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1 Introduction
Positioning systems are technologies that can be used to determine the location of anobject in space [4]. These systems provide automatic object location detection, whichis then applied in various other depending technologies and applications [5]. The lastdecades have been marked by continuous innovation and refinement in various indoorand outdoor positioning systems with ongoing research and development paving the wayfor more accurate, reliable, and flexible localization solutions. Although the Global Nav-igation Satellite System (GNSS) has become the industry standard for accurate outdoorpositioning, its unfeasible application in indoor areas has seen the development of al-ternative solutions based on various Radio Frequency (RF) technologies [6]. In particular,Ultra-Wideband (UWB) technology has been widely implemented in positioning solutionsand is considered by many state-of-the-art surveys to be arguably the most promising RF-based solution for indoor positioning [4], [7], [8]. Moreover, combining different position-ing technologies (e.g., indoor and outdoor) into a multi-sensor solution, while preservinghigh accuracy and stability, still remains one of key challenges. This entails extensive re-search and innovation, especially during recent years with advancements in artificial in-telligence and the application of Machine Learning (ML) techniques for improved perfor-mance of positioning technologies. The main advantage of ML-based approaches is theability to make decisions effectively using observed data without explicit mathematicalformulation. Compared to traditional statistical methods, ML techniques enable the iden-tification of complex dependencies in data that may not be apparent through exploratorydata analysis [9]. Similarly, this thesis aims to develop distinct ML models with the goal toenhance object positioning algorithms and therefore improve overall localization perfor-mance with indoor and multi-sensor positioning systems.

On the practical level, this PhD thesis presents industry application-driven research,which sees the use of wireless indoor and multi-sensor positioning systems and enhanc-ing their performance. In collaborationwith Eliko Tehnoloogia ArenduskeskusOÜ, the PhDtopic is based on real-life industry challenges of real-time object tracking. With regardsto wireless positioning, industrial areas are typically cluttered with obstructions betweenUWB sensors, that can significantly affect the positioning performance. Furthermore, pro-duction areas andwarehouses usually extend also to outdoor areas necessitating the needfor fusing the existing Eliko UWB Real-Time Location System (RTLS), with add-on solutions(e.g., GNSS). By using the measurement data gathered from real-life environments, thisthesis aims to enhance the positioning performance for both UWB positioning and multi-sensor networks.
1.1 Ultra-Wideband sensor background

UWB is arguably one of themost precise RF-based technologies for indoor localization andlow-power personal area networks [10]. Compared to other RF-based Indoor PositioningSystems (IPS), UWB is also one of the most accurate non-hybrid positioning technologies,capable of achieving decimeter-level accuracy [11]. In contrast, hybrid positioning systemsoften combine data from multiple sources to improve accuracy and coverage.
The UWB RF signal employs a wide bandwidth, resulting from short, sub-nanosecond-duration pulses in the time domain. This enables superior temporal resolution, leadingto a more accurate time and therefore more accurate distance measurements [8]. Shortpulses also facilitate Time of Arrival (ToA) determination for burst transmission betweenthe transmitter and receiver - a significant advantage over other indoor positioning tech-niques [12]. Additionally, brief transmission of pulses allows for easier differentiation be-
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tween direct and reflected signals [4]. A wide bandwidthmakes the RF signal more robustwith several benefits: it is less sensitive to multi-path effects, offers resistance against sig-nal interference, and allows for high-rate data transmission [13]. Furthermore, the signalcan pass through walls, equipment, and other obstacles except being severely degradedby metallic and conductive liquid materials [14], [15].Due to its low power consumption and short transmission pulses, UWB is well-suitedfor body-centric and wearable networks, minimizing potential health concerns [16]. Fur-thermore, the low-power impulses limit interference with other radio systems [14].The main limitations of UWB technology are its relatively short range, complex in-frastructure and installation, Non-Line-of-Sight (NLoS) challenges, and high cost [16], [17].Providing an accurate position in a large and cluttered industrial indoor area would re-quire a dense network of sensors, which in turn results in high installation costs. Thisapproach contrasts to positioning systems that apply pre-installed wireless infrastructure(e.g., Bluetooth or WiFi networks). Additionally, systems that use Time Difference of Ar-rival (TDoA) with very short RF signal pulses, may experience synchronization overhead,which can necessitate significant synchronization between the anchors [18].A distinctive constraint is also related to the application UWB channel statistics data,which is commonly used for NLoS detection and mitigation schemes. For example, gath-ering and transferring Channel Impulse Response (CIR) information entails in a significantlatency of approximately one second, making it unfeasible to be used in a high updaterate positioning system [19]. This limitation has seen the development of alternative solu-tions, which investigate possibilities of employing raw ranging information for improvingUWB-based positioning. A more in-depth discussion regarding UWB-based features, dif-ferent methods for positioning uncertainty estimation and research gaps is presented inthe related works in Sections 2.6.1, 3.1 and 3.4.Despite these limitations, UWB remains a promising technology for indoor positioningand tracking, with ongoing research aimed at addressing its challenges and expanding itscapabilities.
1.2 GNSS sensor background
GNSS has become the industry standard for accurate outdoor positioning, recognized bysystem integrators as a mature technology. GNSS provides accurate, continuous, world-wide, three-dimensional position and velocity information to users with appropriate re-ceivers [20]. This field evolves continuously, with ongoing research to enhance accuracy,reliability, and service continuity tomeet emerging demands in safety-critical applicationsand location-based services [21].To improve accuracy and precision in operational environments, GNSS incorporatesvarious techniques such as Differential GNSS (DGNSS), Precise Point Positioning (PPP),GNSS Real-Time Kinematic (RTK), and Space- or Ground-Based Augmentation Systems(SBAS/GBAS). The choice of technique depends on factors like required accuracy, infras-tructure availability, and cost. Table 1 shows how these techniques compare in terms oftypical positioning accuracy.However, GNSS positioning is not without limitations, particularly in challenging con-ditions. GNSS radio signals are significantly influenced by the propagation environment[21]. AsGNSS relies on Line-of-Sight (LoS) transmission between the receiver and satellites,any obstructions or impediments can degrade the overall accuracy and precision. Further-more, ionospheric and tropospheric delays, interference, number of servicing satellites,multipath effects, and signal obstructions can further compromise positioning, especiallyin dense urban and indoor areas, often leading to inaccurate estimates or signal loss [24].
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Table 1: Comparison of techniques for improving GNSS positioning performance.

Technique AccuracyDGNSS Centimeter level and up to 10 m [21]RTK Sub-centimeter/Centimeter level [22]PPP Centimeter/Decimeter level [22]SBAS/GBAS Sub-meter/Meter level [23]

It should be noted that, in this thesis, sensor operation environments are defined as in-door, outdoor, and transition areas. The latter marks the zone between indoor and out-door areas (e.g., near the edge of a building).
Degraded GNSS performance indoors or in transition areas is one of the main motiva-tions for research inmulti-sensor solutions. In this thesis, GNSS is used togetherwithUWBpositioning technology to provide seamless positioning awareness regardless of opera-tional area (e.g., indoor or outdoor scenario). Multi-sensor positioning in transition zonesis considered particularly challenging as the positioning performance of both indoor andoutdoor sensors is usually degraded. Furthermore, accurate assessment of the sensors’positioning integrity in different areas is difficult with dynamic changes in positioning con-ditions. Various techniques have been used to estimate GNSS positioning performance insensor fusion solutions. Dilution of Precision (DoP), for instance, quantifies the impact ofsatellite geometry on position error, essentially representing the geometric uncertainty ofthe estimated position. However, GNSS positioning performance also depends on severalother key factors, as mentioned in the previous paragraph. Therefore, one integrity pa-rameter (e.g., DoP) may not be sufficient to comprehensively describe positioning perfor-mance in different operational environments. This thesis investigates different methodsand their limitations in assessing GNSS positioning uncertainty and proposes an alterna-tive approach in the form of an ML model.
Amore in-depth discussion regarding GNSS features, differentmethods for positioninguncertainty estimation and research gaps is presented in the related works in Sections2.6.2, 3.2 and 3.4.

1.3 Problem statement and research questions
As previously described, the methods used for improving the performance of positioningare not without limitations, this motivates the need for further research. For UWB sys-tems, the main problem lies with developing alternative solutions in estimating UWB po-sitioning integrity without the knowledge of channel statistics. Whereas GNSS positioningperformance is significantly affected by different internal and external factors. Therefore,GNSS positioning performance may not be adequately reflected by one distinct feature.Considering the background and motivation of this thesis, the following hypothesis canbe formulated:

"A set of sensor-related features, that indirectly reflect positioning quality, can be
used to develop distinct MLmodels that could give amore comprehensive and accurate
representation of uncertainty for the current coordinate. This estimate could be applied
in adaptive filtering to improve the accuracy and precision of a positioning sensor."

The goal of this thesis is to provide solutions that could improve the positioning perfor-mance of a UWB and amulti-sensor positioning system. Therefore, estimating positioninguncertainty can be considered as one of the key challenges. Furthermore, implementingalternative ML-based methods would lead to identifying relevant subtopics (ST):
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1. ST1 Positioning uncertainty estimation;
2. ST2Machine learning applications in positioning systems;
3. ST3 Coordinate correction with filtering;
4. ST4Multi-sensor positioning algorithms;
5. ST5 Seamless indoor-outdoor positioning.

Based on the hypothesis and relevant subtopics, the following research questions (RQ)are formulated:
1. RQ1 How to assess UWB positioning uncertainty without the knowledge of channelstatistics and is the alternative approach in estimating the uncertainty feasible tobe used in a high update rate positioning system? (ST1)
2. RQ2How to improveUWB coordinate accuracy and precisionwith supervised learn-ing (e.g., Regression Trees, Neural Networks, Support-Vector Machines)? (ST2, ST3)
3. RQ3 How to achieve a more comprehensive GNSS positioning uncertainty estimateto improve the positioning performance? (ST1, ST4)
4. RQ4 How to augment multi-sensor fusion with ML for improved positioning perfor-mance in indoor-outdoor and obstructed environments? (ST4, ST5)

1.4 Thesis organization
The thesis is organized into seven distinct chapters, including this Chapter 1. Chapter 2 isintended to provide the reader with themain theoretical background behind the researchand the contributions. Chapter 3 describes related work in the state of the art. Chapter 4provides the method for ML-based coordinate accuracy classification in UWB positioning.Chapter 5 describes UWB end coordinate correction using ML-based uncertainty estima-tion with coordinate filtering. Chapter 6 discusses the main methods regarding GNSS andUWB ML-augmented sensor fusion. Lastly, Chapter 7 concludes the thesis with a shortsummary, answers to research questions, and potential perspectives for future research.
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2 Theoretical background of thesis contributions
This thesis applies theory from different research areas including geometric and geodeticposition estimation, machine learning, and localization using UWB and GNSS technolo-gies. The following sections describe the background of most prevalent positioning meth-ods and their mathematical models. In addition, theMLmethods and their input featuresused in the contributions (Chapters 4, 5, 6) are explained in more detail.
2.1 Geometric positioning
Geometric positioning can be categorized into three main techniques: lateration, angula-tion, and signal strength-basedmethods [21]. The first twomethods assume LoS propaga-tion between an object and reference stations [25]. Lateration, also known as range-basedpositioning, estimates an object’s position by applying distances or distance differencesfrom multiple reference points and it can be either circular or hyperbolic, respectively.For the latter, distance differences are used based on time delays between signals, whilecircular lateration considers signals Time of Arrival (ToA). Distances d are derived by mul-tiplying signals propagation velocity c by the measured propagation time t:

c · t = d. (1)
Circular lateration depicts ranges as circles (in 2D positioning) or spheres (in 3D posi-tioning), centered at fixed coordinates of the reference points, as can be seen in Fig. 1. Bymeasuring ToA between each previously known reference point and the object, the re-sulting distances di (derived with (1)) and reference point coordinates (xi,yi) can be usedto estimate the position at (x,y). It should be noted that usually, for a single solution in2D space, at least three-, and in 3D space four reference points are required [26]. Further-more, (xi,yi) should not be collinear as this may result in a flip ambiguity with possiblesolutions on either side of the line [27].

(x1 , y1)

(x2 , y2)(x3 , y3)

d2

d1

d3
(𝑥, 𝑦)

Figure 1: A 2D trilateration (a variant of multilateration) scheme showing three reference points at
(xi,yi) and distances di to the object at coordinates (x,y). As the ranges intersect at only one point,
the object’s coordinates can be calculated. This figure illustrates an ideal scenario, without ranging
error. Figure from Publication I.
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Circular multilateration can be described as a system of non-linear equations, which aresolved for coordinates (x,y):
(xi − x)2 +(yi − y)2 = d2

i , i = 1, ...,N, (2)
where N is the number of reference points used in 2D position estimation. This equationcan be augmented with z coordinates for 3D positioning. However, this usually requiresat least four reference points to obtain a unique solution. The main limitation in a ToA-based UWB positioning system is its power inefficiency as the tag has to negotiate ranginginformation separately with each individual anchor in range [28].In hyperbolic lateration, the focus is on using TDoA to determine the relative positionof an object. Unlike absolute ToA measurements, TDoA incorporates time difference be-tween a signal’s arrival at multiple reference points. For each TDoA measurement, theobject’s position lies on hyperbolas with a constant range difference between the mea-suring units [5]. Precisely measured time differences are converted into distances whichcan be visualized as intersecting hyperbolas as shown in Fig. 2. Additionally, in hyperboliclateration, the object’s position may not always be uniquely determined depending onthe geometrical conditioning of the reference points [29]. Multiple hyperbolas can inter-sect at more than one definite point, leading to multiple solutions that could produce thesame set of time differences.

(x1 , y1)

(x2 , y2)(x3 , y3)

d2 - d1

(𝑥, 𝑦)

d3 - d1

d2

d1

d3

Figure 2: An illustration of a 2D TDoA lateration scheme without ranging noise. Time-synchronized
reference points measure the signal propagation time differences from an object. These differences,
converted to distance differences (hyperbolas), are used with the reference point coordinates to de-
termine the object’s location at (x,y).

Mathematical representation of finding the TDoA position at (x,y) is following [5]:
√
(xi − x)2 +(yi − y)2 −

√
(x1 − x)2 +(y1 − y)2 = di −d1, i = 2, ...,N, (3)

where N is the number of reference points.In TDoA lateration, the reference nodes have to be precisely synchronized with eachother as an offset of 1 ns translates to an error of 30 cm [11]. TDoA offers a more efficientapproach to positioning compared to ToA-based systems. Although the latter requiresmultiple transmissions between the anchors and the tag, TDoAuses a single tag broadcast,enabling positioning with significantly lower power consumption [28].
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In the angulation approach, an object’s position is determined at the intersection ofangle lines of bearing i.e., Angle of Arrival (AoA). Each line is formed by the circular radiusfrom a reference point to the object [5]. This method utilizes directional antenna arrays tomeasure the direction of incoming signals [11]. As illustrated in Fig. 3, only two referencepoints with their respective angle measurements are required to estimate the positionin 2D. For 3D positioning, these two reference points need to provide also the elevationangles.

(𝑥, 𝑦)

(x2 , y2)

(x1 , y1)

α2

α1

Figure 3: A 2D AoA scheme without ranging noise. The directions αi of the signal from (x,y) are
measured by directional antenna arrays at (xi,yi), which are then used to estimate the position.

Mathematical representation of finding the AoA position at (x,y) is following [11]:
y− yi

x− xi
= tan(αi), i = 1, ...,N, (4)

However, AoA-based positioning also has some limitations as directional measure-ments require costly antenna arrays [21]. Additionally, with a practical number of anten-nas, the achievable estimated position accuracywith ToA is superior to AoAmethods [30].In UWB-based localization, Received Signal Strength (RSS) can also be integrated forvarious positioning schemes. It can be used for fingerprinting techniques with signalstrength maps with location estimation based on signal characteristics [29]. For instance,a database can store RSS patterns from specific subareas, and the device’s estimated po-sition is determined by matching the current signal pattern to the closest database entry[31]. Additionally, signal strength can be used as a distance estimator in lateration algo-rithms [21], [32]. A pathloss model can be employed to relate RSS to distance, which isthen used in a ranging formula for a lateration scheme [31]. However, RSS is not very suit-able for UWB localization as it does not fully leverage UWB’s significant bandwidth [21].Additionally, implementing pathloss models or storing RSS patterns is cumbersome andarea specific as signal propagation depends on the physical environment. More specifi-cally, changes in the areawith existing obstructionsmay cause the fingerprinting databaseto become outdated. Finally, RSS-based positioning is not meant for accurate positioningbut rather as a means of awareness for location-based services [31].
Considering the superior accuracy of ToA over AoA and better robustness over TDoA,

this thesis applied ToA-based multilateration to estimate the position of the UWB tag.

2.2 Position estimation
While geometric techniques offer an intuitive approach for position estimation in ideal,noise-free conditions, they do not represent a systematic approach using noisy measure-
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ments [29]. In practice, ranging measurements are subject to noise, which results in sig-nificant positioning uncertainty. This scenario is illustrated in Fig. 4, where the objectcan be located in the vicinity of overlapping ranging circles. Such multilateration prob-lem can be solved with different methods such as: analytical, Least Squares (LS), Taylorseries, two-stage maximum likelihood, genetic algorithm, linear lines of position and ap-proximate maximum likelihood (AML) among others [33], [34], [35]. In the performancecomparison by Shen, Zetik and Thoma [35] it was found that for an arbitrary sensor nodetopology, Taylor series method and AML offered accurate location estimation at interme-diate noise levels and provided the best tradeoff between average error and failure ratecompared to other methods. On the other hand, Taylor series method has been criticizedfor its computational ineffectiveness (recursive algorithm) and convergence towards a lo-cal minimum if the initial guess is too far from the true position [35], [36]. Nevertheless,in this thesis Taylor series method was implemented to approximate and linearize thenon-linear equations.
In all the contributions of this thesis, the coordinate calculation of the tag is con-

sidered as a two-step process. Firstly, estimating the initial position of the tag with LS
and then optimizing the solution with a Non-Linear Least Squares (NLS) approach. Both
involve solving the multilateration problem using ToA ranging measurements discussed
in the previous section. Additionally, this thesis considers UWB positioning in 3D space.In Step 1 a set of equations is used to find the initial estimate of the tag’s position
(x̂, ŷ, ẑ):

(xi − x̂)2 +(yi − ŷ)2 +(zi − ẑ)2 = d2
i , i = 1,2, ...,N, (5)

where (xi,yi,zi) is the known coordinates of the i -th UWB anchor and di is the measureddistance between the UWB tag and the i -th anchor. The initial guess of the tag’s posi-tion (x̂, ŷ, ẑ) can be found by performing linearization on (5) and applying the LS method.Firstly, an anchor (xr,yr,zr) with the shortest measured distance to the tag dr is taken asa reference point [37]. Next, the non-linear expressions in all available equations N areexpanded as:
x2

i −2xix̂+ x̂2 + y2
i −2yiŷ+ ŷ2 + z2

i −2ziẑ+ ẑ2 = d2
i , i = 1,2, ...,N (6)

and the reference anchor (xr,yr,zr) equation:
x2

r −2xr x̂+ x̂2 + y2
r −2yr ŷ+ ŷ2 + z2

r −2zr ẑ+ ẑ2 = d2
r (7)

is subtracted from the rest of the expressions.The goal is to rearrange the terms with regard to unknowns x̂, ŷ and ẑ in a way thatsatisfies the following linear model (8) [38]:
Aθ= b, (8)

where

A =−2




x1 − xr y1 − yr z1 − zr
x2 − xr y2 − yr z2 − zr... ... ...

xN−1 − xr yN−1 − yr zN−1 − zr


 , (9)

θ=




x̂
ŷ
ẑ


 (10)
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Figure 4: A 2D trilateration scheme showing fixed coordinates at (xi,yi) and inaccurate pseudor-
anges di. The tag’s location can be estimated in the vicinity of three overlapping circles at (x̂, ŷ).
Figure from Publication I.

and

b =




d2
1 −d2

r − x2
1 + x2

r − y2
1 + y2

r − z2
1 + z2

r

d2
2 −d2

r − x2
2 + x2

r − y2
2 + y2

r − z2
2 + z2

r...
d2

N−1 −d2
r − x2

N−1 + x2
r − y2

N−1 + y2
r − z2

N−1 + z2
r



. (11)

The initial guess of the tag’s approximate position θ has the following LS solution:
θ= (AT A)−1AT b. (12)

However, this position estimate canbe further optimizedwith a non-linear least squaresmodel to provide a more accurate solution. Considering that UWB positioning is done in3D space, then the tag’s estimated position at (x̂, ŷ, ẑ) can be found by minimizing theobjective function:

x̂, ŷ, ẑ = argmin
x,y,z

N

∑
i=1

((xi − x)2 +(yi − y)2 +(zi − z)2 −d2
i )

2 (13)
where x, y and z denote the coordinates that provide the smallest error. In essence, thenon-linear equations are first approximated and linearized using Taylor series. At eachiteration, the gradient of the linearized error function is calculated with Gauss-Newtonmethod.

Renaming the initial guess from the LS solution (12) as TG = (xG,yG,zG), anchor coor-dinates as Ci = (xi,yi,zi), and optimal target coordinates as T̂ = (x̂, ŷ, ẑ), the measured
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distances di are approximated through first-order Taylor series expansion [26]:
di(T̂ )

≈ di(TG)+
∂di(T̂ )

∂ x̂

∣∣∣
TG

∆x+
∂di(T̂ )

∂ ŷ

∣∣∣
TG

∆y+
∂di(T̂ )

∂ ẑ

∣∣∣
TG

∆z

≈ di(TG)+
x̂− xi

||Ci − T̂ ||
∣∣∣
TG

∆x+
ŷ− yi

||Ci − T̂ ||
∣∣∣
TG

∆y+
ẑ− zi

||Ci − T̂ ||
∣∣∣
TG

∆z

≈ di(TG)+
x̂− xi

di(T̂ )

∣∣∣
TG

∆x+
ŷ− yi

di(T̂ )

∣∣∣
TG

∆y+
ẑ− zi

di(T̂ )

∣∣∣
TG

∆z

≈ di(TG)+
xG − xi

di(TG)
∆x+

yG − yi

di(TG)
∆y+

zG − zi

di(TG)
∆z,

(14)

where ||.|| denotes the Euclidean norm and ∆x, ∆y and ∆z are equal to x̂−xG, ŷ−yG and
ẑ−zG, respectively. Considering that∆x,∆y and∆z aremultiplied to first-order derivativeswhen:

Ji =
[

xG−xi
di(xG,yG,zG)

yG−yi
di(xG,yG,zG)

zG−zi
di(xG,yG,zG)

]
, (15)

then (14) can be rearranged into matrix form:

∆dNLS = J




∆x
∆y
∆z


 , (16)

with ∆dNLS representing the difference between measured and estimated distances:
∆dNLS = di(x̂, ŷ, ẑ)−di(xG,yG,zG). (17)

The error corrections∆x,∆y and∆z can be found by solving theNormal Equation as shownin (12) and substituting values accordingly:



∆x
∆y
∆z


= (JT J)−1JT

∆dNLS. (18)

Using the error correction vector, the initial guess coordinates xG, yG, and zG are updatedwith Gauss-Newton iteration until a convergence criterion has been reached. This is usu-ally set as a maximum iteration count or if the values of the error correction vector aresufficiently small [26]. After reaching a pre-determined threshold, the final position esti-mate results as:



xG +∆x
yG +∆y
zG +∆z


=




x̂
ŷ
ẑ


 . (19)

2.3 Ranging residuals
As shown in Fig. 5, a range di can have an offset to the estimated position. Furthermore, itcan be seen that the difference between an individual measured distance di, and distance
d̂i calculated from the estimated coordinate (x̂, ŷ), results in a residual ∆di as:
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Δdi

(xi , yi)

( ො𝑥, ො𝑦)

෠di

di

Figure 5: An inaccurately estimated position at (x̂, ŷ) can result in an offset ∆di between a mea-
sured range di and distance d̂i. The latter is calculated between the reference point (xi,yi) and the
estimated position. The estimated position can also be located beyond a ranging measurement, re-
sulting in a negative residual.

∆di = di − d̂i. (20)
This error can be used to indirectly describe the quality of UWB observations (there-fore the quality of estimated position) [39]. Residual information can also be used in po-sitioning error mitigation schemes. For example, a specific distance can be discarded ora set of ranges can be dismissed if their residual magnitude exceeds a certain threshold.This approach has been used in the state of the art by many authors as will be shownin Section 3.1.1. However, discarding inaccurate ranges may lead to positioning delays oreven dropouts as inaccurate position estimates could be discarded. This is usually causedby severe NLoS conditions in challenging positioning environments.
This thesis proposes an alternative use of ranging residuals. Different statistical fea-

tures of residuals are used in conjunction with other parameters from state of the art,
to describe UWB positioning uncertainty. Moreover, the ensemble of these features is
used in an ML model which predicts the current coordinate offset. This information is
then used in a coordinate filtering scheme to improve positioning precision and accu-
racy.

2.4 Unified frame of reference for multi-sensor systems
Locating an object in a frame of reference requires the use of coordinates, which can beassigned to a specific object of interest. In a multi-sensor RTLS, incorporating both UWBand GNSS positioning solutions, the coordinate systems are mismatched. The UWB sys-tem, primarily designed for indoor environments, operates in a local frame of reference,that has been previously established during the setup of the system. On the other hand,the GNSS system, intended for outdoor operation, provides geodetic coordinates in theformat of latitude, longitude and height, which are based on a conventional terrestrialreference system [22]. To seamlessly track an object both indoors and outdoors, a unifiedreference frame is essential, providing accurate coordinates regardless of the positioningsystem. The usual approach would be to project geodetic coordinates in an area of op-eration, which also contains the local frame of reference. With both reference frames inthe metric scale, the unified frame can be then established with coordinate rotation andshifting operations.In the literature, various methods have been used to establish a unified frame of ref-erence for a sensor fusion solution. For instance, Zhang et al. utilized Gauss-Krüger pro-
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jection shown in Fig. 6, which is a variant of the transverse Mercator projection, for GNSScoordinate transformation [40]. This method is explained in more detail in [41] and [42].The Universal Transverse Mercator (UTM), illustrated in Fig. 7, was the preferred methodof coordinate projection for Di Pietra, Lv, and Rykala in [43], [44], [45], and [46].

Central meridian

Equator

Projected area

Distance to equator

Distance to
central meridian

Transverse cylinder

Figure 6: In theGauss-Krüger projection, a tangent transverse cylinder, which touches along amerid-
ian (yellow line), is used to project the ellipsoidal model of the Earth. The scale distortions grow
rapidly with increasing distance from the central meridian, so the projection width is limited to 3 to
6 degrees [47].

Alternatively, spherical coordinates canbe converted into geocentric Cartesian or Earth-centered, Earth-fixed coordinates, which accurately represent their spherical counterparts[48]. However, these coordinates can be further shifted and rotated onto an arbitrary localtangent plane, typically situated within the region of interest [49] as shown in Fig. 8.This approach, referred to as East-North-Up (ENU) coordinates or local geodetic coor-dinate system, was used in works such as [50], [51], [52], [53], and [54]. The ENU methodsatisfies the need to map the coordinates in a small area on the Earth as it conforms sonearly to a plane that geometric distortion on such a system is negligible [22].The ENU transformation is twofold. Firstly, the geodetic latitude φ , longitude λ , andheight h values (e.g., extracted from a GNSS device) are converted into Earth-centered,Earth-fixed (ECEF) coordinate system [55]:

N(φ) =
a2

√
a2 cos 2φ +b2 sin 2φ

, (21)
X = (N(φ)+h)cosφ cosλ , (22)
Y = (N(φ)+h)cosφ sinλ , (23)
Z =

(
b2

a2 N(φ)+h
)

sinφ , (24)
where a and b are Earth’s equatorial and polar radii respectively and X , Y , Z representECEF coordinates. This transformation would be done using geodetic coordinates of boththe point of interest (e.g., GNSS rover) and point of origin (e.g., GNSS base station), de-noted by Xp,Yp, Zp and Xo,Yo, Zo, respectively. Next, these values are shifted with regard
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Figure 7: In the UTM projection, the cylinder touches along two standard parallels on the Earth’s
surface, reducing distortion near the central meridian. This figure is from [22].

to the point of origin. The vector values (E, N and U ) from the origin to the point ofinterest are calculated as:

Rr =




−sinλo cosλo 0
−sinφo cosλo sinφo sinλo cosφo
cosφo cosλo cosφo sinλo sinφo


 , (25)

Rs =




Xp −Xo
Yp −Yo
Zp −Zo


 , (26)

Rr ×Rs =




E
N
U


 , (27)

where Rr and Rs mark the rotation and shifting matrices, respectively. ENU coordinatesfor the point of origin are (0, 0, 0), and the length between the origin and point of interestcan be calculated with the Euclidean distance formula.
2.4.1 Discussion
As shown in the previous section, a unified frame of reference can be established withdifferent methods. However, due to the Earth’s spherical geometry, projecting it onto aflat plane inevitably introduces distortions. Moreover, different projection methods pro-duce varying levels of accuracy depending on the size of the projected area. Thus, if thegeodetic coordinates of a GNSS receiver are transformed into the local frame of referenceof an indoor system, then inaccuracies will also be present for the outdoor coordinates.Furthermore, these inaccuracies tend to increase with distance from the origin of the
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Figure 8: The ENU method maps spherical coordinates onto a flat tangent plane located at the
project site. It is assumed that the flat plane represents a part of the surface on the sphere in a
sufficiently small area.

projection [47]. An appropriate projection method should consider the application. Forexample, ENU method is often applied in robotics, when coordinate mapping is done ina small area [56]. On the other hand, UTM and Gauss-Krüger methods are suitable formapping and surveying large regions of an area [41]. Additionally, projection algorithmsoften involve computationally intensive operations, including arithmetic, trigonometric,and exponentiation operations, which can contribute to coordinate calculation delays ina real-time sensor fusion system. Lastly, a well-established unified frame of reference canprovide convenient and intuitive coordinates for system operators. For example, if theENU frame is established at the positioning site, the distances and coordinates of objectscan be easily interpreted from amap. In contrast, if the positioning system uses native co-ordinates from a projection (e.g., UTM), themulti-digit numbers may be less user-friendlyfor everyday use.
Considering computational effectiveness, conversion accuracy, and accessible coordi-
nate representation, the ENU method was used in this thesis for GNSS geodetic coordi-
nate conversions. Furthermore, considering geodetic projections in a small area, then
ENU is the most suitable method for this. The theory represented in Section 2.4 is ap-
plied in Publication III for GNSS and UWB sensor fusion.

2.5 ML methods used in the contributions
In recent years, Machine Learning (ML) algorithms have been successfully applied in dif-ferent localization solutions. Themain advantage of such approaches is the ability tomakedecisions effectively using observed data without accurate mathematical formulation [9].Compared to traditional statistical methods, ML techniques enable the identification ofcomplex dependencies in data that may not be apparent through exploratory data analy-sis. While the goal is not to derive an explicit mathematical formula for the data distribu-tion, it can effectively be used to train algorithms to learn the relation between input fea-tures and their response variables [57]. This thesis describes three distinct ML techniques
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that have been used to improve the positioning performance of UWB and GNSS: Regres-sion Tree (RT), Random Forest, and Extreme Gradient Boosting (XGBoost). In essence, MLalgorithms are used to perform supervised learning to train a model using a set of previ-ously established features and their response variables, where the latter is based on pre-measured true coordinate offset. The estimated or predicted coordinate error can thenbe used as ameasure of uncertainty in a coordinate filtering scheme to assign appropriateweights for estimated coordinates.
2.5.1 Regression Tree
Regression trees areMLmethods for constructing predictionmodels from data. Themod-els are obtained by recursively partitioning the data space and fitting a simple predictionmodel within each partition. As a result, the partitioning can be represented graphicallyas a tree-like structure [58]. The algorithm assigns each sample from a dataset into a pre-diction based on the feature attributes of each sample [59]. The decision at a particularnode of the tree, referred to as the split criterion, is typically a condition on one or morefeature variables in the training data. The split criterion divides the training data into twoor more parts with the goal of reducing the level of mixing of variables as much as pos-sible. Each node in the tree predictor represents a subset of data-space defined by thecombination of split criteria in the nodes above it, and the final prediction for a new sam-ple is determined by traversing the tree based on its feature values. Therefore, the treeis constructed as a hierarchical partitioning using supervised instances during the training[60].A simplified example of a Regression Tree is shown in Fig. 9. Let the training set bedefined as T = (xn,yn), with n observations, m features, and response variables yn. Func-tion Fn = (m, tn), splits the data based on threshold tn and feature m into left and rightbranches. Usually, the Mean Squared Error (MSE) is used for quantitative evaluation ateach split. Minimizing over function Fn, the optimal cut is achieved. Since in regressionproblems, the tree structure minimizes the MSE of the predictions, then the tree growingprocess is repeated until no improvement in the loss function (28) is attained [61]:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (28)

Regression Tree advantages:
• The algorithm is based on ordering and splitting the values within each feature,therefore scaling and normalization is not required;
• Visual splits of the data and ordered feature importances are easy to understandand interpret;
• Robust in terms of missing data or outliers;
• Model is built only using observed data without assumptions to data distribution;
• Creating a single Regression Tree and making predictions is computationally fasterwhen compared to tree ensembles.
Regression Tree limitations:
• Regression Trees usually have high variance, which means that small changes todata (e.g., adding samples) can lead to large structural changes in the tree;
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Figure 9: In the Regression Tree, the input value is traversed through a series of nodes, where data
features m are compared to preset thresholds tn at each node resulting in prediction ŷn.

• Without regularization techniques (e.g., pruning, early stopping) there is a high riskof overfitting;
• Reaching a global optimum for the model is not guaranteed;
• Regression Trees can be biased towards the majority class in imbalanced datasets.

2.5.2 Random Forest
Random Forest algorithm, developed by Leo Breiman, combines multiple tree predictors,each built using a randomvector sampled independently and identically distributed acrossall trees [62]. It is an ML method that relies on ensemble learning to address some of thelimitations of an individual Regression Tree model. Instead of relying on a single regres-sion tree, Random Forest constructs a multitude of regression trees using bootstrappedaggregation (i.e., bagging). This involves creating multiple subsets of the training datathrough random sampling, meaning some samples may appear in multiple instances ina subset, while others are omitted. This resampling process helps to reduce variance, akey drawback of single regression trees. Each subset is then used to train an individualregression tree.In order to make predictions on new data, each tree provides its own prediction. Forclassification, the final prediction is determined by a majority vote among the trees. Forregression, the final prediction is the average of all individual tree predictions. RandomForest leverages the collective informational gain of multiple trees, leading to improvedaccuracy and reduced overfitting compared to a single regression tree [63], [64].A simplified example of a Random Forest is shown in Fig. 10. Let the training set bedefined as T = (xn,yn), x ∈ Rm, y ∈ R, with n observations, m features, and responsevariables yn. The input data for each tree is provided through bootstrap sampling, where
n observations are randomly selected with replacements from T . These independent andidentically distributed vectors aremarkedwithθK . During the training, the algorithm splitsthe data at each node, so that the parameters of split functions become optimized to fitwith dataset T . During this step, the regression tree has to make the best split among all
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variables. The splitting process starts at the root and each node applies its own split func-tion to the new input x. Splitting is repeated until a terminal node is reached or when anode contains less than a predefined number of observations. The ensemble of regressiontrees produces K outputs for prediction output ŷK . The aggregation is done by averagingthe outputs of all trees [65].
Random Forest advantages:
• Usually has high accuracy and low bias;
• Low variance when compared to a single regression tree;
• Appropriate for large datasets with high dimensionality;
• Robust regarding missing data;
• Bootstrap sampling is useful when data is limited.
Random Forest limitations:
• Categorical data classification may include bias towards features with more levels;
• Can overfit data if regularization (e.g., pruning) is not used;
• Tree models are more complex and difficult to interpret than single regression tree;
• Large datasets usually produce large number of trees, which can be computationallyexpensive to train;
• Prediction time can be slow as it requires querying each tree in the forest.
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Figure 10: A simplified example of the Random Forest structure. Instead of using a single regression
tree, Random Forest relies on multiple trees generated using bootstrapped training data. Each tree
produces an individual prediction, which is then used to average the result.
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2.5.3 Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost), is a scalable and highly effective end-to-end de-cision tree-based gradient boosting system, which is widely used by data scientists toachieve state-of-the-art results on many ML challenges [66]. Based on the research byChen and Guestrin, XGBoost has been established as an open-source software library thatprovides a regularizing gradient boosting framework for R, Java, Scala, C++, Python, Perl,and Julia [67]. XGBoost represents a variant of Gradient Boosting Machine (GBM) as atechnique used to tackle both regression and classification prediction problems [68].In gradient boosting algorithms, each tree predictor is trained on data, taking intoaccount the success of previous trees in a sequential manner. At each instant, the resultsof the model are weighted according to the outcome of the preceding instant. After eachtraining iteration, the weights are redistributed so that correctly predicted outcomes aregiven a lower weight, and output that is misclassified increases their weights to highlightmore difficult cases. In this way, subsequent learners will focus on the more weightedinstances during their training [68]. XGBoost is an ensemble method where new modelsare created to correct the residuals of errors of prior models as shown in Fig. 11. Thesemodels are then combined to produce the final prediction. For a given data set D = (xi,
yi) with i = 1, ...,n, xi ∈ Rm and yi ∈ R, n observations and m features, a tree ensemblemodel uses K additive functions to predict the output ŷi.

ŷi =
K

∑
k=1

fk(xi), fk ∈ F, (29)
where F is the set of all possible Classification and Regression Trees (CART). At each iter-ation of gradient boosting, the residual will be applied to correct the previous predictionvalue by the kth tree to the ith observation. The tree ensemble model consists of a setof CART-s. XGBoost represents an optimized and efficient implementation of the gradient
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Figure 11: A general architecture of gradient boosting used in the XGBoost algorithm. The colored
boxes are different features, which make up a decision/regression tree. Each subsequent tree im-
proves the previous tree according to errors reflected by the prediction residuals. The summation of
all trees results in a prediction estimate.
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boosting algorithm. Compared to the latter, XGBoost incorporates regularization tech-niques to prevent model overfitting and improve generalization performance. It also uti-lizes first- and second-order gradient information to guide the tree construction process.The algorithm also makes use of parallel tree learning for faster model generation [66].The set of functions used in the model can be learned by minimizing the regularizedobjective function:
L =

n

∑
i=1

l(ŷi,yi)+
K

∑
k=1

Ω( fk), (30)
where

Ω( fk) = γT +
1
2

λw2. (31)
The first term l represents the loss function and it measures the difference between thepredicted value ŷi and response variable yi. The second term Ω represents the regulariza-tion term, which is a factor for measuring the complexity of tree fk with γ and λ being theregularization degrees, which also helps to avoid over-fitting. T and w are the number ofleaves and the vector of score values to each leaf, respectively.In order tominimize the objective function (30), function ft(xi) thatmost improves themodel, is added. If ŷt

i is the prediction of i-th instance at t-th iteration, then by additivemanner of gradient boosting procedures the i-th prediction can also be presented as ŷt
i =

ŷt−1
i + ft(xi). And the objective function (30) as:

L(t) =
n

∑
i=1

l(yi, ŷi
(t−i)+ ft(xi))+Ω( ft), (32)

For optimization, a second-order approximation is applied:
L(t) ≈

n

∑
i=1

(l(yi, ŷi
(t−i)+gi ft(xi)+

1
2

hi f 2
t (xi))+Ω( ft), (33)

where gi = ∂ŷi
(t−i) l(yi, ŷi

(t−i)) and hi = ∂ 2
ŷi
(t−i) l(yi, ŷi

(t−i)) are first and second order gradi-
ent statistics of the loss function, respectively. After removing constant terms, the objec-tive function at iteration t becomes:

L(t) =
n

∑
i=1

(gi ft(xi)+
1
2

hi f 2
t (xi))+Ω( ft). (34)

which is the optimization goal for the new tree [66], [69]. By defining I j =
{

i|q(xi) = j
} asthe instance set of leaf j and expanding the regularization term Ω the objective functionbecomes:

L(t) =
n

∑
i=1

(gi ft(xi)+
1
2

hi f 2
t (xi))+ γT +

1
2

λ

T

∑
j=1

w2
j

=
T

∑
j=1

((∑
i∈I j

gi)w j +
1
2
(∑

i∈I j

hi +λ )w2
j)+ γT.

(35)

For a fixed tree structure q(x), the optimal weight w∗
j for leaf j is found by:
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w∗
j =−

∑i∈I j gi

∑i∈I j hi +λ
, (36)

And the corresponding optimal value as:
L(t)(q) =−1

2

T

∑
j=1

(∑i∈I j gi)
2

∑i∈I j hi +λ
+ γT. (37)

Equation (37) can be used as a scoring function tomeasure the quality of the tree q similarto impurity scores for decision/regression trees. However, this function is derived for awider range of objective functions [66].While in practice it is impossible to enumerate all possible tree structures, a greedyalgorithm, that starts from a single leaf and iteratively adds branches to the tree is usedinstead. The loss function after the splits for the existing tree is defined as:
LS =

1
2

[
(∑i∈IL gi)

2

∑i∈IL hi +λ
+

(∑i∈IR gi)
2

∑i∈IR hi +λ
+

(∑i∈I gi)
2

∑i∈I hi +λ

]
− γ, (38)

where IL and IR are the instance sets of left and right nodes after the split. Additional tech-niques to prevent overfitting, such as weight scaling (shrinkage) and column subsamplingare described in the original XGBoost article by Chen and Guestrin [66].XGBoost advantages:
• Robust to imbalanced datasets;
• Gradient boosting can be optimized on many objective functions, so it can be ex-tended to many different problem spaces;
• Optimized for computational speed;
• Has built-in regularization techniques which help to avoid overfitting and improvegeneralization.
XGBoost limitations:
• Requires rigorous hyperparameter tuning compared to individual Regression Treesor Random Forest;
• Sensitive to overfitting if data is noisy;
• Sensitive to outliers as each subsequent tree is trained to correct errors from pre-vious trees;
• Complex tree models are difficult to interpret than a single Regression Tree.

2.5.4 DiscussionWhile the aforementioned ML methods are only a small part of existing ML techniques,these three methods were used in the contributions presented in this thesis. The reasonfor selecting these distinct methods were the following. Firstly, the goal was to comparedifferent ML methods in terms of their coordinate offset prediction accuracy. This is alsorelated to improvement of end coordinate, as the prediction was used as a measure ofuncertainty in coordinate filtering. Essentially, a more accurate prediction would yield amore accurate and precise end coordinate. Secondly, the comparison was also done with
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regard to computational speed. In a high position update rate positioning system it iscrucial to consider measurement uncertainty at each measurement update. For example,in a UWB system with a 10 Hz update rate, the ML prediction must be done at least every100 ms. Using a large ML model may take a longer time to process and produce a timelyprediction [2]. Therefore, the goal was to compare different derivations of decision tree-based methods to produce the predictions with respect to accuracy and computationaltime. Considering the aforementioned advantages and limitations for each method, asimple Regression Tree would be compared to more complex methods such as RandomForest and gradient boosted trees.
2.6 Features used in the contributions
The following section describes features that were used to train the ML models and toestimate the positioning uncertainty for UWB and GNSS systems.
2.6.1 Features for UWB positioning uncertainty estimationIn order to estimate the uncertainty of a position estimate, theMLmodel relies on distinctestablished features, that have been used during the training. Usually it is done throughincorporating features of low-level data such as channel state information, channel statis-tics, or ranging parameters to find patterns and dependencies between potential featuresand use this information for error detection and mitigation schemes in UWB positioning.In this thesis, the focus is on UWB features primarily related to ranging residuals, whichwas explained in Section 2.3.As was shown in Fig. 5, depending on the location of the estimated position, d̂i may belonger or shorter compared to the individual measured distance di resulting in a positiveor negative residual. A significant change in the magnitude of a residual may indicate thatthe propagation path of a UWB signal is affected by an obstruction [38], [39]. Therefore,residual features were calculated for three different sets: positive, negative, and overallresiduals. Additionally, statistical equations contain averaging to remove the dependenceon the quantity of available residuals.
Residual statistics:

average Sum of Squares (SSQ)
SSQ =

∑
n
i=1 ∆d2

i
n

, (39)
Root Mean Square (RMS)

RMS =

√
SSQ

n
, (40)

mean
x̄ =

∑
n
i=1 ∆di

n
, (41)

Mean Absolute Deviation (MAD)
MAD =

∑
n
i=1 |∆di − x̄|

n
, (42)

standard deviation
s =

√
∑

n
i=1(∆di − x̄)2

n
, (43)

and variance
v = s2, (44)
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where n represents the number of residuals in a corresponding positive, negative, or over-all set (also used as a feature).
Number of residuals in an interval:Small residuals indicate proximity to the NLS solution, whereas large residuals imply er-roneous measurements. By counting the number of residuals in a preset range, it can beassumed whether the NLS algorithm uses accurate measurements as its input. Followingranges were chosen based on overall accuracy of UWB positioning [70], [71]: 0 . . .0.1 m,
0.1 . . .0.2m, 0.2 . . .0.4m, 0.4 . . .0.8m, 0.8 . . .1.6m, 1.6 . . .3.2m, 3.2 . . .6.4m, 6.4 . . .12.8m, 12.8 . . .25.6 m, 25.6 . . .∞ m. The idea was to divide residual magnitudes into separaterange categories. The quantity of residuals in each class could be then used for coordinateoffset classification (used in Publication I).
LS and NLS metrics:These values are associatedwith position calculations as discussed in Section 2.2. The cho-sen parameters include Euclidean distance ∆D between LS (xG,yG,zG) and NLS (x̂, ŷ, ẑ)solutions and the number of Gauss-Newton iterations to convergence nGN . For the lat-ter, there is no implicit equation as the iteration counter is initialized at each coordinateoptimization process

∆D =
√
(xG − x̂)2 +(yG − ŷ)2 +(zG − ẑ)2. (45)

Geometrical integrity of positioning:In a positioning system, Dilution of Precision (DoP) indicates geometric uncertainty of anestimated position relative to servicing nodes (e.g., UWB anchors or GNSS satellites). Itcontains the knowledge of positioning accuracy under specific base station network andscene characteristics [72]. In this thesis, Position DoP (PDoP) and Horizontal DoP (HDoP)metrics were used to reflect the integrity of an estimated position. To calculate DoP, a setof ranging equations (5) can be implemented with pre-calculated end coordinates from(19). By finding partial derivatives with respect to each coordinate similarly as was shownin (14), the result is formulated in matrix form as:

W =




x1−x̂
d1

y1−ŷ
d1

z1−ẑ
d1

1
x2−x̂

d2

y1−ŷ
d2

z1−ẑ
d1

1... ...
xN−x̂

dN

yN−ŷ
dN

zN−ẑ
dN

1



. (46)

Next, the covariance matrix O is calculated from the LS normal matrix:

O = (WT W)−1 =




σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z


 . (47)

Lastly, HDoP and PDoP are calculated from the trace of matrix O as:

HDoP =
√

σ2
x +σ2

y , (48)
PDoP =

√
σ2

x +σ2
y +σ2

z . (49)
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2.6.2 Features for GNSS positioning uncertainty estimation

In order to improve the performance of GNSS positioning in less than optimal signal en-vironments, ML-based GNSS models have been investigated as early as the 1990s. GNSSsensors provide abundant data suitable for various ML models, depending on the specificapplication.
The Fieldbee L2 GNSS RTK receiver used in this research outputs data with the fol-lowing National Marine Electronics Association (NMEA) 0183 message headers: $GPGGA,

$GPGST, $GPZDA, $GPRMC and $GPVTG. Table 2 presents the fields considered by the au-thor as most relevant in describing positioning quality and therefore applied in GNSS MLmodel training.

Table 2: Features from NMEA messages [73].

Message Field Description Symbol Example$GPGGA 7 GPS quality indicator x 4$GPGGA 8 Number of satellites in use xx 11
$GPGGA 9 Horizontal dilution ofprecision x.x 1.1
$GPGGA 14 Age of correction data (inseconds) xx 8
$GPGST 3 RMS value of the standarddeviation of the pseudorangemeasurements x.x 2.7
$GPGST 7 Standard deviation oflatitude error (m) x.x 1.2
$GPGST 8 Standard deviation oflongitude error (m) x.x 3.2
$GPGST 9 Standard deviation ofaltitude error (m) x.x 4.5

The GNSS device used in this research operates with three correction states, whichindicator can be extracted from $GPGGA field 7. These corrections include DifferentialGlobal Positioning System (DGPS) (value 2), floating-point RTK (value 5), and fixed RTK(value 4). It should be noted that the message output of the receiver was limited by
the manufacturer to GP headers only. Therefore, only DGPS could be used during the
tests. The correction modes are explained in more detail in Section 2.7. The receiver alsooutputs the precalculated solution for HDoP ($GPGGA field 9), number of satellites in use($GPGGA field 8) and age of correction data ($GPGGA field 14).

The $GPGST log contains pseudorange measurement noise statistics that are trans-lated into the position domain to give statistical measures of the quality of the positionsolution. This log reflects the accuracy of the solution type used in the $GPGGAmessage,except for the RMS field, which does not represent carrier-phase-based positions but theaccuracy of the pseudorange position [73].
$GPZDA log provides CoordinatedUniversal Time (UTC) anddate information. $GPRMCcontains time, date, position, track and speed data, while $GPVTG log carries track-made-good and relative ground speed values. As these logs do not provide information regardingpositioning quality, then they are not considered as potential features.
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2.7 GNSS positioning correction methods
This section covers the main GNSS coordinate correction methods used in Publication III.These include DGPS, RTK floating-point, and RTK fix modes. In Publication III, a GNSSRTK device was used in real-life measurement campaigns and sensor fusion tests. Theaforementioned correction methods all involve incorporating a GNSS base station on acoordinated control position (unless only relative coordinates are desired), which is thesource of correction signals for the GNSS rover as shown in Fig. 12. The observationsof both GNSS devices must be simultaneous as they must observe the same satellitesand both DGPS and RTK methods rely on real-time communication between the devices[22]. The subsequent sections describe themain principles behind the correctionmethodsused by the device.

ROVER

BASE STATION

Differential correction signal

Figure 12: Differential correction-based GNSS positioning. While both DGNSS and RTK utilize correc-
tions transmitted from a stationary GNSS base station, they differ in their method. DGNSS relies on 
pseudorange differences for coordinate corrections, whereas RTK incorporates carrier-phase obser-
vations.

2.7.1 Principles of DGNSS
DGNSS represents a method of relative positioning, which relies on coded GNSS pseu-dorange measurements. It is an extension of GNSS technology, based on satellite andterrestrial communication, and requires at least two receivers. One is established as a control station at a known location and the other device acts as a rover at an unknown lo-cation. The goal of DGNSS is to determine the errors related to pseudorange observables and is calculated by comparing the value from the GNSS receiver and the value computed using the coordinates of the satellites and the reference station [74]. Since both devices simultaneously track the same codes from the same satellites, many of the errors in the observations are common to both receivers. Therefore, the errors are correlated and tend to cancel each other to some degree [22]. Over the years, DGNSS has been remarkably improved with the possibility of meter- or even submeter accuracy. However, positioning performance is still inferior when compared to corrections with carrier-phase measure-ments. In dense urban areas, the DGNSS method may provide a positioning accuracy lower than 10 m [21].
2.7.2 Principles of GNSS RTK
GNSS RTK is a correction method of determining the relative location between known 
and unknown positions using GNSS carrier-phase measurements. It is capable of pro-
viding cm-level positioning accuracy. The goal is to employ simultaneous carrier-phase
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measurements from both the rover and the base station and correct them in real-time. Differencing techniques are implemented to eliminate signal phase biases, clock offsets and atmospheric errors. Carrier-phase measurement observations depend on fixing the integer cycle ambiguity, which refers to the unknown whole number of cycles of the car-rier wavelengths that have passed between the satellite and the receiver [22]. This is the key challenge in RTK-based positioning. Before the ambiguities are resolved, the GNSS receiver uses RTK floating-point estimates as a rough position estimate. Once a valid in-teger solution is computed, the receiver initiates the RTK fixed ambiguity solution, re-sulting in a significantly improved positioning accuracy [75], [76]. While the idea of using carrier-phase measurements for improving positioning performance was already devel-oped in the 1980s, only after improvement of hardware and data processing algorithms, RTK became more widely used. Real-time positioning systems usually incorporate "on-the-fly" techniques to quickly resolve the carrier-phase ambiguities. This requires a dual-frequency receiver, capable of processing both carrier-phase and pseudorange measure-ments and it is not required for the receiver to remain stationary [22].
Publication III employed the Fieldbee L2 GNSS RTK receiver and base station, which 

are dual-frequency multi-constellation devices capable of DGPS, RTK floating-point, 
and RTK fixed modes [77].The established theoretical framework surrounding different positioning algorithms and ML methods are used extensively in the existing literature. The subsequent chapter gives an overview of various related contributions, reflecting potential areas of improve-ment, and ultimately revealing the specific gaps that motivate the current research.
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3 Related work
The subsequent sections delve into state of the art approaches for estimating positioningintegrity. The sections have been categorized based on sensor application and the spe-cific context of the thesis. Firstly, techniques for UWB-based positioning are presented(Section 3.1), followed by methods for GNSS and multi-sensor systems (Section 3.2), MLapplication in related works (Section 3.3), and a concluding section with research gaps ispresented in Section 3.4. A discussion of each approach is presented at the end of eachsection.
3.1 Integrity estimation for UWB localization
This section provides an overview of the state of the art in integrity estimation regardingUWB localization. As the research presented in the thesis was conducted using ToA-basedUWB positioning, the respective literature is presented. It is considered that UWB-basedpositioning integrity is closely tied to erroneous estimates caused by NLoS between UWBanchors and the tag [78]. Therefore, the following sections explore various state-of-the-art approaches for mitigating and detecting NLoS conditions.
3.1.1 Application of ranging residuals
Distance residual has been extensively used in NLoS identification methods as a measureof inconsistency in localization. In essence, a large ranging residual would indicate NLoSconditions, while a small residual suggests a lower ranging noise, therefore a more accu-rate position estimate.

Chen was among the pioneers in applying ranging residuals to detect NLoS in ToA-based localization using distinct groups of UWB anchors. It was observed that localizationwith LoS noise was consistent whereas the presence of NLoS resulted in larger estimatedresiduals. Furthermore, Chen proposed a Residual weighting algorithm (Rwgh) for NLoSmitigation, which applies a normalized residual as a weight to a position estimate [79].Subsequent research aimed to reduce the computational complexity of this algorithm[80], [81], [82].
Jiao et al. investigated several residual-based algorithms for ToA positioning in termsof their performance in computational complexity and positioning accuracy. The evalu-ated methods included Rwgh, Iterative Minimum Residual (IMR), Select Residual weight-ing (SRwgh), and Lower-Computational-Cost Residual weighting (LCC-Rwgh). It was con-cluded that LCC-Rwgh and IMR algorithms required significantly fewer intermediate least-squares calculations leading to a smaller computational complexity for given number ofrange estimates. However, LCC-Rwgh performance in indoor and outdoor environmentscomes at a cost of robustness as it is susceptible to NLoS errors [83].
Chan et al. developed a residual test to simultaneously determine the number ofLoS anchors, identify them, and utilize only these nodes for localization. Residual testis based on the principle that normalized residuals of LoS measurements follow a centralChi-Square distribution. While tested in simulation studies with specific anchor geome-try, NLoS conditions, and ranging errors, the proposed test determined correct numberof LoS anchors over 90% of the time [84]. Discarding an invalid position estimate wasimplemented also by Li andWang in their research concerning a factor graph-based UWBpositioning algorithmwith an improved Tukey robust kernel. They suggested that the sumof residuals over a certain threshold would indicate an invalid positioning result. By uti-lizing only estimated positions with small residuals, a graph optimization algorithm wasimplemented to retain only accurate observations at different moments. The authors im-
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plemented their scheme on two distinct trajectories achieving a mean positioning errorof 0.66 m and 0.19 m respectively [39].
Liu et al. investigated NLoS detection and mitigation using the Sum of Squares (SSQ)of distance residuals in an analysis of wireless localization in NLoS conditions. A high SSQvalue, compared to a certain threshold, would indicate inconsistency in localization [85].Silva and Hancke expanded on this concept by considering additional statistical featuresof ranging residuals including mean, maximum, and standard deviation of sets of residu-als. However, due to high correlation between these features, only SSQ was applied in anaive Bayes classifier to identify NLoS with significant accuracy. The authors carried outsimulations with different sets of UWB anchor placements achieving an over 90% NLoSclassification accuracy [86].
As demonstrated in the study by Jiao et al., utilizing residuals as a measure for posi-tioning inconsistency, significantly reduces positioning errors. However, this improvementcomes at a cost of increased computational complexity, which grows almost exponentiallywith the number of input distances [83]. Some approaches that use residuals to discrimi-nate LoS or NLoS conditions, can also present limitations. Prematurely discarding anchorswith NLoS or avoiding position estimates altogether can lead to latency issues especiallywhen considering dynamic positioning. For example, as stated in Section 2.1, usually fora single solution in 2D space, at least three,- and in 3D space four reference points arerequired. Discarding one anchor could cause solution ambiguity. Furthermore, presetthresholds for residual magnitudes imply a non-generalized solution. For instance, a pre-set thresholdmay vary in different environments and dynamic NLoS conditions. It is worthconsidering that anchors with NLoS may still provide valuable ranging information for fil-tering purposes and should not be completely disregarded.

3.1.2 Application of channel impulse response
Detecting NLoS conditions between the UWB anchor and tag, and mitigating its effectson positioning integrity has been a central topic for various authors. By analyzing theRF signal characteristics in the UWB propagation channel, it is possible to identify LoSand NLoS scenarios. Channel Impulse Response (CIR), which describes the propagationpath of a signal, can be used to assess the amplitude and phase of a particular multipathcomponent [87]. Commonly, researchers combine NLoS identification techniques withmitigation strategies to enhance UWB positioning performance.

Guvenc et al. investigated NLoS identification and mitigation through the use of am-plitude and delay statistics of the Multi-Path Components (MPC) in the UWB channel. Itwas stated that log-normal random variables can be used as a model to describe thesestatistics. A proposed joint likelihood ratio test was applied in a simulation to estimate ifa given signal has LoS or NLoS with over 90% success rate. Subsequently, LoS likelihoodvalues were incorporated into a Weighted Least Squares (WLS) algorithm to mitigate theNLoS effects and significantly improve average location error and measurement variance[38].
Venkatesh and Buehrer proposed a statistical NLoS identification technique based onthe hypothesis-testing of received signal parameters in the UWB channel. By exploitingthe statistics of ToA, RSS, and the Root Mean Squared Delay Spread (RDS) they accuratelydistinguished between LoS/NLoS signals. Identified NLoS range estimates were then usedto define a feasible region for potential solutions effectively mitigating range bias. Theirproposed solution, employing a LS estimator with both LoS and NLoS ranges, achieved alocalization accuracy of 0.5 m, outperforming other approaches that relied solely on LoSranges or combined and biased LoS/NLoS ranges [88].
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García et al. presented a robust UWBpositioning solution designed for complex indoorenvironments with prevalent NLoS conditions. The system applied an NLoS detection andmitigation algorithm based on the skewness of the estimated CIR and further refining theNLoS errors with an Extended Kalman Filter (EKF). Upon NLoS detection, a fixed value wasadded to the measurement noise covariance value, effectively increasing the confidencetowards LoS measurements. Real-life tests demonstrated that their solution improvedpositioning RMSE by approximately 67% compared to a solution without NLoS mitigation[89].
Machine Learning techniques have also been widely applied for LoS/NLoS identifica-tion and mitigation schemes, as it is a powerful tool to model dependencies between CIRparameters and respective response variables. These methods in terms of UWB position-ing are described in more detail in Section 3.3.2.
CIR offers a direct and accurate representation of actual UWBchannel conditions,mak-ing it a valuable tool for identifying NLoS scenarios. Additionally, CIR can be extracted foreach tag-anchor pair during individual ranging sequences, eliminating the need for previ-ous CIR data [11]. Furthermore, ML algorithms are well-suited to create models based onvarious statistical values derived from large real-world datasets.
However, it can be argued that CIR-based approaches have also certain limitations.Firstly, as pointed out by Barral et al., gathering CIR samples entails a significant amountof data, causing a latency of approximately one second just for measurement transfer[19]. Considering a UWB positioning system with high positioning update rate and a sig-nificant network of anchors, using CIR becomes impractical and would bemore applicablein small-scale and low update rate setups. Using an ML model in conjunction with real-time data extracted from CIR, increases data delays and computational complexity evenfurther [39]. Moreover, ML models can be difficult to generalize as they depend on site-specific training data. For example, a model trained on a dataset collected from a residen-tial area might not be suitable for a cluttered industrial environment as NLoS conditionsappear dynamically with constantly changing obstructions between the anchors and thetag [86]. Finally, creating an ML model is a cumbersome process as it requires significantamounts ofmeasurement data gathered from various environmentswith additional effortfor training, validation, and testing.

3.1.3 Application of signal parameters
Various authors have proposed NLoS detection methods that do not rely on CIR informa-tion. Themotivation for exploring alternative approaches stems from the same challengesoutlined in the previous section, primarily the significant time delay associated with pro-cessing CIR information.

Barral et al. investigated the use of UWB Received Signal Strength (RSS) and raw rang-ing data to identify NLoS scenarios. Different statistical sets of RSS and ranging featureswere incorporated in a Support Vector Machine (SVM) classifier model, which was thenexperimentally evaluated in real-life LoS and NLoS conditions. The authors achieved anover 90% LoS/NLoS classification rate only using mean values of both RSS and range mea-surements [19]. In another work they proposed application and comparison of differentML models trained on RSS and ranging features, along with different filtering methods forfinal position estimates. It was reported that an iterative EKF with k-Nearest Neighbors(k-NN) based NLoS detection scheme, achieved a Mean Absolute Error (MAE) of approx-imately 0.084 m. However, it was concluded that the proposed NLoS identification andmitigation method may suffer from generalizing issues, as it is strongly dependent on thespecific environment in which the models were trained [90].
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Guo et al. combined Pedestrian Dead Reckoning (PDR) with gait detection and UWBpositioning within a Kalman Filter (KF) algorithm. The authors acknowledged the impor-tance of identifying NLoS conditions and proposed estimating their probability using theRSS difference between the first path signal and reflected signals. The proposed filter-ing scheme achieved an average error less than 0.16 m [91]. Similarly, Kim et al. investi-gated UWB NLoS identification by comparing the Received Signal Power Level (RSL) withFirst-Path Signal Power Level (FSL). An Advanced Channel Diagnostics Algorithm (ACDA)was proposed to differentiate between different power levels and determine NLoS or LoSscenarios. The ACDA achieved an over 99% success rate in NLoS identification for fourdifferent NLoS paths [92].Wu et al. analyzed the principle and characteristics of NLoS error and proposed a NLoSmitigationmethod derived from the signal propagation path loss model. The authors pro-vided calculation expressions for the NLoS error estimation while considering the effectsof antenna direction. The method was implemented in low-complexity Direct-Path (DP)andMaximum Confidence Path (MCP) detection algorithms, suggesting potential applica-tion and practical design. The processed ranging results demonstrated that the proposedmethod can significantly reduce range estimation errors by several decimeters, which inturn enhances the positioning accuracy of UWB-based sensor networks [93].While UWB signal parameters can be effectively applied in NLoS identification andmit-igation schemes, there are also some drawbacks to be considered. Firstly, models basedon RSS data can be difficult to generalize, as training data is site-specific. Amodel that per-forms well in one location may not work in another area [90]. Additionally, the receivedsignal may be affected by dynamically changing obstructions which may cause signal at-tenuation or interference. It would be difficult to model respective path loss or signalstrength changes for each obstruction. Moreover, considering filtering schemes, signalinterference may cause an accurately estimated position to be weighted incorrectly, thusaffecting the integrity of the filtered end coordinate.
3.2 Integrity estimation for GNSS and multi-sensor localization
This section discusses methods used in the state of the art for estimating positioning in-tegrity in a GNSS-UWBmulti-sensor fusion algorithm. Depending on the integration strat-egy, the joint positioning system can be loosely-coupled, tightly-coupled or ultra-tightlycoupled. Since the latter involves baseband signal processing, then this approach is typ-ically inaccessible for most Commercial Off-The-Shelf (COTS) products [94]. In the loose-coupling scenario, GNSS andUWB sensors operate independently and estimated positionsare fused at a higher level, usually with a Kalman Filter scheme. Loose coupling can alsobe considered due to limitations in the GNSS receiver or design of the multi-sensor sys-tem. Some COTS products restrict access to raw data, with serial data as the sole sourceof positioning information. In contrast, a tightly-coupled solution integrates raw mea-surements (e.g., GNSS/UWB pseudoranges, GNSS carrier phase measurements, Dopplerobservables) resulting in a more efficient data usage and a higher control of noise terms[52], [94], [95].A loosely coupled GNSS can provide information in the form of National Marine Elec-tronics Association (NMEA)messages, usually transmitted over serial communication port(RS-232) [52], [96]. These messages contain geographical fix information, heading, dateand time, velocity and track over ground, psudorange noise statistics, constellation ge-ometry information etc. Bao et al. utilized Multi-Task learning (MT-e&R) for deep featureextraction from the NMEA protocol to predict and calibrate the GNSS positioning errorand estimate the GNSS measurement noise covariance. Furthermore, it was stated that
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NMEA features can reasonably characterize complex positioning environments. On theother hand, Dyukov et al. relied on NMEA data to investigate the accuracy of GNSS veloc-ity measurements in challenging conditions. The aim was to develop a quality indicatorto filter out potentially unreliable GNSS speed records [97].
Tightly-coupled sensor fusion, leveraging raw measurement data and high customiz-ability, offers high flexibility. By fusing complementary sensor measurements (e.g., UWBand GNSS positioning information) it can provide enhanced positioning performance.
Jiang et al. proposed a tightly-coupled integration of UWB, GNSS and Inertial Naviga-tion System (INS) sensors for seamless indoor and outdoor positioning. They incorporatedtwodistinct positioningworkflows: one for indoor environments and another for outdoor-indoor transition areas. In the indoor mode, an INS complements an integrated UWB tomitigate positioning errors. In the second mode, GNSS is added as an additional posi-tioning source alongside UWB. Both workflows utilize an Extended Kalman Filter (EKF) formeasurement prediction and correction achieving seamless and accurate outdoor-indoorpositioning with Distance Root Mean Square (DRMS) and RMSE of 5.25 cm and 10.18 cm,respectively. Recognizing the crucial role of measurement noise in determining position-ing uncertainty, two different noise covariance matrices are used. The UWB noise covari-ancematrix is modeled as a constant diagonal matrix, considering the error of the originalUWBmeasurement values (e.g., multipath variation and ranging noise). Conversely, GNSSnoise covariance is based on the preset variance of the GNSS carrier phasemeasurementswhich is also considered to be constant [48].
Similarly, Song et al. proposed a tightly-coupled fusion of UWB, GNSS and InertialMeasurement Unit (IMU) data for indoor and outdoor positioning. To enhance positioningcontinuity and reliability, they introduced novel adaptive weighting factors. The systemwas tested in real-life environments consisting of complex indoor and outdoor areas. Theauthors used an EKF for positioning prediction and update, dynamically adjusting weightsfor UWB and GNSS sensors. These adaptive weights automatically adjust the covariancematrices of the measurement noise based on fluctuations in GNSS and UWB signal levels[98]. Following a similar approach, Li et al. assignedweights toUWBmeasurements basedon their RSS indicator levels and to GNSSmeasurements based on the standard deviationsof their pseudorange and phase measurements. These weighted measurements werethen integrated in a tightly coupled PPP/INS/UWB framework for their low-cost unmannedground vehicle. The authors reported seamless outdoor-indoor positioningwith over 90%sensor availability, and approximately 20 cm 3D MAE and 30 cm 3D RMSE [51].
An alternative approach to estimating measurement uncertainty was used by Wang

et al. in their tightly-coupled integration of multi-GNSS RTK, INS, UWB and map data.They constructed an Adjustment Factor (AF) based on the Robust Estimation for Corre-lated Observations (RECO) scheme [99]. The elements in the observation noise matrix(utilized in the EKF update step), are derived from the product of the AF and observationnoise variance. Essentially, when the accuracy of observations is stable, the AF is 1. Con-versely, when the observation values are severely abnormal, the AF is infinite and obser-vation does not affect state estimates. In the intermediate case, the impact of observationanomalies is mitigated. Their proposed solution was tested in a real-life indoor-outdoorscenario, achieving an RMSE of approximately 0.24 m, a Mean Location Error (MLE) of0.16 m and a maximum error of 1.14 m [54].
Having an accurate estimate of positioning uncertainty inmulti-sensor fusion schemesis crucial for robust and seamless positioning in indoor, outdoor, and transition areas. Asthe accuracy and precision of the estimated position dynamically changes, using constantmeasurement noise values in a filtering scheme may significantly impact positioning per-
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formance. For instance, in an indoor area, a severely inaccurate GNSS coordinate with an assigned constant weight, can adversely affect the final estimated position, even in the presence of an accurate UWB measurement. On the other hand, adaptive measurement uncertainty is more suitable for dynamic positioning as it considers preset parameters to assign weights to the estimated position of each sensor at each measurement update. Using weights based on received signal levels as measurement uncertainty estimate, pro-vides a convenient way to bias towards a sensor with stronger signal [98]. However, as signals are susceptible to interference (e.g., constructive or destructive), signal strength can lead to inaccurate assessment of position accuracy. For example, an accurately es-timated coordinate may have a weak signal level and vice versa. Alternatively, assigning sensors their respective uncertainty weights can also be done by using a preset robust estimator (e.g., RECO) [54]. It is a statistical technique to mitigate outliers and apply re-duction factors to the observation weight matrix. For example, the weight of an outlying observation is reduced and vice versa. However, RECO suffers from optimal parameter tuning as the reduction factor of the weight elements should be determined beforehand [99]. Therefore, a poorly chosen parameter can lead to generalization and overfitting is-sues.
3.2.1 Geofencing
Geofencing is a technique, where an estimated position, provided by a sensor, is compared to a previously established map and its predefined boundaries. It quantifies, informs, or influences resource movements or positions based on real-time coordinates [100]. This method is particularly useful in areas with significant positioning errors, as it can effec-tively discard estimated positions that fall outside the specified area or track. Additionally, this method is computationally simple since the algorithm only compares sets of coordi-nates with a decision boundary. The geofence perimeter can be defined in either a local or global frame of reference, depending on the specific multi-sensor solution.

Considering a scenario, where an object traverses indoor and outdoor areas, respec-tive positioning data can be used to provide coordinates based on the object’s location. If the object is estimated to be indoors, only UWB is used while GNSS is considered only for outdoor areas. A similar approach was used by Di Pietra et al. in his work about pedes-trian navigation using a loosely coupled integration of GNSS, UWB and INS [43]. Their data fusion algorithm leverages geofencing as a trigger to switch between indoor and outdoor environments. Another application of geofencing would be to determine NLoS conditions for UWB systems. As an object moves indoors, its estimated position can be continuously monitored relative to the servicing UWB anchors. If the object is estimated to be be-hind a geofenced boundary (e.g., a wall), the ranging information from that anchor may be excluded from subsequent position calculations. The proposed solution provides an overall 2D and 3D accuracy of 30 cm and 45 cm, respectively. Wang et al. developed a similar approach in their tightly coupled GNSS, UWB, and INS solution for autonomous ve-hicles [54]. Their system consistently monitors UWB signal occlusions by comparing the estimated position with a predefined map and adjusts the weight of an observation or discards the measurement entirely.
While geofencing offers several advantages in multi-sensor positioning systems, it also presents certain limitations. Firstly, geofencing relies on area-specific maps and requires tailored implementation. Establishing coordinate-based boundaries requires detailed knowl-edge of the area and potential movement paths, making implementation cumbersome. Secondly, since geofencing does not account for positioning uncertainty, erroneous esti-mates may still persist within the geofenced area. Additionally, defining a strict decision
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boundary between operational areas of respective positioning sensors can potentially de-grade the performance of a multi-sensor solution. For example, an object transitioningfrom an indoor UWB network to an outdoor area with GNSS reception may have accurateUWB position estimates discarded prematurely leading to a suboptimal solution. Further-more, an accurate UWB solution may be replaced with a poor GNSS position estimate. Incontrast to geofencing, the research presented in this thesis is more focused on a moregeneralized and comprehensive solution, one that can be applied without the need forprior knowledge of the positioning environment.
3.2.2 Positioning data distribution
An alternative method for estimating UWB positioning uncertainty was utilized by Zhang
et al. in [40]. The author applied Circular Error Probable (CEP) as an uncertaintymetric forUWB and also combined GPS, UWB and the Magnetic, Angular Rate, and Gravity (MARG)sensor to improve indoor/outdoor positioning and mitigate sensor dropouts. It was re-ported that theMARG sensor improved the overall positioning accuracy from 8.9m to 3.2m (approximately 64%).

It can be argued that CEP is a metric primarily used to evaluate stationary positions, asit is defined as the radius of a circle centered at the true position, containing 50% of theactual measurements [101]. Therefore, it would be difficult to use this measure for mov-ing objects. Additionally, as mentioned by Lv et al., using CEP requires prior knowledgeof error distribution within the deployment area. Moreover, as the positioning sensorsare switched based on GNSS DoP and UWB CEP threshold values, this approach may notguarantee a stable trajectory in the transition area [45].
3.2.3 Dilution of precision
In the literature it can be seen that dilution of precision is often used as an indicator forpositioning uncertainty. It quantifies howmuch position error, that results frommeasure-ment errors, depends on the receiver/satellite (tag/anchor in case of UWB) relative ge-ometry [21], [72]. For example, a sensor fusion solution exploiting two positioning sensorswould consider a position estimate with a larger DoP as more imprecise compared to theother sensor [102]. Yao et al. incorporated UWB HDoP and signal Carrier-to-Noise Ratio(CNR) of GNSS to a tightly coupled INS positioning solutionwith federal filtering, achievinga decimeter-level 2D positioning error [103]. Lv et al. relied on HDoP to assess the chang-ing accuracy of GNSS RTK and UWB systems in his work concerning seamless indoor andoutdoor positioning of vehicles. Consequently, a unified positioning accuracy index wasdeveloped based on HDoP from both systems and implemented in the sensor fusion strat-egy, achieving an approximately 8 cm accuracy [45]. Zhu et al. used HDoP-based weightsto determine the uncertainty of GNSS and UWB positioning in an integrated strategy withDead Reckoning (DR), and Visual Map Matching (VMM) resulting in a sub-meter horizon-tal positioning accuracy [104]. Sun et al. utilized DoP as a measure of positioning accuracyin a semi-tightly coupled robust model for GNSS, UWB and INS sensors recognizing thata lower DoP factor indicates a lower amplification of ranging errors and a higher systemfault tolerance. The authors reported positioning accuracy in east, north, up directions as0.42 m, 0.55 m, and 3.2 m, respectively [105].

As shown by various authors, geometrical uncertainty can effectively be incorporatedinto multi-sensor positioning solutions. However, considering an object’s position rela-tive to the servicing nodes, it may not fully capture the complexities of positioning errors.For instance, UWB positioning is affected by the number of servicing anchors, their prox-imity to the tag, signal degradation caused by NLoS and various materials [7], [14]. Fur-
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thermore, UWB positioning can be particularly challenging in narrow or confined spaces,where electromagnetic wave propagation will have various reflections, refractions, andkeyhole effects, resulting in channel deterioration and an increase in ranging errors [72].On the other hand, the GNSS positioning is subject to additional error sources. Firstly,there are errors caused by signal propagation paths with potential delays caused by theEarth’s atmosphere and multipath effects. Secondly, in the ground segment there may bereceiver instrument errors, which can influence positioning precision. Lastly, there maybe errors related to the satellite segment: the satellite ephemeris, clock drift, and geom-etry of constellations [21], [106]. As can be seen, the errors of the estimated position arenot limited to geometrical uncertainty and should ideally be considered in multi-sensorschemes.
3.3 ML application in related works
Machine learning is a powerful tool that has been extensively used in different positioningschemes to improve their robustness and performance. Compared to traditional statisti-cal methods, ML techniques enables identification of complex dependencies in data thatmay not be apparent through exploratory data analysis. While the goal is not to derivean explicit mathematical formula for the data distribution, it can effectively be used totrain algorithms to learn the relation between input features and their response variables[57]. Considering the context of this thesis, this section gives an overview of main MLapproaches to UWB, GNSS and seamless positioning.
3.3.1 Machine learning in GNSS positioning
In order to improve the performance of GNSS positioning in less than optimal signal envi-ronments,ML-basedGNSSmodels have been investigated as early as 1990s. GNSS sensorscan provide nearly limitless quantity of data that can be used in a variety of ML modelsdepending on context of application. Siemuri et al. has done an extensive systematicliterature review on the topic of ML techniques for GNSS use cases [57]. These scenar-ios include: GNSS signal acquisition, signal detection and classification, Earth observa-tion andmonitoring, GNSS navigation andprecise positioning, GNSS-denied environmentsand indoor navigation, GNSS anomaly detection and atmospheric effects, GNSS security,GNSS/INS integration, satellite selection, and Low-Earth-Orbit (LEO) satellite orbit deter-mination and positioning. Whilemost of these topics are out of the context for the currentthesis, this survey provided insight into some of the more closely related works.Considering GNSS navigation and precision, Kim and Bae used Long Short-TermMem-ory (LSTM)method to improve the accuracy of GNSS-RTK positioning. The authors appliedposition error from the absolute position, wheel speed sensor data, and yaw informationas training data for the ML model [107]. Kuratomi implemented Decision Tree (DT) andSupport Vector Machine (SVM) to estimate positioning error using features based on az-imuth, elevation, constellation type, and CNR. It was reported that the SVM model re-duced the RMSE by 31% compared to the DT model [108]. Zhang et al. investigated theprediction of urban GNSS satellite visibility and pseudorange error based on deep learningnetworks with LSTM. The ML model incorporated features such as satellite elevation andazimuth angle, CNR, individual pseudorange residual, and the root-sum-squares of pseu-dorange residuals from all available satellites. By testing the performance of the modelin an urban area, the satellite visibility was predicted with 80.1% accuracy and pseudor-ange measurement error with an average difference of 4.9 m from reference [109]. Lyuand Gao proposed aweighting scheme for improving kinematic GNSS positioning in urbanenvironments using a novel multi-feature SVM approach. It is based on the identification
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of the most important features in GNSS data in urban environments and the intelligentclassification of LoS and NLoS signals. The input features are calculated from the GNSSobservations and are based on pseudorange, phase, and Doppler prediction data. The re-sulting scheme outperformed the traditional CNR based weight model by 65.4% and 85%in the horizontal and up direction. The weighting scheme was also capable of overcomingposition error spikes at overcrossing and short tunnels [110].Scenario recognition in GNSS-denied environments is also considered a major topic inseamless indoor and outdoor positioning. The goal is to use ML to identify current posi-tioning environment and then apply appropriate strategies for a more accurate and reli-able positioning [57]. For example, Xia et al. investigated scenario recognition with multi-constellation GNSS on a smartphone by exploiting the Recurrent Neural Network (RNN).The model was trained on position-independent features, which included the number ofvisible satellites and various statistical measures for satellite CNR. It was reported that themodel could recognize isolated and transition areas with high overall accuracy of 98.65%[111]. Liu et al. developed a NLoS and multipath detection network using deep learningapproach. The model was trained on datasets generated by a GNSS software receiver us-ing an intermediate frequency signal from an indoor pseudo-satellite system. This modelwas then compared to SVM-based classification method, showing an improvement of upto 45% in overall classification accuracy [112]. Klus et al. proposed a Neural Network (NN)solution to boost positioning accuracy in urban areas by fusing beamformed RSS mea-surements from user equipment with GNSS positioning data. The author investigated aRSS fingerprinting model and a positioning fusion model that combines sequential out-puts of the first model with available GNSS measurements. The first model demonstratedmeter-level accuracy and the second model sub-meter accuracy in uncertainty-free sce-nario [113].As can be seen from presented literature, various ML techniques can be applied forvarious different tasks. In the context of improving GNSS accuracy, there is an obvioustendency in using low-level GNSS measurement data such as pseudoranges, carrier phasemeasurements, Doppler information, satellite azimuth/elevation angles and more as in-put features for ML training. However, it can be argued that such data is not always ac-cessible from COTS devices because of firmware or manufacturer limitations. Moreover,processing large amounts of data can be computationally intensive in training the modeland applying in a real-time system. As Siemuri et al. identified, approximately 47% of theGNSS-related ML algorithms use some form of NN approach, making it the most popularmethod for developing an ML model [114]. However, it is also common knowledge thatNN has a significant number of parameters (e.g., weights or biases) to be learned duringthe training, leading to optimization problems and being altogether computationally de-manding. The latter is also reflected in a significant processing time delay as demonstratedby Xia et al [111]. In the research it was identified how an RNNmodel, trained for scenariorecognition, entailed significant time delays in identification and scenario switching deci-sion, which could take up to 3 seconds. On theother hand, NLoS andmultipath recognitionalgorithms, besides being computationally intensive, require complete knowledge of thegeometry and physical characteristics of the reflecting surfaces [115].
An ML-based approach for GNSS uncertainty estimation should consider the afore-

mentioned limitations. An ML model should be computationally fast to be applied in
a high update-rate positioning system. Also, the model should contain features using
high-level data that is straightforward to implement and obtainable from COTS devices.
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3.3.2 Machine learning in UWB positioning
In recent years, machine learning has been applied extensively to improve UWB-basedpositioning. By incorporating low-level data such as channel state information, channelstatistics, or ranging parameters, researchers have leveraged ML techniques to find pat-terns and dependencies between potential features and use this information for errordetection andmitigation schemes in UWB positioning. The following paragraph describesstate-of-the-art solutions combining both ML and UWB technology.

Liu et al. developed a framework to utilize cost-effective and robust UWB-based posi-tioning, with extreme gradient boosting-based ML technique and coordinate filtering forprecise distance measurements. The model incorporates various features extracted fromUWB ranging information including estimated and corrected distances, impulse responseparameters, and RSSI indicator. Feature selection was performed using correlation analy-sis, identifying low level of collinearity among the features. Consequently, all features andcorresponding real distances were used inmodel training. The authors also compared theproposedmodel with XGBoost, Random Forest, and SVMMLmodels in terms of their per-formance and processing latency. It was found that the proposed model outperformedthe other models in all regression performance metrics. While the proposed model andXGBoost exhibited comparable processing time, both significantly outperformed RandomForest and SVM in this regard. Real-world testing in building condition monitoring vali-dated the framework’s ability to measure distances with millimeter-level accuracy [116].
Bregar and Mohorčič presented two methods to mitigate positioning errors in indoorNLoS conditions using rawCIR fromUWBsensors andConvolutional Neural Network (CNN).The first method exploited a CNN-based classifier to identify NLoS measurements andexclude unreliable ranging nodes. The second method utilized a CNN-based regressionmodel to predict ranging errors and incorporate them in a weighted least squares estima-tion process. The latter approach, combining WLS and ranging error mitigation, demon-strated the best localization performance. Both models were trained on a dataset col-lected in both LoS and NLoS conditions. The authors also investigated the computationalefficiency of the CNN-based NLoS classifier, considering different batch sizes on varioushardware configurations. While acknowledging the increased computational demandsdue to high input dimensionality and CNN complexity, the authors suggest that networktopology optimization and reduced CIR sample sizes can make these methods viable al-ternatives to traditional approaches [117].
Similarly, Niu et al. proposed a deep learning-based approach to mitigate UWB posi-tioning errors in NLoS conditions. The method leverages CIR information to predict rang-ing errors and correct estimated distances before applying them to a least-squares-based2D position estimation. The UWB tag collects CIR data from all anchors and transmits itto a host computer running the ML model. The model’s output, representing correcteddistance estimates, is then used to calculate the 2D position. The UWB localization systemwas tested in a real-life complex environment showing correctly mitigated ranging errors,thus resulting in a more accurate localization [118].
Fan et al. proposed an unsupervised ML approach using Expectation Maximization(EM) for Gaussian mixture models to discriminate between LoS and NLoS conditions. Thisalgorithm assigns LoS/NLoS probability to each UWB signal through soft clustering of var-ious CIR statistics [119]. Kim et al. utilized a LSTM model to classify UWB channel con-ditions based on the magnitude of impulse response. Additionally, the model estimateswere integrated into the EKF to mitigate positioning degradation. Comparative analysiswith WLS, non-augmented EKF and LS methods demonstrated the superior performanceof the LSTM-EKF approach [120].
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Wymeersch et al. proposed an approach for NLoS identification directly based onmeasured UWB waveforms and their statistics. The authors applied two classes of non-parametric regressors to estimate the ranging error and directly mitigate the bias incurredin both LoS and NLoS conditions. The first technique exploited the SVM regression to finda hyperplane approximating the ranging error as a function of UWB waveform statistics.The secondmethod employed a Gaussian process to determine the posterior distributionof the training error [121].Several other authors have incorporated Channel Statistics (CS) information with var-ious ML schemes such as LSTM [120], Multiple Input Learning (MIL)-NN [122], CNN [123],deep learning [124], sparse pseudo-input Gaussian process [125], SVM [126], [127], [128],Decision Tree [129], Random Forest [130], LS-SVM [131] etc.On the other hand, authors who have provided non-CS-based approaches, have alsoleveragedML techniques. Silva and Hancke investigated NLoS identification using rangingresiduals, considering the sum of squares of distance residuals as a suitable feature fora naive Bayes NLoS classifier [86]. Barral et al. applied SVM technique to train a modelbased on UWB RSS and ranging information for NLoS classification [19], [90]. Chang et
al. bypassed low-level UWB information entirely and proposed optimizing the classicalmultilateration algorithm using different regression techniques, such as linear, high-orderpolynomial, Lasso, and Ridge regression [132].As discussed in paragraph 3.1.2, CIR provides accurate information about possible sig-nal obstructions and potential NLoS scenarios, making it the most prevalent source of in-formation and features for various ML techniques, especially NN and its variations. Whilethe works mentioned above have significantly improved the accuracy and precision forUWB-based positioning (particularly for static scenarios [116]), certain limitations shouldbe considered. As noted in 3.1.2 and by other authors, extracting and processing CIR in-formation is time-consuming and may not be suitable for systems requiring high positionupdate rate (e.g., dynamic positioning) [19], [90]. Additionally, channel statistics must becollected for different types of environments, as a training dataset collected in an officebuilding may not be suitable in describing an industrial area [78], [86]. However, in thecontext of the current paragraph, it should also be considered that complexML algorithmsmay also pose limitations for real-time systems. As noted by Bregar and Mohorčič, theirCNN model (with CIR-based input data) implies higher computing demands comparedto classical approaches. On the other hand, SVM provides a more precise and robustNLoS identification by establishing a decision boundary according to the input featureswith support vectors. However, the manually selected vector feature, generated from theUWB signal propagation path loss model, might be inadequate to meet the identificationrequirement in various positioning scenarios [122]. Therefore, choosing an appropriateML technique depends on the task and its limitations. Considering the importance ofcomputational latency and the models application in a high update rate system, using aNN or SVM-based approach may be unfeasible. Moreover, as stated by Nessa et al. in asurvey regarding application of ML techniques in indoor positioning, SVM-based meth-ods are time-consuming and require a significant amount of memory when the numberof support vectors become large. On the other hand, the decision tree-based indoor po-sitioning provides better performance in improving accuracy when compared to NN ork-NN [9], [133].
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3.4 Research gaps
According to the literature presented in previous sections, the following research gapswere identified.

• Compared to CS-based methods for enhancing UWB position estimation accuracy,the utilization of ranging residuals remains an under-explored area. Its primary ad-vantage lies in its low latency, as residuals (and their features) are directly calculatedfrom raw ranging data. In contrast, CS information necessitates separate extraction,incurring significant time delays, rendering it unfeasible for high-update-rate posi-tioning systems. While ranging residuals and their features have been applied inNLoS identification andmitigation schemes, their application to uncertainty estima-tion (i.e., coordinate accuracy) has been overlooked to the best of author’s knowl-edge. Additionally, as ranging residuals are essentially a collection of distances fromthe estimated position, various features can be considered to estimate the overallposition quality (RQ1).
• An ensemble of features, describing ranging residuals and the true position offset,can be employed with different ML techniques to identify underlying dependen-cies. Furthermore, residual features can be combined with other measures, suchas dilution of precision, the distance between LS and NLS estimates or the numberof NLS iterations etc., which indirectly indicate positioning integrity (RQ1).
• It is crucial to consider the computational efficiency of different ML techniques, asthe model must be sufficiently fast when used in a high-update-rate positioningsystem (RQ1).
• By exploitingML to estimate position uncertainty, this information canbe integratedinto various filtering schemes as an indicator of measurement uncertainty. This ap-proach diverges from traditional methods, that prioritize NLoS identification andmitigation (RQ2).
• GNSS uncertainty estimation has been extensively researched, with numerous au-thors proposing error mitigation schemes for both standalone and sensor fusionsolutions. Many of these approaches leverage raw GNSS data in a tightly-coupledmanner. However, such low-level data access is limited to devices that provide thenecessary information. Loosely coupled GNSS solutions, on the other hand, utilizealready processed high-level data in the form of NMEA messages. Such data is usu-allymore accessible and can be usedwithmost COTS devices. Similar to the applica-tion of UWB-based residual features, loosely coupled GNSS data offers an ensembleof features that can be used to characterize positioning uncertainty (RQ3).
• While authors proposing loosely coupled GNSS solutions often rely on a single fea-ture for uncertainty estimation, an ML-based approach leveraging an ensemble offeatures can potentially yield more accurate uncertainty estimates (RQ3).
• As uncertainty estimation is a critical parameter in sensor fusion schemes, the ap-plication of ML models to this task represents a novel approach. By integrating un-certainty estimates from both UWB and GNSS models, improved performance maybe achieved in seamless indoor-outdoor sensor fusion systems (RQ4).
These research gapsmotivate further investigation in improvingUWBandmulti-sensorpositioning, as presented in subsequent chapters of this thesis.
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4 UWB positioning accuracy classification using ML
The following section describes the first contribution of this thesis, which is an approachfor UWB coordinate accuracy classification usingML. In contrast to usualmethods, such asusing CS for positioning integrity estimation, this section investigates whether positioningerrors could be estimated using a pre-trained ML model. By incorporating an ensembleof features, mainly based on ranging residuals, the ML model was trained and tested onreal-life UWB measurements to predict UWB coordinate error.

This section is based on Publication I:

• M. Tommingas, S. Ulp, M. M. Alam, I. Müürsepp, and T. Laadung, “Estimating UWBPositioning Integrity Based on Ranging Residuals,” in 2023 24th International Con-
ference on Applied Electromagnetics and Communications (ICECOM), pp. 1–5, IEEE,2023

4.1 Background and motivation
Coordinate accuracy classification using ML was an attempt to investigate whether a pre-trained ML model can use information from ranging residuals to predict the coordinateintegrity. It was also motivated by the fact that application of channel statistics for esti-mating ranging errors is unfeasible when applied in a high update rate positioning system(Section 3.1.2). On the other hand, by exploiting information based on ranging residu-als (which are calculated from ranging information and estimated position), it is assumedthat coordinate integrity can be estimated and processed with smaller latency comparedto CS-based methods. However, the latter hypothesis was investigated in Publication II.Features that could describe whether residuals could be used in estimating UWB-based positioning integrity have not been thoroughly researched. For example, some fea-tures used by Silva and Hancke for LoS/NLoS detection, were also used in the proposedML model: SSQ, mean and standard deviation of distance residuals [86]. However, theproposed model incorporates also several additional statistical measures related to posi-tion estimation and geometrical uncertainty. Altogether 28 features, were divided into 5categories:

• Lengthened and shortened residuals. As described in Section 2.3, a residual is thedifference between a distance of an estimated coordinate andmeasured range froman anchor. Depending on the NLS solution, which considers all available ranges,the estimated position may appear closer or further away relative to the anchor,thus resulting in a lengthened or shortened residual. Therefore, following featurescould be established: number of lengthened/shortened residuals, sum of length-ened/shortened residuals, average of lengthened/shortened residuals, root meansquare error (RMSE) of lengthened/shortened residuals.
• Residual statistics: Following statistical features were included: variance, standarddeviation, SSQ, sum of absolute values, mean, absolute mean and RMSE of residu-als.
• Number of residuals in range. Small residuals indicate proximity to the NLS so-lution, whereas large residuals imply erroneous measurements. The idea was tocount the number of residuals in a preset range, as it can indicate whether the NLSalgorithm uses accurate measurements as its input. Following ranges were chosen:
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0...0.1 m, 0.1...0.2 m, 0.2...0.4 m, 0.4...0.8 m, 0.8...1.6 m, 1.6...3.2 m, 3.2...6.4 m,6.4...12.8 m, 12.8...25.6 m, 25.6...∞ m.
• LS and NLS metrics. These values are associated with estimated position calcu-lations described in Section 2.2. Chosen parameters include: Euclidean distancebetween LS and NLS solutions, number of NLS iterations to convergence and NLSconvergence tolerance. The latter is based on relative offset convergence criterion.This assures that the current parameter vector is less than 0.001% of the radius ofthe confidence region from the least squares solution [134].
• Geometrical integrity of positioning. In context of UWB positioning, DoP indicatesgeometric location distribution [72]. Using estimated coordinates of the tag, DoPparameter indirectly shows the level of geometrical uncertainty in an area relativeto the anchors. In this ML model, Position Dilution of Precision (PDoP) was calcu-lated with x, y and z coordinates.

4.2 ML model training
The ML model was trained on real-life measurement data gathered at an industrial site ofKrah Pipes OÜ, which manufactures thermoplastic pipes as shown in Fig. 13. RegardingUWB-based ranging, the site presents a complex environment with constantly movingobstacles, which produce NLoS and multipath effects for RF signals. An Eliko RTLS UWBtest systemwas set up inside the manufacturing facility by placing UWB anchors at presetlocations. Tag’s 3D true coordinates were measured in a local frame of reference withthe Leica DISTO S910 measurement tool and assigned for 8 UWB anchors as well as 30different locations around the facility. At each location approximately 300 data pointswere gathered. It should be noted that the measurements were not gathered by the
author but rather the collected raw ranging data was used by the author to calculate
the features, position estimates, and response values1.As mentioned in Section 2.5, the ML model was created using supervised learning,which means for each set of features and their values, a response value was assigned.The latter depends on the premeasured true coordinate and is set as the Euclidean dis-tance between the true and estimated coordinate i.e., coordinate error. The task was toperform accuracy classification with preset accuracy classes:

Class 1: Distance between 0 . . .0.2 m;
Class 2: Distance between 0.2 . . .0.4 m;
Class 3: Distance between 0.4 . . .0.8 m;
Class 4: Distance between 0.8 . . .∞ m.
These categories were chosen based on UWB performance studies [70], [71]. Class 1presents positioning accuracy up to 0.2 m, which is also considered an approximate accu-racy level for UWB-based positioning given in the literature. Other accuracy classes wereset as a double value from the last step.After dataset cleaning and shuffling, 80% of the data was used for training, while 20%was used for testing purposes. The classification model was trained using Extreme Gra-dient Boosting (XGBoost) in RStudio environment with an imported xgboost library [136],[137]. Initially, a sequence of boosted trees was constructed with xgb.train function to
1The data was collected by Taavi Laadung and Sander Ulp [135].

49



Figure 13: Industrial site at Krah Pipes OÜ, which manufactures thermoplastic pipes in a complex
industrial environment. Figure from Publication I.

determine the number of trees that produce the smallest prediction RMSE. The resulting93 boosted trees were used in the final model training using xgboost function.As stated in Section 2.5, XGBoost can also be used to extract features that contributethe most information in making the prediction. As can be seen in Fig. 14, the most im-portant features out of the set of 28 are related to residuals as these features provide thebiggest informational gain or importance. Lesser contribution is provided by PDoP, num-ber of residuals in 0...0.1 m range, LS/NLS solution distance, number of NLS optimizationiterations and mean of residuals. Significantly large residuals can indicate that the esti-mated position is further away from the individual measured distance from the anchorand the estimated position has a potentially large error. Similarly, small residuals indicatelittle change between the individual measured distance from an anchor and the distanceto the estimated position.

NLS number of iterations

Mean of residuals

LS/NLS distance

Number of residuals in 0...0.1 m

PDOP

Average of lengthened residuals

RMSE of lengthened residuals

0.0 0.2 0.4
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Figure 14: Top 7 features that provide most information as proposed by XGBoost algorithm. It can
be seen that lengthened residuals are the most important features in describing estimated position
integrity. Figure from Publication I.
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4.3 ML model testing
Model testing was done on 20% of the mixed dataset that was not used in the training(total of 1748 samples). The goal was to evaluate model’s classification performance bycomparing true accuracy classes against predicted classes, which can be seen in Table 3.Furthermore, true positive rate (sensitivity) and true negative rate (specificity) were cal-culated for each class indicating the model’s ability to correctly identify the estimated po-sition within or outside their assigned accuracy class, respectively [138]. When comparingthe references and predictions, it can be seen that all of the classes weremostly predictedcorrectly. While Class 2 and 3 had the worst true positive and true negative rates, thesewere still predicted correctly in over 62% of samples. These classes were also the mostdifficult to predict because measurement points (especially Class 2), were too close toClass 1 points in order to be distinguished with a high success rate. Overall, prediction ofdistinct classes was performed with a significant accuracy of 84%.
Table 3: Confusionmatrix and prediction accuracy statistics. Prediction of different classes was done
with varying accuracy. For example, if the there were 76 points that belonged to Class 2, then ac-
cording to the model these were labeled as Class 1. With a 89% Sensitivity (true positive rate) the
model could identify most of the points belonging to Class 1. Class 2 was harder to predict with a
Sensitivity of ca. 62%, since Class 2 points accuracy is very close to Class 1. However, if the measure-
ment point did not belong to Class 1 or Class 2 then the prediction was made with a high Specificity
(true negative rate) of ca. 87% and 91%, respectively. Table from Publication I.

Reference Class1 2 3 41 1024 76 1 0Predicted 2 109 240 14 0Class 3 8 45 54 124 0 5 17 143
Overall Accuracy: 0.8358 (ca. 84%)
Statistics by Class:Class 1 Class 2 Class 3 Class 4Sensitivity 0.8975 0.6557 0.6279 0.9225Specificity 0.8731 0.911 0.9608 0.9861

4.4 Discussion
In summary, the proposed XGBoost model performed UWB-based positioning accuracyclassification with an overall high success percentage of ca. 84%, considering the narrowaccuracy range of Class 1. It was shown that the model could also predict other accuracyclasses with significant accuracy using features mainly based on UWB ranging residuals.Prediction sensitivity could possibly further be improvedwith a broader Class 1 range (e.g.,0...0.3 m). The ML algorithm distinctly separated the lengthening of residuals as one ofthe top features, that could describe the integrity of positioning. However, there are someadditional actions to be considered when using an ML model to predict coordinate accu-racy.Firstly, while it was shown that XGBoost algorithm can output the most significant fea-tures for prediction, the initial list of features could be further reduced by using featureselection before training of the initial model. Secondly, as any decision tree-based model,
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it can be further optimizedwith hyperparameter tuning, whichwas not done in this contri-bution. Parameters such as tree depth, learning rate, number of parallel trees etc., couldbe used to further enhance the performance of the model.Lastly, there were not any measurements done in terms of computational latency toprove if prediction using themodel is fast enough to be used in a high update rate position-ing system. Rather, this contribution demonstrated that it is possible to use informationbased on ranging residuals to performML-based coordinate offset estimation. The latencytests for different ML and filtering schemes were performed in the subsequent chapter ofthis thesis (Publication II).
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5 UWB end coordinate correction using ML
This chapter describes the methods used for estimating UWB coordinate accuracy withdifferent ML models, evaluating their performance, and also applying their predictions toenhance coordinate accuracy and precision using different filtering schemes. The latter in-troduces Kalman filtering as themethod of choice, because of its capability to incorporatemeasurement uncertainty estimation for weighting estimated coordinates. In this contri-bution, it is proposed that the coordinate error, estimated by theMLmodel, is used in theKalman filter as a measure of uncertainty to further enhance positioning performance.Publication I showed that it is possible to use an ML model to estimate the coordinateoffset class with significant accuracy by using features primarily related to ranging resid-uals. Publication II leverages this research by investigating different ML models and theirapplication in coordinate filtering schemes.

This chapter is based on Publication II:

• M. Tommingas, M. M. Alam, I. Müürsepp, and S. Ulp, “UWB Positioning IntegrityEstimation Using Ranging Residuals and ML Augmented Filtering,” IEEE Journal of
Indoor and Seamless Positioning and Navigation, vol. 2, pp. 205–218, 2024

5.1 Background and motivation
Using ranging residuals for positioning error estimation provides an alternative to theusual methods incorporating CS-based information. One of the main motivations for thisapproach is the fact that range-based information can be accessed and processed fasterthan analyzing UWB channel characteristics. However, applying an ML model, which istrained with residual-based features, and incorporating it in coordinate offset predictionsstill adds to certain processing latency. Estimating this processing time was one of thegoals for this research. Additional focus was on three distinct ML methods: Regression
Tree, Random Forest, and Extreme Gradient Boosting. In essence, these methods arebased on hierarchical decision-making using features described in Section 2.6.1. However,because of their distinct model structure and complexity, these models were expected toperform with different degrees of prediction accuracy and processing time. For example,a simple regression tree model would process data faster than a complex Random For-est. However, a more complex model would give a more accurate prediction. Lastly, thetrained models were applied in an adaptive coordinate filtering scheme. By leveragingthe error prediction by the ML model and applying it as measurement uncertainty in anAdaptive Kalman Filter (AKF), the proposed solution was compared with other filteringmethods in terms of coordinate accuracy and precision.
5.2 ML model training
Similarly to Publication I, theMLmodelswere trained using featuresmainly based on rang-ing residuals. These included: average sum of squares, root mean square, mean absolutedeviation, standard deviation, number of residuals, mean and variance. These statisticswere calculated for lengthened, shortened, and overall residual sets. Statistical equationsalso contained averaging to remove the dependence on the size of available residuals. Ad-ditional features, related with position calculation and geometrical uncertainty, were alsoincluded. These were: LS and NLS solution distance, number of NLS convergence itera-tions, and dilution of precision. All feature calculation equations are presented in Section2.6.1.
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In addition to the UWB measurement data used in Publication I, additional data wascollected at Auroom Kastre factory (Fig. 23) and Eliko office rooms (Fig. 15). The latter wasused to provide additional training data for the models, while Auroom data was solelyused for testing purposes representing a dataset, which wasn’t applied in training. Sim-ilarly to the measurement campaign done at Krah Pipes OÜ factory, the measurementswere collected at different points around the area, consisting of stationary UWB mea-surements using a 10 Hz update rate resulting in approximately 300 ranging sequences ateach point. Disto S910 laser measurement device was used to measure UWB tag’s truecoordinates [139]. These were later used for calculating the true coordinate error, whichwas set as the response variable in the supervised learning. All data processing andmodel

Figure 15: Eliko office rooms with a UWB positioning network. The visible UWB anchors are high-
lighted with red ellipses.

training was done in RStudio environment with appropriate ML libraries [137]. For eachMLmethod, 10-fold Cross-Validation (CV) was performed to select hyper-parameters thatprovide a sufficiently small prediction error against the validation set. CV also helps to gen-eralize the model and mitigate possible overfitting. Cross-validation was done using the
caret library with trainControl functions [140]. The training dataset was separated into10 segments with 1 segment being the validation set. After applying appropriate hyperpa-rameters in an initial model, a combination of the most important features was selectedfor the final model.
5.2.1 Regression tree model training
Cross-validation was done with the caret library, using the rpart2 function, which is in-tended to compare different regression tree depths in terms of prediction error [141]. Ascan be seen in Fig. 16-A, a tree depth of 7 is the minimum which provides the smallestprediction RMSE. Additionally, the tree was pruned using a Complexity Parameter (CP),which helps to find a balance between an overly complex model and accuracy. As can beseen in Fig. 16-B, the chosen tree size of 7 corresponds to a tree CP of 0.025. The resultingregression tree structure can be seen in Fig. 17. At each node and leaf, the prediction valueand percentage (rounded to nearest integer) of training observations from a subsequentnode can be observed. For example, the left-most terminal node shows the predictionof 0.23 m error encompassing 65% of all training samples. In creating regression trees
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Figure 16: [A] Determining regression tree depth after 10-fold cross-validation. It can be seen that
a tree depth of 7 is sufficient to provide the smallest prediction RMSE. [B] CP was used to further
optimize the model. Tree depth of 7 corresponds to CP of 0.025. Figures from Publication II.

with the rpart library, features that provide the same goodness of split are removed [141].Therefore, the resulting tree can differ significantly from cross-validated trees. Featuresthat provide the best goodness of split in the regression tree model are shown in Fig. 18.
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Figure 17: Final regression tree to be used in ML prediction. Figure from Publication II.

5.2.2 Random Forest model trainingCross-validation was done with caret library using ranger function, which allows to iter-ate over an increasing number of random predictors (function mtry) to find the suitableprediction RMSE. These predictors are a subset of features selected for building each tree[142]. As can be seen in Fig. 19-A, with 100 random trees, using more than 8 random pre-dictors does not decrease prediction RMSE. The initialmodelwas established using rangerfunction with all the features, a tree depth of 100, and 8 random predictors [143]. To re-
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Figure 18: Features used in the final regression treemodel, which are ordered based on the goodness
of split in a regression tree. Figure from Publication II.

A B

Figure 19: [A] Finding the optimal number of randomly selected Random Forest predictors using
cross-validation with 100 random trees. It can be seen that using more than 8 randomly selected
predictors, results in no decrease in cross-validation RMSE. [B] With 8 random predictors, using
more than seven most important features results in no significant RMSE decrease in Random Forest
prediction. Figures from Publication II.

duce complexity of themodel, the ranger package provides variable.importance functionto list the most important features based on node purity increase. By ordering these fea-tures based on their importance, new models were created and compared in terms ofprediction accuracy. As can be seen in Fig. 19-B, choosing more than 7 most importantfeatures provides only a marginal decrease in prediction RMSE. Furthermore, choosing ahigher number of features may not be useful for generalizing the model and can lead tooverfitting. Most important Random Forest features can be seen in Fig. 20.
5.2.3 XGBoost model training
Cross-validation with hyper-parameter comparisons was done using caret package with
xgbTree function. In this contribution tree depth and number of boosting iterations wereconsidered. By comparing different hyperparameter values, it can be seen in Fig. 21-Athat choosing more than 150 boosting iterations and a tree depth of 5, results in only amarginal decrease in prediction RMSE. To avoid an overly complex model, these valueswere chosen for the initial model, which was created with the xgboost library [136].

Features inherent in the model can be ordered in terms of their informational gainusing xgb.importance function. By selecting consecutive combinations of most importantfeatures, different XGBoost models can be built and compared in terms of their predictionaccuracy. As can be seen in Fig. 21-B, choosing more than 8 most important featurespresents in only a marginal decrease in prediction RMSE and therefore were chosen forthe final model. These most important features are presented in Fig. 22.
56



Mean of pos. residuals

Mean of neg. residuals

Sum of squares of pos. residuals

PDOP

Residual variance

Sum of squares of residuals

LS/NLS difference [m]

0 500 1000 1500 2000 2500
Increase in node purity

Figure 20: Set of features in the final model that provide the biggest node purity increase in Random
Forest prediction. Figure from Publication II.
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Figure 21: [A] Determining suitable XGBoost tree depth and number of boosting iterations using
cross-validation. Tree depth 5 and 150 boosting iterations are chosen parameters for the model.
Choosing a higher number of iterations results in no significant decrease in RMSE and might lead to
overfitting. [B] Usingmore than 8 features has no significant impact on XGBoost prediction accuracy.
Figures from Publication II.

5.3 Coordinate filtering

Coordinate filtering is used to smooth out noisy measurements and improve the over-all accuracy and precision of the end coordinate. In the current context, the filter re-fines end coordinates, while considering the uncertainty of measurements (prediction)and previously filtered coordinates. While in a traditional Kalman Filter (KF) the processand measurement noise have fixed values, then in real-life applications it can be seenthat measurement uncertainty is a dynamic value, affected by external factors such asNLoS or multipath. Therefore, it is preferable to know the measurement uncertainty atevery ranging calculation. As shown in previous sections, the ML model aims to predictthe end coordinate offset from true value, based on the input feature values. Since thedirection of the error with regard to x, y, and z axes is unknown, this prediction can beconsidered as uncertainty in all three axes. By implementing the prediction as a dynamicmeasurement uncertainty in an AKF, it is hypothesized that positioning performance canbe improved further.
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Figure 22: Features used in the final XGBoost model. Figure from Publication II.

5.3.1 KF and AKF filtering
In this work, the main difference between a KF and AKF is in the application of the R ma-trix, which represents positioning measurement uncertainty. In KF, the diagonal elementsof R in (50) were set as fixed values diag(0.01, 0.01, 0.01) corresponding to the precisionof the DW1000 device [120] with:

RKF =




σ2
x 0 0

0 σ2
y 0

0 0 σ2
z


=




0.01 0 0
0 0.01 0
0 0 0.01


 . (50)

However, AKF measurement uncertainty in (51) is updated at each iteration as the end co-ordinate is calculatedwithML prediction D̂ML added to the variance of diagonal elementsas

RAKF =




0.01+ D̂ML 0 0
0 0.01+ D̂ML 0
0 0 0.01+ D̂ML


 . (51)

In essence, the ML prediction drives the filtering process by dynamically changingmeasurement uncertainty i.e., weighting each incoming estimated coordinate with theassociated uncertainty. In KF, EKF, and AKF, the process noise matrix Q has constant val-ues diag(0.01, 0.01, 0.01). In the beginning of Alg. 1, the state transition matrix A, statecovariance P0, and observation matrix H are initialized as 3-by-3 identity matrices. X̂0represents the first converged NLS solution from (19), Zk is the measurement vector and
I is a 3-by-3 identity matrix.
5.3.2 EKF filtering
ML-driven AKF is also compared with the Extended Kalman Filter (EKF), which is capableof dealing with non-linear problems such as multilateration described in 2.2. In contrastto KF and AKF, which predict and correct coordinates, EKF makes state corrections usingresiduals betweenmeasured distancesZk anddistances to the last estimated coordinates.In Alg. 1 state correction step HkX̂−

k is replaced with D−
k where:
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Algorithm 1 Kalman filter algorithm
Input: X̂0,Zk,P0,Q,R
Output: X̂kInitialize A,P0,H,IPrediction step
for k = 1, ...,∞1: State prediction X̂−

k = AX̂k−12: Covariance prediction P−
k = APk−1AT +QCorrection step3: Kalman gain Kk = P−

k HT
k (HkP−

k HT
k +Rk)

−1

4: State correction X̂k = X̂−
k +Kk(Zk −HkX̂−

k )5: Covariance correction Pk = (I−KkHk)P−
k

return X̂k,Pk
end for

D−
k =




√
(x−k − x1)2 +(y−k − y1)2 +(z−k − z1)2

√
(x−k − x2)2 +(y−k − y2)2 +(z−k − z2)2

...√
(x−k − xn)2 +(y−k − yn)2 +(z−k − zn)2




(52)

with x−k , y−k and z−k representing coordinates from last iteration. Measurement vector Zkrepresents current iteration distance equations with added measurement noise

Zk =




√
(xk − x1)2 +(yk − y1)2 +(zk − z1)2 + v1√
(xk − x2)2 +(yk − y2)2 +(zk − z2)2 + v2...√
(xk − xn)2 +(yk − yn)2 +(zk − zn)2 + vn


 , (53)

where vk representsmeasurement noise vector, which has covariancematrixRk as diag(0.01,0.01, 0.01). Process noise matrix Q is also set as diag(0.01, 0.01, 0.01).With EKF, the entire NLS approximation process discussed in 2.2 may be bypassed anddo linearization through the observation matrix Hk, which is comprised of first-order par-tial derivatives [120]:

Hk =




∂d1(xk,yk,zk)

∂xk

∂d1(xk,yk,zk)

∂yk

∂d1(xk,yk,zk)

∂ zk
∂d2(xk,yk,zk)

∂xk

∂d2(xk,yk,zk)

∂yk

∂d2(xk,yk,zk)

∂ zk... ... ...
∂dn(xk,yk,zk)

∂xk

∂dn(xk,yk,zk)

∂yk

∂dn(xk,yk,zk)

∂ zk




, (54)

where derivatives correspond to
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∂di(xk,yk,zk)

∂xk
=

xk − xi√
(xk − xi)2 +(yk − yi)2 +(zk − zi)2

, (55)
∂di(xk,yk,zk)

∂yk
=

yk − yi√
(xk − xi)2 +(yk − yi)2 +(zk − zi)2

, (56)
∂di(xk,yk,zk)

∂ zk
=

zk − zi√
(xk − xi)2 +(yk − yi)2 +(zk − zi)2

. (57)
In the context of coordinate calculation, skipping the NLS coordinate calculations (andconvergence iterations) makes EKF computationally less demanding. On the other hand,a poor LS coordinate in the state vector can affect the filtering process and result in aninaccurate coordinate. Therefore, for comparison purposes, EKF was provided with a con-verged NLS coordinate as the initial state vector.

5.4 ML model testing and application for filtering
The proposedML models and filtering schemes were tested using a real-life dataset gath-ered at an industrial site at Auroom Kastre factory (Fig. 23). Altogether 40 different mea-surement points were established around the ground floor. Similarly to the measurementcampaigns at Krah Pipes and Eliko office, UWB ranging data were collected using 10 Hz up-date rate, resulting in approximately 300measurement sequences per point. Additionally,the tag’s true coordinates were measured with the Disto S910 laser measurement devicefor benchmarking. As stated in Section 5.2, Auroomdatasetwas not introduced during thetraining of the ML models. Therefore, it represents a suitable collection of unknown datato be used for model validation and filtering performance evaluation. ML performance

Figure 23: Manufacturing area inside Auroom Kastre factory. Red ellipses highlight visible UWB
anchors. Figure from Publication II.
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on predicting the test set response variables was summarized with the Cumulative errorDistribution Function (CDF) in Fig. 24 and in Table 4. The latter includes commonly usedregression performance indicators such as RMSE, Mean Square Error (MSE), and MeanAbsolute Error (MAE) [144]. Expectedly, the Regression Tree model has the worst per-formance in terms of these metrics. This is due to the limitations arising from a singlepredictor tree as compared to significantly larger models of XGBoost and Random For-est. Moreover, the latter method provided the best regression metrics out of the threemodels.
Table 4: Performance of ML models on predicting the test set response variables. Table from Publi-
cation II.

RMSE [m] MSE [m2] MAE [m]
XGBoost 1.28 1.64 0.36

Regression tree 1.37 1.87 0.46
Random Forest 1.18 1.4 0.33
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Figure 24: CDF of prediction errors. It can be seen that a regression tree provides more distinguished
prediction error levels based on decisions from a single tree as shown in Fig. 17. RF and XGB predic-
tions are more refined at the cost of more complex models. Figure from Publication II.

Next, the predictions of the models were applied in coordinate filtering schemes andthefiltered end coordinateswere comparedwith pre-measured true coordinates (xT ,yT ,zT ).The followingmetrics were used to evaluate positioning accuracy and precision: Mean Lo-cation Error (MLE), RMSE, Distance Root Mean Square error (DRMS), Mean Radial Spher-ical Error (MRSE) and maximum error [78], [145]:
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1) 2D metrics:
MLE2D =

∑
n
i=1

√
(xT − x̂i)2 +(yT − ŷi)2

n
, (58)

RMSE2D =

√
∑

n
i=1[(xT − x̂i)2 +(yT − ŷi)2]

n
, (59)

DRMS =
√

σ2
x +σ2

y , (60)
MAX2D = max

i∈n
(
√
(xT − x̂i)2 +(yT − ŷi)2). (61)

2) 3D metrics:
MLE3D =

∑
n
i=1

√
(xT − x̂i)2 +(yT − ŷi)2 +(zT − ẑi)2

n
, (62)

RMSE3D =

√
∑

n
i=1[(xT − x̂i)2 +(yT − ŷi)2 +(zT − ẑi)2]

n
, (63)

MRSE =
√

σ2
x +σ2

y +σ2
z , (64)

MAX3D = max
i∈n

(
√
(xT − x̂i)2 +(yT − ŷi)2 +(zT − ẑi)2). (65)

Overall statistics summarizing all 40 measurement points can be seen in Tables 5 and6. It can be seen that in 2D positioning, ML-driven filtering has approximately 0.1 m lessMLE and 0.3 m smaller DRMS than compared to ordinary KF. In 3D positioning, the MLaugmentation results in approximately 0.25 m smaller MLE and 0.6 m smaller MRSE thanKF. While all AKF schemes performed at a similar level, it was seen that Random Foresthad slightly better results in terms of overall maximum error in 2D and 3D positioning. It isalso worth noting that NLS had smaller MLE than EKF in both 2D and 3D positioning. Thiscan be explained with the solution convergence process inherent in the NLS optimizationas explained in Section 2.2. In EKF algorithm no solution optimization was performed.
Table 5: Overall metrics for 2D positioning. Table from Publication II.

MLE 2D [m] RMSE 2D [m] DRMS [m] Max. error 2D [m]
NLS 0.46 0.95 0.85 11.16
KF 0.43 0.72 0.57 7.01

AKF + XGB 0.28 0.29 0.11 0.62
AKF + RF 0.28 0.29 0.1 0.55
AKF + RT 0.27 0.28 0.11 0.63

EKF 0.62 0.96 0.78 6.28
Lastly, proposedmethodswere compared in terms of elapsed processing time to inves-tigate their feasibility in a high position update rate system. Benchmarkingwas done in theRStudio environment using built-inML libraries xgboost, ranger, rpart, andmicrobenchmark.The hardware specification of the computer was Intel(R) Core(TM) i5-7300U CPU@ 2.60GHz with 16 GB RAM. In Table 7 it can be seen the amount of delay ML adds to the filter-ing scheme. Ordinary Kalman filter performs the fastest while EKF being 3.5 times slower.However, ML prediction adds computational delay, with XGBoost and regression tree be-ing approximately 18 times slower than KF and Random Forest being the slowest. The
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Table 6: Overall metrics for 3D positioning. Table from Publication II.

MLE 3D [m] RMSE 3D [m] MRSE [m] Max. error 3D [m]
NLS 0.8 1.36 1.17 14.04
KF 0.74 1.05 0.8 8.78

AKF + XGB 0.48 0.5 0.18 0.94
AKF + RF 0.48 0.5 0.18 0.9
AKF + RT 0.51 0.53 0.2 1.07

EKF 2.86 3.26 1.94 11.73

latter is most probably due to prediction making process inherent in the Random Forestalgorithm. As described in Section 2.5.2, prediction time is one of its limitations, as itrequires querying each tree in the forest.
Table 7: Single iteration time for filtering and prediction. The ratio shows proportional relation be-
tween mean latencies of the filtering schemes. As the KF had the fastest processing time, the other
filtering solutions were compared respectively. For example, the EKF algorithm had a 3.5 times
higher single iteration latency than KF. The minimum elapsed time andmean time for KF is the same
due to rounding. Table from Publication II.

Min. time [ms] Mean time [ms] Max. time [ms] Ratio
KF 0.04 0.04 0.06 1

AKF + XGB 0.68 0.71 0.72 17.75
AKF + RF 14.77 15.49 16.74 387.25
AKF + RT 0.68 0.72 0.9 18

EKF 0.12 0.14 0.21 3.5
Considering that all ML-driven filtering methods improved 2D and 3D positioning ap-proximately on the same level, then in terms of latency, they added a significant delaycompared to ordinary filtering. While these models could be applied in a high updaterate (e.g., 10 or 20 Hz) positioning system, the Random Forest was significantly slowercompared to RT and XGB models. Furthermore, XGBoost-augmented filtering performedslightly faster than a single regression tree. Such result may be related to the ML library’simplementation, hardware specification, and efficiency of the code. The developed XG-Boost model was also applied in the Eliko RTLS UWB positioning solution using the XG-Boost C Package [146] with a prediction time delay of approximately 1 ms. The systemhardware consisted of Intel(R) Xeon(R) W-2123 CPU @ 3.60 GHz with 16 GB RAM.

5.5 Discussion
In summary, this publication developed three distinct decision tree-basedMLmodels withthe aim to predict UWB positioning error. It was shown that using this prediction as ameasurement uncertainty in a filtering scheme, the performance of UWB positioning canbe improved when compared to traditional filtering methods. In 2D positioning, the MLEand RMSE improved ca. 10 cm and 40 cm, respectively. Furthermore, the ML predictionis sufficiently fast to be used in a real-life positioning system with XGB model showing0.7 ms average latency. The performance of ML-augmented filtering motivated furtherinvestigation in its application in a UWB/GNSS sensor fusion solution as demonstrated inthe subsequent chapter.
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6 GNSS and UWB sensor fusion withML-based uncertainty es-
timation

This chapter covers the methods used for sensor fusion of GNSS and UWB positioningsystems using ML-based uncertainty estimations. In previous publications it was shownthat ML can be effectively used for estimating positioning uncertainty and applied for im-proving the accuracy and precision of UWB end coordinate. Publication III leverages thisknowledge and incorporates ML-based uncertainty estimation with GNSS positioning aswell, with the aim of using two distinct MLmodels in a seamless indoor-outdoor position-ing scheme. The estimated position uncertainties of both UWB and GNSS ML models areincorporated in adaptive sensor fusion and filtering, which refines the estimated end co-ordinate while considering the uncertainty estimation by the ML models at each positionupdate. The entire proposed solution can be summarized with a flowchart in Fig. 25.
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Figure 25: Flowchart of UWB and GNSSML augmented sensor fusion as proposed by the author. The
dashed box highlights the contribution in developing two distinct ML models for respective sensor
uncertainty estimation. Sensor coordinates and their dynamically changing position uncertainties
are then fused and filtered to produce the final coordinate at the output. Figure from Publication III.

This chapter is based on Publication III:

• M. Tommingas, T. Laadung, S. Varbla, I. Müürsepp, and M. Mahtab Alam, “UWBand GNSS Sensor Fusion Using ML-Based Positioning Uncertainty Estimation,” IEEE
Open Journal of the Communications Society, vol. 6, pp. 2177–2189, 2025

6.1 Background and motivation
Determining the position of an object using a combination of positioning sensors whetherindoors, outdoors, or in transitional environments, presents significant challenges as thesystem performance is highly dependent on the operational environment [147]. For in-stance, GNSS excels in open-sky conditions with clear satellite reception. However, in-door or dense urban environments severely attenuate satellite signals, degrading GNSSpositioning accuracy significantly [8], [36]. While seamless indoor-outdoor positioningaccuracy and precision may be enhanced by implementing additional sensors (e.g., in-ertial measurement unit or wheel sensor), the end coordinate still depends also on theaccuracy of each positioning sensor. Estimating the positioning integrity at each positionupdate is one of key components in achieving reliable coordinate, especially in transitionareas, where the performance of both indoor and outdoor sensors may be compromised.
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In the literature, a commonmethod to measure the uncertainty of position is by usingthe Dilution of Precision (DoP) parameter, which indirectly shows the level of geometricaluncertainty in an area relative to servicing nodes (e.g., GNSS satellites or UWB anchors)[72]. However, DoP does not account for other factors that may contribute to positioningperformance. For example, GNSS positioning is affected by several types of other errorsources including receiver instrument issues, satellite signal propagation path (e.g., NLoS,multipath), and the space segment [21]. Considering that DoP considers only a small partof an entire ensemble of error sources, it is proposed to estimate positioning uncertaintywith an alternative solution by using an ML model. In addition to considering geometri-cal uncertainty, several other features can be included such as the number of servicingsatellites, quality and age of correction, deviation of positioning error, etc.
6.2 Data collection
For UWB positioning uncertainty estimation, this publication employs XGBoost ML modelthat was developed in Publication II. However, the current publication concentrates onthe training of the GNSS ML model using features described in Section 2.6.2. The trainingdata was collected during a measurement campaign conducted at an office building siteas shown in Fig. 26. Firstly, the location of the GNSS RTK base station was established
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Figure 26: Layout of the GNSS measurement campaign at the Eliko office building. Static measure-
ments were taken indoors, near-building, and in outdoor areas. For clarity, only 15 measurement
points out of a total 60 measurements are shown in this figure. Each true coordinate is paired with
a respective measurement. The blue and orange traces mark the highly inaccurate and imprecise
DGPS and RTK float solutions taken indoors. Measurements that were taken closer to the building
door, were also more accurate and precise, while points with RTK fix solution (marked with green)
had the best performance. Figure from Publication III.
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at a nearby geodetic location and assigned with global coordinates. The respective localcoordinates were set as (0, 0). Next, the laser measurement device Disto S910 was set upnear the building, so that the true coordinates of all measurement points can be gathered[139]. The goal was to take static GNSS measurements indoors, in semi-obstructed areas,and outdoors to mimic real-life dynamic changes in GNSS data. The measurements werecollected for 30 seconds at 60 differentmeasurement points with a 10 Hz update rate. TheGNSS receiver collected the training data based on the same features as shown in Table 2.As the true coordinates were also measured at each point, the coordinate offset betweenthe estimated GNSS position and the true coordinate was set as a response variable foreach set of features.
During the measurement campaign, it was seen that correction quality changes rela-tive to the operational area. For example, indoors with the unavailability of RTK, the maincorrectionmethodwas DGPS. Near the building edge, themain correction quality was RTKfloat. Only in clear-sky conditions, the RTK integer ambiguities were resolved, resulting inhigh accuracy RTK fix. More detailed description of GNSS correction qualities is given inSection 2.7. The entire training dataset can be viewed in terms of changes in correctionquality as shown in Fig. 27. As expected, GNSS RTK provides the best positioning accuracycompared to other correction methods. The floating-point RTK had the largest accuracyrange between approximately 1 m to 15m. Indoors, at the furthest distance from the door,the main correction method was DGPS, which produced coordinates with varying offsetsranging from approximately 2 m to 25 m.
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Figure 27: Histograms for all three GNSS correction qualities taken during the measurement cam-
paign. Emphasis is on the distribution of coordinate offsets and their values with respect to each
correction. It can be hypothesized that such distribution already provides insight in predicting the
magnitude of coordinate error. Figure from Publication III.
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6.3 ML model training

After data collection, several adjustments had to be made to ensure correct format of thedataset. Firstly, collected GNSS coordinates were transformed into the local frame of ref-erence using ENU method described in Section 2.4. By calculating the Euclidean distancebetween the local coordinates and respective true coordinates, coordinate error was setas the response variable for each set of respective feature values. Next, to ensure un-biased training data, the entire dataset was sampled and divided into three equal-sizedsubsets according to correction quality: DGPS, RTK floating-point, and RTK fix. Lastly, thedata was mixed and separated into training and testing sets with 80% and 20%, respec-tively.
To develop the GNSS ML model, supervised learning was done using xgboost libraryin RStudio environment [136], [137]. After data partitioning, 80 percent of the data wasused for 10-fold cross-validation to select suitable hyperparameter values for the initialmodel. XGBoost was the ML method of choice for its high-performance metrics as shownin Publication II. Similarly to developing the UWB model, the chosen hyperparameterswere the number of boosting iterations and tree depth [148]. RStudio provides appropri-ate cross-validation train, xgbTree and trainControl functions with the caret library [140].The training dataset, which consisted of collected features and their response variables,was separated into 10 segments with 1 segment being the validation set. This approachhelps to choose more generalized hyperparameter values [149]. The number of boost-ing iterations and tree depth were compared in terms of prediction RMSE as shown inFig. 28. Hyperparameter values were deliberately limited, which can help avoid overfit-ting and an overly complex model [150]. Also, it can be seen that a model with a treedepth of 7 and 100 boosting iterations presents no significant increase in prediction per-formance. Using the chosen hyperparameters, the initial model with all the features was
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Figure 28: Prediction RMSE with different hyperparameter values. Tree depth and the number of
boosting iterations were limited to 7 and 100 respectively as these values provide sufficient predic-
tion accuracy and help avoid overfitting and an overly complex model. Figure from Publication III.
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built with the xgboost function. XGBoost library’s xgb.importance, outputs features thatprovide the most informational gain in making the prediction. Using the initial model, theinherent features were ranked in descending order. Next, by selecting a sequential com-bination of features, prediction RMSE was observed to select the number of features thatprovide a sufficiently small prediction RMSE. As shown in Fig. 29-A, more than 5 featuresprovide no significant improvement in predicting test set response values. In contrast,choosing more features may lead to overfitting and an overly complex model [151]. Thefinal selected features and their informational gain are shown in Fig. 29-B.

A B

Figure 29: [A] The prediction RMSE as a function of the number of features. Using more than 5
features has no significant impact on prediction accuracy and may lead to overfitting of the model.
[B] 5 features that provide the biggest informational gain in the XGBoost model. The gain quantifies
how much a feature contributes in improving the models prediction. Figures from Publication III.

6.4 ML model testing
The final GNSSMLmodel was tested on the rest of 20% of data, which was not used in thetraining process. In Fig. 30-A, it can be seen that the ML model predicts GNSS responseerror in terms of different correction qualities with significant accuracy. The performancewas evaluated with common regression metrics: RMSE, MSE, and MAE. Sample distribu-tions of the test set and corresponding predictions can also be seen in Fig. 30-B.
6.5 Sensor fusion and filtering
In this work, complementary sensor fusion was used to combine the estimated UWB andGNSS coordinates and covariances [152]. Both UWB and GNSS ML models produce anuncertainty estimate, which is incorporated in the Kalman filter’s covariancematrix of therespective sensor [153]. The predicted estimate MLU of the UWB model and MLG fromthe GNSS ML model were applied as:

RU =

[
MLU

2 0
0 MLU

2

]
, (66)

RG =

[
MLG

2 0
0 MLG

2

]
. (67)

Next, assuming measurements with normally distributed Probability Density Functions(PDF) a joint PDF RF was calculated as:
RF = (RG

−1 +RU
−1)−1. (68)
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A B

Figure 30: [A] Prediction error of GNSS ML model for different correction qualities. The vertical axis
is presented in the logarithmic scale. [B] Sample density comparison of ML prediction and test set
values for different correction qualities. Figures from Publication III.

Lastly, estimated coordinates ẐU from UWB and ẐG from GNSS, their respective covari-ances, and fused covariance are used to produce fused coordinates as:
Ẑk = RF((RG

−1ẐG)+(RU
−1ẐU)). (69)

The Adaptive Kalman Filter (AKF) is used to filter end coordinate estimates with fusedcovariances dynamically at each position update. The predictions of both ML models es-sentially drive the filtering process by dynamically changingmeasurement uncertainty i.e.,whether to trust the measurement or the kinematic process. Since the proposed solutionis meant to be applied to a moving object in 2D, the state transition matrix A for position,velocity, and acceleration was established as:

A =




1 ∆t ∆t2

2 0 0 0
0 1 ∆t 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆t ∆t2

2
0 0 0 0 1 ∆t
0 0 0 0 0 1



, (70)

where ∆t is measurement period of 0.1 s. And process noise matrix Q as:

Q =




∆t4

4
∆t3

2
∆t2

2 0 0 0
∆t3

2 ∆t2 ∆t 0 0 0
∆t2

2 ∆t 1 0 0 0
0 0 0 ∆t4

4
∆t3

2
∆t2

2
0 0 0 ∆t3

2 ∆t2 ∆t
0 0 0 ∆t2

2 ∆t 1




σ
2
a , (71)
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where σa is random acceleration standard deviation with a heuristically chosen value of10-4 m/s2. As the filtering is done only for the x and y coordinates, the observation matrixis set up as:

H =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
. (72)

The order of steps inside the AKF is shown in Alg. 1. The initialization coordinates X̂0are extracted from the sensor, which has the lower uncertainty estimate based on therespective ML model. P0 represents the initial state covariance, which was set as I·100,with I being a 6-by-6 identity matrix.
6.6 Practical experiments and results
The proposed sensor fusion solution was tested with a moving testbed containing a GNSSRTK receiver, a UWB tag, a total station reflection prism, and a computer for data col-lection as shown in Fig. 31. The prism was used in conjunction with the stationary totalstation for measuring the true track. An additional computer was connected to the indoorUWB network, which consisted of 6 UWB anchors, and the total station data controllerfor real-time data collection. GNSS RTK base station was also set up nearby with premea-sured geodetic coordinates [77]. During the test, the gathered data on the two computerswere included with a Unix timestamp, and before the test, the computer clocks were syn-chronized against a time-server at nettime.pool.ntp.org with an approximate 2 ms offset.

Figure 31: Test setup at the campus of Tallinn University of Technology. Figure from Publication III.

The initial total station setup was established using the resection method with threereference points [154]. These were acquired using a Trimble R12 GNSS receiver in RTKmode with three initializations (60 epochs per measurement). After establishing the ini-tial base station, the three reference points were remeasured using the total station for
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consistent coordinates, and the reference network was further densified. The improvednetwork formed the basis for further validation measurements. By comparing the initialTrimble R12 and total station measurements, an approximate absolute accuracy of 10 mmcould be assumed for validation surveys [3].As can be seen in Table 8, the total station has a sample rate of 2.5 Hz. This presentsa mismatch when coordinates from UWB and GNSS devices with 10 Hz sample rate arecompared with the true track. In order to calculate performance metrics, sample rates ofall systems must match at 10 Hz. Therefore, additional markers were added to the totalstation points through interpolation. Additionally, as seen in Fig. 31, the UWB tag andGNSS receiver were positioned with an offset regarding the reflection prism. Therefore,their output coordinates were rotated and shifted to match the location of the prism.Since IMU data was not used during the test, the direction of the trolley was calculated inpost-processing using interpolated points of the total station.
Table 8: Positioning systems used in the test. Table from Publication III.

Eliko RTLSUWB Fieldbee L2GNSS RTK Trimble S6
Accuracy 0.2 m 0.01 m + 1 ppmCEP (RTK fix) 4 mm + 2 ppmand 2" angularSample rate 10 Hz 10 Hz 2.5 Hz
Method AP-TWR Real-time kinematic LoS withreflection prismCoordinatesystem Local Global Global

An example of a test track is shown Fig. 32. The traverse started indoors with severelyinaccurate GNSS position estimates with outliers approximately 60 m away. Similarly tothe test campaign described in 6.2, only DGPS corrections were available. On the otherhand, the UWB RTLS system provided stable coordinates with LoS from the servicing an-chors. In the transition area, the UWB coordinates became expectedly more unstable,and the GNSS receiver applied first RTK float corrections, with coordinates converging onthe transition area. After the GNSS receiver acquired the RTK fixed mode, the track wasstable and accurate. Upon returning to the transition zone, the GNSS receiver fluctuatedbetween RTK fix and floating-point modes. However, the receiver maintained a stabletrack even when using inferior correction qualities such as RTK-float or DGPS.The test track data was then used for seamless sensor fusion solutions with differentmethods for estimating coordinate uncertainty. As stated in 6.1, one of the commonmeth-ods for estimating the coordinate uncertainty in a sensor fusion system is by applying adilution of precision parameter which describes geometrical uncertainty of an object rel-ative to servicing nodes (e.g., satellites or anchors). In this work, HDoP was separatelycalculated for UWB coordinates, whereas GNSS provides HDoP in the NMEA message.At each position update, HDoP was used in the measurement uncertainty matrix of theKalman filter instead of ML model estimates in (66) and (67). As can be seen in Fig. 33,using GNSS and UWB sensors with only HDoP as an uncertainty estimate poses certainlimitations. The main difficulties appear at the beginning of the test, where the GNSS ismost inaccurate. The HDoP provided by the GNSS receiver gives an incorrect estimate toa severely inaccurate coordinate and based on the weights in the RU and RG matrices, theKalman filter estimates the end coordinate to lie approximately between the native UWBand GNSS coordinates. If the inferior correction modes, such as DGPS and RTK-floating
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Figure 32: Coordinates from GNSS and UWB sensors taken along the indoor-outdoor-indoor move-
ment path with arrows showing the movement direction. Traversing from the building, DGPS and
RTK-float solutions are highly inaccurate, presenting a coordinate offset approximately 60 m from
the starting point. Returning indoors, GNSS receiver fluctuates between different coordinate correc-
tion modes, while retaining a stable trajectory. Figure from Publication III.

point are not considered, then the fused track is muchmore stable and accurate as shownin Fig. 34-A. However, this solution entails several sensor dropouts, especially in the tran-sition area, where typically RTK-floating point mode is used. Furthermore, when therewas no RTK fix and no UWB data available, the Kalman filter solved the end coordinate asa stationary point.
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Figure 33: GNSS and UWB sensor fusion using HDoP-based uncertainty with AKF for benchmarking
with all available GNSS corrections (DGPS, RTK float, and RTK fix). Figure from Publication III.

In contrast, the proposedMLmodel estimates the uncertainty based on training data,which already considers dynamically changing conditions. As was shown in Section 6.3,the training data consists of GNSS measurements with different correction qualities withrespective features and true error response variables. Therefore, a properly trained MLmodel can consider a much broader variety of features than compared to DoP only. Thebenefit of incorporating ML models can be summarized in Fig. 34-B. At the beginning ofthe test, the GNSS ML model assigns a significant weight to the inaccurate GNSS coor-dinate, which results in the Kalman filter preferring the UWB coordinate instead. In thetransition area with severely inaccurate DGPS and RTK float solutions, the ML model stillassigns appropriate weights based on input features and suffers almost no dropouts. WithRTK fix, the uncertainty is the smallest and the filtered end coordinate is the most stableand accurate. Returning indoors, it is notable thatwhen transitioning fromRTKfixedmodeto RTK floating-point, theMLmodel assigns the latter with lower weights, than comparedto RTK floating-point at the beginning of the test.Table 9 shows overall sensor fusion results with different approaches. Positioning ac-curacy and precision were calculated with MLE (58), RMSE (59), and maximum error (61).
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A B

Figure 34: [A] GNSS RTK and UWB sensor fusion using HDoP-based uncertainty estimation with AKF
for benchmarking with RTK fix only. [B] The proposed GNSS and UWB sensor fusion with ML-based
uncertainty estimation with AKF using all available corrections. Figures from Publication III.

In Table 9 it can be seen how the HDoP-based approachwith RTK fix has anMLE and RMSEat a similar level to ML-based estimation. However, the former method suffers from sen-sor dropouts in the transition area, resulting in a significant maximum error. Additionally,using HDoPwith all available corrections (DGPS, RTK float, and RTK fix), results in an incor-rect uncertainty estimation leading to a a highly inaccurate fused coordinate. Lastly, the
Table 9: Comparison of different sensor fusion schemes. Table from Publication III.

MLE [m] RMSE [m] Maximumerror [m]Proposed ML-based fusionwith all corrections 0.16 0.18 0.49
Fusion with RTK fixand HDoP 0.14 0.19 1.29
Fusion with allcorrections and HDoP 4.56 9.64 35.32

measurement uncertainties and their values are shown in Fig. 35. It illustrates how a rawGNSS HDOP compares to ML-based uncertainty estimations. As was shown in equations(68) and (69), the ML model estimate is reciprocal to the weight in AKF, resulting in a biastowards GNSS or UWB end coordinate.
6.6.1 Repeatability tests
The following section presents the results of additional tests that were not included inPublication III since these were carried out at a later date. The goal was to test the ML-augmented UWB-GNSS sensor fusion in terms of repeatability. The experiments wereconducted on the same premises as the previous tests described in Section 6.6. However,the test track was set up for a different use case. The idea was to test the performance ofthe fused coordinate in three different scenarios: indoors, in the transition area, and out-doors to simulate forklift start-stop operations. The moving testbed made 4 stops alongthe track with 2 test runs, amounting to 8 stops as shown in Fig. 36. Similarly to previoustests, ML-augmented AKF was used for both GNSS and UWB sensor coordinates, with re-sults shown in Fig. 37. The performance of fusion regarding the 8 distinct stopping pointscan be summarized in Table 10. Overall, the tests proved the feasibility of ML-augmentedfusion in terms of repeatability and coordinate performance.
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Figure 35: Distribution of measurement uncertainties during the test. It can be seen how ML esti-
mates coordinate error in a significant range compared to raw GNSS HDoP values. Larger values
(e.g., indoor DGPS) give smaller weight during coordinate filtering. On the other hand, smaller val-
ues (e.g., outdoor RTK fix), present a larger weight. HDoP is a unitless parameter.

Table 10: Positioning performance metrics during the repeatability tests.

Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 6 Stop 7 Stop 8MLE [m] 0.30 0.07 0.11 0.17 0.10 0.07 0.14 0.32RMSE [m] 0.31 0.07 0.12 0.17 0.11 0.07 0.14 0.34MAX [m] 0.42 0.10 0.14 0.24 0.13 0.08 0.19 0.59

6.7 Discussion
In this publication, it was shown how ML-based positioning uncertainty estimation canbe used in a seamless indoor-outdoor sensor fusion scheme. The goal was to apply dy-namically changing ML-based weights to the coordinates of GNSS and UWB sensors anduse this information for adaptive coordinate filtering. The resulting solution proved tooutperform traditional solutions based on dilution of precision as a sole measure of coor-dinate uncertainty. While the initial tests showed promising results with ca. 80 cm smallermaximum error and almost no sensor dropouts, it can be suggested that this solution canbe improved further. Firstly, the ML model can always be trained on additional data tomake it more generalized. Furthermore, the UWB ML model was trained on positioningdata gathered mostly in the vicinity of UWB anchors. However, additional data could begathered similarly to the GNSS measurement campaign with measurements mimicking apotential indoor-outdoor route of the sensor. Secondly, the GNSS device used in this pub-lication provided only a limited ensemble of features, when compared to tightly coupledsolutions. Lastly, the proposed solution can possibly be improved with IMU for furtherstability and robustness.
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7 Conclusion
This chapter presents an overview of the conducted research in the presented contri-butions, main findings, and key takeaways. Secondly, it provides answers to the initialresearch questions established in the introduction. Lastly, some potential directions forfuture research are presented.
7.1 Summary
Themain goal of the presented contributions was to enhance positioning performance byleveraging information based on raw positioning data and incorporating them as featuresin distinct ML models. It diverges from typical solutions where channel statistics are usedfor ranging and positioning integrity assessment. Considering a high position update ratesystem, evaluating the channel statistics at each position update is currently an unfeasiblesolution. Instead, raw ranging information was employed in calculating various featuresas input for an ML model, which in turn attempts to predict end coordinate uncertainty.The latter is a key indicator in driving the coordinate filtering process, which aims to im-prove overall coordinate accuracy and precision. Leveraging the capabilities of variousMLtechniques, distinct models were trained and tested in all contributions of this thesis.

The first article investigated ML-based coordinate accuracy classification for UWB po-sitioning using features of ranging residuals, position optimization metrics, and geomet-rical integrity values as features for an ML model. By incorporating real-life UWB rang-ing measurement data for training, it was found that the XGBoost ML model performedUWB-based positioning error classification with an overall high accuracy of 84%. Basedon four classes of coordinate offsets with distinct ranges, the model could predict if thecurrent coordinate belongs to a certain accuracy class. Furthermore, the XGBoost librarydistinguished ranging residuals as the one of the most important information sources formaking the classification.
Leveraging the potential of using anMLmodel as a method for coordinate uncertaintyestimations, the second publication concentrated on developing distinct decision tree-based ML models (Regression Tree, XGBoost, and Random Forest) for comparison pur-poses and incorporating their estimates in a coordinate filtering scheme to enhance theperformance of UWB end coordinate. Two additional measurement campaigns were con-ducted to augment the initial dataset from Publication I and test the developedmodels ona separate real-life dataset. The predictions of the models were incorporated in coordi-nate filtering schemes to compare against non-ML filtering methods. The results showedsignificant improvement in both 2D and 3D positioningmetrics. Additionally, it was shownthatMLmodel prediction is sufficiently fast to be considered in a real-life high update ratepositioning system.
The third publication investigated the application of UWB and GNSS ML-based uncer-tainty estimation in a seamless indoor-outdoor positioning scheme. Although this con-tribution applied the UWB XGBoost ML model from Publication II, the main focus wasto investigate possible use of ML for GNSS-based positioning as well. By leveraging in-formation extracted during a real-life GNSS measurement campaign, an ML model wastrained to estimate positioning uncertainty similarly to the UWBmodel. Using the predic-tions of bothUWBandGNSSMLmodels asmeasurement uncertainty, an adaptive KalmanFiltering scheme was developed for seamless indoor-outdoor positioning. The resultingsolution proved to outperform traditional solutions based on dilution of precision as asole measure of coordinate uncertainty with a significantly reduced maximum error andalmost no sensor dropouts.
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7.2 Research questions
This section provides answers to research questions from Section 1.3.

RQ1 How to assess UWB positioning uncertainty without the knowledge of channel
statistics and is the alternative approach in estimating the uncertainty feasible to be
used in a high update rate positioning system?Incorporating information gathered from channel statistics is one of the most com-mon methods to evaluate UWB raging information and use this knowledge to mitigateor discard erroneous measurements. However, as an alternative solution, ranging- andpositioning-based information can be used as well. Most notably, ranging residuals indi-rectly reflect erroneous measurements, which in turn affect the end coordinate. It wasshown that using an ensemble of various non-channel statistics related features, UWBpositioning uncertainty can be estimated with significant accuracy.Range- and position-based information has a distinct advantage when used in a highupdate rate positioning solution, as this information is gathered and calculated from rawranging measurements. This leads to a much smaller delay compared to channel statics-based evaluations. It was shown that an ML-based approach is feasible to be applied in apositioning systemwith a high position update rate. For example, the XGBoost-augmentedsolution performed a single filtering and prediction with an average of 0.7 ms latency.

RQ2 How to improve UWB coordinate performance with supervised learning?The ML models were developed with the initial aim in predicting end coordinate un-certainty using ranging- and positioning-based information. However, the main benefitcomes from incorporating this estimate as a measurement uncertainty in an adaptive fil-tering scheme to mitigate erroneous measurements and outliers. Extensive UWB mea-surement campaigns were conducted with the aim of gathering UWB training data. Thecollected data along with true coordinates were used in supervised learning to developdistinct models to predict the coordinate uncertainty. By using ML-based estimates withcoordinate filtering, the end coordinate accuracy and precision were improved with anoverall reduction of 2DMLE and RMSE of approximately 10 cm and 40 cm, respectively. In3D positioning, the same respective metrics were improved by approximately 25 cm and50 cm.
RQ3 How to achieve a more comprehensive GNSS positioning uncertainty estima-

tion?Dilution of Precision (DoP) is a common metric used for GNSS positioning uncertaintyestimation. However, as GNSS positioning performance is affected also by other factorsthan geometrical uncertainty, then DoP is not a comprehensive parameter. Alternatively,GNSS can output distinct features that indirectly reflect positioning performance such as:correction quality, number of satellites, age of correction, pseudorange error etc. By us-ingML techniques, a GNSS positioning uncertainty estimationmodelwas proposed, whichleverages inherent information from theGNSS receiver. By considering dynamically chang-ing features at each position update, a more accurate uncertainty estimate is provided.
RQ4 How to augment multi-sensor fusion with ML for improved indoor-outdoor po-

sitioning?Estimating measurement uncertainty accurately plays a key role when using coordi-nate filtering. Moreover, to achieve a reliable and seamless sensor fusion between a UWBindoor sensor network and anoutdoorGNSSnetwork, the uncertainty has to be accuratelyestimated at each position update. By leveraging the capabilities of Kalman filtering, theuncertainty estimates can be applied as weights for individual sensor coordinate outputs.As theMLmodelswere trained on dynamic changes of real-life data, themodel would givea prediction and bias toward using the position estimate of one of the sensors. This would
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result in ML-augmented sensor fusion, where the model prediction essentially drives thefiltering process, resulting in a more stable and accurate end coordinate. By implement-ing the solution on a real-life testbed moving between indoor and outdoor areas, it wasobserved that ML-augmented sensor fusion experienced almost no sensor dropouts witha mean and maximum positioning error of approximately 16 cm and 50 cm, respectively.
7.3 Future work
While the investigations and experiments inML-assisted positioning presented in this the-sis have yielded promising results, there is still potential for further improvement. Ad-ditional measurement and testing campaigns across different positioning environments,along with the integration of supplementary sensors, could further enhance positioningperformance.As noted for all the contributions in the thesis,MLmodels can always be improvedwithalmost limitless quantities of positioning data. For example, Publication II concentrated onimproving the accuracy and precision of scattered stationary UWB tag positions. However,the measurement campaign conducted in Publication III hinted that in indoor-outdoorpositioning it would be preferable to gather training data similar to real-life movementpaths. This would fare a better representation of dynamically changing feature values andpossibly yield a better estimate for positioning uncertainty in LoS and NLoS conditions.Another potential research topic would be to investigate the efficiency of non-decisiontree-based ML algorithms (e.g., SVM, NN) for supervised learning. For instance, in a lowupdate rate positioning system, prioritizing accuracy over prediction latency, thesemodelscould be compared with existing approaches.Additionally, while the test campaign in Publication III confirmed the potential of usingML-based uncertainty estimation for seamlessUWB-GNSS positioning, there is still furthertesting to be done in terms of model verification. Currently, the fusion solution was onlyapplied to a single location. However, additional measurement data should be gatheredin areas with different UWB anchor layouts and obstructions.Another direction would introduce augmentation with additional hardware. FusingGNSS and UWB sensors with IMU is a commonmethod to further enhance the robustnessof seamless positioning especially in the transition areas, where both UWB and GNSS per-formance is usually severely degraded. IMU can be used to suppress outliers and performdead-reckoning to a certain extent in situations where both UWB and GNSS positioninginformation may be unavailable. Fusing all three sensors with ML-based uncertainty esti-mation is a potential topic to be investigated.Real-life tests are essential in validating the proposed solutions. Indoor storage, man-ufacturing or production areas are typically clutteredwith obstructions, presenting a chal-lenging environment for accurate localization. Furthermore, as these areas usually extendalso outdoors, seamless positioning and location awareness are essential for intelligentmanagement. Consequently, the previously mentioned solutions would find applicationand testing in monitoring the position of industrial assets, thereby enhancing the effi-ciency of logistical and industrial processes.
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Abstract
Enhancing UWB and Multi-Sensor Positioning with ML-based
Uncertainty Estimation
This thesis presents novel approaches for enhancing positioning performance of Ultra-Wideband (UWB) and multi-sensor positioning systems using Machine Learning (ML).Several models are proposed that leverage positioning-related information that indirectlyreflects positioning uncertainty. The latter is a key indicator when considering differentfiltering schemes. In essence, a correct uncertainty estimate would give an appropriateweight for an accurate or inaccurate coordinate, resulting in mitigated outliers and overallenhanced performance of the coordinate.

The first contribution of this thesis investigates features based on UWB ranging resid-uals and positioning information for position integrity estimation. Usually, UWB-basedpositioning performance is enhanced through the use of Channel Statistics (CS). However,in practice this is not a feasible approach as gathering CS data takes too much time whenincorporated in a high update rate UWB positioning system. In contrast, this contributionleverages information based on ranging residuals as they indirectly reflect errors in rang-ing and therefore in the end coordinate. A set of features, describing different statistics ofranging residuals, was employed in an Extreme Gradient Boosted (XGBoost) ML algorithmto train a model for end coordinate offset classification. These features included thoseused in literature as well as several novel ones. Notably, the dataset in this contributionwas collected during a measurement campaign in a complex industrial environment withconstantly changing Line-of-Sight/Non-Line-of-Sight (LoS/NLoS) conditions. Based on theresults of a test set, the trained model could predict errors in the range of 0...0.2 m withan accuracy of 90% and an overall accuracy of 84%. These metrics show that using theproposed features, it is possible to predict UWB end coordinate integrity with high accu-racy.
The second contribution focuses on the use of UWB ranging residuals and positioning-based information for coordinate integrity estimation and their use in a filtering schemeas a means of coordinate correction. By leveraging the insight gained from the previousresearch, this contribution investigates the potential of applying coordinate offset esti-mation to improve the overall performance of UWB end coordinates. Furthermore, thisresearch aims to compare different ML models in terms of their prediction accuracy andprocessing delay. In addition to the training data from the first contribution, the modelsare augmentedwith training data from a supplementary real-lifemeasurement campaign.Additionally, the estimates of thesemodels are incorporated in an Adaptive Kalman Filter-ing (AKF) scheme as an input for measurement uncertainty. The solution was tested on aUWBmeasurement test dataset gathered at an industrial site, which was not used duringthe training. The overall results showed significant improvement in 2D and 3D positioningmetrics usingML-augmented filteringwhen compared to non-ML-assisted filtering. On av-erage, the end coordinates in the test set had approximately 10 cm smaller mean locationerror (MLE) and 40 cm smaller root mean square error (RMSE) in 2D positioning. In termsof 3D positioning, theMLE was reduced by approximately 20 cm and RMSE by 50 cm. Fur-thermore, the presence of outliers was reduced significantly as the maximum offset errordecreased by several meters. Lastly, it is shown that ML-augmented filtering is sufficientlyfast to be considered in a high update rate positioning system. The results showed thatusing the proposed residual features in an ML model provides a feasible approach to pre-dict UWB positioning uncertainty and by employing it with a coordinate filtering scheme,the end coordinate can be considerably improved compared to non-ML-assisted filtering.
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The final contribution investigates the possibilities of applying ML-based uncertaintyestimates for a seamless indoor-outdoor sensor fusion solution using UWB and GlobalNavigation Satellite System (GNSS) sensors. While this contribution also applies the UWBXGBoostMLmodel from previous research, themain focus was to investigate the possibleapplication of ML for GNSS-based positioning. It was motivated by the fact that usually,GNSS positioning integrity is described through Dilution of Precision (DoP), which reflectsthe level of geometrical uncertainty between a GNSS receiver and the serving satellites.However, the integrity of GNSS position also depends on other factors such as signal qual-ity, pseudorange error, or the number of servicing satellites. It is proposed that an en-semble of GNSS features can be incorporated in an ML model for a more comprehensiveand accurate uncertainty estimate. Using real-life GNSSmeasurement data gathered fromareas with different degrees of positioning quality, a model is proposed to estimate theGNSS positioning performance. Both UWB and GNSS models are then applied in an adap-tive coordinate filtering scheme with the predictions serving as input for individual sen-sor measurement uncertainty. The proposed solution was tested on a real-life testbed inindoor and outdoor areas. The results showed that theML-augmented sensor fusion out-performs the usual method in relying only on DoP as ameasure of positioning uncertaintywith a mean positioning error of 0.16 m and a maximum error of approximately 0.5 m.This thesis shows the possibilities of applying ML models to significantly improve thepositioning performance of UWB and GNSS sensors. In summary, there is clear poten-tial for further investigations of ML in positioning solutions as well as incorporating othersensors for ML-augmented multi-sensor schemes.
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Kokkuvõte
Ülilairiba ja mitme sensoriga positsioneerimissüsteemide täp-
suse parandamine masinõppe meetodil
Käesolev doktoritöö esitleb uuenduslikke meetodeid ülilairiba (Ultra-Wideband, UWB) jaglobaalse satelliitnavigatsioonisüsteemi (Global Navigation Satellite System, GNSS) tehno-loogiatel põhinevate süsteemidepositsioneerimistäpsuse parandamisel. Masinõppel (Ma-
chine Learning, ML) põhinevad mudelid rakendavad UWB ja GNSS sensoritest kogutudinformatsiooni mõõtemääramatuse hindamiseks, mis on oluline komponent lõpp-koordi-naadi filtreerimisel. Lõppkoordinaat arvutatakse mudeli prognoosi ja filtreerimise tule-musena, vähendades erindite (outlier) mõju ning parandades üldist koordinaadi täpsustja punktipilve hajuvust.

Esmalt pakub doktoritöö välja masinõppe mudeli UWB sensori koordinaadi täpsusehindamisel. Tavaliselt, hinnatakse UWB koordinaatide kvaliteeti raadiokanali statistikapõhjal. Siiski on selle peamiseks puuduseks võrdlemisi pikk viiteaeg, et seda saaks raken-dada kõrge sagedusega positsioneerimissammuga süsteemides. Alternatiivina pakub an-tud töö välja mudeli, mis on treenitud UWB kaugus- ja positsioneerimisinfo põhjal. Kasu-tades sisendinfo erinevaid statistilisi väärtusimasinõppemudeli tunnustena, suudab aren-datudmudel hinnata UWB koordinaadi ebatäpsust. Mudeli treeningandmed koguti reaal-sest tööstuskeskkonnast, kus oli varasemalt ülesseatud UWB positsioneerimisvõrk. Tree-nitud mudelit testiti reaalse positsioneerimisinfo peal, eesmärgiga hinnata iga arvutatudUWB koordinaadi täpsust. Antud mudel suutis tuvastada koordinaadivigu vahemikus0...0.2m ligikaudu 90% täpsusega ja üldine täpsus kõigi teiste täpsusklasside tuvastamiseloli ligikaudu 84%. Need tulemused näitavad, etMLmudelit on võimalik edukalt rakendadaUWB koordinaadi täpsuse hindamisel.
Järgmine töö toetub eelnevalt saavutatud tulemustele ja masinõppe potentsiaalselerakendamisele UWB koordinaatide täpsuse hindamisel. Erinevalt eelnevast klassifitsee-rimismudelist, rakendatakse antud töösUWBkaugus- ja positsioneerimisinfot koordinaadivea hindamiseks ning saadud väärtust kasutatakse adaptiivses Kalmani filtris (Adaptive

Kalman Filter, AKF) mõõtemääramatuse hinnanguna. Lisaks võrreldakse erineva keeru-kusega masinõppe mudeleid nende täpsuse ja arvutuskiiruse osas. Masinõppe mudeleidtäiustati lisa treeningandmetega ja kogu lahendust testiti eraldiseisvas UWB võrgus, misoli samuti ülesseatud tööstusalal. Välja pakutud lahenduse tulemused näitasid märgata-vat paranemist koordinaadi täpsuse ja hajuvuse osas. Võrreldes mitte-ML filtreerimisegavähenes üldine horisontaaltasapinna keskmine asukoha viga ligikaudu 10 cm ja punktip-ilve ruutkeskmine viga 40 cm võrra. Kolmemõõtmelise positsioneerimise puhul vähenesidsamad statistilised väärtused ligikaudu 20 cm ja 50 cm võrra. Lisaks testiti antud töösmudeli prognoosi kiirust koos filtreerimisega. Saadud tulemuste põhjal võib väita, et väljapakutud lahendus on piisavalt väikese viitega, et rakendada seda tiheda positsioneerimis-sammuga süsteemides.
Viimasena uuritakse ka masinõppe rakendamist mitmiksensoritega, pakkudes väljaUWB ja GNSS tehnoloogiatel põhineva ühendpositsioneerimissüsteemi. Antud lahendusvõimaldab objekti asukohamääramist ühtse süsteemi abil nii siseruumides paikneva UWBvõrgu abil, väliskeskkonnas GNSS sensoriga kui ka nö. ülemineku alades, kus mõlemasensori kvaliteet on tavaliselt kompromiteeritud. Arvestades juba eelnevalt väljatöötatudUWB ML mudeliga, siis antud töös keskendutakse pigem GNSS mudelile. Sarnaselt UWB-ga, väljastab ka GNSS sensor infot, mida võib kaudselt seostada positsioneerimiskvaliteed-iga. Kui tavaliselt kasutatakse GNSS positsioneerimismääramatuse hindamise jaoks geo-meetrilise määramatuse indikaatorit, siis võib väita, et tegemist ei ole piisavalt paindliku
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hindamismõõdikuga. Nimelt sõltub GNSS vastuvõtja positsioneerimistäpsus ka teistest te-guritest nagu: teenindavate satelliitide arv, baasjaama korrektsiooni kvaliteet, pseudokau-guste viga jpm. Kuna eelmainitud tunnused esinevad ka GNSS vastuvõtja poolt väljastatudsõnumites, siis rakendatakse neid tegureid ka väljapakutudmasinõppemudelis. ToetudesGNSS seadmetega tehtud mõõtmistel kogutud andmetele, loodi mudel mis võimaldabhinnata positsioneerimismääramatust nii hea kui ka halva leviga keskkondades. Nii UWBkui GNSS ML mudeleid rakendati ühendsüsteemi loomisel ja adaptiivsel koordinaadi fil-treerimisel AKF-ga, kus igal positsiooni uuendusel arvestatakse ML mudelite poolt prog-noositud määramatusega. Võrreldes geomeetrilise määramatuse kasutamisega, näitasML mudeliga täiendatud ühtse positsioneerimissüsteemi lahendus märgatavat parane-mist nii koordinaadi keskmise vea (u. 0.16 m) ja maksimaalse vea osas (u. 0.5 m).Antuddoktoritöös uuriti võimalusi UWB jaGNSS tehnoloogial põhinevate positsioneer-imissüsteemide positsioneerimistäpsuse parandamiseks erinevate masinõppe meetodi-tega. Teostatud uurimused ja katsete tulemused näitavad selget potentsiaali masinõppe-põhisel lähenemisel, kus väljatöötatud mudelid suudavad määramatuse hindamisel ar-vestada mitmete positsioneerimistäpsust iseloomustavate teguritega. Edasised uuringudvõiksid olla seotud ML mudelite täiustamisega ning ühendsüsteeme võiks täiendada kateiste sensoritega (nt. inertsiaalandurid), parandades seeläbi positsioneerimise stabiilsustja täpsust.
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Abstract—This paper investigates features based on Ultra-
Wideband (UWB) ranging residuals used for coordinate integrity
prediction. Usually, UWB-based positioning integrity is evaluated
using channel statistics (CS). However, in practice this is not a
feasible approach as gathering CS data takes too much time
compared to the position update rate of an UWB system. In
contrast to this approach, a set of features based on UWB ranging
residuals are used in a machine learning (ML) algorithm to train
a model for accurate integrity prediction. These features include
those used in literature as well as proposed novel features. The
trained model could predict measurements in the range of 0...0.2
m with the accuracy of 90% and having an overall accuracy of
84%. The results show that using the proposed residual features
it is possible to predict UWB coordinate calculation integrity
with high confidence. Lastly, the dataset used in this paper was
collected during a measurement campaign in a complex industrial
environment with constantly changing line-of-sight/non-line-of-
sight (LOS/NLOS) conditions.

Index Terms—UWB, coordinate accuracy, integrity, ranging
residuals, machine learning, XGBoost, feature importance

I. INTRODUCTION

A range-based Ultra-Wideband (UWB) positioning sys-
tem consists of fixed beacons (anchors), which are used to
measure distances to a mobile node (tag) using two-way-
ranging (TWR) approach. Final position of the tag is estimated
using all measured distances from anchors. UWB systems
are generally considered robust and accurate by providing
precise positioning in the presence of multipath effects and
being less prone to interference [1]. On the other hand, the
performance of UWB positioning depends on UWB anchor
layout geometry, availability of anchors as well as absence of
signal propagation impairments [2], [3]. Therefore, a typical
industrial environment, with its constantly changing line-of-
sight/non-line-of-sight (LOS/NLOS) conditions for radio wave

This project has received funding from the European Union’s Horizon 2020
Research programme under grant agreement No. 101058505 and in part by
the Internet of Intelligent Things project of Estonian IT Academy program
and Estonian Research Council under Grant PUT-PRG424. Additional support
was received under the project of ”Development of an industrial digital control
system based on precise positioning technology ELIKO TAK and Atemix
Automatika” nr. 2014-2020.4.02.21-0311.

propagation, poses a challenging setting for UWB-based po-
sitioning.

Since positioning integrity is dependent on line-of-sight or
non-line-of-sight conditions between the UWB anchor and tag,
then majority of literature focuses on information gathered
from channel statistics (CS). For example, channel impulse
response (CIR) is a popular indicator used in NLOS detection
and error mitigation schemes [4]–[6]. However, the gathering
of CIR information requires a significant amount of data,
hence originating a long latency of about one second just to
transfer the measurements. This leads to an additional delay
for estimating the range, making this approach unpractical
when the estimated position needs to be updated at a high
rate [7]. Additionally, it is noted that apart from long latency
issues, the use of channel statistics is unfeasible in a constantly
changing and harsh industrial environment [8]. A number of
authors propose their positioning solutions in NLOS environ-
ments without the use of CS. For example, a factor graph-
based positioning algorithm along with robust Tukey kernel
was used to improve positioning accuracy [2]. Parameters like
received signal strength (RSS) and ranging statistics have also
been used for NLOS classification [7]. Other authors have
tried to mitigate NLOS effect by applying residual weighting
algorithms at a cost of higher computational complexity [9],
[10].

In contrast to other works, this paper investigates position
estimation integrity regardless of whether it is affected by LOS
or NLOS conditions. Furthermore, the data was collected in a
measurement campaign at an industrial site with dynamically
changing obstacles, which affect radio frequency (RF) signal
propagation and strength. Using a set of features on ranging
residuals, a machine learning algorithm uses these features to
predict the accuracy of the position estimation.

UWB ranging residuals can be evaluated by various charac-
teristics such as standard deviation (SD) or root mean square
error (RMSE). However, these measures alone may not suffice
to describe whether a set of ranging residuals belongs to
an accurate position estimation of an UWB tag. Therefore,
this paper investigates ranging residuals and their potential
characteristics in a more in-depth manner. In addition to
the features presented in the literature, additional parameters
such as those related to least squares (LS) and non-linear979-8-3503-1301-7/23/$31.00 © 2023 European Union



least squares (NLS) optimization and geometrical dilution of
precision.

Features that could potentially describe ranging residual
behavior have not been thoroughly researched. For example,
Silva and Hancke used sum of the squares of distance residuals
(SSDR), mean and standard deviation and maximum distance
as residual features for LOS/NLOS detection [8]. Additionally,
Li and Wang used SSDR as a filter to discard invalid position
estimates [2]. However, many other features could also be used
for UWB positioning integrity i.e., to check whether a position
estimation is reliable or not.

In this paper, XGBoost software library (gbtree booster)
was used to train the model as well as to identify relevant
features that contribute the most in making the prediction. This
method has been implemented before to extract relevant UWB
channel parameters and using this information to improve
UWB-based positioning [11]. As previously stated, using CS
is not in the scope of the current article but rather analyzing
individual calculated ranges and position estimation. By using
a large set of different features based on ranging residuals
along with true distances, XGBoost was used to conduct
supervised learning on a set of training data to predict the
accuracy class of test set measurements. An additional goal
was to train a general model that could also be used in future
measurement campaigns on other sites.

The paper is organized as follows: Section II describes
the theory of ranging residuals, how these are calculated and
features that could potentially describe overall positioning
integrity. Additionally, this section gives an overview of data
collection and XGBoost algorithm. Section III shows the
results in classification performance and feature importance.
The article is concluded in Section IV.

II. ANALYSIS OF RANGING RESIDUALS AND DATA
COLLECTION

A. Position estimation and residuals

For simplicity, following theory in this subsection is consid-
ering two-dimensional positioning. In the scope of this paper,
position estimation of the tag is considered as a two-step
process. In step 1 a set of circle equations (1) is established
to solve the problem of multilateration:

(xi − x)2 + (yi − y)2 = d2i , i = 1, 2, ..., N, (1)

where (xi, yi) is the known coordinate of i-th anchor and di
is the true distance between tag and i-th anchor. Position of
the tag (x, y) can be found by performing linearization on (1)
and applying the LS method. Firstly, an anchor (xr, yr) with
the shortest distance to the tag dr is taken as a reference point
[12]. Next, the non-linear expressions in all available circle
equations are expanded as

x2
i − 2xix+ x2 + y2i − 2yiy + y2 = d2i , i = 1, 2, ..., N (2)

and the reference point (xr, yr) equation

x2
r − 2xrx+ x2 + y2r − 2yry + y2 = d2r (3)

is subtracted from the rest of the expressions. The goal is to
rearrange the terms with regards to unknowns x and y in a
way that satisfies following linear model (4) as demonstrated
by Guvenc, Chong and Watanabe [13]:

Aθ = b, (4)

where

A = −2




x1 − xr y1 − yr
x2 − xr y2 − yr

...
...

xN−1 − xr yN−1 − yr


 , (5)

θ =

[
x
y

]
(6)

and

b =




d21 − d2r − x2
1 + x2

r − y21 + y2r
d22 − d2r − x2

2 + x2
r − y22 + y2r

...
d2N−1 − d2r − x2

N−1 + x2
r − y2N−1 + y2r


 . (7)

Tag’s position θ has the following LS solution:

θ = (ATA)−1AT b. (8)

It should be considered that the anchors in Fig. 1 cannot be
positioned in a straight line as this may result in a flip ambi-
guity [14]. Under ideal conditions, without any measurement
errors, di are equal to true distances and the LS model provides
a solution at the intersection of the three circles. However,
in real-life applications, ranging measurements contain errors

(x1 , y1)

(x2 , y2)(x3 , y3)

d2

d1

d3

(𝑥, 𝑦)

Fig. 1. Example of an error free 2-D trilateration scheme with three anchors
using only x and y coordinates. By solving the ranging equations a unique
solution is provided at the intersection of the three circles. Because of the
absence of measurement noise, there are no ranging residuals.



caused by NLOS and ranging noise, thus producing varying
position coordinates [2], [8].

Δd1

Δd2 Δd3

(x1 , y1)
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( ො𝑥, ො𝑦)
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መ𝑑3

m1

m2

m3

Fig. 2. Example of a 2-D trilateration scheme in UWB-based positioning with
inaccurate range measurements. Difference between the position estimate and
actual measured range results in a residual ∆di that can be used in estimating
positioning integrity.

For example, in Fig. 2 it can be seen that tags position
is located somewhere in the vicinity of the three ranges and
therefore cannot be pinpointed exactly. In this scenario, the
tags location can be only estimated, thus the approximate
position of the LS solution is determined somewhere in the
area that is overlapped by three circles. Thus, the LS solutions
could further be optimized using a Non-Linear Least Squares
(NLS) model. As a step 2 of position estimation, Gauss-
Newton optimization algorithm was applied using the initial
guess provided by LS solution along with previously mea-
sured anchor coordinates and individual distances measured
between anchors and tag. The estimated position is found by
minimizing the objective function:

x̂, ŷ = argmin
x,y

N∑

i=1

((xi − x)2 + (yi − y)2 − d2i )
2. (9)

By comparing the individual measured anchor and tag
distances mi with the distances from estimated coordinate d̂i,
the ranging residuals ∆di are defined as:

∆di = mi − d̂i. (10)

It must be noted that in this work, functions (1) and (9)
were augmented with the expression (zi − z)2 for position
estimation in 3-D space.

B. Features of residuals

Position estimation can be used to indirectly reflect the
quality of UWB observations as sum of ranging residuals

could be compared against a preset threshold to filter invalid
positioning results [2]. However, this approach would lead
to a situation where a single large residual among other
small residuals would lead to a discarded position. Therefore,
this paper proposes a set of 28 features to be used in a
machine learning algorithm with a purpose of determining the
most important features that could best classify accurate or
inaccurate measurements. These features could be divided into
5 categories:

• LS and NLS metrics. These values are associated with
position estimation as discussed in the previous chapter.
Chosen parameters include: Euclidean distance between
LS and NLS solutions, number of NLS iterations to
convergence and NLS convergence tolerance1;

• Lengthened and shortened residuals. As described by
(10), a residual is the difference between distances of
estimated coordinate and measured range from an anchor.
Depending on the NLS solution, which considers all
available ranges, the estimated position may appear closer
or further away relative to the anchor, thus resulting
in a lengthened or shortened residual. Therefore, fol-
lowing features could be established: number of length-
ened/shortened residuals, sum of lengthened/shortened
residuals, average of lengthened/shortened residuals,
RMSE of lengthened/shortened residuals;

• Residual statistics: Following statistical features were
included: variance, standard deviation, sum of squares
(SSQ), sum of absolute values, mean, absolute mean and
root mean square error (RMSE);

• Number of residuals in range. Small residuals indicate
proximity to the NLS solution, whereas large residuals
imply erroneous measurements. By counting the number
of residuals in a preset range, it can be assumed whether
the NLS algorithm uses accurate measurements as its
input. Following ranges were chosen based on overall
accuracy of UWB positioning [16], [17]: 0 . . . 0.1 m,
0.1 . . . 0.2 m, 0.2 . . . 0.4 m, 0.4 . . . 0.8 m, 0.8 . . . 1.6 m,
1.6 . . . 3.2 m, 3.2 . . . 6.4 m, 6.4 . . . 12.8 m, 12.8 . . . 25.6
m, 25.6 . . .∞ m;

• Geometrical integrity of positioning. Dilution of pre-
cision (DOP) indicates geometric location distribution
in an indoor positioning system [18]. Using estimated
coordinates of the tag, DOP parameter indirectly shows
the level of geometrical uncertainty in an area relative to
the anchors. In this article position dilution of precision
(PDOP) was used as it depends on x, y and z coordinates.

C. Data collection

UWB measurement data was collected at an industrial site
of Krah Pipes OÜ (Fig. 3), which manufactures thermoplastic
pipes [19]. Regarding UWB ranging, the site presents a
complex environment with constantly moving objects, which
produce NLOS and multipath effects for RF signals. The

1Convergence tolerance, is based on relative offset convergence criterion.
This assures that the current parameter vector is less than 0.001% of the radius
of the confidence region from the least squares point [15].



Eliko real-time locating system (RTLS) was set up inside the
manufacturing facility by placing UWB anchors and a tag at
preset locations. Based on DecaWave DW1000 chip, the RTLS
was set to operate on UWB channel 4 [20]. Ground truth
coordinates were measured in a local frame of reference with
the Leica DISTO S910 measurement tool and assigned for 8
UWB anchors as well as 30 different tag locations around the
facility. The measurement tool was positioned at a mezzanine
floor in order to have LOS with all measurement points. By
using an update rate of 10 Hz, each location was measured for
30 seconds, resulting in approximately 300 ranging sequences
per location.

Fig. 3. Industrial site at Krah Pipes OÜ, which manufactures thermoplastic
pipes in a complex industrial environment.

D. Data preparation and machine learning

All 30 measurement points from the measurement campaign
were assembled into one dataset, which contained premeasured
anchor coordinates, true coordinates of measurement points
and individual distances measured by anchors. The task was
to perform supervised machine learning i.e., classification on
a data with preset accuracy classes:

Class 1: Distance between 0 . . . 0.2 m;
Class 2: Distance between 0.2 . . . 0.4 m;
Class 3: Distance between 0.4 . . . 0.8 m;
Class 4: Distance between 0.8 . . .∞ m.

These categories were chosen based on UWB performance
studies [16], [17]. In this paper, Class 1 presents positioning
accuracy up to 0.2 m, which is also an approximate accuracy
level for UWB-based positioning given in the literature. All
other classes were set as a double value from the last step.

After dataset cleaning and shuffling, 80% of data was
used for training, while 20% was used for testing purposes.
XGBoost was selected as the ML algorithm of choice as it
has been seen to dominate structured and tabular data sets

on classification, regression and predictive modeling prob-
lems [21]. XGBoost is a large-scale general-purpose gradient
boosting library. Classification and regression tree (CART) is
the basic component of the gradient boosted decision tree
(GBDT) model. The final prediction results in summation
of predictions of multiple regression trees. The XGBoost
algorithm is composed of a series of base classifiers such
as: decision tree, k-nearest neighbors (KNN), support vector
machine (SVM) and logistic regression. These are linearly
superimposed, so that they work together to optimize the
algorithm [4].

R Studio package ”XGBoost” with default settings (gbtree
booster) was used to train the model and extract relevant
features. Since the true coordinate in all 30 measurement
points was known, then training data was labeled with afore-
mentioned 4 categories using Euclidean distance between true
coordinate and NLS estimation. The machine learning model
was trained on a dataset of 28 features along with true distance
values. As a result, the model can be used in classification of
the test data. By using a relatively large set of measurements,
an additional goal was to train a general model that could also
be used on other sites in future measurement campaigns.

III. RESULTS

The XGBoost algorithm produced the predictive model
and a list of features that contributed the most in terms of
predicting positioning integrity i.e., the accuracy or inaccuracy
of measurements. As can be seen on Fig. 4 the most important
features out of the set of 28 seem to be related to lengthened
residuals as these provide the biggest statistical gain. Less
contribution is provided by dilution of precision, number of
residuals in 0...0.1 m range, LS/NLS distance, mean of ranging
residuals and number of NLS optimization iterations.

NLS number of iterations

Mean of residuals

LS/NLS distance

Number of residuals in 0...0.1 m

PDOP

Average of lengthened residuals

RMSE of lengthened residuals

0.0 0.2 0.4
Gain

Fig. 4. Top 7 features that provide biggest contribution or gain as proposed
by XGBoost algorithm. Gain represents the contribution of a feature in
construction of the boosted decision trees within the model. When compared
to other features, then higher gain implies bigger impact in prediction process.
It can be seen that lengthened residuals are the most important features in
describing estimated position integrity.



The lengthening of residuals means that the estimated
position is further away from the individual measured dis-
tance from the anchor. The higher the RMSE of lengthened
residuals, the bigger the offset from true coordinate.

Next, by using these features in a prediction model, classi-
fication could be performed on the test data. Performance can
be seen in Table I using a confusion matrix and prediction
statistics. Overall, prediction of distinct classes was performed
with a high accuracy of ca. 84%. Class 2 was harder to predict
because measurement points, which were estimated in the
range of 0.2...0.4 m from true coordinate, were too close to
Class 1 points to discern these with a high success rate.

TABLE I
CONFUSION MATRIX AND PREDICTION STATISTICS

Reference Class
1 2 3 4

1 1024 76 1 0
Predicted 2 109 240 14 0

Class 3 8 45 54 12
4 0 5 17 143

Overall Accuracy: 0.8358 (ca. 84%)

Statistics by Class:
Class 1 Class 2 Class 3 Class 4

Sensitivity 0.8975 0.6557 0.6279 0.9225
Specificity 0.8731 0.911 0.9608 0.9861

For example, there were 76 points that belonged to Class
2 and according to the model these points were labeled as
Class 1. With a 90% sensitivity (true positive rate) the model
could predict most of Class 1 measurements. Class 2 was
harder to predict with a sensitivity of ca. 66%. However, if
the measurement point did not belong to Class 1 or Class
2 then the prediction was made with a high specificity (true
negative rate) of ca. 87% and 91% respectively. Sensitivity
could potentially be improved with a broader Class 1 range
(e.g., 0...0.3 m).

IV. CONCLUSION

This paper investigated if UWB-based ranging residuals
could be used for estimating overall UWB positioning in-
tegrity. The residuals were examined through a set of features
and comparing them with preset positioning accuracy classes.
In addition to features already established in the literature,
several other parameters were also included. By using a
supervised machine learning algorithm (provided by XGBoost
library) it was found that lengthened ranging residuals provide
the biggest contribution and statistical gain in classification.
With an overall accuracy of 84%, the trained model could
successfully identify 90% of measurements in the range of
0...0.2 m. However, adjacent accuracy class, presenting dis-
tances of 0.2...0.4 m from true coordinate were identified with
66% accuracy. It can be concluded that the trained model
could evaluate UWB positioning integrity with relatively high
accuracy by using the input of lengthened residuals as its main
indicator. Furthermore, this model could be applied in possible
future measurement campaigns.
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UWB Positioning Integrity Estimation Using
Ranging Residuals and ML Augmented Filtering

Mihkel Tommingas, Muhammad Mahtab Alam, Senior Member, IEEE , Ivo Müürsepp, Sander Ulp

Abstract— This article investigates the use of Ultra-
Wideband (UWB) ranging residuals for coordinate integrity
estimation and their use in a filtering scheme. Typically,
UWB system accuracy is improved using channel statistics
to detect and mitigate non-line of sight (NLOS) effects
between UWB sensors and the object to be located, po-
tentially improving the end coordinate solution. However,
in practice when considering UWB system with a high
positioning update rate, this is not a feasible approach, as
gathering and processing CS data takes too much time. In
contrast to this approach, this article proposes a set of
features based on UWB ranging residuals that could be
used as an alternative in integrity assessment. By using
machine learning (ML), the most important features were
extracted from the initial set and then used to train and val-
idate a model for UWB coordinate error prediction. Lastly,
the prediction was applied in an adaptive Kalman filtering
(AKF) scheme as an input for measurement uncertainty.
Model testing was done using UWB measurement test
dataset gathered at an industrial site. The overall results
showed significant improvement in 2D and 3D positioning
metrics of ML-augmented filtering when compared to non-
ML filtering. On average, the end coordinates in the test
set had ca. 10 cm smaller mean location error and ca. 40
cm smaller dispersion in 2D positioning. Additionally, the
presence of outliers was reduced significantly as the max-
imum error offset decreased by several meters. Although
ML augmented filtering is computationally slower than non-
ML filtering (e.g., ordinary and extended Kalman filter), it is
still faster than using channel statistics for UWB integrity
estimation. The results show that using the proposed resid-
ual features in an ML model provides a feasible approach to
predict UWB positioning integrity and use it as a measure
of uncertainty in a coordinate filtering scheme.

Index Terms— end coordinate correction and filtering,
machine learning (ML), ranging residuals, Ultra-Wideband
(UWB) positioning.
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I. INTRODUCTION

CREATING an Ultra-Wideband (UWB) positioning so-
lution that provides reliable location information in a

difficult industrial environment is a challenging task. For
example, storage areas, whether indoor or outdoor, are usually
littered with objects that obstruct radio frequency (RF) signal
propagation, thus affecting the estimated coordinate of an
object to be positioned. UWB-based systems are considered
more robust in the presence of multipath effects and are less
susceptible to interference as compared to other RF-signal-
based positioning systems [1], [2], [3]. UWB system employs
RF signals with a large bandwidth to be used in a wireless
positioning scheme [4]. By using a two-way-ranging (TWR)
approach, distances between fixed UWB nodes (anchors) and a
mobile UWB node (tag) are measured and the final position of
the tag is estimated based on these distances [2], [5]. Although
a robust positioning solution, the ranging still relies on wireless
RF signals. Thus, the accuracy and precision (i.e., integrity) of
the end coordinate is affected but not limited by factors such
as the number of servicing anchors, their vicinity to the tag,
impairments caused by non-line of sight (NLOS) and suitable
anchor layout geometry [1], [6], [7].

Problems related to NLOS detection and mitigation are an
extensively researched topic in UWB-based positioning [5].
While the number of anchors and their spatial geometry can
be adjusted according to the operating area, NLOS appears
dynamically with constantly changing obstructions between
the anchors and a moving tag. According to the works pub-
lished by various authors, it can be seen that detection of
NLOS and combating multipath effects is usually done by
analyzing the characteristics of the RF propagation channel
(i.e., channel state information (CSI)) [8], [9], [10], [11]. For
example, channel impulse response (CIR), which describes
the propagation path of a signal, can be used to assess the
amplitude and phase of a particular multipath component [12].
Although this information is effective for NLOS detection,
then CIR entails also some constraints. Certain authors have
noted that gathering CIR information requires a significant
amount of data, hence causing a latency of approximately
one second just to transfer the measurements [13]. Taking
into account UWB positioning solution with a high position
update rate, the transfer and processing of CIR information
becomes unpractical. Additionally, it is stated that CSI has to
be collected for different types of environments, as a dataset
describing a residential environment might not be suitable
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for a harsh industrial environment [5]. Finally, considering
machine learning (ML) based positioning algorithms that must
be trained on real ranging or positioning data, using such
an approach in conjunction with CSI increases computational
complexity even further [2].

In essence, this article proposes positioning integrity as-
sessment without the knowledge of CSI. In the literature,
alternative methods have been used before. Barral et al. used
received signal strength (RSS) and range information for
ML-based LOS/NLOS detection and classification [13], [14].
Liu et al. investigated NLOS detection and mitigation using
sum of squares (SSQ) of distance residuals. A large SSQ
compared to a certain threshold would indicate inconsistency
in localization [15]. Similarly, Silva and Hancke used SSQ
of distance residuals for NLOS identification [5]. A residual
test was proposed by Chan et al. in order to determine and
identify the number of LOS base stations [16]. However, the
current article expands on the analysis of ranging residuals
further by adding features that describe their statistical and
quantitative properties. Additionally, aspects related to end
coordinate calculations and geometrical dilution of precision
(DOP) were also included. The goal was to include charac-
teristics that describe UWB positioning integrity whether af-
fected by LOS/NLOS or varying anchor geometry. Therefore,
this paper considers real-life measurement data that already
contains both LOS and NLOS ranging measurements and it
is assumed that end coordinate error is predicted regardless of
tag’s LOS/NLOS conditions or its position relative to anchors.

In contrast to most related works being done with simulated
data, the current article considers real-life measurements gath-
ered from three different indoor environments. The calculated
features from raw ranging data were then used in three distinct
ML algorithms: regression tree (RT), random forest (RF), and
XGBoost (XGB) [17], [18], [19]. These methods were used
to produce three different models, which could estimate the
offset from the true coordinate. An additional objective was to
evaluate whether there was any significant gain to be had from
using a more complex machine-learning algorithm. Finally,
the three different predictions were used as a measure of
uncertainty in a coordinate filtering scheme in an Adaptive
Kalman Filter (AKF), which was compared with the non-
adaptive (KF) and extended Kalman filter (EKF).

The paper is organized as follows: Section II describes
the theory behind end coordinate estimation and ranging
residuals. Additionally, it is explained how residuals and their
features are calculated. Section III gives an overview of data
collection and processing with different ML algorithms along
with coordinate filtering schemes. Section IV contains results
by comparing the presented coordinate calculation methods.
The article is concluded in Section V.

II. COORDINATE ESTIMATION METHODS AND FEATURES

A. End coordinate estimation

Estimating the coordinates of the tag with regard to sur-
rounding anchors presents a problem of multilateration. In
Fig. 1 it can be seen how an object on coordinates (x̂, ŷ)
is located at certain distances from all surrounding anchors

Δd1

Δd2 Δd3

(x1 , y1)

(x2 , y2)

(x3 , y3)

( ො𝑥, ො𝑦)

መ𝑑1

መ𝑑2

መ𝑑3

d1

d2

d3

Fig. 1. Example of a 2-D trilateration scheme in UWB-based position-
ing with inaccurate range measurements. The difference between the
distance to the estimated position d̂i and the actual measured range
di results in a residual ∆di that can be used in estimating positioning
integrity.

denoted with (xi, yi). By using known distance measurements
di from each individual anchor, the tag’s position can be
estimated. Usually, for a single solution in 2D space, at least
three-, and in 3D space four anchors are required [20]. It
should also be considered that the anchors in Fig. 1 should
not be positioned in a straight line as this may result in a flip
ambiguity with possible solutions on either side of the line
[21]. Under ideal conditions, without any measurement errors,
di = d̂i and the least squares (LS) model provides a solution at
the intersection of the three circles [22]. However, in real-life
applications, ranging measurements contain errors caused by
NLOS propagation and ranging noise, thus producing varying
position estimates [2], [5].

B. End coordinate calculation

In this article, the end coordinate calculation of the tag is
considered as a two-step process. Firstly, estimating the initial
position of the tag and then optimizing the solution with a non-
linear least squares (NLS) approach. Both involve solving the
multilateration problem using ranging measurements discussed
in the previous section. Additionally, this article considers
positioning in 3D space. In Step 1 a set of circle equations
(1) is used to find the initial estimate of the tag’s position
(x̂, ŷ, ẑ):

(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2 = d2i , i = 1, 2, ..., N, (1)

where (xi, yi, zi) is the known coordinate of the i -th anchor
and di is the measured distance between the tag and the
i -th anchor. The initial guess of the tag (x̂, ŷ, ẑ) can be
found by performing linearization on (1) and applying the
LS method. Firstly, an anchor (xr, yr, zr) with the shortest
measured distance to the tag dr is taken as a reference point
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[23]. Next, the non-linear expressions in all available circle
equations N are expanded as:

x2
i − 2xix̂+ x̂2 + y2i − 2yiŷ + ŷ2+

+ z2i − 2ziẑ + ẑ2 = d2i , i = 1, 2, ..., N
(2)

and the reference anchor (xr, yr, zr) equation:

x2
r − 2xrx̂+ x̂2 + y2r − 2yrŷ + ŷ2+

+ z2r − 2zr ẑ + ẑ2 = d2r
(3)

is subtracted from the rest of the expressions. The goal is
to rearrange the terms with regards to unknowns x̂, ŷ and
ẑ in a way that satisfies the following linear model (4) as
demonstrated by Guvenc, Chong, and Watanabe [24]:

Aθ = b, (4)

where

A = −2




x1 − xr y1 − yr z1 − zr
x2 − xr y2 − yr z2 − zr

...
...

...
xN−1 − xr yN−1 − yr zN−1 − zr


 , (5)

θ =



x̂
ŷ
ẑ


 (6)

and

b =




d21 − d2r − x2
1 + x2

r − y21 + y2r − z21 + z2r
d22 − d2r − x2

2 + x2
r − y22 + y2r − z22 + z2r

...
d2N−1 − d2r − x2

N−1 + x2
r − y2N−1 + y2r − z2N−1 + z2r


 .

(7)

Lastly, the estimated tag’s position θ has the following LS
solution:

θ = (ATA)−1AT b. (8)

As shown in an example in Fig. 1, it can be seen that
the tag is estimated somewhere within the area overlapped
by three circles. The sum of the squares of distance errors
can further be minimized using the NLS approach [25]. As a
step 2 of position estimation, the Gauss-Newton optimization
algorithm was applied. The LS solution provides an initial
estimate, along with previously measured anchor coordinates
and individual distances measured between anchors and tag.
The estimated position is found by minimizing the objective
function:

x̂, ŷ, ẑ = argmin
x,y,z

N∑

i=1

((xi −x)2 +(yi − y)2 +(zi − z)2 − d2i )
2

(9)
where x, y and z represent the coordinates that provide the
smallest error. Since there are various methods to solve this
non-linear multilateration problem, this article applies lin-
earization using Taylor series with the Gauss-Newton iteration
procedure. Renaming the initial guess from the LS solution (8)
as (xG, yG, zG), the measured distances di are approximated

through first-order Taylor series expansion as demonstrated by
Guillory, Truong, and Wallerand [20]:

di(x̂, ŷ, ẑ)

≈ di(xG, yG, zG) +
∂di(x̂, ŷ, ẑ)

∂x̂

∣∣∣
xG,yG,zG

∆x+

+
∂di(x̂, ŷ, ẑ)

∂ŷ

∣∣∣
xG,yG,zG

∆y +
∂di(x̂, ŷ, ẑ)

∂ẑ

∣∣∣
xG,yG,zG

∆z

≈ di(xG, yG, zG)+

+
x̂− xi√

(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2

∣∣∣
xG,yG,zG

∆x+

+
ŷ − yi√

(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2

∣∣∣
xG,yG,zG

∆y+

+
ẑ − zi√

(xi − x̂)2 + (yi − ŷ)2 + (zi − ẑ)2

∣∣∣
xG,yG,zG

∆z

≈ di(xG, yG, zG) +
x̂− xi

di(x̂, ŷ, ẑ)

∣∣∣
xG,yG,zG

∆x+

+
ŷ − yi

di(x̂, ŷ, ẑ)

∣∣∣
xG,yG,zG

∆y +
ẑ − zi

di(x̂, ŷ, ẑ)

∣∣∣
xG,yG,zG

∆z

≈ di(xG, yG, zG) +
xG − xi

di(xG, yG, zG)
∆x+

+
yG − yi

di(xG, yG, zG)
∆y +

zG − zi
di(xG, yG, zG)

∆z,

(10)

where ∆x, ∆y and ∆z are equal to x̂−xG, ŷ−yG and ẑ−zG
respectively. Considering that ∆x, ∆y and ∆z are multiplied
to first-order derivatives when:

Ji =
[

xG−xi

di(xG,yG,zG)
yG−yi

di(xG,yG,zG)
zG−zi

di(xG,yG,zG)

]
, (11)

then (10) can be rearranged into matrix form:

∆dNLS = J



∆x
∆y
∆z


 , (12)

with ∆dNLS representing the difference between measured
and estimated distances. The error corrections ∆x, ∆y and
∆z can be found by solving the Normal Equation as shown
in (8) and substituting values accordingly:


∆x
∆y
∆z


 = (JTJ)−1JT∆dNLS . (13)

Using the error correction vector, the initial guess coordinates
xG, yG and zG are updated with Gauss-Newton iteration until
a convergence criterion has been reached (e.g., until the error
correction vector is sufficiently small [20]). After reaching a
pre-determined threshold, the final position estimation results
as: 


xG +∆x
yG +∆y
zG +∆z


 =



x̂
ŷ
ẑ


 . (14)

Similarly to Fig. 1, it can be seen that the difference between
an individual measured distance di, and distance d̂i calculated
from the estimated coordinate (x̂, ŷ, ẑ), results in a residual
∆di as:

∆di = di − d̂i. (15)
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C. Features

This paragraph describes features used in the ML model
training. As stated in the introduction, this article considers
both previously used features in the literature as well as several
novel ones. As ranging residuals could indirectly reflect the
end coordinate integrity, several statistical metrics such as the
residual mean or sample variance have been added. Additional
features have also been included regarding end coordinate
calculations and positioning geometry.

1) Residual statistics: Depending on the location of the
estimated solution, d̂i may be longer or shorter compared to
the individual measured distance di resulting in a positive
or negative residual. A significant change in the magnitude
of a residual may indicate that UWB propagation path is
affected by an obstruction. Therefore, residual statistics
were calculated for three different sets: positive, negative
and overall residuals. Additionally, statistical equations were
averaged to remove the dependence on the size of available
residuals. The following statistics were calculated:

average sum of squares (SSQ)

SSQ =

∑n
i=1 ∆d2i
n

, (16)

root mean square (RMS)

RMS =

√
SSQ

n
, (17)

mean

x̄ =

∑n
i=1 ∆di
n

, (18)

mean absolute deviation (MAD)

MAD =

∑n
i=1 |∆di − x̄|

n
, (19)

standard deviation

s =

√∑n
i=1(∆di − x̄)2

n
, (20)

and variance

v = s2, (21)

where n represents the number of residuals in a corresponding
positive, negative or overall set (also used as a feature).

2) LS and NLS metrics: These values are associated with
position calculation as discussed in chapter II-B. The chosen
parameters include Euclidean distance ∆D between LS (8)
and NLS (14) solutions and the number of Gauss-Newton
iterations to convergence nGN . For the latter, there is no
implicit equation as the iteration counter is initialized at each
coordinate optimization process.

∆D =
√

(xG − x̂)2 + (yG − ŷ)2 + (zG − ẑ)2 (22)

3) Geometrical integrity of positioning: In an indoor position-
ing system, Dilution Of Precision (DOP) indicates geometric
location distribution. It contains the knowledge of position-
ing accuracy under specific base station network and scene
characteristics [6]. Using the estimated coordinates of the tag,
the DOP parameter indirectly shows the level of geometrical
uncertainty in an area relative to the anchors. In this article, the
position dilution of precision (PDOP) was used as it depends
on x, y, and z coordinates. To calculate PDOP, the set of
ranging equations (1) can be implemented with precalculated
end coordinates from (14). By finding partial derivatives with
respect to each coordinate similarly as was shown in (10), the
result is formulated in matrix form as:

Ap =




x1−x̂
d1

y1−ŷ
d1

z1−ẑ
d1

1
x2−x̂
d2

y1−ŷ
d2

z1−ẑ
d1

1
...

...
xN−x̂
dN

yN−ŷ
dN

zN−ẑ
dN

1



. (23)

Next, the covariance matrix Q is calculated from the LS
normal matrix:

Q = (AT
p Ap)

−1 =



σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z


 . (24)

Lastly, PDOP is calculated from trace of matrix Q as:

PDOP =
√

σ2
x + σ2

y + σ2
z , (25)

III. DATA PROCESSING, MODEL TRAINING AND FILTERING

A. Data collection
UWB measurement data were collected at three different

sites: Krah Pipes OÜ factory, Eliko office, and Auroom Kastre
factory, which all contained a set network of UWB sensors.
Data from the first two sites were used to cross-validate and
train the ML model, while data from the third site were
used for testing. Krah Pipes OÜ (Fig. 2) is a company
that manufactures thermoplastic pipes and in terms of RF
propagation, presents a complex environment with constantly
moving objects [26]. The Eliko real-time locating system
(RTLS) was installed inside the manufacturing facility by
placing UWB anchors at fixed locations while the tag was
sequentially placed at different locations on the factory floor
during the measurements. Based on the Qorvo’s DW1000
chip, the RTLS was set to operate on UWB channel 4 [27].
Eliko RTLS also uses Active-Passive TWR protocol with clock
offset error mitigation [28]. Ground truth coordinates were
measured in a local frame of reference with the Leica DISTO
S910 measurement tool and assigned to 8 UWB anchors, as
well as 30 different tag locations around the facility. The
measurement tool has an accuracy of ±1 mm [29].

The measurement tool was positioned on a mezzanine floor
in order to have LOS with all measurement points. By using
an update rate of 10 Hz, each location was measured for 30
seconds, resulting in approximately 300 ranging sequences per
location. A similar measurement procedure was performed
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Fig. 2. Industrial site at Krah Pipes OÜ, which manufactures thermo-
plastic pipes in a complex industrial environment. The site contained a
network of 8 UWB anchors (layout in Fig. 19).

at the Eliko office (30 measurement points) and Auroom
Kastre factory (40 measurement points) using UWB position-
ing network of 17 and 15 anchors respectively. The office
environment provided additional training data in terms of poor
PDOP conditions i.e., measurements that were taken outside
of the convex hull of the UWB anchor layout as can be seen
in Fig. 18 (e.g., points 13, 14 and 15).

B. Data processing and model training
Raw ranging data, collected during the measurements, was

assembled into training-validation (Krah factory and Eliko
office) and testing (Auroom factory) datasets containing end
coordinates, true distances (dependent) and features (inde-
pendent) described in Section II-C. It should be noted that
data from the Auroom factory were not used in training
in order to have a stand-alone dataset to test the general
model. The purpose of the model was to predict end-coordinate
error or offset based on pre-calculated independent features.
After data cleaning and shuffling, the datasets were changed
into the appropriate format for cross-validation and training.
Three ML methods were chosen: extreme gradient boosting,
regression tree, and random forest. The idea was to compare
the prediction performance of a simple ML method (i.e., a
single regression tree) against more complex ones.

The aforementioned ML algorithms and datasets were used
in the R Studio environment [30]. For each ML method,
10-fold cross-validation was carried out to select hyper-
parameters that provide the smallest prediction error against
the validation set. Essentially, the training dataset was sepa-
rated into 10 segments with 1 segment being the validation set.
Such an approach helps to generalize the model and mitigate
overfitting. Next, using chosen hyper-parameters in an initial
model, combination of most important features were selected
for the final model.

R Studio provides appropriate cross-validation train and
trainControl functions through the caret library [31]. The
main hyper-parameters used were: tree depth and number of

boosting iterations for XGBoost; tree depth and complexity
parameter for regression tree and tree depth for random forest.

It should be noted that no prior feature selection before
model cross-validation was done. Rather regression tree, ran-
dom forest, and XGBoost libraries in R Studio already contain
built-in functions to output features that contribute the most
in making the prediction.

1) Regression tree feature selection and training: In contrast
to using a decision tree for classification task, end-coordinate
offset is considered as a continuous target variable that is
predicted using a regression tree. It is generated using a set of
training samples with the corresponding response variables.
A trained tree structure is then used to predict the value
of an unknown test sample. It consists of root, branches,
nodes, and leaves. Each internal node represents a feature,
branches represent the feature values and leaf nodes represent
the outcome of prediction [32].

Cross-validation compared sets of training data using dif-
ferent regression tree depths in terms of prediction error. As
can be seen in Fig. 3, a tree with a depth of 7 is sufficient for
providing the least amount of error as choosing a deeper tree
results in no further error mitigation. Additionally, the tree can
be pruned or optimized using a complexity parameter (CP),
which is the minimum improvement in the model needed at
each node. CP is used to select the optimal size for the tree.
As can be seen in Fig. 4, a tree size of 7 has a complexity
parameter of 0.025, which outputs a tree shown in Fig. 5.
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Fig. 3. Determining regression tree depth after 10-fold cross-validation.
It can be seen that a tree depth of 7 is enough to provide the smallest
root mean square error (RMSE).
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Fig. 4. After 10-fold cross-validation, a tree depth of 7 corresponds to
a complexity parameter of 0.025. These hyperparameters were used to
generate the final regression tree (shown in Fig. 5).
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Sum of squares of residuals < 0.043
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Fig. 5. Final regression tree to be used in ML prediction.

It should be noted that the rpart library also removes
surrogate features i.e., features that provide the same goodness
of split. Therefore, the final tree may have a different depth
compared to cross-validated trees. Features were extracted by
using a built-in rpart.plot function and feature importance
was based on the goodness of split [17]. Features for the final
model can be seen in Fig. 6.

Number of iterations

LS/NLS difference [m]

Residual variance

Sum of squares of residuals

0 1000 2000
Goodness of split measures

Fig. 6. Features used in the final regression tree model, which are
ordered based on the goodness of split in a regression tree.

2) Random forest feature selection and training: In ensemble
learning, bagging and boosting are two main approaches.
Random forest can be viewed as an evolution of bagging
methodology and can be used in classification and regression
problems. It is defined as an ensemble of decision trees
that implements randomness in the model-building process of
each decision tree [33]. It can process high-dimensional data
effectively, so it is different from neural networks (NN). In
RF, each tree acts as an independent regression function, and
regression trees are trained using different bootstrap samples
of the training data. The average prediction of each individual
tree is used as the final output [34].

Random forest training, validation and testing were done
using the ranger package, which is a fast implementation of
random forest suited for high-dimensional data [18]. Cross-
validation on training data showed how different number of
random forest predictors compare in terms of prediction error.
As shown in Fig. 7, using 100 random trees with 8 predictors
provides a sufficient amount of error as using more than eight
might lead to model overfitting and results in no significant
reduction in RMSE. Next, feature selection was done for the
initial RF model, with 8 random predictors. By comparing
different combinations of features, those with the least amount
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Fig. 7. Finding the optimal number of randomly selected RF predictors
using cross-validation with 100 random trees. It can be seen that using
more than 8 features results in no significant increase in cross-validation
error.

of error in predicting validation set response values were
selected. As can be seen in Fig. 8, choosing more than 7
features results in no significant decrease in prediction error.
These features are presented in Fig. 9.
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Fig. 8. Using more than seven most important features results in no
significant RMSE decrease in random forest prediction and could overfit
the model.
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Fig. 9. Set of features in the final model that provide the biggest node
purity increase in random forest prediction.
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3) XGBoost feature selection and training: On the other
hand, XGBoost represents the approach of boosted ensemble
learning. It is a large-scale general-purpose gradient boosting
library, which has been seen to dominate structured and tabular
data sets on classification, regression, and predictive modeling
problems [19], [35]. The algorithm creates a sequential en-
semble of tree models, all of which work to improve each
other. The final prediction results in a summation of the
predictions of multiple regression trees. The XGBoost algo-
rithm comprises a series of base classifiers such as decision
tree, k-nearest neighbors, support vector machine, and logistic
regression. These are linearly superimposed, so that they work
together to optimize the algorithm [36].

Using cross-validation with xgboost library, different sets
of XGBoost parameters were compared in terms of prediction
error as shown in Fig. 10. It can be seen that a model with
a tree depth of 5 and 150 boosting iterations is sufficient as
choosing more than 150 iterations would present no signifi-
cant increase in prediction performance. Additionally, feature
selection was done using the initial model with aforementioned
hyper-parameters. By comparing different combinations of
features, those with the least amount of error in predicting
validation set response values were selected. As can be seen in
Fig. 11, more than 8 features provide only a marginal increase
in predicting validation set response values. List of features
used in the final XGBoost model is presented in Fig. 12.
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Fig. 10. Determining suitable XGBoost tree depth and number of
boosting iterations using cross-validation. Tree depth 5 and 150 boosting
iterations are chosen parameters for the model. Choosing a higher
number of iterations results in no significant decrease in RMSE and
might lead to overfitting.

C. Coordinate filtering
As a final step, the end coordinate is estimated using a

Kalman filter. In the current context, the filter averages end co-
ordinates, while considering the uncertainty of measurements
(prediction) and previously filtered coordinates. While in a
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Fig. 11. Using more than 8 features has no significant impact on XGB
prediction accuracy.
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Fig. 12. Features used in the final XGBoost model.

traditional Kalman Filter (KF) the process and measurement
noise have fixed values, then in real-life applications it can be
seen that measurement uncertainty is a dynamic value, which
in turn is affected by external factors such as NLOS. Therefore,
it is preferable to know the measurement uncertainty at every
ranging calculation in order to estimate whether the current
coordinate can be trusted or not.

In this article, the ML model predicts end coordinate offset
from true value, based on features used in the ML model.
Since, the direction of the error with regards to x, y, and z axes
is not known, this prediction can be considered as a measure of
uncertainty in all three axes. By implementing the prediction
as a dynamic measurement uncertainty in an Adaptive Kalman
Filter (AKF), positioning accuracy can be improved further.

1) KF and AKF filtering: In this work, the main difference
between a KF and AKF is in the application of the R matrix,
which represents positioning measurement uncertainty. In KF,
the diagonal elements of R in (26) were chosen as fixed values
diag(0.01, 0.01, 0.01) corresponding to the precision of the
DW1000 device [37] with:
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RKF =



σ2
x 0 0
0 σ2

y 0
0 0 σ2

z


 =



0.01 0 0
0 0.01 0
0 0 0.01


 . (26)

However, AKF measurement uncertainty in (27) is updated
at each iteration as the end coordinate is calculated and ML
prediction is added to the variance of diagonal elements as

RAKF =



0.01 + D̂ML 0 0

0 0.01 + D̂ML 0

0 0 0.01 + D̂ML


 .

(27)

In essence, the ML prediction drives the filtering process by
dynamically changing measurement uncertainty i.e., whether
to trust measurement or process. In KF, EKF and AKF, the
process noise matrix Q has constant values diag(0.01, 0.01,
0.01). As shown at the beginning of Alg. 1, the state transition
matrix A, state covariance P0 and observation matrix H are
initialized as 3-by-3 identity matrices. X̂0 represents the first
converged NLS solution from (14), Zk is the measurement
vector and I is a 3-by-3 identity matrix.

2) EKF filtering: Lastly, ML-driven AKF is compared with
the Extended Kalman Filter (EKF), which is capable of dealing
with non-linear problems such as multilateration described in
II-A. In contrast to KF and AKF, which predict and cor-
rect coordinates, EKF makes state corrections using residuals
between measured distances Zk and distances to the last
estimated coordinates. In Alg. 1 state correction step HkX̂

−
k

is replaced with D−
k where:

D−
k =




√
(x−

k − x1)2 + (y−k − y1)2 + (z−k − z1)2√
(x−

k − x2)2 + (y−k − y2)2 + (z−k − z2)2

...√
(x−

k − xn)2 + (y−k − yn)2 + (z−k − zn)2




(28)

with x−
k , y−k and z−k representing coordinates from last it-

eration. Measurement vector Zk represents current iteration
distance equations with added measurement noise

Algorithm 1 Kalman Filter

Input: X̂0,Zk,P0,Q,R
Output: X̂k

Initialize A,P0,H, I
Prediction step
for k = 1, ...,∞

1: State prediction X̂−
k = AX̂k−1

2: Covariance prediction P−
k = APk−1A

T +Q
Correction step
3: Kalman gain Kk = P−

k H
T
k (HkP

−
k H

T
k +Rk)

−1

4: State correction X̂k = X̂−
k +Kk(Zk −HkX̂

−
k )

5: Covariance correction Pk = P−
k (I−KkHk)

return X̂k,Pk

end for

Zk =




√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2 + v1√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2 + v2

...√
(xk − xn)2 + (yk − yn)2 + (zk − zn)2 + vn




(29)

where vk represents measurement noise vector, which has
covariance matrix Rk as diag(0.01, 0.01, 0.01). Process noise
matrix Q is also set as diag(0.01, 0.01, 0.01).

With EKF, the entire NLS approximation process discussed
in II-B may be bypassed and do linearization through the
observation matrix H , which is comprised of first-order partial
derivatives as demonstrated by Kim, Farhad and Pyun [37]:

Hk =




∂d1(xk,yk,zk)
∂xk

∂d1(xk,yk,zk)
∂yk

∂d1(xk,yk,zk)
∂zk

∂d2(xk,yk,zk)
∂xk

∂d2(xk,yk,zk)
∂yk

∂d2(xk,yk,zk)
∂zk

...
...

...
∂dn(xk,yk,zk)

∂xk

∂dn(xk,yk,zk)
∂yk

∂dn(xk,yk,zk)
∂zk



, (30)

where derivatives correspond to

∂di(xk, yk, zk)

∂xk
=

xk − xi√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2

(31)
∂di(xk, yk, zk)

∂yk
=

yk − yi√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2

(32)
∂di(xk, yk, zk)

∂zk
=

zk − zi√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2

.

(33)

In the context of coordinate calculation, skipping the NLS
coordinate calculations makes EKF computationally less de-
manding. On the other hand, a poor LS coordinate in the
state vector can affect the filtering process and result in an
inaccurate coordinate. Therefore, in this work for comparison
purposes, EKF was provided with a converged NLS coordinate
as the initial state vector.

IV. RESULTS

Test data was measured in an industrial site at Auroom
Kastre factory, which manufactures sauna modules as shown
on Fig. 13. The measurement setup was similar to the Eliko
office and Krah Pipes factory with 40 different measurement
points scattered over the factory area as can be seen in Fig.
17.

True coordinates were measured with the Disto S910 mea-
surement device and ranging data was collected using UWB
tag with a 10 Hz update rate. The goal was to test the
performance of different end coordinate calculation methods,
specifically comparing regular filtering methods to those aug-
mented with ML prediction. Additionally, no data gathered
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Fig. 13. Manufacturing area inside Auroom Kastre factory. Red circles
highlight visible UWB anchors. Anchor layout can be seen on Fig. 17.

from the test site was included in ML model training to have
unbiased verification of the model.

Considering true coordinates (xT , yT , zT ), the following
metrics were used to evaluate positioning accuracy and
precision: mean location error (MLE), root mean square error
(RMSE), distance root mean square error (DRMS), mean
radial spherical error (MRSE) and maximum error [38], [39]:

1) 2D metrics:

MLE2D =

∑n
i=1

√
(xT − x̂i)2 + (yT − ŷi)2

n
, (34)

RMSE2D =

√∑n
i=1[(xT − x̂i)2 + (yT − ŷi)2]

n
, (35)

DRMS =
√
σ2
x + σ2

y, (36)

MAX2D = max
i∈n

(
√
(xT − x̂i)2 + (yT − ŷi)2). (37)

2) 3D metrics:

MLE3D =

∑n
i=1

√
(xT − x̂i)2 + (yT − ŷi)2 + (zT − ẑi)2

n
,

(38)

RMSE3D =

√∑n
i=1[(xT − x̂i)2 + (yT − ŷi)2 + (zT − ẑi)2]

n
,

(39)
MRSE =

√
σ2
x + σ2

y + σ2
z , (40)

MAX3D = max
i∈n

(
√

(xT − x̂i)2 + (yT − ŷi)2 + (zT − ẑi)2).

(41)
Overall statistics summarizing all 40 measurement points can
be seen in Tables I and II.

In general, it was challenging to achieve good vertical
precision and accuracy in most of the measurement locations.
This can be attributed to UWB anchor layout geometry,
with anchors located approximately on the same height level,
resulting in a poor dilution of precision. Additional difficulties
arose from occasional NLOS conditions between anchors and

the tag. However, as shown in Table II, the overall vertical
position error of approximately 0.5 m is at a similar level as
in a previously published work by Laadung et al. [40].

TABLE I
OVERALL METRICS FOR 2D POSITIONING.

MLE
2D [m]

RMSE
2D [m]

DRMS
[m]

Max. error
2D [m]

NLS 0.46 0.95 0.85 11.16
KF 0.43 0.72 0.57 7.01

AKF + XGB 0.28 0.29 0.11 0.62
AKF + RF 0.28 0.29 0.1 0.55
AKF + RT 0.27 0.28 0.11 0.63

EKF 0.62 0.96 0.78 6.28

TABLE II
OVERALL METRICS FOR 3D POSITIONING.

MLE
3D [m]

RMSE
3D [m]

MRSE
[m]

Max. error
3D [m]

NLS 0.8 1.36 1.17 14.04
KF 0.74 1.05 0.8 8.78

AKF + XGB 0.48 0.5 0.18 0.94
AKF + RF 0.48 0.5 0.18 0.9
AKF + RT 0.51 0.53 0.2 1.07

EKF 2.86 3.26 1.94 11.73

An example of superimposed end coordinate results can be
seen in Fig. 14 and Fig. 15 along with respective performance
metrics in Tables III and IV. The general location of the
point can be seen on overall the map in Fig. 17. It can
be seen both visually and statistically that EKF had the
worst performance, especially in 3D positioning. With many
visible outliers, EKF relies on coordinates calculated straight
from noisy ranging data. Furthermore, EKF does not have
any convergence process (i.e., Gauss-Newton iterations), thus
relying only on the first calculated end coordinate solution.
On the other hand, filtering with ML prediction outperforms
non-ML approach in all metrics.

TABLE III
COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 2D

POSITIONING FOR PT. 20.

MLE
2D [m]

RMSE
2D [m]

DRMS
[m]

Max. error
2D [m]

NLS 0.2 0.24 0.22 1.42
KF 0.16 0.19 0.15 0.85

AKF + XGB 0.14 0.14 0.07 0.24
AKF + RF 0.13 0.14 0.07 0.25
AKF + RT 0.15 0.15 0.06 0.24

EKF 0.25 0.52 0.51 3.22

TABLE IV
COMPARISON OF END COORDINATE PERFORMANCE METRICS IN 3D

POSITIONING FOR PT. 20.

MLE
3D [m]

RMSE
3D [m]

MRSE
[m]

Max. error
3D [m]

NLS 0.57 0.65 0.43 2.7
KF 0.53 0.58 0.31 1.9

AKF + XGB 0.41 0.42 0.14 0.67
AKF + RF 0.44 0.45 0.15 0.69
AKF + RT 0.46 0.47 0.12 0.68

EKF 0.65 0.87 0.74 5.74
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Fig. 14. Comparison of confidence ellipses for pt. 20 with respect
to x and y axes. Each ellipse contains samples within one standard
deviation (68% confidence). For the sake of clarity, only two point clouds
are shown (EKF and AKF+XGB). It can be seen how prediction keeps
the point cloud more tightly together, whereas EKF relies only on noisy
ranging data which produce much more sparsely distributed samples.
Due to outliers, the figure has been zoomed in on the largest ellipse.

Regarding three different ML algorithms it can be seen that
even by applying a simple regression tree, the overall metrics
are better compared to non-ML filtering. ML performance was
summarized with the cumulative error distribution in Fig. 16
and metrics for model prediction performance in Table V.
The latter includes commonly used regression performance
indicators such as RMSE, mean square error (MSE), and mean
absolute error (MAE) [41].

TABLE V
PERFORMANCE METRICS OF ML MODELS ON THE TEST SET.

RMSE MSE MAE
XGBoost 1.28 1.64 0.36

Regression tree 1.37 1.87 0.46
Random forest 1.18 1.4 0.33

Lastly, filtering and ML methods were compared in terms
of elapsed time with results shown in Table VI. Benchmarking
was done in the R Studio environment using built-in ML
libraries xgboost, ranger, rpart, and microbenchmark. The
hardware specification of the computer was Intel(R) Core(TM)
i5-7300U CPU @ 2.60 GHz with 16 GB RAM. It can be
seen the amount of delay ML adds to the filtering scheme.
Ordinary Kalman filter performs the fastest while EKF being
3.5 times slower. However, ML prediction adds computational
delay, with XGBoost and regression tree being approximately
18 times slower than KF and random forest being the slowest.
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Fig. 15. Comparison of confidence ellipses for pt. 20 with respect to
x and z axes. For the sake of clarity, only two point clouds are shown
(EKF and AKF+XGB). Additionally, due to outliers, the figure has been
zoomed in on the largest ellipse.
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Fig. 16. Cumulative distribution of prediction errors. It can be seen that
a regression tree provides more robust prediction levels according to leaf
nodes from a single tree as shown in Fig. 5. RF and XGB predictions are
smoother at the cost of more complex models.

Finally, the XGBoost model was also applied in the Eliko
RTLS UWB positioning solution using the XGBoost C Pack-
age [42]. The system hardware consisted of Intel(R) Xeon(R)
W-2123 CPU @ 3.60 GHz with 16 GB RAM. The prediction
time delay was approximately 1 ms.
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TABLE VI
SINGLE ITERATION TIME FOR FILTERING AND PREDICTION.

Min. time
[ms]

Mean
time [ms]

Max.
time [ms] Ratio

KF 0.04 0.04 0.06 1
AKF + XGB 0.68 0.71 0.72 17.75
AKF + RF 14.77 15.49 16.74 387.25
AKF + RT 0.68 0.72 0.9 18

EKF 0.12 0.14 0.21 3.5

V. CONCLUSION AND DISCUSSION

In this article, it was investigated how different features of
ranging residuals and coordinate calculation can be used in
UWB-based positioning integrity estimation. These features
were described through statistical metrics like those used in
literature as well as several novel ones. The goal was to
use different ML methods to select features with the biggest
informational gain and based on these select features, predict
end coordinate offset from true value. Lastly, this error was
used as a measure of uncertainty in a coordinate filtering
scheme and compared with non-ML-driven filters. It was
shown that ML models provide significant improvement in
terms of accuracy and precision in both 2D and 3D posi-
tioning. Overall statistics show that ML-driven filtering has
approximately 0.1 m less MLE and 0.3 m smaller DRMS than
compared to ordinary KF in 2D positioning. All of the tested
methods were also compared in terms of processing time. ML-
driven methods presented a significant delay when compared
to ordinary coordinate filtering due to added model-based
prediction. However, the processing time was adequate to be
used in a high update rate (e.g., 10 Hz) positioning system.
Additionally, it was seen how the regression tree algorithm
has approximately the same amount of delay as a much more
complex XGBoost, which consists of 150 consecutive boosting
trees. Algorithm runtime may be related to the ML library’s
implementation, hardware specification, and efficiency of the
code. Therefore, the actual implementation in a dedicated
RTLS system might result in an even smaller processing delay.
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Fig. 17. Overview of measurement campaign in Auroom factory. Measurements were done at 40 separate points around the factory’s indoor area.

Fig. 18. Overview of measurement campaign in Eliko office. Several measurement points (e.g., 14, 15, 22, 23) are not surrounded by anchors and
have no LOS with them.
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Fig. 19. Overview of measurement campaign in Krah Pipes factory.
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Tallinna Tehnikaülikool, nooremteadur (doktorant)Eliko Tehnoloogia Arenduskeskus OÜ, teadurVastutus: Metoodiliste ja eksperimentaalsete tööde läbiviimine vastavalt projektiplaanile. Tulemuste analüüs ja esitamine projektijuhile ning programmijuhile. Koostöö arendusinseneridega. Töö tulemuste tutvus-tamine ettevõtte sees ning firmavälistel üritustel.Elisa Eesti AS, siselahenduste ja mõõtmiste spetsialistVastutus: Väli- ning siselevi raadiomõõtmiste teostamine. Tugijaamade raadioparameetrite kontroll (GSM/UMTS/LTE). Uute siselahenduste planeerimine raadiolevi parendamiseks. Kliendisuhtlus uute objektide planeerimisel.Eesti Õhuvägi, Õhuväe staap, staabiohvitserEesti Õhuvägi, Õhuväe staap, side- ja IT lüli ülemEesti Õhuvägi, Õhuväe staap, sideohvitser
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Keeled:EestiInglise keelSaksa keelVene keel

IT oskused:

Eesti Õhuvägi, Õhuväe staap, sidetehnikVastutus: Side- ja IT lüli tegevuste planeerimine ja teostamine. Uute projektide planeerimine ja teostus. Sideseadmete hoolduse ja protseduuride haldamine. Meeskonna juhtimine ja tegevuste koordineerimine teiste osakondadega.

EmakeelVäga heaHeaKeskmine

Windows OS, MS Office, audio-video töötlus, R, Matlab, Python
Publikatsioonid:Loetelu toodud ingliskeelse elulookirjelduse juures.
Kaitstud lõputööd ja juhendamised:Mihkel Tommingas, magistrikraad, 2017, (juh) Julia Berdnikova; MirkoMustonen, Tehislikening looduslike komponentide leidmine hüdroakustilises müras, Tallinna Tehnikaülikool,Infotehnoloogia teaduskond, Thomas Johann Seebecki elektroonikainstituut
SwaminathanRamachandran,magistrikraad, 2022, (juh)Mihkel Tommingas; HeigoMõlder,Indirect tracking of objects with GNSS (Objektide kaudne jälgimine GNSS-iga), TallinnaTehnikaülikool, Infotehnoloogia teaduskond, Thomas Johann Seebecki elektroonikainsti-tuut
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