazon.com/blogs/machine-learning/run-deep-learning-frameworks-with-gpu-instance-types-on-amazon-emr/
https://aws.amazon.com/blogs/machine-learning/run-deep-learning-frameworks-with-gpu-instance-types-on-amazon-emr/

	Abstract
	Annotatsioon
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Existing Body of Knowledge
	1.1.1 Cloud computing
	1.1.2 Data analytics
	1.1.3 Contribution - Detecting a Gap

	1.2 Research Questions and Research Methodology
	1.2.1 Research Questions
	1.2.2 Design Science Research Framework
	1.2.3 Design Science Research - Application

	1.3 Thesis Structure

	2 Background
	2.1 Cloud computing service models
	2.1.1 Platform as a Service
	2.1.2 Analytics as a Service
	2.1.3 Application provisioning services

	2.2 Related work
	2.2.1 Application provisioning services for data analytics systems
	2.2.2 Analytics as a Service platforms

	3 State-of-the-art data analytics engines
	3.1 Introduction
	3.2 General-purpose data processing engines
	3.2.1 Python-based libraries
	3.2.2 R
	3.2.3 Hadoop ecosystem
	3.2.4 Apache Spark
	3.2.5 H2O
	3.2.6 Apache Mahout
	3.2.7 XGBoost
	3.2.8 Data streaming

	3.3 Deep learning libraries
	3.3.1 TensorFlow
	3.3.2 Caffe2
	3.3.3 PyTorch
	3.3.4 MXNet
	3.3.5 Keras

	3.4 Survey
	3.5 Discussion
	3.6 Conclusion

	4 Services for management of data analytics tools
	4.1 Introduction
	4.2 Requirements for the application provisioning services
	4.2.1 Python libraries management scenarios
	4.2.2 JupyterHub management scenarios

	4.3 Waldur architecture
	4.3.1 Three-tier architecture
	4.3.2 Asynchronous tasks execution
	4.3.3 High availability and scalability

	4.4 Python management service architecture implementation
	4.4.1 Prerequisites
	4.4.2 Cloud application deployment and management layer
	4.4.3 Ansible - a configuration management tool
	4.4.4 Python management service structure
	4.4.5 Cloud application management process
	4.4.6 Library name autocomplete functionality

	4.5 JupyterHub provisioning service
	4.5.1 Prerequisites
	4.5.2 JupyterHub service architecture

	4.6 Quality control of the built services
	4.7 Evaluation
	4.7.1 Feedback from the potential users
	4.7.2 Comparison with services from other cloud providers

	4.8 Discussion
	4.9 Conclusion

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Answering the Research Questions
	5.2.1 RQ-1: What are state-of-the-art data analytics engines used in the industry and in Estonia?
	5.2.2 RQ-2: How to automate provisioning and management of data analytics tools through hybrid cloud brokerage platform?

	5.3 Limitations
	5.4 Future Work

	A Scenarios for Python management service
	B Scenarios for JupyterHub management service
	Bibliography

