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ABSTRACT 

This thesis addresses several volatility modeling and dynamic asset allocation 

techniques. In the first part of the paper a comprehensive overview of generalized 

autoregressive conditional heteroskedastic (GARCH) type volatility modeling methods and 

dynamic asset allocation techniques is provided. In addition, findings of previous empirical 

studies are discussed. The second part of this thesis, empirical analsysis, is divided into two. 

First, one day ahead conditional volatility is forecasted for the U.S. and European equity 

indexes and fixed income futures over a ten year observation period by using GARCH, 

EGARCH and GJR-GARCH models. Second, the portfolio simulation analysis is conducted 

by using the shortfall risk-based dynamic asset allocation strategy, which is compared to the 

portfolio based on static asset allocation. 

 The Akaike and Bayesan information criterions indicated that most suitable models for 

conditional volatility forecasting were EGARCH and GJR-GARCH models. These forecasts 

were used as the main inputs of the expected shortfall risk calculations, although, the further 

empirical analysis revealed that during the forecasting period ordinary GARCH model was 

superior. 

It appeared from the results of portfolio simulation that, if transaction costs are below 

0.38% of traded volume, then during the observation period portfolio based on dynamic 

strategy outperformed portfolio based on static strategy. Additionally were concluded that 

results are highly dependent on the dataset, observation period, transaction costs and 

constraints which were used. 

 

Keywords: dynamic asset allocation, asset management, expected shortfall, CVaR, minimum 

variance, volatility modeling, volatility forecasting, GARCH, EGARCH, GJR-GARCH 

 

JEL Classification: G11, G15, G17, D81 
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ABBREVIATIONS 
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AIC – Akaike Information Criterion 
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RMSE – Root Mean Squared Error 

SMA – Simple Moving Average 
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USE – S&P500 Index Daily Close Prices 

USF – U.S. 10Y Treasury Future Daily Close Prices 

VaR – Value at Risk 
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INTRODUCTION 

“An investment in knowledge always pays the best interest.”  

- Benjamin Franklin (1758) 

 

The globalization of financial markets and the continuous development of investment 

products are offering investors a growing number of options to compile investment portfolios. 

In search of optimizing the portfolio, a lot of attention has been given to the Markowitz’s 

(1952) mean-variance optimization framework, which is one of the cornerstones of the 

modern portfolio theory. Despite of the useful insight provided by mean-variance framework, 

the biggest financial crises during the last decades
1
 have provided evidences that this 

framework possesses one major shortcoming: it assumes static correlations between different 

financial assets, which deviate from the reality. The correlation dynamics pose a major 

problem for the asset managers and investors who have been relying on a mean-variance 

framework as a tool to minimize risks of their portfolios. Numerous studies, for example Erb 

et al. (1994), Karolyi and Stulz (1996), Longin and Solnik (2001), and Ang and Beakert 

(2002), observed correlations between different financial assets and reached a conclusion that 

correlations tend to increase during more volatile periods, e.g., during financial crises. In 

general, correlations are considerably lower for upside movements than for downside 

movements. Therefore, the same investment portfolio, which is optimal during low volatility 

period, is not optimal during high volatility period.  

The latter is also one of the reasons why Li and Sullivan (2011) claimed that portfolio 

management is nowadays moving toward a more flexible and dynamic approach, which is 

capable of capturing the dynamics in risk and return expectations among different financial 

assets. Under more flexible and dynamic approach Li and Sullivan (2011) considered 

allocation choices among different asset classes. 

                                                 
1
 For example, during the following crises: Black Monday (1987), Asian Crisis (1997-1998), Russian Crisis 

(1998), Brazilian Crisis (1999), Dot-com Bubble (2001), Subprime Mortgage Crisis/Global Financial Crisis 

(2007-2008), European Sovereign Debt Crisis (2010-2011). 



9 

 

In addition, the last major financial crises have shown that the traditional static asset 

allocation, which is widely used by most of mutual funds, may not be rational during different 

phases of financial market cycles. During the recessions, most of the portfolios which were 

based on static asset allocation lose the value of underlying assets however, it is important to 

emphasize that not all asset classes might be decreasing at the same time. Thus, the necessity 

arises for asset allocation strategies and techniques, in which the asset composition varies 

over time, commonly known as dynamic asset allocation strategies. 

The importance of the asset allocation policy was first studied by Brinson et al. 

(1986). They found that the portfolio’s asset allocation policy explains 93.6% of the monthly 

variance of total returns. Prompted by the intriguingly high percentage, later on, many 

researches started studying the importance of asset allocation policy and obtained different 

results. Until today, it is impossible to determine exactly how many percentages of portfolio’s 

total returns are determined by the asset allocation, but it is assumed that it is the key success 

factor
2
 for long-term investments. 

 This thesis addresses several volatility modeling and dynamic asset allocation 

techniques. Although correlation modeling would be important from the asset allocation 

perspective, there are two reasons why only volatility is modeled. First, correlation modeling 

is more extensive topic than volatility modeling, thus it would be too extensive research 

considering the scope of this thesis, and the fact that this thesis also addresses dynamic asset 

allocation techniques. Second, the dynamic asset allocation models, observed in this thesis, 

use expected volatility (or variance) as the main input. Therefore, there is no need for 

correlation modeling. 

Despite of the fact that there are many studies on volatility modeling and several on 

dynamic asset allocation strategies, there is lack of studies addressing these problems 

together. Moreover, the majority of studies on dynamic asset allocation strategies are often 

not considering transaction costs. Therefore, it is difficult to compare different models and 

techniques, because transaction costs might influence results significantly. All in all, this topic 

is worth of investigation and needs further development. 

The purpose of this thesis is to provide a clear overview and evaluate the effectiveness 

of the generalized autoregressive conditional heteroskedastic (GARCH) volatility modeling 

                                                 
2
 For short- and mid-term investments key success factors are considered to be market timing and financial 

instrument selection, respectively (Ibbotson 2010). 
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methods and dynamic asset allocation techniques. In addition to the latter, two research 

questions were formulated: 

1. Are GARCH volatility modeling methods more precise and accurate for volatility 

modeling and forecasting than naïve techniques? 

2. Can an investment portfolio based on dynamic asset allocation strategy generate 

higher absolute returns and limit more efficiently short-term losses than a portfolio 

based on static asset allocation? 

In order to answer the research questions, different volatility forecasting techniques will be 

investigated and dynamic asset allocation strategy will be compared to static asset allocation 

in the empirical part of this thesis. 

This thesis is structured as follows. In Chapter 1, the overview of literary sources in 

relation to dynamic asset allocation approach and strategies are presented. Chapter 2 describes 

different volatility modeling techniques, evaluation methods and stylized facts of financial 

asset returns. In Chapter 3, the results of the empirical analysis of the volatility modeling and 

forecasting are presented and discussed, which not only illustrate the theoretical review 

provided in the previous chapter, but it additionally contributes to the further investigation of 

this topic, by providing a comprehensive comparison of different volatility modeling methods. 

Chapter 4 is dedicated to the comparison of portfolios based on dynamic and static asset 

allocation, including implementation of one dynamic asset allocation technique based on the 

forecasted volatility 
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1. DYNAMIC ASSET ALLOCATION. A LITERATURE 

REVIEW 

This chapter is structured as follows. In Section 1.1, some main concepts of modern 

portfolio theory and different asset allocation strategies are presented. In addition to latter, an 

overview of the importance of asset allocation is given based on empirical studies. Sections 

1.2 and 1.3 introduce dynamic asset allocation approach and different strategies, respectively. 

1.1. Asset Allocation 

The future is uncertain, likewise returns from investments. Nobody knows with 

certainty what will happen in the financial markets from now on, yet investors need to invest 

into the future. According to Ferri (2010), successful investing requires well though-out 

design, implementation, and maintenance of a long-term investment strategy that is based on 

investor’s individual and unique needs. Asset allocation is a central component of that plan.  It 

determines most of investment portfolio risk and return in long-term horizon. The general 

idea of asset allocation is not to predict expected financial assets risk and return 

characteristics, but to reduce the need for these predictions. Sharpe (1992) defined asset 

allocation as the process of dividing investment portfolio between different asset classes. The 

aim of asset allocation is to design an investor specific asset allocation mix, which has 

acceptable expected risk and return ratio, so that investor’s needs are satisfied. The asset 

allocation policy paradigm, in which a portfolio is divided up among a various asset classes 

and then separately managed within each asset class, is an integral part of the asset 

management.  

In the process of making asset allocation decisions, many investors have relied on 

Markowitz’s (1952) mean-variance optimization framework, which is without doubt the 

cornerstone of the modern portfolio theory. Even though this framework provides useful 

insight, the biggest financial crises of recent decades have cast doubt on the effectiveness of 

it, because it strongly depends on the correlations between different assets classes, which vary 
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drastically during financial crises
3
. Consequently, it might not be rational to use asset 

allocation based on static weights throughout different phases of financial cycles. 

In order to understand the shortcomings of mean-variance optimization framework 

and fixed weights asset allocation, it is necessary to explain some of the main concepts behind 

modern portfolio theory.  

1.1.1. The Modern Portfolio Theory 

Modern portfolio theory was first introduced in 1952 by Harry Markowitz. According 

to Fabozzi et al. (2002), the essence of modern portfolio theory is to guide the selection and 

construction of investment portfolios. Markowitz (1952) assumed that investors act rationally 

and consequently want to maximize the discounted value of future returns. Nevertheless, 

those expected future returns involve an allowance of investment risk. The principle that 

expected return rises with an increase in risk, ceteris paribus, is applied. Therefore, there is 

always expected risk and return trade-off. (Markowitz 1952; Fabozzi et al 2002, 15)  

Suppose there are   securities, portfolio expected return is denoted by   , portfolio 

variance is denoted by   
 , portfolio weight of security   is denoted by   , expected return of 

security   is denoted by    and its standard deviation is denoted by   , covariance between 

securities   and   is denoted by    , and correlation coefficient is denoted by    . Markowitz 

showed that under the denotations made above, the expected return and variance of the 

investment portfolio can be described by the equations 1.1, 1.2 and 1.3 (Markowitz 1952, 78-

80): 

 

    ∑    

 

 

 
(1.1) 

   
   ∑∑  

 

 

     

 

 

 (1.2) 

where 

 

∑  

 

 

                          (1.3) 

                                                 
3
 For example, see Erb et al. (1994), Karolyi and Stulz (1996), Longin and Solnik (2001), and Ang and Beakert 

(2002). They observed correlations between financial assets and concluded that correlations tend to increase 

during more volatile periods (e.g. crises).  
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Markowitz measured the investment risk by using mathematical formulations and 

found that risk can be reduced through the concept of diversification. According to 

Megginson (1996), diversification effect can be considered as the most important aspect of 

Markowitz’s modern portfolio theory. If the investor increases the number of securities within 

a portfolio, their covariance relationships create a diversification effect. Diversified 

portfolio’s total risk, measured as volatility, is due to correlations between different financial 

assets in some cases lower, than the sum of portfolio’s individual assets. 

Markowitz demonstrated a quadratic program with an objective function of 

maximizing an optimal portfolio through mean-variance optimization. The portfolio selection 

problem can be described with equation 1.4 (Markowitz 1952, 81-83): 

     (      
 ) (1.4) 

where   denotes risk aversion. While the correlation coefficient between securities pair is in 

range -1 to 1, then standard deviation of portfolio is always less than the simple weighted 

average standard deviation of these securities. (Markowitz 1952, 78 - 83) 

Another Markowitz’s mean-variance framework key concept was the efficient 

frontier. All portfolios, which are set on the efficient frontier, show higher expected return for 

a given level of expected risk than any other portfolio. Although, an investor can invest into 

any given portfolio which plots inside the circle in the mean-variance plane, then rational 

investor prefers portfolios which have higher expected return at the same expected risk level 

(Markowitz 1952, 82).  

 Although modern portfolio theory was further developed, and includes a few more 

main concepts, for instance the capital asset pricing model
4
, these are not introduced, because 

these are irrelevant considering the context of this thesis. 

To conclude, modern portfolio theory attempts to maximize portfolio expected return 

for a given amount of portfolio risk, or equivalently minimize risk for a given level of 

expected return, by carefully choosing the proportions of various assets. In other words, this 

framework attempts to find the best expected risk and return trade-off combination. 

                                                 
4
 James Tobin (1958) expanded the portfolio theory using Keynesian liquidity preference theory and added a 

risk-free asset to the analysis. Based on Markowitz (1952) and Tobin (1958) studies, William Sharpe (1964), 

Jack Treynor (1962), John Lintner (1965a, 1965b) and Jan Mossin (1966) independently developed the Capital 

Asset Pricing Model (CAPM), as it later became known. The CAPM revolutionized the modern portfolio theory 

and practice of investments by simplifying the asset allocation and selection processes (Sullivan 2006, 207). 
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1.1.2. Asset Allocation Strategies 

According to Royston (2011), asset allocation strategy is an investment strategy, 

which aims to balance risk and reward by apportioning a portfolio’s assets according to an 

investor’s goals, risk tolerance and investment horizon. There are several different ways for 

classifying asset allocation strategies. One of the options is to use time-horizon based 

classification: long-term, medium-term and short-term asset allocation. Alternatively, 

strategies can be classified by different investment decision processes and rules. The latter 

also forms the basis for Ferri (2010) classification of asset allocation strategies, which claims 

that there are three different main types of asset allocation strategies:  

 strategic asset allocation; 

 tactical asset allocation; 

 dynamic asset allocation. 

Strategic asset allocation is a long-term strategy and does not require making accurate short-

term predictions about the markets in order to be successful. However, tactical and dynamic 

asset allocations require accurate short-term market predictions in order to be successful. 

(Ferri 2010, 15) 

 Strategic asset allocation combines the investor’s risk and return objectives with 

market expectations in order to establish the exposure to the permissible asset classes. At the 

center of referred strategy is selecting suitable asset classes and investments to be held for the 

long-term. In case of implementation of this strategy, an asset allocation will not be changed 

based on the alternating economic and business cycle phases. (Ferri 2010, 15) Expectation, 

that systematic risk is compensated in the long run, speaks in favor of strategic asset 

allocation. This strategy provides a framework to systematic risk exposure. 

Tactical asset allocation presumes temporary divergences from strategic asset 

allocation weights, based on short-term market forecasts and views. These predictions are 

generally outputs of a function of fundamental, economic or technical variables. For instance, 

fundamental variables might be such as earnings or interest-rate forecasts, economic variables 

such as the outlook for economic growth in different countries, or technical variables such as 

recent price trends and charting patterns. (Ferri 2010, 15) 

Dynamic asset allocation is for investors who believe they can consistently forecast 

major movements in the market and thus beat the market by rebalancing asset allocation 

weights constantly. It is tactical asset allocation in the extreme. (Ferri 2010, 15) There are no 
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restrictions on asset class weights, and this strategy is certainly not for spreading risk. This 

strategy can be very profitable when market timing is done correctly, as well as vice versa. 

In general, dynamic and tactical asset allocations have a monthly or quarterly horizon, 

while strategic asset allocation is done for long-term horizon. The distinction is important 

from a governance point of view. Dynamic and tactical asset allocations can be seen as a short 

term corrections of strategic asset allocation, taken into account contingent market situation 

and involves people dealing with it on a daily basis. Strategic asset allocation involves 

implementing once set in place long-term goals. 

1.1.3. The Importance of Asset Allocation 

Asset allocation is supposedly very important from investments performance point of 

view. This sub-section will provide an overview of several empirical studies, which observed 

asset allocation policy influence to investment portfolio’s return characteristics.  

The literature on the importance of asset allocation is vast. Most studies in this area 

focus on analysis of mutual and pension funds, and explore how big percentage of the 

portfolio’s total return is explained by deviations from an institution’s policy asset class 

weights. One of the first attempts to determine the asset allocation importance was conducted 

by Brinson et al. (1986). They analyzed 91 U.S. pension funds’ underlying assets returns from 

1974 to 1983 by regressing monthly portfolio total returns against to the monthly returns to 

each funds’ policy portfolio. As a result, they concluded that the portfolio’s asset allocation 

policy explains 93.6% of the monthly variance in pension funds’ total returns during this 

period. Further studies, which will be described below, highlight that the coefficient of 

determinations should vary probably between 33-75%. Brinson et al. (1986) got higher 

coefficient because the results depended from aggregated market movements instead of 

pension funds’ specific asset allocation mix. 

Ibbotson and Kaplan (2000) developed Brison et al. (1986) empirical analysis further 

by exploring the degree to which funds’ asset allocation mix explained the cross-sectional 

differences in absolute returns across several funds, and whether it is an asset managers’ 

competence that drove assets performance or asset allocation policy. Their study was based 

on two earlier reports by Brinson et al. (1986) and Brison et al. (1991). They carried out 

cross-sectional regression, using annualized cumulative returns over a 10-year observation 

period and found as a result that approximately 40 percent of the variation of returns was 

determined by asset allocation. They concluded, that the majority of pension funds’ 
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performance can be explained by the funds’ decision to choose asset classes (including 

holding cash) to invest. The latter creates the need for explicit rules and indicators or forecasts 

for choosing between asset classes. 

Vardharaj and Fabozzi (2007) applied similar techniques used in Ibbotson and Kaplan 

(2000) report for investment funds and found out that the determination coefficients were 

sensitive to observation time and the asset allocation mix determined approximately 33 to 75 

percent of the variance in asset returns. Also, in a recent study, Xiong et al. (2010) showed 

that the variations of returns among assets what can be determined by asset allocation policy 

are dependable of the sample. 

All found determination coefficients in exact percentage points are results of some sort 

of study and therefore, consequently depending on the specific inputs and methods used. 

Actually for any given investment fund, the necessity and the importance of asset allocation 

depend on the asset owner preferences, expectations and risk tolerance. 

Asset allocation provides passive return (beta return), and the remainder of the return 

is the active return (excess or alpha return). The alpha sums to zero, because on average asset 

managers do not beat the market. Thus, on average the passive asset allocation determines 

100 percent of the return, only at the aggregate level. (Ibbotson 2010, 18) Active fund 

management reduces the importance of asset allocation, but it is difficult to say exactly how 

much. Depending on the asset managers’ objectives, asset allocation can provide in addition 

to return also an opportunity to optimize mean variance and to diversify risks. 

1.2. Dynamic Asset Allocation Approach 

The last major financial crises have shown that the traditional static asset allocation 

may not be rational during different phases of financial market cycles. During the recession 

periods many portfolios which are based on static asset allocation lose the value of underlying 

assets, however, not all asset classes might be falling at the same time. Investors want to hold 

their assets in rising markets over the long-term, but it is also in their interest to not to fall 

with markets and avoid large negative returns in shorter periods. According to Herold et al. 

(2007), this has led to renewed interest in portfolio selection and asset allocation strategies, 

which produce absolute returns and that particularly, control downside risk, commonly known 

as a dynamic asset allocation. 
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Dynamic asset allocation determines an optimal portfolio asset allocation mix in 

accordance with changing market expectations and conditions (Wang et al. 2012, 26). This 

strategy involves systematic capital re-allocation among different asset classes. While 

strategic asset allocation uses static expectations of asset allocation policy, this framework 

provides flexible approach, which is capable of capturing the dynamics in risk and return 

expectations, across an array of asset classes (Li and Sullivan 2011, 31).  

According to Herold et al. (2007), the main characteristic of the dynamic asset 

allocation approach is that the weights of different asset classes are allowed to change 

significantly, depending on changes in the economic climate and activity. Since, dynamic 

asset allocation generally does not involve market timing, and then asset classes’ weights 

changes are driven by a set of predefined rules and indicators (Lawrence and Singh 2011, 49).  

While dynamic asset allocation is implemented for individual and institutional asset 

management there are different dynamic asset allocation definitions. For individual asset 

management, the most important criteria for doing asset allocation is the time-horizon. Risk-

aversion increases as the individual investor ages. At the moment, these strategies
5
 are out of 

the scope of the thesis, herein are concerned asset allocation strategies which can be adapted 

by institutional investors. However, it is worth to notify, that according to Herold et al. 

(2007), most of dynamic asset allocation strategies, which are aimed for institutional 

investors, can be also applied a for individual asset management. According to them, in 

general, the aim of dynamic asset allocation is to protect the portfolio value from falling 

below a pre-specified floor. This is an extremely important criterion for an individual asset 

management, as well as for institutional asset management.  

The mechanism for dynamic asset allocation is not the same as that for modern 

portfolio theory. For modern portfolio theory investments are diversified in order to reduce 

risk through a covariance term. Even though the volatility is reduced in short-term, it might 

not be in the long-term. In the dynamic asset allocation, an investment choice is made 

between a different asset classes. The essential difference between modern portfolio theory 

and dynamic asset allocation is that the latter is a dynamic process that presents the 

opportunity to increase return, while modern portfolio theory uses averaged statistics and 

portfolios to allocate resources across different investments at the same time. Dynamic asset 

                                                 
5
 For example, based on Xiong and Idzorek (2011) article, the most important investment decision, whether to 

take risk and how much, will change when the investor ages. 
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allocation seeks to increase risk and return trade-off by investing in a better performing asset 

classes. (Harloff 1998, 7) 

The dynamic asset allocation differs from strategic and tactical asset allocation by the 

length of period when asset allocation weights are reconsidered, and by the changes which are 

allowed to make in asset allocation weights, respectively. The strategic asset allocation 

approach reviews asset allocation weights on a periodic basis, using assumption that expected 

asset class return, risk, and correlation can be derived from long-term historic averages 

(Knutzen 2011, 1). Even though tactical asset allocation allows the portfolio manager to take 

active positions whenever often necessary, then these are made with respect to a strategic 

benchmark in order to generate risk adjusted excess returns compared to the benchmark. In 

that case, investors usually diverge only within a narrow range from the strategic benchmark, 

e.g. they change weights by a couple of percentage points when they expect falling or rising 

prices. (Herold et al. 2007, 61) Dynamic asset allocation approach does not have these 

restrictions. Asset allocation weights can be changed whenever necessary and usually the 

weights changes have no limitations. 

Portfolios based on dynamic asset allocation are usually aimed to produce absolute 

return (either total return above a pre-specified target or positive returns) rather than relative 

excess return over the benchmark. The latter enables the possibility to protect the portfolio 

value falling during market recession. Absolute return portfolios, that target a certain margin 

above inflation, can maintain and grow underlying assets value much more likely than relative 

return portfolios that aim to outperform the benchmark. 

1.3. Dynamic Asset Allocation Strategies 

There are many classifications of the dynamic asset allocation strategies. One criterion 

to distinguish the dynamic asset allocation strategies is the amount of input data needed. Some 

strategies, like stop loss and constant proportion portfolio insurance (CPPI), involve only 

observable parameters, while the shortfall risk-based (conditional value at risk) strategy 

makes distributional assumptions and requires estimating several parameters (Herold et al. 

2007, 62). This classification is used relatively infrequently. 

Another more commonly used criterion to distinguish the dynamic asset allocation 

strategies is the methods and rules which are used. The latter classification will be used in this 
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thesis. This type of classification was first used in 1988 by Perold and Sharpe. According to 

Perold and Sharpe (1988), there are four distinguishable dynamic strategies:  

 buy-and-hold 

 constant-mix 

 onstant-proportion portfolio insurance (CPPI) 

 option-based portfolio insurance. 

Since today, there have arisen more dynamic asset allocation strategies than Perold 

and Sharpe (1988) considered in their article. One of the most attention drawn, and much 

referred to in subsequent studies, is conducted by Herold et al. (2007). They distinguish 

dynamic asset allocation strategies where forecasting is primary or which are rules-based. 

Strategies where forecasting is primary, depend highly on the accuracy of forecasts. These 

include many alternative investments, for example, this strategy is often applied by global 

macro hedge funds, which are based on forecasts and want to either time the market or exploit 

market inefficiencies through the skills of their managers (Herold et al 2007, 61). Since 

forecasting is a subjective activity and the coincidence of favorable events might often be the 

reason for success, these types of dynamic asset allocation strategies were not studied in detail 

by Herold et al. (2007), nor will be in this thesis. This thesis focuses on dynamic asset 

allocation strategies which are either risk- or rules-based, and do not rely on forecasts (or 

where forecasts do not play a dominant role).  

According to Herold et al. (2007), the dynamic asset allocation strategies which are 

either rules- or risk-based can be divided into three groups: 

 portfolio insurance, 

 rainbow options, 

 shortfall risk-based strategies. 

All these three groups of strategies aim at dynamically managing portfolio risk through asset 

allocation decisions, in order to protect the portfolios’ total value from falling below a pre-

specified floor. 

It is worth to notify that terms “total return“ or “absolute return“ are used, because the 

risk-based strategies are designed to produce either positive returns or total returns above a 

predetermined minimum return, not relative return compared to benchmark. 

Hereinafter, this section is divided into three sub-sections, which explain the concepts 

of the following rules- and risk-based strategies: portfolio insurance, rainbow option and 



20 

 

shortfall risk-based. While previous empirical studies have proven the superiority of shortfall 

risk-based strategies
6
, these are discussed in more detail. 

1.3.1. Portfolio Insurance Strategies 

Portfolio insurance techniques include three distinctive strategies: stop loss, synthetic 

put and constant proportion portfolio insurance (CPPI). The objective of portfolio insurance 

strategies is to maintain the portfolio value above a certain predetermined floor, while 

allowing some upside potential. 

 Stop loss strategy is probably the most intuitive and simplest strategy, but it is difficult 

to quantify in practice. In case of this strategy, the entire portfolio is initially invested into the 

risky asset. As soon as the risky asset drops below the predetermined floor, the entire portfolio 

is rebalanced totally into the risk-free asset. When the market rebounds above the floor, the 

entire portfolio will be rebalanced back into the risky asset. (Tankov 2009, 7-9) Stop loss 

strategies are not much in use in practice, because it is unrealistic to carry out transactions 

instantly and without costs. If portfolios’ assets under management are large, then liquidation 

of open positions may take days, weeks or even months, depending on the assets liquidity and 

market depth. 

The concept of option based portfolio insurance tactics, based on using either traded or 

synthetic options, was introduced by Leland and Rubinstein (1976). Option based portfolio 

insurance is based upon the work of Black and Scholes (1973), which showed that under 

certain assumptions the payoff of an option can be replicated through a continuously revised 

combination of the underlying asset and a risk-free bond. Leland and Rubinstein (1976) 

extended this insight by showing that a dynamic asset allocation method which increased (or 

decreased) stock allocation of a portfolio during rising (or falling) market period, and 

reinvested the remaining portion in cash, would duplicate the payoffs to a call option on an 

index of stocks. (Lummer and Riepe 1994, 4) The price behavior of a call option is similar to 

a combined position, involving the borrowing and underlying stock. If the market is normally 

functioning, the call option price and the stock price will change in the same direction. 

Moreover, Rubinstein and Leland (1981) found that the number of stocks in the replication 

                                                 
6
 For example, Herold et al. (2007) compared shortfall risk-based strategy with different alternative dynamic 

asset allocation strategies in variety of asset classes. They found that shortfall risk-based strategy protects 

downside risk much the same as portfolio insurance and rainbow option concepts. In addition, shortfall risk-

based strategy uses the available risk budget in an effective way and enhances performance in the long-term. 

(Herold et al. 2007, 72) 
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portfolio must equal to the slope of the call price curve. Their concept permits to replicate, not 

only call options, but also other option positions. Investors and institutions can create 

themselves covered calls and protective puts on stocks, which do not have options available, 

by using replicating portfolios.  

Black and Jones (1987) and Perold and Sharpe (1988) developed CPPI method, which 

became popular with practitioners (Karoui et al. 2005, 450). In case of this method, all asset 

allocation decisions are based on the floor value of portfolio, which the investors initially 

have to set. Two asset classes are used: risk-free assets and risky assets. In general, fixed 

income assets or money-market funds are considered as risk-free assets, and equities or 

mutual funds as risky assets. The asset allocation weights depends on the cushion value and 

multiplier coefficient, where cushion value is defined as the current portfolio value less the 

floor value, and a multiplier coefficient denotes the aggression of the strategy. The floor on 

the portfolios’ value grows at the risk-free rate over time, and the exposure to the risky asset 

is calculated as a multiplication of the cushion value and multiplier coefficient. (Black and 

Jones 1987, 48) 

1.3.2. Rainbow Option Strategies 

A rainbow option, also known as basket option, is a derivative exposed to two or more 

sources of uncertainty. As opposite, regular options are exposed to one source of uncertainty, 

price movements in the underlying asset. In general, rainbow options are calls or puts on the 

best or worst of N underlying assets. Or options which pay the worst or best of N assets. 

(Chantnani 2010, 169) The aim of rainbow option strategy is to provide to the investor right to 

rebalance portfolio into better performing asset class. The difference between the performance 

of this strategy and the better performing asset class is called the rainbow option premium. 

Payoff depends on the relative price performance of chosen asset class. 

Suppose an investor uses best of stocks and bonds method, and purchases a 100% 

bond portfolio and an exchange option at the beginning of the year. The option gives to the 

investor a right to exchange the performance of bonds with the performance of stocks at the 

end of the year. Similarly to the protective put method, this strategy is implemented by 

replication the exchange option. In practice, this amounts to start with portfolio allocated 

equally between asset classes each year, and at the end of the year, the portfolio will be 

invested 100% into the better performing asset class. (Herold et al 2007, 61-62) While best-

of-two strategy cannot protect the portfolios’ value from falling below a predetermined floor, 
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Merton et al. (1978), Merton et al. (1982), and Stulz (1982) enhanced best-of-two strategy by 

a floor, which protects portfolios’ value from falling. Particular strategy is called best-of-two 

plus floor below. 

Suppose, there is a portfolio, which invested 80% of its assets in money-market 

instruments and 20% in a diversified portfolio of stock call options, provided equity exposure 

on the upside with a guaranteed “floor” on the value of the portfolio. The gain from equity 

exposure realizes when options are in money
7
 when these are exercised or sold. The protected 

value equals to the value of assets which are invested into risk-free asset class. 

 

1.3.3. Shortfall Risk-Based Strategies 

Shortfall risk-based strategies are also known as value at risk-based strategies. Even 

though Perold and Sharpe (1988) claimed that return forecasts are not a part of these 

strategies, as the overall target is to protect the portfolio value from falling below a pre-

specified floor, then more recent studies, including Herold et al. (2007), classify shortfall risk-

based strategies into two groups, depending on whether the method is forecast free or 

incorporates market views. The overall idea of shortfall risk-based strategies is to enter 

conditional return, volatility and correlation into the calculations of shortfall probability. 

Herold et al. (2005) investigated a rules-based and not benchmark related shortfall 

risk-based approach, which can accommodate a wide variety of asset classes and at the same 

time, keep control for downside risk. They applied this particular approach using two asset 

classes: fixed-income and cash. Their empirical study indicated substantial shifts in asset 

classes’ weights over time. They found that shortfall risk-based strategy controls portfolio’s 

risk more efficiently than regular static asset allocation strategies. (Herold et al. 2005, 40) 

Two years later Herold et al. (2007) extended the shortfall risk approach to the multi-

asset case and compared results with different alternative dynamic asset allocation strategies. 

In addition they also provided an extensive simulation study to quantify short-run hedging 

effectiveness and long-run hedging costs. In conclusion they found that shortfall risk-based 

strategy offers downside risk protection much the same as insurance concepts, moreover, this 

strategy uses the available risk budget in an effective way, thus can enhance portfolios’ 

performance in the long-term (Herold et al. 2007, 72). 

                                                 
7
 The strike price of a call option is lower than the market price (the strike price of a put option is higher than the 

market price). 
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In order to understand the concept behind the expected shortfall risk-based method, it 

is necessary to define value at risk (VaR) before. The mathematics that underlies VaR was 

largely developed in the context of portfolio theory by Markowitz (1952). VaR refers to the 

loss risk caused by uncertain changes in asset prices. (Angelovska 2013, 85) 

 According to Jorion (2001), VaR measures the worst expected loss over a given time 

horizon under normal market conditions at a given level of confidence. The fundamental 

variables of VaR are: confidence level, forecast horizon, and volatility. The confidence level 

is the probability that the expected loss is not greater than predicted. Forecast horizon is the 

time framework that VaR is estimated, in calculation it is generally assumed that portfolio’s 

holdings does not change during that horizon. (Nylund 2001, 9) The mathematical definition 

of VaR can be described by following equation 1.5 (Angelovska 2013, 85):  

       ( )                     (1.5) 

where the portfolios’ standard deviation is denoted by   , the value of the portfolio is denoted 

by  , and the desirable level of confidence is denoted by  ( ). 

 Figure 1.1 illustrates the latter. On the left side there is a probability density function. 

In the middle of the density function is the mean return and on the left there is VaR. Investors’ 

minimum acceptable return (MAR) is between mean return and VaR. MAR exact location 

between VaR and mean return, depends on the investor’s risk aversion. The more risk averse 

investors’ MAR is closer to mean return, and contrariwise, less risk averse investors’ MAR is 

closer to VaR. 

On the right side of the Figure 1.1, there is a fictional asset historical price shown from 

time zero to time t. After time t, further expected return is described by the probability density 

function. 
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Figure 1.1 Value-at-Risk and Expected Shortfall 

Source: Compiled by the author 

 Painted red area on the Figure 1.1, presents the expected shortfall (ES) probability, 

also known as conditional value at risk (CVaR). The basic idea of shortfall risk-based strategy 

is to control the shortfall risk probability directly. In order to do that, lower partial moment of 

order minimum acceptable return is calculated (Herold et al 2005, 34). In simpler terms, the 

red area is calculated by using integration. 

To simplify the calculation it is assumed that returns are normally distributed, 

     (    ). The assumption does not concern conditional mean return and conditional 

volatility, but particularly skewness and kurtosis (according to the assumption skewness = 0, 

and kurtosis = 3). In that case, expected shortfall probability process can de described by 

following equation 1.6
8
 (Herold et al. 2005, 34): 

  ( )    (
   

 
)                        (1.6) 

where the portfolio expected return is denoted by  , the cumulative standard normal 

distribution is denoted by  , the minimum acceptable return is denoted by   , the mean return 

is denoted by  , the conditional volatility of the return distribution is denoted by  . 

Based on the expected shortfall risk probability portfolio’s asset allocation will be 

constantly revised, and if necessary, specific asset exposure will be adjusted to hold pre-

                                                 
8
 See the VBA code in Appendix 1. 
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specified shortfall risk probability
9
. In case, when the expected shortfall risk probability is 

below pre-specified target, is possible to increase exposure over 100%, by using leverage, 

additional free cash, and etc. Also on the contrary, when the expected shortfall risk probability 

is above pre-specified target, exposure will be decreased. 

                                                 
9
 In order to illustrate the latter, an example is compiled based on fictional data, see Appendix 2. 
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2. VOLATILITY MODELLING AND FORECASTING. A 

LITERATURE REVIEW 

The previous chapter covered theoretical and empirical aspects of asset allocation, its 

importance, and introduced different models which can be used for dynamic asset allocation. 

The overview of different dynamic asset allocations models revealed that the main input for 

most of the models is the expected volatility of different underlying assets classes. Since 

expected volatility is extremely important input and may change the results enormously, 

Chapter 2 will be dedicated on a literature review of volatility modeling and forecasting. 

This chapter proceeds as follows. Firstly there is an overview of the stylized facts of 

financial asset returns. Section 2 is dedicated on the naïve volatility forecasting methods. 

Section 3 is about the development of different ARCH- and GARCH-type models. Section 4 

is concentrated on the evaluation of the models forecasting performance. 

2.1. Stylized Facts of Financial Asset Returns 

This section is about financial asset returns distributional characteristics (heavy tails, 

negative skew, volatility clustering, and asymmetric dependence) which collectively are often 

referred to as stylized facts of financial asset returns
10

. 

The literature on financial data returns modeling methods is very rich and it dates back 

to 1960s. Empirical study on commodity returns volatility modeling and clustering, on the log 

return time series data, conducted by Mandelbrot (1963), and showed that return distributions 

are heavy-tailed
11

. This was an outcome that has later been found in every main asset class, 

including equities (Fama 1963), currencies (Westerfield 1977), fixed income (Amin and Kat 

2003), and REITS (Lizieri et al. 2007). 

                                                 
10

 See for example Cont (2001) or McNeil et al. (2005) 
11

 Heavy tails are also often referred as fat tails or leptokurtic distribution; it means that extreme values are more 

probable than under normal distribution (Cooke and Nieboer, 2011, 5). 
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Furthermore, Mandelbrot (1963) additionally recognized volatility clustering in 

commodity returns, where “large changes tend to be followed by large changes, of either sign, 

and small changes tend to be followed by small changes”. As previously, this outcome find 

confirmation in most of major asset classes, including equities (Fama 1965), foreign exchange 

(Baillie and Bollerslev 1989), and fixed income (Weiss 1984). 

Kraus and Litzenberger (1976) found that financial assets’ returns, where large 

declines are more common than large inclines, are usually negatively skewed. Same results 

were confirmed by Beedles (1979), Alles and Kling (1994), and Harvey and Siddique (1999). 

Asymmetry of the volatility of financial asset’s return was observed by Black (1976), 

Christie (1982) and Schwert (1990), they all reached to a same outcome, that financial asset 

current returns are in a negative correlation with expected volatility. Chelley-Steeley and 

Steeley (1996), as well as many later studies
12

, suggested that the asymmetric volatility 

phenomenon refers to a situation, where financial asset price conditional volatility caused by 

new positive information has smaller magnitude, than on the contrary conditional volatility 

which is caused by new negative information. However, it is worth noticing that the 

asymmetry is not present in currencies (Allen and Satchell 2014). 

Wei et al. (2011) intuitively described the increase in expected volatility after negative 

news from the investor’s point of view: if after negative news equity price (value) is 

decreasing and the proportion of debt remains same, then financial leverage of the company 

increases, which in turn increases the risk of holding these stocks, and thus the expected 

return might be more volatile. Exactly the opposite reaction is intuitively expected to occur 

after the release of positive news: equity price (value) increases and financial leverage 

decreases, which in turn, makes holding this equity less risky and expected returns less 

volatile
13

. Described phenomenon is called in the literature as the “leverage effect”
14

. (Wei et 

al. 2011, 83) 

It is necessary to emphasize that the growth in financial leverage solely is insufficient 

to account for the observed increase in volatility following market recessions (Bollerslev 

2010), and that behavioral factors may have influence (Allen and Satchell 2014). 

                                                 
12

 See Glosten et al. (1993), Hung (1997), Laopodis (1997), Yang (2000), and Hansen and Lunde (2005). 
13

 Yet, not all researches agree with this assumption. For example, Lo and MacKinlay (1987) assume that the 

asymmetric volatility phenomenon is a result from non-synchronous trading; while Sentana and Wadhwani 

(1992) consider it caused due to investors’ herding behavior. 
14

 While Black (1976) firstly noted the volatility asymmetrical effect, the phenomenon as the leverage effect is 

often also referred as the Fisher-Black effect. 
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 More recent studies which have been identifying the asymmetric tail dependence 

between different assets, have been reaching to results, that “when the market crashes all 

correlations go to one” (Ibid.). Many studies have confirmed that correlations tend to increase 

during crises and volatile periods. For instance, Erb et al. (1994) concluded that the 

correlations between the G7 country stock exchange indices are significantly higher in bull 

markets than in bear markets
15

. Karolyi and Stulz (1996) showed that the correlation between 

Japanese and U.S. equities increases during enormous market shocks. Ang and Bekaert (2002) 

conducted a study between major international equity indices and found that the correlations 

tend to increase during more volatile periods. 

And these are the results not only for major indices. The same pattern is evident 

between individual stocks and aggregate indices. For example, Longin and Solnik (2001), as 

well Ang and Chen (2002), observed correlations between individual stocks and indices, 

particularly small capitalization and value stocks, and found that correlations are considerably 

lower for upside movements than for downside movements. 

 Considering the latter stylized fact of financial asset returns – correlations are 

changing substantially during market shocks – this thesis is not going to focus on correlation 

asymmetry, nor to the modern portfolio theory principle which involve minimizing the 

portfolio’s risk through diversification effect
16

, because it would be too extensive research and 

it has been by now relatively much studied. Recalling the main aim of this thesis, to provide 

an overview and implement different dynamic asset allocation strategies by using forecasted 

expected volatility as an input, the latter is also a reason, why these issues concerning 

correlation and portfolio’s overall risk, are further no longer directly addressed in the 

theoretical parts of this thesis. 

 To conclude, generally most major financial asset classes’ returns volatility is not 

constant, serial dependence is present in the lags of returns, distribution of the data are not 

Gaussian, but asymmetric and heavy-tailed. Even though some of these findings were made 

already in 1960s, these are confirmed also nowadays
17

. 

                                                 
15

 The terms bull market and bear market describe upward and downward market trends, respectively (Preis and 

Stanley 2011). 
16

 Due to negative correlations between different assets 
17

 For instance, Duncan and Kabundi (2014) observed volatility of world equity markets during 1994-2008. 
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2.2. Naïve Forecasting Models 

Before providing an overview of autoregressive conditional heteroskedasticity models, 

two naïve volatility forecasting models will be introduced. These are simple moving average 

(SMA) with fixed and equal weights, and exponentially weighted moving average (EWMA) 

volatility. 

2.2.1. Simple Moving Average 

 The simple moving average volatility forecasting is based on a financial asset price 

volatility (standard deviation) formula, which can be defined with equation 2.1: 

 

   √
 

 
∑(    ̅) 
 

   

 (2.1) 

where price volatility is denoted by  ; number of observations is denoted by  ; return at a 

period   is denoted by   ; and mean return is denoted by  ̅. 

Further, the simple moving average forecasting method uses recent historical standard 

deviations to forecast next period expected volatility. This process can be described with 

following equation (Knight and Satchell 2007, 28): 

 
  ̂  

(                      )

 
 (2.2) 

where forecasted next period price volatility is denoted by  ̂ ; and the number of recent 

periods included in the SMA process is denoted by  . 

 In (2.2),   defines the number of rolling volatilities used in forecast. For example, if   

is greater than  , then volatility forecast considers only   number of recent volatilities which 

will be equally weighted, and     number volatilities will have zero weight in forecast. 

2.2.2. Exponentially Weighted Moving Average 

Another naïve, and improved, way for making forecast is an exponentially weighted 

moving average (EMWA). In this approach latest observations carry the highest weight in the 

volatility forecast. For particularly volatility forecasting, in financial literature RiskMetrics
TM

 

(1996) developed techniques are used. It is used instead of SMA, because EWMA uses a 

decay factor    to assign weight to historical observations. 
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The EWMA financial asset price volatility can be defined by following formula 

(RiskMetrics
TM

 1996, 78): 

 
    √(   )∑     (    ̅) 

 

   

 (2.3) 

where decay factor is denoted by  . Parameter   defines the effective amount of data used in 

estimating volatility and the relative weights that are applied to the observations (returns)
18

. 

 The one period ahead EWMA volatility forecast is given by the formula (Ibid., 81): 

 
 ̂          √           (   )      (2.4) 

In equation 2.4, the subscript “      ” is read as “the time     forecast given information 

up to and including time  .” The subscript “t    ” is read in an analogous manner. This 

notation emphasizes the fact that the volatility is time-dependent. (Ibid., 82) 

Volatility forecasts based on the EWMA
 
are more adequate than forecasts based on 

SMA. The EWMA volatility reacts faster to shocks in the market as recent data carries more 

weight, thus it incorporates external shocks better than equally weighted moving averages. In 

addition, following a shock (or a large return), the volatility declines also exponentially, as the 

weight of the shock observation falls exponentially
19

. 

2.3. Autoregressive Conditional Heteroskedasticity Models 

Previously mentioned stylized facts of financial asset returns indicated that a random 

walk models with Gaussian increments are not suitable for modeling the volatility of financial 

data. Driven by latter, there are proposed a several different models to solve abovementioned 

shortcomings. 

2.3.1. ARCH 

Two decades after Mandelbrot (1963) and Fama (1965) published their pioneering 

studies, Engel (1982) introduced the ARCH (Autoregressive Conditional Heteroskedastic) 

                                                 
18

 For example, RiskMetrics
TM

 has a tendency to use a lambda of 0.94, or 94%. In this case, the most recent 

squared periodic return is weighted by (1-0.94)(.94)
0
 = 6%. The next squared return is simply a lambda-multiple 

of the prior weight; in this case 6% multiplied by 94% = 5.64%. And the third prior day's weight equals (1-

0.94)(0.94)
2
 = 5.30%. The process continues in the same way until the last observation. 

19
 Inversely to the forecasts based on SMA, where the shocks have equal weight to the forecast, regardless how 

long time ago it took place, until the shock falls out of the measurement sample. 
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model to solve heteroskedasticity problem. Engel showed in his article the usefulness of the 

ARCH models for improving the performance of ordinary least squares model by supposing 

that the conditional variance is not constant over time and shows autoregressive structure 

(Engel 1982, 992-994). 

The ARCH(1)
20

 process can be described by equations 2.5, 2.6 and 2.7 (Ou 2014, 13): 

 
         (2.5) 

 
                    (   )  (2.6) 

 
  
          

  (2.7) 

where the continuously compounded rate of returns from time t-1 to t is denoted by   ; the 

conditional mean or underlying asset volatility is denoted by   ; the residuals are denoted 

by   ; the probability density function with a mean of zero and unit variance is denoted by 

NID(0,1)
21

;   and   are non-negative parameters. 

 The usefulness of the ARCH model, introduced by Engel (1982), was also confirmed 

by studies conducted later on by Engle and Bollerslev (1986) and (1993), as well as Ding and 

Granger (1996). In fact, the majority of subsequent studies on asset return’s volatility have 

been dominated by ARCH-type models, which have been extremely successful in capturing 

the main characteristics of asset return’s volatility. 

2.3.2. GARCH 

In 1986, Bollerslev introduced GARCH (Generalized Autoregressive Conditional 

heteroskedasticity). The latter is a natural generalization of the ARCH process, allowing for a 

more flexible lag structure. (Bollerslev 1986) 

While in ARCH(q) model, the q is the number of lags included, and the variance is 

dependent on lagged squared deviations, then in GARCH(p,q) model additionally includes 

lagged variances, where q is the number of lags of the squared error, and p is the number of 

lags of the conditional variance. 

                                                 
20

 According to Curto and Pinto (2012), despite the theoretical interest of (p,q) models, the (1,1) specification is 

generally suitable when modeling the volatility of financial assets returns; see also Bollerslev et al. (1992) and 

more recently Hansen and Lunde (2005). Therefore, in this paper all autoregressive conditional heteroskedastic 

models are of the order p = 1, q = 1. 
21

 Normally and independently distributed. 
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The conditional variance equation of the GARCH(1,1) model is given in equation 2.8 

(Ou 2014, 15): 

 
  
          

        
  (2.8) 

where the conditional variance of underlying asset volatility is denoted by   
 ,     and   are 

non-negative parameters, where       to ensure that the stationary and positive 

conditional variance conditions are met. 

 While the conditional variance is identified as a weighted average of squared errors, 

both ARCH and GARCH models, are able to describe the phenomenon of volatility clustering 

of returns and they also partly describe the heavy-tails demonstrated by financial time-series.  

 However, the simple structure of these models causes two major drawbacks. First, 

GARCH model parameters have non-negativity restrictions. Another drawback is the 

GARCH model assumes that only the amplitude of the change determines the conditional 

variance, so it cannot distinguish between the sign of the volatility (the difference between 

negative and positive volatility). Thus, it fails to incorporate the leverage effect
22

. (Wei et al. 

2011, 83) 

Many studies, including Ou (2014), are predominately concluded that, the simplest 

symmetric linear GARCH models [for example GARCH(1,1)] are shown to be not accurate, 

because, as already mentioned herein before, the linear models requires positive volatility and 

in result the current volatility lag residuals are symmetric, but in reality, the negative shocks 

would cause larger influence on future volatility, than the same amount of positive shocks 

could affect (Ou 2014, 2). 

2.3.3. EGARCH and QGARCH 

Therefore, to overcome the limitations of symmetric linear GARCH models, many 

asymmetric-type non-linear GARCH models were developed. In order to distinguish the sign 

difference and distribute the asymmetric volatility, Nelson (1991) developed exponential 

GARCH model (EGARCH) and Campbell and Hentschel (1992) developed quadratic GARH 

model (QGARCH). 

The logarithmic conditional variance equation of the EGARCH(1,1) process can be 

described with equation 2.09 (Ou 2014, 17): 

                                                 
22

 See Tavares et al. (2007). 
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  (2.09) 

where the asymmetric leverage coefficients
23

 are denoted by   and  . 

The conditional variance equation of the QGARCH(1,1) process is given in equation 

2.10 below (Goodwin 2012, 20): 

 
  
          

        
         (2.10) 

where the asymmetry parameter is denoted by   . The difference to the GARCH(1,1) model 

is the addition of       , where the most recent error is multiplied by the asymmetry 

parameter. Additionally to the non-negativity constraints in the GARCH(1,1) model,    
  

   ̅(     ) is required to ensure positivity of   
 . (Ibid.) 

  Although both of these models distinguish the sign difference and distribute the 

asymmetric volatility, later studies conducted by Engle and Ng (1993) and Hafner (1998) 

measured these two models, and found that EGARCH model is more suitable in most cases. 

2.3.4. GJR-GARCH and TGARCH 

A different approach to capture the leverage effect is presented by Glosten, 

Jagannanthan and Runkle (1993), they propose the GJR-GARCH model, which is modeling 

the standard deviation instead of the conditional variance. GJR-GARCH model is very similar 

to the threshold GARCH model (TGARCH) introduced by Zakoian (1994), which is dividing 

the distribution of the changes into separate intervals and then estimates a linear function for 

the conditional standard deviation. 

The conditional variance equation of the GJR-GARCH(1,1) model is given in the 

equation 2.11 (Ou 2014, 19): 

   
          

            
        

  (2.11) 

where the indicator function is denoted by   (      , if     
    and        , if     

   ); 

the asymmetric leverage coefficient is denoted by  . The indicator function equals to 1, when 

the asymmetric leverage coefficient is negative, and on the contrary, the indicator function 

equals to 0, when the asymmetric leverage coefficient is positive. In other words, there is an 

                                                 
23

 Describing the volatility leverage effect. 
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assumption in the GJR-GARCH model that the   
  sign (positive or negative) has a different 

impact on conditional variance   
   

The TGARCH(1,1) process is very similar to GJR-GARCH(1,1). The main difference 

lies in replacing the conditional variance with the conditional standard deviation. The 

conditional standard deviation equation of the TGARCH(1,1) process can be described by 

equation 2.12 (Zakoian 1994): 

 
       

     
    

     
         (2.12) 

where     
       if         and     

    if       ; similarly     
       if         

and     
    if       . 

 Although TGARCH model is intuitively easier to interpret, while the sign of 

conditional volatility is taken into account directly, the GJR-GARCH model is based on a 

similar principle. The square of standard deviation eliminates the sign of return, but the 

leverage effect caused by the sign of   
 , is taken into account through the indicator function  . 

According to Ali (2013), even though, the principle ideas of GJR-GARCH and 

TGARCH models are very similar, there might be significant differences in the results, 

depending on dataset distribution, skewness, and kurtosis. 

2.3.5. Conclusion 

Even though, today there are numerous variations of GARCH-type models, then 

considering the aim of this paper, it is out of the scope and unnecessary to discuss all of these 

models in more depth. Many recent studies, for example Kasibhatla (2005), Liu and Hung 

(2010), Curto and Pinto (2012) and Ou (2014), indicate that GARCH (1,1) EGARCH(1,1) and 

GJR-GARCH(1,1) models are proven to be most accurate in capturing the dynamics of 

financial assets volatility, as well as, used in volatility forecasting. Thus, these three 

abovementioned models will be used in this paper to forecast expected volatility. 

2.4. Evaluation of the Forecasting Performance 
 

2.4.1. Economic Loss Functions 

Considering the large number of GARCH model variations, the need arises for the 

evaluation criterion, upon which the decision can be based on, to choose one model among 
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others. The need for evaluation methods for volatility models is the reason why the literature 

economic loss functions has been increasing in recent decades. Even though there are several 

loss functions proposed, then according to Lopez (2001), the economic loss functions 

proposed by West et al. (1993) and Engle et al. (1993) provided the most significant forecast 

evaluations since these directly took account the investor’s decision structure into the 

evaluation process (Lopez 2001, 95). West et al. (1993) proposed a utility-based economic 

loss function and Engle et al. (1993) proposed an economic loss function, which required 

forecasted volatility, based on the expected profit from an investment decisions. 

In addition to Lopez (2001) findings, Bollerslev et al. (1994) noted that, economic loss 

functions which particularly involve the costs confronted by forecasted volatility users offer 

the most significant forecast evaluations. Later on, numerous such loss functions, which are 

based on explicit economic problems, have been proposed in the literature
24

. 

2.4.2. Statistic Loss Functions 

However, since explicit economic loss functions are often unavailable, volatility 

forecast evaluation is usually conducted by minimizing a statistical loss function, such as root 

mean squared error (RMSE), Akaike Information Criterion (AIC), and Bayesian Information 

Criterion (BIC) (Lopez 2001, 100). 

The RMSE is scale-dependent accuracy measure, which is applicable while comparing 

different methods on the same dataset, but should not be used, when comparing datasets with 

different scales. The RMSE process can be described with equation 2.13 (Hyndman 2006): 

 

      √
 

 
∑ ( ̂    ) 

 

   
 (2.13) 

where the number of observations is denoted by  , forecasted and realized volatilities are 

denoted by  ̂  and   , respectively. 

If the comparable models have the same number of parameters, it is possible to 

compare the maximum value of models’ likelihood functions. In case, when the models have 

a different number of parameters, it is necessary to use AIC, which makes adjustments to the 

likelihood functions to account for the number of parameters (Reider 2009, 14). AIC is 

described in the equation 2.14 (Akaike 1974): 

                                                 
24

 For example, see Noh et al. (1994) and Engle et al. (1996). 
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   ( )     ( )     (2.14) 

where maximized value of the likelihood function for the model is denoted by L; and the 

number of parameters in the model is denoted by P. This means that AIC gives a penalty of 2 

for an additional parameter (Reider 2009, 15). Thus, it turns out that AIC is biased for small 

samples and might recommend a model which has a higher number of parameters (Chatfield 

2000, 77). 

 Therefore, an alternative, BIC is widely used together with AIC. The BIC penalizes 

the addition of extra parameters more severely than AIC. The BIC calculation process is 

described in equation 2.15 (Priestley 1981) 

 
   ( )      (   ̂)      ( ) (2.15) 

where error variance is denoted by    ̂; and number of observations is denoted by n. 

Even though, statistical loss functions are widely used in evaluation of the goodness-

of-fit of volatility models
25

, applying these is in some cases challenging. Mainly because of 

two reasons: firstly, some statistical loss functions (for example RMSE) use squared returns 

as a proxy for the latent volatility process (Ibid.). Andersen and Bollerslev (1997) reached an 

understating that, statistical loss functions which use squared returns as a proxy limit the 

accessible interpretation regarding the forecast accuracy. Secondly, while statistical loss 

functions require often realized volatility (or returns), then these loss functions can be only 

used for in-sample evaluations. 

2.4.3. Choosing a Proxy for Statistical Loss Function 

In order to measure the performance of statistical loss function, an appropriate proxy 

should be selected. Patton (2008) conducted a study which used different standard volatility 

proxies, such as squared returns, the intra-daily range and realized volatility. Study results 

indicated the goodness-of-fit of realized volatility. 

The latter is also a reason, why in this thesis realized volatility will be used as a proxy 

for statistical loss functions. Realized volatility is easily computable, provides a natural proxy 

for forecast evaluation, and at the same time is very intuitive and easily interpretable. The 

calculating process for realized volatility is in equation 2.16 (Andersen et al. 2003): 

                                                 
25

 See Taylor (1987), Akgiray (1989), Dimson and Marsh (1990), Pagan and Schwert (1990), Lee (1991), West 

and Cho (1994), Kroner et al. (1995), Bollerslev and Ghysels (1996), Brailsford and Faff (1996). 
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where realized volatility is denoted by RV; number of trading days in the measurement period 

is denoted by n; counter representing a trading day is denoted by t; continuously compounded 

daily returns are denoted by Rt. In addition, the formula makes an assumption that, there are 

252 trading days in a year. 

2.4.4. Other Considerations 

 Financial assets’ volatility forecasts are often used for investment purposes, so there 

are several studies which proposed new economic loss functions based on maximizing trading 

profits or minimizing losses
26

. While in the empirical part of this thesis dynamic asset 

allocation models will be implemented, it would be possible to propose an economic loss 

function, which is based on dynamic asset allocation model. Although it would be very 

intuitive and easy to interpret, economic loss function might include itself influence to the 

evaluation. For instance, using VaR model as an economic loss function, it includes to the 

forecast evaluation VaR model’s structure, confidence levels, and distribution function 

influences. Thus, the forecasted volatility evaluations might be biased. 

Nevertheless of the shortcomings of statistical loss functions, these are well suited, 

easy to implement and widely used for in-sample forecasts evaluations. Considering the latter 

and the possible weaknesses of economic loss functions, statistical loss functions are used to 

evaluate forecasted volatility in Chapter 3
27

.  

 

                                                 
26

 For example, Engle et al. (1993) introduced an economic loss function, which was based on profits made in a 

options market. 
27

 As stated in the introduction, only in-sample volatility forecasts will be made in the empirical part of this 

thesis. 
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3. VOLATILITY MODELLING AND FORECASTING. AN 

EMPIRICAL ANALYSIS 

3.1. Describing Data 

The empirical analysis employs daily closing prices for four financial instruments: 

S&P 500 Index, STOXX Europe 600 Index, U.S. Treasury Future, and Euro-Bund Future. 

The observation period is from 01/01/2000 to 30/04/2015. While conditional variance 

forecasts are made with 5 year rolling window, then forecast period is from 01/01/2005 to 

30/04/2015. The information of the instruments used is shown in the table 3.1. The data are 

retrieved from the Bloomberg database. 

Table 3.1 Financial Instruments 

Symbol Bloomberg Ticker Instrument Name Representative 

Asset Class 

Region 

USE SPX INDEX S&P 500 Index Equity U.S. 

EUE SXXP INDEX STOXX Europe 600 Index Equity Europe 

USF US1 COMB COMDTY U.S. 10Y Treasury Future Fixed Income U.S. 

GERF RX1 COMDTY Euro-Bund Future Fixed Income Europe 

Source: Bloomberg (2015); compiled by the author 

These financial instruments were chosen because they are well known, widely traded 

and represent relatively well these regions asset classes. In addition, historical daily price 

quotes for these instruments were available for more than 15 years. The latter makes these 

financial instruments attractive research subjects, because two major financial crises occurred 

during the observation period. 

Figures 3.1, 3.2, 3.3 and 3.4 illustrate daily price and return movements of different 

observed financial instruments from 01/01/2000 to 30/04/2015. The return for each financial 

instrument is calculated as the percent logarithmic difference in daily close prices, the 

calculation process is given in equation 3.1: 
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     (
  
    

)      (3.1) 

where    and    stand for the market return and asset price for each day, respectively. Returns 

for USE, EUE, USF and GERF are denoted with symbols DUSE, DEUE, DUSF and DGERF, 

respectively. 

 

Figure 3.1 Daily prices and returns of USE from 01/01/2000 to 30/04/2015 

Source: Bloomberg; compiled by the author 

 

Figure 3.2 Daily prices and return of EUE from 01/01/2000 to 30/04/2015 

Source: Bloomberg; compiled by the author 

Evident from the figures 3.1 and 3.2, it appears that USE and EUE have behaved 

during observation period similarly. Both indexes experienced a fall in price levels and 

increase in returns volatilities during financial crises (during 2000-2002 and 2007-2009). 
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Figure 3.3 Daily prices and returns of USF from 01/01/2000 to 30/04/2015 

Source: Bloomberg; compiled by the author 

 

Figure 3.4 Daily prices and returns of GERF from 01/01/2000 to 30/04/2015 

Source: Bloomberg; compiled by the author 

 From figures 3.3 and 3.4 appears that fixed income prices tend to move in same trend 

during the observation period, but is worth to notify that GERF returns are less volatile (see 

return movements amplitudes) and USF returns. 

Descriptive statistics of the selected assets are presented in table 3.2. Mean and 

median returns for all instruments are close to zero. Standard deviations for equity returns, 

DUSE (0.127) and DEUE (0.127), are higher than for fixed income returns, DUSF (0.007) 

and DGERF (0.004). DUSE. DEUE and DGERF returns have negative skewness, which is 

normal for financial instrument returns
28

. The excess kurtosis statistic refers to a departure 

from normal distribution, that is, all series are highly leptokurtic. The latter means that the 

1.96 of standard deviation of the mean is less than 95%. 

                                                 
28

 According to Ali (2013), negative skewness is a feature of many financial instrument returns. 
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Table 3.2 Descriptive statistics of the daily prices and returns from 01/01/2000 to 30/04/2015 

Statistic \ Symbol USE EUE USF GERF DUSE DEUE DUSF DGERF 

Mean 1299.521 288.409 119.750 122.811 0.00010 0.00002 0.00015 0.00011 

Median 1263.510 283.000 115.688 118.590 0.00050 0.00050 0.00030 0.00020 

St.deviation 290.265 57.677 15.112 13.828 0.01273 0.01263 0.00670 0.00352 

Kurtosis 0.545 -0.864 -0.472 -0.366 8.111 5.289 13.328 2.527 

Skewness 0.814 0.158 0.603 0.799 -0.171 -0.105 0.604 -0.306 

Range 1441.160 256.090 76.594 58.300 0.204 0.173 0.128 0.040 

Minimum 676.530 157.970 89.219 102.060 -0.095 -0.079 -0.030 -0.020 

Maximum 2117.690 414.060 165.813 160.360 0.110 0.094 0.099 0.020 

Count 3847 3847 3847 3847 3846 3846 3846 3846 

Source: Compiled by the author 

Although daily price level figures (see figures 3.1, 3.2, 3.3, 3.4) indicated that the 

financial instruments price levels are not stationary, and have a unit root, then daily return 

movements were varying around zero, thus it cannot be concluded with certainty whether or 

not returns are stationary. In order to test the stationary of return movements Augmented 

Dickey-Fuller (ADF) test is conducted. The latter is an extension to the stationary test 

proposed by Dickey and Fuller (1979). The ADF test results (see table 3.3), reveal that the t-

statistics for all the series are highly negative. Thus, the t-statistic values exceed critical 

values and the null hypothesis, the data has a unit root, can be rejected. It can be concluded 

with the significance level of 1% that the data are stationary. 

Table 3.3 Augmented Dickey-Fuller (ADF) results 

Symbol t-statistic Prob. 1% level 5% level 

DUSE -46.906 0.0001 -3.432 -2.862 

DEUE -44.490 0.0000     

DUSF -62.203 0.0001     

DGERF -43.369 0.0000     

Source: Compiled by the author 

In order to test for data nonlinearity, Brock, Dechert, Scheinkman (BDS) test is used. 

The BDS test was proposed by Brock, Dechert, Scheinkman (1987) to indicate noisiness of 

the data and the suitability for models. The BDS test results are presented in table 3.4. 
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Table 3.4 Brock, Dechert, Scheinkma (BDS) test results 

 

Dimension 2 Dimension 3 

Symbol statistic std. error z-statistic prob. statistic std. error z-statistic prob. 

DUSE 0.022 0.002 14.462 0.000 0.050 0.002 20.369 0.000 

DEUE 0.023 0.001 15.499 0.000 0.049 0.002 20.920 0.000 

DUSF 0.011 0.001 8.874 0.000 0.020 0.002 10.088 0.000 

DGERF 0.013 0.001 10.545 0.000 0.025 0.002 12.578 0.000 

Source: Compiled by the author 

BDS test results indicate that the test-statistics for the standardized residuals are highly 

significant for each time series in both dimensions. Thus the null hypothesis, the remaining 

residuals are identically distributed and independent, can be accepted. This means the data are 

nonlinear. 

In order to fit the data for GARCH models, ARCH effects in the residuals should be 

present. Under the ARCH effect autocorrelation in the squared errors is considered. With the 

purpose of determine the presence of ARCH effects, a heteroskedasticity ARCH test should 

be conducted on the ARMA(1,1) model. The ARMA(1,1) model, first proposed by Whittle 

(1951), can be described by the equation 3.2: 

 
 ( )      ( )   (3.2) 

where lag operator is denoted by ( ), observable variable is denoted by   , a constant term is 

denoted by  , weak white noise disturbance term is denoted by   . If heteroskedasticity 

ARCH test F-statistic for ARMA(1,1) model is significant, a conclusion can be drawn that 

ARCH effects are present in the lags of the squared residuals. Heteroskedasticity ARCH test 

results are presented in table 3.5. 

Table 3.5 Heteroskedasticity ARCH test results. 

Symbol F-statistic Prob. F(2,3991) 

DUSE 415.2176 0.000 

DEUE 263.920 0.000 

DUSF 0.959 0.383 

DGERF 35.904 0.000 

Source: Compiled by the author 
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 Heteroskedasticity ARCH test results indicate that ARCH effects are present for 

DUSE, DEUD and DGERF time-series, and not present in DUSF. The latter indicates that 

ARCH-type models would be not suitable for DUSF. 

3.2. Competing Volatility Modeling Methods 

 In section 3.3 EWMA, GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) models 

(see equations 2.4, 2.8, 2.09 and 2.11, respectively) will be used for modeling the conditional 

variance of DUSE, DEUE, DUSF and DGERF
29

.  

The choice turned out to be in favor of GARCH(1,1), EGARCH(1,1) and GJR-

GARCH(1,1) models, because based on Kasibhatla (2005), Liu and Hung (2010), Curto and 

Pinto (2012) and Ou (2014) empirical studies, these models are most accurate in capturing the 

dynamics of financial instruments returns and are most precise in conditional variance 

(volatility) forecasting process. 

Although, heteroskedasticity ARCH test results for DUSF indicated that ARCH-type 

models might not be appropriate, selected three GARCH models will be still used for 

modeling the conditional variance of DUSF. The latter will be done for further comparison 

purposes. While the descriptive statistics (presented in section 3.1 table 3.2), indicated that 

DUSE, DEUE, DUSF and DGERF distributions are leptokurtic, then in addition to normal 

(Gaussian) distribution Student’s t distribution is used. 

The naïve model, EWMA, was selected to identify if GARCH volatility modeling 

methods are more precise and accurate than naïve models. The EWMA was chosen instead of 

SMA, because EWMA uses a decay factor λ to assign adjustable weight to historical 

observations. 

The estimated parameters of the GARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1) 

models for DUSE, DEUE, DUSF and DGERF from 01/01/2000 to 31/12/2004 are presented 

in tables 3.6, 3.7, 3.8 and 3.9. 

  

                                                 
29

 See Matlab code in Appendix 3. 
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Table 3.6 Estimated parameters and evaluation of GARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1) models for DUSE from 01/01/2000 to 31/12/2004 

Symbol Distribution Model 
Const. GARCH ARCH Leverage Evaluation 

ω α β γ AIC BIC 

DUSE 

Gaussian 

GARCH(1,1) 1.046e-06 0.920 0.073   
-7.5889 -7.5735 

St.Error ( 1.080e-06) ( 0.013 ) (0.012)   

EGARCH(1,1)  -0.124  0.986 0.072  -0.109 
-7.6544 -7.6339 

St.Error (0.031) (0.003) (0.018) (0.013) 

GJR(1,1) 1.179e-06 0.928    0.126 
-7.6468 -7.6314 

St.Error (9.912e-07) (0.013)   (0.019) 

Student t 

GARCH(1,1)  1.667e-06 0.911 0.079   
-7.5907 -7.5702 

St.Error (1.337e-06) (0.017) (0.016)   

EGARCH(1,1)   -0.123  0.986 0.069 -0.109 
-7.6532 -7.6276 

St.Error (0.032) (0.004) (0.021) (0.014) 

GJR(1,1)  1.177e-06  0.929    0.125 
-7.6457 -7.6252 

St.Error (1.00e-06) (0.014)   (0.021) 

Source: Compiled by the author 

Table 3.7 Estimated parameters and evaluation of GARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1) models for DEUE from 01/01/2000 to 31/12/2004. 

Symbol Distribution Model 
Const. GARCH ARCH Leverage Evaluation 

ω α β γ AIC BIC 

DEUE 

Gaussian 

GARCH(1,1)   1.767e-06   0.890  0.099   
-7.5878 -7.5724 

St.Error (1.098e-06) (0.014) (0.013)   

EGARCH(1,1)  -0.148  0.984 0.110  -0.118 
-7.6354 -7.6149 

St.Error (0.029) (0.003) (0.020) (0.015) 

GJR(1,1)  1.864e-06 0.907   0.154 
-7.6354 -7.62 

St.Error (8.743e-07) (0.013)   (0.022) 

Student t 

GARCH(1,1)  1.635e-06 0.899 0.093   
-7.5889 -7.5684 

St.Error (1.219e-06) (0.017) (0.016)   

EGARCH(1,1) -0.139 0.985   0.108   -0.119 
-7.6346 -7.609 

St.Error (0.034) (0.003) (0.023) (0.016) 

GJR(1,1)  1.781e-06  0.908    0.153 
-7.634 -7.6135 

St.Error (8.924e-07) (0.014)   (0.024) 

Source: Compiled by the author 



45 

 

Table 3.8 Estimated parameters and evaluation of GARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1) models for DUSF from 01/01/2000 to 31/12/2004. 

Symbol Distribution Model 
Const. GARCH ARCH Leverage Evaluation 

Ω α β γ AIC BIC 

DUSF 

Gaussian 

GARCH(1,1)  4.693e-07 0.958 0.030   
-8.9825 -8.9671 

St.Error (3.824e-07) (0.006) (0.007)   

EGARCH(1,1)  -0.209 0.978 0.076  -0.015 
-8.9796 -8.959 

St.Error (0.087) (0.008) (0.021) (0.011) 

GJR(1,1)  5.957e-07  0.955  0.023  0.013 
-8.981 -8.9605 

St.Error (4.050e-07) (0.007) (0.011 (0.012) 

Student t 

GARCH(1,1) 2.227e-06  0.9  0.05   
-8.9959 -8.9754 

St.Error (1.145e-06) (0.024) (0.015)   

EGARCH(1,1)  -0.182  0.981  0.080  -0.010 
-8.9993 -8.9736 

St.Error (0.105) (0.010) (0.027 (0.015) 

GJR(1,1)  5.219e-07 0.955  0.030 0.005 
-9.0007 -8.9754 

St.Error (4.701e-07) (0.010) (0.017 (0.017) 

Source: Compiled by the author 

Table 3.9 Estimated parameters and evaluation of GARCH(1,1), EGARCH(1,1), GJR-

GARCH(1,1) models for DGERF from 01/01/2000 to 31/12/2004. 

Symbol Distribution Model 
Const. GARCH ARCH Leverage Evaluation 

ω α β γ AIC BIC 

DGERF 

Gaussian 

GARCH(1,1) 2,00E-07  0.942  0.037   
-1.084 -1.0825 

St.Error (1.629e-07) (0.006) (0.007)   

EGARCH(1,1)  -0.065 0.994 0.071 0.019 
-1.0849 -1.0829 

St.Error (0.043) (0.003) (0.013) (0.010) 

GJR(1,1) 2,00E-07  0.942  0.040  -0.005 
-1.0838 -1.0818 

St.Error (1.637e-07) (0.007) (0.007) (0.015) 

Student t 

GARCH(1,1) 2,00E-07  0.942  0.037   
-1.0864 -1.0843 

St.Error (1.803e-07) (0.010) (0.010)   

EGARCH(1,1)  -0.072 0.993   0.075 0.019 
-1.0871 -1.0845 

St.Error (0.062) (0.005) (0.020) (0.013) 

GJR(1,1) 2,00E-07  0.941  0.043 -0.008 
-1.0862 -1.0836 

St.Error (1.820e-07) (0.010) (0.018) (0.020) 

Source: Compiled by the author 

From tables 3.6 and 3.7 appears that instead of GJR-GARCH(1,1) models there are 

GJR-GARCH(1,0) models, because ARCH lag parameter    are not estimated. Although in 
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model specifications ARCH lag were set to    , parameters were still excluded, because 

these were too close to zero
30

. It does not mean, that GJR-GARCH(1,0) models will be used 

for DUSE and DEUE forecasts, because during the forecasting period ARCH lag coefficient 

may increase and parameter might enough significant to be included into the model. 

According to AIC and BIC (lowest coefficients are in bold) it appears that best model 

for DUSE from 01/01/2000 to 31/12/2004 is EGARCH(1,1) with normal distribution. For 

DEUE, DUSF and DGERF best models are GJR-GARCH(1,0) with normal distribution, GJR-

GARCH(1,1) with Student t distribution, and EGARCH(1,1) with Student t distribution, 

respectively.  It is worth to notify that these are the best models in that certain sample period. 

Best models for the entire observation period might be different. 

3.3. Evaluation of the Forecasted Volatility 

In this section forecasted conditional volatility will be evaluated according to RMSE 

criteria and correlation coefficient. One-day ahead conditional volatility forecasts of DUSE, 

DEUE, DUSF and DGERF were calculated by using GARCH(1,1), EGARCH(1,1) and GJR-

GARCH(1,1) models under Gaussian and Student t distributions
31

, and with EWMA naïve 

technique. The forecast will be dynamic with 5 year rolling window sample (1245 trading 

days). Each of the 24 initial GARCH type models (presented in Section 3.2) coefficients will 

be calibrated during forecasting process 2601 times and 2602 one-day ahead forecasts will be 

made. See volatility forecasts in appendixes 5-8. 

The forecasts will be evaluated according to RMSE criteria and correlation coefficient. 

Realized volatility is used as a proxy in RMSE calculations. Evaluations are based on RMSE 

criteria, but if RMSE criterions of different models are equal, then correlation coefficients will 

be also considered. 

 The RMSE and correlation coefficients of volatility forecasts are presented in table 

3.10. Most accurate and precise models and respective model RMSE and correlation 

coefficient are presented in bold text. Initially selected best models are presented in red text. 

                                                 
30

 GARCH and ARCH lags are related with an underlying lag operator polynomial, thus a near-zero tolerance 

exclusion test is conducted in parameters estimation process. If GARCH or ARCH lags coefficients magnitudes 

are equal or less than 1e-12 then these will be excluded. (The MathWorks, Inc 2015) 
31

 See Matlab code in Appendix 4. 
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The results indicate that the most accurate and precise models for DUSE and DEUE is 

GARCH(1,1) under normal distribution (initially the best models were EGARCH(1,1) and 

GJR-GARCH(1,1), respectively, under normal distributions. Most suitable model for DUSF is 

GJR-GARCH(1,1) under normal distribution (initially the best model was GJR-GARCH(1,1) 

under Student t distribution), and for DGERF is EWMA technique (initially the best models 

was EGARCH(1,1) under Student t distribution). One may assume that this is caused by the 

short, one day ahead, forecasting period, because several studies
32

, which found either 

EGARCH or GJR-GARCH models more precise than the ordinary GARCH, were using 

longer forecast periods. 

 Although it is worth to notify, that in many cases volatility forecasts RMSE-s differ 

not much or are equal, which means the accuracy and preciseness of some models is very 

similar during the observation period.  

                                                 
32

 For example Marcucci (2005) studied stock market volatility at horizons that range from one day to one 

month, and found that at forecast horizons longer than one week asymmetric GARCH models tend to be 

superior. 
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Table 3.10 RMSE and correlation of volatility forecasts 

Symbol Distribution Model RMSE Correlation 

DUSE 

Gaussian 

EWMA 0.0028 0.9498 

GARCH(1,1) 0.0023 0.9602 

EGARCH(1,1) 0.0031 0.9339 

GJR(1,1) 0.0024 0.9562 

Student t 

GARCH(1,1) 0.0023 0.9598 

EGARCH(1,1) 0.0030 0.9297 

GJR(1,1) 0.0024 0.9546 

DEUE 

Gaussian 

EWMA 0.0031 0.9174 

GARCH(1,1) 0.0021 0.9583 

EGARCH(1,1) 0.0032 0.8944 

GJR(1,1) 0.0025 0.9302 

Student t 

GARCH(1,1) 0.0021 0.9581 

EGARCH(1,1) 0.0032 0.8904 

GJR(1,1) 0.0021 0.9580 

DUSF 

Gaussian 

EWMA 0.0018 0.8441 

GARCH(1,1) 0.0016 0.8481 

EGARCH(1,1) 0.0020 0.7245 

GJR(1,1) 0.0016 0.8482 

Student t 

GARCH(1,1) 0.0017 0.8382 

EGARCH(1,1) 0.0019 0.7701 

GJR(1,1) 0.0016 0.8336 

DGERF 

Gaussian 

EWMA 0.0009 0.8426 

GARCH(1,1) 0.0009 0.8174 

EGARCH(1,1) 0.0011 0.6507 

GJR(1,1) 0.0009 0.7614 

Student t 

GARCH(1,1) 0.0009 0.8176 

EGARCH(1,1) 0.0010 0.7079 

GJR(1,1) 0.0009 0.7840 

Source: Compiled by the author  
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3.4. Discussion of the Results 

3.4.1. Interpretation 

 The evaluation of the conditional volatility forecasts indicated that initially chosen 

models were not the most accurate and precise for volatility forecasting during the 

observation period. Although the RMSE-s of different GARCH type models were in some 

cases very similar, or even equal, RMSE-s did not indicate initially chosen models, except for 

DUSF. 

In addition, it appeared that while considering RMSE as the only evaluation criteria 

then GARCH(1,1) model under normal distribution suits best for all observed assets. Even 

though many previous empirical studies have proved the superiority of EGARCH(1,1) and 

GJR-GARCH(1,1) models, GARCH(1,1) volatility forecasts seems to be more accurate. 

Moreover, in contrast to previous empirical studies, EGARCH(1,1) under Gaussian and 

Student t distributions was most inaccurate and imprecise for volatility forecasting. 

 Although ARCH effects were not present in DUSF, GARCH(1,1) and GJR(1,1) 

models under both distributions provided more precise volatility forecasts than EWMA. This 

indicates that even if ARCH effects are not present, ARCH/GARCH type models might 

provide more precise volatility forecasts than EWMA. Nevertheless, it is not correct to draw 

any conclusions based on the latter, because EWMA does not consider ARCH effects at all, 

and it can be assumed, that some other type modeling methods would give more accurate 

volatility forecasts than GARCH type models. 

 Interestingly, the result indicated that for DGERF all used forecasting methods, except 

EGARCH(1,1), provided same precise results. Although, the correlation coefficient between 

forecasted and realized volatility was highest on EWMA technique, any solid conclusions 

cannot be drawn based on correlation coefficients. 

Considering the purpose and first research question of this thesis, it can be concluded, 

based on the conducted empirical analysis, that GARCH volatility modeling methods are 

equal or more accurate and precise than naïve volatility modeling techniques. Even if ARCH 

effects are not present, GARCH models tend to outperform naïve techniques. 

3.4.2. Limitations and Suggestions for Further Research 

 Although GARCH type models possess accurate and precise forecasting qualities 

there are some limitations. First, long-term forecast of conditional variance will converge to 
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the unconditional mean variance, thus static long-term forecasts are imprecise. Secondly, 

GARCH type models require long time-series of data in order to be trustworthy. The latter 

might be a problem, if some new financial instruments are considered where long-term 

historical data does not exists.  

 Further research is required on different GARCH type models for evaluating the 

accuracy and preciseness of conditional volatility forecasts. Although many previous 

empirical studies have proven EGARCH and GJR-GARCH models to be more precise than 

the ordinary GARCH, this empirical analysis, in general, indicated the ordinary GARCH 

model as the most precise, and EGARCH model as the most imprecise. Before making any 

solid conclusions, further research should be made with longer time series and different 

financial instruments. 

 In addition, from volatility forecasting perspective, it might increase forecasting 

ability, if indicators which reflect confidence in economy are included to the model and 

considered as well, for example different leading indicators. Moreover, it is necessary to 

evaluate, if some other volatility modeling methods provide better results. For instance, 

models based on stochastic volatility theory, or nonparametric methods for volatility density 

estimation. 
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4. DYNAMIC ASSET ALLOCATION. AN EMPIRICAL 

ANALYSIS 

In this chapter, an empirical analysis is conducted in order to compare investment 

portfolios based on dynamic and static asset allocation strategies. The data presented in 

Section 3.1 will be used. Although, the evaluation of forecasted volatility (see Section 3.3) 

indicated that, in within this specific sample and time horizon, in general, GARCH(1,1) 

models are most precise for volatility forecasting, the models chosen out in Section 3.2 will be 

used (for DUSE EGARCH(1,1) with normal distribution, for DEUE GJR-GARCH(1,1) with 

normal distribution, for DUSF GJR-GARCH(1,1) with Student t distribution, for DGERF 

EGARCH(1,1) with Student t distribution). The latter is because portfolio simulation is from 

1/01/2005 to 30/04/2015 and the information about future is not available, thus the evaluation 

of forecasted volatility should not be considered. 

While transaction costs are often dependent on negotiated terms and counterparties, 

these are chosen randomly, in general, for institutional investors transaction costs are below 

0.5% of the traded volume, thus the chosen transaction costs are following: 0%, 0.25%, and 

0.5% of trading volume. 

4.1. Competing Portfolios 

In order to compare portfolio based on dynamic and static strategies, suppose there are 

launched two dynamic and two static portfolios, for both strategies one with U.S. assets and 

one with European assets, with an inception value of 100. The initial asset classes’ weights 

are 50% equity and 50% fixed income. If necessary, assets are reallocated with daily intervals, 

either to maintain the initial asset allocation for static portfolio, or based on the expected 

shortfall probability for each asset class separately. In order to minimize trading costs, asset 

allocation changes are applied only if they exceed at least 5% of portfolio’s value. 

While several empirical studies, for example Herold et al. (2005) and Herold et al. 

(2007), have indicated the superiority of shortfall risk based-strategies, compared to other 
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dynamic asset allocation strategies, the expected shortfall probability method will be 

implemented. 

 As described in the Chapter 1, the covariance between different assets is not constant 

and using false covariance might deflect results. Thus, in order not to deflect results and 

simplify the further empirical analysis, the expected shortfall risk probability is calculated for 

each asset class separately (by using equation 1.6). Dynamic portfolios’ asset allocation 

weights are allowed to decrease from 0% to 100%, below 0% allocation, short selling
33

, is not 

allowed. 

 In addition to equities and fixed income, holding cash is included as an option for 

asset allocation. Cash is considered as non-interest bearing asset without any holding risks. 

Even tough, the expected shortfall probability calculations are based on assumption 

that the data are normally distributed with skewness 0 and kurtosis 3, the adjustment of 

integration equitation 1.6 for expected shortfall probability would be out of the scope of this 

thesis. 

 Expected shortfall risk probability calculations require a minimum acceptable return, 

and in order to take risk and invest not into a risk-free asset class, some risk has to be taken, 

thus the minimum acceptable return is set to -1%. This means, the return -1% or above is 

required each day at a 95% confidence level. The maximum allowed expected shortfall risk 

probability for asset allocation decisions is set to 5%, which means probability of producing a 

return below -1% must not exceed 5%. 

4.2. Results  

4.2.1. U.S. Dataset 

 It appears from visual assessment that dynamic asset allocation weights changed 

remarkably during 07/2007 to 07/2009, and 07/2011 to 01/2012. During these periods the 

expected shortfall risk probability of equities increased and assets were reallocated to fixed 

income, which appeared to be with lower expected shortfall risk probability. Although, during 

these periods for a short time the expected shortfall risk probability of fixed income exceeded 

allowable limit, and around half of the portfolio’s assets were held in cash, see Figure 4.1. 

                                                 
33

 Selling assets not owned by the seller (for example borrowed), in purpose to buy assets back in future at lower 

price. 
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Figure 4.1 Asset allocation weights of the dynamic portfolio from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 The performance of dynamic and static portfolios, without trading costs, is presented 

in Figure 4.2. It appears from Figure 4.2 that most of the time dynamic portfolio’s value was 

higher than static portfolio’s value. In order to compare portfolios performance during 

different periods the relative performance
34

 was calculated, presented in Figure 4.3. It appears 

there is an upward trend in relative performance, which indicates that dynamic portfolio is 

outperforming static portfolio in long-term period. Although, in some shorter periods, for 

instance the second half of 2009, static portfolio outperformed dynamic portfolio. 

 The performance and relative performance figures for portfolios with transaction costs 

are presented in Appendixes 9-12.  

                                                 
34

 Relative performance represents dynamic portfolio’s performance over static portfolio’s performance 

(dynamic portfolio’s value is divided by static portfolio’s value). 
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Figure 4.2 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

 

Figure 4.3 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 
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 Table 4.1 presents portfolio values at the end, compound annual growth rates 

(CAGR)
35

, and standard deviations of portfolios’ returns. It appears that portfolios with 0% 

and 0.25% of transaction costs reached to higher absolute value, therefore CAGR is higher. If 

transaction costs are 0.5% or higher then dynamic portfolio’s value is lower. Despite of the 

differences in portfolios’ values and CAGR’s, portfolios’ standard deviations are all equal. 

Table 4.1 Dynamic and static portfolios statistics from 1/01/2005 to 30/04/2015 

Strategy Portfolio Value CAGR Standard Deviation Min. Return Max. Return 

Dynamic (0%) 170.6 5.49% 0.006 -3.59% 3.68% 

Static (0%) 149.6 4.11% 0.006 -5.09% 4.74% 

Dynamic (0.25%) 151.0 4.21% 0.006 -3.59% 3.66% 

Static (0.25%) 144.4 3.74% 0.006 -5.11% 4.73% 

Dynamic (0.5%) 133.7 2.95% 0.006 -3.59% 3.64% 

Static (0.5%) 139.3 3.37% 0.006 -5.12% 4.72% 

Source: Compiled by the author 

4.2.1. European Dataset 

The European dataset results are presented in Figures 4.4, 4.5, 4.6 and Table 4.2. 

Figure 4.4 indicates that assets were never held in cash, asset allocation was fluctuating 

between equities and fixed income. During 2008 to 2009 and 2011 to 2012 most of the assets 

were allocated to fixed income, rest of the observation period to equities. From Figure 4.5 

appears that the dynamic portfolio’s value was during the observation period constantly 

higher than static portfolio’s value. 

 Relative performance reveals that dynamic strategy outperformed static asset 

allocation from 2005 to the end of first half of 2009. Later on, dynamic strategy has been 

underperforming compared to the static portfolio.  

                                                 
35

 The compound annual growth rate (CAGR) calculation process can be described with following equation: 

     
   
   

 
     

   

where, last observation value is denoted by    , first observation value is denoted by    , last year of 

observation is denoted by   , first year of observation is denoted by   . 
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Figure 4.4 Asset allocation weights of the dynamic portfolio from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

Figure 4.5 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 
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Figure 4.6 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the authors 

 Portfolio based on dynamic strategy outperformed static portfolio with all 

implemented transaction costs. In addition, it appears that while increase in transaction costs 

decreases dynamic portfolio’s value, then static portfolio value is nearly not changing. 

Standard deviations of returns are all equal for both strategies with different transaction costs. 

Table 4.2 Dynamic and static portfolios statistics from 1/01/2005 to 30/04/2015  

 

Strategy Portfolio Value CAGR Standard Deviation Min. Return Max. Return 

Dynamic (0%) 169.2 5.40% 0.005 -3.13% 2.02% 

Static (0%) 129.1 2.59% 0.005 -4.01% 3.63% 

Dynamic (0.25%) 149.0 4.07% 0.005 -3.13% 2.02% 

Static (0.25%) 129.1 2.59% 0.005 -4.02% 3.65% 

Dynamic (0.5%) 131.2 2.75% 0.005 -3.13% 2.02% 

Static (0.5%) 129.1 2.59% 0.005 -4.03% 3.66% 

Source: Compiled by the author 
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4.3. Discussion of the Results 

4.3.1. Interpretation 

The purpose of the empirical analysis is to clarify whether an investment portfolio 

based on shortfall risk-based strategy can outperform portfolio based on static strategy during 

the observation period, or not. In addition to latter, to evaluate if dynamic portfolio can limit 

more efficiently short-term losses than static portfolio. One may find that the dynamic 

strategy meets partially the expectations, but is dependent on the transaction costs. 

If transaction costs are set to 0% or 0.25%, then dynamic portfolio outperformed static 

portfolio with both datasets (the CAGR is without transaction costs with U.S. and European 

datasets 1.38% and 2.81% higher, respectively). While on dynamic portfolio there is more 

reallocation between asset classes than on static portfolio
36

, dynamic portfolio is highly 

sensitive to transaction costs. As transaction costs increases, dynamic portfolios’ absolute 

value and CAGR decrease significantly.  

Although, if during the observation period transaction costs are 0% or 0.25%, it 

appears that dynamic portfolio outperforms static portfolio, it is necessary to notify that in 

shorter periods it is not always outperforming. With U.S. dataset, there are several short 

periods when dynamic portfolio underperforms static portfolio, for instance during the second 

half of 2009. Nevertheless, during most of the observation period it seems like dynamic 

portfolio is slightly outperforming static portfolio. In addition, during the financial crisis of 

2008 to 2009 the value of dynamic portfolio decreased -21%, while the value of static 

portfolio decreased -28%. In addition, it appears that the minimum return of dynamic 

portfolio is higher than on static portfolio (without transaction costs -3.59% compared to -

5.09%). Therefore, one may anticipate that, based on the U.S. dataset, shortfall risk-based 

strategy can limit short-term and extreme losses more efficiently than portfolio based on static 

asset allocation.  

With European dataset, it appears that during the first five years, from 2005 to 2009, 

dynamic portfolio clearly outperformed static portfolio (in 2/03/2009 the value of dynamic 

portfolio is 63% higher than the value of static portfolio). Since the second half of 2009, 

dynamic portfolio starts to underperform static portfolio, at the end of observation period the 

value of dynamic portfolio is 31% higher than the value of static portfolio. 

                                                 
36

 The values of asset classes do not necessarily move in sync. Thus, in order to hold initial asset allocation 

weights for static portfolio, asset allocation has to be constantly reviewed during the observation period. 
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One may assume, that the reason why dynamic portfolio started to underperform static 

portfolio relies in the uncertainty of European economic climate. In addition to the sovereign 

debt crisis, there have been used novel methods to alleviate the crisis, e.g. quantitative easing 

and extremely low interest rates. These methods have eased the effects of the crisis and it 

seems that the markets have been mostly in rising trend after 2009, except equities in 2011. 

While the growth in asset prices might be leveraged by the quantitative easing and low 

interest rates, market participants are extremely sensitive, which makes financial asset returns 

very volatile. However, it might complex the forecasting of conditional volatility because, in 

general, volatility is low when markets are rising. Thus, the GARCH models which use 5 year 

historical volatility as a rolling window might not be appropriate for volatility forecasting. It 

is worth to emphasize, that the latter is an assumption without any evidence. 

Considering the limitation of short-term losses, it appears that during the financial 

crisis of 2008 to 2009 the value of dynamic portfolio decreased -25%, while the value of static 

portfolio decreased -56%. In addition, it appears that the minimum return of dynamic 

portfolio is higher than on static portfolio (without transaction costs -3.13% compared to -

4.01%). Thus, one may conclude that dynamic portfolio limited extreme and short-term losses 

more efficiently than static portfolio. 

4.3.2. Limitations and Suggestions for Further Research 

The implementation of one dynamic asset allocation strategy is not enough to make 

any general conclusions about dynamic asset allocation strategies. Although several previous 

empirical studies have implemented different dynamic asset allocation strategies, it is 

necessary to implement all different dynamic strategies with same dataset and observation 

period, in order to find the most suitable and profitable dynamic asset allocation strategy. In 

addition, it might provide additional value if dynamic models would be adjusted or some 

economic leading indicators would be included to the model. 

It is important to emphasize that the results, are might be dependent on dataset and 

observation period, thus results might be different with different data and period. In order to 

strengthen the results, the empirical analysis should be repeatedly replicated with other assets 

and asset classes. 

It must be taken into account that the implementation of a dynamic strategy did not 

take into account the liquidity problems. It was assumed, that all trades can be carried out 

with full amount immediately. 
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It is worth further research, what would be the optimal threshold level for eliminating 

minor changes in the asset classes’ weights, in order to improve the performance of the 

shortfall risk-based strategy. Also in further analysis of dynamic asset allocation strategies, it 

would make sense to divide the observation period to bull, bear and flat markets – thus it 

would be possible to distinguish different dynamic strategies’ behavior during different 

market cycles. 



61 

 

SUMMARY 

In search of optimizing a portfolio, the vast majority of asset managers have relied on 

the Markowitz’s (1952) portfolio selection theory. Even though Markowitz’s framework is 

definitely the cornerstone of modern portfolio theory and provided useful insight, the financial 

crises of last decades have provided evidences that it is extremely difficult to implement this 

framework effectively in practice. Mainly because of this framework assumes correlations to 

be static between different financial assets, which deviate from the reality. The latter poses a 

major problem for the asset managers and investors, who have been relying on a mean-

variance framework as to tool to optimize the risk and return trade-off of their portfolios, 

because during the financial crises correlations tend to increase, consequently as well as the 

overall risk of investment portfolio.  

Moreover, the portfolio management is nowadays moving towards a more dynamic 

and flexible approach, because the last major financial crises have shown that the investment 

portfolios based on the traditional static asset allocation tend to lose a lot of the value of assets 

under management during the crises. Even if the relative performance of portfolio is positive, 

the absolute performance can be negative.  

In order to solve these problems dynamic asset allocation strategies and techniques, in 

which the asset allocation composition varies over time, have been developed. The 

mechanism for these strategies is not the same as that for mean-variance optimization 

framework, in which portfolio’s risk is reduced through a covariance term. Dynamic asset 

allocation seeks to increase risk and return trade-off by investing in a better performing asset 

class. As it appeared from the Chapter 1, most of these strategies are aimed to produce 

absolute return and control shortfall risk directly, by protecting the value of portfolio to fall 

below a pre-specified floor.  

Based on the literature review and survey of previous empirical studies of different 

dynamic asset allocation strategies, one may find that shortfall risk-based strategy has proven 

to be the best performing among dynamic asset allocation technique. On this basis, the 

shortfall risk based strategy was implemented in the empirical part of this thesis. 
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While the shortfall risk-based strategy uses expected volatility as a main input, 

different volatility modeling methods were discussed in Chapter 2. Based on the survey of 

previous empirical studies, GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) models were 

selected out for forecasting the conditional volatility. In order to evaluate the effectiveness of 

selected volatility modeling methods, and the preciseness of volatility forecasts, these were 

implemented on two different datasets (U.S. and European equities and fixed income). The 

observation period was from 1/01/2000 to 30/04/2015. All three models were estimated with 

Gaussian and Student t distribution by using sample period 1/01/2000 to 31/12/2004. Based 

on AIC and BIC, it appeared that the best model for DUSE was EGARCH(1,1) with normal 

distribution, for DEUE GJR-GARCH(1,1) with normal distribution, for DUSF GJR-

GARCH(1,1) with Student t distribution, and for DGERF EGARCH(1,1) with Student t 

distribution. In order to evaluate the preciseness of volatility forecasts, conditional volatility 

was forecasted were made with all three models under both distributions for all time-series 

from 1/01/2005 to 30/04/2015. As a base of sample period, 5 year rolling window was used. 

In order to compare the forecasting performance of complex GARCH type models to simple 

naïve techniques, the EWMA volatility forecasts were calculated as well. 

Although, previously the results were in accordance with the literature, that EGARCH 

and GJR-GARCH models are superior in capturing the dynamics in volatilities, then the 

findings of the empirical analysis presented in Chapter 3 indicated the superiority of 

GARCH(1,1) model during the forecasting period. One may assume that this is caused by the 

short, 1-day ahead, forecasting period, because several studies which found either EGARCH 

or GJR-GARCH models more precise than the ordinary GARCH, were using longer forecast 

periods. 

Even though it appeared that GARCH(1,1) model was the most precise for 1-day 

ahead conditional volatility forecasting, this information was not available in 31/12/2004. 

Thus, in order to carry out portfolio simulation from 1/1/2005 to 30/04/2015, previously 

selected EGARCH and GJR-GARCH models were used for conditional volatilities 

forecasting. 

In Chapter 4, portfolio simulation was conducted. In order to compare shortfall risk-

based asset allocation strategy was compared to static asset allocation strategy (50% equity 

and 50% fixed income), two dynamic and two static portfolios were launched. For both 

strategies one portfolio was based on U.S. and one on European dataset. Based on the 
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proposed research questions, dynamic portfolio’s abilities to generate higher absolute returns 

and limit more efficiently short-term losses than static portfolio were evaluated. The results 

indicated that, in general, with given dataset and observation period and without considering 

any transaction costs, portfolio based on dynamic asset allocation strategy outperformed 

portfolio based on static asset allocation. Even though the returns of dynamic portfolio are 

same volatile, high negative returns are limited more effectively than on static portfolio. As a 

dynamic strategy involves continuous re-allocation between asset classes, there is a higher 

trading volume than on static portfolio. Higher trading volume reduces the return of portfolio 

if transaction costs are included. Nevertheless, in this empirical analysis, it appeared that if 

transaction costs are below 0.38% (the breakeven points for U.S. and European datasets were 

0.38% 0.53%, respectively) then the absolute return over the observation period is for 

dynamic portfolio higher than for static portfolio. 

Although these results are in accordance with the previous empirical studies, that 

dynamic portfolios tend to outperform static portfolios, especially in bear environments, one 

may not fully agree with that statement. The latter is because dynamic portfolio 

underperformed static portfolio with European dataset from 01/01/2009 to 30/04/2015, this is 

relatively long period, during in which markets have been rising and falling. Thus, it can be 

concluded, that the results are highly dependent on the observation period and portfolios 

based on shortfall risk-based asset allocation strategy might not be always outperforming 

portfolios based static asset allocation. 

 In addition, it is worth to notify that the shortfall risk-based strategy might provide 

different outcome, if the inputs of expected shortfall probability calculations, and model 

constraints are changed, e.g. minimum acceptable return and threshold level for eliminating 

minor changes in the asset classes’ weights. Exactly the same way, as there is a trade-off 

between expected return and risk, there is a trade-off between choosing the threshold level for 

eliminating minor changes in the asset classes’ weights.  Frequent overview of asset classes’ 

weights might help to protect portfolio value from falling and increase upside potential, but on 

the other side might decrease portfolio value through high transaction costs. 

 The purpose of this thesis was fulfilled, answers to the research questions and 

inferences were proposed as much as the results permitted. It is worth further investigation, 

whether the different volatility forecasting methods, e.g. models based on stochastic volatility 

theory, or nonparametric methods for volatility density estimation, could improve the 
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preciseness of forecasted volatility. Regarding shortfall risk-based strategy, it is necessary to 

research what would be the optimal threshold level for eliminating minor changes in the asset 

classes’ weights, in order to improve the performance of this strategy. In addition, the 

empirical analysis on dynamic asset allocation strategies should be extended, so that all 

different dynamic strategies would be compared during same observation period and dataset.
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RESÜMEE 

DÜNAAMILINE VARADE JAOTUS PROGNOOSITUD VOLATIILSUSE ALUSEL 

Veiko Niinemäe 

Raha- ja kapitaliturgude globaliseerumine ning pidev finantstoodete areng pakuvad 

investoritele laialdaselt võimalusi investeerimisportfelli koostamiseks. Tänaseni on 

optimaalse portfelli koostamisel palju tähelepanu pööratud Markowitz’i (1952) keskmise-

dispersiooni optimeerimise metodoloogiale, mis on kindlasti üks kaasaegse portfelliteooria 

põhialustest. Vaatamata kasulikule indikatsioonile, mida keskmise-dispersiooni optimeerimise 

metodoloogia pakub, on viimastel kümnenditel toimunud suuremad finantskriisid tõestanud, 

et see metodoloogia omab ühte suurt puudust: eeldatakse, et korrelatsioonid erinevate 

finantsvarade vahel on ajas konstantsed, mis erineb tegelikkusest. Korrelatsioonidünaamikad 

on valmistanud suurt probleemi varahalduritele ja investoritele, kes on lähtunud keskmise-

dispersiooni optimeerimise metodoloogiast kui võimalusest, millega maandada portfelli riski. 

Arvukad varasemad uuringud, mis on uurinud korrelatsioone erinevate finantsvarade vahel, 

on leidnud, et finantsvarade vahelised korrelatsioonid tõusevad volatiilsematel perioodidel, 

näiteks finantskriiside ajal. Sellest tulenevalt ei ole lähtuvalt keskmise-dispersiooni 

optimeerimise metodoloogiast madala volatiilsusega perioodil optimaalseks osutund portfell 

ka optimaalne kõrge volatiilsusega perioodil. 

 Eelpool toodu on ka üheks põjuseks, miks Li ja Sullivan (2011) väitsid, et tänapäeval 

on varahaldus liikumas paindlikumate ja dünaamilisemate varade jaotamise strateegiate 

suunas, mis oleksid võimelised võtma arvesse oodatava riski ja tootluse dünaamikaid 

erinevate varaklasside lõikes. Lisaks on viimased suuremad finantskriisid tõestanud, et laialt 

levinud fikseeritud varaklasside jaotusega portfellid ei ole ratsionaalsed erinevate 

majandustsüklite jooksul. Majanduslanguse ajal on enamuse fikseeritud varaklasside 

jaotusega portfellide tootlused negatiivsed, samas on oluline siinkohal mainida, et mitte kõik 

varaklassid ei pruugi majanduslanguse perioodil negatiivset tootlust pakkuda. Sellest 
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tulenevalt, on tekkinud vajadus dünaamiliste varade jaotamise strateegiate järele, kus 

varaklasside osakaalud muutuvad ajas. 

 Käesolevas magistritöös vaadeldi mitmeid volatiiluse modellerimise tehnikaid ning 

dünaamilise varade jaotamise strateegiaid. Kuigi klassikaliselt on varade jaotamise 

seisukohast olnud korrelatsioon üks olulisemaid tegureid, siis käesolevas töös varaklasside 

vahelisi korrelatsioone ei prognoosita ega kasutatata, sest enamik dünaamilisi varade jaotuse 

strateegiaid ei kasuta korrelatsiooni sisendina, vaid pigem tingimuslikku volatiilsust. 

 Kuigi on olemas mitmeid varasemaid uuringuid volatiilsuse modelleerimise kui 

dünaamiliste varade jaotamise strateegiate osas, on puudujääk uuringutes, mis vaatleks neid 

koos. Veelgi enam, paljud uuringud dünaamiliste varade jaotamise strateegiate osas ei võta 

arvesse tehingukulusid. 

 Magistritöö eesmärgiks oli anda ülevaade ja võrrelda erinevaid autoregressiivseid 

tingimuslikke heteroskedastiivseid volatiilsuse modelleerimise meetodeid (GARCH, 

Generalized Autoregressive Conditional Heteroskedasticity), ning dünaamilisi varade 

jaotamise strateegiaid. Lisaks püstitati kaks uurimisküsimust: (i) kas GARCH klassi kuuluvad 

volatiilsuse modelleerimise meetodid võimaldavad täpsemaid prognoose kui naiivsed 

meetodid; (ii) kas dünaamilisel varade jaotusel põhinev investeerimisportfell on kõrgema 

tootlusega ning piirab efektiivsemalt lühiajalisi negatiivseid tootluseid kui fikseeritud 

varaklasside jaotusega portfell. Täitmaks magistritöö eesmärki ning leidmaks vastust neile 

küsimustele, andis autor esimeses ja teises peatükis ülevaate dünaamilist varade jaotust ning 

volatiiluse modelleerimist puudutavatest teoreetilistest lähtekohtadest ning varasematest 

uuringutest. Varasematest uuringutest selgus, et dünaamilistest varade jaotamise strateegiatest 

on mitmete uuringute põhjal parimaks osutunud oodataval langusriskil põhinev strateegia 

(shortfall risk-based strategy). 

Empiirilised uuringud volatiilsuse modelleerimise ning prognoosimise meetodite osas 

ei ole jõudnud täpselt ühesele tulemusele, kuid siiski on valdavalt osutunud täpsema 

prognoosimisvõimega mudeliteks GARCH(1,1), EGARCH(1,1) ja GJR-GARCJ(1,1). 

Järgenvalt, kolmandas peatükis, modelleeriti ning prognoositi nimetatud kolme mudeli põhjal 

finantsvarade volatiilsust perioodil 01.01.2000 kuni 30.04.2015. Kasutatavateks 

finantsvaradeks valiti nii USA kui Euroopa aktsiaindeksid ning pikaajaliste võlakirjade 

futuurid. Kuna finantsvarade esimest järku logaritmitud diferentsid ei allunud 

normaaljaotusele, kasutati modelleerimisel lisaks ka Student t jaotust. Prognoositi järgmise 
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päeva tingmuslikku volatiilsust, kasutades viie aastast libisevat baasperioodi. Peale igat päeva, 

kalibreeriti mudelite parameetreid uuesti ning tehti prognoos järgmiseks päevaks. Kuigi 

hiljem ilmnes, et terve vaatluslause perioodi põhjal sai realiseerunud volatiiluse abil leida, et 

üldiselt on normaaljaotusega GARCH(1,1) mudel andnud iga aegreaga täpseima prognoosi, 

siis esialgsete mudelite seast, 5 aastase perioodiga alates 01.01.2000 kuni 31.10.2004, osutus 

Akaike ja Bayesani informatsiooni kriteeriumite põhjal parimateks järgnevad: USA 

aktsiaindeksile normaaljaotusega EGARCH(1,1); Euroopa aktsiahindeksile normaaljaotusega 

GJR-GARCH(1,1); USA võlakirjafutuurile Student t jaotusega GJR-GARCH(1,1); ning 

Euroopa võlakirafutuurile Student t jaotusega EGARCH(1,1). Üldiselt ilmnes siiski 

tulemustest, et GARCH klassi mudelid võimaldavaid täpsemaid prognoose kui naiivsed 

meetodid. 

Neljandas peatükis viidi läbi erinevate portfellide simulatsioon perioodil 01.01.2005 

kuni 30.04.2015. Kuna portfelli simulatsiooni alguse hetkeks ei olnud võimalik teada, et 

normaaljaotusega GARCH(1,1) mudel osutub volatiiluse prognoosimisel täpsemaiks, kasutati 

eelnevalt Akaike ja Bayesani informatsiooni kriteeriumite põhjal parimateks osutunud 

EGARCH ja GJR-GARCH mudeleid. Simulatsioonis kasutati nelja portfelli, kaks põhinesid 

dünaamilisel ja kaks fikseeritud varaklasside jaotusel. Mõlema varaklasside jaotuse jaoks 

kasutati eraldi nii USA kui Euroopa andmestikku. Dünaamilisel strateegial põhinevat portfelli 

võrreldi fikseeritud varaklasside kaaludel (50% aktsiad ja 50% võlakirjad) põhineva 

portfelliga. Empiirilise analüüsi tulemustest ilmnes, et nende andmete, vaatlusaluse perioodi 

ja valitud sisendite põhjal (arvestamata tehingukulusid), osutus oodataval langusriskil põhinev 

dünaamiline portfell paremaks. Kuigi nii dünaamiliste kui fikseeritud varaklasside jaotusega 

portfellide tootlused on sama volatiilsed, piirab dünaamiline strateegia kõrgeid negatiivseid 

tootluseid efektiivsemalt, samuti on nii diskonteeritud aastane kasvumäär kui portfelli 

absoluutne lõppväärtus kõrgemad. 

Dünaamiline strateegia hõlmab endas pidevat varade ümberjaotamist erinevate 

varaklasside vahel, seega mõjutavad tehingukulud dünaamilise portfelli tootlust 

märkimisväärselt. Ilmnes, et kui tehingukulud jäävad alla 0.38% (tasakaalupunktid USA ja 

Euroopa andmetega olid vastavalt 0.38% ja 0.53%) tehingute mahust, siis on dünaamilise 

portfelli tootlus kõrgem. Kuigi tulemused on kooskõlas varasemate empiiriliste uuringutega, 

et dünaamilisel varade jaotusel põhinevad portfellid pakuvad kõrgemat tootlust ja 

limimeerivad efektiivsemalt lühiajalisi negatiivseid tootluseid kui fikseeritud varaklasside 
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jaotusel põhinevad portfelli, ei ole tegemist absoluutselt tõese järeldusega igal ajahetkel. 

Euroopa andmestikul põhineva simulatsiooni tulemustest ilmneb, et dünaamilisel strateegial 

põhinev portfell on fikseeritud kaaludega portfellist alates 2009. aastast madalam olnud. Kuigi 

terve vaatlusaluse perioodi jooksul on dünaamilise portfelli tootlus siiski kõrgem, on selge, et 

tulemused on äärmiselt sõltuvad vaatlusalusest perioodist. 

Magistritöö eesmärk sai täidetud, vastuseid uurimisküsimustele leiti ning järeldusi 

tehti nii palju, kui tulemused võimaldasid. Autor leidis, et kuigi mõlemale uurimisküsimusele 

andis empiiriline analüüs positiivsed vastused, on tulemused äärmiselt sõltuvad andmetest, 

vaatlusalusest perioodist, sisenditest ning piirangutest mida kasutatakse. 

Edasisteks võimalikeks uurimisteemadeks pakkus autor välja uurida piirmäära, millest 

alatest on oodataval langusriskil põhineva strateegia rakendamisel otstarbekas varade 

ümberjaotamist teostada. Nõnda on võimalik ebaolulised väiksemahulised muutused 

eemaldada ning tehingutasusid alandada. Käesolevas magistritöös valiti piirmääraks 5% 

portfelli väärtusest. Lisaks soovitas autor uurida erinevaid volatiilsuse prognoosimise 

meetodeid, näiteks stohhastilise volatiilsuse mudelid ning mitteparameetrilisi meetodid 

volatiilsuse tiheduse hindamisel. Samuti oleks võimalik dünaamiliste varade jaotamise 

strateegiate osas empiirilist analüüsi laiendada, rakendades kõiki erinevaid strateegiaid 

samade algandmetega ning perioodile. Nõnda oleks võimalik üheselt hinnata erinevaid 

dünaamilisi strateegiaid, tänaseni on valdav enamus võrdlevaid empiirilisi uuringuid 

käistlenud vaid mõningaid strateegiaid koos. 
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APPENDICES 

Appendix 1. VBA Code: Expected Shortfall Probability 

 

Function ExpectedShortfall(MAR. Mean. Sigma) 

    ER = MAR - Mean 

    z = ER / Sigma 

    If z > 0 Or z = 0 Then 

        w = 1 

    Else 

        w = -1 

    End If 

    y = 1 / (1 + 0.2316419 * w * z) 

    ES = 0.5 + w * (0.5 - (Exp(-z * z / 2) / 2.506628) * _ 

            (y * (0.3193815 + y * (-0.3565638 + y * _ 

            (1.7814779 + y * (-1.821256 + y * 1.3302744)))))) 

 'cumulative normal distribution (Vince 1990, 199) 

    ExpectedShortfall = ES 

End Function 

 

Source: Vince (1990); compiled by the author 
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Appendix 2. Example: Implementation of the Expected Shortfall Method 

On the Figure 5.1 asset weight is fixed to 100% and expected shortfall probability is 

fluctuating over the period. Fluctuations are caused of the changes in inputs – conditional 

volatility and return. If investor is risk averse and wants to hold expected shortfall risk 

probability constant over time, for example 5%, then it can be done by changing asset weight 

(exposure) as show on the Figure 5.2.  

 

Figure 5.1 Example: Dynamic expected shortfall risk probability vs. static asset weight 

Source: Compiled by the author 

 

Figure 5.2. Example: Static expected shortfall risk probability vs dynamic asset weight 

Source: Compiled by the author  
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Appendix 3. Matlab Code: Estimating Models Parameters 

 

r = DEUE; % DUSE; DEUF; DGERF (datasets) 

T = length(r); 

logL = zeros(1,6); 

numParams = logL; 

 

Mdl1 = garch('GARCHLags',1,'ARCHLags',1); 

[EstMdl1,EstParamCov1,logL(1)] = estimate(Mdl1,r); 

numParams(1) = sum(any(EstParamCov1)); 

 

Mdl2 = egarch('GARCHLags',1, 'ARCHLags',1, 'LeverageLags',1); 

[EstMdl2,EstParamCov2,logL(2)] = estimate(Mdl2,r); 

numParams(2) = sum(any(EstParamCov2)); 

 

Mdl3 = gjr('GARCHLags',1, 'ARCHLags',1, 'LeverageLags',1); 

[EstMdl3,EstParamCov3,logL(3)] = estimate(Mdl3,r); 

numParams(3) = sum(any(EstParamCov3)); 

 

Mdl4 = garch('Distribution', 't','GARCHLags',1,'ARCHLags',1); 

[EstMdl4,EstParamCov4,logL(4)] = estimate(Mdl4,r); 

numParams(4) = sum(any(EstParamCov4)); 

 

Mdl5 = egarch('Distribution', 't', 'GARCHLags',1, 'ARCHLags',1, 

'LeverageLags',1); 

[EstMdl5,EstParamCov5,logL(5)] = estimate(Mdl5,r); 

numParams(5) = sum(any(EstParamCov5)); 

 

Mdl6 = gjr('Distribution', 't', 'GARCHLags', 1,'ARCHLags',1, 'LeverageLags',1); 

[EstMdl6,EstParamCov6,logL(6)] = estimate(Mdl6,r); 

numParams(6) = sum(any(EstParamCov6)); 

 

[aic,bic] = aicbic(logL,numParams,T) 

 

Source: Compiled by the author 
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Appendix 4. Matlab Code: 1-Day Rolling Window Conditional Variance 

Forecast
37

 

 

 

r = DUSE; % DUSE; DEUF; DGERF (datasets) 

T = size(r); 

  

Mdl = egarch('Offset', NaN, 'Constant', NaN, 'GARCHLags',1,'ARCHLags',1, 

'LeverageLags',1, 'Distribution', 'Gaussian'); 

 

[fit1,~,LogL1] = estimate(Mdl, y); 

  

RW = 1245; 

  

sample = r(1: RW ,1); 

[fitS,~,~] = estimate(Mdl, sample); 

RWF(1, 1) =  forecast(fitS,1, 'Y0', sample); 

for t = RW:T(1,1)-1 

    sample = r( t - RW +1 : t ); 

    [fitS,~,~] = estimate(Mdl, sample); 

    RWF(t-RW+1+1, 1) = forecast(fitS,1, 'Y0', sample); 

    t; 

end 

 

figure('Name', 'In-sample 1-day ahead conditional variance forecast'); 

hold on; 

plot(RWF(2:end)); 

legend('Forecast','Location','SouthEast'); 

hold off; 

 

Source: Compiled by the author 

  

                                                 
37

 This model (Mdl) is set to estimate EGARCH(1,1) parameters under Gaussian distribution. In order to set this 

model to estimate GARCH(1,1) or GJR-GARCH(1,1) parameters, “egarch” should be replaced with “garch” or 

“gjr”, respectively. For changing normal (Gaussian) distribution with Student t distribution, ‘Gaussian’ needs to 

be replaced with ‘t’. 
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Appendix 5. Conditional Volatility Forecasts of DUSE 

 

Figure 5.3 Conditional Volatility Forecasts of DUSE 

Source: Compiled by the author 
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Appendix 6. Conditional Volatility Forecasts of DEUE 

 

Figure 5.4 Conditional Volatility Forecasts of DEUE 

Source: Compiled by the author 
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Appendix 7. Conditional Volatility Forecasts of DUSF 

 

Figure 5.5 Conditional Volatility Forecasts of DUSF 

Source: Compiled by the author 
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Appendix 8. Conditional Volatility Forecasts of DGERF 

 

Figure 5.6 Conditional Volatility Forecasts of DGERF 

Source: Compiled by the author 
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Appendix 9. U.S. Dataset Results (0.25% Transaction Costs) 

 

Figure 5.7 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

 

Figure 5.8 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author  
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Appendix 10. U.S. Dataset Results (0.5% Transaction Costs) 

 

Figure 5.9 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

 

Figure 5.10 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author  
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Appendix 11. European Dataset Results (0.25% Transaction Costs) 

 

Figure 5.11 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

 

Figure 5.12 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author  
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Appendix 12. European Dataset Results (0.5% Transaction Costs) 

 

Figure 5.13 Dynamic and static portfolios performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 

 

 

Figure 5.14 Dynamic and static portfolios relative performance from 1/01/2005 to 30/04/2015 

Source: Compiled by the author 
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