
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Science

ITI70LT

Mai Kraft 111605IVCM

PERFORMANCE ANALYSIS OF ATTACKER PROFILING

IN QUANTITATIVE SECURITY RISK ASSESSMENT

Master thesis

Aleksandr Lenin

M.Sc

Researcher

Tallinn 2014

 2

Declaration

Hereby I declare that I am the sole author of this thesis. The work is original and has not

been submitted for any degree or diploma at any other University. I further declare that

material obtained from other sources has been duly acknowledged in the thesis.

...

(date) (signature)

 3

Annotation

We are surrounded by information systems everywhere. Today people depend on them

as never before. Due to the fact that threats and attacks on information systems have

become massive, their owners have to apply security measures to protect their property.

This is very expensive and therefore the threats need to be accurately assessed in order

to protect systems without overspending on them. Nowadays, it is hard to quantify how

difficult it would be to attack the information systems. Thus, it would be very helpful if

there existed an appropriate conceptual framework that accurately assessed system’s

security measures.

The attack tree analysis is one method attempting to solve this problem. Attack trees

provide a formal and methodical way of describing possible attack scenarios in the

considered environment. Attacks against a system are represented in a tree structure,

where the goal of the attacker is the root node and leaf nodes are different ways of

achieving the goal. Two types of refinements are commonly used: the AND- refinement

where all sub-attacks must be satisfied in order to satisfy the root goal and the OR-

refinement where any of the sub-attacks is sufficient to satisfy the goal.

This thesis studies the ApproxTree tool introduced by Jürgenson-Willemson [1] and the

ApproxTree+ tool proposed by Lenin et al.[2]. The aim of this thesis is to study the

profiling effect on the genetic algorithm performance. Firstly, the hypothesis was

validated whether profiling introduces any significant performance penalty and if the

profiling can be integrated into existing risk assessment tools. Secondly, it was observed

whether the genetic algorithm parameters that are optimal for ApproxTree are also

optimal for the ApproxTree+ approach. As the current ApproxTree+ approach has some

shortcomings, an improvement how to make this model more reliable and the

computational method faster was proposed.

 4

Annotatsioon (in Estonian)

Infosüsteemid ümbritsevad meid igalt poolt. Tänapäeva inimene on sellest sõltuv

rohkem kui kunagi varem. Seetõttu on ohud ja ründed infosüsteemidele muutunud ka

massiliseks ning infosüsteemide omanikud ja haldajad peavad rakendama

turvameetmeid, et oma vara kaitsta. Turvameetmete rakendamine on kallis ning olemaks

vähegi kuluefektiivne peab oskama hästi hinnata oma süsteemide turvalisust ja

vastupidavust ründajate tegevusele. Selleks oleks aga vaja sobivat raamistikku, mis

aitaks hinnata kui turvaline on süsteem erinevate rünnete vastu.

Ründepuu analüüs on küll küllaltki noor teadusvaldkond, kuid siiski proovib leida viise,

kuidas hinnata infosüsteemide turvalisust. Ründepuus esitatakse puukujulises struktuuris

kõige tipus ründaja põhieesmärk, mis toob talle materiaalset kasu. Ründepuu lehed

tähistavad elementaarründeid, mida enam väiksemateks rünneteks jaotada ei ole

otstarbekas. Ründepuude metoodika populariseeriti 1999 aastal Bruce Schneieri poolt

ning kuni tänaseni on aktiivne teadusuuringute objekt.

Käesolevas magistritöös uuritakse lähemalt Jürgenson-Willemsoni poolt välja töötatud

ApproxTree ja Lenin-Willemsoni ApproxTree+ mudelit. Töö eesmärgiks oli uurida,

kuidas mõjutab ründaja profiili integreerimine olemasolevatesse ründepuu

arvutamismeetoditesse geneetilise algoritmi jõudlust. Valideeritakse hüpoteesi, kas

profileerimise kasutamine suurendab geneetilise algoritmi arvutuste mahtu. Lisaks

hinnatakse, kas profileerimiseta geneetilise algoritmi jaoks valitud parameetrid on

sobilikud ka profileerimisega geneetilise algoritmi jaoks. Olemasoleval profileerimisega

geneetilisel algoritmil on mõningad puudujäägid. Töös pakutakse välja lahendus, kuidas

neid puudujääke kõrvaldada ning muuta profileerimisega geneetiline algoritm

täpsemaks.

 5

ANNOTATION .. 3
ANNOTATSIOON (IN ESTONIAN) ... 4

LIST OF TABLES ... 6
LIST OF ABBREVIATIONS AND SYMBOLS ... 7

1 INTRODUCTION ... 8
2 INTRODUCTION TO ATTACK TREE ANALYSIS ... 10

2.1 ATTACK TREES FOR MODELING SECURITY .. 10
2.2 PARALLEL ATTACK TREE MODEL .. 14
2.3 OPTIMIZATIONS USING THE GENETIC ALGORITHM .. 16
2.4 ATTACKER PROFILING IN ATTACK TREE ANALYSIS ... 17
2.5 APPROXTREE+ TOOL .. 19

3 CASE STUDY: STEAL SENSITIVE INFORMATION BY COLLECTING
NETWORK TRAFFIC OF AN ENTERPRISE ... 22

3.1 THE ATTACK TREE MODEL .. 24
3.2 ESTIMATED VALUES FOR THE ATTACK TREE LEAF NODES 30

4 ASSESSMENT OF ATTACKER PROFILING EFFICIENCY 34
4.1 PERFORMANCE ANALYSIS ... 39
4.2 IMPROVEMENT OF THE APPROXTREE+ METHOD ... 41

5 CONCLUSIONS AND FUTURE RESEARCH .. 44
REFERENCES ... 46

 6

List of Figures

FIGURE 1. ATTACK TREE REPRESENTED BY B. SCHNEIER IN [5] .. 11
FIGURE 2. ATTACK TREE TAKING INTO ACCOUNT THE DIFFICULTY AND COST OF ATTACK BY B.

SCHNEIER IN [5] .. 11
FIGURE 3. THE INTERCONNECTION OF AN IP PBX SYSTEM WITH ITS COMPONENTS DESCRIBED IN

[11] ... 23
FIGURE 4. MAIN GOAL OF THE ATTACKER: “STEAL SENSITIVE INFORMATION BY COLLECTING

NETWORK TRAFFIC OF THE ENTERPRISE” ... 24
FIGURE 5. OR-REFINEMENT “GET ACCESS TO THE NETWORK TRAFFIC” 25
FIGURE 6. AND-REFINEMENT “GET IN THE NETWORK PATH” .. 25
FIGURE 7. OR-REFINEMENT “COMPROMISE LOCAL SYSTEM” .. 26
FIGURE 8. AND-REFINEMENT “INSTALL MALWARE TO THE ENTERPRISE’S COMPUTER” 26
FIGURE 9. AND-REFINEMENT “INSTALL MALWARE TO THE IP PBX” .. 26
FIGURE 10. AND-REFINEMENT “SOCIAL ENGINEER EMPLOYEE TO COLLECT NETWORK TRAFFIC”

 .. 27
FIGURE 11. AND-REFINEMENT “BRIBE EMPLOYEE TO GET TRAFFIC” .. 27
FIGURE 12. AND-REFINEMENT “THREATEN EMPLOYEE TO GET THE TRAFFIC” 28
FIGURE 13. AND-REFINEMENT “COLLECT DATA” ... 28
FIGURE 14. AND-REFINEMENT “DECODE MEDIA TRAFFIC” ... 28
FIGURE 15. ATTACK SUITE COMPUTED BY USING THE APPROXTREE METHOD. AND-REFINEMENT

“STEAL SENSITIVE INFORMATION BY COLLECTING NETWORK TRAFFIC OF AN ENTERPRISE”
AND “COLLECT DATA” AND “DECODE MEDIA TRAFFIC” AND-REFINEMENTS 35

FIGURE 16. ATTACK SUITE COMPUTED BY USING THE APPROXTREE METHOD. AND-REFINEMENT
“STEAL SENSITIVE INFORMATION BY COLLECTING NETWORK TRAFFIC OF AN ENTERPRISE”
AND “GET ACCESS TO THE NETWORK TRAFFIC” OR-REFINEMENT 36

FIGURE 17. COMPUTED ATTACK SUITE WITH APPROXTREE METHOD OF AND-REFINEMENT “GET
IN THE NETWORK PATH” ... 36

FIGURE 18. COMPUTED ATTACK SUITE WITH THE APPROXTREE METHOD OF REFINEMENT
“COMPROMISE LOCAL SYSTEM” ... 37

FIGURE 19. COMPUTED ATTACK SUITE WITH THE APPROXTREE METHOD OF AND-REFINEMENT
“SOCIAL ENGINEER EMPLOYEE TO COLLECT NETWORK TRAFFIC” 37

FIGURE 20. COMPUTED ATTACK SUITE WITH THE APPROXTREE METHOD OF AND-REFINEMENT
“THREATEN EMPLOYEE TO GET THE TRAFFIC” .. 37

FIGURE 21. INITIAL POPULATION SIZE’S EFFECT ON THE CONVERGENCE SPEED (# OF
GENERATIONS) .. 40

FIGURE 22. MUTATION RATE’S EFFECT ON THE CONVERGENCE SPEED (# OF GENERATIONS) 40
FIGURE 23. GENERATIONS’ EFFECT ON CONVERGENCE SPEED (# OF GENERATIONS) 41
FIGURE 24 EXECUTION TIME OF ATTACK TREES WITH DIFFERENT SIZE. 42
FIGURE 25 THE ATTACK TREE BEFORE APPLYING THE ATTACKER PROFILE ON THE LEFT AND THE

ATTACK TREE AFTER APPLYING ATTACKER PROFILE ON THE RIGHT. 43

List of Tables

TABLE 1. ATTACKER PROFILING PARAMETERS ... 18
TABLE 2. PARAMETERS FOR DESCRIBING THE ATTACK TREE “STEAL SENSITIVE INFORMATION BY

COLLECTING NETWORK TRAFFIC OF THE ENTERPRISE” ELEMENTARY ATTACKS 30
TABLE 3. ATTACK TREE "STEAL SENSITIVE INFORMATION BY COLLECTING NETWORK TRAFFIC

OF AN ENTERPRISE" LEAF NODE'S ESTIMATED PARAMETERS ... 31
TABLE 4. ATTACKER PROFILES ... 33
TABLE 5. CALCULATION RESULTS OF THE APPROXTREE+ METHODS FOR ATTACKER PROFILES 1,

2, 3, 4, 5 .. 38

 7

 List of Abbreviations and Symbols

Abbreviation Description
SAT Satisfiability problem of Boolean formulas
PDAG Propositional directed acyclic graph
IP PBX IP based telephone switching system within the enterprise to route

internal and external calls
VoIP Voice over IP

Symbol Definition
T Attack tree T with AND- and OR- refinements and set of leaves

X=(X1,…, Xn) and parameter Gains

F Boolean formula that describes the attack tree T
Xi Leaf (Elementary attack) Xi of attack tree T

Expensesi Expected cost of launching the elementary attack Xi (includes
preparation costs and expected penalties)

pi Probability of succeeding when performing elementary attack Xi

Gains Reward of an attacker if the attack tree T is realized
S Attack suite S of the elementary attacks in the attack tree T
OutcomeS Outcome value of the attack suite S
PS Probability of F=true after executing the attack suite S

AND-node represented with ADTool [3]

OR-node represented with ADTool [3]

* Boolean function conjunction operator
+ Boolean function disjunction operator

 8

1 Introduction

Computer networks and systems are ubiquitous in our everyday life and are the core of

modern communication. As today people depend on information systems more than ever

before, information security has become very important. Information and information

systems have to have certain levels of confidentiality, integrity, and availability to meet

the targets of the system owners and users. The fact that computer networks around the

world are constantly probed and attacked with the purpose to violate the security

defenses and gain access to information shows that people who maintain those networks

have to find ways to protect it.

The threats and attacks against computer systems have become more widespread,

security measures more expensive, thus the risks are higher, which bring about the need

to assess the threats. Assessing the threats and quantifying the difficulty of attacking the

information systems is very difficult. An appropriate conceptual framework that

suggests most optimal security measures would be very helpful for information systems’

owners, security experts and software designers to assess security and provide a better

overview of the security threats of such complex systems. The attack tree analysis and

quantitative security assessment is a relatively young field that tries to solve this

problem.

Since 1999 when Schneier popularized the attack tree analysis concept, it has been an

active research subject in order to find ways to utilize it in real life environments. The

main issue with the attack tree models is their computational complexity and calculation

speed that limit their use in practice as the trees grow big and calculations are very time

consuming.

The attack trees provide a formal and methodical way of describing possible attack

scenarios in the considered environment. Attacks against a system are represented in a

tree structure, where the goal of the attacker is the root node and different ways of

achieving that goal are leaf nodes. Two types of refinements are used: the conjunctive

refinement where all sub-attacks must be satisfied in order to satisfy the root goal and

the disjunctive refinement where any of the sub-attacks are sufficient to satisfy the goal.

The attack tree with AND- and OR-nodes may be represented as a monotone Boolean

function. Satisfying assignments of this function represent possible attacks.

Several methods are proposed for performing quantitative security risk analysis based on

attack trees. Calculating the attack tree is time consuming and not very rational in real

life scenarios where the attack trees may have thousands of nodes. Therefore Jürgenson

 9

et al. [1] proposed a genetic algorithm for fast and approximate calculations of attack

trees. Later Lenin et al. [2] suggested to consider the attacker profile in calculations and

for more real life scenarios.

In this thesis, the performance and precision of profiling in the scope of the

ApproxTree+ tool, created by Lenin and Willemson [2] compared to the ApproxTree

tool [4] is assessed. Furthermore, it is estimated what effect the integration of profiling

has on the genetic algorithm parameters. In particular, it is attempted to determine if the

choice of optimal genetic algorithm parameters derived for ApproxTree by Jürgenson et

al. remain optimal for the ApproxTree+ approach.

The thesis is organized as follows. Chapter 1 introduces the topic of research. Chapter 2

gives an overview of the current state of the art of attack tree security modeling,

computations of parallel attack trees and optimizations of attack trees using genetic

algorithm. Chapter 3 describes the case study attack tree “Steal sensitive information by

collecting network traffic of an enterprise” in detail. Chapter 4 assesses the attacker

profiling efficiency compared to the genetic algorithm without profiling. Chapter 5

studies the genetic algorithm parameters like initial population size, genetic algorithm

termination condition and mutation rate effect on the convergence speed of the method.

An improvement how to make ApproxTree+ computations faster and more accurate is

proposed. Chapter 6 provides conclusions and proposes suggestions for future

improvements.

 10

2 Introduction to attack tree analysis

2.1 Attack trees for modeling security

Attack trees are used for analyzing computer systems security. The concept of attack

trees is not new. Before the end of the 1990s the attack trees were known as threat logic

trees. In 1991 the threat logic tree analysis was applied to information security and was

based on the fault tree analysis where the tree’s root node was the high-level potential

threat which was subdivided into the tree’s structure using AND and OR nodes. Tree

leaves that did not require further division represented the attackers actions.

 Bruce Schneier was one of the first to describe and popularize attack trees in his papers

and articles. In his article [5], he points out that the attack trees can be used for

analyzing the security of systems and subsystems and provide a way of thinking about

security. Attack trees establish the basis of understanding the process of assessing

security. He proposed to represent attacks against a system in a tree structure, with the

goal as the root node and distinct attack steps as leaf nodes.

For example, Figure 1 represents a simple attack tree the goal of which is to open the

physical safe. To reach the goal the attacker can pick the lock, learn the combination, cut

open the safe or install the safe improperly so that he can easily open it later. There are

two ways to learn the combination: to find the combination written down or to get the

combination from the safe’s owner. For getting the combination from the safe’s owner

the attacker could threaten, blackmail, bribe or eavesdrop. The key is to continue

refining the nodes to the point where elementary attacks have been reached. For refining

nodes AND and OR refinements are used. AND nodes represent different steps how the

attacker can achieve the main goal, OR nodes show alternatives for carrying on the sub-

goals.

The security of the system can be assessed and calculated when assigning a Boolean or

continuous domain to the leaf nodes and propagating them up to the tree structure in the

same way. Figure 1 contains Boolean values like “impossible” and “possible”, but

Figure 2 shows that it is possible to assign some other Boolean value or even some

continuous value like the cost of the attack. Schneier [5] also made the point that

sometimes it is important to determine the characteristics of the attacker to know which

part of the attack tree is the one to worry about.

 11

Figure 1. Attack tree represented by B. Schneier in [5]

Figure 2. Attack tree taking into account the difficulty and cost of attack by B. Schneier in [5]

 12

The concepts introduced by Schneier were formalized by Mauw and Oostdijk in [6].

They argued that formal interpretation of the attack trees is absolutely necessary to

understand how the attack trees can be manipulated during the construction and analysis

phases. Therefore they proposed formal definitions of how to compose an attack tree

from elementary attacks and nodes, the semantics of the attack tree itself and

associativity and distributivity properties of the nodes and suggested ways how to

compute the analysis outcome when attribute values are assigned to the elementary

attacks.

Mauw and Oostdijk presented the compatibility notion between the semantics and

attributes for the attack trees and introduced multiset semantics based on a semiring.

They found out that in some cases propositional interpretation of the attack trees is

inappropriate, because the law of distributivity does not apply.

Moreover, using statements that express a concept that can be true or false brings about

certain problems. For example, it is not suitable for modeling sequential semantics.

Furthermore, the bottom-up approach is valid under the assumption that all attack steps

are mutually independent which is not often the case in real-life scenarios. In reality,

attackers execute some attacks and if they fail or succeed, they use additional

information before choosing another line of action.

Buldas et al.[7] introduced the game-theoretic approach to the attack tree analysis. The

theory was based on the assumption that the attacker is thinking in rational and

economic terms. The proposed multiparameter attack tree model works with multiple

parameters and analysis attacks from the attacker’s viewpoint. The authors introduced

rational attacker’s paradigm that stated the following: rational attackers do not attack if

it is unprofitable and the attacker chooses attack vectors that are the most profitable for

him. The attacker’s decision-making process was modeled using this paradigm. Firstly,

the attacker has to have an overview of all the ways for attacking. Secondly, he/she will

make possible plans for the attack by using the same approach as Schneier proposed -

constructing an attack tree where the primary threat and sub-attacks are defined. Sub-

attacks are refined using AND and OR-refinements until atomic threats get to a level

where it does not make sense to divide them further. The attacker finds out whether any

of these is profitable by evaluating all possible plans. In order to decide whether the

attack is profitable for the attacker, the new parameter “outcome” (the difference

between the expected reward and expected expenses) was introduced. The attacker

calculates the outcome using the following parameters:

 13

- What the attacker gains in case the attack is successful (Gain)

- How much money the attacker has to spend to launch an attack (Cost)

- Success probability of the attack (p)

- Probability of getting caught if the attack was successful (q)

- Expected penalties if the attacker is caught but the attack was successful

(Penalties)

- Probability of getting caught in case the attack was not successful (q_)

- Expected penalties if the attacker is caught but the attack was not successful

(Penalties_)

The formula (1) shows how to calculate the Outcome.

Outcome = −Cost+p·(Gains−q·Penalties) − (1−p)·q− ·Penalties−. (1)

Buldas et al. stated that the system is secure against rational attackers if Outcome is less

than or equal to 0. This means that the primary threat is not profitable for attackers.

Aivo Jürgenson has studied several attack tree models in more detail and found that

those models have several shortcomings. In his thesis [4] he points out that the attack

tree model used by Buldas et al. uses the node parameter propagation from child nodes

to the parent nodes and propagation process in the OR-nodes relies on local optimum

decisions which means that the computed utility value is not always the global

maximum and the best attack suite might not be found. What’s more, the model was not

consistent with Mauw and Oostdijk attack tree foundations that stated that the equivalent

attack trees have to result in the same utility value.

Jürgenson and Willemson introduced the new attack tree model in [8] which was

consistent with Mauw and Oostdijk work [6] and gave more reliable outcome values

than model of Buldas et al. [7]. However, their outcome computation routine is very

complex and time consuming and is applicable for analyzing the attack trees containing

no more than 20 leaf nodes. This means that it cannot be used for analyzing the security

of real life systems, because the attack trees there have thousands of leaves. The authors

addressed the need for optimizations. Subsequently, in 2010 Jürgenson et al. [4]

proposed a way to optimize and approximate calculations and managed to compute

attack trees with 100 leaves in reasonable time.

 14

2.2 Parallel attack tree model

The attack tree analysis begins with identifying one primary threat and continues by

dividing the threat into sub-attacks so that all or some of them are necessary to

materialize the primary threat. The sub-attacks are split until the state is reached when it

does not make sense to divide resulted attacks any more. Those non-splittable attacks

are called elementary attacks. During the splitting process AND- and OR-nodes are

used. Having the primary threat in its root and elementary attacks in its leaves the AND-

OR-tree is formed.

Jürgenson et al. in [4] have proposed two models for following the behavior of the

attackers- parallel and serial attack tree models. In the parallel model attack steps are

launched simultaneously. It assumes that the attacker decides on the list of attacks

before starting and then all attacks are tried in a parallel manner. In the serial model

attack steps are launched in a predefined order. The attacker starts attacking and then

adaptively makes decisions based on the success or failure of preceding attacks.

As this thesis focuses on parallel attack tree model approach it is firstly important to

point out the formal definitions of Jürgenson- Willemson’s parallel attack tree model

and discuss their optimizations and approximations proposed in [1]:

DEFINITION 2.1 (Elementary attack): Elementary attack is the lowest level of

abstraction of attacks, which do not have any internal structure within the scope of the

particular attack tree. Elementary attacks are the leaves of the attack tree.

DEFINITION 2.2 (Attack tree): Attack tree T is a simplified PDAG structure (V = N ∪

X, n0, E), of the following elements:

1. the set of leaves X = {X1, . . . , Xn} represents the elementary attacks, which are

considered as propositional variables having values of true or false,

correspondingly, if the elementary attack has been tried and was successful or

has been tried and failed,

2. the set of nodes N = {N1, . . . ,Nm} represents the logical functions of either &

and ∨. The function & evaluates to true if all of its children evaluate to true and

function ∨ evaluates to true, if some of its children evaluate to true,

3. n0 ∈ N is the root node of the PDAG, which does not have any parents,

 15

4. E = {(a, b) ∶ a ∈ V and b ∈ N} is the set of directed edges between leaves X

and nodes N or between nodes N themselves.

 DEFINITION 2.3 (Attack suite): Attack suite S ⊆ X is the set of elementary attacks,

which have been chosen by the attacker to be launched and used to try to achieve the

attacker goal.

DEFINITION 2.4 (Satisfying attack tree): The attack tree T is satisfied by the attack

suite S and the goal of the attacker is achieved if the Boolean function corresponding to

the root node n0 evaluates to true when all elementary attacks from the attack suite S

have been tried and they have been evaluated to true and false values, correspondingly,

if the elementary attack was successful or failed.

 Only monotone Boolean formulas are considered, so that the trivial assignment

X1∶=true, . . . Xn ∶= true always evaluates F to true. In addition to that, the basic game-

theoretic approach of the original multi-parameter attack tree model was followed [7].

1. The attacker has to spend resources (Costi) to prepare and launch the elementary

attack.

2. With the probability pi the attack succeeds and probability 1- pi the attack fails

3. The attacker sometimes has to carry additional costs after failing or succeeding,

this parameter is called Expensesi.

4. There is the global parameter Gains	 for the whole attack tree and it describes the

utility of the attacker if the root node is achieved.

The attacker’s game for the whole attack tree can be described as follows:

1. The attack tree with AND-nodes and OR-nodes is constructed and the attacker

evaluates the parameters of the elementary attacks.

2. The attacker considers all potential attack suites. For those attacks, which allow

the root node to be reached, he calculates the outcome value (OutcomeS).

3. Finally the attacker chooses the attack suite with the greatest outcome and

launches the corresponding elementary attacks.

The outcome value for attack suite S can be computed as:

 16

OutcomeS = ps · Gains – ExpensesiXi ∈ S (2)

PS denotes here the success probability of an attack suite and it can be calculated as

ps= pi (1-pi).Xj∈S∖RXi ∈RR⊆S
F R≔true =true

 (3)

Formula (3) shows that when calculating the success probability of an attack suite S, the

redundancy of the attack suite S is taken into account. It is done so because, there may

be subsets R⊆ S sufficient for materializing the root attack. In the parallel model the

redundancy increases the success probability of attack suites. To prove that, let us

assume we have an attack tree expressed by the Boolean function F= (A + B) * C. The

attacker can be successful in 3 ways: using attacks A and C, B and C, or A, B and C. As

in the parallel model all elementary attacks are independent events, the success

probabilities of the corresponding attack suites can be calculated as following:

Pr[AC] = Pr[A] * Pr[C]

Pr[BC] = Pr[B] * Pr[C]

Pr[ABC] = Pr[A] * (1 - Pr[B]) * Pr[C] + (1-Pr[A]) * Pr[B] * Pr[C] + Pr[A] * Pr[B] *

Pr[C]

The last formula shows that the attack tree can be successful in 3 cases: firstly, when A

and C are successful and B is not; secondly, B and C succeed and A not; or thirdly, all

A, B and C are successful. The redundant attack suites have greater success probability

than the non-redundant ones and this in turn might increase the utility of the attack.

The complexity of the method comes from the necessity to solve the SAT (satisfiability)

problem, which is complex. Even with all optimizations introduced in [8] Jürgenson-

Willemson still faced an exponential complexity burst in formula (3). The fact that n

attack steps have 2n subsets shows the method is inappropriate to be used in real cases.

2.3 Optimizations using the genetic algorithm

Verifying if there are cases that satisfy the Boolean formula F and computing the

outcome by formulae (2) and (3) is very time-consuming. Therefore, Jürgenson et al.

suggested using the genetic algorithm for optimizations and finding the optimum attack

suite in [4]. The idea of the genetic algorithm is to generate the initial population, then

cross the individuals, mutate them and sort out the best solutions, thus continuing to

improve the result by reproduction:

 17

1. Generate the first generation of h individuals (attack suites) that satisfy the

Boolean formula.

2. Cross h attack suites with each other, producing !! new attack suites.

3. Mutate each new individual with probability p.

4. Join the mutated population with the current population.

5. Choose those individuals, who are alive (satisfy Boolean function F- i.e. F(Sj ∶=

t) = t).

6. Compute the OutcomeSj for each of the remaining individuals and choose h best

individuals that produce the greater outcome for the next generation.

7. Reproduce until the determined number of generations is reached and choose the

best attack suite for attack tree T and its outcome.

In the work of Jürgenson et al. [4], an individual is an attack suite S and it is a bit array

of all the attack tree leaves. The quality of individuals is measured by the outcome value

of the attack (fitness function).

Population is a set of attack suites that are under consideration. When generating the

initial population, it is important to choose those individuals that satisfy the Boolean

formula F, this means F(Sj ∶= t) = t). Starting from the root of the T and choosing all

children from AND-node and choosing randomly at least one child from OR-node.

The crossover operation crosses two attack suites σ1 and σ2 by randomly flipping the

values of the attack steps from FALSE to TRUE or the opposite throughout all the

elementary attacks Xi=(i=1,…, n). For example, first attack suite values are 11001011

and for the second 11011111. If in the crossover phase we randomly cross for three bits

of the attack suites, for example, then the result will be 11001111.

2.4 Attacker profiling in attack tree analysis

A further development of the genetic algorithm introduced by Jürgenson et al. has been

proposed by Lenin- Willemson in [2]. They introduced the attacker profiling concept,

the reason behind which was to provide a more realistic insight into attacks. Classical

risk analysis assumes that the attacker is almighty. However, an overpowered attacker is

often not the case in reality. Attacker profiling limits adversarial capabilities and due to

that makes the strategic behavior closer to the one which is likely to be observed in real

 18

life. Moreover, attacker profiling separates the infrastructure properties from the

properties of the threat. It enables a more flexible and comprehensive look at the ever-

changing risk landscape and enables more reliable risk assessment. Attacker profiling is

a way forward in dealing with complexities of security metrics; the parameters of the

attack tree leaves cannot be estimated in a meaningful way without specifying attacker

properties and capabilities. Lenin et al. [2] suggested using attacker profile for

describing the attacker’s skills and resources available for performing malicious actions

to achieve the main goal. The attacker profile considers several parameters like skill or

proficiency, time and the attacker’s budget, described in Table 1.
Table 1. Attacker profiling parameters

Parameter Description Values

Proficiency Attacker's skills level

Very High (V),
High (H),
Medium (M)
Low (L)

Budget

Amount of financial
resources available to the
attacker Currency units

Time
Amount of time the attacker
can invest in attacking

Second (S),
Minutes (MT),
Hours (H)
Days (D)

The attacker’s skill or proficiency is a parameter that describes the attacker’s skill level

and influences the techniques that may be chosen for performing the attacks. This

parameter uses value units Very High (V), High (H), Medium (M), and Low (L).

The second parameter is called the attacker’s budget. This is related to the amount of

financial resources available to the attacker. For example, it might be the monetary value

of hardware or software used to support the attack steps. The value unit for the

attacker‘s budget parameter is some specific currency value.

The third parameter is the time for attacking. This parameter describes how much time

the attacker can invest in attacking. The value unit used for it can be Seconds (S),

Minutes (MT), Hours (H), and Days (D).

Lenin and Willemson formalized the definition of the attacker profile in [2] and it is the

following:

DEFINITION 2.5 (Attacker profile): An attacker profile is a set of characteristics and

properties uniquely describing the attacker under consideration:

 19

1. Budget- the monetary resource of the attacker, measured in currency units.

2. Proficiency- the skill level of the attacker, measured on an ordinal scale (Low,

Medium, High, Very High).

3. Time- the available time resource of the attacker, measured on an ordinal scale

(Seconds/Minutes/Hours/Days)

DEFINITION 2.6 (Profile satisfying attack suite): A profile satisfying attack suite σ

is a satisfying attack suite, which satisfies all the constraints of the chosen attacker

profile Pf

DEFINITION 2.7: (Derived function). If F (x1,...,xm) is a Boolean function and v

∈{0, 1}, then by the derived Boolean function F|xj=v we mean the function F(x1,...

,xj−1,v,xj+1,...,xm) derived from F by the assignment xj := v. [9].

Attacker profiling was observed and analyzed also by Sari in [10]. She stated that the

effect of applying the attacker profile to the attack tree will invalidate some nodes, thus

it eliminates sub-trees from overall attack trees and provides possible attack steps for the

particular attacker. Based on her calculation results, the final outcome calculated using

attacker profiling is not significantly different from the outcome obtained without

attacker profiling. The results calculated with the attacker profiling parameter were up to

20% smaller than the results without the profiling. Therefore she drew conclusions that

the attacker profile is a useful concept to add to the attack tree for quantitative security

assessment based on the attack tree methodology.

Sari also pointed out that without attacker profiling the result of the analysis might give

a “False Negative” in case we underestimate the attacker’s strength, but results of the

analysis with certain attacker profiles might result in “False Positives” in case we

overestimate attacker’s strength. Based on the case study she declared that 20% is the

required investment that companies or owners of the analyzed system have to spend in

order to upgrade their systems towards the real or near to the ideal preferred system.

2.5 ApproxTree+ tool

Lenin et al. [2] demonstrated the possibility of integrating attacker profiling

considerations into existing risk assessment tools. As an example of such integration, the

authors introduced the analysis tool named ApproxTree+ [2] which is an extension of

the existing ApproxTree tool [1] enhanced by integrating the attacker and victim

 20

profiling considerations into it. This enables to assess the security of the considered

infrastructure against the entire set of threats enabling plug-and-play behavior of the

analysis approach. This adds flexibility to the existing risk assessment practices.

The ApproxTree+ method uses the genetic algorithm to facilitate the usage of the

computational method for large attack trees:

1. Generate initial population of n attack suites that satisfy the Boolean function

and correspond to the attacker profile so that every attack step’s strength is not

greater than the attacker’s skill, time for attacking is not longer than the

attacker’s time and the cost of all nodes does not exceed the attacker’s budget.

2. Cross all the individuals in the initial population with everybody else and

produce new individuals.

3. Mutate each individual with probability p.

4. The mutated population is joined with the current population.

5. Choose the fittest individuals that satisfy the attacker profile and the Boolean

function and form the next generation.

6. Reproduce until k last generations do not increase the outcome.

Lenin et al. conducted performance analysis for comparing the ApproxTree and

ApproxTree+ calculation methods [2]. They found that attacker profiling did not add

any significant computational overhead. In both methods the initial population

generation phase and mutation phase were almost immediate. The main workload was

performed by the crossover phase and consumed approximately 85-99% of the

cumulative time distribution among all the phases. The best individual selection phase

did not bring along any significant workload.

Additionally, Lenin et al.[2] analyzed the effect of the generic algorithm parameters

mutation rate and initial population size on the convergence speed for the attack trees of

different sizes to assess whether the parameters of the genetic algorithm used by

ApproxTree were optimal for the ApproxTree+ method. It turned out that the speed of

convergence of ApproxTree+ did not exceed the speed of convergence of ApproxTree

and the mutation step had no significant effect on the convergence speed. The results

also indicated that increasing the initial population size increased the convergence

speed. Moreover, the convergence speed did not depend on the size of the attack tree.

 21

ApproxTree and ApproxTree+ computation results showed that the final outcome

converged to the most profitable attack suite (global optimum) or the computational

method failed to generate the initial population of individuals. If the ApproxTree+ was

unable to generate the initial population, this might mean that either the profile

constraints were too strict, so that no profitable attack suites exist at all or the method

failed to generate the initial population due to its stochastic nature. When ApproxTree+

produces such results, it could mean any of the cases since the exact reason remains

unknown.

 22

3 CASE STUDY: Steal sensitive information by collecting network traffic of an

enterprise

In the recent years technology has evolved tremendously. Today, all enterprises,

governments, the military, hospitals, financial institutions, private businesses gather a lot

of confidential information about their customers, employees, products, research and

financial status which are processed and stored on computers and transmitted across

networks. This information needs to be protected, because if some of the confidential

information should get into the hands of a competitor or a black hat hacker, it could

cause financial loss and damage to the company’s reputation. Therefore, protecting

confidential information is any business’s requirement and in many cases also an ethical

and legal requirement.

There are many different ways how sensitive information can be collected by attackers,

but this thesis focuses on the case where the attacker misuses some of the vulnerabilities

of IP PBX systems. A brief overview of how IP PBX systems work will be given next.

Figure 3 illustrates the typical IP PBX network. It consists of an IP PBX server, phones

and a VoIP gateway. The IP PBX server registers all its clients (VoIP phones). When a

client needs to make a call, the IP PBX should give permission to establish the

connection. The IP PBX has a directory of all clients and their corresponding SIP

addresses. That makes it possible to route internal and external calls. For placing calls to

external numbers, VoIP gateways or VoIP service providers are needed. VoIP gateways

connect the IP PBX with a traditional PSTN network. They digitize traffic from the

standard PSTN lines so that the IP PBX could handle the traffic and so it could travel

over the computer network. VoIP providers handle the digitalizing of traffic on their end

and send the call via a network link [11].

 23

Figure 3. The interconnection of an IP PBX system with its components described in [11]

There are many different types of VoIP services and technologies available. Most

enterprises implementing voice transmission over IP often overlook the security risks

associated with it. They are mostly concerned about voice quality, latency and

interoperability rather than seeing what threat VoIP can pose to the security of sensitive

information. VoIP can be targeted in the ways similar to traditional network resources

and the main threats may be the denial of service (DOS), intercepted communication

and theft of service [12].

Let us take a look at an example of a company that wants to launch a service that is new

to the market and will bring a 70% market share. The company does not want that the

information about the service to become public or reach the competitor before the

company has launched it. The attacker (for example the competitor) has the idea that the

company has been developing something and sets a goal to find out what the company is

up to. The company uses the IP PBX service between different branches for saving in

management, maintenance and ongoing call costs.

For stealing sensitive information there are several ways like phishing scams, network

malware, network and e-mail hacks etc. that an attacker could use. Compromising VoIP

infrastructure can be accomplished in many different ways, but this thesis concentrates

on a more rare case where information is gathered by collecting the VoIP traffic and

playback of the calls.

 24

In the process of constructing the attack tree, it is assumed that the company is using the

IP PBX service and voice and network traffic are kept in the same VLAN. VoIP media

traffic is encoded and encrypted.

The previous chapter introduced the concept of attack trees. This chapter gives an

overview of the attack tree that was constructed for the case study. It will not analyze all

possible ways of how the attacker can achieve the main goal, as this is not the main

topic of the thesis. The aim of constructing the attack tree was to give an overview of its

main concepts and show how attack trees are constructed. Moreover, it will be shown

how it is possible to combine social, physical and technical attacks into one attack tree.

In subsequent chapters the same attack tree is used for validating the genetic algorithm

computational methods and analyzing their performance.

3.1 The attack tree model

The main goal of the attacker is to gather VoIP traffic and playback the calls in order to

get access to the sensitive information. For getting the VoIP traffic, the attacker has to

collect the network traffic of the enterprise. The primary threat was named “Steal

sensitive information by collecting network traffic of the enterprise”, as shown in Figure

4. In order to achieve it, the attacker has to succeed in three activities. It is necessary to

get access to the network traffic, collect data and decode media traffic. This way the

attacker can playback the VoIP communication.

Figure 4. Main goal of the attacker: “Steal sensitive information by collecting network traffic of an
enterprise”

The most complex part of the attack is getting access to the network traffic. For realizing

that sub-goal the attacker has many options, which are presented in Figure 5. He/she

could try to get in the network path by compromising some of the network devices like

routers, switches, firewall etc. or compromise somehow the local system of the

enterprise. (Figure 7 and Figure 8)

 25

Figure 5. OR-refinement “Get access to the network traffic”

Figure 6 explains the refinement “Get into the network path”. To the successful end of

getting into the network path the attacker has to hack into the enterprise network. First,

he/she has to find a device to compromise. Network scans, banner grabbing and

fingerprinting or social engineering attacks help to collect information about network

devices like routers, switches, and firewalls. The bigger challenge is to find vulnerability

and use it for obtaining access to the network. More often vulnerability scanners that use

databases of known vulnerabilities are used to find vulnerabilities in the products and

services of the target infrastructure

Figure 6. AND-refinement “Get in the network path”

The second method for accessing the traffic is to compromise local systems. Figure 7,

Figure 8 and Figure 9 illustrate it. To realize that refinement, it is necessary either install

malware onto the local computer or install malware to the IP PBX. VoIP equipment like

IP PBXs or even softphones are vulnerable to malware just like any other Internet

 26

applications. In both cases the attacker has to obtain proper malware by buying it from

somewhere or creating it by him/herself, finding a suitable target like a local computer

or IP PBX and infecting it.

Figure 7. OR-refinement “Compromise local system”

Figure 8. AND-refinement “Install malware to the enterprise’s computer”

Figure 9. AND-refinement “Install malware to the IP PBX”

 27

The solution for obtaining the network traffic does not have to be technical. The attacker

can acquire it by social engineering, bribing or threatening the employees. The ways of

how those could be achieved are shown in Figure 10, Figure 11, and Figure 12.

In social engineering attacks the attacker approaches an employee, impersonates being,

for example, a representative of legal institution or a technician and then persuades the

victim to collect and give the traffic. Usually social engineers rely on the natural

helpfulness of people as well as on their weaknesses. Sometimes they take advantage of

the fact that people are not aware of the value of the information they have and are

careless in protecting it. However, if employees have received an awareness training, the

social engineering step may be harder for an attacker.

If social engineering attacks do not work, the attacker has the possibility to bribe or

threaten the company’s employee. This attack includes finding personal information

about the employee, approaching and offering a bribe or threatening the employee or

his/her family.

Figure 10. AND-refinement “Social engineer employee to collect network traffic”

Figure 11. AND-refinement “Bribe employee to get traffic”

 28

Figure 12. AND-refinement “Threaten employee to get the traffic”

Once access to the traffic is obtained, the attacker has to collect data and distinguish the

media data. Figure 13 shows that for collecting data it is necessary to find proper tools

for it. Usually the media traffic is encoded and in some cases also encrypted. The

attacker has to find ways to decode and decrypt it, Figure 14.

Figure 13. AND-refinement “Collect data”

Figure 14. AND-refinement “Decode media traffic”

 29

The case study attack tree consists of 77 elementary attacks. In order to be able to assess

and make calculations, the attack tree has to be represented as a Boolean formula. The

Boolean formula for the attack tree “Steal sensitive information by collecting network

traffic of an enterprise” is the following:

F=((((((A35*A36)+((A54*A55)+(A56*A57)))*(((A58+((A72*A73)+(A74*A75)+A69

+A70)+A59)*(A60*((A76*A77)+A71))*A37)+(A38*A39*A40*A41)+(A42*A43*A44

)+((A61*A62)*(A63+A64)*A45)+(A46*A47*A48)))+(((A49*A50)+((A65*A66)+(A6

7*A68))+A29)*(A30*A31)*A14))+((((A51*A52*A53)+(A32*A33*A34))*A11)*((A25

*A26)+(A27*A28)+A12+A13)*A5)+(A7*A8*A9)+((A19+A20)*A10)+((A15*A16)*(

A17+A18)*A6))*(A1*A2)*(((A21*A22)+(A23*A24))*A3*A4))

 30

3.2 Estimated values for the attack tree leaf nodes

In order to apply ApproxTree and ApproxTree+ calculation methods to the case study

“Steal sensitive information by collecting network traffic of an enterprise”, it was

necessary to estimate the attack tree’s elementary attack parameters and “attacker

profile”. The attack tree leaf node’s parameters are Cost, Likelihood, Strength and Time.

These parameters were described in Table 2.
Table 2. Parameters for describing the attack tree “Steal sensitive information by collecting
network traffic of the enterprise” elementary attacks

Parameter Description Values

Cost

Monetary resource that the
attacker has to spend to prepare or
launch the elementary attack. For
example buying specific software
or hardware, hiring or bribing an
employee, etc.

Estimated numerical value

Gain
Economic profit that the attacker
receives after achieving the final
goal

Estimated numerical value

Likelihood

Probability that the attack step
will succeed with-in a single trial.
Could be based on heuristics of
similar attacks or cognitive
estimations

Specific numeric value between [0...1]

Strength

Very High (V): Beyond the known
capability of best attackers

The attacker's technical
excellence or proficiency along
with social skills that are needed
for performing the attack
successfully.

High (H): Requires high degree of
technical expertise and lots of
experience, usually criminal
cracker/hacker by profession.

Medium (M): Requires a bit of
technical knowledge, lacks experience,
and heavily depends on available
hacking tool resources.

Low (L): Does not need to have
technical skills to perform the specific
attack.

Time

Time resource the attacker has to
spend to perform the attack, apart
from the difficulty and the cost of
attack

Estimated in Days (D) Hours (H)
Minutes (MT) Seconds (S)

 31

Elementary attacks’ estimated parameters are shown in Table 3. The estimation values

for all leaf nodes were done based on cognitive estimations.

Table 3. Attack tree "Steal sensitive information by collecting network traffic of an enterprise" leaf
node's estimated parameters

Leaf node Node Cost Likelihood
Strength
(H/M/L/V)

Time
(H/M/S/D)

Find proper tools to collect network
data A1 0 0.85 L HR
Collect internet traffic A2 0 0.65 L D
Decrypt A3 0 0.65 V D
Decode A4 0 0.65 H D
Use exploit to get in the network A5 0 0.65 M D
Persuade an employee to collect and
give network traffic A6 0 0.65 V D
Gather information about the
employee A7 0 0.85 M D
Contact the employee A8 0 0.85 L D
Bribe A9 1000 0.85 M D
Make the employee collect traffic A10 0 0.85 L D
Find vulnerability A11 0 0.65 V D
Program yourself A12 0 0.85 V D
Find exploitation means from Internet A13 0 0.85 H D
Infect the IP PBX A14 0 0.65 V D
Collect information about the
employee A15 0 0.85 M D
Approach the worker A16 0 0.85 L D
Impersonate a legal institution
representative A17 100 0.65 M MT
Impersonate a technician A18 50 0.65 M MT
Threaten the employee A19 0 0.65 M MT
Threaten the employee's family A20 0 0.65 M MT
Find a decoder A21 0 0.65 V HR
Buy a decoder A22 100 0.85 L MT
Find a manufacturer A23 0 0.65 V D
Order a decoder A24 200 0.85 L HR
Find a seller A25 0 0.65 H D
Buy the exploit A26 1000 0.85 L HR
Find a developer A27 0 0.85 V D
Pay a developer A28 1000 0.85 L D
Find online A29 0 0.65 V D
Scan for open SIP ports A30 0 0.85 L HR
Find a version of the IP PBX A31 0 0.85 M HR
Get info about sys admin A32 0 0.85 M D
Gain trust A33 0 0.65 V D

 32

Make sys admin talk about the
network’s set up A34 0 0.65 M D
Find a malware seller A35 0 0.85 H D
Buy the malware A36 500 0.85 L HR
Install the malware A37 0 0.65 V HR
Find a victim A38 0 0.85 M D
Collect information about the victim A39 0 0.85 M D
Inject webpage with malware A40 0 0.85 M HR
Make an employee visit the malicious
webpage and install SW A41 0 0.85 M HR
Search information about the target A42 0 0.85 L D
Approach the employee A43 0 0.85 L MT
Bribe A44 1000 0.85 M MT
Persuade the employee to install SW A45 0 0.85 M D
Collect sensitive information about the
employee A46 0 0.65 V D
Blackmail A47 0 0.65 M D
Force the employee to inject computer A48 0 0.65 M D
Find a malware seller A49 0 0.05 V D
Buy IP PBX malware A50 700 0.85 L HR
Scan network A51 0 0.85 L HR
Do banner grabbing A52 0 0.85 L HR
Fingerprinting A53 0 0.85 L HR
Obtain necessary information A54 0 0.65 V D
Write a code yourself A55 0 0.85 V D
Find a developer A56 0 0.85 V D
Bribe a developer A57 1000 0.85 M HR
Physically A58 0 0.65 M MT
Unattended guest A59 0 0.65 H MT
Find suitable computer A60 0 0.85 L HR
Collect background information A61 0 0.85 H D
Approach A62 0 0.85 L MT
Impersonate a helpdesk assistant A63 70 0.65 M MT
Impersonate a higher executive A64 300 0.65 H MT
Collect background information about
the IP PBX A65 0 0.65 M D
Write malware A66 0 0.95 V D
Find a programmer A67 0 0.85 H D
Pay the programmer A68 1000 0.85 L D
Impersonate a janitor A69 50 0.65 L MT
Impersonate a computer technician A70 50 0.65 M MT
Guess the password A71 0 0.05 M D
Find a suitable victim A72 0 0.85 M D
Impersonate a branch office employee A73 50 0.65 M MT
Cut network wires A74 0 0.85 L MT

 33

Impersonate an ISP technician A75 70 0.65 M MT
Obtain a dictionary A76 0 0.85 M HR
Use brute force A77 0 0.85 L D

Furthermore, the ApproxTree+ calculation method uses Attacker and Victim profiles for

computations. For profiling the attacker the parameters proposed by Lenin et al. [2]-

budget, skill and time were used. When looking the attack tree estimated parameters in

Table 3, it seems that time and skills are the most important factors for the considered

attacker profiles. As for validating the hypothesis, different attacker profiles were

chosen where the attacker had very high skills, the time range of days to perform attack

and varied with budget parameter. Also, the results with different skills and time

parameter when the Budget was very high were observed. As in attack tree there were

no attacks that could be performed in Seconds then we did not choose that for any

attacker profile time parameter. It was obvious that this would not have given any

results. Table 4 shows 12 attacker profiles used for case study for further analysis.
Table 4. Attacker profiles

Attacker Budget Skill Time
Attacker1 20000 V D
Attacker2 5000 V D
Attacker3 1000 V D
Attacker4 7000 V D
Attacker5 500 V D
Attacker6 0 V D
Attacker7 20000 V MT
Attacker8 20000 H D
Attacker9 20000 L D
Attacker10 200 H MT
Attacker11 5000 M D
Attacker12 20000 M D

 34

4 Assessment of attacker profiling efficiency

In this chapter, the efficiency of attacker profiling was examined. The Boolean function

of the attack tree introduced in previous chapter, estimated elementary attack parameters

shown in Table 3 and attacker profiles outlined in Table 4 for utilizing ApproxTree and

ApproxTree+ computation methods were used.

Firstly, the ApproxTree program was executed more than 5 times and the highest

outcome given was considered. The mutation rate of 0.1 and the population factor of 2,

the gain for the attacker as 50 000 EUR were used. The results of computation showed

that the maximum utility for attacker would be 8216,58 EUR and the most profitable

attack suite is the following:

A1, A2, A3, A4, A5, A6, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20,

A21, A22, A23, A24, A29, A30, A31, A32, A33, A34, A51, A52, A53. This attack suite

is graphically represented in Figures 15-20.

In order to steal sensitive information by collecting the network traffic of the enterprise,

the attacker has to perform the following steps: “get access to the network traffic”,

“collect data” and “decode media traffic”. For getting access to the traffic, attacker can

make some decisions. He/she could perform one or all of the attacks: “get in the network

path”, “compromise the local system”, “social engineer an employee to collect network

traffic” or “threaten an employee to get the traffic”.

“Get in the network path” node, Figure 17, is realized when refinements “Find net

device to compromise”, “Get exploit” and “Use exploit to get in the network” are

successfully realized. “Find net device to compromise” consists of “Collect info about

network devices” and the elementary attack “find vulnerability”. The information about

network devices can be collected in two ways: manually or by social engineering the

system admin. Manually, the attacker could use methods like “network scan”, “banner

grabbing”, and “fingerprinting”. Social engineering the system administrator requires

more skill. The attacker has to “get info about the sys admin”, “gain trust” and “make

the system admin to talk about network set up”.

The second method of getting access to the network traffic of an enterprise is

“Compromise local system” by installing malware to the IP PBX, Figure 18. For that,

the attacker has to perform the following elementary attacks: get the IP PBX malware by

finding it online, finding the IP PBX to infect by scanning for open SIP ports and that

way collecting the knowledge of its version, and then infecting the IP PBX.

 35

Social engineering and threatening employees are similar attacks in the sense that the

attacker has to physically approach employees and persuade them to collect and give

network traffic. In this case, Figure 19 shows how attacker could perform a social

engineering attack. He/she has to approach the employee, introducing him/herself as

somebody else like a representative of a legal institution or a technician and then

persuade the employee to collect and give traffic. The attacker could threaten the

employee or the employee’s family to get wanted information.

After gaining access to the network traffic, the attacker has to collect data and decode its

media traffic. Collecting data assumes that the attacker has proper tools for it and before

decoding media traffic, it is necessary to buy a decoder from the black market or order it

from a manufacturer. In case the data is encrypted, the attacker has to be prepared to

decrypt it.

Figure 15. Attack suite computed by using the ApproxTree method. AND-refinement “Steal
sensitive information by collecting network traffic of an enterprise” and “Collect data” and
“Decode media traffic” AND-refinements

 36

Figure 16. Attack suite computed by using the ApproxTree method. AND-refinement “Steal
sensitive information by collecting network traffic of an enterprise” and “Get access to the network
traffic” OR-refinement

Figure 17. Computed attack suite with ApproxTree method of AND-refinement “Get in the network
path”

 37

Figure 18. Computed attack suite with the ApproxTree method of refinement “Compromise local
system”

Figure 19. Computed attack suite with the ApproxTree method of AND-refinement “Social engineer
employee to collect network traffic”

Figure 20. Computed attack suite with the ApproxTree method of AND-refinement “Threaten
employee to get the traffic”

Calculated attack suites have a redundancy - attacker has an option which attacks to

realize in order to steal the sensitive information. This way, the attacker could increase

the success probability of the attack vector and that in turn can increase the utility of the

attack.

 38

The ApproxTree+ calculation method gave lower results than the ApproxTree method.

This was expected because, in her thesis Sari [10] mentioned that using the attacker

profile lowers the computed outcome up to 20%. Also, the results about all of the

attacker profiles were not computed - the initial population could not be generated for

the attacker profiles 6, 7, 8, 9, 10, 11, 12. The maximum outcome over all profiles was

8177,65 and the most profitable attack suite was the same as with the ApproxTree

method: A1, A2, A3, A4, A5, A6, A10, A11, A12, A13, A14, A15, A16, A17, A18,

A19, A20, A21, A22, A23, A24, A29, A30, A31, A32, A33, A34, A51, A52, A53,

graphically represented in Figures 15-20.

Table 5 shows the calculated outcome results for the attacker profiles 1, 2, 3, 4, 5 and

attack suites that corresponded to the highest outcome.
Table 5. Calculation results of the ApproxTree+ methods for Attacker profiles 1, 2, 3, 4, 5

Attacker Budget Skills Time Gain and attack suite

Attacker 1 20000 V D GAIN: 7866,67
max AS:
A1,A2,A3,A4,A5,A6,A10,A11,A12,
A13,A14,A15,A16,A17,A18, A19,
A20,A21,A22,A23,A24,A29,A30,A3
1,A32,A33,A34,A51,A52,A53.

Attacker2 5000 V D GAIN: 8177,65
max AS:
A1,A2,A3,A4,A5,A6,A10,A11,A12,
A13,A14,A15,A16,A17,A18,A19,A2
0,A21,A22,A23,A24,A29,A30,A31,
A32,A33,A34,A51,A52,A53.

Attacker3 1000 V D GAIN: 7894,12
max AS:
A1,A2,A3,A4,A6,A10,A14,A15,A16
,A17,A18,A19,A20,A21,A22,A23,A
24,A30,A31,A65,A66

Attacker4 7000 V D GAIN: 7866,67
max AS:
A1,A2,A3,A4,A5,A6,A10,A11,A12,
A13,A14,A15,A16,A17,A18,A19,A2
0,A21,A22,A23,A24,A29,A30,A31,
A32,A33,A34,A51,A52,A53.

Attacker5 500 V D GAIN: 7696,54
max AS:
A1,A2,A3,A4,A5,A6,A10,A11,A12,
A13,A15,A16,A17,A18,A19,A20,A2
1,A22,A23,A24,A32,A33,A34

 39

4.1 Performance analysis

The ApproxTree+ tool uses the genetic algorithm like the ApproxTree method proposed

by Jürgenson et al. [1], but with the difference that attacker profile considerations are

taken into account. It facilitates the usage of the computational method for large attack

trees. This section analyzes the performance of the ApproxTree+ compared to the

ApproxTree with different genetic algorithm parameters and assess whether the genetic

algorithm parameters estimated for the ApproxTree by Jürgenson et al. [1] are still

optimal for the ApproxTree+.

The effect of the genetic algorithm parameters such as the initial population, mutation

rate and the termination condition of the reproduction process of the genetic algorithm

(generations) on the attack tree “Steal sensitive information by collecting network traffic

of the enterprise” with 77 elementary attacks in it was analyzed and the results of

computations were validated. One parameter at a time was varied to see its effect on the

convergence speed.

Firstly, the initial population parameter was investigated. In experiments the initial

population ranged from 1n up to 10n (n being the number of leaf nodes in the attack

tree), the results are shown in Figure 21. It demonstrates that in both cases the

convergence speed decreases with the increase in the initial population size. The results

show that with the smaller initial population size the convergence speed is faster, but the

average outcome values are also smaller than with a greater initial population. As with

the ApproxTree+ the initial population size 1n’s average outcome value was 7655,73

then with the population size 10n, the average outcome value was 8262,51. However,

the ApproxTree+ method gives smaller outcome values than the ApproxTree, the

tendency described was the same. Thus, it is possible to conclude that with a smaller

initial population size, there is a greater probability that the algorithm will get stuck to

the local optimum.

The initial population size value 2 chosen by Jürgenson- Willemson [1] is sufficiently

good for the ApproxTree+ approach, however the initial population value 1 would also

 40

be suitable because with those two values the convergence speed is the quickest.

Figure 21. Initial population size’s effect on the convergence speed (# of generations)

In Figure 22, it is seen that the percentage of mutation rate has no significant effect on

the convergence speed of both methods. Applying different mutation rates does not

significantly change the convergence speed of the attack tree. Moreover, the precision

analysis shows that the outcome does not depend on the mutation rate extensively.

Figure 22. Mutation rate’s effect on the convergence speed (# of generations)

The genetic algorithm’s termination condition’s effect on convergence speed was also

studied. The generation parameter for the ApproxTree determines the number of

generations the genetic algorithm goes through before selecting the most profitable

attack suite, but for the ApproxTree+ approach the generations in the genetic algorithm

determines the parameter that stops the algorithm when the specified number of

generations has been tried and the result did not improve. Figure 23 shows that the

increase in the genetic algorithm’s generations, the convergence speed decreases. This is

the expected behavior, because the more generations the algorithm has to reproduce, the

 41

more time it takes. Based on the observations, the chosen value 10 is sufficiently good

for the ApproxTree+ because that value could give us global optimum results and the

algorithm’s calculation time has to be sufficiently fast.

Figure 23. Generations’ effect on convergence speed (# of generations)

Based on the performance analysis results, the effect of genetic algorithm parameters on

convergence speed in the ApproxTree and ApproxTree+ is similar in both cases. This

means that profiling has no significant effect on the performance of the genetic

algorithm and integration of profiling does not introduce any significant computational

overhead. When increasing the initial population size of the algorithm, the convergence

speed of the ApproxTree and ApproxTree+ methods decreases. The same effect occurs

when varying the generation’s number. In both cases the convergence speed does not

depend on the mutation rate. This might be possible due to that when the amount of the

initial population exceeds the amount of possible solutions and thus all possible

solutions are very likely to be present in the initial population already. In case of quite a

small initial population the mutation rate might have some effect.

4.2 Improvement of the ApproxTree+ method

The existing implementation of the ApproxTree+ has a shortcoming- the results are not

reliable. When the ApproxTree+ is unable to generate the initial population, it was not

possible to determine the exact reason for it. It is unclear if it happened due to the

profiling constraints being too strict and thus no solutions exist or the method failed to

find any solution due to its stochastic nature. This section presents an improvement to

the existing model, which makes the ApproxTree+ calculations more reliable and

 42

precise. The suggested improvement made the computational method significantly faster

enabling the analysis of larger attack trees (Figure 24)

Figure 24. Execution time of attack trees with different size.

 Real life attack trees could consist of thousands of leaf nodes and calculating the best

attack suite could take days. The threat landscape has an ever-changing nature and

analysis that takes days is not affordable, as the threat landscape will change quicker

than we will be able to analyze it. Thus, the entire set of analysis will become worthless

and outdated. This makes the need to find optimal and more efficient ways to compute

attack trees salient.

It is proposed that the attacker profile should be applied to the initial attack trees and the

derived attack tree is produced. The genetic algorithm for fast approximations should be

launched on the derived attack tree. This method is noticeably faster and more accurate

than the current ApproxTree+ because initially applying the profile to the attack tree

excludes the leaf nodes that attacker cannot execute. If this results in an empty attack

tree as a product, there can stated that the considered class of attackers will not be able

to attack the considered system.

The ApproxTree+ improved model looks as follows:

1. Apply the attacker profile to the attack tree. Leaf nodes, where the component

strength is greater than the attacker’s skills and time, are excluded from the

attack tree. The remaining leaf nodes form a sub tree that the attacker is able to

attack.

1a. If the result of step 1 is an empty tree- notify the user that the considered

attacker class is unable to attack the analyzed system and quit.

 43

2. Create the first generation of n individuals from the attack suites that satisfy the

Boolean formula and verify that the total cost of the attack suites in the

generation is not greater than the attackers budget.

3. Cross all the individuals in the initial population with everybody else and

produce new individuals.

4. Mutate each individual with probability p.

5. Unite the mutated population with the initial population.

6. Finally, choose the n fittest individuals that satisfy the Boolean function and

attacker profile budget constraints and form the next generation.

7. Continue the reproduction process until k last generations do not increase the

outcome.

For an example, let us take an attack tree of OR-root node with five elementary attacks

G, H, I, J, K, illustrated in Figure 25. This attack tree can be represented with the

following Boolean function: F= (G*H)+(I*J*K). The attacker profile’s skills parameter

is High.

First, when applying the attacker profile the H node is excluded because that leaf nodes

requires more skills than the attacker profile has. In the algorithm those attack steps that

attacker cannot launched is expressed with 0. Therefore, the Boolean function will be

F=((G*0)+(I*J*K)). The derived Boolean function in which the genetic algorithm is

used for the finding the most profitable attack suit for attacker will be F= (I*J*K).

(Figure 25).

Figure 25. The attack tree before applying the attacker profile on the left and the attack tree after applying
attacker profile on the right.

 44

5 Conclusions and Future Research
This thesis studied the parallel model of the attack tree computations method using the

ApproxTree and ApproxTree+ models. The ApproxTree is a model for quantitative

security assessment proposed by Jürgenson et al. [4]. Lenin et al. [2] proposed a new

model known as the ApproxTree+ which is the further development of the ApproxTree

which takes attacker profiling into account. For the purposes of this thesis, the case

study attack tree “Steal sensitive information by collecting network traffic of the

enterprise” was constructed, which was used for obtaining and validating the results of

the current state of the art in quantitative security assessment. In addition, the genetic

algorithm parameters such as initial population size, mutation rate and number of

generation’s effect on the convergence speed of the attack tree were analyzed. Finally,

improvements to the ApproxTree+ method were proposed that make the analysis results

more reliable and the method itself more efficient.

Also, the attacker profiling efficiency was assessed. The results were consistent with

Sari’s thesis [10]. The ApproxTree+ computed outcome value is not significantly lower

than the outcome calculated with the ApproxTree method. The effect of applying

attacker profile to the attack tree is the elimination of sub-trees, which do not meet the

attacker profile, from the general attack tree and gives feasible attack steps to the

attacker who has suitable parameters to perform the attack. The attacker profile

considered the attacker’s Budget, Skills and Time. It became evident that some

parameters are more important for the certain attack tree than the others. In this case

study, the important parameters were firstly Time and secondly Skills. If the attacker

profile had the Time parameter’s value other than Days (D) and skills lower than Very

High (V), the ApproxTree+ method did not find suitable attack suites.

In addition, the effect of the genetic algorithm parameters like the initial population size,

mutation rate and the number of generations on the convergence speed were analyzed to

assess whether the genetic algorithm parameters used by the ApproxTree are optimal for

the ApproxTree+ approach. The results showed that the effect of genetic algorithm

parameters on the convergence speed was similar in both cases. The increase in the

initial population size decreased the convergence speed. Increasing the number of

generations also decreased the convergence speed. Changing the mutation rate

parameter did not have any effect on the convergence speed in either of the methods.

 45

Based on computation in the considered case study, it became evident the increase in the

initial population size from 1n to 10n decreased the convergence speed approximately

from 3 to 10 generations. The optimal initial population size could be 2n (n is the

number of the attack tree’s leaves) because the convergence speed decreased with

greater initial population sizes. The mutation rate parameter 0.1 is optimal because

increasing its value did not have any effect on the convergence speed. The optimal

number of generations is 10 because increasing number of generations will not increase

the convergence speed of the genetic algorithm, but it does not affect its precision. In

general, profiling has no effect on the genetic algorithm’s performance and convergence

speed. Attacker profiling does not introduce any significant computational overhead and

thus may be integrated into existing risk assessment tools.

In order to make the analysis’s results more reliable and speed up the computations of

the ApproxTree+ model, the attacker profile should be applied before applying the

genetic algorithm. Thus, it is possible to eliminate attack steps that do not correspond to

the attacker profile and get the derived attack tree which is, as a rule, smaller than the

initial attack tree.

The attacker profile in the attack tree analysis gives a possibility to observe a more real-

life attacker concept as in real life situations the attackers have certain constraints and

cannot perform all possible attack scenarios against targeted systems. However, when

constraining the attacker, the risk of underestimating the opponent and suffer damage

might be faced. Therefore, it is necessary to find some kind of a balance between the

risk of excessive investments into security measures and the risk of getting damage due

to underestimating the attacker resources when specifying the attacker profiles to

consider.

Regarding future work, it is necessary to study attacker profile parameters that might

affect the attackers’ behavior more in depth and add those to the attacker profile. For

instance, the considered parameters might be the attacker’s motivation or the quantity of

attackers. Some steps are being made by Lenin et al. towards the new parameter

“insiderness” which estimates the level of trust the attacker has. If the attacker is an

employee, some attack steps are easier to perform.

Some achievements have been made in estimating the set of underlying parameters,

which such parameters like “success probability” or “time required for attacking” are

dependent on. Lenin, et al. suggests to use Item Response Theory to derive the

dependencies.

 46

References

[1] A. Jürgenson and J. Willemson, “On fast and approximate attack tree
computations,” Springer, vol. 6047 of LNCS, pp. 56–66, May 2010.

[2] A. Lenin, J. Willemson, and D. P. Sari, “Attacker profiling in quantitative
security assessment based on attack trees”, NordSec, 2014 (to appear)

[3] P. Kordy, “ADTool,” 2010. [Online]. Available:
http://satoss.uni.lu/members/piotr/adtool/jnlp/adtool.jnlp.

[4] A. Jürgenson, “Efficient Semantics of Parallel and Serial Models of Attack
Trees,” Tallinn University of Technology, 2010.

[5] B. Schneier, “Attack Trees: Modelling security threats,” Dr. Dobb’s J. Softw.
Tools, pp. 21–22, 24, 26, 28–29, 1999.

[6] S. Mauw and M. Oostdijk, “Foundations of Attack Trees,” Springer, vol. 7638 of
LNCS, pp. 186–198, 2005.

[7] A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J. Willemson, “Rational choice
of security measures via multi-parameter attack trees,” Springer, vol. 4347 of
LNCS, pp. 235–248, Aug. 2006.

[8] A. Jürgenson and J. Willemson, “Computing exact outcomes of multiparameter
attack trees,” Springer, vol. 5332 of LNCS, pp. 1036–1051, 2008.

[9] A. Buldas and A. Lenin, “New Efficient Utility Upper Bounds for the fully
adaptive model of attack trees,” Springer, vol. 8252 of LNCS, pp. 192–205, 2013.

[10] D. P. Sari, “Attacker Profiling in Quantitative Security Assessment,” Tallinn
University of Technology, 2014.

[11] O. Ajasa, A.A.A Shoewu, “Exploiting VoIP telephony in IP PBX Solution,”
Pacific J. Sci. Technol., vol. 13, no. 2.

[12] M. Paquette, “VoIP becomes target.(VoIP Security),” Aug. 2007.

