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Abstract 

Detecting the precise locations of objects from the image data collected by a monocular 

camera continues to be a challenge getting more attractive day after day. Although the 

task is less effortful with the usage of dual cameras, the advantages a monocular camera 

brings to the concept are quite appealing. One of the main reasons this issue is particularly 

serious nowadays is the necessity of this technology by self-driving vehicles that are soon 

going to become an indispensable part of people’s lives. Autonomous transportation is 

surely a leading motivation for advancing image processing applications. On the other 

hand, focusing only on one possible use case to develop a coordinate estimation unit with 

a monocular camera can be degrading for other industries in need of advanced image 

processing features. As the monocular front cameras implemented in vehicles stand 

parallel to the ground, the algorithms they use for modifying the visual data certainly 

differ from the ones installed with a pitch angle to survey a specific location. 

An obvious case where an inclined monocular camera with the ability to map the object 

coordinates is the surveillance camera system. Particularly, this project aims to address 

the demand for such an application in roll-on/roll-off ships. The vessels, like ferries, that 

are carrying vehicles as cargo need to make sure that these vehicles are placed in their 

assigned locations correctly. Therefore, the vessels need to properly locate the vehicles at 

any time so that the cargo can easily be tracked down during loading, transportation, and 

unloading. Camera-Based Vehicle Location Detection is developed to cover this need. 

The system helps create a projection of the vessel it is implemented on, by monitoring the 

cargo and providing data regarding their positions. The parking deck of the vessel is 

recorded with the usage of cameras whose coordinates on the vessel are fixed. Using the 

camera feed and the distance estimation algorithm, the system deduces the exact 

coordinates of each cargo on the vessel.  

There are two main challenges concerning the development of the project. First, vehicle 

detection from the real-time camera feed should be carried out to obtain the areas of 

interest in the point cloud. Then, the spatial locations of the detected objects are deduced 
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with respect to the location of the observing camera. The collected data is processed to 

deduct the distance of every detected vehicle in the vessel with respect to the camera. 

These deductions can later be utilized to create a mapping of the vessel where the location 

of each detected vehicle is indicated.  

The thesis shows the existing related work regarding vehicle detection and distance 

estimation as well as the motivation behind the project development while also touching 

on the method descriptions and test results of some selected algorithms.  

This thesis is written in English and is 45 pages long, including 6 chapters, 16 figures, 

and 3 tables.
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1 Introduction 

Advancements in image processing have brought about an increase in the usage of visual 

data for various computation tasks. Applications like object detection, image 

classification, pattern recognition, segmentation, tracking, and more have been 

addressing different needs in various fields including but not limited to medical practices, 

machine vision, smart vehicles, and surveillance. Even though some of the common 

computer vision implementations are used in distinct disciplines, many of the state-of-

the-art object detection and distance estimation algorithms have been developed to 

accommodate the demands of autonomous vehicles as this is a significant area of current 

interest. On the other hand, considering the fact that this technology focuses on visual 

data that is parallel to the ground, other domains of development like surveillance 

requiring the manipulation of data from images with some pitch angle usually cannot 

utilize the advancements of the visual data processing for the self-driving vehicles without 

further modifications. Hence, building dedicated algorithms fulfilling the need of 

processing angled images correctly calls for additional study to alter the algorithms for 

driverless transportation. 

Having said that the surveillance systems are generally in need of more advanced 

computer vision applications for certain cases due to their pitch angle, this thesis work in 

fact stems from a special use case of such systems, namely the roll-on/roll-off (Ro-Ro) 

ships. Cargo ships that carry vehicles have long been in use for transporting their loads 

across a body of water. These vessels, also referred to as the Ro-Ro ships, are equipped 

to transport numerous types of cargo including private cars, buses, vans, semi-trailers, 

project cargo, and passengers [1]. To be able to properly load and unload their cargo, 

these ships should have the ability to monitor the positions of the vehicles on the vessel 

at all times. When each vehicle has been assigned to a certain location on the vessel, 

loading and unloading the cargo can be carried out in as little disarray as possible and 

more rapidly. However, the ships require a system to make sure that the vehicles are 

positioned at the right spot during the trip. Camera-Based Vehicle Location Detection 
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provides a mapping of the vessel indicating the real-time position of each vehicle on the 

ship so that each of them can be tracked down accurately. 

The system is mainly a real-time embedded platform that takes the video feed as input 

which is coming from the cameras implemented on the parking deck and produces a 

mapping of the vessel as output. The location detection algorithm along with the distance 

estimation determines the exact position of the object with respect to the camera. Using 

the obtained position and the coordinates of the camera, the system can deduct the 

coordinates of the vehicle from the corresponding image. These coordinates can then be 

utilized to come up with a complete mapping of the vessel where the position of each 

vehicle is shown in real-time. 

The work presented in this thesis focuses on the detection of the vehicles from a camera 

system with a pitch angle and then calculating the distances of the detected vehicles from 

the observing system. First, some of the most commonly used object detection methods 

are analyzed so as to come up with a satisfactory vehicle detection implementation in 

terms of accuracy, speed, ease of use, and real-time compatibility. Afterward, various 

distance estimation techniques introduced in the literature are studied to obtain accurate 

distance results from monocular camera images. The most trusted conventional methods 

rely on the utilization of an additional sensor to calculate the distance between an object 

and the system despite its various disadvantages. To propose a more compact and still 

reliable solution, this thesis aims to estimate the distances only from the camera image 

and additional parameters that can easily be procured or calculated. The essential criteria 

for suitable performance are precision, low calculation complexity to fulfill the embedded 

resource requirements, and ease of parameter tuning at setup. The outcomes of these 

techniques are verified with the usage of the data from a radar sensor.  

The remainder of the paper is organized as follows. Section 2 presents the existing state-

of-the-art related to the Ro-Ro ship organization, vehicle detection, and distance 

estimation using image processing. Section 3 provides the methods taken into account 

during the algorithm development for the project while Section 4 introduces the 

implementation procedures of these methods. Section 5 demonstrates the results of the 

implementations addressed in Section 4 discussing their advantages and disadvantages. 

Finally, Section 6 concludes the paper with a summary.
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2 Literature Review 

The existing methods and technologies that are of help for developing the Camera-Based 

Vehicle Location Detection are studied in three main divisions: cargo organization in Ro-

Ro ships, object detection, and distance estimation. The research on effective freight 

placement in Ro-Ro ships is conducted so as to describe the need for this work more 

clearly. To obtain a camera-based solution, the project integrates two topics in image 

processing so that it can generate the cargo coordinates, that is, vehicle detection and 

distance estimation while coordinate evaluation is also carried out during distance 

estimation. 

2.1 Cargo Organization in Ro-Ro Ships 

The proper organization and handling of the cargo in the Ro-Ro ships have been being 

studied for some time. The new applications in various tracking technologies enabled 

plenty of research to be conducted to optimize the cargo tracking techniques. Applying 

Radio Frequency Identification (RFID) technology to create a Real-Time Location 

System (RTLS) [2] was proposed to enhance the port operation system performance. This 

technology focuses on large cargo ships whose containers need to be tracked down in 

real-time. Although it addresses a similar need in transportation, this method is not 

intended for vehicle tracking in smaller Ro-Ro ships such as ferries. Furthermore, RFID 

was intended to be utilized along with GPS to obtain the real-time position of the loaded 

goods as GPS coordinates [3]. Yet, this study also lacks to consider some particular types 

of loads like wheeled cargo. Another technology suggests using Automated Guided 

Vehicles (AGV) for managing the material flow while AGV placement should also be 

controlled by the RFID transponders on the floor [4]. Like the previous ones, the 

feasibility of this approach is low for handling wheeled cargo on ferries. Other 

technologies such as QR code, barcode, or magnetic ID card reading [5] were proposed 

for addressing vehicle tracking in Ro-Ro ships. This thesis proposes a more 

instantaneously accurate solution to the tracing of the cargo vehicles in a Ro-Ro ship 

during their loading, transportation, and unloading. 
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2.2 Object Detection 

The number of distinct and improved vehicle detection techniques has been rapidly 

increasing as more and more object detection algorithms are studied. The vehicle 

detection in the Camera-Based Vehicle Location Detection requires to be carried out with 

a real-time fast algorithm trained by the most compact dataset possible so that the 

performance of the detection can be optimized. This is expected to be achieved by 

analyzing the state-of-the-art vehicle detection algorithms to choose the most suitable one 

and revising their neural network architectures to check if further optimizations are 

possible. The object detection algorithms that can also be implemented for detecting 

vehicles are usually studied in two categories [6]. 

2.2.1 One-Stage Detector 

Single-stage detectors behave as simple regression models that try to learn the probability 

score and the coordinates of the bounding box of the object from the image [7]. You-

Only-Look-Once (YOLO) scheme is one of the most well-known implementations of this 

segmentation technique. YOLOv3 is widely used for practical purposes and further 

studied for implementations. Including dilated convolution and self-attention module 

(SAM) to YOLOv3 yielded efficient and accurate SA-YOLOv3 [6]. Another 

improvement to YOLOv3 making it faster and more accurate is released as YOLOv4 in 

April 2020, utilizing the CSPDarknet53 backbone rather than the Darknet53 network of 

YOLOv3 [8]. An utterly different release in PyTorch implementation called YOLOv5 is 

also made available the same year being even faster and more accurate than EfficientDet 

[9].  

EfficientDet is also a fast, small, and accurate one-stage detector family proposing a 

weighted bi-directional feature pyramid network (BiFPN) and a compound scaling 

method [10]. Yet another common detection method is Single Shot MultiBox Detector 

(SSD) with a straightforward approach as the proposal generation and subsequent feature 

resampling stages are removed from the computation [11]. 

2.2.2 Two-Stage Detector 

Two-staged detectors define a region of interest from the input image before object 

segmentation, making this a two-stage process. They are usually slower than one-stage 

detectors yet reaching better accuracy rates [7]. The majority of these detectors benefit 
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from specific artificial neural networks for image processing called Convolutional Neural 

Networks (CNN). These models execute convolution operations in some of their layers 

where a feature map describing the input properties is generated [14]. Therefore, the 

neurons in the convolutional layers are able to provide their findings of the part of the 

image they apply the convolution to. The distribution of work results in the creation of 

smaller imagery outputs which are to be inputted to the following layer. 

One of the most studied two-stage object detector models is the Region-based 

Convolutional Neural Network (R-CNN) and its derivatives. R-CNN generates a set of 

candidate detections constructed by the region proposals regarding the whereabouts of 

the object, which is fed to the convolutional neural network for the segmentation [12]. 

This approach is further improved by the Fast R-CNN which produces a feature map 

speeding up the segmentation process [13]. Later, Faster R-CNN is introduced which adds 

a region proposal network before the Fast R-CNN to generate object proposals with 

objectness scores [14]. Faster R-CNN is expanded by Mask R-CNN which introduces a 

parallel unit to predict segmentation masks on every Region of Interest (RoI), keeping the 

classification and bounding box regression section [15]. Other two-stage detectors to be 

considered for the Camera-based Vehicle Location Detection project are the SINet, 

introducing context-aware region of interest pooling and multi-branch decision network 

techniques for fast object detection with a large scale [16], and SqueezeNet, a very 

compact object detection model for better on-chip implementation results in regards to 

the model size [17].  

This thesis work analyses the state-of-the-art detector models addressing the needs of 

Camera-Based Vehicle Location Detection. The results of these analyses can provide 

information about the model to be used so that the most suitable vehicle detection scheme 

can be implemented in the design. 

2.3 Distance Estimation 

Evaluating the correct distance of the objects with respect to the observing camera has 

been a widely studied challenge especially due to the rapidly growing autonomous vehicle 

technology. Calculating the real distances of the objects from certain points of view is a 

subject also studied by 3D reconstruction techniques such as Structure-from-Motion 

(SfM). SfM utilizes a set of images of a certain environment to come up with a 3D model 
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while applying steps like feature extraction, matching, geometric verification, two-view 

reconstruction, image registration, triangulation, outlier filtering, and bundle adjustment 

(BA) [18]. The resulting 3D model also reveals the object distance to the implementation 

points although the construction of the model requires marker objects to be present in the 

environment making the performance of this method bound to the layout preparation.  

One approach utilizes the triangulation method and the binocular camera model for 

calculating the target distance [19], while another one introduces sparse 2D laser range 

data to estimate the monocular depth of the object [20]. A different technique for distance 

estimation is to use the disparity of the target object detected by the stereo camera system 

[21]. Machine learning methods such as regression modeling are also inspected to be used 

in distance estimation where a predictive model for calculating the target distance is 

created [22]. Some well-known distance estimation algorithms like pose from 

orthography and triangle similarity were also analyzed to compare their performances 

which resulted in favor of the triangular similarity method [23]. 

Camera-based Vehicle Location Detection aims to perform a distance estimation that is 

very fast, lightweight, and accurate. To satisfy these needs, the existing models are 

inspected, and necessary implementations are carried out so that the platform can 

correctly estimate the object distance with respect to the monocular camera while 

considering the coordinates of the object for mapping.
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3 Methods 

The implementation requirement of Camera-Based Vehicle Location Detection 

essentially consists of developing two types of algorithms sequentially. First, some 

methods for vehicle detection are performed for comparison. After this step is done, the 

images with the determined bounding boxes of the detected objects are inputted to various 

distance estimation algorithms to assess the outcomes. These two successive branches are 

described in detail under the corresponding headings. 

3.1 Object Detection Methods 

This thesis work mainly investigates some of the most commonly known single-stage 

detector algorithms in detail and compares their results on a set of surveillance images. 

The detectors implemented for the work are MobileNet SSD, YOLO v3, and YOLO v4. 

The main reasons why these are selected are their availability, ease of use, speed, and 

various size options. Since these approaches are utilized extensively, they offer numerous 

sources to be employed providing rather short development time. Moreover, as the idea 

behind their algorithm is not extremely complex and the models are easily available for 

use, configuring these methods for special needs is quite straightforward.  

Conventionally, one-stage detectors operate at a considerably higher speed compared to 

two-staged ones since they do not waste operation time to define a region of interest. The 

presence of an additional step made the two-stage algorithms got discarded from the scope 

of this thesis, thus only a selection of single-stage detectors is implemented. Furthermore, 

every YOLO detector comes with differently-sized packages, namely tiny and full 

models, making them a desired choice for various applications in terms of size 

restrictions. 

3.1.1 MobileNet SSD 

The Single Shot MultiBox Detector is a single-stage object detection framework based 

on deep networks which, unlike the two-stage frameworks, operate without pixel 

resampling and bounding box hypothesizing. The two-stage detection systems rely on 
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these two steps and applying a high-quality classifier. Omitting the aforementioned 

phases results in a considerable improvement in the object detection speed. Moreover, 

SSD reaches large accuracy rates as a consequence of the use of a small convolutional 

filter for object class and offset prediction, particular filters for distinct aspect ratio 

detections, and the application of the said filters to several feature maps from the later 

stages of a network so that the object detection can be carried out at multiple scales [11]. 

The main advantage SSD brings is the computational speed in object detection. However, 

even with the improvements leading to high accuracy rates, SSD is not as accurate as the 

existing single-shot detection models. The first base network SSD is introduced with was 

VGG16 having six feature maps with specific dimensions for the back-end network. The 

outputs of the network model are later fed to a non-maximum suppression (NMS) method 

where the detection with the highest confidence is selected as the final output. Despite its 

ability of good feature extraction, the network architecture is in fact rather sizable to be 

convenient for real-time systems [24]. Figure 1 presents a basic illustration of VGG16-

SSD architecture starting from the input image until the NMS to create the output with 

the detections having the highest confidence scores. 

Figure 1. The network architecture of an SSD framework with VGG16. 

In order to compensate for the large size and complexity that VGG16-SSD has, Google 

implemented the SSD framework replacing the VGG16 network with the MobileNet 

backbone model. Even though this network model results in a certain amount of decrease 

in the object detection accuracy, it is rather compact and therefore a friendly detector for 

real-time embedded systems. Figure 2 describes the main steps in a MobileNet-SSD 

architecture where the input image is fed to the backbone network and the convolution 

layer outputs produce the detection unit input. A non-maximum suppression is again used 

to eliminate the detections with low confidence. Hence, the front-end structure remains 

the same while the MobileNet network as the backbone leads to better real-time 

performance. 
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Figure 2. The network architecture of an SSD framework with MobileNet. 

Further improvements on MobileNet-SSD were made with MobileNet-SSDv2 to increase 

the speed and the accuracy rate along with the required memory size. This version 

introduces a Feature Pyramid Network (FPN) before the detections unit to enhance the 

back-end detection network execution [24]. 

3.1.2 YOLO v3 

YOLO is one of the most renowned detectors in usage on account of its speed and 

accuracy. The system is fast and simple as it regards object detection as a single regression 

problem rather than repurposing classifiers as the two-stage detectors do. Furthermore, 

contrary to the region proposal techniques like sliding window, YOLO takes the entire 

image into account while predicting objects, eliminating the background errors [25]. Even 

though this approach might harm the accuracy, the results generally exceed expectations. 

Succeeding the first version, YOLOv2 and YOLO9000 aim to improve the accuracy 

while remaining fast. Therefore, approaches such as batch normalization, k-means 

clustering, and high-resolution classifier along with a custom network called Darknet-19 

result in a better, faster, and stronger detector [26]. 

YOLOv3 proposes some advancements in detecting small objects by introducing a 

superior bounding box prediction with logistic regression. Feature extraction is performed 

with another backbone network with an increased number of convolution layers called 

Darknet-53. Having 53 convolutional layers instead of the old 19-layered network, the 

network architecture of YOLOv3 has become more powerful than YOLOv2 [27]. 

YOLOv3-tiny is yet another variant of YOLOv3 where the detector can also address the 

object detection needs of technologies that the speed and the size of the framework 

become of utmost importance. By decreasing the depth of the network, YOLOv3-tiny 

sacrifices the accuracy of the detections while making the overall system approximately 

442% faster than the former variants of YOLO [28]. The reduction of the convolution 
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layers also allows this variant to have a smaller size making it an appealing 

implementation for real-time embedded systems that are aiming for fast and small 

algorithms. 

3.1.3 YOLO v4 

A state-of-the-art improvement to the YOLO detector was made with the release of 

YOLOv4. As the backbone of the YOLOv4 detector, the CSPDarknet53 neural network 

is utilized while Spatial Pyramid Pooling (SPP) is added over it to enlarge the receptive 

field. FPN in YOLOv3 is replaced with Path Aggregation Network (PANet) serving as 

the neck of the architecture. Furthermore, a new data augmentation technique Mosaic was 

introduced along with Self-Adversarial Training (SAT). All of these improvements lead 

to an increase of 10% in precision and 12% in speed compared to YOLOv3 [8]. 

A lightweight variant of YOLOv4 is introduced as YOLOv4-tiny where the 

CSPDarknet53 backbone network is replaced with CSPDarknet53-tiny. Unlike YOLOv4, 

this detector still utilizes FPN while SPP and PANet are removed in order to ensure rapid 

detection so that the model can be a more appropriate choice for real-time mobile and 

embedded systems [29]. Just like with the YOLOv3 and YOLOv3-tiny, this small-sized 

fast alternative obtains its qualities by relinquishing accuracy. Yet, the advantages of the 

tiny variant can outweigh the drawbacks when used in a real-time embedded system. 

3.2 Distance Estimation Methods 

The approaches presented in this thesis for estimating the object distances all make use 

of a camera implemented to a location with a pitch angle. The real-time feed from the 

camera is first to be put into a certain object detection algorithm for detecting the 

bounding box coordinates of the objects to be investigated. The object detector used for 

testing the distance estimation methods is YOLOv4. The reason why this method is 

chosen is to be able to detect as many objects as possible in a frame. Although the real-

time needs of the Camera-Based Vehicle Location Detection project suggest a faster and 

smaller detector such as YOLOv4-tiny, the distance estimation testing requirements 

mostly aim for the ability to detect more objects for having as many results as possible to 

be compared. Furthermore, the reasoning for selecting YOLO v4 for the distance 

estimation experiment is also clarified in Section 5.1 with the object detection 
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experimental results as YOLO v4 proved to have the capability of making more and 

accurate detections. 

The project intends to use only a camera for estimating the distances of the objects. Other 

methods for distance estimation such as RADAR, LiDAR, and SONAR sensors are in 

fact more accurate than using vision-based estimation. However, while these systems can 

be attractive to large systems, a small embedded system usually requires a simpler 

solution. The aforementioned techniques demand an extra sensory device to be 

implemented to the design, and this additional hardware definitely increases the 

complexity of a compact embedded system. Moreover, the added equipment for distance 

estimation increases the cost of the project making a small system to become 

unnecessarily expensive. As a reasonable development price is another requirement of 

the Camera-Based Vehicle Location Detection system, not including extra hardware and 

utilizing the already existent visual resource is considered as a goal of this thesis. 

This work mainly investigates three techniques to be utilized in vision-based distance 

estimation. The first one makes use of the intrinsic camera parameters, while the second 

approach that is examined carries out a geometrical analysis of the environment to come 

up with the location of the objects in the frame. Lastly, a machine learning model has 

been trained on a sample implementation to predict the object coordinates on the images.  

3.2.1 Using Camera Parameters 

The basic functionality of a camera is to capture the light rays emitted from the objects 

via its lens and collect these light rays reflected from the lens on an image plane. The 

working principle of a camera lens is described in Figure 3. 

The lens mainly generates a virtual representation of what has been captured from the 

object plane. The distance between the center of the camera lens and the image plane 

(film) is defined as the focal length in photography. Focal length can in fact be described 

as a representation of the object distance from the camera lens. The object plane 

represents the vertical plane in the real world where the object is in, whereas the image 

plane is the virtual depiction of the object plane produced by the camera lens. 
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With the provided analysis, it can be concluded that the ODC triangle formed in the real 

space and the O’D’C triangle generated in the image space are similar. This triangle 

similarity can be utilized in estimating the object distance in the real space from the 

camera. Therefore, the proportional relationship between the real distance of the object 

and the distance of the image is as follows [30]: 

𝐷 =  
𝑓 × 𝑂

𝐼
 (1) 

In Equation (1), D is the distance of the object to the camera lens in real space, f is the 

focal length of the lens, O is the height of the object in real space while I represents the 

height of the object on the image plane. The unit of all of the variables in Equation (1) is 

in millimeters. However, after the object detection is performed with a detector algorithm, 

the output result is the bounding box coordinates giving the object height on the image 

plane in pixels. Hence, a way to convert these pixel values to millimeters to obtain the 

value of I is required. To be able to carry out this conversion, the size of the image sensor 

is needed. This size is different in both horizontal and vertical axes meaning that two new 

equations are obtained to estimate the object distance: 

𝐷 =  
𝑂𝑥 × 𝑓 × 𝑃𝑥

𝑥 × 𝑆𝑥
 (2) 

𝐷 =  
𝑂𝑦 × 𝑓 × 𝑃𝑦

𝑦 × 𝑆𝑦
 (3) 

Ox in Equation (2) is the dimension of the image in the horizontal plane, and Sx is the 

sensor height. Both values are measured in millimeters. Moreover, Px is the horizontal 

sensor size while x represents the image dimension in the horizontal plane where these 

 

Figure 3. The basic working principle of a camera lens. 
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two values are in pixels. Similarly, Oy in Equation (3) depicts the dimension of the image 

in the vertical plane in millimeters as y represents the same aspect in pixels. Furthermore, 

Sy is the sensor width measured in millimeters, and Py demonstrates the vertical sensor 

size in pixels. 

Even though Equation (2) and Equation (3) are able to give a general idea of how the 

distance of an object can be predicted, this distance is in fact valid provided that the object 

and the image planes are parallel as illustrated in Figure 3 [30]. However, the environment 

where the cameras are implemented for the Camera-Based Vehicle Location Detection 

system requires these devices to have some pitch angles larger than zero meaning that the 

object and the image planes are not parallel anymore. A straightforward approach to 

address the pitch angle problem is basically to divide the distance found in Equation (2) 

or Equation (3) by the cosine of the pitch angle of the camera resulting in the following 

relationship [31]: 

𝐷𝑂  =  
𝐷

𝑐𝑜𝑠 𝛾
 (4) 

Equation (4) describes the distance of the object standing with a pitch angle with respect 

to the image plane denoted by DO. D is the parallel distance calculated by Equation (2) or 

Equation (3) while γ is the pitch angle of the camera. The relationship between these 

variables is also illustrated in Figure 4. The distance between the object in the real space 

and the camera is now indicated as the oblique distance while the parallel distance denotes 

how far the camera is away from a virtual representation of the object where the image 

plane and the virtual object are parallel. In other words, parallel distance is the vertical 

projection of the oblique distance onto the ground. 

 

Figure 4. The relationship of the parallel and oblique distances with an inclined camera system. 
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The approach described in this section is able to give an intuition about the distance of an 

object to the camera. However, it should be noted that the algorithm depends highly on 

the intrinsic camera parameters such as the sensor size and focal length. The study 

proposing this method [30] was conducted with high-quality cameras which makes it 

possible for the cameras used in this project to be not as practical as their more advanced 

alternatives. Additionally, the outcomes of the study showed that constant errors might 

be present requiring calibration of the cameras while errors related to the equation 

parameters can also be the cause of faulty estimations. A further issue with this approach 

is that it only focuses on the depth estimation rather than the location of the object 

meaning that the deviations can occur when the object is not located near the center of 

the image plane. Therefore, the method should be improved taking other dimensions into 

account to be able to represent the real world as discussed in the following heading. 

3.2.2 Using Geometrical Approach 

A technique that takes the object coordinates into consideration suggests that the image 

location in the real space should be utilized to come up with a geometrical representation 

of the distance vector. According to this methodology, the pixel grid of an image and the 

real coordinates of the object with respect to the camera have a trigonometric relationship 

[32]. To identify this relationship, it is assumed that the optical center of the camera is the 

origin of the camera-based coordinate system as shown in Figure 5. The axis represented 

as x is parallel to the ground, and its values increase as the points move to the right side 

of the image plane as depicted in Figure 5 by an arrow. Similarly, the y-axis is also parallel 

to the ground but indicating the depth of the object like the parallel distance in Figure 4. 

It should be noted that the values in this axis can never be negative as the points with 

negative y values would indicate the objects behind the camera. Lastly, the z-axis is used 

to indicate the height of the camera from the ground. Since the camera is taken as the 

origin of the system having the coordinates (xcamera, ycamera, zcamera) = (0, 0, 0), the objects 

on the ground should have the z value equal to the height of the camera. 

It can be concluded that when the values xo, yo, and zo in Figure 5 remarking the object 

coordinates are known, the object distance to the camera becomes the Euclidean distance 

between the origin and the coordinate of the object which can be represented as: 

𝐷 =  |(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜), (0, 0, 0)|  =  √𝑥𝑜
2  +  𝑦𝑜

2  +  𝑧𝑜
2 (5) 
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As Equation (5) defines the distance between two points, both the object and the camera 

are treated as point objects. With this assumption, the coordinates of the object (xo, yo, zo) 

in fact stand for the middle point of the rectangular bounding box enclosing the object. 

Since the zo value in Equation (5) is known as the camera height provided that the object 

is on the ground, this value is easy to measure during system installation and can be 

inputted into the algorithm. However, the xo and yo values are different for every point in 

the image which makes it necessary to devise a generic geometrical description for the 

image. 

The values on the x and y-axes are investigated utilizing the different views of the system 

area. Figure 6 illustrates the top view of the environment used to generate an equation for 

xo while Figure 7 depicts the side view of the domain in order to formulate the yo value. 

 

Figure 5. Camera-based coordinate system. 
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The system illustrated in Figure 6 and Figure 7 represents the top and side views of a 

tilted camera whose image plane has the width uimage and the height vimage in pixels. The 

angle θ in Figure 6 shows half of the horizontal field of view, meaning that the whole 

visual range in that plane is 2θ. Similarly, α in Figure 7 is the semi-range of the camera 

in the vertical plane signifying that the vertical field of view is 2α. Furthermore, ε is the 

blind angle which expresses that the camera fails to see this area as the zone is too close 

to it. Utilizing these figures, xo and yo coordinates of an object are to be found whose mid-

 

Figure 6. Camera’s field of view from the top. 

 

Figure 7. Camera’s field of view from the side. 
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point on the image plane has the coordinates (uo, vo). In order to obtain the yo value, a 

trigonometric equation should be constructed: 

𝑦𝑜  =  𝑧𝑜  ×  𝑐𝑜𝑡(𝛽 + 𝑐) (6) 

The angle β is the tilt angle of the camera measured with respect to the ground plane. 

Moreover, c demonstrates the angle between the image center line and the object line. 

Hence, its value depends on the distance of the object on the y-axis. It is worth noting that 

the angle is positive when the object is under the horizontal image center on the frame, 

but negative when it is above. Besides, as the c value gets closer to -β, yo approaches 

infinity meaning that Equation (6) cannot produce meaningful results starting from this 

value. Therefore, the region of interest in this approach is the part of the frame lower than 

the z = 0 plane. When the object point is at the very bottom of the frame, indicating that 

vo = vimage – 1, the angle c becomes equal to α. Additionally, c = 0 is reached if vo is at 

the central horizontal line with the height 
𝑣𝑖𝑚𝑎𝑔𝑒 − 1

2
. Consequently, c can be represented 

as: 

𝑐 =  
2 × 𝛼 × 𝑣𝑜

𝑣𝑖𝑚𝑎𝑔𝑒−1
 −  𝛼 (7) 

Combining Equation (6) and Equation (7), the y-axis distance of the object becomes: 

𝑦𝑜  =  𝑧𝑜  ×  cot (𝛽 +  
2 × 𝛼 × 𝑣𝑜

𝑣𝑖𝑚𝑎𝑔𝑒  − 1
 −  𝛼) (8) 

Hence, yo coordinate of any object under the z = 0 plane on the image can be calculated 

in millimeters provided that the height of the camera zo (mm), the height of the point on 

the image vo (pixel), the image height vimage (pixel), the angle denoting the half of the 

vertical field of view α (degree), and the tilt angle β (degree) is known. Although the 

study proposing this approach [32] formulates the y-axis distance using the blind angle ε 

and the tangent function, the equation was altered to address the representation with the 

tilt angle β as it is easier to measure during the system implementation. Along with yo, the 

x-axis distance xo can also be formulated as a trigonometric equation: 

𝑥𝑜  =  𝑦𝑜  ×  tan 𝑎 (9) 

As indicated in Figure 6, a in Equation (9) is the angle between the image center line and 

the object line similar to the angle c in Figure 7. This angle is also dependent on the 

location of the object in the frame, specifically its xo value, and is positive if the object is 
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on the right side of the image center but negative when it is on the left. Furthermore, the 

angle at the leftmost side of the image is -θ while the angle at the rightmost part is θ. In 

addition, the angle at the image center with the pixel 
𝑢𝑖𝑚𝑎𝑔𝑒 − 1

2
 becomes 0. Thereby, a is 

calculated as: 

𝑎 =  
𝜃 × (2 × 𝑢𝑜 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒 − 1
 (10) 

Inserting the a value found with Equation (10) to Equation (9), the xo value representation 

becomes: 

𝑥𝑜  =  𝑦𝑜  ×  tan (
𝜃 × (2 × 𝑢𝑜 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒  − 1
) (11) 

The horizontal placement of the object with respect to the camera, xo is estimated in 

millimeters according to Equation (11) utilizing the yo (mm) value found as a result of 

Equation (8), the width of the point on the image uo (pixel), the image width uimage (pixel), 

and one-half of the horizontal field of view θ (degree). 

Thus, supposing that the horizontal and vertical field of view, the tilt angle, and the 

camera resolution is known, the object distance can be calculated from its image 

coordinates. However, if the angle values are not known, they can be calculated by 

generating an equation system provided that certain solutions to Equation (8) and 

Equation (11) are available. Letting that two solutions to the aforementioned equations 

are (x1, y1, zo) and (x2, y2, zo) where their corresponding image coordinates are (u1, v1) and 

(u2, v2) respectively, the solution set for Equation (8) becomes: 

𝑦1  =  𝑧𝑜  ×  cot (𝛽 +  
2 × 𝛼 × 𝑣1

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 −  𝛼) (12) 

𝑦2  =  𝑧𝑜  ×  cot (𝛽 + 
2 × 𝛼 × 𝑣2

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 −  𝛼) (13) 

By taking the zo values to the left side of the equation as a multiplicative inverse and then 

applying the inverse cotangent function in Equation (12) and Equation (13), the set can 

be solved for the angular parts. Moreover, it should be noted that the inverse cotangent of 

a value, cot−1(𝑝) is always equal to the inverse tangent of the reciprocal of the same 

value, tan−1(
1

𝑝
) which transforms the solutions to: 
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𝛽 +  
2 × 𝛼 × 𝑣1

𝑣𝑖𝑚𝑎𝑔𝑒  − 1
 −  𝛼 =  cot−1 𝑦1

𝑧𝑜
 =  tan−1 𝑧𝑜

𝑦1
 (14) 

𝛽 +  
2 × 𝛼 × 𝑣2

𝑣𝑖𝑚𝑎𝑔𝑒  − 1
 −  𝛼 =  cot−1 𝑦2

𝑧𝑜
 =  tan−1 𝑧𝑜

𝑦2
 (15) 

Later, Equation (15) is multiplied by -1 and the derived equation is summed with Equation 

(14) in order to get: 

2 × 𝛼

𝑣𝑖𝑚𝑎𝑔𝑒  − 1
 × (𝑣1  − 𝑣2)  =  tan−1 𝑧𝑜

𝑦1
 −  tan−1 𝑧𝑜

𝑦2
  (16) 

Rearranging Equation (16) for representing the angle α: 

𝛼 =  
𝑣𝑖𝑚𝑎𝑔𝑒 − 1

2 × (𝑣1 − 𝑣2)
 ×  tan−1 (

𝑧𝑜 × (𝑦2 − 𝑦1)

𝑧𝑜
2 + 𝑦1 × 𝑦2

)  (17) 

To find the angle β, the resulting α description of Equation (17) should be inserted in 

either Equation (14) or Equation (15). Solving β for equation (14) yields to: 

𝛽 =
1

2(𝑣1−𝑣2)
[(𝑣𝑖𝑚𝑎𝑔𝑒 − 2𝑣2 − 1) tan−1 𝑧𝑜

𝑦1
− (𝑣𝑖𝑚𝑎𝑔𝑒 − 2𝑣1 − 1) tan−1 𝑧𝑜

𝑦2
] (18) 

The solution (x1, y1, zo) with image coordinates (u1, v1) can also be used to formulate θ in 

a similar manner. The solution for Equation (11) with the mentioned coordinate becomes: 

𝑥1  =  𝑦1  ×  tan (
𝜃 × (2 × 𝑢1 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒 − 1
) (19) 

The angle θ can be solved in Equation (19) as: 

𝜃 =  
𝑢𝑖𝑚𝑎𝑔𝑒  − 1

2 × 𝑢1 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1
 ×  tan−1 (

𝑥1

𝑦1
)  (20) 

As a result, it can be deduced that given two solution points from the frame, the angular 

parameters α, β, and θ can be estimated when they cannot be retrieved as a camera 

parameter or measured. However, the solution set should be selected properly so that 

accurate results can be obtained. For instance, if the first solution is taken from the center 

of the frame where x1 = 0, the angle θ will be calculated as 0 as well. Specifically, the 

experimental results showed that Equation (17), Equation (18), and Equation (20) provide 

outcomes with smaller errors when the solution set is close to the center where x1 is not 

equal to 0. These experiments with the calculated angles are compared with the values 

measured and procured from the lens datasheet and presented in Section 5.2. 
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Calculating the object distances to the camera utilizing the geometrical relationship 

between the object point and the optical center of the camera proves to be a useful 

approach as the computational complexity is low and the algorithm is feasible to be 

computed in real-time. Moreover, as all of the axes in the camera coordinate system is 

considered during calculation, the methodology can produce reliable results. Although 

this technique also relies on some camera parameters such as resolution and field of view 

where the field of view angles can be calculated with a small solution set, its point-

specific approach can make it a more preferable solution. 

3.2.3 Using Machine Learning 

The last approach studied in this thesis work is to use a machine learning algorithm that 

is trained for the system to be installed in order to detect object distances. When a large 

and appropriate enough dataset is provided for training, machine learning algorithms with 

proper models are known to produce estimations that are adjacent to the real results. 

Both supervised and unsupervised learning methods have been previously studied to 

overcome autonomous transportation challenges. While the unsupervised learning 

algorithms are mainly utilized for depth segmentation [33], [34], distance estimation with 

numerical proposals primarily demands a supervised learning algorithm to be able to 

discover the properties of the environment [35], [36]. Similar to the geometrical approach 

for formulating the xo and yo points, the machine learning technique aims to train the 

system so that it can produce educated estimations on the same coordinates of an object.  

The first challenge to be addressed during training is to be able to procure a valid dataset 

where sufficient information is provided for the system to generate a model expressing 

the relationship between the object location on the image as bounding box coordinates 

and its distance to the camera. Most of the existing datasets available for object detection 

and depth estimation fail to deliver explicit distance annotations that also indicate the 

types of the objects. Moreover, the studies that focus on object-specific distance 

annotations benefit from the KITTI [41] and nuScenes [42] datasets which provide 

annotations regarding only the depth of the object, yo [35].  While these include 

comprehensive examples in terms of object types and distances, they are constructed for 

autonomous transportation studies offering images that are parallel to the ground. Yet, 

Camera-Based Vehicle Location Detection requires a dataset that consists of inclined 

images where the camera has a certain pitch angle. Furthermore, the system studied in 
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this thesis calls for detection of the object coordinates as well to be able to map the object 

locations meaning that training should be done for both xo and yo points rather than only 

for yo. Hence, existing datasets cannot address the problem definition of Camera-Based 

Vehicle Location Detection thoroughly which is why a new dataset generated for a 

different project at Tallinn University of Technology has been utilized. 

The studies on computer vision, whether they focus on distance estimation or not, mostly 

implement a deep learning model due to its numerous advantages compared to 

conventional learning models which make deep learning an easily available algorithm. 

Deep learning is also able to handle a large amount of data for training which is a crucial 

requirement for image processing applications while more accurate results can be 

obtained with deep learning [37]. Consequently, due to its ease of access, extensiveness, 

and efficacy on large datasets, deep learning is a more preferable method of machine 

learning than the traditional models. 

Selecting the proper attributes of the model to fulfill the project-specific needs, which is 

named hyperparameter optimization, is a major concern in deep learning 

implementations. This task calls for an efficient algorithm to devise an appropriate model 

to be utilized in training. Furthermore, training a deep learning model takes more time 

and requires more advanced hardware with high performance than a conventional 

approach. Despite these challenges, studies conclude that deep learning can find solutions 

to complex and non-linear functions in a simplified way [38] while being the most 

effective, supervised, and stimulating machine learning approach [37].



34 

4 Implementation 

Camera-Based Vehicle Location Detection is a project whose end product should run as 

a real-time embedded system able to process visual data. Hence, the camera input ought 

to be loaded to a high-performance graphics processing unit (GPU). A suitable alternative 

to meet the hardware requirements of the project is considered to be the NVIDIA Jetson 

AGX Xavier Developer Kit with a 13-megapixel (MP) 4-camera board whose image is 

provided in Figure 8 since it is a rather effective tool for graphical processing and deep 

learning with low power consumption and ease of use. As this thesis work focuses on 

comparing the algorithms of the system, hardware discussion is generally omitted from 

this work. 

The system software is developed in Python programming language with version 3.8. 

Even though there are other languages that are more embedded-oriented such as C++, 

Python is chosen as it embodies a massive number of standard and open-source libraries 

for numerous applications. Considering the fact that this thesis study utilizes various 

features including object detection, trigonometric calculations, solving trigonometric 

equation systems, and machine learning, Python is found to be able to provide a more 

consistent software development process due to its competence to address tasks as 

complex as end-to-end learning with its selection of libraries. Furthermore, having a 

simpler syntax allowing more straightforward development has also made Python a more 

 

Figure 8. NVIDIA Jetson AGX Xavier Developer Kit connected to the camera board, retrieved from [43]. 
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preferable choice. The link to access the source codes of the project is presented in 

Appendix 5. 

4.1 Object Detection Implementation 

Composing the object detection algorithms described in this thesis work presents a 

generic approach to be employed as the implementation of these detectors requires some 

specific functions defined in the OpenCV library which is an open-source platform 

developed for conducting computer vision and image processing operations. In order to 

get the video from the camera or a file, OpenCV provides the class VideoCapture where 

the video source can be inputted as a parameter to its constructor, either as a file path or 

as the camera feed. Each frame in the video can be decoded utilizing the read function in 

the class which returns the particular frame. Therefore, the function call is made in a while 

loop which executes as long as the video capturing continues. The pseudocode for 

decoding frames from a connected camera is presented in Figure 9 where cv2 denotes the 

OpenCV library. Furthermore, when only one frame is of interest, OpenCV computes the 

decoding operation with the imread function to be able to read an image where the file 

path is inputted as a parameter. 

Initialize the VideoCapture object 

While the video feed runs 

Read the subsequent frame in the video feed 

Perform object detection activities on the frame 

Figure 9. The pseudocode for video decoding with OpenCV. 

Even though the algorithmic approach for the object detection on a frame with both 

MobileNet SSD and YOLO detectors are principally the same, their implementations 

have been carried out divergently. Moreover, the configurations and models for 

MobileNet SSD and YOLO are constructed in separate formats. Hence, these techniques 

are discussed further in detail in different headings. 

4.1.1 MobileNet SSD 

The implementation of MobileNet SSD covers a list of 20 object classes including but 

not limited to bicycle, bus, car, person, and motorbike. The network model to be utilized 

for the detector is loaded in the format of the Caffe framework with the usage of the 

cv2.dnn.readNetFromCaffe function call. The function takes the network configuration 

file path in .prototxt type and the trained weights file path in .caffemodel format as 
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parameters. As a result, the artificial neural network object from the Net class is returned. 

Later, inside the while loop where one frame is read, a blob is created from the current 

frame which is a transformation of the image to a format in which certain shapes on the 

image are highlighted. With the scaling and resizing parameters, cv2.dnn.blobFromImage 

function allows the creation of such a blob. This blob needs to be inputted to the neural 

network which is achieved with the setInput function from the Net class where the blob 

is a parameter to the function. The output of the network is obtained in a list format via 

the forward function from the same class. After the execution of this function, the 

information of the detected objects is ready to be analyzed. 

Each element in the acquired list of the detection information is examined in a for loop to 

filter out some of the detections with low confidence values that are smaller than a decided 

threshold of 20% and to visually label the objects on the frame. The left bottom and the 

right top frame coordinates of the detected objects can also be extracted from the list so 

that the bounding boxes can be generated on an output frame using the cv2.rectangle 

function. Moreover, the classes indicating the type of the detected objects are also present 

in the list for each element so that they can be indicated as text on the output image via 

the function cv2.putText. This labeling operation is especially useful for obtaining the 

performance analysis of the detector as presented in Section 5.1. 

4.1.2 YOLO v3 and YOLO v4 

The implementation algorithm of the YOLO v3 and YOLO v4 detectors are nearly the 

same as the MobileNet SSD method since all of these detectors are programmed utilizing 

the OpenCV framework. However, for the execution of the YOLO techniques, a new 

Python class with the name YoloDetector is generated so that the access of the neural 

network, the object detection sequence, and filtering as well as labeling the objects can 

be performed in a more straightforward manner. 

The constructor of the mentioned class takes the file paths of the network configuration, 

trained weights, and the object class dataset to generate the neural network and read the 

labeled classes. The network configuration file is of .cfg type, and the weights are in 

.weights format meaning that the YOLO detector framework Darknet is utilized. The 

labeling dataset is acquired from the COCO dataset that includes 80 object classes 

involving person, bicycle, car, motorbike, bus, and truck. To load the network model from 

a Darknet framework as a Net object, OpenCV provides a function named 
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cv2.dnn.readNetFromDarknet similar to the Caffe framework loading described with the 

MobileNet SSD. It should also be noted that a more generic function cv2.dnn.readNet 

also exists that can take different framework models as input since the file types are 

separate. Following this loading operation, the names of the output layers are required to 

be procured in two steps as the names are needed to input to the detection function later. 

These steps are initially to get the names of all the layers with the getLayetNames function 

and then to obtain the names of the output layers from the returned list of the preceding 

function via the getUnconnectedOutLayers function both of which are accessed through 

the generated Net object. 

The YoloDetector class has two more functions named detect and drawAndLabel. The 

first one takes the frame on which object detection should be performed as an input 

parameter and returns four lists that deliver information about the names, confidences, 

bounding box coordinates, and indexes of the detected objects. The detection sequence is 

almost equivalent to the detection order of MobileNet SSD; the image blob is built with 

the cv2.dnn.blobFromImage function and its output is given as a parameter to the setInput 

function to start the detection. The function forward is also utilized to obtain the results 

of the detector, but the output layer names from the getUnconnectedOutLayers function 

become a parameter to the function call this time. The confidence threshold is set as 50% 

with YOLO algorithms while a non-maximum suppression on the frame is necessary as 

the YOLO model does not apply this operation during detection, which is executed using 

the cv2.dnn.NMSBoxes function whose output is the index list that forms one of the 

returning lists of detect function. Furthermore, labeling the objects on an output frame is 

accomplished with the identical approach as described with MobileNet SSD 

implementation inside the YoloDetector class function drawAndLabel. 

The methodology described in this section is valid for both YOLO v3 and YOLO v4 

variants along with their tiny adaptations. Although the implementation algorithm is 

uniform, loaded configuration and weights are unique for each alternative as the neural 

network models are different. 

4.2 Distance Estimation Implementation 

The distance estimation methods described in Section 3.2 can be classified into two 

categories in terms of their variance in implementation. Utilizing camera parameters and 
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geometrical approach requires similar strategies although their calculation formulas are 

dissimilar. Moreover, implementing the machine learning approach expects more 

advanced frameworks and functions to be utilized for model generation and training while 

some other libraries are needed for generating the proper datasets. 

4.2.1 Using Camera Parameters and Geometrical Approach 

The requirements for the implementation of the distance estimation methods based on a 

formula derived either by utilizing the camera parameters or via the geometrical approach 

are mainly alike. Programming Equation (4) where the parallel distance D is obtained 

from Equation (3) requires basic arithmetic operations along with a trigonometric cosine 

operation which can be executed via the Python built-in module math while the same 

interpretation is valid for executing Equation (8) and Equation (11) with tangent and 

cotangent functions. It is worth mentioning that the trigonometric functions of the math 

library take the angle values in radian meaning that the degree values need to be 

converting utilizing the radians function in the same library. The bounding box 

coordinates of the detected objects on the frame under investigation can be retrieved from 

the object detection implementation presented in Section 4.1.2 while the resolution of the 

mentioned frame is obtained utilizing the shape method provided by OpenCV which in 

fact benefits from the Numpy library. 

Generating the strategy for utilizing camera parameters calls for three values to be 

inputted to the program externally which are the camera focal length, sensor height, and 

pitch angle. The geometrical approach, on the other hand, necessitates four inputs, namely 

the camera height and the three angular parameters, α, β, and θ. The remaining attributes 

can be fetched from the object detection result and the shape method for both techniques. 

Estimating the distances is achieved in a for loop where all detections that match the 

output of the non-maximum suppression are analyzed.  

Inside the loop for the calculation with the camera parameters, the bounding box 

coordinates for the current detection are procured so that the height of the box can be 

determined. Moreover, this algorithm expects the real height of the object to calculate the 

distance, which cannot be precisely resolved for each object present. Hence, a mean 

height of 1535 mm was fixed for each object classified as a car while all the other objects 

are treated to have a height of 2835 mm which is a mean height of a truck. Thus, it can 

be concluded that this implementation gives a generic result for cars and trucks which 
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constitute the major part of the area of interest even though the program is not reliable for 

other types of objects as well as some cars and trucks whose height deviates from the 

mean value largely. With all of the values assigned, Equation (3) divided by the cosine of 

the pitch angle is ciphered and labeled as text on the corresponding frame. 

The loop iteration for the geometrical approach commences similarly by fetching the 

bounding box coordinates of the object to be investigated and deciding the height of the 

box. Furthermore, the mean values of the aforementioned coordinates are calculated as 

well. Equation (8) has to be computed before since Equation (11) utilizes also the result 

of the previous estimation. After both x and y coordinates are determined, the Euclidean 

distance is evaluated by merging the camera height into the measurement. As before, the 

resulting distances are written above the bounding box drawing on the respective frame. 

Predicting the angular parameters from the provided solution set can be performed 

utilizing the Python library Sympy. Equation (8) and Equation (11) can be generated with 

the help of this library so that the solution set can be inputted to obtain the intended 

parameters. The function symbols is utilized to create symbol instances for each attribute 

of the aforementioned equations. Later, these symbols are employed to generate the 

equations where the trigonometric functions tan and cot are retrieved from the Sympy 

library. To substitute the variables with their known values in the solution set, the function 

subs is called iteratively where the first argument is the symbol to be replaced with its 

value for the corresponding solution and the second parameter is the actual value of the 

variable in the current solution. The left-hand side and the right-hand side of the equation 

are defined with the class constructor Eq which stands for Equality class where the first 

parameter is the created equation and the latter one is the resulting distance. Lastly, to 

solve the equation system, the function solve is used with the attributes equation and the 

symbol to be solved, which returns either a dictionary or a list containing the solution. It 

must be mentioned that the solution set for estimation of the angular values should be 

selected carefully in order to obtain results that are parallel to the real values. The 

experimental outcomes have shown that the x-axis value is not important for α and β 

meaning that it is sufficient to obtain the y-axis measurement which should be chosen 

from the points that are relatively in the middle of the image plane. Following a similar 

logic, the coordinate that is of significance for θ is represented by the x-axis, which 

implies that one horizontal solution is enough for calculating this angle provided that this 

solution is also rather central on the image plane except for 0. 
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4.2.2 Using Machine Learning 

Since the Camera-Based Vehicle Location Detection project focuses on not only the 

distance of a vehicle but rather its coordinates to create an accurate map of the 

environment, the machine learning model constructed for this thesis work does not aim 

to estimate the overall distances, instead to predict the x and y coordinates separately. To 

address this target, two different learning models have been generated that are relatively 

small and plain as shown in Figure 10. Another approach fulfilling the objective could be 

to build one model with the capability to forecast the values in both axes to output one set 

of predictions covering all needs. However, this model practically needs to be more 

complex than the two models anticipating the coordinates independently as it would 

require more layers and neural connections to devise acceptable estimations for both of 

the expected outputs. Therefore, as a substitute for this large and compound design, each 

axis value has been predicted by compact and unconnected networks. Both of the models 

are inputted by the same image dataset which contains certain information related to the 

detected objects which are utilized by the neural network for training and generating 

prediction outputs for any upcoming object information. 

Figure 10. The generic model of the machine learning implementation. 

Applying a deep learning algorithm to estimate the object distances requires some 

primary stages to be implemented which can be classified as follows [39]: 
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▪ Generating annotations and dividing the dataset to train and test clusters 

▪ Creating the learning models to be utilized and deciding the hyper-parameters 

▪ Training the models with the training dataset 

▪ Testing the algorithm by producing predictions out of the test annotations 

The initial phase for the intended method is to build a proper dataset to train and test the 

models to be crafted. A different study being conducted at the Tallinn University of 

Technology regarding embedded image processing has procured a video recording of a 

road with an integrated camera and a radar system so that the object distances can also be 

known, which is utilized for testing the machine learning methodology of this thesis work 

as well. The data was divided into frames where the object type, detection confidence, 

bounding box coordinates, and whether the box is truncated or not are specified in .xml 

files for each frame. Furthermore, the radar data indicating the distances of the objects in 

x and y-axes are presented as .json files for every frame. The names of these files are first 

read into two lists inside a for loop scanning every file in the directory according to their 

filetypes where one list holds the file name of each .json file and the other having the 

names of the .xml files with the corresponding index of each element being its frame 

number. This operation benefits from the Python modules os and re as os allows 

communication with the operating system for reading file names in the directory, and re 

enables handling regular expressions for configuring the file names to get their frame 

numbers which serve as list indexes. Later, each file in the aforementioned lists is opened 

frame by frame in another for loop where the information is fetched to a Pandas data 

frame utilizing the json module and the XML document object model API xml.dom as 

well as the statistics module. The data frame includes the frame number, the type of the 

detected object, the detection confidence, bounding box coordinates, the object distance 

in x and y-axes, and whether the bounding box is truncated or not. The generated 

annotations are then divided into two datasets for training and testing where 90% is 

randomly selected and spared for training with the use of the rand function in the 

numpy.random module and the rest is left for testing. The reason for the separation of 

90% by 10% between training and testing is to be able to exploit the dataset as much as 

possible to prepare the models for creating sufficiently accurate results since the 

annotations used can be considered a rather small dataset with approximately 1000 object 

information stored. 
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Constructing deep learning models with the proper attributes asks for hyperparameter 

optimization which can be achieved with the Python library hyperopt. The library 

embodies a Trials class to store the necessary information regarding the hyperparameters. 

A Python wrapper called hyperas enables a convenient optimization performance through 

the function optim.minimize which takes a model creation function, a train and test data 

generation function, a hyperopt algorithm, maximum optimization runs, the Trials object, 

and some other evaluation parameters as inputs. In the model creating function 

CreateModel, a sequential model instance is generated through the Tensorflow 

framework and Keras API. The neural network is assembled by either three or four layers, 

which is to be decided by the hyperparameter optimization, each of which is depicted by 

the Dense function where the neuron number of the second layer is also to be determined 

as a hyperparameter. Moreover, the optimizer in the model configuration function 

compile is also programmed as a hyperparameter as well as the batch size attribute of the 

training function fit. The last operation of the model creation is to evaluate the loss and 

accuracy of the model to be reported for the optimization. On the other hand, the data 

generation method Data fetches the attribute under investigation from the train and test 

datasets, standardizes, and transforms these annotation values. Since the predictions are 

desired for both x and y-axes, the hyperparameter optimization is performed twice; one 

for the x coordinates, and the other for y. The results of the optimization program 

indicating the best options for both of these models are presented in Figure 11. In the end, 

the parameters to be chosen by this program are: 

▪ The number of layers in the model 

▪ The number of neurons in the second layer 

▪ The optimizer of the model 

▪ Model batch size 

The evaluation results of the best model for x and the best model for y can be observed in 

order to construct the optimized network structure and train the models with their 

corresponding annotations. Similar to hyperparameter optimization, training the model 

for the dataset is conducted separately for both axes. The aforementioned CreateModel 

method is mainly repeated with the determined hyperparameters for developing the 

training program. First, the train and test data are fetched and classified as inputs and 

outputs where inputs are the information that the system learns from and the outputs are 

the coordinates to be predicted. The training inputs and outputs are then standardized and 
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transformed before building the models. The sequential models with three and four layers 

are constructed and configured with the appropriate number of units and the suitable 

optimizers decided by the previous phase before training the system with the certified 

batch sizes. Afterward, the trained models are saved at the project directory as .json files 

as well as the weights as .h5 files. The summary of each model outputted by the function 

summary is provided in Figure 12. 

Resembling the preceding stage, producing the predictions for the test dataset is 

conducted independently for both axes under investigation. The process begins with 

retrieving the test annotations and dividing the input and output attributes followed by 

standardization and transformation of the data. The model is then loaded and attained 

from the .json file through the Tensorflow method model_from_json, and the weights 

through the load_weights function of the Model class. Since this model is not compiled 

yet, the compilation is done with the estimated optimizer. Subsequently, the function call 

predict from the Model class with the input annotations performs predictions where the 

results need to be inversely transformed. The list obtained after all of these operations are 

the prediction annotations that can be analyzed for accuracy. Utilizing the pandas and 

numpy libraries, the product annotations are organized such that the true coordinates and 

distances are represented along with their corresponding predictions.

 

Figure 11. The results of the hyperparameter optimization program evaluated for both models. 
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Figure 12. The summary of each neural network outputted by the function summary. 
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5 Results 

All of the implemented methodologies to be used both for object detection and distance 

estimation during the development of the Camera-Based Vehicle Location Detection 

project have been tested with certain samples so that the performance of each approach 

can be compared with others statistically. Therefore, MobileNet SSD and the YOLO v3 

and YOLO v4 families have been compared with the same samples for the object 

detection efficiency while camera parameter utilization, geometrical approach, and 

machine learning methods have been juxtaposed to see their distance estimation accuracy 

scores. 

5.1 Object Detection Results 

The experiment for comparing the performance results of different object detection 

methodologies requires these detectors to be tested out on the same frames. Even though 

the detectors under investigation have more performance criteria for the Camera-Based 

Vehicle Location Detection project, this study mainly compares them in terms of accuracy 

since this parameter also affects the distance estimation experiment crucially. 

To construct the experiment, five different sample images from a recording of the traffic 

have been selected and the algorithms MobileNet SSD, YOLO v3, YOLO v3-tiny, YOLO 

v4, and YOLO v4-tiny have all been inspected to see which algorithms detect the most 

vehicles with high confidences. The frames taken from flowing traffic allow the 

procurement of various types of vehicles while generating a challenging environment for 

the detectors due to the lighting and weather conditions. Even though the images from 

the decks of the vessels do not pose as much concern in terms of environmental distresses, 

testing the algorithms in a harsher system can uncover various issues of the models to be 

realized.  

Although the implementation of these detectors is able to notice the objects that are not 

necessarily vehicles such as traffic lights, these detections do not contribute to the 

accuracy evaluation of the tests in this study as these objects are out of scope for the 
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project. Some images with the detection results of each model are provided in Appendix 

2, and a sample frame with the outputs of the YOLO v4 detector is presented in Figure 

13. Furthermore, the object detection results from all of the models whose 

implementations are studied in this work are compared in Table 1.  

As observed from Figure 13, the test frames in fact contain numerous vehicles if the ones 

that are quite distant from the camera are also counted. However, the experiment expects 

the detections of only the objects that can fairly be identified which creates an interest 

radius of approximately 30 meters. As the distance information from the radar sensor 

embedded into the test setup suggests, objects that are farther away than this value tend 

to become indistinguishable by the detectors. This borderline has been considered while 

determining the number of vehicles on the frames provided in Table 1. 

Table 1. The experimental results of the object detection methods. 

Frame 

Number 

Number of 

Vehicles 

MobileNet 

SSD 

YOLO v3-

tiny 

YOLO 

v3 

YOLO v4-

tiny 

YOLO 

v4 

Frame #1 3 cars 1 car 

1 bus (FP) 

No objects 

detected 

2 cars 1 car 2 cars 

Frame #2 5 cars 1 car 

1 bus (FP) 

1 car 5 cars 1 car 4 cars 

Frame #3 2 cars 

1 bus 

1 bicycle 

1 bicycle 

1 bus (FP) 

No objects 

detected 

2 cars 

1 bus 

1 bicycle 

1 car 

1 bus 

1 bicycle 

2 cars 

1 bus 

 

Figure 13. A sample frame with YOLO v4 model used for object detection (Frame #3 in Table 1). 
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Frame 

Number 

Number of 

Vehicles 

MobileNet 

SSD 

YOLO v3-

tiny 

YOLO 

v3 

YOLO v4-

tiny 

YOLO 

v4 

Frame #4 3 cars 1 car 

1 bus (FP) 

1 car 1 car 2 cars 2 cars 

Frame #5 3 cars 

1 bus 

1 bus 

1 bus (FP) 

No objects 

detected 

2 cars 

1 bus 

1 car 2 cars 

1 bus 

The frames in the table are indexed from 1 to 5 where each detected object on the frames 

is indicated for all of the detectors to be tested. Both the figures in Appendix 2 and the 

results shown in Table 1 suggest that YOLO v3 and YOLO v4 are the best choices 

addressing the need of being able to detect as many vehicles as possible on the frame 

while the other algorithms have either failed to detect any objects on some of the frames 

or detected some false positive (FP) objects. The lighting coming from an advertisement 

on the top left of the images has always been incorrectly deduced as a bus by MobileNet 

SSD while the number of vehicle detections on the frames has not reached a decent score. 

The panel has never been mistaken for a bus on the detectors of the YOLO family and 

the detection numbers appear to be acceptable. YOLO v3 and YOLO v4 models 

performed the top-notch results in this elementary experiment while their tiny variants 

did not function as successfully which is a predictable outcome due to their sacrifice in 

accuracy while growing faster and more compact. Moreover, the tests on the frames from 

a ferry, taken specifically for the Camera-Based Vehicle Location Detection project that 

cannot be shown in this study due to confidentiality reasons also concluded that YOLO 

v4 performs better than its v3 variant on the complex cases where vehicles are positioned 

close to one another. 

5.2 Distance Estimation Results 

Resembling the object detection experiment, the distance estimation techniques have 

been analyzed for their accuracy in a similar test setup where the estimation with camera 

parameters, geometrical approach, and machine learning are assessed with various sample 

frames. The true distance and the findings of each methodology are compared to obtain a 

percentage of error for every estimation benefiting the relation between the results and 

the error: 

𝐸𝑟𝑟𝑜𝑟 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (𝐸𝑃)  =  
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡
 ×  100  (21) 
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The reason that the numerator in Equation (21) is not used as the absolute value of the 

subtraction is to be able to determine whether the estimation is smaller or larger than the 

correct value. When the experimental result outputted from a distance estimation 

algorithm is smaller than the accepted result delivered by the radar system, the error 

percentage is denoted as a negative value while it becomes positive provided that the 

predictions are larger than the radar measurements. Later, a mean error for each of these 

methods is calculated in order to devise a reasonable judgment regarding the precision of 

the alternatives. Some of the images with the estimated distance values for the camera 

parameters and the geometrical approach are presented in Appendix 3 although the 

machine learning estimations are not adjoined since those predictions are obtained as a 

data frame and not integrated with their corresponding images. Moreover, an example 

frame having the distance estimation results conducted with the geometrical approach is 

presented in Figure 14. The outcomes of all of the methods in meters along with their 

calculated error percentages for each frame are demonstrated in Table 2 as well as the 

measured distance with radar sensor in meters. The frame number (FN) indicates an index 

for the test samples for proper tracking. 

Table 2. The experimental results of the distance estimation methods. 

FN Object 

Type 

Object 

Distance 

Camera 

Parameters | 

Error Percent 

Geometrical 

Calculation | 

Error Percent 

Machine 

Learning |  

Error Percent 

1 Person 6.91 12.99 87.97% 8.30 20.14% 7.45 7.82% 

2 Person 6.92 14.43 108.64% 8.53 23.39% 6.98 0.95% 

3 Car 10.78 11.64 7.97% 12.63 17.21% 10.69 -0.82% 

4 Car 14.09 10.52 -25.38% 12.78 -9.35% 12.57 -10.80% 

5 Car 22.06 19.71 -10.68% 16.95 -23.17% 22.42 1.64% 

6 Car 11.05 6.14 -44.38% 10.05 -9.04% 10.14 -8.22% 

7 Car 14.09 11.16 -20.80% 12.96 -8.04% 12.75 -9.53% 

8 Bicycle 6.23 22.57 262.28% 6.58 5.63% 6.15 -1.33% 

9 Car 23.21 21.66 -6.70% 21.31 -8.19% 23.25 0.15% 

10 Car 27.57 47.55 72.49% 28.84 4.62% 25.68 -6.85% 

11 Car 21.31 24.86 16.65% 19.96 -6.33% 21.77 2.17% 

12 Car 15.78 14.88 -5.73% 14.97 -5.15% 13.97 -11.46% 

13 Car 17.67 13.34 -24.52% 15.87 -10.20% 16.69 -5.57% 
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FN Object 

Type 

Object 

Distance 

Camera 

Parameters | 

Error Percent 

Geometrical 

Calculation | 

Error Percent 

Machine 

Learning |  

Error Percent 

14 Car 34.03 27.34 -19.66% 20.12 -40.88% 31.01 -8.86% 

15 Car 22.64 35.28 55.82% 23.43 3.50% 22.42 -0.96% 

16 Car 12.42 8.82 -28.99% 11.68 -6.00% 11.52 -7.29% 

17 Car 24.66 29.96 21.48% 21.59 -12.48% 24.34 -1.30% 

18 Car 11.13 6.06 -45.59% 9.64 -13.43% 9.83 -11.71% 

19 Bus 18.12 8.60 -52.58% 16.16 -10.83% 16.39 -9.57% 

20 Car 21.50 29.56 37.48% 20.80 -3.23% 22.63 5.25% 

21 Car 23.51 24.58 4.52% 21.89 -6.89% 24.01 2.12% 

Mean Error Percentage 18.59% -4.70% -3.53% 

As deduced from Table 2, calculation with camera parameters may lead to large errors 

due to various reasons. Firstly, this method is applied on an embedded camera although 

it produces better estimations on advanced cameras. Moreover, the average height 

assumption made during the implementation of this approach can yield erroneous results 

when the vehicle whose distance is to be calculated largely deviates from this mean 

height. Another aspect to be taken under consideration is that the center of the image 

plane is estimated better with this methodology while the rest of the frame has more errors 

due to angular differences not considered with this technique. Utilization of the camera 

parameters has produced its largest errors on the estimation of person and bicycle classes 

in Table 2 both of which are the only classes with the true distance smaller than 10 meters 

while the rest of the errors of this technique appear to have occurred evenly on the distance 

intervals of 5 meters. However, Table 2 results suggest that the geometrical approach and 

 

Figure 14. An example frame with the geometrical approach used for distance estimation (Frame #12 in 

Table 2). 
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machine learning produce fairly well approximations between 10 and 15 meters as well 

as 20 and 25 meters. Although this small experiment set may not be enough to make 

deductions regarding the operation range of these algorithms, further experiments might 

be able to generalize these observations with sizable datasets. 

Unlike the first practice, the geometrical approach and machine learning result in 

significantly more precise deductions making them more superior alternatives. 

Geometrical approximation to model the environment can consider the camera pitch 

angle and object orientation more fittingly than the formula derived from the camera 

parameters while machine learning takes time to investigate the environment in detail to 

devise findings that are nearly exact. Yet, the model construction and training processes 

applied at the machine learning method make it computationally expensive while the 

geometrical approach formula can be friendlier to be implemented on an embedded 

system. Hence, even though its error percentage is mildly higher than the machine 

learning technique, utilizing a formula derived from geometrical modeling seems to be a 

more suitable expedient to the Camera-Based Vehicle Location Detection project. 

The angle calculation in the geometrical approach provided with Equation (17), Equation 

(18), and Equation (20) is also experimented to compare the outcomes of the equations 

with the measured tilt angle and the fields of view obtained from the datasheet of the 

camera lens. The camera utilized for this test is e-CAM130A_CUXVR whose lens has a 

horizontal field of view with 87.26° and a vertical field of view with 64.96° [40]. As the 

angle α is equal to the half of the vertical field of view whereas θ represents one half of 

the horizontal field of view, the true values for these angles can be deduced as: 

𝛼 =  
𝐹𝑂𝑉𝑉

2
 =  

64.96°

2
 = 32.48° (22) 

𝜃 =  
𝐹𝑂𝑉𝐻

2
 =  

87.26°

2
 = 43.63°  (23) 

In Equation (22), FOVV signifies the vertical field of view while FOVH in Equation (23) 

indicates the horizontal field of view. Moreover, the tilt angle β is measured as 9°. To 

understand the effect of selecting proper points for angle calculation through the 

equations, three solution sets have been considered. Three frames where the coordinates 

of the detected objects are in extreme points have been put to the experiment as the first 

solution set. The second and third solution sets consist of two frames each as two objects 

create the smallest possible sets. The object coordinates of these points are provided as: 
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𝑆𝑒𝑡 #1 {

(𝑥1,1, 𝑦1,1, 𝑧1,1)  =  (−0.77, 4.03, 4.1), (𝑢1,1, 𝑣1,1) =  (1297.0, 1412.0)

(𝑥1,2, 𝑦1,2, 𝑧1,2)  =  (0.0, 34.88, 4.1), (𝑢1,2, 𝑣1,2) =  (995.5, 785.5)

(𝑥1,3, 𝑦1,3, 𝑧1,3)  =  (−10.97, 11.99, 4.1), (𝑢1,3, 𝑣1,3) =  (730.5, 819.5)

 (24) 

𝑆𝑒𝑡 #2 {
(𝑥2,1, 𝑦2,1, 𝑧2,1)  =  (2.86, 6.75, 4.1), (𝑢2,1, 𝑣2,1) =  (1945.0, 1251.5)

(𝑥2,2, 𝑦2,2, 𝑧2,2)  =  (−6.05, 11.39, 4.1), (𝑢2,2, 𝑣2,2) =  (812.5, 991.5)
 (25) 

𝑆𝑒𝑡 #3 {
(𝑥3,1, 𝑦3,1, 𝑧3,1)  =  (3.06, 32.48, 4.1), (𝑢3,1, 𝑣3,1) =  (1439.5, 737.5)

(𝑥3,2, 𝑦3,2, 𝑧3,2)  =  (−5.96, 6.86, 4.1), (𝑢3,2, 𝑣3,2) =  (338.5, 1291.5)
 (26) 

The angle calculation results of the solution sets provided in Equation (24), Equation (25), 

and Equation (26) are shown in Table 3. In the first set, the points (𝑥1,1, 𝑦1,1, 𝑧1,1) and 

(𝑥1,2, 𝑦1,2, 𝑧1,2) along with their representative coordinates on the image plane (𝑢1,1, 𝑣1,1) 

and (𝑢1,2, 𝑣1,2) respectively, are utilized to calculate the angles α and β while the last 

point (𝑥1,3, 𝑦1,3, 𝑧1,3) and its placement on the image plane (𝑢1,3, 𝑣1,3) are exploited to 

obtain the θ angle. However, the first points at Set #2 and Set #3 are applied for finding θ 

as well since the information of one point is sufficient to perform the calculation for it. 

Table 3. The results of the angle calculations for different solution sets. 

 Angle Read from the Datasheet / Measured Set #1 Set #2 Set #3 

α 32.48° 47.02° 33.58° 32.47° 

β 9.0° 5.09° 9.54° 8.14° 

θ 43.63° 99.23° 43.89° 42.29° 

It can be concluded from the results of Table 2 that not all solution sets obtained from the 

system can be applicable to deduce acceptable estimations for angular variables. In fact, 

designating a set of points that can induce values with minor errors appears to be a 

challenging problem. Nonetheless, the experiments indicate that the points near the center 

of the frame are typically less prone to erroneous estimations. As a matter of fact, having 

deductions that are close to the actual angles, the values outputted from Set #2 are utilized 

to calculate the distances of the points denoted in Table 2. 

Certain assessments have been conducted while implementing the machine learning 

model as well so that the efficiency of the models can be evaluated. As the regression 

models to address the aim of this project should produce decimal numbers, the 

performance metrics applied cannot be “accuracy” because of the fact that accuracy 

checks if the estimated value is exactly the same as the true value. Hence, other criteria 
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to evaluate the performance are employed instead so that the estimated x and y-axes 

coordinates can be analyzed in terms of their proximity to the real values. All of the 

metrics investigated during this work are related to the errors of the train and test data of 

the models except for the cosine similarity analysis. Cosine similarity represents the 

angular difference between the two results. As the values become similar, the angle 

between their corresponding vectors gets closer to 0 making them alike. The similarity 

test results are shown for the x and y-axis models in Figure 15. Furthermore, the losses 

from the mean squared error of both of the models are provided in Figure 16. The 

outcomes of the remaining investigations regarding other types of errors are provided for 

both models in Appendix 4.  

The formula for calculating the cosine similarity of two lists, denoted as A and B, is 

presented in Equation (27) where the sets become perfectly opposite as the equation 

outputs -1 and perfectly similar as the product calculates to 1. The angle θ in Equation 24 

symbolizes the angle between the two collections to be compared, and the equation 

divides the dot product of the lists to the multiplication of their magnitudes. Ai indicates 

an arbitrary element belonging to list A of n elements whereas Bi is utilized for an arbitrary 

element of list B of the same number of elements as A. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵)  =  cos 𝜃  =  
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
 =  

∑ 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖 = 1

√∑ 𝐴𝑖
2𝑛

𝑖 = 1  × √∑ 𝐵𝑖
2𝑛

𝑖 = 1

  (27) 

Mean squared error is another valuable statistical analysis as the sizable deviations from 

the real value add more weight to the analysis while the principle always assures a positive 

output. As the name suggests, this method takes the average of the sum of the squared 

errors. Equation (28) describes the calculation of this technique. Similar to Equation (24), 

n denotes the number of elements on which the error is estimated while yi is an arbitrary 

true value, and �̃�𝑖 is the estimated representation of this value. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸)  =  
1

𝑛
 ×  ∑ (𝑦𝑖  −  �̃�𝑖)

2𝑛
𝑖 = 1  (28) 

Figure 15 depicts that the cosine similarity of both of the models approaches to 1 as the 

number of epochs of models increases although the convergence to 1 reaches a steady-

state for both train and test data after some epochs. The similarity of the x-axis can be 

said to have reached its maximum near 4000 epochs for the test and 2500 for the train 

while the maximum reach occurred near 2000 epochs for the y-axis. Furthermore, Figure 
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16 describes the mean squared error with respect to the increasing epoch numbers which 

indicates that the losses decrease as epochs increase in the train and test data of both of 

the models as expected. However, especially with the x-axis model, the test data can be 

seen to descend to lower error values than the training set which might indicate that the 

test samples generalized better as the size of the test samples is rather small. Generating 

novel train and test sets with different separation percentages can simply illuminate the 

reason for this phenomenon. Yet, the decrease of the error observed in all datasets of both 

models to diminutive values after 3000 epochs in x-axis and 2000 epochs in y-axis, in 

fact, proves that the networks operate successfully.
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(a) 
 

 

(b) 

Figure 15. Model performance analysis via cosine similarity for (a) the x-axis estimations and (b) the y-

axis estimations. 
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Figure 16. Model loss analysis via mean squared error for (a) the x-axis and (b) the y-axis estimations. 

 
(a) 

 
(b) 
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6 Summary 

Camera-Based Vehicle Location Detection is a project to be developed on an embedded 

system that utilizes image processing features to create a mapping analysis of the system 

environment. The system is intended to be implemented on the decks of ferries and 

possibly other types of Ro-Ro ships to be able to monitor the vehicle traffic on the ship 

in real-time. The camera on the system can produce a live feed of the deck to which 

certain object detection and distance estimation algorithms are applied. Therefore, the 

coordinates of the vehicles on the ships can be tracked down in a convenient manner. 

This thesis work analyzed certain algorithms for detecting objects and their locations so 

that the optimized solution methodology could be crafted for the project. For object 

detection, some of the most common one-stage detectors were implemented and 

compared for accuracy, namely MobileNet SSD, YOLO v3 along with its alternative 

YOLO v3-tiny, and YOLO v4 as well as YOLO v4-tiny. Comparing these models showed 

that YOLO v4 is more successful than the rest in delivering accurate findings with the 

ability to perform satisfactorily in complex cases. Furthermore, three different distance 

estimation techniques were put to test in order to inspect their precision. The first 

formulation using intrinsic camera parameters to represent the object depth functioned 

more defectively whereas constructing a set of equations to evaluate the distances in 

different axes for mapping with the help of geometric modeling proved to be a fast, 

simple, and a rather accurate approach. Lastly, a machine learning model was also 

developed so as to analyze how much the accuracy improves compared to the geometrical 

methodology, and the results confirmed that the enhancement on the error percentage was 

not at a grand scale to make the geometrical representation a poor alternative.  

The experiments have mainly demonstrated that the error percentage difference between 

the geometrical approach and the machine learning models are not grand where the 

network models performed with an average error percentage of -3.53% from 21 arbitrarily 

selected frames and the geometrical calculation resulted in -4.70%. As the reasons for 

errors are relatively larger with camera parameters utilization, the method performed 

poorly with an average error percentage of 18.59%.  
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The further tasks to be executed for the Camera-Based Vehicle Location Detection project 

mainly involves the implementation of the algorithms proposed in this study on the 

selected hardware platform as well as the detailed performance analysis with the different 

criterion on the embedded system. Additional detailed and explicit analyses of the angle 

calculation technique might also uncover more criteria for the proper solution set 

selection. Finally, although the object coordinates deduction strategies have been 

implemented, these findings need to be adapted for a generic mapping representation of 

the vessel which requires some extra work on the outcomes of this thesis work. 
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Appendix 2 – Object detection results for selected images 

The experimental results for object detection conducted by Mobile SSD, YOLO v3, 

YOLO v3-tiny, YOLO v4, and YOLO v4-tiny detectors are presented from Figure 17 to 

Figure 19 provided that objects were able to be detected on the samples by the 

corresponding detectors. The tiny variant of YOLO v3 was not able to detect any vehicles 

on the sample image in Figure 17 while MobileNet SSD has a false positive detection of 

a bus in each figure. The deduction of YOLO v3 and v4 being superior to the tiny variants 

in terms of the number of detections can also be derived from these images. 

(a) 

(b) 
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(c) 

(d) 

 

 

 

Figure 17. Results of the vehicle detection on a sample image (Frame #1 in Table 1) with (a) MobileNet 

SSD, (b) YOLO v3, (c) YOLO v4-tiny, and (d) YOLO v4. YOLO v3-tiny failed to detect objects on this 

sample. 
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(a) 

(b) 
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(c) 

(d) 
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(e)
 

Figure 18. Results of the vehicle detection on a sample image (Frame #2 in Table 1) with (a) MobileNet 

SSD, (b) YOLO v3-tiny, (c) YOLO v3, (d) YOLO v4-tiny, and (e) YOLO v4. 
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(a) 

(b) 

(c) 
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(d) 

(e) 

 

 

Figure 19. Results of the vehicle detection on a sample image (Frame #4 in Table 1) with (a) MobileNet 

SSD, (b) YOLO v3-tiny, (c) YOLO v3, (d) YOLO v4-tiny, and (e) YOLO v4. 
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Appendix 3 – Distance estimation results for selected images 

The experimental results for distance estimation conducted by camera parameters 

utilization and geometrical approach are presented from Figure 20 to Figure 22 where the 

object detection is performed with YOLO v4 detector. The results from the machine 

learning methodology were not inspected on the frames but obtained as a resulting 

dataset. Comparing the results of the two algorithms provided in these frames suggests 

that their estimations generally differ from each other on a large scale while most of the 

time, the calculations of the geometrical approach are the ones producing more sensible 

and accurate results. 

(a) 

(b) 

 

 

Figure 20. Results of the distance estimation on a sample image (Frame #10 in Table 2) with (a) camera 

parameters utilization and (b) geometrical approach. 
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(a) 

(b) 

 

(a) 

(b) 

 

 

Figure 21. Results of the distance estimation on a sample image (Frame #15 in Table 2) with (a) camera 

parameters utilization and (b) geometrical approach. 

 

 

Figure 22. Results of the distance estimation on a sample image (Frame #20 in Table 2) with (a) camera 

parameters utilization and (b) geometrical approach. 
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Appendix 4 – Performance analysis for machine learning 

models 

The experimental results for estimating the performance of the machine learning models 

are presented in Figure 23 and Figure 24. Figure 23 represents the mean absolute error of 

the models calculated by the formula presented in Equation (29), and Figure 24 shows 

the root mean squared error of the models according to Equation (30).  

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸)  =  
1

𝑛
 ×  ∑ |𝑦𝑖  −  �̃�𝑖|𝑛

𝑖 = 1  (29) 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸)  =  √𝑀𝑆𝐸  =  √
1

𝑛
 ×  ∑ (𝑦𝑖  −  �̃�𝑖)2𝑛

𝑖 = 1  (30) 

The results for both MAE and RMSE are indeed rather similar to the results of the loss 

function MSE provided in Figure 16. The difference between the train and test error 

performances that is especially more notorious with the x-axis model stems from the same 

analogy described in Section 5.2 where the small test dataset results in a better fit with 

smaller errors. However, this does not necessarily mean that the models are faulty or 

performed poorly, new datasets with various sizes can be applied to the model to confirm 

the reason for this observation. As the error values decrease rather drastically with the 

increasing epochs, usually around 2000 in the y-axis model and near 3000 in the x, the 

networks can be concluded to operate as expected. 
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(a) 

(b)

 

 

Figure 23. Model performance analysis via mean absolute error for (a) the x-axis estimations and (b) the y-

axis estimations.  
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(a) 

(b) 

 

 

Figure 24. Model performance analysis via root mean squared error for (a) the x-axis estimations and (b) 

the y-axis estimations. 
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Appendix 5 – The repository link of the thesis work 

The link to the Tallinn University of Technology GitLab repository which includes the 

basic data and source codes described in the thesis “Camera-Based Vehicle Location 

Detection” is as follows: 

▪ https://gitlab.cs.ttu.ee/mukopa/camera-based-vehicle-location-detection 

 

https://gitlab.cs.ttu.ee/mukopa/camera-based-vehicle-location-detection
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