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1 Introduction

Positioning systems are technologies that can be used to determine the location of an
object in space [4]. These systems provide automatic object location detection, which
is then applied in various other depending technologies and applications [5]. The last
decades have been marked by continuous innovation and refinement in various indoor
and outdoor positioning systems with ongoing research and development paving the way
for more accurate, reliable, and flexible localization solutions. Although the Global Nav-
igation Satellite System (GNSS) has become the industry standard for accurate outdoor
positioning, its unfeasible application in indoor areas has seen the development of al-
ternative solutions based on various Radio Frequency (RF) technologies [6]. In particular,
Ultra-Wideband (UWB) technology has been widely implemented in positioning solutions
and is considered by many state-of-the-art surveys to be arguably the most promising RF-
based solution for indoor positioning [4], [7], [8]. Moreover, combining different position-
ing technologies (e.g., indoor and outdoor) into a multi-sensor solution, while preserving
high accuracy and stability, still remains one of key challenges. This entails extensive re-
search and innovation, especially during recent years with advancements in artificial in-
telligence and the application of Machine Learning (ML) techniques for improved perfor-
mance of positioning technologies. The main advantage of ML-based approaches is the
ability to make decisions effectively using observed data without explicit mathematical
formulation. Compared to traditional statistical methods, ML techniques enable the iden-
tification of complex dependencies in data that may not be apparent through exploratory
data analysis [9]. Similarly, this thesis aims to develop distinct ML models with the goal to
enhance object positioning algorithms and therefore improve overall localization perfor-
mance with indoor and multi-sensor positioning systems.

On the practical level, this PhD thesis presents industry application-driven research,
which sees the use of wireless indoor and multi-sensor positioning systems and enhanc-
ing their performance. In collaboration with Eliko Tehnoloogia Arenduskeskus OU, the PhD
topic is based on real-life industry challenges of real-time object tracking. With regards
to wireless positioning, industrial areas are typically cluttered with obstructions between
UWB sensors, that can significantly affect the positioning performance. Furthermore, pro-
duction areas and warehouses usually extend also to outdoor areas necessitating the need
for fusing the existing Eliko UWB Real-Time Location System (RTLS), with add-on solutions
(e.g., GNSS). By using the measurement data gathered from real-life environments, this
thesis aims to enhance the positioning performance for both UWB positioning and multi-
sensor networks.

1.1 Ultra-Wideband sensor background

UWSB is arguably one of the most precise RF-based technologies for indoor localization and
low-power personal area networks [10]. Compared to other RF-based Indoor Positioning
Systems (IPS), UWB is also one of the most accurate non-hybrid positioning technologies,
capable of achieving decimeter-level accuracy [11]. In contrast, hybrid positioning systems
often combine data from multiple sources to improve accuracy and coverage.

The UWB RF signal employs a wide bandwidth, resulting from short, sub-nanosecond-
duration pulses in the time domain. This enables superior temporal resolution, leading
to a more accurate time and therefore more accurate distance measurements [8]. Short
pulses also facilitate Time of Arrival (ToA) determination for burst transmission between
the transmitter and receiver - a significant advantage over other indoor positioning tech-
niques [12]. Additionally, brief transmission of pulses allows for easier differentiation be-
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tween direct and reflected signals [4]. A wide bandwidth makes the RF signal more robust
with several benefits: it is less sensitive to multi-path effects, offers resistance against sig-
nal interference, and allows for high-rate data transmission [13]. Furthermore, the signal
can pass through walls, equipment, and other obstacles except being severely degraded
by metallic and conductive liquid materials [14], [15].

Due to its low power consumption and short transmission pulses, UWB is well-suited
for body-centric and wearable networks, minimizing potential health concerns [16]. Fur-
thermore, the low-power impulses limit interference with other radio systems [14].

The main limitations of UWB technology are its relatively short range, complex in-
frastructure and installation, Non-Line-of-Sight (NLoS) challenges, and high cost [16], [17].
Providing an accurate position in a large and cluttered industrial indoor area would re-
quire a dense network of sensors, which in turn results in high installation costs. This
approach contrasts to positioning systems that apply pre-installed wireless infrastructure
(e.g., Bluetooth or WiFi networks). Additionally, systems that use Time Difference of Ar-
rival (TDoA) with very short RF signal pulses, may experience synchronization overhead,
which can necessitate significant synchronization between the anchors [18].

A distinctive constraint is also related to the application UWB channel statistics data,
which is commonly used for NLoS detection and mitigation schemes. For example, gath-
ering and transferring Channel Impulse Response (CIR) information entails in a significant
latency of approximately one second, making it unfeasible to be used in a high update
rate positioning system [19]. This limitation has seen the development of alternative solu-
tions, which investigate possibilities of employing raw ranging information for improving
UWB-based positioning. A more in-depth discussion regarding UWB-based features, dif-
ferent methods for positioning uncertainty estimation and research gaps is presented in
the related works in Sections 2.6.1, 3.1 and 3.4.

Despite these limitations, UWB remains a promising technology for indoor positioning
and tracking, with ongoing research aimed at addressing its challenges and expanding its
capabilities.

1.2 GNSS sensor background

GNSS has become the industry standard for accurate outdoor positioning, recognized by
system integrators as a mature technology. GNSS provides accurate, continuous, world-
wide, three-dimensional position and velocity information to users with appropriate re-
ceivers [20]. This field evolves continuously, with ongoing research to enhance accuracy,
reliability, and service continuity to meet emerging demands in safety-critical applications
and location-based services [21].

To improve accuracy and precision in operational environments, GNSS incorporates
various techniques such as Differential GNSS (DGNSS), Precise Point Positioning (PPP),
GNSS Real-Time Kinematic (RTK), and Space- or Ground-Based Augmentation Systems
(SBAS/GBAS). The choice of technique depends on factors like required accuracy, infras-
tructure availability, and cost. Table 1 shows how these techniques compare in terms of
typical positioning accuracy.

However, GNSS positioning is not without limitations, particularly in challenging con-
ditions. GNSS radio signals are significantly influenced by the propagation environment
[21]. AsGNSS relies on Line-of-Sight (LoS) transmission between the receiver and satellites,
any obstructions or impediments can degrade the overall accuracy and precision. Further-
more, ionospheric and tropospheric delays, interference, number of servicing satellites,
multipath effects, and signal obstructions can further compromise positioning, especially
in dense urban and indoor areas, often leading to inaccurate estimates or signal loss [24].
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Table 1: Comparison of techniques for improving GNSS positioning performance.

Technique | Accuracy

DGNSS Centimeter level and up to 10 m [21]
RTK Sub-centimeter/Centimeter level [22]
PPP Centimeter/Decimeter level [22]

SBAS/GBAS | Sub-meter/Meter level [23]

It should be noted that, in this thesis, sensor operation environments are defined as in-
door, outdoor, and transition areas. The latter marks the zone between indoor and out-
door areas (e.g., near the edge of a building).

Degraded GNSS performance indoors or in transition areas is one of the main motiva-
tions for research in multi-sensor solutions. In this thesis, GNSS is used together with UWB
positioning technology to provide seamless positioning awareness regardless of opera-
tional area (e.g., indoor or outdoor scenario). Multi-sensor positioning in transition zones
is considered particularly challenging as the positioning performance of both indoor and
outdoor sensors is usually degraded. Furthermore, accurate assessment of the sensors’
positioning integrity in different areas is difficult with dynamic changes in positioning con-
ditions. Various techniques have been used to estimate GNSS positioning performance in
sensor fusion solutions. Dilution of Precision (DoP), for instance, quantifies the impact of
satellite geometry on position error, essentially representing the geometric uncertainty of
the estimated position. However, GNSS positioning performance also depends on several
other key factors, as mentioned in the previous paragraph. Therefore, one integrity pa-
rameter (e.g., DoP) may not be sufficient to comprehensively describe positioning perfor-
mance in different operational environments. This thesis investigates different methods
and their limitations in assessing GNSS positioning uncertainty and proposes an alterna-
tive approach in the form of an ML model.

A more in-depth discussion regarding GNSS features, different methods for positioning
uncertainty estimation and research gaps is presented in the related works in Sections
2.6.2,3.2and 3.4.

1.3 Problem statement and research questions

As previously described, the methods used for improving the performance of positioning
are not without limitations, this motivates the need for further research. For UWB sys-
tems, the main problem lies with developing alternative solutions in estimating UWB po-
sitioning integrity without the knowledge of channel statistics. Whereas GNSS positioning
performance is significantly affected by different internal and external factors. Therefore,
GNSS positioning performance may not be adequately reflected by one distinct feature.
Considering the background and motivation of this thesis, the following hypothesis can
be formulated:

"A set of sensor-related features, that indirectly reflect positioning quality, can be
used to develop distinct ML models that could give a more comprehensive and accurate
representation of uncertainty for the current coordinate. This estimate could be applied
in adaptive filtering to improve the accuracy and precision of a positioning sensor."

The goal of this thesis is to provide solutions that could improve the positioning perfor-
mance of a UWB and a multi-sensor positioning system. Therefore, estimating positioning
uncertainty can be considered as one of the key challenges. Furthermore, implementing
alternative ML-based methods would lead to identifying relevant subtopics (ST):
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4.

5.

. ST1 Positioning uncertainty estimation;

ST2 Machine learning applications in positioning systems;
ST3 Coordinate correction with filtering;
ST4 Multi-sensor positioning algorithms;

ST5 Seamless indoor-outdoor positioning.

Based on the hypothesis and relevant subtopics, the following research questions (RQ)
are formulated:

1.

RQ1 How to assess UWB positioning uncertainty without the knowledge of channel
statistics and is the alternative approach in estimating the uncertainty feasible to
be used in a high update rate positioning system? (ST1)

. RQ2 How to improve UWB coordinate accuracy and precision with supervised learn-

ing (e.g., Regression Trees, Neural Networks, Support-Vector Machines)? (ST2, ST3)

RQ3 How to achieve a more comprehensive GNSS positioning uncertainty estimate
to improve the positioning performance? (ST1, ST4)

RQ4 How to augment multi-sensor fusion with ML for improved positioning perfor-
mance in indoor-outdoor and obstructed environments? (ST4, ST5)

1.4 Thesis organization

The thesis is organized into seven distinct chapters, including this Chapter 1. Chapter 2 is
intended to provide the reader with the main theoretical background behind the research
and the contributions. Chapter 3 describes related work in the state of the art. Chapter 4
provides the method for ML-based coordinate accuracy classification in UWB positioning.
Chapter 5 describes UWB end coordinate correction using ML-based uncertainty estima-
tion with coordinate filtering. Chapter 6 discusses the main methods regarding GNSS and
UWB ML-augmented sensor fusion. Lastly, Chapter 7 concludes the thesis with a short
summary, answers to research questions, and potential perspectives for future research.
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2 Theoretical background of thesis contributions

This thesis applies theory from different research areas including geometric and geodetic
position estimation, machine learning, and localization using UWB and GNSS technolo-
gies. The following sections describe the background of most prevalent positioning meth-
ods and their mathematical models. In addition, the ML methods and their input features
used in the contributions (Chapters 4, 5, 6) are explained in more detail.

2.1 Geometric positioning

Geometric positioning can be categorized into three main techniques: lateration, angula-
tion, and signal strength-based methods [21]. The first two methods assume LoS propaga-
tion between an object and reference stations [25]. Lateration, also known as range-based
positioning, estimates an object’s position by applying distances or distance differences
from multiple reference points and it can be either circular or hyperbolic, respectively.
For the latter, distance differences are used based on time delays between signals, while
circular lateration considers signals Time of Arrival (ToA). Distances d are derived by mul-
tiplying signals propagation velocity ¢ by the measured propagation time ¢:

c-t=d. 4]

Circular lateration depicts ranges as circles (in 2D positioning) or spheres (in 3D posi-
tioning), centered at fixed coordinates of the reference points, as can be seen in Fig. 1. By
measuring ToA between each previously known reference point and the object, the re-
sulting distances d; (derived with (1)) and reference point coordinates (x;,y;) can be used
to estimate the position at (x,y). It should be noted that usually, for a single solution in
2D space, at least three-, and in 3D space four reference points are required [26]. Further-
more, (x;,y;) should not be collinear as this may result in a flip ambiguity with possible
solutions on either side of the line [27].

‘I

Figure 1: A 2D trilateration (a variant of multilateration) scheme showing three reference points at
(xi,yi) and distances d; to the object at coordinates (x,y). As the ranges intersect at only one point,
the object’s coordinates can be calculated. This figure illustrates an ideal scenario, without ranging
error. Figure from Publication .
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Circular multilateration can be described as a system of non-linear equations, which are
solved for coordinates (x,y):

(x,-—x)z—&—(y,-—y)z:diz, i=1,...,N, (2)

where N is the number of reference points used in 2D position estimation. This equation
can be augmented with z coordinates for 3D positioning. However, this usually requires
at least four reference points to obtain a unique solution. The main limitation in a ToA-
based UWB positioning system is its power inefficiency as the tag has to negotiate ranging
information separately with each individual anchor in range [28].

In hyperbolic lateration, the focus is on using TDoA to determine the relative position
of an object. Unlike absolute ToA measurements, TDoA incorporates time difference be-
tween a signal’s arrival at multiple reference points. For each TDoA measurement, the
object’s position lies on hyperbolas with a constant range difference between the mea-
suring units [5]. Precisely measured time differences are converted into distances which
can be visualized as intersecting hyperbolas as shown in Fig. 2. Additionally, in hyperbolic
lateration, the object’s position may not always be uniquely determined depending on
the geometrical conditioning of the reference points [29]. Multiple hyperbolas can inter-
sect at more than one definite point, leading to multiple solutions that could produce the
same set of time differences.

(x1, ¥1)

Figure 2: An illustration of a 2D TDoA lateration scheme without ranging noise. Time-synchronized
reference points measure the signal propagation time differences from an object. These differences,
converted to distance differences (hyperbolas), are used with the reference point coordinates to de-
termine the object’s location at (x,y).

Mathematical representation of finding the TDoA position at (x,y) is following [5]:

\/(Xi—x)2+(Yi_Y)2— \/(X] —X)2+()’1 —)’)2 :di_dla i= 27"'an (3)

where N is the number of reference points.

In TDoA lateration, the reference nodes have to be precisely synchronized with each
other as an offset of 1 ns translates to an error of 30 cm [11]. TDoA offers a more efficient
approach to positioning compared to ToA-based systems. Although the latter requires
multiple transmissions between the anchors and the tag, TDoA uses a single tag broadcast,
enabling positioning with significantly lower power consumption [28].
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In the angulation approach, an object’s position is determined at the intersection of
angle lines of bearing i.e., Angle of Arrival (AoA). Each line is formed by the circular radius
from a reference point to the object [5]. This method utilizes directional antenna arrays to
measure the direction of incoming signals [11]. As illustrated in Fig. 3, only two reference
points with their respective angle measurements are required to estimate the position
in 2D. For 3D positioning, these two reference points need to provide also the elevation
angles.

(%5, 1)

Figure 3: A 2D AoA scheme without ranging noise. The directions o of the signal from (x,y) are
measured by directional antenna arrays at (x;,y;), which are then used to estimate the position.

Mathematical representation of finding the AoA position at (x,y) is following [11]:

y—Ji
X — X

=tan(oy), i=1,...,N, (4)

However, AoA-based positioning also has some limitations as directional measure-
ments require costly antenna arrays [21]. Additionally, with a practical number of anten-
nas, the achievable estimated position accuracy with ToA is superior to AoA methods [30].

In UWB-based localization, Received Signal Strength (RSS) can also be integrated for
various positioning schemes. It can be used for fingerprinting techniques with signal
strength maps with location estimation based on signal characteristics [29]. For instance,
a database can store RSS patterns from specific subareas, and the device’s estimated po-
sition is determined by matching the current signal pattern to the closest database entry
[31]. Additionally, signal strength can be used as a distance estimator in lateration algo-
rithms [21], [32]. A pathloss model can be employed to relate RSS to distance, which is
then used in a ranging formula for a lateration scheme [31]. However, RSS is not very suit-
able for UWB localization as it does not fully leverage UWB's significant bandwidth [21].
Additionally, implementing pathloss models or storing RSS patterns is cumbersome and
area specific as signal propagation depends on the physical environment. More specifi-
cally, changes in the area with existing obstructions may cause the fingerprinting database
to become outdated. Finally, RSS-based positioning is not meant for accurate positioning
but rather as a means of awareness for location-based services [31].

Considering the superior accuracy of ToA over AoA and better robustness over TDoA,
this thesis applied ToA-based multilateration to estimate the position of the UWB tag.

2.2 Position estimation

While geometric techniques offer an intuitive approach for position estimation in ideal,
noise-free conditions, they do not represent a systematic approach using noisy measure-
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ments [29]. In practice, ranging measurements are subject to noise, which results in sig-
nificant positioning uncertainty. This scenario is illustrated in Fig. 4, where the object
can be located in the vicinity of overlapping ranging circles. Such multilateration prob-
lem can be solved with different methods such as: analytical, Least Squares (LS), Taylor
series, two-stage maximum likelihood, genetic algorithm, linear lines of position and ap-
proximate maximum likelihood (AML) among others [33], [34], [35]. In the performance
comparison by Shen, Zetik and Thoma [35] it was found that for an arbitrary sensor node
topology, Taylor series method and AML offered accurate location estimation at interme-
diate noise levels and provided the best tradeoff between average error and failure rate
compared to other methods. On the other hand, Taylor series method has been criticized
for its computational ineffectiveness (recursive algorithm) and convergence towards a lo-
cal minimum if the initial guess is too far from the true position [35], [36]. Nevertheless,
in this thesis Taylor series method was implemented to approximate and linearize the
non-linear equations.

In all the contributions of this thesis, the coordinate calculation of the tag is con-
sidered as a two-step process. Firstly, estimating the initial position of the tag with LS
and then optimizing the solution with a Non-Linear Least Squares (NLS) approach. Both
involve solving the multilateration problem using ToA ranging measurements discussed
in the previous section. Additionally, this thesis considers UWB positioning in 3D space.

In Step 1 a set of equations is used to find the initial estimate of the tag’s position

(%£,9,2):

(xi— %)+ i =)+ (@—2)°=d;,i=12,..,N, (5)
where (x;,y;,z;) is the known coordinates of the i -th UWB anchor and d; is the measured
distance between the UWB tag and the i -th anchor. The initial guess of the tag’s posi-
tion (%,7,2) can be found by performing linearization on (5) and applying the LS method.
Firstly, an anchor (x,,y,,z,) with the shortest measured distance to the tag d, is taken as
a reference point [37]. Next, the non-linear expressions in all available equations N are
expanded as:

xF 2R Ay =2y P 2t =dF i=1,2,..,N (6)
and the reference anchor (x,,y,,z,) equation:
=2 R4 R4y =2+ PP+ - 225+ =d? (7)

is subtracted from the rest of the expressions.
The goal is to rearrange the terms with regard to unknowns £, y and Z in a way that
satisfies the following linear model (8) [38]:

A0 =, 8)
where
X1 —Xr Y1—Yr 21 —Zr
X2 — Xr Y2 =Yr 2=
XN—1—Xr YN—-1—Yr Z2ZN—-1—2Zr
X
0=y (10)
Z
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Figure 4: A 2D trilateration scheme showing fixed coordinates at (x;,y;) and inaccurate pseudor-
anges d;. The tag’s location can be estimated in the vicinity of three overlapping circles at (£,3).
Figure from Publication I.

and

di —d} —xi+x] =y 437 -5 +2]

& —d} =B+ =YV~ B+ 1)
Ay —d7 —xy_ 7 '*Y12v71 Vi —Iyo T

The initial guess of the tag's approximate position 0 has the following LS solution:

0= (ATA)"'ATp. (12)

However, this position estimate can be further optimized with a non-linear least squares
model to provide a more accurate solution. Considering that UWB positioning is done in
3D space, then the tag’s estimated position at (£,$,2) can be found by minimizing the
objective function:

£9,2=argmin }_ ((xi —x)*+ (i —y)* + (2 —2)* —d})* (13)

where x, y and z denote the coordinates that provide the smallest error. In essence, the
non-linear equations are first approximated and linearized using Taylor series. At each
iteration, the gradient of the linearized error function is calculated with Gauss-Newton
method.

Renaming the initial guess from the LS solution (12) as T = (xg, Y6, z6), anchor coor-
dinates as C; = (x;,yi,zi), and optimal target coordinates as T= (%,9,2), the measured
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distances d; are approximated through first-order Taylor series expansion [26]:

di(T)

~ai(r)+ 20| e ad{;(f) e 24D
wd,-<Tc)+H2_x}| " +|§_yT|| e y+Hé_Z}| o (14)
~ di(T5) + fzsz) A ZzTy) A ZTZ) "

~di(Tg) + G 7xiAx+ Y6 7yiAy+ % 7ZiAZ,

di(Tg) di(Tg) di(Tg)

where ||.|| denotes the Euclidean norm and Ax, Ay and Az are equal to £ — x¢, § — ys and
Z—zg, respectively. Considering that Ax, Ay and Az are multiplied to first-order derivatives
when:

o XG—X; YG—Yi G—%
Ji = [di(xcycﬁzc) di(xgyG26)  di(xGyG2G) | (15)

then (14) can be rearranged into matrix form:

Ax
Adyis =J |Ay|, (16)
Az

with Adyys representing the difference between measured and estimated distances:

Adyrs = di(%,9,2) — di(x6,Y6,7G)- (17)

The error corrections Ax, Ay and Az can be found by solving the Normal Equation as shown
in (12) and substituting values accordingly:

Ax
Ay| = TNt Adyys. (18)
Az

Using the error correction vector, the initial guess coordinates x¢, yg, and zg are updated
with Gauss-Newton iteration until a convergence criterion has been reached. This is usu-
ally set as a maximum iteration count or if the values of the error correction vector are
sufficiently small [26]. After reaching a pre-determined threshold, the final position esti-
mate results as:

xc+Ax X
yo+Ay| = |9 (19)
726 +Az Z

2.3 Ranging residuals

As shown in Fig. 5, arange d; can have an offset to the estimated position. Furthermore, it
can be seen that the difference between an individual measured distance d;, and distance
d; calculated from the estimated coordinate (£, §), results in a residual Ad; as:
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(x;, v;) !

Figure 5: An inaccurately estimated position at (£,§) can result in an offset Ad; between a mea-
sured range d; and distance d;. The latter is calculated between the reference point (xi,yi) and the
estimated position. The estimated position can also be located beyond a ranging measurement, re-
sulting in a negative residual.

Ad; = d; — d;. (20)

This error can be used to indirectly describe the quality of UWB observations (there-
fore the quality of estimated position) [39]. Residual information can also be used in po-
sitioning error mitigation schemes. For example, a specific distance can be discarded or
a set of ranges can be dismissed if their residual magnitude exceeds a certain threshold.
This approach has been used in the state of the art by many authors as will be shown
in Section 3.1.1. However, discarding inaccurate ranges may lead to positioning delays or
even dropouts as inaccurate position estimates could be discarded. This is usually caused
by severe NLoS conditions in challenging positioning environments.

This thesis proposes an alternative use of ranging residuals. Different statistical fea-
tures of residuals are used in conjunction with other parameters from state of the art,
to describe UWB positioning uncertainty. Moreover, the ensemble of these features is
used in an ML model which predicts the current coordinate offset. This information is
then used in a coordinate filtering scheme to improve positioning precision and accu-
racy.

2.4 Unified frame of reference for multi-sensor systems

Locating an object in a frame of reference requires the use of coordinates, which can be
assigned to a specific object of interest. In a multi-sensor RTLS, incorporating both UWB
and GNSS positioning solutions, the coordinate systems are mismatched. The UWB sys-
tem, primarily designed for indoor environments, operates in a local frame of reference,
that has been previously established during the setup of the system. On the other hand,
the GNSS system, intended for outdoor operation, provides geodetic coordinates in the
format of latitude, longitude and height, which are based on a conventional terrestrial
reference system [22]. To seamlessly track an object both indoors and outdoors, a unified
reference frame is essential, providing accurate coordinates regardless of the positioning
system. The usual approach would be to project geodetic coordinates in an area of op-
eration, which also contains the local frame of reference. With both reference frames in
the metric scale, the unified frame can be then established with coordinate rotation and
shifting operations.

In the literature, various methods have been used to establish a unified frame of ref-
erence for a sensor fusion solution. For instance, Zhang et al. utilized Gauss-Kriiger pro-
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jection shown in Fig. 6, which is a variant of the transverse Mercator projection, for GNSS
coordinate transformation [40]. This method is explained in more detail in [41] and [42].
The Universal Transverse Mercator (UTM), illustrated in Fig. 7, was the preferred method
of coordinate projection for Di Pietra, Lv, and Rykala in [43], [44], [45], and [46].

Projected area

C—
Distance to
central|meridian

Figure 6: In the Gauss-Kriiger projection, a tangent transverse cylinder, which touches along a merid-
ian (yellow line), is used to project the ellipsoidal model of the Earth. The scale distortions grow
rapidly with increasing distance from the central meridian, so the projection width is limited to 3 to
6 degrees [47].

Alternatively, spherical coordinates can be converted into geocentric Cartesian or Earth-
centered, Earth-fixed coordinates, which accurately represent their spherical counterparts
[48]. However, these coordinates can be further shifted and rotated onto an arbitrary local
tangent plane, typically situated within the region of interest [49] as shown in Fig. 8.

This approach, referred to as East-North-Up (ENU) coordinates or local geodetic coor-
dinate system, was used in works such as [50], [51], [52], [53], and [54]. The ENU method
satisfies the need to map the coordinates in a small area on the Earth as it conforms so
nearly to a plane that geometric distortion on such a system is negligible [22].

The ENU transformation is twofold. Firstly, the geodetic latitude ¢, longitude A, and
height & values (e.g., extracted from a GNSS device) are converted into Earth-centered,
Earth-fixed (ECEF) coordinate system [55]:

2
a
N = Va?cos2¢ +b2sinZ¢’ @
X =(N(¢)+h)cos¢cosA, (22)
Y =(N(¢)+h)cos¢sinA, (23)
b? _
Z= (azN((l)) +h) sing, (24)

where a and b are Earth’s equatorial and polar radii respectively and X, Y, Z represent
ECEF coordinates. This transformation would be done using geodetic coordinates of both
the point of interest (e.g., GNSS rover) and point of origin (e.g., GNSS base station), de-
noted by X,,, Y,, Z, and X,,, Y,, Z,, respectively. Next, these values are shifted with regard
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CM - Central Meridian

AB, DE - Lines of Intersection
(Lines of exact scale)
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Figure 7: In the UTM projection, the cylinder touches along two standard parallels on the Earth’s
surface, reducing distortion near the central meridian. This figure is from [22].

to the point of origin. The vector values (E, N and U) from the origin to the point of
interest are calculated as:

—sinA, cos A, 0
R, = | —sin@,cosA, sing,sind, cos@, |, (25)
cos¢,cos, cos@,sind, sing,
X, —X,
Ry = P Y, ’ (26)
Z,—Z,
E
R xRs= [N, (27)
U

where R; and Ry mark the rotation and shifting matrices, respectively. ENU coordinates
for the point of origin are (0, O, 0), and the length between the origin and point of interest
can be calculated with the Euclidean distance formula.

2.4.1 Discussion

As shown in the previous section, a unified frame of reference can be established with
different methods. However, due to the Earth’s spherical geometry, projecting it onto a
flat plane inevitably introduces distortions. Moreover, different projection methods pro-
duce varying levels of accuracy depending on the size of the projected area. Thus, if the
geodetic coordinates of a GNSS receiver are transformed into the local frame of reference
of an indoor system, then inaccuracies will also be present for the outdoor coordinates.
Furthermore, these inaccuracies tend to increase with distance from the origin of the
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Figure 8: The ENU method maps spherical coordinates onto a flat tangent plane located at the
project site. It is assumed that the flat plane represents a part of the surface on the sphere in a
sufficiently small area.

projection [47]. An appropriate projection method should consider the application. For
example, ENU method is often applied in robotics, when coordinate mapping is done in
a small area [56]. On the other hand, UTM and Gauss-Kriiger methods are suitable for
mapping and surveying large regions of an area [41]. Additionally, projection algorithms
often involve computationally intensive operations, including arithmetic, trigonometric,
and exponentiation operations, which can contribute to coordinate calculation delays in
areal-time sensor fusion system. Lastly, a well-established unified frame of reference can
provide convenient and intuitive coordinates for system operators. For example, if the
ENU frame is established at the positioning site, the distances and coordinates of objects
can be easily interpreted from a map. In contrast, if the positioning system uses native co-
ordinates from a projection (e.g., UTM), the multi-digit numbers may be less user-friendly
for everyday use.

Considering computational effectiveness, conversion accuracy, and accessible coordi-
nate representation, the ENU method was used in this thesis for GNSS geodetic coordi-
nate conversions. Furthermore, considering geodetic projections in a small area, then
ENU is the most suitable method for this. The theory represented in Section 2.4 is ap-
plied in Publication Il for GNSS and UWB sensor fusion.

2.5 ML methods used in the contributions

In recent years, Machine Learning (ML) algorithms have been successfully applied in dif-
ferent localization solutions. The main advantage of such approaches is the ability to make
decisions effectively using observed data without accurate mathematical formulation [9].
Compared to traditional statistical methods, ML techniques enable the identification of
complex dependencies in data that may not be apparent through exploratory data analy-
sis. While the goal is not to derive an explicit mathematical formula for the data distribu-
tion, it can effectively be used to train algorithms to learn the relation between input fea-
tures and their response variables [57]. This thesis describes three distinct ML techniques
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that have been used to improve the positioning performance of UWB and GNSS: Regres-
sion Tree (RT), Random Forest, and Extreme Gradient Boosting (XGBoost). In essence, ML
algorithms are used to perform supervised learning to train a model using a set of previ-
ously established features and their response variables, where the latter is based on pre-
measured true coordinate offset. The estimated or predicted coordinate error can then
be used as a measure of uncertainty in a coordinate filtering scheme to assign appropriate
weights for estimated coordinates.

2.5.1 Regression Tree

Regression trees are ML methods for constructing prediction models from data. The mod-
els are obtained by recursively partitioning the data space and fitting a simple prediction
model within each partition. As a result, the partitioning can be represented graphically
as a tree-like structure [58]. The algorithm assigns each sample from a dataset into a pre-
diction based on the feature attributes of each sample [59]. The decision at a particular
node of the tree, referred to as the split criterion, is typically a condition on one or more
feature variables in the training data. The split criterion divides the training data into two
or more parts with the goal of reducing the level of mixing of variables as much as pos-
sible. Each node in the tree predictor represents a subset of data-space defined by the
combination of split criteria in the nodes above it, and the final prediction for a new sam-
ple is determined by traversing the tree based on its feature values. Therefore, the tree
is constructed as a hierarchical partitioning using supervised instances during the training
[60].

A simplified example of a Regression Tree is shown in Fig. 9. Let the training set be
defined as T = (x,,yn), with n observations, m features, and response variables y,. Func-
tion F, = (m,t,), splits the data based on threshold #, and feature m into left and right
branches. Usually, the Mean Squared Error (MSE) is used for quantitative evaluation at
each split. Minimizing over function F;,, the optimal cut is achieved. Since in regression
problems, the tree structure minimizes the MSE of the predictions, then the tree growing
process is repeated until no improvement in the loss function (28) is attained [61]:

n

1
MSE =} (vi—91)*. (28)
i=1

Regression Tree advantages:

e The algorithm is based on ordering and splitting the values within each feature,
therefore scaling and normalization is not required;

e Visual splits of the data and ordered feature importances are easy to understand
and interpret;

e Robust in terms of missing data or outliers;
e Model is built only using observed data without assumptions to data distribution;

e Creating a single Regression Tree and making predictions is computationally faster
when compared to tree ensembles.

Regression Tree limitations:

e Regression Trees usually have high variance, which means that small changes to
data (e.g., adding samples) can lead to large structural changes in the tree;
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T = (X Yn)

1 V2 V3 Va Is
Figure 9: In the Regression Tree, the input value is traversed through a series of nodes, where data
features m are compared to preset thresholds t,, at each node resulting in prediction J,,.

e Without regularization techniques (e.g., pruning, early stopping) there is a high risk
of overfitting;

e Reaching a global optimum for the model is not guaranteed;

e Regression Trees can be biased towards the majority class in imbalanced datasets.

2.5.2 Random Forest

Random Forest algorithm, developed by Leo Breiman, combines multiple tree predictors,
each built using arandom vector sampled independently and identically distributed across
all trees [62]. It is an ML method that relies on ensemble learning to address some of the
limitations of an individual Regression Tree model. Instead of relying on a single regres-
sion tree, Random Forest constructs a multitude of regression trees using bootstrapped
aggregation (i.e., bagging). This involves creating multiple subsets of the training data
through random sampling, meaning some samples may appear in multiple instances in
a subset, while others are omitted. This resampling process helps to reduce variance, a
key drawback of single regression trees. Each subset is then used to train an individual
regression tree.

In order to make predictions on new data, each tree provides its own prediction. For
classification, the final prediction is determined by a majority vote among the trees. For
regression, the final prediction is the average of all individual tree predictions. Random
Forest leverages the collective informational gain of multiple trees, leading to improved
accuracy and reduced overfitting compared to a single regression tree [63], [64].

A simplified example of a Random Forest is shown in Fig. 10. Let the training set be
defined as T = (x,,y,), x € R™, y € R, with n observations, m features, and response
variables y,,. The input data for each tree is provided through bootstrap sampling, where
n observations are randomly selected with replacements from T'. These independent and
identically distributed vectors are marked with 0. During the training, the algorithm splits
the data at each node, so that the parameters of split functions become optimized to fit
with dataset T'. During this step, the regression tree has to make the best split among all
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variables. The splitting process starts at the root and each node applies its own split func-
tion to the new input x. Splitting is repeated until a terminal node is reached or when a
node contains less than a predefined number of observations. The ensemble of regression
trees produces K outputs for prediction output k. The aggregation is done by averaging
the outputs of all trees [65].

Random Forest advantages:

e Usually has high accuracy and low bias;

e Low variance when compared to a single regression tree;

e Appropriate for large datasets with high dimensionality;

e Robust regarding missing data;

e Bootstrap sampling is useful when data is limited.

Random Forest limitations:

e Categorical data classification may include bias towards features with more levels;
e Can overfit data if regularization (e.g., pruning) is not used;

e Tree models are more complex and difficult to interpret than single regression tree;

e lLarge datasets usually produce large number of trees, which can be computationally
expensive to train;

e Prediction time can be slow as it requires querying each tree in the forest.

T = (X, ¥n)
Bootstrap sampling
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Figure 10: A simplified example of the Random Forest structure. Instead of using a single regression
tree, Random Forest relies on multiple trees generated using bootstrapped training data. Each tree
produces an individual prediction, which is then used to average the result.
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2.5.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost), is a scalable and highly effective end-to-end de-
cision tree-based gradient boosting system, which is widely used by data scientists to
achieve state-of-the-art results on many ML challenges [66]. Based on the research by
Chen and Guestrin, XGBoost has been established as an open-source software library that
provides a regularizing gradient boosting framework for R, Java, Scala, C++, Python, Perl,
and Julia [67]. XGBoost represents a variant of Gradient Boosting Machine (GBM) as a
technique used to tackle both regression and classification prediction problems [68].

In gradient boosting algorithms, each tree predictor is trained on data, taking into
account the success of previous trees in a sequential manner. At each instant, the results
of the model are weighted according to the outcome of the preceding instant. After each
training iteration, the weights are redistributed so that correctly predicted outcomes are
given a lower weight, and output that is misclassified increases their weights to highlight
more difficult cases. In this way, subsequent learners will focus on the more weighted
instances during their training [68]. XGBoost is an ensemble method where new models
are created to correct the residuals of errors of prior models as shown in Fig. 11. These
models are then combined to produce the final prediction. For a given data set D = (x;,
yi)withi=1,....n, x; € R™ and y; € R, n observations and m features, a tree ensemble
model uses K additive functions to predict the output ;.

K
Si=Y filxi), fu € F, (29)
k=1

where F is the set of all possible Classification and Regression Trees (CART). At each iter-
ation of gradient boosting, the residual will be applied to correct the previous prediction
value by the k" tree to the i observation. The tree ensemble model consists of a set
of CART-s. XGBoost represents an optimized and efficient implementation of the gradient

Node splitting with
objective function

f1(x1)

!
K
yi = Z fre(xi)
=1

Figure 11: A general architecture of gradient boosting used in the XGBoost algorithm. The colored
boxes are different features, which make up a decision/regression tree. Each subsequent tree im-
proves the previous tree according to errors reflected by the prediction residuals. The summation of
all trees results in a prediction estimate.
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boosting algorithm. Compared to the latter, XGBoost incorporates regularization tech-
niques to prevent model overfitting and improve generalization performance. It also uti-
lizes first- and second-order gradient information to guide the tree construction process.
The algorithm also makes use of parallel tree learning for faster model generation [66].

The set of functions used in the model can be learned by minimizing the regularized
objective function:

n K
L= Zl(yhyz) Zg(fk)v (30)
i=1 k=1
where
Q(fy) = VTJr%/Iwz. (31)

The first term [ represents the loss function and it measures the difference between the
predicted value y; and response variable y;. The second term Q represents the regulariza-
tion term, which is a factor for measuring the complexity of tree f; with yand A being the
regularization degrees, which also helps to avoid over-fitting. T and w are the number of
leaves and the vector of score values to each leaf, respectively.

In order to minimize the objective function (30), function f; (x;) that mostimproves the
model, is added. If j; is the prediction of i-th instance at 7-th iteration, then by addltlve
manner of gradient boostlng procedures the i-th prediction can also be presented as #!
$71 + f:(x;). And the objective function (30) as:

n

L(t) Zl(yhyt +ﬁ‘(xz))+Q(ﬁ), (32)

i=1

For optimization, a second-order approximation is applied:

LY = Y (Ui, 570 + gifi (i) + %hiftz(xi)) +Q(fr), (33)

-

i=1

where g; = d_ ( () (y,,y,( )) and h; = 8 (y,,y,( )) are first and second order gradi-

ent statistics of the loss function, respectlvely After removing constant terms, the objec-
tive function at iteration r becomes:

n

L0 = Y (gifi ) + 2 ) + Q). (34)

i=1

which is the optimization goal for the new tree [66], [69]. By defining I; = {i|q(x;) = j} as
the instance set of leaf j and expanding the regularization term Q the objective function
becomes:

L(’):i(g,ft(x,)—l— hif2(x)) + 9T + = AZW

i=1

= Y (E e A (Tt ) 4

=1 i€l; i€l

(35)

~

For a fixed tree structure g(x), the optimal weight w; for leaf jis found by:
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wi= oA (36)
7 Yierhi+A
And the corresponding optimal value as:
T ZIEI gl
- . 37
2 ; ZIGI h +7L YT ( )

Equation (37) can be used as a scoring function to measure the quality of the tree ¢ similar
to impurity scores for decision/regression trees. However, this function is derived for a
wider range of objective functions [66].

While in practice it is impossible to enumerate all possible tree structures, a greedy
algorithm, that starts from a single leaf and iteratively adds branches to the tree is used
instead. The loss function after the splits for the existing tree is defined as:

(Tier, 8i)? n (Ticre 81)° n (Yics8i)?
Yiep it A Yiehi+A  Yierhi+A

where I; and Iy are the instance sets of left and right nodes after the split. Additional tech-
niques to prevent overfitting, such as weight scaling (shrinkage) and column subsampling
are described in the original XGBoost article by Chen and Guestrin [66].

XGBoost advantages:

1
Lg=~

e Robust to imbalanced datasets;

e Gradient boosting can be optimized on many objective functions, so it can be ex-
tended to many different problem spaces;

e Optimized for computational speed;

e Has built-in regularization techniques which help to avoid overfitting and improve
generalization.

XGBoost limitations:

e Requires rigorous hyperparameter tuning compared to individual Regression Trees
or Random Forest;

e Sensitive to overfitting if data is noisy;

e Sensitive to outliers as each subsequent tree is trained to correct errors from pre-
vious trees;

e Complex tree models are difficult to interpret than a single Regression Tree.

2.5.4 Discussion

While the aforementioned ML methods are only a small part of existing ML techniques,
these three methods were used in the contributions presented in this thesis. The reason
for selecting these distinct methods were the following. Firstly, the goal was to compare
different ML methods in terms of their coordinate offset prediction accuracy. This is also
related to improvement of end coordinate, as the prediction was used as a measure of
uncertainty in coordinate filtering. Essentially, a more accurate prediction would yield a
more accurate and precise end coordinate. Secondly, the comparison was also done with
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regard to computational speed. In a high position update rate positioning system it is
crucial to consider measurement uncertainty at each measurement update. For example,
in a UWB system with a 10 Hz update rate, the ML prediction must be done at least every
100 ms. Using a large ML model may take a longer time to process and produce a timely
prediction [2]. Therefore, the goal was to compare different derivations of decision tree-
based methods to produce the predictions with respect to accuracy and computational
time. Considering the aforementioned advantages and limitations for each method, a
simple Regression Tree would be compared to more complex methods such as Random
Forest and gradient boosted trees.

2.6 Features used in the contributions

The following section describes features that were used to train the ML models and to
estimate the positioning uncertainty for UWB and GNSS systems.

2.6.1 Features for UWB positioning uncertainty estimation

In order to estimate the uncertainty of a position estimate, the ML model relies on distinct
established features, that have been used during the training. Usually it is done through
incorporating features of low-level data such as channel state information, channel statis-
tics, or ranging parameters to find patterns and dependencies between potential features
and use this information for error detection and mitigation schemes in UWB positioning.
In this thesis, the focus is on UWB features primarily related to ranging residuals, which
was explained in Section 2.3.

As was shown in Fig. 5, depending on the location of the estimated position, d; may be
longer or shorter compared to the individual measured distance d; resulting in a positive
or negative residual. A significant change in the magnitude of a residual may indicate that
the propagation path of a UWB signal is affected by an obstruction [38], [39]. Therefore,
residual features were calculated for three different sets: positive, negative, and overall
residuals. Additionally, statistical equations contain averaging to remove the dependence
on the quantity of available residuals.

Residual statistics:

average Sum of Squares (SSQ)

ss0 - LA (39)
Root Mean Square (RMS)
RMS = \/? , (40)
mean Y1 Ad
= % (41)
Mean Absolute Deviation (MAD)
map — L=t 1Adi =3 (42)
n
standard deviation
(43)
and variance
v=y, (44)



where n represents the number of residuals in a corresponding positive, negative, or over-
all set (also used as a feature).

Number of residuals in an interval:

Small residuals indicate proximity to the NLS solution, whereas large residuals imply er-
roneous measurements. By counting the number of residuals in a preset range, it can be
assumed whether the NLS algorithm uses accurate measurements as its input. Following
ranges were chosen based on overall accuracy of UWB positioning [70], [71]: 0...0.1 m,
0.1...02m,0.2...04m,0.4...0.8m,0.8...1.6m, 1.6...3.2m,3.2...6.4m,6.4...12.8
m, 12.8...25.6 m, 25.6... m. The idea was to divide residual magnitudes into separate
range categories. The quantity of residuals in each class could be then used for coordinate
offset classification (used in Publication I).

LS and NLS metrics:

These values are associated with position calculations as discussed in Section 2.2. The cho-
sen parameters include Euclidean distance AD between LS (xg,yc,z¢) and NLS (£,9,2)
solutions and the number of Gauss-Newton iterations to convergence ngy. For the lat-
ter, there is no implicit equation as the iteration counter is initialized at each coordinate
optimization process

AD = \/(xc—£)2+(yc—9)2+(zc—2)2. (45)

Geometrical integrity of positioning:

In a positioning system, Dilution of Precision (DoP) indicates geometric uncertainty of an
estimated position relative to servicing nodes (e.g., UWB anchors or GNSS satellites). It
contains the knowledge of positioning accuracy under specific base station network and
scene characteristics [72]. In this thesis, Position DoP (PDoP) and Horizontal DoP (HDoP)
metrics were used to reflect the integrity of an estimated position. To calculate DoP, a set
of ranging equations (5) can be implemented with pre-calculated end coordinates from
(19). By finding partial derivatives with respect to each coordinate similarly as was shown
in (14), the result is formulated in matrix form as:

dp d dp
X2 —x 1 *)7 21 -2 l

(46)

xn—%  yv—Y -2 1
dy dy dy

Next, the covariance matrix O is calculated from the LS normal matrix:

2
O, Oxy Oy

0=WW)'=|o. o} opf. (47)
Oy Oy O2

Lastly, HDoP and PDoP are calculated from the trace of matrix O as:

HDoP = /0% + 02, (48)
PDoP = /02 + 02+ 2. (49)

32



2.6.2 Features for GNSS positioning uncertainty estimation

In order to improve the performance of GNSS positioning in less than optimal signal en-
vironments, ML-based GNSS models have been investigated as early as the 1990s. GNSS
sensors provide abundant data suitable for various ML models, depending on the specific
application.

The Fieldbee L2 GNSS RTK receiver used in this research outputs data with the fol-
lowing National Marine Electronics Association (NMEA) 0183 message headers: $GPGGA,
$GPGST, $GPZDA, $GPRMC and $GPVTG. Table 2 presents the fields considered by the au-
thor as most relevant in describing positioning quality and therefore applied in GNSS ML
model training.

Table 2: Features from NMEA messages [73].

Message Field | Description Symbol Example
$GPGGA 7 GPS quality indicator X 4
$GPGGA 8 Number of satellites in use XX 1
$GPGGA 9 Horl'zo‘ntal dilution of X 1
precision
$GPGGA 1 Age of correction data (in - 8
seconds)
RMS value of the standard
$GPGST 3 deviation of the pseudorange X.X 2.7
measurements
Standard deviation of
$GPGST / latitude error (m) XX 1.2
$GPGST 8 Stanfiard deviation of X 3.2
longitude error (m)
Standard deviation of
$GPGST ? altitude error (m) XX 43

The GNSS device used in this research operates with three correction states, which
indicator can be extracted from $GPGGA field 7. These corrections include Differential
Global Positioning System (DGPS) (value 2), floating-point RTK (value 5), and fixed RTK
(value 4). It should be noted that the message output of the receiver was limited by
the manufacturer to GP headers only. Therefore, only DGPS could be used during the
tests. The correction modes are explained in more detail in Section 2.7. The receiver also
outputs the precalculated solution for HDoP ($GPGGA field 9), number of satellites in use
($GPGGA field 8) and age of correction data ($GPGGA field 14).

The $GPGST log contains pseudorange measurement noise statistics that are trans-
lated into the position domain to give statistical measures of the quality of the position
solution. This log reflects the accuracy of the solution type used in the §GPGGA message,
except for the RMS field, which does not represent carrier-phase-based positions but the
accuracy of the pseudorange position [73].

$GPZDA log provides Coordinated Universal Time (UTC) and date information. $GPRMC
contains time, date, position, track and speed data, while $GPVTG log carries track-made-
good and relative ground speed values. As these logs do not provide information regarding
positioning quality, then they are not considered as potential features.
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2.7 GNSS positioning correction methods

This section covers the main GNSS coordinate correction methods used in Publication Ill.
These include DGPS, RTK floating-point, and RTK fix modes. In Publication Ill, a GNSS
RTK device was used in real-life measurement campaigns and sensor fusion tests. The
aforementioned correction methods all involve incorporating a GNSS base station on a
coordinated control position (unless only relative coordinates are desired), which is the
source of correction signals for the GNSS rover as shown in Fig. 12. The observations
of both GNSS devices must be simultaneous as they must observe the same satellites
and both DGPS and RTK methods rely on real-time communication between the devices
[22]. The subsequent sections describe the main principles behind the correction methods

used by the device.

ROVER Differential correction signal
BASE STATION

Figure 12: Differential correction-based GNSS positioning. While both DGNSS and RTK utilize correc-
tions transmitted from a stationary GNSS base station, they differ in their method. DGNSS relies on
pseudorange differences for coordinate corrections, whereas RTK incorporates carrier-phase obser-
vations.

2.7.1 Principles of DGNSS

DGNSS represents a method of relative positioning, which relies on coded GNSS pseu-
dorange measurements. It is an extension of GNSS technology, based on satellite and
terrestrial communication, and requires at least two receivers. One is established as a
control station at a known location and the other device acts as a rover at an unknown lo-
cation. The goal of DGNSS is to determine the errors related to pseudorange observables
and is calculated by comparing the value from the GNSS receiver and the value computed
using the coordinates of the satellites and the reference station [74]. Since both devices
simultaneously track the same codes from the same satellites, many of the errors in the
observations are common to both receivers. Therefore, the errors are correlated and tend
to cancel each other to some degree [22]. Over the years, DGNSS has been remarkably
improved with the possibility of meter- or even submeter accuracy. However, positioning
performance is still inferior when compared to corrections with carrier-phase measure-
ments. In dense urban areas, the DGNSS method may provide a positioning accuracy
lower than 10 m [21].

2.7.2 Principles of GNSS RTK

GNSS RTK is a correction method of determining the relative location between known
and unknown positions using GNSS carrier-phase measurements. It is capable of pro-
viding cm-level positioning accuracy. The goal is to employ simultaneous carrier-phase
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measurements from both the rover and the base station and correct them in real-time.
Differencing techniques are implemented to eliminate signal phase biases, clock offsets
and atmospheric errors. Carrier-phase measurement observations depend on fixing the
integer cycle ambiguity, which refers to the unknown whole number of cycles of the car-
rier wavelengths that have passed between the satellite and the receiver [22]. This is the
key challenge in RTK-based positioning. Before the ambiguities are resolved, the GNSS
receiver uses RTK floating-point estimates as a rough position estimate. Once a valid in-
teger solution is computed, the receiver initiates the RTK fixed ambiguity solution, re-
sulting in a significantly improved positioning accuracy [75], [76]. While the idea of using
carrier-phase measurements for improving positioning performance was already devel-
oped in the 1980s, only after improvement of hardware and data processing algorithms,
RTK became more widely used. Real-time positioning systems usually incorporate "on-
the-fly" techniques to quickly resolve the carrier-phase ambiguities. This requires a dual-
frequency receiver, capable of processing both carrier-phase and pseudorange measure-
ments and it is not required for the receiver to remain stationary [22].

Publication Ill employed the Fieldbee L2 GNSS RTK receiver and base station, which
are dual-frequency multi-constellation devices capable of DGPS, RTK floating-point,
and RTK fixed modes [77].

The established theoretical framework surrounding different positioning algorithms
and ML methods are used extensively in the existing literature. The subsequent chapter
gives an overview of various related contributions, reflecting potential areas of improve-
ment, and ultimately revealing the specific gaps that motivate the current research.
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3 Related work

The subsequent sections delve into state of the art approaches for estimating positioning
integrity. The sections have been categorized based on sensor application and the spe-
cific context of the thesis. Firstly, techniques for UWB-based positioning are presented
(Section 3.1), followed by methods for GNSS and multi-sensor systems (Section 3.2), ML
application in related works (Section 3.3), and a concluding section with research gaps is
presented in Section 3.4. A discussion of each approach is presented at the end of each
section.

3.1 Integrity estimation for UWB localization

This section provides an overview of the state of the art in integrity estimation regarding
UWSB localization. As the research presented in the thesis was conducted using ToA-based
UWSB positioning, the respective literature is presented. It is considered that UWB-based
positioning integrity is closely tied to erroneous estimates caused by NLoS between UWB
anchors and the tag [78]. Therefore, the following sections explore various state-of-the-
art approaches for mitigating and detecting NLoS conditions.

3.1.1 Application of ranging residuals

Distance residual has been extensively used in NLoS identification methods as a measure
of inconsistency in localization. In essence, a large ranging residual would indicate NLoS
conditions, while a small residual suggests a lower ranging noise, therefore a more accu-
rate position estimate.

Chen was among the pioneers in applying ranging residuals to detect NLoS in ToA-
based localization using distinct groups of UWB anchors. It was observed that localization
with LoS noise was consistent whereas the presence of NLoS resulted in larger estimated
residuals. Furthermore, Chen proposed a Residual weighting algorithm (Rwgh) for NLoS
mitigation, which applies a normalized residual as a weight to a position estimate [79].
Subsequent research aimed to reduce the computational complexity of this algorithm
[80], [81], [82].

Jiao et al. investigated several residual-based algorithms for ToA positioning in terms
of their performance in computational complexity and positioning accuracy. The evalu-
ated methods included Rwgh, Iterative Minimum Residual (IMR), Select Residual weight-
ing (SRwgh), and Lower-Computational-Cost Residual weighting (LCC-Rwgh). It was con-
cluded that LCC-Rwgh and IMR algorithms required significantly fewer intermediate least-
squares calculations leading to a smaller computational complexity for given number of
range estimates. However, LCC-Rwgh performance in indoor and outdoor environments
comes at a cost of robustness as it is susceptible to NLoS errors [83].

Chan et al. developed a residual test to simultaneously determine the number of
LoS anchors, identify them, and utilize only these nodes for localization. Residual test
is based on the principle that normalized residuals of LoS measurements follow a central
Chi-Square distribution. While tested in simulation studies with specific anchor geome-
try, NLoS conditions, and ranging errors, the proposed test determined correct number
of LoS anchors over 90% of the time [84]. Discarding an invalid position estimate was
implemented also by Li and Wang in their research concerning a factor graph-based UWB
positioning algorithm with an improved Tukey robust kernel. They suggested that the sum
of residuals over a certain threshold would indicate an invalid positioning result. By uti-
lizing only estimated positions with small residuals, a graph optimization algorithm was
implemented to retain only accurate observations at different moments. The authors im-
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plemented their scheme on two distinct trajectories achieving a mean positioning error
of 0.66 m and 0.19 m respectively [39].

Liu et al. investigated NLoS detection and mitigation using the Sum of Squares (SSQ)
of distance residuals in an analysis of wireless localization in NLoS conditions. A high SSQ
value, compared to a certain threshold, would indicate inconsistency in localization [85].
Silva and Hancke expanded on this concept by considering additional statistical features
of ranging residuals including mean, maximum, and standard deviation of sets of residu-
als. However, due to high correlation between these features, only SSQ was applied in a
naive Bayes classifier to identify NLoS with significant accuracy. The authors carried out
simulations with different sets of UWB anchor placements achieving an over 90% NLoS
classification accuracy [86].

As demonstrated in the study by Jiao et al., utilizing residuals as a measure for posi-
tioning inconsistency, significantly reduces positioning errors. However, this improvement
comes at a cost of increased computational complexity, which grows almost exponentially
with the number of input distances [83]. Some approaches that use residuals to discrimi-
nate LoS or NLoS conditions, can also present limitations. Prematurely discarding anchors
with NLoS or avoiding position estimates altogether can lead to latency issues especially
when considering dynamic positioning. For example, as stated in Section 2.1, usually for
a single solution in 2D space, at least three,- and in 3D space four reference points are
required. Discarding one anchor could cause solution ambiguity. Furthermore, preset
thresholds for residual magnitudes imply a non-generalized solution. For instance, a pre-
set threshold may vary in different environments and dynamic NLoS conditions. It is worth
considering that anchors with NLoS may still provide valuable ranging information for fil-
tering purposes and should not be completely disregarded.

3.1.2 Application of channel impulse response

Detecting NLoS conditions between the UWB anchor and tag, and mitigating its effects
on positioning integrity has been a central topic for various authors. By analyzing the
RF signal characteristics in the UWB propagation channel, it is possible to identify LoS
and NLoS scenarios. Channel Impulse Response (CIR), which describes the propagation
path of a signal, can be used to assess the amplitude and phase of a particular multipath
component [87]. Commonly, researchers combine NLoS identification techniques with
mitigation strategies to enhance UWB positioning performance.

Guvenc et al. investigated NLoS identification and mitigation through the use of am-
plitude and delay statistics of the Multi-Path Components (MPC) in the UWB channel. It
was stated that log-normal random variables can be used as a model to describe these
statistics. A proposed joint likelihood ratio test was applied in a simulation to estimate if
a given signal has LoS or NLoS with over 90% success rate. Subsequently, LoS likelihood
values were incorporated into a Weighted Least Squares (WLS) algorithm to mitigate the
NLoS effects and significantly improve average location error and measurement variance
[38].

Venkatesh and Buehrer proposed a statistical NLoS identification technique based on
the hypothesis-testing of received signal parameters in the UWB channel. By exploiting
the statistics of ToA, RSS, and the Root Mean Squared Delay Spread (RDS) they accurately
distinguished between LoS/NLoS signals. Identified NLoS range estimates were then used
to define a feasible region for potential solutions effectively mitigating range bias. Their
proposed solution, employing a LS estimator with both LoS and NLoS ranges, achieved a
localization accuracy of 0.5 m, outperforming other approaches that relied solely on LoS
ranges or combined and biased LoS/NLoS ranges [88].
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Garciaetal. presented a robust UWB positioning solution designed for complex indoor
environments with prevalent NLoS conditions. The system applied an NLoS detection and
mitigation algorithm based on the skewness of the estimated CIR and further refining the
NLoS errors with an Extended Kalman Filter (EKF). Upon NLoS detection, a fixed value was
added to the measurement noise covariance value, effectively increasing the confidence
towards LoS measurements. Real-life tests demonstrated that their solution improved
positioning RMSE by approximately 67% compared to a solution without NLoS mitigation
[891].

Machine Learning techniques have also been widely applied for LoS/NLoS identifica-
tion and mitigation schemes, as it is a powerful tool to model dependencies between CIR
parameters and respective response variables. These methods in terms of UWB position-
ing are described in more detail in Section 3.3.2.

CIR offers adirect and accurate representation of actual UWB channel conditions, mak-
ing it a valuable tool for identifying NLoS scenarios. Additionally, CIR can be extracted for
each tag-anchor pair during individual ranging sequences, eliminating the need for previ-
ous CIR data [11]. Furthermore, ML algorithms are well-suited to create models based on
various statistical values derived from large real-world datasets.

However, it can be argued that CIR-based approaches have also certain limitations.
Firstly, as pointed out by Barral et al., gathering CIR samples entails a significant amount
of data, causing a latency of approximately one second just for measurement transfer
[19]. Considering a UWB positioning system with high positioning update rate and a sig-
nificant network of anchors, using CIR becomes impractical and would be more applicable
in small-scale and low update rate setups. Using an ML model in conjunction with real-
time data extracted from CIR, increases data delays and computational complexity even
further [39]. Moreover, ML models can be difficult to generalize as they depend on site-
specific training data. For example, a model trained on a dataset collected from a residen-
tial area might not be suitable for a cluttered industrial environment as NLoS conditions
appear dynamically with constantly changing obstructions between the anchors and the
tag [86]. Finally, creating an ML model is a cumbersome process as it requires significant
amounts of measurement data gathered from various environments with additional effort
for training, validation, and testing.

3.1.3 Application of signal parameters

Various authors have proposed NLoS detection methods that do not rely on CIR informa-
tion. The motivation for exploring alternative approaches stems from the same challenges
outlined in the previous section, primarily the significant time delay associated with pro-
cessing CIR information.

Barral et al. investigated the use of UWB Received Signal Strength (RSS) and raw rang-
ing data to identify NLoS scenarios. Different statistical sets of RSS and ranging features
were incorporated in a Support Vector Machine (SVM) classifier model, which was then
experimentally evaluated in real-life LoS and NLoS conditions. The authors achieved an
over 90% LoS/NLoS classification rate only using mean values of both RSS and range mea-
surements [19]. In another work they proposed application and comparison of different
ML models trained on RSS and ranging features, along with different filtering methods for
final position estimates. It was reported that an iterative EKF with k-Nearest Neighbors
(k-NN) based NLoS detection scheme, achieved a Mean Absolute Error (MAE) of approx-
imately 0.084 m. However, it was concluded that the proposed NLoS identification and
mitigation method may suffer from generalizing issues, as it is strongly dependent on the
specific environment in which the models were trained [90].
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Guo et al. combined Pedestrian Dead Reckoning (PDR) with gait detection and UWB
positioning within a Kalman Filter (KF) algorithm. The authors acknowledged the impor-
tance of identifying NLoS conditions and proposed estimating their probability using the
RSS difference between the first path signal and reflected signals. The proposed filter-
ing scheme achieved an average error less than 0.16 m [91]. Similarly, Kim et al. investi-
gated UWB NLoS identification by comparing the Received Signal Power Level (RSL) with
First-Path Signal Power Level (FSL). An Advanced Channel Diagnostics Algorithm (ACDA)
was proposed to differentiate between different power levels and determine NLoS or LoS
scenarios. The ACDA achieved an over 99% success rate in NLoS identification for four
different NLoS paths [92].

Wu et al. analyzed the principle and characteristics of NLoS error and proposed a NLoS
mitigation method derived from the signal propagation path loss model. The authors pro-
vided calculation expressions for the NLoS error estimation while considering the effects
of antenna direction. The method was implemented in low-complexity Direct-Path (DP)
and Maximum Confidence Path (MCP) detection algorithms, suggesting potential applica-
tion and practical design. The processed ranging results demonstrated that the proposed
method can significantly reduce range estimation errors by several decimeters, which in
turn enhances the positioning accuracy of UWB-based sensor networks [93].

While UWB signal parameters can be effectively applied in NLoS identification and mit-
igation schemes, there are also some drawbacks to be considered. Firstly, models based
on RSS data can be difficult to generalize, as training data is site-specific. A model that per-
forms well in one location may not work in another area [90]. Additionally, the received
signal may be affected by dynamically changing obstructions which may cause signal at-
tenuation or interference. It would be difficult to model respective path loss or signal
strength changes for each obstruction. Moreover, considering filtering schemes, signal
interference may cause an accurately estimated position to be weighted incorrectly, thus
affecting the integrity of the filtered end coordinate.

3.2 Integrity estimation for GNSS and multi-sensor localization

This section discusses methods used in the state of the art for estimating positioning in-
tegrity in a GNSS-UWB multi-sensor fusion algorithm. Depending on the integration strat-
egy, the joint positioning system can be loosely-coupled, tightly-coupled or ultra-tightly
coupled. Since the latter involves baseband signal processing, then this approach is typ-
ically inaccessible for most Commercial Off-The-Shelf (COTS) products [94]. In the loose-
coupling scenario, GNSS and UWB sensors operate independently and estimated positions
are fused at a higher level, usually with a Kalman Filter scheme. Loose coupling can also
be considered due to limitations in the GNSS receiver or design of the multi-sensor sys-
tem. Some COTS products restrict access to raw data, with serial data as the sole source
of positioning information. In contrast, a tightly-coupled solution integrates raw mea-
surements (e.g., GNSS/UWB pseudoranges, GNSS carrier phase measurements, Doppler
observables) resulting in a more efficient data usage and a higher control of noise terms
[52], [94], [95].

A loosely coupled GNSS can provide information in the form of National Marine Elec-
tronics Association (NMEA) messages, usually transmitted over serial communication port
(RS-232) [52], [96]. These messages contain geographical fix information, heading, date
and time, velocity and track over ground, psudorange noise statistics, constellation ge-
ometry information etc. Bao et al. utilized Multi-Task learning (MT-e&R) for deep feature
extraction from the NMEA protocol to predict and calibrate the GNSS positioning error
and estimate the GNSS measurement noise covariance. Furthermore, it was stated that
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NMEA features can reasonably characterize complex positioning environments. On the
other hand, Dyukov et al. relied on NMEA data to investigate the accuracy of GNSS veloc-
ity measurements in challenging conditions. The aim was to develop a quality indicator
to filter out potentially unreliable GNSS speed records [97].

Tightly-coupled sensor fusion, leveraging raw measurement data and high customiz-
ability, offers high flexibility. By fusing complementary sensor measurements (e.g., UWB
and GNSS positioning information) it can provide enhanced positioning performance.

Jiang et al. proposed a tightly-coupled integration of UWB, GNSS and Inertial Naviga-
tion System (INS) sensors for seamless indoor and outdoor positioning. They incorporated
two distinct positioning workflows: one for indoor environments and another for outdoor-
indoor transition areas. In the indoor mode, an INS complements an integrated UWB to
mitigate positioning errors. In the second mode, GNSS is added as an additional posi-
tioning source alongside UWB. Both workflows utilize an Extended Kalman Filter (EKF) for
measurement prediction and correction achieving seamless and accurate outdoor-indoor
positioning with Distance Root Mean Square (DRMS) and RMSE of 5.25 cm and 10.18 cm,
respectively. Recognizing the crucial role of measurement noise in determining position-
ing uncertainty, two different noise covariance matrices are used. The UWB noise covari-
ance matrix is modeled as a constant diagonal matrix, considering the error of the original
UWB measurement values (e.g., multipath variation and ranging noise). Conversely, GNSS
noise covariance is based on the preset variance of the GNSS carrier phase measurements
which is also considered to be constant [48].

Similarly, Song et al. proposed a tightly-coupled fusion of UWB, GNSS and Inertial
Measurement Unit (IMU) data for indoor and outdoor positioning. To enhance positioning
continuity and reliability, they introduced novel adaptive weighting factors. The system
was tested in real-life environments consisting of complex indoor and outdoor areas. The
authors used an EKF for positioning prediction and update, dynamically adjusting weights
for UWB and GNSS sensors. These adaptive weights automatically adjust the covariance
matrices of the measurement noise based on fluctuations in GNSS and UWB signal levels
[98]. Following a similar approach, Li et al. assigned weights to UWB measurements based
on their RSS indicator levels and to GNSS measurements based on the standard deviations
of their pseudorange and phase measurements. These weighted measurements were
then integrated in a tightly coupled PPP/INS/UWB framework for their low-cost unmanned
ground vehicle. The authors reported seamless outdoor-indoor positioning with over 90%
sensor availability, and approximately 20 cm 3D MAE and 30 cm 3D RMSE [51].

An alternative approach to estimating measurement uncertainty was used by Wang
et al. in their tightly-coupled integration of multi-GNSS RTK, INS, UWB and map data.
They constructed an Adjustment Factor (AF) based on the Robust Estimation for Corre-
lated Observations (RECO) scheme [99]. The elements in the observation noise matrix
(utilized in the EKF update step), are derived from the product of the AF and observation
noise variance. Essentially, when the accuracy of observations is stable, the AF is 1. Con-
versely, when the observation values are severely abnormal, the AF is infinite and obser-
vation does not affect state estimates. In the intermediate case, the impact of observation
anomalies is mitigated. Their proposed solution was tested in a real-life indoor-outdoor
scenario, achieving an RMSE of approximately 0.24 m, a Mean Location Error (MLE) of
0.16 m and a maximum error of 1.14 m [54].

Having an accurate estimate of positioning uncertainty in multi-sensor fusion schemes
is crucial for robust and seamless positioning in indoor, outdoor, and transition areas. As
the accuracy and precision of the estimated position dynamically changes, using constant
measurement noise values in a filtering scheme may significantly impact positioning per-
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formance. For instance, in an indoor area, a severely inaccurate GNSS coordinate with an
assigned constant weight, can adversely affect the final estimated position, even in the
presence of an accurate UWB measurement. On the other hand, adaptive measurement
uncertainty is more suitable for dynamic positioning as it considers preset parameters to
assign weights to the estimated position of each sensor at each measurement update.
Using weights based on received signal levels as measurement uncertainty estimate, pro-
vides a convenient way to bias towards a sensor with stronger signal [98]. However, as
signals are susceptible to interference (e.g., constructive or destructive), signal strength
can lead to inaccurate assessment of position accuracy. For example, an accurately es-
timated coordinate may have a weak signal level and vice versa. Alternatively, assigning
sensors their respective uncertainty weights can also be done by using a preset robust
estimator (e.g., RECO) [54]. It is a statistical technique to mitigate outliers and apply re-
duction factors to the observation weight matrix. For example, the weight of an outlying
observation is reduced and vice versa. However, RECO suffers from optimal parameter
tuning as the reduction factor of the weight elements should be determined beforehand
[99]. Therefore, a poorly chosen parameter can lead to generalization and overfitting is-
sues.

3.2.1 Geofencing

Geofencingis a technique, where an estimated position, provided by a sensor, is compared
to a previously established map and its predefined boundaries. It quantifies, informs, or
influences resource movements or positions based on real-time coordinates [100]. This
method is particularly useful in areas with significant positioning errors, as it can effec-
tively discard estimated positions that fall outside the specified area or track. Additionally,
this method is computationally simple since the algorithm only compares sets of coordi-
nates with a decision boundary. The geofence perimeter can be defined in either a local
or global frame of reference, depending on the specific multi-sensor solution.

Considering a scenario, where an object traverses indoor and outdoor areas, respec-
tive positioning data can be used to provide coordinates based on the object’s location. If
the object is estimated to be indoors, only UWB is used while GNSS is considered only for
outdoor areas. A similar approach was used by Di Pietra et al. in his work about pedes-
trian navigation using a loosely coupled integration of GNSS, UWB and INS [43]. Their data
fusion algorithm leverages geofencing as a trigger to switch between indoor and outdoor
environments. Another application of geofencing would be to determine NLoS conditions
for UWB systems. As an object moves indoors, its estimated position can be continuously
monitored relative to the servicing UWB anchors. If the object is estimated to be be-
hind a geofenced boundary (e.g., a wall), the ranging information from that anchor may
be excluded from subsequent position calculations. The proposed solution provides an
overall 2D and 3D accuracy of 30 cm and 45 cm, respectively. Wang et al. developed a
similar approach in their tightly coupled GNSS, UWB, and INS solution for autonomous ve-
hicles [54]. Their system consistently monitors UWB signal occlusions by comparing the
estimated position with a predefined map and adjusts the weight of an observation or
discards the measurement entirely.

While geofencing offers several advantages in multi-sensor positioning systemes, it also
presents certain limitations. Firstly, geofencing relies on area-specific maps and requires
tailored implementation. Establishing coordinate-based boundaries requires detailed knowl-
edge of the area and potential movement paths, making implementation cumbersome.
Secondly, since geofencing does not account for positioning uncertainty, erroneous esti-
mates may still persist within the geofenced area. Additionally, defining a strict decision
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boundary between operational areas of respective positioning sensors can potentially de-
grade the performance of a multi-sensor solution. For example, an object transitioning
from an indoor UWB network to an outdoor area with GNSS reception may have accurate
UWB position estimates discarded prematurely leading to a suboptimal solution. Further-
more, an accurate UWB solution may be replaced with a poor GNSS position estimate. In
contrast to geofencing, the research presented in this thesis is more focused on a more
generalized and comprehensive solution, one that can be applied without the need for
prior knowledge of the positioning environment.

3.2.2 Positioning data distribution

An alternative method for estimating UWB positioning uncertainty was utilized by Zhang
etal. in [40]. The author applied Circular Error Probable (CEP) as an uncertainty metric for
UWSB and also combined GPS, UWB and the Magnetic, Angular Rate, and Gravity (MARG)
sensor to improve indoor/outdoor positioning and mitigate sensor dropouts. It was re-
ported that the MARG sensor improved the overall positioning accuracy from 8.9 m to 3.2
m (approximately 64%).

It can be argued that CEP is a metric primarily used to evaluate stationary positions, as
it is defined as the radius of a circle centered at the true position, containing 50% of the
actual measurements [101]. Therefore, it would be difficult to use this measure for mov-
ing objects. Additionally, as mentioned by Lv et al., using CEP requires prior knowledge
of error distribution within the deployment area. Moreover, as the positioning sensors
are switched based on GNSS DoP and UWB CEP threshold values, this approach may not
guarantee a stable trajectory in the transition area [45].

3.2.3 Dilution of precision

In the literature it can be seen that dilution of precision is often used as an indicator for
positioning uncertainty. It quantifies how much position error, that results from measure-
ment errors, depends on the receiver/satellite (tag/anchor in case of UWB) relative ge-
ometry [21], [72]. For example, a sensor fusion solution exploiting two positioning sensors
would consider a position estimate with a larger DoP as more imprecise compared to the
other sensor [102]. Yao et al. incorporated UWB HDoP and signal Carrier-to-Noise Ratio
(CNR) of GNSS to a tightly coupled INS positioning solution with federal filtering, achieving
a decimeter-level 2D positioning error [103]. Lv et al. relied on HDoP to assess the chang-
ing accuracy of GNSS RTK and UWB systems in his work concerning seamless indoor and
outdoor positioning of vehicles. Consequently, a unified positioning accuracy index was
developed based on HDoP from both systems and implemented in the sensor fusion strat-
egy, achieving an approximately 8 cm accuracy [45]. Zhu et al. used HDoP-based weights
to determine the uncertainty of GNSS and UWB positioning in an integrated strategy with
Dead Reckoning (DR), and Visual Map Matching (VMM) resulting in a sub-meter horizon-
tal positioning accuracy [104]. Sun et al. utilized DoP as a measure of positioning accuracy
in a semi-tightly coupled robust model for GNSS, UWB and INS sensors recognizing that
a lower DoP factor indicates a lower amplification of ranging errors and a higher system
fault tolerance. The authors reported positioning accuracy in east, north, up directions as
0.42 m, 0.55 m, and 3.2 m, respectively [105].

As shown by various authors, geometrical uncertainty can effectively be incorporated
into multi-sensor positioning solutions. However, considering an object’s position rela-
tive to the servicing nodes, it may not fully capture the complexities of positioning errors.
For instance, UWB positioning is affected by the number of servicing anchors, their prox-
imity to the tag, signal degradation caused by NLoS and various materials [7], [14]. Fur-

42



thermore, UWB positioning can be particularly challenging in narrow or confined spaces,
where electromagnetic wave propagation will have various reflections, refractions, and
keyhole effects, resulting in channel deterioration and an increase in ranging errors [72].
On the other hand, the GNSS positioning is subject to additional error sources. Firstly,
there are errors caused by signal propagation paths with potential delays caused by the
Earth’s atmosphere and multipath effects. Secondly, in the ground segment there may be
receiver instrument errors, which can influence positioning precision. Lastly, there may
be errors related to the satellite segment: the satellite ephemeris, clock drift, and geom-
etry of constellations [21], [106]. As can be seen, the errors of the estimated position are
not limited to geometrical uncertainty and should ideally be considered in multi-sensor
schemes.

3.3 ML application in related works

Machine learning is a powerful tool that has been extensively used in different positioning
schemes to improve their robustness and performance. Compared to traditional statisti-
cal methods, ML techniques enables identification of complex dependencies in data that
may not be apparent through exploratory data analysis. While the goal is not to derive
an explicit mathematical formula for the data distribution, it can effectively be used to
train algorithms to learn the relation between input features and their response variables
[57]. Considering the context of this thesis, this section gives an overview of main ML
approaches to UWB, GNSS and seamless positioning.

3.3.1 Machine learning in GNSS positioning
In order to improve the performance of GNSS positioning in less than optimal signal envi-
ronments, ML-based GNSS models have been investigated as early as 1990s. GNSS sensors
can provide nearly limitless quantity of data that can be used in a variety of ML models
depending on context of application. Siemuri et al. has done an extensive systematic
literature review on the topic of ML techniques for GNSS use cases [57]. These scenar-
ios include: GNSS signal acquisition, signal detection and classification, Earth observa-
tion and monitoring, GNSS navigation and precise positioning, GNSS-denied environments
and indoor navigation, GNSS anomaly detection and atmospheric effects, GNSS security,
GNSS/INS integration, satellite selection, and Low-Earth-Orbit (LEO) satellite orbit deter-
mination and positioning. While most of these topics are out of the context for the current
thesis, this survey provided insight into some of the more closely related works.
Considering GNSS navigation and precision, Kim and Bae used Long Short-Term Mem-
ory (LSTM) method to improve the accuracy of GNSS-RTK positioning. The authors applied
position error from the absolute position, wheel speed sensor data, and yaw information
as training data for the ML model [107]. Kuratomi implemented Decision Tree (DT) and
Support Vector Machine (SVM) to estimate positioning error using features based on az-
imuth, elevation, constellation type, and CNR. It was reported that the SVM model re-
duced the RMSE by 31% compared to the DT model [108]. Zhang et al. investigated the
prediction of urban GNSS satellite visibility and pseudorange error based on deep learning
networks with LSTM. The ML model incorporated features such as satellite elevation and
azimuth angle, CNR, individual pseudorange residual, and the root-sum-squares of pseu-
dorange residuals from all available satellites. By testing the performance of the model
in an urban area, the satellite visibility was predicted with 80.1% accuracy and pseudor-
ange measurement error with an average difference of 4.9 m from reference [109]. Lyu
and Gao proposed a weighting scheme for improving kinematic GNSS positioning in urban
environments using a novel multi-feature SVM approach. It is based on the identification
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of the most important features in GNSS data in urban environments and the intelligent
classification of LoS and NLoS signals. The input features are calculated from the GNSS
observations and are based on pseudorange, phase, and Doppler prediction data. The re-
sulting scheme outperformed the traditional CNR based weight model by 65.4% and 85%
in the horizontal and up direction. The weighting scheme was also capable of overcoming
position error spikes at overcrossing and short tunnels [110].

Scenario recognition in GNSS-denied environments is also considered a major topic in
seamless indoor and outdoor positioning. The goal is to use ML to identify current posi-
tioning environment and then apply appropriate strategies for a more accurate and reli-
able positioning [57]. For example, Xia et al. investigated scenario recognition with multi-
constellation GNSS on a smartphone by exploiting the Recurrent Neural Network (RNN).
The model was trained on position-independent features, which included the number of
visible satellites and various statistical measures for satellite CNR. It was reported that the
model could recognize isolated and transition areas with high overall accuracy of 98.65%
[111]. Liu et al. developed a NLoS and multipath detection network using deep learning
approach. The model was trained on datasets generated by a GNSS software receiver us-
ing an intermediate frequency signal from an indoor pseudo-satellite system. This model
was then compared to SVM-based classification method, showing an improvement of up
to 45% in overall classification accuracy [112]. Klus et al. proposed a Neural Network (NN)
solution to boost positioning accuracy in urban areas by fusing beamformed RSS mea-
surements from user equipment with GNSS positioning data. The author investigated a
RSS fingerprinting model and a positioning fusion model that combines sequential out-
puts of the first model with available GNSS measurements. The first model demonstrated
meter-level accuracy and the second model sub-meter accuracy in uncertainty-free sce-
nario [113].

As can be seen from presented literature, various ML techniques can be applied for
various different tasks. In the context of improving GNSS accuracy, there is an obvious
tendency in using low-level GNSS measurement data such as pseudoranges, carrier phase
measurements, Doppler information, satellite azimuth/elevation angles and more as in-
put features for ML training. However, it can be argued that such data is not always ac-
cessible from COTS devices because of firmware or manufacturer limitations. Moreover,
processing large amounts of data can be computationally intensive in training the model
and applying in a real-time system. As Siemuri et al. identified, approximately 47% of the
GNSS-related ML algorithms use some form of NN approach, making it the most popular
method for developing an ML model [114]. However, it is also common knowledge that
NN has a significant number of parameters (e.g., weights or biases) to be learned during
the training, leading to optimization problems and being altogether computationally de-
manding. The latter is also reflected in a significant processing time delay as demonstrated
by Xia et al [111]. In the research it was identified how an RNN model, trained for scenario
recognition, entailed significant time delays in identification and scenario switching deci-
sion, which could take up to 3 seconds. On the other hand, NLoS and multipath recognition
algorithms, besides being computationally intensive, require complete knowledge of the
geometry and physical characteristics of the reflecting surfaces [115].

An ML-based approach for GNSS uncertainty estimation should consider the afore-
mentioned limitations. An ML model should be computationally fast to be applied in
a high update-rate positioning system. Also, the model should contain features using
high-level data that is straightforward to implement and obtainable from COTS devices.
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3.3.2 Machine learning in UWB positioning

In recent years, machine learning has been applied extensively to improve UWB-based
positioning. By incorporating low-level data such as channel state information, channel
statistics, or ranging parameters, researchers have leveraged ML techniques to find pat-
terns and dependencies between potential features and use this information for error
detection and mitigation schemes in UWB positioning. The following paragraph describes
state-of-the-art solutions combining both ML and UWB technology.

Liu et al. developed a framework to utilize cost-effective and robust UWB-based posi-
tioning, with extreme gradient boosting-based ML technique and coordinate filtering for
precise distance measurements. The model incorporates various features extracted from
UWSB ranging information including estimated and corrected distances, impulse response
parameters, and RSSI indicator. Feature selection was performed using correlation analy-
sis, identifying low level of collinearity among the features. Consequently, all features and
corresponding real distances were used in model training. The authors also compared the
proposed model with XGBoost, Random Forest, and SVM ML models in terms of their per-
formance and processing latency. It was found that the proposed model outperformed
the other models in all regression performance metrics. While the proposed model and
XGBoost exhibited comparable processing time, both significantly outperformed Random
Forest and SVM in this regard. Real-world testing in building condition monitoring vali-
dated the framework’s ability to measure distances with millimeter-level accuracy [116].

Bregar and Mohorcic presented two methods to mitigate positioning errors in indoor
NLoS conditions using raw CIR from UWB sensors and Convolutional Neural Network (CNN).
The first method exploited a CNN-based classifier to identify NLoS measurements and
exclude unreliable ranging nodes. The second method utilized a CNN-based regression
model to predict ranging errors and incorporate them in a weighted least squares estima-
tion process. The latter approach, combining WLS and ranging error mitigation, demon-
strated the best localization performance. Both models were trained on a dataset col-
lected in both LoS and NLoS conditions. The authors also investigated the computational
efficiency of the CNN-based NLoS classifier, considering different batch sizes on various
hardware configurations. While acknowledging the increased computational demands
due to high input dimensionality and CNN complexity, the authors suggest that network
topology optimization and reduced CIR sample sizes can make these methods viable al-
ternatives to traditional approaches [117].

Similarly, Niu et al. proposed a deep learning-based approach to mitigate UWB posi-
tioning errors in NLoS conditions. The method leverages CIR information to predict rang-
ing errors and correct estimated distances before applying them to a least-squares-based
2D position estimation. The UWB tag collects CIR data from all anchors and transmits it
to a host computer running the ML model. The model’s output, representing corrected
distance estimates, is then used to calculate the 2D position. The UWB localization system
was tested in a real-life complex environment showing correctly mitigated ranging errors,
thus resulting in a more accurate localization [118].

Fan et al. proposed an unsupervised ML approach using Expectation Maximization
(EM) for Gaussian mixture models to discriminate between LoS and NLoS conditions. This
algorithm assigns LoS/NLoS probability to each UWB signal through soft clustering of var-
ious CIR statistics [119]. Kim et al. utilized a LSTM model to classify UWB channel con-
ditions based on the magnitude of impulse response. Additionally, the model estimates
were integrated into the EKF to mitigate positioning degradation. Comparative analysis
with WLS, non-augmented EKF and LS methods demonstrated the superior performance
of the LSTM-EKF approach [120].
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Wymeersch et al. proposed an approach for NLoS identification directly based on
measured UWB waveforms and their statistics. The authors applied two classes of non-
parametric regressors to estimate the ranging error and directly mitigate the bias incurred
in both LoS and NLoS conditions. The first technique exploited the SVM regression to find
a hyperplane approximating the ranging error as a function of UWB waveform statistics.
The second method employed a Gaussian process to determine the posterior distribution
of the training error [121].

Several other authors have incorporated Channel Statistics (CS) information with var-
ious ML schemes such as LSTM [120], Multiple Input Learning (MIL)-NN [122], CNN [123],
deep learning [124], sparse pseudo-input Gaussian process [125], SVM [126], [127], [128],
Decision Tree [129], Random Forest [130], LS-SVM [131] etc.

On the other hand, authors who have provided non-CS-based approaches, have also
leveraged ML techniques. Silva and Hancke investigated NLoS identification using ranging
residuals, considering the sum of squares of distance residuals as a suitable feature for
a naive Bayes NLoS classifier [86]. Barral et al. applied SVM technique to train a model
based on UWB RSS and ranging information for NLoS classification [19], [90]. Chang et
al. bypassed low-level UWB information entirely and proposed optimizing the classical
multilateration algorithm using different regression techniques, such as linear, high-order
polynomial, Lasso, and Ridge regression [132].

As discussed in paragraph 3.1.2, CIR provides accurate information about possible sig-
nal obstructions and potential NLoS scenarios, making it the most prevalent source of in-
formation and features for various ML techniques, especially NN and its variations. While
the works mentioned above have significantly improved the accuracy and precision for
UWB-based positioning (particularly for static scenarios [116]), certain limitations should
be considered. As noted in 3.1.2 and by other authors, extracting and processing CIR in-
formation is time-consuming and may not be suitable for systems requiring high position
update rate (e.g., dynamic positioning) [19], [90]. Additionally, channel statistics must be
collected for different types of environments, as a training dataset collected in an office
building may not be suitable in describing an industrial area [78], [86]. However, in the
context of the current paragraph, it should also be considered that complex ML algorithms
may also pose limitations for real-time systems. As noted by Bregar and Mohor¢ic, their
CNN model (with CIR-based input data) implies higher computing demands compared
to classical approaches. On the other hand, SVM provides a more precise and robust
NLoS identification by establishing a decision boundary according to the input features
with support vectors. However, the manually selected vector feature, generated from the
UWB signal propagation path loss model, might be inadequate to meet the identification
requirement in various positioning scenarios [122]. Therefore, choosing an appropriate
ML technique depends on the task and its limitations. Considering the importance of
computational latency and the models application in a high update rate system, using a
NN or SVM-based approach may be unfeasible. Moreover, as stated by Nessa et al. in a
survey regarding application of ML techniques in indoor positioning, SVM-based meth-
ods are time-consuming and require a significant amount of memory when the number
of support vectors become large. On the other hand, the decision tree-based indoor po-
sitioning provides better performance in improving accuracy when compared to NN or
k-NN [9], [133].
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3.4 Research gaps

According to the literature presented in previous sections, the following research gaps
were identified.

e Compared to CS-based methods for enhancing UWB position estimation accuracy,
the utilization of ranging residuals remains an under-explored area. Its primary ad-
vantage lies in its low latency, as residuals (and their features) are directly calculated
from raw ranging data. In contrast, CS information necessitates separate extraction,
incurring significant time delays, rendering it unfeasible for high-update-rate posi-
tioning systems. While ranging residuals and their features have been applied in
NLoS identification and mitigation schemes, their application to uncertainty estima-
tion (i.e., coordinate accuracy) has been overlooked to the best of author’s knowl-
edge. Additionally, as ranging residuals are essentially a collection of distances from
the estimated position, various features can be considered to estimate the overall
position quality (RQ1).

e An ensemble of features, describing ranging residuals and the true position offset,
can be employed with different ML techniques to identify underlying dependen-
cies. Furthermore, residual features can be combined with other measures, such
as dilution of precision, the distance between LS and NLS estimates or the number
of NLS iterations etc., which indirectly indicate positioning integrity (RQ1).

e |t is crucial to consider the computational efficiency of different ML techniques, as
the model must be sufficiently fast when used in a high-update-rate positioning
system (RQ1).

e By exploiting ML to estimate position uncertainty, this information can be integrated
into various filtering schemes as an indicator of measurement uncertainty. This ap-
proach diverges from traditional methods, that prioritize NLoS identification and
mitigation (RQ2).

e GNSS uncertainty estimation has been extensively researched, with numerous au-
thors proposing error mitigation schemes for both standalone and sensor fusion
solutions. Many of these approaches leverage raw GNSS data in a tightly-coupled
manner. However, such low-level data access is limited to devices that provide the
necessary information. Loosely coupled GNSS solutions, on the other hand, utilize
already processed high-level data in the form of NMEA messages. Such data is usu-
ally more accessible and can be used with most COTS devices. Similar to the applica-
tion of UWB-based residual features, loosely coupled GNSS data offers an ensemble
of features that can be used to characterize positioning uncertainty (RQ3).

e While authors proposing loosely coupled GNSS solutions often rely on a single fea-
ture for uncertainty estimation, an ML-based approach leveraging an ensemble of
features can potentially yield more accurate uncertainty estimates (RQ3).

e As uncertainty estimation is a critical parameter in sensor fusion schemes, the ap-
plication of ML models to this task represents a novel approach. By integrating un-
certainty estimates from both UWB and GNSS models, improved performance may
be achieved in seamless indoor-outdoor sensor fusion systems (RQ4).

These research gaps motivate further investigation in improving UWB and multi-sensor
positioning, as presented in subsequent chapters of this thesis.
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4 UWB positioning accuracy classification using ML

The following section describes the first contribution of this thesis, which is an approach
for UWB coordinate accuracy classification using ML. In contrast to usual methods, such as
using CS for positioning integrity estimation, this section investigates whether positioning
errors could be estimated using a pre-trained ML model. By incorporating an ensemble
of features, mainly based on ranging residuals, the ML model was trained and tested on
real-life UWB measurements to predict UWB coordinate error.

This section is based on Publication I:

e M. Tommingas, S. Ulp, M. M. Alam, I. Mllrsepp, and T. Laadung, “Estimating UWB
Positioning Integrity Based on Ranging Residuals,” in 2023 24th International Con-
ference on Applied Electromagnetics and Communications (ICECOM), pp. 1-5, IEEE,
2023

4.1 Background and motivation

Coordinate accuracy classification using ML was an attempt to investigate whether a pre-
trained ML model can use information from ranging residuals to predict the coordinate
integrity. It was also motivated by the fact that application of channel statistics for esti-
mating ranging errors is unfeasible when applied in a high update rate positioning system
(Section 3.1.2). On the other hand, by exploiting information based on ranging residu-
als (which are calculated from ranging information and estimated position), it is assumed
that coordinate integrity can be estimated and processed with smaller latency compared
to CS-based methods. However, the latter hypothesis was investigated in Publication Il.

Features that could describe whether residuals could be used in estimating UWB-
based positioning integrity have not been thoroughly researched. For example, some fea-
tures used by Silva and Hancke for LoS/NLoS detection, were also used in the proposed
ML model: SSQ, mean and standard deviation of distance residuals [86]. However, the
proposed model incorporates also several additional statistical measures related to posi-
tion estimation and geometrical uncertainty. Altogether 28 features, were divided into 5
categories:

¢ Lengthened and shortened residuals. As described in Section 2.3, a residual is the
difference between a distance of an estimated coordinate and measured range from
an anchor. Depending on the NLS solution, which considers all available ranges,
the estimated position may appear closer or further away relative to the anchor,
thus resulting in a lengthened or shortened residual. Therefore, following features
could be established: number of lengthened/shortened residuals, sum of length-
ened/shortened residuals, average of lengthened/shortened residuals, root mean
square error (RMSE) of lengthened/shortened residuals.

¢ Residual statistics: Following statistical features were included: variance, standard
deviation, SSQ, sum of absolute values, mean, absolute mean and RMSE of residu-
als.

e Number of residuals in range. Small residuals indicate proximity to the NLS so-
lution, whereas large residuals imply erroneous measurements. The idea was to
count the number of residuals in a preset range, as it can indicate whether the NLS
algorithm uses accurate measurements as its input. Following ranges were chosen:
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0..01m, 0.1..0.2 m, 0.2...0.4 m, 0.4..0.8 m, 0.8...1.6 m, 1.6...3.2 m, 3.2...6.4 m,
6.4..12.8 m, 12.8...25.6 m, 25.6...com.

e LS and NLS metrics. These values are associated with estimated position calcu-
lations described in Section 2.2. Chosen parameters include: Euclidean distance
between LS and NLS solutions, number of NLS iterations to convergence and NLS
convergence tolerance. The latter is based on relative offset convergence criterion.
This assures that the current parameter vector is less than 0.001% of the radius of
the confidence region from the least squares solution [134].

e Geometrical integrity of positioning. In context of UWB positioning, DoP indicates
geometric location distribution [72]. Using estimated coordinates of the tag, DoP
parameter indirectly shows the level of geometrical uncertainty in an area relative
to the anchors. In this ML model, Position Dilution of Precision (PDoP) was calcu-
lated with x, y and z coordinates.

4.2 ML model training

The ML model was trained on real-life measurement data gathered at an industrial site of
Krah Pipes OU, which manufactures thermoplastic pipes as shown in Fig. 13. Regarding
UWB-based ranging, the site presents a complex environment with constantly moving
obstacles, which produce NLoS and multipath effects for RF signals. An Eliko RTLS UWB
test system was set up inside the manufacturing facility by placing UWB anchors at preset
locations. Tag’s 3D true coordinates were measured in a local frame of reference with
the Leica DISTO S910 measurement tool and assigned for 8 UWB anchors as well as 30
different locations around the facility. At each location approximately 300 data points
were gathered. It should be noted that the measurements were not gathered by the
author but rather the collected raw ranging data was used by the author to calculate
the features, position estimates, and response values'.

As mentioned in Section 2.5, the ML model was created using supervised learning,
which means for each set of features and their values, a response value was assigned.
The latter depends on the premeasured true coordinate and is set as the Euclidean dis-
tance between the true and estimated coordinate i.e., coordinate error. The task was to
perform accuracy classification with preset accuracy classes:

Class 1: Distance between 0...0.2 m;
Class 2: Distance between 0.2...0.4 m;
Class 3: Distance between 0.4...0.8 m;
Class 4: Distance between 0.8...com.

These categories were chosen based on UWB performance studies [70], [71]. Class 1
presents positioning accuracy up to 0.2 m, which is also considered an approximate accu-
racy level for UWB-based positioning given in the literature. Other accuracy classes were
set as a double value from the last step.

After dataset cleaning and shuffling, 80% of the data was used for training, while 20%
was used for testing purposes. The classification model was trained using Extreme Gra-
dient Boosting (XGBoost) in RStudio environment with an imported xgboost library [136],
[137]. Initially, a sequence of boosted trees was constructed with xgb.train function to

"The data was collected by Taavi Laadung and Sander Ulp [135].
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Figure 13: Industrial site at Krah Pipes OU, which manufactures thermoplastic pipes in a complex
industrial environment. Figure from Publication I.

determine the number of trees that produce the smallest prediction RMSE. The resulting
93 boosted trees were used in the final model training using xgboost function.

As stated in Section 2.5, XGBoost can also be used to extract features that contribute
the most information in making the prediction. As can be seen in Fig. 14, the most im-
portant features out of the set of 28 are related to residuals as these features provide the
biggest informational gain or importance. Lesser contribution is provided by PDoP, num-
ber of residuals in 0...0.1 m range, LS/NLS solution distance, number of NLS optimization
iterations and mean of residuals. Significantly large residuals can indicate that the esti-
mated position is further away from the individual measured distance from the anchor
and the estimated position has a potentially large error. Similarly, small residuals indicate
little change between the individual measured distance from an anchor and the distance
to the estimated position.

RMSE of lengthened residuals
Average of lengthened residuals
PDOP

Number of residuals in 0...0.1 m
LS/NLS distance

Mean of residuals

NLS number of iterations

0.0 0.2 0.4
Gain

Figure 14: Top 7 features that provide most information as proposed by XGBoost algorithm. It can
be seen that lengthened residuals are the most important features in describing estimated position
integrity. Figure from Publication .
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4.3 ML model testing

Model testing was done on 20% of the mixed dataset that was not used in the training
(total of 1748 samples). The goal was to evaluate model’s classification performance by
comparing true accuracy classes against predicted classes, which can be seen in Table 3.
Furthermore, true positive rate (sensitivity) and true negative rate (specificity) were cal-
culated for each class indicating the model’s ability to correctly identify the estimated po-
sition within or outside their assigned accuracy class, respectively [138]. When comparing
the references and predictions, it can be seen that all of the classes were mostly predicted
correctly. While Class 2 and 3 had the worst true positive and true negative rates, these
were still predicted correctly in over 62% of samples. These classes were also the most
difficult to predict because measurement points (especially Class 2), were too close to
Class 1 points in order to be distinguished with a high success rate. Overall, prediction of
distinct classes was performed with a significant accuracy of 84%.

Table 3: Confusion matrix and prediction accuracy statistics. Prediction of different classes was done
with varying accuracy. For example, if the there were 76 points that belonged to Class 2, then ac-
cording to the model these were labeled as Class 1. With a 89% Sensitivity (true positive rate) the
model could identify most of the points belonging to Class 1. Class 2 was harder to predict with a
Sensitivity of ca. 62%, since Class 2 points accuracy is very close to Class 1. However, if the measure-
ment point did not belong to Class 1or Class 2 then the prediction was made with a high Specificity
(true negative rate) of ca. 87% and 91%, respectively. Table from Publication I.

Reference Class

1 2 3 4
1 1024 76 1 0
Predicted 2 109 240 14 0
Class 3 8 45 54 12
4 0 5 17 143

Overall Accuracy: 0.8358 (ca. 84%)

Statistics by Class:

Class1 Class2 Class3 Class4
Sensitivity 0.8975 0.6557 0.6279 0.9225
Specificity  0.8731 0.91 0.9608 0.9861

4.4 Discussion

In summary, the proposed XGBoost model performed UWB-based positioning accuracy
classification with an overall high success percentage of ca. 84%, considering the narrow
accuracy range of Class 1. It was shown that the model could also predict other accuracy
classes with significant accuracy using features mainly based on UWB ranging residuals.
Prediction sensitivity could possibly further be improved with a broader Class 1range (e.g.,
0...0.3 m). The ML algorithm distinctly separated the lengthening of residuals as one of
the top features, that could describe the integrity of positioning. However, there are some
additional actions to be considered when using an ML model to predict coordinate accu-
racy.

Firstly, while it was shown that XGBoost algorithm can output the most significant fea-
tures for prediction, the initial list of features could be further reduced by using feature
selection before training of the initial model. Secondly, as any decision tree-based model,
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it can be further optimized with hyperparameter tuning, which was not done in this contri-
bution. Parameters such as tree depth, learning rate, number of parallel trees etc., could
be used to further enhance the performance of the model.

Lastly, there were not any measurements done in terms of computational latency to
prove if prediction using the model is fast enough to be used in a high update rate position-
ing system. Rather, this contribution demonstrated that it is possible to use information
based on ranging residuals to perform ML-based coordinate offset estimation. The latency
tests for different ML and filtering schemes were performed in the subsequent chapter of
this thesis (Publication II).
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5 UWB end coordinate correction using ML

This chapter describes the methods used for estimating UWB coordinate accuracy with
different ML models, evaluating their performance, and also applying their predictions to
enhance coordinate accuracy and precision using different filtering schemes. The latter in-
troduces Kalman filtering as the method of choice, because of its capability to incorporate
measurement uncertainty estimation for weighting estimated coordinates. In this contri-
bution, it is proposed that the coordinate error, estimated by the ML model, is used in the
Kalman filter as a measure of uncertainty to further enhance positioning performance.
Publication | showed that it is possible to use an ML model to estimate the coordinate
offset class with significant accuracy by using features primarily related to ranging resid-
uals. Publication Il leverages this research by investigating different ML models and their
application in coordinate filtering schemes.

This chapter is based on Publication II:

e M. Tommingas, M. M. Alam, I. Miilrsepp, and S. Ulp, “UWB Positioning Integrity
Estimation Using Ranging Residuals and ML Augmented Filtering,” IEEE Journal of
Indoor and Seamless Positioning and Navigation, vol. 2, pp. 205-218, 2024

5.1 Background and motivation

Using ranging residuals for positioning error estimation provides an alternative to the
usual methods incorporating CS-based information. One of the main motivations for this
approach is the fact that range-based information can be accessed and processed faster
than analyzing UWB channel characteristics. However, applying an ML model, which is
trained with residual-based features, and incorporating it in coordinate offset predictions
still adds to certain processing latency. Estimating this processing time was one of the
goals for this research. Additional focus was on three distinct ML methods: Regression
Tree, Random Forest, and Extreme Gradient Boosting. In essence, these methods are
based on hierarchical decision-making using features described in Section 2.6.1. However,
because of their distinct model structure and complexity, these models were expected to
perform with different degrees of prediction accuracy and processing time. For example,
a simple regression tree model would process data faster than a complex Random For-
est. However, a more complex model would give a more accurate prediction. Lastly, the
trained models were applied in an adaptive coordinate filtering scheme. By leveraging
the error prediction by the ML model and applying it as measurement uncertainty in an
Adaptive Kalman Filter (AKF), the proposed solution was compared with other filtering
methods in terms of coordinate accuracy and precision.

5.2 ML model training

Similarly to Publication I, the ML models were trained using features mainly based on rang-
ing residuals. These included: average sum of squares, root mean square, mean absolute
deviation, standard deviation, number of residuals, mean and variance. These statistics
were calculated for lengthened, shortened, and overall residual sets. Statistical equations
also contained averaging to remove the dependence on the size of available residuals. Ad-
ditional features, related with position calculation and geometrical uncertainty, were also
included. These were: LS and NLS solution distance, number of NLS convergence itera-
tions, and dilution of precision. All feature calculation equations are presented in Section
2.6.1.
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In addition to the UWB measurement data used in Publication |, additional data was
collected at Auroom Kastre factory (Fig. 23) and Eliko office rooms (Fig. 15). The latter was
used to provide additional training data for the models, while Auroom data was solely
used for testing purposes representing a dataset, which wasn’t applied in training. Sim-
ilarly to the measurement campaign done at Krah Pipes OU factory, the measurements
were collected at different points around the area, consisting of stationary UWB mea-
surements using a 10 Hz update rate resulting in approximately 300 ranging sequences at
each point. Disto S910 laser measurement device was used to measure UWB tag’s true
coordinates [139]. These were later used for calculating the true coordinate error, which
was set as the response variable in the supervised learning. All data processing and model

Figure 15: Eliko office rooms with a UWB positioning network. The visible UWB anchors are high-
lighted with red ellipses.

training was done in RStudio environment with appropriate ML libraries [137]. For each
ML method, 10-fold Cross-Validation (CV) was performed to select hyper-parameters that
provide a sufficiently small prediction error against the validation set. CV also helps to gen-
eralize the model and mitigate possible overfitting. Cross-validation was done using the
caret library with trainControl functions [140]. The training dataset was separated into
10 segments with 1segment being the validation set. After applying appropriate hyperpa-
rameters in an initial model, a combination of the most important features was selected
for the final model.

5.2.1 Regression tree model training

Cross-validation was done with the caret library, using the rpart2 function, which is in-
tended to compare different regression tree depths in terms of prediction error [141]. As
can be seen in Fig. 16-A, a tree depth of 7 is the minimum which provides the smallest
prediction RMSE. Additionally, the tree was pruned using a Complexity Parameter (CP),
which helps to find a balance between an overly complex model and accuracy. As can be
seen in Fig. 16-B, the chosen tree size of 7 corresponds to a tree CP of 0.025. The resulting
regression tree structure can be seenin Fig. 17. At each node and leaf, the prediction value
and percentage (rounded to nearest integer) of training observations from a subsequent
node can be observed. For example, the left-most terminal node shows the prediction
of 0.23 m error encompassing 65% of all training samples. In creating regression trees
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Figure 16: [A] Determining regression tree depth after 10-fold cross-validation. It can be seen that
a tree depth of 7 is sufficient to provide the smallest prediction RMSE. [B] CP was used to further
optimize the model. Tree depth of 7 corresponds to CP of 0.025. Figures from Publication Il.

with the rpart library, features that provide the same goodness of split are removed [141].
Therefore, the resulting tree can differ significantly from cross-validated trees. Features
that provide the best goodness of split in the regression tree model are shown in Fig. 18.
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Figure 17: Final regression tree to be used in ML prediction. Figure from Publication II.

5.2.2 Random Forest model training

Cross-validation was done with caret library using ranger function, which allows to iter-
ate over an increasing number of random predictors (function mzry) to find the suitable
prediction RMSE. These predictors are a subset of features selected for building each tree
[142]. As can be seen in Fig. 19-A, with 100 random trees, using more than 8 random pre-
dictors does not decrease prediction RMSE. The initial model was established using ranger
function with all the features, a tree depth of 100, and 8 random predictors [143]. To re-

55



Sum of squares of residuals
Residual variance

LS/NLS difference [m]
Number of iterations

0 1000 2000
Goodness of split measures

Figure 18: Features used in the final regression tree model, which are ordered based on the goodness
of split in a regression tree. Figure from Publication Il.
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Figure 19: [A] Finding the optimal number of randomly selected Random Forest predictors using
cross-validation with 100 random trees. It can be seen that using more than 8 randomly selected
predictors, results in no decrease in cross-validation RMSE. [B] With 8 random predictors, using
more than seven most important features results in no significant RMSE decrease in Random Forest
prediction. Figures from Publication II.

duce complexity of the model, the ranger package provides variable.importance function
to list the most important features based on node purity increase. By ordering these fea-
tures based on their importance, new models were created and compared in terms of
prediction accuracy. As can be seen in Fig. 19-B, choosing more than 7 most important
features provides only a marginal decrease in prediction RMSE. Furthermore, choosing a
higher number of features may not be useful for generalizing the model and can lead to
overfitting. Most important Random Forest features can be seen in Fig. 20.

5.2.3 XGBoost model training

Cross-validation with hyper-parameter comparisons was done using caret package with
xgbTree function. In this contribution tree depth and number of boosting iterations were
considered. By comparing different hyperparameter values, it can be seen in Fig. 21-A
that choosing more than 150 boosting iterations and a tree depth of 5, results in only a
marginal decrease in prediction RMSE. To avoid an overly complex model, these values
were chosen for the initial model, which was created with the xgboost library [136].

Features inherent in the model can be ordered in terms of their informational gain
using xgb.importance function. By selecting consecutive combinations of most important
features, different XGBoost models can be built and compared in terms of their prediction
accuracy. As can be seen in Fig. 21-B, choosing more than 8 most important features
presents in only a marginal decrease in prediction RMSE and therefore were chosen for
the final model. These most important features are presented in Fig. 22.
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Figure 20: Set of features in the final model that provide the biggest node purity increase in Random
Forest prediction. Figure from Publication IlI.
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Figure 21: [A] Determining suitable XGBoost tree depth and number of boosting iterations using
cross-validation. Tree depth 5 and 150 boosting iterations are chosen parameters for the model.
Choosing a higher number of iterations results in no significant decrease in RMSE and might lead to
overfitting. [B] Using more than 8 features has no significant impact on XGBoost prediction accuracy.
Figures from Publication II.

5.3 Coordinate filtering

Coordinate filtering is used to smooth out noisy measurements and improve the over-
all accuracy and precision of the end coordinate. In the current context, the filter re-
fines end coordinates, while considering the uncertainty of measurements (prediction)
and previously filtered coordinates. While in a traditional Kalman Filter (KF) the process
and measurement noise have fixed values, then in real-life applications it can be seen
that measurement uncertainty is a dynamic value, affected by external factors such as
NLoS or multipath. Therefore, it is preferable to know the measurement uncertainty at
every ranging calculation. As shown in previous sections, the ML model aims to predict
the end coordinate offset from true value, based on the input feature values. Since the
direction of the error with regard to x, y, and z axes is unknown, this prediction can be
considered as uncertainty in all three axes. By implementing the prediction as a dynamic
measurement uncertainty in an AKF, it is hypothesized that positioning performance can
be improved further.
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Figure 22: Features used in the final XGBoost model. Figure from Publication Il.

5.3.1 KF and AKF filtering

In this work, the main difference between a KF and AKF is in the application of the R ma-
trix, which represents positioning measurement uncertainty. In KF, the diagonal elements
of R in (50) were set as fixed values diag(0.01, 0.01, 0.01) corresponding to the precision
of the DW1000 device [120] with:

o2 0 0 001 0 0
Rgp=|0 o} 0[=|0 001 0 |. (50)
0 0 o2 0 0 001

However, AKF measurement uncertainty in (51) is updated at each iteration as the end co-
ordinate is calculated with ML prediction Dyyy, added to the variance of diagonal elements
as

0.014Dyr 0 0
Rakr = 0 0.01 JrlA)ML 0 . . (51)
0 0 0.014+Dyr

In essence, the ML prediction drives the filtering process by dynamically changing
measurement uncertainty i.e., weighting each incoming estimated coordinate with the
associated uncertainty. In KF, EKF, and AKF, the process noise matrix Q has constant val-
ues diag(0.01, 0.01, 0.01). In the beginning of Alg. 1, the state transition matrix A, state
covariance Py, and observation matrix H are initialized as 3-by-3 identity matrices. X,
represents the first converged NLS solution from (19), Zj is the measurement vector and
I is a 3-by-3 identity matrix.

5.3.2 EKF filtering

ML-driven AKF is also compared with the Extended Kalman Filter (EKF), which is capable
of dealing with non-linear problems such as multilateration described in 2.2. In contrast
to KF and AKF, which predict and correct coordinates, EKF makes state corrections using
residuals between measured distances Zy and distances to the last estimated coordinates.
In Alg. 1 state correction step ka(l: is replaced with D where:
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Algorithm 1 Kalman filter algorithm

Input: Xo,Zk,P(),Q,R

Output: Xk

Initialize A, Py, H, 1

Prediction step

for k=1,...,00

1: State prediction )A(k’ =AX,

2: Covariance prediction P, = AP, AT +Q
Correction step

3: Kalman gain K = P, HY (HP, H! +R;)"!
4: State correction X, = )A(k_ +Ki(Zy — Hka‘)
5: Covariance correction P, = (I - K Hy)P,
return f(k,Pk

end for

\/(x;—x1)2+(y;fy1)2+(z,jle)2
\/(X,:—X2)2+(y;—)’2)2+(z,j—Z2)2

D, = (52)

VO =502+ 0 =3+ (5 )

with x; ', v, and z;_ representing coordinates from last iteration. Measurement vector Zy
represents current iteration distance equations with added measurement noise

\/(xk—x1)2+(yk—Y1)2+(zk—z1)2+v1
Vo —x2)2+ 0k —y2)* + (7 —22)2 +

Zy = , (53)

Y o 2 g SO

where vi represents measurement noise vector, which has covariance matrix Ry as diag(0.01,
0.01, 0.01). Process noise matrix Q is also set as diag(0.01, 0.01, 0.01).

With EKF, the entire NLS approximation process discussed in 2.2 may be bypassed and
do linearization through the observation matrix Hy, which is comprised of first-order par-
tial derivatives [120]:

_adl(xkayk7zk) adl(xkaylwzk) adl(xk7)’k>2k)_

axk 8yk 5zk
ddy (X, yk,2k)  Oda (X, yi,zx)  Fda Xk, Vi, 2)
Hy = Ix AL Iz , (54)

Ady(Xp, yk,2k)  Odn (X, Vi, 2k) Oy (Xk, Vi, 2)
L 8xk 8yk aZk -

where derivatives correspond to
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adi(xkaykazk) Xk — Xi

Ixy B \/(xk—xi)z—k(yk—yi)2+(zk—z,~)2’ 59)
9d; (X, Yk 2k) _ Vi — i (56)
Yk V0o —x)2+ (e — i) + (z —20)F
9d; (X, Yk 2k) _ % — 3 . (57)
9% V(e —x)2 + (k= yi)? + (2 —2)?

In the context of coordinate calculation, skipping the NLS coordinate calculations (and
convergence iterations) makes EKF computationally less demanding. On the other hand,
a poor LS coordinate in the state vector can affect the filtering process and result in an
inaccurate coordinate. Therefore, for comparison purposes, EKF was provided with a con-
verged NLS coordinate as the initial state vector.

5.4 ML model testing and application for filtering

The proposed ML models and filtering schemes were tested using a real-life dataset gath-
ered at an industrial site at Auroom Kastre factory (Fig. 23). Altogether 40 different mea-
surement points were established around the ground floor. Similarly to the measurement
campaigns at Krah Pipes and Eliko office, UWB ranging data were collected using 10 Hz up-
daterate, resulting in approximately 300 measurement sequences per point. Additionally,
the tag’s true coordinates were measured with the Disto $910 laser measurement device
for benchmarking. As stated in Section 5.2, Auroom dataset was not introduced during the
training of the ML models. Therefore, it represents a suitable collection of unknown data
to be used for model validation and filtering performance evaluation. ML performance

Figure 23: Manufacturing area inside Auroom Kastre factory. Red ellipses highlight visible UWB
anchors. Figure from Publication Il.
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on predicting the test set response variables was summarized with the Cumulative error
Distribution Function (CDF) in Fig. 24 and in Table 4. The latter includes commonly used
regression performance indicators such as RMSE, Mean Square Error (MSE), and Mean
Absolute Error (MAE) [144]. Expectedly, the Regression Tree model has the worst per-
formance in terms of these metrics. This is due to the limitations arising from a single
predictor tree as compared to significantly larger models of XGBoost and Random For-
est. Moreover, the latter method provided the best regression metrics out of the three
models.

Table 4: Performance of ML models on predicting the test set response variables. Table from Publi-
cation Il.

RMSE [m] | MSE [m”] | MAE [m]
XGBoost 1.28 1.64 0.36
Regression tree 1.37 1.87 0.46
Random Forest 118 1.4 0.33
0TS
g 0.50-
E
3
0.25+ RF prediction error
— RT prediction error
— XGB prediction error

1 4 5

2 3
Prediction error [m]

Figure 24: CDF of prediction errors. It can be seen that a regression tree provides more distinguished
prediction error levels based on decisions from a single tree as shown in Fig. 17. RF and XGB predic-
tions are more refined at the cost of more complex models. Figure from Publication I.

Next, the predictions of the models were applied in coordinate filtering schemes and
the filtered end coordinates were compared with pre-measured true coordinates (x7,yr,zr).
The following metrics were used to evaluate positioning accuracy and precision: Mean Lo-
cation Error (MLE), RMSE, Distance Root Mean Square error (DRMS), Mean Radial Spher-
ical Error (MRSE) and maximum error [78], [145]:
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1) 2D metrics:

MLE,p — , 1 \/ xT xl )’T )’z) ’ (58)
n
RMSEyp — \/er'll [(xr —%)* + 7 = 9)?] ’ (59)
n
DRMS = /62 + 02, (60)
MAX>p = r{_leztlx(\/(xr —2)2+ (yr —91)?). (61)
2) 3D metrics:
MLEsp — LV (e =52+ (o —51)? +(ZT*2i)27 62)
n
RMSEsp — \/2?1 [(er — 2%+ (vr —9)% + (2r — %)% 7 (63)
n
MRSE = \/0? + 0} + 02, (64)
MAX3p = rglea}}(\/(xT — %)+ (7 =902 + (21 — 2)?). (65)

Overall statistics summarizing all 40 measurement points can be seen in Tables 5 and
6. It can be seen that in 2D positioning, ML-driven filtering has approximately 0.1 m less
MLE and 0.3 m smaller DRMS than compared to ordinary KF. In 3D positioning, the ML
augmentation results in approximately 0.25 m smaller MLE and 0.6 m smaller MRSE than
KF. While all AKF schemes performed at a similar level, it was seen that Random Forest
had slightly better results in terms of overall maximum error in 2D and 3D positioning. It is
also worth noting that NLS had smaller MLE than EKF in both 2D and 3D positioning. This
can be explained with the solution convergence process inherent in the NLS optimization
as explained in Section 2.2. In EKF algorithm no solution optimization was performed.

Table 5: Overall metrics for 2D positioning. Table from Publication Il.

MLE 2D [m] | RMSE 2D [m] | DRMS [m] | Max. error 2D [m]
NLS 0.46 0.95 0.85 1116
KF 0.43 0.72 0.57 7.01
AKF + XGB 0.28 0.29 (0N} 0.62
AKF + RF 0.28 0.29 0.1 0.55
AKF +RT 0.27 0.28 0.1 0.63
EKF 0.62 0.96 0.78 6.28

Lastly, proposed methods were compared in terms of elapsed processing time to inves-
tigate their feasibility in a high position update rate system. Benchmarking was done in the
RStudio environment using built-in ML libraries xgboost, ranger, r part, and microbenchmark.
The hardware specification of the computer was Intel(R) Core(TM) i5-7300U CPU @ 2.60
GHz with 16 GB RAM. In Table 7 it can be seen the amount of delay ML adds to the filter-
ing scheme. Ordinary Kalman filter performs the fastest while EKF being 3.5 times slower.
However, ML prediction adds computational delay, with XGBoost and regression tree be-
ing approximately 18 times slower than KF and Random Forest being the slowest. The
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Table 6: Overall metrics for 3D positioning. Table from Publication II.

MLE 3D [m] | RMSE 3D [m] | MRSE [m] | Max. error 3D [m]
NLS 0.8 1.36 117 14.04
KF 0.74 1.05 0.8 8.78
AKF + XGB 0.48 0.5 0.18 0.94
AKF + RF 0.48 0.5 0.18 0.9
AKF + RT 0.51 0.53 0.2 1.07
EKF 2.86 3.26 1.94 11.73

latter is most probably due to prediction making process inherent in the Random Forest
algorithm. As described in Section 2.5.2, prediction time is one of its limitations, as it
requires querying each tree in the forest.

Table 7: Single iteration time for filtering and prediction. The ratio shows proportional relation be-
tween mean latencies of the filtering schemes. As the KF had the fastest processing time, the other
filtering solutions were compared respectively. For example, the EKF algorithm had a 3.5 times
higher single iteration latency than KF. The minimum elapsed time and mean time for KF is the same
due to rounding. Table from Publication II.

Min. time [ms] | Mean time [ms] | Max. time [ms] | Ratio
KF 0.04 0.04 0.06 1
AKF + XGB 0.68 0.71 0.72 17.75
AKF + RF 14.77 15.49 16.74 387.25
AKF + RT 0.68 0.72 0.9 18
EKF 0.12 0.14 0.21 3.5

Considering that all ML-driven filtering methods improved 2D and 3D positioning ap-
proximately on the same level, then in terms of latency, they added a significant delay
compared to ordinary filtering. While these models could be applied in a high update
rate (e.g., 10 or 20 Hz) positioning system, the Random Forest was significantly slower
compared to RT and XGB models. Furthermore, XGBoost-augmented filtering performed
slightly faster than a single regression tree. Such result may be related to the ML library’s
implementation, hardware specification, and efficiency of the code. The developed XG-
Boost model was also applied in the Eliko RTLS UWB positioning solution using the XG-
Boost C Package [146] with a prediction time delay of approximately 1 ms. The system
hardware consisted of Intel(R) Xeon(R) W-2123 CPU @ 3.60 GHz with 16 GB RAM.

5.5 Discussion

In summary, this publication developed three distinct decision tree-based ML models with
the aim to predict UWB positioning error. It was shown that using this prediction as a
measurement uncertainty in a filtering scheme, the performance of UWB positioning can
be improved when compared to traditional filtering methods. In 2D positioning, the MLE
and RMSE improved ca. 10 cm and 40 cm, respectively. Furthermore, the ML prediction
is sufficiently fast to be used in a real-life positioning system with XGB model showing
0.7 ms average latency. The performance of ML-augmented filtering motivated further
investigation in its application in a UWB/GNSS sensor fusion solution as demonstrated in
the subsequent chapter.
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6 GNSS and UWB sensor fusion with ML-based uncertainty es-
timation

This chapter covers the methods used for sensor fusion of GNSS and UWB positioning
systems using ML-based uncertainty estimations. In previous publications it was shown
that ML can be effectively used for estimating positioning uncertainty and applied for im-
proving the accuracy and precision of UWB end coordinate. Publication Il leverages this
knowledge and incorporates ML-based uncertainty estimation with GNSS positioning as
well, with the aim of using two distinct ML models in a seamless indoor-outdoor position-
ing scheme. The estimated position uncertainties of both UWB and GNSS ML models are
incorporated in adaptive sensor fusion and filtering, which refines the estimated end co-
ordinate while considering the uncertainty estimation by the ML models at each position
update. The entire proposed solution can be summarized with a flowchart in Fig. 25.
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Figure 25: Flowchart of UWB and GNSS ML augmented sensor fusion as proposed by the author. The
dashed box highlights the contribution in developing two distinct ML models for respective sensor
uncertainty estimation. Sensor coordinates and their dynamically changing position uncertainties
are then fused and filtered to produce the final coordinate at the output. Figure from Publication IlI.

This chapter is based on Publication IlI:

e M. Tommingas, T. Laadung, S. Varbla, I. Mulrsepp, and M. Mahtab Alam, “UWB
and GNSS Sensor Fusion Using ML-Based Positioning Uncertainty Estimation,” IEEE
Open Journal of the Communications Society, vol. 6, pp. 2177-2189, 2025

6.1 Background and motivation

Determining the position of an object using a combination of positioning sensors whether
indoors, outdoors, or in transitional environments, presents significant challenges as the
system performance is highly dependent on the operational environment [147]. For in-
stance, GNSS excels in open-sky conditions with clear satellite reception. However, in-
door or dense urban environments severely attenuate satellite signals, degrading GNSS
positioning accuracy significantly [8], [36]. While seamless indoor-outdoor positioning
accuracy and precision may be enhanced by implementing additional sensors (e.g., in-
ertial measurement unit or wheel sensor), the end coordinate still depends also on the
accuracy of each positioning sensor. Estimating the positioning integrity at each position
update is one of key components in achieving reliable coordinate, especially in transition
areas, where the performance of both indoor and outdoor sensors may be compromised.
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In the literature, a common method to measure the uncertainty of position is by using
the Dilution of Precision (DoP) parameter, which indirectly shows the level of geometrical
uncertainty in an area relative to servicing nodes (e.g., GNSS satellites or UWB anchors)
[72]. However, DoP does not account for other factors that may contribute to positioning
performance. For example, GNSS positioning is affected by several types of other error
sources including receiver instrument issues, satellite signal propagation path (e.g., NLoS,
multipath), and the space segment [21]. Considering that DoP considers only a small part
of an entire ensemble of error sources, it is proposed to estimate positioning uncertainty
with an alternative solution by using an ML model. In addition to considering geometri-
cal uncertainty, several other features can be included such as the number of servicing
satellites, quality and age of correction, deviation of positioning error, etc.

6.2 Data collection

For UWB positioning uncertainty estimation, this publication employs XGBoost ML model
that was developed in Publication Il. However, the current publication concentrates on
the training of the GNSS ML model using features described in Section 2.6.2. The training
data was collected during a measurement campaign conducted at an office building site
as shown in Fig. 26. Firstly, the location of the GNSS RTK base station was established
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Figure 26: Layout of the GNSS measurement campaign at the Eliko office building. Static measure-
ments were taken indoors, near-building, and in outdoor areas. For clarity, only 15 measurement
points out of a total 60 measurements are shown in this figure. Each true coordinate is paired with
a respective measurement. The blue and orange traces mark the highly inaccurate and imprecise
DGPS and RTK float solutions taken indoors. Measurements that were taken closer to the building
door, were also more accurate and precise, while points with RTK fix solution (marked with green)
had the best performance. Figure from Publication IlI.
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at a nearby geodetic location and assigned with global coordinates. The respective local
coordinates were set as (0, 0). Next, the laser measurement device Disto $910 was set up
near the building, so that the true coordinates of all measurement points can be gathered
[139]. The goal was to take static GNSS measurements indoors, in semi-obstructed areas,
and outdoors to mimic real-life dynamic changes in GNSS data. The measurements were
collected for 30 seconds at 60 different measurement points with a 10 Hz update rate. The
GNSS receiver collected the training data based on the same features as shown in Table 2.
As the true coordinates were also measured at each point, the coordinate offset between
the estimated GNSS position and the true coordinate was set as a response variable for
each set of features.

During the measurement campaign, it was seen that correction quality changes rela-
tive to the operational area. For example, indoors with the unavailability of RTK, the main
correction method was DGPS. Near the building edge, the main correction quality was RTK
float. Only in clear-sky conditions, the RTK integer ambiguities were resolved, resulting in
high accuracy RTK fix. More detailed description of GNSS correction qualities is given in
Section 2.7. The entire training dataset can be viewed in terms of changes in correction
quality as shown in Fig. 27. As expected, GNSS RTK provides the best positioning accuracy
compared to other correction methods. The floating-point RTK had the largest accuracy
range between approximately 1 m to 15 m. Indoors, at the furthest distance from the door,
the main correction method was DGPS, which produced coordinates with varying offsets
ranging from approximately 2 m to 25 m.
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Figure 27: Histograms for all three GNSS correction qualities taken during the measurement cam-
paign. Emphasis is on the distribution of coordinate offsets and their values with respect to each
correction. It can be hypothesized that such distribution already provides insight in predicting the
magnitude of coordinate error. Figure from Publication IIl.
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6.3 ML model training

After data collection, several adjustments had to be made to ensure correct format of the
dataset. Firstly, collected GNSS coordinates were transformed into the local frame of ref-
erence using ENU method described in Section 2.4. By calculating the Euclidean distance
between the local coordinates and respective true coordinates, coordinate error was set
as the response variable for each set of respective feature values. Next, to ensure un-
biased training data, the entire dataset was sampled and divided into three equal-sized
subsets according to correction quality: DGPS, RTK floating-point, and RTK fix. Lastly, the
data was mixed and separated into training and testing sets with 80% and 20%, respec-
tively.

To develop the GNSS ML model, supervised learning was done using xgboost library
in RStudio environment [136], [137]. After data partitioning, 80 percent of the data was
used for 10-fold cross-validation to select suitable hyperparameter values for the initial
model. XGBoost was the ML method of choice for its high-performance metrics as shown
in Publication Il. Similarly to developing the UWB model, the chosen hyperparameters
were the number of boosting iterations and tree depth [148]. RStudio provides appropri-
ate cross-validation train, xgbTree and trainControl functions with the caret library [140].
The training dataset, which consisted of collected features and their response variables,
was separated into 10 segments with 1 segment being the validation set. This approach
helps to choose more generalized hyperparameter values [149]. The number of boost-
ing iterations and tree depth were compared in terms of prediction RMSE as shown in
Fig. 28. Hyperparameter values were deliberately limited, which can help avoid overfit-
ting and an overly complex model [150]. Also, it can be seen that a model with a tree
depth of 7 and 100 boosting iterations presents no significant increase in prediction per-
formance. Using the chosen hyperparameters, the initial model with all the features was
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Figure 28: Prediction RMSE with different hyperparameter values. Tree depth and the number of
boosting iterations were limited to 7 and 100 respectively as these values provide sufficient predic-
tion accuracy and help avoid overfitting and an overly complex model. Figure from Publication Ill.
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built with the xgboost function. XGBoost library’s xgb.importance, outputs features that
provide the most informational gain in making the prediction. Using the initial model, the
inherent features were ranked in descending order. Next, by selecting a sequential com-
bination of features, prediction RMSE was observed to select the number of features that
provide a sufficiently small prediction RMSE. As shown in Fig. 29-A, more than 5 features
provide no significant improvement in predicting test set response values. In contrast,
choosing more features may lead to overfitting and an overly complex model [151]. The
final selected features and their informational gain are shown in Fig. 29-B.
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Figure 29: [A] The prediction RMSE as a function of the number of features. Using more than 5
features has no significant impact on prediction accuracy and may lead to overfitting of the model.
[B] 5 features that provide the biggest informational gain in the XGBoost model. The gain quantifies
how much a feature contributes in improving the models prediction. Figures from Publication Ill.

6.4 ML model testing

The final GNSS ML model was tested on the rest of 20% of data, which was not used in the
training process. In Fig. 30-A, it can be seen that the ML model predicts GNSS response
error in terms of different correction qualities with significant accuracy. The performance
was evaluated with common regression metrics: RMSE, MSE, and MAE. Sample distribu-
tions of the test set and corresponding predictions can also be seen in Fig. 30-B.

6.5 Sensor fusion and filtering

In this work, complementary sensor fusion was used to combine the estimated UWB and
GNSS coordinates and covariances [152]. Both UWB and GNSS ML models produce an
uncertainty estimate, which is incorporated in the Kalman filter’s covariance matrix of the
respective sensor [153]. The predicted estimate MLy of the UWB model and MLg from
the GNSS ML model were applied as:

_ [MLy2 0
RU - |: 0 MLU2:| 9 (66)

MLG? 0 } . 67)

RG:[ 0  MLG?

Next, assuming measurements with normally distributed Probability Density Functions
(PDF) a joint PDF Ry was calculated as:

Rp=(Rg '+Ry ). (68)
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Lastly, estimated coordinates Zy from UWB and ZG from GNSS, their respective covari-
ances, and fused covariance are used to produce fused coordinates as:

Zk :RF((RG_IZG)+(RU_IZU)). (69)

The Adaptive Kalman Filter (AKF) is used to filter end coordinate estimates with fused
covariances dynamically at each position update. The predictions of both ML models es-
sentially drive the filtering process by dynamically changing measurement uncertaintyi.e.,
whether to trust the measurement or the kinematic process. Since the proposed solution
is meant to be applied to a moving object in 2D, the state transition matrix A for position,
velocity, and acceleration was established as:

[N

1 A % 0 0 0
01 A 0 0 O
A 0O 0 1 0 O AO2 7 (70)
00 0 1 A 5
0O 0 0 0 1 A
0O 0 0 0 0 1
where At is measurement period of 0.1s. And process noise matrix Q as:
A 4 Al‘3 A 2 T
%3 & 5 0 0 0
& A A0 0 0
Atz
£ Ar 1 0 0 0 5
Q= 2 At A3 A2 | Oas (71)
U
0 0 0 % A% A
0 0 0 & A 1]
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where o, is random acceleration standard deviation with a heuristically chosen value of
10* m/s2. As the filtering is done only for the x and y coordinates, the observation matrix
is set up as:

1 00
H_OOO

0

00
10 0 (72)

The order of steps inside the AKF is shown in Alg. 1. The initialization coordinates X,
are extracted from the sensor, which has the lower uncertainty estimate based on the
respective ML model. Py represents the initial state covariance, which was set as I1-100,

with I being a 6-by-6 identity matrix.

6.6 Practical experiments and results

The proposed sensor fusion solution was tested with a moving testbed containing a GNSS
RTK receiver, a UWB tag, a total station reflection prism, and a computer for data col-
lection as shown in Fig. 31. The prism was used in conjunction with the stationary total
station for measuring the true track. An additional computer was connected to the indoor
UWB network, which consisted of 6 UWB anchors, and the total station data controller
for real-time data collection. GNSS RTK base station was also set up nearby with premea-
sured geodetic coordinates [77]. During the test, the gathered data on the two computers
were included with a Unix timestamp, and before the test, the computer clocks were syn-
chronized against a time-server at nettime.pool.ntp.org with an approximate 2 ms offset.

Conss |

BN AN,

Figure 31: Test setup at the campus of Tallinn University of Technology. Figure from Publication Ill.

The initial total station setup was established using the resection method with three
reference points [154]. These were acquired using a Trimble R12 GNSS receiver in RTK
mode with three initializations (60 epochs per measurement). After establishing the ini-
tial base station, the three reference points were remeasured using the total station for
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consistent coordinates, and the reference network was further densified. The improved
network formed the basis for further validation measurements. By comparing the initial
Trimble R12 and total station measurements, an approximate absolute accuracy of 10 mm
could be assumed for validation surveys [3].

As can be seen in Table 8, the total station has a sample rate of 2.5 Hz. This presents
a mismatch when coordinates from UWB and GNSS devices with 10 Hz sample rate are
compared with the true track. In order to calculate performance metrics, sample rates of
all systems must match at 10 Hz. Therefore, additional markers were added to the total
station points through interpolation. Additionally, as seen in Fig. 31, the UWB tag and
GNSS receiver were positioned with an offset regarding the reflection prism. Therefore,
their output coordinates were rotated and shifted to match the location of the prism.
Since IMU data was not used during the test, the direction of the trolley was calculated in
post-processing using interpolated points of the total station.

Table 8: Positioning systems used in the test. Table from Publication IlI.

Eliko RTLS | Fieldbee L2 .
UWB GNSS RTK Trimble 56
0.01m +1ppm 4 mm+ 2 ppm
Accuracy 0.2m CEP (RTK fix) and 2" angular
Sample rate | 10 Hz 10 Hz 2.5Hz
Method AP-TWR Real-time kinematic LoS WIFh .
reflection prism

Coordinate Local Global Global
system

An example of a test track is shown Fig. 32. The traverse started indoors with severely
inaccurate GNSS position estimates with outliers approximately 60 m away. Similarly to
the test campaign described in 6.2, only DGPS corrections were available. On the other
hand, the UWB RTLS system provided stable coordinates with LoS from the servicing an-
chors. In the transition area, the UWB coordinates became expectedly more unstable,
and the GNSS receiver applied first RTK float corrections, with coordinates converging on
the transition area. After the GNSS receiver acquired the RTK fixed mode, the track was
stable and accurate. Upon returning to the transition zone, the GNSS receiver fluctuated
between RTK fix and floating-point modes. However, the receiver maintained a stable
track even when using inferior correction qualities such as RTK-float or DGPS.

The test track data was then used for seamless sensor fusion solutions with different
methods for estimating coordinate uncertainty. As stated in 6.1, one of the common meth-
ods for estimating the coordinate uncertainty in a sensor fusion system is by applying a
dilution of precision parameter which describes geometrical uncertainty of an object rel-
ative to servicing nodes (e.g., satellites or anchors). In this work, HDoP was separately
calculated for UWB coordinates, whereas GNSS provides HDoP in the NMEA message.
At each position update, HDoP was used in the measurement uncertainty matrix of the
Kalman filter instead of ML model estimates in (66) and (67). As can be seen in Fig. 33,
using GNSS and UWB sensors with only HDoP as an uncertainty estimate poses certain
limitations. The main difficulties appear at the beginning of the test, where the GNSS is
most inaccurate. The HDoP provided by the GNSS receiver gives an incorrect estimate to
a severely inaccurate coordinate and based on the weights in the Ry and R; matrices, the
Kalman filter estimates the end coordinate to lie approximately between the native UWB
and GNSS coordinates. If the inferior correction modes, such as DGPS and RTK-floating

71



- RTK Fix
18 . RTK Float

‘g1 DGPS
14 - UWB tag
.E 12 = UWB anchor e
-g 10 , -
Z g =
6
4
-40 -30 -20 -10 0 10 20
Easting [m]

Figure 32: Coordinates from GNSS and UWB sensors taken along the indoor-outdoor-indoor move-
ment path with arrows showing the movement direction. Traversing from the building, DGPS and
RTK-float solutions are highly inaccurate, presenting a coordinate offset approximately 60 m from
the starting point. Returning indoors, GNSS receiver fluctuates between different coordinate correc-
tion modes, while retaining a stable trajectory. Figure from Publication Ill.

point are not considered, then the fused track is much more stable and accurate as shown
in Fig. 34-A. However, this solution entails several sensor dropouts, especially in the tran-
sition area, where typically RTK-floating point mode is used. Furthermore, when there
was no RTK fix and no UWB data available, the Kalman filter solved the end coordinate as
a stationary point.
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Figure 33: GNSS and UWB sensor fusion using HDoP-based uncertainty with AKF for benchmarking
with all available GNSS corrections (DGPS, RTK float, and RTK fix). Figure from Publication Ill.

In contrast, the proposed ML model estimates the uncertainty based on training data,
which already considers dynamically changing conditions. As was shown in Section 6.3,
the training data consists of GNSS measurements with different correction qualities with
respective features and true error response variables. Therefore, a properly trained ML
model can consider a much broader variety of features than compared to DoP only. The
benefit of incorporating ML models can be summarized in Fig. 34-B. At the beginning of
the test, the GNSS ML model assigns a significant weight to the inaccurate GNSS coor-
dinate, which results in the Kalman filter preferring the UWB coordinate instead. In the
transition area with severely inaccurate DGPS and RTK float solutions, the ML model still
assigns appropriate weights based on input features and suffers almost no dropouts. With
RTK fix, the uncertainty is the smallest and the filtered end coordinate is the most stable
and accurate. Returningindoors, it is notable that when transitioning from RTK fixed mode
to RTK floating-point, the ML model assigns the latter with lower weights, than compared
to RTK floating-point at the beginning of the test.

Table 9 shows overall sensor fusion results with different approaches. Positioning ac-
curacy and precision were calculated with MLE (58), RMSE (59), and maximum error (61).

72



18
Total Station —

Sensor Fusion
= UWB anchor

Total Station —

Sensor Fusion
= UWB anchor

o

(\
(
\
\

Northing [m]
o

IS

A 8 10 12 14 16 18 20 22 24 | B 8 10 12 14 16 18 20 22 24
Easting [m] Easting [m]

Figure 34: [A] GNSS RTK and UWB sensor fusion using HDoP-based uncertainty estimation with AKF
for benchmarking with RTK fix only. [B] The proposed GNSS and UWB sensor fusion with ML-based
uncertainty estimation with AKF using all available corrections. Figures from Publication Ill.

In Table 9 it can be seen how the HDoP-based approach with RTK fix has an MLE and RMSE
at a similar level to ML-based estimation. However, the former method suffers from sen-
sor dropouts in the transition area, resulting in a significant maximum error. Additionally,
using HDoP with all available corrections (DGPS, RTK float, and RTK fix), results in an incor-
rect uncertainty estimation leading to a a highly inaccurate fused coordinate. Lastly, the

Table 9: Comparison of different sensor fusion schemes. Table from Publication Ill.

MLE [m] | RMSE [m] | Niaximum
error [m]

Pr'oposed ML-b.ased fusion 016 018 0.49
with all corrections
Fusion with RTK fix
and HDoP 0.14 0.19 1.29
Fusion with all
corrections and HDoP 4.56 9.64 3532

measurement uncertainties and their values are shown in Fig. 35. It illustrates how a raw
GNSS HDOP compares to ML-based uncertainty estimations. As was shown in equations
(68) and (69), the ML model estimate is reciprocal to the weight in AKF, resulting in a bias
towards GNSS or UWB end coordinate.

6.6.1 Repeatability tests

The following section presents the results of additional tests that were not included in
Publication Il since these were carried out at a later date. The goal was to test the ML-
augmented UWB-GNSS sensor fusion in terms of repeatability. The experiments were
conducted on the same premises as the previous tests described in Section 6.6. However,
the test track was set up for a different use case. The idea was to test the performance of
the fused coordinate in three different scenarios: indoors, in the transition area, and out-
doors to simulate forklift start-stop operations. The moving testbed made 4 stops along
the track with 2 test runs, amounting to 8 stops as shown in Fig. 36. Similarly to previous
tests, ML-augmented AKF was used for both GNSS and UWB sensor coordinates, with re-
sults shown in Fig. 37. The performance of fusion regarding the 8 distinct stopping points
can be summarized in Table 10. Overall, the tests proved the feasibility of ML-augmented
fusion in terms of repeatability and coordinate performance.

73



o
S
I Ry o6 o0 Raw GNSS HDOP
° @ ML estimate /w RTK fix [m
s | Q 0 ML estimate /w RTK float [m]
S - ML estimate /w DGPS [m]
°} —— Building edge
o
S|
wn o o
@

o
S
N o p ——RER

‘D O I @0 QO o a O OoOo o D [ ) hand

1.00
!

ommuif®aoommn
B a0 m‘:%ug ot oo o—n_g.%—n—n

Measurement uncertainty
0.50
|

0.20
|

0.10
!

0.05
|
x

0 200 400 600 800
Measurement index

Figure 35: Distribution of measurement uncertainties during the test. It can be seen how ML esti-
mates coordinate error in a significant range compared to raw GNSS HDoP values. Larger values
(e.g., indoor DGPS) give smaller weight during coordinate filtering. On the other hand, smaller val-
ues (e.g., outdoor RTK fix), present a larger weight. HDoP is a unitless parameter.

Table 10: Positioning performance metrics during the repeatability tests.

Stop1 | Stop2 | Stop3 | Stop4 | Stop5 | Stop 6 | Stop7 | Stop 8
MLE [m] 0.30 0.07 0.11 0.17 0.10 0.07 0.14 0.32
RMSE [m] | 0.31 0.07 0.12 0.17 0.1 0.07 0.14 0.34
MAX [m] 0.42 0.10 0.14 0.24 0.13 0.08 0.19 0.59

6.7 Discussion

In this publication, it was shown how ML-based positioning uncertainty estimation can
be used in a seamless indoor-outdoor sensor fusion scheme. The goal was to apply dy-
namically changing ML-based weights to the coordinates of GNSS and UWB sensors and
use this information for adaptive coordinate filtering. The resulting solution proved to
outperform traditional solutions based on dilution of precision as a sole measure of coor-
dinate uncertainty. While the initial tests showed promising results with ca. 80 cm smaller
maximum error and almost no sensor dropouts, it can be suggested that this solution can
be improved further. Firstly, the ML model can always be trained on additional data to
make it more generalized. Furthermore, the UWB ML model was trained on positioning
data gathered mostly in the vicinity of UWB anchors. However, additional data could be
gathered similarly to the GNSS measurement campaign with measurements mimicking a
potential indoor-outdoor route of the sensor. Secondly, the GNSS device used in this pub-
lication provided only a limited ensemble of features, when compared to tightly coupled
solutions. Lastly, the proposed solution can possibly be improved with IMU for further
stability and robustness.
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Figure 37: Layout of fused UWB-GNSS coordinates with ML-based uncertainty estimations along the twice repeated test track with 8 stop points. It can be seen
how outliers and severely inaccurate measurements are mitigated and filtered according to the ML-augmented AKF algorithm. As expected, points 2 and é are most

accurate and precise, relying only on GNSS RTK fix solutions. In the transition area as well as indoors, the point clouds were more sparse. Coordinate performance for
these points are presented in Table 10.
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7 Conclusion

This chapter presents an overview of the conducted research in the presented contri-
butions, main findings, and key takeaways. Secondly, it provides answers to the initial
research questions established in the introduction. Lastly, some potential directions for
future research are presented.

71 Summary

The main goal of the presented contributions was to enhance positioning performance by
leveraging information based on raw positioning data and incorporating them as features
in distinct ML models. It diverges from typical solutions where channel statistics are used
for ranging and positioning integrity assessment. Considering a high position update rate
system, evaluating the channel statistics at each position update is currently an unfeasible
solution. Instead, raw ranging information was employed in calculating various features
as input for an ML model, which in turn attempts to predict end coordinate uncertainty.
The latter is a key indicator in driving the coordinate filtering process, which aims to im-
prove overall coordinate accuracy and precision. Leveraging the capabilities of various ML
techniques, distinct models were trained and tested in all contributions of this thesis.

The first article investigated ML-based coordinate accuracy classification for UWB po-
sitioning using features of ranging residuals, position optimization metrics, and geomet-
rical integrity values as features for an ML model. By incorporating real-life UWB rang-
ing measurement data for training, it was found that the XGBoost ML model performed
UWB-based positioning error classification with an overall high accuracy of 84%. Based
on four classes of coordinate offsets with distinct ranges, the model could predict if the
current coordinate belongs to a certain accuracy class. Furthermore, the XGBoost library
distinguished ranging residuals as the one of the most important information sources for
making the classification.

Leveraging the potential of using an ML model as a method for coordinate uncertainty
estimations, the second publication concentrated on developing distinct decision tree-
based ML models (Regression Tree, XGBoost, and Random Forest) for comparison pur-
poses and incorporating their estimates in a coordinate filtering scheme to enhance the
performance of UWB end coordinate. Two additional measurement campaigns were con-
ducted to augment the initial dataset from Publication | and test the developed models on
a separate real-life dataset. The predictions of the models were incorporated in coordi-
nate filtering schemes to compare against non-ML filtering methods. The results showed
significant improvement in both 2D and 3D positioning metrics. Additionally, it was shown
that ML model prediction is sufficiently fast to be considered in a real-life high update rate
positioning system.

The third publication investigated the application of UWB and GNSS ML-based uncer-
tainty estimation in a seamless indoor-outdoor positioning scheme. Although this con-
tribution applied the UWB XGBoost ML model from Publication II, the main focus was
to investigate possible use of ML for GNSS-based positioning as well. By leveraging in-
formation extracted during a real-life GNSS measurement campaign, an ML model was
trained to estimate positioning uncertainty similarly to the UWB model. Using the predic-
tions of both UWB and GNSS ML models as measurement uncertainty, an adaptive Kalman
Filtering scheme was developed for seamless indoor-outdoor positioning. The resulting
solution proved to outperform traditional solutions based on dilution of precision as a
sole measure of coordinate uncertainty with a significantly reduced maximum error and
almost no sensor dropouts.

77



7.2 Research questions

This section provides answers to research questions from Section 1.3.

RQ1 How to assess UWB positioning uncertainty without the knowledge of channel
statistics and is the alternative approach in estimating the uncertainty feasible to be
used in a high update rate positioning system?

Incorporating information gathered from channel statistics is one of the most com-
mon methods to evaluate UWB raging information and use this knowledge to mitigate
or discard erroneous measurements. However, as an alternative solution, ranging- and
positioning-based information can be used as well. Most notably, ranging residuals indi-
rectly reflect erroneous measurements, which in turn affect the end coordinate. It was
shown that using an ensemble of various non-channel statistics related features, UWB
positioning uncertainty can be estimated with significant accuracy.

Range- and position-based information has a distinct advantage when used in a high
update rate positioning solution, as this information is gathered and calculated from raw
ranging measurements. This leads to a much smaller delay compared to channel statics-
based evaluations. It was shown that an ML-based approach is feasible to be applied in a
positioning system with a high position update rate. For example, the XGBoost-augmented
solution performed a single filtering and prediction with an average of 0.7 ms latency.

RQ2 How to improve UWB coordinate performance with supervised learning?

The ML models were developed with the initial aim in predicting end coordinate un-
certainty using ranging- and positioning-based information. However, the main benefit
comes from incorporating this estimate as a measurement uncertainty in an adaptive fil-
tering scheme to mitigate erroneous measurements and outliers. Extensive UWB mea-
surement campaigns were conducted with the aim of gathering UWB training data. The
collected data along with true coordinates were used in supervised learning to develop
distinct models to predict the coordinate uncertainty. By using ML-based estimates with
coordinate filtering, the end coordinate accuracy and precision were improved with an
overall reduction of 2D MLE and RMSE of approximately 10 cm and 40 cm, respectively. In
3D positioning, the same respective metrics were improved by approximately 25 cm and
50 cm.

RQ3 How to achieve a more comprehensive GNSS positioning uncertainty estima-
tion?

Dilution of Precision (DoP) is a common metric used for GNSS positioning uncertainty
estimation. However, as GNSS positioning performance is affected also by other factors
than geometrical uncertainty, then DoP is not a comprehensive parameter. Alternatively,
GNSS can output distinct features that indirectly reflect positioning performance such as:
correction quality, number of satellites, age of correction, pseudorange error etc. By us-
ing ML techniques, a GNSS positioning uncertainty estimation model was proposed, which
leverages inherent information from the GNSS receiver. By considering dynamically chang-
ing features at each position update, a more accurate uncertainty estimate is provided.

RQ4 How to augment multi-sensor fusion with ML for improved indoor-outdoor po-
sitioning?

Estimating measurement uncertainty accurately plays a key role when using coordi-
nate filtering. Moreover, to achieve a reliable and seamless sensor fusion between a UWB
indoor sensor network and an outdoor GNSS network, the uncertainty has to be accurately
estimated at each position update. By leveraging the capabilities of Kalman filtering, the
uncertainty estimates can be applied as weights for individual sensor coordinate outputs.
As the ML models were trained on dynamic changes of real-life data, the model would give
a prediction and bias toward using the position estimate of one of the sensors. This would

78



result in ML-augmented sensor fusion, where the model prediction essentially drives the
filtering process, resulting in a more stable and accurate end coordinate. By implement-
ing the solution on a real-life testbed moving between indoor and outdoor areas, it was
observed that ML-augmented sensor fusion experienced almost no sensor dropouts with
a mean and maximum positioning error of approximately 16 cm and 50 cm, respectively.

7.3 Future work

While the investigations and experiments in ML-assisted positioning presented in this the-
sis have yielded promising results, there is still potential for further improvement. Ad-
ditional measurement and testing campaigns across different positioning environments,
along with the integration of supplementary sensors, could further enhance positioning
performance.

As noted for all the contributions in the thesis, ML models can always be improved with
almost limitless quantities of positioning data. For example, Publication Il concentrated on
improving the accuracy and precision of scattered stationary UWB tag positions. However,
the measurement campaign conducted in Publication Il hinted that in indoor-outdoor
positioning it would be preferable to gather training data similar to real-life movement
paths. This would fare a better representation of dynamically changing feature values and
possibly yield a better estimate for positioning uncertainty in LoS and NLoS conditions.

Another potential research topic would be to investigate the efficiency of non-decision
tree-based ML algorithms (e.g., SVM, NN) for supervised learning. For instance, in a low
update rate positioning system, prioritizing accuracy over prediction latency, these models
could be compared with existing approaches.

Additionally, while the test campaign in Publication Il confirmed the potential of using
ML-based uncertainty estimation for seamless UWB-GNSS positioning, there is still further
testing to be done in terms of model verification. Currently, the fusion solution was only
applied to a single location. However, additional measurement data should be gathered
in areas with different UWB anchor layouts and obstructions.

Another direction would introduce augmentation with additional hardware. Fusing
GNSS and UWB sensors with IMU is a common method to further enhance the robustness
of seamless positioning especially in the transition areas, where both UWB and GNSS per-
formance is usually severely degraded. IMU can be used to suppress outliers and perform
dead-reckoning to a certain extent in situations where both UWB and GNSS positioning
information may be unavailable. Fusing all three sensors with ML-based uncertainty esti-
mation is a potential topic to be investigated.

Real-life tests are essential in validating the proposed solutions. Indoor storage, man-
ufacturing or production areas are typically cluttered with obstructions, presenting a chal-
lenging environment for accurate localization. Furthermore, as these areas usually extend
also outdoors, seamless positioning and location awareness are essential for intelligent
management. Consequently, the previously mentioned solutions would find application
and testing in monitoring the position of industrial assets, thereby enhancing the effi-
ciency of logistical and industrial processes.
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dictors using cross-validation with 100 random trees. It can be seen that
using more than 8 randomly selected predictors, results in no decrease
in cross-validation RMSE. [B] With 8 random predictors, using more than
seven most important features results in no significant RMSE decrease in
Random Forest prediction. Figures from Publicationll........................ 56

Set of features in the final model that provide the biggest node purity in-
crease in Random Forest prediction. Figure from Publication ll. ............. 57

[A] Determining suitable XGBoost tree depth and number of boosting it-
erations using cross-validation. Tree depth 5 and 150 boosting iterations
are chosen parameters for the model. Choosing a higher number of itera-
tions results in no significant decrease in RMSE and might lead to overfit-
ting. [B] Using more than 8 features has no significant impact on XGBoost
prediction accuracy. Figures from Publication|l. ....................... .. ... 57

Features used in the final XGBoost model. Figure from Publication ll. ....... 58

Manufacturing area inside Auroom Kastre factory. Red ellipses highlight
visible UWB anchors. Figure from Publication|l. .............................. 60

CDF of prediction errors. It can be seen that a regression tree provides
more distinguished prediction error levels based on decisions from a sin-
gle tree as shown in Fig. 17. RF and XGB predictions are more refined at
the cost of more complex models. Figure from PublicationIl................. 61

Flowchart of UWB and GNSS ML augmented sensor fusion as proposed
by the author. The dashed box highlights the contribution in developing
two distinct ML models for respective sensor uncertainty estimation. Sen-
sor coordinates and their dynamically changing position uncertainties are
then fused and filtered to produce the final coordinate at the output. Fig-
ure from Publication Nl ......oouiuinnn e 64
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27

28

29

30

31

32

33

34

35

Layout of the GNSS measurement campaign at the Eliko office building.
Static measurements were taken indoors, near-building, and in outdoor
areas. For clarity, only 15 measurement points out of a total 60 measure-
ments are shown in this figure. Each true coordinate is paired with a re-
spective measurement. The blue and orange traces mark the highly inac-
curate and imprecise DGPS and RTK float solutions taken indoors. Mea-
surements that were taken closer to the building door, were also more ac-
curate and precise, while points with RTK fix solution (marked with green)
had the best performance. Figure from Publication|ll. .......................
Histograms for all three GNSS correction qualities taken during the mea-
surement campaign. Emphasis is on the distribution of coordinate offsets
and their values with respect to each correction. It can be hypothesized
that such distribution already provides insight in predicting the magnitude
of coordinate error. Figure from Publication lll. ......................il
Prediction RMSE with different hyperparameter values. Tree depth and
the number of boosting iterations were limited to 7 and 100 respectively
as these values provide sufficient prediction accuracy and help avoid over-
fitting and an overly complex model. Figure from Publication ll. ............
[A] The prediction RMSE as a function of the number of features. Us-
ing more than 5 features has no significant impact on prediction accuracy
and may lead to overfitting of the model. [B] 5 features that provide the
biggest informational gain in the XGBoost model. The gain quantifies how
much a feature contributes in improving the models prediction. Figures
from Publication 11 ........ooiiiii e
[A] Prediction error of GNSS ML model for different correction qualities.
The vertical axis is presented in the logarithmic scale. [B] Sample density
comparison of ML prediction and test set values for different correction
qualities. Figures from Publication ...
Test setup at the campus of Tallinn University of Technology. Figure from
Publication 1l .....ooo i i
Coordinates from GNSS and UWB sensors taken along the indoor-outdoor-
indoor movement path with arrows showing the movement direction.
Traversing from the building, DGPS and RTK-float solutions are highly inac-
curate, presenting a coordinate offset approximately 60 m from the start-
ing point. Returning indoors, GNSS receiver fluctuates between different
coordinate correction modes, while retaining a stable trajectory. Figure
from Publication 1. ... ... oo
GNSS and UWB sensor fusion using HDoP-based uncertainty with AKF for
benchmarking with all available GNSS corrections (DGPS, RTK float, and
RTK fix). Figure from Publication Hll. ......cccooiiiiiiiiiiii s
[A] GNSS RTK and UWB sensor fusion using HDoP-based uncertainty es-
timation with AKF for benchmarking with RTK fix only. [B] The proposed
GNSS and UWB sensor fusion with ML-based uncertainty estimation with
AKF using all available corrections. Figures from Publication lll...............
Distribution of measurement uncertainties during the test. It can be seen
how ML estimates coordinate error in a significant range compared to raw
GNSS HDoP values. Larger values (e.g., indoor DGPS) give smaller weight
during coordinate filtering. On the other hand, smaller values (e.g., out-
door RTK fix), present a larger weight. HDoP is a unitless parameter.........
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Layout of coordinates from individual sensors along the twice repeated
test track with 8 stop points. Similarly to Fig. 32, a significant offset from
the true track by DGPS and RTK float coordinates can be seen. Addition-
ally, in the transition area there is a sparse UWB coordinate point cloud,
due to the significant distance from UWB anchors resulting in a larger po-
sitioning uncertainty.........ooooiiiiiii e
Layout of fused UWB-GNSS coordinates with ML-based uncertainty esti-
mations along the twice repeated test track with 8 stop points. It can be
seen how outliers and severely inaccurate measurements are mitigated
and filtered according to the ML-augmented AKF algorithm. As expected,
points 2 and 6 are most accurate and precise, relying only on GNSS RTK fix
solutions. In the transition area as well as indoors, the point clouds were
more sparse. Coordinate performance for these points are presented in
TAblE 10, e e,
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Abstract
Enhancing UWB and Multi-Sensor Positioning with ML-based
Uncertainty Estimation

This thesis presents novel approaches for enhancing positioning performance of Ultra-
Wideband (UWB) and multi-sensor positioning systems using Machine Learning (ML).
Several models are proposed that leverage positioning-related information that indirectly
reflects positioning uncertainty. The latter is a key indicator when considering different
filtering schemes. In essence, a correct uncertainty estimate would give an appropriate
weight for an accurate or inaccurate coordinate, resulting in mitigated outliers and overall
enhanced performance of the coordinate.

The first contribution of this thesis investigates features based on UWB ranging resid-
uals and positioning information for position integrity estimation. Usually, UWB-based
positioning performance is enhanced through the use of Channel Statistics (CS). However,
in practice this is not a feasible approach as gathering CS data takes too much time when
incorporated in a high update rate UWB positioning system. In contrast, this contribution
leverages information based on ranging residuals as they indirectly reflect errors in rang-
ing and therefore in the end coordinate. A set of features, describing different statistics of
ranging residuals, was employed in an Extreme Gradient Boosted (XGBoost) ML algorithm
to train a model for end coordinate offset classification. These features included those
used in literature as well as several novel ones. Notably, the dataset in this contribution
was collected during a measurement campaign in a complex industrial environment with
constantly changing Line-of-Sight/Non-Line-of-Sight (LoS/NLoS) conditions. Based on the
results of a test set, the trained model could predict errors in the range of 0...0.2 m with
an accuracy of 90% and an overall accuracy of 84%. These metrics show that using the
proposed features, it is possible to predict UWB end coordinate integrity with high accu-
racy.

The second contribution focuses on the use of UWB ranging residuals and positioning-
based information for coordinate integrity estimation and their use in a filtering scheme
as a means of coordinate correction. By leveraging the insight gained from the previous
research, this contribution investigates the potential of applying coordinate offset esti-
mation to improve the overall performance of UWB end coordinates. Furthermore, this
research aims to compare different ML models in terms of their prediction accuracy and
processing delay. In addition to the training data from the first contribution, the models
are augmented with training data from a supplementary real-life measurement campaign.
Additionally, the estimates of these models are incorporated in an Adaptive Kalman Filter-
ing (AKF) scheme as an input for measurement uncertainty. The solution was tested on a
UWB measurement test dataset gathered at an industrial site, which was not used during
the training. The overall results showed significant improvement in 2D and 3D positioning
metrics using ML-augmented filtering when compared to non-ML-assisted filtering. On av-
erage, the end coordinates in the test set had approximately 10 cm smaller mean location
error (MLE) and 40 cm smaller root mean square error (RMSE) in 2D positioning. In terms
of 3D positioning, the MLE was reduced by approximately 20 cm and RMSE by 50 cm. Fur-
thermore, the presence of outliers was reduced significantly as the maximum offset error
decreased by several meters. Lastly, it is shown that ML-augmented filtering is sufficiently
fast to be considered in a high update rate positioning system. The results showed that
using the proposed residual features in an ML model provides a feasible approach to pre-
dict UWB positioning uncertainty and by employing it with a coordinate filtering scheme,
the end coordinate can be considerably improved compared to non-ML-assisted filtering.
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The final contribution investigates the possibilities of applying ML-based uncertainty
estimates for a seamless indoor-outdoor sensor fusion solution using UWB and Global
Navigation Satellite System (GNSS) sensors. While this contribution also applies the UWB
XGBoost ML model from previous research, the main focus was to investigate the possible
application of ML for GNSS-based positioning. It was motivated by the fact that usually,
GNSS positioning integrity is described through Dilution of Precision (DoP), which reflects
the level of geometrical uncertainty between a GNSS receiver and the serving satellites.
However, the integrity of GNSS position also depends on other factors such as signal qual-
ity, pseudorange error, or the number of servicing satellites. It is proposed that an en-
semble of GNSS features can be incorporated in an ML model for a more comprehensive
and accurate uncertainty estimate. Using real-life GNSS measurement data gathered from
areas with different degrees of positioning quality, a model is proposed to estimate the
GNSS positioning performance. Both UWB and GNSS models are then applied in an adap-
tive coordinate filtering scheme with the predictions serving as input for individual sen-
sor measurement uncertainty. The proposed solution was tested on a real-life testbed in
indoor and outdoor areas. The results showed that the ML-augmented sensor fusion out-
performs the usual method in relying only on DoP as a measure of positioning uncertainty
with a mean positioning error of 0.16 m and a maximum error of approximately 0.5 m.

This thesis shows the possibilities of applying ML models to significantly improve the
positioning performance of UWB and GNSS sensors. In summary, there is clear poten-
tial for further investigations of ML in positioning solutions as well as incorporating other
sensors for ML-augmented multi-sensor schemes.
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Kokkuvote
Ulilairiba ja mitme sensoriga positsioneerimissiisteemide tap-
suse parandamine masinoppe meetodil

Kaesolev doktoritod esitleb uuenduslikke meetodeid dlilairiba (Ultra-Wideband, UWB) ja
globaalse satelliitnavigatsioonististeemi (Global Navigation Satellite System, GNSS) tehno-
loogiatel pohinevate siisteemide positsioneerimistdpsuse parandamisel. Masinéppel (Ma-
chine Learning, ML) p6hinevad mudelid rakendavad UWB ja GNSS sensoritest kogutud
informatsiooni méotemaaramatuse hindamiseks, mis on oluline komponent |6pp-koordi-
naadi filtreerimisel. Loppkoordinaat arvutatakse mudeli prognoosi ja filtreerimise tule-
musena, vahendades erindite (outlier) méju ning parandades Uldist koordinaadi tapsust
ja punktipilve hajuvust.

Esmalt pakub doktorit6d valja masindppe mudeli UWB sensori koordinaadi tapsuse
hindamisel. Tavaliselt, hinnatakse UWB koordinaatide kvaliteeti raadiokanali statistika
pohjal. Siiski on selle peamiseks puuduseks vordlemisi pikk viiteaeg, et seda saaks raken-
dada korge sagedusega positsioneerimissammuga siisteemides. Alternatiivina pakub an-
tud t66 valja mudeli, mis on treenitud UWB kaugus- ja positsioneerimisinfo pohjal. Kasu-
tades sisendinfo erinevaid statistilisi vaartusi masindppe mudeli tunnustena, suudab aren-
datud mudel hinnata UWB koordinaadi ebatapsust. Mudeli treeningandmed koguti reaal-
sest toostuskeskkonnast, kus oli varasemalt (ilesseatud UWB positsioneerimisvork. Tree-
nitud mudelit testiti reaalse positsioneerimisinfo peal, eesmargiga hinnata iga arvutatud
UWSB koordinaadi tapsust. Antud mudel suutis tuvastada koordinaadivigu vahemikus
0...0.2 m ligikaudu 90% tapsusega ja Gildine tapsus koigi teiste tapsusklasside tuvastamisel
oliligikaudu 84%. Need tulemused naitavad, et ML mudelit on véimalik edukalt rakendada
UWB koordinaadi tapsuse hindamisel.

Jargmine t60 toetub eelnevalt saavutatud tulemustele ja masindppe potentsiaalsele
rakendamisele UWB koordinaatide tapsuse hindamisel. Erinevalt eelnevast klassifitsee-
rimismudelist, rakendatakse antud t66s UWB kaugus- ja positsioneerimisinfot koordinaadi
vea hindamiseks ning saadud vaartust kasutatakse adaptiivses Kalmani filtris (Adaptive
Kalman Filter, AKF) mé6temairamatuse hinnanguna. Lisaks vorreldakse erineva keeru-
kusega masindppe mudeleid nende tapsuse ja arvutuskiiruse osas. Masindppe mudeleid
taiustati lisa treeningandmetega ja kogu lahendust testiti eraldiseisvas UWB vorgus, mis
oli samuti Ulesseatud tdostusalal. Vilja pakutud lahenduse tulemused niitasid méargata-
vat paranemist koordinaadi tipsuse ja hajuvuse osas. Vorreldes mitte-ML filtreerimisega
vahenes lldine horisontaaltasapinna keskmine asukoha viga ligikaudu 10 cm ja punktip-
ilve ruutkeskmine viga 40 cm vorra. Kolmemootmelise positsioneerimise puhul vahenesid
samad statistilised vaartused ligikaudu 20 cm ja 50 cm vorra. Lisaks testiti antud t66s
mudeli prognoosi kiirust koos filtreerimisega. Saadud tulemuste péhjal voib viita, et vélja
pakutud lahendus on piisavalt vaikese viitega, et rakendada seda tiheda positsioneerimis-
sammuga sisteemides.

Viimasena uuritakse ka masindppe rakendamist mitmiksensoritega, pakkudes vilja
UWSB ja GNSS tehnoloogiatel pdhineva (ihendpositsioneerimisstisteemi. Antud lahendus
voimaldab objekti asukoha maaramist tihtse slisteemi abil nii siseruumides paikneva UWB
vorgu abil, véliskeskkonnas GNSS sensoriga kui ka nd. Ulemineku alades, kus molema
sensori kvaliteet on tavaliselt kompromiteeritud. Arvestades juba eelnevalt viljatoétatud
UWB ML mudeliga, siis antud t66s keskendutakse pigem GNSS mudelile. Sarnaselt UWB-
ga, valjastab ka GNSS sensor infot, mida voib kaudselt seostada positsioneerimiskvaliteed-
iga. Kui tavaliselt kasutatakse GNSS positsioneerimismaaramatuse hindamise jaoks geo-
meetrilise madramatuse indikaatorit, siis voib vaita, et tegemist ei ole piisavalt paindliku
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hindamismoddikuga. Nimelt soltub GNSS vastuvétja positsioneerimistapsus ka teistest te-
guritest nagu: teenindavate satelliitide arv, baasjaama korrektsiooni kvaliteet, pseudokau-
guste viga jpm. Kuna eelmainitud tunnused esinevad ka GNSS vastuvoétja poolt viljastatud
sdnumites, siis rakendatakse neid tegureid ka véljapakutud masinéppe mudelis. Toetudes
GNSS seadmetega tehtud moéotmistel kogutud andmetele, loodi mudel mis véimaldab
hinnata positsioneerimismaaramatust nii hea kui ka halva leviga keskkondades. Nii UWB
kui GNSS ML mudeleid rakendati Gihendsiisteemi loomisel ja adaptiivsel koordinaadi fil-
treerimisel AKF-ga, kus igal positsiooni uuendusel arvestatakse ML mudelite poolt prog-
noositud mairamatusega. Vorreldes geomeetrilise mairamatuse kasutamisega, naitas
ML mudeliga tdiendatud thtse positsioneerimissiisteemi lahendus margatavat parane-
mist nii koordinaadi keskmise vea (u. 0.16 m) ja maksimaalse vea osas (u. 0.5 m).

Antud doktorit66s uuriti voimalusi UWB ja GNSS tehnoloogial pohinevate positsioneer-
imissiisteemide positsioneerimistapsuse parandamiseks erinevate masindppe meetodi-
tega. Teostatud uurimused ja katsete tulemused naitavad selget potentsiaali masindppe-
pohisel Iahenemisel, kus valjatootatud mudelid suudavad mairamatuse hindamisel ar-
vestada mitmete positsioneerimistapsust iseloomustavate teguritega. Edasised uuringud
voiksid olla seotud ML mudelite tdiustamisega ning (ihendsilisteeme voiks tdiendada ka
teiste sensoritega (nt. inertsiaalandurid), parandades seelbi positsioneerimise stabiilsust
ja tapsust.
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Abstract—This paper investigates features based on Ultra-
Wideband (UWB) ranging residuals used for coordinate integrity
prediction. Usually, UWB-based positioning integrity is evaluated
using channel statistics (CS). However, in practice this is not a
feasible approach as gathering CS data takes too much time
compared to the position update rate of an UWB system. In
contrast to this approach, a set of features based on UWB ranging
residuals are used in a machine learning (ML) algorithm to train
a model for accurate integrity prediction. These features include
those used in literature as well as proposed novel features. The
trained model could predict measurements in the range of 0...0.2
m with the accuracy of 90% and having an overall accuracy of
84%. The results show that using the proposed residual features
it is possible to predict UWB coordinate calculation integrity
with high confidence. Lastly, the dataset used in this paper was
collected during a measurement campaign in a complex industrial
environment with constantly changing line-of-sight/non-line-of-
sight (LOS/NLOS) conditions.

Index Terms—UWRB, coordinate accuracy, integrity, ranging
residuals, machine learning, XGBoost, feature importance

I. INTRODUCTION

A range-based Ultra-Wideband (UWB) positioning sys-
tem consists of fixed beacons (anchors), which are used to
measure distances to a mobile node (tag) using two-way-
ranging (TWR) approach. Final position of the tag is estimated
using all measured distances from anchors. UWB systems
are generally considered robust and accurate by providing
precise positioning in the presence of multipath effects and
being less prone to interference [1]. On the other hand, the
performance of UWB positioning depends on UWB anchor
layout geometry, availability of anchors as well as absence of
signal propagation impairments [2], [3]. Therefore, a typical
industrial environment, with its constantly changing line-of-
sight/non-line-of-sight (LOS/NLOS) conditions for radio wave

This project has received funding from the European Union’s Horizon 2020
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the Internet of Intelligent Things project of Estonian IT Academy program
and Estonian Research Council under Grant PUT-PRG424. Additional support
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system based on precise positioning technology ELIKO TAK and Atemix
Automatika” nr. 2014-2020.4.02.21-0311.

979-8-3503-1301-7/23/$31.00 © 2023 European Union

propagation, poses a challenging setting for UWB-based po-
sitioning.

Since positioning integrity is dependent on line-of-sight or
non-line-of-sight conditions between the UWB anchor and tag,
then majority of literature focuses on information gathered
from channel statistics (CS). For example, channel impulse
response (CIR) is a popular indicator used in NLOS detection
and error mitigation schemes [4]-[6]. However, the gathering
of CIR information requires a significant amount of data,
hence originating a long latency of about one second just to
transfer the measurements. This leads to an additional delay
for estimating the range, making this approach unpractical
when the estimated position needs to be updated at a high
rate [7]. Additionally, it is noted that apart from long latency
issues, the use of channel statistics is unfeasible in a constantly
changing and harsh industrial environment [8]. A number of
authors propose their positioning solutions in NLOS environ-
ments without the use of CS. For example, a factor graph-
based positioning algorithm along with robust Tukey kernel
was used to improve positioning accuracy [2]. Parameters like
received signal strength (RSS) and ranging statistics have also
been used for NLOS classification [7]. Other authors have
tried to mitigate NLOS effect by applying residual weighting
algorithms at a cost of higher computational complexity [9],
[10].

In contrast to other works, this paper investigates position
estimation integrity regardless of whether it is affected by LOS
or NLOS conditions. Furthermore, the data was collected in a
measurement campaign at an industrial site with dynamically
changing obstacles, which affect radio frequency (RF) signal
propagation and strength. Using a set of features on ranging
residuals, a machine learning algorithm uses these features to
predict the accuracy of the position estimation.

UWB ranging residuals can be evaluated by various charac-
teristics such as standard deviation (SD) or root mean square
error (RMSE). However, these measures alone may not suffice
to describe whether a set of ranging residuals belongs to
an accurate position estimation of an UWB tag. Therefore,
this paper investigates ranging residuals and their potential
characteristics in a more in-depth manner. In addition to
the features presented in the literature, additional parameters
such as those related to least squares (LS) and non-linear



least squares (NLS) optimization and geometrical dilution of
precision.

Features that could potentially describe ranging residual
behavior have not been thoroughly researched. For example,
Silva and Hancke used sum of the squares of distance residuals
(SSDR), mean and standard deviation and maximum distance
as residual features for LOS/NLOS detection [8]. Additionally,
Li and Wang used SSDR as a filter to discard invalid position
estimates [2]. However, many other features could also be used
for UWB positioning integrity i.e., to check whether a position
estimation is reliable or not.

In this paper, XGBoost software library (gbtree booster)
was used to train the model as well as to identify relevant
features that contribute the most in making the prediction. This
method has been implemented before to extract relevant UWB
channel parameters and using this information to improve
UWB-based positioning [11]. As previously stated, using CS
is not in the scope of the current article but rather analyzing
individual calculated ranges and position estimation. By using
a large set of different features based on ranging residuals
along with true distances, XGBoost was used to conduct
supervised learning on a set of training data to predict the
accuracy class of test set measurements. An additional goal
was to train a general model that could also be used in future
measurement campaigns on other sites.

The paper is organized as follows: Section II describes
the theory of ranging residuals, how these are calculated and
features that could potentially describe overall positioning
integrity. Additionally, this section gives an overview of data
collection and XGBoost algorithm. Section III shows the
results in classification performance and feature importance.
The article is concluded in Section IV.

II. ANALYSIS OF RANGING RESIDUALS AND DATA
COLLECTION

A. Position estimation and residuals

For simplicity, following theory in this subsection is consid-
ering two-dimensional positioning. In the scope of this paper,
position estimation of the tag is considered as a two-step
process. In step 1 a set of circle equations (1) is established
to solve the problem of multilateration:

(x; — )+ (i —y)? =d?, i=1,2,..,N, 1)

where (z;,y;) is the known coordinate of i-th anchor and d;
is the true distance between tag and i-th anchor. Position of
the tag (z,y) can be found by performing linearization on (1)
and applying the LS method. Firstly, an anchor (., y,) with
the shortest distance to the tag d, is taken as a reference point
[12]. Next, the non-linear expressions in all available circle
equations are expanded as

2} =242ty -2y +yi=d2 i=1,2,..,N (2)
and the reference point (.., y,) equation

al = 2w+ 2’ +yl = 2y + Y’ =do 3)

is subtracted from the rest of the expressions. The goal is to
rearrange the terms with regards to unknowns x and y in a
way that satisfies following linear model (4) as demonstrated
by Guvenc, Chong and Watanabe [13]:

A0 = b, 4)
where
Tl — Ty Y1 —Yr
Ty — Ty Y2 — Yr
A=- ; (&)
IN-1—2Tr YN-1—Yr
x
"= M ©
and
B = = 0%+ a2 — ity
. d3 —di — a3 + a7 —y3 +y; -
Ay — a7 —of +Hal —yk Y7
Tag’s position ¢ has the following LS solution:
6= (ATA)~1ATD. ®)

It should be considered that the anchors in Fig. 1 cannot be
positioned in a straight line as this may result in a flip ambi-
guity [14]. Under ideal conditions, without any measurement
errors, d; are equal to true distances and the LS model provides
a solution at the intersection of the three circles. However,
in real-life applications, ranging measurements contain errors

Fig. 1. Example of an error free 2-D trilateration scheme with three anchors
using only = and y coordinates. By solving the ranging equations a unique
solution is provided at the intersection of the three circles. Because of the
absence of measurement noise, there are no ranging residuals.



caused by NLOS and ranging noise, thus producing varying
position coordinates [2], [8].

Fig. 2. Example of a 2-D trilateration scheme in UWB-based positioning with
inaccurate range measurements. Difference between the position estimate and
actual measured range results in a residual Ad; that can be used in estimating
positioning integrity.

For example, in Fig. 2 it can be seen that tags position
is located somewhere in the vicinity of the three ranges and
therefore cannot be pinpointed exactly. In this scenario, the
tags location can be only estimated, thus the approximate
position of the LS solution is determined somewhere in the
area that is overlapped by three circles. Thus, the LS solutions
could further be optimized using a Non-Linear Least Squares
(NLS) model. As a step 2 of position estimation, Gauss-
Newton optimization algorithm was applied using the initial
guess provided by LS solution along with previously mea-
sured anchor coordinates and individual distances measured
between anchors and tag. The estimated position is found by
minimizing the objective function:

&4 =argmin Y ((z; —2)* + (i —y)* —d})*. (9

By comparing the individual measured anchor and tag
distances m; with the distances from estimated coordinate d;,
the ranging residuals Ad; are defined as:

AdZ =m; — (L (10)

It must be noted that in this work, functions (1) and (9)
were augmented with the expression (z; — 2)? for position
estimation in 3-D space.

B. Features of residuals

Position estimation can be used to indirectly reflect the
quality of UWB observations as sum of ranging residuals

could be compared against a preset threshold to filter invalid
positioning results [2]. However, this approach would lead
to a situation where a single large residual among other
small residuals would lead to a discarded position. Therefore,
this paper proposes a set of 28 features to be used in a
machine learning algorithm with a purpose of determining the
most important features that could best classify accurate or
inaccurate measurements. These features could be divided into
5 categories:

« LS and NLS metrics. These values are associated with
position estimation as discussed in the previous chapter.
Chosen parameters include: Euclidean distance between
LS and NLS solutions, number of NLS iterations to
convergence and NLS convergence tolerance!;

« Lengthened and shortened residuals. As described by
(10), a residual is the difference between distances of
estimated coordinate and measured range from an anchor.
Depending on the NLS solution, which considers all
available ranges, the estimated position may appear closer
or further away relative to the anchor, thus resulting
in a lengthened or shortened residual. Therefore, fol-
lowing features could be established: number of length-
ened/shortened residuals, sum of lengthened/shortened
residuals, average of lengthened/shortened residuals,
RMSE of lengthened/shortened residuals;

« Residual statistics: Following statistical features were
included: variance, standard deviation, sum of squares
(SSQ), sum of absolute values, mean, absolute mean and
root mean square error (RMSE);

o Number of residuals in range. Small residuals indicate
proximity to the NLS solution, whereas large residuals
imply erroneous measurements. By counting the number
of residuals in a preset range, it can be assumed whether
the NLS algorithm uses accurate measurements as its
input. Following ranges were chosen based on overall
accuracy of UWB positioning [16], [17]: 0...0.1 m,
01...02m,02...04m,04...08m, 08...1.6 m,
16...32m,32...64m, 64...128 m, 12.8...25.6
m, 25.6...00 m;

« Geometrical integrity of positioning. Dilution of pre-
cision (DOP) indicates geometric location distribution
in an indoor positioning system [18]. Using estimated
coordinates of the tag, DOP parameter indirectly shows
the level of geometrical uncertainty in an area relative to
the anchors. In this article position dilution of precision
(PDOP) was used as it depends on z, y and z coordinates.

C. Data collection

UWB measurement data was collected at an industrial site
of Krah Pipes OU (Fig. 3), which manufactures thermoplastic
pipes [19]. Regarding UWB ranging, the site presents a
complex environment with constantly moving objects, which
produce NLOS and multipath effects for RF signals. The

!Convergence tolerance, is based on relative offset convergence criterion.
This assures that the current parameter vector is less than 0.001% of the radius
of the confidence region from the least squares point [15].



Eliko real-time locating system (RTLS) was set up inside the
manufacturing facility by placing UWB anchors and a tag at
preset locations. Based on DecaWave DW 1000 chip, the RTLS
was set to operate on UWB channel 4 [20]. Ground truth
coordinates were measured in a local frame of reference with
the Leica DISTO S910 measurement tool and assigned for 8
UWB anchors as well as 30 different tag locations around the
facility. The measurement tool was positioned at a mezzanine
floor in order to have LOS with all measurement points. By
using an update rate of 10 Hz, each location was measured for
30 seconds, resulting in approximately 300 ranging sequences
per location.

Fig. 3. Industrial site at Krah Pipes OU, which manufactures thermoplastic
pipes in a complex industrial environment.

D. Data preparation and machine learning

All 30 measurement points from the measurement campaign
were assembled into one dataset, which contained premeasured
anchor coordinates, true coordinates of measurement points
and individual distances measured by anchors. The task was
to perform supervised machine learning i.e., classification on
a data with preset accuracy classes:

Class 1: Distance between 0...0.2 m;

Class 2: Distance between 0.2...0.4 m;
Class 3: Distance between 0.4...0.8 m;
Class 4: Distance between 0.8...00 m.

These categories were chosen based on UWB performance
studies [16], [17]. In this paper, Class 1 presents positioning
accuracy up to 0.2 m, which is also an approximate accuracy
level for UWB-based positioning given in the literature. All
other classes were set as a double value from the last step.

After dataset cleaning and shuffling, 80% of data was
used for training, while 20% was used for testing purposes.
XGBoost was selected as the ML algorithm of choice as it
has been seen to dominate structured and tabular data sets

on classification, regression and predictive modeling prob-
lems [21]. XGBoost is a large-scale general-purpose gradient
boosting library. Classification and regression tree (CART) is
the basic component of the gradient boosted decision tree
(GBDT) model. The final prediction results in summation
of predictions of multiple regression trees. The XGBoost
algorithm is composed of a series of base classifiers such
as: decision tree, k-nearest neighbors (KNN), support vector
machine (SVM) and logistic regression. These are linearly
superimposed, so that they work together to optimize the
algorithm [4].

R Studio package "XGBoost” with default settings (gbtree
booster) was used to train the model and extract relevant
features. Since the true coordinate in all 30 measurement
points was known, then training data was labeled with afore-
mentioned 4 categories using Euclidean distance between true
coordinate and NLS estimation. The machine learning model
was trained on a dataset of 28 features along with true distance
values. As a result, the model can be used in classification of
the test data. By using a relatively large set of measurements,
an additional goal was to train a general model that could also
be used on other sites in future measurement campaigns.

III. RESULTS

The XGBoost algorithm produced the predictive model
and a list of features that contributed the most in terms of
predicting positioning integrity i.e., the accuracy or inaccuracy
of measurements. As can be seen on Fig. 4 the most important
features out of the set of 28 seem to be related to lengthened
residuals as these provide the biggest statistical gain. Less
contribution is provided by dilution of precision, number of
residuals in 0...0.1 m range, LS/NLS distance, mean of ranging
residuals and number of NLS optimization iterations.

RMSE of lengthened residuals
Average of lengthened residuals
PDOP

Number of residuals in 0...0.1 m
LS/NLS distance

Mean of residuals

NLS number of iterations

0.0 0.2 0.4
Gain

Fig. 4. Top 7 features that provide biggest contribution or gain as proposed
by XGBoost algorithm. Gain represents the contribution of a feature in
construction of the boosted decision trees within the model. When compared
to other features, then higher gain implies bigger impact in prediction process.
It can be seen that lengthened residuals are the most important features in
describing estimated position integrity.



The lengthening of residuals means that the estimated
position is further away from the individual measured dis-
tance from the anchor. The higher the RMSE of lengthened
residuals, the bigger the offset from true coordinate.

Next, by using these features in a prediction model, classi-
fication could be performed on the test data. Performance can
be seen in Table I using a confusion matrix and prediction
statistics. Overall, prediction of distinct classes was performed
with a high accuracy of ca. 84%. Class 2 was harder to predict
because measurement points, which were estimated in the
range of 0.2...0.4 m from true coordinate, were too close to
Class 1 points to discern these with a high success rate.

TABLE I
CONFUSION MATRIX AND PREDICTION STATISTICS

Reference Class

1 2 3 4
I 1024 76 I 0
Predicted 2 109 240 14 0
Class 3 8 45 54 12
4 0 5 17 143
Overall Accuracy: 0.8358 (ca. 84%)
Statistics by Class:
Class 1 Class2 Class 3 Class 4
Sensitivity  0.8975  0.6557  0.6279  0.9225
Specificity ~ 0.8731 0911 0.9608  0.9861

For example, there were 76 points that belonged to Class
2 and according to the model these points were labeled as
Class 1. With a 90% sensitivity (true positive rate) the model
could predict most of Class 1 measurements. Class 2 was
harder to predict with a sensitivity of ca. 66%. However, if
the measurement point did not belong to Class 1 or Class
2 then the prediction was made with a high specificity (true
negative rate) of ca. 87% and 91% respectively. Sensitivity
could potentially be improved with a broader Class 1 range
(e.g., 0...0.3 m).

IV. CONCLUSION

This paper investigated if UWB-based ranging residuals
could be used for estimating overall UWB positioning in-
tegrity. The residuals were examined through a set of features
and comparing them with preset positioning accuracy classes.
In addition to features already established in the literature,
several other parameters were also included. By using a
supervised machine learning algorithm (provided by XGBoost
library) it was found that lengthened ranging residuals provide
the biggest contribution and statistical gain in classification.
With an overall accuracy of 84%, the trained model could
successfully identify 90% of measurements in the range of
0...0.2 m. However, adjacent accuracy class, presenting dis-
tances of 0.2...0.4 m from true coordinate were identified with
66% accuracy. It can be concluded that the trained model
could evaluate UWB positioning integrity with relatively high
accuracy by using the input of lengthened residuals as its main
indicator. Furthermore, this model could be applied in possible
future measurement campaigns.
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UWB Positioning Integrity Estimation Using
Ranging Residuals and ML Augmented Filtering

Mihkel Tommingas, Muhammad Mahtab Alam, Senior Member, IEEE, Ivo Milrsepp, Sander Ulp

Abstract—This article investigates the use of Ultra-
Wideband (UWB) ranging residuals for coordinate integrity
estimation and their use in a filtering scheme. Typically,
UWB system accuracy is improved using channel statistics
to detect and mitigate non-line of sight (NLOS) effects
between UWB sensors and the object to be located, po-
tentially improving the end coordinate solution. However,
in practice when considering UWB system with a high
positioning update rate, this is not a feasible approach, as
gathering and processing CS data takes too much time. In
contrast to this approach, this article proposes a set of
features based on UWB ranging residuals that could be
used as an alternative in integrity assessment. By using
machine learning (ML), the most important features were
extracted from the initial set and then used to train and val-
idate a model for UWB coordinate error prediction. Lastly,
the prediction was applied in an adaptive Kalman filtering
(AKF) scheme as an input for measurement uncertainty.
Model testing was done using UWB measurement test
dataset gathered at an industrial site. The overall results
showed significant improvement in 2D and 3D positioning
metrics of ML-augmented filtering when compared to non-
ML filtering. On average, the end coordinates in the test
set had ca. 10 cm smaller mean location error and ca. 40
cm smaller dispersion in 2D positioning. Additionally, the
presence of outliers was reduced significantly as the max-
imum error offset decreased by several meters. Although
ML augmented filtering is computationally slower than non-
ML filtering (e.g., ordinary and extended Kalman filter), it is
still faster than using channel statistics for UWB integrity
estimation. The results show that using the proposed resid-
ual features in an ML model provides a feasible approach to
predict UWB positioning integrity and use it as a measure
of uncertainty in a coordinate filtering scheme.

Index Terms—end coordinate correction and filtering,
machine learning (ML), ranging residuals, Ultra-Wideband
(UWB) positioning.
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I. INTRODUCTION

REATING an Ultra-Wideband (UWB) positioning so-

lution that provides reliable location information in a
difficult industrial environment is a challenging task. For
example, storage areas, whether indoor or outdoor, are usually
littered with objects that obstruct radio frequency (RF) signal
propagation, thus affecting the estimated coordinate of an
object to be positioned. UWB-based systems are considered
more robust in the presence of multipath effects and are less
susceptible to interference as compared to other RF-signal-
based positioning systems [1], [2], [3]. UWB system employs
RF signals with a large bandwidth to be used in a wireless
positioning scheme [4]. By using a two-way-ranging (TWR)
approach, distances between fixed UWB nodes (anchors) and a
mobile UWB node (tag) are measured and the final position of
the tag is estimated based on these distances [2], [5]. Although
a robust positioning solution, the ranging still relies on wireless
RF signals. Thus, the accuracy and precision (i.e., integrity) of
the end coordinate is affected but not limited by factors such
as the number of servicing anchors, their vicinity to the tag,
impairments caused by non-line of sight (NLOS) and suitable
anchor layout geometry [1], [6], [7].

Problems related to NLOS detection and mitigation are an
extensively researched topic in UWB-based positioning [5].
While the number of anchors and their spatial geometry can
be adjusted according to the operating area, NLOS appears
dynamically with constantly changing obstructions between
the anchors and a moving tag. According to the works pub-
lished by various authors, it can be seen that detection of
NLOS and combating multipath effects is usually done by
analyzing the characteristics of the RF propagation channel
(i.e., channel state information (CSI)) [8], [9], [10], [11]. For
example, channel impulse response (CIR), which describes
the propagation path of a signal, can be used to assess the
amplitude and phase of a particular multipath component [12].
Although this information is effective for NLOS detection,
then CIR entails also some constraints. Certain authors have
noted that gathering CIR information requires a significant
amount of data, hence causing a latency of approximately
one second just to transfer the measurements [13]. Taking
into account UWB positioning solution with a high position
update rate, the transfer and processing of CIR information
becomes unpractical. Additionally, it is stated that CSI has to
be collected for different types of environments, as a dataset
describing a residential environment might not be suitable
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for a harsh industrial environment [5]. Finally, considering
machine learning (ML) based positioning algorithms that must
be trained on real ranging or positioning data, using such
an approach in conjunction with CSI increases computational
complexity even further [2].

In essence, this article proposes positioning integrity as-
sessment without the knowledge of CSI. In the literature,
alternative methods have been used before. Barral et al. used
received signal strength (RSS) and range information for
ML-based LOS/NLOS detection and classification [13], [14].
Liu et al. investigated NLOS detection and mitigation using
sum of squares (SSQ) of distance residuals. A large SSQ
compared to a certain threshold would indicate inconsistency
in localization [15]. Similarly, Silva and Hancke used SSQ
of distance residuals for NLOS identification [5]. A residual
test was proposed by Chan et al. in order to determine and
identify the number of LOS base stations [16]. However, the
current article expands on the analysis of ranging residuals
further by adding features that describe their statistical and
quantitative properties. Additionally, aspects related to end
coordinate calculations and geometrical dilution of precision
(DOP) were also included. The goal was to include charac-
teristics that describe UWB positioning integrity whether af-
fected by LOS/NLOS or varying anchor geometry. Therefore,
this paper considers real-life measurement data that already
contains both LOS and NLOS ranging measurements and it
is assumed that end coordinate error is predicted regardless of
tag’s LOS/NLOS conditions or its position relative to anchors.

In contrast to most related works being done with simulated
data, the current article considers real-life measurements gath-
ered from three different indoor environments. The calculated
features from raw ranging data were then used in three distinct
ML algorithms: regression tree (RT), random forest (RF), and
XGBoost (XGB) [17], [18], [19]. These methods were used
to produce three different models, which could estimate the
offset from the true coordinate. An additional objective was to
evaluate whether there was any significant gain to be had from
using a more complex machine-learning algorithm. Finally,
the three different predictions were used as a measure of
uncertainty in a coordinate filtering scheme in an Adaptive
Kalman Filter (AKF), which was compared with the non-
adaptive (KF) and extended Kalman filter (EKF).

The paper is organized as follows: Section II describes
the theory behind end coordinate estimation and ranging
residuals. Additionally, it is explained how residuals and their
features are calculated. Section III gives an overview of data
collection and processing with different ML algorithms along
with coordinate filtering schemes. Section IV contains results
by comparing the presented coordinate calculation methods.
The article is concluded in Section V.

Il. COORDINATE ESTIMATION METHODS AND FEATURES
A. End coordinate estimation

Estimating the coordinates of the tag with regard to sur-
rounding anchors presents a problem of multilateration. In
Fig. 1 it can be seen how an object on coordinates (z,9)
is located at certain distances from all surrounding anchors

Fig. 1. Example of a 2-D trilateration scheme in UWB-based position-
ing with inaccurate range measurements. The difference between the
distance to the estimated position d; and the actual measured range
d; results in a residual Ad; that can be used in estimating positioning
integrity.

denoted with (z;,y;). By using known distance measurements
d; from each individual anchor, the tag’s position can be
estimated. Usually, for a single solution in 2D space, at least
three-, and in 3D space four anchors are required [20]. It
should also be considered that the anchors in Fig. 1 should
not be positioned in a straight line as this may result in a flip
ambiguity with possible solutions on either side of the line
[21]. Under ideal conditions, without any measurement errors,
d; = d; and the least squares (LS) model provides a solution at
the intersection of the three circles [22]. However, in real-life
applications, ranging measurements contain errors caused by
NLOS propagation and ranging noise, thus producing varying
position estimates [2], [5].

B. End coordinate calculation

In this article, the end coordinate calculation of the tag is
considered as a two-step process. Firstly, estimating the initial
position of the tag and then optimizing the solution with a non-
linear least squares (NLS) approach. Both involve solving the
multilateration problem using ranging measurements discussed
in the previous section. Additionally, this article considers
positioning in 3D space. In Step 1 a set of circle equations
(1) is used to find the initial estimate of the tag’s position
(,9,2):

(@ =82+ (i —9)° + (z— 2> =&, i=1,2,., N, (1)

where (z;,y;, 2;) is the known coordinate of the ¢ -th anchor
and d; is the measured distance between the tag and the
i -th anchor. The initial guess of the tag (#,¢,Z2) can be
found by performing linearization on (1) and applying the
LS method. Firstly, an anchor (z,,y,,z2,) with the shortest
measured distance to the tag d,. is taken as a reference point
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[23]. Next, the non-linear expressions in all available circle
equations N are expanded as:

@} —2mid + & + y} — 209 + 9P+

2
422255 +22=d?, i=1,2,..,N @

and the reference anchor (z,,y,, 2,) equation:
2?2 — 22,3 + &%+ y? — 2,4 + P+ 3

+ 22— 2254 5% =d?

is subtracted from the rest of the expressions. The goal is
to rearrange the terms with regards to unknowns &, y and
Z in a way that satisfies the following linear model (4) as
demonstrated by Guvenc, Chong, and Watanabe [24]:

A0 =D, “)
where
Ty — Ty Y1 —Yr 21— Zr
To — Tp Y2 — Yr Z2 = Zr
A=-2 ) )
IN-1— Ly YN—-1—Yr ZN-1—"2Z2r
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0= 19 6)
2
and
B—d—ad a2 —yi oy —2d+ 2
di —d} —ad +af —yd+yl — 23+ 2]
b= .

S e N R e R o Tl R e
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Lastly, the estimated tag’s position 6 has the following LS
solution:
6= (ATA)~1ATD. (8)

As shown in an example in Fig. 1, it can be seen that
the tag is estimated somewhere within the area overlapped
by three circles. The sum of the squares of distance errors
can further be minimized using the NLS approach [25]. As a
step 2 of position estimation, the Gauss-Newton optimization
algorithm was applied. The LS solution provides an initial
estimate, along with previously measured anchor coordinates
and individual distances measured between anchors and tag.
The estimated position is found by minimizing the objective
function:

N
9,2 = argmin Y _((w; — )%+ (i —y)* + (2 — 2)* = d})?

L2 =1

)
where x, y and z represent the coordinates that provide the
smallest error. Since there are various methods to solve this
non-linear multilateration problem, this article applies lin-
earization using Taylor series with the Gauss-Newton iteration
procedure. Renaming the initial guess from the LS solution (8)
as (za, Ya, 2¢), the measured distances d; are approximated

through first-order Taylor series expansion as demonstrated by
Guillory, Truong, and Wallerand [20]:
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where Az, Ay and Az are equal to £ —zg, §—yg and 2 —zg
respectively. Considering that Az, Ay and Az are multiplied
to first-order derivatives when:

J. = TG —Ti Yyc—Yi 2G—Zi (11)
he] di(zc.ye.2¢) di(zc.ye,ze) di(re.ye.zc) |’

then (10) can be rearranged into matrix form:

Ax
Ayl
Az

with Adyps representing the difference between measured
and estimated distances. The error corrections Az, Ay and
Az can be found by solving the Normal Equation as shown
in (8) and substituting values accordingly:
Ax
Ayl = TN IT Adyrs.
Az
Using the error correction vector, the initial guess coordinates
zq, Yo and zg are updated with Gauss-Newton iteration until
a convergence criterion has been reached (e.g., until the error
correction vector is sufficiently small [20]). After reaching a
pre-determined threshold, the final position estimation results
as:

Adnrps =J (12)

13)

o + Ax T
Yo +Ay| = |9 (14)
za + Az z

Similarly to Fig. 1, it can be seen that the difference between
an individual measured distance d;, and distance cfi calculated
from the estimated coordinate (Z, 9, ), results in a residual
Ad; as:

(15)



IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION

C. Features

This paragraph describes features used in the ML model
training. As stated in the introduction, this article considers
both previously used features in the literature as well as several
novel ones. As ranging residuals could indirectly reflect the
end coordinate integrity, several statistical metrics such as the
residual mean or sample variance have been added. Additional
features have also been included regarding end coordinate
calculations and positioning geometry.

1) Residual statistics: Depending on the location of the
estimated solution, d; may be longer or shorter compared to
the individual measured distance d; resulting in a positive
or negative residual. A significant change in the magnitude
of a residual may indicate that UWB propagation path is
affected by an obstruction. Therefore, residual statistics
were calculated for three different sets: positive, negative
and overall residuals. Additionally, statistical equations were
averaged to remove the dependence on the size of available
residuals. The following statistics were calculated:

average sum of squares (SSQ)
" Ad?
SSQ = %’ (16)

root mean square (RMS)

SS
RMS = /259 (17
n
mean
rAd;
T = ZZ:#7 (18)
n
mean absolute deviation (MAD)
R VAN: P
MAD = M7 (19)
n
standard deviation
" (Ad; — )2
ooy 2 (Bdi =) (20)
n
and variance
v=s2 1)

where n represents the number of residuals in a corresponding
positive, negative or overall set (also used as a feature).

2) LS and NLS metrics: These values are associated with
position calculation as discussed in chapter II-B. The chosen
parameters include Euclidean distance AD between LS (8)
and NLS (14) solutions and the number of Gauss-Newton
iterations to convergence ngy. For the latter, there is no
implicit equation as the iteration counter is initialized at each
coordinate optimization process.

AD =/(zg -2+ (yo — 0)* + (2 — 2>  (22)

3) Geometrical integrity of positioning: In an indoor position-
ing system, Dilution Of Precision (DOP) indicates geometric
location distribution. It contains the knowledge of position-
ing accuracy under specific base station network and scene
characteristics [6]. Using the estimated coordinates of the tag,
the DOP parameter indirectly shows the level of geometrical
uncertainty in an area relative to the anchors. In this article, the
position dilution of precision (PDOP) was used as it depends
on z, y, and z coordinates. To calculate PDOP, the set of
ranging equations (1) can be implemented with precalculated
end coordinates from (14). By finding partial derivatives with
respect to each coordinate similarly as was shown in (10), the
result is formulated in matrix form as:

1= y1—9 z1—2 1
dy dy | dy
To—& y1—9 z1—2 1
da da dy
A,=| " (23)
TN —F YN —7 ZN—2Z 1
dn dn dn

Next, the covariance matrix () is calculated from the LS

normal matrix:

0 Opy Ou:
Q= (AZA[))_l = |Oyz 0'73 Oyz (24)
Ozz Oy o2
Lastly, PDOP is calculated from trace of matrix Q as:
PDOP = /o2 + 0%+ 02, (25)

I1l. DATA PROCESSING, MODEL TRAINING AND FILTERING
A. Data collection

UWB measurement data were collected at three different
sites: Krah Pipes ou factory, Eliko office, and Auroom Kastre
factory, which all contained a set network of UWB sensors.
Data from the first two sites were used to cross-validate and
train the ML model, while data from the third site were
used for testing. Krah Pipes OU (Fig. 2) is a company
that manufactures thermoplastic pipes and in terms of RF
propagation, presents a complex environment with constantly
moving objects [26]. The Eliko real-time locating system
(RTLS) was installed inside the manufacturing facility by
placing UWB anchors at fixed locations while the tag was
sequentially placed at different locations on the factory floor
during the measurements. Based on the Qorvo’s DW1000
chip, the RTLS was set to operate on UWB channel 4 [27].
Eliko RTLS also uses Active-Passive TWR protocol with clock
offset error mitigation [28]. Ground truth coordinates were
measured in a local frame of reference with the Leica DISTO
S910 measurement tool and assigned to 8 UWB anchors, as
well as 30 different tag locations around the facility. The
measurement tool has an accuracy of 1 mm [29].

The measurement tool was positioned on a mezzanine floor
in order to have LOS with all measurement points. By using
an update rate of 10 Hz, each location was measured for 30
seconds, resulting in approximately 300 ranging sequences per
location. A similar measurement procedure was performed
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Fig. 2.

Industrial site at Krah Pipes OU, which manufactures thermo-
plastic pipes in a complex industrial environment. The site contained a
network of 8 UWB anchors (layout in Fig. 19).

at the Eliko office (30 measurement points) and Auroom
Kastre factory (40 measurement points) using UWB position-
ing network of 17 and 15 anchors respectively. The office
environment provided additional training data in terms of poor
PDOP conditions i.e., measurements that were taken outside
of the convex hull of the UWB anchor layout as can be seen
in Fig. 18 (e.g., points 13, 14 and 15).

B. Data processing and model training

Raw ranging data, collected during the measurements, was
assembled into training-validation (Krah factory and Eliko
office) and testing (Auroom factory) datasets containing end
coordinates, true distances (dependent) and features (inde-
pendent) described in Section II-C. It should be noted that
data from the Auroom factory were not used in training
in order to have a stand-alone dataset to test the general
model. The purpose of the model was to predict end-coordinate
error or offset based on pre-calculated independent features.
After data cleaning and shuffling, the datasets were changed
into the appropriate format for cross-validation and training.
Three ML methods were chosen: extreme gradient boosting,
regression tree, and random forest. The idea was to compare
the prediction performance of a simple ML method (i.e., a
single regression tree) against more complex ones.

The aforementioned ML algorithms and datasets were used
in the R Studio environment [30]. For each ML method,
10-fold cross-validation was carried out to select hyper-
parameters that provide the smallest prediction error against
the validation set. Essentially, the training dataset was sepa-
rated into 10 segments with 1 segment being the validation set.
Such an approach helps to generalize the model and mitigate
overfitting. Next, using chosen hyper-parameters in an initial
model, combination of most important features were selected
for the final model.

R Studio provides appropriate cross-validation train and
trainControl functions through the caret library [31]. The
main hyper-parameters used were: tree depth and number of

boosting iterations for XGBoost; tree depth and complexity
parameter for regression tree and tree depth for random forest.

It should be noted that no prior feature selection before
model cross-validation was done. Rather regression tree, ran-
dom forest, and XGBoost libraries in R Studio already contain
built-in functions to output features that contribute the most
in making the prediction.

1) Regression tree feature selection and training: In contrast
to using a decision tree for classification task, end-coordinate
offset is considered as a continuous target variable that is
predicted using a regression tree. It is generated using a set of
training samples with the corresponding response variables.
A trained tree structure is then used to predict the value
of an unknown test sample. It consists of root, branches,
nodes, and leaves. Each internal node represents a feature,
branches represent the feature values and leaf nodes represent
the outcome of prediction [32].

Cross-validation compared sets of training data using dif-
ferent regression tree depths in terms of prediction error. As
can be seen in Fig. 3, a tree with a depth of 7 is sufficient for
providing the least amount of error as choosing a deeper tree
results in no further error mitigation. Additionally, the tree can
be pruned or optimized using a complexity parameter (CP),
which is the minimum improvement in the model needed at
each node. CP is used to select the optimal size for the tree.
As can be seen in Fig. 4, a tree size of 7 has a complexity
parameter of 0.025, which outputs a tree shown in Fig. 5.
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Fig. 3. Determining regression tree depth after 10-fold cross-validation.

It can be seen that a tree depth of 7 is enough to provide the smallest
root mean square error (RMSE).
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Fig. 4. After 10-fold cross-validation, a tree depth of 7 corresponds to
a complexity parameter of 0.025. These hyperparameters were used to
generate the final regression tree (shown in Fig. 5).
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Fig. 5. Final regression tree to be used in ML prediction.
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It should be noted that the rpart library also removes
surrogate features i.e., features that provide the same goodness
of split. Therefore, the final tree may have a different depth
compared to cross-validated trees. Features were extracted by
using a built-in rpart.plot function and feature importance
was based on the goodness of split [17]. Features for the final
model can be seen in Fig. 6.

Sum of squares of residuals
Residual variance
LS/NLS difference [m]

Number of iterations

0 1000 2000
Goodness of split measures

Fig. 6. Features used in the final regression tree model, which are
ordered based on the goodness of split in a regression tree.

2) Random forest feature selection and training: In ensemble
learning, bagging and boosting are two main approaches.
Random forest can be viewed as an evolution of bagging
methodology and can be used in classification and regression
problems. It is defined as an ensemble of decision trees
that implements randomness in the model-building process of
each decision tree [33]. It can process high-dimensional data
effectively, so it is different from neural networks (NN). In
RF, each tree acts as an independent regression function, and
regression trees are trained using different bootstrap samples
of the training data. The average prediction of each individual
tree is used as the final output [34].

Random forest training, validation and testing were done
using the ranger package, which is a fast implementation of
random forest suited for high-dimensional data [18]. Cross-
validation on training data showed how different number of
random forest predictors compare in terms of prediction error.
As shown in Fig. 7, using 100 random trees with 8 predictors
provides a sufficient amount of error as using more than eight
might lead to model overfitting and results in no significant
reduction in RMSE. Next, feature selection was done for the
initial RF model, with 8 random predictors. By comparing
different combinations of features, those with the least amount
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Fig. 7. Finding the optimal number of randomly selected RF predictors
using cross-validation with 100 random trees. It can be seen that using
more than 8 features results in no significant increase in cross-validation
error.

of error in predicting validation set response values were
selected. As can be seen in Fig. 8, choosing more than 7
features results in no significant decrease in prediction error.
These features are presented in Fig. 9.
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Fig. 8. Using more than seven most important features results in no

significant RMSE decrease in random forest prediction and could overfit
the model.
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Fig. 9. Set of features in the final model that provide the biggest node
purity increase in random forest prediction.
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3) XGBoost feature selection and training: On the other
hand, XGBoost represents the approach of boosted ensemble
learning. It is a large-scale general-purpose gradient boosting
library, which has been seen to dominate structured and tabular
data sets on classification, regression, and predictive modeling
problems [19], [35]. The algorithm creates a sequential en-
semble of tree models, all of which work to improve each
other. The final prediction results in a summation of the
predictions of multiple regression trees. The XGBoost algo-
rithm comprises a series of base classifiers such as decision
tree, k-nearest neighbors, support vector machine, and logistic
regression. These are linearly superimposed, so that they work
together to optimize the algorithm [36].

Using cross-validation with zgboost library, different sets
of XGBoost parameters were compared in terms of prediction
error as shown in Fig. 10. It can be seen that a model with
a tree depth of 5 and 150 boosting iterations is sufficient as
choosing more than 150 iterations would present no signifi-
cant increase in prediction performance. Additionally, feature
selection was done using the initial model with aforementioned
hyper-parameters. By comparing different combinations of
features, those with the least amount of error in predicting
validation set response values were selected. As can be seen in
Fig. 11, more than 8 features provide only a marginal increase
in predicting validation set response values. List of features
used in the final XGBoost model is presented in Fig. 12.
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Fig. 10.  Determining suitable XGBoost tree depth and number of

boosting iterations using cross-validation. Tree depth 5 and 150 boosting
iterations are chosen parameters for the model. Choosing a higher
number of iterations results in no significant decrease in RMSE and
might lead to overfitting.

C. Coordinate filtering

As a final step, the end coordinate is estimated using a
Kalman filter. In the current context, the filter averages end co-
ordinates, while considering the uncertainty of measurements
(prediction) and previously filtered coordinates. While in a
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Fig. 11. Using more than 8 features has no significant impact on XGB

prediction accuracy.
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Fig. 12. Features used in the final XGBoost model.

traditional Kalman Filter (KF) the process and measurement
noise have fixed values, then in real-life applications it can be
seen that measurement uncertainty is a dynamic value, which
in turn is affected by external factors such as NLOS. Therefore,
it is preferable to know the measurement uncertainty at every
ranging calculation in order to estimate whether the current
coordinate can be trusted or not.

In this article, the ML model predicts end coordinate offset
from true value, based on features used in the ML model.
Since, the direction of the error with regards to x, y, and 2 axes
is not known, this prediction can be considered as a measure of
uncertainty in all three axes. By implementing the prediction
as a dynamic measurement uncertainty in an Adaptive Kalman
Filter (AKF), positioning accuracy can be improved further.

1) KF and AKF filtering: In this work, the main difference
between a KF and AKF is in the application of the R matrix,
which represents positioning measurement uncertainty. In KF,
the diagonal elements of R in (26) were chosen as fixed values
diag(0.01, 0.01, 0.01) corresponding to the precision of the
DW1000 device [37] with:
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a2 0 0 0.01 0 0
Rkp=|0 o2 0|=]0 001 0 (26)
0 0 o2 0 0 001

However, AKF measurement uncertainty in (27) is updated
at each iteration as the end coordinate is calculated and ML
prediction is added to the variance of diagonal elements as

0.01+ Dysp, 0 0
Rakr = 0 0.014 Dyr 0
0 0 0.01 4+ Dy,

(X))

In essence, the ML prediction drives the filtering process by
dynamically changing measurement uncertainty i.e., whether
to trust measurement or process. In KF, EKF and AKF, the
process noise matrix () has constant values diag(0.01, 0.01,
0.01). As shown at the beginning of Alg. 1, the state transition
matrix A, state covariance P, and observation matrix H are
initialized as 3-by-3 identity matrices. X0 represents the first
converged NLS solution from (14), Zj is the measurement
vector and [ is a 3-by-3 identity matrix.

2) EKF filtering: Lastly, ML-driven AKF is compared with
the Extended Kalman Filter (EKF), which is capable of dealing
with non-linear problems such as multilateration described in
II-A. In contrast to KF and AKF, which predict and cor-
rect coordinates, EKF makes state corrections using residuals
between measured distances Z; and distances to the last
estimated coordinates. In Alg. 1 state correction step HpX Y
is replaced with D, where:

\/(II: —x1)?+ (v, —y1)? + (2, —21)?
\/(1‘;2 —22)? + (y, —12)? + (2, — 22)?

(28)

\/(‘Ll: - ‘Z.71)2 + (yk_ - yn)2 + (Zk_ — Zn)2

with x;, v, and 2, representing coordinates from last it-
eration. Measurement vector Z represents current iteration
distance equations with added measurement noise

Algorithm 1 Kalman Filter
Input: Xo,Z;, Py, Q,R
Output: X,
Initialize A, Py, H, I
Prediction step
for k=1,...,00
1: State prediction X; =AX;_,
2: Covariance prediction P, = AP;,_1AT + Q
Correction step
3: Kalman gain K, = P;Hf(HkP,;Hf +Ry)t
4: State correction X, = X,: + Ky (Zy — ka(,;)
5: Covariance correction P, = P, (I — K, Hy)
return Xk, P,
end for

Vi =21+ (e —y1)? + (2 — 21)° + 01
V(@e —22)% + (ye — y2) + (3 — 22)2 + v2

Z =

V0 = 2)? + (e = yn)? + (25 — 20)? +vn
29

where vj represents measurement noise vector, which has
covariance matrix Ry, as diag(0.01, 0.01, 0.01). Process noise
matrix Q is also set as diag(0.01, 0.01, 0.01).

With EKEF, the entire NLS approximation process discussed
in II-B may be bypassed and do linearization through the
observation matrix H, which is comprised of first-order partial
derivatives as demonstrated by Kim, Farhad and Pyun [37]:

Odyi (zp,yk,2zk)  Odi(Tk Yk ,2k)

Od1 (g, Yk, 2k)
T i Yk . Oz,
Oda(x.yi,zk)  Oda(@i,yk,ze)  Oda(@h Yk, 2k)

oz, ¢ &

oYk ]
H, = . " ”

» (30)

Ady (g, Yk 2k)

dzp,

0dn %k, Y,2K)  Odn(Th Yk,2k)
Oz, Oy

where derivatives correspond to

di(wk, yr, 26) TR — X

Ozk Ve —2:)? + (e — yi)? + (2 — 2)?
3D
Odi(xr, Y, 2) _ Yr — Yi
Py Vi — )2+ (yr — )% + (21 — 2)?
(32)
d; (., yr, 2x) _ 2k — %
Dz V0ek =) + (g — vi)* + (2 — 2:)?
(33)

In the context of coordinate calculation, skipping the NLS
coordinate calculations makes EKF computationally less de-
manding. On the other hand, a poor LS coordinate in the
state vector can affect the filtering process and result in an
inaccurate coordinate. Therefore, in this work for comparison
purposes, EKF was provided with a converged NLS coordinate
as the initial state vector.

IV. RESULTS

Test data was measured in an industrial site at Auroom
Kastre factory, which manufactures sauna modules as shown
on Fig. 13. The measurement setup was similar to the Eliko
office and Krah Pipes factory with 40 different measurement
points scattered over the factory area as can be seen in Fig.
17.

True coordinates were measured with the Disto S910 mea-
surement device and ranging data was collected using UWB
tag with a 10 Hz update rate. The goal was to test the
performance of different end coordinate calculation methods,
specifically comparing regular filtering methods to those aug-
mented with ML prediction. Additionally, no data gathered
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Fig. 13. Manufacturing area inside Auroom Kastre factory. Red circles
highlight visible UWB anchors. Anchor layout can be seen on Fig. 17.

from the test site was included in ML model training to have
unbiased verification of the model.

Considering true coordinates (zr,yr,2r), the following
metrics were used to evaluate positioning accuracy and
precision: mean location error (MLE), root mean square error
(RMSE), distance root mean square error (DRMS), mean
radial spherical error (MRSE) and maximum error [38], [39]:

1) 2D metrics:

Sy V@ —2)% + (yr — §:)?

MLEsp = o s (34)
RMSHyp \/z_l[m - x: R et 1) SRS
DRMS = /02 + 02, (36)

MAXop = max(y/(er — )% + (yr —5:)?).  (B7)

2) 3D metrics:

the tag. However, as shown in Table II, the overall vertical
position error of approximately 0.5 m is at a similar level as
in a previously published work by Laadung et al. [40].

TABLE |
OVERALL METRICS FOR 2D POSITIONING.
MLE RMSE DRMS Max. error
2D [m] 2D [m] [m] 2D [m]
NLS 0.46 0.95 0.85 11.16
KF 0.43 0.72 0.57 7.01
AKF + XGB 0.28 0.29 0.11 0.62
AKF + RF 0.28 0.29 0.1 0.55
AKF + RT 0.27 0.28 0.11 0.63
EKF 0.62 0.96 0.78 6.28
TABLE Il
OVERALL METRICS FOR 3D POSITIONING.
MLE RMSE MRSE Max. error
3D [m] 3D [m] [m] 3D [m]
NLS 0.8 1.36 1.17 14.04
KF 0.74 1.05 0.8 8.78
AKF + XGB 0.48 0.5 0.18 0.94
AKF + RF 0.48 0.5 0.18 0.9
AKF + RT 0.51 0.53 0.2 1.07
EKF 2.86 3.26 1.94 11.73

An example of superimposed end coordinate results can be
seen in Fig. 14 and Fig. 15 along with respective performance
metrics in Tables III and IV. The general location of the
point can be seen on overall the map in Fig. 17. It can
be seen both visually and statistically that EKF had the
worst performance, especially in 3D positioning. With many
visible outliers, EKF relies on coordinates calculated straight
from noisy ranging data. Furthermore, EKF does not have
any convergence process (i.e., Gauss-Newton iterations), thus
relying only on the first calculated end coordinate solution.
On the other hand, filtering with ML prediction outperforms
non-ML approach in all metrics.

TABLE IlI
COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 2D
POSITIONING FOR PT. 20.

n — 42 —_0.)2 _ 2.)2 MLE RMSE DRMS Max. error
MLEyp = 2zt V(or = 20+ (yr = 5:) + (o7 = 20)° 2D (m | 20[m | [m] | 2D [m]
n 38 NLS 02 024 022 14
. § § G8) KF 0.16 0.19 0.5 0.85
RMSEar — S lr —2:)2+ (yr — 9:)2 + (27 — %)% [AKF+XGB | 0.1 0.14 0.07 024
3D — n ) AKF + RF 0.13 0.14 0.07 0.25
(39) AKF + RT 0.15 0.15 0.06 0.24
MRSE — /oZ 107 7 o2 (40) EKT 025 052 051 32
x Yy z9
MAXs3p = ma T — 34)? — ;)2 + (27 — %)2).
3D 265((\/( T )2+ (yr — 9:)? + (21 i)?) TABLE IV

(41
Overall statistics summarizing all 40 measurement points can
be seen in Tables I and II.

In general, it was challenging to achieve good vertical
precision and accuracy in most of the measurement locations.
This can be attributed to UWB anchor layout geometry,
with anchors located approximately on the same height level,
resulting in a poor dilution of precision. Additional difficulties
arose from occasional NLOS conditions between anchors and

COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 3D
POSITIONING FOR PT. 20.

MLE RMSE MRSE Max. error
3D [m] 3D [m] [m] 3D [m]
NLS 0.57 0.65 0.43 2.7
KF 0.53 0.58 0.31 19
AKF + XGB 0.41 0.42 0.14 0.67
AKF + RF 0.44 0.45 0.15 0.69
AKF + RT 0.46 0.47 0.12 0.68
EKF 0.65 0.87 0.74 5.74
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Fig. 14.  Comparison of confidence ellipses for pt. 20 with respect Fig. 15. Comparison of confidence ellipses for pt. 20 with respect to

to @ and y axes. Each ellipse contains samples within one standard
deviation (68% confidence). For the sake of clarity, only two point clouds
are shown (EKF and AKF+XGB). It can be seen how prediction keeps
the point cloud more tightly together, whereas EKF relies only on noisy
ranging data which produce much more sparsely distributed samples.
Due to outliers, the figure has been zoomed in on the largest ellipse.

Regarding three different ML algorithms it can be seen that
even by applying a simple regression tree, the overall metrics
are better compared to non-ML filtering. ML performance was
summarized with the cumulative error distribution in Fig. 16
and metrics for model prediction performance in Table V.
The latter includes commonly used regression performance
indicators such as RMSE, mean square error (MSE), and mean
absolute error (MAE) [41].

TABLE V
PERFORMANCE METRICS OF ML MODELS ON THE TEST SET.
RMSE | MSE | MAE
XGBoost 1.28 1.64 0.36
Regression tree 1.37 1.87 0.46
Random forest 1.18 1.4 0.33

Lastly, filtering and ML methods were compared in terms
of elapsed time with results shown in Table VI. Benchmarking
was done in the R Studio environment using built-in ML
libraries xgboost, ranger, rpart, and microbenchmark. The
hardware specification of the computer was Intel(R) Core(TM)
i5-7300U CPU @ 2.60 GHz with 16 GB RAM. It can be
seen the amount of delay ML adds to the filtering scheme.
Ordinary Kalman filter performs the fastest while EKF being
3.5 times slower. However, ML prediction adds computational
delay, with XGBoost and regression tree being approximately
18 times slower than KF and random forest being the slowest.

x and z axes. For the sake of clarity, only two point clouds are shown
(EKF and AKF+XGB). Additionally, due to outliers, the figure has been
zoomed in on the largest ellipse.

o

50

Cumulative error distribution

0.25

RF prediction error
— RT prediction error
— XGB prediction error

2 3
Prediction error [m]

Fig. 16. Cumulative distribution of prediction errors. It can be seen that
a regression tree provides more robust prediction levels according to leaf
nodes from a single tree as shown in Fig. 5. RF and XGB predictions are
smoother at the cost of more complex models.

Finally, the XGBoost model was also applied in the Eliko
RTLS UWB positioning solution using the XGBoost C Pack-
age [42]. The system hardware consisted of Intel(R) Xeon(R)
W-2123 CPU @ 3.60 GHz with 16 GB RAM. The prediction
time delay was approximately 1 ms.
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TABLE VI
SINGLE ITERATION TIME FOR FILTERING AND PREDICTION.
Min. time Mean Max. Ratio
[ms] time [ms] | time [ms]

KF 0.04 0.04 0.06 1
AKF + XGB 0.68 0.71 0.72 17.75
AKF + RF 14.77 15.49 16.74 387.25

AKF + RT 0.68 0.72 0.9 18

EKF 0.12 0.14 0.21 35

V. CONCLUSION AND DISCUSSION

In this article, it was investigated how different features of
ranging residuals and coordinate calculation can be used in
UWB-based positioning integrity estimation. These features
were described through statistical metrics like those used in
literature as well as several novel ones. The goal was to
use different ML methods to select features with the biggest
informational gain and based on these select features, predict
end coordinate offset from true value. Lastly, this error was
used as a measure of uncertainty in a coordinate filtering
scheme and compared with non-ML-driven filters. It was
shown that ML models provide significant improvement in
terms of accuracy and precision in both 2D and 3D posi-
tioning. Overall statistics show that ML-driven filtering has
approximately 0.1 m less MLE and 0.3 m smaller DRMS than
compared to ordinary KF in 2D positioning. All of the tested
methods were also compared in terms of processing time. ML-
driven methods presented a significant delay when compared
to ordinary coordinate filtering due to added model-based
prediction. However, the processing time was adequate to be
used in a high update rate (e.g., 10 Hz) positioning system.
Additionally, it was seen how the regression tree algorithm
has approximately the same amount of delay as a much more
complex XGBoost, which consists of 150 consecutive boosting
trees. Algorithm runtime may be related to the ML library’s
implementation, hardware specification, and efficiency of the
code. Therefore, the actual implementation in a dedicated
RTLS system might result in an even smaller processing delay.
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ABSTRACT This article presents a novel machine learning (ML) augmented sensor fusion scheme for
seamless indoor-outdoor positioning using ultra-wideband (UWB) and global navigation satellite system
(GNSS) sensors. Dilution of precision (DOP) is a common metric that describes the level of geometrical
uncertainty and is often applied in sensor fusion schemes. However, it does not fully reflect other factors
that may influence positioning integrity, such as signal quality, pseudorange error, or the number of
servicing nodes. An incorrect estimation of sensor uncertainty may significantly affect the precision and
robustness of individual sensors and their fused positioning solution, especially in indoor-outdoor transition
zones, where positioning is most challenging. Therefore, this article proposes a sensor fusion scheme
augmented with two distinct extreme gradient boosted (XGBoost) ML models for estimating UWB and
GNSS positioning uncertainties. Trained using real-life datasets, these models have the advantage of
considering an ensemble of features rather than a single parameter to estimate the uncertainty of the
current coordinate. In contrast to sensor fusion solutions, which implement only highly accurate RTK
fixed solution mode, the GNSS model can operate with different correction qualities as well. The proposed
scheme was applied on a moving testbed with UWB and GNSS sensors while relying on the ML models
to enhance the coordinate filtering. The results show that the ML-based approach can improve seamless
transition between indoor and outdoor areas with almost no sensor dropouts with a mean positioning error
of 0.16 m and a maximum error of approximately 0.5 m.

INDEX TERMS Coordinate uncertainty estimation and filtering, indoor and outdoor navigation, machine
learning, seamless UWB and GNSS positioning, sensor fusion.

I. INTRODUCTION

SING positioning sensors to achieve an accurate

and precise end coordinate of an object indoors,
outdoors, or between those areas is a challenging task. The
performance of these systems is highly dependent on the
operational environment. For example, the global navigation
satellite system (GNSS) performs well in outdoor open-sky
areas with unobstructed reception from servicing satellites.
On the other hand, the signal from satellites is usually
severely degraded indoors or in urban areas, making GNSS
positioning challenging [1], [2], [3]. Similarly, considering

an ultra-wideband (UWB) based positioning system, it is also
intended to work within an area serviced by a network of
UWB anchors [4]. UWB systems typically employ radio-
frequency (RF) signals in a frequency range between 3.1 GHz
to 10.6 GHz and a bandwidth greater than 500 MHz [5], [6].
The latter attribute makes the UWB signal more robust
in the presence of multipath effects and less susceptible
to interference when compared to other RF-signal-based
positioning systems [4], [7], [8]. Usually established indoors,
the UWB-based system provides an alternative positioning
solution in GNSS-denied environments.

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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For a positioning solution that is capable of locating an
object both indoors and outdoors with a seamless transition
from one environment to another, the system would need
to incorporate information from both indoor and outdoor
positioning sensors. Based on numerous works presented
in the literature, it can be seen that achieving a reliable
transition between the two environments is still a challenge.
The problem arises when moving positioning sensors from
one operational environment to the other (e.g., indoors to
outdoors). As the signal quality of one positioning sensor
degrades, the error of the sensor coordinates increases. On
the other hand, when transitioning into an arca dominated
by signals of the other sensor, the positioning uncertainty of
this positioning system decreases with an increase in signal
quality. While seamless indoor-outdoor positioning accuracy
and precision may be enhanced by implementing additional
sensors (e.g., inertial measurement unit (IMU) or wheel
sensor), the end coordinate still depends on the integrity
of each individual positioning sensor. Therefore, the current
article seeks to enhance the seamless coordinate accuracy
and precision using only information from UWB and GNSS
Sensors.

In a seamless positioning system, one of the main chal-
lenges is to determine the uncertainty of the end coordinate
in the transition zone. While both indoor and outdoor sensors
are operating at the edge of their operational area, it is
still necessary to estimate their uncertainty. An appropriate
integrity parameter in a coordinate filtering scheme (e.g.,
Kalman filter (KF)) may significantly improve seamless
transition from one operational area to the next. Coordinate
solutions from different sensors would be given weights
based on their positioning integrity, thereby increasing bias
toward the solution with less uncertainty.

In the literature, there are different approaches to deter-
mining this uncertainty. For example, Zhang et al., proposed
to use the circular error probable (CEP) metric for the
indoor UWB network, while positioning error from global
positioning system (GPS) was described as the difference
between current GPS measurement and the estimate of the
integrated magnetic, angular rate, and gravity (MARG)/GPS
solution [9]. They reported an average positioning accuracy
of approximately 3 m. As CEP is primarily used to evaluate
the precision of stationary points, it would be difficult to
use this metric for a moving object. Furthermore, as pointed
out by Lv, Wang, Jin, and Shen, this method needs to
know the prior error distribution of the UWB system in
the deployment area. Additionally, the positioning systems
are switched based on values presented by GNSS horizontal
dilution of precision (HDOP) and UWB CEP threshold,
which may not guarantee smooth and stable trajectories in
the transition area [10]. The literature shows that dilution of
precision (DOP) is often used as a parameter in determining
the uncertainty of positioning. Using the estimated position,
the DOP value indirectly shows the level of geometrical
uncertainty in an area relative to servicing nodes (e.g., GNSS
satellites or UWB anchors) [11]. Considering a coordinate
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filtering scheme with two sensors, the one with a larger
DOP value would be treated as more imprecise compared
to another sensor [12]. Lv et al. proposed to use HDOP
in their seamless positioning solution that consisted of
GNSS real-time kinematics (RTK), UWB, IMU and wheel
sensor [10]. They achieved 8 cm static positioning accuracy
and a stable transition between indoor and outdoor areas.
Yao et al. used HDOP for UWB and carrier-to-noise ratio for
GNSS as weights in a tightly coupled GNSS/UWB/inertial
navigation system (INS) positioning scheme with federal
filtering, achieving approximately 10 cm horizontal accuracy
in the transition area [13]. Zhu et al. developed an integrated
positioning strategy using GNSS, UWB, dead reckoning
(DR), and visual map matching (VMM) with HDOP-
based uncertainty weights for GNSS and UWB, achieving
approximately 0.8 m overall horizontal accuracy [14].

However, it can be argued that DOP alone does not
provide enough information about positioning uncertainty.
For example, the accuracy of the GNSS positioning depends
on three types of errors. Firstly, there are receiver instrument
errors, which may influence the performance of positioning
precision. Next, there are errors caused by the signal
propagation path. These include ionospheric and tropospheric
delays as well as multipath effects. Finally, there are errors
caused by the space segment, including satellite ephemeris,
clock drift and position errors related to the geometry of
constellations. Only the receiver’s position relative to orbiting
satellites can be observed through dilution of precision
values [15], [16]. It can be seen that DOP describes only a
small part of the entire ensemble of error sources. Therefore,
sensor fusion solutions, incorporating only a single parameter
of error (e.g., HDOP), may lack sufficient data to fully
describe positioning errors. Moreover, the data interface of
the GNSS receiver may output many other parameters such
as the number of servicing satellites, age of correction,
deviation of position error, correction quality, etc., which
may also be considered.

The sources of error for UWB positioning systems
may be analyzed similarly. Although not as susceptible to
propagation path effects, the UWB positioning quality is
affected but not limited by factors such as the number
of servicing anchors, their vicinity to the tag, impairments
caused by non-line of sight (NLOS), and suitable anchor
layout geometry [7], [11], [17].

Geofencing is another method that could be used to
switch between indoor and outdoor positioning systems.
For example, Wang et al. proposed a tightly coupled
GNSS/UWB/INS/Map integration scheme for autonomous
vehicles [18]. Indoors, the system compares object position
relative to the map and makes observations of UWB signal
occlusions (blockage between the UWB anchors and the
tag) to reduce NLOS errors, thereby improving seamless
transition between indoor and outdoor areas. Di Pietra,
Dabove and Piras suggested to use geofencing as a trigger
to switch positioning sensors between indoor and outdoor
areas in a pedestrian navigation scheme with GNSS, UWB,
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and INS sensors [19]. While geofencing has advantages
in discarding erroneous indoor or outdoor positioning data,
it can be argued that several disadvantages exist. Firstly,
while in a transition area, the end coordinates of an indoor
or outdoor positioning sensor might be cut off too soon,
as reception of these sensors usually extends a significant
distance into their adjacent operational area. Secondly,
geofencing cannot describe uncertainty of the positioning
coordinate. Lastly, this method requires prior knowledge of
the operational area, usually in the form of a predefined map
or track making the solution area-specific and cumbersome
to implement.

In contrast to the aforementioned methods, this paper
presents an alternative approach in estimating the positioning
uncertainty using machine learning (ML). One of the main
advantages of ML-based approaches is the ability to make
decisions effectively using observed data without explicit
mathematical formulation [20]. Compared to traditional
statistical methods, ML techniques enable the identification
of complex dependencies in data that may not be apparent
through exploratory data analysis. The main contributions of
this paper are as follows:

o This article proposes a machine learning (ML) aug-
mented complementary sensor fusion solution for GNSS
and UWB positioning systems. The extreme gradient
boosted (XGBoost) models incorporate a combination
of features that could provide a more comprehensive
estimation of coordinate uncertainty compared to single
parameter solutions. These features include ones used
in the literature as well as parameters that, to the best
of author’s knowledge, have not been applied before.
For example, when DOP is a parameter commonly used
as a sole indicator of positioning uncertainty, then in
this article it is just one of many features used in both
the GNSS and UWB ML models. The models’ output
provides an estimate of the sensor’s true coordinate
offset and is used as measurement uncertainty within
the coordinate filtering process.

o The GNSS ML model has been trained using data with
different correction qualities: differential GPS (DGPS),
floating-point RTK, and RTK fix. Such an approach
contrasts with other works that only consider highly
accurate RTK fix data or propose tightly-coupled fusion
where the RTK floating-point ambiguities are solved
within a dedicated algorithm [10], [21], [22], [23].

o The GNSS and UWB ML models were trained on
data collected in real-life industrial and commercial
buildings. For unbiased results, the obtained models
were tested in a separate environment. Therefore, it may
be suggested that this solution does not require prior
knowledge of the deployment area.

The solution in this article can be considered as
semi-loosely coupled GNSS and UWB fusion. UWB coor-
dinates and features are extracted from raw UWB ranging
information making it a tightly coupled part of the solution.
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On the other hand, GNSS sensor features and coordinates
are extracted from the readily available National Marine
Electronics Association (NMEA) messages with no need for
feature and coordinate calculations. Therefore, the GNSS
sensor is loosely coupled, in contrast to tightly coupled
solutions, which rely on extracting pseudorange data from the
GNSS receiver. Moreover, the ML augmented sensor fusion
could be potentially used with off-the-shelf RTK devices,
provided that these output appropriate features for the ML
model.

The UWB ML model was trained based on data gathered
at three different indoor environments, which contained a
UWB anchor network. The GNSS ML model was trained
based on data collected at a single location, which included
outdoor, near-building, and indoor areas. Both models were
trained and tested using the XGBoost ML library [24]. The
two models were then used to estimate the offset from
the true coordinate for the respective positioning sensor.
These estimates along with GNSS and UWB coordinates
were then combined using measurement fusion. Finally, the
fused values were then applied in a coordinate filtering
scheme of an Adaptive Kalman Filter (AKF). In essence,
the merit of using a ML model is to incorporate more than
one feature to enhance the estimation of uncertainty of the
respective sensor, thereby improving end coordinate accuracy
and precision in a multi-sensor positioning solution.

The paper is organized as follows: Section II describes
end coordinate estimation for UWB and GNSS localization
as well as features used in both models. Section III gives an
overview of data collection, ML model training, validation,
and testing. Section IV describes the application of the ML
uncertainty estimate in sensor fusion and coordinate filtering.
Section V describes testing equipment, area, and test results.
The article is concluded in Section VI.

Il. COORDINATE ESTIMATION AND FEATURES

This article proposes a UWB and GNSS sensor fusion
algorithm that employs ML-based positioning uncertainty
estimations. As stated in the introduction, accurate coordinate
uncertainty estimation has a central role in achieving an
accurate fused coordinate, especially in situations where
the integrity of one or several sensors is compromised.
The general flowchart is shown in Fig. 1 and comprises
of multiple steps. The GNSS outputs geodetic coordinates
as well as GNSS RTK-specific features for the ML model.
The global coordinates are transformed into a local frame
of reference using the East-North-Up (ENU) method.

On the other hand, the UWB sensor outputs only ranging
information, which is used to calculate UWB tag coordinates
using multilateration with a non-linear least squares (NLS)
approach. The features of the UWB ML model are calculated
based on the NLS solution and initial ranging information.
As each ML model produces a separate estimate for
uncertainty, these estimates are merged with covariance
fusion techniques. Local coordinates would be fused and
weighted based on ML predictions. Lastly, fusion output is
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FIGURE 1. Flowchart of UWB and GNSS ML augmented sensor fusion. The dashed
box represents the author’s contribution in developing two distinct ML models for
respective sensor uncertainty Sensor and their dy

changing position uncertainties are fused and filtered to produce the end coordinate
at the output.

of a 2D tri i h

FIGURE 2. with inaccurate range
measurements. The difference the di to the p d; and
the actual measured range d; results in a residual Ad; that can be used in estimating
positioning uncertainty [27].

filtered with an adaptive Kalman filter (AKF) to produce the
final coordinate estimate.

A. UWB LOCAL COORDINATE CALCULATION

Estimating the position of the UWB tag, regarding surround-
ing anchors, represents a problem of multilateration. Fig. 2
shows an object on coordinates (x,y) in the vicinity of
three anchors denoted with (x;, y;). Distance measurements
d; from each individual anchor can then be used to estimate
the tag’s position. Usually, to obtain a solution in 2D
space, at least three-, and in 3D space four anchors are
required [25]. Additionally, the geometry of the anchor lay-
out may influence positioning results. For example, anchors
positioned in a straight line may produce flip ambiguity with
possible solutions on either side of the line [26]. Without
any measurement errors, d; = 21,- and the least squares
(LS) method provides a solution at the intersection of the
three circles [28]. However, real-life positioning is usually
impacted by ranging noise and NLOS, thereby requiring
the application of optimization techniques [8], [29]. In this
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article, the 3D end coordinate of the tag is first estimated with
LS and then further optimized with a non-linear least squares
(NLS) approach by minimizing the objective function:

N
2
%, 3,2 = argmin Z((xi — 02+ 0=+ @ -9 - d12>

Rl
(eV)

where x, y and z are the coordinates that provide the
smallest error. Detailed LS and NLS calculation steps are
explained in different works by authors such as Guvenc and
Guillory [25], [30].

The difference between a measured distance d; from the
respective anchor, and distance d; from the estimated coor-
dinate (x,9,2), is represented as a ranging residual Ad; as:

Ad; = d; — d. )

In this work, it is suggested that ranging residuals and
their statistical values are used in the UWB ML model to
indirectly describe UWB positioning integrity.

B. FEATURES OF UWB ML MODEL

The UWB ML model estimates coordinate uncertainty based
on statistics of ranging residuals, coordinate optimization
techniques, and geometrical integrity. The ensemble of
features used by the model is following: LS/NLS difference,
sum of squares of ranging residuals, sum of squares of
positive ranging residuals, residual variance, number of NLS
iterations, position DOP (PDOP), mean of residuals, and
variance of positive residuals. Feature calculation equations
are given in the author’s article about ML-based UWB
positioning integrity estimation [27].

C. GNSS LOCAL COORDINATE CALCULATION
East-North-Up transformation is a method of projecting
geodetic coordinates onto a local flat tangent plane. For
example, the geodetic coordinates extracted from the GNSS
receiver can be transformed onto Cartesian plane, which
is more intuitive, and allows to make distance calculation
using Euclidean geometry. This projection is practical for
establishing a unified indoor-outdoor reference frame in
small areas. To define the projection, it is needed to specify
the point of tangency (origin). That location becomes the
center of projection and is usually the center of the project
site [31].

The transformation is twofold. Firstly, the geodetic latitude
¢, longitude A, and height / values are converted into Earth-
centered, Earth-fixed (ECEF) coordinate system [32]:

2
a
N(¢p) = , 3
@ Ja?cos?¢ + b?sinZ¢ @
X = (N(¢p) + h)cos ¢ cos A, “4)
Y = (N(¢p) + h) cos ¢ sin X, (5)
2
Z= (%N@) + h) sing, 6)
a
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TABLE 1. Features from NMEA messages [33].

Message | Field | Description Symbol | Example
SGPGGA | 7 GPS quality indicator X 4
SGPGGA | 8 Number of satellites in use XX 11
SGPGGA | 9 Hori.Z(?mal dilution of x L1
precision
A f ~ t At 1
SGPGGA | 14 ge of correction data (in « g
seconds)
RMS value of the standard
SGPGST | 3 deviation of the pseudorange | X.x 2.7

measurements

Standard deviation of
SGPGST | 7 . X.X 1.2
latitude error (m)

sGPGST | 8 Smnfiard deviation of x 3
longitude error (m)

$GPGST | 9 Sta.nda.rd deviation of X 45
altitude error (m)

where a and b are Earth’s equatorial and polar radii
respectively and X, Y, Z represent ECEF coordinates. This
transformation would be done using geodetic coordinates of
both the point of interest (e.g., GNSS rover) and point of
origin (e.g., GNSS base station), denoted by X, Y),, Z, and
X,, Yy, Z, respectively. Next, these values are shifted with
regards to the point of origin. The vector values (E, N and
U) from the origin to the point of interest are calculated as:

—sinA, CoS Ay 0

Ry = | —sin¢g,cosr, sing,sinr, coseg, |, (7)
| COS¢oCOShy  COSPy sinl, sing¢,
(X, — X

Ry=|Y,—-Y, |, (8)
| Zp — Zo
[E

R xRy = | N |, &)

LU

where R, and Rg mark the rotation and shifting matrices
respectively. ENU coordinates for the point of origin are
(0, 0, 0) and the length between the origin and point of
interest can be calculated with the Euclidean distance for-
mula. ENU method satisfies the need to map the coordinates
in a small area on the Earth as it conforms so nearly to a
plane that distortion on such a system is negligible [31].

D. GNSS FEATURES

The GNSS receiver used in this research outputs data with
the following NMEA 0183 message headers: $GPGGA,
3GPGST, $GPZDA, $GPRMC and $GPVTG. Table 1
presents the fields considered as most relevant in describing
positioning quality and therefore applied in GNSS ML
model training. As mentioned in the introduction, the GNSS
features can be extracted from the serial interface of the
receiver and require no additional calculations. The GNSS
device used in this research operates with three correction
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states, which indicator can be extracted at $GPGGA field
7. These corrections include DGPS (value 2), floating-point
RTK (value 5) and fixed RTK (value 4).

DGPS is an extension of GPS technology, based on
satellite and terrestrial communication. A station with a
known location is considered as a source of reference,
which communicates additional data to the receiver to
reduce localization error. The idea lies in determining errors
related to pseudorange observables and is calculated by
comparing the value from the GNSS receiver and the
value computed using the coordinates of the satellites
and the reference station [34]. In urban areas, the DGPS
method may provide a positioning accuracy lower than
10 m [16].

GNSS RTK is a precise positioning method capable of
delivering cm-level accuracy. By leveraging simultaneous
carrier-phase measurements from both the GNSS base station
and the receiver, it implements differencing techniques to
eliminate signal phase biases, clock offsets as well as
tropospheric and ionospheric errors. A key challenge in RTK
is resolving the integer ambiguity, which represents the exact
number of wavelengths between a satellite and the receiver.
Before the ambiguities are resolved, the GNSS receiver
uses floating-point estimates for the ambiguity. Once a valid
integer solution is determined, the receiver transitions to RTK
fixed ambiguity solution mode, resulting in a significantly
improved positioning accuracy [35], [36].

The $GPGST log contains pseudorange measurement
noise statistics that are translated into the position domain
to give statistical measures of the quality of the position
solution. This log reflects the accuracy of the solution type
used in the $GPGGA message, except for the RMS field,
which does not represent carrier-phase-based positions but
the accuracy of the pseudorange position [33].

lll. DATA COLLECTION, ML MODEL TRAINING AND
TESTING
A. UWB MEASUREMENT DATA COLLECTION,
PROCESSING AND MODEL TRAINING
The UWB ML model was trained on data collected
at two different sites which contained an indoor UWB
network: OU Krah Pipes factory and OU Eliko Tehnoloogia
Arenduskeskus office. Based on the Qorvo’s DW1000 chip,
the Eliko real-time locating system (RTLS) was set to operate
on UWB channel 4 [37]. It also uses active-passive two-
way ranging (AP-TWR) protocol with clock offset error
mitigation [38]. The goal was to collect UWB ranging data
at different locations, calculate UWB model features, and
assign separately measured ground truth offset as the ML
model’s response variable. The ground truth was measured in
a local frame of reference with the Leica DISTO S910 laser
distance measurement tool, which assigned 3D coordinates
to UWB anchors as well as the tag. The measurement tool
has a typical accuracy of 1 mm [39].

The model was tested in a separate area at Auroom
Kastre factory (Fig. 3), which contained a network of 15
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FIGURE 3. Industrial site at Auroom Kastre factory. Five of a total of 15 UWB
anchors are highlighted with red circles.
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FIGURE 4. Layout of the GNSS measurement campaign at the Eliko office building.
Static measurements were taken indoors, near-building, and in outdoor areas. For
clarity, only 15 measurement points out of a total 60 measurements are shown in the
figure. The blue and orange traces mark the highly inaccurate and imprecise DGPS
and RTK float solutions taken indoors. Measurements that were taken closer to the
building door, were also more accurate and precise, while points with RTK fix solution
had the best precision and accuracy.

UWRB anchors. Ranging and ground truth data were collected
at 40 different points around the factory. Detailed maps
of UWB measurement campaigns and ML model training
steps can be seen in the author’s publication concerning
UWB coordinate corrections with ML techniques [27]. In
the current article, the XGBoost ML model was used to
estimate the uncertainty of UWB positioning using features
mentioned in Section 1I-B.

B. GNSS MEASUREMENT DATA COLLECTION

GNSS measurement data were collected with the Fieldbee
L2 RTK receiver at an office building site, as seen in
Fig. 4 [40]. Before measurement collection, the RTK base
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FIGURE 5. Histograms for all three GNSS correction qualities taken during the
measurement campaign.
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FIGURE 6. GNSS data processing flowchart.

station was set up near the test site and assigned with
pre-measured geodetic coordinates. Ground truth coordinates
were measured in a local frame of reference with the
Leica DISTO S910 measurement tool, which had line-of-
sight (LOS) with all the measurement points. The goal was
to take static measurements in different environments: in
obstructed, semi-obstructed, and open-sky areas. In summary,
GNSS measurement data were recorded for 30 seconds at 60
different measurement points with a 10 Hz update rate. Data
distribution regarding the three correction qualities is shown
as histograms in Fig. 5. As expected, when GNSS RTK
solves the integer ambiguities (mentioned in Section II-D), it
has the best accuracy compared to other correction methods.
The floating-point RTK had the largest accuracy range from
approximately 1 m to 15 m. During the measurements, it
was seen that indoors, at the furthest distance from the door,
the main correction method was DGPS, which produced
coordinates with varying offsets ranging from approximately
2 mto 25 m.

C. GNSS DATA PROCESSING AND ML MODEL TRAINING
GNSS data were processed similarly to UWB measurements
and the general flowchart can be seen in Fig. 6. Collected
data were extracted based on features shown in Table 1.
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Also, using measurements from the Leica DISTO S910 tool,
the coordinate offset was calculated and added as a response
variable to the GNSS features. The purpose of the ML model
was to estimate end-coordinate error based on corresponding
data from GNSS features. To ensure unbiased training
data, the measurements and respective response variables
were sampled and divided into three equal-sized subsets,
corresponding to the three correction methods: DGPS, RTK
floating-point, and RTK fix. Lastly, the selected dataset was
mixed and divided into segments for training and testing
with a partition of 80 and 20 percent respectively.

XGBoost was the chosen ML library for model training
and testing due to its proven effectiveness in previous UWB
positioning applications. Its ability to deliver both accurate
and computationally efficient estimations is essential for
high-update-rate positioning systems [27], [41]. The algo-
rithm employs a sequential approach, constructing a series
of gradient-boosted trees. Each subsequent tree is trained to
correct the errors of its predecessor, and the final prediction is
a summation of all individual tree predictions. Furthermore,
in recent years XGBoost has become a popular decision
tree-based ensemble ML technique that has been dominating
applied ML for structured or tabular data and has been suc-
cessfully used for regression or classification by researchers
since its release [42]. Supervised XGBoost learning was
done in the RStudio environment using imported xgboost
library [24], [43].

After data partitioning, 80 percent of the data was used
for 10-fold cross-validation to select suitable hyperparameter
values for the initial model. RStudio provides appropriate
cross-validation train, xgbTree and trainControl functions
with the caret library [44]. The training dataset, which
consisted of collected features and their response variables,
was separated into 10 segments with 1 segment being
the validation set. This approach helps to choose more
generalized hyperparameter values [45]. The main hyper-
parameters for XGBoost were tree depth and number of
boosting iterations [46]. Using cross-validation with the
xgboost library, different XGBoost hyperparameter values
were compared in terms of prediction root mean square
error (RMSE) as shown in Fig. 7. Hyperparameter values
were limited, which can help avoid overfitting and an
overly complex model [47]. Also, it can be seen that a
model with a tree depth of 7 and 100 boosting iterations
is sufficiently accurate, as choosing more than 100 iter-
ations would present no significant increase in prediction
performance.

The hyperparameters, training dataset, and response vari-
ables were then used to build the initial model with the
xgboost function from the ML library. It should be noted
that no prior feature selection was done before model
cross-validation. Alternatively, XGBoost library in RStudio
contains a built-in function xgb.importance to output features
that provide the biggest informational gain in making the
prediction. After establishing an initial model, inherent fea-
tures were ranked in descending order of their informational
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FIGURE 7. Prediction RMSE varies with different hyperparameter values. Tree depth
and the number of boosting iterations were limited to 7 and 100 respectively as these
values provide sufficient prediction accuracy and help avoid overfitting and an overly
complex model.
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FIGURE 8. The prediction RMSE as a function of the number of features. Using
more than 5 features has no significant impact on prediction accuracy and may lead
to overfitting of the model.

gain. Next, by selecting a sequential combination of features,
prediction RMSE was observed to select the number of
features that provide a sufficiently accurate estimation. As
shown in Fig. 8, more than 5 features provide no significant
increase in predicting test set response values. In contrast,
choosing more features may lead to overfitting and an overly
complex model [48]. The final selected features and their
informational gain are shown in Fig. 9.

D. GNSS ML MODEL TESTING

The final GNSS ML model was tested on a dataset,
which was not used in the training process as shown in
Fig. 6. Because of data mixing, the test set also contained
samples with different correction qualities. As can be seen
in Fig. 10, the ML model predicts coordinate offset with
high accuracy. The performance was evaluated with common
regression metrics: RMSE, mean square error (MSE), and
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FIGURE 11. Sample density comparison of ML prediction and test set values for

different correction qualities.

IV. COORDINATE FUSION AND FILTERING

A. COORDINATE AND COVARIANCE FUSION
Measurement fusion is one of the most common data fusion
methods in a system with complementary sensors [49].
Considering the positioning sensors used in this article,
measurement fusion is done for UWB and GNSS coordinates
and their covariances or uncertainty measures. Firstly, using
the predicted estimate yy of the UWB model and y¢ from
the GNSS ML model, their respective covariance matrices
are established as:

)

vy, 0
R=UA:|, (10)
v [Oy?]

82

y. 0
Rg =[S | 11
G[Oy?j (b

Next, assuming measurements with normally distributed
probability density functions (PDF) a joint PDF Rp is
calculated as:

—1

Ry = (R(;_l +RU_]) (12)

Lastly, estimated coordinates Zy from UWB and Z¢ from
GNSS, their respective covariances, and fused covariance are
used to produce fused coordinates as:

Zi=Re(Re™'Zo) + Ru™'Zp)).  (13)

B. ADAPTIVE COORDINATE FILTERING

In this work, an adaptive Kalman filter (AKF) is used
to filter end coordinate estimates with fused covariances.
Considering that UWB and GNSS positioning is done
in different operational environments, with dynamically
changing obstructions and multipath effects for both sensors,
it is required to estimate the positioning uncertainty at
each coordinate update. Furthermore, GNSS positioning
uncertainty is dependent on the correction quality, which also
changes dynamically as was shown in Fig. 4. In essence, the
ML predictions for both sensors drive the filtering process by
dynamically changing measurement uncertainty, i.e., whether
to trust measurement or process. In the current filtering
scheme, the state transition matrix A for position, velocity,
and acceleration was established as:

1A 200 o0
01 At 00 0

A_|00 T 00 of (14
00 0 1 Ar &
00 00 1 Ar
00 000 1

mean absolute error (MAE). Sample distributions of the
test set and corresponding predictions can also be seen
in Fig. 11.
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where At is measurement period of 0.1 s. And process noise
matrix Q as:
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Algorithm 1 Adaptive Kalman Filter

Input: XA(), ik, Py, Q, RFk

Output: X

Initialize A, Py, H, I

Prediction step

for k=1,..,00

1: State prediction )A(k_ = AX;_|

2: Covariance prediction P~ = AP, AT +Q
Correction step

3: Kalman gain Ky = P, Hl (HP; H + Rp,)~!
4: State correction )A(k = ﬁ; + Kk(Zk - HkX,:)
5: Covariance correction Py = P, (I — K¢Hy)
return )fk, Py

end for

A2 A2 AL O 0 0

Ar?

A A1 0 0 0|,

Q=|2 Ar AR A2 | 15)

0 0 0 4 A 4

0 0 0 25 A At

0 0 0 A% Ar 1

where o, is random acceleration standard deviation with a
heuristically chosen value of 10 m/s?. As the filtering is
done only for the x and y coordinates, the observation matrix
is set up as:

(16)

100000
H=[000100]'

The order of steps inside the AKF are shown in Alg. 1.
The initialization coordinates Xo are extracted from the
sensor, which has the lower uncertainty estimate based on the
respective ML model. Py represents the initial state covariance,
which was set as I-100, with I being a 6-by-6 identity matrix.

V. RESULTS
A. TEST SETUP
Tests were conducted at Tallinn University of Technology
using an indoor garage with a 6-anchor UWB Eliko RTLS
system. In the outdoor area a Fieldbee L2 GNSS RTK base
station and a Trimble S6 total station were installed using pre-
measured reference points [40], [50]. Geodetic coordinates
were transformed into the local frame of reference using the
ENU method as explained in Section II-C, with GNSS RTK
base station at local coordinates (0, 0). The UWB tag, GNSS
receiver, and reflection prism of the total station were fixed
to a trolley, which also included a computer for collecting
the positioning data as seen in Fig. 12. The aim was to move
the test trolley from indoors to the outdoor area and return
indoors while simultaneously collecting positioning data from
GNSS receiver, UWB, and total station devices.

The initial total station setup was established using the
resection method with three reference points [51]. These
were acquired using a Trimble R12 GNSS receiver in RTK
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FIGURE 12. Test setup at the campus area of Tallinn University of Technology.

TABLE 2. Positioning systems used in the test.

Eliko RTLS | Fieldbee L2 .
Trimble S6
UWB GNSS RTK
0.01 m + 1 ppm 4 mm + 2 ppm
Accuracy 0.2 m
CEP (RTK fix) and 2” angular
Sample rate | 10 Hz 10 Hz 2.5 Hz
. . . LOS with
Method AP-TWR Real-time kinematic .
reflection prism
Coordinat
oordimate Local Global Global
system

mode with three initializations (60 epochs per measurement).
After establishing the initial base station, the three reference
points were remeasured using the total station for consistent
coordinates, and the reference network was further densi-
fied. The improved network formed the basis for further
validation measurements. By comparing the initial Trimble
R12 and total station measurements, an approximate absolute
accuracy of 10 mm could be assumed for validation surveys.

As can be seen in Table 2, the total station has a sample
rate of 2.5 Hz. In order to calculate correct performance
metrics, sample rates of all systems must match at 10 Hz.
Therefore, extra markers were added to the total station
points through interpolation. Additionally, the UWB tag and
GNSS receiver were positioned with an offset regarding the
reflection prism. Therefore, their output coordinates were
rotated and shifted to match the location of the prism. Since
IMU data was not used during the test, the direction of the
trolley was calculated in post-processing using interpolated
points of the total station. During the test, the collected data
on the two computers were included with a Unix timestamp,
and the system clocks were synchronized against a time-
server at nettime.pool.ntp.org.

B. INTERPRETATION OF RESULTS
An example of a test track can be seen in Fig. 13. Indoors
there is poor GNSS satellite reception and only DGPS

2185



TOMMINGAS et al.: UWB AND GNSS SENSOR FUSION USING ML

20 .
- RTK Fix
18 . RTK Float
‘€16 - DGPS
14 - UWB tag
£12 = UWB anchor Lt
5 o+ e — s s
L 10 o
o L
Z 3 =
6
4
-40 -30 -20 -10 0 10 20
Easting [m]
FIGURE 13. Coordinates from GNSS and UWB sensors taken along the ind ind path with arrows ing the irection. Ti ing from
the building, DGPS and RTK-float solutions are highly i p ing a offset approxi 60 m from the starting point. Returning indoors, GNSS receiver
different correction modes, while retaining a stable trajectory.
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FIGURE 14. GNSS and UWB sensor fusion using HDOP-based uncertainty with AKF for king with all GNSS corrections (DGPS, RTK float, and RTK fix).

corrections are used. This results in highly inaccurate GNSS
solutions up to 60 m away. As the trolley moves out of
the garage, the receiver changes into RTK floating-point
mode and receives RTK fix in a few meters from the
building. When the trolley approaches the building, the
GNSS fluctuates between RTK fix and float modes as the
satellite reception degrades. However, GNSS maintains an
acceptable heading also with RTK float, which does not
deviate much from the heading with the RTK fix. This
test shows that RTK float, while inaccurate indoors, may
contribute accurate positioning information when returning
from the RTK fix state. UWB positioning worked as
expected, providing accurate coordinates indoors, with small
dispersion. However, the positioning quality deteriorated
rapidly when moving away from the anchors.
Measurement fusion was done only with GNSS and
UWB coordinates using two different methods for estimating
uncertainty. The idea was to compare ML-based and HDOP-
based estimation. As stated in the introduction, dilution of
precision is a common measure of uncertainty. However,
as it reflects only the level of geometrical uncertainty, this
article proposed to use a ML model with an ensemble
of features to establish a better estimate for uncertainty.
By using data gathered from the test track in Fig. 13,
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FIGURE 15. GNSS RTK and UWB sensor fusion using HDOP-based uncertainty
i with AKF for king with RTK fix only.

GNSS and UWB measurements were fused and filtered
with two different approaches for measurement uncertainties.
Fig. 15 illustrates measurement fusion with HDOP-based
uncertainties using UWB and GNSS with RTK fix, similar to
works by Lv, Yao and Zhu [10], [13], [14]. HDOP parameter
was extracted from GNSS $GPGGA field 14 and UWB
HDOP was calculated using pseudoranges, anchor positions
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FIGURE 16. The proposed GNSS and UWB sensor fusion with ML-based
uncertainty estimation with AKF using all available corrections.

and tag’s estimated position. At each measurement, the Ry
matrix in the AKF is updated with HDOP values to give less
weight to measurements with bigger geometrical uncertainty.
As shown in Fig. 15 this approach has disadvantages. Firstly,
as only GNSS with RTK fix is used, this fusion leads to
sensor dropouts as seen near the garage door. The track has
gaps when there is no UWB solution and no GNSS RTK fix.
Positioning is restored when the RTK fix is achieved or when
there is a UWB coordinate available. Furthermore, when
all GNSS correction modes are incorporated in the fusion
scheme, then HDOP does not produce a valid uncertainty
estimate for RTK float and DGPS modes. As shown in Fig. 5
and Fig. 14, the coordinate offset may vary significantly, and
the DOP parameter may produce a false estimate for the
uncertainty. Moreover, as weighting is performed for both
GNSS and UWB coordinates, it can be seen how stable
indoor UWB coordinates in Fig. 13 cannot mitigate fused
coordinate error due to highly inaccurate GNSS coordinates
and its uncertainty estimation in Fig. 14.

On the other hand, ML-based uncertainty estimation can
be applied with all GNSS corrections as the model is trained
in different correction modes and conditions similar to the
test area as was shown in Fig. 4. As DGPS and RTK float
present solutions in a wide range, the ML model considers
this information when making the uncertainty estimation. For
example, at the beginning of the test, the ML model assigns
a significant offset to DGPS and RTK float as the features in
the model reflect information of a highly inaccurate GNSS
solution. However, these points are still considered in the
coordinate filtering process and are not discarded. Also,
when returning from the RTK fix state, the ML model assigns
lower weights to the uncertainty as it considers a more
accurate RTK float solution. The result of using the ML
augmented sensor fusion scheme is illustrated in Fig. 16.

C. PERFORMANCE EVALUATION

Table 3 shows overall sensor fusion results with different
approaches. Following metrics were used to evaluate posi-
tioning accuracy and precision: mean location error (MLE),
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TABLE 3. Comparison of different sensor fusion schemes.

Maximum
MLE [m] | RMSE [m]

error [m]

Proposed ML-based tusion 016 018 049

with all corrections

Fusi jith RTK fi

uston Wit X 0.14 0.19 1.29
and HDOP
Fusion with all
. 4.56 9.64 35.32
corrections and HDOP
RMSE, and maximum error [52], [53]:
1 < 2 2
MLE = ~ Z;\/(xr —%) + (=) )
i=

n

RMSE — |1 Z[(xT %)+ (r — jVi)z],

n-
i=1

13

MAX = max<\/(xr — )2+ Or — 5’i)2)- 19

where (x7, yr) are the ground truth coordinates and (X;, y;)
mark the estimated fusion coordinates. In Table 3 it can be
seen how the HDOP-based approach with RTK fix has an
MLE and RMSE at a similar level to ML-based estimation.
However, the former method suffers from sensor dropouts in
the transition area, resulting in a significant maximum error.
Additionally, using HDOP with all available corrections
(DGPS, RTK float, and RTK fix), results in an incorrect
uncertainty estimation leading to a highly inaccurate fused
coordinate.

VI. CONCLUSION

This article investigated how ML-based positioning uncer-
tainty estimation can be used to improve indoor and outdoor
positioning with sensor fusion. A key challenge for any
similar solution is to estimate the uncertainty of each
positioning system (GNSS or UWB) which contributes
positioning data with a certain degree of integrity. While
many sensor fusion solutions employ a single uncertainty
parameter (e.g., DOP), this article considers a combination of
features in a ML model, which helps to improve the overall
uncertainty estimation. Also, this article considers the use
of GNSS correction data with different degrees of quality -
RTK fix, RTK floating-point, and DGPS. While these modes
produce coordinates with varying accuracy and precision,
this data can still be used with ML-based uncertainty
estimates. By leveraging different features from GNSS
NMEA messages, it was shown that the ML model can
identify accurate or inaccurate GNSS corrections and apply
estimated weights in a coordinate filtering scheme of an
AKEF. The results show that ML-based filtering outperforms
the DOP-based approach. Overall, ML-based fusion had an
MLE of 0.16 m, RMSE of 0.18 m, and maximum error
of 0.49 m. Whereas, the DOP-based approach with RTK
fix had respective values of 0.14 m, 0.19 m, and 1.29 m.
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When DOP is used with all available corrections, these
values are significantly higher, as DOP produces inaccurate
uncertainty estimates for the GNSS in indoor and transition
areas. In essence, DOP-based uncertainty estimation is not a
comprehensive parameter since it only describes geometrical
uncertainty. Furthermore, when applying DOP with UWB
and RTK fixed mode only, there are large positioning gaps
in the transition area caused by missing positioning data. On
the other hand, the proposed ML model was trained in all
available correction modes and different operational areas:
indoors, transition areas, and outdoors. This approach makes
UWB and GNSS sensor fusion with ML-based uncertainty
estimation more stable and may further be improved with
additional training data and complementary sensors (e.g.,
IMU, wheel sensor).
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