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Abstract 

The thesis addresses topics related to the manufacturing board level testing. The 
restricted capabilities of widely adopted board level test methods with respect to 
such modern challenges as dynamic (timing-accurate), at-speed and high-speed 
testing as well as in-system diagnosis of functional failures reveal the demand in 
methodology that could address these problems altogether. The industry is aware of 
such methodology, but its applicability is restricted by the test program development 
cost. This board level testing methodology has many names, but in this thesis it is 
referred as processor-centric board testing (PCBT). 

Despite of various existing implementations of PCBT solutions the general 
drawback of PCBT is the cost for manual development of the necessary test access 
and test application functionality (test path) for particular board under test. In 
comparison to the widely adopted test methods the PCBT is for the most part 
handcrafted test solution. In many cases, the gap between development effort of 
PCBT program and the acceptable/planned cost place the limitation on the 
applicability of PCBT. 

The main contribution of this research is the methodology that reduces the cost of 
PCBT solution. The thesis presents approach to automate the development of a 
PCBT program. The automatic PCBT program synthesis is based on solving the task 
of test data transportation through the test path. The test path is modeled with the 
partial functional and structural modeling of printed circuit board assembly and its 
components. The proposed approach reduces the effort and time for development of 
high quality PCBT program using developed automation framework. 
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Kokkuvõte 

Väitekirjas käsitletakse tulemusi, mis kuuluvad elektroonika trükkplaatide 
testimise valdkonda. Tänapäeval laialt levinud trükkplaatide testimise meetodid ei 
rahulda nõudmisi, mille seavad üles moodsad tehnoloogiad, kus üha oluliseks on 
saamas süsteemide kiiruslik testimine ja süsteemisisese funktsionaalse diagnoosi 
vajadus, ja millest seetõttu tuleneb vajadus uue metodoloogilise lähenemise järele, 
kus mõlemad probleemid oleksid adresseeritud koos. Tööstuses on selline 
metodoloogia arendamisel, kuid kitsaskohaks on testprogrammide koostamise suur 
maksumus. Käesolevas töös on leidnud nimetatud metodoloogia uudse lahenduse 
protsessorikesksete elektroonika trükkplaatide testimise (PETT) nime all.  

Vaatamata mitmesuguste PETT lahenduste olemasolule, on siin üldiseks 
puuduseks komplitseeritud käsitsitöö kõrge maksumus, mis on seotud trükkplaadi 
komponentide keeruka funktsionaalsuse analüüsi ning arvestamisega testimisteede 
aktiveerimisel ja testprotseduuride koostamisel. Suurem osa trükkplaatide testide 
programmeerimise tööst tehakse tänapäeval käsitsi. Enamikel juhtudel ületab testide 
programmeerimistöö reaalne maht aktsepteeritavad kulud sedavõrd, et osutub 
paratamatuks teha järeleandmisi testimise kvaliteedi osas. 

Käesoleva töö põhitulemuseks on uus metodoloogia, mis viib PETT lahenduste 
kulutused sedavõrd alla, et need oleksid vastuvõetavad tööstuses. Väitekirjas on 
esitatud meetod PETT programmide sünteesi automatiseerimiseks. Sünteesi 
formaliseerimise aluseks on uudne lahendus, kuidas üle kanda ja arvutada 
testandmeid mööda testimisteed trükkplaadil. Seejuures modelleeritakse testimisteed 
sellel asuvate komponentide ja nendevaheliste protokollide funktsionaalsete ning 
struktuursete mudelite abil. Väljatöötatud automatiseerimiskeskkonna kasutamine 
vähendab testide projekteerimise töömahtu ja testide sünteesiks kuluvat aega, 
tagades samal ajal kõrge kvaliteediga PETT programmide sünteesi. 
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Chapter 1  

INTRODUCTION  

This introductory chapter gives an overview of the research area addressed by 
current thesis. The motivation for the work is presented as opening words that are 
followed by the formulation of the problem and the outline of main contributions. In 
the last part of the chapter the organization of the thesis is described. 

1.1 Motivation 

 Almost every aspect of modern life depends on the correct functioning of the 
digital devices. Hence, today the dependability is concerned not only in limited 
applications in power, medical and aerospace industries, but also in less critical 
applications like mobile devices and household equipment. The dependability is an 
important property of particular microelectronic device and it is reflected in its cost. 
The manufacturer cannot afford the mobile device to be at a cost of communication 
equipment of the space shuttle due to the high dependability rate. Hence, reasonable 
testing of microelectronic products and components is required to guarantee an 
acceptable level of product reliability and a competitive cost. There are constant 
drive for cost reduction and shorter time-to-market for new products from the hot 
growth markets such as portable computer products, portable medical equipment, 
and automotive products. 

One of the top manufacturing research priorities reported by International 
Electronics Manufacturing Initiative (iNEMI) [1] is advanced test solutions for high 
density boards. The driving forces for constant demand in development of efficient 
test solutions are miniaturization that is influenced by the rapid development of 
portable and handheld products, higher performance levels of high-end systems and 
material evolution. 
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The printed circuit board (PCB) design has been constantly evolving due to 
previously mentioned manufacturing trends. Today, the ordinary PCBs may contain 
more than a dozen of intermediate layers for conducting paths and is populated with 
components that have packages (e.g. Ball Grid Array (BGA)) with hard-to-access 
pins. Despite a significant progress in semiconductor technologies, testing of 
assembled PCBs is often performed using yesteryears means, i.e. accordingly to the 
Boundary-Scan (BS) standard [2] developed in 1990. As a result, testing of specific 
manufacturing defect classes becomes economically inefficient for most 
applications. 

The current thesis is focused on the processor-centric board test methodology 
that combines benefits of structural and functional test strategies. The major 
contribution of the thesis is the modeling methodology with the goal of automatic 
test program synthesis for a processor-centric board.  Application of the proposed 
methodology closes the gap between acceptable system reliability rate and the cost 
of the system test solution. 

1.2 Open issues in printed circuit assembly test 

Today PCB assemblies (PCBAs) are used in most of commercially produced 
electronic devices. Electronic components on the PCB are connected using 
conductive pathways. Contemporary PCBs have multiple layers of separately etched 
thin boards. Complex PCBs may be stuffed with 50 or more layers. The surface 
layers are populated with electronic components while most of the interconnections 
are hidden into internal layers (trace layers). The usage of internal layers in PCB 
design reduces the dimensions of the board. However, structures on the internal 
layers are inaccessible for Flying probe or a Bed of nails tester. Thus additional 
design-for-testability (DfT) structures are implemented to test the interconnections 
on the internal layers. 

The widely adopted DfT structures  described in IEEE 1149.1 standard [2] 
provides means to test interconnects, clusters of logic, memories etc. without 
touching a board with physical test probe. The Boundary-Scan (BS) architecture and 
Test Access Port (TAP) described in this standard are also used for debugging 
purposes such as watching the pin states, voltage measuring or providing access to 
internal debug module of a programmable device. Despite of ubiquitous presence of 
BS structures in modern electronic systems and components, the application of BS is 
limited due to the low signal frequency. Typically test clock (TCK) frequency is in 
range from 1 MHz to 40 MHz, whereas actual test application frequency is much 
lower due to the long shift that precedes each test pattern.  Thus, BS-based tests have 
at least two restrictions. First, there are device classes such as high speed memories 
that do not support communication at low frequencies. In [3] is reported that even 
SRAM/DRAM interconnects are causing problems when tested with BS (58% 
respondents occasionally encountered problems and 28% said they frequently did). 
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Second, timing-related defects (e.g. transition faults, crosstalk or switching noise) 
manifest themselves only at high signal frequencies.  

Functional test [4] and interconnect Built-in Self-Test (BIST) [5] could 
potentially overcome drawbacks of BS. However, interconnect BIST requires 
implementation of additional DfT structures, which is not acceptable in many cases. 
On the other hand, functional test does not require any modifications to the PCBA, 
but on its own does not produce measurable coverage of structural faults.  

The BS-based tests and other tests that target structural faults belong to the 
structural type of test. Structural test is based on the fault models and it checks only 
for failures that can be represented by the used fault models, such as stuck-at-fault 
model. The effectiveness of the test is measured by the fault coverage [6]. The fault 
coverage is a percentage of the detected fault by the test set. The complete set 
obtains 100% fault coverage. This is desirable fault coverage, but in practice, rarely 
achievable in most systems under tests (SUTs). Hence, some faults remain 
undetected when the fault coverage is less than 100%. Moreover, even 100% fault 
coverage does not guarantee that all possible faults are detectable and the SUT is 
fault-free. The faults that are not detected by the test set (fault coverage is less than 
100%) or not detectable by used fault models are called test escapes [7].  

Test escape may manifest itself during the functional test or in the normal 
operation of the device. In recent years, the number of reports of failed system level 
functional tests at a client side was constantly growing [8]. The reason for functional 
test failures when the structural tests pass lies in the test escapes. The scenario when 
system or component refuses to fail on retest (structural test) after it was returned 
from the field or system customer as having failed is known as No Trouble Found 
(NTF) scenario [8], [9]. After the NTF is solved, the structural test may be 
complemented to escape the NTF scenario with the same symptoms in the future. 
However, more intelligent approach is needed to address NTF problem rather than 
hide-and-seek with the test escapes. 

Test methodology that could potentially address problems of structural test (BS) 
using benefits of functional test and providing measurable fault coverage is 
processor-centric board test (PCBT) [10]. This test technology uses functionality of 
microprocessor (μP) or microcontroller (μC) devices to deliver test patterns to PCB 
peripheral components outside the programmable devices themselves. The 
attractiveness of μP or μC-centric solution is very high due to the usage of existing 
on-board DfT structures without any modifications. 

In commercial board level test systems the processor-centric approach is widely 
adopted [11], [10]. General disadvantage of its implementations is that processor-
centric board model (set of functions) is prepared by hand. As a result the cost for 
development of the test program is much higher than for traditional BS tests that are 
mostly automated. 
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1.3 Problem formulation 

The processor-centric board launches the execution of the boot routine on the μP 
(depends on the board configuration) each time the board is switched on. The boot 
routine is the program that setups μP for operation with particular PCBA peripherals 
and loads runtime environment or operating system. In addition, the boot program 
has the board self-test routine that starts the set of tests to determine the integrity of 
the board. One of the examples of such boot programs is well known Basic 
Input/Output Systems (BIOS), which is equipped with Power-On Self-Test (POST) 
functionality [12]. For the normal startup of the PCBA the boot routine should be 
preloaded into memory that μP uses to boot from. 

The problem is that PCBA after manufacturing is not yet loaded with such boot 
program to run the POST. Typically, the boot program is loaded after the board is 
tested for manufacturing defects. However, the at-speed testing of PCBA requires 
the board to be preconfigured. The outstanding property of the PCBT is that this 
method is capable to test PCBA at-speed just after it is manufactured. The execution 
of PCBT program starts with functions that setup μP and controllers of μP to 
communicate with DUTs as in normal operational mode. The development of these 
functions requires plenty of time of highly skilled test engineer, which is the main 
barrier to reaching the same “popularity” for PCBT as for BS. 

The functionality of PCBT is used not only to test the board, but also to program 
the boot programs and operating systems into on-board memory using the same test 
setup. The challenge in programming on-board memories via serial test access port 
(JTAG TAP) is the programming time. To meet the timing requirements the PCBT 
program is developed in low level programming languages. The optimized code 
reduces the data transfers through the JTAG TAP and increases the performance of 
the program. Obviously, the low level programming extends the development time 
of the PCBT solution. 

In this thesis the problems of test program development for assembled PCB is 
addressed. In particular, the labor effort to develop the PCBT program is concerned 
and the methodology for test time and programming time estimation is proposed. 
The presented work attempts to automate the development of μP or μC-centric board 
level test programs using adaptive modeling methodology. The proposed modeling 
methodology implies automatic creation of structural models of PCBA and its 
components. The proposed methodology also describes the approach for creating 
partial behavioral models of PCBA components. 

1.4 Thesis contribution 

The main contribution of the current thesis is a novel approach to automate the 
development of test program for processor-centric boards. The workflow for 
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automated development of PCBT programs is introduced for the first time in 
literature. 

The sub-contributions that have been made in frames of the research work on this 
thesis are outlined below: 

- Formulae for test application time calculation - The simulation-free 
calculation of the test application time is useful for fast cost estimation of 
the manufacturing board test solution. Moreover, these formulae are 
helpful for comparison of different test application strategies for a given 
test case. 

- The metamodel and its implementation for structural models of PCBA, 
SoCs and other PCBA components 

- The metamodel and its implementation for behavioral models of ICs 

- A novel methodology for test data path modeling - Structural models are 
augmented by behavioral models to assemble the uniform model of the 
PCBA that is used in test development automation. 

- A novel approach and implementation of automated synthesis of PCBT 
program in SVF 

- A new approach for automated synthesis of the VHDL test bench 

- The toolchain of developed programs - This toolchain is a platform with 
broad research capabilities in the field of board level test. It also provides 
integration possibilities with third-party tools for test and debug of 
assembled PCBs. 

 

1.5 Thesis structure 

The presented thesis consists of 7 chapters. The rest of it is organized as follows. 

Chapter 2 forms a background on the researched topic and reviews the state-of-
the-art in the field of manufacturing board level test. It reveals the problem areas and 
presents motivation for the given research work. 

Chapter 3 gives a description for the PCBT program. This chapter starts with 
presenting the typical functionality of the test program. Then the test access and test 
application parts of the program are discussed in details. The automation of the 
development of the presented PCBT program is a general topic for the following 
chapters. 
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Chapter 4 is dedicated to board and electronic components modeling. The basic 
knowledge of modeling techniques is given in the beginning of the chapter. Then the 
proposing modeling methodology for board and electronic components is presented.  

Chapter 5 describes the proposed approach for automated test program synthesis 
on the basis of the proposed modeling methodology. Firstly, the details of PCBT 
program synthesis are explored and a typical development flow is examined to 
present the automated flow. The feasibility of proposed methodology is studied on 
the experiments with ITC99 benchmarks.  

Chapter 6 presents the developed toolchain for board and electronic components 
modeling and automated test program synthesis based on the structural and 
behavioral models. The chapter is concluded with the description of integration 
potential into boundary-scan test systems and open source computer-aided design 
(CAD) software. 

Chapter 7 draws conclusions for the thesis and discusses directions for future 
work. 
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Chapter 2  

BACKGROUND  

This chapter presents background knowledge for the topics related to current 
research. The introduction to manufacturing board test is given in the beginning of 
the chapter. The introduction is followed by the description of the in-circuit test 
technology. The notion of IEEE 1149.1 standard is described in conjunction with 
derived standards to draw the comprehensive picture of boundary scan test 
technology flavors. Finally, the definition and application of the processor-centric 
board test is presented to complete the set of the available test solutions in 
manufacturing board test 

2.1 State of the art in manufacturing board test 

High-density printed circuit board assembly (PCBA) requires special methods for 
test access. The test method that provides physical access to component leads, test 
pads and vias was a viable solution until multi-layered PCBs entered the mass 
production. Today, in-circuit test (ICT) methods cannot provide solely sufficient test 
coverage to meet stringent standard quality requirement. BS together with fixtureless 
ICT (FICT) such as automated optical (AOI) and X-ray inspection (AXI) is 
complementing ICT to provide test for static faults (opens and shorts) on even most 
densely populated PCBs [13], [14]. 

During the last decade the test requirements in PCBA mass productions has 
changed its focus from finding component failures towards finding manufacturing 
process faults due to the continuous improvement in overall component quality. In 
the process of PCB population, industry has moved from through-hole technology 
(THT) to surface-mount technology (SMT). That has made changes to the fault 
spectrum. In THT the most probabilistic fault type was shorted connections. 
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However, with SMT the major problem lies in open connections, but solder shorts 
are still a noteworthy problem. The other significant fault types are misaligned, 
missing or wrong components. 

The test strategy for manufacturing defects is initially based on the assumption 
that component supplier is shipping only good parts. Hence, all manufacturing test 
methods should be capable to detect fault that are caused by soldering related 
problems and accurate placement of the correct components on the PCB. 

In-Circuit Test (ICT) [15] uses a bed of nails fixture for mechanic access to 
electrical nets of the PCB. Each individual nail in the fixture has a wire connection 
with the external tester. Nails in the fixture are thoroughly allocated to 
simultaneously create a steady physical connection to the test points, non-masked 
vias and soldered leads. By the means of standard complex-impedance 
measurements, these manufacturing defect analysis tests can be run without 
powering the PCB.  

Power-off testing eliminates the risk to damage a misplaced component by 
applying a power to its leads. Hence, manufacturing defect analysis (MDA) [16] test 
should be run before the power-on tests. In-circuit MDA test systems provide an 
identification of a failing component when a fault is detected. Since components are 
tested in isolation. The failing component is identified by designating its part 
reference number. Besides opens and shorts all the typical faults for analog 
components are testable by MDA techniques. The list of testable analog components 
consists of resistors, capacitors, diodes, inductors, transformers, transistors. 

The general drawback of the ICT is the necessity to have a physical contact with 
the PCB. In-practice, access to all the electrical nets is hardly possible due to the 
lack of space for test probes on the surface of contemporary PCB. Probing the SMT 
lead is not a solution, as probe may introduce extensive pressure to the lead, causing 
a bad connection to appear to be good. The problems of ICT technology were solved 
by integrating the tester’s probes into the chips and to control them via a simple 
serial bus. In 1990 this technology became an IEEE 1149.1 standard [2] (Boundary-
Scan). 

BS is only applicable where IEEE 1149.1 standard is supported on the device 
level. On the one hand BS is characterized by low speed and limited coverage of 
dynamic faults. On the other hand BS provides very good [17] diagnostic 
capabilities, low-cost equipment and it is applicable to a non-functioning system. 
Due to that BS is heavily used in PCBA structural test and PCBA debug.  

On the contrary to BS the functional tests are executed at full speed of the board. 
Thus, the dynamic faults that escaped the BS tests are detectable with functional test. 
In general, “functional testing verifies board performance mimicking its behavior in 
the target system” [18]. However, there are several major problems of functional 
test. The first is that “functional test is traditionally the most expensive technique” 
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[18] and the second is that the diagnosis of the cause of functional test failure may 
take hours. 

The low speed nature of BS affects badly the test application time. As a result, 
the BS test technique has to be complemented by a solution that supports high-speed 
or at-speed test application mechanisms [5],[19]. This problem has been understood 
by major BS-tools providers and some early PCBT solutions have been developed. 
The good examples of state of the art PCBT solutions are Goepel Electronic’s 
VarioTAP® technology [11] and Processor-Controlled Test (PCT) [10] for board 
level test purposes from ASSET InterTech. 
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Automotive 

Entertainment 4 3 3 2 5 2 4 23 

Safety 4 4 4 2 5 3 3 25 

Portables 

Mobiles 4 3 3 2 0 3 5 20 

Netcom 

Consumer 3 3 3 1 3 4 3 20 

Enterprise 3 3 3 2 5 5 3 24 

Service 
providers

4 3 3 3 5 5 5 28 

Office Systems 

Desktop 2 3 3 2 5 3 5 23 

Mobile 4 3 5 1 5 3 5 26 

Servers/High end 4 3 5 1 5 5 5 28 

Medical 

Imaging 1 2 5 3 4 4 4 23 

Monitoring 1 2 5 3 4 4 4 23 

Implantables 5 4 4 2 4 4 5 28 

Total Method 
Applicability 

39 36 46 24 50 45 51 
 

Table 2-1 Application of board level test methods 
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Goepel Electronic’s VarioTAP® technology is a simplified model of MPU SoC 
that contains a set of mixed test access/application/configuration functions 
developed in an ad-hoc manner for a given board. Despite the fact, that VarioTAP® 
reuses some components (device libraries, debugger, test coverage analysis) from 
the existing BS test projects, the library of μP/μC models has to be prepared 
manually by an experienced software engineer using standard algorithmic language 
(e.g. C/C++). 

Processor-Controlled Test (PCT) for board level test purposes that comes from 
ASSET InterTech, besides the drawback of VarioTAP® (handcrafted solution) also 
has a weak integration with BS and very limited test automation. 

These PCBT technologies (VarioTAP® and PCT) are considered as BS-
complementary solutions and are located in between BS and functional test. In 
addition, the solution from Kozio® [20] is seen as complementary solution to 
traditional functional test. Kozio® suggests to boot the board with their operating 
system for board(system)-level functional testing. The location of this solution is in 
between PCBT and functional test, as it provides capabilities for diagnosis similar to 
PCBT approaches, but does not focus on testing of structural defects. 

Various solutions exist for system-level testing for manufacturing defects of 
complex electronic boards, but all of them have certain limitations. As a result, the 
selection of appropriate test strategy (set of tests and test methods) is a not a trivial 
task. The application of various test methods in different product domains is shown 
in Table 2-1. Table 2-1 is a modified representation of the initial table from [21]. 
The textual score for each method in the initial table was substituted by equivalent 
number (0 - Never, 1 - Audit only, 2 - Rarely, 3 - Sometimes, 4 – Mostly, 5 - 
Always). The initial table was also supplemented with additional row that 
summarizes the applicability of every test method for listed application. The 
dominating manufacturing test technologies are functional test and ICT. Thus 
according to iNEMI [21] Boundary scan is an important, but not an indispensable 
test technique for many applications. In addition, the dependability score was 
calculated for each application to highlight the range products that are most heavily 
tested for manufacturing defects according to the iNEMI data [21]. 
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2.2 Boundary-Scan and its flavors  

BS popularity was continuously growing since 1990 and still growing because of 
ease of adapting with new PCBA component and board level technologies. These 
adaptations later developed into the IEEE 1149.x standards. The need in 1149.x 
standards was also caused by inability of the 1149.1 to address the following 
problems in manufacturing board level test: 

 Dynamic defects (delay, crosstalk) 
 Interconnect test for analog, digital and mixed-signal and discrete 

components 
 Communication with high-speed memories (DDR3, GDDR5) 
 Parallel busses with timing-critical (accurate) protocols 
 High speed serial busses  
 Fast In-System Programming (ISP)  

In this chapter the key points of several IEEE 1149.x standards are briefly 
discussed to complete the picture of the available board level test solutions and 
trends. 

IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture defines 
a solution to the problem of testing assembled PCBs and other products based on 
highly complex digital integrated circuits and high-density surface-mounting 
assembly techniques [2]. It also provides means for accessing and controlling DfT 
features built into the digital integrated circuits themselves. This standard defines the 
TAP port used for communication between external tester and BS infrastructure 
inside the PCBA components. The list of TAP port pins consists of test clock 
(TCK), test mode state (TMS), test data in (TDI), test data out (TDO) and optional 
test reset (TRST). BS infrastructure encloses TAP pins, boundary-scan register 

Figure 2-1 Boundary-Scan architecture on the example of simplified PCBA 



 

 

34

bypass register and instruction register, and TAP controller state machine (Figure 
2-1). The TAP controller state machine (Figure 2-2) selects which type of register 
(data or instruction) is in use. The purpose of instruction register is to select one of 
the data registers in accordance with predefined instruction codes. There are four 
mandatory instructions defined in the standard: EXTEST selects Boundary scan 
register, BYPASS – Bypass register, SAMPLE – Boundary scan register and 
PRELOAD – Boundary scan register. The standard also specifies a set of optional 
instructions: INTEST – Boundary scan register, IDCODE – Identification register, 
USERCODE – Identification register (for PLDs), RUNBIST – Result register, 
CLAMP – Bypass (Boundary scan register value is on the device output pins), and 
HIGHZ – Bypass (device output pins are in high-z state). These ten instructions are 
known as public instructions, but chip vendor is free to add private instructions that 
meet the particular testing needs.   

 The next standard to be mentioned is IEEE 1149.4 standard that describes mixed 
signal test bus. The testability structure for digital circuits described in IEEE Std. 
1149.1 has been extended to provide similar facilities for mixed-signal circuits [22]. 
IEEE-1149.4 defines a two-wire analog bus consisting of an analog drive and analog 
sense pin. By including circuitry within the IC to connect these pins to different 
analog nodes, the JTAG port (IEEE 1149.1 Std. TAP) can be used to perform analog 
and mixed signal measurements. First objective of this standard is to provide 

Figure 2-2 TAP Controller state machine 
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interconnect test capability for a PCBA populated with analog, digital and mixed-
signal and discrete components. Second objective is “extended” interconnect which 
includes analog measurements to compute parameters of discrete component [22] 
(e.g. capacitor, resistor) (Figure 2-3). A decade after release, the IEEE-1149.4 
standard has not seen wide adoption. 

The solution for BS-based testing of high-speed digital networks is proposed in 
IEEE 1149.6 standard. The IEEE-1149.6 standard, released in 2003, expands on the 
1149.1 standard by adding additional capabilities for transmitting and receiving test 
signals over advanced (high speed) digital networks. “The additional testability 
elements added by this standard to integrated circuits (ICs) allow interconnect 
testing with enhanced coverage, to be conducted on differential signal pathways and 
and/or where AC-coupling (which blocks normal DC Test Signals) has been used on 
signal paths between ICs” [23]. The objective of this standard is to define design 
rules for proposed testability circuitry in addition to design for testability structures 
specified by IEEE 1149.1. IEEE 1149.6 requires design paradigm change and 
considerable investments from component vendors. Currently, IEEE 1149.6 standard 
is by far not as popular in practical applications as IEEE 1149.1, although, it was 
approved in 2003. 

The miniaturization of digital devices and new chip design methodologies like 
System-in-Package (SiP [24]) and Package-on-Package (PoP [25]) questioned the 
applicability of IEEE 1149.1 standard. The key issues were the number of pins and 

Figure 2-3 Simple, extended and differential interconnect [8] 
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the appropriate accommodation of multiple on-chip embedded TAP Controllers.   
The solution that helps to maintain compliance to IEEE 1149.1 in multi-TAP SoCs, 
solves the above mentioned problems and extends the chip level debug capabilities 
is IEEE 1149.7 [26].  

The high-speed differential links is an open issue for 1149.1 which is addressed 
in pending standard IEEE 1149.8.1 [27].  In 1149.8.1 is proposed that BS-enabled 
device only sends the test stimulus to the link and on the other end the capacitive 
sensing plate on top of the receiving device obtains the test response. 

The common challenge for 1149.x standards is that they need to be adopted in 
design flow before they can be useful. Typically PCBA still contains components 
that are not compliant to IEEE 1149.1 standard, although, most of the manufactured 
PCBAs are equipped with BS DfT structures. As a result, the BS-enabled devices 
are often used as a doorway (from the point of view of external tester) to access non-
BS PCBA components for testing purposes. A good example of such doorway is a 
μP/μC device. The test/debug access in μP/μC is usually based on a JTAG port [28]. 
As a result, it becomes possible to utilize the processor as a test access mechanism in 
the board-level structural test (e.g. as an extension of the Boundary Scan (BS) 
technique [28]). In case when μP/μC is used as onboard tester, BS plays the role of a 
communication channel for test application mechanisms inside μP/μC rather than a 
test application method. The test application by mechanisms inside μP/μC (e.g. 
peripheral controller) solves most of the speed related problems of BS that were 
mentioned in the beginning of Section 2.2.  

The idea of using an embedded μP/μC cores to execute the test program is not 
new and is widely used for SoC testing and debugging purposes. This testing 
paradigm was initially known as software-based self-test (SBST) [29]. Many 
researchers have proposed ideas for testing SoC components where an embedded 
μP/μC core [30], [31], [32] controls the test data traffic between the test controller 
and the SoC. Moreover, there are study proposing specially developed IP core [33] 
to be implemented in the SoC for solving the test, diagnosis and silicon debug 
issues. The researchers are very active in the field of SBST of SoCs, nevertheless, 
there is a clear lack of recent academic research on testing beyond the SoCs. 

2.3 Processor-centric board test 

Back in 1980s industry already was facing a problem of at-speed or high-speed 
testing of dynamic faults. The functional testers were capable to apply successive 
patterns at high speed to the UUT (Unit Under Test), but the true rate was actually 
lower due to the need of measure the responses and react in real time. Then the 
industry has responded by the evolution of a test technique that “seeks to ‘emulate’ 
the operation of the microprocessor while the remainder of PCB continues to run at 
its dynamic speed but under the local control of the test system” [34]. 



 

 

37

This test technique has been employed in following application. The test system 
is considered as a ‘bus addresser’ that communicates with the PCBA components 
through the interconnection lines of the PCB. The access to the μP pins is gained 
through the multi-way clip or a substitute mating plug for the μP on the PCBA under 
test. The PCB tester with the ability to test at dynamic speed through the pins of 
emulated μP writes and reads words of test data on the UUT interconnects in order 
to test the PCB peripheral components and associated circuitry in exactly the same 
way as the μP would do in normal operation. 

However, emulation-based test did not gain much attention back in 1980s due to 
its cost. One of the factors that influenced the cost of emulation-based solution was 
the absence of standardized way to access μP pins on the PCB. For every new 
design a custom solution was invented. This issue has been partially solved by the 
IEEE 1149.1 – 1990 standard. Then the boundary scan register was used to drive 
and test the nets connected to the μP pins. However, the communication frequencies 
were continuously growing and the testing of the dynamic faults became limited 
with BS-based tests. Later in the XXI century industry addresses this problem by 
processor-centric board test (PCBT) technology. Sometimes, PCBT is still called as 
processor emulation based test. 

The PCBT technology is based on the same principles as μP emulation based 
solution with the difference that μP internal functionality is not isolated, but μP is 
considered as an on-board tester. The μP is controlled from external tester via the BS 
infrastructure on the board. BS standard (IEEE 1149.1) only targets the path from 
PCB connector to the JTAG TAP port of the μP. The implementation of the internal 
debug logic of the μP is specific for every System-on-Chip (SoC) vendor.  

Generally, PCBT approach uses system’s μP to run test routines. The actual 
control over the μP is performed by external tester.  The idea is to apply tests at the 
actual operation speed of the SUT. A μP is playing the role of an internal (in-
system) tester which has an access to PCBA components and interfaces (Figure 2-4). 
The test software that emulates system normal operation from the point of view of 
UUTs is executed on a μP. This test software has two possible execution modes: 

Figure 2-4 Test setup for PCBT 
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online and offline modes; that are described in Section 2.3.2. Both execution modes 
are controlled from external tester. Typically the test software consists of the test 
access (Section 2.3.1) and the test application routines (Section 2.3.2). 

PCBT has a good potential to reach high fault coverage, because of the 
architecture of many electronic systems. The processor usually has to interact with 
the other PCBA components and thus has good access to them (e.g. through a 
communication bus). Thus, PCBT can achieve high fault coverage without relying 
on hardware design modifications or external test equipment. 

Nowadays, PCBT is a test strategy that is used not only to test and diagnose static 
and dynamic faults, but also to perform in-system programming of on-board 
memories and μP internal memory, to contribute to functional test coverage and to 
verify the component placement on the PCB. Most of these tasks can be completed 
by other test methods, but none of them is capable to cover all. Hence, PCBT is a 
very efficient solution but still costly and effort-hungry as most of the test program 
functionality is created manually. The comparison of the test methods is given in 
Table 2-2. The points of comparison were selected to show the main drawbacks of 
every method. As it is seen from Table 2-2 the only weak side of the PCBT is the 
“Test automation” and as a result the “Test implementation cost” is high. 

Table 2-2 Comparison of different test methods 

Point of Comparison ICT 1149.1 Functional Test PCBT 

DUT access Fixed nails Scan cells μP μP 

Test implementation cost High Low High High 

Structural Fault Coverage High High Uncountable High 

Dynamic Fault Coverage No No Uncountable High 

Functional Fault Coverage No No High High 

Test access Low High High High 

ISP No Slow Limited Yes 

Test automation High High Low Low 

 

2.3.1 Test access 

JTAG TAP does not provide solely the full access to μP SoC resources (register 
map, internal memory, external memory controllers, etc.). Moreover, a test engineer 
needs at least a basic set of debug tool functions like processor halting, breakpoint 
and watchpoint support, traceability, data flow information and performance 
measuring. One of the helpful solutions is proposed in NEXUS 5001 Standard. The 
Nexus standard defines an extensible Auxiliary Port (AUX) that may either be used 
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together with JTAG port or as a stand-alone development port. The Nexus standard 
defines the auxiliary pin functions, transfer protocols, and standard development 
features [35], [36]. A set of recommendations (such as additional registers and 
number of pins) to follow in the debug oriented processor design is also defined.  

The alternative solution is provided by the Mobile Industry Processor Interface 
(MIPI) Test and Debug Working group [37]. This group is exploring a maintenance 
port, called NIDnT-Port  [38], [36] (Narrow Interface for Debug and Test: Speak 
NIDENT). NIDnT is based on IEEE P1149.7 [26] and the System Trace Module, 
which includes the MIPI System Trace Protocol (STP) and uses the MIPI Parallel 
Trace Interface (PTI) for data export. 

Traditionally, JTAG TAP remains one of the alternatives for physical connection 
to μP internal debug interface. Thus, the first part of the test access consists of 
standard BS infrastructure, which implies JTAG connector on the PCB where the 
cable from external tester is plugged in, and the scan chain of BS-enabled devices. 
This part of the test access of the PCBT is the same is in BS-based test. In case if 
scan chain contains not only μP that is used as internal on-board tester, all the other 
devices in this scan chain are typically switched to BYPASS mode, which is 
equivalent to the shortest configuration. The shortest configuration of the scan chain 
provides the fastest communication from external tester to the μP. This 
configuration of the scan chain is typically needed to efficiently shift the debug 
instructions through the μP TAP to the debug interface of the μP. Through the debug 
interface the tester gains an access to the internal buses and components of the μP 
SoC. 

Let us consider the next level of test access as the virtual link between μP and 
UUT. This link starts at debug interface of the μP and reaches the UUT pins. In 
general, the establishment of this link implies tuning of the respective controller in 
the SoC to communicate with the specific UUT. The tuning sequence of commands 
for peripheral controller inside the μP is transferred through the debug interface. 
Then the test data is transferred via dedicated UUT controller to the UUT as in the 
normal system operation. Hence, every signal line between μP and the UUT is 
exercised in same manner as while executing the system’s domain application.  

2.3.2 Test application 

The test application consists of a test program that controls a microprocessor. 
The test program may be designed accordingly to online1 or offline testing [39] 
modes.  

The offline (or autonomous) testing is realized in the following way. The 
complete test program (test vectors and expected values) is translated into the set of 

                                                      
1 Online mode of test application is not the same as on-line testing. 
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microinstructions and loaded as an ordinary micro-program into memory inside the 
μP. The program execution inside the μP is started by the external tester through 
debug interface. The test program is constructed in such a way, that the result of 
execution (PASS or FAIL for complete test) will be stored in one or more general-
purpose registers of the μP. After test program execution is finished, the contents of 
these registers and the result of test execution is retrieved through the debug 
interface and reported to the external tester for further evaluation and diagnosis. 

The offline mode is fully independent and does not suppose continuous 
interaction with an external tester. This autonomous mode requires plenty of 
memory space in order to store all test vectors as a set of microinstructions. 
However, another possibility is to implement a special algorithm inside the test 
program (e.g. walking one, counting sequence, PRPG, etc.) so it will generate 
driving and expected values on the fly. 

The main difference of online mode in comparison to offline mode is that each 
test step (i.e. test vector) is executed separately under the control of external tester. 
Before the test is executed in online mode the specially prepared interpreter 
program is loaded into internal memory of the μP during test setup phase. The goal 
of interpreter program is to receive and execute separate microinstructions that will 
be passed via the debug interface. The test program (that is split into number of test 
vectors) is synthesized into set of microinstructions and compiled into a sequence of 
machine code. 

On each step, the external tester writes the piece of machine code (that 
corresponds to the test vector) into certain registers of μP. The interpreter program 
constantly checks the content of these registers for detection of arrival of new 
microinstructions and executes them. The result of test execution (measured value) 
is stored in the registers that are accessible by the external tester. Finally, the 
measured value is compared with the expected one and test execution continues. 

There are μP architectures that support instruction injection via debug interface 
[40], [41]. The injection facilitates instruction execution from the dedicated debug 
register.  This may be used to inject the interpreter program command by command 
instead of loading it into internal memory. However it might extend the test 
application time. In some cases, the loading of interpreter program is time 
consuming or is not possible (not enough internal memory, internal memory is not 
accessible or internal memory is occupied by other application), then the instruction 
injection mechanism becomes extremely useful. The general idea is to load the test 
vectors to the general purpose registers of the μP. Then, the commands of 
interpreter program that perform test application of previously loaded test vectors 
are injected. The test results could be obtained in the similar manner by injecting the 
respective load and store commands to retrieve the tests result signatures to the scan 
register of TAP for scanning them out to the external tester. 

The main drawback of online testing in comparison to offline is the speed of test 
pattern application. In online mode it is considerably slower due to the overhead of 
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uninterrupted communication via the debug interface. However, the single test 
pattern is applied at the operational speed in both modes, because the test data is 
transferred to the UUT through the dedicated peripheral controller that handles the 
signal timings and the communication protocol. Nevertheless, the fault types, such 
as delay faults, that require fast  subsequent application of test vectors, can still be 
detected in online mode if μP supports multiple store and multiple load instructions 
(e.g. Single Instruction Multiple Data - SIMD) [42]. These instructions with multiple 
data sources can be used to emulate the at-speed application of limited number of 
test vectors to the subsequent addresses.  

2.4 Similar works 

The academia is not very active in the field of PCBT, however, there are several 
recent publications on design and implementation of test processors for board-level 
testing [43], [44]. In [44] authors propose to implement the test processor in FPGA, 
which is an adaptation of the PCBT technique to FPGA-centric boards. This work 
was done in cooperation with the company Goepel electronic, hence could be seen 
as an extension of VarioTAP® technology to the FPGA-centric boards.  

In [43] the group from IHP has presented a concept for performing functional 
tests of asynchronous designs using a specific test processor. The proposed test 
processor is supposed to be added as a core to the μP SoC or to be implemented as a 
standalone device on the same board. The automatic synthesis of PCBT program is a 
part of the proposed approach. However, the implementation details of the test 
program synthesis are not mentioned in the paper and the status of the tool for the 
test program synthesis is reported as “under conception” [43]. Meanwhile, at the 
same conference the methodology for automatic synthesis of the PCBT program and 
the experimental results were presented in [45] by the author of current thesis. 

In the light of these PCBT approaches the PCBT flow described in current thesis 
is seen as more general and less restricted. The proposed methodology for automatic 
synthesis of the PCBT program can be applied to any PCBA configuration including 
the test processor implemented in FPGA or as a co-processor.  

2.5 Chapter summary 

The purpose of this chapter is to provide a reader with the background 
information needed to understand the basic principles of the board level 
manufacturing test. The evolution of the methods and general description of test 
techniques are presented in the comparative manner. The overview of the recent 
research activities in the field of PCBT is closing this chapter. 
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The underlying idea of this chapter is to introduce the drawbacks of the ICT and 
BS test technologies that can be addressed by the PCBT. The presented arguments 
lead to the conclusion that PCBT is promising test technology in the manufacturing 
board testing that guaranties high test quality. However, the cost of PCBT-based 
solution is high in comparison to the BS solution mainly due to the efforts spend on 
the manual PCBT test program development. 
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Chapter 3  

PROCESSOR-CENTRIC BOARD TEST 

FLOW 

This chapter gives the description of the typical PCBT flow. In the beginning of 
the chapter an overview of the PCBT functionality is presented.  The standard steps 
for test path initialization and configuration are explained in the section dedicated to 
test access. The detailed study of test application steps of the PCBT flow is 
continued by the analysis of online and offline test application modes. The formulae 
for test application time estimation are summarized in the concluding section. 

3.1 PCBT functionality 

The functionality of the PCBT program depends on the test requirements and on 
the SUT configuration. Test requirements are the set of UUTs including related 
interconnections that have to be verified, tested or programmed. The UUT 
verification checks identification code (IDCODE) of the mounted component with 
the PCBA documentation. Then, interconnect test checks the connections between 
μP and UUT for static and dynamic faults. If the UUT is a flash memory the 
interconnect tests are typically substituted by ISP. Besides the interconnect test, it is 
often needed to do a functional and structural in-situ tests of the UUT. These tests 
also belong to the PCBT functionality. 

Nowadays the programming of the flash memory is often required after the 
memory is soldered to the PCB. In most cases, it is considered beneficial to program 
the flash memories with the same tester hardware that is used for verification and 
test of other components on the PCBA under test. The problem is that ISP has 
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become a very time consuming process because modern flash memories can store 
much larger images than before. PCBT may reduce the programming of flash 
memory from hours, as in case with BS, to minutes. The actual ISP time heavily 
depends on the architecture of the debug interface of the μP, on the instruction set of 
the μP and on the performance of the external flash memory controller inside the μP 
SoC. 

The structure of the PCBT program for the specific test requirements relies on 
the standard functional blocks that are adapted to the SUT architecture. The typical 
configuration is discussed in the following paragraphs. In this chapter the PCBT 
functionality is described in the statements similar to assembly language to illustrate 
the overall PCBT program functionality and structure without adapting it to any 
specific SUT. The two different testing modes (online and offline) are considered to 
observe the influence of different testing approaches on the structure of the PCBT 
program. The complexity of the program is estimated on the example of the most 
common test requirements. 

In the following examples the selected SUT consists of the μP that has the 
support of instruction injection (this simplifies the description of online testing 
mode), flash memory with parallel interface and SDRAM. The exact properties and 
characteristics of the SUT components are irrelevant in the following program 
examples, because the device specific implementation details are omitted for the 
sake of simplicity and ease of understanding of the general idea behind the PCBT 
program.  

Let SDRAM be the first to test. The interconnections with μP are tested for static 
and dynamic faults. The test patterns and algorithms for testing and diagnosis can be 
reused from interconnect test generated by BS test system. Thus, in this case the 
same test patterns as for BS-based test are applied at high-speed. 

The flash memory is validated against the documented version and capacity by 
reading the status register. Then, according to the test requirements the memory is 
programmed with the specified image file. The successful verification of 
programmed data is sufficient in most cases to conclude that chip is aligned and 
soldered correctly as well as to claim that the interconnects to μP are functionally 
tested. Hence, the ISP partially substitutes a functional test for external flash. 

Next section presents a study on how previously described test procedures can be 
implemented in PCBT program. 
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3.2 Test access 

3.2.1 Test path initialization 

As initial step, the PCB has to be powered up and checked for consistency. For 
this task the following sequence of steps is used: 

 Check scan chain – shift out the IDCODEs of the devices in the scan 
chain. This allows to identify the order of the devices and to ascertain 
that BS infrastructure is correct. 

 Initialize the scan chain – set everything but μP into BYPASS mode. 
This sets the shortest configuration of the scan chain. The μP should be 
the only device that listens to the data from external tester. All the 
devices but μP should bypass the data shifted in and ignore it. 

 Obtain Debug Interface Information – scan out version and status of the 
μP debug interface. This secures that communication between BS 
infrastructure and debug interface is functioning.  

 Stop/Halt μP execution – stop any program execution in the μP by 
injecting appropriate instructions via debug interface. Backup the register 
file and pointer of return address to be able to resume the execution later. 

 Read Status register of μP – read the status register and other 
configuration registers to evaluate the state of the μP and its modules. 
This information is used in the next steps in configuring the μP. 

This sequence of five steps is obligatory to include in the beginning of the 
initialization of the PCB and the μP. Any PCB or μP specific tasks may interleave 
these steps, but the order of the initial sequence should remain unchanged. 

3.2.2 Test path configuration 

After the PCB initialization the PCBT program proceeds to the configuration of 
the μP busses and peripheral controllers. Only those μP modules are configured that 
are active during communication in native application mode between μP and the 
PCBA component, which is specified as UUT in the test requirements. 

Test path configuration: 

 Set Mode/Privileges – check if the current mode of instruction execution 
has enough rights to control and configure the μP controllers. Typically, 
the debug mode has all the necessary rights. 

 Enable and configure μP controllers – power up the necessary μP 
modules. Set up configuration registers of the phase-locked loop (PLL) 
controller to clock the peripheral controllers. Configure peripheral 
controller registers with various UUT-dependant settings (signals 
latencies, address/data bus width, etc.). 
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 Verify UUT status – read the status data of the UUT to check if the UUT 
is ready to communicate with the μP. This ensures the physical link 
between μP and the UUT. 

These configuration steps are not mandatory, but advisory. The actual need in 
every step depends on the architecture of the particular μP.  

3.3 Test application 

Test path initialization and configuration belong to the test access functionality 
of the PCBT program. The rest of the PCBT program functionality is the test 
application, which may be developed in accordance to online or offline test 
application modes.  

It should be stressed explicitly that any test data exchange between the external 
tester and the μP in the PCBT is going via the test access path. The steps of the test 
application part of the PCBT program are given in pseudo-assembly statements. 
These statements are used later for evaluation of the online and offline testing 
modes. The key-words of pseudo-assembly instructions are outlined in bold. Every 
instruction and operand (outlined in italic) is shifted through the test access path. 
The recipient of the data is denoted by Shift in and Shift out statements. The 
instructions (Load, Store, Jump, etc.) are only shifted in, thus, the recipient notion 
(Shift in) is redundant in this case. 

The overall test application time (tTA) could be calculated by counting the number 
of shifts. The actual time is a multiplication of number of shifts to the length (in bits) 
of the test path and divided by test clock frequency. The test clock frequency and the 
test path length are constant values. Hence, the test application time is in linear 
dependency with the number of shifts (the delays between shifts that are caused by 
the test hardware are neglected). 

3.3.1 Online mode 

The online test application of the single test pattern:  

1. Shift in test address to data exchange register of the debug interface. 
2. Load test address to general purpose register (GPR) from debug data 

exchange register. 
3. Shift in test pattern to data exchange register of the debug interface. 
4. Load test pattern to general purpose register (GPR) from debug data 

exchange register. 
5. Store test pattern from GPR to test address (UUT is mapped to the common 

address space of the μP). 
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The test address is the address of the location inside the UUT that is mapped to 
the address space of the μP. 

The test response obtaining sequence is the following: 

1. Shift in test address to data exchange register of the debug interface. 
2. Load test address to general purpose register (GPR) from debug data 

exchange register. 
3. Load test response to GPR from test address. 
4. Store test response from GPR to data exchange register. 
5. Shift out test response to the external tester. 

The test response is evaluated in external tester. If the test response does not 
match with the test pattern the further diagnosis is performed to locate the fault.  

The formula for test application time calculation is:  

 (I) ்ݐ ൌ ݉ݓ   ݉ݎ

Where m is number of test patterns, w is number of shifts to write test patterns 
and r is a number of shifts for test response obtainment. Hence, for current board 
under test formula (I) can be reduced to: ்ݐ ൌ 5݉  5݉ ൌ 10݉ 

If more than one test pattern has to be applied, these steps should be repeated for 
every test pattern. In case if the write and read operations are subsequent and the 
data is read from the same test address, the first two steps may be skipped in the test 
response obtaining sequence. This optimization requires the additional study of the 
test application algorithm.  

Another option for optimization is possible if the instruction set architecture 
(ISA) supports store and load instruction with multiple data sources (SIMD). For the 
use of store multiple instruction the steps 3 and 4 of the test application sequence 
have to be iterated f-times (for each test pattern), where f is a maximum number of 
source operands. The fifth step is then substituted by:  

Store multiple test patterns from GPRs to UUT address (each next test 
pattern is stored to the subsequent memory location in the UUT).  

Then the ݉ݓ summand in formula (I) changes to:  ቀ2    ݉  ݉   ቁ 

For the use of load multiple instruction the steps 4 and 5 of the test response 
obtaining sequence have to be iterated f-times (for each test pattern), where f is a 
maximum number of source operands. The third step is then substituted by: 

Load multiple test patterns from UUT subsequent addresses to GPRs (each 
next test response is loaded to the subsequent GPR).  
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 The ݉ݎ summand in formula (I) takes the following view: ቀ2      ݉  ݉ቁ 

The limitation for the instruction with multiple operands is that only consecutive 
memory locations could be written or read with one instruction. Thus, these 
instructions are not useful in accesses to arbitrary addresses. However, instructions 
with multiple operands become extremely useful in programming custom 
application to embedded memory of μP through the debug interface.  

The test application time for the sequence with the usage of multiple operand 
instructions for the selected μP architecture: 

 (II) ்ݐ ൌ ቀ2    ݉  ݉   ቁ  ቀ2      ݉  ݉ቁ  ൌ 2݉ ቀଷ  2ቁ 

Where m is number of test patterns, f is number of source operands in the 
multiple load or multiple store instructions (defined in the μP Instruction Set 
Architecture (ISA)). If f is 1, the equation (II) becomes an equation (I). For example, 

if f equals to 8 (most modern μPs have at least 8 GPRs), then ்ݐ ൌ ଵଽସ ݉ ൎ 5݉. As  ்ݐ is calculated in number of shifts the final results should be rounded up to integer 
number. 

3.3.2 Monitor-based online mode 

Along or instead of the instructions with multiple operands the monitor-based 
strategy is used to shorten the test application time. The special program is loaded to 
the program memory of the μP (preferably internal). The monitor reads the test 
pattern from the debug data exchange register and applies it to the UUT. In this 
strategy the test application time consists of monitor programming (tMP) and test data 
transferring (tDT). The tMP = wp, where w is a number of shifts to write test pattern to 
the memory and p is the size of the monitor program in words. The value for w is 
calculated in the first example (the online test application of the single test pattern), 
which is w = 5. The sequence of steps used in test data transferring in monitor-based 
strategy is given below: 

Write test pattern: 

1. Shift in command (write) to data exchange register of the debug interface. 
2. Shift in test address to data exchange register of the debug interface. 
3. Shift in test pattern to data exchange register of the debug interface.  

Thus, test pattern is written in 3 shifts: wt = 3. 

Read test response: 

1. Shift in command (read) to data exchange register of the debug interface. 
2. Shift in test address to data exchange register of the debug interface. 
3. Shift out test response from data exchange register of the debug interface. 
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In other words test response is read in 3 shifts: rt = 3. 

According to this sequence the test application time in monitor-based strategy is: 

 (III) ்ݐ ൌ ெݐ  ்ݐ ൌ ݓ  ௧݉ݓ   ௧݉ݎ

Adopting formula (III) to the selected μP architecture:  ்ݐ ൌ 5  3݉  3݉ ൌ 5  6݉ 

The gain estimation in test application time between the default test application 
strategy (equation (I)) and the monitor-based is: ݃ܽ݅݊ ൌ 10݉ െ ሺ5  6݉ሻ ൌ  4݉ െ   5

Hence, gain is positive when  ൏ ସହ ݉, which means that the size of the monitor 

program should be less than the 80% of the test data size for the selected μP 
architecture.  

3.3.3 Offline mode 

The offline test application requires a test application program with embedded 
test patterns to be loaded into embedded program memory of the μP. Below is 
shown the sequence of steps to load one program word. 

1. Shift in target address to data exchange register of the debug interface. 
2. Load target address to GPR from debug data exchange register. 
3. Shift in program word to data exchange register of the debug interface. 
4. Load program word to GPR from debug data exchange register. 
5. Store program word from GPR to target address in program memory. 

These steps are repeated for every program word of the test application program. 
Then the program is started and the external tester polls the debug data register for 
the flag that determines that the application of test patterns is finished. Then external 
tester reads test results that are stored in the GPRs for further evaluation. The steps 
to complete these actions are given below: 

1. Jump to the initial address of the test application program (the μP starts 
program execution ) 

2. Shift out data from debug data exchange register (this step is repeated until 
the DONE flag is set by the running test application program). 

3. Shift in debug interface instruction that halts the processor and returns 
control to debug interface (this step is reached after the DONE flag was set 
in the data exchange register by the test application program). 

4. Store test result (pass or fail) from GPR to data exchange register. 
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5. Shift out test result to the external tester. 

In case if test passes, the testing is completed with the last mentioned step. If the 
test fails, the external tester reads the test responses from the memory location that 
was specified by test application program in a GPR. The external tester compares 
the expected values with the obtained test responses to diagnose the fault. 

The test application time for offline mode is: 

 (IV) ்ݐ ൌ ݐ  ௌݐ   ிோݐ

Where:  

- tP is time for loading the test application program into program memory ݐ ൌ  w is the number of shifts to program one word and p is the size of the ;ݓ
program in words. 

- tS is time for starting the test application program and test result obtainment. 
For further evaluation of the test application time this parameter is assigned 
with its minimum value (5), which corresponds to the best case scenario, when 
the polling returns DONE flag after the first attempt. However, the program 
execution may take time longer than the time of one shift. To simplify our 
calculations we state that the number of repetitions of step 2 corresponds to the 
program execution time. 

- tFR is time for reading faulty test response. These steps are skipped when test 
result contains pass signature. This time is neglected in further calculations, 
because the typical test application scenario ends with positive test result.  

The simplified formula (IV) is: ்ݐ ൌ ݐ  ௌݐ  ிோݐ ൌ ݓ  5. 

 When w is equal to 5 (the default write sequence) then test application time is: ்ݐ ൌ 5  5. The test application program consists of m test patterns and the 
instructions themselves. Let a be the number of instructions in words in the test 
program. Hence, p = m + a and ்ݐ ൌ ݓ  5 ൌ ݉ݓ  ܽݓ  5 ൌ 5݉  5ܽ  5, 
when w is equal to 5 (as for selected  μP ISA). 

The time that is used by μP to execute the application is considered to be 
relatively small due to the much higher (from 10 to 1000 times) clock frequency in 
comparison to test clock. Thus, the μP execution time is neglected in our 
calculations. 

In the simplified equation (I) (default online mode) the test execution time of the 
same set of test patterns was: ்ݐ ൌ 10݉. This leads to the conclusion that the test 
application time for online and offline modes are equal when ܽݓ ൌ ݉ݓ െ  ௌ. Inݐ
other words, at least the half of the test application program should be test patterns, 
otherwise the test application time in the offline mode will exceed the time in the 
online mode (for the same SUT and μP architectures). 
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In case when μP ISA supports instructions with multiple operands the time for 
loading the test application is different. In this case ݐ is calculated similarly to the 
test patterns application summand from formula (II), because exactly the same 
sequence of shifts is used: 

ݐ  ൌ  2         ൌ 3   2 ൌ ሺଷ  2ሻ. 

Where f is a number of source operands in the multiple load or multiple store 

instructions (defined in the μP ISA). If f=8, then ݐ ൌ ଵଽ଼  ൌ ଵଽ଼ ݉   ଵଽ଼ ܽ. By 

substituting the values of tP, tS and tFR
  into (IV) the following formula for test 

application time is obtained: 

 (V) ்ݐ ൌ   ቀଷ  2ቁ   5 ൌ  ݉ ቀଷ  2ቁ  ܽ ቀଷ  2ቁ  5  
The difference in test application time between the online (formula (II)) and 

offline (formula (V)) test application strategy: ሺܫܫሻ െ  ሺܸሻ ൌ  2݉ ൬3݂  2൰ െ  ݉ ൬3݂  2൰ െ ܽ ൬3݂  2൰ െ 5 ൌ 

ൌ  ݉ ൬3݂  2൰ െ ܽ ൬3݂  2൰ െ 5 

The difference must be positive (II) – (V) > 0, in order to justify the efforts spend 
for development of the test application program that is used in offline mode. Hence, 
the difference is positive when:  ݉ ቀଷ  2ቁ െ ܽ ቀଷ  2ቁ െ 5  0; 

ሺ݉ െ ܽሻ  ቆ ହଶାయቇ. 

If f = 1 (SIMD is not supported), the previously derived inequality is received: ሺ݉ െ ܽሻ  1. 

This leads to the conclusion that the size of the program without test patterns 
should be smaller (independent from the μP ISA architecture) than the set of test 
patterns, otherwise the test application time in offline mode will exceed the time for 
the online mode. Another interesting conclusion is that the more operands could be 
used per one load or store instruction the bigger should be difference between 
number of test patterns and the size of the test application program not including 
embedded test patterns. However, even when ݂ ൌ ∞, a should be smaller than m – 3 
to satisfy inequality (II) – (V) > 0, because: 
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lim ՜ஶ ൮ 52  3݂൲ ൌ 2.5 

As a and m domain contains only integer numbers all results should be rounded 
up. 

Although, above mentioned calculations are valid only for the selected 
architecture of the μP, these can be used for the arbitrary ISA when inequality ሺ݉ െ ܽሻ  ቆ ହଶାయቇ is transformed to the general form as follows: 

ሺ݉ െ ܽሻ  ൮ ݓௌሺݐ െ ݀ሻ  ݂݀൲ 

Where: 

- ts has the same meaning as for formula (IV). 
- w  is the number of shifts to write/read one word from/to the external tester. 
- d  is the number of shifts that is repeated for 1/f words in case of SIMD 

instruction. 

3.4 Overview of the test application modes  

The formulae presented in Table 3-1 are proposed for the test application time 
estimations and comparison of the listed modes. In case if the SUT and μP 
architecture used in this chapter do not match the specific test case, the formulae (I), 
(III) and (IV) should be used to derive the equations suitable for given SUT and μP 
architecture. 

The preferable solution for detecting not only static, but also dynamic faults is 
offline test application mode. The most of the time in offline mode is spend for 
loading the test application program (with embedded test patterns) into program 
memory of the μP. This time may be reduced only by optimization of the size of the 
test application program. The first direction for optimization is to embed the 
compression/decompression mechanism for test patterns. The second is to 
implement the program as short as possible for every SUT. It means that the 
recompilation of the general test application software is not a solution. The test 
application program should be developed in the native assembly of the μP to make 
the binary as short as possible. The latter allows using the complex instructions such 
as store or load with multiple data sources, which reduce the size of the test 
application program. 
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There are test cases when usage of the program memory of the μP is not allowed 
or not efficient. The program memory may be full, protected, not available or not big 
enough to store the flash image (in case of ISP). For these cases the online mode can 
be used instead of the offline mode.  

The special case of the online mode is the online mode with monitor software. 
The monitor software is typically small enough to fit in any memory. The main goal 
of the monitor software is to reduce the data traffic on the test path. The most of the 
traffic in the online mode is the instructions to control μP to apply test patterns. 
These instructions accompany every test pattern, thus the payload in the online mode 
is relatively low as shown in Table 3-1. The monitor software increases the payload, 
because it assumes the control over the μP. 

Table 3-1 Evaluation of test application modes for the selected μP ISA 

Test application modes Number of shifts* through the test 
access path (tTA) 

Online  10݉ 

Online (μP ISA supports 
instructions with multiple operands) 2݉ ൬3݂  2൰ 

Online (monitor software 
developing and loading) 

5  6݉ 

Offline 5݉  5ܽ  5 

Offline (μP ISA supports 
instructions with multiple operands) ݉ ൬3݂  2൰  ܽ ൬3݂  2൰ ܽ  5 

m – Number of test patterns 
p – Number of words in the monitor software 
a – Number of words in the test application software (not including the embedded test patterns m) 
* – Number of shifts is integer number, thus, all results should be rounded up. 

3.5 Chapter summary 

This chapter describes in details the internal structure of the PCBT program. The 
influence of the test requirements on the functionality of the test program is 
discussed in the beginning of the chapter. The SUT initialization and configuration 
steps are described in details in the test access section. In general, these steps 
prepare the test path for the test application. 

In the test application section the online and offline modes are reviewed. Besides 
the detailed explanation of the possible implementations, the analytical estimations 
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for the time limit of the test application are presented. The analytical estimations are 
supported by the derived formulae for test application time calculation. The chapter 
is concluded by the summary of the test application modes and the comparative table 
with formulae for test application time calculation. The simulation-free calculation 
of the test application time is useful for fast cost estimation of the manufacturing 
board test solution. 
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Chapter 4  

BOARD AND ELECTRONIC 

COMPONENT MODELING 

This chapter presents the study of the board and component modeling. The 
proposed modeling methodology includes modeling of structural and behavioral 
features of the board and IC components. The selection and development of the 
underlying metamodels are discussed in details and compared with the existing 
modeling approaches. The chapter is concluded with the description of the uniform 
test data path. 

4.1 Modeling basics 

A model is an abstract representation of an object. The model mimics structure 
or/and behavior of the real world object and is constructed to reflect certain parts 
that are essential for the job in hand. The modeling process aims to grasp only 
relevant properties of the object. Hence, modeling provides complexity reduction in 
manipulation with the real world objects. 

The structure of the modeling instances is defined by the metamodel. The 
metamodel describes a model. In general, metamodel represents the set of the basic 
elements of the model, an inner structure of the elements as well as the rules for 
creating connections between these elements. In other words, a metamodel is the 
model of a model. 

In this thesis the subject for modeling is a printed circuit board populated with 
electronic components also known as printed circuit board assembly (PCBA). The 
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purpose for the PCBA modeling in this research is to create the representation of the 
test data path in the PCBA. This test data path is used later for test access and test 
application program synthesis.  

Existing approaches on digital system modeling are based on different standards 
and languages. Transaction-level model (TLM) [46], IP-XACT (IEEE Std. 1685TM-
2009) [47], MARTE [48] are the most noticeable and the most recent ones. These 
are focused on the digital system design related tasks and suitable to solve only 
several of the needed subtasks of the test data path modeling (SoC internal structure 
and implementation). To author’s best knowledge, the modeling of the SoC 
structures together with the structures beyond the SoC on the PCBA is not yet 
studied by the research community and industry.  In order not to reinvent the wheel 
in modeling the following materials were studied. 

The MARTE (Modeling and Analysis of Real-Time Embedded Systems) 
specification is a language extension to Unified Modeling Language (UML), hence 
it does not provide any methodology related hints for developing embedded system 
[49]. The MARTE profile to UML consists of packages that target different 
modeling aspects (e.g. design, analysis). The necessary instruments for PCBA and 
component modeling are presented in MARTE, but their usage requires deep 
knowledge of the model-driven engineering, that is typically uncommon for the test 
engineer. Thus, this modeling approach was considered too general and heavyweight 
to fit the cost of the task of test path modeling.  

However, the general approach of creating an UML metamodel to describe the 
structure of the model is one-time effort and a common practice. Therefore it was 
followed in our methodology. Eclipse modeling framework (EMF) [50] was used to 
develop the metamodel for structural and behavioral model types. The EMF also 
facilitates the automatic synthesis of the edit and editor parts of Eclipse plug-in 
(Chapter 6). This plug-in is used to create the test data path model instance of a 
particular PCBA following the rules defined in the metamodel. 

In transaction-level modeling (TLM), the details of communication among 
computational components are separated from the structure of computational 
components [46]. In [46] the number of TLM abstraction models is specified for 
description of different levels of description of communication time, computation 
time, communication scheme and processing elements (PE) interface (in this thesis 
PE is μP SoC). In TLM the design in hand can be described across multiple 
abstraction levels, which allows hiding of unnecessary details of one module, while 
providing thorough “implementation level” description of  the other. These 
modeling principles of TLM perfectly match the objectives of the PCBA modeling 
in this research due to several reasons. The first reason is that the communication 
time between the SoC components and external on-board devices has to be modeled 
cycle-wise, but the communication time between the SoC components may be 
neglected. The second point is the interface modeling between the SoC components. 
On the one hand, the model has to contain information about exact mapping between 
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SoC pins and SoC components. On the other hand, the inter-component interfaces 
inside the SoC do not require pin-accurate modeling. Required SoC model needs an 
“implementation level” description of the structures communicating with SoC 
boundary and “component-assembly” level for the rest of the SoC. Although, the 
TLM methodology fits the task of PCBA modeling, it still misses the point of 
making the models easy to develop for the test engineer. The TLM implies creation 
of models by the means of programming language like SystemC [51]. The proposed 
modeling methodology reuses the basis of the listed useful characteristics of the 
TLM abstraction levels, but introduces the metamodel-based approach for manual 
model creation to shorten the expenses on traditional programming.  

IP-XACT [47] defines the standardized way to describe those behavioral and 
structural characteristics of the IP that are relevant to the integration of SoC 
components. The components, systems, bus interfaces and connections, abstractions 
of those buses, and details of the components including address maps, register and 
field descriptions may be described by models supported in IP-XACT. Among the 
supported descriptions are TLM (SystemC and SystemVerilog), fixed HDL 
descriptions (Verilog, VHDL) et al. IP-XACT is focused on the integration inside 
the chip and the board level is not involved, hence, the proposed modeling method 
cannot fully rely on this standard.  

On the current stage of the research the proposed modeling method does not 
produce IP-XACT compliant models. However, the backward compatibility is 
supported for IP-XACT compliant VHDL description, which can be automatically 
parsed into the proposed model. As practice shows VHDL description of the SoC 
components is typically “closed” information for the third-party tool vendors. 
Hence, there is a need in recreating the description (model) of SoC component 
manually. 

4.2 Test data path model 

The test data path modeling implies the modeling of the structure of PCBA and 
the structure of electronic components that populate this PCBA. In order to 
synthesize the test access and test application program the model of the functionality 
of the PCBA components is also required. Thus, two different kinds of information 
(structural and behavioral) have to be modeled. The structural part of the board 
component model contains mostly the component specific settings (e.g. names of 
pins, addresses of registers and internal modules). On the contrary, the behavioral 
part models functionality which is typically general to particular component family. 
Hence, the decision was made to create structural and behavioral models separately 
for the complexity reduction and wider opportunities for model reuse, but with 
common interfaces that allow joining these models into uniform test data path 
model. 
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4.2.1 Structural Model 

The proposed structural model represents a two-level hierarchy. The top level 
describes the connections between components at the board level and corresponds to 
the board structural model. Bottom level is dedicated to model the internal structure 
and static properties of the electrical component. This level is further called as 
device structural model. The board and device structural models are united at the 
level of the metamodel that describes structure of the uniform structural model of the 
PCBA (see Figure 4-1).  

Figure 4-1 Metamodel for structural model of the board and electronic 
components 
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4.2.1.1 Board structural model 

The purpose of the board structural model is to represent the interconnections 
between electronic components. The basic object to be modeled here is the physical 
link between PCBA components. The important property of every physical link is a 
list of pins that are connected by the given link. The minimum number of pins in the 
link is two. Every pin belongs to the electrical component. Physical link between at 
least two electrical components is modeled as a net. Hence, structural model of the 
board describes the PCBA by listing the connection between electrical components 
as nets without including the information about the location of the component on the 
PCBA.  

The board structural model is automatically obtained from PCBA netlist file. 
There are many formats for describing the PCBA netlist, though, in order to reduce 
the amount of parsers to implement, we reused the commercial software that is 
capable to parse most of the formats. This commercial parser translates any 
supported input PCBA netlist format into simple intermediate format. Hence, to 
reduce the development efforts, the program that automatically builds the board 
structural model out of PCBA netlist supports this format. For any other format the 
commercial parser can be used. 

Figure 4-2 Metamodel of board structural model 

The part of the metamodel of the board that reflects the board structural model is 
shown in Figure 4-2. Generally, this metamodel encapsulates the following rules: 

 Every object is represented as the titled box (Class object in UML), 
where title is a general name for all instances of this object. The PCBA is 
modeled as object named Board. The properties of an object are mirrored 
as fields in the Class. For example, name in the class Board is a name of 
the PCBA. 

 The containment link shows that one object can enclose the other object. 
The containing object is denoted with the bold diamond and the 
contained object is pointed with the arrow. The notation after the name 
of the containment link shows minimum and maximum number of 
objects to contain (* stands for unlimited). Board has a containment link 
to Nets (netList) and to BoardComponents (boardComponentList).  
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 The simple reference is depicted as a simple arrow. Net has a link to at 
least two BoardComponents. It means that Net must have reference to at 
least two pins. In practice this means that knowing the Net one can find 
the pins of the Device(s) that is connected by this Net. 

 BoardComponent should be linked by a staticDescription link to the 
Device model that is stored in the Library of devices and device 
components. This abstraction allows storing only one model for the 
identical PCBA components (e.g. multiple identical memory chips). In 
other words, instances of the same device have one description in the 
library. 

 Device has a containment list of Pins that correspond to the physical pins 
of the BoardComponent.  

 In order to distinguish identical devices in the model, Net has besides the 
reference to the Pins also the boardComponentLink. This link creates a 
reference to particular BoardComponents whose pin(s) are connected in 
the Net. 

After the board structural model is obtained the device structural model should 
be assigned to those Devices (BoardComponents) that are participating in the test 
data propagation path. The rest of the PCBA components are unimportant and may 
be omitted from the uniform PCBA model. This model could be used by the 
automated test pattern generator (ATPG) to get the set of test patterns to test faults 
on the interconnections between the board components. 

4.2.1.2 Device structural model 

The complete board structural model is a template for the further development of 
the device structural model. This template contains the list of board components 
with links to the predefined devices that are added to the library. Every board 
component may be associated with the static device description that contains device 
internal structural model. This model is created obeying the rules exposed by the 
metamodel that is shown in Figure 4-3. 

Practically, there are two ways to assign a structural model to the device. The 
first way is to reuse the existing suitable model from the library (readyDescription 
link). This requires the presence of the correct model in the library. The second way 
is to develop the structural model. Every developed model is stored in the library for 
further reuse. 

The following Lego-style modeling concept was proposed in [52]. In order to 
reduce the complexity of the structural model the certain parts of the device are 
modeled separately as device components (Component). For example, memory 
controller, external bus interface or debug interface are modeled independently from 
μP itself. The independent Component model becomes a part of a particular Device 
after it is added via description link to the appropriate DeviceComponent (Figure 
4-3). The splitting of the device model into models of components also contributes 
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to the reusability of the models in the library. The major IP vendors (e.g. ARM) 
develop the processor-based SoC components that are compliant with various 
versions of other SoC components. Hence, the reusability is maintained at an IP 
vendor level. Though, the same strategy to preserve the reusability of the models is 
followed in the proposed modeling approach. 

The central item of the device structural model is a Device. It has a number of 
relations as it is shown in Figure 4-3.  

 The device might have characteristics that are possible to express in this 
model as an object (DeviceCharacteristic). The presence of chracteristics 
is modeled as a containment link (characteristicList) to the 
DeviceCharacteristic. The most typical device characteristics describe 
the timings of the control signals for the DDRx memory model (e.g. CAS 
latency (CL), clock cycle time (tCK), row cycle time (tRC), refresh row 
cycle time (tRFC), row active time (tRAS)). 

 The properties of the device are expressed as DeviceProperty. The 
property might have several settings (DeviceSetting). Every setting is 
linked to the device register (DeviceRegister), which description should 
be included into registerList. For example, the watchdog of the μP can be 
modeled as a property. The possible watchdog settings are time periods 
or watchdog state (e.g. disable, enable).  

 The device could have a list of components (DeviceComponent). This 
architecture is typical for the SoC with processor core(s) and number of 
peripheral IP cores. The DeviceComponent describes the name and the 
base address of this component inside the SoC.  

 The SoC component that is defined in the model as DeviceComponent is 
intended to have a standalone description (Component) in the library. 

 The Component has containment list (pinList) of pins (ComponentPin) 
that are used by this component. The device pin (Pin) and the component 
pin (ComponentPin) is physically the same pin of the particular SoC and 
their relation is modeled with functionLink.The functionLink exposes the 
connection between the SoC pins and the SoC component that drives and 
senses these pins. 

 The registers that belong to the SoC component are modeled as 
ComponentRegister. The physical address inside the μP SoC of the 
ComponentRegister inside the SoC is later composed in software by 
adding the register address inside the component to the base address 
(baseAddress) of the component. 

 The Property that resides in the propertyList of the Component is for 
modeling the various possible configurations of the component. For 
example, the SDRAM controller has a list of parameters (e.g. CL, tCK, 
tRC, tRFC, tRAS) that help to setup the proper signal timings for 
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Figure 4-3 Metamodel of device structural model 

communication with particular memory. Every Property has a list of 
possible values that are modeled as PropertySettings. Any 
PropertySettings has a registerLink which specifies the mapping between 
the property setting and the corresponding value for one of the registers 
inside the SoC component. 

 The PropertySetting and DeviceSetting are derived from the general 
Setting class. It has fields for defining setting value and type of this 
value. The field registerValue represents the actual value to be stored in 
the register for the given setting value. The registerMask specifies the 
location of the registerValue in the register. The register mask is needed 
when the register is dedicated to contain the settings of more than one 
property. 

The particular settings of the processor-based SoC are obtained on the basis of 
this structural model. These settings enable communication between processor-based 
SoC and the UUT. The value of the setting is found by matching the UUT 
characteristic name (the name field in the DeviceCharacteristic) with the property 
name of the μP (the name field in the DeviceProperty) or with the component 
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property name (the name field in the Property). When the matching pair is found the 
correct Setting (DeviceSetting or PropertySetting) is selected from the settings list 
(settingList) by comparing the value field of the DeviceCharacteristic and the value 
field of the Setting. The obtained settings form the pairs of register and the value that 
have to be written to this register.  

4.2.1.3 Metamodel for structural model 

The metamodel for structural model of the PCBA (Figure 4-1) unites the 
metamodels for board structural model and device structural model. The Device 
(box for Device class) is a point of joint of board and device structural models. It 
acts like a bridge between the PCB-level interconnect structures and the PCBA 
component internal structures. One of the properties of structural PCBA model is 
that it includes mapping between SoC components and the board interconnect that is 
driven by this SoC component. This can be used in the debugging of the created 
model and for diagnosis of functional failures during the test runtime. 

Component model reuse is a very important aspect of the concept as the only part 
that is not fully automated is the model creation. Hence, reduction in the amount of 
manually created model components is one of the goals of the proposed 
methodology. Once the models of the PCBA components are created, they are stored 
in the library. The next time the known μP SoC, SoC components or any other 
PCBA device (e.g. flash memory, DDRx) is present on the board we can reuse the 
respective models from the library. In ideal case, every device of the PCBA under 
test should have its model in the library except the interconnection information that 
needs to be processed separately for each new PCBA. However, the latter is a fully 
automated task. 

4.2.2 Behavioral Model 

The behavioral part of the uniform test data path model that is proposed in this 
thesis is composed using the mathematical basis of High-Level Decision Diagram 
(HLDD). There are research works that study the presentation of the digital circuits 
at Register-Transfer level (RT-Level) as High-Level Decision Diagram (HLDD) 
[53]. The HLDDs are graph representations of discrete functions that can be 
considered as a generalization of Binary Decision Diagrams (BDDs). HLDDs have 
been proven an efficient model for simulation and fault modeling as they provide for 
fast evaluation by graph traversal and for easy identification of cause-effect 
relationships [54]. 

4.2.2.1 High-Level Decision Diagram theory 

Consider a system S as a network of interconnected components (functional 
blocks, buses, ports) where each component is represented by a function ݕ ൌ ݂ሺܺሻ 
and ܺ is the set of variables (Boolean, Boolean vectors or integers), and ܸሺݔሻ is the 
set of possible values for ܺ߳ݔ which are finite. Let HLDD ܩ௬ with a set of nodes ܯ 
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represent the component. The terminal nodes ்݉ א  may be labeled either by ்ܯ
variables ݔሺ்݉ሻ א ܺ, digital functions ݔሺ்݉ሻ ൌ  ݂ሺܺሻ, or constants ܽሺ்݉ሻ. All 
remaining nodes ݉ א ሺ݉ሻݔ are labelled by variables ்ܯ\ܯ א ܺ, and have |ܸ൫ݔሺ݉ሻ൯| output edges leading to the successor nodes ݉ where ݁ א ܸሺݔሺ݉ሻሻ. 
The edge ሺ݉, ݉ሻ in the HLDD is called activated if ݔሺ݉ሻ ൌ ݁. A path ሺ݉, ݊ሻ is 
called activated if all the edges which form the path are activated.  

To activate a path ሺ݉, ݊ሻ means to assign the node variables along this path with 
proper values. Let ݉ be the root node of a HLDD ܩ௬. Let ܺ௧ be an input vector 
applied at the moment ݐ on the inputs of the component represented by ܩ௬. We call 
the vector ܺ௧as the activation solution for the component to satisfy the condition ݕ ൌ ݂ሺܺሻ ൌ ,ሺ்݉ ሻ if it activates a full path ሺ݉ݔ ்݉ሻ from the root node to a 
terminal node. The complete test solution implies consistent activation of all the full 
paths in the HLDDs involved, so that the imposed constraints collected along the 
activated paths are satisfied. To find such a test solution, a constraint solver can be 
used. 

By activating a full path a symbolic value associated with the terminal node ்݉ 
is assigned to the root node ݉. In general, the terminal node may contain constant, 
operation (arithmetic: ܽ  ܾ or Boolean: ܽ|ܾ) or variable. If terminal node contains 
a variable (or operation of variables), the value of the variable is determined by 
subsequent activation of a full path in the corresponding graph.  

4.2.2.2 Metamodel for High-Level Decision Diagrams 

In Figure 4-4 is shown the metamodel that describes the structure of behavioral 
model part of the test data path.  

 ModelingDomain is the most top element in this metamodel that is used 
to collect ModelingObjects. The domain (ModelingDomain) is typically 
a PCBA whereas the objects (ModelingObject) are PCBA components.  

 Any ModelingObject S has a number of inputs that are implemented as 
variables (Variable ݔ) ܺ߳ݔ. 

 Variable ݔ is defined with the name and the width in bits. The modeling 
object is represented by the set of GraphVariables ሺܻሻ. The possible 
values of the GraphVariable are modeled as terminal nodes ்݉ 
(Termination) of the graph ܩ௬ that are assigned to this GraphVariable ݕ ൌ   .ሺ்݉ ሻݔ

 Termination has link to Variable that defines its value. As it is seen from 
the metamodel the Variable is a base class for Input, GraphVariable, 
Function and Constant objects. Hence, the value of the Termination is 
one of the objects that are derived from the Variable class.  

 Graph ܩ௬ object has containment link to nodes ܯ that belong to this 
graph. It also may have a direct containment link to terminal nodes ்ܯ. 
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This link (TerminalEdge) is for explicit definition of constants and 
functions that are referred from the nodes. 

 Node has a link (NodeEvaluation ܸሺݔሺ݉ሻሻ) to the variable that contains 
the possible values of the node. Every edge (Edge) ሺ݉, ݉ሻ, where ݁ א ܸሺݔሺ݉ሻሻ that goes from the node to the next node corresponds to the 
one of the possible values of the first node. Same nodes may be 
connected by more than one edge. 

 Edge may lead to the next non-terminal node ݉ א  or (NodeLink) ்ܯ\ܯ
to the terminal node ݉ א  The transition value of .(TerminationLink) ்ܯ
the edge may also be specified by the ConstantValue link to the 
predefined constant. 

 Function ݂ሺܺሻ is an object that defines the operations with variables. 
The function has a field for selecting an operation from a list of 
supported functions (AvailableFunctions). This list can be easily 
extended to support any operations (bitwise, logic, etc.). The arguments 
to the function are specified by the Arguments link that select from the 
list of predefined variables. 

Figure 4-4 Metamodel for HLDD 
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 Output of the modeling object is a graph variable that is explicitly 
specified as output ݕ א ܻ. The output may be connected to the input of 
the same or different modelling object inside the same modelling domain 
by the InputValue link ݔሺݕሻ. 

This metamodel belongs to the contribution of this thesis. HLDD graphs have not 
been previously described at this level of abstraction. This metamodel is a first 
method that facilitates the manual HLDD graphs composition. Previously manual 
HLDD graphs creation was considered as a very inefficient approach to describe 
digital circuits at RT-Level. The new framework was developed that provides 
functionality to create, import, edit and export the HLDD graphs. This framework 
does not require experience in any programming language and allows to create 
behavioral and structural descriptions of designs at fairly high level of abstraction. 

4.2.2.3 High-Level Decision Diagram composition 

Although HLDD graphs could be automatically constructed out of HDL 
description of digital circuit at RT-Level [53], this often is not possible since HDL 
description is not publicly available. In case, when RT-Level HDL description is not 
available for the PCBA components the HLDD are supposed to be composed 
manually. The manual composition of HLDD models relies on the PCBA 
component documentation. 

Let us consider the structure depicted in Figure 4-5 as a part of the test data path 
to be modeled for test propagation purposes. Figure 4-5 presents a reduced structure 
of JTAG TAP that consists of TAP controller state machine (Figure 4-2) and scan 
register that is connected to respective data register. Data is shifted into scan register 
through serial TDI bus when TAP controller state is “Shift-DR”. TAP controller 
“Controls” output is equal to 4 (Controls = 4) when state is “Shift-DR”. The load 
from scan register into data register is initiated when TAP controller state is 
“Update-DR” (Controls = 8). The store from data register to scan register is 
performed when TAP controller state is “Capture-DR” (Controls = 3). TAP 
controller enters reset state “Test-Logic-Reset” when TRST signal is enabled. In the 
same state the data register obtains its reset value. 

The model of the described structure (Figure 4-5) is shown in Figure 4-6. For 
ease of understanding, the repetitions of similar parts of the resulting model are 
omitted. In the model given in Figure 4-6, the data register from structure in Figure 
4-5 is represented by “Data Register” variable and scan register corresponds to 
“Scan Register” variable. The TAP controller state machine is equivalent to the 
leftmost graph in Figure 4-6. 

Let us have a look at leftmost graph in Figure 4-6 for the explanation of the full 
path activation principles. The shortest full path can be activated by setting “TRST” 
= 1. In this case “Controls” variable is assigned with the value 0. As “TRST” is a 
system input one can directly apply any value to it. Hence, the only condition 
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(constraint to be satisfied) we get from this path is that as soon as 1 is applied to 
“TRST” input, “Controls” will have value 0. 

Figure 4-5 Simplified control and data path for JTAG TAP 

In other words, the graphs of the model depicted in Figure 4-6 describe the set of 
constraints in the modeled system. For example, assignment of value 3 to “Controls” 
exposes the following constraints: “TRST” = 0, “TCK Front” = 1, “Controls´” = 2 
and “TMS” = 0 (where “Controls´” is previous value of “Controls”). When these 
constraints are satisfied the full path to terminal node with value 3 will be activated. 

In Figure 4-7 is presented the part of HLDD model of JTAG TAP controller state 
diagram. This model is another representation of the “Controls” graph in Figure 4-6. 
The difference is that in Figure 4-6 the HLDD is shown schematically and Figure 
4-7 is a screenshot of the HLDD model that was created in the developed framework 
on the basis of the proposed metamodel (Figure 4-4). The HLDD model has two 
representations in this framework. The first is shown in Figure 4-7, which is a user-
friendly view that facilitates manual interactions with the model. The second is a 
textual representation that is suitable for the toolchain that operates with this model. 
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Figure 4-6 Model (HLDDs) of simplified control and data path for JTAG TAP 

Figure 4-7 HLDD model of JTAG TAP controller state machine 
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4.2.3 Uniform test data path model 

The key idea behind the proposed concept is to represent the system as a set of 
tightly interrelated models. These models are combined together into a uniform 
model, which represents the continuous test data path (Figure 4-8). The uniform 
model contains only models of those devices, functional blocks, buses, ports, etc., 
that need to be tested (interconnect test, functional test, etc.) or activated for the test 
data propagation during the test application.  

The typical components of the uniform model are described in details in the 
following chapter (Chapter 5). Each component has a structural description. The 
programmable components (e.g. μP, μC) and other complex devices (e.g. flash 
memory, DDRx) are presented with the behavioral model as well. The presence of 
the behavioral model for other components is optional if they are not included in the 
test data path.  

Due to the different metamodels (see sections 4.2.1 and 4.2.2), structural and 
behavioral models are isolated from each other during their creation phase. This 
allows reusing the same behavioral and structural model independently for different 
SUTs. Model reuse is a very important aspect of the concept as the process of 
creation/import of model itself is the only thing that is not fully automated.  

The unification of the structural and behavioral models is automated. The 
structural model represents the “backbone” where the behavioral models are 
attached to. The exact place on the “backbone” is found by matching the name fields 
of the certain classes in the structural and behavioral models. The detailed matching 
parameters are shown in Table 4-1.  

Figure 4-8 Test data path model 
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Table 4-1 Fields for models unification 

Structural model Behavioral model 

Class field Class field 

Device name ModelingDomain name

Component name ModelingObject name

Pin name Input name

Pin name Output name

 

4.2.4 Diagnosis of PCBT failure 

In the automated approach, test path model is composed in a consecutive manner 
as shown in Figure 4-8. The advantage of this well structured continuous test path 
model of the SUT is the possibility to diagnose the root cause of system-level 
functional test failure. The diagnosis is performed in a top-down manner. First, the 
blocks that are not modeled are considered as non-relevant to the observed 
functional failure. Then, the models are removed one by one from the end of the 
modeled test path. After the model block is removed the PCBT program is re-
synthesized and executed. This procedure is repeated until the remaining part of test 
path reports no failure. That reveals the failing module, which corresponds to the last 
removed model. Further diagnosis may be applied towards the last removed model 
where the final resolution depends on the internal structure of this model. 

4.3 Chapter summary 

The automation of the board test development is based on modeling of PCBA 
components. Typical PCBA components are microprocessor, flash memory, RAM 
memory, sensor, controller, display, etc. Every PCBA component has an 
automatically generated top-level structural model which is a part of the board 
structural model. 

A novel structural model was developed to formalize the description of pin 
configuration, register map and internal memory organization as well as possible 
configuration parameters of the component. Generally, any static and descriptive 
information, such as legitimate values of the configuration register or external bus 
timing parameters, may be included into the structural model. The metamodel for 
structural model and detailed explanation are given in section 4.2.1.  

Based on the information extracted from the netlist file of the given board a 
structural model of the board is automatically created. The netlist file conveys 
connectivity information for the board components and names instances of board 
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components that could be simple components like transistor, resistor, capacitor 
or more complex ones like integrated circuit. 

The structural model of the test data path is complemented by the uniform 
behavioral model. The behavioral model of the test data path is a unification of 
behavioral models of the PCBA components. The behavioral model presents the 
functionality of the component at RT-Level. Typically it includes description of the 
control path and data path. The mathematical basis for the behavioral model is 
formed by High-Level Decision Diagrams (HLDDs). The detailed description of 
HLDD and its metamodel is given in section 4.2.2.1. For the first time the 
metamodel-based approach is used for efficient manual creation of HLDD graphs 

The proposed uniform test data path model is a novel approach to model the 
PCBA. The novelty of the uniform model is in its ability to combine structural and 
behavioral descriptions of not only the SoC components, but also of the PCBA 
components and their interconnections.  
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Chapter 5  

AUTOMATED TEST PROGRAM 

SYNTHESIS 

This chapter describes the proposed approach for automated test program 
synthesis. Firstly, the field of PCBA test program synthesis is explored and a typical 
development flow is examined. On the basis of that typical non-automated 
development flow the automated flow is presented. The comparison of both 
approaches is given to estimate the development time under different conditions. 
Secondly, the method for automatic transformation of HLDD model to a constraint 
satisfaction problem (CSP) is explained. The challenges in solving a CSP for 
automated test program synthesis are revealed in the following section. The 
feasibility of the proposed approach is proven by experimental results. The chapter 
is concluded by the case study that demonstrates the proposed approach on the 
example of the test pattern transportation through the standard test access port. 

5.1 Automated and non-automated test program 
development 

Test program development flow encloses a sequence of steps as shown in the 
flow chart in Figure 5-1 A). The uppermost step in Figure 5-1 A) is for obtaining 
information concerning the SUT (here SUT is a PCBA or a system of connected 
PCBAs). This task is aimed to collect the infrastructural information. For example: 
the number of devices in scan-chain, the connections between the programmable 
unit and the unit under test, etc. Second step is for collecting information about 
UUT. The key moments here are the communication protocol and timing parameters 
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for in/out signals. Next step from the top encloses activities that involve studying the 
documentation of μP, which plays the role of embedded tester. Typically, important 
modules of the μP SoC are the debug port, the instruction set architecture, the 
organization of internal memory and various peripheral controllers. The order of the 
first three steps is not important as these steps describe the preliminary actions for 
the following programming steps. 

The Fourth step (“Debug Port Support”) is for developing the functionality for 
data passing starting from TAP of the SUT through the debug port. The second goal 
of this step is to compose sequence of JTAG commands that put processor into 
debug mode.  

In the fifth step (“R/W Memory/Register”) the access to the internal memories 
(registers) is implemented. Normally, it implies recruiting of instruction injection 
mechanisms of the processor debug port. As soon as the functionality to access the 
debug port and the internal memory locations of the processor is ready, the registers 
of the peripheral controllers are configurable from the external tester. 

Figure 5-1 PCBT program development flow chart 

A) flow without reuse B) flow with reuse 
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The Sixth step (“Peripheral Controller”) setups the peripheral controllers that 
provide an interface to the UUTs. Within this step the test access part of the PCBT 
program is completed.  

The test application functionality can be implemented according to online or 
offline mode (see Section 2.3.2). In the “Test-ware development” step the general 
micro-code for test pattern application is adapted (compiled) to the instruction set of 
a particular μP. 

Finally, the integration into test system is performed. This step implies the 
creation of the test project, generation and import of the test patterns and debugging 
on the SUT.  

For general development time estimation, we assume that each step takes 
approximately the same time to fulfill. In case if the programming device (μP) on 
the SUT is already familiar to the test engineer (has been studied in previous test 
projects and part of the source code could be reused) this flow is optimized 
approximately by 20%. The optimization is possible due to the reuse of functionality 
for internal memory access and instruction injection. Typically, the micro-code 
could be also reused with minor changes. In Figure 5-1 B) the boxes for reusable 
steps are shadowed. 

5.1.1 Automated test development flow 

In Figure 5-2 the automated test program development flow is shown in 
comparison to the flow in Figure 5-1. Four additional steps were introduced to the 
flow chart that form the “Modeling” block.  

“Modeling” block consists of steps for creating “Processor Model”, “Unit under 
test model”, “Peripheral controller model and processor Instruction Set Architecture 
model (“ISA model”). The “Processor Model” describes the debug port of the 
processor and an access to the internal memory and registers.  The “ISA model” 
includes the map of the processor instructions and a standard initialization sequences 
for the μP in the native assembly language of the μP. 

The use of these models in the test automation process is described in the 
following sections. In Figure 5-2 A) the automated PCBT program development 
flow is presented. Compared to the non-automated approach the flow initially has 
six manual steps instead of eight. The order of implementation steps in the non-
automated approach is important, because every step is based on the previous one. 
On the other hand, in the automated approach every step in the “modeling” block is 
independent from others. For example, the peripheral controller model may be 
created before the processor model itself. 

The first step in the automated flow is substituted by the automated import of the 
system description. Hence, “SUT Schematic/Netlist” step is shadowed to show that 
no manual effort is needed.  
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Figure 5-2 Automated PCBT program development flow chart  

A) flow without reuse B) flow with reuse 

In the automated flow one new step is introduced in comparison to the non-
automated creation flow. This step is for UUT model composition. The UUT model 
is used by the automation framework to obtain the settings of the peripheral 
controller and to handle communication protocol between the processor and the 
UUT. 

Similarly to Figure 5-1, Figure 5-2 also shows the PCBT program development 
flow with reuse (Figure 5-2 B). This flow is based on the reuse of the μP model and 
the ISA model. Given flow (Figure 5-2 B) contains only 4 steps instead of 6 (Figure 
5-2 A)), which is approximately 33% less and compared to the flow with reuse in 
the non-automated approach (Figure 5-1 B)) it contains 2 steps less, which also 
stands for 33% time reduction.  

5.1.2 Benefits of the automated approach 

Different levels of experience with SUT components suppose usage of the 
various test program development flows (as described in Table 5-1). As practice 
shows, for every level of experience (shown as Conditions in Table I) the non-
automated flow for test program development has more steps than in the automated 
flow. 



 

 

77

According to Table 5-1, the automated test creation flow has the smallest 
estimated gain compared to the non-automated approach (25%) when totally 
unknown SUT is met. The other corner case shows that nearly no manual steps 
required when the unknown SUT contains known processor and UUT. All models in 
automated approach are checked for consistency as described in the following 
sections. The consistency check validates the presence of all used variables such as 
inputs, outputs, constants, variables, memory elements and functions.  

Table 5-1 Comparison in number of steps for automated and non-automated flows  

Conditions Non-automated Automated 

Unknown SUT SUT Schematic/Netlist 
UUT manual 
- 
Processor manual 
Debug port support 
R/W memory/register 
Peripheral controller 
Test-ware development 
Test integration 

- 
UUT manual 
UUT model 
Processor manual 
Processor model 
Processor model 
Peripheral controller model 
ISA model, Ini. Sequence 
- 

8 Steps 6 Steps 

Unknown SUT with 
known processor 

SUT Schematic/Netlist 
UUT manual 
- 
Processor manual 
Peripheral controller 
Test-ware development 
Test integration 

- 
UUT manual 
UUT model 
Processor manual 
Peripheral controller model 
- 
- 

6 Steps 4 Steps 

Unknown SUT with 
known UUT 

SUT Schematic/Netlist 
UUT manual 
- 
Processor manual 
Debug port support 
R/W memory/register 
Peripheral controller 
Test-ware development 
Test integration 

- 
UUT manual 
- 
Processor manual 
Processor model 
Processor model 
Peripheral controller model 
- 
- 

8 Steps 4 Steps 

Unknown SUT with 
known UUT and 
processor 

SUT Schematic/Netlist 
Debug port support 
Test integration 

- 
- 
- 

3 Steps No steps 
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In case if any variable is missing or described incorrectly or cyclic dependency is 
found the engineer will get a notification in an automated approach. 

The process of manual creation of the behavior model is iterative. The general 
idea behind the iterative approach is that the model should not describe the 
functionality that is not needed for test data path modeling. Otherwise, manual 
creation of the behavior model of complex components like μP would not be 
feasible. The iterative approach implies the addition of the new functions to the 
model as required, typically without any changes to the rest of the model. This 
approach helps to maintain the complexity of the model. 

The behavior model is developed in self-contained iterations. At the end of 
iteration the test program is synthesized. If the synthesis fails the last iteration 
should be revised to eliminate the cause of fail. After every iteration, the test 
program is simulated or executed on the test setup (in case if the SUT is available) to 
find if the synthesized test program meets the test requirements. In case of 
inconsistencies with the test requirements the next iteration in the model 
development is undertaken for adding the functionality that helps the synthesized 
test program fulfill the requirements (e.g. ISP time limit).  

The traditional non-automated development of the test program is not so flexible 
in adding or changing the functionality of the test program as automated model-
based approach. When manually developed test program has to be modified to meet 
the test requirements it typically implies the deep refactoring of the program or even 
rewriting the whole program. Thus, it has to be fully verified and tested again. That 
makes the traditional development flow to be time consuming and the produced test 
program is hardly reusable in other test projects that have stricter test requirements. 

5.2 Test data path model as a constraint satisfaction 
problem 

In PCBT the test program is controlling the processor on the PCBA. The test 
program is executed on the external test hardware, which translates the program into 
the sequences of TAP signals.  These sequences are applied to the TAP of the 
PCBA. Let us name these sequences of TAP signals as the “raw” test program. The 
“raw” test program can be translated into format that particular tester is capable to 
interpret. Hence, the goal of automated test program synthesis is to obtain the “raw” 
test program. This makes proposed approach independent from particular test system 
or test setup. Moreover, the “raw” test program is easily adaptable to the arbitrary 
boundary-scan test system. 

Figure 5-3 depicts the workflow stages for obtaining the “raw” test program from 
the partial functional model of the test data path. 
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The HLDDs may be considered as the collection of rules that have to be obeyed 
in order to justify the test path, apply test pattern, sense the response and propagate it 
to the external tester. In order to synthesize automatically the “raw” test program, 
which does previously mentioned test tasks, the test data path model is converted 
into the constraint satisfaction problem (CSP). The CSP is solved by the constraint 
solver (CS). As a solution CS reports the values for the variables that represent the 
TAP pins. In other words, the CS produces the “raw” test program, which is the goal 
of automated test program synthesis.  

Constraint satisfaction, in its basic form, involves finding a value for each one of 
problem variables. The constraints specify the subsets of values that cannot be used 
together. The main algorithmic techniques that solve CSPs are local search and 
backtracking search. The backtracking search traverses the search-tree using a 
depth-first strategy. The branches that leave the node represent alternative choices 
that need to be examined to find a solution. The constraints are used for pruning sub-
trees that do not lead to the solutions. Backtracking search algorithm guarantees that 
a solution will be found if it exists. If CSP does not have a solution the backtracking 
search can be used to prove that and it also finds a provably optimal solution. There 
are many techniques for improving the backtracking search algorithm. This issue 
will be discussed in details in the following sections when discussing the 
backtracking search implemented in JaCoP [55]. 

A fundamental challenge in constraint programming is to understand the 
computational complexity of problems involving constraints. In their most general 

Figure 5-3 Partial functional model to raw test program transformation flow 
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form, CSPs are NP-Hard [56]. The complexity that corresponds to the CSP of the 
test program synthesis, which is based on the test data path model, is formed by the 
complexity of CSP that reflects the behavioral model (HLDD graphs). The structural 
model is traversed in linear time because its metamodel is basically a map of 
structural properties. Hence, only behavioral part of the test data path model is 
solved as a CSP and operations with the structural part are considered as 
programming tasks that does not require a CS to be solved. 

5.2.1 Formulation of Constraint Satisfaction Problem  

In this section, the concepts used in the remaining sections of this chapter are 
defined. The definitions are taken from “Handbook of Constraint Programming” 
[56]. 

“A constraint satisfaction problem (CSP) is a triple ܺۃ, ,ܦ  where: ܺ is a set of ۄܥ
variables, ሼݔଵ, … , ,ଵܦ is a set of domains ܦ ;ሽݔ . . , ,ଵݔ  associated withܦ … ,  ݔ
respectively; and ܥ is a set of constraints. Each constraint ܿ א ܿ is a pair ܥ ൌ ,ߪۃ  ۄߩ
where ߪ, the constraint scope, is a list of variables, and ߩ, the constraint relation, is a 
subset of the Cartesian product of their domains.” 

“The domain of a variable is a set of possible values that can be assigned to it. In 
board and electronic component modeling task it is assumed that the domain of a 
variable is a finite set. An assignment is a pairሺݔ, ܽሻ, which means that variable ݔ א ܺ is assigned the value ܽ א  . A compound assignment is a set of assignmentsܦ
to distinct variables in ܺ. A complete assignment is a compound assignment to all 
variables in ܺ.” 

“The relation of a constraint ܿ ൌ , ߪۃ   specifies the acceptable assignments to ۄߩ
the variables in its scope. That is, if the constraint scope ߪ  is ൛ݔభ, ,మݔ … ,ଵܽۃ ೖൟ andݔ ܽଶ, … , ܽۄ א ,ೖݔ , the compound assignment assigning ܽ toߩ  1  ݅  ݇, is an 
acceptable assignment, in other word the assignment satisfies the constraint ܿ.  A 
solution to the CSP instance ܺۃ, ,ܦ  is a complete assignment such that for every ۄܥ
constraint ܿ א    satisfies theߪ the restrictions of the assignment to the scope ,ܥ
constraint.” 

“A binary constraint is arc consistent if for every value in the domain of either 
variable, there exists a value in the domain of the other such that the pair of values 
satisfies the constraint. A non-binary constraint is generalized arc consistent or 
hyper-arc consistent iff for any value for a variable in its scope, there exists a value 
for every other variable in the scope such that the tuple satisfies the constraint. 
Domain propagation on a constraint removes unsupported values (i.e. values which 
cannot be extended to a pair of tuple of values satisfying the constraints) from the 
domains of the variables in its scope until the constraint is (generalized) arc 
consistent.” 
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“A constraint ܿ on variables with ordered domains (such as integers) is bounds 
consistent if for every variable ݔ in its scope, there exists a value ݀ for every other 
variable ݔ ሺ1  ݆  ݇ሻ in the scope of ܿ, with ݉݅݊ೕ  ݀  ೕݔܽ݉ , such that the 

compound assignment  ሼሺݔ, ݈ሻ, ሺݔଵ, ݀ଵሻ, . . . , ሺݔ, ݀ሻሽ  satisfies ܿ, where ݈ is the 
minimum of the domain of ݔ, and similarly, values ݀Ԣ can be found with ݉݅݊ೕ ݀ᇱ  ೕݔܽ݉ , such that  ሼሺݔ, ,ሻݑ ሺݔଵ, ݀Ԣଵሻ, . . . , ሺݔ, ݀Ԣሻሽ , satisfies ܿ, where ݑ  is the 

maximum of the domain of  ݔ. Bounds propagation on an arithmetic constraint 
reduces the bounds of the variables until the constraint is bounds consistent.” 

5.2.1.1 Representing a problem 

The precise definition does not exist for the representation of the particular 
problem ܲ as a CSP. A possible definition is that CSP ܯ ൌ ,ܺۃ  ,ܦ  represents a ۄܥ
problem ܲ, or ܯ is a model of ܲ, if every solution of ܥ corresponds to a solution of ܲ and every solution of ܲ can be derived from at least one solution of ܥ. 

The above given definition does not require the one-to-one correspondence 
between the solutions of ܲ and ܯ. The reason for that is the possible symmetry of 
the solutions to ܯ. In other words, multiple solutions of ܯ may correspond to the 
same solution to ܲ. The symmetry is often introduced modeling a problem as CSP, 
by representing indistinguishable entities of ܲ by distinct variables or values in ܯ. 

If the symmetry is present both in ܲ and ܯ the additional constraints may be 
added to ܯ to eliminate all but one solution in every symmetry equivalence class. 
These constraints are called symmetry-breaking constraints and obviously they exist 
only in ܯ and not in ܲ. The symmetry breaking constraints may cause the situation 
when one solution to ܯ corresponds to multiple symmetrically-equivalent solutions 
to ܲ. This leads to the conclusion that correspondence between the solutions to ܲ 
and solutions to ܯ can be many-to-many. The last statement says that finding the 
true solutions to ܲ by solving ܯ causes the uncertainty and additional 
complications. Hence, this might be avoided by agreeing that symmetry-breaking 
constraints can be ignored in considering whether the ܯ is a model of ܲ. 

In this thesis in modeling the test data path as a CSP the variables and values are 
chosen to represent the entities in ܲ and the constraints are written on these variables 
to represent the rules and restrictions defining the solutions to ܲ. The exact details of 
modeling are presented in the following sections. Here it is worth to stress that any 
solution to the proposed CSP model ܯ yields exactly one solution to ܲ, and any 
solution to ܲ corresponds to a solution to ܯ or is symmetrically equivalent to such 
solution. Moreover, if ܯ has no solutions, this is because ܲ itself has no solutions. 

5.2.2 Java Constraint Programming framework 

The problem of constraint satisfaction in the automated test program synthesis 
reduces to representing the behavioral model (HLDD graphs) as a CSP and 
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imposing additional constraints that are extracted from the structural model. The 
way of modeling a behavioral part as a CSP can have a dramatic effect on how easy 
it is to find a solution, or indeed whether it can realistically be solved at all. A 
complicating factor in modeling is the interaction between the model, the search 
algorithm and the search heuristics. To reduce this complexity factor the decision 
was made to use the Java Constraint Programming (JaCoP) framework. JaCoP 
provides the backtracking engine implemented inside the depth-first search 
algorithm together with a number of search heuristics and a wide range of various 
constraints. 

JaCoP library provides constraint programming paradigm implemented in Java. It 
provides primitives to define a triple ܺۃ, ,ܦ  finite domain (FD) variables for :ۄܥ
defining X and D, and constraints (C), as well as a number of search methods. 

JaCoP supports finite domain variables (FDV) with continuous domains e.g. 
(ሼ0. .100ሽ) and domains that contain holes e.g. (ሼ0. .10ሽ  ሼ12. .100ሽ ), in this 
domain the value 11 is missing. In this work FDVs are used to model the HLDD 
variables. One special variable class is a Boolean variable. It has been added to 
JaCoP as it can be handled more efficiently than FDVs with multiple elements in 
their domain. Boolean variable can be used as any other variable. 

JaCoP library provides most commonly used primitive constraints, such as 
equality, inequality as well as logical, reified and conditional constraints. It contains 
also number of global constraints and Boolean constraints. 

In this thesis, there are four major types of constraints that have been used in the 
CSP formulation:  

 Primitive constraints 
 Logical constraints 
 Conditional constraints 
 Global constraints  

5.2.2.1 Primitive constraints 

A set of primitive constraints that are offered in JaCoP include basic arithmetic 
operations ሺ, െ,ൈ,ൊሻ as well as basic relations ሺൌ, ്, ൏, , , ሻ. The specification 
and the description of available primitive constraints is given in Table 5-2. The 
subtraction and division are not implemented explicitly, but since constraints define 
relations between variables, they are provided using addition and multiplication.  

Primitive constraints can be used as arguments in logical, conditional and global 
constrains, and in primitive constraints itself. In the task of HLDDs representation as 
CSP the primitive constraints are used to define the operation of the function  ݂ሺݔሻ 
(see Table 5-2). However, not all operations are defined with primitive constraints, 
namely, logical and bitwise operations are defined using logical constraints and 
global constraints. 
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Table 5-2 List of primitive constraints (*Const - constant) 

Description JaCoP Specification 

X = Const  XeqC(X, Const) 

X = Y  XeqY(X, Y) 

X ് Const  XneqC(X, Const) 

X ് Y  XneqY(X, Y) 

X > Const  XgtC(X, Const) 

X > Y  XgtY(X, Y) 

X  Const  XgteqC(X, Const) 

X  Y  XgteqY(X, Y) 

X < Const  XltC(X, Const) 

X < Y  XltY(X, Y) 

X  Const  XlteqC(X, Const) 

X  Y  XlteqY(X, Y) 

X ൈ Const = Z  XmulCeqZ(X, Const, Z) 

X ൈ Y = Z  XmulYeqZ(X, Y, Z) 

X ൊ Y = Z  XdivYeqZ(X, Y, Z) 

X mod Y = Z  XmodYeqZ(X, Y, Z) 

X + Const = Z  XplusCeqZ(X, Const, Z) 

X + Y = Z  XplusYeqZ(X, Y, Z) 

X + Const   Z  XplusClteqZ(X, Const, Z) 

X + Y   Z  XplusYlteqZ(X, Y, Z) 

X + Y > Const  XplusYgtC(X, Y, Const) 

XY = Z  XexpYeqZ(X, Y, Z) 

5.2.2.2 Logical and conditional constraints 

Logical and conditional constraints use primitive constraints as arguments. For 
detailed description and specification of these constraints see Table 5-3 and Table 
5-4. 
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Table 5-3 List of conditional constraints 

Description JaCoP Specification 

if c1 then c2  IfThen(c1, c2) 

if c1 then c2 else c3  IfThenElse(c1, c2, c3) 

Table 5-4 List of logical constraints 

Description JaCoP Specification ܿҧ Not(c) ܿଵ ת ܿଶ ת … ת ܿ 

 

PrimitiveConstraint[] c = {c1, c2, ...,cn}; 

And(c); 

or 

ArrayList<PrimitiveConstraint> c = 

    new ArrayList<PrimitiveConstraint>(); 

c.add(c1); c.add(c2); ... c.add(cn); 

And(c); ܿଵ  ܿଶ  …  ܿ 

 

PrimitiveConstraint[] c = {c1, c2, ...cn}; 

Or(c); 

or 

ArrayList<PrimitiveConstraint> c = 

    new ArrayList<PrimitiveConstraint>(); 

c.add(c1); c.add(c2); ... c.add(cn); 

Or(c); 

5.2.2.3 Global constraints 

The constraint on the first row in Table 5-5 enforce that a sum of elements of 
FDVs’ vector is equal to a given FDV sum. The second row in Table 5-5 explains 
the weighted sum constraint. The latter is extremely useful when the FDV variable 
participates in bitwise operations (e.g. |, &). The weighted sum builds a bridge 
between integer and bitwise representation of FDV. 
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Table 5-5 List of global constraints 

Description JaCoP Specification ݔଵ  ଶݔ   ݔ ൌ  ;IntVar[] x = {x1, x2, ..., xn} ݉ݑݏ

IntVar sum = new IntVar(...) 

Sum(x, sum); 

or 

ArrayList<IntVar> x =  

      new ArrayList<IntVar>(); 

x.add(x1); x.add(x2); ... x.add(xn); 

IntVar sum = new IntVar(...) 

Sum(x, sum); ݓଵݔଵ  ଶݔଶݓ   ڮ ݓݔ ൌ  ݉ݑݏ

 

 

IntVar[] x = {x1, x2, ..., xn}; 

IntVar sum = new IntVar(...) 

int[] w = {w1, w2, ..., wn}; 

SumWeight(x, w, sum); 

or 

ArrayList<IntVar> x = new 
ArrayList<IntVar>(); 

x.add(x1); x.add(x2); ... x.add(xn); 

IntVar sum = new IntVar(...) 

ArrayList<Integer> w=new 
ArrayList<Integer>(); 

w.add(w1); w.add(w1); ... w.add(wn); 

SumWeight(x, w, sum); 
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5.2.3 Representing HLDDs as a CSP using JaCoP framework 

 

Figure 5-4 Part of a processor data path 

The representation of HLDDs as a CSP using JaCoP framework is explained 
using the part of the processor data path with control signals as an example, which is 
shown in Figure 5-4. Briefly, the functionality of the example circuit is the 
following:  

 When nRESET signal is low (logic 0) the output of the circuit (let us call 
it Y) is equal to the previous value of Y that is stored in the register 
Y[15:0] (later referenced as Y’d, which is delayed value of Y). 
 

 When nRESET signal is high (logic 1) the output of the circuit depends 
on the output of the multiplexer that is controlled by the Select signal.  
 
The Select signal selects one of the following operations:  

- When Select is 0, the result of the AND operation between A and 
B is propagated to the output of the multiplexer. 

- When Select is 1, the result of the OR operation between A and 
B is propagated to the output of the multiplexer. 

- The SHR operation is selected when Select is 2. Then the 
propagated value is a product of the AND operation between A 
and B that is shifted into C by one bit from the left. 

- The SHL operation is selected when Select is 3. Then the 
propagated value is a product of OR operation between A and B 
that is shifted into C by one bit from the right. 
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Figure 5-5 HLDD model of the part of the processor data path (HLDD Graph view 
and equivalent model in the framework view) 

The resulting behavior model (HLDD) of the structure shown in Figure 5-4 is 
presented in Figure 5-5. The underlying textual representation of this model is 
shown in Figure 5-6. The detailed description of this format (AGM) is given in 
Appendix A. The most valuable property of this format is that variables (ݔ א ܺ) and 
nodes (݉ א  definition are ordered. Any variable that is (௬ܩ) inside the graph (ܯ
referenced inside the graph should be declared before this graph. The exception is 
delayed variable. This variable ordering is possible due to the acyclic nature of the 
HLDD graphs. The strict order of variables in this format is extremely fast and easy 
to handle in transformation of HLDD model into CSP model.  Every declared 
variable has its index inside the HLDD model. Let us denote the order of variables 
in the model as “natural HLDD order” relying on the indices in AGM format. 
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VAR#   0:   (i_________) "input_A"   <15:0> 
VAR#   1:   (i_________) "input_B"   <15:0> 
VAR#   2:   (i_________) "input_C"   <15:0> 
VAR#   3:   (i_________) "select"   <1:0> 
VAR#   4:   (i_________) "nRESET"   <0:0> 
VAR#   5:   (__c_______) "0x0"   <1:0>   VAL = 0 
VAR#   6:   (__c_______) "0x1"   <1:0>   VAL = 1 
VAR#   7:   (__c_______) "0x2"   <1:0>   VAL = 2 
VAR#   8:   (__c_______) "0x3"   <1:0>   VAL = 3 
 
VAR#   9:   (____f_____) "A_and_B"   <15:0> 
FUN#   AND  (A1<=0<15:0>, A2<=1<15:0>) 
VAR#   10:   (____f_____) "A_or_B"   <15:0> 
FUN#   OR  (A1<=0<15:0>, A2<=1<15:0>) 
VAR#   11:   (____f_____) "A&B>C"   <15:0> 
FUN#   SHIFT_RIGHT  (A1<=2<15:0>, A2<=9<15:0>) 
VAR#   12:   (____f_____) "C<A|B"   <15:0> 
FUN#   SHIFT_LEFT  (A1<=2<15:0>, A2<=10<15:0>) 
 
VAR#   13:   (_o________) "Y"   <15:0> 
GRP#   0:   BEG = 0,  LEN = 7  ----- 
0  0: (n___)  (  1=>1  0=>2)    V = 4    "nRESET"  <0:0> 
1  1: (n___)  (  0=>3  1=>4  2=>5  3=>6)V = 3 "select"  <1:0> 
2  2: (____)  (  0   0)    V = 13    "Y"  <15:0> 
3  3: (____)  (  0   0)    V = 9    "A_and_B"  <15:0> 
4  4: (____)  (  0   0)    V = 10    "A_or_B"  <15:0> 
5  5: (____)  (  0   0)    V = 11    "A&B>C"  <15:0> 
6  6: (____)  (  0   0)    V = 12    "C<A|B"  <15:0> 

Figure 5-6 Textual representation of HLDD model (AGM format) 

The first step of CSP modeling is to define variables and their domains. These 
are the first two elements in a triple ܺۃ, ,ܦ  The variables and respective domains .ۄܥ
that are extracted from this HLDD model are shown in Table 5-6. The second step is 
to model arithmetical and logical functions defined in this model. This corresponds 
to adding constraints like  ݔሺ݉ሻ ൌ ݂൫ݔ, . . , ;൯ݔ  0  ݆, ݇  ݊ to the set C (where n 
is index of the last variable in AGM format). The example given in Figure 5-4 was 
selected to show that not only trivial expression can be modeled using predefined 
constraints from JaCoP framework. The constraints that were listed in section 5.2.2 
can be reused to define new constraints that are needed for particular problem in 
hand. 
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Table 5-6 List of variables 

 

The nice property of JaCoP framework is that it could be extended to meet the 
requirements of the particular task. There are functions in our example that cannot 
be modeled with those “off-the-shelf” constraints. The bitwise shift-left and shift-
right operations could be indeed modeled as division or multiplication, but logic OR 
and logic AND operations for variables that are not Boolean variables are missing in 
the list.  

For modeling binary shift, AND and OR operations the variables Input_A, 
Input_B and  Input_C were presented in a binary view using the SumWeigth 
constraint and Boolean variables for each bit in the binary representations of these 
integer variables. The results are shown below: ܣ_ݐݑ݊ܫ ൌ  ܽ ൈ 2   ܽଵ ൈ 2ଵ  ڮ  ܽଵହ ൈ 2ଵହ ; ܤ_ݐݑ݊ܫ ൌ  ܾ ൈ 2   ܾଵ ൈ 2ଵ  ڮ  ܾଵହ ൈ 2ଵହ ; ܥ_ݐݑ݊ܫ ൌ  ܿ ൈ 2   ܿଵ ൈ 2ଵ  ڮ  ܿଵହ ൈ 2ଵହ ,  

where variables ܽ, ܽଵ, … , ܽଵହ, ܾ, ܾଵ, … , ܾଵହ, ܿ, ܿଵ, … , ܿଵହ are Boolean variables. 

Thus the dual representation (binary and integer) of the variable is achieved. This 
allows building the constraints for the above listed functions of the model: ܤ_݀݊ܽ_ܣ ൌ ,ሺܽ݀݊ܣ  ܾሻ ൈ 2  ,ሺܽଵ݀݊ܣ  ܾଵሻ ൈ 2ଵ  ڮ  ,ሺܽଵହ݀݊ܣ ܾଵହሻ ൈ 2ଵହ; ܤ_ݎ_ܣ ൌ ,ሺܽݎܱ  ܾሻ ൈ 2  ,ሺܽଵݎܱ  ܾଵሻ ൈ 2ଵ  ڮ  ,ሺܽଵହݎܱ ܾଵହሻ ൈ 2ଵହ; ܥ_ܴܪܵ_ܤ_݀݊ܽ_ܣ ൌ ,ሺܽଵହ݀݊ܣ ܾଵହሻ ൈ 2   ܿଵ ൈ 2ଵ  ڮ  ܿଵହ ൈ 2ଵହ; ܥ_ܮܪܵ_ܤ_ݎ_ܣ ൌ ܿ ൈ 2  ڮ  ܿଵସ ൈ 2ଵସ  ,ሺܽݎܱ ܾሻ ൈ 2ଵହ . 

Variable x (࢞ א ࢊ) Domain d (ࢄ א ࢞) Variable x (ࡰ א ࢊ) Domain d (ࢄ א  (ࡰ

Select {0..3} Constant_0x1 {1} 

Input_A {0..65535} Constant_0x2 {2} 

Input_B {0..65535} Constant_0x3 {3} 

Input_C {0..65535} A_and_B {0..65535} 

Output_Y {0..65535} A_or_B {0..65535} 

nReset {0..1} A_and_B_SHR_C {0..65535} 

Constant_0x0 {0} A_or_B_SHL_C {0..65535} 



 

 

90

The next step is to add constraints for the transitions in the HLDD graph. The list 
of the transitions (tuples) in the graph is obtained automatically from the Regular 
Graph data structure. The Regular Graph is a graph where every path from the root 
node to the leaf node is of the same length. The transformation of the HLDD graph 
structures into linked Regular Graphs is a simple programming task and its 
implementation details are not relevant to this research. The general idea of this 
procedure is shown in Figure 5-7. 

On the basis of the Regular graphs the conditional constraints are constructed to 
model the transitions in the HLDD graphs. The primary target is to impose full path ሺ݉, ்݉ሻ activation constraints. The solution to these constraints is the vector ்ܺthat satisfies one of the full path activation constraints. The formal view of the 
conditional constraint that models the full path in the HLDD graph is: 

IfThen ( 

And ( 

XeqC ( ݔሺ݉ଵሻ, ܽ where ܽ א ܸሺݔሺ݉ଵሻሻ),  

... , 

XeqC (ݔሺ݉ሻ, ܽ where ܽ א ܸሺݔሺ݉ሻሻ) 

),   

XeqY (ݔ ,ݕሺ்݉ሻ) 

) 

The constraints for the transitions in HLDD graph from Figure 5-5 are modeled 
as follows:  

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x0)),  
XeqY (Output_Y, A_and_B)); 

Figure 5-7 Transformation of irregular graph into linked regular graphs 
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IfThen (And (XeqC (nRESET, Constant_0x1 ), XeqC (select, Constant_0x1)),  

XeqY (Output _Y, A_or_B)); 

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x2)),  

XeqY (Output_Y, A_and_B_SHR_C)); 

IfThen (And (XeqC (nRESET, Constant_0x1), XeqC (select, Constant_0x3)),  

XeqY (Output_Y, A_or_B_SHL_C));  

IfThen (And (XeqC (nRESET, Constant_0x0), XeqY (select, select)),  

XeqY (Output_Y, Output_Y'd)), 

Output_Y'd is a previous value (delayed value) of Output_Y, that corresponds to 
the register “Y[15:0]” shown in the initial scheme in Figure 5-4. 

It should be stressed that CSP model creation is fully automated in the proposed 
approach. The algorithm for HLDD transformation into CSP model that was 
developed to support this research is the following: 

---------------------------------------------------------- 
for each variable in HLDD model do 

if variable has constant flag 
define FDV with single value domain 
add function FDV to functionList 

else  
define FDV with full range domain  

 end if 
if variable is a graph root 

regularGraphsList = buildRegularGraphs(graph) 
for each regularGraph in regularGraphsList do 

   tuplesList = Get tuples from regularGraph 
  end for 

fullPathTuples = joinTuples(tuplesList) 
for each tuple in fullPathTuples 

   impose conditional constraint  
  end for 
 end if 
end for 
for each function FDV in functionList do 
 impose arithmetical/logical constraint 
end for 
---------------------------------------------------------- 
Even big HLDD models are transformed in a reasonable time due to the linear 

complexity of the algorithm. The HLDD graphs are traversed only once to obtain the 
full list of variables, functions and transitions. The transitions compose the full paths 
from the graph root node to the graph leafs. These full paths are tuples that are used 
in conditional constraints for modeling the transitions in the HLDD graphs as was 
shown before. The constraints that model operations of functions are imposed in the 
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end, when all the variables of the HLDD model are defined. This is done to escape 
redefinition of variables, which is inevitable in case if functions are modeled before 
the definition of variables that participate in this function.  

At this point the CSP model is constructed and it should be first checked for the 
consistency. The consistency check is an embedded feature of the JaCoP framework. 
The consistency check returns false if model is inconsistent and no solution could be 
found, while true indicates only that the model is consistent and in order to find the 
solution the CS should be executed. However, the solution may not exist even if the 
CSP model is consistent. 

5.2.4 Solving the CSP model 

Previous section (section 5.2.3) explained in details the modeling of the HLDD 
graphs as a CSP. In case if CS is executed on the CSP model of the circuit depicted 
in Figure 5-4, it returns all possible solutions. Whereas, all possible solutions are a 
lot of data when there are variables with big domains. Typically solving the 
unconstrained CSP model is not needed. Normally the CSP models are used to 
obtain the inputs or/and outputs that bring the system into the target state. This target 
state is modeled as a set of constraints that should be added to the CSP before 
solving it. 

In this work the notion of the state of the system is defined as in Mealy machine 
definition [57] in the theory of computation. Briefly, the next state output of the 
system depends on the previous state and on the inputs of the system. Hence, the 
output will change as soon as the inputs are propagated to the logic. In comparison, 
the output change according to Moore, appears on the next clock cycle, since the 
change is caused only by the state. Thus, with Moore theory synchronous designs 
are described more naturally, whereas Mealy theory may lead to metastability of the 
outputs. However, Mealy machine definition typically requires fewer states and is 
more efficient to describe asynchronous systems. As soon as we are not interested in 
the precise modeling of output timings and clock may often be skipped in the 
modeling of system behavior the Mealy definition was chosen. However, that does 
not lead to the inability of modeling synchronous systems as it is shown later. 

5.2.4.1 Solving the CSP for single-cycle 

The single-cycle solution to the CSP in the proposed approach is defined as one 
time assignments to the unconstrained inputs and delayed variables. The 
unconstrained variables are those that do not participate in the additional constraints 
that specify the target state of the system. In other words, the values of the 
constrained variables are known in the target state. Unconstrained variables are the 
ones whose values are unknown in the target state and the CS is executed to obtain 
their values. 
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Let us explain the single-cycle solving on the example. First, the target state of 
the system needs to be defined. Typical situation that is faced in the automated test 
program synthesis is that engineer knows the values of the certain outputs of the 
system that characterize the target state, but the values of the inputs and the rest of 
the outputs are unknown. We mimic this with the following: test engineer knows 
that the output of the system shown in Figure 5-4 have to be equal to 2 and the 
inputs A and B must be equal to 1. To model this knowledge the following 
constraints are imposed (this type of constraint is referenced as abridge constraint): 

XeqC(Input_A,  Constant_0x1)  // Input_A = 1 
XeqC(Input_B,  Constant_0x1) // Input_B = 1 
XeqC(Output_Y,  Constant_0x2) // Output_Y = 2 
 
The CS returns the following two solutions for the CSP containing these abridge 

constraints (denoted as Sol.1 and Sol.2): 
Sol. 1:  

Input_A = 0x1 
Input_B = 0x1 
Input_C = 0x1 
Output_Y = 0x2 
nReset = 0x1 
Select = 0x3 

 Y’d = {0…(216-1)} 
This is the most obvious solution and the one that is probably expected.  

However, as soon as design contains a memory element (register) and solution Sol.1 
is not relying on its value, the CS will also produce a number of symmetrical 
solutions which is equivalent to the range of this memory element. In our case it is 
216 -1 symmetrical solutions (Y’d is 16 bit register). 

The second solution (Sol.2) has also a huge number of symmetrical solutions, 
since the nReset is selecting the register (Y’d) to be propagated to the output and data 
path from the circuit inputs to the output is masked. Hence, the Input_C and Select 
variables can take any value in their domain.  

Sol. 2: 
Input_A = 0x1 
Input_B = 0x1 
Input_C = {0…(216-1)} 
Output_Y = 0x2 
nReset = 0x0 
Select = {0…3} 

 Y’d = 2 
 

Thus, the total number of solutions (including symmetrical solutions) is 216 + 218 
and only two of them have practical value. Let us call these two solutions as diverse 
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solutions. The goal of solving a CSP is to find all possible diverse solutions while 
skipping the symmetrical ones. For that several techniques of guiding a CS can be 
used. 

The JaCoP provide possibility to specify the number of solutions to find. The 
major question that appears is in which order the solutions will be found. The ideal 
case would be to set the solution limit to two and get the CS to produce these two 
diverse solutions described above. Evidentially, the order of the solutions is defined 
by the order in which variables are assigned, called as “variable selection strategy”. 
The second parameter is the “value assignment strategy” that tells the CS which 
value should be considered next from the domain of the variable. The most common 
value assignment strategies are: smaller value first, bigger value first, middle value 
first (selects a middle value from the current domain of FDV and then left and right 
values) and random value. The value assignment strategy influences the time of 
finding a solution. 

As search method the “depth-first search” algorithm is used. This algorithm 
searches for a possible solution by organizing the search space as a search tree. In 
every node of this tree a value is assigned to the variable and a decision whether the 
node will be extended or the search will be cut in this node is made. The search is 
cut if the assignment to the selected variable does not meet all constraints. Since 
assignment of a value to a variable triggers the constraint propagation, the decision 
can be made to continue or to cut the search at this node of the search tree. 

In Table 5-7 the details of solving the CSP with different variable selection and 
assignment strategies are presented. For the given abridge constraints (Input_A=1, 
Input_B=1, Output_Y=2) the most efficient strategy according to the experimental 
results shown in Table 5-7 is reversed HLDD variable order and smaller value first 
assignment. These results also show that efficiency of different strategies heavily 
depends on the CSP itself and on the abridge constraints due to the huge difference 
in diverse solution indices and time. Hence, if the Output_Y is constraint to the value 
close to the domain maximum, then “bigger value first” will be more preferable 
assignment strategy. The presented variable order selection strategies correspond to 
the natural and reversed list of variables that is defined in the textual representation 
in the HLDD graphs (Figure 5-6).  

Table 5-7 Solution details with constraints Input_A=1, Input_B=1, Output_Y=2 

Variable selection 
strategy 

Assignment 
strategy 

Diverse 
solution index 

Time 
(ms) 

Natural HLDD order smaller value first 1, 5 79 

Reversed HLDD order smaller value first 1, 3 78 

Natural HLDD order bigger value first 1, 131070 >1000 

Reversed HLDD order bigger value first 1, 65534 >1000 
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The order of variables influences the search space as the search tree is based on 
it. According to the experiments the natural HLDD order requires more solutions to 
be traversed for obtaining all the diverse solutions in comparison to the reversed 
HLDD order. The benefit from using the reversed order depends on the particular 
HLDD graph structure. As practice shows the natural order require less backtracking 
than the reversed, but the overall search time may not vary as much as one would 
expect. Although, there is a slight difference between reviewed variable selection 
strategies, the reversed HLDD order is used for variables selection strategy in the 
next experiments. Generally, the reversed HLDD order allows obtaining all diverse 
solutions in a shorter time while producing less symmetrical solutions. 

5.2.4.2 Solving CSP for multiple cycles 

Even for relatively simple models with registers or other memory elements 
sometimes it is not sufficient to find a solution within one cycle. In case if the 
solution is relying on the value in the memory element it should be proved that this 
value is valid  and could be assigned to this element in a deterministic way. Hence, it 
is often necessary to know the initial state of the system in a number of states in the 
past. In other words, the sequence of states to assign that value to the memory 
element should be found in order to prove that the solution is valid.  

The initial state is a state that is reachable by applying for example a reset signal 
or when values of the memory elements are known to be valid (e.g. reset values). 
Hence, the initial state is a point in time, which is provably reachable and which is 
used as a starting point for bringing the system to the target state. The target state of 
the model should not be defined loosely. Otherwise the number of possible solutions 
will grow vastly. Thus, in solving for multiple cycles it becomes crucial to define the 
target state of the model as precise as possible.  

Let us discuss CSP solving for multiple cycles on the example used in previous 
section (section 5.2.4.1). Typically, the goal of CSP solving is to find the shortest 
sequence of states that leads to the desired state. Thus, if the solution after single 
cycle solving is not relying on the value in the memory element (see Sol. 1 in section 
5.2.4.1) then the shortest sequence is found and there is no need in CSP solving for 
multiple cycles. That means that the suitable combinatorial path through the circuit 
that brings the system into target state is found. The combinatorial path is masking 
the values in memory elements in the way that the output(s) of the system are not 
influenced by them on the given cycle. However, in many cases this combinatorial 
path does not exist and the solution that brings the system from deterministic initial 
state to the desired (target) state is required.  

In the example from previous section the solving for multiple cycles is required if 
the first solution is made invalid by introducing additional abridge constraint for 
Input_C (e.g. XeqC(Input_C, Constant_0x0)). Then the second solution (Sol.2) 
becomes the only diverse solution, because in the Sol.1 Input_C equals to 1. The 
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solution Sol.2 depends on the memory element (Y’d = 2), hence, it is not a 
deterministic one. Thus, it is required to find the state in which Y[15:0] is assigned 
with 2 (Y’d := 2). In case, if that state is not a deterministic one (not a reset state) or 
relying again on the memory element value, another state should be found that leads 
to that state, and so on, until the repetitive state is met or one of the above mentioned 
conditions is fulfilled.  

In the developed CSP solving framework it is possible to limit the number of 
states in the sequence as well as to limit the number of solutions to search in parallel. 
The reset signal should be explicitly defined if it exists and the active value of the 
reset signal should be declared. 

The details of the developed algorithm for solving CSP for multiple cycles are 
described below: 

----------------------------------------------------------- 
set Parallelism Limit(pLimit) 
set Cycles Limit(cLimit) 
set reset signal name (resetName) 
set reset signal active level (resetLevel) 
for each abridgeConstraint do 

impose abridgeConstraint 
end for 
fdvValueMap = solve CSP 
currentStatesList = create states (fdvValueMap) 
for each state in currentStatesList do  
 if state does not depend on delayed FDV 
  solutionsList add state 
 else if resetLevel equals (state get value(resetName)) 
  solutionsList add state 
 end if 
end for 
if solutionsList is not empty 
 diverseSolutions =find diverse solutions(solutionsList) 
 return diverseSolutions 
end if 
currentStatesList = remove duplicates in currentStatesList 
diverseSolutions = solve state backward (currentStatesList) 
return diverseSolutions 
----------------------------------------------------------- 
 
solve state backward (List nextStatesList) 
----------------------------------------------------------- 
for each nextState in nextStatesList 
 abridgeConstrs = get abridge constraint from nextState 
 for each abridgeConstraint from abridgeConstrs do 

impose abridgeConstraint 
end for 

 fdvValueMap = solve CSP 
currentStatesList = create states (fdvValueMap) 
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for each state in currentStatesList do 
 if state is repetitive state 
  continue with next state 
 end if 
 state set next state (nextState) 

  if state does not depend on delayed FDV 
   solutionsList add state 

else if resetLevel equals (state get 
value(resetName)) 

   solutionsList add state 
  else  stateListToSolve add state 

end if 
end for 

end for 
 
if solutionsList is not empty 

diverseSolutions =find diverse solutions(solutionsList) 
 return diverseSolutions 
end if 
stateListToSolve = remove duplicates in stateListToSolve 
return solve state backward (stateListToSolve) 
---------------------------------------------------------- 
This algorithm consists of two parts. The first part is the same as for single cycle 

solving with the only difference: if no deterministic solution is found the states (non-
deterministic solutions) are passed to the function that continues solving procedure. 
The solve state backward function is the second part of the algorithm. It 
considers each of the supplied state as a new target state and imposes the new set of 
abridge constraints. The set of previously imposed abridge constraints is excluded 
from CSP before imposing a new set. Then the CS is executed to get the predecessor 
states (currentStatesList) for each of the new target states (nextState). 

Figure 5-8 Solution searching tree  
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Every new predecessor state is checked for being repetitive and, in case it is 
repetitive, state is eliminated from the set of the next target states 
(stateListToSolve). The important property of each state is that it knows its 
successor state. Hence, in case if the predecessor state is a deterministic state (added 
to the solutionsList) the sequence of states that compose the complete solution 
can be easily restored.  

In Figure 5-8 is shown a typical solution searching tree that pictures multiple 
cycles solving algorithm. The number inside the circuit represents the index of the 
state. All symmetrical solutions are represented by the same number and the one, 
which is found first, is considered to be a diverse state and is highlighted in white 
color. The symmetrical and repetitive states are shadowed (grey color). The zero 
state (0) is the first target state and its time label is t0 (current time). The states that 
are placed on the level marked as t-1 are obtained in the first part of the algorithm. 
The other levels (t-2, t-3, etc.) are filled with states found by the “solve state 
backward” function. In the example in Figure 5-8 the solution is found when the 
reset state is met (state with index 7).  

In order to conclude the presented approach the same CSP example from section 
5.2.4.1 is used to show the multiple cycles CSP solving methodology in details. Let 
us consider that the following abridge constraints describe the target state of the 
system: 

XeqC(Input_A,  Constant_0x1)  // Input_A = 1 
XeqC(Input_B,  Constant_0x1) // Input_B = 1 
XeqC(Input_C,  Constant_0x0) // Input_C = 0 
XeqC(Output_Y,  Constant_0x2) // Output_Y = 2 

Due to the fact that the actual reset signal functionality is not present in this 
design, the only possibility for CS to complete the search with the proper solution is 
to find the state that is not relying on the value in the register (Y’d). Note that the 
nReset signal is just a control input of the multiplexer (see Figure 5-4). Thus, the 
reset signal is not defined as well as its active level.  

The CS can find only one diverse state on time level t-1: 

Input_A = 0x1 
Input_B = 0x1 
Input_C = 0x0 
Output_Y = 0x2 
nReset = 0x0 
Select = {0…3} 
Y’d = 2 

This state is then given as argument to the “solve state backward” function. Then 
the following abridge constraints are extracted for defining the new initial state:  

XeqC(Output_Y,  Constant_0x2)  // Output_Y = 2 
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Table 5-8 Solution states for level t-2 

FDV State 1 State 2 State 3 State 4 State 5 

Input_A 0..0xFFFF ܽ ת ܾ ൌ 2,ܽ א ܾ ,ܣ א   ܤ

2 ܽ ת ܾ ب ܿ ൌ 2  ܽ א ,ܣ ܾ א  ܤ

ܿ ا ܽ  ܾ ൌ 2   ܽ א ,ܣ ܾ א Input_B 0..0xFFFF ܤ 2 

Input_C 0..0xFFFF 0..0xFFFF 0..0xFFFF 4, 5 1, 0x8001 

Select 0..3 0 1 2 3 

nReset 0 1 1 1 1 

Output_Y 2 2 2 2 2 

Y’d 2 0..0xFFFF 0..0xFFFF 0..0xFFFF 0..0xFFFF 

 

This abridge constraint is derived from the delayed value of the output Y which 
is Y’d =2. Thus, if on level t-1 delayed value of Y is equal to 2, then on level t-2 the Y 
itself should be equal to 2 also, where level t-2 is the next level to be solved after the 
t-1. Inputs remain unconstrained because the previous constraints are valid only for 
the level t-1 and there are no requirements for input values of the states at level t-2. 

State 1 on level t-2 is a repetitive state to the only state on the level t-1. State 1 has 
the same index as state on the level t-1 to underline the repetition of states. Both are 
relying on the value of the delayed Y (Y’d) and in both cases nReset signal is 
masking the values of other inputs, thus FDVs for inputs A, B, C and Select can take 
any values from their domains. Because state 1 on level t-2 is a repetitive state to 
state on level t-1 it is not included in the solution states list.  

In state 2 nReset is selecting the combinatorial path from inputs to the outputs, 
thus Y delayed FDV can take any value from 0 to 216-1. Select signal is selecting the 
result of the logic-AND operation between inputs A and B to be propagated to the 
output.  The input C is free to take any value from its domain. As a result the first 
solution is found. It consists from states state 2 (level t-2) and state 1(level t-1). 

State 3 leads to another solution, as it is also the deterministic state. The 
difference between state 2 and 3 is that Select signal is selecting in the latter case the 
result of the logic-OR operation between inputs A and B to be propagated to the 
output. In this case the domains of inputs A and B are narrowed down to value 2 and 
FDV of input C is in boundaries of its initial domain. The second solution consists 
of state 3 (level t-2) and state 1(level t-1). 

State 4 and state 5 also make solutions together with state 1(level t-1). The 
difference from previously described solutions, besides the value of the Select FDV, 
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is that domain of FDV for input C is narrowed down to two values. This is because 
in states 4 and 5 the combinatorial path contains functional blocks that shift left or 
right value of input C.  

The states from Table 5-8 make a complete solution tree of the described CSP on 
the level t-2. However, even in this simple example the number of total states on the 
t-2 level is blasting. Thus, the policy of combining symmetrical states on the same 
level into a single diverse state (as shown in Table 5-8) is extremely useful also in 
terms of memory saving. The diverse state contains all the values of symmetrical 
states for every FDV. Thus, no effort is needed to collect the symmetrical states into 
a single diverse state. However, at the moment of presenting the results the choice 
has to be made which value from the FDV domain to use. 

The important question is: are we able to find all the possible solutions using the 
developed framework? The answer is yes and no. In theory, there are no objections 
to find all solutions using developed framework, however, in practice this requires a 
lot of resources when a CSP models a real world designs and obviously gets bigger 
than in these examples. To predict the behavior of the CS the resources are 
constrained by setting the parallelism and cycles limit. The parallelism limit sets 
boundaries on the number of states to search for every set of abridge constraints (this 
includes symmetrical states). When the parallelism limit is set too low, valuable 
diverse solution may not be discovered. On the other hand, when the limit is too big 
the resources are spent to find unnecessary symmetrical solutions. The order of the 
diverse solutions in the search space is selected by the variable selection and 
variable assignment strategies as was shown previously in Table 5-7. There is no 
universal strategy to set these parameters for finding all diverse solutions with 
minimum resources. Every CSP model requires deep study to find the optimal CS 
settings. Moreover, different abridge constraints to the same CSP influence the time 
spend by CS to find the same number of solutions.  

What is left untouched in this discussion is the size of the CSP. It has a direct 
influence on the CS runtime and the memory requirements. Moreover, the CSP size 
(number of constraints, number of FDVs) has relations to the size of the design it 
models. Thus, modeling the initial design as a set of smaller CSP models rather than 
a single one may have a positive influence on the resource requirements.  

5.2.4.3 Experimental results 

The experiments were run on the machine with the following specifications: CPU 
Intel® CoreTM 2 Duo P8700 2,53GHz, RAM 2GB, MS Windows 7 32-bit Operating 
System. The goal is not to achieve the fast run-times of the CS, but to study the 
influence of various CS settings and variable selection strategies on the results of 
solving. The ITC99 benchmarks (b00 [58] and b01 – b10 [59]) are selected due to 
the availability of the VHDL source code of these designs at RT- Level. Currently, 
only the subset of the designs from ITC99 benchmarks can be translated to the 
HLDD graphs. The tool that is used for VHDL to HLDD transformation supports 
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limited subset of VHDL constructs. The list of the designs that are successfully 
translated is shown in the first column of Table 5-9.  

Table 5-9 Characteristics of ITC99 benchmarks and solving times 

D
esign

 

F
F

s 

N
od

es in
 

G
rap

h
s 

V
ariab

les 

M
em

ory 
V

ariab
les 

Decisions 
made/wrong  

Solving time for 
one state (ms) 

Natural 
variable  

order 

Reversed 
 variable 

order 

Natural 
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order 

b00 18 46 70 2 9/0 23/2 10.5 13.1  
b01 5 49 27 1 5/0 5/0 1.0 1.0 
b02 4 26 14 1 5/1 4/0 0.7 0.4 
b03 30 214 49 15 22/1 33/0 2.4 2.6 
b04 66 71 70 9 18/1 33/0 2.3 3.5 
b06 9 114 25 1 6/1 8/0 0.7 0.5 
b09 28 69 77 20 9/1 16/0 1.2 1.1 
b10 17 285 123 16 24/2 38/0 2.7 2.1 
 

Table 5-9 presents the characteristics of the designs used in the experiments and 
the CS run-times for solving these designs. In this table the number of memory cells 
(FFs), number of nodes in the HLDD graphs, number of variables and number of 
memory variables are reported. The CS run-times of producing the result for one 
state (cycles limit and parallelism limit are set to 1) are given in the two last 
columns. The column next to the last one presents the run-time results when 
“variable selection order” setting uses the order of variables in the textual 
representation of the HLDD graphs. This order is called as “natural variable order” 
in the HLDD graphs. The last column shows the run-time results for the alternative 
variable selection order, which is the reversed natural order. The columns that 
correspond to the heading “Decisions made/wrong decisions” outline the number of 
decision made by CS while traversing the search space tree to find the first met 
solution. Again, there are two columns under this heading that correspond to the 
natural variable order and to the reversed natural order.  

The figures shown in the last columns in Table 5-9 are denote the time spend for 
the actions described below. The first action is the CSP model construction from 
HLDD graphs description, which is the functionality developed in frames of this 
research. The second action is solving the CSP model by CS. The latter action 
belongs to the functionality of the JaCoP framework. The time for CSP model 
construction is negligibly small in comparison to the time taken by the CS.  

The figures in Table 5-9 show that none of the variable selection strategies 
outperforms the other in finding the single state solution. However, it is clearly seen 
from Table 5-9 that the CS makes less decisions when variables are selected as they 
appear in HLDD graphs, but in the same case it also makes more wrong decisions, 
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which is costly in terms of time. The exceptional results are received with the design 
b00. The solving time reported for this design is multiple times bigger than for other 
designs due to the presence of 16-bit variable. This is the only design that has 
variable with the domain of this size. The other reason is that this variable is the 
variable with delayed value and, hence, has a dual representation in the CSP (current 
state and previous state or delayed value) which multiplies the number of nodes in 
the search tree. 

In Table 5-10 and Table 5-11  the results of solving the CSP when the parallel 
limit is set to 100 states and the cycle limit is 1 are presented. These experiments are 
aimed to show that proposed modeling methodology constructs models that can be 
efficiently solved by CS. The CS run-time figures do not grow linearly if the parallel 
limit is changed from 1 to 100, and in most cases the dependency between found 
solutions and time is changing. The more solutions CS has to find the less time is 
spend for finding every solution. 

Table 5-10 presents the details of solving the selected ITC99 benchmarks (first 
column) with parallel limit set to 100 and CS is using natural order of variables for 
variable selection strategy. The second column outlines the number of found 
solutions. As the parallel limit is set to 100 and the cycle limit is 1 the maximum 
number of found solutions is 100. If the number in the second column is less than 
100 it means that less than 100 solutions exists for that design. The third column 
shows the number of diverse solution among found solutions.  

Table 5-10 Details of solving ITC99 benchmarks (Parallel limit =100, variable selection 
strategy = natural variable order) 
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b00 100 100 2097451 1048778 1048673 32803 58591 
b01 64 18 83 73 10 11 18 
b02 28 9 35 31 4 10 16 
b03 100 100 122 121 1 38 16 
b04 100 100 118 117 1 117 18 
b06 56 35 71 63 8 9 18 
b09 100 100 108 107 1 58 24 
b10 100 100 174 146 28 32 30 
 

The rest of the columns in Table 5-10 describe the details of process of solving. 
The column named “Visited nodes in the search tree” tells how many nodes the CS 
has visited to find the number of solutions shown in the second column. The next 
columns contain figures of how many decisions are made by CS and how many 
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wrong decisions are taken. The “Max. search depth” column shows the maximum 
depth reached by CS in the search tree.  

In Table 5-10 the correlation between number of found solutions, run-time of CS 
and other details of solving process are explained. The number of visited nodes in 
the search tree is a sum of decisions and wrong decisions. 

The important conclusion is that the time needed to find the certain number of 
solutions for particular CSP is hard to predict. As a result the number of visited 
nodes in the search tree is also unpredictable. However, it is worth to compare these 
figures with the details shown in Table 5-11. This comparison will help to study the 
influence of the variable selection strategy on the results of CSP solving. 

In Table 5-11 all columns have exactly the same order and meaning as columns 
in Table 5-10. The difference lies in figures that correspond to the details of solving 
the CSP models when the variable selection strategy is set to the reversed natural 
order of variables. The number of found solutions for every listed design equals to 
the data in Table 5-10. However, the number of diverse solutions varies for designs 
b00, b03, b04, b09, b10 that is due to the different variables selection order that 
changes the order of nodes in the search tree. Hence, if not all solutions have been 
discovered (b00, b03, b04, b09 and b10), then, obviously, among the found solution 
there are those solutions that are not discovered with other variable selection 
strategy and vice versa. 

Table 5-11 Details of solving ITC99 benchmarks (Parallel limit =100, variable selection 
strategy = reversed variable order) 
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b00 100 1 127 125 2 123 27 
b01 64 18 117 90 27 14 28 
b02 28 9 45 36 9 10 16 
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With natural variable selection order in designs b00, b03, b04, b09 and b10 every 
found solution is a diverse solution, the situation is different in case of reversed 
natural variable selection order. Moreover, in the first case less wrong decision are 
made that explains why the maximum search depth is bigger (every wrong decision 
is causing a backtracking) and why the number of nodes visited in the search tree is 
smaller. Hence, time that is spent to find 100 solutions is shorter for almost all 
designs in case of natural variable selection order (Figure 5-9). 

Figure 5-9 shows an exceptionally long run-times for b00 and b09. Whereas, 
design b00 is causing long run-time when variable selection strategy is set to use the 
natural order and b09 appears to be hard-to-solve for the reversed variable order 
setting. However, these designs are solved in a reasonable time when the variable 
selection strategy is changed. The study of the search tree for both cases gives an 
explanation for these run-time anomalies.  

In both cases (b00 and b09) exists a variable whose domain is much smaller than 
the domain of other variables in the list. These variables are represented as 
“reconvergent fan-out” in the search tree. Thus, the deep location of this variable in 
the search tree causes a lot of backtracks to be made before the wrong assignment is 
found. This is a drawback of the used search heuristics (depth-first search). Hence, 
when the variables with smaller domains are assigned before the variables with 
bigger domains, the runtime is shorter, because of smaller number of backtracks to 
make in case of assignment that causes inconsistency. The sorting of variables by 
the domain size may help to achieve the shortest possible run-times. However, this 
optimization does not give any value to the current research as the assumption that 

Figure 5-9 CS run-time comparison for different variable selection orders  
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runtime is sensitive to the order of variables with various domain sizes can be 
proved by reversing the natural HLDD variable order. The latter is shown in Figure 
5-9 . 

Thus, the searching algorithm of the CS is sensitive to the variables selection 
strategy. For some designs the long CS run-times might be cured by selecting 
different variable selection strategy. If the selected searching heuristics is not 
efficient for the CSP in hand the other heuristic should be used. 

5.2.4.4 Experimental results of CSP solving for multiple cycles 

Typically, the CSP of the electronic design that contains memory elements 
requires solving for multiple cycles to obtain the useful solutions, unless the single 
cycle solution is masking memory elements. The proposed modeling methodology 
uses the CS for solving CSP for multiple cycles as explained in Section 5.2.4.2.  

The experiments were carried out on the same ITC99 benchmark circuits as in 
previous section. The results of solving ITC99 benchmarks for multiple cycles are 
presented in Table 5-12. The cycle limit is set to 10 and parallelism limit is set to 
1000. The selected benchmark circuits are listed in the first column. The rest of the 
table is split into two parts. The first part corresponds to the natural variable 
selection strategy setting of the CS and the second part is for reversed natural 
variable selection strategy setting. The “Cycles” column contains the number of 
solved cycles for reaching the target state from the initial state. Next column 
(“Found solutions”) shows the number of found solutions. Every solution differs 
from the others at least by the initial state. Whereas, intermediate states of the same 
cycle may match between different solutions. The type of initial state is shown in 
“Initial state” column. The Reset and Combinational types mean that initial state is 
deterministic. 

Table 5-12 Details of ITC99 benchmarks solving for multiple cycles 
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b00 2 1000 Reset 5304376 2 1 Reset 12955 
b01 5 4 Reset 61 5 4 Reset 24 
b02 5 2 Reset 30 5 2 Reset 3 
b03 4 1 Combin. 227641 3 1 Combin. 6150 
b04 2 1 Reset 26066 1 8 Reset 8065 
b06 6 4 Reset 80 6 4 Reset 84 
b09 2 1 Reset 6151 2 2 Reset 2332717 
b10 2 2 Looped 281099 9 2 Combin. 222600 



 

 

106

 

The Looped type means that the search is not able to found the deterministic 
initial state and is terminated because of finding repetitive states only. Hence, due to 
the low parallelism limit necessary diverse solutions may not be discovered. This 
can be solved by increasing the parallelism limit, which also increases the run-time 
of the CS. Thus, often the trade-off between number of solutions and time should be 
made. The run-times of CS for producing the results are shown in the Time column. 

On the basis of the results presented in Table 5-12 the reversed natural variable 
selection setting outperforms the natural variable selection setting in all cases except 
the run-time for b06 and b09 designs. The run-time comparison is shown in Figure 
5-10. The difference in run-times for b06 design is less than 5%, and as the found 
solutions are identical, we conclude that the variable selection strategy plays no role 
in solving this design. On the other hand, the difference in run-times for b09 design 
is enormous. The run-time with natural variable selection setting is less than 0.3% of 
the run-time with reversed natural variable selection setting, whereas the number of 
found solutions varies only by one.  

 The results in Figure 5-9 in comparison to the results in Figure 5-10 show that 
the same designs that are hard-to-solve (b00, b09) for certain variable selection 
strategy remains problematic only for this variable selection strategy in the multi-
cycle solving and not for the other one. For all the other designs the reversed natural 
order of variables becomes a preferable variable selection setting in multi-cycle 
solving despite the fact that it is worse in single cycle solving (Figure 5-9). 

Figure 5-10 CS run-time comparison for different variable selection orders 
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The general approach for selecting appropriate settings for CS is derived on the 
basis of the presented experiments. The first step of the approach is to find single 
state solutions using both variable selections strategies. Then the run-times of hard-
to-solve cases are compared and the setting that is not causing the extraordinary long 
run-times is selected. If such hard-to-solve cases are not present then according to 
Table 5-12 reversed variable selection order is a preferable setting.  

5.2.5 Solving of joined CSPs 

One of the important properties of the proposed modeling methodology is the 
ability to combine sub-models of various components into single model. Typically, 
test data path model is not practical to describe as a single model. The test data path 
model is divided into smaller models as described in Chapter 4. Thus, the CS must 
be able to solve the set of joined CSP models. 

To study the effectiveness towards that property the system under test is 
emulated by combining arbitrary ITC99 benchmarks into single model. The results 
of solving combined ITC99 designs are shown in Table 5-13. 

Table 5-13 Details of solving combined ITC99 benchmarks 

Design links Cycles Initial state Time 
(ms) Out In 

b01 [OUTP] b02 [LINEA] 5  Combin. 190 
b02 [U] b01 [LINE1] 4 Combin. 166 
b01 [OUTP] b06 [EQL] 3 Reset 381 
b06 [OVERFLW] b01 [CONT_EQL] 2 Reset 267 
b02 [U] b06 [EQL] 3 Reset 268 
b01 [OUTP] 
b02 [U] 

b02 [LINEA] 
b06 [EQL] 

3 Reset 606 

b01 [OUTP] 
b02 [U] 

b06 [CONT_EQL] 
b06 [EQL] 

3 Reset 413 

b10 [CTS] 
b10 [CTR] 

b01[LINE1] 
b01[LINE2] 

4 Looped 4091 

b10 [CTS] 
b10 [CTR] 
b02 [U] 

b01[LINE1] 
b02 [LINEA] 
b01[LINE2] 

3 Reset 2720 

 
The first two columns in Table 5-13 explain the way how designs are connected 

to each other. For example, the first row shows that output “OUTP” of design b01 is 
connected to input “LINEA” of b02. Inputs and outputs are selected randomly 
obeying the rule that the width of the input port should match the width of the output 
port. Additionally, the random constraints are imposed on the free outputs of the 
combined designs. The third column explains the reason for stopping the process of 
constraint solving. The “Reset” means that reset signal is activated, hence the 
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deterministic initial state of the model is found. The “Combin.” means that in the 
last state variables of memory elements are not constrained, thus this state does not 
impose any abridge constraints for the next level state, which means that this is a 
deterministic state.  The “Looped” means that only repetitive states are found for the 
last cycle, consequently initial state is not deterministic and solution is not found.  

These ITC99 benchmarks are not supposed to be connected to form the single 
design. However, the number of solved cycles and solving time shows that even 
random designs connected together can be solved in reasonable time. If the solution 
that satisfies imposed constraints is not found, the settings of the CS should be 
revised as described in previous sections and the initial HLDD model may be 
supplemented. 

5.2.6 Verification of the results 

The manual checking of the correctness of the results produced by CS is 
inefficient even with relatively small benchmarks used in previous experiments. 
Thus, automatic or semi-automatic way is needed for verification of the results. In 
case when the description of the modeling object is available in the VHDL the 
results are checked automatically. 

The following approach is proposed to check the experimental results.  Typically, 
a template of the test bench file for the selected design can be generated 
automatically in the arbitrary CAD system. The sequences of signals produced by 
CS are automatically converted into VHDL statements and inserted into the VHDL 
test bench template. Thus, with the help of the proposed approach for test program 
synthesis the creation of the test bench files can be fully automated.  

Let us bring an example of a test bench file for the results from the experiment 
with b01 benchmark explained in section 5.2.4.4. These are the abridge constraints 
that are used in this experiment to describe the target state:  

XeqC (OUTP, Constant_0x1); 

XeqC (OVERFLW, Constant_0x1); 

Table 5-14 Sequence of signal values reported by CS for design b01 

Input name t-5 t-4 t-3 t-2 t-1

LINEA1 X 1 1 1 1 

LINEA2 X 1 0 0 0 

RESET 1 0 0 0 0 

 
The results produced by the CS are shown in Table 5-14 and the remaining 

details are presented in Table 5-12. The CLOCK signal is not mentioned in Table 
5-14 because it is not modeled. Modeling of the CLOCK signal in given case would 
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be redundant, because CS will report two identical sets of values for the period of 
CLOCK signal (CLOCK = 0 and CLOCK = 1). Thus, in the test bench file the 
CLOCK variable is triggered in a separate VHDL process with predefined time 
period (10 nanoseconds in this example).  

The values listed in Table 5-14 are converted into a separate VHDL process. 
Every solving cycle of CS (t-1 to t-5) is represented as a set of assignments to the 
input signals. The time between assignments equals to the period of CLOCK signal. 
The synthesized part of the testbench file is presented below: 

 
-- clock gen process 

  clock_gen : process 
  begin 
   clock <= '1' after clkhalfper, '0' after 2*clkhalfper; 
   wait for 2*clkhalfper; 
  end process clock_gen; 
    -- test process 
 process 
 begin 
  -- t-5 
  line1 <= '0'; 
  line2 <= '0'; 
  reset <= '1'; 
       -- t-4 
       wait for 2*clkhalfper; 
  line1 <= '1'; 
  line2 <= '1'; 
  reset <= '0'; 
       -- t-3 
       wait for 2*clkhalfper; 
       line1 <= '1'; 
  line2 <= '0'; 
  reset <= '0'; 
  -- t-2 
       wait for 2*clkhalfper; 
       line1 <= '1'; 
  line2 <= '0'; 
  reset <= '0'; 
  -- t-1 
       wait for 2*clkhalfper; 
       line1 <= '1'; 
  line2 <= '0'; 
  reset <= '0'; 
       wait;  -- suspend process 

   end process; 
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The results of the simulation of the test bench for b01 design are presented in 
Figure 5-11. The open source platform for advanced hardware design ZamiaCAD 
[60] has been used for simulation and for the waveform generation. It can be seen 
from the waveform that OVERFLW and OUTP signals indeed have the correct 
values on the 6th clock cycle (time stamp t0). Hence, the target state of the system is 
reached.  

The synthesized test bench besides checking the results of the CS facilitates the 
debugging of VHDL sources of the design in hand. Moreover, it is often necessary 
for debugging purposes to trace the internal values of the design during the virtual 
test application. The efficiency and depth of the debugging mostly depends on the 
functionality provided by the CAD software. In ZamiaCAD the annotate feature was 
used to trace the values of internal variables in any moment of simulated time. 

5.3 Case study 

This section presents the case study that summarizes the presented methodology 
on modeling the test data path for automated test program synthesis. 

The functionality that is necessary to include in every test data path model is a 
TAP. The typical TAP contains a TAP controller state machine, an instruction 
register and a set of data registers. Instruction and data registers are scan-registers. 
Thus, these are the basic components of arbitrary TAP model. In Section 4.2.2 is 
described the creation of the HLDD model of the simplified TAP control and data 
path (Figure 4-5). The respective models are shown in Figure 4-6. These models are 
reused in the current section to describe step by step the test program synthesis 
methodology starting from the test pattern and finishing on the SVF [61] (Serial 
Vector Format) instruction. 

The test pattern in board level test is typically a pair of address and data to be 
written to this address. Test address is the value to be applied to the address pins of 

Figure 5-11 ZamiaCAD simulator output for b01 test bench 
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the board component (e.g. memory). The test data is a value for the data pins of 
board component under test. The component under test most certainly has control 
pins that should also be driven during the test data application. Generally, the values 
for control pins are not included in the test pattern and have to be obtained during 
the development of the test program. In case of PCBT these control signals are 
handled by the respective peripheral controller inside the microprocessor SoC. Thus, 
only the test address, test data, debug instructions and microprocessor instructions 
have to be passed to the SoC through the TAP. In this case study the SVF instruction 
for transporting the pattern through the TAP port will be synthesized. 

The CSP model of the simplified control and data path for JTAG TAP that is 
shown in Figure 4-5 has to be complemented by the abridge constraints. The first 
source of the abridge constraints is the test pattern itself. The second source is the 
structural description of the model. These constraints define for the CS the target 
state of the system to reach. 

In this case study let the arbitrary test pattern be a pair of test address 
(0xA0000004) and test data (0x5A5A6B6B). These are the values that have to be 
sent through TAP Data_register to the debug port logic (External logic). From the 
CS point of view the address and data are the two cases to solve. Firstly, the address 
value should be transmitted, and then the CSP should be solved again to transfer the 
test data value. Besides that, the value that may come from external logic must be 
defined. Otherwise, the CS may suggest taking the values of the test pattern from the 
external logic to pass them back to the external logic, instead of shifting them 
through the TDI pin. Taking values form External logic makes no sense as the task 
is to do the opposite. For that the structural model is analyzed to impose the 
additional abridge constraint that restricts the value of external logic to known reset 
value. Let this reset value be 0x00000000. 

These are the abridge constraints for the address transfer: 

XeqC (Data_register, Constant_0xA0000004); 

XeqC (External_logic, Constant_0x00000000); 

The abridge constraints for the test data transfer: 

XeqC (Data_register, Constant_0x5A5A6B6B); 

XeqC (External_logic, Constant_0x00000000). 

 

These constraints are passed to the CS together with the CSP. For the first set of 
abridge constraints the CS returns the following sequence of input signals: 

The sequence of signals for TAP returned by CS for the set of constraints for 
address transfer is presented in Table 5-15. 
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Table 5-15 Sequence of signals for TAP pins for application of address value 

Signal name Sequence of signals 

TAP state x01234444444444444444444444444444444458 

TMS x0100000000000000000000000000000000011x 

TDI xxxxx10100000000000000000000000000100xx 

TRST 10000000000000000000000000000000000000x 

 

The ‘x’ stands for don’t care value, thus it can be substituted by any value from 
the domain of the variable. 

The sequence of signals for TAP returned by CS for the second set is presented 
in Table 5-16. 

Table 5-16 Sequence of signals for TAP pins for application of test data value 

Signal name Sequence of signals 

TAP state x01234444444444444444444444444444444458 

TMS x0100000000000000000000000000000000011x 

TDI xxxxx01011010010110100110101101101011xx 

TRST 10000000000000000000000000000000000000x 

 

The results presented in Table 5-15 and Table 5-16 for TMS and TRST inputs are 
the same. The values for TDI vary as the data to be shifted in is different. The 
respective SVF instructions for the data in Table 5-15: 

TRST ON; 
TRST OFF; 
SDR 32 TDI (A0000004);  
and for the data in Table 5-16: 

TRST ON; 
TRST OFF; 
SDR 32 TDI (5A5A6B6B);  

These SVF instructions show that solving of two consecutive data transfer as 
independent cases causes redundant SVF instructions (TRST ON; and TRST OFF;). 
In order to eliminate redundant SVF instructions, the second case should be 
supplemented by the results of the previous case. The last state of the previous state 
is defined as the first state for the next case.  Thus, the CS will be informed of the 
initial state of the system and will not search for the deterministic initial state, which 
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is a reset state in the example for the test data transferring. This will modify the 
sequence of signals for the TAP pins in the following way: 

Table 5-17 Modified sequence of signals for TAP pins for application of test data value 

Signal name Sequence of signals 

TAP state 8234444444444444444444444444444444458 

TMS 100000000000000000000000000000000011x 

TDI xxx01011010010110100110101101101011xx 

TRST 000000000000000000000000000000000000x 

 

The test program for applying single test pattern (address and data) is presented 
below: 

TRST ON; 
TRST OFF; 
SDR 32 TDI (A0000004);  
SDR 32 TDI (5A5A6B6B); 

As it can be noticed from this case study one of the purpose of presenting the 
results as SVF instructions is to make the test program readable. Moreover the SVF 
test programs are executable by BS test systems. The additional benefit of presenting 
a test program in SVF is possibility to add constructions like TDO and MASK that 
enable debugging of the test program and the system itself. 

5.4 Chapter summary 

The first contribution of this chapter is the analytical study that reveals benefits 
of automated generation of entire PCBT program. A novelty of this research is the 
proposed methodology for test development automation based on partial functional 
SUT model. The proposed method for automatic test program synthesis allows 
significantly speeding up the development of test program, which is a considerable 
contribution towards reducing time-to-market in the PCB industry. 

The next contribution of this chapter is a novel methodology to present the partial 
functional model as a constraint satisfaction problem (CSP). The transformation of 
the model into CSP is automated. The proposed CSP model is based on Java 
Constraint Programming (JaCoP) framework. The functionality of the constraint 
solver provided by JaCoP framework (CS core, implementation of search algorithm, 
backtracking engine) is extended to operate with multiple joined CSP designs and to 
produce results for reaching the target state over many clock cycles. The former 
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enhances scalability in handling big industrial problems by modeling them as a set 
of smaller related problems. 

On the basis of the synthesized “raw” test program the approach for automatic 
VHDL test bench synthesis is described. The automatic synthesis of test bench files 
facilitates the testing of the test program and contributes to the debugging of the 
VHDL source code of the design under test. The test program translated into the 
SVF instructions is executable by many available test systems. The synthesized test 
program may be also used in debugging of the test setup and SUT, besides the test 
access and test application. 

This chapter also reports the details of experiments with ITC99 benchmarks. 
These experiments prove the feasibility of proposed methodology and are used to 
study the influence of various CS settings (variables selection strategy and variable 
assignment strategy) on the CS run-time and synthesized test program. The general 
strategy is developed for selecting the CS settings in order to obtain the acceptable 
result in a reasonable time period. The chapter is concluded by the case study that 
summarizes the proposed methodology on the example of test program synthesis for 
the test pattern transportation through the JTAG TAP. 
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Chapter 6  

TOOLCHAIN FOR PCBT 

DEVELOPMENT AUTOMATION  

In this chapter the proposed and developed toolchain for PCBT development 
automation is presented. The goal of this chapter is to draw an overview picture that 
connects the proposed methodology, developed tools and existing test environment. 
Firstly, the workflow is discussed and source data relations are explained on the data 
flow diagram. Then the general view on the developed and reused tools is presented. 
The chapter is concluded with possible applications of the developed tools and 
integration with the existing third-party tools and frameworks. 

6.1 PCBT development automation workflow 

The PCBT development automation workflow proposed in this chapter has many 
use case scenarios. The data flow diagram in Figure 6-1 combines possible data 
flows from various scenarios. The fourth layer in Figure 6-1 contains the end-points 
for all scenarios that determine the target applications for the obtained results. The 
CAD software may be used for:  

 Verification of the obtained input data for primary inputs 
 Debugging of the VHDL source code of the PCBA component using the 

test bench generated from obtained input data 
 Simulation of the test application  
 Estimation of the test run-time 
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In case if VHDL source code of the PCBA components is not available the above 
mentioned tasks cannot be fulfilled. However, if the CSP model does not include the 
structural model of the test data path, the produced input data can still be used for 
the CAD software related task. 

The other end-point of the data flow diagram is the test system. In the frame of 
this work the test system is considered as boundary-scan test software (capable to 
interpret the test program in SVF) and boundary-scan test hardware that is connected 
to the PCBA under test. The inputs for the test system are PCB description and test 
program in SVF. The test program properties and objectives have been discussed in 
details in Chapter 3. The test system may be used for different purposes, depending 
on the objective of the test program: 

 Test interconnections between μP SoC and another PCBA component 
 Load program into on-board or on-chip memory (μP SoC internal memory) 
 Test PCBA component using μP as on-board tester (e.g. in the field) 
 Debug the execution of the application running on the μP 
 Debug PCBA (NTF problem) 

The layers in Figure 6-1 split the data flow into 5 parts. The arrows that cross the 
border between layers mean not just data passing, but transformation of data. “Layer 
0” contains the data that is coming from third-party sources. The VHDL source code 

Figure 6-1 Data flow diagram and transformation layers 
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and the documentation of PCBA components are obtained from the vendor of the 
component. The PCBA description is a documentation of the PCBA that includes a 
list of components with interconnection information that typically comes as a netlist 
file. 

The first set of transformations is performed when crossing the border between 
“Layer 0” and “Layer 1”. The latter layer contains the behavioral and structural 
model of the test data path. The behavioral model can be automatically converted 
from the VHDL source codes of the PCBA component (VHDL to HLDD converter) 
or to be created manually with the help of the documentation. The documentation is 
also needed to create the structural model of the selected PCBA component. The 
PCBA structural model is created automatically from board description (Board 
netlist parser). 

The behavioral and structural models are transformed into CSP (HLDD to CSP 
converter and structural constraints extractor), which lies solely on the second layer 
(Layer 2). The CSP is supposed to be solved by the CS (CSP solver) in order to 
obtain the input data for primary inputs of the uniform model. The input data for 
primary inputs corresponds already to the “Layer 3” and is used in converter from 
raw TAP signals to SVF instructions and for automatic test bench synthesis. The test 
program and the test bench are located on the last layer and can be used in test 
system and CAD software respectively. 

The important issue that has not been mentioned in Figure 6-1 is the source of the 
test patterns. The test patterns may come from different sources. First, the test 
system itself may be able to generate the test patterns. Second, the test patterns may 
be imported from external automated test pattern generator (ATPG) or taken from 
the pre-generated library. The test generation is out of scope of given research, thus, 
for the sake of readability the test patterns source and their origin is not included in 
the data flow diagram in Figure 6-1. 

6.2 Toolchain and integration 

The functionality that was developed within the framework of this research is 
shown in Figure 6-2. Parsers, converters and solver can be run individually or can be 
accessed via the common plugin for Eclipse Integrated Development Environment 
(IDE). Eclipse is a universal tool platform, an open extensible IDE for “anything and 
nothing in particular”. 
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Eclipse has the considerable support of the leading companies and organizations 
in the technology sector. Eclipse is gaining widespread acceptance in both the 
commercial and academic arenas [50].  

Eclipse plugin facilitates the smooth integration of developed functionality into 
widely used open source IDE for many applications. The developed toolchain for 
automation of PCBT program development can be easily integrated with previously 
mentioned CAD software ZamiaCAD as plugin installation. 

The toolchain depicted in Figure 6-2 consists of blocks of three different types 
(generated, reused and developed). The block of generated type (Eclipse plugin) 
corresponds to the graphical user interface (GUI) functionality that was 
automatically generated in the Eclipse Modeling Framework (EMF) [50]. EMF was 
also used for developing the metamodels for PCBA structural model and for PCBA 
behavioral model. The behavioral model is based on mathematical foundations of 
HLDD graphs. The developed plugin is the first GUI for creating and editing of 
HLDD graphs. The “VHDL to HLDD converter” was added to the toolchain for 
automatic behavioral model creation from VHDL source code (RT-Level) of PCBA 
components. The “Board netlist parser” was developed to automatically obtain the 
PCBA structural model from board netlist file. This model has to be complemented 
with structural models of PCBA components created manually in Eclipse GUI. 

The above mentioned functionality forms a bridge between GUI level and an 
underlying level with metamodels. The tools on the next level transform the 
structural and behavioral models of PCBA to the CSP model. The CSP model solver 

Figure 6-2 Plugin modules and abstraction layers 
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plays a role of backward link to the metamodel layer by producing the results in raw 
format of solving the CSP model. The implementation of CSP model belongs to the 
reused functionality. It is based on the JaCoP framework [55] library. The core of 
the CSP solver also uses a search engine and a backtracking functionality provided 
by JaCoP framework library. 

The modules in the developed toolchain may be swapped or added without a 
significant impact on the other modules. For example, the benefits of implementing 
behavioral model as HLDD graphs may be assessed by adding other implementation 
of behavioral models (metamodel, CSP converter) for comparison experiment 
without introducing changes to the rest of toolchain modules. Moreover, the CS 
itself can be substituted by more efficient one, just by exchanging the CSP model 
and CSP solver modules. Thus, in both cases only neighboring modules are affected 
while the rest of the toolchain remains untouched. 

The developed functionality and corresponding toolchain combined with CAD 
software and boundary scan enabled test system in addition to the practical 
applications also form the research environment for studying the field of board level 
test and debug. 

6.3 Chapter summary 

The toolchain for PCBT development automation is presented in this chapter. 
The various data structures and formats that were described previously in this thesis 
are shown in a layered data flow diagram (Figure 6-1) to outline their purpose and 
place in the final toolchain.  

The integration possibilities into third party Test system and CAD software are 
highlighted in this chapter. The main advantage of the developed toolchain is that it 
can be used as a plugin to Eclipse IDE as well as a standalone Eclipse-based 
application.  

The developed functionality is included into the toolchain and the hierarchy 
between enclosed tools is depicted in Figure 6-2. The modularity and the 
correspondence to different abstraction layers facilitates the substitution of modules 
without changing the rest of the functionality, that leaves the space for further 
research in the field of board level test automation using the developed toolchain. 
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Chapter 7  

CONCLUSIONS AND 

FUTURE WORK  

The aim of this thesis is to propose a novel methodology to model the test data 
path with the goal of automatic synthesis of board level processor-centric test 
program. The proposed modeling approach reuses the theory of high-level decision 
diagrams as a basis for behavioral modeling of the test data path and presents a new 
model to describe the structure of the PCBA and its components. The automation of 
the processor-centric board test program development is based on solving the 
constrained test data path model of the PCBA under test. 

This chapter summarizes the thesis, brings together the contributions of this 
research and points out promising directions for future work. 

7.1 Conclusions 

This thesis presents a new approach for automatic synthesis of PCBT program 
that is executable on ATE and uses on-board μP as the central component of test 
access and application mechanism. Structural and behavioral models are 
automatically transformed into Constraint Satisfaction Problem (CSP), which is 
passed to the search algorithm provided by Java Constraint Programming (JaCoP) 
[55] framework to solve the task of test pattern transportation from board under test 
TAP pins to UUT pins. 

The feasibility of the proposed methodology was proven by the presented 
experimental results.  ITC99 benchmarks and models of various μP SoC modules 
have been used in conducted experiments. 
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7.1.1 Results and contributions 

A comprehensive analytical study has been carried out that revealed the benefits 
of automated generation of processor-centric test programs and motivated the 
research presented in the thesis. 

The new results and contributions of the presented work are summarized as 
follows: 

- Formulae for test application time calculation - The simulation-free 
calculation of the test application time is useful for fast cost estimation of 
the manufacturing board test solution. Moreover, these formulae are 
helpful for comparison of different test application strategies for a given 
test case. 

- The metamodel and its implementation for structural models of PCBA, 
SoCs and other PCBA components 

- The metamodel and its implementation for behavioral models of ICs 

- A novel methodology for test data path modeling - Structural models are 
augmented by behavioral models to assemble the uniform model of the 
PCBA that is used in test development automation. 

- A novel approach and implementation of automated synthesis of PCBT 
program in SVF 

- A new approach for automated synthesis of the VHDL test bench 

7.1.2 Advantages 

The proposed toolchain of developed and reused programs corresponds to the 
platform with broad research capabilities in the field of board level test. It also 
provides reach integration possibilities with third-party tools for test and debug of 
assembled PCBs. 

The modules of the toolchain such as CSP model or underlying metamodels can 
be substituted or supplemented with minor changes to the rest of the framework. 
This may help to assess the proposed approach and to speed up the automatic 
synthesis of PCBT programs in the future. 

7.2 Future work 

This section outlines the most important issues that require further investigation 
for improving the proposed techniques.  

The research presented in this thesis was primarily targeting the PCBT program 
development automation. The proof of concept implementation of the toolchain is 
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created to carry out the feasibility study of the proposed approach. Hence, the 
performance related issues of the used tools are not considered in the first place. 
Thus, to assess the efficiency of JaCoP framework towards other CS packages the 
developed toolchain should be extended with several other CS techniques for fair 
comparison.  

The extension of the library of models should be continued. This may assist to 
achieve the wide adoption of proposed methodology. The models of SoC 
components from major IP vendors have to be considered first, while on-board 
memories and interfaces are the next targets. 

The model development methodology could be complemented towards 
supporting the import and export of IP-XACT compliant models. This will conduce 
to reusing of developed models in other applications. Moreover, the effort for model 
development could be reduced by importing the IP-XACT compliant model from 
third party applications. 

The integration opportunities of the developed toolchain into existing test 
systems and CAD software should be investigated further to find more common 
standpoints. It would reveal the demands and problems that could be solved by 
integrating the whole toolchain or individual modules into third-party tools. 
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Appendix A  

AGM FORMAT 

AGM format is described in this appendix. This format was proposed in Tallinn 
University of Technology to describe the design at RT-Level and behavioral 
abstraction level (HLDD). 

This format is not a contribution of this thesis, but rather presented here for 
explanatory purposes. AGM stands for Alternative Graph Model. The origin of this 
abbreviation is in the first publications of Prof. Raimund Ubar on topic of decision 
diagrams, where they were referred to as alternative graphs (e.g. [17]). 

AGM format is case sensitive. It is a line-based format where maximum line 
length can be 256 characters. In the following the BNF syntax of HLDD model 
format is presented. The meta-syntax used obeys the following rules: 

1. Syntactic categories (non-terminals) are printed in italics; literal words, 
characters and constants are enclosed to ‘quotes’. 

2. If a construct is enclosed to [square brackets], it is optional. 
3. If a construct is enclosed to {curly brackets}, it may be repeated zero or more 

times. 
4. A choice is indicated with a vertical bar |.  
5. If a construct is enclosed in <chevrons>, it can occur at most once. 
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AGM Syntax 

AGM := 

statistics 

mode 

[control_signals] 

hldd_description 

statistics :=  

‘STAT#’ natural ‘Nods,’ natural ‘Vars,’ natural ‘Grps,’ natural ‘Inps,’ natural 
‘Outs,’ natural ‘Cons’ [‘,’ natural ’Funs’] [‘,’ natural ’Mems’] [‘,’ natural‘C_outs’] 

The natural values reflect the number of nodes, variables, graphs, inputs, outputs, 
constants, functions, memory arrays and control part outputs, respectively. The 
number of functions and memory arrays are meaningful in the high-level descriptions. 
The number of control part outputs is used with the RTL descriptions divided into a 
control part and a datapath only. 

control_signals := 

‘COUT#’ natural {‘,’ natural} 

Shows the variable indexes of control signal variables. Used in RTL descriptions 
partitioned to datapath and control parts. 

mode := 

‘MODE#’ ‘RTL’ | ‘BEHAVIORAL’ 

Indicates whether an RTL model, or a behavioral model is being described. 

hldd_description := 

[{input_definition}] 

[{memory_definition}] 

[{constant_definition}] 

[{function_definition}] 

[{control_definition}] 

{graph_variable_definition} 
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The definitions are ranged according to the order shown above. control_definitions 
are used only in the RTL descriptions partitioned into control and datapath parts. 

input_definition := 

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range 

Defines a primary input of the model.  

memory_definition := 

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range [row_range] 

column_range 

memory_row 

{memory_row} 

Defines a memory array. The optional row_range is used with two-dimensional 
arrays, and it determines the range of row addresses used in memory. In one-
dimensional arrays, row_range is omitted. In similar way, column_range determines 
the range of column addresses used in the memory variable. 

memory_row := 

‘{‘ integer {‘,’ integer} ‘}’ 

Defines the contents of a memory variable. The number of integers in 
memory_row is determined by column_range. 

row_range := mem_range 

Row_range is used with two-dimensional arrays, and it determines the range of 
row addresses used in memory. In one-dimensional arrays, row_range is omitted. 

column_range := mem_range 

Determines the range of column addresses used in the memory variable. 

mem_range := ‘[‘ integer ‘-’ integer ‘]’ 

In mem_range the first integer must be less than the second one. 

constant_definition := 

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range ‘VAL’ ‘=’integer 

Defines a constant. The integer value shows the value of the constant. 
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function_definition := 

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range 

‘FUN#’ function_type arguments_definition 

Defines an operation or function. 

function_type := identifier 

Shows the type of the operation. 

arguments_definition := 

‘(‘ [argument] {‘,’ argument} ’)’ 

Defines the arguments (if any) of an operation. 

argument := 

‘A’argument_index ‘<=’ argument_variable range 

The range shows the bit-slice of the variable argument_variable that is used as 
afunction argument. 

argument_index := natural 

Shows the index of the function argument. 

argument_variable := natural 

Shows the index of the variable used as the function argument. 

control_definition := 

‘VAR#’ var_index ‘:’ ‘(‘ variable_flags ’)’ var_name var_range 

Defines a control signal. Used to define control part output signals of the RTL 
designs partitioned into datapath and control parts. 

graph_variable_definition := 

‘VAR#’ var_index ‘:’ ‘(‘variable_flags’)’ var_name var_range 

graph_definition 

Defines a variable for which a graph corresponds. 

graph_definition := 
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‘GRP#’ graph_index ‘:’ ‘BEG’ ‘=’ natural ‘,’ ‘LEN’ ‘=’ natural ‘’ 

node_definition | parallel_node_definition 

{node_definition | parallel_node_definition} 

Defines a graph in the HLDD model. The ‘BEG=’ construct shows the absolute 
index of the first node in the graph. The ‘LEN=’ construct in turn shows the number 
of nodes in the graph. 

node_definition := 

nod_abs_index nod_index ‘: (‘nod_flags’) (’ successors ‘) V =’ nod_var 

nod_name nod_range 

Defines an HLDD node. nod_abs_index and nod_index represent the absolute 
(inside the model) and relative (inside the graph) indexes of the node. Construct 
successors shows the successor nodes of current node which are chosen with different 
node values. Index of the variable labelling the node is determined with nod_var. 

parallel_node_definition := 

nod_abs_index nod_index ‘: (v___)’ ‘(‘ ‘0’ ‘0’ ‘)’ ‘VEC =’ nod_var_vector 

Defines a terminal node of the FSM graph of RTL description. nod_abs_index and 
nod_index represent the absolute (inside the model) and relative (inside the graph) 
indexes of the node, respectively. Indexes of the variables labelling the node are 
determined with nod_var_vector. 

nod_var_vector := 

‘ ”’ state_value {signal_value} ’ ”’ 

state_value shows the value of the next state. The signal_value constructs show 
the values of the control signals defined in the control_signals construct. 

state_value := natural 

Shows the value of the next state. 

signal_value := natural | ‘X’ 

The signal_value constructs show the values of the control signals defined in the 
control_signals construct. 

nod_var := natural[ [ ‘[‘ ‘V’ ‘=’ row_index ’]’ ] ‘[‘ ‘V’ ‘=’ column_index ’]’ ] 
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Shows the index of the variable labelling the node. Optional constructs row_index 
and column_index are used with memory variables labelling the node. These 
constructs determine the indexes of the variables used for addressing rows and 
columns, respectively. 

nod_name := string 

Shows the name of the node. 

nod_range := range 

nod_range determines the bit-slice of the variable that labels the node. HLDD 
model format allows slices of variables to be used for labelling a node. 

row_index := natural 

Determine the indexes of the variables used for addressing rows of the memory 
variable. 

column_index := natural 

Determines the index of the variable used for addressing columns of the memory 
variable. 

nod_abs_index := natural 

Shows the absolute (inside the model) index of the node. 

nod_index := natural 

Shows the relative (inside the graph) index of the node inside the graph. 

graph_index := natural 

Shows the index of the graph. 

variable_flags := 

< ‘i’ | ‘m’ | ‘c’ | ‘f’ | ‘o’ | ‘n’ | ’_’ | ‘F’ > {<‘d’> | ‘_’} 

The variable flags have the following interpretation: 

‘i’ - input variable 

‘m’ - memory variable 

‘c’ - constant variable 

‘f’ - function variable  
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‘o’ - output variable 

‘d’ - clock cycle delay, e.g. in registers, flipflops. 

The following flags are used with RTL descriptions only: 

‘n’ - control part output signal 

‘F’ - FSM graph variable 

‘r’ - reset variable 

‘s’ - state variable 

nod_flags := 

< ‘i’ | ’_’ > { ‘n’ | ‘v’ | ‘_’} 

The node flags have the following interpretation: 

‘i’ - inverted node (in gate-level descriptions only) 

‘n’ - non-terminal node (RTL, behavioral) 

‘v’ - control part terminal node (RTL) 

successors := 

nonterminal_successors | terminal_successor 

Construct successors shows the successor nodes of current node which are chosen 
with different node values. 

nonterminal_successors := 

node_values ‘=>’ successor_index {node_values ‘=>’ successor_index } 

This construct shows the indexes of successor nodes which will be selected with 
corresponding node values. 

terminal_successors := ‘0’ ‘0’ 

Terminal nodes are nodes which have no successor nodes. 

node_values := natural { ‘,’ | ‘’ natural} 

Determines the set of node values that activate the corresponding branch. The 
comma ‘,’ character is used for separating the indexes; the minus sign ‘-‘ is used for 
index ranges, e.g. ‘3-5’, which can be alternatively written as ‘3,4,5’. 
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successor_index := 

natural | ‘X’ 

If successor_index is a natural number, it shows the index of the successor node. 
Otherwise, if successor_index is ‘X’, it means that the successor is undetermined. 

var_index := natural 

Shows the index of the variable. 

var_name := string 

Shows the name of the variable. 

var_range := range 

Shows the bit-width of the variable. 

range := [ ‘<’ natural ‘:’ natural ‘>’ ] 

Range is a construct for describing bit-vectors. The first natural shows the index of 
the most significant bit and the latter is for the least significant bit, respectively. If 
range is omitted, it will default to ‘<0:0>’. 

string := 

‘ ” ’ {character} ‘ ” ’ 

Character can be any character, except newline and double quote ‘”’. 

integer := 

[‘-’]natural 

Any integer number. 

natural 

Natural can be any non-negative number. 

identifier := 

alphabetic_character{alphabetic_character | digit | ‘_’} 

alphabetic_character := ‘A’| …| ’Z’ | ‘a’ | …| ‘z’ 

digit := ‘0’ | ‘1’ | …| ‘9’ 
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