
System Modeling for
Processor-Centric Test Automation

ANTON TÐERTOV

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C70

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

This dissertation was accepted for the defense of the degree of Doctor of
Philosophy in Computer and Systems Engineering on December 22, 2011

Supervisors: Dr. Artur Jutman,
 Prof. Raimund-Johannes Ubar

Department of Computer Engineering, TUT
Advisor: Dr. Sergei Devadze
 Department of Computer Engineering, TUT

Opponents: Prof. Matteo Sonza Reorda
 Politecnico di Torino, Italy

Mr. Gunnar Carlsson; position: Expert DFT and Test Strategies
Ericsson AB, Stockholm, Sweden

Dr. Eduard Petlenkov

 Tallinn University of Technology, Estonia

Defence of the thesis: February 9, 2012

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

/Anton Tšertov/

Copyright: Anton Tšertov, 2012
ISSN 1406-4731
ISBN 978-9949-23-232-1 (publication)
ISBN 978-9949-23-233-8 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C70

Süsteemide modelleerimine
protsessorikesksete testprogrammide

sünteesi automatiseerimiseks

ANTON TÐERTOV

To my family

7

Abstract

The thesis addresses topics related to the manufacturing board level testing. The
restricted capabilities of widely adopted board level test methods with respect to
such modern challenges as dynamic (timing-accurate), at-speed and high-speed
testing as well as in-system diagnosis of functional failures reveal the demand in
methodology that could address these problems altogether. The industry is aware of
such methodology, but its applicability is restricted by the test program development
cost. This board level testing methodology has many names, but in this thesis it is
referred as processor-centric board testing (PCBT).

Despite of various existing implementations of PCBT solutions the general
drawback of PCBT is the cost for manual development of the necessary test access
and test application functionality (test path) for particular board under test. In
comparison to the widely adopted test methods the PCBT is for the most part
handcrafted test solution. In many cases, the gap between development effort of
PCBT program and the acceptable/planned cost place the limitation on the
applicability of PCBT.

The main contribution of this research is the methodology that reduces the cost of
PCBT solution. The thesis presents approach to automate the development of a
PCBT program. The automatic PCBT program synthesis is based on solving the task
of test data transportation through the test path. The test path is modeled with the
partial functional and structural modeling of printed circuit board assembly and its
components. The proposed approach reduces the effort and time for development of
high quality PCBT program using developed automation framework.

8

9

Kokkuvõte

Väitekirjas käsitletakse tulemusi, mis kuuluvad elektroonika trükkplaatide
testimise valdkonda. Tänapäeval laialt levinud trükkplaatide testimise meetodid ei
rahulda nõudmisi, mille seavad üles moodsad tehnoloogiad, kus üha oluliseks on
saamas süsteemide kiiruslik testimine ja süsteemisisese funktsionaalse diagnoosi
vajadus, ja millest seetõttu tuleneb vajadus uue metodoloogilise lähenemise järele,
kus mõlemad probleemid oleksid adresseeritud koos. Tööstuses on selline
metodoloogia arendamisel, kuid kitsaskohaks on testprogrammide koostamise suur
maksumus. Käesolevas töös on leidnud nimetatud metodoloogia uudse lahenduse
protsessorikesksete elektroonika trükkplaatide testimise (PETT) nime all.

Vaatamata mitmesuguste PETT lahenduste olemasolule, on siin üldiseks
puuduseks komplitseeritud käsitsitöö kõrge maksumus, mis on seotud trükkplaadi
komponentide keeruka funktsionaalsuse analüüsi ning arvestamisega testimisteede
aktiveerimisel ja testprotseduuride koostamisel. Suurem osa trükkplaatide testide
programmeerimise tööst tehakse tänapäeval käsitsi. Enamikel juhtudel ületab testide
programmeerimistöö reaalne maht aktsepteeritavad kulud sedavõrd, et osutub
paratamatuks teha järeleandmisi testimise kvaliteedi osas.

Käesoleva töö põhitulemuseks on uus metodoloogia, mis viib PETT lahenduste
kulutused sedavõrd alla, et need oleksid vastuvõetavad tööstuses. Väitekirjas on
esitatud meetod PETT programmide sünteesi automatiseerimiseks. Sünteesi
formaliseerimise aluseks on uudne lahendus, kuidas üle kanda ja arvutada
testandmeid mööda testimisteed trükkplaadil. Seejuures modelleeritakse testimisteed
sellel asuvate komponentide ja nendevaheliste protokollide funktsionaalsete ning
struktuursete mudelite abil. Väljatöötatud automatiseerimiskeskkonna kasutamine
vähendab testide projekteerimise töömahtu ja testide sünteesiks kuluvat aega,
tagades samal ajal kõrge kvaliteediga PETT programmide sünteesi.

10

11

Acknowledgements

I would like to show appreciation to everybody who helped me with advice and
support during my PhD studies.

In particular, I would like to express deep gratitude to my supervisor Dr. Artur
Jutman for helping me to do the first steps in the field of digital test and for
encouraging me to finish this thesis. It was a big pleasure to continue my research
after master studies under his intelligent guidance. I am very much thankful to my
other supervisor Prof. Raimund-Johannes Ubar for his wise advice and support
during the research work that is behind this thesis.

I would like to thank Dr. Sergei Devadze for his invaluable contribution and
unselfish help. He was so much involved in this research that he deserves to be
mentioned as one of the supervisors.

Special thanks to Dr. Margus Kruus, the head of department of Computer
Engineering for his warm attitude to the young researches and for outstanding
environment for productive work and study.

Furthermore, I would also like to express my appreciation to my good colleagues
Dr. Jaan Raik, Dr. Maksim Jenihhin and to the group of young researches:
Igor Aleksejev, Sergei Kostin, Konstantin Shibin and Anton Tsepurov.

I would also like to express my sincere gratitude to Thomas Wenzel (CEO,
GÖPEL electronic) for the opportunity to participate in the development of board-
level test solutions. The valuable experience and inspiration for the research was
received during the fruitful cooperation with GÖPEL electronic.

I would like to acknowledge the following organizations that have supported my
PhD studies: Tallinn University of Technology, Testonica Lab, Enterprise Estonia
funded ELIKO Development Centre, National Graduate School in Information and
Communication Technologies (IKTDK), and Estonian Information Technology
Foundation (EITSA).

Finally, I would like to thank my family for all the patience and care. In
particular, I would like to mention my parents Oleg and Larissa and my beloved
fiancée Anna. Thank you!

12

13

List of Publications

Board and system level test optimization

- A. Tsertov, A. Jutman, S. Devadze, R. Ubar, Automatic SoC Level Test
Path Synthesis Based on Partial Functional Models – Proc. of 20th Asian
Test Symposium, New Delhi, India, 2011, pp. 532-538.

- A. Tsertov, A. Jutman, S. Devadze, R. Ubar, SoC and Board Modeling for
Processor-Centric Board Testing – Proc. of 14th EUROMICRO Conference
on Digital System Design - DSD 2011, Oulu, Finland, 2011, pp. 575- 582

- A. Tsertov, A. Jutman, S. Devadze, Testing Beyond the SoCs in a Lego
Style – Proc. of IEEE East-West Design & Test Symposium, St. Petersburg,
Russia, 2010, pp. 334-338.

- A. Tsertov, A. Jutman, S. Devadze, Automation of Testing Beyond the
SoCs. – Proc. Of 4th IKTDK Conference, Essu Mois, Estonia, 2010,
pp. 29-32

- S. Devadze, A. Jutman, A. Tsertov, R. Ubar, Microprocessor Modeling for
Board Level Test Access Automation – Proc. of 10th IEEE Workshop on
RTL and High Level Testing, Hong Kong, China, 2009, pp. 154-159.

- S. Devadze, A. Jutman, A. Tsertov, M. Instenberg, R. Ubar,
Microprocessor-based System Test using Debug Interface – Proc. of 26th
IEEE NORCHIP Conference, Tallinn, Estonia, 2008, pp. 98-101.

BIST optimization

- A. Jutman, A. Tsertov, R. Ubar, Calculation of LFSR Seed and Polynomial
Pair for BIST Applications – Proc. of 11th IEEE Workshop on Design and
Diagnostics of Electronic Systems, Bratislava, Slovakia, 2008, pp. 275-278

14

HW-SW co-design

- U. Reinsalu, S. Devadze, A. Jutman, A. Tsertov, P. Ellervee,

“Hardware/Software co-design in practice: MEMOCODE’08 contents
experience”, Proc. of 3rd IKTDK Conference, Voore, Estonia, 2008,
pp. 55-58.

-
Laboratory environment for education and research of design and test

- R. Ubar, A. Jutman, J. Raik, S. Devadze, I. Aleksejev, A. Chepurov, A.

Tsertov, S. Kostin, E. Orasson, H.-D. Wuttke, E-Learning Environment for
WEB-Based Study of Testing – Proc. of the 8th European Workshop on
Microelectronics Education, Darmstadt, Germany, 2010, pp. 47-52.

- A. Jutman, A. Tsertov, A. Tsepurov, I. Aleksejev, R. Ubar, H.-D. Wuttke,
Teaching Digital Test with BIST Analyzer – Proc. of 19th EAEEIE Annual
Conference, Tallinn, Estonia, 2008, pp. 123-128.

- A. Jutman, A. Tsertov, A. Tsepurov, I. Aleksejev, R. Ubar, H.-D. Wuttke,
BIST Analyzer: a Training Platform for SoC Testing – Proc. of 37th Annual
Frontiers in Education Conference, Milwaukee, USA, 2007, pp. 1534-
1539.

- A. Jutman, A. Tsertov, R. Ubar, A tool for advanced learning of LFSR-
based testing principles – Proc. of Baltic Electronics Conference, Tallinn,
Estonia, 2006, pp. 175-178.

- A. Jutman, A. Tsertov, R. Ubar, A Tool for Teaching Pseudo-Random TPG
Principles – Proc. of 17th EAEEIE Conf. on Innovation in Education for
Electrical and Information Engineering, Craiova, Romania, 2006, pp. 182-
187.

15

List of Abbreviations

AC Alternating current

AOI Automated optical inspection

API Application programming interface

ATE Automatic or Automated test equipment

ATPG Automatic test pattern generator

AXI Automated X-ray inspection

BDD Binary decision diagram

BGA Ball grid array

BIST Built-in self-test

BS Boundary-scan

CAD Computer-aided design

CS Constraint solver

CSP Constraint satisfaction problem

DC Direct current

DDR Double data rate memory

DfT Design for test

DRAM Dynamic random-access memory

EMF Eclipse modeling framework

FD Finite domain

FDV Finite domain variable

FICT Fixtureless in-circuit test

GDDR Graphic double data rate memory

16

GPR General purpose register

GUI Graphical user interface

HDL Hardware Description Language

HLDD High-level decision diagram

IC Integrated circuit

ICT In-circuit test

IDE Integrated development environment

IP Intellectual property

ISA Instruction set architecture

ISP In-system programming

JaCoP Java constraint programming

MDA Manufacturing defect analysis

NTF No trouble found

PCB Printed circuit board

PCBA Printed circuit board assembly

PCBT Processor-centric board test

PRPG Pseudo random pattern generator

RT-Level Register-transfer level

SIMD Single instruction multiple data

SMT Surface mount technology

SoC System on chip

SRAM Static random-access memory

SUT System under test

SVF Serial vector format

TAP Test access port

TCK Test clock

TDI Test data in

TDO Test data out

THT Through-hole technology

TLM Transaction level modeling

17

TMS Test mode state

TRST Test reset

UML Unified modeling language

UUT Unit under test

VHDL VHSIC hardware description language

VHSIC Very-high-speed integrated circuits

XML Extensible markup language

μC Microcontroller

μP Microprocessor

18

19

Contents

CHAPTER 1 INTRODUCTION ... 23

1.1 Motivation .. 23

1.2 Open issues in printed circuit assembly test ... 24

1.3 Problem formulation... 26

1.4 Thesis contribution ... 26

1.5 Thesis structure ... 27

CHAPTER 2 BACKGROUND ... 29

2.1 State of the art in manufacturing board test .. 29

2.2 Boundary-Scan and its flavors ... 33

2.3 Processor-centric board test ... 36
2.3.1 Test access .. 38
2.3.2 Test application .. 39

2.4 Similar works .. 41

2.5 Chapter summary ... 41

CHAPTER 3 PROCESSOR-CENTRIC BOARD TEST FLOW 43

3.1 PCBT functionality ... 43

3.2 Test access .. 45
3.2.1 Test path initialization .. 45
3.2.2 Test path configuration ... 45

20

3.3 Test application ... 46
3.3.1 Online mode ... 46
3.3.2 Monitor-based online mode.. 48
3.3.3 Offline mode .. 49

3.4 Overview of the test application modes ... 52

3.5 Chapter summary ... 53

CHAPTER 4 BOARD AND ELECTRONIC COMPONENT
MODELING 55

4.1 Modeling basics ... 55

4.2 Test data path model... 57
4.2.1 Structural Model ... 58
4.2.2 Behavioral Model ... 63
4.2.3 Uniform test data path model ... 69
4.2.4 Diagnosis of PCBT failure ... 70

4.3 Chapter summary ... 70

CHAPTER 5 AUTOMATED TEST PROGRAM SYNTHESIS...... 73

5.1 Automated and non-automated test program development 73
5.1.1 Automated test development flow .. 75
5.1.2 Benefits of the automated approach ... 76

5.2 Test data path model as a constraint satisfaction problem 78
5.2.1 Formulation of Constraint Satisfaction Problem .. 80
5.2.2 Java Constraint Programming framework .. 81
5.2.3 Representing HLDDs as a CSP using JaCoP framework 86
5.2.4 Solving the CSP model .. 92
5.2.5 Solving of joined CSPs .. 107
5.2.6 Verification of the results ... 108

5.3 Case study .. 110

5.4 Chapter summary ... 113

CHAPTER 6 TOOLCHAIN FOR PCBT DEVELOPMENT
AUTOMATION 115

6.1 PCBT development automation workflow .. 115

21

6.2 Toolchain and integration .. 117

6.3 Chapter summary ... 119

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 121

7.1 Conclusions .. 121
7.1.1 Results and contributions ... 122
7.1.2 Advantages ... 122

7.2 Future work ... 122

REFERENCES .. 125

APPENDIX A AGM FORMAT .. 131

AGM Syntax .. 132

22

23

Chapter 1

INTRODUCTION

This introductory chapter gives an overview of the research area addressed by
current thesis. The motivation for the work is presented as opening words that are
followed by the formulation of the problem and the outline of main contributions. In
the last part of the chapter the organization of the thesis is described.

1.1 Motivation

 Almost every aspect of modern life depends on the correct functioning of the
digital devices. Hence, today the dependability is concerned not only in limited
applications in power, medical and aerospace industries, but also in less critical
applications like mobile devices and household equipment. The dependability is an
important property of particular microelectronic device and it is reflected in its cost.
The manufacturer cannot afford the mobile device to be at a cost of communication
equipment of the space shuttle due to the high dependability rate. Hence, reasonable
testing of microelectronic products and components is required to guarantee an
acceptable level of product reliability and a competitive cost. There are constant
drive for cost reduction and shorter time-to-market for new products from the hot
growth markets such as portable computer products, portable medical equipment,
and automotive products.

One of the top manufacturing research priorities reported by International
Electronics Manufacturing Initiative (iNEMI) [1] is advanced test solutions for high
density boards. The driving forces for constant demand in development of efficient
test solutions are miniaturization that is influenced by the rapid development of
portable and handheld products, higher performance levels of high-end systems and
material evolution.

24

The printed circuit board (PCB) design has been constantly evolving due to
previously mentioned manufacturing trends. Today, the ordinary PCBs may contain
more than a dozen of intermediate layers for conducting paths and is populated with
components that have packages (e.g. Ball Grid Array (BGA)) with hard-to-access
pins. Despite a significant progress in semiconductor technologies, testing of
assembled PCBs is often performed using yesteryears means, i.e. accordingly to the
Boundary-Scan (BS) standard [2] developed in 1990. As a result, testing of specific
manufacturing defect classes becomes economically inefficient for most
applications.

The current thesis is focused on the processor-centric board test methodology
that combines benefits of structural and functional test strategies. The major
contribution of the thesis is the modeling methodology with the goal of automatic
test program synthesis for a processor-centric board. Application of the proposed
methodology closes the gap between acceptable system reliability rate and the cost
of the system test solution.

1.2 Open issues in printed circuit assembly test

Today PCB assemblies (PCBAs) are used in most of commercially produced
electronic devices. Electronic components on the PCB are connected using
conductive pathways. Contemporary PCBs have multiple layers of separately etched
thin boards. Complex PCBs may be stuffed with 50 or more layers. The surface
layers are populated with electronic components while most of the interconnections
are hidden into internal layers (trace layers). The usage of internal layers in PCB
design reduces the dimensions of the board. However, structures on the internal
layers are inaccessible for Flying probe or a Bed of nails tester. Thus additional
design-for-testability (DfT) structures are implemented to test the interconnections
on the internal layers.

The widely adopted DfT structures described in IEEE 1149.1 standard [2]
provides means to test interconnects, clusters of logic, memories etc. without
touching a board with physical test probe. The Boundary-Scan (BS) architecture and
Test Access Port (TAP) described in this standard are also used for debugging
purposes such as watching the pin states, voltage measuring or providing access to
internal debug module of a programmable device. Despite of ubiquitous presence of
BS structures in modern electronic systems and components, the application of BS is
limited due to the low signal frequency. Typically test clock (TCK) frequency is in
range from 1 MHz to 40 MHz, whereas actual test application frequency is much
lower due to the long shift that precedes each test pattern. Thus, BS-based tests have
at least two restrictions. First, there are device classes such as high speed memories
that do not support communication at low frequencies. In [3] is reported that even
SRAM/DRAM interconnects are causing problems when tested with BS (58%
respondents occasionally encountered problems and 28% said they frequently did).

25

Second, timing-related defects (e.g. transition faults, crosstalk or switching noise)
manifest themselves only at high signal frequencies.

Functional test [4] and interconnect Built-in Self-Test (BIST) [5] could
potentially overcome drawbacks of BS. However, interconnect BIST requires
implementation of additional DfT structures, which is not acceptable in many cases.
On the other hand, functional test does not require any modifications to the PCBA,
but on its own does not produce measurable coverage of structural faults.

The BS-based tests and other tests that target structural faults belong to the
structural type of test. Structural test is based on the fault models and it checks only
for failures that can be represented by the used fault models, such as stuck-at-fault
model. The effectiveness of the test is measured by the fault coverage [6]. The fault
coverage is a percentage of the detected fault by the test set. The complete set
obtains 100% fault coverage. This is desirable fault coverage, but in practice, rarely
achievable in most systems under tests (SUTs). Hence, some faults remain
undetected when the fault coverage is less than 100%. Moreover, even 100% fault
coverage does not guarantee that all possible faults are detectable and the SUT is
fault-free. The faults that are not detected by the test set (fault coverage is less than
100%) or not detectable by used fault models are called test escapes [7].

Test escape may manifest itself during the functional test or in the normal
operation of the device. In recent years, the number of reports of failed system level
functional tests at a client side was constantly growing [8]. The reason for functional
test failures when the structural tests pass lies in the test escapes. The scenario when
system or component refuses to fail on retest (structural test) after it was returned
from the field or system customer as having failed is known as No Trouble Found
(NTF) scenario [8], [9]. After the NTF is solved, the structural test may be
complemented to escape the NTF scenario with the same symptoms in the future.
However, more intelligent approach is needed to address NTF problem rather than
hide-and-seek with the test escapes.

Test methodology that could potentially address problems of structural test (BS)
using benefits of functional test and providing measurable fault coverage is
processor-centric board test (PCBT) [10]. This test technology uses functionality of
microprocessor (μP) or microcontroller (μC) devices to deliver test patterns to PCB
peripheral components outside the programmable devices themselves. The
attractiveness of μP or μC-centric solution is very high due to the usage of existing
on-board DfT structures without any modifications.

In commercial board level test systems the processor-centric approach is widely
adopted [11], [10]. General disadvantage of its implementations is that processor-
centric board model (set of functions) is prepared by hand. As a result the cost for
development of the test program is much higher than for traditional BS tests that are
mostly automated.

26

1.3 Problem formulation

The processor-centric board launches the execution of the boot routine on the μP
(depends on the board configuration) each time the board is switched on. The boot
routine is the program that setups μP for operation with particular PCBA peripherals
and loads runtime environment or operating system. In addition, the boot program
has the board self-test routine that starts the set of tests to determine the integrity of
the board. One of the examples of such boot programs is well known Basic
Input/Output Systems (BIOS), which is equipped with Power-On Self-Test (POST)
functionality [12]. For the normal startup of the PCBA the boot routine should be
preloaded into memory that μP uses to boot from.

The problem is that PCBA after manufacturing is not yet loaded with such boot
program to run the POST. Typically, the boot program is loaded after the board is
tested for manufacturing defects. However, the at-speed testing of PCBA requires
the board to be preconfigured. The outstanding property of the PCBT is that this
method is capable to test PCBA at-speed just after it is manufactured. The execution
of PCBT program starts with functions that setup μP and controllers of μP to
communicate with DUTs as in normal operational mode. The development of these
functions requires plenty of time of highly skilled test engineer, which is the main
barrier to reaching the same “popularity” for PCBT as for BS.

The functionality of PCBT is used not only to test the board, but also to program
the boot programs and operating systems into on-board memory using the same test
setup. The challenge in programming on-board memories via serial test access port
(JTAG TAP) is the programming time. To meet the timing requirements the PCBT
program is developed in low level programming languages. The optimized code
reduces the data transfers through the JTAG TAP and increases the performance of
the program. Obviously, the low level programming extends the development time
of the PCBT solution.

In this thesis the problems of test program development for assembled PCB is
addressed. In particular, the labor effort to develop the PCBT program is concerned
and the methodology for test time and programming time estimation is proposed.
The presented work attempts to automate the development of μP or μC-centric board
level test programs using adaptive modeling methodology. The proposed modeling
methodology implies automatic creation of structural models of PCBA and its
components. The proposed methodology also describes the approach for creating
partial behavioral models of PCBA components.

1.4 Thesis contribution

The main contribution of the current thesis is a novel approach to automate the
development of test program for processor-centric boards. The workflow for

27

automated development of PCBT programs is introduced for the first time in
literature.

The sub-contributions that have been made in frames of the research work on this
thesis are outlined below:

- Formulae for test application time calculation - The simulation-free
calculation of the test application time is useful for fast cost estimation of
the manufacturing board test solution. Moreover, these formulae are
helpful for comparison of different test application strategies for a given
test case.

- The metamodel and its implementation for structural models of PCBA,
SoCs and other PCBA components

- The metamodel and its implementation for behavioral models of ICs

- A novel methodology for test data path modeling - Structural models are
augmented by behavioral models to assemble the uniform model of the
PCBA that is used in test development automation.

- A novel approach and implementation of automated synthesis of PCBT
program in SVF

- A new approach for automated synthesis of the VHDL test bench

- The toolchain of developed programs - This toolchain is a platform with
broad research capabilities in the field of board level test. It also provides
integration possibilities with third-party tools for test and debug of
assembled PCBs.

1.5 Thesis structure

The presented thesis consists of 7 chapters. The rest of it is organized as follows.

Chapter 2 forms a background on the researched topic and reviews the state-of-
the-art in the field of manufacturing board level test. It reveals the problem areas and
presents motivation for the given research work.

Chapter 3 gives a description for the PCBT program. This chapter starts with
presenting the typical functionality of the test program. Then the test access and test
application parts of the program are discussed in details. The automation of the
development of the presented PCBT program is a general topic for the following
chapters.

28

Chapter 4 is dedicated to board and electronic components modeling. The basic
knowledge of modeling techniques is given in the beginning of the chapter. Then the
proposing modeling methodology for board and electronic components is presented.

Chapter 5 describes the proposed approach for automated test program synthesis
on the basis of the proposed modeling methodology. Firstly, the details of PCBT
program synthesis are explored and a typical development flow is examined to
present the automated flow. The feasibility of proposed methodology is studied on
the experiments with ITC99 benchmarks.

Chapter 6 presents the developed toolchain for board and electronic components
modeling and automated test program synthesis based on the structural and
behavioral models. The chapter is concluded with the description of integration
potential into boundary-scan test systems and open source computer-aided design
(CAD) software.

Chapter 7 draws conclusions for the thesis and discusses directions for future
work.

29

Chapter 2

BACKGROUND

This chapter presents background knowledge for the topics related to current
research. The introduction to manufacturing board test is given in the beginning of
the chapter. The introduction is followed by the description of the in-circuit test
technology. The notion of IEEE 1149.1 standard is described in conjunction with
derived standards to draw the comprehensive picture of boundary scan test
technology flavors. Finally, the definition and application of the processor-centric
board test is presented to complete the set of the available test solutions in
manufacturing board test

2.1 State of the art in manufacturing board test

High-density printed circuit board assembly (PCBA) requires special methods for
test access. The test method that provides physical access to component leads, test
pads and vias was a viable solution until multi-layered PCBs entered the mass
production. Today, in-circuit test (ICT) methods cannot provide solely sufficient test
coverage to meet stringent standard quality requirement. BS together with fixtureless
ICT (FICT) such as automated optical (AOI) and X-ray inspection (AXI) is
complementing ICT to provide test for static faults (opens and shorts) on even most
densely populated PCBs [13], [14].

During the last decade the test requirements in PCBA mass productions has
changed its focus from finding component failures towards finding manufacturing
process faults due to the continuous improvement in overall component quality. In
the process of PCB population, industry has moved from through-hole technology
(THT) to surface-mount technology (SMT). That has made changes to the fault
spectrum. In THT the most probabilistic fault type was shorted connections.

30

However, with SMT the major problem lies in open connections, but solder shorts
are still a noteworthy problem. The other significant fault types are misaligned,
missing or wrong components.

The test strategy for manufacturing defects is initially based on the assumption
that component supplier is shipping only good parts. Hence, all manufacturing test
methods should be capable to detect fault that are caused by soldering related
problems and accurate placement of the correct components on the PCB.

In-Circuit Test (ICT) [15] uses a bed of nails fixture for mechanic access to
electrical nets of the PCB. Each individual nail in the fixture has a wire connection
with the external tester. Nails in the fixture are thoroughly allocated to
simultaneously create a steady physical connection to the test points, non-masked
vias and soldered leads. By the means of standard complex-impedance
measurements, these manufacturing defect analysis tests can be run without
powering the PCB.

Power-off testing eliminates the risk to damage a misplaced component by
applying a power to its leads. Hence, manufacturing defect analysis (MDA) [16] test
should be run before the power-on tests. In-circuit MDA test systems provide an
identification of a failing component when a fault is detected. Since components are
tested in isolation. The failing component is identified by designating its part
reference number. Besides opens and shorts all the typical faults for analog
components are testable by MDA techniques. The list of testable analog components
consists of resistors, capacitors, diodes, inductors, transformers, transistors.

The general drawback of the ICT is the necessity to have a physical contact with
the PCB. In-practice, access to all the electrical nets is hardly possible due to the
lack of space for test probes on the surface of contemporary PCB. Probing the SMT
lead is not a solution, as probe may introduce extensive pressure to the lead, causing
a bad connection to appear to be good. The problems of ICT technology were solved
by integrating the tester’s probes into the chips and to control them via a simple
serial bus. In 1990 this technology became an IEEE 1149.1 standard [2] (Boundary-
Scan).

BS is only applicable where IEEE 1149.1 standard is supported on the device
level. On the one hand BS is characterized by low speed and limited coverage of
dynamic faults. On the other hand BS provides very good [17] diagnostic
capabilities, low-cost equipment and it is applicable to a non-functioning system.
Due to that BS is heavily used in PCBA structural test and PCBA debug.

On the contrary to BS the functional tests are executed at full speed of the board.
Thus, the dynamic faults that escaped the BS tests are detectable with functional test.
In general, “functional testing verifies board performance mimicking its behavior in
the target system” [18]. However, there are several major problems of functional
test. The first is that “functional test is traditionally the most expensive technique”

31

[18] and the second is that the diagnosis of the cause of functional test failure may
take hours.

The low speed nature of BS affects badly the test application time. As a result,
the BS test technique has to be complemented by a solution that supports high-speed
or at-speed test application mechanisms [5],[19]. This problem has been understood
by major BS-tools providers and some early PCBT solutions have been developed.
The good examples of state of the art PCBT solutions are Goepel Electronic’s
VarioTAP® technology [11] and Processor-Controlled Test (PCT) [10] for board
level test purposes from ASSET InterTech.

Application

domain

S
ol

d
er

 P
as

te

In
sp

ec
ti

on

A
O

I
 p

re
 r

ef
lo

w

A
O

I
 p

os
t

re
fl

ow

A
X

I

p
os

t
re

fl
ow

IC
T

/M
D

A

B
ou

n
d

ar
y

S

ca
n

B
oa

rd
 le

ve
l

fu
n

ct
io

n
al

D
ep

en
d

a-
b

il
it

y
sc

or
e

Automotive

Entertainment 4 3 3 2 5 2 4 23

Safety 4 4 4 2 5 3 3 25

Portables

Mobiles 4 3 3 2 0 3 5 20

Netcom

Consumer 3 3 3 1 3 4 3 20

Enterprise 3 3 3 2 5 5 3 24

Service
providers

4 3 3 3 5 5 5 28

Office Systems

Desktop 2 3 3 2 5 3 5 23

Mobile 4 3 5 1 5 3 5 26

Servers/High end 4 3 5 1 5 5 5 28

Medical

Imaging 1 2 5 3 4 4 4 23

Monitoring 1 2 5 3 4 4 4 23

Implantables 5 4 4 2 4 4 5 28

Total Method
Applicability

39 36 46 24 50 45 51

Table 2-1 Application of board level test methods

32

Goepel Electronic’s VarioTAP® technology is a simplified model of MPU SoC
that contains a set of mixed test access/application/configuration functions
developed in an ad-hoc manner for a given board. Despite the fact, that VarioTAP®
reuses some components (device libraries, debugger, test coverage analysis) from
the existing BS test projects, the library of μP/μC models has to be prepared
manually by an experienced software engineer using standard algorithmic language
(e.g. C/C++).

Processor-Controlled Test (PCT) for board level test purposes that comes from
ASSET InterTech, besides the drawback of VarioTAP® (handcrafted solution) also
has a weak integration with BS and very limited test automation.

These PCBT technologies (VarioTAP® and PCT) are considered as BS-
complementary solutions and are located in between BS and functional test. In
addition, the solution from Kozio® [20] is seen as complementary solution to
traditional functional test. Kozio® suggests to boot the board with their operating
system for board(system)-level functional testing. The location of this solution is in
between PCBT and functional test, as it provides capabilities for diagnosis similar to
PCBT approaches, but does not focus on testing of structural defects.

Various solutions exist for system-level testing for manufacturing defects of
complex electronic boards, but all of them have certain limitations. As a result, the
selection of appropriate test strategy (set of tests and test methods) is a not a trivial
task. The application of various test methods in different product domains is shown
in Table 2-1. Table 2-1 is a modified representation of the initial table from [21].
The textual score for each method in the initial table was substituted by equivalent
number (0 - Never, 1 - Audit only, 2 - Rarely, 3 - Sometimes, 4 – Mostly, 5 -
Always). The initial table was also supplemented with additional row that
summarizes the applicability of every test method for listed application. The
dominating manufacturing test technologies are functional test and ICT. Thus
according to iNEMI [21] Boundary scan is an important, but not an indispensable
test technique for many applications. In addition, the dependability score was
calculated for each application to highlight the range products that are most heavily
tested for manufacturing defects according to the iNEMI data [21].

33

2.2 Boundary-Scan and its flavors

BS popularity was continuously growing since 1990 and still growing because of
ease of adapting with new PCBA component and board level technologies. These
adaptations later developed into the IEEE 1149.x standards. The need in 1149.x
standards was also caused by inability of the 1149.1 to address the following
problems in manufacturing board level test:

 Dynamic defects (delay, crosstalk)
 Interconnect test for analog, digital and mixed-signal and discrete

components
 Communication with high-speed memories (DDR3, GDDR5)
 Parallel busses with timing-critical (accurate) protocols
 High speed serial busses
 Fast In-System Programming (ISP)

In this chapter the key points of several IEEE 1149.x standards are briefly
discussed to complete the picture of the available board level test solutions and
trends.

IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture defines
a solution to the problem of testing assembled PCBs and other products based on
highly complex digital integrated circuits and high-density surface-mounting
assembly techniques [2]. It also provides means for accessing and controlling DfT
features built into the digital integrated circuits themselves. This standard defines the
TAP port used for communication between external tester and BS infrastructure
inside the PCBA components. The list of TAP port pins consists of test clock
(TCK), test mode state (TMS), test data in (TDI), test data out (TDO) and optional
test reset (TRST). BS infrastructure encloses TAP pins, boundary-scan register

Figure 2-1 Boundary-Scan architecture on the example of simplified PCBA

34

bypass register and instruction register, and TAP controller state machine (Figure
2-1). The TAP controller state machine (Figure 2-2) selects which type of register
(data or instruction) is in use. The purpose of instruction register is to select one of
the data registers in accordance with predefined instruction codes. There are four
mandatory instructions defined in the standard: EXTEST selects Boundary scan
register, BYPASS – Bypass register, SAMPLE – Boundary scan register and
PRELOAD – Boundary scan register. The standard also specifies a set of optional
instructions: INTEST – Boundary scan register, IDCODE – Identification register,
USERCODE – Identification register (for PLDs), RUNBIST – Result register,
CLAMP – Bypass (Boundary scan register value is on the device output pins), and
HIGHZ – Bypass (device output pins are in high-z state). These ten instructions are
known as public instructions, but chip vendor is free to add private instructions that
meet the particular testing needs.

 The next standard to be mentioned is IEEE 1149.4 standard that describes mixed
signal test bus. The testability structure for digital circuits described in IEEE Std.
1149.1 has been extended to provide similar facilities for mixed-signal circuits [22].
IEEE-1149.4 defines a two-wire analog bus consisting of an analog drive and analog
sense pin. By including circuitry within the IC to connect these pins to different
analog nodes, the JTAG port (IEEE 1149.1 Std. TAP) can be used to perform analog
and mixed signal measurements. First objective of this standard is to provide

Figure 2-2 TAP Controller state machine

35

interconnect test capability for a PCBA populated with analog, digital and mixed-
signal and discrete components. Second objective is “extended” interconnect which
includes analog measurements to compute parameters of discrete component [22]
(e.g. capacitor, resistor) (Figure 2-3). A decade after release, the IEEE-1149.4
standard has not seen wide adoption.

The solution for BS-based testing of high-speed digital networks is proposed in
IEEE 1149.6 standard. The IEEE-1149.6 standard, released in 2003, expands on the
1149.1 standard by adding additional capabilities for transmitting and receiving test
signals over advanced (high speed) digital networks. “The additional testability
elements added by this standard to integrated circuits (ICs) allow interconnect
testing with enhanced coverage, to be conducted on differential signal pathways and
and/or where AC-coupling (which blocks normal DC Test Signals) has been used on
signal paths between ICs” [23]. The objective of this standard is to define design
rules for proposed testability circuitry in addition to design for testability structures
specified by IEEE 1149.1. IEEE 1149.6 requires design paradigm change and
considerable investments from component vendors. Currently, IEEE 1149.6 standard
is by far not as popular in practical applications as IEEE 1149.1, although, it was
approved in 2003.

The miniaturization of digital devices and new chip design methodologies like
System-in-Package (SiP [24]) and Package-on-Package (PoP [25]) questioned the
applicability of IEEE 1149.1 standard. The key issues were the number of pins and

Figure 2-3 Simple, extended and differential interconnect [8]

36

the appropriate accommodation of multiple on-chip embedded TAP Controllers.
The solution that helps to maintain compliance to IEEE 1149.1 in multi-TAP SoCs,
solves the above mentioned problems and extends the chip level debug capabilities
is IEEE 1149.7 [26].

The high-speed differential links is an open issue for 1149.1 which is addressed
in pending standard IEEE 1149.8.1 [27]. In 1149.8.1 is proposed that BS-enabled
device only sends the test stimulus to the link and on the other end the capacitive
sensing plate on top of the receiving device obtains the test response.

The common challenge for 1149.x standards is that they need to be adopted in
design flow before they can be useful. Typically PCBA still contains components
that are not compliant to IEEE 1149.1 standard, although, most of the manufactured
PCBAs are equipped with BS DfT structures. As a result, the BS-enabled devices
are often used as a doorway (from the point of view of external tester) to access non-
BS PCBA components for testing purposes. A good example of such doorway is a
μP/μC device. The test/debug access in μP/μC is usually based on a JTAG port [28].
As a result, it becomes possible to utilize the processor as a test access mechanism in
the board-level structural test (e.g. as an extension of the Boundary Scan (BS)
technique [28]). In case when μP/μC is used as onboard tester, BS plays the role of a
communication channel for test application mechanisms inside μP/μC rather than a
test application method. The test application by mechanisms inside μP/μC (e.g.
peripheral controller) solves most of the speed related problems of BS that were
mentioned in the beginning of Section 2.2.

The idea of using an embedded μP/μC cores to execute the test program is not
new and is widely used for SoC testing and debugging purposes. This testing
paradigm was initially known as software-based self-test (SBST) [29]. Many
researchers have proposed ideas for testing SoC components where an embedded
μP/μC core [30], [31], [32] controls the test data traffic between the test controller
and the SoC. Moreover, there are study proposing specially developed IP core [33]
to be implemented in the SoC for solving the test, diagnosis and silicon debug
issues. The researchers are very active in the field of SBST of SoCs, nevertheless,
there is a clear lack of recent academic research on testing beyond the SoCs.

2.3 Processor-centric board test

Back in 1980s industry already was facing a problem of at-speed or high-speed
testing of dynamic faults. The functional testers were capable to apply successive
patterns at high speed to the UUT (Unit Under Test), but the true rate was actually
lower due to the need of measure the responses and react in real time. Then the
industry has responded by the evolution of a test technique that “seeks to ‘emulate’
the operation of the microprocessor while the remainder of PCB continues to run at
its dynamic speed but under the local control of the test system” [34].

37

This test technique has been employed in following application. The test system
is considered as a ‘bus addresser’ that communicates with the PCBA components
through the interconnection lines of the PCB. The access to the μP pins is gained
through the multi-way clip or a substitute mating plug for the μP on the PCBA under
test. The PCB tester with the ability to test at dynamic speed through the pins of
emulated μP writes and reads words of test data on the UUT interconnects in order
to test the PCB peripheral components and associated circuitry in exactly the same
way as the μP would do in normal operation.

However, emulation-based test did not gain much attention back in 1980s due to
its cost. One of the factors that influenced the cost of emulation-based solution was
the absence of standardized way to access μP pins on the PCB. For every new
design a custom solution was invented. This issue has been partially solved by the
IEEE 1149.1 – 1990 standard. Then the boundary scan register was used to drive
and test the nets connected to the μP pins. However, the communication frequencies
were continuously growing and the testing of the dynamic faults became limited
with BS-based tests. Later in the XXI century industry addresses this problem by
processor-centric board test (PCBT) technology. Sometimes, PCBT is still called as
processor emulation based test.

The PCBT technology is based on the same principles as μP emulation based
solution with the difference that μP internal functionality is not isolated, but μP is
considered as an on-board tester. The μP is controlled from external tester via the BS
infrastructure on the board. BS standard (IEEE 1149.1) only targets the path from
PCB connector to the JTAG TAP port of the μP. The implementation of the internal
debug logic of the μP is specific for every System-on-Chip (SoC) vendor.

Generally, PCBT approach uses system’s μP to run test routines. The actual
control over the μP is performed by external tester. The idea is to apply tests at the
actual operation speed of the SUT. A μP is playing the role of an internal (in-
system) tester which has an access to PCBA components and interfaces (Figure 2-4).
The test software that emulates system normal operation from the point of view of
UUTs is executed on a μP. This test software has two possible execution modes:

Figure 2-4 Test setup for PCBT

38

online and offline modes; that are described in Section 2.3.2. Both execution modes
are controlled from external tester. Typically the test software consists of the test
access (Section 2.3.1) and the test application routines (Section 2.3.2).

PCBT has a good potential to reach high fault coverage, because of the
architecture of many electronic systems. The processor usually has to interact with
the other PCBA components and thus has good access to them (e.g. through a
communication bus). Thus, PCBT can achieve high fault coverage without relying
on hardware design modifications or external test equipment.

Nowadays, PCBT is a test strategy that is used not only to test and diagnose static
and dynamic faults, but also to perform in-system programming of on-board
memories and μP internal memory, to contribute to functional test coverage and to
verify the component placement on the PCB. Most of these tasks can be completed
by other test methods, but none of them is capable to cover all. Hence, PCBT is a
very efficient solution but still costly and effort-hungry as most of the test program
functionality is created manually. The comparison of the test methods is given in
Table 2-2. The points of comparison were selected to show the main drawbacks of
every method. As it is seen from Table 2-2 the only weak side of the PCBT is the
“Test automation” and as a result the “Test implementation cost” is high.

Table 2-2 Comparison of different test methods

Point of Comparison ICT 1149.1 Functional Test PCBT

DUT access Fixed nails Scan cells μP μP

Test implementation cost High Low High High

Structural Fault Coverage High High Uncountable High

Dynamic Fault Coverage No No Uncountable High

Functional Fault Coverage No No High High

Test access Low High High High

ISP No Slow Limited Yes

Test automation High High Low Low

2.3.1 Test access

JTAG TAP does not provide solely the full access to μP SoC resources (register
map, internal memory, external memory controllers, etc.). Moreover, a test engineer
needs at least a basic set of debug tool functions like processor halting, breakpoint
and watchpoint support, traceability, data flow information and performance
measuring. One of the helpful solutions is proposed in NEXUS 5001 Standard. The
Nexus standard defines an extensible Auxiliary Port (AUX) that may either be used

39

together with JTAG port or as a stand-alone development port. The Nexus standard
defines the auxiliary pin functions, transfer protocols, and standard development
features [35], [36]. A set of recommendations (such as additional registers and
number of pins) to follow in the debug oriented processor design is also defined.

The alternative solution is provided by the Mobile Industry Processor Interface
(MIPI) Test and Debug Working group [37]. This group is exploring a maintenance
port, called NIDnT-Port [38], [36] (Narrow Interface for Debug and Test: Speak
NIDENT). NIDnT is based on IEEE P1149.7 [26] and the System Trace Module,
which includes the MIPI System Trace Protocol (STP) and uses the MIPI Parallel
Trace Interface (PTI) for data export.

Traditionally, JTAG TAP remains one of the alternatives for physical connection
to μP internal debug interface. Thus, the first part of the test access consists of
standard BS infrastructure, which implies JTAG connector on the PCB where the
cable from external tester is plugged in, and the scan chain of BS-enabled devices.
This part of the test access of the PCBT is the same is in BS-based test. In case if
scan chain contains not only μP that is used as internal on-board tester, all the other
devices in this scan chain are typically switched to BYPASS mode, which is
equivalent to the shortest configuration. The shortest configuration of the scan chain
provides the fastest communication from external tester to the μP. This
configuration of the scan chain is typically needed to efficiently shift the debug
instructions through the μP TAP to the debug interface of the μP. Through the debug
interface the tester gains an access to the internal buses and components of the μP
SoC.

Let us consider the next level of test access as the virtual link between μP and
UUT. This link starts at debug interface of the μP and reaches the UUT pins. In
general, the establishment of this link implies tuning of the respective controller in
the SoC to communicate with the specific UUT. The tuning sequence of commands
for peripheral controller inside the μP is transferred through the debug interface.
Then the test data is transferred via dedicated UUT controller to the UUT as in the
normal system operation. Hence, every signal line between μP and the UUT is
exercised in same manner as while executing the system’s domain application.

2.3.2 Test application

The test application consists of a test program that controls a microprocessor.
The test program may be designed accordingly to online1 or offline testing [39]
modes.

The offline (or autonomous) testing is realized in the following way. The
complete test program (test vectors and expected values) is translated into the set of

1 Online mode of test application is not the same as on-line testing.

40

microinstructions and loaded as an ordinary micro-program into memory inside the
μP. The program execution inside the μP is started by the external tester through
debug interface. The test program is constructed in such a way, that the result of
execution (PASS or FAIL for complete test) will be stored in one or more general-
purpose registers of the μP. After test program execution is finished, the contents of
these registers and the result of test execution is retrieved through the debug
interface and reported to the external tester for further evaluation and diagnosis.

The offline mode is fully independent and does not suppose continuous
interaction with an external tester. This autonomous mode requires plenty of
memory space in order to store all test vectors as a set of microinstructions.
However, another possibility is to implement a special algorithm inside the test
program (e.g. walking one, counting sequence, PRPG, etc.) so it will generate
driving and expected values on the fly.

The main difference of online mode in comparison to offline mode is that each
test step (i.e. test vector) is executed separately under the control of external tester.
Before the test is executed in online mode the specially prepared interpreter
program is loaded into internal memory of the μP during test setup phase. The goal
of interpreter program is to receive and execute separate microinstructions that will
be passed via the debug interface. The test program (that is split into number of test
vectors) is synthesized into set of microinstructions and compiled into a sequence of
machine code.

On each step, the external tester writes the piece of machine code (that
corresponds to the test vector) into certain registers of μP. The interpreter program
constantly checks the content of these registers for detection of arrival of new
microinstructions and executes them. The result of test execution (measured value)
is stored in the registers that are accessible by the external tester. Finally, the
measured value is compared with the expected one and test execution continues.

There are μP architectures that support instruction injection via debug interface
[40], [41]. The injection facilitates instruction execution from the dedicated debug
register. This may be used to inject the interpreter program command by command
instead of loading it into internal memory. However it might extend the test
application time. In some cases, the loading of interpreter program is time
consuming or is not possible (not enough internal memory, internal memory is not
accessible or internal memory is occupied by other application), then the instruction
injection mechanism becomes extremely useful. The general idea is to load the test
vectors to the general purpose registers of the μP. Then, the commands of
interpreter program that perform test application of previously loaded test vectors
are injected. The test results could be obtained in the similar manner by injecting the
respective load and store commands to retrieve the tests result signatures to the scan
register of TAP for scanning them out to the external tester.

The main drawback of online testing in comparison to offline is the speed of test
pattern application. In online mode it is considerably slower due to the overhead of

41

uninterrupted communication via the debug interface. However, the single test
pattern is applied at the operational speed in both modes, because the test data is
transferred to the UUT through the dedicated peripheral controller that handles the
signal timings and the communication protocol. Nevertheless, the fault types, such
as delay faults, that require fast subsequent application of test vectors, can still be
detected in online mode if μP supports multiple store and multiple load instructions
(e.g. Single Instruction Multiple Data - SIMD) [42]. These instructions with multiple
data sources can be used to emulate the at-speed application of limited number of
test vectors to the subsequent addresses.

2.4 Similar works

The academia is not very active in the field of PCBT, however, there are several
recent publications on design and implementation of test processors for board-level
testing [43], [44]. In [44] authors propose to implement the test processor in FPGA,
which is an adaptation of the PCBT technique to FPGA-centric boards. This work
was done in cooperation with the company Goepel electronic, hence could be seen
as an extension of VarioTAP® technology to the FPGA-centric boards.

In [43] the group from IHP has presented a concept for performing functional
tests of asynchronous designs using a specific test processor. The proposed test
processor is supposed to be added as a core to the μP SoC or to be implemented as a
standalone device on the same board. The automatic synthesis of PCBT program is a
part of the proposed approach. However, the implementation details of the test
program synthesis are not mentioned in the paper and the status of the tool for the
test program synthesis is reported as “under conception” [43]. Meanwhile, at the
same conference the methodology for automatic synthesis of the PCBT program and
the experimental results were presented in [45] by the author of current thesis.

In the light of these PCBT approaches the PCBT flow described in current thesis
is seen as more general and less restricted. The proposed methodology for automatic
synthesis of the PCBT program can be applied to any PCBA configuration including
the test processor implemented in FPGA or as a co-processor.

2.5 Chapter summary

The purpose of this chapter is to provide a reader with the background
information needed to understand the basic principles of the board level
manufacturing test. The evolution of the methods and general description of test
techniques are presented in the comparative manner. The overview of the recent
research activities in the field of PCBT is closing this chapter.

42

The underlying idea of this chapter is to introduce the drawbacks of the ICT and
BS test technologies that can be addressed by the PCBT. The presented arguments
lead to the conclusion that PCBT is promising test technology in the manufacturing
board testing that guaranties high test quality. However, the cost of PCBT-based
solution is high in comparison to the BS solution mainly due to the efforts spend on
the manual PCBT test program development.

43

Chapter 3

PROCESSOR-CENTRIC BOARD TEST

FLOW

This chapter gives the description of the typical PCBT flow. In the beginning of
the chapter an overview of the PCBT functionality is presented. The standard steps
for test path initialization and configuration are explained in the section dedicated to
test access. The detailed study of test application steps of the PCBT flow is
continued by the analysis of online and offline test application modes. The formulae
for test application time estimation are summarized in the concluding section.

3.1 PCBT functionality

The functionality of the PCBT program depends on the test requirements and on
the SUT configuration. Test requirements are the set of UUTs including related
interconnections that have to be verified, tested or programmed. The UUT
verification checks identification code (IDCODE) of the mounted component with
the PCBA documentation. Then, interconnect test checks the connections between
μP and UUT for static and dynamic faults. If the UUT is a flash memory the
interconnect tests are typically substituted by ISP. Besides the interconnect test, it is
often needed to do a functional and structural in-situ tests of the UUT. These tests
also belong to the PCBT functionality.

Nowadays the programming of the flash memory is often required after the
memory is soldered to the PCB. In most cases, it is considered beneficial to program
the flash memories with the same tester hardware that is used for verification and
test of other components on the PCBA under test. The problem is that ISP has

44

become a very time consuming process because modern flash memories can store
much larger images than before. PCBT may reduce the programming of flash
memory from hours, as in case with BS, to minutes. The actual ISP time heavily
depends on the architecture of the debug interface of the μP, on the instruction set of
the μP and on the performance of the external flash memory controller inside the μP
SoC.

The structure of the PCBT program for the specific test requirements relies on
the standard functional blocks that are adapted to the SUT architecture. The typical
configuration is discussed in the following paragraphs. In this chapter the PCBT
functionality is described in the statements similar to assembly language to illustrate
the overall PCBT program functionality and structure without adapting it to any
specific SUT. The two different testing modes (online and offline) are considered to
observe the influence of different testing approaches on the structure of the PCBT
program. The complexity of the program is estimated on the example of the most
common test requirements.

In the following examples the selected SUT consists of the μP that has the
support of instruction injection (this simplifies the description of online testing
mode), flash memory with parallel interface and SDRAM. The exact properties and
characteristics of the SUT components are irrelevant in the following program
examples, because the device specific implementation details are omitted for the
sake of simplicity and ease of understanding of the general idea behind the PCBT
program.

Let SDRAM be the first to test. The interconnections with μP are tested for static
and dynamic faults. The test patterns and algorithms for testing and diagnosis can be
reused from interconnect test generated by BS test system. Thus, in this case the
same test patterns as for BS-based test are applied at high-speed.

The flash memory is validated against the documented version and capacity by
reading the status register. Then, according to the test requirements the memory is
programmed with the specified image file. The successful verification of
programmed data is sufficient in most cases to conclude that chip is aligned and
soldered correctly as well as to claim that the interconnects to μP are functionally
tested. Hence, the ISP partially substitutes a functional test for external flash.

Next section presents a study on how previously described test procedures can be
implemented in PCBT program.

45

3.2 Test access

3.2.1 Test path initialization

As initial step, the PCB has to be powered up and checked for consistency. For
this task the following sequence of steps is used:

 Check scan chain – shift out the IDCODEs of the devices in the scan
chain. This allows to identify the order of the devices and to ascertain
that BS infrastructure is correct.

 Initialize the scan chain – set everything but μP into BYPASS mode.
This sets the shortest configuration of the scan chain. The μP should be
the only device that listens to the data from external tester. All the
devices but μP should bypass the data shifted in and ignore it.

 Obtain Debug Interface Information – scan out version and status of the
μP debug interface. This secures that communication between BS
infrastructure and debug interface is functioning.

 Stop/Halt μP execution – stop any program execution in the μP by
injecting appropriate instructions via debug interface. Backup the register
file and pointer of return address to be able to resume the execution later.

 Read Status register of μP – read the status register and other
configuration registers to evaluate the state of the μP and its modules.
This information is used in the next steps in configuring the μP.

This sequence of five steps is obligatory to include in the beginning of the
initialization of the PCB and the μP. Any PCB or μP specific tasks may interleave
these steps, but the order of the initial sequence should remain unchanged.

3.2.2 Test path configuration

After the PCB initialization the PCBT program proceeds to the configuration of
the μP busses and peripheral controllers. Only those μP modules are configured that
are active during communication in native application mode between μP and the
PCBA component, which is specified as UUT in the test requirements.

Test path configuration:

 Set Mode/Privileges – check if the current mode of instruction execution
has enough rights to control and configure the μP controllers. Typically,
the debug mode has all the necessary rights.

 Enable and configure μP controllers – power up the necessary μP
modules. Set up configuration registers of the phase-locked loop (PLL)
controller to clock the peripheral controllers. Configure peripheral
controller registers with various UUT-dependant settings (signals
latencies, address/data bus width, etc.).

46

 Verify UUT status – read the status data of the UUT to check if the UUT
is ready to communicate with the μP. This ensures the physical link
between μP and the UUT.

These configuration steps are not mandatory, but advisory. The actual need in
every step depends on the architecture of the particular μP.

3.3 Test application

Test path initialization and configuration belong to the test access functionality
of the PCBT program. The rest of the PCBT program functionality is the test
application, which may be developed in accordance to online or offline test
application modes.

It should be stressed explicitly that any test data exchange between the external
tester and the μP in the PCBT is going via the test access path. The steps of the test
application part of the PCBT program are given in pseudo-assembly statements.
These statements are used later for evaluation of the online and offline testing
modes. The key-words of pseudo-assembly instructions are outlined in bold. Every
instruction and operand (outlined in italic) is shifted through the test access path.
The recipient of the data is denoted by Shift in and Shift out statements. The
instructions (Load, Store, Jump, etc.) are only shifted in, thus, the recipient notion
(Shift in) is redundant in this case.

The overall test application time (tTA) could be calculated by counting the number
of shifts. The actual time is a multiplication of number of shifts to the length (in bits)
of the test path and divided by test clock frequency. The test clock frequency and the
test path length are constant values. Hence, the test application time is in linear
dependency with the number of shifts (the delays between shifts that are caused by
the test hardware are neglected).

3.3.1 Online mode

The online test application of the single test pattern:

1. Shift in test address to data exchange register of the debug interface.
2. Load test address to general purpose register (GPR) from debug data

exchange register.
3. Shift in test pattern to data exchange register of the debug interface.
4. Load test pattern to general purpose register (GPR) from debug data

exchange register.
5. Store test pattern from GPR to test address (UUT is mapped to the common

address space of the μP).

47

The test address is the address of the location inside the UUT that is mapped to
the address space of the μP.

The test response obtaining sequence is the following:

1. Shift in test address to data exchange register of the debug interface.
2. Load test address to general purpose register (GPR) from debug data

exchange register.
3. Load test response to GPR from test address.
4. Store test response from GPR to data exchange register.
5. Shift out test response to the external tester.

The test response is evaluated in external tester. If the test response does not
match with the test pattern the further diagnosis is performed to locate the fault.

The formula for test application time calculation is:

 (I) ்ݐ ൌ ݉ݓ ݉ݎ

Where m is number of test patterns, w is number of shifts to write test patterns
and r is a number of shifts for test response obtainment. Hence, for current board
under test formula (I) can be reduced to: ்ݐ ൌ 5݉ 5݉ ൌ 10݉

If more than one test pattern has to be applied, these steps should be repeated for
every test pattern. In case if the write and read operations are subsequent and the
data is read from the same test address, the first two steps may be skipped in the test
response obtaining sequence. This optimization requires the additional study of the
test application algorithm.

Another option for optimization is possible if the instruction set architecture
(ISA) supports store and load instruction with multiple data sources (SIMD). For the
use of store multiple instruction the steps 3 and 4 of the test application sequence
have to be iterated f-times (for each test pattern), where f is a maximum number of
source operands. The fifth step is then substituted by:

Store multiple test patterns from GPRs to UUT address (each next test
pattern is stored to the subsequent memory location in the UUT).

Then the ݉ݓ summand in formula (I) changes to: ቀ2 ݉ ݉ ቁ

For the use of load multiple instruction the steps 4 and 5 of the test response
obtaining sequence have to be iterated f-times (for each test pattern), where f is a
maximum number of source operands. The third step is then substituted by:

Load multiple test patterns from UUT subsequent addresses to GPRs (each
next test response is loaded to the subsequent GPR).

48

 The ݉ݎ summand in formula (I) takes the following view: ቀ2 ݉ ݉ቁ

The limitation for the instruction with multiple operands is that only consecutive
memory locations could be written or read with one instruction. Thus, these
instructions are not useful in accesses to arbitrary addresses. However, instructions
with multiple operands become extremely useful in programming custom
application to embedded memory of μP through the debug interface.

The test application time for the sequence with the usage of multiple operand
instructions for the selected μP architecture:

 (II) ்ݐ ൌ ቀ2 ݉ ݉ ቁ ቀ2 ݉ ݉ቁ ൌ 2݉ ቀଷ 2ቁ

Where m is number of test patterns, f is number of source operands in the
multiple load or multiple store instructions (defined in the μP Instruction Set
Architecture (ISA)). If f is 1, the equation (II) becomes an equation (I). For example,

if f equals to 8 (most modern μPs have at least 8 GPRs), then ்ݐ ൌ ଵଽସ ݉ ൎ 5݉. As ்ݐ is calculated in number of shifts the final results should be rounded up to integer
number.

3.3.2 Monitor-based online mode

Along or instead of the instructions with multiple operands the monitor-based
strategy is used to shorten the test application time. The special program is loaded to
the program memory of the μP (preferably internal). The monitor reads the test
pattern from the debug data exchange register and applies it to the UUT. In this
strategy the test application time consists of monitor programming (tMP) and test data
transferring (tDT). The tMP = wp, where w is a number of shifts to write test pattern to
the memory and p is the size of the monitor program in words. The value for w is
calculated in the first example (the online test application of the single test pattern),
which is w = 5. The sequence of steps used in test data transferring in monitor-based
strategy is given below:

Write test pattern:

1. Shift in command (write) to data exchange register of the debug interface.
2. Shift in test address to data exchange register of the debug interface.
3. Shift in test pattern to data exchange register of the debug interface.

Thus, test pattern is written in 3 shifts: wt = 3.

Read test response:

1. Shift in command (read) to data exchange register of the debug interface.
2. Shift in test address to data exchange register of the debug interface.
3. Shift out test response from data exchange register of the debug interface.

49

In other words test response is read in 3 shifts: rt = 3.

According to this sequence the test application time in monitor-based strategy is:

 (III) ்ݐ ൌ ெݐ ்ݐ ൌ ݓ ௧݉ݓ ௧݉ݎ

Adopting formula (III) to the selected μP architecture: ்ݐ ൌ 5 3݉ 3݉ ൌ 5 6݉

The gain estimation in test application time between the default test application
strategy (equation (I)) and the monitor-based is: ݃ܽ݅݊ ൌ 10݉ െ ሺ5 6݉ሻ ൌ 4݉ െ 5

Hence, gain is positive when ൏ ସହ ݉, which means that the size of the monitor

program should be less than the 80% of the test data size for the selected μP
architecture.

3.3.3 Offline mode

The offline test application requires a test application program with embedded
test patterns to be loaded into embedded program memory of the μP. Below is
shown the sequence of steps to load one program word.

1. Shift in target address to data exchange register of the debug interface.
2. Load target address to GPR from debug data exchange register.
3. Shift in program word to data exchange register of the debug interface.
4. Load program word to GPR from debug data exchange register.
5. Store program word from GPR to target address in program memory.

These steps are repeated for every program word of the test application program.
Then the program is started and the external tester polls the debug data register for
the flag that determines that the application of test patterns is finished. Then external
tester reads test results that are stored in the GPRs for further evaluation. The steps
to complete these actions are given below:

1. Jump to the initial address of the test application program (the μP starts
program execution)

2. Shift out data from debug data exchange register (this step is repeated until
the DONE flag is set by the running test application program).

3. Shift in debug interface instruction that halts the processor and returns
control to debug interface (this step is reached after the DONE flag was set
in the data exchange register by the test application program).

4. Store test result (pass or fail) from GPR to data exchange register.

50

5. Shift out test result to the external tester.

In case if test passes, the testing is completed with the last mentioned step. If the
test fails, the external tester reads the test responses from the memory location that
was specified by test application program in a GPR. The external tester compares
the expected values with the obtained test responses to diagnose the fault.

The test application time for offline mode is:

 (IV) ்ݐ ൌ ݐ ௌݐ ிோݐ

Where:

- tP is time for loading the test application program into program memory ݐ ൌ w is the number of shifts to program one word and p is the size of the ;ݓ
program in words.

- tS is time for starting the test application program and test result obtainment.
For further evaluation of the test application time this parameter is assigned
with its minimum value (5), which corresponds to the best case scenario, when
the polling returns DONE flag after the first attempt. However, the program
execution may take time longer than the time of one shift. To simplify our
calculations we state that the number of repetitions of step 2 corresponds to the
program execution time.

- tFR is time for reading faulty test response. These steps are skipped when test
result contains pass signature. This time is neglected in further calculations,
because the typical test application scenario ends with positive test result.

The simplified formula (IV) is: ்ݐ ൌ ݐ ௌݐ ிோݐ ൌ ݓ 5.

 When w is equal to 5 (the default write sequence) then test application time is: ்ݐ ൌ 5 5. The test application program consists of m test patterns and the
instructions themselves. Let a be the number of instructions in words in the test
program. Hence, p = m + a and ்ݐ ൌ ݓ 5 ൌ ݉ݓ ܽݓ 5 ൌ 5݉ 5ܽ 5,
when w is equal to 5 (as for selected μP ISA).

The time that is used by μP to execute the application is considered to be
relatively small due to the much higher (from 10 to 1000 times) clock frequency in
comparison to test clock. Thus, the μP execution time is neglected in our
calculations.

In the simplified equation (I) (default online mode) the test execution time of the
same set of test patterns was: ்ݐ ൌ 10݉. This leads to the conclusion that the test
application time for online and offline modes are equal when ܽݓ ൌ ݉ݓ െ ௌ. Inݐ
other words, at least the half of the test application program should be test patterns,
otherwise the test application time in the offline mode will exceed the time in the
online mode (for the same SUT and μP architectures).

51

In case when μP ISA supports instructions with multiple operands the time for
loading the test application is different. In this case ݐ is calculated similarly to the
test patterns application summand from formula (II), because exactly the same
sequence of shifts is used:

ݐ ൌ 2 ൌ 3 2 ൌ ሺଷ 2ሻ.

Where f is a number of source operands in the multiple load or multiple store

instructions (defined in the μP ISA). If f=8, then ݐ ൌ ଵଽ଼ ൌ ଵଽ଼ ݉ ଵଽ଼ ܽ. By

substituting the values of tP, tS and tFR
 into (IV) the following formula for test

application time is obtained:

 (V) ்ݐ ൌ ቀଷ 2ቁ 5 ൌ ݉ ቀଷ 2ቁ ܽ ቀଷ 2ቁ 5
The difference in test application time between the online (formula (II)) and

offline (formula (V)) test application strategy: ሺܫܫሻ െ ሺܸሻ ൌ 2݉ ൬3݂ 2൰ െ ݉ ൬3݂ 2൰ െ ܽ ൬3݂ 2൰ െ 5 ൌ

ൌ ݉ ൬3݂ 2൰ െ ܽ ൬3݂ 2൰ െ 5

The difference must be positive (II) – (V) > 0, in order to justify the efforts spend
for development of the test application program that is used in offline mode. Hence,
the difference is positive when: ݉ ቀଷ 2ቁ െ ܽ ቀଷ 2ቁ െ 5 0;

ሺ݉ െ ܽሻ ቆ ହଶାయቇ.

If f = 1 (SIMD is not supported), the previously derived inequality is received: ሺ݉ െ ܽሻ 1.

This leads to the conclusion that the size of the program without test patterns
should be smaller (independent from the μP ISA architecture) than the set of test
patterns, otherwise the test application time in offline mode will exceed the time for
the online mode. Another interesting conclusion is that the more operands could be
used per one load or store instruction the bigger should be difference between
number of test patterns and the size of the test application program not including
embedded test patterns. However, even when ݂ ൌ ∞, a should be smaller than m – 3
to satisfy inequality (II) – (V) > 0, because:

52

lim ՜ஶ ൮ 52 3݂൲ ൌ 2.5

As a and m domain contains only integer numbers all results should be rounded
up.

Although, above mentioned calculations are valid only for the selected
architecture of the μP, these can be used for the arbitrary ISA when inequality ሺ݉ െ ܽሻ ቆ ହଶାయቇ is transformed to the general form as follows:

ሺ݉ െ ܽሻ ൮ ݓௌሺݐ െ ݀ሻ ݂݀൲

Where:

- ts has the same meaning as for formula (IV).
- w is the number of shifts to write/read one word from/to the external tester.
- d is the number of shifts that is repeated for 1/f words in case of SIMD

instruction.

3.4 Overview of the test application modes

The formulae presented in Table 3-1 are proposed for the test application time
estimations and comparison of the listed modes. In case if the SUT and μP
architecture used in this chapter do not match the specific test case, the formulae (I),
(III) and (IV) should be used to derive the equations suitable for given SUT and μP
architecture.

The preferable solution for detecting not only static, but also dynamic faults is
offline test application mode. The most of the time in offline mode is spend for
loading the test application program (with embedded test patterns) into program
memory of the μP. This time may be reduced only by optimization of the size of the
test application program. The first direction for optimization is to embed the
compression/decompression mechanism for test patterns. The second is to
implement the program as short as possible for every SUT. It means that the
recompilation of the general test application software is not a solution. The test
application program should be developed in the native assembly of the μP to make
the binary as short as possible. The latter allows using the complex instructions such
as store or load with multiple data sources, which reduce the size of the test
application program.

53

There are test cases when usage of the program memory of the μP is not allowed
or not efficient. The program memory may be full, protected, not available or not big
enough to store the flash image (in case of ISP). For these cases the online mode can
be used instead of the offline mode.

The special case of the online mode is the online mode with monitor software.
The monitor software is typically small enough to fit in any memory. The main goal
of the monitor software is to reduce the data traffic on the test path. The most of the
traffic in the online mode is the instructions to control μP to apply test patterns.
These instructions accompany every test pattern, thus the payload in the online mode
is relatively low as shown in Table 3-1. The monitor software increases the payload,
because it assumes the control over the μP.

Table 3-1 Evaluation of test application modes for the selected μP ISA

Test application modes Number of shifts* through the test
access path (tTA)

Online 10݉

Online (μP ISA supports
instructions with multiple operands) 2݉ ൬3݂ 2൰

Online (monitor software
developing and loading)

5 6݉

Offline 5݉ 5ܽ 5

Offline (μP ISA supports
instructions with multiple operands) ݉ ൬3݂ 2൰ ܽ ൬3݂ 2൰ ܽ 5

m – Number of test patterns
p – Number of words in the monitor software
a – Number of words in the test application software (not including the embedded test patterns m)
* – Number of shifts is integer number, thus, all results should be rounded up.

3.5 Chapter summary

This chapter describes in details the internal structure of the PCBT program. The
influence of the test requirements on the functionality of the test program is
discussed in the beginning of the chapter. The SUT initialization and configuration
steps are described in details in the test access section. In general, these steps
prepare the test path for the test application.

In the test application section the online and offline modes are reviewed. Besides
the detailed explanation of the possible implementations, the analytical estimations

54

for the time limit of the test application are presented. The analytical estimations are
supported by the derived formulae for test application time calculation. The chapter
is concluded by the summary of the test application modes and the comparative table
with formulae for test application time calculation. The simulation-free calculation
of the test application time is useful for fast cost estimation of the manufacturing
board test solution.

55

Chapter 4

BOARD AND ELECTRONIC

COMPONENT MODELING

This chapter presents the study of the board and component modeling. The
proposed modeling methodology includes modeling of structural and behavioral
features of the board and IC components. The selection and development of the
underlying metamodels are discussed in details and compared with the existing
modeling approaches. The chapter is concluded with the description of the uniform
test data path.

4.1 Modeling basics

A model is an abstract representation of an object. The model mimics structure
or/and behavior of the real world object and is constructed to reflect certain parts
that are essential for the job in hand. The modeling process aims to grasp only
relevant properties of the object. Hence, modeling provides complexity reduction in
manipulation with the real world objects.

The structure of the modeling instances is defined by the metamodel. The
metamodel describes a model. In general, metamodel represents the set of the basic
elements of the model, an inner structure of the elements as well as the rules for
creating connections between these elements. In other words, a metamodel is the
model of a model.

In this thesis the subject for modeling is a printed circuit board populated with
electronic components also known as printed circuit board assembly (PCBA). The

56

purpose for the PCBA modeling in this research is to create the representation of the
test data path in the PCBA. This test data path is used later for test access and test
application program synthesis.

Existing approaches on digital system modeling are based on different standards
and languages. Transaction-level model (TLM) [46], IP-XACT (IEEE Std. 1685TM-
2009) [47], MARTE [48] are the most noticeable and the most recent ones. These
are focused on the digital system design related tasks and suitable to solve only
several of the needed subtasks of the test data path modeling (SoC internal structure
and implementation). To author’s best knowledge, the modeling of the SoC
structures together with the structures beyond the SoC on the PCBA is not yet
studied by the research community and industry. In order not to reinvent the wheel
in modeling the following materials were studied.

The MARTE (Modeling and Analysis of Real-Time Embedded Systems)
specification is a language extension to Unified Modeling Language (UML), hence
it does not provide any methodology related hints for developing embedded system
[49]. The MARTE profile to UML consists of packages that target different
modeling aspects (e.g. design, analysis). The necessary instruments for PCBA and
component modeling are presented in MARTE, but their usage requires deep
knowledge of the model-driven engineering, that is typically uncommon for the test
engineer. Thus, this modeling approach was considered too general and heavyweight
to fit the cost of the task of test path modeling.

However, the general approach of creating an UML metamodel to describe the
structure of the model is one-time effort and a common practice. Therefore it was
followed in our methodology. Eclipse modeling framework (EMF) [50] was used to
develop the metamodel for structural and behavioral model types. The EMF also
facilitates the automatic synthesis of the edit and editor parts of Eclipse plug-in
(Chapter 6). This plug-in is used to create the test data path model instance of a
particular PCBA following the rules defined in the metamodel.

In transaction-level modeling (TLM), the details of communication among
computational components are separated from the structure of computational
components [46]. In [46] the number of TLM abstraction models is specified for
description of different levels of description of communication time, computation
time, communication scheme and processing elements (PE) interface (in this thesis
PE is μP SoC). In TLM the design in hand can be described across multiple
abstraction levels, which allows hiding of unnecessary details of one module, while
providing thorough “implementation level” description of the other. These
modeling principles of TLM perfectly match the objectives of the PCBA modeling
in this research due to several reasons. The first reason is that the communication
time between the SoC components and external on-board devices has to be modeled
cycle-wise, but the communication time between the SoC components may be
neglected. The second point is the interface modeling between the SoC components.
On the one hand, the model has to contain information about exact mapping between

57

SoC pins and SoC components. On the other hand, the inter-component interfaces
inside the SoC do not require pin-accurate modeling. Required SoC model needs an
“implementation level” description of the structures communicating with SoC
boundary and “component-assembly” level for the rest of the SoC. Although, the
TLM methodology fits the task of PCBA modeling, it still misses the point of
making the models easy to develop for the test engineer. The TLM implies creation
of models by the means of programming language like SystemC [51]. The proposed
modeling methodology reuses the basis of the listed useful characteristics of the
TLM abstraction levels, but introduces the metamodel-based approach for manual
model creation to shorten the expenses on traditional programming.

IP-XACT [47] defines the standardized way to describe those behavioral and
structural characteristics of the IP that are relevant to the integration of SoC
components. The components, systems, bus interfaces and connections, abstractions
of those buses, and details of the components including address maps, register and
field descriptions may be described by models supported in IP-XACT. Among the
supported descriptions are TLM (SystemC and SystemVerilog), fixed HDL
descriptions (Verilog, VHDL) et al. IP-XACT is focused on the integration inside
the chip and the board level is not involved, hence, the proposed modeling method
cannot fully rely on this standard.

On the current stage of the research the proposed modeling method does not
produce IP-XACT compliant models. However, the backward compatibility is
supported for IP-XACT compliant VHDL description, which can be automatically
parsed into the proposed model. As practice shows VHDL description of the SoC
components is typically “closed” information for the third-party tool vendors.
Hence, there is a need in recreating the description (model) of SoC component
manually.

4.2 Test data path model

The test data path modeling implies the modeling of the structure of PCBA and
the structure of electronic components that populate this PCBA. In order to
synthesize the test access and test application program the model of the functionality
of the PCBA components is also required. Thus, two different kinds of information
(structural and behavioral) have to be modeled. The structural part of the board
component model contains mostly the component specific settings (e.g. names of
pins, addresses of registers and internal modules). On the contrary, the behavioral
part models functionality which is typically general to particular component family.
Hence, the decision was made to create structural and behavioral models separately
for the complexity reduction and wider opportunities for model reuse, but with
common interfaces that allow joining these models into uniform test data path
model.

58

4.2.1 Structural Model

The proposed structural model represents a two-level hierarchy. The top level
describes the connections between components at the board level and corresponds to
the board structural model. Bottom level is dedicated to model the internal structure
and static properties of the electrical component. This level is further called as
device structural model. The board and device structural models are united at the
level of the metamodel that describes structure of the uniform structural model of the
PCBA (see Figure 4-1).

Figure 4-1 Metamodel for structural model of the board and electronic
components

59

4.2.1.1 Board structural model

The purpose of the board structural model is to represent the interconnections
between electronic components. The basic object to be modeled here is the physical
link between PCBA components. The important property of every physical link is a
list of pins that are connected by the given link. The minimum number of pins in the
link is two. Every pin belongs to the electrical component. Physical link between at
least two electrical components is modeled as a net. Hence, structural model of the
board describes the PCBA by listing the connection between electrical components
as nets without including the information about the location of the component on the
PCBA.

The board structural model is automatically obtained from PCBA netlist file.
There are many formats for describing the PCBA netlist, though, in order to reduce
the amount of parsers to implement, we reused the commercial software that is
capable to parse most of the formats. This commercial parser translates any
supported input PCBA netlist format into simple intermediate format. Hence, to
reduce the development efforts, the program that automatically builds the board
structural model out of PCBA netlist supports this format. For any other format the
commercial parser can be used.

Figure 4-2 Metamodel of board structural model

The part of the metamodel of the board that reflects the board structural model is
shown in Figure 4-2. Generally, this metamodel encapsulates the following rules:

 Every object is represented as the titled box (Class object in UML),
where title is a general name for all instances of this object. The PCBA is
modeled as object named Board. The properties of an object are mirrored
as fields in the Class. For example, name in the class Board is a name of
the PCBA.

 The containment link shows that one object can enclose the other object.
The containing object is denoted with the bold diamond and the
contained object is pointed with the arrow. The notation after the name
of the containment link shows minimum and maximum number of
objects to contain (* stands for unlimited). Board has a containment link
to Nets (netList) and to BoardComponents (boardComponentList).

60

 The simple reference is depicted as a simple arrow. Net has a link to at
least two BoardComponents. It means that Net must have reference to at
least two pins. In practice this means that knowing the Net one can find
the pins of the Device(s) that is connected by this Net.

 BoardComponent should be linked by a staticDescription link to the
Device model that is stored in the Library of devices and device
components. This abstraction allows storing only one model for the
identical PCBA components (e.g. multiple identical memory chips). In
other words, instances of the same device have one description in the
library.

 Device has a containment list of Pins that correspond to the physical pins
of the BoardComponent.

 In order to distinguish identical devices in the model, Net has besides the
reference to the Pins also the boardComponentLink. This link creates a
reference to particular BoardComponents whose pin(s) are connected in
the Net.

After the board structural model is obtained the device structural model should
be assigned to those Devices (BoardComponents) that are participating in the test
data propagation path. The rest of the PCBA components are unimportant and may
be omitted from the uniform PCBA model. This model could be used by the
automated test pattern generator (ATPG) to get the set of test patterns to test faults
on the interconnections between the board components.

4.2.1.2 Device structural model

The complete board structural model is a template for the further development of
the device structural model. This template contains the list of board components
with links to the predefined devices that are added to the library. Every board
component may be associated with the static device description that contains device
internal structural model. This model is created obeying the rules exposed by the
metamodel that is shown in Figure 4-3.

Practically, there are two ways to assign a structural model to the device. The
first way is to reuse the existing suitable model from the library (readyDescription
link). This requires the presence of the correct model in the library. The second way
is to develop the structural model. Every developed model is stored in the library for
further reuse.

The following Lego-style modeling concept was proposed in [52]. In order to
reduce the complexity of the structural model the certain parts of the device are
modeled separately as device components (Component). For example, memory
controller, external bus interface or debug interface are modeled independently from
μP itself. The independent Component model becomes a part of a particular Device
after it is added via description link to the appropriate DeviceComponent (Figure
4-3). The splitting of the device model into models of components also contributes

61

to the reusability of the models in the library. The major IP vendors (e.g. ARM)
develop the processor-based SoC components that are compliant with various
versions of other SoC components. Hence, the reusability is maintained at an IP
vendor level. Though, the same strategy to preserve the reusability of the models is
followed in the proposed modeling approach.

The central item of the device structural model is a Device. It has a number of
relations as it is shown in Figure 4-3.

 The device might have characteristics that are possible to express in this
model as an object (DeviceCharacteristic). The presence of chracteristics
is modeled as a containment link (characteristicList) to the
DeviceCharacteristic. The most typical device characteristics describe
the timings of the control signals for the DDRx memory model (e.g. CAS
latency (CL), clock cycle time (tCK), row cycle time (tRC), refresh row
cycle time (tRFC), row active time (tRAS)).

 The properties of the device are expressed as DeviceProperty. The
property might have several settings (DeviceSetting). Every setting is
linked to the device register (DeviceRegister), which description should
be included into registerList. For example, the watchdog of the μP can be
modeled as a property. The possible watchdog settings are time periods
or watchdog state (e.g. disable, enable).

 The device could have a list of components (DeviceComponent). This
architecture is typical for the SoC with processor core(s) and number of
peripheral IP cores. The DeviceComponent describes the name and the
base address of this component inside the SoC.

 The SoC component that is defined in the model as DeviceComponent is
intended to have a standalone description (Component) in the library.

 The Component has containment list (pinList) of pins (ComponentPin)
that are used by this component. The device pin (Pin) and the component
pin (ComponentPin) is physically the same pin of the particular SoC and
their relation is modeled with functionLink.The functionLink exposes the
connection between the SoC pins and the SoC component that drives and
senses these pins.

 The registers that belong to the SoC component are modeled as
ComponentRegister. The physical address inside the μP SoC of the
ComponentRegister inside the SoC is later composed in software by
adding the register address inside the component to the base address
(baseAddress) of the component.

 The Property that resides in the propertyList of the Component is for
modeling the various possible configurations of the component. For
example, the SDRAM controller has a list of parameters (e.g. CL, tCK,
tRC, tRFC, tRAS) that help to setup the proper signal timings for

62

Figure 4-3 Metamodel of device structural model

communication with particular memory. Every Property has a list of
possible values that are modeled as PropertySettings. Any
PropertySettings has a registerLink which specifies the mapping between
the property setting and the corresponding value for one of the registers
inside the SoC component.

 The PropertySetting and DeviceSetting are derived from the general
Setting class. It has fields for defining setting value and type of this
value. The field registerValue represents the actual value to be stored in
the register for the given setting value. The registerMask specifies the
location of the registerValue in the register. The register mask is needed
when the register is dedicated to contain the settings of more than one
property.

The particular settings of the processor-based SoC are obtained on the basis of
this structural model. These settings enable communication between processor-based
SoC and the UUT. The value of the setting is found by matching the UUT
characteristic name (the name field in the DeviceCharacteristic) with the property
name of the μP (the name field in the DeviceProperty) or with the component

63

property name (the name field in the Property). When the matching pair is found the
correct Setting (DeviceSetting or PropertySetting) is selected from the settings list
(settingList) by comparing the value field of the DeviceCharacteristic and the value
field of the Setting. The obtained settings form the pairs of register and the value that
have to be written to this register.

4.2.1.3 Metamodel for structural model

The metamodel for structural model of the PCBA (Figure 4-1) unites the
metamodels for board structural model and device structural model. The Device
(box for Device class) is a point of joint of board and device structural models. It
acts like a bridge between the PCB-level interconnect structures and the PCBA
component internal structures. One of the properties of structural PCBA model is
that it includes mapping between SoC components and the board interconnect that is
driven by this SoC component. This can be used in the debugging of the created
model and for diagnosis of functional failures during the test runtime.

Component model reuse is a very important aspect of the concept as the only part
that is not fully automated is the model creation. Hence, reduction in the amount of
manually created model components is one of the goals of the proposed
methodology. Once the models of the PCBA components are created, they are stored
in the library. The next time the known μP SoC, SoC components or any other
PCBA device (e.g. flash memory, DDRx) is present on the board we can reuse the
respective models from the library. In ideal case, every device of the PCBA under
test should have its model in the library except the interconnection information that
needs to be processed separately for each new PCBA. However, the latter is a fully
automated task.

4.2.2 Behavioral Model

The behavioral part of the uniform test data path model that is proposed in this
thesis is composed using the mathematical basis of High-Level Decision Diagram
(HLDD). There are research works that study the presentation of the digital circuits
at Register-Transfer level (RT-Level) as High-Level Decision Diagram (HLDD)
[53]. The HLDDs are graph representations of discrete functions that can be
considered as a generalization of Binary Decision Diagrams (BDDs). HLDDs have
been proven an efficient model for simulation and fault modeling as they provide for
fast evaluation by graph traversal and for easy identification of cause-effect
relationships [54].

4.2.2.1 High-Level Decision Diagram theory

Consider a system S as a network of interconnected components (functional
blocks, buses, ports) where each component is represented by a function ݕ ൌ ݂ሺܺሻ
and ܺ is the set of variables (Boolean, Boolean vectors or integers), and ܸሺݔሻ is the
set of possible values for ܺ߳ݔ which are finite. Let HLDD ܩ௬ with a set of nodes ܯ

64

represent the component. The terminal nodes ்݉ א may be labeled either by ்ܯ
variables ݔሺ்݉ሻ א ܺ, digital functions ݔሺ்݉ሻ ൌ ݂ሺܺሻ, or constants ܽሺ்݉ሻ. All
remaining nodes ݉ א ሺ݉ሻݔ are labelled by variables ்ܯ\ܯ א ܺ, and have |ܸ൫ݔሺ݉ሻ൯| output edges leading to the successor nodes ݉ where ݁ א ܸሺݔሺ݉ሻሻ.
The edge ሺ݉, ݉ሻ in the HLDD is called activated if ݔሺ݉ሻ ൌ ݁. A path ሺ݉, ݊ሻ is
called activated if all the edges which form the path are activated.

To activate a path ሺ݉, ݊ሻ means to assign the node variables along this path with
proper values. Let ݉ be the root node of a HLDD ܩ௬. Let ܺ௧ be an input vector
applied at the moment ݐ on the inputs of the component represented by ܩ௬. We call
the vector ܺ௧as the activation solution for the component to satisfy the condition ݕ ൌ ݂ሺܺሻ ൌ ,ሺ்݉ ሻ if it activates a full path ሺ݉ݔ ்݉ሻ from the root node to a
terminal node. The complete test solution implies consistent activation of all the full
paths in the HLDDs involved, so that the imposed constraints collected along the
activated paths are satisfied. To find such a test solution, a constraint solver can be
used.

By activating a full path a symbolic value associated with the terminal node ்݉
is assigned to the root node ݉. In general, the terminal node may contain constant,
operation (arithmetic: ܽ ܾ or Boolean: ܽ|ܾ) or variable. If terminal node contains
a variable (or operation of variables), the value of the variable is determined by
subsequent activation of a full path in the corresponding graph.

4.2.2.2 Metamodel for High-Level Decision Diagrams

In Figure 4-4 is shown the metamodel that describes the structure of behavioral
model part of the test data path.

 ModelingDomain is the most top element in this metamodel that is used
to collect ModelingObjects. The domain (ModelingDomain) is typically
a PCBA whereas the objects (ModelingObject) are PCBA components.

 Any ModelingObject S has a number of inputs that are implemented as
variables (Variable ݔ) ܺ߳ݔ.

 Variable ݔ is defined with the name and the width in bits. The modeling
object is represented by the set of GraphVariables ሺܻሻ. The possible
values of the GraphVariable are modeled as terminal nodes ்݉
(Termination) of the graph ܩ௬ that are assigned to this GraphVariable ݕ ൌ .ሺ்݉ ሻݔ

 Termination has link to Variable that defines its value. As it is seen from
the metamodel the Variable is a base class for Input, GraphVariable,
Function and Constant objects. Hence, the value of the Termination is
one of the objects that are derived from the Variable class.

 Graph ܩ௬ object has containment link to nodes ܯ that belong to this
graph. It also may have a direct containment link to terminal nodes ்ܯ.

65

This link (TerminalEdge) is for explicit definition of constants and
functions that are referred from the nodes.

 Node has a link (NodeEvaluation ܸሺݔሺ݉ሻሻ) to the variable that contains
the possible values of the node. Every edge (Edge) ሺ݉, ݉ሻ, where ݁ א ܸሺݔሺ݉ሻሻ that goes from the node to the next node corresponds to the
one of the possible values of the first node. Same nodes may be
connected by more than one edge.

 Edge may lead to the next non-terminal node ݉ א or (NodeLink) ்ܯ\ܯ
to the terminal node ݉ א The transition value of .(TerminationLink) ்ܯ
the edge may also be specified by the ConstantValue link to the
predefined constant.

 Function ݂ሺܺሻ is an object that defines the operations with variables.
The function has a field for selecting an operation from a list of
supported functions (AvailableFunctions). This list can be easily
extended to support any operations (bitwise, logic, etc.). The arguments
to the function are specified by the Arguments link that select from the
list of predefined variables.

Figure 4-4 Metamodel for HLDD

66

 Output of the modeling object is a graph variable that is explicitly
specified as output ݕ א ܻ. The output may be connected to the input of
the same or different modelling object inside the same modelling domain
by the InputValue link ݔሺݕሻ.

This metamodel belongs to the contribution of this thesis. HLDD graphs have not
been previously described at this level of abstraction. This metamodel is a first
method that facilitates the manual HLDD graphs composition. Previously manual
HLDD graphs creation was considered as a very inefficient approach to describe
digital circuits at RT-Level. The new framework was developed that provides
functionality to create, import, edit and export the HLDD graphs. This framework
does not require experience in any programming language and allows to create
behavioral and structural descriptions of designs at fairly high level of abstraction.

4.2.2.3 High-Level Decision Diagram composition

Although HLDD graphs could be automatically constructed out of HDL
description of digital circuit at RT-Level [53], this often is not possible since HDL
description is not publicly available. In case, when RT-Level HDL description is not
available for the PCBA components the HLDD are supposed to be composed
manually. The manual composition of HLDD models relies on the PCBA
component documentation.

Let us consider the structure depicted in Figure 4-5 as a part of the test data path
to be modeled for test propagation purposes. Figure 4-5 presents a reduced structure
of JTAG TAP that consists of TAP controller state machine (Figure 4-2) and scan
register that is connected to respective data register. Data is shifted into scan register
through serial TDI bus when TAP controller state is “Shift-DR”. TAP controller
“Controls” output is equal to 4 (Controls = 4) when state is “Shift-DR”. The load
from scan register into data register is initiated when TAP controller state is
“Update-DR” (Controls = 8). The store from data register to scan register is
performed when TAP controller state is “Capture-DR” (Controls = 3). TAP
controller enters reset state “Test-Logic-Reset” when TRST signal is enabled. In the
same state the data register obtains its reset value.

The model of the described structure (Figure 4-5) is shown in Figure 4-6. For
ease of understanding, the repetitions of similar parts of the resulting model are
omitted. In the model given in Figure 4-6, the data register from structure in Figure
4-5 is represented by “Data Register” variable and scan register corresponds to
“Scan Register” variable. The TAP controller state machine is equivalent to the
leftmost graph in Figure 4-6.

Let us have a look at leftmost graph in Figure 4-6 for the explanation of the full
path activation principles. The shortest full path can be activated by setting “TRST”
= 1. In this case “Controls” variable is assigned with the value 0. As “TRST” is a
system input one can directly apply any value to it. Hence, the only condition

67

(constraint to be satisfied) we get from this path is that as soon as 1 is applied to
“TRST” input, “Controls” will have value 0.

Figure 4-5 Simplified control and data path for JTAG TAP

In other words, the graphs of the model depicted in Figure 4-6 describe the set of
constraints in the modeled system. For example, assignment of value 3 to “Controls”
exposes the following constraints: “TRST” = 0, “TCK Front” = 1, “Controls´” = 2
and “TMS” = 0 (where “Controls´” is previous value of “Controls”). When these
constraints are satisfied the full path to terminal node with value 3 will be activated.

In Figure 4-7 is presented the part of HLDD model of JTAG TAP controller state
diagram. This model is another representation of the “Controls” graph in Figure 4-6.
The difference is that in Figure 4-6 the HLDD is shown schematically and Figure
4-7 is a screenshot of the HLDD model that was created in the developed framework
on the basis of the proposed metamodel (Figure 4-4). The HLDD model has two
representations in this framework. The first is shown in Figure 4-7, which is a user-
friendly view that facilitates manual interactions with the model. The second is a
textual representation that is suitable for the toolchain that operates with this model.

68

Figure 4-6 Model (HLDDs) of simplified control and data path for JTAG TAP

Figure 4-7 HLDD model of JTAG TAP controller state machine

69

4.2.3 Uniform test data path model

The key idea behind the proposed concept is to represent the system as a set of
tightly interrelated models. These models are combined together into a uniform
model, which represents the continuous test data path (Figure 4-8). The uniform
model contains only models of those devices, functional blocks, buses, ports, etc.,
that need to be tested (interconnect test, functional test, etc.) or activated for the test
data propagation during the test application.

The typical components of the uniform model are described in details in the
following chapter (Chapter 5). Each component has a structural description. The
programmable components (e.g. μP, μC) and other complex devices (e.g. flash
memory, DDRx) are presented with the behavioral model as well. The presence of
the behavioral model for other components is optional if they are not included in the
test data path.

Due to the different metamodels (see sections 4.2.1 and 4.2.2), structural and
behavioral models are isolated from each other during their creation phase. This
allows reusing the same behavioral and structural model independently for different
SUTs. Model reuse is a very important aspect of the concept as the process of
creation/import of model itself is the only thing that is not fully automated.

The unification of the structural and behavioral models is automated. The
structural model represents the “backbone” where the behavioral models are
attached to. The exact place on the “backbone” is found by matching the name fields
of the certain classes in the structural and behavioral models. The detailed matching
parameters are shown in Table 4-1.

Figure 4-8 Test data path model

70

Table 4-1 Fields for models unification

Structural model Behavioral model

Class field Class field

Device name ModelingDomain name

Component name ModelingObject name

Pin name Input name

Pin name Output name

4.2.4 Diagnosis of PCBT failure

In the automated approach, test path model is composed in a consecutive manner
as shown in Figure 4-8. The advantage of this well structured continuous test path
model of the SUT is the possibility to diagnose the root cause of system-level
functional test failure. The diagnosis is performed in a top-down manner. First, the
blocks that are not modeled are considered as non-relevant to the observed
functional failure. Then, the models are removed one by one from the end of the
modeled test path. After the model block is removed the PCBT program is re-
synthesized and executed. This procedure is repeated until the remaining part of test
path reports no failure. That reveals the failing module, which corresponds to the last
removed model. Further diagnosis may be applied towards the last removed model
where the final resolution depends on the internal structure of this model.

4.3 Chapter summary

The automation of the board test development is based on modeling of PCBA
components. Typical PCBA components are microprocessor, flash memory, RAM
memory, sensor, controller, display, etc. Every PCBA component has an
automatically generated top-level structural model which is a part of the board
structural model.

A novel structural model was developed to formalize the description of pin
configuration, register map and internal memory organization as well as possible
configuration parameters of the component. Generally, any static and descriptive
information, such as legitimate values of the configuration register or external bus
timing parameters, may be included into the structural model. The metamodel for
structural model and detailed explanation are given in section 4.2.1.

Based on the information extracted from the netlist file of the given board a
structural model of the board is automatically created. The netlist file conveys
connectivity information for the board components and names instances of board

71

components that could be simple components like transistor, resistor, capacitor
or more complex ones like integrated circuit.

The structural model of the test data path is complemented by the uniform
behavioral model. The behavioral model of the test data path is a unification of
behavioral models of the PCBA components. The behavioral model presents the
functionality of the component at RT-Level. Typically it includes description of the
control path and data path. The mathematical basis for the behavioral model is
formed by High-Level Decision Diagrams (HLDDs). The detailed description of
HLDD and its metamodel is given in section 4.2.2.1. For the first time the
metamodel-based approach is used for efficient manual creation of HLDD graphs

The proposed uniform test data path model is a novel approach to model the
PCBA. The novelty of the uniform model is in its ability to combine structural and
behavioral descriptions of not only the SoC components, but also of the PCBA
components and their interconnections.

72

73

Chapter 5

AUTOMATED TEST PROGRAM

SYNTHESIS

This chapter describes the proposed approach for automated test program
synthesis. Firstly, the field of PCBA test program synthesis is explored and a typical
development flow is examined. On the basis of that typical non-automated
development flow the automated flow is presented. The comparison of both
approaches is given to estimate the development time under different conditions.
Secondly, the method for automatic transformation of HLDD model to a constraint
satisfaction problem (CSP) is explained. The challenges in solving a CSP for
automated test program synthesis are revealed in the following section. The
feasibility of the proposed approach is proven by experimental results. The chapter
is concluded by the case study that demonstrates the proposed approach on the
example of the test pattern transportation through the standard test access port.

5.1 Automated and non-automated test program
development

Test program development flow encloses a sequence of steps as shown in the
flow chart in Figure 5-1 A). The uppermost step in Figure 5-1 A) is for obtaining
information concerning the SUT (here SUT is a PCBA or a system of connected
PCBAs). This task is aimed to collect the infrastructural information. For example:
the number of devices in scan-chain, the connections between the programmable
unit and the unit under test, etc. Second step is for collecting information about
UUT. The key moments here are the communication protocol and timing parameters

74

for in/out signals. Next step from the top encloses activities that involve studying the
documentation of μP, which plays the role of embedded tester. Typically, important
modules of the μP SoC are the debug port, the instruction set architecture, the
organization of internal memory and various peripheral controllers. The order of the
first three steps is not important as these steps describe the preliminary actions for
the following programming steps.

The Fourth step (“Debug Port Support”) is for developing the functionality for
data passing starting from TAP of the SUT through the debug port. The second goal
of this step is to compose sequence of JTAG commands that put processor into
debug mode.

In the fifth step (“R/W Memory/Register”) the access to the internal memories
(registers) is implemented. Normally, it implies recruiting of instruction injection
mechanisms of the processor debug port. As soon as the functionality to access the
debug port and the internal memory locations of the processor is ready, the registers
of the peripheral controllers are configurable from the external tester.

Figure 5-1 PCBT program development flow chart

A) flow without reuse B) flow with reuse

75

The Sixth step (“Peripheral Controller”) setups the peripheral controllers that
provide an interface to the UUTs. Within this step the test access part of the PCBT
program is completed.

The test application functionality can be implemented according to online or
offline mode (see Section 2.3.2). In the “Test-ware development” step the general
micro-code for test pattern application is adapted (compiled) to the instruction set of
a particular μP.

Finally, the integration into test system is performed. This step implies the
creation of the test project, generation and import of the test patterns and debugging
on the SUT.

For general development time estimation, we assume that each step takes
approximately the same time to fulfill. In case if the programming device (μP) on
the SUT is already familiar to the test engineer (has been studied in previous test
projects and part of the source code could be reused) this flow is optimized
approximately by 20%. The optimization is possible due to the reuse of functionality
for internal memory access and instruction injection. Typically, the micro-code
could be also reused with minor changes. In Figure 5-1 B) the boxes for reusable
steps are shadowed.

5.1.1 Automated test development flow

In Figure 5-2 the automated test program development flow is shown in
comparison to the flow in Figure 5-1. Four additional steps were introduced to the
flow chart that form the “Modeling” block.

“Modeling” block consists of steps for creating “Processor Model”, “Unit under
test model”, “Peripheral controller model and processor Instruction Set Architecture
model (“ISA model”). The “Processor Model” describes the debug port of the
processor and an access to the internal memory and registers. The “ISA model”
includes the map of the processor instructions and a standard initialization sequences
for the μP in the native assembly language of the μP.

The use of these models in the test automation process is described in the
following sections. In Figure 5-2 A) the automated PCBT program development
flow is presented. Compared to the non-automated approach the flow initially has
six manual steps instead of eight. The order of implementation steps in the non-
automated approach is important, because every step is based on the previous one.
On the other hand, in the automated approach every step in the “modeling” block is
independent from others. For example, the peripheral controller model may be
created before the processor model itself.

The first step in the automated flow is substituted by the automated import of the
system description. Hence, “SUT Schematic/Netlist” step is shadowed to show that
no manual effort is needed.

76

Figure 5-2 Automated PCBT program development flow chart

A) flow without reuse B) flow with reuse

In the automated flow one new step is introduced in comparison to the non-
automated creation flow. This step is for UUT model composition. The UUT model
is used by the automation framework to obtain the settings of the peripheral
controller and to handle communication protocol between the processor and the
UUT.

Similarly to Figure 5-1, Figure 5-2 also shows the PCBT program development
flow with reuse (Figure 5-2 B). This flow is based on the reuse of the μP model and
the ISA model. Given flow (Figure 5-2 B) contains only 4 steps instead of 6 (Figure
5-2 A)), which is approximately 33% less and compared to the flow with reuse in
the non-automated approach (Figure 5-1 B)) it contains 2 steps less, which also
stands for 33% time reduction.

5.1.2 Benefits of the automated approach

Different levels of experience with SUT components suppose usage of the
various test program development flows (as described in Table 5-1). As practice
shows, for every level of experience (shown as Conditions in Table I) the non-
automated flow for test program development has more steps than in the automated
flow.

77

According to Table 5-1, the automated test creation flow has the smallest
estimated gain compared to the non-automated approach (25%) when totally
unknown SUT is met. The other corner case shows that nearly no manual steps
required when the unknown SUT contains known processor and UUT. All models in
automated approach are checked for consistency as described in the following
sections. The consistency check validates the presence of all used variables such as
inputs, outputs, constants, variables, memory elements and functions.

Table 5-1 Comparison in number of steps for automated and non-automated flows

Conditions Non-automated Automated

Unknown SUT SUT Schematic/Netlist
UUT manual
-
Processor manual
Debug port support
R/W memory/register
Peripheral controller
Test-ware development
Test integration

-
UUT manual
UUT model
Processor manual
Processor model
Processor model
Peripheral controller model
ISA model, Ini. Sequence
-

8 Steps 6 Steps

Unknown SUT with
known processor

SUT Schematic/Netlist
UUT manual
-
Processor manual
Peripheral controller
Test-ware development
Test integration

-
UUT manual
UUT model
Processor manual
Peripheral controller model
-
-

6 Steps 4 Steps

Unknown SUT with
known UUT

SUT Schematic/Netlist
UUT manual
-
Processor manual
Debug port support
R/W memory/register
Peripheral controller
Test-ware development
Test integration

-
UUT manual
-
Processor manual
Processor model
Processor model
Peripheral controller model
-
-

8 Steps 4 Steps

Unknown SUT with
known UUT and
processor

SUT Schematic/Netlist
Debug port support
Test integration

-
-
-

3 Steps No steps

78

In case if any variable is missing or described incorrectly or cyclic dependency is
found the engineer will get a notification in an automated approach.

The process of manual creation of the behavior model is iterative. The general
idea behind the iterative approach is that the model should not describe the
functionality that is not needed for test data path modeling. Otherwise, manual
creation of the behavior model of complex components like μP would not be
feasible. The iterative approach implies the addition of the new functions to the
model as required, typically without any changes to the rest of the model. This
approach helps to maintain the complexity of the model.

The behavior model is developed in self-contained iterations. At the end of
iteration the test program is synthesized. If the synthesis fails the last iteration
should be revised to eliminate the cause of fail. After every iteration, the test
program is simulated or executed on the test setup (in case if the SUT is available) to
find if the synthesized test program meets the test requirements. In case of
inconsistencies with the test requirements the next iteration in the model
development is undertaken for adding the functionality that helps the synthesized
test program fulfill the requirements (e.g. ISP time limit).

The traditional non-automated development of the test program is not so flexible
in adding or changing the functionality of the test program as automated model-
based approach. When manually developed test program has to be modified to meet
the test requirements it typically implies the deep refactoring of the program or even
rewriting the whole program. Thus, it has to be fully verified and tested again. That
makes the traditional development flow to be time consuming and the produced test
program is hardly reusable in other test projects that have stricter test requirements.

5.2 Test data path model as a constraint satisfaction
problem

In PCBT the test program is controlling the processor on the PCBA. The test
program is executed on the external test hardware, which translates the program into
the sequences of TAP signals. These sequences are applied to the TAP of the
PCBA. Let us name these sequences of TAP signals as the “raw” test program. The
“raw” test program can be translated into format that particular tester is capable to
interpret. Hence, the goal of automated test program synthesis is to obtain the “raw”
test program. This makes proposed approach independent from particular test system
or test setup. Moreover, the “raw” test program is easily adaptable to the arbitrary
boundary-scan test system.

Figure 5-3 depicts the workflow stages for obtaining the “raw” test program from
the partial functional model of the test data path.

79

The HLDDs may be considered as the collection of rules that have to be obeyed
in order to justify the test path, apply test pattern, sense the response and propagate it
to the external tester. In order to synthesize automatically the “raw” test program,
which does previously mentioned test tasks, the test data path model is converted
into the constraint satisfaction problem (CSP). The CSP is solved by the constraint
solver (CS). As a solution CS reports the values for the variables that represent the
TAP pins. In other words, the CS produces the “raw” test program, which is the goal
of automated test program synthesis.

Constraint satisfaction, in its basic form, involves finding a value for each one of
problem variables. The constraints specify the subsets of values that cannot be used
together. The main algorithmic techniques that solve CSPs are local search and
backtracking search. The backtracking search traverses the search-tree using a
depth-first strategy. The branches that leave the node represent alternative choices
that need to be examined to find a solution. The constraints are used for pruning sub-
trees that do not lead to the solutions. Backtracking search algorithm guarantees that
a solution will be found if it exists. If CSP does not have a solution the backtracking
search can be used to prove that and it also finds a provably optimal solution. There
are many techniques for improving the backtracking search algorithm. This issue
will be discussed in details in the following sections when discussing the
backtracking search implemented in JaCoP [55].

A fundamental challenge in constraint programming is to understand the
computational complexity of problems involving constraints. In their most general

Figure 5-3 Partial functional model to raw test program transformation flow

80

form, CSPs are NP-Hard [56]. The complexity that corresponds to the CSP of the
test program synthesis, which is based on the test data path model, is formed by the
complexity of CSP that reflects the behavioral model (HLDD graphs). The structural
model is traversed in linear time because its metamodel is basically a map of
structural properties. Hence, only behavioral part of the test data path model is
solved as a CSP and operations with the structural part are considered as
programming tasks that does not require a CS to be solved.

5.2.1 Formulation of Constraint Satisfaction Problem

In this section, the concepts used in the remaining sections of this chapter are
defined. The definitions are taken from “Handbook of Constraint Programming”
[56].

“A constraint satisfaction problem (CSP) is a triple ܺۃ, ,ܦ where: ܺ is a set of ۄܥ
variables, ሼݔଵ, … , ,ଵܦ is a set of domains ܦ ;ሽݔ . . , ,ଵݔ associated withܦ … , ݔ
respectively; and ܥ is a set of constraints. Each constraint ܿ א ܿ is a pair ܥ ൌ ,ߪۃ ۄߩ
where ߪ, the constraint scope, is a list of variables, and ߩ, the constraint relation, is a
subset of the Cartesian product of their domains.”

“The domain of a variable is a set of possible values that can be assigned to it. In
board and electronic component modeling task it is assumed that the domain of a
variable is a finite set. An assignment is a pairሺݔ, ܽሻ, which means that variable ݔ א ܺ is assigned the value ܽ א . A compound assignment is a set of assignmentsܦ
to distinct variables in ܺ. A complete assignment is a compound assignment to all
variables in ܺ.”

“The relation of a constraint ܿ ൌ , ߪۃ specifies the acceptable assignments to ۄߩ
the variables in its scope. That is, if the constraint scope ߪ is ൛ݔభ, ,మݔ … ,ଵܽۃ ೖൟ andݔ ܽଶ, … , ܽۄ א ,ೖݔ , the compound assignment assigning ܽ toߩ 1 ݅ ݇, is an
acceptable assignment, in other word the assignment satisfies the constraint ܿ. A
solution to the CSP instance ܺۃ, ,ܦ is a complete assignment such that for every ۄܥ
constraint ܿ א satisfies theߪ the restrictions of the assignment to the scope ,ܥ
constraint.”

“A binary constraint is arc consistent if for every value in the domain of either
variable, there exists a value in the domain of the other such that the pair of values
satisfies the constraint. A non-binary constraint is generalized arc consistent or
hyper-arc consistent iff for any value for a variable in its scope, there exists a value
for every other variable in the scope such that the tuple satisfies the constraint.
Domain propagation on a constraint removes unsupported values (i.e. values which
cannot be extended to a pair of tuple of values satisfying the constraints) from the
domains of the variables in its scope until the constraint is (generalized) arc
consistent.”

81

“A constraint ܿ on variables with ordered domains (such as integers) is bounds
consistent if for every variable ݔ in its scope, there exists a value ݀ for every other
variable ݔ ሺ1 ݆ ݇ሻ in the scope of ܿ, with ݉݅݊ೕ ݀ ೕݔܽ݉ , such that the

compound assignment ሼሺݔ, ݈ሻ, ሺݔଵ, ݀ଵሻ, . . . , ሺݔ, ݀ሻሽ satisfies ܿ, where ݈ is the
minimum of the domain of ݔ, and similarly, values ݀Ԣ can be found with ݉݅݊ೕ ݀ᇱ ೕݔܽ݉ , such that ሼሺݔ, ,ሻݑ ሺݔଵ, ݀Ԣଵሻ, . . . , ሺݔ, ݀Ԣሻሽ , satisfies ܿ, where ݑ is the

maximum of the domain of ݔ. Bounds propagation on an arithmetic constraint
reduces the bounds of the variables until the constraint is bounds consistent.”

5.2.1.1 Representing a problem

The precise definition does not exist for the representation of the particular
problem ܲ as a CSP. A possible definition is that CSP ܯ ൌ ,ܺۃ ,ܦ represents a ۄܥ
problem ܲ, or ܯ is a model of ܲ, if every solution of ܥ corresponds to a solution of ܲ and every solution of ܲ can be derived from at least one solution of ܥ.

The above given definition does not require the one-to-one correspondence
between the solutions of ܲ and ܯ. The reason for that is the possible symmetry of
the solutions to ܯ. In other words, multiple solutions of ܯ may correspond to the
same solution to ܲ. The symmetry is often introduced modeling a problem as CSP,
by representing indistinguishable entities of ܲ by distinct variables or values in ܯ.

If the symmetry is present both in ܲ and ܯ the additional constraints may be
added to ܯ to eliminate all but one solution in every symmetry equivalence class.
These constraints are called symmetry-breaking constraints and obviously they exist
only in ܯ and not in ܲ. The symmetry breaking constraints may cause the situation
when one solution to ܯ corresponds to multiple symmetrically-equivalent solutions
to ܲ. This leads to the conclusion that correspondence between the solutions to ܲ
and solutions to ܯ can be many-to-many. The last statement says that finding the
true solutions to ܲ by solving ܯ causes the uncertainty and additional
complications. Hence, this might be avoided by agreeing that symmetry-breaking
constraints can be ignored in considering whether the ܯ is a model of ܲ.

In this thesis in modeling the test data path as a CSP the variables and values are
chosen to represent the entities in ܲ and the constraints are written on these variables
to represent the rules and restrictions defining the solutions to ܲ. The exact details of
modeling are presented in the following sections. Here it is worth to stress that any
solution to the proposed CSP model ܯ yields exactly one solution to ܲ, and any
solution to ܲ corresponds to a solution to ܯ or is symmetrically equivalent to such
solution. Moreover, if ܯ has no solutions, this is because ܲ itself has no solutions.

5.2.2 Java Constraint Programming framework

The problem of constraint satisfaction in the automated test program synthesis
reduces to representing the behavioral model (HLDD graphs) as a CSP and

82

imposing additional constraints that are extracted from the structural model. The
way of modeling a behavioral part as a CSP can have a dramatic effect on how easy
it is to find a solution, or indeed whether it can realistically be solved at all. A
complicating factor in modeling is the interaction between the model, the search
algorithm and the search heuristics. To reduce this complexity factor the decision
was made to use the Java Constraint Programming (JaCoP) framework. JaCoP
provides the backtracking engine implemented inside the depth-first search
algorithm together with a number of search heuristics and a wide range of various
constraints.

JaCoP library provides constraint programming paradigm implemented in Java. It
provides primitives to define a triple ܺۃ, ,ܦ finite domain (FD) variables for :ۄܥ
defining X and D, and constraints (C), as well as a number of search methods.

JaCoP supports finite domain variables (FDV) with continuous domains e.g.
(ሼ0. .100ሽ) and domains that contain holes e.g. (ሼ0. .10ሽ ሼ12. .100ሽ), in this
domain the value 11 is missing. In this work FDVs are used to model the HLDD
variables. One special variable class is a Boolean variable. It has been added to
JaCoP as it can be handled more efficiently than FDVs with multiple elements in
their domain. Boolean variable can be used as any other variable.

JaCoP library provides most commonly used primitive constraints, such as
equality, inequality as well as logical, reified and conditional constraints. It contains
also number of global constraints and Boolean constraints.

In this thesis, there are four major types of constraints that have been used in the
CSP formulation:

 Primitive constraints
 Logical constraints
 Conditional constraints
 Global constraints

5.2.2.1 Primitive constraints

A set of primitive constraints that are offered in JaCoP include basic arithmetic
operations ሺ, െ,ൈ,ൊሻ as well as basic relations ሺൌ, ്, ൏, , , ሻ. The specification
and the description of available primitive constraints is given in Table 5-2. The
subtraction and division are not implemented explicitly, but since constraints define
relations between variables, they are provided using addition and multiplication.

Primitive constraints can be used as arguments in logical, conditional and global
constrains, and in primitive constraints itself. In the task of HLDDs representation as
CSP the primitive constraints are used to define the operation of the function ݂ሺݔሻ
(see Table 5-2). However, not all operations are defined with primitive constraints,
namely, logical and bitwise operations are defined using logical constraints and
global constraints.

83

Table 5-2 List of primitive constraints (*Const - constant)

Description JaCoP Specification

X = Const XeqC(X, Const)

X = Y XeqY(X, Y)

X ് Const XneqC(X, Const)

X ് Y XneqY(X, Y)

X > Const XgtC(X, Const)

X > Y XgtY(X, Y)

X Const XgteqC(X, Const)

X Y XgteqY(X, Y)

X < Const XltC(X, Const)

X < Y XltY(X, Y)

X Const XlteqC(X, Const)

X Y XlteqY(X, Y)

X ൈ Const = Z XmulCeqZ(X, Const, Z)

X ൈ Y = Z XmulYeqZ(X, Y, Z)

X ൊ Y = Z XdivYeqZ(X, Y, Z)

X mod Y = Z XmodYeqZ(X, Y, Z)

X + Const = Z XplusCeqZ(X, Const, Z)

X + Y = Z XplusYeqZ(X, Y, Z)

X + Const Z XplusClteqZ(X, Const, Z)

X + Y Z XplusYlteqZ(X, Y, Z)

X + Y > Const XplusYgtC(X, Y, Const)

XY = Z XexpYeqZ(X, Y, Z)

5.2.2.2 Logical and conditional constraints

Logical and conditional constraints use primitive constraints as arguments. For
detailed description and specification of these constraints see Table 5-3 and Table
5-4.

84

Table 5-3 List of conditional constraints

Description JaCoP Specification

if c1 then c2 IfThen(c1, c2)

if c1 then c2 else c3 IfThenElse(c1, c2, c3)

Table 5-4 List of logical constraints

Description JaCoP Specification ܿҧ Not(c) ܿଵ ת ܿଶ ת … ת ܿ

PrimitiveConstraint[] c = {c1, c2, ...,cn};

And(c);

or

ArrayList<PrimitiveConstraint> c =

 new ArrayList<PrimitiveConstraint>();

c.add(c1); c.add(c2); ... c.add(cn);

And(c); ܿଵ ܿଶ … ܿ

PrimitiveConstraint[] c = {c1, c2, ...cn};

Or(c);

or

ArrayList<PrimitiveConstraint> c =

 new ArrayList<PrimitiveConstraint>();

c.add(c1); c.add(c2); ... c.add(cn);

Or(c);

5.2.2.3 Global constraints

The constraint on the first row in Table 5-5 enforce that a sum of elements of
FDVs’ vector is equal to a given FDV sum. The second row in Table 5-5 explains
the weighted sum constraint. The latter is extremely useful when the FDV variable
participates in bitwise operations (e.g. |, &). The weighted sum builds a bridge
between integer and bitwise representation of FDV.

85

Table 5-5 List of global constraints

Description JaCoP Specification ݔଵ ଶݔ ݔ ൌ ;IntVar[] x = {x1, x2, ..., xn} ݉ݑݏ

IntVar sum = new IntVar(...)

Sum(x, sum);

or

ArrayList<IntVar> x =

 new ArrayList<IntVar>();

x.add(x1); x.add(x2); ... x.add(xn);

IntVar sum = new IntVar(...)

Sum(x, sum); ݓଵݔଵ ଶݔଶݓ ڮ ݓݔ ൌ ݉ݑݏ

IntVar[] x = {x1, x2, ..., xn};

IntVar sum = new IntVar(...)

int[] w = {w1, w2, ..., wn};

SumWeight(x, w, sum);

or

ArrayList<IntVar> x = new
ArrayList<IntVar>();

x.add(x1); x.add(x2); ... x.add(xn);

IntVar sum = new IntVar(...)

ArrayList<Integer> w=new
ArrayList<Integer>();

w.add(w1); w.add(w1); ... w.add(wn);

SumWeight(x, w, sum);

86

5.2.3 Representing HLDDs as a CSP using JaCoP framework

Figure 5-4 Part of a processor data path

The representation of HLDDs as a CSP using JaCoP framework is explained
using the part of the processor data path with control signals as an example, which is
shown in Figure 5-4. Briefly, the functionality of the example circuit is the
following:

 When nRESET signal is low (logic 0) the output of the circuit (let us call
it Y) is equal to the previous value of Y that is stored in the register
Y[15:0] (later referenced as Y’d, which is delayed value of Y).

 When nRESET signal is high (logic 1) the output of the circuit depends
on the output of the multiplexer that is controlled by the Select signal.

The Select signal selects one of the following operations:

- When Select is 0, the result of the AND operation between A and
B is propagated to the output of the multiplexer.

- When Select is 1, the result of the OR operation between A and
B is propagated to the output of the multiplexer.

- The SHR operation is selected when Select is 2. Then the
propagated value is a product of the AND operation between A
and B that is shifted into C by one bit from the left.

- The SHL operation is selected when Select is 3. Then the
propagated value is a product of OR operation between A and B
that is shifted into C by one bit from the right.

87

Figure 5-5 HLDD model of the part of the processor data path (HLDD Graph view
and equivalent model in the framework view)

The resulting behavior model (HLDD) of the structure shown in Figure 5-4 is
presented in Figure 5-5. The underlying textual representation of this model is
shown in Figure 5-6. The detailed description of this format (AGM) is given in
Appendix A. The most valuable property of this format is that variables (ݔ א ܺ) and
nodes (݉ א definition are ordered. Any variable that is (௬ܩ) inside the graph (ܯ
referenced inside the graph should be declared before this graph. The exception is
delayed variable. This variable ordering is possible due to the acyclic nature of the
HLDD graphs. The strict order of variables in this format is extremely fast and easy
to handle in transformation of HLDD model into CSP model. Every declared
variable has its index inside the HLDD model. Let us denote the order of variables
in the model as “natural HLDD order” relying on the indices in AGM format.

88

VAR# 0: (i_________) "input_A" <15:0>
VAR# 1: (i_________) "input_B" <15:0>
VAR# 2: (i_________) "input_C" <15:0>
VAR# 3: (i_________) "select" <1:0>
VAR# 4: (i_________) "nRESET" <0:0>
VAR# 5: (__c_______) "0x0" <1:0> VAL = 0
VAR# 6: (__c_______) "0x1" <1:0> VAL = 1
VAR# 7: (__c_______) "0x2" <1:0> VAL = 2
VAR# 8: (__c_______) "0x3" <1:0> VAL = 3

VAR# 9: (____f_____) "A_and_B" <15:0>
FUN# AND (A1<=0<15:0>, A2<=1<15:0>)
VAR# 10: (____f_____) "A_or_B" <15:0>
FUN# OR (A1<=0<15:0>, A2<=1<15:0>)
VAR# 11: (____f_____) "A&B>C" <15:0>
FUN# SHIFT_RIGHT (A1<=2<15:0>, A2<=9<15:0>)
VAR# 12: (____f_____) "C<A|B" <15:0>
FUN# SHIFT_LEFT (A1<=2<15:0>, A2<=10<15:0>)

VAR# 13: (_o________) "Y" <15:0>
GRP# 0: BEG = 0, LEN = 7 -----
0 0: (n___) (1=>1 0=>2) V = 4 "nRESET" <0:0>
1 1: (n___) (0=>3 1=>4 2=>5 3=>6)V = 3 "select" <1:0>
2 2: (____) (0 0) V = 13 "Y" <15:0>
3 3: (____) (0 0) V = 9 "A_and_B" <15:0>
4 4: (____) (0 0) V = 10 "A_or_B" <15:0>
5 5: (____) (0 0) V = 11 "A&B>C" <15:0>
6 6: (____) (0 0) V = 12 "C<A|B" <15:0>

Figure 5-6 Textual representation of HLDD model (AGM format)

The first step of CSP modeling is to define variables and their domains. These
are the first two elements in a triple ܺۃ, ,ܦ The variables and respective domains .ۄܥ
that are extracted from this HLDD model are shown in Table 5-6. The second step is
to model arithmetical and logical functions defined in this model. This corresponds
to adding constraints like ݔሺ݉ሻ ൌ ݂൫ݔ, . . , ;൯ݔ 0 ݆, ݇ ݊ to the set C (where n
is index of the last variable in AGM format). The example given in Figure 5-4 was
selected to show that not only trivial expression can be modeled using predefined
constraints from JaCoP framework. The constraints that were listed in section 5.2.2
can be reused to define new constraints that are needed for particular problem in
hand.

89

Table 5-6 List of variables

The nice property of JaCoP framework is that it could be extended to meet the
requirements of the particular task. There are functions in our example that cannot
be modeled with those “off-the-shelf” constraints. The bitwise shift-left and shift-
right operations could be indeed modeled as division or multiplication, but logic OR
and logic AND operations for variables that are not Boolean variables are missing in
the list.

For modeling binary shift, AND and OR operations the variables Input_A,
Input_B and Input_C were presented in a binary view using the SumWeigth
constraint and Boolean variables for each bit in the binary representations of these
integer variables. The results are shown below: ܣ_ݐݑ݊ܫ ൌ ܽ ൈ 2 ܽଵ ൈ 2ଵ ڮ ܽଵହ ൈ 2ଵହ ; ܤ_ݐݑ݊ܫ ൌ ܾ ൈ 2 ܾଵ ൈ 2ଵ ڮ ܾଵହ ൈ 2ଵହ ; ܥ_ݐݑ݊ܫ ൌ ܿ ൈ 2 ܿଵ ൈ 2ଵ ڮ ܿଵହ ൈ 2ଵହ ,

where variables ܽ, ܽଵ, … , ܽଵହ, ܾ, ܾଵ, … , ܾଵହ, ܿ, ܿଵ, … , ܿଵହ are Boolean variables.

Thus the dual representation (binary and integer) of the variable is achieved. This
allows building the constraints for the above listed functions of the model: ܤ_݀݊ܽ_ܣ ൌ ,ሺܽ݀݊ܣ ܾሻ ൈ 2 ,ሺܽଵ݀݊ܣ ܾଵሻ ൈ 2ଵ ڮ ,ሺܽଵହ݀݊ܣ ܾଵହሻ ൈ 2ଵହ; ܤ_ݎ_ܣ ൌ ,ሺܽݎܱ ܾሻ ൈ 2 ,ሺܽଵݎܱ ܾଵሻ ൈ 2ଵ ڮ ,ሺܽଵହݎܱ ܾଵହሻ ൈ 2ଵହ; ܥ_ܴܪܵ_ܤ_݀݊ܽ_ܣ ൌ ,ሺܽଵହ݀݊ܣ ܾଵହሻ ൈ 2 ܿଵ ൈ 2ଵ ڮ ܿଵହ ൈ 2ଵହ; ܥ_ܮܪܵ_ܤ_ݎ_ܣ ൌ ܿ ൈ 2 ڮ ܿଵସ ൈ 2ଵସ ,ሺܽݎܱ ܾሻ ൈ 2ଵହ .

Variable x (࢞ א ࢊ) Domain d (ࢄ א ࢞) Variable x (ࡰ א ࢊ) Domain d (ࢄ א (ࡰ

Select {0..3} Constant_0x1 {1}

Input_A {0..65535} Constant_0x2 {2}

Input_B {0..65535} Constant_0x3 {3}

Input_C {0..65535} A_and_B {0..65535}

Output_Y {0..65535} A_or_B {0..65535}

nReset {0..1} A_and_B_SHR_C {0..65535}

Constant_0x0 {0} A_or_B_SHL_C {0..65535}

90

The next step is to add constraints for the transitions in the HLDD graph. The list
of the transitions (tuples) in the graph is obtained automatically from the Regular
Graph data structure. The Regular Graph is a graph where every path from the root
node to the leaf node is of the same length. The transformation of the HLDD graph
structures into linked Regular Graphs is a simple programming task and its
implementation details are not relevant to this research. The general idea of this
procedure is shown in Figure 5-7.

On the basis of the Regular graphs the conditional constraints are constructed to
model the transitions in the HLDD graphs. The primary target is to impose full path ሺ݉, ்݉ሻ activation constraints. The solution to these constraints is the vector ்ܺthat satisfies one of the full path activation constraints. The formal view of the
conditional constraint that models the full path in the HLDD graph is:

IfThen (

And (

XeqC (ݔሺ݉ଵሻ, ܽ where ܽ א ܸሺݔሺ݉ଵሻሻ),

... ,

XeqC (ݔሺ݉ሻ, ܽ where ܽ א ܸሺݔሺ݉ሻሻ)

),

XeqY (ݔ ,ݕሺ்݉ሻ)

)

The constraints for the transitions in HLDD graph from Figure 5-5 are modeled
as follows:

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x0)),
XeqY (Output_Y, A_and_B));

Figure 5-7 Transformation of irregular graph into linked regular graphs

91

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x1)),

XeqY (Output _Y, A_or_B));

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x2)),

XeqY (Output_Y, A_and_B_SHR_C));

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x3)),

XeqY (Output_Y, A_or_B_SHL_C));

IfThen (And (XeqC (nRESET, Constant_0x0), XeqY (select, select)),

XeqY (Output_Y, Output_Y'd)),

Output_Y'd is a previous value (delayed value) of Output_Y, that corresponds to
the register “Y[15:0]” shown in the initial scheme in Figure 5-4.

It should be stressed that CSP model creation is fully automated in the proposed
approach. The algorithm for HLDD transformation into CSP model that was
developed to support this research is the following:

--
for each variable in HLDD model do

if variable has constant flag
define FDV with single value domain
add function FDV to functionList

else
define FDV with full range domain

 end if
if variable is a graph root

regularGraphsList = buildRegularGraphs(graph)
for each regularGraph in regularGraphsList do

 tuplesList = Get tuples from regularGraph
 end for

fullPathTuples = joinTuples(tuplesList)
for each tuple in fullPathTuples

 impose conditional constraint
 end for
 end if
end for
for each function FDV in functionList do
 impose arithmetical/logical constraint
end for
--
Even big HLDD models are transformed in a reasonable time due to the linear

complexity of the algorithm. The HLDD graphs are traversed only once to obtain the
full list of variables, functions and transitions. The transitions compose the full paths
from the graph root node to the graph leafs. These full paths are tuples that are used
in conditional constraints for modeling the transitions in the HLDD graphs as was
shown before. The constraints that model operations of functions are imposed in the

92

end, when all the variables of the HLDD model are defined. This is done to escape
redefinition of variables, which is inevitable in case if functions are modeled before
the definition of variables that participate in this function.

At this point the CSP model is constructed and it should be first checked for the
consistency. The consistency check is an embedded feature of the JaCoP framework.
The consistency check returns false if model is inconsistent and no solution could be
found, while true indicates only that the model is consistent and in order to find the
solution the CS should be executed. However, the solution may not exist even if the
CSP model is consistent.

5.2.4 Solving the CSP model

Previous section (section 5.2.3) explained in details the modeling of the HLDD
graphs as a CSP. In case if CS is executed on the CSP model of the circuit depicted
in Figure 5-4, it returns all possible solutions. Whereas, all possible solutions are a
lot of data when there are variables with big domains. Typically solving the
unconstrained CSP model is not needed. Normally the CSP models are used to
obtain the inputs or/and outputs that bring the system into the target state. This target
state is modeled as a set of constraints that should be added to the CSP before
solving it.

In this work the notion of the state of the system is defined as in Mealy machine
definition [57] in the theory of computation. Briefly, the next state output of the
system depends on the previous state and on the inputs of the system. Hence, the
output will change as soon as the inputs are propagated to the logic. In comparison,
the output change according to Moore, appears on the next clock cycle, since the
change is caused only by the state. Thus, with Moore theory synchronous designs
are described more naturally, whereas Mealy theory may lead to metastability of the
outputs. However, Mealy machine definition typically requires fewer states and is
more efficient to describe asynchronous systems. As soon as we are not interested in
the precise modeling of output timings and clock may often be skipped in the
modeling of system behavior the Mealy definition was chosen. However, that does
not lead to the inability of modeling synchronous systems as it is shown later.

5.2.4.1 Solving the CSP for single-cycle

The single-cycle solution to the CSP in the proposed approach is defined as one
time assignments to the unconstrained inputs and delayed variables. The
unconstrained variables are those that do not participate in the additional constraints
that specify the target state of the system. In other words, the values of the
constrained variables are known in the target state. Unconstrained variables are the
ones whose values are unknown in the target state and the CS is executed to obtain
their values.

93

Let us explain the single-cycle solving on the example. First, the target state of
the system needs to be defined. Typical situation that is faced in the automated test
program synthesis is that engineer knows the values of the certain outputs of the
system that characterize the target state, but the values of the inputs and the rest of
the outputs are unknown. We mimic this with the following: test engineer knows
that the output of the system shown in Figure 5-4 have to be equal to 2 and the
inputs A and B must be equal to 1. To model this knowledge the following
constraints are imposed (this type of constraint is referenced as abridge constraint):

XeqC(Input_A, Constant_0x1) // Input_A = 1
XeqC(Input_B, Constant_0x1) // Input_B = 1
XeqC(Output_Y, Constant_0x2) // Output_Y = 2

The CS returns the following two solutions for the CSP containing these abridge

constraints (denoted as Sol.1 and Sol.2):
Sol. 1:

Input_A = 0x1
Input_B = 0x1
Input_C = 0x1
Output_Y = 0x2
nReset = 0x1
Select = 0x3

 Y’d = {0…(216-1)}
This is the most obvious solution and the one that is probably expected.

However, as soon as design contains a memory element (register) and solution Sol.1
is not relying on its value, the CS will also produce a number of symmetrical
solutions which is equivalent to the range of this memory element. In our case it is
216 -1 symmetrical solutions (Y’d is 16 bit register).

The second solution (Sol.2) has also a huge number of symmetrical solutions,
since the nReset is selecting the register (Y’d) to be propagated to the output and data
path from the circuit inputs to the output is masked. Hence, the Input_C and Select
variables can take any value in their domain.

Sol. 2:
Input_A = 0x1
Input_B = 0x1
Input_C = {0…(216-1)}
Output_Y = 0x2
nReset = 0x0
Select = {0…3}

 Y’d = 2

Thus, the total number of solutions (including symmetrical solutions) is 216 + 218
and only two of them have practical value. Let us call these two solutions as diverse

94

solutions. The goal of solving a CSP is to find all possible diverse solutions while
skipping the symmetrical ones. For that several techniques of guiding a CS can be
used.

The JaCoP provide possibility to specify the number of solutions to find. The
major question that appears is in which order the solutions will be found. The ideal
case would be to set the solution limit to two and get the CS to produce these two
diverse solutions described above. Evidentially, the order of the solutions is defined
by the order in which variables are assigned, called as “variable selection strategy”.
The second parameter is the “value assignment strategy” that tells the CS which
value should be considered next from the domain of the variable. The most common
value assignment strategies are: smaller value first, bigger value first, middle value
first (selects a middle value from the current domain of FDV and then left and right
values) and random value. The value assignment strategy influences the time of
finding a solution.

As search method the “depth-first search” algorithm is used. This algorithm
searches for a possible solution by organizing the search space as a search tree. In
every node of this tree a value is assigned to the variable and a decision whether the
node will be extended or the search will be cut in this node is made. The search is
cut if the assignment to the selected variable does not meet all constraints. Since
assignment of a value to a variable triggers the constraint propagation, the decision
can be made to continue or to cut the search at this node of the search tree.

In Table 5-7 the details of solving the CSP with different variable selection and
assignment strategies are presented. For the given abridge constraints (Input_A=1,
Input_B=1, Output_Y=2) the most efficient strategy according to the experimental
results shown in Table 5-7 is reversed HLDD variable order and smaller value first
assignment. These results also show that efficiency of different strategies heavily
depends on the CSP itself and on the abridge constraints due to the huge difference
in diverse solution indices and time. Hence, if the Output_Y is constraint to the value
close to the domain maximum, then “bigger value first” will be more preferable
assignment strategy. The presented variable order selection strategies correspond to
the natural and reversed list of variables that is defined in the textual representation
in the HLDD graphs (Figure 5-6).

Table 5-7 Solution details with constraints Input_A=1, Input_B=1, Output_Y=2

Variable selection
strategy

Assignment
strategy

Diverse
solution index

Time
(ms)

Natural HLDD order smaller value first 1, 5 79

Reversed HLDD order smaller value first 1, 3 78

Natural HLDD order bigger value first 1, 131070 >1000

Reversed HLDD order bigger value first 1, 65534 >1000

95

The order of variables influences the search space as the search tree is based on
it. According to the experiments the natural HLDD order requires more solutions to
be traversed for obtaining all the diverse solutions in comparison to the reversed
HLDD order. The benefit from using the reversed order depends on the particular
HLDD graph structure. As practice shows the natural order require less backtracking
than the reversed, but the overall search time may not vary as much as one would
expect. Although, there is a slight difference between reviewed variable selection
strategies, the reversed HLDD order is used for variables selection strategy in the
next experiments. Generally, the reversed HLDD order allows obtaining all diverse
solutions in a shorter time while producing less symmetrical solutions.

5.2.4.2 Solving CSP for multiple cycles

Even for relatively simple models with registers or other memory elements
sometimes it is not sufficient to find a solution within one cycle. In case if the
solution is relying on the value in the memory element it should be proved that this
value is valid and could be assigned to this element in a deterministic way. Hence, it
is often necessary to know the initial state of the system in a number of states in the
past. In other words, the sequence of states to assign that value to the memory
element should be found in order to prove that the solution is valid.

The initial state is a state that is reachable by applying for example a reset signal
or when values of the memory elements are known to be valid (e.g. reset values).
Hence, the initial state is a point in time, which is provably reachable and which is
used as a starting point for bringing the system to the target state. The target state of
the model should not be defined loosely. Otherwise the number of possible solutions
will grow vastly. Thus, in solving for multiple cycles it becomes crucial to define the
target state of the model as precise as possible.

Let us discuss CSP solving for multiple cycles on the example used in previous
section (section 5.2.4.1). Typically, the goal of CSP solving is to find the shortest
sequence of states that leads to the desired state. Thus, if the solution after single
cycle solving is not relying on the value in the memory element (see Sol. 1 in section
5.2.4.1) then the shortest sequence is found and there is no need in CSP solving for
multiple cycles. That means that the suitable combinatorial path through the circuit
that brings the system into target state is found. The combinatorial path is masking
the values in memory elements in the way that the output(s) of the system are not
influenced by them on the given cycle. However, in many cases this combinatorial
path does not exist and the solution that brings the system from deterministic initial
state to the desired (target) state is required.

In the example from previous section the solving for multiple cycles is required if
the first solution is made invalid by introducing additional abridge constraint for
Input_C (e.g. XeqC(Input_C, Constant_0x0)). Then the second solution (Sol.2)
becomes the only diverse solution, because in the Sol.1 Input_C equals to 1. The

96

solution Sol.2 depends on the memory element (Y’d = 2), hence, it is not a
deterministic one. Thus, it is required to find the state in which Y[15:0] is assigned
with 2 (Y’d := 2). In case, if that state is not a deterministic one (not a reset state) or
relying again on the memory element value, another state should be found that leads
to that state, and so on, until the repetitive state is met or one of the above mentioned
conditions is fulfilled.

In the developed CSP solving framework it is possible to limit the number of
states in the sequence as well as to limit the number of solutions to search in parallel.
The reset signal should be explicitly defined if it exists and the active value of the
reset signal should be declared.

The details of the developed algorithm for solving CSP for multiple cycles are
described below:

set Parallelism Limit(pLimit)
set Cycles Limit(cLimit)
set reset signal name (resetName)
set reset signal active level (resetLevel)
for each abridgeConstraint do

impose abridgeConstraint
end for
fdvValueMap = solve CSP
currentStatesList = create states (fdvValueMap)
for each state in currentStatesList do
 if state does not depend on delayed FDV
 solutionsList add state
 else if resetLevel equals (state get value(resetName))
 solutionsList add state
 end if
end for
if solutionsList is not empty
 diverseSolutions =find diverse solutions(solutionsList)
 return diverseSolutions
end if
currentStatesList = remove duplicates in currentStatesList
diverseSolutions = solve state backward (currentStatesList)
return diverseSolutions

solve state backward (List nextStatesList)

for each nextState in nextStatesList
 abridgeConstrs = get abridge constraint from nextState
 for each abridgeConstraint from abridgeConstrs do

impose abridgeConstraint
end for

 fdvValueMap = solve CSP
currentStatesList = create states (fdvValueMap)

97

for each state in currentStatesList do
 if state is repetitive state
 continue with next state
 end if
 state set next state (nextState)

 if state does not depend on delayed FDV
 solutionsList add state

else if resetLevel equals (state get
value(resetName))

 solutionsList add state
 else stateListToSolve add state

end if
end for

end for

if solutionsList is not empty

diverseSolutions =find diverse solutions(solutionsList)
 return diverseSolutions
end if
stateListToSolve = remove duplicates in stateListToSolve
return solve state backward (stateListToSolve)
--
This algorithm consists of two parts. The first part is the same as for single cycle

solving with the only difference: if no deterministic solution is found the states (non-
deterministic solutions) are passed to the function that continues solving procedure.
The solve state backward function is the second part of the algorithm. It
considers each of the supplied state as a new target state and imposes the new set of
abridge constraints. The set of previously imposed abridge constraints is excluded
from CSP before imposing a new set. Then the CS is executed to get the predecessor
states (currentStatesList) for each of the new target states (nextState).

Figure 5-8 Solution searching tree

98

Every new predecessor state is checked for being repetitive and, in case it is
repetitive, state is eliminated from the set of the next target states
(stateListToSolve). The important property of each state is that it knows its
successor state. Hence, in case if the predecessor state is a deterministic state (added
to the solutionsList) the sequence of states that compose the complete solution
can be easily restored.

In Figure 5-8 is shown a typical solution searching tree that pictures multiple
cycles solving algorithm. The number inside the circuit represents the index of the
state. All symmetrical solutions are represented by the same number and the one,
which is found first, is considered to be a diverse state and is highlighted in white
color. The symmetrical and repetitive states are shadowed (grey color). The zero
state (0) is the first target state and its time label is t0 (current time). The states that
are placed on the level marked as t-1 are obtained in the first part of the algorithm.
The other levels (t-2, t-3, etc.) are filled with states found by the “solve state
backward” function. In the example in Figure 5-8 the solution is found when the
reset state is met (state with index 7).

In order to conclude the presented approach the same CSP example from section
5.2.4.1 is used to show the multiple cycles CSP solving methodology in details. Let
us consider that the following abridge constraints describe the target state of the
system:

XeqC(Input_A, Constant_0x1) // Input_A = 1
XeqC(Input_B, Constant_0x1) // Input_B = 1
XeqC(Input_C, Constant_0x0) // Input_C = 0
XeqC(Output_Y, Constant_0x2) // Output_Y = 2

Due to the fact that the actual reset signal functionality is not present in this
design, the only possibility for CS to complete the search with the proper solution is
to find the state that is not relying on the value in the register (Y’d). Note that the
nReset signal is just a control input of the multiplexer (see Figure 5-4). Thus, the
reset signal is not defined as well as its active level.

The CS can find only one diverse state on time level t-1:

Input_A = 0x1
Input_B = 0x1
Input_C = 0x0
Output_Y = 0x2
nReset = 0x0
Select = {0…3}
Y’d = 2

This state is then given as argument to the “solve state backward” function. Then
the following abridge constraints are extracted for defining the new initial state:

XeqC(Output_Y, Constant_0x2) // Output_Y = 2

99

Table 5-8 Solution states for level t-2

FDV State 1 State 2 State 3 State 4 State 5

Input_A 0..0xFFFF ܽ ת ܾ ൌ 2,ܽ א ܾ ,ܣ א ܤ

2 ܽ ת ܾ ب ܿ ൌ 2 ܽ א ,ܣ ܾ א ܤ

ܿ ا ܽ ܾ ൌ 2 ܽ א ,ܣ ܾ א Input_B 0..0xFFFF ܤ 2

Input_C 0..0xFFFF 0..0xFFFF 0..0xFFFF 4, 5 1, 0x8001

Select 0..3 0 1 2 3

nReset 0 1 1 1 1

Output_Y 2 2 2 2 2

Y’d 2 0..0xFFFF 0..0xFFFF 0..0xFFFF 0..0xFFFF

This abridge constraint is derived from the delayed value of the output Y which
is Y’d =2. Thus, if on level t-1 delayed value of Y is equal to 2, then on level t-2 the Y
itself should be equal to 2 also, where level t-2 is the next level to be solved after the
t-1. Inputs remain unconstrained because the previous constraints are valid only for
the level t-1 and there are no requirements for input values of the states at level t-2.

State 1 on level t-2 is a repetitive state to the only state on the level t-1. State 1 has
the same index as state on the level t-1 to underline the repetition of states. Both are
relying on the value of the delayed Y (Y’d) and in both cases nReset signal is
masking the values of other inputs, thus FDVs for inputs A, B, C and Select can take
any values from their domains. Because state 1 on level t-2 is a repetitive state to
state on level t-1 it is not included in the solution states list.

In state 2 nReset is selecting the combinatorial path from inputs to the outputs,
thus Y delayed FDV can take any value from 0 to 216-1. Select signal is selecting the
result of the logic-AND operation between inputs A and B to be propagated to the
output. The input C is free to take any value from its domain. As a result the first
solution is found. It consists from states state 2 (level t-2) and state 1(level t-1).

State 3 leads to another solution, as it is also the deterministic state. The
difference between state 2 and 3 is that Select signal is selecting in the latter case the
result of the logic-OR operation between inputs A and B to be propagated to the
output. In this case the domains of inputs A and B are narrowed down to value 2 and
FDV of input C is in boundaries of its initial domain. The second solution consists
of state 3 (level t-2) and state 1(level t-1).

State 4 and state 5 also make solutions together with state 1(level t-1). The
difference from previously described solutions, besides the value of the Select FDV,

100

is that domain of FDV for input C is narrowed down to two values. This is because
in states 4 and 5 the combinatorial path contains functional blocks that shift left or
right value of input C.

The states from Table 5-8 make a complete solution tree of the described CSP on
the level t-2. However, even in this simple example the number of total states on the
t-2 level is blasting. Thus, the policy of combining symmetrical states on the same
level into a single diverse state (as shown in Table 5-8) is extremely useful also in
terms of memory saving. The diverse state contains all the values of symmetrical
states for every FDV. Thus, no effort is needed to collect the symmetrical states into
a single diverse state. However, at the moment of presenting the results the choice
has to be made which value from the FDV domain to use.

The important question is: are we able to find all the possible solutions using the
developed framework? The answer is yes and no. In theory, there are no objections
to find all solutions using developed framework, however, in practice this requires a
lot of resources when a CSP models a real world designs and obviously gets bigger
than in these examples. To predict the behavior of the CS the resources are
constrained by setting the parallelism and cycles limit. The parallelism limit sets
boundaries on the number of states to search for every set of abridge constraints (this
includes symmetrical states). When the parallelism limit is set too low, valuable
diverse solution may not be discovered. On the other hand, when the limit is too big
the resources are spent to find unnecessary symmetrical solutions. The order of the
diverse solutions in the search space is selected by the variable selection and
variable assignment strategies as was shown previously in Table 5-7. There is no
universal strategy to set these parameters for finding all diverse solutions with
minimum resources. Every CSP model requires deep study to find the optimal CS
settings. Moreover, different abridge constraints to the same CSP influence the time
spend by CS to find the same number of solutions.

What is left untouched in this discussion is the size of the CSP. It has a direct
influence on the CS runtime and the memory requirements. Moreover, the CSP size
(number of constraints, number of FDVs) has relations to the size of the design it
models. Thus, modeling the initial design as a set of smaller CSP models rather than
a single one may have a positive influence on the resource requirements.

5.2.4.3 Experimental results

The experiments were run on the machine with the following specifications: CPU
Intel® CoreTM 2 Duo P8700 2,53GHz, RAM 2GB, MS Windows 7 32-bit Operating
System. The goal is not to achieve the fast run-times of the CS, but to study the
influence of various CS settings and variable selection strategies on the results of
solving. The ITC99 benchmarks (b00 [58] and b01 – b10 [59]) are selected due to
the availability of the VHDL source code of these designs at RT- Level. Currently,
only the subset of the designs from ITC99 benchmarks can be translated to the
HLDD graphs. The tool that is used for VHDL to HLDD transformation supports

101

limited subset of VHDL constructs. The list of the designs that are successfully
translated is shown in the first column of Table 5-9.

Table 5-9 Characteristics of ITC99 benchmarks and solving times

D
esign

F
F

s

N
od

es in

G
rap

h
s

V
ariab

les

M
em

ory
V

ariab
les

Decisions
made/wrong

Solving time for
one state (ms)

Natural
variable

order

Reversed
 variable

order

Natural
variable

order

Reversed
 variable

order

b00 18 46 70 2 9/0 23/2 10.5 13.1
b01 5 49 27 1 5/0 5/0 1.0 1.0
b02 4 26 14 1 5/1 4/0 0.7 0.4
b03 30 214 49 15 22/1 33/0 2.4 2.6
b04 66 71 70 9 18/1 33/0 2.3 3.5
b06 9 114 25 1 6/1 8/0 0.7 0.5
b09 28 69 77 20 9/1 16/0 1.2 1.1
b10 17 285 123 16 24/2 38/0 2.7 2.1

Table 5-9 presents the characteristics of the designs used in the experiments and
the CS run-times for solving these designs. In this table the number of memory cells
(FFs), number of nodes in the HLDD graphs, number of variables and number of
memory variables are reported. The CS run-times of producing the result for one
state (cycles limit and parallelism limit are set to 1) are given in the two last
columns. The column next to the last one presents the run-time results when
“variable selection order” setting uses the order of variables in the textual
representation of the HLDD graphs. This order is called as “natural variable order”
in the HLDD graphs. The last column shows the run-time results for the alternative
variable selection order, which is the reversed natural order. The columns that
correspond to the heading “Decisions made/wrong decisions” outline the number of
decision made by CS while traversing the search space tree to find the first met
solution. Again, there are two columns under this heading that correspond to the
natural variable order and to the reversed natural order.

The figures shown in the last columns in Table 5-9 are denote the time spend for
the actions described below. The first action is the CSP model construction from
HLDD graphs description, which is the functionality developed in frames of this
research. The second action is solving the CSP model by CS. The latter action
belongs to the functionality of the JaCoP framework. The time for CSP model
construction is negligibly small in comparison to the time taken by the CS.

The figures in Table 5-9 show that none of the variable selection strategies
outperforms the other in finding the single state solution. However, it is clearly seen
from Table 5-9 that the CS makes less decisions when variables are selected as they
appear in HLDD graphs, but in the same case it also makes more wrong decisions,

102

which is costly in terms of time. The exceptional results are received with the design
b00. The solving time reported for this design is multiple times bigger than for other
designs due to the presence of 16-bit variable. This is the only design that has
variable with the domain of this size. The other reason is that this variable is the
variable with delayed value and, hence, has a dual representation in the CSP (current
state and previous state or delayed value) which multiplies the number of nodes in
the search tree.

In Table 5-10 and Table 5-11 the results of solving the CSP when the parallel
limit is set to 100 states and the cycle limit is 1 are presented. These experiments are
aimed to show that proposed modeling methodology constructs models that can be
efficiently solved by CS. The CS run-time figures do not grow linearly if the parallel
limit is changed from 1 to 100, and in most cases the dependency between found
solutions and time is changing. The more solutions CS has to find the less time is
spend for finding every solution.

Table 5-10 presents the details of solving the selected ITC99 benchmarks (first
column) with parallel limit set to 100 and CS is using natural order of variables for
variable selection strategy. The second column outlines the number of found
solutions. As the parallel limit is set to 100 and the cycle limit is 1 the maximum
number of found solutions is 100. If the number in the second column is less than
100 it means that less than 100 solutions exists for that design. The third column
shows the number of diverse solution among found solutions.

Table 5-10 Details of solving ITC99 benchmarks (Parallel limit =100, variable selection
strategy = natural variable order)

D
esign

S
olu

tion
s

fou
n

d

D
iverse

S
olu

tion
s

V
isited

n

od
es in

th

e
search

D
ecision

s

W
ron

g
d

ecision
s

M
ax.

search

d
ep

th

T
im

e
(m

s)

b00 100 100 2097451 1048778 1048673 32803 58591
b01 64 18 83 73 10 11 18
b02 28 9 35 31 4 10 16
b03 100 100 122 121 1 38 16
b04 100 100 118 117 1 117 18
b06 56 35 71 63 8 9 18
b09 100 100 108 107 1 58 24
b10 100 100 174 146 28 32 30

The rest of the columns in Table 5-10 describe the details of process of solving.
The column named “Visited nodes in the search tree” tells how many nodes the CS
has visited to find the number of solutions shown in the second column. The next
columns contain figures of how many decisions are made by CS and how many

103

wrong decisions are taken. The “Max. search depth” column shows the maximum
depth reached by CS in the search tree.

In Table 5-10 the correlation between number of found solutions, run-time of CS
and other details of solving process are explained. The number of visited nodes in
the search tree is a sum of decisions and wrong decisions.

The important conclusion is that the time needed to find the certain number of
solutions for particular CSP is hard to predict. As a result the number of visited
nodes in the search tree is also unpredictable. However, it is worth to compare these
figures with the details shown in Table 5-11. This comparison will help to study the
influence of the variable selection strategy on the results of CSP solving.

In Table 5-11 all columns have exactly the same order and meaning as columns
in Table 5-10. The difference lies in figures that correspond to the details of solving
the CSP models when the variable selection strategy is set to the reversed natural
order of variables. The number of found solutions for every listed design equals to
the data in Table 5-10. However, the number of diverse solutions varies for designs
b00, b03, b04, b09, b10 that is due to the different variables selection order that
changes the order of nodes in the search tree. Hence, if not all solutions have been
discovered (b00, b03, b04, b09 and b10), then, obviously, among the found solution
there are those solutions that are not discovered with other variable selection
strategy and vice versa.

Table 5-11 Details of solving ITC99 benchmarks (Parallel limit =100, variable selection
strategy = reversed variable order)

D
esign

S
olu

tion
s

fou
n

d

D
iverse

solu
tion

s

V
isited

n

od
es in

th

e search

tree

D
ecision

s

W
ron

g
d

ecision
s

M
ax.

search

d
ep

th

T
im

e (m
s)

b00 100 1 127 125 2 123 27
b01 64 18 117 90 27 14 28
b02 28 9 45 36 9 10 16
b03 100 4 166 148 18 36 19
b04 100 7 130 130 0 39 22
b06 56 35 1871 963 908 16 55
b09 100 52 3145890 1573002 1572888 533 27158
b10 100 1 135 135 0 41 31

104

With natural variable selection order in designs b00, b03, b04, b09 and b10 every
found solution is a diverse solution, the situation is different in case of reversed
natural variable selection order. Moreover, in the first case less wrong decision are
made that explains why the maximum search depth is bigger (every wrong decision
is causing a backtracking) and why the number of nodes visited in the search tree is
smaller. Hence, time that is spent to find 100 solutions is shorter for almost all
designs in case of natural variable selection order (Figure 5-9).

Figure 5-9 shows an exceptionally long run-times for b00 and b09. Whereas,
design b00 is causing long run-time when variable selection strategy is set to use the
natural order and b09 appears to be hard-to-solve for the reversed variable order
setting. However, these designs are solved in a reasonable time when the variable
selection strategy is changed. The study of the search tree for both cases gives an
explanation for these run-time anomalies.

In both cases (b00 and b09) exists a variable whose domain is much smaller than
the domain of other variables in the list. These variables are represented as
“reconvergent fan-out” in the search tree. Thus, the deep location of this variable in
the search tree causes a lot of backtracks to be made before the wrong assignment is
found. This is a drawback of the used search heuristics (depth-first search). Hence,
when the variables with smaller domains are assigned before the variables with
bigger domains, the runtime is shorter, because of smaller number of backtracks to
make in case of assignment that causes inconsistency. The sorting of variables by
the domain size may help to achieve the shortest possible run-times. However, this
optimization does not give any value to the current research as the assumption that

Figure 5-9 CS run-time comparison for different variable selection orders

105

runtime is sensitive to the order of variables with various domain sizes can be
proved by reversing the natural HLDD variable order. The latter is shown in Figure
5-9 .

Thus, the searching algorithm of the CS is sensitive to the variables selection
strategy. For some designs the long CS run-times might be cured by selecting
different variable selection strategy. If the selected searching heuristics is not
efficient for the CSP in hand the other heuristic should be used.

5.2.4.4 Experimental results of CSP solving for multiple cycles

Typically, the CSP of the electronic design that contains memory elements
requires solving for multiple cycles to obtain the useful solutions, unless the single
cycle solution is masking memory elements. The proposed modeling methodology
uses the CS for solving CSP for multiple cycles as explained in Section 5.2.4.2.

The experiments were carried out on the same ITC99 benchmark circuits as in
previous section. The results of solving ITC99 benchmarks for multiple cycles are
presented in Table 5-12. The cycle limit is set to 10 and parallelism limit is set to
1000. The selected benchmark circuits are listed in the first column. The rest of the
table is split into two parts. The first part corresponds to the natural variable
selection strategy setting of the CS and the second part is for reversed natural
variable selection strategy setting. The “Cycles” column contains the number of
solved cycles for reaching the target state from the initial state. Next column
(“Found solutions”) shows the number of found solutions. Every solution differs
from the others at least by the initial state. Whereas, intermediate states of the same
cycle may match between different solutions. The type of initial state is shown in
“Initial state” column. The Reset and Combinational types mean that initial state is
deterministic.

Table 5-12 Details of ITC99 benchmarks solving for multiple cycles

D
esign

Natural variable selection Reversed natural variable selection

C
ycles

F
ou

n
d

solu

tion
s

In
itial

state

T
im

e
(m

s)

C
ycles

F
ou

n
d

solu

tion
s

In
itial

state

T
im

e
(m

s)

b00 2 1000 Reset 5304376 2 1 Reset 12955
b01 5 4 Reset 61 5 4 Reset 24
b02 5 2 Reset 30 5 2 Reset 3
b03 4 1 Combin. 227641 3 1 Combin. 6150
b04 2 1 Reset 26066 1 8 Reset 8065
b06 6 4 Reset 80 6 4 Reset 84
b09 2 1 Reset 6151 2 2 Reset 2332717
b10 2 2 Looped 281099 9 2 Combin. 222600

106

The Looped type means that the search is not able to found the deterministic
initial state and is terminated because of finding repetitive states only. Hence, due to
the low parallelism limit necessary diverse solutions may not be discovered. This
can be solved by increasing the parallelism limit, which also increases the run-time
of the CS. Thus, often the trade-off between number of solutions and time should be
made. The run-times of CS for producing the results are shown in the Time column.

On the basis of the results presented in Table 5-12 the reversed natural variable
selection setting outperforms the natural variable selection setting in all cases except
the run-time for b06 and b09 designs. The run-time comparison is shown in Figure
5-10. The difference in run-times for b06 design is less than 5%, and as the found
solutions are identical, we conclude that the variable selection strategy plays no role
in solving this design. On the other hand, the difference in run-times for b09 design
is enormous. The run-time with natural variable selection setting is less than 0.3% of
the run-time with reversed natural variable selection setting, whereas the number of
found solutions varies only by one.

 The results in Figure 5-9 in comparison to the results in Figure 5-10 show that
the same designs that are hard-to-solve (b00, b09) for certain variable selection
strategy remains problematic only for this variable selection strategy in the multi-
cycle solving and not for the other one. For all the other designs the reversed natural
order of variables becomes a preferable variable selection setting in multi-cycle
solving despite the fact that it is worse in single cycle solving (Figure 5-9).

Figure 5-10 CS run-time comparison for different variable selection orders

107

The general approach for selecting appropriate settings for CS is derived on the
basis of the presented experiments. The first step of the approach is to find single
state solutions using both variable selections strategies. Then the run-times of hard-
to-solve cases are compared and the setting that is not causing the extraordinary long
run-times is selected. If such hard-to-solve cases are not present then according to
Table 5-12 reversed variable selection order is a preferable setting.

5.2.5 Solving of joined CSPs

One of the important properties of the proposed modeling methodology is the
ability to combine sub-models of various components into single model. Typically,
test data path model is not practical to describe as a single model. The test data path
model is divided into smaller models as described in Chapter 4. Thus, the CS must
be able to solve the set of joined CSP models.

To study the effectiveness towards that property the system under test is
emulated by combining arbitrary ITC99 benchmarks into single model. The results
of solving combined ITC99 designs are shown in Table 5-13.

Table 5-13 Details of solving combined ITC99 benchmarks

Design links Cycles Initial state Time
(ms) Out In

b01 [OUTP] b02 [LINEA] 5 Combin. 190
b02 [U] b01 [LINE1] 4 Combin. 166
b01 [OUTP] b06 [EQL] 3 Reset 381
b06 [OVERFLW] b01 [CONT_EQL] 2 Reset 267
b02 [U] b06 [EQL] 3 Reset 268
b01 [OUTP]
b02 [U]

b02 [LINEA]
b06 [EQL]

3 Reset 606

b01 [OUTP]
b02 [U]

b06 [CONT_EQL]
b06 [EQL]

3 Reset 413

b10 [CTS]
b10 [CTR]

b01[LINE1]
b01[LINE2]

4 Looped 4091

b10 [CTS]
b10 [CTR]
b02 [U]

b01[LINE1]
b02 [LINEA]
b01[LINE2]

3 Reset 2720

The first two columns in Table 5-13 explain the way how designs are connected

to each other. For example, the first row shows that output “OUTP” of design b01 is
connected to input “LINEA” of b02. Inputs and outputs are selected randomly
obeying the rule that the width of the input port should match the width of the output
port. Additionally, the random constraints are imposed on the free outputs of the
combined designs. The third column explains the reason for stopping the process of
constraint solving. The “Reset” means that reset signal is activated, hence the

108

deterministic initial state of the model is found. The “Combin.” means that in the
last state variables of memory elements are not constrained, thus this state does not
impose any abridge constraints for the next level state, which means that this is a
deterministic state. The “Looped” means that only repetitive states are found for the
last cycle, consequently initial state is not deterministic and solution is not found.

These ITC99 benchmarks are not supposed to be connected to form the single
design. However, the number of solved cycles and solving time shows that even
random designs connected together can be solved in reasonable time. If the solution
that satisfies imposed constraints is not found, the settings of the CS should be
revised as described in previous sections and the initial HLDD model may be
supplemented.

5.2.6 Verification of the results

The manual checking of the correctness of the results produced by CS is
inefficient even with relatively small benchmarks used in previous experiments.
Thus, automatic or semi-automatic way is needed for verification of the results. In
case when the description of the modeling object is available in the VHDL the
results are checked automatically.

The following approach is proposed to check the experimental results. Typically,
a template of the test bench file for the selected design can be generated
automatically in the arbitrary CAD system. The sequences of signals produced by
CS are automatically converted into VHDL statements and inserted into the VHDL
test bench template. Thus, with the help of the proposed approach for test program
synthesis the creation of the test bench files can be fully automated.

Let us bring an example of a test bench file for the results from the experiment
with b01 benchmark explained in section 5.2.4.4. These are the abridge constraints
that are used in this experiment to describe the target state:

XeqC (OUTP, Constant_0x1);

XeqC (OVERFLW, Constant_0x1);

Table 5-14 Sequence of signal values reported by CS for design b01

Input name t-5 t-4 t-3 t-2 t-1

LINEA1 X 1 1 1 1

LINEA2 X 1 0 0 0

RESET 1 0 0 0 0

The results produced by the CS are shown in Table 5-14 and the remaining

details are presented in Table 5-12. The CLOCK signal is not mentioned in Table
5-14 because it is not modeled. Modeling of the CLOCK signal in given case would

109

be redundant, because CS will report two identical sets of values for the period of
CLOCK signal (CLOCK = 0 and CLOCK = 1). Thus, in the test bench file the
CLOCK variable is triggered in a separate VHDL process with predefined time
period (10 nanoseconds in this example).

The values listed in Table 5-14 are converted into a separate VHDL process.
Every solving cycle of CS (t-1 to t-5) is represented as a set of assignments to the
input signals. The time between assignments equals to the period of CLOCK signal.
The synthesized part of the testbench file is presented below:

-- clock gen process

 clock_gen : process
 begin
 clock <= '1' after clkhalfper, '0' after 2*clkhalfper;
 wait for 2*clkhalfper;
 end process clock_gen;
 -- test process
 process
 begin
 -- t-5
 line1 <= '0';
 line2 <= '0';
 reset <= '1';
 -- t-4
 wait for 2*clkhalfper;
 line1 <= '1';
 line2 <= '1';
 reset <= '0';
 -- t-3
 wait for 2*clkhalfper;
 line1 <= '1';
 line2 <= '0';
 reset <= '0';
 -- t-2
 wait for 2*clkhalfper;
 line1 <= '1';
 line2 <= '0';
 reset <= '0';
 -- t-1
 wait for 2*clkhalfper;
 line1 <= '1';
 line2 <= '0';
 reset <= '0';
 wait; -- suspend process

 end process;

110

The results of the simulation of the test bench for b01 design are presented in
Figure 5-11. The open source platform for advanced hardware design ZamiaCAD
[60] has been used for simulation and for the waveform generation. It can be seen
from the waveform that OVERFLW and OUTP signals indeed have the correct
values on the 6th clock cycle (time stamp t0). Hence, the target state of the system is
reached.

The synthesized test bench besides checking the results of the CS facilitates the
debugging of VHDL sources of the design in hand. Moreover, it is often necessary
for debugging purposes to trace the internal values of the design during the virtual
test application. The efficiency and depth of the debugging mostly depends on the
functionality provided by the CAD software. In ZamiaCAD the annotate feature was
used to trace the values of internal variables in any moment of simulated time.

5.3 Case study

This section presents the case study that summarizes the presented methodology
on modeling the test data path for automated test program synthesis.

The functionality that is necessary to include in every test data path model is a
TAP. The typical TAP contains a TAP controller state machine, an instruction
register and a set of data registers. Instruction and data registers are scan-registers.
Thus, these are the basic components of arbitrary TAP model. In Section 4.2.2 is
described the creation of the HLDD model of the simplified TAP control and data
path (Figure 4-5). The respective models are shown in Figure 4-6. These models are
reused in the current section to describe step by step the test program synthesis
methodology starting from the test pattern and finishing on the SVF [61] (Serial
Vector Format) instruction.

The test pattern in board level test is typically a pair of address and data to be
written to this address. Test address is the value to be applied to the address pins of

Figure 5-11 ZamiaCAD simulator output for b01 test bench

111

the board component (e.g. memory). The test data is a value for the data pins of
board component under test. The component under test most certainly has control
pins that should also be driven during the test data application. Generally, the values
for control pins are not included in the test pattern and have to be obtained during
the development of the test program. In case of PCBT these control signals are
handled by the respective peripheral controller inside the microprocessor SoC. Thus,
only the test address, test data, debug instructions and microprocessor instructions
have to be passed to the SoC through the TAP. In this case study the SVF instruction
for transporting the pattern through the TAP port will be synthesized.

The CSP model of the simplified control and data path for JTAG TAP that is
shown in Figure 4-5 has to be complemented by the abridge constraints. The first
source of the abridge constraints is the test pattern itself. The second source is the
structural description of the model. These constraints define for the CS the target
state of the system to reach.

In this case study let the arbitrary test pattern be a pair of test address
(0xA0000004) and test data (0x5A5A6B6B). These are the values that have to be
sent through TAP Data_register to the debug port logic (External logic). From the
CS point of view the address and data are the two cases to solve. Firstly, the address
value should be transmitted, and then the CSP should be solved again to transfer the
test data value. Besides that, the value that may come from external logic must be
defined. Otherwise, the CS may suggest taking the values of the test pattern from the
external logic to pass them back to the external logic, instead of shifting them
through the TDI pin. Taking values form External logic makes no sense as the task
is to do the opposite. For that the structural model is analyzed to impose the
additional abridge constraint that restricts the value of external logic to known reset
value. Let this reset value be 0x00000000.

These are the abridge constraints for the address transfer:

XeqC (Data_register, Constant_0xA0000004);

XeqC (External_logic, Constant_0x00000000);

The abridge constraints for the test data transfer:

XeqC (Data_register, Constant_0x5A5A6B6B);

XeqC (External_logic, Constant_0x00000000).

These constraints are passed to the CS together with the CSP. For the first set of
abridge constraints the CS returns the following sequence of input signals:

The sequence of signals for TAP returned by CS for the set of constraints for
address transfer is presented in Table 5-15.

112

Table 5-15 Sequence of signals for TAP pins for application of address value

Signal name Sequence of signals

TAP state x01234444444444444444444444444444444458

TMS x0100000000000000000000000000000000011x

TDI xxxxx10100000000000000000000000000100xx

TRST 10000000000000000000000000000000000000x

The ‘x’ stands for don’t care value, thus it can be substituted by any value from
the domain of the variable.

The sequence of signals for TAP returned by CS for the second set is presented
in Table 5-16.

Table 5-16 Sequence of signals for TAP pins for application of test data value

Signal name Sequence of signals

TAP state x01234444444444444444444444444444444458

TMS x0100000000000000000000000000000000011x

TDI xxxxx01011010010110100110101101101011xx

TRST 10000000000000000000000000000000000000x

The results presented in Table 5-15 and Table 5-16 for TMS and TRST inputs are
the same. The values for TDI vary as the data to be shifted in is different. The
respective SVF instructions for the data in Table 5-15:

TRST ON;
TRST OFF;
SDR 32 TDI (A0000004);
and for the data in Table 5-16:

TRST ON;
TRST OFF;
SDR 32 TDI (5A5A6B6B);

These SVF instructions show that solving of two consecutive data transfer as
independent cases causes redundant SVF instructions (TRST ON; and TRST OFF;).
In order to eliminate redundant SVF instructions, the second case should be
supplemented by the results of the previous case. The last state of the previous state
is defined as the first state for the next case. Thus, the CS will be informed of the
initial state of the system and will not search for the deterministic initial state, which

113

is a reset state in the example for the test data transferring. This will modify the
sequence of signals for the TAP pins in the following way:

Table 5-17 Modified sequence of signals for TAP pins for application of test data value

Signal name Sequence of signals

TAP state 8234444444444444444444444444444444458

TMS 100000000000000000000000000000000011x

TDI xxx01011010010110100110101101101011xx

TRST 000000000000000000000000000000000000x

The test program for applying single test pattern (address and data) is presented
below:

TRST ON;
TRST OFF;
SDR 32 TDI (A0000004);
SDR 32 TDI (5A5A6B6B);

As it can be noticed from this case study one of the purpose of presenting the
results as SVF instructions is to make the test program readable. Moreover the SVF
test programs are executable by BS test systems. The additional benefit of presenting
a test program in SVF is possibility to add constructions like TDO and MASK that
enable debugging of the test program and the system itself.

5.4 Chapter summary

The first contribution of this chapter is the analytical study that reveals benefits
of automated generation of entire PCBT program. A novelty of this research is the
proposed methodology for test development automation based on partial functional
SUT model. The proposed method for automatic test program synthesis allows
significantly speeding up the development of test program, which is a considerable
contribution towards reducing time-to-market in the PCB industry.

The next contribution of this chapter is a novel methodology to present the partial
functional model as a constraint satisfaction problem (CSP). The transformation of
the model into CSP is automated. The proposed CSP model is based on Java
Constraint Programming (JaCoP) framework. The functionality of the constraint
solver provided by JaCoP framework (CS core, implementation of search algorithm,
backtracking engine) is extended to operate with multiple joined CSP designs and to
produce results for reaching the target state over many clock cycles. The former

114

enhances scalability in handling big industrial problems by modeling them as a set
of smaller related problems.

On the basis of the synthesized “raw” test program the approach for automatic
VHDL test bench synthesis is described. The automatic synthesis of test bench files
facilitates the testing of the test program and contributes to the debugging of the
VHDL source code of the design under test. The test program translated into the
SVF instructions is executable by many available test systems. The synthesized test
program may be also used in debugging of the test setup and SUT, besides the test
access and test application.

This chapter also reports the details of experiments with ITC99 benchmarks.
These experiments prove the feasibility of proposed methodology and are used to
study the influence of various CS settings (variables selection strategy and variable
assignment strategy) on the CS run-time and synthesized test program. The general
strategy is developed for selecting the CS settings in order to obtain the acceptable
result in a reasonable time period. The chapter is concluded by the case study that
summarizes the proposed methodology on the example of test program synthesis for
the test pattern transportation through the JTAG TAP.

115

Chapter 6

TOOLCHAIN FOR PCBT

DEVELOPMENT AUTOMATION

In this chapter the proposed and developed toolchain for PCBT development
automation is presented. The goal of this chapter is to draw an overview picture that
connects the proposed methodology, developed tools and existing test environment.
Firstly, the workflow is discussed and source data relations are explained on the data
flow diagram. Then the general view on the developed and reused tools is presented.
The chapter is concluded with possible applications of the developed tools and
integration with the existing third-party tools and frameworks.

6.1 PCBT development automation workflow

The PCBT development automation workflow proposed in this chapter has many
use case scenarios. The data flow diagram in Figure 6-1 combines possible data
flows from various scenarios. The fourth layer in Figure 6-1 contains the end-points
for all scenarios that determine the target applications for the obtained results. The
CAD software may be used for:

 Verification of the obtained input data for primary inputs
 Debugging of the VHDL source code of the PCBA component using the

test bench generated from obtained input data
 Simulation of the test application
 Estimation of the test run-time

116

In case if VHDL source code of the PCBA components is not available the above
mentioned tasks cannot be fulfilled. However, if the CSP model does not include the
structural model of the test data path, the produced input data can still be used for
the CAD software related task.

The other end-point of the data flow diagram is the test system. In the frame of
this work the test system is considered as boundary-scan test software (capable to
interpret the test program in SVF) and boundary-scan test hardware that is connected
to the PCBA under test. The inputs for the test system are PCB description and test
program in SVF. The test program properties and objectives have been discussed in
details in Chapter 3. The test system may be used for different purposes, depending
on the objective of the test program:

 Test interconnections between μP SoC and another PCBA component
 Load program into on-board or on-chip memory (μP SoC internal memory)
 Test PCBA component using μP as on-board tester (e.g. in the field)
 Debug the execution of the application running on the μP
 Debug PCBA (NTF problem)

The layers in Figure 6-1 split the data flow into 5 parts. The arrows that cross the
border between layers mean not just data passing, but transformation of data. “Layer
0” contains the data that is coming from third-party sources. The VHDL source code

Figure 6-1 Data flow diagram and transformation layers

117

and the documentation of PCBA components are obtained from the vendor of the
component. The PCBA description is a documentation of the PCBA that includes a
list of components with interconnection information that typically comes as a netlist
file.

The first set of transformations is performed when crossing the border between
“Layer 0” and “Layer 1”. The latter layer contains the behavioral and structural
model of the test data path. The behavioral model can be automatically converted
from the VHDL source codes of the PCBA component (VHDL to HLDD converter)
or to be created manually with the help of the documentation. The documentation is
also needed to create the structural model of the selected PCBA component. The
PCBA structural model is created automatically from board description (Board
netlist parser).

The behavioral and structural models are transformed into CSP (HLDD to CSP
converter and structural constraints extractor), which lies solely on the second layer
(Layer 2). The CSP is supposed to be solved by the CS (CSP solver) in order to
obtain the input data for primary inputs of the uniform model. The input data for
primary inputs corresponds already to the “Layer 3” and is used in converter from
raw TAP signals to SVF instructions and for automatic test bench synthesis. The test
program and the test bench are located on the last layer and can be used in test
system and CAD software respectively.

The important issue that has not been mentioned in Figure 6-1 is the source of the
test patterns. The test patterns may come from different sources. First, the test
system itself may be able to generate the test patterns. Second, the test patterns may
be imported from external automated test pattern generator (ATPG) or taken from
the pre-generated library. The test generation is out of scope of given research, thus,
for the sake of readability the test patterns source and their origin is not included in
the data flow diagram in Figure 6-1.

6.2 Toolchain and integration

The functionality that was developed within the framework of this research is
shown in Figure 6-2. Parsers, converters and solver can be run individually or can be
accessed via the common plugin for Eclipse Integrated Development Environment
(IDE). Eclipse is a universal tool platform, an open extensible IDE for “anything and
nothing in particular”.

118

Eclipse has the considerable support of the leading companies and organizations
in the technology sector. Eclipse is gaining widespread acceptance in both the
commercial and academic arenas [50].

Eclipse plugin facilitates the smooth integration of developed functionality into
widely used open source IDE for many applications. The developed toolchain for
automation of PCBT program development can be easily integrated with previously
mentioned CAD software ZamiaCAD as plugin installation.

The toolchain depicted in Figure 6-2 consists of blocks of three different types
(generated, reused and developed). The block of generated type (Eclipse plugin)
corresponds to the graphical user interface (GUI) functionality that was
automatically generated in the Eclipse Modeling Framework (EMF) [50]. EMF was
also used for developing the metamodels for PCBA structural model and for PCBA
behavioral model. The behavioral model is based on mathematical foundations of
HLDD graphs. The developed plugin is the first GUI for creating and editing of
HLDD graphs. The “VHDL to HLDD converter” was added to the toolchain for
automatic behavioral model creation from VHDL source code (RT-Level) of PCBA
components. The “Board netlist parser” was developed to automatically obtain the
PCBA structural model from board netlist file. This model has to be complemented
with structural models of PCBA components created manually in Eclipse GUI.

The above mentioned functionality forms a bridge between GUI level and an
underlying level with metamodels. The tools on the next level transform the
structural and behavioral models of PCBA to the CSP model. The CSP model solver

Figure 6-2 Plugin modules and abstraction layers

119

plays a role of backward link to the metamodel layer by producing the results in raw
format of solving the CSP model. The implementation of CSP model belongs to the
reused functionality. It is based on the JaCoP framework [55] library. The core of
the CSP solver also uses a search engine and a backtracking functionality provided
by JaCoP framework library.

The modules in the developed toolchain may be swapped or added without a
significant impact on the other modules. For example, the benefits of implementing
behavioral model as HLDD graphs may be assessed by adding other implementation
of behavioral models (metamodel, CSP converter) for comparison experiment
without introducing changes to the rest of toolchain modules. Moreover, the CS
itself can be substituted by more efficient one, just by exchanging the CSP model
and CSP solver modules. Thus, in both cases only neighboring modules are affected
while the rest of the toolchain remains untouched.

The developed functionality and corresponding toolchain combined with CAD
software and boundary scan enabled test system in addition to the practical
applications also form the research environment for studying the field of board level
test and debug.

6.3 Chapter summary

The toolchain for PCBT development automation is presented in this chapter.
The various data structures and formats that were described previously in this thesis
are shown in a layered data flow diagram (Figure 6-1) to outline their purpose and
place in the final toolchain.

The integration possibilities into third party Test system and CAD software are
highlighted in this chapter. The main advantage of the developed toolchain is that it
can be used as a plugin to Eclipse IDE as well as a standalone Eclipse-based
application.

The developed functionality is included into the toolchain and the hierarchy
between enclosed tools is depicted in Figure 6-2. The modularity and the
correspondence to different abstraction layers facilitates the substitution of modules
without changing the rest of the functionality, that leaves the space for further
research in the field of board level test automation using the developed toolchain.

120

121

Chapter 7

CONCLUSIONS AND

FUTURE WORK

The aim of this thesis is to propose a novel methodology to model the test data
path with the goal of automatic synthesis of board level processor-centric test
program. The proposed modeling approach reuses the theory of high-level decision
diagrams as a basis for behavioral modeling of the test data path and presents a new
model to describe the structure of the PCBA and its components. The automation of
the processor-centric board test program development is based on solving the
constrained test data path model of the PCBA under test.

This chapter summarizes the thesis, brings together the contributions of this
research and points out promising directions for future work.

7.1 Conclusions

This thesis presents a new approach for automatic synthesis of PCBT program
that is executable on ATE and uses on-board μP as the central component of test
access and application mechanism. Structural and behavioral models are
automatically transformed into Constraint Satisfaction Problem (CSP), which is
passed to the search algorithm provided by Java Constraint Programming (JaCoP)
[55] framework to solve the task of test pattern transportation from board under test
TAP pins to UUT pins.

The feasibility of the proposed methodology was proven by the presented
experimental results. ITC99 benchmarks and models of various μP SoC modules
have been used in conducted experiments.

122

7.1.1 Results and contributions

A comprehensive analytical study has been carried out that revealed the benefits
of automated generation of processor-centric test programs and motivated the
research presented in the thesis.

The new results and contributions of the presented work are summarized as
follows:

- Formulae for test application time calculation - The simulation-free
calculation of the test application time is useful for fast cost estimation of
the manufacturing board test solution. Moreover, these formulae are
helpful for comparison of different test application strategies for a given
test case.

- The metamodel and its implementation for structural models of PCBA,
SoCs and other PCBA components

- The metamodel and its implementation for behavioral models of ICs

- A novel methodology for test data path modeling - Structural models are
augmented by behavioral models to assemble the uniform model of the
PCBA that is used in test development automation.

- A novel approach and implementation of automated synthesis of PCBT
program in SVF

- A new approach for automated synthesis of the VHDL test bench

7.1.2 Advantages

The proposed toolchain of developed and reused programs corresponds to the
platform with broad research capabilities in the field of board level test. It also
provides reach integration possibilities with third-party tools for test and debug of
assembled PCBs.

The modules of the toolchain such as CSP model or underlying metamodels can
be substituted or supplemented with minor changes to the rest of the framework.
This may help to assess the proposed approach and to speed up the automatic
synthesis of PCBT programs in the future.

7.2 Future work

This section outlines the most important issues that require further investigation
for improving the proposed techniques.

The research presented in this thesis was primarily targeting the PCBT program
development automation. The proof of concept implementation of the toolchain is

123

created to carry out the feasibility study of the proposed approach. Hence, the
performance related issues of the used tools are not considered in the first place.
Thus, to assess the efficiency of JaCoP framework towards other CS packages the
developed toolchain should be extended with several other CS techniques for fair
comparison.

The extension of the library of models should be continued. This may assist to
achieve the wide adoption of proposed methodology. The models of SoC
components from major IP vendors have to be considered first, while on-board
memories and interfaces are the next targets.

The model development methodology could be complemented towards
supporting the import and export of IP-XACT compliant models. This will conduce
to reusing of developed models in other applications. Moreover, the effort for model
development could be reduced by importing the IP-XACT compliant model from
third party applications.

The integration opportunities of the developed toolchain into existing test
systems and CAD software should be investigated further to find more common
standpoints. It would reveal the demands and problems that could be solved by
integrating the whole toolchain or individual modules into third-party tools.

124

125

References

[1] iNEMI, International Electronics Manufacturing Initiative. Research
Priorities 2011. [Online] 2011. [Cited: 7 12 2011.] http://www.inemi.org/node/2135.

[2] IEEE Standard Test Access Port and Boundary-Scan Architecture. 2001.
IEEE Std. 1149.1-2001.

[3] P. B. Geiger, S. Butkovich. Boundary-Scan Adoption – An Industry
Snapshot with Emphasis on the Semiconductor Industry. – Proc. of International
Test Conference, Austin, Texas USA, 2009, pp. 1-10.

[4] P. Maxwell, I. Hartanto, L. Bentz . Comparing Functional and Structural
Tests. – Proc. of International Test Conference, Atlantic City, NJ , USA, 2000, pp.
403 - 407.

[5] A. Jutman. At-speed on-chip diagnosis of board-level interconnect faults. –
Proc. of 9th IEEE European Test Symposium, France, 2004, pp. 2-7.

[6] S. Mourad, Y. Zorian. Principles of testing electronic systems. New York :
A Wiley-Interscience Publication, 2000.

[7] K.M. Butler, J.M. Carulli, J. Saxena. Modeling Test Escape Rate as a
Function of Multiple Coverages. – Proc. of International Test Conference, Santa
Clara, CA, USA, 2008, pp. 1 - 9.

[8] S. Davidson. Towards an understanding of no trouble found devices. – Proc.
of VLSI Test Symposium, Palm Springs, California, USA, 2005, pp. 147-152.

[9] S. Davidson. Understanding NTF component from the field. – Proc. of
International Test Conference, Austin, TX, USA, 2005, pp. 332-342.

[10] J. Webster, B. Fenton, D. Stringer, B. Bennetts. On the synergy of
boundary scan and emulation board test: a case study. – Proc. of Board Test
Workshop, Charlotte, USA, 2003, p. 10.

126

[11] T. Wenzel, H. Ehrenberg. Combining Boundary Scan and JTAG
Emulation for Advanced Structural Test and Diagnostics: White Paper. [Online]
2009. p.9. http://tmworld.resourcecenteronline.com.

[12] M. Daud. PC Maintenance And Troubleshooting Expert Systems. – Proc.
Of Int. Conf. On Robotics, Vision And Parallel Processing For Automation, 1999,
pp. 528 - 534.

[13] S. Oresjo. A New Test Strategy for Complex Printed Circuit. – Proc. of
Nepcon West 1999, 1999.

[14] J. Kirschling. Improved Fault Coverage in a Combined X-ray and In-circuit
Test Environment. – Proc. of EtoniX 2001, 2001.

[15] J.H. Shim, H.S. Cho, S. Kim. A new probing system for the in-circuit test
of a PCB. – Proc. of International Conference on Robotics and Automation ,
Minneapolis, MN, USA, 1996, pp. 590 - 595.

[16] J.K. Berger. New directions in loaded board testing. – Proc. of Automatic
Testing Conference - AUTOTESTCON, Philadelphia, PA , USA, 1989, pp. 212 -
216.

[17] R. Ubar. Alternative Graphs and Test Generation for Digital Systems. –
Proc. of 2nd Conf. On Fault Tolerant Systems and Diagnostics, Brno,
Czechoslovakia, 1979, pp. 177-184.

[18] Stephen F. Scheiber. Biolding a Successful Board-Test Strategy. Woburn,
MA : Butterworth-Heinemann, 2001. p. 83.

[19] Nadeau-Dostie. An embedded technique for at-speed interconnect testing. –
Proc. of Int. Test Conf., Atlantic City, USA, 1999, pp. 431 - 438.

[20] Kozio®. One Button Test Strategy for Volume Manufacturing. Longmont,
CO : Kozio, Inc. White Paper.

[21] M. Reagin, S.Yang. Test, Inspection and Measurement.
[Online] 21 04 2009. [Cited: 12 12 2011.]
http://thor.inemi.org/webdownload/newsroom/Presentations/SMTA_China_Apr09/T
IM.pdf.

[22] IEEE Standard for a Mixed-Signal Test Bus. 1999. IEEE Std 1149.4-1999.

[23] IEEE Standard for Boundary-Scan Testing of Advanced Digital Networks.
2003. IEEE Std 1149.6-2003.

[24] S.K. Lim. Physical design for 3D system on package. IEEE Design & Test
of Computers, 2005, Vol. 22, pp. 532 - 539.

[25] F.P. Carson, Young Cheol Kim, In Sang Yoon. 3-D Stacked Package
Technology and Trends. – Proc. of IEEE, Vol. 97, 2009, pp. 31 - 42.

127

[26] IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access
Port and Boundary-Scan Architecture. 2010. IEEE Std 1149.7™-2009.

[27] K. Parker, J. Burgess. What is IEEE P1149.8.1 and why? – Proc. of
International Test Conference 2009. ITC 2009, Austin, TX, USA, p. 1.

[28] K.P. Parker. The Boundary-Scan Handbook. Boston, MA, USA : Kluwer
Academic Publisher, 2003. p. 373.

[29] D. Gizopoulos, A. Paschalis, Y. Zorian. Embedded Processor-Based Self-
Test. Boston : Kluwer Academic Publisher, 2004. pp. 81 -156. Vol. 28.

[30] A. Apostolakis, M. Psarakis, D. Gizopoulos, A. Paschalis. Functional
Processor-Based Testing of Communication Peripherals in Systems-on-Chip. –
IEEE Trans. on VLSI, 2007, pp. 971 - 975.

[31] J.-R. Huang, M. K. Iyer, K.-T. Cheng. A self-test methodology for IP
cores in bus-based programmable SoCs. – Proc. of IEEE VLSI Test Symposium
2001, 2001, pp. 198 - 203.

[32] K. Jayaraman, V. M. Vedula, J. A. Abraham. Native mode functional
self-test generation for systems-on-Chip. – Proc. of International Symposium for
Quality Electronic Design, 2002, pp. 280 - 285.

[33] P. Bernardi, M. Grosso, M. Rebaudengo, M. Sonza Reorda. Exploiting
an infrastructure-intellectual property for systems-on-chip test, diagnosis and silicon
debug. – IET Computers & Digital Techniques, Vol. 4, Issue 2, 2010, pp. 104 - 113.

[34] D. S. Morris. In-circuit, functional or emulation - choosing the rigth test
solution. June 1986, The IEE Computer-Aided Engineering Journal, Vol. 3, pp. 94 -
101.

[35] Nexus 5001 Forum. The Nexus 5001 Forum Standard for a Global
Embedded Processor Debug Interface. 2003. EEE-ISTO 5001™-2003.

[36] B. Vermeulen, N. Stollon, R. Kuhnis, G. Swoboda, J. Rearick. Overview
of Debug Standardization Activities. IEEE Design & Test of Computers , 2008, Vol.
25.

[37] MIPI Test and Debug Working Group. MIPI Test and Debug Interface
Framework. 2006. v3.2, White Paper.

[38] MIPI Test and Debug Working Group. MIPI Alliance Test and Debug -
NIDnT-Port. 2007. v1.0, White Paper.

[39] S. Devadze, A. Jutman, A. Tsertov, M. Instenberg, R. Ubar.
Microprocessor-based system test using debug interface. – Proc. of 26th IEEE
NORCHIP Conference, Tallinn, Estonia, 2008, pp. 98-101.

[40] MIPS® EJTAG Specification. MD00047, 1225 Charleston Road, CA, USA :
MIPS Technologies Inc, November 2008.

128

[41] ARM9EJ-S Technical reference manual. ARM DDI 0222B, : ARM
Limited, 2002.

[42] ARM Architecture reference manual. ARM DDI 0100I, : ARM Limited,
2005.

[43] S. Zeidler, C.Wolf, M. Krsti´c, F. Vater, R. Kraemer. Design of a Test
Processor for Asynchronous Chip Test. – Proc. of 20th Asian Test Symposium
(ATS'11), New Delhi, India, 2011, pp. 244 - 250.

[44] S. Ostendorff, H.-D. Wuttke, J. Sachße, S. Köhler. A new Approach for
Adaptive Failure Diagnostics Based on Emulation Test. – Proc. of Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010 , Dresden,
Germany, 2010, pp. 327 - 330.

[45] A. Tsertov, R. Ubar, A. Jutman, S. Devadze,. Automatic SoC Level Test
Path Synthesis Based on Partial Functional Models. – Proc. of 20th Asian Test
Symposium (ATS'11), New Delhi, India, 2011, pp. 532 - 538.

[46] D. Gajski, L. Cai. Transaction Level Modeling: An Overview. –
Hardware/Software Codesign and System Synthesis, Newport Beach, California,
USA, 2003, pp. 19 - 24.

[47] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating,
and Reusing IP within Tools Flows. 2010. IEEE std. 1685-2009.

[48] UML Profile for MARTE: Modeling and Analysis of Real Time Embedded
Systems. formal/2009-11-02, : http://www.omg.org/spec/MARTE/1.0, Object
Management Group (OMG), November 2009.

[49] S. Demathieu, F. Thomas, C. André, S. Gérard, F. Terrier. First
experiments using the UML profile for MARTE. – 11th IEEE Symposium on Object
Oriented Real-Time Distributed Computing (ISORC), Orlando, Florida, USA, 2008.

[50] E. Gamma, L. Nackman, J. Wiegand. EMF: Eclipse Modeling
Framework. Second Edition. Addison-Wesley Professional, 12.2008.

[51] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with SystemC.
New York, USA : Kluwer Academic Publishers, 2002.

[52] A. Tsertov, A. Jutman, S. Devadze. Testing Beyond the SoC in a Lego
Style. – Proc. of East-West Design & Test Symposium, St. Petersburg, Russia, 2010,
pp. 334 - 338.

[53] A. Chepurov, G. D. Guglielmo, F. Fummi, G. Pravadelli, J. Raik, R.
Ubar, T. Viilukas. Automatic generation of EFSMs and HLDDs for functional
ATPG. – Proc. of 11th International Biennial Baltic Electronics Conference,
Tallinn, Estonia, 2008, pp. 143-146.

129

[54] R. Ubar, A. Morawiec, J. Raik. Back-Tracing and Event-Driven
Techniques in High-Level Simulation with Decision Diagrams. – Proc. of the IEEE
ISCAS2000 Conference, Vol. Vol. 1, Geneva , Switzerland, 2000, pp. 208-211.

[55] K. Kuchcinski, R. Szymanek. JaCoP Library User Guide. Version 3.0.
November 2010.

[56] F. Rossi, P. van Beek and T. Walsh, [ed.]. Handbook of Constraint
Programming. Elsevier, 2006.

[57] G. H. Mealy. A Method to Synthesizing Sequential Circuits. Bell Systems
Technical Journal, 1955, pp. 1045 - 1049.

[58] G. D. Guglielmo, F. Fummi, C. Marconcini, G. Pravadelli. Improving
high-level and gate-level testing with FATE: A functional automatic test pattern
generator traversing unstabilised extended FSM. – Computers & Digital Techniques,
IET, 2007.

[59] F. Corno, M. S. Reorda, G. Squillero. RT-level ITC'99 benchmarks and
first ATPG results. Design & Test of Computers, IEEE, 2000, Vol. 17, pp. 44 - 53.

[60] ZamiaCAD. [Online] 2011. [Cited: 1 11 2011.]
http://zamiacad.sourceforge.net/web/.

[61] Serial vector format specification. [Online] 1999. [Cited: 30 11 2011.]
ASSET InterTech, Inc. http://www.assetintertech.com/support/svf.pdf.

[62] H. Fang, Z. Wang, X. Gu, K. Chakrabarty. Ranking of suspect faulty
blocks using dataflow analysis and dempster-shafer theory for the diagnosis of
board-level functional failures. – Proc. of 16th European Test Symposium,
Trondheim, Norway, 2011, pp. 195-200.

[63] S. Devadze, A. Jutman, A. Tsertov, R. Ubar. Microprocessor modeling
for board level test access automation. – Proc. of 10th IEEE Workshop on RTL and
High Level Testing, Hong Kong SAR, China, 2009, pp. 154–159.

[64] C.H.-P. Wen, L.-C. Wang, Kwang-Ting Cheng, Kai Yang, Wei-Ting
Liu, Ji-Jan Chen. On A Software-Based Self-Test Methodology and Its
Application. – Proc. of VLSI Test Symposium, 2005, pp. 107 - 113.

130

Appendix A

AGM FORMAT

AGM format is described in this appendix. This format was proposed in Tallinn
University of Technology to describe the design at RT-Level and behavioral
abstraction level (HLDD).

This format is not a contribution of this thesis, but rather presented here for
explanatory purposes. AGM stands for Alternative Graph Model. The origin of this
abbreviation is in the first publications of Prof. Raimund Ubar on topic of decision
diagrams, where they were referred to as alternative graphs (e.g. [17]).

AGM format is case sensitive. It is a line-based format where maximum line
length can be 256 characters. In the following the BNF syntax of HLDD model
format is presented. The meta-syntax used obeys the following rules:

1. Syntactic categories (non-terminals) are printed in italics; literal words,
characters and constants are enclosed to ‘quotes’.

2. If a construct is enclosed to [square brackets], it is optional.
3. If a construct is enclosed to {curly brackets}, it may be repeated zero or more

times.
4. A choice is indicated with a vertical bar |.
5. If a construct is enclosed in <chevrons>, it can occur at most once.

132

AGM Syntax

AGM :=

statistics

mode

[control_signals]

hldd_description

statistics :=

‘STAT#’ natural ‘Nods,’ natural ‘Vars,’ natural ‘Grps,’ natural ‘Inps,’ natural
‘Outs,’ natural ‘Cons’ [‘,’ natural ’Funs’] [‘,’ natural ’Mems’] [‘,’ natural‘C_outs’]

The natural values reflect the number of nodes, variables, graphs, inputs, outputs,
constants, functions, memory arrays and control part outputs, respectively. The
number of functions and memory arrays are meaningful in the high-level descriptions.
The number of control part outputs is used with the RTL descriptions divided into a
control part and a datapath only.

control_signals :=

‘COUT#’ natural {‘,’ natural}

Shows the variable indexes of control signal variables. Used in RTL descriptions
partitioned to datapath and control parts.

mode :=

‘MODE#’ ‘RTL’ | ‘BEHAVIORAL’

Indicates whether an RTL model, or a behavioral model is being described.

hldd_description :=

[{input_definition}]

[{memory_definition}]

[{constant_definition}]

[{function_definition}]

[{control_definition}]

{graph_variable_definition}

133

The definitions are ranged according to the order shown above. control_definitions
are used only in the RTL descriptions partitioned into control and datapath parts.

input_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range

Defines a primary input of the model.

memory_definition :=

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range [row_range]

column_range

memory_row

{memory_row}

Defines a memory array. The optional row_range is used with two-dimensional
arrays, and it determines the range of row addresses used in memory. In one-
dimensional arrays, row_range is omitted. In similar way, column_range determines
the range of column addresses used in the memory variable.

memory_row :=

‘{‘ integer {‘,’ integer} ‘}’

Defines the contents of a memory variable. The number of integers in
memory_row is determined by column_range.

row_range := mem_range

Row_range is used with two-dimensional arrays, and it determines the range of
row addresses used in memory. In one-dimensional arrays, row_range is omitted.

column_range := mem_range

Determines the range of column addresses used in the memory variable.

mem_range := ‘[‘ integer ‘-’ integer ‘]’

In mem_range the first integer must be less than the second one.

constant_definition :=

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range ‘VAL’ ‘=’integer

Defines a constant. The integer value shows the value of the constant.

134

function_definition :=

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range

‘FUN#’ function_type arguments_definition

Defines an operation or function.

function_type := identifier

Shows the type of the operation.

arguments_definition :=

‘(‘ [argument] {‘,’ argument} ’)’

Defines the arguments (if any) of an operation.

argument :=

‘A’argument_index ‘<=’ argument_variable range

The range shows the bit-slice of the variable argument_variable that is used as
afunction argument.

argument_index := natural

Shows the index of the function argument.

argument_variable := natural

Shows the index of the variable used as the function argument.

control_definition :=

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range

Defines a control signal. Used to define control part output signals of the RTL
designs partitioned into datapath and control parts.

graph_variable_definition :=

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range

graph_definition

Defines a variable for which a graph corresponds.

graph_definition :=

135

‘GRP#’ graph_index ‘:’ ‘BEG’ ‘=’ natural ‘,’ ‘LEN’ ‘=’ natural ‘’

node_definition | parallel_node_definition

{node_definition | parallel_node_definition}

Defines a graph in the HLDD model. The ‘BEG=’ construct shows the absolute
index of the first node in the graph. The ‘LEN=’ construct in turn shows the number
of nodes in the graph.

node_definition :=

nod_abs_index nod_index ‘: (‘nod_flags’) (’ successors ‘) V =’ nod_var

nod_name nod_range

Defines an HLDD node. nod_abs_index and nod_index represent the absolute
(inside the model) and relative (inside the graph) indexes of the node. Construct
successors shows the successor nodes of current node which are chosen with different
node values. Index of the variable labelling the node is determined with nod_var.

parallel_node_definition :=

nod_abs_index nod_index ‘: (v___)’ ‘(‘ ‘0’ ‘0’ ‘)’ ‘VEC =’ nod_var_vector

Defines a terminal node of the FSM graph of RTL description. nod_abs_index and
nod_index represent the absolute (inside the model) and relative (inside the graph)
indexes of the node, respectively. Indexes of the variables labelling the node are
determined with nod_var_vector.

nod_var_vector :=

‘ ”’ state_value {signal_value} ’ ”’

state_value shows the value of the next state. The signal_value constructs show
the values of the control signals defined in the control_signals construct.

state_value := natural

Shows the value of the next state.

signal_value := natural | ‘X’

The signal_value constructs show the values of the control signals defined in the
control_signals construct.

nod_var := natural[[‘[‘ ‘V’ ‘=’ row_index ’]’] ‘[‘ ‘V’ ‘=’ column_index ’]’]

136

Shows the index of the variable labelling the node. Optional constructs row_index
and column_index are used with memory variables labelling the node. These
constructs determine the indexes of the variables used for addressing rows and
columns, respectively.

nod_name := string

Shows the name of the node.

nod_range := range

nod_range determines the bit-slice of the variable that labels the node. HLDD
model format allows slices of variables to be used for labelling a node.

row_index := natural

Determine the indexes of the variables used for addressing rows of the memory
variable.

column_index := natural

Determines the index of the variable used for addressing columns of the memory
variable.

nod_abs_index := natural

Shows the absolute (inside the model) index of the node.

nod_index := natural

Shows the relative (inside the graph) index of the node inside the graph.

graph_index := natural

Shows the index of the graph.

variable_flags :=

< ‘i’ | ‘m’ | ‘c’ | ‘f’ | ‘o’ | ‘n’ | ’_’ | ‘F’ > {<‘d’> | ‘_’}

The variable flags have the following interpretation:

‘i’ - input variable

‘m’ - memory variable

‘c’ - constant variable

‘f’ - function variable

137

‘o’ - output variable

‘d’ - clock cycle delay, e.g. in registers, flipflops.

The following flags are used with RTL descriptions only:

‘n’ - control part output signal

‘F’ - FSM graph variable

‘r’ - reset variable

‘s’ - state variable

nod_flags :=

< ‘i’ | ’_’ > { ‘n’ | ‘v’ | ‘_’}

The node flags have the following interpretation:

‘i’ - inverted node (in gate-level descriptions only)

‘n’ - non-terminal node (RTL, behavioral)

‘v’ - control part terminal node (RTL)

successors :=

nonterminal_successors | terminal_successor

Construct successors shows the successor nodes of current node which are chosen
with different node values.

nonterminal_successors :=

node_values ‘=>’ successor_index {node_values ‘=>’ successor_index }

This construct shows the indexes of successor nodes which will be selected with
corresponding node values.

terminal_successors := ‘0’ ‘0’

Terminal nodes are nodes which have no successor nodes.

node_values := natural { ‘,’ | ‘’ natural}

Determines the set of node values that activate the corresponding branch. The
comma ‘,’ character is used for separating the indexes; the minus sign ‘-‘ is used for
index ranges, e.g. ‘3-5’, which can be alternatively written as ‘3,4,5’.

138

successor_index :=

natural | ‘X’

If successor_index is a natural number, it shows the index of the successor node.
Otherwise, if successor_index is ‘X’, it means that the successor is undetermined.

var_index := natural

Shows the index of the variable.

var_name := string

Shows the name of the variable.

var_range := range

Shows the bit-width of the variable.

range := [‘<’ natural ‘:’ natural ‘>’]

Range is a construct for describing bit-vectors. The first natural shows the index of
the most significant bit and the latter is for the least significant bit, respectively. If
range is omitted, it will default to ‘<0:0>’.

string :=

‘ ” ’ {character} ‘ ” ’

Character can be any character, except newline and double quote ‘”’.

integer :=

[‘-’]natural

Any integer number.

natural

Natural can be any non-negative number.

identifier :=

alphabetic_character{alphabetic_character | digit | ‘_’}

alphabetic_character := ‘A’| …| ’Z’ | ‘a’ | …| ‘z’

digit := ‘0’ | ‘1’ | …| ‘9’

139

Curriculum Vitae

Personal Data

 Name Anton Tšertov

 Date of birth 09.09.1984

 Place of birth Estonia

 Citizenship Estonian

Contact Data

 Address Raja 15, Tallinn, 12618

 Phone +372 6202264

 E-mail anton.tsertov@ttu.ee

Education

 2007 - … Ph.D. Student, Department of Computer
 Engineering, Tallinn University of Technology

 2006 – 2007 M.Sc. in Computer Engineering, TUT

 2003 – 2006 B.Sc. in Computer Engineering, TUT

Carrier

 2010 – … Researcher, Department of Computer
 Engineering, TUT

2010 – … ELIKO Competence Centre in Electronics-, Info- and
Communication Technologies, R&D Engineer

2008 – 2011 R&D Engineer, Testonica Lab OÜ

2008 Java Developer, Cybernetica AS

140

2007 – 2010 Extraordinary Researcher, Department of Computer
Engineering, TUT

2005 – 2007 ELIKO Competence Centre in Electronics-, Info- and
Communication Technologies, R&D Engineer

Academic Degree

 Master of Science in Computer Engineering, TUT,

 “BIST Optimization Using LFSR Polynomial Calculation Method”

Awards

2007 Contest on Scientific publications in Tallin
University of Technology - 1st place (Master degree
category)

2007 – 2010 "Tiger University" scholarship for ICT PhD students
(EITF)

Research topics

Optimization of board-level testing, decision diagrams, integrated
circuit modeling, BIST

141

Elulookirjeldus

Isikuandmed

 Nimi Anton Tšertov

 Sünniaeg 09.09.1984

 Sünnikoht Eesti

 Kodakondsus Eesti

Kontaktandmed

 Aadress Raja 15, Tallinn, 12618

 Telefon +372 6202264

 E-post anton.tsertov@ttu.ee

Hariduskäik

2007 - … doktorant, arvutitehnika instituut, Tallinna
 Tehnikaülikool

 2006 – 2007 tehnikateaduste magister, arvuti- ja
 süsteemitehnika eriala, TTÜ

 2003 – 2006 tehnikateaduste bakalaureus, arvuti- ja
 süsteemitehnika eriala, TTÜ

Teenistuskäik

2010 – … teadur, arvutitehnika Instituut, TTÜ

2010 – … arendusinsener, ELIKO OÜ Tehnoloogia
Arenduskeskus

2008 – 2011 arendusinsener, Testonica Lab OÜ

2008 programmeerija Java keeles, Cybernetica AS

142

2007 – 2010 erakorraline teadur, arvutitehnika instituut, TTÜ

2005 – 2007 arendusinsener, ELIKO OÜ Tehnoloogia
Arenduskeskus

Teaduskraad

 Tehnikateaduste magister, arvuti- ja süsteemitehnika, TTÜ

“BISTi optimeerimine, kasutades nihkeregistri polünoomi
arvutamise meetodit”

Teaduspreemiad

2007 TTÜ teadustööde konkurss I koht
tehnikateaduste valdkonnas magistri
kategoorias

2007 – 2010 Tiigriülikooli stipendiumid IKT
doktorantidele Eesti avalik-õiguslikes
ülikoolides

Teadustegevus

Trükkplaatide testimise optimeerimine, otsusediagrammid, lõplike
automaatide dekompositsioon, integraallülitusest kiibi
modelleerimine

143

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

144

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

145

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A
Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands Environments.
2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components. 2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

146

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

