TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology
Department of Computer Science

Cyber Security

Tiit Hallas
Logging Requirement Analysis and Specification
for Development

Based on Governmental Institutions of Estonia

Master’s Thesis

Supervisors:
Mait Peekma, MSc
Toomas Lepik, MSc

TALLINN 2014

Declaration

[declare that this master’s thesis is the result of my own research except as cited
in the references. The thesis has not been submitted before any other degree or

examination.

(Date) (Author’s Signature)

Abstract

Logging is an important part of any information system. If done properly, logging
gives vital input to several IT processes such as information security and system
maintenance. Only a limited set of high-level requirements for logging are
defined for the governmental institutions of Estonia. There are no consolidated

requirements defined for the content of the logs.

The aim of this study is to analyse the existing requirements for logging,
synthesize additional requirements to cover the areas that are not covered by
the existing requirements and to explain the rationale of each requirement. As a
result, a consolidated list of log content requirements is created. The thesis will
bring out the most common mistakes done in logging implementations and offer
solutions to eliminate them. The outcome of this thesis is a detailed requirement
document for logging in English and Estonian language that can be applied as a

part of non-functional requirements in the development process.

Annotatsioon

Logimine on iga infosiisteemi oluline osa. Kui logimine on korrektselt tehtud,
annavad logid olulist informatsiooni mitmetele IT protsessidele alates
infoturbest lopetades silisteemihaldusega. Eesti riigiasutustele on seatud
logimise osas ainult iildised nduded ja eesmargid. Puudub konsolideeritud
dokument, mis seaks noudeid logi sisu kvaliteedile v6i mida saaks kasutada

juhendina logimise planeerimisel tarkvara arendusprotsessis.

Magistrito6 eesmargiks on analiilisida olemasolevaid ndudeid logimisele,
slinteesida tdiendavaid ndudeid, katmaks dra olemasolevate noduete poolt
katmata logimise funktsionaalsust ning selgitada analiiiisi kdigus iga uue néude
otstarvet. Magistrito6 toob valja pohilised vead, mida logimise puhul tehakse
ning pakub vadlja toodud vigadele lahendusi. Magistrito6 tulemuseks on
eraldiseisev eesti- ja inglisekeelne detailne loginduete dokument, mida on

voimalik kasutada arendusprotsessis mitte-funktsionaalsete nduete osana.

Index

D TCTol = 0) o PP 2
03 0 ¢ [P 3
ANNOTALSIOON ot 4
B 0310 0T 10 ot (o) o U 7
2 BACKEGTOUNM ..oeeieeeeeeeeeeeeeessesesssessses e ssss s 10
2.1 SCOPE Of The theSiS. . neas 10
2.2 Terms and FOles ... 11
220G T & 0] 10) o) 2P 11
2.4 LOZEING MOAES...iueurierreereesrereesseseessesssessesssessssssessssssssssesssssssssssssssssessasssssssssssssssssssasessssas 12
241 Default 10GZING ...oricreererreereeeesseeresseesesseesssessessessse s ssssss s sssssesasesssssssssees 12
2.4.2 Development-driven logZINgGonereenneeneeserseesseesessesssesseessessessssssessees 13
2.4.3 Maintenance-driven loZINGcoeneenneeneesesseessessessesssessesssesssessssssessees 13
244 COMPLIANCE ..ceereeeeereeeeereeeeeesseseessessessessses s s s s s s s 13

3 Roles and 108ZING NEEAS ... ses s s sessssssessens 15
3.1 FOr Security SPECIAlISTS ..o sssessesssessses s s s sasesneas 15
3.2 FOI MaNQ@EIMENT....oececeresressesses s s ses s s bbb s s asessenses 16
4 EXISTNG FEQUITEIMENLS ..ceuieereererreeriessisesssssesessesses s s sssss s ssssses s ssssssssssssenss 17
4.1 Requirements from legiSIation. ... eseessesseseens 17
4.2 Estonian Three-level IT Baseline Security System — [SKE........ccovnierenen. 18

5 ANQALYSIS coeureureereerereessesees s seessessee s s s es s s s s 21
5.1 Consolidated reqUITEIMENTSoeoeureereereesseeressessseseessesssessssssessssssesssssssssesssssssssees 21
5.2 QUALILY OF LOZS wueureeeerreereereereeseessseseessesssesesssesssssesssessssssss s s sssessssssessessssssssssssssessssssssses 21
5.3 Level of detail in 10GZINGccoveeureenrerneerereerseesesseeseeseessesssssssssssesssesssssesssessssssesnees 24
05 700 B L Vo PP 25

S T8 L P 26
S T0 L =) P 26
S 2 S L =) 4 U= 26
S0 TES T L =) o L P 28
5.3.6 RESUIL . 29
5.4 USaDIlity Of IOZS ..ttt sessesssssse e s s s s s ssss s sssssssnes 30
5.5 L0gEING IS VUINEIaDIe.... ettt ssss s ssen s ssss s sssssssnes 34

5.5.1 LOZ EVASION c.tuurieeereeeeereeeeseessetseessesesssesssessesssesssssss s s s s ssss e ssse s s ssssssssnes 34

5.5.2 Attacks against I0GZING......ccuerereereenrerreereereessseeesseesessessssssesssessessesssesssssssssees 38

5.6 User privacy Within 10g file ... seesseeees 42
5.7 Documentation reqUIrEMENTSouereeeesreeresseessesseessessessssssessesssesssssesssesssssssssees 43
[000) 4 0] LU TS (0] o 0P 45
6 REFEIEINCES. ...ttt 46
APPENAIX 1T = ACTONYIMIS ...cuuiuieureereesreeeesseeseessesssessesssesssssesssessssssesssssssssssssssssessssssessssssssssesssssssssses 50
AppendixX 2 — LOG SAMPLESeueerreriereereeeerseesesesssesseessesses s sssssssssssssssssssssssessssssssassssssssssses 52
SESSION 108 EXAMPLE.... et 52
REQUEST 10Z EXAMPIE ...eueeereeeeeeeeeeecseeses e s s s 53
Appendix 3 - Log requirements (ENGlish) ... 54
Appendix 4 - Log requirements (ESTONIAN).....coeneneenneensesseessesseesesseessesssessesssessessssenees 58

1 Introduction

Logging is an important part of the information system. If done properly, logging
gives vital information about the user activities and the information system to
the people dealing with the information system. Logs give valuable input for
several IT processes from information security to system maintenance and

development. The quality of such input depends on the quality of the log.

Currently there are no consolidated requirements for the content of the log that
can be used as guidelines during the development process. Although ISKE[1%] has
set some high-level requirements and goals for logging, there are no detailed
requirements or checklists to follow when planning the logging in the design
phase of a new service or application. ISKE states that these requirements should
be an outcome of collaborative work of the Security Manager and Head of IT
department. Since there are no guidelines to take as a reference, important
details might not be logged. This might lead to a situation where there is not
enough evidence in case of a security incident or might not give as much

information about client behavior as it could.

The problem has been recognized by Renee Trisberg - one of the most
experienced information security experts in Estonia, who has dealt with log
analysis for over 16 years; Andres Kiitt - adviser in RIA?, who is responsible for
Estonia’s IT architecture and strategic planning and Mehis Hakkaja, owner of
penetration testing company Clarified Security OU that also tests and analyses

the weaknesses of logging.

Log lifecycle can be divided into the following steps:
1. Policy definition and requirements;
2. Logging configuration and content;
3. Collection of logs;
4

Log event normalization;

L RIA - Riigi Infosiisteemide Amet (Information Security Authority in Estonia)

5. Log event indexing;
6. Storing log events;
7. Log correlation;
8. Baselining of events;
9. Alerting;

10. Reporting.

There have been publications that cover Log management aspects (points 3-
6)[221 and Log analysis (points 7-9)B31 aspects. By authors knowledge no

thorough study has been done on the log requirements and logging content.

This thesis will cover the first two steps of the log lifecycle, giving additional
input for the requirements and defining the actual data that must be logged in
such cases. The thesis will focus on the log content requirements for a log event
and will explain during an analysis where these requirements come from. The
thesis will bring out the most common mistakes done in logging

implementations and offer solutions to eliminate them.

Author of this thesis has been dealing with log creation, correlation and analysis
for the past 14 years from development, system maintenance and information
security perspective. The need to gather data and investigate IT- and fraud-
related incidents has given the author a thorough understanding about the
information that should be gathered about the events. Author has participated in
several international real-time cyber defence exercises as a part of an attacking
team and practiced evasion techniques in simulated real world situations, which
has given the author an understanding about how an attacker might think in

such situations.

Although the examples brought in thesis are based on a web server, the solutions
can be applied on any client-server application. Logs in the client device are
under clients control and cannot be trusted thus thesis concentrates on the
server side logging. Thesis covers the logging requirements for middleware

(application) layer of a service, which is influenced the most from logging

8

perspective by the development of the system. Other layers (front-end, database
and network) require different approach and are not solved during a

development process, thus are not a subject for this thesis.

The outcome of this thesis is a separate detailed requirement document for
logging in English and Estonian language (Appendixes 3 and 4 respectively) that
can be applied as a part of non-functional requirements in the development
process. By authors’ knowledge no such document has previously existed.
Although the study has been done based on a governmental institution, the
document can be applied in both public and private sector development

processes.

The target audience of this thesis is a person who has knowledge about
information system design and basic understanding about client-server system

architecture, web services and session handling.

2 Background

2.1 Scope of the thesis

Since the output of this thesis is a set of requirements that can be set for the
application developers during a new application or service development, thesis
concentrates on the issues that can be handled within the development process.
The thesis focuses on application level, because it usually contains the majority
of the business logic implementation of the system. Logging that is related to
existing infrastructure (e.g. database logging, networking and server component
logging) and must be handled with different approach is not covered within this
thesis. Since the client can easily manipulate logs that originate from client
devices, they cannot be considered trustworthy and must be handled in a

different manner and are out of scope.

Although most of the given examples are based on a web service and HTTP
requests, the requirements can be applied to any client-server application. Based
on the Authors’ opinion, web-based applications are the most popular types of
applications being developed today and HTTP protocol is the most common
protocol used in client-server communication, thus there is a great probability,
that the reader is already familiar with the protocol. Thus it is easier for the
reader to follow the examples without having to get familiar with another client-

server protocol.

There are several other aspects that are related to logging and are mandatory
when providing integrity to the log events, but these aspects create much more
additional attack vectors and problems that need to be addressed and are left out
of this thesis’ scope. These aspects that are not covered include (but are not
limited to):

* Log centralization;

* Log event shipping tools and protocols;

* SOA-type logging and alternatives to file-based logging;

* Logsigning and crypto chaining.

10

2.2 Terms and roles
The roles that are used in this thesis are:

* Security Specialist - Role in the company that is responsible for
preventing, detecting and protecting the company against the security
incidents, misuse of data, data leakages and attacks against the
infrastructure;

* Session ID - Unique session identificator that ise used to identify the
message sender in case of stateless protocol like HTTP;

* EventID - Unique event identificator;

* Alice, Bob - Two common application users that use the application or
exchange information with each other;

* Eve - Malicious user that tries to evesdrop a sent message or tries to

attack the system.

2.3 History

The logging history is tightly connected to the naval navigation and logbooks that
were kept on vessels in order to manage, operate and navigate them. It was used
to measure the distance ship had travelled within a certain amount of time
through recording the readings of the speed logl?4l - a wooden board attached to
a string called a “log line”. Later on, captains often marked down all other events
that were occurring on the ship: ports the ship had visited, crew behavior, both
routine events and significant incidents, the weather conditions and other ships
they had encountered during the voyage. Aside from the navigational part, it
gave a good overview about what went on during the voyage. Todays “black

box”[6] on aircrafts has the same purpose.

At the late 1830’s, Matthew Fontaine Maury’sl?8! started to bring out the
additional value from the collected and archived log files: he was the first person
to analyze and correlate thousands of old ship logs and charts in order to collect
information about the winds, calms and currents for all seas in all seasons and
mapped the migration of whales through the information stored in the logs. He

was able to prove his theory, that an area in the ocean near the North Pole is

11

occasionally free of ice - whales, being mammals, had to come on surface and
breathe. Through his findings from the logs he published his “Wind and Current
Chart of the North Atlantic”’[2], which showed how to use the ocean's currents

and winds to drastically reduce the length of ocean voyages.

The work of Maury can be considered as a first occurrence of an actual log
analysis and correlation to gain benefit from historical data and also - he can be

considered as an open-data project founder at that time.

2.4 Logging modes

The usual situation in today’s information systems is similar to the situation as
described before about the ship logs. Some logs are collected and saved but only
limited amount of beneficial information is gained from them. When looking into
the custom-made applications, there usually are logs present, but the log quality
is too low to provide any usable information. Developers do not have usable
requirements related to logging set for them, thus they usually log only debug
information to discover development issues. System administrators are usually
interested in performance-related information of the system and metrics about

the system behavior.

As described in chapter 3, logs can be used for much more if they contain
relevant data and there is an interested party to correlate and analyze the
information in there. Unfortunately no one has put any effort or invested energy
into creating better requirements for logging, thus - actual benefit is not gained
from the logging. At best, there are some best-effort logging done that will be

described further in this chapter.

Based on the authors’ knowledge, there are four different modes of application
logging that can usually be found depending on the system and other non-

functional requirements for the system.

2.4.1 Default logging
Everything that is set to log by the default configuration of the application,
service, server or the operating system, will be logged. No additional logging is

12

being implemented, i.e. if a component, that logs by default (e.g. Apache web
server), is included into the system, then system would be considered as a

system that logs, despite of the fact that the main functionality lacks logging.

2.4.2 Development-driven logging
[t is not always possible to debug everything in production environment. Also - it
is sometimes impossible to repeat the error in development environment, so
developers have created additional logging capabilities for debugging purpose:
In order to debug errors that have occurred in the production environment in an
efficient way, the following (but not limited to) is usually written down:

* Application states;

e Stack traces;

* Memory dumps;

* Database queries (and responses);

¢ Other information for debugging.

2.4.3 Maintenance-driven logging
In these cases there have been some requirements written into the development
plan by the system administrators. This usually occurs in case of a larger-scale
company, where development and maintenance roles are separated. The system
administrators have to analyze the performance of the application, so some
metrics have to be reported in the logs. Information that is usually logged is:

* Resource generating time;

e Resource execution time;

* Resource memory consumption;

* Database connection strings and parameters;

* Result: error and timeout messages;

¢ Other monitoring- and maintenance-related information.

2.4.4 Compliance

There are some laws, regulations and other policies that address the logging
issue and pose requirements for systems to log down some events: logins,
executions, information queries, retaining deadlines and other security-related

information. Usually the requirements are not specific enough to give an actual

13

input to either the developers or the administrators about the content of the
event being logged. That leads to logging “something”, which will never be used.

The existing compliance requirements are covered in Chapter 4.

14

3 Roles and logging needs

There are roughly four roles that have interests in logging and which all have
different approaches or needs from the logs: developers, system administrators,
security specialists and management. Developers and system administrators
were already covered in Chapters 2.4.2 and 2.4.3 respectively. Security

specialists and management will be covered in chapters 3.1 and 3.2.

3.1 For security specialists

A security specialist is responsible for preventing, detecting and protecting the
company against the security incidents, misuse of data, data leakages and attacks
against the infrastructure. Unfortunately it is often difficult to detect a security
incident from the system by its symptoms. An attack against an information
system can have symptoms that would express in an unexpected way: humidity
level-, temperature- or power fluctuation, higher load or power consumptions of
a server or other symptom or incident that would seem unrelated to security at
first sight. To prevent security incidents from left unhandled, a security specialist
must handle every anomaly in the information system as a security incident or
an attack until proven otherwise. A security specialist cannot rule out a
possibility of a malicious user behavior behind an unexpected behavior in the
system. Even if a home appliance acts unexpectedly, one cannot be sure that it is
not an intended behavior caused by somebody and the appliance is under

somebody else’s controll13l,

To be sure that the anomaly was not an attack, logs need to be analyzed to
properly evaluate the situation. For that, the logs have to contain enough
evidence to investigate such incidents. Also the logs have to provide information
to detect possible fraudulent activities and to profile users to detect activities
that are out of the ordinary. Such detections are useful to prevent data leakage
and misuse of user privileges: if the logs give enough information to generate
user profiles based on their activities and roles, security specialist can start
looking for behavioral anomalies, e.g. if a system analyst was recently employed
but the action profile matches a system administrator who has been working

15

with the system for the past five years, then this might be a subject for deeper

analysis and background check of the analyst.

All the previous aspects are useful only if the security officer is familiar with the
logs - it is important to know, what is normal in the logs and what are the
anomalies. If the security specialist does not have experience with the logs from
the system under investigation, then many anomalies in the log may seem
related to the ongoing incident, even though the anomaly is present in the log on
daily basis. L.e. security specialist should expect the known exceptions and must
be able to differ them from the real anomalies that are connected to the incident

at hand.

3.2 For management

Management is the main stakeholder of all logs. Management benefits from all
the activities mentioned in the previous chapters and should be interested in the
productivity of all the respective counterparts: developing high-quality systems,
quick and efficient bug fixing, monitoring the infrastructure and detecting
anomalies. However, there is another view that should not be neglected: direct

business benefit.

Logs can be used to analyze customer behavior in the application. Based on
client usage, management can make decisions on how to improve the
applications usability: if all customers are frequently using one component of the
application but have to make an extra effort to use it (e.g. have to make two
mouse clicks to get there from the main page), then management can make an
executive decision and move the component that is used more frequently to the

main page to optimize the application usage and clients user experience.

Through such application usage analysis, management can make decisions either
to invest more to the application and plan additional resources for the
application or close it down due to lack of usage. These decisions need a solid

and trustworthy input, which could be extracted from the logs.

16

4 Existing requirements

There are application security requirements in the public sector that have to be
followed. These requirements originate from the legislation (laws and
regulations published by the government) and from the official Estonian Three-

level IT Baseline Security System called ISKE[0].

4.1 Requirements from legislation

There are some laws and regulations that can be found from the official website
“Riigi Teataja”[20], which publishes all legislation-related documents in Estonia.
The laws that give most direct input to the log quality (or what could be
considered as requirements for logging) originate from Personal Data Protection
Actl18], Requirements for PC and LAN protection!1>] that is an addition to the State
Secret and Foreign Classified Information Law!'®), Data Exchange Layer of the
Information Systems!1¢l and Regulation for saving, passing on and destroying data,

inquiries, log files and applications!14l.

The most detailed requirements are present in the Personal Data Protection Act,
which describes in §25 (Organisational, physical and information technology
security measures for protection of personal data) that the processor of personal
data has to prevent unauthorized saving, modifying and deletion of personal data
and guarantee that it is possible to prove afterwards, when, by whom and which
data was modified and which personal data was accessed. The same paragraph
also describes that same kind of information should be saved when forwarding

personal data.

Other laws and regulations do not provide instructions which data should be
written in the log, but give guidelines or high-level ideas about what kind of
problems the logs should solve. The fore mentioned Requirements for PC and LAN
Protection give requirements for log information preserving period, necessary
information for analyzing the system usage (e.g. execution and closing, user
access, changes in user privileges, changes in log settings, date and time settings
and unsuccessful login attempts), accessing restricted data and details about the

17

event like date, type and notification about success or failure of the event. Other
two laws state, that logging should be applied and logs should be kept, but no

actual requirements for the content is mentioned.

4.2 Estonian Three-level IT Baseline Security System — ISKE

The Estonian Three-level Baseline System (ISKE)!10! is based on the German
information security standard - IT Baseline Protection Manual (BSI: IT-
Grundschutz in German[3]) and is meant to ensure the sufficient security level for
the data processed in IT systems. Implementing the organizational,
infrastructural, physical and technical security measures from the standard

achieve the necessary security level.

It is an information security standard that is developed for the Estonian public
sector. According to Government Regulation no. 273 of 12 August 2004171, ISKE
is compulsory for state and local government organizations, which handle
databases or registers. The first version of the ISKE implementation manual was

completed by October 2003.

ISKE looks at the three aspects of information security: Confidentiality, Integrity
and Availability(30]. Of these three, most relevant to logging is Integrity. ISKE has
four different integrity levels that are mapped to the application, based on the
nature of the information that is handled in the system. The levels as follows!%
page 18]

* TO - the possibility to detect the source of creation, changing or
destroying the information is not relevant; no controls for checking the
accuracy, integrity or opportune of the data is not needed;

* T1 - the possibility to detect the source of creation, changing or
destroying the information must be established; controls for checking the
accuracy, integrity or opportune are done on special occasions and based
on necessity;

* T2 - the possibility to detect the source of creation, changing or
destroying the information must be established; controls for checking the

accuracy, integrity or opportune are needed to be done regularly;

18

* T3 - the fact of information creation, changes and deletion must have
legal proof; controls for checking the accuracy, integrity or opportune are

done in real time;

ISKE provides methods!®! that are mandatory in order to achieve the respective
integrity level. The method B 5.22 (Logging)® page 383] has some baseline
suggestions regarding logging. A log should contain:

* Information regarding the event time (when the event happened);

* End result of the event (what did the event cause);

e Which instrument was used for the event;

¢ State of the system, e.g. who had access rights and for which timeframe

were they valid.

The method also states that all such events should be logged which has relevance
to information security, but it does not give any additional suggestions regarding

what events should they be and which information should be logged.

There are also other methods, which cover logging in one-way or another: M
4.172 (Logging access to archives) states, which user activities should be logged
(e.g. loosing confidentiality or integrity of the data due to user error, wrong user
privileges, shutting down the server during data analysis, defective removable

media, manipulating the system components etc.).

M 4.431 (Choosing important data for logging and processing) states, that aside
from all other things that need to be logged, one should not forget to log events
that include inserting a wrong password, blocking an account, unauthorized

access, excessive network loads and alerts from IDS systems.

One of the most comprehensive methods from the log content perspective is M
4.47 (Logging firewall operations), which defines specific values that need to be
logged in different cases. It defines log requirements for all packets that are
logged and defines specific requirements for five protocols: DNS, FTP, HTTP
NNTP and SMTP. For example: the method states, that for every event log file
should contain source IP, destination IP, source and destination port (or ICMP

19

type), date and time and a rule that it matched in the packet filter. If a service is
known, then service and duration of the connection should be also marked
down. In case of HTTP, log file should additionally contain information about the
URL, transferred data amount, request method (GET, POST, CONNECT), filters

that applied and status.

There are many methods which mention logging and pose requirements for
what kind of events should be logged (e.g. M 2.110 - Data privacy guidelines in
logging procedures, M 2.133 - Controlling database log files, M 4.205 - Router
logging, M 4.292 - IP phone logging, M 4.302 - Logging of printers, copiers and
multifunctional devices, M 4.81 - Logging network activities, M 5.9 - Server log,
etc.). Also there about four methods (HT.14, HT.16, HT.17, HS.55) on how to
crypto-chain the log events in chorographical order and timestamp it with a local

signature in order to preserve the log files and protect its integrity.

Although ISKE has set some high-level requirements and goals for logging, there
are no detailed requirements or checklists to follow when planning the logging
while designing a new service or application. There is only one method (HG.25 -
Mandatory logging for remote working) that states how exactly the composition
and data that is written to the log file should be decided: it should be an outcome
of collaborative work of the Security Manager and Head of IT department!8; prage
3895], But unfortunately it is not realistic, that anyone would analyze the whole
ISKE methods catalog to get requirements for developers when creating a new

system.

20

5 Analysis

5.1 Consolidated requirements

Although the laws, regulations and ISKE bring out the fore mentioned
requirements, there is no consolidated view or list of logging requirements that
could be given as an input to the developers. The exact items what must be
logged, what is beneficial to log or what to consider when developing a new
application cannot be found in one consolidated document. There is no baseline,
example scenarios or defined requirements to help the customer to understand,
what has to be logged. Result would be that developers write logs as they see fit.
This might be useless for the customer at the end of the day, especially in the
case where developers are not involved in the maintenance or log analysis in a

later phase of the application.

To solve this problem, this thesis goes through a list of problems that usually
occur in an information system and provides solutions, which will be gathered
into one logical requirement document (Appendix 3). The following chapters will
address different problems in an average information system from logging point

of view.

5.2 Quality of logs

Based on authors’ experience, when a system is set for logging, the events are
usually written to the same physical file irrespectively to the event types. The
events might have different log severity levels (e.g. DEBUG, INFO, WARNING etc.)
but usually other distinction can only be found from the message content itself.
This makes the log analysis difficult and does not allow the logs to be analyzed
based on the event type: if a developer needs access to the debug log and
security specialist need to access the user activities, then in case of one file, all
parties have to use the same file, thus see information that is either unimportant

or not meant for them to be seen.

21

To optimize the log usage and to separate different types of events from each

other, events must be divided into different logs based on their characteristics

(Appendix 3, p. 2). The proposed divisibility could be (but is not limited to) as

follows:

a) Session log: all relevant information for user authentication to the

application (or sub-part of the application that has a higher security),

authorization, session timeouts and invalidations with respective

information. An event must include at least the following information:

-

= o

-

Date and time;

Instance, which served the event;

Unique identifier of the event;

Action that was performed (e.g. login, logout, timeout);

[P address;

Hash of a session ID;

Method that was used (e.g. Password, ID-card, Token etc.);

Result of the event (success, failure, attempt);

Payload (additional relevant parameters that were sent and

processed).

Sample events from the session log are given in Appendix 2.

b) Request log: all requests done by the users, which includes all the

required input parameters, activity types, session-related information (to

correlate the event to the session log) and outcome. The event must

contain at least the following information:

d.

b.

-

= o

-

Date and time;

Instance, which served the event;

Unique identifier of the event;

Action or a type of request (e.g. search, request, query etc.)
IP address;

Username;

Hash of a session ID;

Result;

Payload (Additional parameters that are relevant to the request).

Sample events from the request log are given in Appendix 2.

22

c) Debug log: the debug log with detailed system information for
developers in order to debug a problem in a production environment in
case of an incident. By default, the debug mode must be disabled in
production environment;

d) Security log: security-related events and problems (IP changes during a
session, user privilege escalations, authentication avoidance attempts,
incorrect user certificates etc. events that require security specialists
attention);

e) Error log: both user errors and technical errors must be divided into
separate logs.

a. User errors must include errors that were invoked by the user and
are related to use cases where users gets an error message, i.e.
handled exceptions (tried to view a file without proper privileges,
make a payment that has larger amount then your account balance
etc.);

b. Technical errors are system-related errors that were caused by
other system components, the system itself or unexpected user
behavior, i.e. unhandled exceptions. Message can contain technical
information such as thrown exceptions, stack traces and other

error-related information.

To provide better analyzability of the logs, dividing must be done by
functionality, not by module or by application components. If an application has
several parts or components (e.g. by Security levels), then the logging must still
contain only certain types of events (Appendix 3, p. 9). Le. all session-related

events (regardless of the module) must be in the same session log.

To avoid wasteful system usage from both analyzing processing power and
storage point of view, duplicating information in the logs must be avoided
whenever possible (Appendix 3, p. 3). To able to tie security events and error
messages with the requests done by the user, information must be linked with

unique event ID’s between different log files (Appendix 3, p. 4).

23

Logging must be considered as a part of the functionality. If logging is a
mandatory feature (e.g. in case of information systems with ISKE T1 or higher),
the request must not be executed if logging fails. If the integrity of the system is
more important than availability, then fail-close solution is suggested: If logging

fails then system must be shut down (Appendix 3, p.10).

5.3 Level of detail in logging

Appropriate amount of logging detail is a challenge for the developers. Since the
requirements for the logs do not specify what kind of information and in which
detail should be logged, developers have to figure without a proper set of data
what to store about the event. Unfortunately it is often seen, that not all events

are logged. It is usual, that only successful events are logged.

If Bob logs into a system, the time and fact that Bob has entered the system might
be logged, however other relevant information (e.g. IP address, Bobs’ device-
related information etc.) is left unlogged and if for some reason the login fails,

the failed attempt is also usually left unlogged.

From the information security perspective, most crucial information that has to
be logged is related to user activities, authentication and authorization. However,
to provide evidence about the activities done in the information system, all user

activities have to be logged (Appendix 3, p. 11). The log files must contain

enough information to make it possible for a log analyst to fully understand (and
reproduce) all the users activities to get the same end result that the user did.
This does not apply to only the cases where the result is a failure: even successful

information viewing (or attempt) must be logged.

From the data protection point of view logs must reveal, who accessed (or tried
to access) which information at what time. Search criteria and the size of the
response are usually enough: the full response must not be logged. This also
includes the administrative users: when an administrator changes the system
settings, user privileges or does other system-related activities, there has to be

log trace for administrative activities as well (Appendix 3, p.11.2).

24

Administrators must not be able to hide their activities nor be able to change or
delete the logs from the system (Appendix 3, p.11.3). These kinds of attempts

must be logged in a separate file (e.g. security logs).

One of the most crucial aspects that must be logged in detail is authentication
and authorization of the user. Logs must reveal, what kind of relevant privileges
the user had at the time (i.e. what was the user able to do in the system). It is
important to log all the events related to authentication: successful logins, login
attempts ? and failed logins must be logged with the appropriate details
(Appendix 3, p. 11.1).

In order to provide the full ability to reproduce all the users activities, the log
entry has to provide at least the information, that answers to the following
questions: who, what, where, whence and when, also the result of the action
must be logged (Appendix 3, p.21). Based on the Authors’ experience, answering
the fore mentioned questions would provide viable information to conduct a
security incident analysis or to monitor user activities and to prove what

happened in the system during that time.

5.3.1 Who

The answer to the question ‘who’ must define, which user triggered the event.
The parameters that can reveal this kind of information might be (depending on
the system or service):

* Username, that is unique (at least) within the service (Appendix 3,
p.21.1.1) and what is linked with only one responsible person (Appendix
3,p.21.1.2);

* Hash or other one-way derivation of the ‘session_ID’, within the user

performed the activity;

2 Attempt - in this context is to try to achieve something without the needed
prerequisites and is bound to fail. E.g. a login without a password is an attempt
not failure because it is not possible to login without a password. The difference
is needed to detect anomalies in case of an incident or problems with the service.

25

Automatic processes must be clearly distinguished from all other activities
(Appendix 3, p.21.1.3) in order to understand, which processes are invoked by
the user at the exact time and which changes or activities were done
automatically (usually pre-planned by administrators). All the automatic
activities must have a responsible person (Appendix 3, p.21.1.4), e.g. the system’s
responsible administrator who created or executed the script, which resulted in

the logged event.

5.3.2 What

The answer must describe the actions that the user performed, e.g. user
authorization, administrative actions, data reading or -modifying events
(Appendix 3, p. 21.2). These actions must include the respective parameters that
manipulated the system in as much detail as possible: request parameters,
search criteria and values and other relevant input data (Appendix 3, p.21.2.2)
like uploaded file names (and hash values of the files) and selected objects
(Appendix 3, p.21.2.3). The software component or an object that received the
request must be also defined in the logged event (Appendix 3, p.21.2.1). The
fore-mentioned data is important in order to understand, what happened in the
information system: as much data is saved in the log files for later analysis, the

better from the forensic point of view.

5.3.3 Where

The answer to the question ‘where’ must contain the relevant information about
the information system to be able to determine the service, application, and its
instance (Appendix 3, p. 21.3). If the request or query used some vulnerability on
one certain host, then this kind of information can help the administrators to
pinpoint the problem and fix the vulnerability. It is also valuable information
when debugging performance issues. If the event just states that the server
experienced a memory corruption problem when responding to the request,

then without the instance name it is hard to find the instance with the problem.

5.3.4 Whence
It is important to log the initial device, where the request originated (Appendix 3,

p.- 21.4). The origin can be defined with:

26

a. IPv4 address of the device (in case of an internal application);
b. Public [Pv4 address of the network, where the device is located (in case of
NAT);
c. IPv6 address of the device;
d. Hostname of the sender;
e. Information about the device certificate.
The information in the log file must provide information to determine the exact

device that was used to send the request (Appendix 3, p. 21.4.1).

In some cases, services might have various proxy devices in front of the actual
application. This could be either because of load balancing or caching reasons.
System administrators must be certain that the log files would not contain just
the proxy IP as the source address in the logs, but would have the client source
information in a more precise manner. There are solutions to prevent such

situations (avoid source NAT, use HTTP headers like X-Forwarded-For!23], etc.).

The most common solution to forward the originating IP address of the user to
the application is to configure the proxy device to add an additional HTTP header

to the request. The list of HTTP headers for this purpose includes (but is not

limited to):
e Real-IP;
e (Client-1P;

e X-Forwarded-For;

* X-Real-IP.
This is used to add relevant information to the backend logs. The common
mistake is that only the frontend IP will be written to the log files instead of the
originating IP. E.g. the Apache HTTP Server configuration that is usually applied

to log the forwarded IP address is given in Figure 1.

27

o

LogFormat "%h %1 %u %t \"%$r\" %>s %$b \"%{Referer}i\" \"%{User-

Agent}i\"" combined

LogFormat "$%{X-Forwarded-For}i %1 %u %t \"%r\" %>s %
"${Referer}i\" \"%${User-Agent}i\"" proxy

SetEnvIf X-Forwarded-For "~.*\..*\..*\..*" forwarded

CustomLog "logs/access log" combined env=!forwarded

CustomLog "logs/access log" proxy env=forwarded

Figure 1
Apache HTTP Server checks the presence of the X-Forwarded-For header and if
the header is set, it replaces the [P address with the respective address in the

header. In most cases this is sufficient, but there are exceptions.

If the service that is being logged is not behind a proxy server, it introduces a risk
of logging incorrect information about the source IP. If Eve sends a request with
the crafted header, which is given in Figure 2, then Apache will get the header
and based on the previous configuration example will overwrite the IP address
with the one, given by Eve in the header. This would result in log poisoning: the

activity is logged, but with a wrong source IP address.

GET / HTTP/1.1
Host: www.service.int
X-Forwarded-For: 1.22.55.22

Connection: keep-alive

Figure 2

To avoid such attacks, the logging of such headers should be decided based on
the respective system architecture: if the proxy device doesn’t add X-Forwarded-
For or other headers, then the logging system must NOT overwrite the original IP
address. Both addresses (the original source and IP in the header) must be

logged distinctively.

5.3.5 When
Every log event has to have a corresponding timestamp (date and time) to be
able correlate the event to other (IT and real-life) events in other systems. To be

able to correlate different events, the server must have an accurate time

28

configured to it (Appendix 3, p. 21.5.1; p.5). This can be done through an NTP
service. If global NTP services cannot be used, then at least local servers must
have synchronized times among themselves to enable correlation within the
organization. The time must be defined at least with the detail of a second
(Appendix 3, p.21.5.2). Depending on the amount of events in the system, it could
be needed to detail down to a millisecond. To avoid time multiplication within
the log file due to daylight savings and to enable correlating logs between
different time zones, UTC time zone must be used in the logs (Appendix 3,

p.21.5.3).

When considering the date format, usability of the format must be taken into
account in case of automated log analysis and the tools that could be used for the
initial information gathering (statistics, measuring etc.). All the systems must log

in the same date format in order to simplify the correlation and analysis.

To use simple command-line tools (awk, grep, sort, uniq etc.) for analyzing the
logs, 1SO86011[291 should be considered as a suitable standard, suggested format
IS yyyy-MM-DDTHH:mm: ss . 5557 (Appendix 3, p. 21.5.4). There are several benefits
when using this format:
* The format is human-readable. When comparing to UNIX-timestamps,
analyst can easily understand the content without date conversion;
* Number-based format enables simple analytic activities. If the format
would include String values (e.g. month names as short textual values Jan
- Dec), then sorting would be more difficult than using numbers;
* The “from larger to smaller” approach gives the possibility to collect
information and gather statistics in an easier way (analyst does not have
to parse the date but can just cut a needed portion of it using simple

command-line tools).

5.3.6 Result
In order to find the errors from the system, security incidents, attacks on the
system and to discover possible data leaks, the logs must contain information

about the result (Appendix 3, p. 21.6). It is not always required to log all the data

29

that server responded: this might duplicate the critical information from the
database to logs and might cause additional security issues rather than

mitigating them.

It must be decided case-by-case how much information should be in the logs
about the response: response code, response size and outcome type (success,
attempt, failure, error etc.) must be mentioned within the log event. For example:
if the user searches for something in the Ul, logged event must contain not only
the response size in bytes but also the number of returned rows (Appendix 3, p.

21.6.1).

5.4 Usability of logs
Since the requirements for logging usually do not define the method for logging,
developers tend to use their own preferred mechanisms. One of the common
ways to log the events in the system is to log them into the same database that
the service uses. The benefits of this kind of approach (but not limited to) are:

* Existing connection to the database can be reused;

* Foreign keys can be used in the log event for referring to objects in the

database;

* Guaranteed logging can be achieved simply due to committing the event.

However this kind of approach might be harmful for the system:

* Exporting logs from the database might create issues or cause
performance problems (specially exporting them online);

* Logsin the database can be altered if no proper database audit is in place;

* In case of database corruption, there is no good way to get the events
from the database to investigate the source of the corruptive behavior;

* Security specialists and log analysts must access the production
environment to analyze the log events, thus having access to production
environment and creating additional load on the production servers;

e If the log analysis takes place on different servers, the internal foreign key

references might not be usable;

30

* If an object is removed from the database that the log event references to
(with a foreign key) the logs could be unusable;

* If service is obsolete and taken down but there is a requirement to keep
the logs for 10 years and the log is stored in a database with foreign keys,
the whole service has to be archived for the required amount of time
instead of just logs, later analysis of the logs require the whole service to
be restored;

* Log table must be append-only;

e Etc.

To guarantee the availability of and replication of those logs to a central log
repository, events must be written to a file on the operating system (Appendix 3,
p. 6) or sent directly to centralized log server if there is no way to get the flat files

from the server (Appendix 3, p.28).

There are some approaches where in order to save space on the disk proprietary
binary log formats are being used for logging. To simplify the log analysis and
finding the events from the logs (and to be able to use standard tools for quick
analysis), the flat files must be in ASCII format (Appendix 3, p. 7). The ASCII
format also prevents certain problems with log transportation and analysis,

which this thesis will cover later.

The logs might contain data, which is difficult to parse through automatically or
creates additional overhead that is not needed. Human-readable events in the log
like “User Bob has logged in from a remote IP ‘1.2.3.4° yesterday morning at 10”
could be suitable event description in cases where there are not many events per
second. When analyzing thousands of events at the same time, the “story-book”

approach creates additional administrative overhead.
To simplify the log analysis, the log file must have a well-defined structure that is
easy to analyze with command-line tools or import them to analyzing software.

Columns must be separated with a symbol that has a low probability in

31

appearing in the actual events, e.g. ;' — semicolon, 0x09 - TAB etc. (Appendix 3,

p.16.1).

One of the common approaches is that the logger does not distinguish the
parameter-value pairs that are created on the server side and the pairs that are
sent by the user with a request. This could be harmful for the log quality due to
log poisoning and evading logging. For example:

The service has to log the timestamp, [P address, username, derivate of the
session ID and input parameters with their respective values. It has been
decided, that JSON format will be used for the log. An example of an ordinary log
entry is given in Figure 3.

{"timestamp":"2014-11-

15T14:59:29.0002", "host":"192.168.1.13","session ID":"1a5d0525543a
559686dcedb2a3d585d1ef582240", "username" : "Alice", "action":"make pa
yment", "account":"22051102", "beneficiary":"1100102", "amount":"100"

,"details":"Car leasing payment"}

Figure 3

The user sends the parameters and values that are marked with red. If a
malicious user has some insights of the logging format, it might be possible to
evade logging or send falsified information to the logs. An example of the sent
malicious request is given in Figure 4. Falsified information is highlighted.

GET

/action.php?action=make paymenté&account=22051102&beneficiary=11001
02&amount=100&details=Car%20leasing%$20payment&host=172.28.1.2&user
name=Eve HTTP/1.1

Host: www.service.int

Cookie: PHPSESSID=86888qgoi8gsjn3cdap6g74fju2

Connection: keep-alive

Figure 4

In case of such request, false information will be written in the log. The outcome

that will be logged with such request is given in Figure 5.

32

{"timestamp":"2014-11-

15T715:05:16.0002", "host":"172.28.1.2","session ID":"09b24a8413c746
2d5df69ef8422ca%b58accf4l0", "username" : "Eve", "action":"make paymen
t","account":"22051102", "beneficiary":"1100102", "amount":"100", "de

tails":"Car leasing payment"}

Figure 5

To prevent log injections and -evasion, log files must distinguish the parameters
that are server-side and the parameters that are sent with the user request

(Appendix 3, p. 18). An example log format is given in figure 6.

2014-11-15T15:14:03.0002;192.168.1.1;
65b7e8ed48d82bcel0e749af5£1a889884££f1223;Alice; {"action":"make paym
ent","account":"22051102", "beneficiary":"1100102", "amount":"100.-
","details":"Car leasing

payment", "host":"172.28.1.2","username" :"Eve"}

Figure 6

One common approach for simple logging is to use several lines for one event
(i.e. multi-line events). An example of the log that would be created in such
manner by the previous payment example is given in Figure 7.

timestamp=2014-11-15T15:25:42.0002

host=217.71.44.6

session ID=al2dcddd0ee5054b240d7d1l7ebl6e87c5baffd52
username=Alice

action=make payment

account=22051102

beneficiary=1100102

amount=100.-

details=Car leasing payment

host=172.28.1.2

username=Eve
Figure 7
This can be an acceptable approach in cases where all the requests have always
the same amount of fields that are either empty or have respective values.

However, if the amount of fields depends on the amount of parameters the

request has and it can vary depending on the action (e.g. payment has six

33

parameters but balance overview has only three) then it is a huge overload

during log analysis.

In order to prevent such problems, multi-line events must be avoided and event
must be written into one line, e.g. using JSON format (Appendix 3, p.16.2). Log
files must be homogeneous: if there is no other way and multi-line events have to
be used (e.g. stack traces, debug information etc.) then separate log file must be
used for multi-line events to simplify log analysis (Appendix 3, p.17.1). The
beginning and ending of the multi-line event must be identifiable (e.g. event
always starts with a timestamp, ends with a symbol or a blank line (CRLF)

(Appendix 3, 17.2).

5.5 Logging is vulnerable

The attackers who are targeting information systems have usually two common
goals:
* Extract or modify confidential data;

* Use the system to attack other systems.

System has to keep an audit trail of all activities in order to provide evidence
about what was done and how. This gives relevant information in order to
improve security and prevent such attacks from happening in the future. To
reach the goals of an attack, attackers may:

* Try to evade logging or destroy the evidence about their activities;

* Use vulnerabilities in the logging system to attack other systems.

There are several ways to use logging vulnerabilities to inject falsified data,
evade detection or attack other systems. To prevent such incidents,

countermeasures must be taken.

5.5.1 Logevasion

Information from the server can be requested in different ways. Client can send
request parameters via GET or POST method or via Cookies. In case of PHP, the
documentation adds two additional sources for variables: Environment and

Serverl26]. The prioritization order can be defined in a respective configuration

34

file (in case of PHP, a parameter called “variables_order”’[23] defines the priority
order, by default it is EGPCS, defining the order from the least important
(Environment) to the one that cannot be over-written (Server)). This is relevant
because it might cause a situation, where the values that are logged are not the
ones that are used by the service, thus resulting in log evasion.

GET /login.php?user id=Alice&password=Secret&user id=Bob HTTP/1.1
Host: www.service.int

Connection: keep-alive

Figure 8

In Figure 8 a request is done via GET method but it contains two variables with
the same name ‘user_id’. Which parameter is used by the web server, depends on
the used technology and its version[?5]. To be sure that all the evidence is saved
in a proper way, logging system must save the same value as is used by the
system (Appendix 3, p. 11.5). If all the variables are logged, then it should be
noted, that the order of the variables is also important in the log (Appendix 3,
p.11.7). To provide more usability of the log and to provide better analyzability,
the value must always be visible in the log. If the value of a required parameter is
missing or empty, the placeholder (e.g. “null”) must be in the log (Appendix 3,
p.11.10). This helps to distinguish the parameters that were not present, were
empty or filled with 0x32 (space) characters at the time of writing the event to
the log file. If the placeholder is being used, it should be distinguished from the
values that user inserts, i.e. if user insers “null” as a value, then it must be
possible to understand if the value is from a placeholder or user-inserted value
(Appendix 3, p. 11.10.1).

POST /login.php?user id=Alice&password=Secret&user id=Bob HTTP/1.1
Host: www.service.net
Connection: keep-alive

Content-Length: 35

user id=Johné&user id=James

Figure 9

In Figure 9 a request is done via POST method, but the variable ‘user_id’ is set

twice in both GET and POST requests. If a service does not distinguish POST and

35

GET (e.g. uses $ REQUEST[‘user_id’] in PHP or request.getParameter(‘user_id’) in
Java) then GET variables could be used instead of POST and vice et versa. If the
default priority is set, then POST overrides GET variables, which means that in
this case ‘user_id’(s) from the GET request are written to the log file but the POST
variable will be used by the service. In cases, where POST is not logged, the real

username who tried to authenticate will not be logged.

To avoid such cases, POST request body parameters should be also logged
wherever needed (Appendix 3, p. 11.6). In case the values exceeds a reasonable
length (e.g. 256 bytes), only a hash value of the payload and the payload length in
bytes must be written to the log file. The exact payload can be saved to a
separate file (e.g. in base64 encoded format) with the hash of the payload, date
and the unique identifier of the event for detailed analysis (Appendix 3, p. 20).
This gives the possibility to link the exact posted value to the user request in the

request log.

If GPC3is used, then Cookie values can interfere as well: if a cookie parameter
‘user_id’ is set, then Cookies will be used, leaving no traces of their values.
However, saving all the cookies with all the requests might not be reasonable, so
developers should keep in mind that such possibility exists and log the correct
‘user_id’ that would be used by the service itself to the authentication log event

(Appendix 3, p. 11.5).

To detect such incidents where a malicious user tries to send multiple ‘user_id’
values, the service should write an event with all the relevant data (including

cookie values) to the security log for later analysis.

Some logging systems have limited the maximum event length. While this might
be a good idea to save space and have some boundaries for the event, it might
create a situation where some information will not be logged at all. For example,

Syslog default message size is by default 8192 bytes, PHP function

3 GPC - GET-POST-Cookie priority in variable ordering
36

trigger_error()l27] limits the message size to 1024 bytes and older versions of IIS
logged only 4097 bytes of the GET request(33l. This might result in a situation
where a request given in Figure 10 would log only the first part of the request
and the relevant part (in this case - ‘user._id’) will not fit in to the log event.

GET /login.php?dummy=<4097 x A>suser id=Bob HITP/1.1
Host: www.service.int

Connection: keep-alive

Figure 10

Such scenario can be prevented with the mitigation mentioned in the previous
example (Appendix 3, p. 20), but the length issue remains: if an attacker would
generate 4096 variables (e.g. ‘dummy_1’"- dummy_4096°) with the value ‘A’, then
logging large payloads to a separate file would not mitigate the attack. To
prevent such situations, all default log message limits must be extended to be
longer then a possible attacker expects (Appendix 3, p. 19). To detect such
attacks or to extend the maximum limit, length measuring of the request must be

done (Appendix 3, p.19.1).

Also there is a possibility to use separate files for used variables and raw
variables (Appendix 3, p. 2). For example: a system could include a request log
that logs only these parameters and values that are required by the system to
work (and are actually used by the service), all other parameters (or the full
request with generated attributes) will be logged to a so-called raw request log

file for investigation purposes.

There are other ways to evade logging of malicious attacks against an application
user, for example: there is a possibility to use XSS attacks against victims via URL
anchors. An example is given in Figure 11.

http://www.service.net/xss.php?inject=<script>eval (location.hash.s
lice (1)) ;</script>#document.write ('<img

src=http://hack.er/img.jpg'+document.cookie+'>")

Figure 11

Since the anchors are executed on the client side to refer to an object or a place
on the loaded page, then it is not forwarded to the server (thus they will not be

37

shown in the log). So unfortunately there is nothing that can be done on the
server side from logging perspective to mitigate this issue. This kind of attack
vector must be taken into account from the system administration perspective -
Content-Security Policy can be implemented to mitigate this kind of attack. From
logging perspective, Content-security policy reporting(32] must be in place to

detect such XSS attacks (Chrome 16+, Safari 6+, Firefox 4+, IE 10).

5.5.2 Attacks against logging

There are three types of attacks against logging: attacking the log files, attacking
the log viewer and attacking other systems through the logging systems. The
goal of the attack is to hide malicious activities in the log files or generate new

events to misguide the analyst who looks for such events.

One of the attack vectors is inserting a new-line symbol to the log: if an attacker
knows the log structure, it is easy to inject new events to the log file. Example log

file structure is given in figure 12.

2013-04-03 12:43:32 Login for user Alice succeeded.
2013-04-03 12:43:32 Login for user Bob failed.
Figure 12

If the username and event is written directly to the log file, then Eve can enter
the value “Eve succeeded.\n2012-04-02 10:12:53 Login for wuser Bob”
as her username. This would result in an entry marked in Figure 13, leaving the
log analyst wondering, how Eve managed to log in to the service without the

proper privileges.

2013-04-03 12:43:32 Login for user Alice succeeded.

2013-04-03 12:43:36 Login for user Bob failed.

2013-04-03 12:44:02 Login for user Eve succeeded.

2012-04-02 10:12:53 Login for user Bob failed.
Figure 13

Most of the solutions!#!l111[21] found online suggest replacing new-line character
with an alternative character such as an underscore (_), but unfortunately this is

not sufficient and gives falsified information to the log analyzers. The solution

38

proposed by the author for such log poisoning will be given later on in this

chapter.

Another attack works, if the logging viewer is a fixed-width application. Injecting
whitespaces might result in the same way as in the previous example: instead of
a new-line insertion, a proper amount of whitespaces will be inserted, which will
pad the entered information until the next line. Even if the character
replacement might work in case of the new lines, replacing spaces might not be

possible due to the application peculiarity.

Many SIEM systems and custom log viewers are developed as web-based
systems to provide multi-platform support and usability from different operating
systems. Due to not sanitized log entries, web based log viewers might be
affected by the same kind of vulnerabilities as ordinary web applications (e.g.
XSS, CSRF). Through these kinds of vulnerabilities, an attacker can gain access to
the log analysis server or attack the log analyst through a vulnerability log

analysis tool.

A malicious user could enter some bogus information just to confuse the log
analyzers or to evade logging. An attacker might use homoglyphs* as values to
confuse and miss-lead the security team or to get people to open specially
crafted links. An analysisl®! was done on the use of punycode and homoglyph
attacks to obfuscate URLs for phishing. There are several letters, which look the
same but their actual ASCII value is different (e.g. the lower-case “0” can be
represented with 0x006f, 0x03bf and 0x043e). So if the log files state, that user

“admin” logged in, there are actually 287 other combinations> that could look

like “admin” but for the computer is with a different meaning.

4+ Homoglyph - one of two or more graphemes, characters, or glyphs with shapes

that either appear identical or cannot be differentiated by quick visual

inspection. Two characters look alike but are with different ASCII codes.

5 Symbols: a - 0x0061, 0x0430, 0xff41; d - 0x0064, 0x0501, 0x217e, 0xff44; m -

0x006d, 0x217f, 0xff4d; i - 0x0069, 0x0456, 0x2170, 0xff49; n - 0x6e, Oxff4e.
Calculation: 3x4x3x4x2-1=287

39

Another possibility to evade logging and miss-lead the analyst is to use right-to-
left overridel’l. The non-printable sequence of symbols is meant to aid languages
that must be read from right to left (e.g. Persian, Arabic, Syrian and Hebrew).
This functionality has been used in the cyber criminal world for e-mail
attacks(!2l. If the non-printable symbols that execute the over-ride (0Oxe2 0x80
Oxae) are entered, then starting from that point all the following text will be
printed in a reversed mode. Since the characters that activate this are “non-
printable” and cannot be seen in the web-based log viewer, it is hard to
determine what really happened. Le. if a user would log in with a username
“nimda” with the surrounding characters, then html-based log viewers might

show that there were some login events with the user “admin”.

There are other problems with logging and non-printable symbols!ll. When
looking at the common command line tools (e.g. cat, more, less, tail),
administrator cannot be safe from various attacks. If Eve sends the backspace
code (0x08) with the request, she can hide events from sight. A sample request is
given in Figure 14. If the last ‘user_id’ value that is being sent will be used by the
system (in this example - ‘user_id=Bob’), the log entry will be shown in the
terminal as given in Figure 15.

GET /login.Jjsp?user id=Alice&user id=Bob&<08><08><08><08><08><08>
<08><08><08><08><08><08>password=Secret HTTP/1.1
Host: www.service.net

Connection: keep-alive

Figure 14

192.168.1.13 - - [09/Nov/2014:22:04:12 +0200] "GET
/login.jsp?user id=Alices&password=Secret HTTP/1.1" 200 1887

Figure 15

The events are actually written down to the file in the right way. Due to the non-
printable symbols, the programs mentioned earlier cannot show the log events
properly. If an administrator would grep the log event, he would get the
response given in Figure 16. Grep can find the line by the pattern ‘Bob’, but
unfortunately was not able to display the event properly, thus still hiding Bob

from the events.
40

$ grep Bob localhost access 10g.2014-11-09.txt
192.168.1.13 - - [09/Nov/2014:22:16:24 +0200] "GET
/login.jsp?user id=Alice&a=b&password=Secret HTTP/1.1" 200 1887

Figure 16

The escape code usage is not limited to the current line. This is due to many
computer terminals and terminal emulators (e.g. vt100 and xterm-compatible

terminals) supporting color and cursor control through a system of escape codes.

Some simpler attacks include color changes: if Eve would want to change the
background- and foreground colors of the terminal, she just has to send the right
CSI byte sequence (\e[<3n>;<4n>m, where n defines the color for foreground
and background respectively) as brought out in Figure 17.

GET /login.Jjsp?<lb>[33;41lma=b&user id=Bob&password=Secret HTTP/1.1
Host: www.service.int

Connection: keep-alive

Figure 17

The example given in Figure 17 will turn the text color to yellow and background

to red staring from the first parameter.

Playing with colors is not the only trick that can be done with escape sequences.
An attacker can also move the cursor to another location inside the terminal,
which would result with overwriting the previous log entries on the screen. The
escape code ‘s’ saves the cursor position; ‘u’ restores the cursor position. For
example, the request given in Figure 18 would be visible in the vulnerable
terminal as given in Figure 19. The text in Figure 18 that is marked with red will

not be visible in the terminal.

GET

/index.html?<lb>[sa=b&user id=Bob&password=Secret&<lb>[u;some tota
1lly bogus_information HTTP/1.1

Host: www.service.int

Connection: keep-alive

Figure 18

41

192.168.1.13 - - [10/Nov/2014:00:03:34 +0200] "GET
/index.html?some totally bogus information HTTP/1.1" 200 1887

Figure 19

5.5.2.1 Miitigation against attacks

To overcome the aforementioned vulnerabilities and attack vectors against the
web- and terminal-based log analyzing tools, the log entries must be sanitized.
Replacing characters with an underscore or other dummy characters is not
sufficient: blacklisting all the possible string would require updating the blacklist
based on the currently known threats. Also - such replacement would remove
important information from the log files: log analyzers would not know that
some malicious user is trying to attack the system with crafted queries or know

which symbols were entered by an attacker.

The solution would be coding (Appendix 3, p. 13). All non-printable symbols
(0x0000...0x001f, 0x007f...0x00ff) must be saved in a safe manner in order not to
disrupt the analyzing tools but at the same time give an indication about the
exact characters entered by the user. Log file must contain only ASCII printable

symbols (Appendix 3, p.13.1).

5.6 User privacy within log file

Log files are used by different roles with different needs: developers, system
administrators, security specialists, forensic experts, business analysts and other
people with necessity might get a hold of some portions of logs to perform their
tasks. Also there is a chance that log files might get misplaced. If too much
confidential information about events is logged, it creates new problems from
the user privacy point of view. To protect the system, application and the end

users, some restrictions have to be set for the content that must be logged.

When Alice logs into a web service, she uses username and password to
authenticate herself. Although all relevant information must be logged to
reproduce the Alice’s activities, service must not log such information that might

give the log reader the ability to miss-use Alice’s account (Appendix 3, p 12).

42

For the same reason, any kind of passwords must never be logged (Appendix 3,
p. 12.1). Instead - the service must log the entered password length in bytes
(Appendix 3, p.12.1.1). Any kind of private keys and other alternative repeatable
authentication values must not be logged (Appendix 3, p.12.2). To prevent
session hijacking, real session ID must not be logged (Appendix 3, p.12.3), instead
the service can log the hash or other irreversible derivation of the session ID

(Appendix 3, p.12.3.1).

To prevent duplicating data into logs from the databases and other data sources
in order to:

* Prevent data leakage;

* Unauthorized data access through logs;

* Save up disk space;

Provide data security
Responses from the data sources must not be logged (Appendix 3, p.12.4).
Results (including error codes) and response size (returned rows, size in bytes)

must be logged (Appendix 3, p.12.4.1).

5.7 Documentation requirements

Security and logging is not a component in a service that can be easily attached
to an existing system. They must be considered already in the design phase and
they must be taken into account every time when functionality is created or
added to the system. Even the log samples must be introduced with the use cases
at the end of the software analysis phase (Appendix 3, p. 22, p. 23) to guarantee
proper logging and to avoid situations where logging is not done or is done

improperly.

[t is common, that developers plan to implement logging in the final phase of the
development, after the functionality has already been developed. Since budget
and deadlines pressure the scope of the project, there is a possibility that the
final phase where logging should have been implemented will not be executed.
To prevent such situations, logging and other security measures must be

implemented in parallel with the functionality. Every time a new functionality is

43

introduced (and verified by the client), logging of the functionality must be also

delivered and verified (Appendix 3, p. 24).

Documentation of logs including descriptions for the separate log files and
events they contain, fields and constants used in the log files and other relevant
data must be included in the service documentation and kept up to date based on
developed logging functionality not the initial requirement documents
(Appendix 3, p. 23). This will guarantee the documents being up to date, not

based on the initial task that might not be opportune.

44

Conclusion

Logging is an important part of the information system. By authors knowledge
no thorough study was done prior to this thesis on the log requirements and
logging content. This thesis covered the first two steps of the log lifecycle, giving
additional input for the requirements and defining the actual data that must be
logged in such cases. The thesis covered the log content requirements for a log
event and analysed where these requirements evolved. The thesis brought out
the most common mistakes done in logging implementations and offered

solutions to eliminate them.

The outcome of this thesis is a separate detailed requirement document for
logging in English and Estonian language (Appendixes 3 and 4 respectively) that
can be applied as a part of non-functional requirements in the development
process. Although the study has been done based on a governmental institution,

the document can be applied in both public and private sector developments.

The outcome of this thesis has been applied in the administrative field of The
Ministry of Interior and has proven to be a valid, understandable and applicable
set of requirements for developments. The requirement document has been
added to the non-functional requirements of several software development

procurements.
Author of this thesis thanks his supervisors Mait Peekma and Toomas Lepik and

Jaan Priisalu, Andres Kiitt and Renee Trisberg for their contribution and input to

this research.

45

6 References

1.

ASClITable homepage - ASCII Table and Description [WWW]
http://www.asciitable.com (11.11.2014)

Bowditch, Nathaniel. (1966). "U.S. Hydrographic Office". American
Practical Navigator: an Epitome of Navigation. Washington, DC: U.S.
Government Printing Office. p. 31.

Bundesampt fiir Sicherheit in der Informationstechnik - IT-Grundschutz
[WWW]
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/itgrundschutz_no
de.html (11.11.2014)

CERT: Carnegie Mellon University, Software Engineering Institute -
IDS03-J. Do not log unsanitized user input [WWW]
https://www.securecoding.cert.org/confluence/display/java/IDS03-
J.+Do+not+log+unsanitized+user+input (11.11.2014)

Crenshaw, Adrian - Use of Punycode and Homoglyph Attacks to Obfuscate
URLs for Phishing [WWW]
http://www.irongeek.com/i.php?page=security/out-of-character-use-of-
punycode-and-homoglyph-attacks-to-obfuscate-urls-for-phishing
(11.11.2014)

Federal Aviation Administration - Final Rule [WWW]
http://www.faa.gov/regulations_policies/rulemaking/recently_published
/media/23532.D0C (11.11.2014)

FileFormat homepage - Unicode Character 'RIGHT-TO-LEFT OVERRIDE'
[WWW] http://www.fileformat.info/info/unicode/char/202e/index.htm
(11.11.2014)

Information System Authority - ISKE catalogues v. 7.00 [WWW]
http://www.ria.ee/public/ISKE/ISKE_kataloogid /ISKE_kataloogid_7.pdf
(11.11.2014)

Information System Authority - ISKE Implementation Guide [WWW]
https://www.ria.ee/public/ISKE/ISKE_kataloogid /ISKE_rakendusjuhend
_7.pdf (11.11.2014)

46

10. Information System Authority — Three-level IT baseline security system
ISKE [WWW] https://www.ria.ee/iske-introduction/ (11.11.2014)

11.John Melton's Weblog - Preventing Log Forging in Java [WWW]
http://www.jtmelton.com/2010/09/21/preventing-log-forging-in-java/
(11.11.2014)

12. Krebs on Security - ‘Right-to-Left Override’ Aids Email Attacks [WWW]
http://krebsonsecurity.com/2011/09/right-to-left-override-aids-email-
attacks/ (11.11.2014)

13. Proofprint homepage - Proofpoint Uncovers Internet of Things (IoT)
Cyberattack [WWW] http://www.proofpoint.com./about-us/press-
releases/01162014.php (11.11.2014)

14. Rainers Blog - On the (un)reliability of plain tcp syslog [WWW]
http://blog.gerhards.net/2008/04 /on-unreliability-of-plain-tcp-
syslog.html (11.11.2014)

15. Riigi Teataja - Andmete, jareleparimiste, logifailide ja taotluste sailitamise,
Tehnilise Jarelevalve Ametile lileandmise ning kustutamise ja havitamise
kord [WWW] https://www.riigiteataja.ee/akt/13100712 (11.11.2014)

16. Riigi Teataja - Arvutite ja kohtvorkude kaitse nouded [WWW]
https://www.riigiteataja.ee/akt/12905091 (11.11.2014)

17. Riigi Teataja - Infosiisteemide andmevahetuskiht [WWW]
https://www.riigiteataja.ee/akt/119012011015 (11.11.2014)

18. Riigi Teataja - Infosiisteemide turvameetmete siisteemi kehtestamine
[WWW] https://www.riigiteataja.ee/akt/791875 (11.11.2014)

19. Riigi Teataja - Isikuandmete kaitse seadus [WWW]
https://www.riigiteataja.ee/akt/114032014031 (11.11.2014)

20. Riigi Teataja - Riigisaladuse ja salastatud valisteabe seadus [WWW]
https://www.riigiteataja.ee/akt/121062014055 (11.11.2014)

21.Riigi Teataja homepage [WWW] http://www.riigiteataja.ee (11.11.2014)

22.SANS Software Security - Log Forging [WWW] http://software-
security.sans.org/blog/2013/05/21/whatworks-in-appsec-log-forging
(11.11.2014)

23.The Internet Engineering Task Force - Forwarded HTTP Extension
[WWW] http://tools.ietf.org/html/rfc7239 (11.11.2014)

47

24.The Internet Engineering Task Force - Transmission Control Protocol
[WWW] https://tools.ietf.org/html/rfc793#section-3.1 (11.11.2014)

25. The Linux Documentation Project - Multicast explained [WWW]
http://www.tldp.org/HOWTO/Multicast-HOWTO-2.html (11.11.2014)

26. The Navy & Marine Living History Association - The Speed Log: History,
Construction and Use [WWW]
http://www.navyandmarine.org/planspatterns/speedlog.htm
(11.11.2014)

27.The Open Web Application Security Project - HTTP Parameter Pollution
[WWW]
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0
8.pdf (11.11.2014)

28. The PHP Group - Description of core php.ini directives [WWW]
http://php.net/manual/en/ini.core.php#ini.variables-order(11.11.2014)

29. The PHP Group - trigger_error
[WWW]http://php.net/manual/en/function.trigger-error.php
(11.11.2014)

30.U.S. Navy Museum - Matthew Fontaine Maury (1806-1873) [WWW]
http://www.history.navy.mil/branches/teach/ends/maury.htm
(11.11.2014)

31. University of Cambridge, Computer Laboratory - A summary of the
international standard date and time notation [WWW]
http://www.cl.cam.ac.uk/~mgk25 /iso-time.html (11.11.2014)

32. University of Miami - Privacy/Data Protection Project [WWW]
http://privacy.med.miami.edu/glossary/xd_confidentiality_integrity_avai
lability.htm (11.11.2014)

33. Web Application Security Consortium - Preventing Log Evasion in IIS
[WWW] http://www.webappsec.org/projects/articles/082905.shtml
(11.11.2014)

34. World Wide Web Consortium - Content Security Policy: report uri
[WWW] http://www.w3.org/TR/CSP/#report-uri (11.11.2014)

48

35. Souppaya, Murugiah; Kent, Karen - Guide to Computer Security Log
Management [WWW!] http://csrc.nist.gov/publications/nistpubs/800-
92/SP800-92.pdf (23.12.2014)

36.Vaarandi, Risto - Tools and Techniques for Event Log Analysis [WWW]
http://kodu.neti.ee/~risto/publications/thesis.pdf (23.12.2014)

49

Appendix 1 — Acronyms

ASCII - American Standard Code for Information Interchange
BSI - Bundesamt fiir Sichereheit in der Informationstechnik
CONNECT - CONNECT Request method for HTTP

CRLF - Carriage Return + Line Feed

CSI - Control Sequence Introducer

CSRF - Cross-Site Request Forgery

DNS - Domain Name System

EGPCS - Environment Get Post Cookie Server

FTP - File Transfer Protocol

GET - GET Request method for HTTP

GPC - Get Post Cookie

HTTP - Hypertext Transfer Protocol

ICMP - Internet Control Message Protocol

IDS - Intrusion Detection System

IIS - Internet Information Services

IP Address - Internet Protocol Address

IPv4 - Internet Protocol version 4

IPv6 - Internet Protocol version 6

ISKE - Infosilisteemide Kolmeastmeline Etalonturbestisteem
IT - Information Technology

JSON - JavaScript Object Notation

LAN - Local Area Network

NAT - Network Address Translation

NNTP - Network News Transfer Protocol

NTP - Network Time Protocol

PC - Personal Computer

PHP - Hypertext Preprocessor

POST - POST Request method for HTTP

SIEM - Security Information and Event Management

SMTP - Simple Mail Transfer Protocol

50

URL - Uniform Resource Locator

UTC - Universal Time Coordinated

VT100 - Video Terminal Emulator

WORM - Write-Once, Read-Multiple

XSS - Cross-Site Scripting

XTERM - Terminal emulator for the X-Window System

51

Appendix 2 — Log samples

To give a better overview of the fields in the log event, the events will be represented in a form of a table. The field separator in the log
file must be excluded from the field values.

Session log example

DateTime UniquelD Action IPAddress SessionID Method Result Payload

2014-11-25T18:21:49.000Z | node-1_48127 | LOGIN 192.168.1.13 | 0fd512414 | IDCard SUCCESS | {"userID":"Alice",
"password":13,
"userAgent":"Mozilla\/4.0
(com%09°patible; MSIE 9)"}

2014-11-25T18:22:17.000Z | node-1_65353 | LOGOUT | 192.168.1.13 | 0fd512414 | Button_1 | SUCCESS | {"userAgent":"Mozilla\/4.0
(compatible%2509’; MSIE 9)"}

2014-11-25T18:22:38.000Z | node-1_78872 | TIMEOUT | Null 0fd512414 | Null SUCCESS | {"userAgent":"Mozilla\/4.0
(compatible; MSIE 9)"}

Request log example

DateTime

UniquelD

Action

IPAddress

Username

SessionID

Result

Payload

2014-11-25T19:19:50.000Z

node-1_4303

REQUEST

192.168.1.13

Alice

0fd512414

SUCCESS

{"pagelD":"users.search.new",
"name":"Bob",

"results":4,
"userAgent":"Mozilla\/4.0
(compatible; MSIE 9)"}

2014-11-25T19:19:50.000Z

node-1_4503

REQUEST

192.168.1.13

Alice

0fd512414

SUCCESS

{"pagelD":"users.profile.view",
"id":232,
"userAgent":"Mozilla\/4.0
(compatible; MSIE 9)"}

2014-11-25T19:19:52.000Z

node-1_4574

REQUEST

192.168.1.13

Alice

0fd512414

FAILURE

{"pagelD":"users.profile.edit",
"id":232,
"userAgent":"Mozilla\/4.0
(compatible; MSIE 9)"}

53

Appendix 3 - Log requirements (English)

Basic Guidelines for Logging

1. Standard component must be used for logging (e.g. log4j in case Java).

2. Events should be divided into separate log files as follows:

2.1.

2.2,

2.3.

2.4.

2.5.

Session Log - information about user authentication, authorization
procedures including login to an application, application module or a
part of an application with elevated security level, logout, session
timeout and session invalidation and the respective outcome (Success,
Attempt, Failure);
Request Log - Information about the user activities and requests,
including request type, session parameters (to correlate session logs
with request logs) and input parameters given by the user (including
information about external resource usage);
Debug Log - technical details for debugging purposes. In production
environments debug logging should be turned of by default;
Security Log - pre-defined security-related events to monitor (IP change
within a session, prohibited username usage attempts, faulty
authentications etc);
Error Logs - Information about various errors, that must be divided:
2.5.1. Technical Error Log - technical error messages that originate
from the system behaviour and unhandled user exceptions
(problems with interfaces and connections to third party
applications, problems with background jobs etc). Log can countain
full error messages, stack traces and other error-related information;
2.5.2. User Error Log - handled errors that show an error message to
the user. The errors are related with the service functionality and are
a result of a user activity (e.g. an attempt to open a file without
proper privileges, make a large payment without the sufficient funds

etc).

3. Logging must be optimized. Duplicated information in the logs must be

avoided (if not required otherwise).

10.

11.

If one event creates entries to different log files, the log entris have to be
correlated via a common field in both of those entries. The field must not be a
timestamp, but it can be a unique event ID.

All systems that log have to synchronize their time with a central NTP server
in order to provide the correctness in event timing and ordering.

All logs must be atleast file based; logs must be usable without the
application and its components (e.g. its database). If the service requires that
log events must be in the database, then it must be additionally to the file-
based logs.

Logs files must be in a plain-text format (in ASCII printable symbols).

Logs must be extractable from the production system in a way that the
analyzability of the log files would remain.

Logging should be based on functionality, not module or application
component. Le. all authentication requests should be in one session log file
and user requests in a request log, not module A request and session on one
module log and module B in the other module log.

Successful logging is mandatory - if it is not possible to write a log, the
request must not be served and services should be closed (if needed).

All user activities must be logged.

11.1. All authentication attempts (regardless of the outcome) must be

logged, including attempts with empty or missing parameters.

11.2. All administrative activities must be logged.

11.3. Administrator must not modify the logs, delete the logs or stop
logging.

11.4. Both successful and failed activities must be logged.

11.5. Parameters that were used by the application must be logged.

11.6. Parameters and values that were given in the HTTP body (having

the content-type as www-url-encoded) must be logged;

11.7. The order of parameters in the log file must be the same as it was
in the request sent to the server or the service;

11.8. Requests with cached responses must be logged;

11.9. When using SSL/TLS, the version and used cipher must be logged;

55

12.

11.10. If the value of the parameter is not sent or is left empty, it must be
marked as a placeholder (e.g. “null”).

11.10.1. If a placeholder is used, it must be distinguishable from the
user-inserted value (i.e. logs should note if “null” was inserted by the
user or a placeholder is used).

System must never log:
12.1. Passwords in plain-text format;
12.1.1. Password length can be logged (in bytes);
12.2. Private keys;
12.3. Value of the session ID (e.g. session tokens or cookies);
12.3.1. Hash or other irreversible derivate of the session ID can be logged;
12.4. Full-text responses from the database.
12.4.1. Fact about the response, response size (returned rows) or an error

message can be logged.

13. All input-data given by the user must be coded before written to the log (i.e.

14.

all user input must be reproduced by the logs except data written in p. 12), to

exclude log injections and attacks related to them;

13.1. All non-printable symbols (0x00..0x1f, 0x7f.0xff) and field
separator characters in the input values must be coded. E.g. “\0” -> %00,
“\n” -> %10, "%" -> %25 etc.

Logging means and information about the logs must be protected against

unauthorized access, modification and destruction.

Structure of the Log File

15. All field name descriptions, parameter names and other information in the

16.

log must be in English.

Reccomended format:

16.1. Fieldss must be tab-separated;

16.2. One event should be on one line. In case of multiline log entry JSON
format should be used for input parameters if possible;

16.3. JSON should be used for only such cases when the amount of input

parameters may vary or one parameter can have multiple parameters.

56

Fields that always exist (event initiator, timestamp, event type etc) must
be in regular format.
17. Multiline log entries should be clearly distinguishable from each other.

17.1. Multiline log entries must be kept in a separate log file;

17.2. Multiline log events must be distinguishable by a pattern or a
special set of characters (e.g. the event always starts with a timestamp
format and ends with an empty row or a predefined set of character
sequence that is never printed into the log message, e.g. “------ ");

18. User input parameters must be distinguishable from the parameters given by
the application itself;
19. Maximum length of the log event must be at least 10kB;

19.1. The length of the log event must be defined in the beginning of the

event to detect possible attacks related to the log event length;
20.1If possible, all input parameters should be analyzed. All values over 256B
should be written to a separate log file with a timestamp, unique event ID and
hash of the value. The request log should contain the value length and hash

for the value;

Minimum Requirements for the Log Event
21.Logged event must contein enough information to answer the questions who,
what, where, from where and when and present the result of the request.

21.1. WHO - initiator of the request:

21.1.1. Must be unique atleast within the service;

21.1.2. Must be connectible with one physical responsible person;

21.1.3. Automatic processes must be clearly recognizable;

21.1.4. All automated process and activities must have one responsible
person set.

21.2. WHAT - the type or class or the activity or a request
(authorization, authentication, operation, usage etc) and details of the
activity:

21.2.1. Object or a component that was used;
21.2.2. Method and input parameters;

21.2.3.Request parameters, file names, request objects etc.

57

21.3. WHERE - the identificator of the system, its node or instance
name to define in which application and in which instance the request
was processed.

21.4. WHENCE - unique identificator of the device where the request
originated (name, IP address, device certificate etc);

21.4.1. Device ID mush provide enough data to uniquely define the origin
of the request;

21.4.2.In case of an IP aadress, it should be the endpoints publicly visible
IP address.

21.5. WHEN - timestamp that defines the exact date and time of the
event;
21.5.1.Server time must be accurate, server time must be synchronized

with a centralized time server (NTP);

21.5.2. Timestamp must be atleast with the accuaracy of a second;

21.5.3. Timestamp must be in the UTC timezone;

21.5.4. Timestamp must be in a format of “from larger to smaller” and
should be machine readable, e.g. ISO8601 format (e.g. YYYY-MM-
DDTHH:mm:ss.SSSZ).

21.6. RESULT - the outcome and output of the request or activity
21.6.1. Atleast the response code, outcome type (success, attempt, failure,

error) and the response size (in bytes and returned results) must be
logged;
22.Log peculiarity (what is logged, how the log events are divided, log examples
etc) must be defined in the service documentation.
23.Documentation for logging and log event examples must be created with the
use case scenarios during the development process.
24.During development process, correct logging and its documentation must be

developed together with the functionality of the application.

58

Appendix 4 - Log requirements (Estonian)

Logimise pohimotted
1. Logimiseks tuleb kasutada standardseid komponente (nt java's log4y).

2. Logikirjed jaotatakse erinevatesse failidesse jargnevalt:

2.1. Seansilogi - info kasutajate tuvastamise, rakendusse voi korgema
turvalisusega moodulisse/rakenduse osasse sisenemiste, valjumiste,
seansi aegumise jmt kohta (Success, Attempt, Failure);

2.2. Tegevuslogi - kogu informatsioon kasutajate tegevuste kohta koos
tegevuse tiilibi, seansi parameetrite (korreleerimaks seansi- ja
tegevuslogi) ja kasutaja poolt esitatud sisendparameetritega (sh. valiste
ressursside kasutamise kohta);

2.3. Silumislogi - arendajate jaoks vajalik debug info. Toodangu keskkonnas
peaks debug olema vaikimisi vilja liilitatud;

2.4. Turvalogi - turvalisusega seotud stindmused, mida jalgida (IP aadressi
muutumine seansi kdigus, keelatud kasutajanimede kasutamised, vigased
autentimised jms.);

2.5. Vealogi - erinevate veaolukordade info, mida voimalusel jaotada kaheks:
2.5.1. Tehniline vealogi - siisteemsed veateated ja kasutaja tegevusest

tulenenud kasitlemata vead (probleemid liidestega, silisteemsete
taustatoode veateated jms.). Logi sisu voib sisaldada taispikkuses
veateateid, trace sisu ja mud veaga seotud informatsiooni;

2.5.2. Kasutajate vealogi - kasutajate tegevuse tottu esile kutsutud
funktsionaalsuse kasitletud vead, mille peale kuvatakse kasutajatele
veateade (nt. katse faili avada ilma vastavat oigust omamata,
suurema tilekande sooritamine kui kontojaak lubaks jne.).

Logimine peab olema optimeeritud. Informatsiooni dubleerimist logides

tuleb valtida kui ei ole ndutud teisiti.

Kui iihe pdringu tottu tekib kirjeid mitmesse logisse, peab olema vdimalik

neid kirjeid tihise valja abil siduda. Selleks ei sobi kellaaeg, aga sobib naiteks

unikaalne paringu id.

59

10.

11.

Siindmuste ajalise korrektsuse tagamiseks peab logivatel siisteemidel olema
oige kuupdev ja kellaaeg. Logivate siisteemide kellasid tuleb ajaserveriga
stinkroniseerida.

Koik logid peavad olema viahemalt failipohised, st logifailid peavad olema
kasutatavad ilma rakenduse ja selle komponentideta (nt andmebaas). Kui
teenuse juures on ndutav ka andmebaasis hoitav tegevuselogi, on see lisaks
failipohisele logile.

Logifailid peavad olema loetavad tekstilisel kujul (ASCII prinditavad
stimbolid).

Logisid peab olema vdimalik toodangusiisteemidest katte saada kujul, et neid
oleks vdimalik analiitisida (sailitaks nii masintd6tlemise kui inimloetavuse).
Voimalusel logida infoslisteemi funktsionaalsuse-, mitte moodulipdhiselt. Nt.
autentimisparingud {iihte, tegevuste logi teise faili, mitte iga rakenduse
mooduli jaoks eraldi logifail, kuhu kirjutatakse kdik sellega seonduv.
Logimise dnnestumine on kohustuslik - kui siindmuse kohta ei logi kirjutada,
tuleb toiming jatta teostamata ning vajadusel teenus sulgeda.

Koik kasutajate tegevused peavad olema logitud.

11.1. Koik autentimise katsed (hoolimata tulemusest) peavad olema

logitud, sh. katsed tiihja(de) voi puuduva(te) parameetritega.

11.2. Administraatori tegevusest peab logisse jadma jalg.

11.3. Administraator ei tohi logisid muuta, logisid kustutada ega
logimist peatada.

11.4. Logida tuleb nii 6nnestunud kui ebadnnestunud tegevused.

11.5. Logida tuleb vihemalt need parameetrid, mida rakendus kasutas.

11.6. Parameetrid ja nende vaartused, mis edastatakse HTTP kehaga,

kasutades content-type’'na www-url-encoded vaartust tuleb logida;

11.7. Logides tuleb siilitada sama parameetrite jarjekord, millisena nad
edastati serverile voi teenusele;

11.8. Logida tuleb paringuid, mille vastus on puhverdatud;

11.9. SSL/TLS kasutamisel tuleb logida ka SSL versioon ja kasutatud
sihver (cipher);

11.10. Kui parameetri vaartus on tithi, tuleb see logis markida

asendusvaartusega (nt. “null”).

60

11.10.1. Kui kasutatakse asendusvaartust, peab see olema eristatav
kasutaja poolt sisestatud vaartusest (nt. Kui kasutaja sisestab
vaartuseks “null”, peab logisiindmusest olema jareldatav, kas tegu on
asenduvaartuse voi kasutaja poolt sisestatud vaartusega).

12. Mitte kunagi ei logita:

12.1. Kasutajate salasonu tekstilisel kujul;
12.1.1. Logida voib parooli pikkust (baitides).
12.2. Privaatvotmeid;
12.3. Seansivotme vaartust (nt seansi tokeneid voi -kiipsiseid);

12.3.1. Logida voib seansivotmest tuletatud rdsi voi muu poéoérdumatu
tuletise.

12.4. Andmebaasidest tagastatud paringute tdisvastuseid tekstilisel
kujul;

12.4.1. Logida voib andmete tagastamise fakti ja/voi vastuse pikkust, vea
korral veateadet.

13. Kasutajate sisend-andmed tuleb enne logifaili kirjutamist kodeerida (st kogu
kasutaja sisendit peab olema voimalik taastada, va 2.12 toodud andmed),
valistamaks logisiiste ja sellega seonduvaid riindeid.

13.1. Logitavas sisendinformatsioonis tuleb kodeerida koéik non-
printable simbolid (0x00..0x1f, 0x7f..0xff) ja valjaeraldajad. Naiteks \0 ->

%00 ja \n -> %10 ja "%" -> %25 jne.
14. Logimisvahendid ja informatsioon logi kohta peab olema kaitstud volitamata

muudatuste, hdvitamise ja juurdepadsu eest.

Logifaili struktuur
15. Koik valjanimede kirjeldused, parameetrite nimetused ja muu informatsioon
peab olema véimalusel inglise keeles.
16. Soovituslik formaat:
16.1. Viljad on tabeldus-eraldusega (tab-separated);
16.2. Uks siindmus iihel real, mitmerealise logi asemel kasutada
voimalusel JSON formaati stindmuse sisendparameetrite tarbeks;
16.3. JSON’i kasutades tuleks seda teha vaid selliste sisendparameetrite

korral, millel on mitu vaartust voi mille olemasolu voib varieeruda.

61

Viljad, mis on alati olemas (siindmuse algataja, kuupaev, stindmuse tiitip

jmt), peaks olema tavaformaadis.

17. Mitmerealiste logikirjete (multiline log entry) puhul peab olema vodimalik

18.

19.

20.

selgelt eristada slndmusi teine-teisest (nt. kasutada sisendandmete

salvestamiseks JSON formaati).

17.1. Mitmerealised logikirjed tuleb salvestada eraldi faili;

17.2. Mitmerealised logikirjed peavad olema iiksteisest eraldatavad
mustri voi erisiimboli alusel (nt. sindmus algab alati diges formaadis,
16ppeb alati tiihja rea voi kindla siimbolite jadaga, mida logikirjas ei
esine, nt. “------ ");

Sisendandmed peavad olema eristatavad rakenduselt endalt péarinevatest

andmetest.

Logirea maksimaalne lubatud pikkus peab olema viahemalt 10kB.

19.1. Logirea kogupikkus tuleb markida logirea alguses, tuvastamaks
voimalikke logirea maksimaalse pikkusega seotud riindeid;

Voimalusel tuleb logi kirjutades analiilisida sisendparameetreid, lile 256B

parameetrite puhul tuleks parameetrid kirjutada eraldi faili (koos kellaaja,

unikaalse paringu ID ning rasi vaartusega), logisse peab maha markima

parameetri pikkuse ning rasi.

Miinimumnoéuded logikirjele

21.

Logikirjes (siindmuses) peab sisalduma piisavalt informatsiooni, et vastata
kiisimustele kes, mida, kus, kust, millal, kuidas ja tulemus.
21.1. KES - tegevuse teostaja:
21.1.1. Peab olema unikaalne vahemalt teenuse piires;
21.1.2. Peab olema seostatav fiiisilise isikuga kui vahegi voimalik;
21.1.3. Automaatprotsessid peavad olema selgelt tuvastatavad,;
21.1.4. Automatiseeritud tegevuste kasutajatel peab olema isikuline
vastutaja.
21.2. MIDA - tegevuse/siindmuse liik v6i klass (kasutaja tuvastamine,
administreerimine, operatsioon, kasutus) ning tegevuse detailid:
21.2.1. Objekt v6i komponent, mida kasutati;
21.2.2. Meetod ja sisend-andmed;

62

21.2.3. Tegevuse andmed, failide nimed, paringu objektid.

21.3. KUS - infostlisteemi identifikaator, mille abil on voimalik kindlaks
teha tapne rakendus ja selle instants, mille suhtes tegevus teostati.

21.4. KUST - seadme unikaalne identifikaator (nimi, [P aadress, seadme
sertifikaat), kust tegevus toime pandi:

21.4.1.Identifikaatori abil peab olema vdimalik tiheselt tuvastada seade,
kust stindmus toime pandi;

21.4.2.1P aadressi puhul peab olema tuvastatav kliendi l6pp-seadme
avalik IP aadress.

21.5. MILLAL - ajamargistus, mis sisaldab tapset siindmuse kuupdeva
ning kellaaega;

21.5.1.Serverite kellaaeg peab olema oige, serverite kellaajad peavad
olema omavahel siinkroniseeritud (NTP);

21.5.2. Aeg peab olema vahemalt sekundi tdpsusega;

21.5.3. Aeg peab olema UTC ajavéondis;

21.5.4. Ajaformaat peab olema formaadis "suuremast vdiksemaks" ning
masinloetaval kujul, nt [SO8601 formaadis (nt YYYY-MM-
DDTHH:mm:ss.SSSZ).

21.6. TULEMUS - teostatud tegevuse valjund voi tegevuse tulemus.
21.6.1.Kui tulemust ei ole moistlik tidies mahus maha salvestada, tuleb
logisse kirjutada vastuse kood, tulemuse tiilip (success, attempt,
failure, error) ning vastuse suurus (nii baitides kui ridade arvuna);
22.Logide spetsiifika (mida logitakse, kuidas siindmused logifailidesse on
jagatud, logiridade ndited) peab olema kirjeldatud teenuse
dokumentatsioonis.
23.Rakenduse funktsionaalse kirjeldusega tuleb luuga ka logimise
dokumenatsioon ja loginaidised.
24.Koos funktsionaalsuse arendamisega tuleb paralleelselt luua ka loodava

funktsionaalsuse logimine ja selle dokumentatsioon.

63

	hallas_thesis
	hallas_thesis.2
	hallas_thesis.3

