
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Natalja Baranova 164753IAPB

GEOMETRIC REPRESENTATION OF

AVERAGE TRAJECTORY AND ITS

APPLICABILITY TO DESCRIBE A

LEARNING PROCESS

Bachelor's thesis

Supervisor: Sven Nõmm,

PhD

Tallinn 2019



TALLINN UNIVERSITY OF TECHNOLOGY

Infotehnoloogia teaduskond

Natalja Baranova 164753IAPB

LIIGUTUSE KESKMINE TRAJEKTOOR

JA SELLE RAKENDATAVUS

ÕPPEPROTSESSI MODELLEERIMISEKS

Bachelor's thesis

Supervisor: Sven Nomm,

PhD

Tallinn 2019



Author's declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This thesis

has not been presented for examination anywhere else.

Autor: Natalja Baranova

20.05.2019

3



Abstract

The human gross-motor analysis is an area widely involved in medicine and sports.

The notion of average trajectory of repeating motion is yet to gain ground in this

sphere.

This study has two main objectives.

The �rst goal is to to relax assumptions previously proposed approach of average

trajectory calculation imposes [1]. For this several average trajectory computing

methods are implemented. As a comparative characteristic their applicability to

describe a learning process is used.

The second objective is to represent average trajectory in the way familiar to

human understanding. In order to achieve this goal a simple graphical software is

implemented with use of speed based plot colouring and animation of comparable

single motion.

This thesis is written in English and is 34 pages long, including 7 chapters, 24 �gures

and 4 tables.
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Annotatsioon
Liigutuse Keskmine Trajektoor ja Selle

Rakendatavus Õppeprotsessi Modelleerimiseks

Inimeste liigutuste analüüs on meditsiinis ja spordis laialt kasutatav ala. Korduva

liikumise keskmise trajektoori mõiste ei saanud veel selles valdkonnas levimust.

Selle töö põhieesmärkideks on kaks sihti.

Esimeseks on kergendada eelmiselt pakutud meetodis oletatud kitsendusi esialgsete

andmete kohta. Selleks neli teistsugust lähenemist on implementeeritud.

Meetodite võrreldamiseks nende sobivus õppeprotsessi kirjaldamiseks on võetud.

Selle hindamiseks on leitud korrelatsioonsuhed Liigutusmassi parameetrite ja

meetodite esitatavate ruumalade vahel. Meetod, mis näitab parima korrelatsiooni

on valitud teiste loendist.

Teiseks eesmärgiks on edastada keskmise trajektoori inimese jaoks arusaadavas

vormis, milleks on valitud graa�line esitus. Lihtne tarkvara on implementeeritud.

See annab võimalust võrrelda kordatavate liigutuste keskmist ühiksalvestusega,

värvida joonist baseerides inimese liigeste kiirustes ja animeerida võrreldava

ühiksalvestuse luukeret.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 7 peatükki,

24 joonist, 4 tabelit.
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1 Introduction

The gross-motor motion is a set of human joint displacement in four dimensions. It

can be described by numeric characteristics, which contain a lot of information and

can be easily proceeded by computers, but is not so understandable to people. At

the same time perception of motion can help performer to improve results or medic

to describe a pattern inconsistency while neurological diseases diagnostics.

The notion of �average trajectory� of repeating motion yet to gain ground in the

area of human motion analysis. The one of methods was proposed in [1]. Still this

method relies on a few strong assumptions about the initial data. The �rst goal of

this thesis is to relax these assumptions and experiment with a number of alternative

approaches.

Second goal is to make the comparing of single motion average between multiple

motions comprehensible for a human and to provide a software realisation.

1.1 Work-�ow

Three main phases can be selected to de�ne the process of the work described and

concluded in this document (Figure 1). To a greater or lesser extent, phases require

experimental data to be gathered, which is another task accomplished during all the

work-�ow.

1. Four methods of repeating motion average trajectory calculating are

implemented based on previously described approach [1]. Each method

supplements the previous or addresses the issues occurred in de�ne

approaches.

2. The methods are compared by their applicability to describe learning process,

relying on the notion of Motion Mass parameters.

3. One of the methods is chosen and implemented into a software, which provides

an opportunity to describe average graphically and to observe it together with

12



single motion.

Figure 1: The work-�ow markup

1.2 Experimental settings

The methods applicability to describe learning process is veri�ed on example of ball

throwing exercise (Figure 2). Ball throwing exercise allows to consider successful

and fail trials separately. During the ball throwing the performer and basket to aim

are located on the de�ned distance (3 m). The recording equipment is capturing

the movement of performer during the attempt with some frequency.
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Figure 2: The model of ball throwing exercise

Two performers were captured over 15 series each consisting of 20 attempts. Both

performers are right-handed and are doing exercise with right hand. Right wrist is

chosen as the throwing movement representing joint. Performers showed di�erent

progress rate, which can be seen on Figure 3.

Figure 3: The success rate of two performers captured
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In this study Microsoft Kinect sensor is chosen as recording equipment. Till the

release of Kinect was discontinued, the o�cial Microsoft description is no longer

available. Still it is widely described in previous works on human joint movement

analysis [1] [2] [3] [4]. It allows to get location of 25 human model points in the time

moment with frequency of 30 s. The data is gathered with the software developed

in TalTech laboratory in 2017 by J.J. Bernstein [5]. As the format of data Comma

Separated Values (CSV) is used.

However all the methods described can work with trajectories de�ned as point chains

not depending on how the initial data was gathered.

The steps explained in following sections are implemented with use of Python [6]

and SciPy packages. SciPy is "a Python-based ecosystem of open-source software

for mathematics, science, and engineering" [7]. Next packages are used in this work:

pandas [8] for CSV format �les proceeding, NumPy [9] for performing complex

mathematical actions, Matplotlib [10] for graphics.
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2 Mathematical explanations

In this section mathematical notions used in implemented methods comparison are

explained.

2.1 Motion Mass Parameters

Motion Mass (MM) is a set of variables used to describe movement [2]. The MM

vector in this analysis includes 6 previously stated and one appended parameter:

Euclidian distance (E), Trajectory mass (Tm), Acceleration mass (Am), time (t)

[2], Velocity mass (Vm) [3], Jerk mass (Jm) [4] and Curvature mass (Cm).

To represent the Motion Mass of the entire series of attempts (performed in one day)

an average of every parameter between this day successful trajectories is computed.

P =

∑n
i=1 Pi

n

where P represents Motion Mass parameter and n is the number of trajectories.

The Motion Mass parameters of one trajectory come with following de�nitions:

E =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

where (x1, y1, z1) and (x2, y2, z2) are the �rst and the �nal points of the throwing

trajectory

Tm =
n∑

i=1

Ei

Vm =
n−1∑
i=2

Ei

ti

where n is amount of intervals of trajectory, Ei is distance of the interval and ti is
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time between frame capturing.

Am =
n−1∑
i=2

Vi+1 − Vi
ti

where n is amount of velocities computed for the trajectory, Vi and Vi+1 are initial

and �nal velocities and ti is time between frame capturing

Jm =
n−1∑
i=2

Ai+1 − Ai

ti

where n is amount of accelerations computed for the trajectory, Ai and Ai+1 are

initial and �nal accelerations and ti is time between frame capturing

Cm =
n∑

i=1

Ci

where n is amount of angles of the trajectory and Ci is curvature calculated for angle

i preceding interval. As a interval curvature the relation between interval length and

the angle after it is taken:

C =
∆γ

ab

∆γ = arccos(− a · b
|a| · |b|

)

where a and b are vectors of interval i and interval i+ 1 as it is shown on Figure 4

[11].

Figure 4: The angle between two tangents of the curve
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2.2 The volume of trajectory distribution describing shape

In [1] it was established, that during the process of learning the volume of success

trajectory distribution describing shape changes. Hence it is used to mathematically

represent the average computing methods.

For computing the volume the shape is reviewed as sequence of ellipse pairs. The

part represented by ellipse pair in its turn is divided into tetrahedrons as it is shown

on Figure 5.

The volume of every tetrahedron is calculated using the next equation [12]:

V 2 =
1

144
[l21l

2
5(l

2
2 + l23 + l24 + l26 − l21 − l25) + l22l

2
6(l

2
1 + l23 + l24 + l25 − l22 − l26)+

+ l23l
2
4(l

2
1 + l22 + l25 + l26 − l23 − l24)− l21l22l24 − l22l23l25 − l21l23l6 − l24l25l26]

where l1, l2, l3, l4, l5 and l6 are lengths of tetrahedron edges.

Figure 5: The shape described by two ellipses divided into tetrahedrons
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2.3 Welch's t-test

Welch's test is statistical hypothesis test for two unequal variances [13]. It takes

as null hypothesis (H0), that the means of samples are equal. The alternative

hypothesis (H1) states, that means di�er. The equation for Welch's t-test t-statistics

calculating is following:

t =
X1 −X2√

s21
N1

+
s22
N2

where X i is sample i mean, Ni is sample i size and si is its variance.

In hypothesis testing the notion of p-value is important as well. This value is

representing the probability of results inaccuracy and is used to make decision on

null hypothesis rejection [14]. For calculating t-statistics Python SciPy package [7]

is used (Figure 6).

t, p = scipy.stats.ttest_ind(test_set1, test_set2, equal_var=False)

Figure 6: The example of Python SciPy package usage for Welch's t-test executing

2.4 Pearson correlation coe�cient

Correlation coe�cient in statistics is used to show dependence between two variables.

The Pearson's linear correlation coe�cient is illustrating how linear the relation is.

The coe�cient value lays in interval [−1; 1]. 0 points to no correlation. −1 and

1 indicate strong negative and strong positive correlation accordingly [15]. The

Pearson's correlation coe�cient is computed with next equation:

r =
n(
∑
xy)− (

∑
x)(

∑
y)√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

where n is a size of sets, x and y are values of variables.

For calculating the coe�cient value Python SciPy package [7] is used as well (Figure
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7).

r, p = scipy.stats.pearsonr(motion_mass_parameter_list, volumes)

Figure 7: The example of Python SciPy package usage for Pearson coe�cient calculating

20



3 Methodological explanation

In this section the average trajectory of repeating motion calculation basic

approach, previously stated solution and explored modi�cation possibilities are

described. Tested suggestions are explained one after one in the order of their

occurrence.

3.1 Previously stated approach

All the solutions considered and veri�ed in this thesis are based on the main approach

of average trajectory calculating and analysis stated in [1]. Which means that

in behalf of full understanding the fundamentals of previously proposed technique

should �rstly be described. In next few sections either the notion of the mean

trajectory, the key steps of calculating the mean as well as the previously de�ned

approach inherent solutions and weaknesses are explained.

3.1.1 Basic method explanation

The method of average trajectory calculating this thesis relies on assumes getting the

polygonal chain representing so called "perfect motion" and also a shape, describing

a variability of analysed trajectories. The points representing the polygonal chain

are computed as the means of point sets. Such sets are composed with the points

of all trajectories intersecting a de�ned plane. The analysis of certain amount of

points lying in the same plane allows also to calculate an ellipse encasing generally

all the considered points (with use of right parameters). At least three trajectories

are needed to calculate the ellipse. The two dimensional (2D) example is shown on

Figure 8.
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Figure 8: The average point and the original points distribution describing area

The ellipse de�nition comes following. After computing the covariance matrix with

coordinates of the plane intersection points set, its eigenvalues and eigenvectors are

found. The vectors represent the ellipse radii a and b orientation, the eigenvalues in

their turn are taken as a and b numeric value squares. The ellipse is represented as

de�ned number of points distributed on its outline. Ellipse canonical equation with

a and b as its inscribed and circumscribed circle radii:

x2

a2
+
y2

b2
= 1

In order to receive a volumetric shape, ellipses lying on the chosen planes are

sequentially connected. The chain connecting central points of the ellipses is

considered to be average motion. The methods implemented and compared in this

work only di�er in plane sequence choosing approaches.
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3.1.2 Previously stated approach description and inherent weaknesses

The main idea of previously stated method is to choose planes parallel to each other

and normal to one of the coordinate axes as it is illustrated on Figure 9.

Figure 9: The segment of average trajectory computed using method stated in [1] and the planes
calculated

Further is given the stepwise description of plane choosing in this approach.

1. Make the decision on a leading dimension. Every three dimensional (3D)

movement described by rectilinear relocation from one point to another can

be decomposed to the projections on three captured dimensions. In majority

of cases the vector of one of them has the biggest numeric value. The

dimension relevant to the biggest change can be chosen as leading. In the

case of movement described by multiple points the leading is dimension with

the biggest di�erence between extremes. In the context of Figure 9 it is the z

axis.

2. Pick up the segment of leading dimension, where all the trajectories are

present.

3. De�ne interval and for every step:

23



(a) Identify a plane normal to the leading dimension. With the zero as two

out of four parameters, equations of the planes illustrated on Figure 9

are following:

z = step

(b) Find the intersection points of de�ned plane with all the trajectories. This

includes in certain case �nding the pair of points, the interval between

leading coordinates of which includes step. Other two coordinates of

intersection point are found in this thesis using the ratio of distances

between trajectory points a, b and wanted point c. For the Figure 9:

ratio =
step− a(z)

b(z)− a(z)

c(x) = b(x)− a(x)ratio+ a(x)

The same comes to y.

(c) Compute the ellipses as it was described previously.

The main weaknesses of this approach are related to the rigid limitations the

method imposes. It works well in case of unidirectional movement. However if the

motion among the leading dimension achieves its extreme, it is impossible to

continue analysis. As potential solution the movement trajectories can be split and

each part examined separately each by its leading dimension. Still this does not

allow to study the whole movement, because some parts of it are either left out,

taken twice or just not related with another, which for sure can a�ect the results.

On the segments, where the leading dimension is dominating not so clearly, which

means that di�erence between the coordinate changes are pretty similar, the plane

normal to the dimension can capture points which are inconsistent with each other

from the perspective of motion phase. For one of the trajectories captured point can

already be a dimension extreme whereas for the another it is not even near. The

situation in which analysis continues after the leading dimension change can also

occur. This case as well leads to the scenario described in this paragraph.
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Di�erent performers are doing the same movements in di�erent ways, so the leading

dimension of the whole motion can di�er. Which brings up the question of human

engagement. There is a possibility of di�erent motion phases being described by

di�erent leading dimensions, so the human being is needed to make decision of which

part of motion to take into analysis. In other case the logical computer decision can

turn out to be absolutely random from the motion phase perspective.

The method does not take into consideration the time. All the measures are done

only in space. Yet the time taken to perform the movement in every segment of

the motion is very important both in the sport exercises and motor system medical

analysis.

Taking importance of the changes in one dimension higher than in the others

prioritizes the one condition and reduces the impact of other circumstances.

However the analysis is expected to be as impartial as possible. Which is why

described limitations are tried to be relaxed in this work.

3.2 Changes in methodology

In order to eliminate the notion of leading coordinate the planes in the �rst place

are captured among the movement trajectories rather than among some dimension.

It turns to be possible with including of plane rotation. The idea of plane rotation

and its advantages are explained in the next section.

3.2.1 Plane rotation

The previously stated approach assumes taking the axis de�ning vector as the all

plane sequence uni�ed normal vector. Considering the motion direction changes

requires on its turn individual normal vectors for the planes on each step.

The relation of plane normal vector
−→
A and the plane:

−→
A = (a, b, c)

ax+ by + cz = d
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The plane rotation brings complexity to a intersection points �nding. There is no

more coordinate with value de�ned, which means that against every pair of points

a(x1, y1, z1), b(x2, y2, z2) in observing trajectory the following steps are used:

1. The line equation is found by a, b.

x− x1

x2− x1
=

y − y1

y2− y1
=

z − z1

z2− z1

2. The intersection point c of line and plane is calculated.

3. The point c is checked to lay between a and b.

4. If the previous statement is correct, c is taken as the intersection point of

trajectory and plane.

With the plane rotation the number of ellipses is not decided before calculation.

The ellipse sequence starts from the �rst plane, where intersection point of every

trajectory is present, and ends with the last such a plane.

The easiest way of picking direction vector is to observe the movement among the

one chosen trajectory. Which heads to the concept of directive trajectory. In this

study the directive trajectory is a trajectory taken to represent motion direction.

The ellipse is a 2D �gure. Only two coordinates of interception points can come into

covariance matrix, so the decision of which for every ellipse is made. Left out is the

dimension leading on the directive trajectory current point direction vector. This

dimension representing vector is the closest to be plane normal, so the changes of it

are the less a�ected by the calculation accuracy. The coordinates of this dimension

are found for each point with use of plane equation.

The understanding of step is also modi�ed. The movement trajectories are

represented as the polygonal chains, so the direction vector of trajectory is not

changing constantly, but only on joints of segments. It means that every point of

trajectory can be considered as step.

In the �rst implemented method (further the method of Directive Trajectory, DT)
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the trajectory with the biggest amount of observation steps is chosen as directive.

However this approach of the plane normal vector choice leads to the dominance

of one trajectory. In order to relax this dominance the plane should be corrected

with considering all the other trajectories. The o�ered correction includes following

steps:

1. For every trajectory �nd plane intersection point.

2. For every trajectory �nd the direction vector in the point.

3. Calculate an average vector.

4. Put the average vector in the step point of directive trajectory.

5. De�ne a new plane taking the average vector as its normal.

The Figure 10 depicts plane before correction (green), intersection points (black)

and directive vectors of the trajectories in these points (colourful), average vector

and plane after correction (yellow).

Figure 10: Correction of the plane
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Figure 11: The method of Directive Trajectory

Figure 11 depicts surrounding shape (green), average trajectory (red), input

trajectories (blue) calculated with method of directive trajectory. As it is seen, in

the case of plane correction the sequential connection of the ellipses is deforming

the shape of surrounding. That happens because the ellipse own coordinate axes

are shifted. For preventing such a situation the connecting indexes of ellipses are

chosen by the distance between connected points. Every ellipse, excluding the �rst

one, shifts its point indexes comparing to the previous. The position with the

lowest sum of distances between connected points is chosen (Figure 12).

3.3 Methods of choosing directive trajectory

Still the use of method of Directive Trajectory leads to the trajectories unequal

a�ection to the result. As a possibility to prevent it the generalized trajectory is

calculated and taken as directive before average trajectory �nding. For implementing

such a generalization several methods are tried.
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Figure 12: The method of Directive Trajectory with corrected ellipse connection

3.3.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm for synchronizing two sequences

with similar, but not fully matching pattern. It is distributed in area of speech

recognition [16], for relating soundtracks and can also be applied to repeating

motion. Doing an exercise, performer never repeats it in exactly same way. The

speed, space orientation, phase distribution can di�er. However, motion

development comes generally the same. With that condition, every point of

trajectory A can be related by phase with some or several points of trajectory B,

even thought their length not necessarily match. The relations de�nition comes

following.

Let's the length of A is n and the length of B is m.

A = a1, a2, ..., ai, ..., an

B = b1, b2, ..., bj, ..., bm
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The distances between all point pairs (ai, bj) compile the matrix M with n rows

and m columns. So the Mi,j is the distance between points ai and bj. The path

from M1,1 to Mn,m is found. For every step Mi,j the next position with lowest value

is chosen out of Mi+1,j, Mi+1,j+1, Mi,j+1. The row and column indexes of chosen

cells represent the relations between A and B. The square distance d can come

as representative of distance between two points a(x1, y1, z1), b(x2, y2, z2) and is

calculated as following:

d = (x2− x1)2 + (y2− y1)2 + (z2− z1)2

In 2010 T Kashima [17] proposed a way of average trajectory calculating using

DTW. This algorithm is used as a possible for directive trajectory �nding. It can

be described in following steps:

1. Select the pair of trajectories.

2. Find the DTW relations for the pair.

3. Calculate an average for every phase represented as the trajectory point

relation set (Figure 13).

4. Select new pair of trajectories, where one of them is calculated average and the

other is next input trajectory. Repeat the steps until all the input trajectories

are used.

The resulting average trajectory is shown on Figure 14.
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Figure 13: The DTW relations between two trajectories of ball throwing and average between
these two
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Figure 14: The directive trajectory calculated with DTW

3.3.2 Time moment including

All previously explained methods are only considering the movement in the space.

However the di�erences in time taken to perform the exercise are also important

in the movement analysis and average calculating. As the attempt to combine the

movement in the space and in the time the time moment average is taken as directive

in this method.

The set of points with index i from every trajectory are modifying the set of points

at the moment i. The time moment average point i is calculating as the average

of the set at the moment i. However only the set including the points from all the

trajectories can be gathered. So the calculating stops, when i reaches the index of

�nal point of some input trajectory. The amount of points in input trajectories can

very di�er, which means that a lot of points can be left out of calculating. The

Figure 15 shows the picture, when the directive (black) is much shorter, than the

input trajectories (blue).
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Figure 15: The average trajectory calculated with time moment including

In order to continue this directive two methods are applied:

1. Aim to the �nal point (further time 1). This means to take the �nal point of

the �nished trajectory T into the every set of points, which moment exceeds

the �nal of the T (Figure 16).

2. Continue the movement (further time 2). This method assumes, that the

movement continues in exactly same way, as the last captured interval. For

every additional point it adds the vector of last movement done. If points

a(x1, y1, z1) and b(x2, y2, z2) are the second-to-last and last points of

trajectory T in moment i, the assumed point in the moment i + j is

c(x2 + j(x2− x1), y2 + j(y2− y1), z2 + j(z2− z1)) (Figure 17).

Figure 16: Directive trajectory computed
with �nal point aiming time moment

Figure 17: Directive trajectory computed
with movement continuing time moment
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3.4 Method of choosing intersection point

With plane rotation the situation may occur, where a few point sets are intersecting

the plane (Figure 18). The decision on which points to put into analysing set is

made using simple Nearest Neighbour rule.

Figure 18: Plane intersecting the trajectories in a few phases

3.4.1 Nearest Neighbours

The idea of Nearest Neighbour rule (NN) is to choose from the group of exemplars

according to their distance to the known dataset [18]. The problem of intersection

points is to get point set, where belonging to a group point from every trajectory

is presented. The step point of the directive trajectory is certain to be the part of

needed cluster. Accordingly, the intersection point of trajectory, which is nearest to

the step point is chosen into the set.

However for applying this approach all the intersection points are needed to be

found before clustering. The more simple way is to de�ne the searching area from

the beginning. Which is also implemented with use of idea of NN rule. Next steps

can describe the process for the one of trajectories:
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1. Find the point, nearest to step point of the directive trajectory. This point

serves as a graph vertex in the observing trajectory. Let it be with the index i

2. Examine the point pairs, as it was explained in previous sections, using

Breadth-First search (BFS). BFS is a search method, which on every step

observes further both directions. In other words, on step j it will observe

intervals starting with points i+ j and i− j.

Previously for �nding the intersection points all the point pairs of trajectory should

be checked with a few step analysis. That is why de�ning the searching area is also

working faster, than method described in last paragraph. With use of this approach

the process reduced the time for 20% during development.

3.4.2 Processing the trajectory edges

On the edges of movement the condition may occur, that the trajectory has no plane

intersection point in needed cluster, yet crosses it in another place. To prevent the

analysis of mismatching set the distance between the set points is restricted. For

the ball throwing exercise the fourth part of trajectory as a limit has shown itself

suitable in general case.

As well as in the previous section it is not necessary to receive the point before

realizing it does not match the cluster. If the observation comes further than decided

limit, the search stops and the set is decided to be incomplete.

3.5 Trajectory relocation

In the repeating motion recording one of the problems is to ensure the conditions

consistency. The distance between equipment, the capturing device and the

performer should remain as unchanged as possible. Even a little shift in the

performer location can a�ect the results of analysis. It is important while

recording the attempts set, which is going to be analysed as indivisible whole.

Not less signi�cant it is while capturing the motion in a few series with the goal of

comparing its location. However the question of �xity guarantee is complex. The
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impact of two possible approaches for shift neutralizing are checked in this paper:

1. Single trajectory relocation. In other words, unifying the beginning points

of comparable trajectories, which means that every point of trajectory T is

shifted on the vector of displacement. Let T0(x1, y1, z1) be the input trajectory

beginning point and (x2, y2, z2) be the decided uni�ed beginning point. Hence

vector
−−−→
shift = (x2 − x1, y2 − y1, z2 − z1) is vector of displacement for T .

Replaced trajectory R point Ri = Ti −
−−−→
shift.

2. The whole human model relocation. Which means unifying the beginning

placement of performer solar plexus of comparable recordings.
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4 Results

In this section the outcome of the di�erent method comparison is stated.

4.1 The learning process

In this study Welch's t-test is used to ensure, that volumes of successful

trajectories distribution describing shape computed with proposed methods di�er

in the beginning and the end of experiment. Otherwise the volume can not be

interpreted as learning process describing parameter.

For the learning process analysis two participants are considered separately. For

each of them the successful trajectory combination samples are picked up from the

�rst three and the last three days. Each sample contains �fteen combinations of �ve

trajectories.

The Table 1 and Table 2 depict that the Directive Trajectory basic method (DT) and

DT Dynamic Time Warping based method (DTW) in the case of both persons show

changes in volume of shapes between beginning and end of learning process. Time

moment including methods are not crossing the threshold of 0.05 level of signi�cance

considering Person 1. Since the purpose of the analysis is to �nd out, which method

describes the process of learning better, the time moment including methods are on

the lower position after this test. However the further analysis will include all four

methods in order to con�rm the results.

method hypothesis chosen p-value t-statistics

DT 1 0.0379 2.2734
DTW 1 0.0475 2.1750
time 1 0 0.0538 2.1110
time 2 0 0.0535 2.1143

Table 1: The Welch's test results of training in�uence, Person 1
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method hypothesis chosen p-value t-statistics

DT 1 0.0010 3.8106
DTW 1 0.0002 4.4098
time 1 1 0.0097 2.9044
time 2 1 0.0092 2.9295

Table 2: The Welch's test results of training in�uence, Person 2

4.2 Correlation between volume and Motion Mass

parameters

In this work Pearson's correlation coe�cient is used to de�ne relations between

Motion Mass parameters and the shape volume during the learning process. The

biggest correlation is witnessing the best applicability to describe the learning

process. The periods with the biggest measure of learning are chosen for every

person. The most illustrative results are shown in the Table 3 and Table 4. In the

both cases the Dynamic Time Warping including method clearly dominates over

the others.

method p-value Pearson's coe�cient

DT 0.1249 -0.8750
DTW 0.004 -0.9954

time 1 0.2679 -0.7321
time 2 0.2469 -0.7531

Table 3: The correlation between Curvature Mass and average describing volume, Person 1

method p-value Pearson's coe�cient

DT 0.0470 -0.9530
DTW 0.0171 -0.9829

time 1 0.0528 -0.9472
time 2 0.0211 -0.9789

Table 4: The correlation between Acceleration Mass and average describing volume, Person 2

4.3 Trajectory relocation

The further analysis of the methods of trajectory relocation has shown that any

tried relocation of the trajectories has too signi�cant in�uence on the volume of
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the tube. As an illustration the changes in volume throughout all the 15 days of

Person 1 are shown on Figure 19. Unlike the volumes of not moved trajectories

distribution shape, the moved ones show no relation between successful, fail and full

set of attempts. In addition to that no correlation between volumes and Motion

Mass parameters is found as well.

Figure 19: The volume changes calculated with relocated and not relocated trajectories, Person 1
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5 Implemented software

The implemented software allows to calculate average trajectory of right wrist of

multiple movement recordings using Dynamic Time Warping Directive Trajectory

�nding method. Up to two average trajectories can be placed on one plot. The

option to compare average with chosen single motion exists as well.

As an input the program takes directory with .csv �les with Kinect similar structure.

5.1 Visual additions

As the one of the main thesis purposes, graphical visual part of the analysis is

important. To make the visualisation more demonstrative, a few additions are

added.

5.1.1 Colouring

The calculated average represents the so called "perfect movement" and the

distribution of input trajectories. The moment of motion speed can be understood

by the intervals between capturing, but this way is not evident and requires too

much e�ort.

A basic method of giving an additional information with graphical data is colouring.

Suitable choice of colouring can recall abundant associations, which help to come to

right conclusions without mathematical calculations, complex judgements made by

receiving party.

For higher speed representation red colour (#f00) is used relying on [19]. Green

colour (#008000) was chosen for lower speed representation as complimentary of

red and according to personal associations.

The gradient from green to red represents the speed change from minimum to

maximum captured. Ten di�erent values of colours are used. For receiving the
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gradient values Python colour library [20] is used (Figure 20).

gradient = list(colour.Color("green").range_to(colour.Color("red"), 10))

Figure 20: The example of Python colour library usage

The frames are captured with the same interval, so the distance between points

is taken as speed representative. For every segment of average trajectory mean

distance of intersection point containing input trajectory segments is calculated.

The average speed is changing permanently during the ball throwing movement and

reaches its maximum on the end of trajectory (Figure 21).

Figure 21: The speed based colouring of the trajectory distribution shape

5.1.2 Animation

Comparing average trajectory with another motion in order to notice the di�erence

with so called "perfect motion" can be statically reproduced by simple covering as

it is shown on Figure 22. However it is complicated to �nd, how exactly should

movement be performed for matching the perfect. Especially because what is done
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wrong is not seen.

Figure 22: The success trials distribution describing shape and the fail trajectory

To make it easier, the animation of comparable recording is added. The human is

represented by so called "skeleton" � joints connected in time moment. The joint

of trajectory is marked with point and is tracing the comparable trajectory.

Every joint is taking part in speed calculation. The connection of joint pair is

coloured speed based, as it was described in previous section. The maximum speed

of joint pair is taken as connection representative speed (Figure 23).
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Figure 23: Two frames from ball throwing animation

5.2 User Interface

The UI for the software is implemented with use of Tkinter module [21] (Figure 24).

Graphical part is appearing separately as Matplotlib plot window.
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Figure 24: User Interface
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6 Discussion

The Dynamic Time Warping based method has shown itself as the most suitable to

describe the changes in gross-motor activity, based on example of learning process.

However only four methods were examined. Obviously, there is a huge area to

improve results.

Still Dynamic Time Warping is considering motion only in 3D, while actual motion

is taking place in 4D. The methods which further can be explored may contain time

based analysis as well.

The simple human skeleton used to represent the comparable motion provides basic

information about movement. Nevertheless imposing analysed average to the video

recording could describe the di�erences better. Still this considers video proceeding

area more than data analysis, which was the main sector of interest of this study.

45



7 Conclusion

The �rst goal of this thesis was to relax the limitations on initial data the previously

stated method of average calculating [1] assumes, which are the dominance of one

dimension and the need of human involving. For this purpose four approaches were

implemented and tested on their ability to describe changes in repeating motion.

The method with Dynamic Time Warping algorithm used to de�ne the direction

of the motion has shown biggest correlation between Motion Mass parameters and

calculated average volume.

The dominance of chosen approach was clearly seen in the results of performed

veri�cation. It has shown the best results in case of both test participants with

Pearson' correlation coe�cient deviating from the extreme less than to 2% in the

most illustrative cases.

This method is not selecting the dimension to trace motion through, the analysis

is performing across the motion direction. Chosen approach also considers all the

trajectories while making decision on movement direction in time moment. For this

purpose it �nds average trajectory by motion phases. It also solves itself the problem

of analysis start and end steps decision taking as mentioned the �rst and the last

with analysis be possible to perform.

The �nding of the points considered in analysis is performed with use of Nearest

Neighbour rule, which decreases the speed of the process by 20%.

Second goal was to graphically describe these method and make possible to illustrate

the di�erences between average motion of multiple recordings and single motion. For

this the simple software was implemented. The main function of which is to plot

the calculated average and compare it with single motion. It allows as well to

trace the changes of speed by colouring and to monitor the animated movement of

skeleton model. Animation and the colouring vividly show the di�erences in speed

and direction between "expected" average movement and the single performed. The

plot can depict the throwing movement from desired angle.
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