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Chapter 1

Introduction

The beginning is half of every
action.

Greek

1.1 General overview

In a field of system engineering process control is a traditional area which
is of great practical importance. Control usually involves methods from
various fields: dynamic modeling, identification, etc. Thus, to analyze and
design nonlinear and dynamical systems we need to absorb and digest a
wide range of nonlinear analysis tools.

Usually when we deal with control of strong nonlinear systems a model-
based controllers are applied, where a detailed dynamic process model
is used in an optimization framework. To develop a nonlinear controller
with reasonable complexity a usage of heuristic black-box type control ap-
proaches like neural networks, genetic algorithms, fuzzy logic or a combi-
nation thereof can significantly help. Therefore, any work in the area of
nonlinear process control should be based on an interdisciplinary approach
that integrates the results and techniques of process systems engineering
with nonlinear systems and control theory [25], [31].

Fundamental control tasks, which include above mentioned techniques,
are all functional approximation tasks. Thus, as neural networks have a
theoretical capability to approximate any continuous nonlinear function
and ability to process many inputs and outputs, then they are applicable
for identification and control. So, neurocontrol has a capacity to optimally
solve nonlinear control problems directly from sampled data [26].
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On the other hand, majority of the techniques for analysis, model-
ing and control design are based on a classical state-space representation.
Therefore, one of the problems discussed in this thesis is to establish a rela-
tionship between neurocontrol approaches and the classical control theory.
A good example of this kind is an identification of nonlinear SISO and
MIMO systems with the neural network based ANARX (Additive Nonlin-
ear AutoRegressive eXogenious) structure. Using that structure allows one
to obtain the minimum state-space representation directly in case of SISO
systems. On the other hand, in case of the MIMO systems it is not so
trivial. Some changes should be applied to the architecture of the neural
network based ANARX structure. One of the possibilities to reach the goal
is presented in the current thesis.

Working with neural networks one of the main problems one can face the
necessity for the training of networks with different number of the parame-
ters. This trial-and-error process should be done due to the need of finding
the optimal neural network. Author’s research has shown that properly
chosen structure of the neural network can significantly improve quality of
the control. Thus, for the both structural and parametrical identification
of the neural network with restricted connectivity genetic algorithms can
be used.

Combinations of genetic algorithms and neural networks have been sup-
portive and collaborative. Supportive combinations typically using one of
these techniques to prepare data for consumption by other. Collaborative
combinations involve using genetic algorithms to determine neural networks
topologies or weights or both at the same time [60, 77].

One particularly significant problem when using genetic algorithms for
neural networks is called competing conventions or the permutation prob-
lem. Genetic algorithm operates on chromosomes or genotypes. To evaluate
obtained genotype one should map into solution of the task, called pheno-
type. If this mapping is many-to-one then different genotypes map into
the same phenotypes even if their genotypes are quite different. In other
words, this is where a system of encoding may provide several different
ways of encoding networks that exhibit identical functionality. This result
is undesirable, as offspring produced by the crossover between these two
genotypes will lose functionality of their parents and only show the per-
formance degradation. Consequently, it is a problem researchers do their
best to avoid when designing an encoding scheme [6, 24, 56, 77]. Modi-
fied structure of the neural network based on ANARX model very clearly
defines connections between the different neurons of the network. In addi-
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tion, proposed by the author chromosome encoding method together with
the features of ANARX structure provide one-to-one mapping between ob-
tained chromosome and the corresponding phenotype.

1.2 Author’s Contribution

This thesis summaries research experience and the main results achieved by
the author in the framework of neural networks based system identification
for control. The main attention is paid to ANARX structure of the model.

Set of test objects is presented as SISO and MIMO models with dif-
ferent types of nonlinearities, levels of complexity and orders. Thus, the
chosen systems are different models of real plants from the field of process
control, as well as academic examples used in the theory of control systems.
A more detailed description and references can be found later in this thesis.

The thesis considers

• analysis and design of specific neural network structures to apply
them to classical control techniques

• application of genetic algorithms for finding the reduced models of
the SISO and MIMO systems based on the neural networks with
restricted connectivity

• application of state feedback linearization algorithm to control of non-
linear SISO and MIMO systems

The main original contributions of this thesis are

• design minimal state-space representation of MIMO system based
on the parameters of the Neural Network of specific structure (see
chapter 5)

• application of NN-ANARX model based dynamic state feedback lin-
earization algorithm to control of nonlinear systems (see chapter 4)

• design of the specific topology of the Neural Networks that easily can
applicable with genetic algorithm (see section 6.3)

• development of a technique for obtaining the optimal model for con-
trol of nonlinear SISO and MIMO systems (see section 6.6 and Chap-
ter 7)

Author’s contributions are discussed in more detail at the beginning of
the chapters 4, 5 and 6.
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1.3 Outline

The thesis is organized as follows. Part I gives a short overview of the math-
ematical preliminaries and tools considered later. It discusses motivation
and problems, presents different models and basic principles and concepts
of neural networks, genetic algorithms and feedback linearization.

Part II is devoted to state-space control identified by ANARX or NN-
ANARX structure. These chapters also problems arisen in obtaining the
minimal state-space representation of the MIMO system based on neural
networks and their possible solutions. Results of this part were presented
[72] and [71].

Part III discusses problems of structural identification. The main contri-
bution of this part is in the proposed neural network structure modification
and its applicability with genetic algorithms. These chapters also present
genetic algorithms with different evaluation functions to obtain reduced
model for control of nonlinear systems. Results obtained in this part were
published in [49, 68, 69, 70].

Conclusions summarizing the results of the thesis and subjects for the
further research are drawn in the last chapter.
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Chapter 2

System Identification

2.1 Introduction

Constructing models from observed data is a fundamental element in sci-
ence. In the control area the techniques are known under the term System
Identification.

Definition 1 The determination on the basis of input and output, of a sys-
tem (model) within a specified class systems (models), to which the system
under test is equivalent (in terms of a criterion)[82].

The significance and difficulty of estimating nonlinear systems is widely
recognized. System Identification theory was developed around 1960 based
on induction of the state-space representation by Kalman and Bartram for
model-based control. Further Åström and Bohlin introduced the AutoRe-
gressive Moving Average with eXogenous inputs (here and after ARMAX)
model. That led to the predominance of using the method based on pre-
diction error identification.

When as such identification is not the goal, so it considered as a de-
sign problem such, that the estimated model is used for specific purpose.
For example, one of the main motivations for model building are control
applications based on model-based control design operating in closed loop
[73].

2.2 Identification for Control

From the control point of view system identification is an exercise in esti-
mating the best possible approximate model within the set of competing
representations, rather than a search for the ”true” model. Exact model of
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the system is optimal for all kind of applications, but on the other hand in
most real life cases we deal with approximation of the ”true” system, thus
the quality of the model should depend on the destined application. The
reasons for the development of the goal-oriented identification are: high
performance control can often be achieved by simple models in condition if
basic dynamical features are reflected accurately; identification for control
led to iterative model and controller tuning tools that were intuitive and
easy implement.

If design of a controller is based on the identified model, then what really
matters is the performance achieved by this model-based controller on the
”true” system, rather than the distinctive quality of the model. Thus, the
fit of the model for controller design depends both on controller which will
be used in current application, and on the plant/model mismatch. In prac-
tice, the true system is unknown, the model is unknown at the identification
design stage, and the controller that will be implemented is unknown as it
depends on that model. What is commonly known during identification for
control is the control performance goal, in addition some prior knowledge
about the process/plant may be available. Thus, in automation community
came to the conclusion that the identification criterion should be a func-
tion of the control performance criterion. This led to the point, that for
most control performance objectives, identification should be performed in
closed loop [16, 17, 73].

Thus, the control-oriented identification problem can be formulated as
follows

Based on a given control performance goal, design the identification in
such way that the performance achieved by the model-based controller on
the process is as high as possible [17].

The system identification problem can be divided into number of sub-
problems: input data selection, (possible) feedback configuration, data
length, model structure selection, identification criterion, validation cri-
terion. Once experiment design issues are settled, arises the next problem
- choice of the model structure. This is a crucial step in the identifica-
tion process, therefore this step must be done with care [45]. One of the
possibilities are shown in chapter 6.
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2.3 Plant Identification by Neural Networks

Sometimes the use of analytical approach is complicated or impossible in
principle, then the numerical methods may solve the task. Identification
by neural networks has many similarities with classical identification. Fre-
quently, model structures are directly inspired by the classical algorithms.
On the other hand, generality of the structure is very important in case
of identification based on neural networks. The main difference lies on the
fact that the results of this method is almost entirely derived from the
data, rather than the knowledge needed to design structure for a specific
problem. As data for identification is collected with the limited accuracy
(from the available sensors), the restrictions imposed to the structure are
not known. Thus, a critical part of the identification is to find which terms
should be included in the model. In general, engineers need to find as sim-
ple as possible model with good performance that fits the control criteria,
see [26], [29],[44] and [45].

There are two types of control: direct and indirect control. In the case
of direct control the neural network controller is implemented in control
loop in such a way, that tries identify mappings between the reference
signal and the output of the system. In other words parameters of the
controller are directly adjusted to minimize the error of the control. in
case of indirect control first of all parameters of the model of the plant are
estimated, further the parameters of the controller are estimated based on
both the model of the plant and the actual plant output[44] and [78]. In
this thesis the second approach is considered.
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Chapter 3

Mathematical models

Further our work will be based upon mathematical models of a process.
These models can be constructed from a physical and chemical nature pro-
cesses or can be abstract. The study of dynamical properties of processes
as well as whole control systems give rise to need to look for effective means
of differential and difference equation solutions [41].

3.1 State-space models

Introduction

Investigation of processes as dynamical systems is based on theoretical
state-space balance equations. If a model of the process is described by
the state-space equations, we speak about state-space representation [41].
Many books largely devoted to the subject and the continuing emphasis
the evidence of the importance of the state-space approach. The key factor
is that in spite of the transfer functions describing the relation between the
inputs and outputs of the system, such models are not always suitable for
some dynamic analysis and control applications. On the other hand, state
models are often the basis of feedback design and stability analysis because
their implementation for many systems arises more naturally from govern-
ing laws and reveals the behavior inside the system: describes dynamic
numerical relations between system inputs, outputs and state variables in
the time domain. Of cause, generally state-space variables can also be
abstract. Also transfer functions do not lay bare the behavior inside the
system: unobservable unstable modes. In addition to this the state-space
formulation seems to be the most elegant way of dealing with general-
izations like nonlinear Multi-Input Multi-Output (here and after MIMO)
systems. Also this formulation can easily be extended to the time-varying
case. As a result, the general methodologies of system analysis and design
using state-space models can be applied to a wide variety of the problems
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[14, 58, 67].

SISO State-space systems

The nonlinear Single-Input Single-Output (here and after SISO) state-space
models can be modeled by a finite number of coupled first-order ordinary
differential equations

ẋ1(t) = f1(x1(t), . . . , xn(t), u(t))
ẋ2(t) = f2(x1(t), . . . , xn(t), u(t))

...
ẋn(t) = fn(x1(t), . . . , xn(t), u(t))
y(t) = h(x1(t), . . . , xn(t), u(t))

(3.1.1)

in the continuous-time case, or by a finite number of first-order difference
equations

x1(k + 1) = f1(x1(k), . . . , xn(k), u(k))
x2(k + 1) = f2(x1(k), . . . , xn(k), u(k))

...
xn(k + 1) = fn(x1(k), . . . , xn(k), u(k))

y(k) = h(x1(k), . . . , xn(k), u(k))

(3.1.2)

in the discrete-time case. In both cases u ∈ IR is the scalar input variable,
x ∈ IRn is the n-dimensional state vector, y ∈ Y is the scalar output vari-
able, n is a nonnegative integer, f and h are real analytic functions defined
on IRn × IR and IRn respectively.

Throughout the work we consider analysis and development of the con-
trol applications based on neural network models. Since all models based on
neural networks are discrete-time models, then only discrete-time models
will be considered further.

MIMO State-Space systems

A nonlinear MIMO control system can be described by the sate equations

x1(k + 1) = f1(x(k), u(k))
x2(k + 1) = f2(x(k), u(k))

...
xn(k + 1) = fn(x(k), u(k))

y(k) = h(x(k), u(k))

(3.1.3)

where x(k) ∈ X ⊂ IRn, u(k) ∈ U ⊂ IRm, y(k) ∈ Y ⊂ IRm and the maps f
and h are analytic functions of their arguments.
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3.2 Input-Output models

MIMO systems in the input-output form are described by the set of higher
order difference equations.

NARX models

All input-output models considered here belong to the class of Nonlinear
AutoRegressive with eXogenous inputs (here and after NARX ) type sys-
tems. This structure models the input-output relationship as nonlinear
difference equation of the following form

yi(k + ni) = fi(yα(k), . . . , yα(k + niα − 1), uβ(k), . . . , uβ(k + θiβ),

α, β = 1, . . . ,m), i = 1, . . . ,m (3.2.4)

where u = (u1, . . . , um) ∈ U ⊂ IRm is an input variable, y = (y1, . . . , ym) ∈
Y ⊂ IRm ia an output variable and fi are real analytic functions. We as-
sume that the system is strictly proper, i.e. θiβ < ni, for i, β = 1, . . . ,m,
niα < min(ni, nα) and n := n1 + · · ·+ nm is the order of the system.

Such class of models is suitable for modeling both the stochastic and de-
terministic components of a system and capable of describing a wide variety
of nonlinear systems [8, 59, 38]. Unfortunately, despite the high accuracy
of such kind of models, this class has some drawbacks. First of all, it is not
always realizable in classical state-space form, secondly, it is not always lin-
earizable by feedback. Thus, to obtain the above mentioned properties we
could use the Additive NARX (here and after ANARX ) models proposed
in [11] and [37].

ANARX models

The main structural property of the ANARX model is that it has all time
instances separated.

y(k) = f1(y(k − 1), u(k − 1)) + · · ·+ fn(y(k − n), u(k − n)) =

=
n∑
i=1

fi(y(k − i), u(k − i)). (3.2.5)

That gives the main advantage over the original NARX model: the ANARX
structure is always realizable in the classical state-space form without any
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additional calculations [37]

x1(k + 1) = x2(k) + f1(x1(k), u(k))
x2(k + 1) = x3(k) + f2(x1(k), u(k))

...
xn−1(k + 1) = xn(k) + fn−1(x1(k), u(k))
xn(k + 1) = fn(x1(k), u(k))

y(k) = x1(k)

(3.2.6)

where n corresponds to the order of the system. The main feature of this
representation that it is given in the minimal form: it is accessible and
observable. All that provide possibility to use ANARX structure for state-
space control of a wide class of nonlinear systems.

24



3.3 Linearization via State Feedback

Feedback

Feedback is a key notion in the control theory. Most of the controllers (but
not all of them) use state or output feedback to calculate a control signal.
Feedback is usually used to reduce some uncertainties of the control system
and it is the only tool to stabilize an unstable systems. There are different
kinds of feedback. For example, static feedbacks make instant relations
between the output (or state) and input variables, while dynamic feedbacks
bring additional dynamics into the control loop. Output feedbacks use only
output information to generate input, while state feedbacks process the
whole state vector [25].

Linearization

The aim of the linearization is to apply suitable nonlinear static state feed-
back to a nonlinear system in order to obtain a linear one in the new coor-
dinates and between the original output and the newly introduced input [25].

Thus, after linearization any controller design method, applicable for
linear systems, can be used for control. This technique is a basic for non-
linear control but it is limited due to restrictions imposed by relative degree.

Definition 2 System (3.1.3) is linearizable by a state coordinate change,
if there exists a smooth diffeomorphism T : X → X which transforms given
system to a reachable linear system, in the variable ζ = T (x) :

ζ(k + 1) = Aζ(k) +Bu(k), ζ ∈ X.

Definition 3 System (3.1.3) is a static-feedback linearizable, if there exists
a smooth map γ : X × U → U such that feedback u = γ(x, v) results in a
closed-loop system

x(k + 1) = f(x(k), γ(x(k), v(k))), x(k) ∈ X, v(k) ∈ U

which is linearizable by a state coordinate change.

Dynamic state feedback amounts to the use of a controller with dynam-
ics

z(k + 1) = g(x(k), z(k), v(k)), z ∈ Xc ⊂ IRn, v ∈ U (3.3.7)

and smooth map h : X × Xc × U → U , which is combined with system
(3.1.3) yields the closed-loop system with extended state-space X ×Xc

x(k + 1) = f(x(k), h(x(k), z(k), v(k)))
z(k + 1) = g(x(k), z(k), v(k)).

(3.3.8)
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Definition 4 System (3.1.3) is dynamic-feedback linearizable, if there ex-
ists a smooth dynamic feedback (3.3.7) which yields a closed-loop system
(3.3.8) that is linearizable by a state coordinate change.
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3.4 Artificial Neural Networks

The contributions of present work are made in the domain of control and
identification of nonlinear systems. The reason to use the neural networks
in principle makes it unnecessary to spend much effort on system modeling
in cases where such modeling is difficult. In neurocontrol the unknown
nonlinear system dynamics are approximated by linearly or nonlinearly
parameterized multilayer neural networks [73].

Introduction

An artificial neural network, usually called Neural Network (here and af-
ter NN ), is a mathematical model for information processing based on a
connectionist approach to computation which is generally has the following
features:

• a set of processing units (neurons) where each has a certain activation
level, which is equivalent to the output of the unit;

• weighted interconnections between various processing units which de-
termine how the activation of one unit leads to input for another unit;

• as activation rule which acts on the set of input signals at a unit to
produce a new output signal or activation;

• optionally, a learning rule that specifies how to adjust the weights for
a given input/output pair.

There are different types of activation functions: threshold, piecewise-
linear, sigmoid. Since in this thesis the sigmoid activation functions are
used, then we consider it in detail.

Definition 5 A Ck-sigmoid function σ : IR→ IR is a nonconstant, bounded,
and monotone increasing function of class Ck(continuously differentiable up
to order k) [27].

In other words it is a smooth nonlinearity with saturation range from 0 to
+1 or from −1 to +1.

Two or more neurons can be combined in a layer, and a particular
network could contain one or more such layers. The layers of multilayer
network play different roles: input, output and all others layers called hid-
den layers.
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The above mentioned structure can be organized differently from the
signal flow point of view. If input and intermediate signals are always prop-
agated forward the system is called static or feedforward network. Feedfor-
ward networks are widely used in pattern recognition and approximation
applications. In dynamic or recurrent networks, the output depends not
only on the current input of the network, but also on the current or pre-
vious inputs, outputs or states of the network. The signals are reused,
thus recurrent networks can use their internal memory to process arbitrary
sequences of inputs [27, 29].

Approximation with Feedforward Networks

The problem of feedforward neural modelling can be formulated as follows:
find a representation of continuous mapping f : K → IRk by means of
known functions and finite number of real parameters, such that the rep-
resentation yields the uniform approximation of f over K. Where K is
uncountable compact subset of IRkn+rm, k and r are the number of out-
puts and inputs correspondingly modeled by NN, m and n are input and
output orders correspondingly. Thus, mathematically, this is an approxi-
mation problem: a possibility to present f by some standard functions with
an arbitrary accuracy. It should be mentioned, that in our case f is given
in the next form (Uk, Yk); hence we only have to interpolate the continuum
f(K) from the samples (Uk, Yk) [29].

Thus, according to the Stone-Weierstrass theorem sigmoid functions are
suitable for uniform approximation of an arbitrary continuous mapping. In
order to present this theorem we should set some definitions before.

Definition 6 A set A of functions from K ⊂ IRkn+rm to IR is called an
algebra of functions iff ∀f, g ∈ A and ∀γ ∈ IR

1. f + g ∈ A;

2. fg ∈ A;

3. γf ∈ A.

Definition 7 Let B be the set of all functions which are limits of uniformly
convergent sequences with terms in A, a set of functions from K ⊂ IRkn+rm

to IR. Then B is called the uniform closure of A.

Definition 8 A set A of functions from K ⊂ IRkn+rm to IR is said to
separate points on K iff ∀x1, x2 ∈ K x1 6= x2 ⇒ ∃f ∈ A, f(x1) 6= f(x2).

Definition 9 Let A be a set of functions from K ⊂ IRkn+rm to IR. We say
that A vanishes at no point of K iff ∀x ∈ K∃f ∈ A, such that f(x) 6= 0.
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Theorem 1 (Stone-Weierstrass) Let A be an algebra of some continuous
functions from a compact K ⊂ IRkn+rm to IR, such that A separates points
on K and vanishes at no point of K. Then uniform closure B of A consists
of all continuous functions from K to IR.

Therefore the theorem is a criterion which given functions have to satisfy
in order to demonstrate approximation capabilities.

Theorem 2 (G. Cybenko) Let φ be any continuous sigmoidal function.
Then finite sums of the form

G(x) =
N∑
j=1

αjφ(wTj x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there
is a sum, G(x), of the above form, for which

|G(x)− f(x)| < ε for all x ∈ In.

Where In denotes the n-dimentional unit cube, [0, 1]n, the space of continu-
ous functions on In is denoted by C(In). Theorems 1 and 2 show that neural
networks with one hidden layer and an arbitrary continuous sigmoidal func-
tion can approximate continuous functions with arbitrary accuracy. In [12]
it is proven that no constraints are placed on the number of neurons or the
size of the weights.

Feedforward Neural Networks with External Feedback

Control is concerned with dynamic systems. Thus, besides inputs and
outputs dynamic system needs some states to characterize the behavior of
the controlled system. This leads to the idea of using a feedback on the
structure of the NN. In this work a standard FeedForward Neural Network
(here and after FFNN ) is taken and external feedback is implemented to
it.

External feedback is sufficient to represent all dynamical systems [26].

The next structure of neural network is obtained as represented in figure
3.1.

Models of nonlinear systems based on that structure are called Neural
Network based NARX models (here and after NN-NARX ). Typical SISO
NN-NARX model is given by

y(k + n) =

l∑
i=1

ciφ(wi,1y(k) + · · ·+ wi,ny(k + n− 1)+

+ wi,n+1u(k) + · · ·+ wi,n+mu(k +m− 1)), (3.4.9)
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Figure 3.1: Representation of a dynamic model by FFNN.

where u ∈ IR is a real-valued scalar input, y ∈ IR is a real-valued scalar
output, φ(·) is a saturation-type smooth nonlinear function, l is the number
of hidden neurons and ci, wi are synaptic weights.
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3.5 Genetic Algorithms

Introduction

Part of this work is devoted to the system identification problem from
the standpoint of control system design. The neural networks of specific
structure are used to obtain a suitable model for future controller design.
Correct choice of the NN-model improves the control quality of the non-
linear processes. Hence, for the best model identification a set of neural
networks must be trained. Moreover, the main problem to obtain a good
model using neural networks is to find its optimal structure. These two
problems can be solved simultaneously using Genetic Algorithm (here and
after GA). This leads to the point, that structure of the neural network
could be defined by the genetic algorithm, which finds optimal NN param-
eters and dependencies between the inputs of dynamic model and outputs
of the controlled system.

Basic steps of Genetic Algorithm

GAs are numerical optimization algorithms inspired by evolution. GAs
are modeled on the principles of natural genetic systems, where genetic
information or potential solution is encoded in structures called chromo-
somes. An implementation of a genetic algorithm begins with a population
of chromosomes. Each individual or chromosome has an associated fitness
value, which indicates its degree of goodness with respect to the solution it
represents. GAs search from a set of points, called a population. Various
biologically inspired operators like selection, crossover and mutation are
applied on the chromosomes in the population to yield potentially better
solutions. And only those individuals in a population who are better suited
to the environment can survive and generate offspring [1, 62, 75].

The studies made in present work are based on the Canonical Genetic
Algorithm. The first step of the genetic algorithm implementation is a gen-
eration of an initial population, the size of which may be constant or may
vary from generation to another. In the canonical GA a binary string of the
finite length, which refers to a coded possible solution, is a member of pop-
ulation called chromosome. The advantages of the binary representation
lie in its simplicity and generality. It is straightforward to apply classical
crossover and mutation to binary strings. On the next step each string is
evaluated and a fitness value assigned to it. The frequently used operators
are selection, crossover and mutation. Selection is applied to the current
population in order to create the intermediate one. To create the next pop-
ulation several operations should be applied. First of all, the recombination
of parts of the selected chromosomes (called crossover) is needed to derive
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the offspring from the intermediate population. After that a mutation takes
place. The process of going from the current population to the next one
forms one generation. The schematic diagram of the GA is shown in figure
3.2.

Initial
population

Evaluation

Terminate

Selection
Output
solution

Genetic
operations

Population

yes

no

Figure 3.2: Basic steps of GA

There are several parameters that should be tuned in GA. These are the
population size, the length of a chromosome, the probabilities of perform-
ing crossover and mutation, the termination criteria, and the population
replacement strategy. These parameters are problem dependent and no
guidelines for their choice could be made.

32



Part II

State-Space Representation
and Feedback Control
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Chapter 4

State-space control of
Nonlinear Systems Identified
by ANARX and Neural
Network based SANARX
Models

Control is concerned with dynamical systems, which means that states of
an identified model depend on both the inputs and the outputs of the sys-
tem. For the modeling the most commonly used structure is NARX, which
is based on determination of the regressors (see Chapter 3.2 and 3.4). Also
during the resent years subclass of NARX architectures NN-based ANARX
type models have shown their applicability to a wide range of problems,
such as rear-motion modeling of truck-trailer [3], electric generator [50],
heater, some chemical processes [54] and modeling of surgeon hand move-
ments during surgery [48].

From the theoretical point of view NARX models may better represent
real world systems. However, experience has shown that in many cases
the performance of NN-based ANARX sructure models is close enough to
NN-based NARX model of the same order. A more detailed comparison of
the performance of these two models can be found in [47] and [54].

In conclusion we can say that the majority of the general class of me-
chanical systems described by the following equation (4.0.1) can be approx-
imated by NN-based ANARX structure to obtain the state-space represen-
tation [79].

M(q, σ)q̈ + C(q, q̇, σ)q̇ +G(q, q̇, σ) = u, (4.0.1)

35



where q(t) ∈ IRm is the vector of generalized coordinates, M(q, σ) is inertia
matrix, the term G(q, q̇, σ) represents all external generalized forces and
term C(q, q̇, σ) depends on inertia matrix M(q, σ).

4.1 Author’s contribution

The main contribution of this chapter is devoted to the implementation of
the state-space based algorithm for control of nonlinear SISO and MIMO
systems.

- Capabilities of the ANARX and NN based ANARX structure for identifi-
cation of the nonlinear systems to obtain a state-space representation
are demonstrated;

- All the necessary constraints on the model for implementation of the
proposed control technique are listed;

- A state-feedback controller is presented for a class of nonlinear systems
identified by ANARX or NN-SANARX models;

- The effectiveness on the proposed method is shown on examples;

- Considered technique is compared with other works.

4.2 ANARX

For the most real-world nonlinear systems it is very difficult to find the
state-space representation directly from the identification procedures. Ac-
cording to this, most often high order systems written by nonlinear input-
output difference equations, obtained on the basis of sampled experimental
data. In many cases arbitrary structured NARX (see section 3.2) model
does not necessarily have a state-space realization. Nevertheless, practically
all existing control theory for nonlinear systems are based on a state-space
description. Thus, in [37] and [55] a class of NARX models was presented
that always admit classical state-space realization. Hereinafter, speaking
about realizability, we mean finding the minimal: accessible and observ-
able realization. Remarkable property of ANARX model that it is always
linearizable by dynamic output feedback.

In many situations the ANARX model is obtained from experimen-
tal data using the identification procedures or neural networks. Let the
ANARX model of the controlled system be given by the state-space repre-
sentation (3.2.6). If dynamics of the system on the previous time steps are
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unknown the initial states of the model can be found as follows
xn(0) = fn(y0, u0)

xi(0) = xi+1(0) + fi(y0, u0), 1 < i < n

x1(0) = y0,

(4.2.2)

then assuming that all the states in the previous time steps are zeros. We
suppose y(0) = y0, u(0) = u0 and the mentioned below assumptions are
imposed on the system:

Assumption 1 Relative degree of the system r = 1

Assumption 2 Order of the controlled system n ≥ 2.

Relative degree of the discrete-time system is often called the time delay
or delay between input and output of the system. In other words it is the
number of time steps needed to calculate output of the system from its
input.

It comes from the (3.2.6) that x1(k) = y(k). We formulate a control
task as y(k + 1) = ν(k). Thus, it can be linearized by the following state
feedback algorithm{

x1(k) = y(k)

y(k + 1) = ν(k)
⇒ x1(k + 1) = ν(k), (4.2.3)

where ν(k) is the desired output of the system (reference signal). Control
signal can be found by solving the following equations. First, according to
(3.2.6) state x1 can be found as shown further

x1(k + 1) = x2(k) + f1(x1(k), u(k)). (4.2.4)

Substituting (4.2.3) into the previous equation, we set

ν(k) = x2(k) + f1(x1(k), u(k)) (4.2.5)

or
ν(k)− x2(k) = f1(x1(k), u(k)). (4.2.6)

From the (4.2.6) it follows that the control signal can be calculated as

u(k) = F (y(k), ν(k), x2(k)). (4.2.7)

Thus, dynamic feedback controller consists of dynamic state-space model
(state-space representation of ANARX class input-output model) and static
state linearization. The structure of the control system is shown in figure
4.1. In that case assuming that the state-space model is perfect, we can
say that according to (4.2.3), the closed loop system is a first order system.
The above described control technique was applied to control of nonlinear
SISO systems in [72]. Consider the following numerical example.
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Figure 4.1: Structure of the control system

Numerical example 1

A model of the liquid level system of interconnected tanks [5] is presented
by the following input-output equation

y(k + 3) = 0.43y(k + 2) + 0.681y(k + 1)− 0.149y(k) +

+0.396u(k + 2) + 0.014u(k + 1)− 0.071u(k)−
−0.351y(k + 2)u(k + 2)− 0.03y2(k + 1)−
−0.135y(k + 1)u(k + 1)− 0.027y3(k + 1)−
−0.108y2(k + 1)u(k + 1)− 0.099u3(k + 1). (4.2.8)

This third order system is given in the form defined by ANARX struc-
ture, so according to [34] and [36] it can be directly realized in the classical
state-space form

x1(k + 1) = x2(k) + 0.43x1(k) + 0.396u(k)− 0.351x1(k)u(k)
x2(k + 1) = x3(k) + 0.681x1(k) + 0.014u(k)− 0.03x2

1(k)−
−0.135x1(k)u(k)− 0.27x3

1(k)− 0.108x2
1(k)u(k)−

−0.099u3(k)
x3(k + 1) = −0.149x1(k)− 0.071u(k)

y(k) = x1(k)
(4.2.9)

By using state-space representation (4.2.9), ANARX model based dy-
namic feedback controller can be represented by the following equations

u(k) =
ν(k)− x2(k)− 0.43y(k)

0.396− 0.351y(k)
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x2(k + 1) = x3(k) + 0.681x1(k) + 0.014u(k)− 0.03x2
1(k)−

−0.135x1(k)u(k)− 0.27x3
1(k)−

−0.108x2
1(k)u(k)− 0.099u3(k)

x3(k + 1) = −0.149x1(k)− 0.071u(k)

According to the initialization algorithm (4.2.2) initial states were obtained
as x(0) = [0 0 0]T . One of the major advantages of the state-space
control is its speed. As you can see in figure 4.2, response of the state-
space controller is much faster than response based on the dynamic output
feedback algorithm of the same model.

Figure 4.2: Comparison of the two approaches

Closed loop control system was simulated with piece-constant reference
signal. The results of this simulation are depicted in figure 4.3. It is easy
to see that the output of the model perfectly follows the reference signal.

4.3 NN-ANARX

The realizability problems of ANARX models are caused by the fact that
this is very restricted class. In the most cases using classical identification
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Figure 4.3: Control of the liquid level system interconnected tanks

procedures there is no way to separate (decompose) the different time steps.
One of the possible solutions is to use a new subclass of NN-Based models.

This model called Neural Networks based Additive NARX Model (here
and after NN-ANARX ) was shown in [10, 34, 35]. This type neural network
has a restricted connectivity: a hidden layer consists of n parallel sub-
layers corresponding to the n-th order of the model. Each i-th sub-layer
approximates the function fi from (3.2.5). Thus, model based on neural
networks can be formalized in the following form

y(k) =
n∑
i=1

Ciφi(Wi · z(k − i)), (4.3.10)

where φi(·) is an activation function of neurons of the corresponding sub-
layer, Wi and Ci are matrices of synaptic weights of inputs and outputs of
i-th sub-layer and for SISO systems z(k) = [y(k), u(k)]T , see figure 4.4.

From (3.2.5) and (3.2.6) it follows that (4.3.10) also can be written in
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Figure 4.4: Representation of NN-ANARX structure

the state-space form as

x1(k + 1) = x2(k) + C1 · φ1(W1 · [x1(k), u(k)]T )
x2(k + 1) = x3(k) + C2 · φ2(W2 · [x1(k), u(k)]T )

...
xn−1(k + 1) = xn(k) + Cn−1 · φn−1(Wn−1 · [x1(k), u(k)]T )
xn(k + 1) = Cn · φn(Wn · [x1(k), u(k)]T )

y(k) = x1(k)

(4.3.11)

On the basis of the above mentioned if ANARX model is given in the form
of neural network (4.3), equations (4.2.4)-(4.2.6) can be rewritten by using
parameters of the neural network

x1(k + 1) = x2(k) + C1 · φ1(W1 · [x1(k), u(k)]T ), (4.3.12)

ν1(k) = x2(k) + C1 · φ1(W1 · [x1(k), u(k)]T ), (4.3.13)

ν1(k)− x2(k) = C1 · φ1(W1 · [x1(k), u(k)]T ). (4.3.14)

Calculation of the inverse function φ1 of the first sub-layer (4.3.14) is not
an easy task. Several techniques for doing this were suggested. First of all,
Newton’s method (or Newton-Raphson method) can be used for solving the
equation or system of equations (4.3.14) with respect to variable(s) u(k)
by the methods of calculus, see [3] and [54]. Additionally to previous tech-
nique an alternative method was proposed in [52]. Control problem can be
solved by imposing one more restriction on NN-ANARX structure, namely
the first sub-layer is linear or in other words φ1 is a linear transfer function.
Another possibility is to train an additional simple static nonlinear neural
network approximating function, which is used to estimate the vectors of
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controls, see [53] for details.

The simplest and the fastest of them is to use Neural Network based
Simplified NN-ANARX structure (here and after NN-SANARX ). In that
subclass of NN-ANARX model [52] first layer is linear, thus function (4.3.10)
can be rewritten in the following form

y(k) = C1 ·W1 · z(k − 1) +
n∑
i=2

Ci · φi(Wi · z(k − i)). (4.3.15)

Such a restriction guarantees that control u(k) can be easily calculated
from the system of linear equations. On the basis of (4.3.15), the need to
use a model of the second order or higher is apparent.

Let us now define the following matrix

D := C1 ·W1. (4.3.16)

Since Z(k) = [y(k), u(k)]T , then matrix D can be divided into 2 parts
D = [D1 D2] so that

C1 ·W1 · z1(k) = D · z(k) = D1 · y(k) +D2 · u(k). (4.3.17)

From (4.3.17) it follows that control signal can be calculated as

u(k) = D−1
2 (ν(k)− x2(k)−D1 · y(k)). (4.3.18)

Notice, in the case of SISO systems D ∈ IR2 is a 2×1 vector and, as result,
d1, d2 ∈ IR are real numbers. It is obvious, that described technique can be
applied, only if after training of the neural network d2 6= 0.

Before applying the proposed technique to control of nonlinear MIMO
systems, consider the next numerical example.

Numerical example 2

The case under study is the control of reactant concentration in an
exothermic Continuously Stirred Tank Reactor (here and after CSTR). [32],
[51] provide an example of CSTR model given by input-output equation

y(k + 2) = 0.7653y(k + 1)− 0.231y(k) + 0.4801u(k + 1)−
−0.6407y2(k + 1) + 1.014y(k)y(k + 1)−
−0.3921y2(k + 1) + 0.592y(k + 1)u(k + 1)−
−0.5611y(k)u(k + 1).

(4.3.19)
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As it can be seen, because of the several terms (including the last one) in
(4.3.19), the model does not belong to the class of ANARX models. It
means that we cannot use the state feedback algorithm (4.2.7) directly.

Consider proposed technique, we treat this as our unknown dynamic
system which can be approximated by the NN-SANARX model. To ob-
tain such a model defined by equation (4.3.15), system (4.3.19) was simu-
lated with uniformly distributed random signal. We trained neural network
with two sub-layers, corresponding to the second order model (n = 2) and
with three neurons on sub-layers of the hidden layer. Levenberg-Marquardt
(here and after LM ) algorithm was used to perform the training. The lin-
ear activation function was chosen on the first sub-layer, with respect to
the NN-SANARX structure, and the hyperbolic tangent sigmoid activation
function on the second sub-layer.

Remark 1 In the application to simplify the calculations biases are pro-
posed to be equal to ”0”. But this algorithm can be always extended to the
case based on neural network with nonzero bias values.

Identified parameters of the model (4.3.15) have the following values

W1 =

 −0.7761 0.5588
0.2931 0.4308
0.2088 0.7890

 ,
W2 =

 0.0193 −0.8089
0.0205 −0.8086
0.0406 0.6729

 ,
C1 =

[
−0.2261 0.0339 0.7777

]
,

C2 =
[

1.4446 1.5765 3.5949
]
.

According to equation (4.3) now we can write the state-space representation
of the model (4.3.19) as follows

x1(k + 1) = x2(k) + C1 ·W1 · [y(k), u(k)]T

x2(k + 1) = C2 · φ2(W2 · [y(k), u(k)]T )
y(k) = x1(k).

Using algorithm (4.2.2) for calculation of the initial states, we obtain

x(0) =

[
0

C2 · φ2(W2 · [0 0]T )

]
.

Control signal for nonlinear discrete-time system was calculated by equation
(4.3.18) using obtained parameters of the neural network

u(k) =
ν(k)− x2(k)− 0.3478y(k)

0.5019
.
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Closed loop control system was simulated with piece-constant reference
signal. The result of the simulation is shown in figure 4.5.

Figure 4.5: Control of the of reactant concentration in an exothermic CSTR

It can be seen that strong restrictions imposed by NN-SANARX struc-
ture with one linear sub-layer do not cause drawbacks in quality of identi-
fication and control.

Finally, the results in this work were compared to other technique’s
results. First of all it can be seen that using our algorithm even if concen-
tration value is 0.9, simulations seemed to indicate that the system is stable
and has a fast response to a set point change. Unlike the previous works
[32] and [51] where concentration value 0.8 was set as a point of boundary
of the robust stability region. Also it should be mentioned that good per-
formance of other techniques were obtained for a set point change 0.2 of
reactant exit concentration. As it is shown in figure 4.5 even if reference
signal changes drastically from 0.1 up to 0.9, controlled system behavior is
in stability limits and has a good performance.

4.4 MIMO systems

Above described technique can be applied to the more general class of
nonlinear MIMO systems. Thereby in that case y(k), u(k) and z(k) in
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equation (4.3.15) are the following vectors:

u(k) = [u1(k), . . . , um(k)], (4.4.20)

y(k) = [y1(k), . . . , ym(k)], (4.4.21)

z(k) = [y1(k), . . . , ym(k), u1(k), . . . , um(k)]. (4.4.22)

The structure of the corresponding neural network based model is depicted
in figure 4.6.
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Figure 4.6: Representation of NN-ANARX structure for MIMO systems

Wi ∈ IRli×(m+m) and Ci ∈ IRm×li are input and output matrices of
synaptic weights. Assume that number of inputs equals to the number of
outputs.

In case of MIMO system the same problem raises during the applica-
tion of the NN-based ANARX, namely complexity of the calculation of the
control signal from the dynamics of the controller.

First of all, Newton’s method [3] in case of MIMO systems has sev-
eral drawbacks: high complexity of applying control and slow convergence
speed.

First submethod of Taylor series based approach, see [4], can be used
to control very restricted class where a number of inputs, first hidden layer
and outputs has to be the same. Also process of finding solutions of each
polynomial equation with arbitrary degree of accuracy in some situations
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may become costly. Second method has also its disadvantages: in case if
approximation order of the hidden layer activation function greater than
one - solution of the system of polynomial equations becomes an extremely
difficult task.

In analytical approach, see [2] the number of inputs, neurons of first
hidden layer and outputs also has to be equal, in addition hidden layer
activation function has to be invertible.

More preferable techniques are additional static neural network based
approach and the NN-based Simplified ANARX method. The main dis-
advantage of the first technique is an additional time required to train
another static neural network. In the second case additional restrictions
are imposed: linearity of the fist sub-layer and system should be with equal
number of inputs and outputs.

Based on the foregoing, if imposed by the NN-SANARX approach con-
straints are feasible, then this technique should be used as the most easiest
one.

Therefore for this class of nonlinear MIMO systems identified by NN-
SANARX model, it follows from definition (4.3.16) that D can be divided
into two matrices D1 ∈ IRm×m and D2 ∈ IRm×m. Above mentioned crite-
rion guarantees that D2 is a square matrix. If matrix D2 is a nonsingular,
system has a unique solution, which can be found as

[u1(k), . . . , um(k)]T = D−1
2 ([ν1(k), . . . , νm(k)]T−

− C2 · φ2(W2 · z(k))−D1 · [y1(k), . . . , ym(k)])

(4.4.23)

Consider the following numerical example of MIMO NN-SANARX struc-
ture based identification and control.

Numerical example 3

A nonlinear MIMO discrete-time system [39] and [61] is presented by the
following input-output equation

y1(k + 1) = 0.4y1(k) +
u1(k)

1 + u2
1(k)

+ 0.2u3
1(k) + 0.5u2(k)

y2(k + 1) = 0.2y2(k) +
u2(k)

1− u2
2(k)

+ 0.4u3
2(k) + 0.2u1(k).

(4.4.24)
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During the system simulation a set of input-output data was obtained.
On the basis of the data a neural network of the following NN-SANARX
structure was trained with LM algorithm

[y1(k), y2(k)]T = C1 ·W1 · [y1(k − 1), y2(k − 1), u1(k − 1), u2(k − 1)]T+

+ C2 · φ2(W2 · [y1(k − 2), y2(k − 2), u1(k − 2), u2(k − 2)]T )

(4.4.25)

The neural network has two sub-layers corresponding to the second order
of the model (n = 2). Thus the necessary condition for usage of the NN-
SANARX model and design of the controller, as it was mentioned in section
4.2, is satisfied. Activation function φ2 of the second sub-layer with 5
neurons (l2 = 5) was chosen as hyperbolic tangent. The corresponding
matrices of synaptic weights were obtained

W1 =

[
−0.6759 2.7452 0.1107 2.1674
1.5531 −0.3622 0.9593 0.3234

]
,

W2 =


6.8147 −5.8647 −4.5813 0.6941
0.0579 −0.1924 −0.0200 −0.0218
−0.2389 0.1834 −0.5898 −0.0125
−0.0023 0.0032 −0.0038 −0.0188
0.2430 −0.1850 0.6676 0.0117

 ,

C1 =

[
0.1150 0.7792
0.3836 0.1638

]
,

C2 =

[
−0.0085 1.8092 7.8487 17.7184 6.2815
−0.0002 1.4234 0.0607 35.5487 0.0668

]
,

Now according to the proposed technique state-space representation o f the
model should be written down

x11(k + 1) = x21(k) + C11 ·W1 · [y1(k), y2(k), u1(k), u2(k)]T

x12(k + 1) = x22(k) + C12 ·W1 · [y1(k), y2(k), u1(k), u2(k)]T

x21(k + 1) = C21 · φ2(W2 · [y1(k), y2(k), u1(k), u2(k)]T )

x22(k + 1) = C22 · φ2(W2 · [y1(k), y2(k), u1(k), u2(k)]T )

y1(k) = x11(k)

y2(k) = x12(k)

(4.4.26)

Foregoing system of equations (4.4.26) was obtained in such form which is
easy to use in control application. Further initial states calculations were
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made using algorithm (4.2.2)

x(0) =


0
0

C21 · φ2(W2 · [0 0 0 0]T )
C22 · φ2(W2 · [0 0 0 0]T )

 .
By using these parameters and equation (4.4.23) the following controller,
based on state-space feedback algorithm, was designed

D =

[
1.1324 0.0334 0.7602 0.5012
−0.0049 0.9938 0.1996 0.8845

]
,

As the deal with Two Input Two Output (here and after TITO) system,
it follows from (4.3.17) that

D1 =

[
1.1324 0.0334
−0.0049 0.9938

]
, D2 =

[
0.7602 0.5012
0.1996 0.8845

]
.

D2 is nonsingular square matrix, hence it can by applied to control signals
calculations[

u1(k)
u2(k)

]
= D−1

2 ·
([

ν1(k)
ν2(k)

]
−
[
x21(k)
x22(k)

]
−D1 ·

[
y1(k)
y2(k)

])
.

This control system was simulated with piece-constant and sinusoidal
tracking reference signals ν1(k) and ν2(k). Closed loop simulation results
are presented in the next figures.

It can be see from figures 4.7 and 4.8 that controls u1(k) and u2(k)
are capable of simultaneous tracking of the desired reference signals ν1(k)
and ν2(k) respectively. Proposed technique can be successfully applied to
control nonlinear MIMO systems.

Numerical example 4

Nonlinear discrete-time MIMO system [64] was also chosen to evaluate
the effectiveness of the proposed control algorithm. It distinguishes from
the previous example (4.4.24) by the second order of the both difference
equations.

y1(k) =
0.7y1(k − 1)y2(k − 2)

1 + y2
1(k − 1) + y2

2(k − 2)
+

+ 0.3u1(k − 2) + u1(k − 1) + 0.2u2(k − 2)

y2(k) =
0.5y2(k − 1) sin(y2(k − 2))

1 + y2
2(k − 1) + y2

1(k − 2)
+

+ 0.5u2(k − 2) + u2(k − 1) + 0.2u1(k − 2)

(4.4.27)
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Figure 4.7: Control of the of MIMO system

Figure 4.8: Control of the of MIMO system

Neural network having structure shown in figure 4.6 with two sub-layers
corresponding to the order of each equation was trained by LM training
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algorithm. Levenberg-Marquardt algorithm can be used because of the
comparatively small number of the parameters caused by the restricted
connectivity of the neural network. Minimal state-space form of the model
with four states was obtained based on the NN-SANARX structure param-
eters. Results of the simulation are shown in figure 4.9.

Figure 4.9: Control of the of MIMO system

4.5 Conclusions

In this chapter we have studied applicability of the ANARX or NN-ANARX
structure for control by the state feedback linearization technique of nonlin-
ear SISO and MIMO systems. This algorithm is based on the model of the
controlled system with relative degree r = 1 and order of the model n ≥ 2.
The technique proposed in the chapter can be considered as a combination
of a classical state feedback linearization with neural networks based ap-
proach.

In general calculations of the control signal for state feedback controller
can be done by the following algorithm:

Step 1: If nonlinear system is not given in the form defined by ANARX
structure, then approximate it by the NN-based SANARX model,
otherwise proceed directly to Step 2.
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Step 2: Write state-space representation of the model using (3.2.6) or (4.3)
respectively.

Step 3: Calculate initial states using equations (4.2.2).

Step 4: Calculate control signal u(k)

• for ANARX structure using equation (4.2.7);

• for NN-SANARX structure using equations (4.3.14) or (4.4.23)
in MIMO case.

The control method was demonstrated by means of numerical examples
(1)-(3). Our simulations have shown the effectiveness of the proposed tech-
nique. First of all, proposed state-based algorithm for control of nonlinear
systems works faster than dynamic output feedback control method used
in [54], [53], because on each time step we know all the states representing
n-th order dynamics of the controlled system and closed-loop system is a
first order system. In all cases control systems are capable of tracking the
desired reference signals with high accuracy.

Restriction n ≥ 2 imposed on the model by this method rises the issue
of finding the minimal state-space representation especially in the case of
MIMO systems. As you can see in the numerical example 3 (4.4.24), the
order of each subsystem equals to 1. To comply with the given assumption,
system was identified by the second order NN-SANARX structure. This
leads to the point that according to the order of the original system itself
(orders of the equations of the given system); the obtained state-space rep-
resentation is not in the minimal form. On the contrary, as each difference
equation of the last MIMO system (4.4.27) has the second order, derived
sate-space representation appears in the minimal form.
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Chapter 5

Neural Network Based
Minimal State-Space
Representation of Nonlinear
MIMO Systems

For the first time problem of finding minimal state-space realization can be
dated back to the early 1960s. The minimal state-space realization prob-
lem for linear systems was started by Gilbert [18] and by Kalman [30]. The
approach of Gilbert was based on partial-fraction expansions and worked
under the assumption that each entry of the transfer function matrix has
distinct poles. Kalmans algorithm was based on the theory of controllabil-
ity and observability and reduction of a non-minimal state space realization
until it becomes minimal.

Task of finding the minimal state-space representation has attracted
much attention of the scientific community and led to the development of
the large number of algorithms to solve that problem.

The problem of determining the minimal state-space representation is
a fundamental problem for control systems. In order to analyze the system
it is advantageous to have its compact description. Hereinafter, speaking
about compact form we mean finding a state-space model of minimal size
of the given system. It connects to many other topics in realization theory,
like controllability and observability properties, similarity invariants, bal-
anced realizations and model reduction.

As the minimal realization of the system is both controllable and ob-
servable, then it is a good basis for designing a state feedback controller.
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Usually there are two main groups of minimal state-space realization meth-
ods:

• methods that starts with non-minimal realization of the system. Fur-
ther it can be reduced to get the desired representation

• complicated methods that start with impulse response of the system
and obtain the minimal realization directly by suitable transforma-
tions.

In case of linear systems the theory is quite complete [14]. Recently in-
creased interest in studying of multi-dimensional systems because of vari-
ous applications in control of multi-pass processes, image processing, etc.
Model reduction plays an important role in the analysis and design of multi-
dimensional systems because of large amount of data involved in multi-
dimensional signal processing. However, the general problem of minimal
state-space realization of multidimensional systems has not been solved.
Obtained methods exist only for some special cases. For example, in [9] the
recursive recurrent neural network learning algorithm based on the ordered
derivatives has been developed for the parameter learning and minimal
model determination. Proposed approach was used for linear discrete-time
dynamic system identification.

In analogy with linear systems, some authors define a minimal realiza-
tion of a nonlinear system as a nonlinear system which is observable, weakly
controllable and either analytic or symmetric [14, 58, 66]. The system is
weakly controllable if every state in state-space can be reached arbitrarily
closely at time t by applying an appropriate control over [0, t]; the system
is strongly controllable if every state in state-space can be reached exactly
at time t. Clearly, strong controllability implies weak controllability.

This chapter considers the minimal representation of the nonlinear MIMO
systems.

5.1 Author’s contribution

The contribution of this chapter is devoted to the minimal NN-Based state-
space representation of the system and its implementation for control of
nonlinear MIMO systems.

- Development of the algorithm for elimination of the redundant connec-
tions in a neural network between hidden and output layers in order
to obtain the minimal state-space representation;

• finding the regressors of the black-box system using MATLAB
System Identification Toolbox
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• derivation of the minimal state-space representaion

- Application of the obtained structure to the control algorithm;

- Effectiveness of the algorithm is demonstrated on numerical example.

5.2 Problem statement

The basis of a good identification is finding a proper order of the system.
System performance degrades if identified order is less than the true order of
the system. On the contrary, if the identified system has the redundant or-
der, that increases the complexity of network computation and some times
even the system performance.

As it was pointed out in [72] and section 4.5 the easiest way of finding
the minimal representation is that case, when controlled system has the
same order of the subsystems. Moreover, that number should be a multiple
to the quantity of the system outputs, otherwise solution of the problem is
not so trivial [71]. Detailed explanation of this statement is given below.

As illustrative example let be this system

yp(k + np) = fp(·), (5.2.1)

where np is an order of the p-th subsystem.
Thus the order of the whole MIMO system is

n :=
m∑
p=1

np, (5.2.2)

where m is the number of system output. On the other hand, the structure
of an identified process by NN-SANARX implies that the order of the state-
space representation is

n′ = m · l, (5.2.3)

where l is the number of sub-layers of the neural network with matrices of
synaptic weights of inputs and outputs Wi ∈ IRli×(m+m) and Ci ∈ IRm×li
of i-th sub-layer.

Consequently, we obtain that if order of all subsystems is the same and
n ≥ 2 then state-space representation is the minimal. Otherwise it can be
chosen as multiple of m that leads to n′ 6= n.

The aim of this research finding the minimal state-space representation
of MIMO systems based on neural network ANARX structure for different
orders of subsystems, where n′ = n.
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5.3 Minimal state-space representation

Suppose that we have a discrete time NARX model represented by general
equation (5.2.1), where np is an order of the p-th subsystem.

If a given system has the same order of the subsystems then the number
of sub-layers should be chosen equal to them. Further the minimal state-
space representation can be found directly from NN-ANARX model using

x1j(k + 1) = x2j(k) + C1j · φ1(W1·
· [x11(k), . . . , x1m(k), u1(k), . . . , xm(k)]T )

x2j(k + 1) = x3j(k) + C2j · φ2(W2·
· [x11(k), . . . , x1m(k), u1(k), . . . , xm(k)]T )

...

x(n−1)j(k + 1) = xnj(k) + C(n−1)j · φ(n−1)(W(n−1)·
· [x11(k), . . . , x1m(k), u1(k), . . . , xm(k)]T )

xnj(k + 1) = Cnj · φn(Wn·
· [x11(k), . . . , x1m(k), u1(k), . . . , xm(k)]T )

[y1(k), . . . , yn(k)]T = [x11(k), . . . , x1m(k)]T ,

(5.3.4)

where j = 1, . . . ,m.

Otherwise, the number of the sub-layers of the NN-ANARX structure
should be chosen as the maximum order of one of the subsystems. Thus
we set maximum limit to the possible order of the system, considering the
standard structure of NN-ANARX model, since in that case order of the
state-space representation is n′ = m · l. So (4.3.10) can be rewritten as
follows

y(k) =

max(np)∑
i=1

Ci · φi(Wi · z(k − i)). (5.3.5)

Then the neural network structure must undergo further transformations.

If system under control is given as black-box, model estimation of the
regressors should be done. Otherwise, regressors can be found directly from
the NARX model of the process. Rely on that information all redundant
interconnections between hidden layers and outputs should be eliminated.
Thus equation (5.3.5) converts to the next form

yi =

max(np)∑
i=1

Cis · φi
(
Wis ·

[{
δ−iydyi

}
dyi∈Dyi

,
{
δ−iudui

}
dui∈Dui

]T)
,

(5.3.6)
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if s = i′ and s ∈ Ri, then corresponding terms are taken, otherwise they
are excluded. Where

max(np) - maximal order among all subsystems;

s - number of the output of the NN, with which current sub-layer is con-
nected;

dyi - index of the previous output y on the i-th layer;

Dyi - set of indexes dyi;

dui - index of the previous input u on the i-th layer;

Dui - set of indexes dui;

i′ = 1, . . . ,m;

δ - time shift;

Ri - number of output for which sum is taken.

In other words we obtain a neural network, where each output depends
on the specific number of time instances, which corresponds to the order
of the subsystem. Using this representation we can easily get the minimal
state-space realization.

Consider the following numerical example of MIMO NN-SANARX min-
imized structure based control using dynamic feedback controller.

Numerical example 5

The model to be estimated is given as discrete-time black-box MIMO
model. Estimation process can be done using MATLAB System Identifi-
cation Toolbox with nonlinear ARX black-box models. The input vector
u(k) is composed of 2 variables with 800 data samples.

First of all, for model identification and to obtain the minimal state-
space representation, it is necessary to estimate the regressors of the given
TITO system. Thus, each output of the model can be taken as a function
of regressors, which are transformations of past inputs and past outputs.
Typical regressors are simply delayed input or output variables, which are
functions of measured input-output data.

On the first step of regressors defining, orders of the sub-models should
be set. After the choice of model order, we should choose the nonlinearity
estimator to be used. To obtain state-space representation of the model a
NN-SANARX structure should be employed for the model identification.
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System identification is an iterative process, where we should identify
models with different structures from the obtained data and compare model
performance. First of all we start by estimating the parameters of simple
model structures and gradually increase the complexity of the model struc-
ture, if its performance is poor. That gives opportunity to choose the
simplest model that best describes the dynamics of a given system.

For the better understanding of the estimation process let rewrite NARX
equation (3.2.4), as it is used in System Identification Toolbox. Thus we
obtain the following structure

yi(t) = fi(yα(k−1), . . . , yα(k−nai), uβ(k−nki), . . . , uβ(k−nki−nbi+1),

α, β = 1, . . . ,m), i = 1, . . . ,m (5.3.7)

Where the function fi depends on a finite number of the previous inputs u
and outputs y. na and nb are the numbers of past output and input terms
used to predict the current output, respectively. nk is a delay from the
input to output, specified as a number of samples, or relative degree. The
nonlinear function of the NARX model is a flexible nonlinearity estimator
with parameters that do not need to have physical significance [28]. Sys-
tem Identification Toolbox provides several nonlinearity estimators F (x)
for NARX models, where x is a vector of regressors. As neural network ac-
tivation functions are sigmoid, so it was decided to use sigmoidnet nonlinear
estimators. Over 30 estimation models with different orders and correla-
tions between regressors were studied. Due to fulfill control condition, that
r = 1, matrix nk does not change.

The most suitable of them are displayed in the figure 5.1.
During examination of the results the outputs simulated with the esti-

mated models and the outputs in the measured data were compared. The
best estimated model my3322u3322 with 97, 4% and 97, 9% fit to the first
and second outputs was chosen on the basis of these data (see figure 5.1).
This model fits better both subsystems simultaneously. And the parame-
ters of the model are

na =

[
3 3
2 2

]
, nb =

[
3 1
1 2

]
, nk =

[
1 2
2 1

]
.

Thus, obtained regressors are:

• for the first output y1 : y1(k−3), y1(k−2), y1(k−1), y2(k−3), y2(k−
2), y2(k − 1),
u1(k − 3), u1(k − 2), u1(k − 1), u2(k − 2)

• for the second output y2 : y1(k − 2), y1(k − 1), y2(k − 2), y2(k − 1),
u1(k − 2), u2(k − 2), u2(k − 1)
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Figure 5.1: Comparison of the different estimated models

The predicted outputs ŷ(k) of the nonlinear model at the time-step k are
given by the following general equation
ŷ1(k) = F1(y1(k − 3), y1(k − 2), y1(k − 1), y2(k − 3), y2(k − 2), y2(k − 1),

u1(k − 3), u1(k − 2), u1(k − 1), u2(k − 2))

ŷ2(k) = F2(y1(k − 2), y1(k − 1), y2(k − 2), y2(k − 1),

u1(k − 2), u2(k − 2), u2(k − 1))

(5.3.8)
Thereby overall order of the system under the study is 5, as it can be calcu-
lated using equation (5.2.2). As the maximum order of the first subsystem
is 3, the neural network should be trained with three sub-layers on the
hidden layer. On the other hand, the structure of ordinary NN-ANARX
implies that order of its state-space representation, according to equation
(5.2.3), should be 6. Thus, the minimal state-space representation can be
obtained only using custom architecture of the NN-ANARX structure as it
shown in figure 5.2.
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Figure 5.2: NN-ANARX structure of the model(5.3.8)

This scheme clearly shows that all redundant connections between hid-
den layers and outputs are eliminated. On the third sub-layer unused con-
nections between some inputs and hidden layer are also excluded. As you
can see in (5.3.8), ŷ1(k) does not depend on u2(k − 1), but this input
should be included because another output depends on it. Unfortunately,
with such kind structure of the neural network elimination of the redun-
dant connections between inputs and hidden layer only possible if and only
if both outputs do not depend on that data, like in case of input u2(k− 3).

As in case of ordinary NN-ANARX/SANARX structure this neural net-
work also was trained with Levenberg-Marquardt algorithm. LM method
is much more efficient than either of other techniques when the network
contains no more than few hundred weights [23]. So as ANARX ordinary
structure and its custom representation can reduce the number of the used
parameters, that leads to increased neural network training efficiency.

The linear activation function was chosen on the first sub-layer with 3
neurons with respect to NN-SANARX structure and the hyperbolic tan-
gent sigmoid activation function on the other hidden sub-layers with 7 and
5 neurons correspondingly.

Thus the minimal state-space representation of the given model can be
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written as follows according to equation (3.2.6).

x11(k + 1) = x21(k) + C11 ·W1 · [y1(k), y2(k), u1(k), u2(k)]T

x12(k + 1) = x22(k) + C12 ·W1 · [y1(k), y2(k), u1(k), u2(k)]T

x21(k + 1) = x31(k) + C21 · φ2(W2 · [y1(k), y2(k), u1(k), u2(k)]T )

x22(k + 1) = C22 · φ2(W2 · [y1(k), y2(k), u1(k), u2(k)]T )

x31(k + 1) = C31 · φ3(W3 · [y1(k), y2(k), u1(k), u2(k)]T )

y1(k) = x11(k)

y2(k) = x12(k)

Using algorithm (4.2.2) we obtain initial states
0
0

C21 · φ2(W2 · [0 0 0 0]T ) + C31 · φ3(W3 · [0 0 0 0]T )
C22 · φ2(W2 · [0 0 0 0]T )
C31 · φ3(W3 · [0 0 0 0]T )

 .
By using these parameters and equation (4.4.23) the following controller
based on state-feedback algorithm, was obtained

D =

[
0.1493 0.1493 1.0768 0.0024
−0.5560 0.7970 0.0173 1.0011

]
.

[
u1(k)
u2(k)

]
= D−1

2 ·
([

ν1(k)
ν2(k)

]
−
[
x21(k)
x22(k)

]
−D1 ·

[
y1(k)
y2(k)

])
.

Closed loop control system was simulated with piece-constant and sinu-
soidal reference signals. The corresponding control signals are shown in
figure 5.3. The results of this simulation are depicted in figure 5.4. It can
be seen that controls u1(k) and u2(k) are capable of simultaneous tracking
of the desired reference signals ν1(k) and ν2(k), respectively.

5.4 Conclusions

Problem of finding the minimal state-space representation is discussed in
this chapter. A novel algorithm for neural network based minimal state-
space representation of a wide class of nonlinear MIMO systems is proposed
as well as its application to the state feedback linearization based control.
Thus to obtain a more accurate model with less used parameters the struc-
ture of the neural network simplified ANARX model should be simplified.
The technique suggested in this work is capable of closely capturing the
dynamical behavior of the unknown system with satisfactory performance
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Figure 5.3: Control signals

Figure 5.4: Control of the MIMO system using estimated model
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of control as it was shown in a numerical example.

Based on the obtained regressors from the black-box controlled system,
structure of the neural network provides a minimal state-space representa-
tion of the model. However, such structure itself does not guarantee using
the minimal number of the parameters of the neural network. Regressors’
estimation analysis, made in Matlab System Identification Toolbox, showed
that subsystem outputs do not depend on some previous inputs. Despite
this, restrictions imposed by the structure of the current neural network
do not allow to exclude all unused connections. Thus, connections between
inputs and hidden sub-layer can be eliminated only if both outputs do not
depend on the same regressors. Hence finding the architecture of the neu-
ral network, which fully reflects the dependencies of the system outputs
from its regressors and does not have any redundant interconnections and
parameters, as represents the minimal state-space representation could be
the subject of one of the further chapters.

Another issue raised in this chapter is a usage of the Levenberg-Marquardt
training algorithm. This method is very effective, but has a drawback:
quantity of the parameters used is limited. Thus, for a complex sys-
tems with large number of the parameters using custom representation
of ANARX structure is justified by the fact that if allows to increase neural
network training efficiency.
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Part III

Structural Identification and
Model Validation
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Chapter 6

Structural Identification

Everything should be made as
simple as possible, but not
simpler.

Albert Einstein

In the identification of multivariable processes from input-output sequences
a very important role plays selection of the suitable structure of the model.
From computational point of view, structural identification presents a chal-
lenging problem, especially when we deal with complex system with large
number of the parameters. The performance of the model based control
algorithms considerably depends on the model accuracy of the controlled
process. However, the model is not usually well-defined, because of existing
uncertainties and non-modeled dynamics, among other causes. Thus, the
key steps are to identify structure and the parameters of the system based
on the available data, which requires a good understanding of the system.

Recently research interest has increased in that area due to rapid sig-
nificant enhancement in computer power and development of new methods.

Structural identification methods can be classified into various cate-
gories, such as parametric and non parametric models, deterministic and
stochastic approaches, etc.

Origins of the classical methods lie in the late 1970s and early 1980s.
They are derived from mathematical theories and generally calculus-based.
On the other hand, non-classical methods typically depend on computing
power due to extensive search. Analysis used for the ”fitness” evaluation
of the test parameters and subsequent selection/guess is based on some
heuristic rules as evolutionary approaches or neural networks. These meth-

67



ods based on neural networks and evolutionary algorithms can be consid-
ered as general tools for searching and optimization [21, 33, 43].

Genetic algorithms imitate evolution of living things by natural selec-
tion. These methods are base on the principal survival of the fittest and
developed for various optimization problems. Its advantage in a remark-
able balance between exploitation of the good candidates and exploration
by random chances. GA has been shown several advantages over classical
methods in context of structural identification. Namely more rapid global
convergence by conducting population-to-population search, random initial
parameters and no requirement of gradient information, as relative ease of
implementation [33].

The purpose of structure selection is to find the structure or the order
of the model what is the most accurate for its use in control [82]. This
method is important from the control point of view, because it gives pos-
sibility during identification process obtain a representation of the system
with a reduced or minimal number of the parameters.

Combining the neural networks and genetic algorithms gives us pos-
sibility to deal with complex nonlinear systems. The advantage of that
kind of identification methods generally lies on a fact that the techniques
do not require a priori knowledge or assumption on the system structure.
And only a set of the input-output data is necessary for the identification
[7, 19].

Choosing the topology of a neural network for performing given tasks
usually requires some prior knowledge of the problem’s complexity and
usually requires a lot of trial-and-error. Basically architecture of the NN
affects two main factors of the training: generalization and training time
[42]. In general case it could be said that larger networks with redun-
dant connections and large number of neurons tend to overfit the training
data which leads to poor generalization. In addition bigger networks are
more computational resource-intensive. If NN is to small, it cannot learn
dependencies in training samples. On the other hand, it is easier to un-
derstand and extract useful information from a smaller model. For better
understanding of the proposed approach it is useful to discuss some of the
most common methods for customization or selecting the neural network
structure [13, 15, 19, 77].

• The most common approach is the trial-and-error method. The method
consists in the training of NNs of different sizes. Network with the
smallest number of the parameters that learns the samples is con-
sidered as the optimal one. This technique requires some experience
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in training on the particular problem in order to select the optimal
structure

• Another approach is to use a natural method of selection such as
genetic algorithm that selects the best network from the population
of neural networks and removes unnecessary connections and neurons.

• Destructive method. At the beginning a fairy large neural network
is chosen. Then some of the unimportant connections or neurons are
removed. This technique trying to achieve increased generalization
capability of the network.

• Finally, constructive method. Unlike the previous method, in this
case one should start with a small neural network which grows then
needed. This method is good because if requires less computational
cost than the previous one. However, it is important to regulate
the ability of network grow, as the process can lead to the oversized
network.

6.1 Author’s contribution

The author contribution is devoted to application of genetic algorithms to
identification (simplification) of NN-ANARX structure and its implemen-
tation of the state-space based algorithm for control of nonlinear MIMO
systems.

- Developing neural network structure that gives possibility to use it with
GA in structural and parametrical identification;

- Developing the GA for the optimal structure finding with different fitness
criteria;

- Formalization of the proposed algorithm using the programming language
of MATLAB environment;

- The effectiveness of the proposed techniques is demonstrated on exam-
ples.

6.2 Problem statement

Model structure belongs to a set of the most important prerequisites for
obtaining an accurate model. Choosing the model structure we should be
guided not only by the factors affecting the quality of identification but
also take into account conditions imposed by the further usage of identified
model. Those conditions are required from the necessity to apply certain
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methods for model analysis and control syntheses or to limit computational
complexity.

There are three main problems in identification for control that can be
solved if optimal model is chosen. First, flexibility of describing different
systems; second, algorithm complexity to describe different systems, and
finally, the reduction of number of the model parameters.

Assuming that only the external description of black-box system is avail-
able our objective is to obtain the optimal neural network of specific struc-
ture which is capable of capturing the dynamics of the process and has the
compact representation. In [74] a recurrent network with the fully auto-
mated construction algorithm was proposed. Thus to achieve such a goal
we have to develop a fully automated construction algorithm that performs
final system order determination and parameters initialization.

For the best model identification a set of neural networks must be
trained. Correct choice of the model improves the control quality of the non-
linear processes. The main problem obtaining a good model using neural
networks is to find its optimal structure. The problem was firstly described
in Kolmogorovs theorem. Further, Kolmogorovs representation theorem
was improved by several authors. So in terms of neural networks Sprecher
proposed his own version of the representation theorem.

Theorem 3 ([27]) Any continuous function defined on the n-dimensional
cube En can be implemented exactly by a three-layered network having 2n+1
units in the hidden layer with transfer functions αijφj from the input to the
hidden layer and χ from all of the hidden units to the output layer.

Where αij are constants, φj are monotonic increasing functions and χi are
real continuous functions of one variable.

Thus, there are no exact solution how to choose structure of the neural
network. And for the most works in this area estimation of the number of
parameters and topology of the NN turns into a trial-and-error process for
a specific problem. Besides, quality of the model very much depends on
the choice of initial values of the parameters. To solve both problems si-
multaneously we use genetic algorithm which finds optimal NN parameters
and dependencies between the inputs of dynamic model and outputs of the
controlled system.

Typically success of the model is evaluated using a performance crite-
rion; in our case it is an efficiency of the controller designed using obtained

70



model. The result of the control simulation can be used as an evaluation
function for further calculation of the fitness function of a chromosome in
current population. Since we want to obtain a compact state-space rep-
resentation, a model with the minimal states among the models with the
same performance should get more points during the fit function calcula-
tion.

Summarize above mentioned, the objective of this work is focused on
solving simultaneously the problem of lack of the generic structure and the
problem of the minimal realization of the structures.

6.3 Architecture of the Neural Network

Usually most genetic algorithms have only two main components that are
problem dependent: the problem of encoding and the evaluation function.
According to [75] and [63] the first step is encoding a neural network into
the binary strings called chromosomes that is determined by the structure
of the neural network.

Consider a discrete-time MIMO NARX, described by equation (3.2.4).
This model can be easily obtained by using classical fully connected neural
network and covers a wide class of of nonlinear systems. However, classical
representation of that model does not assure the minimal/optimal number
of the parameter being used in neural network.

The minor corrections in the structure were made earlier, see section
5.3. This approach allows to remove some connections between the hidden
sub-layer and output layer. However, this architecture does not make it
possible to exclude those connections between inputs and hidden layers if
some output depend on one of the inputs. It is only possible if all outputs
do not depend on the same input.

Thus, for a more flexible structure, which allows to exclude all redun-
dant interconnections and parameters of the neural network, it is necessary
to modify its architecture, as shown below.

Above all, each sub-layer should be divided into groups of neurons each
of which is responsible for the interconnections of inputs to each specific
output. Thus connections between inputs and hidden sub-layer can be elim-
inated [68]. For better understanding let consider the following illustrative
example.
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Illustrative example

Assume that black-box model has two inputs and two outputs. Examine
in more detail the obtained structure of the model, which maximal order
of a subsystem was found using some regression analysis as three. Thus,

y1(k − 1)

y1(k − 2)

y1(k − 3)

u1(k − 1)

u1(k − 2)

u1(k − 3)

y2(k − 1)

y2(k − 2)

y2(k − 3)

u2(k − 1)

u2(k − 2)

u2(k − 3)

L11

L12

∑

∑

y1(k)

y2(k)
..

.

Figure 6.1: Structure of the custom NN-NARX model

architecture of the fully connected NN-NARX model is defined as follows:
the maximal order of the subsystem, number of system inputs and outputs,
determine the number of inputs of the neural network. This parameter dif-
fers from the number of inputs of the identified system. Since we are deal-
ing with feedforward neural network with external feedback, consequently
number of the NN inputs is determined by the quantity of the regressors
on which it depends. As number of outputs is two, each sub-layer should
be divided into two groups L11 and L12 like it can be seen in figure 6.1.
Since ANARX is a subclass of NARX models with some good properties
for using it in control, structure of the neural network based on ANARX
can be changed in a similar was as shown in figure 6.2.

This structure is very flexible and allows us to describe nonlinear MIMO
system with any interconnections between inputs and outputs of the dy-
namical model using NN-NARX/ANARX architecture. It makes this ar-
chitecture available to use in the genetic algorithms for finding the optimal
structure of the NN in black-box model identification.

Since we consider the identification process as a part of the control task
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Figure 6.2: Structure of the custom NN-ANARX model

it is logical to use the neural network based additive NARX models. Thus
the classical representation of NN-ANARX models (see equation (4.3.10))
can be converted to the same form (5.3.5) as was used to find the minimal
state-space representation in section 5.3. Which means that custom NN-
ANARX architecture with any interconnections present can be described
as follows

yi′ =

max(np)∑
i=1

qi∑
j=1

∑
s∈Rij

cijs·

· φijs
(
wijs ·

[{
δi−1ydyij

}
dyij∈Dyij

,
{
δi−1uduij

}
duij∈Duij

]T)
, (6.3.1)

if s = i′ and s ∈ Rij , then corresponding terms are taken, otherwise they
are excluded. Where
max(np) - maximal order among all subsystems;
qi - maximal number of the decomposed sub-layers on the i-th layer;
s - number of the output of the NN, with which current sub-layer is con-
nected;
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Rij - set of all connections between i-th hidden layer and output of the j-th
subsystem;
dyij - index of the output y on the j-th decomposed sub-layer on the i-th
layer;
Dyi - set of indexes dyij ;
duij - index of the input u on the j-th decomposed sub-layer on the i-th
layer;
Duij - set of indexes duij ;
δ - time shift.

Consider that dashed lines show the absent connections between lay-
ers/neurons and solid - the present ones. Thus, neural network depicted
above (see figure 6.2) represents the following system given by general equa-
tion

y1(k) = f1(y1(k − 1), y2(k − 1), u2(k − 1),
y1(k − 2), y2(k − 2), u1(k − 2), u2(k − 2),
y2(k − 3))

y2(k) = f2(y1(k − 1), y2(k − 1), u1(k − 1), u2(k − 1),
y1(k − 2), y2(k − 2), u2(k − 2)),
y1(k − 3), y2(k − 3), u1(k − 3)).

(6.3.2)

This scheme is very flexible and clearly shows that all redundant inter-
connections can be eliminated. Number of groups of neurons on the hidden
layer defines the number of the states. Therefore, if the overall order of the
system had ones determined, then network size is obtained. It can be seen
that in this particular case order of the model equals to 6. As NN-ANARX
with custom structure is a representative of feedforward networks with ex-
tended feedback, it can be trained with the classical Levenberg-Marquardt
algorithm. Linear or sigmoid type functions can be used as activation func-
tions.

6.4 Encoding and optimization

First, determine the length of the chromosome, which describes the neural
network in figure 6.2. Parameters that determine its length are:

l = o · (n+m) ·m, (6.4.3)

where l is a length of the gene, o is a maximal order among subsystems of
the controlled MIMO system, n and m are numbers of inputs and outputs
of the system, respectively. In case of this model l = 3 · (2 + 2) · 2 = 24.
Thus, for a fully connected NN-NARX the gene will be as follows

gene = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],
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where the first bit of the chromosome shows the connection between input
y1(k − 1) of the first sub-layer L11 and output y1(k), the second bit - con-
nection between input y1(k−1) of the first sub-layer L12 and output y2(k),
third bit - connection between input y1(k−2) of the first sub-layer L11 and
output y1(k), etc.

If any connection between an input and any output does not exist it
can be represented as 0 in chromosome encoding. let existing connections
are presented by the solid lines and the absent connections by the dashed
lines. Thus, the structure demonstrated in 6.2 can be described using the
following gene

gene = [1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0].

In order to minimize the number of parameters used, in case when all
inputs of one sub-layer are interconnected with all outputs of the neural
network, there is no need to divide this sub-layer into groups of neurons.
Thus, if NN-NARX (NN-ANARX) model is fully connected, we obtain the
classical representation of that structure.

6.5 Evaluation and fitness functions

After the initial population is formed, it is necessary to define the criteria
by which it could be determined which of the genes are the best suited. It
means that the neural network with such structure would provide the best
solution to a given problem. This requires a function that processes the
genes and returns a single value indicating the measure of the suitability of
this solution. The main focus of this work is directed to the identification of
nonlinear processes. Hence, the mean square error (MSE) of the process can
be used as objective function, so-called evaluation function [40, 65, 75, 76].
Here we should consider two cases: when the ultimate goal is to obtain an
accurately identified model or the main goal is to use identified model to
control the process. In the first case as MSE an identification error should
be taken in the second, we will have a more comprehensive solution.

In applications we consider the set-point tracking problem. The primary
aim of out work is to find a suitable controller for the nonlinear process,
so fit of the model should be evaluated using one of the control criteria.
The most common structure is feedback (see figure 4.1), as this structure
can monitor variations in the process and successfully compensate for the
unwanted executions in a manner consistent with the performance objec-
tives. Usually a criterion based on the shape of the complete closed-loop
response or so-called error-based criterion is chosen.

75



Further, the quality criterion is calculated on the basis of obtained MSE
of the control [68].

quality = e−k·MSE , (6.5.4)

where k is a proportional coefficient.

Often in the literature evaluation function and fitness function are used
interchangeably. However, we distinguish that notions [75]. Evaluation
function is objective function that provides a measure of performance, it
is independent of evaluation of any other chromosomes. But the fitness
function is defined as fi/f̄ , where fi is the evaluation associated with genei
and f̄ is an average evaluation of all chromosomes in the population. Thus,
fitness function is always defined with respect to other individuals of the
current population.

If small population of genes is used in genetic algorithm it is very im-
portant to regulate the number of copies. It is common at the beginning
of the GA work to have some extraordinary individuals in a population of
ordinary members. If evaluation function is left in its original form, then
a situation can emerge, where the best individuals would take over a sig-
nificant proportion of the finite population in the current generation. That
would lead to the premature convergence. On the other hand, during the
next generations it may happen that despite the variety of genes, their fit-
ness functions differ slightly. That means that population average fitness
may be close to the best fitness. So, we will go over the mediocre represen-
tatives instead of marking out the successful ones.

In both cases, fitness scaling can help. It can be done like linear scaling,
proposed in [20] or by (6.5.4). In this case, even slight decrease of MSE
small values will have an effect in the case of forming the new offspring.

6.6 Genetic algorithm description

As it was said earlier in section 3.5 the canonical genetic algorithm is used
in our work. Consider it in detail in the context of determining the optimal
structure of neural network for model identification.

First, the number of chromosomes is specified. This number remains
constant for all future generations. Each gene corresponds to a specific
NN-ANARX structure with unspecified weights values. That means that
several neural networks with different weights can correspond to the same
structure. These weights are determined during the neural network train-
ing phase. Further all genes are estimated with the aid of properly selected
evaluation function. Depending on the ultimate goal of an identification
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one of the main criteria for the goodness estimation can be MSE of the
identification or MSE of the control. In the second case the controller
based on the parameters of neural network is automatically designed, see
section 4.3, to obtain necessary signals. On the next step fitness function
is calculated. Intermediate generation filled by the chromosomes of the
current generation using stochastic sampling with replacement. Crossover
with the single recombination point is applied to randomly paired stings.
After recombination a mutation operator is used. Also, according to the
elitism operator the best chromosomes of the current generation is copied
to the next one. Elitism is the last step of our search.

After evaluation each gene is ordered according to its fitness value.
Thus, the new population is established and a new generation begins. The
algorithm terminates whenever identification or control error is less than
an a priori defined threshold or a pre-specified number of generations has
been reached.

Proposed algorithm has been formalized using the programming lan-
guage of MATLAB environment. Further, a separate application package
was written with the number of functions. Efficiency of the algorithm was
tasted on a number of academic examples [49, 68, 69], the results of which
lead to the conclusion about the viability of this technique. This makes
sense to its further improvement and development.

Numerical example 6

As it was already mentioned, a developed algorithm is required to obtain
the optimal structure of the neural network where all redundant parame-
ters are eliminated. To verify the correctness of the proposed method the
following model was used: the model to be estimated is given as a nonlinear
discrete-time gray-box model. The input vector u(k) is composed of 2 vari-
ables and the output vector y(k) contains 2 variables with 600 data samples.

First, for the model identification and in order to to obtain a state-space
representation, it is necessary to estimate the regressors of the given MIMO
system. Estimation process can be done using MATLAB System Identi-
fication Toolbox with NARX type black-box models. Thus, each output
can be taken as a function of regressors which are transformations of the
past outputs and inputs. This carry out procedure is similar to finding the
minimal state-space model done in example 5. Briefly, first of all, to define
the regressors, orders of the models should be set. After the choice of a
model order, we should choose the nonlinearity estimator to be used. To
obtain state-space representation of the model a NN-SANARX structure
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Figure 6.3: Reduced model finding algorithm

(see [52, 71, 72]) could be employed for the model identification. As neural
network identification functions were chosen as sigmoid, so it was decided
to use sigmoid net nonlinear estimators.

Estimation showed that the maximal order of the subsystems is 3, there-
fore the neural network should be trained with three sub-layers on the hid-
den layer. On the other hand, the given system has two outputs; it means
that each sub-layer should be divided into two groups of neurons.

According to the proposed algorithm, see figure 6.3 the next step is a
creation of an initial population. First of all, the length of the chromosome

78



should be defined using (6.4.3)

l = 3 · (2 + 2) · 2 = 24.

As for the calculation of the control signals ui(k) (see 4.4) we need to
know

1. the influence of the control signal on the previous time step to the
both outputs, so restriction should be imposed on the values of 5-8
bits of the genes: genei(5 : 8) = 1;

2. second state of the model, it means that we need to have it explicitly
or be able to calculate it using subsequent states. That leads us to the
point, that obtained chromosome should be tested for the presence of
that interconnections.

On the basis of the obtained genes neural network of the specific struc-
ture was generated. Levenberg-Marquardt algorithm was used to perform
the training. At this stage number of the training epochs was taken small.
In the future, if structure will be suitable for the process, we can train our
network additionally to obtain more precise control. The linear activation
functions was chosen on the first sub-layer with 2 neurons, with respect to
NN-SANARX structure. And the hyperbolic tangent sigmoid activation
function was on the other hidden sub-layers with 4 nodes for each group of
neurons. On the next step neural network parameters were used to design a
controller, based on the state-space algorithm, see section 4.4. Closed loop
control system was simulated with piece-constant and sinusoidal reference
signals, then quality criterion was calculated.

Described earlier GA with different initial population size from 50 to
200 individuals was applied. Crossover rate varied from 90% to 98% and
mutation probability was around 1%. Depending on the size of the popula-
tion percentage of the parents in the next generation ranged from 1% to 2%.

Distinctive feature of the applying GA to the neural networks is that
the same gene could correspond to different neural networks. Although
the neural networks have the same structure, due to the different initial
parameters their final weights are different. On this basis two approaches
were used: in the first case several neural networks were trained for one
chromosome and the best of them was chosen for the representation of the
gene. It is necessary not to lose a good structure if initial parameters for
the training the NN has led to poor results. In the second case only one
neural network for the gene was trained. Further experiments showed that
total time needed for optimal NN search was almost the same. The only
difference was that in the second approach first took place the structural
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identification and only then for the best structure the optimal neural net-
work was chosen. In the first case structural and parametrical identification
took place for the same time. That naturally increased time for the forma-
tion of a new generation.

If obtained structure and designed with its aid controller gave unstable
behavior of the system, then MSE equate to 50. Such big value of the MSE
is needed to obtain fitness function close to 0. In the most cases such situ-
ation emerge due to the fact that during the training matrices of synaptic
weights were obtained close to the singular, see equation (4.4.23).

Another significant remark should be done. Several experiments were
conducted with initial population containing a few genes which describe a
fully connected neural network of ANARX type. All results have shown
that for this kind gray box model the classical structure what was used
earlier is not the optimal one.

Depending on how good was the initial selection, fitness function in the
first phase was from 6 to 3.5 for the best representative of the first gen-
eration. But just in a couple of generations, this value could drop up to
1.5. In general, the final stage of the value function dropped somewhere
before 1.3. However, if a good neural network was present at the beginning
of training, the final stages of the fitness function dropped to 1.017 for the
best individual. This means that almost all genes have the same opportu-
nities for reproduction.

Most experiments came to the same structure, described by the next
gene

gene = [1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1].

On this basis the custom architecture of the NN-SANARX structure could
be as depicted in figure 6.4.

Some experiments with population size more than 150 individuals had
two groups of genes: one of them is mentioned before and another is

gene = [1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1].

So in all cases the order of the obtained models equals to 6. Closed loop
control system was simulated with piece-constant and sinusoidal reference
signals. The results of this simulation are depicted in figure 6.5. It can be
seen that controls u1(k) and u2(k) are capable of the simultaneous tracking
of the desired reference signals v1(k) and v2(k), respectively.
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Figure 6.4: neural network custom structure of the controlled model

In the example above, the choice of the model is made only by one
criterion. Thus, one can get a result where several models with different
orders will have almost the same value of the control error. In this case a
Occam’s blade rule should be used, which states that among the models of
the same quality the simplest one should be chosen. In other words, the
preference should be given to the model with the lowest order. To achieve
a balance between goodness of the fit and the complexity of the model
is possible if the evaluation function is calculated on the basis of several
criteria. One of the possible realizations is proposed in the next example.

Numerical example 7

This example is a logical continuation of the Numerical example 6.

As it was said earlier the objective of our work is to find a suitable
controller of compact form for the nonlinear MIMO process. Now, in case
that the model with a lower order takes precedence of the more complex
one, fitness function has been taken as following

quality = e−k·MSE + e−o, (6.6.5)

where k is a proportional coefficient and o is gradually depends on the
number of the states of the current neural network. The less states neural
network has the less the o. Choice of the k and o grades should be done
carefully to avoid such situations, where the model with small number of
states and poor performance is preferable than the model with more states
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Figure 6.5: Control signals

and good performance.

In general case usage of expositional function is justified by the fact
that during the fit function calculation the poor control performance could
overweight and distort the overall picture. So we get that big difference in
large values of the errors will have less impact than minor errors of control
in positive direction. It should be mentioned, that such method of eval-
uation function calculation allows to limit the growth of the model order
during searching for the optimal structure, but does not guarantee to find
a model with the minimal number of states.

As the gray-box model a 5-th order MIMO model was taken. Thus, a
neural network with 3 sub-layers on the hidden layer should be trained, as
it was also done in the previous example. Since by the 19 generation more
than 40 genes out of 50 possible converged to the below mentioned struc-
ture, the process of optimal structure search has been stopped. Obtained
gene

gene = [1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1]

can be represented graphically as follows.
Clearly, we are dealing with 5-th order model, which is equivalent to the
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Figure 6.6: Custom structure of the NN model

initial model. Hence introducing an additional criterium, we obtained a
model that more accurately reflects the actual model. Closed loop control
system was simulated with piece-constant and sinusoidal reference signals.
The results of this simulation are depicted in figure 6.7. It can be seen that
controls u1(k) and u2(k) are capable of the simultaneous tracking of the
desired reference signals v1(k) and v2(k), respectively.

6.7 Conclusions

In this chapter problems of system identification of dynamic systems are
considered. Proposed algorithms for solving such problems are based on
the feed-forward neural networks of specific structure. First of all, we have
focused on the issue of identification for control of nonlinear MIMO sys-
tems. Thus, the main contribution is devoted to the novel representation
of the ANARX or more general case, NARX structure. That leads to the
possibility of using such a structure for the formation of any genes, which in
turn allows the use of the genetic algorithms for more flexible model order
identification and parameter optimization.

The possibility of obtaining optimal structure which is not necessary
fully connected enables to reduce the number of the parameters used in
NN. It is a significant factor especially in adaptive control, when improve-
ment of the weights of the neural network occurs in on-line mode.
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Figure 6.7: Control signals based on two quality criteria

Usually, since a black-box model is used, the minimal order of the
system is not known and data received from the regression analysis is
not necessarily the right one. Having in mind that direct value of the
minimal order of the system is absent, so for our practical needs, we
choose the best model from the GA point of view being in the interval
min(N) ≤ NN(N) ≤ max(N), where N is the order of the system and
NN(N) is the order of model obtained using neural networks.
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Chapter 7

Model Validation

Validation procedure is almost as old as the identification procedure. Model
validation step allows to provide certification that model can be used for
particular application. It guarantees that model is able to achieve purpose
for which it is used. In addition model validation determines whether the
obtained model is flexible enough to describe the system.

7.1 Author’s contribution

Present chapter focuses its attention on the application of genetic algorithm
to adjust the NN-ANARX type structure improving performance of the
identified model. Constructive procedure is proposed to choose parameters
of the multi-criteria fitness function, whereas main goal of present research
is to find optimal linear combination of those parameters that are commonly
used to evaluate model performance and validity

• application of the correlation-test-based approaches as one of the val-
idation criterion;

• find optimal linear combination of three qualitative parameters: OD-
CCF based criteria, mean square error and model order.

The result of the derived evaluation function is obtaining the minimal struc-
ture of the neural network in terms of goal-oriented validation.

7.2 Application of the correlation-test-based ap-
proaches

Quite often it is considered that mean square error provides sufficient infor-
mation about quality of identified model. Procedure to validate identified
neural network model on the basis of correlation test was described in
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[81] and later adopted to compare quality of NN-ANARX and NN-NARX
models on the same system in [47]. Present contribution is devoted to the
application of genetic algorithm to determine the structure of the model
whereas fitness function will depend both on MSE and results of correlation
based test. Such process can be seen as trade off between finding the order
of the system and elimination of certain redundant interconnections and
weights.

In system identification procedure validation is the final step to check
the performance of the obtained model. Generally the correctness of the
identified model is checked on the basis of residuals: their mean, variance or
standard deviation. However, the low residual values are not always clearly
and directly point to correctly identified model based on neural networks,
especially in unknown and noisy environment. The main idea is if one has
a proper model its residuals reduce to white noise and uncorrelated to the
delayed system inputs and outputs. To properly validate nonlinear models
several techniques based on correlation tests have been developed that use
correlation-test-based approaches to detect the nonlinear correlations be-
tween residuals and delayed residuals, inputs and outputs. Two methods,
namely combined omnidirectional autocorrelation function (ODACF) and
combined omnidirectional cross-correlation function (ODCCF) , were used
to construct a set of nonlinear model validity tests in [80]. To overcome
problems with non-detection of all possible omitted regressors in residuals,
the combined ODACF- and ODCCF- based model validation technique
were developed and applied to check the quality of identified model based
on neural networks [81] and [47].

Unlike the linear case there are four types of nonlinear associations.

• Type 1: The amplitude of the dependent variable varies as the am-
plitude of the independent variable varies.

• Type 2: The amplitude and the sign of the dependent variable varies
as the amplitude of the independent variable varies.

• Type 3: The amplitude and the sign of the dependent variable varies
as the amplitude and the sign of the independent variable varies.

• Type 4: The amplitude of the dependent variable varies as the am-
plitude and the sign of the independent variable varies.

Let {γ(t), t = 1, . . . , N} and {η(t), t = 1, . . . , N} denote two arbitrary data
sequences (usually η(t) represent independent variable and γ(t) - dependent
variable). The normalized sequences {γ′(t)} and {η′(t)} with removed mean
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level are defined as follows:

γ′(t) = γ(t)− 1

N

N∑
t=1

γ(t), (7.2.1)

η′(t) = η(t)− 1

N

N∑
t=1

η(t). (7.2.2)

Denote by α(t) and β(t) sequences which elements are absolute values of
the sequences {γ′(t)} and {η′(t)} correspondingly.

α(t) =
∣∣∣η′(t)∣∣∣,

β(t) =
∣∣∣γ′(t)∣∣∣.

Finally, normalize those sequences again by removing mean level

α′(t) = α(t)− 1

N

N∑
t=1

α(t), (7.2.3)

β′(t) = β(t)− 1

N

N∑
t=1

β(t). (7.2.4)

The validation procedure is based on the analysis of the set of first order
omnidirectional cross-correlation functions which is able to identify four
types of above-mentioned nonlinearities.

• Type 1:

rβ′α′(τ) =

N∑
t=τ+1

α′(t)β′(t− τ)

[( N∑
t=1

α′2(t)
)( N∑

t=1

β′2(t)
)]1/2

, (7.2.5)

• Type 2:

rβ′γ′(τ) =

N∑
t=τ+1

γ′(t)β′(t− τ)

[( N∑
t=1

γ′2(t)
)( N∑

t=1

β′2(t)
)]1/2

, (7.2.6)
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• Type 3:

rη′γ′(τ) =

N∑
t=τ+1

γ′(t)η′(t− τ)

[( N∑
t=1

γ′2(t)
)( N∑

t=1

η′2(t)
)]1/2

, (7.2.7)

• Type 4:

rη′α′(τ) =

N∑
t=τ+1

α′(t)η′(t− τ)

[( N∑
t=1

α′2(t)
)( N∑

t=1

η′2(t)
)]1/2

. (7.2.8)

In (7.2.5) - (7.2.8), τ denotes the time delay.
Combined ODCCF’s are defined as follows:

If ∣∣∣max
(
rβ′α′(τ), rβ′γ′(τ), rη′α′(τ), rη′α′(τ)

)∣∣∣
>
∣∣∣min

(
rβ′α′(τ), rβ′γ′(τ), rη′α′(τ), rη′α′(τ)

)∣∣∣,
then

ργη(τ) = max
(
rβ′α′(τ), rβ′γ′(τ), rη′α′(τ), rη′α′(τ)

)
else (7.2.9)

ργη(τ) = min
(
rβ′α′(τ), rβ′γ′(τ), rη′α′(τ), rη′α′(τ)

)
.

The equation above allows to show more clearly detected correlations. The
values of combined ODCCF’s are found for the following pairs

• residuals and delayed outputs - ρεε(τ),

• residuals and delayed inputs - ρεu(τ),

• residuals and delayed residuals - ρεy(τ).

Since the values of ρεu(τ), ρεy(τ) and ρεε(τ) belong to the confidence
interval, correlations between residuals and delayed residuals, delayed out-
puts and delayed inputs are insignificant and therefore identified NN is
valid.

In [81] the values of cross-correlation functions were computed for time
delays τ = 1, 2, . . . , 20. For the 95% confidence level the confidence interval
is ±1.96/(

√
N), where N is the number of data samples.
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Definition 10 ([57]) A confidence interval is an interval in which a mea-
surement or trials falls corresponding to a given probability.

In other words, the width of the confidence interval gives us some idea
about how certain one about the unknown parameter, where confidence
level is the probability value associated with confidence interval [46].

In order to use results of correlation based test to compute the value
of evaluation function one should summarize the values of combined OD-
CCF’s computed for all time delays τ = 1, . . . , 20 and for all associations.
In [47] qualitative parameter computed as the mean of the means of the
means of cross correlation coefficients was proposed for this purpose. In
the framework of current work similar idea was employed [49].

On the basis of the values of combined ODCCF’s one may define the
qualitative parameter as it is shown in (7.2.10).

Qst =
1

3

((
−p1

τ − 1

τ∑
ı=2

ρεε(i) + p2

)
+

(
−p1

τ − 1

τ∑
ı=2

ρεy(i) + p2

)

+

(
−p1

τ − 1

τ∑
ı=2

ρεε(i) + p2

))
, (7.2.10)

here parameters p1 and p2 defined in the following way: if all the values of
combined ODCCF’s fall into the confidence interval then p1 = 1/(2pc) (pc
is the critical value) and p2 = 1. If at least one value of values of combined
ODCCF’s falls out of confidence interval then p1 = p2 = 0.5 Such proce-
dure assures, that valid model (all the values of combined ODCCF’s fall
into confidence interval) always has higher value of qualitative parameter
than the model which is not valid (at least one value of combined ODCCF’s
does not belong to the confidence interval).

The following examples are based on the results presented in [49].

Numerical example 8

To validate proposed technique models of real-life systems known in the lit-
erature will be used. Of cause if we deal with unknown plants and processes
order is usually unknown. Such approach allows to see wherever evaluation
converge to the model of the same order as ”unknown” system or not.

In this work canonical genetic algorithm is used. Each gene corresponds
to a specific NN-ANARX structure with unspecified weights values. These
weights are determined during the neural network training phase. Next
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model validation and correlation based test are made. Further on the basis
of the obtained evaluation parameters fitness function is calculated.

As there are three criteria for the best model selection, we need to
integrate a set of different criteria in order to determine the most suitable
model for all of them. The best model could be obtained in the following
steps, using technique proposed in [70]:

• Step 1. Sort all models in ascending/descending order by one of the
criteria. That task should be done for statistical and MSE criteria.
As a result we obtain a table with two columns, elements of which
are the corresponding index numbers pMSE and pst, respectively.

• Step 2. For each of parallel models a quality coefficient q has to
be found. This coefficient is a sum of the position number for each of
the criterion multiplied by weighting factor. This factor indicates the
importance of the corresponding criterion during the model selection.

• Step 3. Model with the smallest weighting factor is the winner or
so-called the best model.

Next, we normalize quality coefficients such that pMSE , pst, n ∈ [0 . . . 1].
So after these transformations, we obtain the following evaluation function

qi = k1 · psti + k2 · pMSE
i + k3 · ni, (7.2.11)

where i = 1, . . . , Nm and Nm is a number of candidate models of the one
specific system. Moreover, we impose the following restriction on the coef-
ficients of equation (7.2.11)

0 ≤ k1 + k2 + k3 ≤ 1.

Intermediate generation filled by the chromosomes of the current genera-
tion using stochastic sampling with replacement. Crossover with a single
recombination point is applied to randomly paired strings. After recombi-
nation, a mutation operator is used and according to the elitism operator
the best chromosome of the current generation is copied to the next gener-
ation. Elitism is the last step of our search.

A. Model of electrical generator

In order to illustrate proposed technique, let us consider the model of elec-
trical generator, describing the relationship between the varying part of the

90



current and the frequency of the generated voltage [22]

y(t+ 4) = −0.00113− 0.0628u(t+ 2)− 0.0675u(t+ 1)
+0.84y(t+ 3)− 0.0526u(t+ 1)y(t+ 2)
−0.053u(t+ 2)y(t+ 3) + 0.0613y2(t+ 3)
−0.0071u(t+ 2)u(t+ 1)− 0.0234u2(t+ 2)y(t+ 3)
−0.044u2(t+ 1)y(t+ 3) + 0.0573u(t+ 2)y2(t+ 3)
−0.02y2(t+ 1).

(7.2.12)

We treat this the 4-th order system as our unknown plan. Note, that
(7.2.12) does not have ANARX structure. To obtain input-output data,
system (7.2.12) was simulated with uniformed random signal. Levenberg-
Marquardt algorithm was used to perform the training. The hyperbolic
tangent sigmoid activation function was used on the hidden sub-slayers.
Initial population consisted of 50 models whereas maximal model order
was 7. According to equation (7.2.11) weighting factors were chosen as
follows k1 = 0.3, k2 = 0.2, k3 = 0.5. Evolution of the GA tooks place for
20 generations. On the basis of quality parameters 5 models were selected
(all the values of combined ODCCF’s were within the confidence interval).
Their order varied between 3 and 4 and mean square errors were less than
3×10−2, which is within acceptable limits for majority of the applications.
Table 7.1 shows the best models for different confidence intervals for the
first and the last generations. The fact that order of the final models were 3
and 4 allows to conclude that proposed technique converges to the original
system order. During different experiments convergence rates of quality
parameters differs a lot, which leads necessity to study separately influence
of different initial parameters on convergence rate.

Table 7.1: Experimental results

confidence
criterion

generation

interval 1 20

95%

MSE 0.02829 0.02783

ODCCF’s 0.4686 0.4710

Order 3 4

90%

MSE 0.02801 0.02788

ODCCF’s 0.4672 0.4711

Order 3 4

B. Liquid level system of interconnected tanks
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Let us now consider the model of a liquid level system of interconnected
tanks (LLS) [5]

y(t+ 3) = 0.43y(t+ 2) + 0.681y(t+ 1)− 0.149y(t)
+0.396u(t+ 2) + 0.014u(t+ 1)
−0.071u(t)− 0.351y(t+ 2)u(t+ 2)
−0.03y2(t+ 1)− 0.135y(t+ 1)u(t+ 1)
−0.027y3(t+ 1)
−0.108y2(t+ 1)u(t+ 1)
−0.099u3(t+ 1)

(7.2.13)

Unlike model of electrical generator (7.2.12), model of LLS belong to ANARX
model class. To obtain input-output data, system (7.2.12) was simulated
sinusoidal input signal whereas small amount of white noise was added.
All the other parameters describing initial population and NN-models are
the same as in previous experiment described above. After 20 generations
algorithm has converged to the population of models where majority were
the NN-ANARX models of order 4 also number of lower and higher order
models, with certain connections eliminated, were present. Again the al-
gorithm converged to the models of the same order as original ”unknown”
plant.

7.3 Conclusions

To obtain an order derived from the calculations that would be close to the
minimal order of the system, it was suggested in GA the use of the evalua-
tion functions that based not only on the mean square error but on several
other criteria. In case of the SISO systems another criterion could be based
on the values of combined omnidirectional cross-correlation functions.

Examples considered in the framework of present research has clearly
demonstrated that proposed methods converge to NN-ANARX structure
of the same order as original system or to the NN-ANARX structure of
slightly higher order whereas certain connections are eliminated.
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Conclusions

Problems of the identification based on artificial neural networks for control
of nonlinear SISO and MIMO systems and control design were considered
in the present work. This chapter summarizes what have been done and
what goals were achieved in this work.

Concluding remarks

Choosing a proper structure of the model can significantly improve the
quality of a model based control and reduce computational costs. Archi-
tecture of the neural network based model has to be selected in accordance
with requirements of control application to be used. Moreover, alternation
of the structure of the neural network extends the number of the control
algorithms that could be combined with neural network based modeling. In
this thesis the use of the Neural Network based Additive NARX structure
making possible combination of neural network based identification with
classical control algorithms. Application of the state feedback linearization
is designed in Matlab/Simulink environment.

The most significant result of this work is the modification of the neural
network architecture that gives possibility to eliminate any redundant con-
nections between system inputs and outputs. In case of MIMO systems,
that approach allows us to obtain minimal state-space representation based
on the parameters of the neural network, if order of the model is already
known. Overwise, topology of the neural network (including the order of
the system) should be selected manually.

Slight modification of NN-NARX as well as NN-ANARX architecture
allows to describe it by a binary strings called chromosomes. Thus, the te-
dious try-and-error process can be automated by genetic algorithm where
some control criteria is taken as evolution function. First of all, such tech-
niques allow to find the optimal model not so much in terms of accuracy
of identification itself, but in terms of process control. Another important
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factor is that in case of using genetic algorithm to find the NN-ANARX
structure, we do not face the problem of so-called competing conventions.
As encoded chromosome specifies a relationship between specific input and
output, as well additive subclass of NARX models has all time instances
separated, so different genotypes cannot map into the same or equivalent
phenotypes. In other words, neural networks described by the very differ-
ent binary strings will have completely different structures.

Research have shown that genetic algorithms are effective search tech-
niques, but they have their own limitations. Such techniques are known to
be sensitive to control parameters, these are: population size, rates of mu-
tation and recombination, selection methods. Adjusting these parameters
in different ways one can get a variety of algorithms that are inherently slow
or fast. Fast algorithm rapidly exploits best genes in the early populations,
but it leads to the loose of genetic diversity and eventual stagnation. On the
other hand, progress of the slow algorithms is less rapid on the early stages,
but having more genetic diversity, that kind of algorithms may eventually
surpass a faster methods by finding even better combinations of genes. In
short, the choice of a finite algorithm depends on the task and the com-
plexity of the problem.

Use of different criteria as the fitness function gives possibility to find a
good controller based on the parameters of obtained neural network with
reduced number of parameters. This approach allows us to solve the prob-
lem of the model overparametrization. A very high degree of correlation
among parameters may provide a useful indicator of overparameterization
which leads to slow convergence and computational costs. Thus, elimi-
nation of the redundant parameters is especially critical when the on-line
adaptation is used.

The effectiveness of the proposed techniques is demonstrated on numer-
ous numerical examples.

Contents of publications

The present thesis is based on 6 academic papers listed in List of publica-
tions.

P[1] Describes how using ANARX or NN-ANARX structure one can ob-
tain state-space representation of the model. Further, based on this
data classical control algorithms can be used. The main contribu-
tion of this paper is in application of the state feedback linearization
algorithm to control nonlinear SISO and MIMO systems.
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P[2] Describes a technique that allows fully automated model selection
for control based on feedback linearization. Further, software written
in this work were implemented to evaluation function calculation in
genetic algorithms.

P[3] The main contribution of this paper is in proposed novel algorithm
for neural network based minimal state-space representation of a wild
class of nonlinear MIMO systems and its application to the state
feedback linearization based control.

P[4] This paper represents feed-forward neural network with external feed-
back of specific structure for dealing with dynamic problems. We have
focused on the issue of identification for control of nonlinear dynamic
MIMO systems in the state-space form. The proposed algorithm con-
sists of two mechanisms: a minimal state-space realization technique
for model with some a priori knowledge or reduced model represen-
tation if a priori information about the system is absent.

P[5] The main contribution of this paper is in proposed novel representa-
tion of the NN-NARX (NN-ANARX) structure which easily can be
encoded by binary strings. Thus, topology of the network is chosen
by means of canonical genetic algorithm. The possibility of obtain-
ing optimal neural network structure which is not necessarily fully
connected enables to reduce the number of the parameters used in
controller.

P[6] Application of genetic algorithms for identification of NN-ANARX
structure is presented in this paper. Main distinctive property of
proposed approach is that evaluation function is based not only on
means of square error but also on the values of combined omnidirec-
tional cross-correlation functions and model order. Examples consid-
ered in the framework of present research has clearly demonstrated
that proposed method converges either to NN-ANARX structure of
the same order as original system or to the NN-ANARX structure of
slightly higher order whereas certain connections are eliminated.

Author’s contribution to the publications

In P[1] the general form of the dynamical state controller for SISO systems
was designed during discussions with Eduard Petlenkov and Juri Belikov.
The author extended it to the more general case - control of MIMO sys-
tems. All applications of the proposed technique were contributed by the
author.
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In P[2]-P[5] work of the co-authors was of consultative nature.

In P[6] Sven Nõmm worked on a part that relates to the use of statis-
tical methods. The author carried out a part that was related to genetic
algorithm and contributed especially the experimental part.

Future work

Results achieved in the framework of this thesis give impetus to several
research directions.

Development of algorithm for control signal calculation for MIMO non-
linear systems, where simplification of the model is not used.

More work should be done on examination of impact of each of the cri-
teria for calculating the evaluation function if the model fitness calculation
is base on the several criteria. While in this work choice of the weighted
coefficients still very much depends on the expert experience, there may
be an opportunity to give a general recommendation on the choice of the
parameters or how it depends on the class of the studied system.

As current work considers a specific class of models with ANARX struc-
ture, so the applicability of neural networks with restricted connectivity
based approach for identification of associative models could be the subject
of further research.
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[35] Ü. Kotta, S. Nõmm, and F. Chowdhury. On a new type of neural
network-based input-output model: The ANARMA structure. In The
5th IFAC Symposium on nonlinear control systems NOLCOS, pages
1535–1538, St. Petersbourg, Russia, July 2001.
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[37] Ü. Kotta and N. Sadegh. Two approaches for state space realization
of narma models: bridging the gap. Mathematical and Computer Mod-
elling of Dynamical Systems, 8(1):21–32, 2002.

[38] I. J. Leontaritis and S. A. Billings. Inputoutput parametric models for
nonlinear systems part i: Deterministic nonlinear systems. International
Journal of Control, 41(2):303–328, 1985.

[39] X. Li, Y. Bai, and L. Yang. Neural network online decoupling for a
class of nonlinear system. In The 6th World Congress on Intelligent
Control and Automation, pages 2920–2924, Dalian, China, June 2006.

[40] B. T. Luke. Genetic algorithms and beyond. In R. Leardi, editor,
Data Handling in Science and Technology: Nature-inspired Methods
in Chemometrics: Genetic Algorithms and Artificial Neural Networks,
pages 3–54. Elsevier, 2003.
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Kokkuvõtte

Käesoleval ajal tootmisprotsesside automatiseerimisel kasutatavate kontrol-
lerite võimalused (eriti arvutusvõimsused) on oluliselt kasvanud. Auto-
maatikavahendeid tootvad firmad on laiendanud kontrollereid funktsion-
aalsete plokkidega, luues eeldused mudelipõhiste juhtimismeetodite laial-
daseks kasutamiseks tootmisprotsesside automatiseerimisel.

Paljud juhtimissüsteemide modelleerimisel, identifitseerimisel ja analüü-
sil kasutatavad meetodid põhinevad olekumudelil. Mittelineaarsete süs-
teemide identifitseerimisel kasutatakse tavaliselt sisend - väljund mudelitel
põhinevaid meetodeid. Üheks võimaluseks klassikaliste ja kaasaegsete mee-
todite integreerimiseks on kasutada eristruktuuriga tehisnärvivõrke.

Mittelineaarsete süsteemide identifitseerimisel on otstarbekas kasutada
tehisnärvivõrkudel põhinevat ANARX mudelit, kuna täielikult ühendatud
närvivõrgud ei ole alati esitatavad olekumudelina. ANARX mudel võimal-
dab leida olekumudeli ilma täiendavate kitsendusteta. Käesolevas väite-
kirjas on uuritud mittelineaarsete süsteemide identifitseerimist juhtimiseks
tehisnärvivõrkude abil.

Mitmemõõtmeliste süsteemide minimaalse olekumudeli leidmiseks tuleb
teha muudatusi tehisnärvivõrgu arhitektuuris. Antud töös on uuritud kahte
inseneripraktika vaatepunktist olulist identifitseerimise juhtumit:

1. Halli kasti (gray-box) lähenemine (eeldame, et identifitseeritava süs-
teemi järk on teada);

2. Musta kasti (black-box) lähenemine.

Halli kasti lähenemise puhul saame täpsustada vajalikke tehisnärvivõrgu
struktuuri muudatusi, kuid tulemus sõltub olulisel määral eksperdi koge-
mustest.

Musta kasti lähenemisel tuleb erinevatest piiratud ühenduvusega tehis-
närvivõrkude arhitektuuridest leida ANARX mudeli alaliik, mis kindlustab
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närvivõrgu parameetrite põhjal loodud regulaatorile nõutud juhtimise kvali-
teedi. Töös väljatöötatud meetod võimaldab leida tehisnärvivõrgu opti-
maalse arhitektuuri mittelineaarse süsteemi identifitseerimiseks. Meetod
põhineb mitmekriteriaalse hindamisfunktsiooni ja geneetilise algoritmi ka-
sutamisel. On oluline märkida, et meetod lahendab ka mudeli üleparametri-
seerimise probleemi.

Töös väljatöötatud meetodeid on testitud inseneripraktikas oluliste ob-
jektide mudelitel.
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Abstract

Nowadays, the performance capabilities of controllers used in industry has
increased significantly. Many manufacturers include in their production se-
ries Function Blocks, which allow to use model-based control techniques.

A lot of different methods for the analysis, modeling and control design
based on the classical state-space model. However, for the identification
of nonlinear systems techniques based on input-output models are usually
used. One possibility to combine classical and modern approaches is the
use of neural network with specific structure.

Fully connected neural networks are not always directly realizable in the
state-space representation. In this case NN-based Additive NARX (Nonlin-
ear AutoRegressive eXogenious) model is considered as a reasonable choice
for control-aimed identification of a wide class of nonlinear systems. It al-
lows to obtain state-space representation without additional assumptions
on the structure of the identified model. The identification process for con-
trol using neural networks for further application in state-space controller
is studied in this thesis.

However, in the case of MIMO systems, finding the minimal state-space
representation requires some changes in the neural network architecture.
The major contributions of the present work are made for two cases: when
we deal with a gray-box system (order of the identified system is known
a priori) or with a black-box system. In the first case, we can specify the
structural changes that have to be done, so the result strongly depends
on the expert experience. In the second case, from the different restricted
connectivity neural networks architectures it is necessary to find ANARX
type subclass, such as the controller based on the parameters of a chosen
neural network has a good performance.

A method for deriving the optimal structure of a neural network using
genetic algorithm with multicriteria evaluation function is developed. As
a result of which a neural network, where all redundant interconnections
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are eliminated, is obtained. That approach allows us to solve the model
over-parameterization problem. On the basis of neural network parameters
a dynamic state feedback controller is designed.
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01.2002 – 08.2002 Automaatikainstituut, TTÜ insener
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17. Artur Jutman. Selected Issues of Modeling, Verification and Test-
ing of Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Pro-
cesses in Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis.
2005.

21. Marko Koort. Transmitter Power Control in Wireless Communica-
tion Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations.
Time-Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.
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