
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mustafa Furkan Kopar 194236IASM

Camera-Based Vehicle Location Detection

Master's thesis

Supervisor: Uljana Reinsalu

 PhD

 Jürgen Soom

 MSc

 Mairo Leier

 PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mustafa Furkan Kopar 194236IASM

Kaamerapõhine sõiduki asukoha tuvastamine

Magistritöö

Juhendaja: Uljana Reinsalu

 PhD

 Jürgen Soom

 MSc

 Mairo Leier

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mustafa Furkan Kopar

02.08.2021

4

Acknowledgement

I would like to state my appreciation to everyone who has been supporting me during the

development of this thesis, especially my supervisors, family, and friends. The work

presented here could not come to fruition without all these people.

I would like to thank my supervisors who have been addressing all the necessary

questions so that the thesis can improve as much as possible. Their feedback has been

extremely helpful.

I wish to thank my mother, my father, and my sister for always believing in me and

supporting me whenever I needed motivation. Their faith helped me wanting to contribute

to the study more and more.

I wish to thank my dearest friends who always try their best to come to my aid in times

of need. Especially, Ibrahim Koc, Gulriz Yaman, and Berke Nohut deserves all of my

appreciation for their valuable opinions and contributions in this process.

Lastly, all of my love and thanks go to my beautiful niece Defne. Her smile has always

been my brightest light even in the darkest days.

5

Abstract

Detecting the precise locations of objects from the image data collected by a monocular

camera continues to be a challenge getting more attractive day after day. Although the

task is less effortful with the usage of dual cameras, the advantages a monocular camera

brings to the concept are quite appealing. One of the main reasons this issue is particularly

serious nowadays is the necessity of this technology by self-driving vehicles that are soon

going to become an indispensable part of people’s lives. Autonomous transportation is

surely a leading motivation for advancing image processing applications. On the other

hand, focusing only on one possible use case to develop a coordinate estimation unit with

a monocular camera can be degrading for other industries in need of advanced image

processing features. As the monocular front cameras implemented in vehicles stand

parallel to the ground, the algorithms they use for modifying the visual data certainly

differ from the ones installed with a pitch angle to survey a specific location.

An obvious case where an inclined monocular camera with the ability to map the object

coordinates is the surveillance camera system. Particularly, this project aims to address

the demand for such an application in roll-on/roll-off ships. The vessels, like ferries, that

are carrying vehicles as cargo need to make sure that these vehicles are placed in their

assigned locations correctly. Therefore, the vessels need to properly locate the vehicles at

any time so that the cargo can easily be tracked down during loading, transportation, and

unloading. Camera-Based Vehicle Location Detection is developed to cover this need.

The system helps create a projection of the vessel it is implemented on, by monitoring the

cargo and providing data regarding their positions. The parking deck of the vessel is

recorded with the usage of cameras whose coordinates on the vessel are fixed. Using the

camera feed and the distance estimation algorithm, the system deduces the exact

coordinates of each cargo on the vessel.

There are two main challenges concerning the development of the project. First, vehicle

detection from the real-time camera feed should be carried out to obtain the areas of

interest in the point cloud. Then, the spatial locations of the detected objects are deduced

6

with respect to the location of the observing camera. The collected data is processed to

deduct the distance of every detected vehicle in the vessel with respect to the camera.

These deductions can later be utilized to create a mapping of the vessel where the location

of each detected vehicle is indicated.

The thesis shows the existing related work regarding vehicle detection and distance

estimation as well as the motivation behind the project development while also touching

on the method descriptions and test results of some selected algorithms.

This thesis is written in English and is 45 pages long, including 6 chapters, 16 figures,

and 3 tables.

7

List of abbreviations and terms

AGV Automated Guided Vehicle

API Application Programming Interface

BA Bundle Adjustment

BiFPN Bi-Directional Feature Pyramid Network

CNN Convolutional Neural Network

EP Error Percentage

FN Frame Number

FP False Positive

FPN Feature Pyramid Network

GPS Global Positioning System

GPU Graphics Processing Unit

ID Identifier

LiDAR Light Detection and Ranging

mm millimeter

MP Megapixel

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

NMS Non-Maximum Suppression

PANet Path Aggregation Network

QR Quick Response

RADAR Radio Detection and Ranging

R-CNN Region-Based Convolutional Neural Network

RFID Radio Frequency Identification

RMSE Root Mean Squared Error

Ro-Ro Roll-on / Roll-off

RoI Region of Interest

RTLS Real-Time Location System

SAM Self-Attention Module

8

SAT Self-Adversarial Training

SfM Structure-from-Motion

SONAR Sound Navigation and Ranging

SPP Spatial Pyramid Pooling

SSD Single Shot MultiBox Detector

XML Extensible Markup Language

YOLO You Only Look Once

9

Table of contents

1 Introduction ... 13

2 Literature Review .. 15

2.1 Cargo Organization in Ro-Ro Ships ... 15

2.2 Object Detection ... 16

2.2.1 One-Stage Detector ... 16

2.2.2 Two-Stage Detector ... 16

2.3 Distance Estimation .. 17

3 Methods ... 19

3.1 Object Detection Methods .. 19

3.1.1 MobileNet SSD ... 19

3.1.2 YOLO v3 ... 21

3.1.3 YOLO v4 ... 22

3.2 Distance Estimation Methods ... 22

3.2.1 Using Camera Parameters ... 23

3.2.2 Using Geometrical Approach .. 26

3.2.3 Using Machine Learning ... 32

4 Implementation .. 34

4.1 Object Detection Implementation ... 35

4.1.1 MobileNet SSD ... 35

4.1.2 YOLO v3 and YOLO v4 ... 36

4.2 Distance Estimation Implementation.. 37

4.2.1 Using Camera Parameters and Geometrical Approach 38

4.2.2 Using Machine Learning ... 40

5 Results ... 45

5.1 Object Detection Results .. 45

5.2 Distance Estimation Results ... 47

6 Summary .. 56

References .. 58

10

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 61

Appendix 2 – Object detection results for selected images .. 62

Appendix 3 – Distance estimation results for selected images 69

Appendix 4 – Performance analysis for machine learning models 71

Appendix 5 – The repository link of the thesis work ... 74

11

List of figures

Figure 1. The network architecture of an SSD framework with VGG16. 20

Figure 2. The network architecture of an SSD framework with MobileNet. 21

Figure 3. The basic working principle of a camera lens. .. 24

Figure 4. The relationship of the parallel and oblique distances with an inclined camera

system. .. 25

Figure 5. Camera-based coordinate system. ... 27

Figure 6. Camera’s field of view from the top. .. 28

Figure 7. Camera’s field of view from the side. ... 28

Figure 8. NVIDIA Jetson AGX Xavier Developer Kit connected to the camera board,

retrieved from [43].. 34

Figure 9. The pseudocode for video decoding with OpenCV. 35

Figure 10. The generic model of the machine learning implementation. 40

Figure 11. The results of the hyperparameter optimization program evaluated for both

models. .. 43

Figure 12. The summary of each neural network outputted by the function summary. . 44

Figure 13. A sample frame with YOLO v4 model used for object detection (Frame #3 in

Table 1). .. 46

Figure 14. An example frame with the geometrical approach used for distance

estimation (Frame #12 in Table 2). .. 49

Figure 15. Model performance analysis via cosine similarity for (a) the x-axis

estimations and (b) the y-axis estimations. ... 54

Figure 16. Model loss analysis via mean squared error for (a) the x-axis and (b) the y-

axis estimations. ... 55

12

List of tables

Table 1. The experimental results of the object detection methods. 46

Table 2. The experimental results of the distance estimation methods. 48

Table 3. The results of the angle calculations for different solution sets. 51

13

1 Introduction

Advancements in image processing have brought about an increase in the usage of visual

data for various computation tasks. Applications like object detection, image

classification, pattern recognition, segmentation, tracking, and more have been

addressing different needs in various fields including but not limited to medical practices,

machine vision, smart vehicles, and surveillance. Even though some of the common

computer vision implementations are used in distinct disciplines, many of the state-of-

the-art object detection and distance estimation algorithms have been developed to

accommodate the demands of autonomous vehicles as this is a significant area of current

interest. On the other hand, considering the fact that this technology focuses on visual

data that is parallel to the ground, other domains of development like surveillance

requiring the manipulation of data from images with some pitch angle usually cannot

utilize the advancements of the visual data processing for the self-driving vehicles without

further modifications. Hence, building dedicated algorithms fulfilling the need of

processing angled images correctly calls for additional study to alter the algorithms for

driverless transportation.

Having said that the surveillance systems are generally in need of more advanced

computer vision applications for certain cases due to their pitch angle, this thesis work in

fact stems from a special use case of such systems, namely the roll-on/roll-off (Ro-Ro)

ships. Cargo ships that carry vehicles have long been in use for transporting their loads

across a body of water. These vessels, also referred to as the Ro-Ro ships, are equipped

to transport numerous types of cargo including private cars, buses, vans, semi-trailers,

project cargo, and passengers [1]. To be able to properly load and unload their cargo,

these ships should have the ability to monitor the positions of the vehicles on the vessel

at all times. When each vehicle has been assigned to a certain location on the vessel,

loading and unloading the cargo can be carried out in as little disarray as possible and

more rapidly. However, the ships require a system to make sure that the vehicles are

positioned at the right spot during the trip. Camera-Based Vehicle Location Detection

14

provides a mapping of the vessel indicating the real-time position of each vehicle on the

ship so that each of them can be tracked down accurately.

The system is mainly a real-time embedded platform that takes the video feed as input

which is coming from the cameras implemented on the parking deck and produces a

mapping of the vessel as output. The location detection algorithm along with the distance

estimation determines the exact position of the object with respect to the camera. Using

the obtained position and the coordinates of the camera, the system can deduct the

coordinates of the vehicle from the corresponding image. These coordinates can then be

utilized to come up with a complete mapping of the vessel where the position of each

vehicle is shown in real-time.

The work presented in this thesis focuses on the detection of the vehicles from a camera

system with a pitch angle and then calculating the distances of the detected vehicles from

the observing system. First, some of the most commonly used object detection methods

are analyzed so as to come up with a satisfactory vehicle detection implementation in

terms of accuracy, speed, ease of use, and real-time compatibility. Afterward, various

distance estimation techniques introduced in the literature are studied to obtain accurate

distance results from monocular camera images. The most trusted conventional methods

rely on the utilization of an additional sensor to calculate the distance between an object

and the system despite its various disadvantages. To propose a more compact and still

reliable solution, this thesis aims to estimate the distances only from the camera image

and additional parameters that can easily be procured or calculated. The essential criteria

for suitable performance are precision, low calculation complexity to fulfill the embedded

resource requirements, and ease of parameter tuning at setup. The outcomes of these

techniques are verified with the usage of the data from a radar sensor.

The remainder of the paper is organized as follows. Section 2 presents the existing state-

of-the-art related to the Ro-Ro ship organization, vehicle detection, and distance

estimation using image processing. Section 3 provides the methods taken into account

during the algorithm development for the project while Section 4 introduces the

implementation procedures of these methods. Section 5 demonstrates the results of the

implementations addressed in Section 4 discussing their advantages and disadvantages.

Finally, Section 6 concludes the paper with a summary.

15

2 Literature Review

The existing methods and technologies that are of help for developing the Camera-Based

Vehicle Location Detection are studied in three main divisions: cargo organization in Ro-

Ro ships, object detection, and distance estimation. The research on effective freight

placement in Ro-Ro ships is conducted so as to describe the need for this work more

clearly. To obtain a camera-based solution, the project integrates two topics in image

processing so that it can generate the cargo coordinates, that is, vehicle detection and

distance estimation while coordinate evaluation is also carried out during distance

estimation.

2.1 Cargo Organization in Ro-Ro Ships

The proper organization and handling of the cargo in the Ro-Ro ships have been being

studied for some time. The new applications in various tracking technologies enabled

plenty of research to be conducted to optimize the cargo tracking techniques. Applying

Radio Frequency Identification (RFID) technology to create a Real-Time Location

System (RTLS) [2] was proposed to enhance the port operation system performance. This

technology focuses on large cargo ships whose containers need to be tracked down in

real-time. Although it addresses a similar need in transportation, this method is not

intended for vehicle tracking in smaller Ro-Ro ships such as ferries. Furthermore, RFID

was intended to be utilized along with GPS to obtain the real-time position of the loaded

goods as GPS coordinates [3]. Yet, this study also lacks to consider some particular types

of loads like wheeled cargo. Another technology suggests using Automated Guided

Vehicles (AGV) for managing the material flow while AGV placement should also be

controlled by the RFID transponders on the floor [4]. Like the previous ones, the

feasibility of this approach is low for handling wheeled cargo on ferries. Other

technologies such as QR code, barcode, or magnetic ID card reading [5] were proposed

for addressing vehicle tracking in Ro-Ro ships. This thesis proposes a more

instantaneously accurate solution to the tracing of the cargo vehicles in a Ro-Ro ship

during their loading, transportation, and unloading.

16

2.2 Object Detection

The number of distinct and improved vehicle detection techniques has been rapidly

increasing as more and more object detection algorithms are studied. The vehicle

detection in the Camera-Based Vehicle Location Detection requires to be carried out with

a real-time fast algorithm trained by the most compact dataset possible so that the

performance of the detection can be optimized. This is expected to be achieved by

analyzing the state-of-the-art vehicle detection algorithms to choose the most suitable one

and revising their neural network architectures to check if further optimizations are

possible. The object detection algorithms that can also be implemented for detecting

vehicles are usually studied in two categories [6].

2.2.1 One-Stage Detector

Single-stage detectors behave as simple regression models that try to learn the probability

score and the coordinates of the bounding box of the object from the image [7]. You-

Only-Look-Once (YOLO) scheme is one of the most well-known implementations of this

segmentation technique. YOLOv3 is widely used for practical purposes and further

studied for implementations. Including dilated convolution and self-attention module

(SAM) to YOLOv3 yielded efficient and accurate SA-YOLOv3 [6]. Another

improvement to YOLOv3 making it faster and more accurate is released as YOLOv4 in

April 2020, utilizing the CSPDarknet53 backbone rather than the Darknet53 network of

YOLOv3 [8]. An utterly different release in PyTorch implementation called YOLOv5 is

also made available the same year being even faster and more accurate than EfficientDet

[9].

EfficientDet is also a fast, small, and accurate one-stage detector family proposing a

weighted bi-directional feature pyramid network (BiFPN) and a compound scaling

method [10]. Yet another common detection method is Single Shot MultiBox Detector

(SSD) with a straightforward approach as the proposal generation and subsequent feature

resampling stages are removed from the computation [11].

2.2.2 Two-Stage Detector

Two-staged detectors define a region of interest from the input image before object

segmentation, making this a two-stage process. They are usually slower than one-stage

detectors yet reaching better accuracy rates [7]. The majority of these detectors benefit

17

from specific artificial neural networks for image processing called Convolutional Neural

Networks (CNN). These models execute convolution operations in some of their layers

where a feature map describing the input properties is generated [14]. Therefore, the

neurons in the convolutional layers are able to provide their findings of the part of the

image they apply the convolution to. The distribution of work results in the creation of

smaller imagery outputs which are to be inputted to the following layer.

One of the most studied two-stage object detector models is the Region-based

Convolutional Neural Network (R-CNN) and its derivatives. R-CNN generates a set of

candidate detections constructed by the region proposals regarding the whereabouts of

the object, which is fed to the convolutional neural network for the segmentation [12].

This approach is further improved by the Fast R-CNN which produces a feature map

speeding up the segmentation process [13]. Later, Faster R-CNN is introduced which adds

a region proposal network before the Fast R-CNN to generate object proposals with

objectness scores [14]. Faster R-CNN is expanded by Mask R-CNN which introduces a

parallel unit to predict segmentation masks on every Region of Interest (RoI), keeping the

classification and bounding box regression section [15]. Other two-stage detectors to be

considered for the Camera-based Vehicle Location Detection project are the SINet,

introducing context-aware region of interest pooling and multi-branch decision network

techniques for fast object detection with a large scale [16], and SqueezeNet, a very

compact object detection model for better on-chip implementation results in regards to

the model size [17].

This thesis work analyses the state-of-the-art detector models addressing the needs of

Camera-Based Vehicle Location Detection. The results of these analyses can provide

information about the model to be used so that the most suitable vehicle detection scheme

can be implemented in the design.

2.3 Distance Estimation

Evaluating the correct distance of the objects with respect to the observing camera has

been a widely studied challenge especially due to the rapidly growing autonomous vehicle

technology. Calculating the real distances of the objects from certain points of view is a

subject also studied by 3D reconstruction techniques such as Structure-from-Motion

(SfM). SfM utilizes a set of images of a certain environment to come up with a 3D model

18

while applying steps like feature extraction, matching, geometric verification, two-view

reconstruction, image registration, triangulation, outlier filtering, and bundle adjustment

(BA) [18]. The resulting 3D model also reveals the object distance to the implementation

points although the construction of the model requires marker objects to be present in the

environment making the performance of this method bound to the layout preparation.

One approach utilizes the triangulation method and the binocular camera model for

calculating the target distance [19], while another one introduces sparse 2D laser range

data to estimate the monocular depth of the object [20]. A different technique for distance

estimation is to use the disparity of the target object detected by the stereo camera system

[21]. Machine learning methods such as regression modeling are also inspected to be used

in distance estimation where a predictive model for calculating the target distance is

created [22]. Some well-known distance estimation algorithms like pose from

orthography and triangle similarity were also analyzed to compare their performances

which resulted in favor of the triangular similarity method [23].

Camera-based Vehicle Location Detection aims to perform a distance estimation that is

very fast, lightweight, and accurate. To satisfy these needs, the existing models are

inspected, and necessary implementations are carried out so that the platform can

correctly estimate the object distance with respect to the monocular camera while

considering the coordinates of the object for mapping.

19

3 Methods

The implementation requirement of Camera-Based Vehicle Location Detection

essentially consists of developing two types of algorithms sequentially. First, some

methods for vehicle detection are performed for comparison. After this step is done, the

images with the determined bounding boxes of the detected objects are inputted to various

distance estimation algorithms to assess the outcomes. These two successive branches are

described in detail under the corresponding headings.

3.1 Object Detection Methods

This thesis work mainly investigates some of the most commonly known single-stage

detector algorithms in detail and compares their results on a set of surveillance images.

The detectors implemented for the work are MobileNet SSD, YOLO v3, and YOLO v4.

The main reasons why these are selected are their availability, ease of use, speed, and

various size options. Since these approaches are utilized extensively, they offer numerous

sources to be employed providing rather short development time. Moreover, as the idea

behind their algorithm is not extremely complex and the models are easily available for

use, configuring these methods for special needs is quite straightforward.

Conventionally, one-stage detectors operate at a considerably higher speed compared to

two-staged ones since they do not waste operation time to define a region of interest. The

presence of an additional step made the two-stage algorithms got discarded from the scope

of this thesis, thus only a selection of single-stage detectors is implemented. Furthermore,

every YOLO detector comes with differently-sized packages, namely tiny and full

models, making them a desired choice for various applications in terms of size

restrictions.

3.1.1 MobileNet SSD

The Single Shot MultiBox Detector is a single-stage object detection framework based

on deep networks which, unlike the two-stage frameworks, operate without pixel

resampling and bounding box hypothesizing. The two-stage detection systems rely on

20

these two steps and applying a high-quality classifier. Omitting the aforementioned

phases results in a considerable improvement in the object detection speed. Moreover,

SSD reaches large accuracy rates as a consequence of the use of a small convolutional

filter for object class and offset prediction, particular filters for distinct aspect ratio

detections, and the application of the said filters to several feature maps from the later

stages of a network so that the object detection can be carried out at multiple scales [11].

The main advantage SSD brings is the computational speed in object detection. However,

even with the improvements leading to high accuracy rates, SSD is not as accurate as the

existing single-shot detection models. The first base network SSD is introduced with was

VGG16 having six feature maps with specific dimensions for the back-end network. The

outputs of the network model are later fed to a non-maximum suppression (NMS) method

where the detection with the highest confidence is selected as the final output. Despite its

ability of good feature extraction, the network architecture is in fact rather sizable to be

convenient for real-time systems [24]. Figure 1 presents a basic illustration of VGG16-

SSD architecture starting from the input image until the NMS to create the output with

the detections having the highest confidence scores.

Figure 1. The network architecture of an SSD framework with VGG16.

In order to compensate for the large size and complexity that VGG16-SSD has, Google

implemented the SSD framework replacing the VGG16 network with the MobileNet

backbone model. Even though this network model results in a certain amount of decrease

in the object detection accuracy, it is rather compact and therefore a friendly detector for

real-time embedded systems. Figure 2 describes the main steps in a MobileNet-SSD

architecture where the input image is fed to the backbone network and the convolution

layer outputs produce the detection unit input. A non-maximum suppression is again used

to eliminate the detections with low confidence. Hence, the front-end structure remains

the same while the MobileNet network as the backbone leads to better real-time

performance.

21

Figure 2. The network architecture of an SSD framework with MobileNet.

Further improvements on MobileNet-SSD were made with MobileNet-SSDv2 to increase

the speed and the accuracy rate along with the required memory size. This version

introduces a Feature Pyramid Network (FPN) before the detections unit to enhance the

back-end detection network execution [24].

3.1.2 YOLO v3

YOLO is one of the most renowned detectors in usage on account of its speed and

accuracy. The system is fast and simple as it regards object detection as a single regression

problem rather than repurposing classifiers as the two-stage detectors do. Furthermore,

contrary to the region proposal techniques like sliding window, YOLO takes the entire

image into account while predicting objects, eliminating the background errors [25]. Even

though this approach might harm the accuracy, the results generally exceed expectations.

Succeeding the first version, YOLOv2 and YOLO9000 aim to improve the accuracy

while remaining fast. Therefore, approaches such as batch normalization, k-means

clustering, and high-resolution classifier along with a custom network called Darknet-19

result in a better, faster, and stronger detector [26].

YOLOv3 proposes some advancements in detecting small objects by introducing a

superior bounding box prediction with logistic regression. Feature extraction is performed

with another backbone network with an increased number of convolution layers called

Darknet-53. Having 53 convolutional layers instead of the old 19-layered network, the

network architecture of YOLOv3 has become more powerful than YOLOv2 [27].

YOLOv3-tiny is yet another variant of YOLOv3 where the detector can also address the

object detection needs of technologies that the speed and the size of the framework

become of utmost importance. By decreasing the depth of the network, YOLOv3-tiny

sacrifices the accuracy of the detections while making the overall system approximately

442% faster than the former variants of YOLO [28]. The reduction of the convolution

22

layers also allows this variant to have a smaller size making it an appealing

implementation for real-time embedded systems that are aiming for fast and small

algorithms.

3.1.3 YOLO v4

A state-of-the-art improvement to the YOLO detector was made with the release of

YOLOv4. As the backbone of the YOLOv4 detector, the CSPDarknet53 neural network

is utilized while Spatial Pyramid Pooling (SPP) is added over it to enlarge the receptive

field. FPN in YOLOv3 is replaced with Path Aggregation Network (PANet) serving as

the neck of the architecture. Furthermore, a new data augmentation technique Mosaic was

introduced along with Self-Adversarial Training (SAT). All of these improvements lead

to an increase of 10% in precision and 12% in speed compared to YOLOv3 [8].

A lightweight variant of YOLOv4 is introduced as YOLOv4-tiny where the

CSPDarknet53 backbone network is replaced with CSPDarknet53-tiny. Unlike YOLOv4,

this detector still utilizes FPN while SPP and PANet are removed in order to ensure rapid

detection so that the model can be a more appropriate choice for real-time mobile and

embedded systems [29]. Just like with the YOLOv3 and YOLOv3-tiny, this small-sized

fast alternative obtains its qualities by relinquishing accuracy. Yet, the advantages of the

tiny variant can outweigh the drawbacks when used in a real-time embedded system.

3.2 Distance Estimation Methods

The approaches presented in this thesis for estimating the object distances all make use

of a camera implemented to a location with a pitch angle. The real-time feed from the

camera is first to be put into a certain object detection algorithm for detecting the

bounding box coordinates of the objects to be investigated. The object detector used for

testing the distance estimation methods is YOLOv4. The reason why this method is

chosen is to be able to detect as many objects as possible in a frame. Although the real-

time needs of the Camera-Based Vehicle Location Detection project suggest a faster and

smaller detector such as YOLOv4-tiny, the distance estimation testing requirements

mostly aim for the ability to detect more objects for having as many results as possible to

be compared. Furthermore, the reasoning for selecting YOLO v4 for the distance

estimation experiment is also clarified in Section 5.1 with the object detection

23

experimental results as YOLO v4 proved to have the capability of making more and

accurate detections.

The project intends to use only a camera for estimating the distances of the objects. Other

methods for distance estimation such as RADAR, LiDAR, and SONAR sensors are in

fact more accurate than using vision-based estimation. However, while these systems can

be attractive to large systems, a small embedded system usually requires a simpler

solution. The aforementioned techniques demand an extra sensory device to be

implemented to the design, and this additional hardware definitely increases the

complexity of a compact embedded system. Moreover, the added equipment for distance

estimation increases the cost of the project making a small system to become

unnecessarily expensive. As a reasonable development price is another requirement of

the Camera-Based Vehicle Location Detection system, not including extra hardware and

utilizing the already existent visual resource is considered as a goal of this thesis.

This work mainly investigates three techniques to be utilized in vision-based distance

estimation. The first one makes use of the intrinsic camera parameters, while the second

approach that is examined carries out a geometrical analysis of the environment to come

up with the location of the objects in the frame. Lastly, a machine learning model has

been trained on a sample implementation to predict the object coordinates on the images.

3.2.1 Using Camera Parameters

The basic functionality of a camera is to capture the light rays emitted from the objects

via its lens and collect these light rays reflected from the lens on an image plane. The

working principle of a camera lens is described in Figure 3.

The lens mainly generates a virtual representation of what has been captured from the

object plane. The distance between the center of the camera lens and the image plane

(film) is defined as the focal length in photography. Focal length can in fact be described

as a representation of the object distance from the camera lens. The object plane

represents the vertical plane in the real world where the object is in, whereas the image

plane is the virtual depiction of the object plane produced by the camera lens.

24

With the provided analysis, it can be concluded that the ODC triangle formed in the real

space and the O’D’C triangle generated in the image space are similar. This triangle

similarity can be utilized in estimating the object distance in the real space from the

camera. Therefore, the proportional relationship between the real distance of the object

and the distance of the image is as follows [30]:

𝐷 =
𝑓 × 𝑂

𝐼
 (1)

In Equation (1), D is the distance of the object to the camera lens in real space, f is the

focal length of the lens, O is the height of the object in real space while I represents the

height of the object on the image plane. The unit of all of the variables in Equation (1) is

in millimeters. However, after the object detection is performed with a detector algorithm,

the output result is the bounding box coordinates giving the object height on the image

plane in pixels. Hence, a way to convert these pixel values to millimeters to obtain the

value of I is required. To be able to carry out this conversion, the size of the image sensor

is needed. This size is different in both horizontal and vertical axes meaning that two new

equations are obtained to estimate the object distance:

𝐷 =
𝑂𝑥 × 𝑓 × 𝑃𝑥

𝑥 × 𝑆𝑥
 (2)

𝐷 =
𝑂𝑦 × 𝑓 × 𝑃𝑦

𝑦 × 𝑆𝑦
 (3)

Ox in Equation (2) is the dimension of the image in the horizontal plane, and Sx is the

sensor height. Both values are measured in millimeters. Moreover, Px is the horizontal

sensor size while x represents the image dimension in the horizontal plane where these

Figure 3. The basic working principle of a camera lens.

25

two values are in pixels. Similarly, Oy in Equation (3) depicts the dimension of the image

in the vertical plane in millimeters as y represents the same aspect in pixels. Furthermore,

Sy is the sensor width measured in millimeters, and Py demonstrates the vertical sensor

size in pixels.

Even though Equation (2) and Equation (3) are able to give a general idea of how the

distance of an object can be predicted, this distance is in fact valid provided that the object

and the image planes are parallel as illustrated in Figure 3 [30]. However, the environment

where the cameras are implemented for the Camera-Based Vehicle Location Detection

system requires these devices to have some pitch angles larger than zero meaning that the

object and the image planes are not parallel anymore. A straightforward approach to

address the pitch angle problem is basically to divide the distance found in Equation (2)

or Equation (3) by the cosine of the pitch angle of the camera resulting in the following

relationship [31]:

𝐷𝑂 =
𝐷

𝑐𝑜𝑠 𝛾
 (4)

Equation (4) describes the distance of the object standing with a pitch angle with respect

to the image plane denoted by DO. D is the parallel distance calculated by Equation (2) or

Equation (3) while γ is the pitch angle of the camera. The relationship between these

variables is also illustrated in Figure 4. The distance between the object in the real space

and the camera is now indicated as the oblique distance while the parallel distance denotes

how far the camera is away from a virtual representation of the object where the image

plane and the virtual object are parallel. In other words, parallel distance is the vertical

projection of the oblique distance onto the ground.

Figure 4. The relationship of the parallel and oblique distances with an inclined camera system.

26

The approach described in this section is able to give an intuition about the distance of an

object to the camera. However, it should be noted that the algorithm depends highly on

the intrinsic camera parameters such as the sensor size and focal length. The study

proposing this method [30] was conducted with high-quality cameras which makes it

possible for the cameras used in this project to be not as practical as their more advanced

alternatives. Additionally, the outcomes of the study showed that constant errors might

be present requiring calibration of the cameras while errors related to the equation

parameters can also be the cause of faulty estimations. A further issue with this approach

is that it only focuses on the depth estimation rather than the location of the object

meaning that the deviations can occur when the object is not located near the center of

the image plane. Therefore, the method should be improved taking other dimensions into

account to be able to represent the real world as discussed in the following heading.

3.2.2 Using Geometrical Approach

A technique that takes the object coordinates into consideration suggests that the image

location in the real space should be utilized to come up with a geometrical representation

of the distance vector. According to this methodology, the pixel grid of an image and the

real coordinates of the object with respect to the camera have a trigonometric relationship

[32]. To identify this relationship, it is assumed that the optical center of the camera is the

origin of the camera-based coordinate system as shown in Figure 5. The axis represented

as x is parallel to the ground, and its values increase as the points move to the right side

of the image plane as depicted in Figure 5 by an arrow. Similarly, the y-axis is also parallel

to the ground but indicating the depth of the object like the parallel distance in Figure 4.

It should be noted that the values in this axis can never be negative as the points with

negative y values would indicate the objects behind the camera. Lastly, the z-axis is used

to indicate the height of the camera from the ground. Since the camera is taken as the

origin of the system having the coordinates (xcamera, ycamera, zcamera) = (0, 0, 0), the objects

on the ground should have the z value equal to the height of the camera.

It can be concluded that when the values xo, yo, and zo in Figure 5 remarking the object

coordinates are known, the object distance to the camera becomes the Euclidean distance

between the origin and the coordinate of the object which can be represented as:

𝐷 = |(𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜), (0, 0, 0)| = √𝑥𝑜
2 + 𝑦𝑜

2 + 𝑧𝑜
2 (5)

27

As Equation (5) defines the distance between two points, both the object and the camera

are treated as point objects. With this assumption, the coordinates of the object (xo, yo, zo)

in fact stand for the middle point of the rectangular bounding box enclosing the object.

Since the zo value in Equation (5) is known as the camera height provided that the object

is on the ground, this value is easy to measure during system installation and can be

inputted into the algorithm. However, the xo and yo values are different for every point in

the image which makes it necessary to devise a generic geometrical description for the

image.

The values on the x and y-axes are investigated utilizing the different views of the system

area. Figure 6 illustrates the top view of the environment used to generate an equation for

xo while Figure 7 depicts the side view of the domain in order to formulate the yo value.

Figure 5. Camera-based coordinate system.

28

The system illustrated in Figure 6 and Figure 7 represents the top and side views of a

tilted camera whose image plane has the width uimage and the height vimage in pixels. The

angle θ in Figure 6 shows half of the horizontal field of view, meaning that the whole

visual range in that plane is 2θ. Similarly, α in Figure 7 is the semi-range of the camera

in the vertical plane signifying that the vertical field of view is 2α. Furthermore, ε is the

blind angle which expresses that the camera fails to see this area as the zone is too close

to it. Utilizing these figures, xo and yo coordinates of an object are to be found whose mid-

Figure 6. Camera’s field of view from the top.

Figure 7. Camera’s field of view from the side.

29

point on the image plane has the coordinates (uo, vo). In order to obtain the yo value, a

trigonometric equation should be constructed:

𝑦𝑜 = 𝑧𝑜 × 𝑐𝑜𝑡(𝛽 + 𝑐) (6)

The angle β is the tilt angle of the camera measured with respect to the ground plane.

Moreover, c demonstrates the angle between the image center line and the object line.

Hence, its value depends on the distance of the object on the y-axis. It is worth noting that

the angle is positive when the object is under the horizontal image center on the frame,

but negative when it is above. Besides, as the c value gets closer to -β, yo approaches

infinity meaning that Equation (6) cannot produce meaningful results starting from this

value. Therefore, the region of interest in this approach is the part of the frame lower than

the z = 0 plane. When the object point is at the very bottom of the frame, indicating that

vo = vimage – 1, the angle c becomes equal to α. Additionally, c = 0 is reached if vo is at

the central horizontal line with the height
𝑣𝑖𝑚𝑎𝑔𝑒 − 1

2
. Consequently, c can be represented

as:

𝑐 =
2 × 𝛼 × 𝑣𝑜

𝑣𝑖𝑚𝑎𝑔𝑒−1
 − 𝛼 (7)

Combining Equation (6) and Equation (7), the y-axis distance of the object becomes:

𝑦𝑜 = 𝑧𝑜 × cot (𝛽 +
2 × 𝛼 × 𝑣𝑜

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 − 𝛼) (8)

Hence, yo coordinate of any object under the z = 0 plane on the image can be calculated

in millimeters provided that the height of the camera zo (mm), the height of the point on

the image vo (pixel), the image height vimage (pixel), the angle denoting the half of the

vertical field of view α (degree), and the tilt angle β (degree) is known. Although the

study proposing this approach [32] formulates the y-axis distance using the blind angle ε

and the tangent function, the equation was altered to address the representation with the

tilt angle β as it is easier to measure during the system implementation. Along with yo, the

x-axis distance xo can also be formulated as a trigonometric equation:

𝑥𝑜 = 𝑦𝑜 × tan 𝑎 (9)

As indicated in Figure 6, a in Equation (9) is the angle between the image center line and

the object line similar to the angle c in Figure 7. This angle is also dependent on the

location of the object in the frame, specifically its xo value, and is positive if the object is

30

on the right side of the image center but negative when it is on the left. Furthermore, the

angle at the leftmost side of the image is -θ while the angle at the rightmost part is θ. In

addition, the angle at the image center with the pixel
𝑢𝑖𝑚𝑎𝑔𝑒 − 1

2
 becomes 0. Thereby, a is

calculated as:

𝑎 =
𝜃 × (2 × 𝑢𝑜 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒 − 1
 (10)

Inserting the a value found with Equation (10) to Equation (9), the xo value representation

becomes:

𝑥𝑜 = 𝑦𝑜 × tan (
𝜃 × (2 × 𝑢𝑜 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒 − 1
) (11)

The horizontal placement of the object with respect to the camera, xo is estimated in

millimeters according to Equation (11) utilizing the yo (mm) value found as a result of

Equation (8), the width of the point on the image uo (pixel), the image width uimage (pixel),

and one-half of the horizontal field of view θ (degree).

Thus, supposing that the horizontal and vertical field of view, the tilt angle, and the

camera resolution is known, the object distance can be calculated from its image

coordinates. However, if the angle values are not known, they can be calculated by

generating an equation system provided that certain solutions to Equation (8) and

Equation (11) are available. Letting that two solutions to the aforementioned equations

are (x1, y1, zo) and (x2, y2, zo) where their corresponding image coordinates are (u1, v1) and

(u2, v2) respectively, the solution set for Equation (8) becomes:

𝑦1 = 𝑧𝑜 × cot (𝛽 +
2 × 𝛼 × 𝑣1

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 − 𝛼) (12)

𝑦2 = 𝑧𝑜 × cot (𝛽 +
2 × 𝛼 × 𝑣2

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 − 𝛼) (13)

By taking the zo values to the left side of the equation as a multiplicative inverse and then

applying the inverse cotangent function in Equation (12) and Equation (13), the set can

be solved for the angular parts. Moreover, it should be noted that the inverse cotangent of

a value, cot−1(𝑝) is always equal to the inverse tangent of the reciprocal of the same

value, tan−1(
1

𝑝
) which transforms the solutions to:

31

𝛽 +
2 × 𝛼 × 𝑣1

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 − 𝛼 = cot−1 𝑦1

𝑧𝑜
 = tan−1 𝑧𝑜

𝑦1
 (14)

𝛽 +
2 × 𝛼 × 𝑣2

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 − 𝛼 = cot−1 𝑦2

𝑧𝑜
 = tan−1 𝑧𝑜

𝑦2
 (15)

Later, Equation (15) is multiplied by -1 and the derived equation is summed with Equation

(14) in order to get:

2 × 𝛼

𝑣𝑖𝑚𝑎𝑔𝑒 − 1
 × (𝑣1 − 𝑣2) = tan−1 𝑧𝑜

𝑦1
 − tan−1 𝑧𝑜

𝑦2
 (16)

Rearranging Equation (16) for representing the angle α:

𝛼 =
𝑣𝑖𝑚𝑎𝑔𝑒 − 1

2 × (𝑣1 − 𝑣2)
 × tan−1 (

𝑧𝑜 × (𝑦2 − 𝑦1)

𝑧𝑜
2 + 𝑦1 × 𝑦2

) (17)

To find the angle β, the resulting α description of Equation (17) should be inserted in

either Equation (14) or Equation (15). Solving β for equation (14) yields to:

𝛽 =
1

2(𝑣1−𝑣2)
[(𝑣𝑖𝑚𝑎𝑔𝑒 − 2𝑣2 − 1) tan−1 𝑧𝑜

𝑦1
− (𝑣𝑖𝑚𝑎𝑔𝑒 − 2𝑣1 − 1) tan−1 𝑧𝑜

𝑦2
] (18)

The solution (x1, y1, zo) with image coordinates (u1, v1) can also be used to formulate θ in

a similar manner. The solution for Equation (11) with the mentioned coordinate becomes:

𝑥1 = 𝑦1 × tan (
𝜃 × (2 × 𝑢1 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1)

𝑢𝑖𝑚𝑎𝑔𝑒 − 1
) (19)

The angle θ can be solved in Equation (19) as:

𝜃 =
𝑢𝑖𝑚𝑎𝑔𝑒 − 1

2 × 𝑢1 − 𝑢𝑖𝑚𝑎𝑔𝑒 + 1
 × tan−1 (

𝑥1

𝑦1
) (20)

As a result, it can be deduced that given two solution points from the frame, the angular

parameters α, β, and θ can be estimated when they cannot be retrieved as a camera

parameter or measured. However, the solution set should be selected properly so that

accurate results can be obtained. For instance, if the first solution is taken from the center

of the frame where x1 = 0, the angle θ will be calculated as 0 as well. Specifically, the

experimental results showed that Equation (17), Equation (18), and Equation (20) provide

outcomes with smaller errors when the solution set is close to the center where x1 is not

equal to 0. These experiments with the calculated angles are compared with the values

measured and procured from the lens datasheet and presented in Section 5.2.

32

Calculating the object distances to the camera utilizing the geometrical relationship

between the object point and the optical center of the camera proves to be a useful

approach as the computational complexity is low and the algorithm is feasible to be

computed in real-time. Moreover, as all of the axes in the camera coordinate system is

considered during calculation, the methodology can produce reliable results. Although

this technique also relies on some camera parameters such as resolution and field of view

where the field of view angles can be calculated with a small solution set, its point-

specific approach can make it a more preferable solution.

3.2.3 Using Machine Learning

The last approach studied in this thesis work is to use a machine learning algorithm that

is trained for the system to be installed in order to detect object distances. When a large

and appropriate enough dataset is provided for training, machine learning algorithms with

proper models are known to produce estimations that are adjacent to the real results.

Both supervised and unsupervised learning methods have been previously studied to

overcome autonomous transportation challenges. While the unsupervised learning

algorithms are mainly utilized for depth segmentation [33], [34], distance estimation with

numerical proposals primarily demands a supervised learning algorithm to be able to

discover the properties of the environment [35], [36]. Similar to the geometrical approach

for formulating the xo and yo points, the machine learning technique aims to train the

system so that it can produce educated estimations on the same coordinates of an object.

The first challenge to be addressed during training is to be able to procure a valid dataset

where sufficient information is provided for the system to generate a model expressing

the relationship between the object location on the image as bounding box coordinates

and its distance to the camera. Most of the existing datasets available for object detection

and depth estimation fail to deliver explicit distance annotations that also indicate the

types of the objects. Moreover, the studies that focus on object-specific distance

annotations benefit from the KITTI [41] and nuScenes [42] datasets which provide

annotations regarding only the depth of the object, yo [35]. While these include

comprehensive examples in terms of object types and distances, they are constructed for

autonomous transportation studies offering images that are parallel to the ground. Yet,

Camera-Based Vehicle Location Detection requires a dataset that consists of inclined

images where the camera has a certain pitch angle. Furthermore, the system studied in

33

this thesis calls for detection of the object coordinates as well to be able to map the object

locations meaning that training should be done for both xo and yo points rather than only

for yo. Hence, existing datasets cannot address the problem definition of Camera-Based

Vehicle Location Detection thoroughly which is why a new dataset generated for a

different project at Tallinn University of Technology has been utilized.

The studies on computer vision, whether they focus on distance estimation or not, mostly

implement a deep learning model due to its numerous advantages compared to

conventional learning models which make deep learning an easily available algorithm.

Deep learning is also able to handle a large amount of data for training which is a crucial

requirement for image processing applications while more accurate results can be

obtained with deep learning [37]. Consequently, due to its ease of access, extensiveness,

and efficacy on large datasets, deep learning is a more preferable method of machine

learning than the traditional models.

Selecting the proper attributes of the model to fulfill the project-specific needs, which is

named hyperparameter optimization, is a major concern in deep learning

implementations. This task calls for an efficient algorithm to devise an appropriate model

to be utilized in training. Furthermore, training a deep learning model takes more time

and requires more advanced hardware with high performance than a conventional

approach. Despite these challenges, studies conclude that deep learning can find solutions

to complex and non-linear functions in a simplified way [38] while being the most

effective, supervised, and stimulating machine learning approach [37].

34

4 Implementation

Camera-Based Vehicle Location Detection is a project whose end product should run as

a real-time embedded system able to process visual data. Hence, the camera input ought

to be loaded to a high-performance graphics processing unit (GPU). A suitable alternative

to meet the hardware requirements of the project is considered to be the NVIDIA Jetson

AGX Xavier Developer Kit with a 13-megapixel (MP) 4-camera board whose image is

provided in Figure 8 since it is a rather effective tool for graphical processing and deep

learning with low power consumption and ease of use. As this thesis work focuses on

comparing the algorithms of the system, hardware discussion is generally omitted from

this work.

The system software is developed in Python programming language with version 3.8.

Even though there are other languages that are more embedded-oriented such as C++,

Python is chosen as it embodies a massive number of standard and open-source libraries

for numerous applications. Considering the fact that this thesis study utilizes various

features including object detection, trigonometric calculations, solving trigonometric

equation systems, and machine learning, Python is found to be able to provide a more

consistent software development process due to its competence to address tasks as

complex as end-to-end learning with its selection of libraries. Furthermore, having a

simpler syntax allowing more straightforward development has also made Python a more

Figure 8. NVIDIA Jetson AGX Xavier Developer Kit connected to the camera board, retrieved from [43].

35

preferable choice. The link to access the source codes of the project is presented in

Appendix 5.

4.1 Object Detection Implementation

Composing the object detection algorithms described in this thesis work presents a

generic approach to be employed as the implementation of these detectors requires some

specific functions defined in the OpenCV library which is an open-source platform

developed for conducting computer vision and image processing operations. In order to

get the video from the camera or a file, OpenCV provides the class VideoCapture where

the video source can be inputted as a parameter to its constructor, either as a file path or

as the camera feed. Each frame in the video can be decoded utilizing the read function in

the class which returns the particular frame. Therefore, the function call is made in a while

loop which executes as long as the video capturing continues. The pseudocode for

decoding frames from a connected camera is presented in Figure 9 where cv2 denotes the

OpenCV library. Furthermore, when only one frame is of interest, OpenCV computes the

decoding operation with the imread function to be able to read an image where the file

path is inputted as a parameter.

Initialize the VideoCapture object

While the video feed runs

Read the subsequent frame in the video feed

Perform object detection activities on the frame

Figure 9. The pseudocode for video decoding with OpenCV.

Even though the algorithmic approach for the object detection on a frame with both

MobileNet SSD and YOLO detectors are principally the same, their implementations

have been carried out divergently. Moreover, the configurations and models for

MobileNet SSD and YOLO are constructed in separate formats. Hence, these techniques

are discussed further in detail in different headings.

4.1.1 MobileNet SSD

The implementation of MobileNet SSD covers a list of 20 object classes including but

not limited to bicycle, bus, car, person, and motorbike. The network model to be utilized

for the detector is loaded in the format of the Caffe framework with the usage of the

cv2.dnn.readNetFromCaffe function call. The function takes the network configuration

file path in .prototxt type and the trained weights file path in .caffemodel format as

36

parameters. As a result, the artificial neural network object from the Net class is returned.

Later, inside the while loop where one frame is read, a blob is created from the current

frame which is a transformation of the image to a format in which certain shapes on the

image are highlighted. With the scaling and resizing parameters, cv2.dnn.blobFromImage

function allows the creation of such a blob. This blob needs to be inputted to the neural

network which is achieved with the setInput function from the Net class where the blob

is a parameter to the function. The output of the network is obtained in a list format via

the forward function from the same class. After the execution of this function, the

information of the detected objects is ready to be analyzed.

Each element in the acquired list of the detection information is examined in a for loop to

filter out some of the detections with low confidence values that are smaller than a decided

threshold of 20% and to visually label the objects on the frame. The left bottom and the

right top frame coordinates of the detected objects can also be extracted from the list so

that the bounding boxes can be generated on an output frame using the cv2.rectangle

function. Moreover, the classes indicating the type of the detected objects are also present

in the list for each element so that they can be indicated as text on the output image via

the function cv2.putText. This labeling operation is especially useful for obtaining the

performance analysis of the detector as presented in Section 5.1.

4.1.2 YOLO v3 and YOLO v4

The implementation algorithm of the YOLO v3 and YOLO v4 detectors are nearly the

same as the MobileNet SSD method since all of these detectors are programmed utilizing

the OpenCV framework. However, for the execution of the YOLO techniques, a new

Python class with the name YoloDetector is generated so that the access of the neural

network, the object detection sequence, and filtering as well as labeling the objects can

be performed in a more straightforward manner.

The constructor of the mentioned class takes the file paths of the network configuration,

trained weights, and the object class dataset to generate the neural network and read the

labeled classes. The network configuration file is of .cfg type, and the weights are in

.weights format meaning that the YOLO detector framework Darknet is utilized. The

labeling dataset is acquired from the COCO dataset that includes 80 object classes

involving person, bicycle, car, motorbike, bus, and truck. To load the network model from

a Darknet framework as a Net object, OpenCV provides a function named

37

cv2.dnn.readNetFromDarknet similar to the Caffe framework loading described with the

MobileNet SSD. It should also be noted that a more generic function cv2.dnn.readNet

also exists that can take different framework models as input since the file types are

separate. Following this loading operation, the names of the output layers are required to

be procured in two steps as the names are needed to input to the detection function later.

These steps are initially to get the names of all the layers with the getLayetNames function

and then to obtain the names of the output layers from the returned list of the preceding

function via the getUnconnectedOutLayers function both of which are accessed through

the generated Net object.

The YoloDetector class has two more functions named detect and drawAndLabel. The

first one takes the frame on which object detection should be performed as an input

parameter and returns four lists that deliver information about the names, confidences,

bounding box coordinates, and indexes of the detected objects. The detection sequence is

almost equivalent to the detection order of MobileNet SSD; the image blob is built with

the cv2.dnn.blobFromImage function and its output is given as a parameter to the setInput

function to start the detection. The function forward is also utilized to obtain the results

of the detector, but the output layer names from the getUnconnectedOutLayers function

become a parameter to the function call this time. The confidence threshold is set as 50%

with YOLO algorithms while a non-maximum suppression on the frame is necessary as

the YOLO model does not apply this operation during detection, which is executed using

the cv2.dnn.NMSBoxes function whose output is the index list that forms one of the

returning lists of detect function. Furthermore, labeling the objects on an output frame is

accomplished with the identical approach as described with MobileNet SSD

implementation inside the YoloDetector class function drawAndLabel.

The methodology described in this section is valid for both YOLO v3 and YOLO v4

variants along with their tiny adaptations. Although the implementation algorithm is

uniform, loaded configuration and weights are unique for each alternative as the neural

network models are different.

4.2 Distance Estimation Implementation

The distance estimation methods described in Section 3.2 can be classified into two

categories in terms of their variance in implementation. Utilizing camera parameters and

38

geometrical approach requires similar strategies although their calculation formulas are

dissimilar. Moreover, implementing the machine learning approach expects more

advanced frameworks and functions to be utilized for model generation and training while

some other libraries are needed for generating the proper datasets.

4.2.1 Using Camera Parameters and Geometrical Approach

The requirements for the implementation of the distance estimation methods based on a

formula derived either by utilizing the camera parameters or via the geometrical approach

are mainly alike. Programming Equation (4) where the parallel distance D is obtained

from Equation (3) requires basic arithmetic operations along with a trigonometric cosine

operation which can be executed via the Python built-in module math while the same

interpretation is valid for executing Equation (8) and Equation (11) with tangent and

cotangent functions. It is worth mentioning that the trigonometric functions of the math

library take the angle values in radian meaning that the degree values need to be

converting utilizing the radians function in the same library. The bounding box

coordinates of the detected objects on the frame under investigation can be retrieved from

the object detection implementation presented in Section 4.1.2 while the resolution of the

mentioned frame is obtained utilizing the shape method provided by OpenCV which in

fact benefits from the Numpy library.

Generating the strategy for utilizing camera parameters calls for three values to be

inputted to the program externally which are the camera focal length, sensor height, and

pitch angle. The geometrical approach, on the other hand, necessitates four inputs, namely

the camera height and the three angular parameters, α, β, and θ. The remaining attributes

can be fetched from the object detection result and the shape method for both techniques.

Estimating the distances is achieved in a for loop where all detections that match the

output of the non-maximum suppression are analyzed.

Inside the loop for the calculation with the camera parameters, the bounding box

coordinates for the current detection are procured so that the height of the box can be

determined. Moreover, this algorithm expects the real height of the object to calculate the

distance, which cannot be precisely resolved for each object present. Hence, a mean

height of 1535 mm was fixed for each object classified as a car while all the other objects

are treated to have a height of 2835 mm which is a mean height of a truck. Thus, it can

be concluded that this implementation gives a generic result for cars and trucks which

39

constitute the major part of the area of interest even though the program is not reliable for

other types of objects as well as some cars and trucks whose height deviates from the

mean value largely. With all of the values assigned, Equation (3) divided by the cosine of

the pitch angle is ciphered and labeled as text on the corresponding frame.

The loop iteration for the geometrical approach commences similarly by fetching the

bounding box coordinates of the object to be investigated and deciding the height of the

box. Furthermore, the mean values of the aforementioned coordinates are calculated as

well. Equation (8) has to be computed before since Equation (11) utilizes also the result

of the previous estimation. After both x and y coordinates are determined, the Euclidean

distance is evaluated by merging the camera height into the measurement. As before, the

resulting distances are written above the bounding box drawing on the respective frame.

Predicting the angular parameters from the provided solution set can be performed

utilizing the Python library Sympy. Equation (8) and Equation (11) can be generated with

the help of this library so that the solution set can be inputted to obtain the intended

parameters. The function symbols is utilized to create symbol instances for each attribute

of the aforementioned equations. Later, these symbols are employed to generate the

equations where the trigonometric functions tan and cot are retrieved from the Sympy

library. To substitute the variables with their known values in the solution set, the function

subs is called iteratively where the first argument is the symbol to be replaced with its

value for the corresponding solution and the second parameter is the actual value of the

variable in the current solution. The left-hand side and the right-hand side of the equation

are defined with the class constructor Eq which stands for Equality class where the first

parameter is the created equation and the latter one is the resulting distance. Lastly, to

solve the equation system, the function solve is used with the attributes equation and the

symbol to be solved, which returns either a dictionary or a list containing the solution. It

must be mentioned that the solution set for estimation of the angular values should be

selected carefully in order to obtain results that are parallel to the real values. The

experimental outcomes have shown that the x-axis value is not important for α and β

meaning that it is sufficient to obtain the y-axis measurement which should be chosen

from the points that are relatively in the middle of the image plane. Following a similar

logic, the coordinate that is of significance for θ is represented by the x-axis, which

implies that one horizontal solution is enough for calculating this angle provided that this

solution is also rather central on the image plane except for 0.

40

4.2.2 Using Machine Learning

Since the Camera-Based Vehicle Location Detection project focuses on not only the

distance of a vehicle but rather its coordinates to create an accurate map of the

environment, the machine learning model constructed for this thesis work does not aim

to estimate the overall distances, instead to predict the x and y coordinates separately. To

address this target, two different learning models have been generated that are relatively

small and plain as shown in Figure 10. Another approach fulfilling the objective could be

to build one model with the capability to forecast the values in both axes to output one set

of predictions covering all needs. However, this model practically needs to be more

complex than the two models anticipating the coordinates independently as it would

require more layers and neural connections to devise acceptable estimations for both of

the expected outputs. Therefore, as a substitute for this large and compound design, each

axis value has been predicted by compact and unconnected networks. Both of the models

are inputted by the same image dataset which contains certain information related to the

detected objects which are utilized by the neural network for training and generating

prediction outputs for any upcoming object information.

Figure 10. The generic model of the machine learning implementation.

Applying a deep learning algorithm to estimate the object distances requires some

primary stages to be implemented which can be classified as follows [39]:

41

▪ Generating annotations and dividing the dataset to train and test clusters

▪ Creating the learning models to be utilized and deciding the hyper-parameters

▪ Training the models with the training dataset

▪ Testing the algorithm by producing predictions out of the test annotations

The initial phase for the intended method is to build a proper dataset to train and test the

models to be crafted. A different study being conducted at the Tallinn University of

Technology regarding embedded image processing has procured a video recording of a

road with an integrated camera and a radar system so that the object distances can also be

known, which is utilized for testing the machine learning methodology of this thesis work

as well. The data was divided into frames where the object type, detection confidence,

bounding box coordinates, and whether the box is truncated or not are specified in .xml

files for each frame. Furthermore, the radar data indicating the distances of the objects in

x and y-axes are presented as .json files for every frame. The names of these files are first

read into two lists inside a for loop scanning every file in the directory according to their

filetypes where one list holds the file name of each .json file and the other having the

names of the .xml files with the corresponding index of each element being its frame

number. This operation benefits from the Python modules os and re as os allows

communication with the operating system for reading file names in the directory, and re

enables handling regular expressions for configuring the file names to get their frame

numbers which serve as list indexes. Later, each file in the aforementioned lists is opened

frame by frame in another for loop where the information is fetched to a Pandas data

frame utilizing the json module and the XML document object model API xml.dom as

well as the statistics module. The data frame includes the frame number, the type of the

detected object, the detection confidence, bounding box coordinates, the object distance

in x and y-axes, and whether the bounding box is truncated or not. The generated

annotations are then divided into two datasets for training and testing where 90% is

randomly selected and spared for training with the use of the rand function in the

numpy.random module and the rest is left for testing. The reason for the separation of

90% by 10% between training and testing is to be able to exploit the dataset as much as

possible to prepare the models for creating sufficiently accurate results since the

annotations used can be considered a rather small dataset with approximately 1000 object

information stored.

42

Constructing deep learning models with the proper attributes asks for hyperparameter

optimization which can be achieved with the Python library hyperopt. The library

embodies a Trials class to store the necessary information regarding the hyperparameters.

A Python wrapper called hyperas enables a convenient optimization performance through

the function optim.minimize which takes a model creation function, a train and test data

generation function, a hyperopt algorithm, maximum optimization runs, the Trials object,

and some other evaluation parameters as inputs. In the model creating function

CreateModel, a sequential model instance is generated through the Tensorflow

framework and Keras API. The neural network is assembled by either three or four layers,

which is to be decided by the hyperparameter optimization, each of which is depicted by

the Dense function where the neuron number of the second layer is also to be determined

as a hyperparameter. Moreover, the optimizer in the model configuration function

compile is also programmed as a hyperparameter as well as the batch size attribute of the

training function fit. The last operation of the model creation is to evaluate the loss and

accuracy of the model to be reported for the optimization. On the other hand, the data

generation method Data fetches the attribute under investigation from the train and test

datasets, standardizes, and transforms these annotation values. Since the predictions are

desired for both x and y-axes, the hyperparameter optimization is performed twice; one

for the x coordinates, and the other for y. The results of the optimization program

indicating the best options for both of these models are presented in Figure 11. In the end,

the parameters to be chosen by this program are:

▪ The number of layers in the model

▪ The number of neurons in the second layer

▪ The optimizer of the model

▪ Model batch size

The evaluation results of the best model for x and the best model for y can be observed in

order to construct the optimized network structure and train the models with their

corresponding annotations. Similar to hyperparameter optimization, training the model

for the dataset is conducted separately for both axes. The aforementioned CreateModel

method is mainly repeated with the determined hyperparameters for developing the

training program. First, the train and test data are fetched and classified as inputs and

outputs where inputs are the information that the system learns from and the outputs are

the coordinates to be predicted. The training inputs and outputs are then standardized and

43

transformed before building the models. The sequential models with three and four layers

are constructed and configured with the appropriate number of units and the suitable

optimizers decided by the previous phase before training the system with the certified

batch sizes. Afterward, the trained models are saved at the project directory as .json files

as well as the weights as .h5 files. The summary of each model outputted by the function

summary is provided in Figure 12.

Resembling the preceding stage, producing the predictions for the test dataset is

conducted independently for both axes under investigation. The process begins with

retrieving the test annotations and dividing the input and output attributes followed by

standardization and transformation of the data. The model is then loaded and attained

from the .json file through the Tensorflow method model_from_json, and the weights

through the load_weights function of the Model class. Since this model is not compiled

yet, the compilation is done with the estimated optimizer. Subsequently, the function call

predict from the Model class with the input annotations performs predictions where the

results need to be inversely transformed. The list obtained after all of these operations are

the prediction annotations that can be analyzed for accuracy. Utilizing the pandas and

numpy libraries, the product annotations are organized such that the true coordinates and

distances are represented along with their corresponding predictions.

Figure 11. The results of the hyperparameter optimization program evaluated for both models.

44

Figure 12. The summary of each neural network outputted by the function summary.

45

5 Results

All of the implemented methodologies to be used both for object detection and distance

estimation during the development of the Camera-Based Vehicle Location Detection

project have been tested with certain samples so that the performance of each approach

can be compared with others statistically. Therefore, MobileNet SSD and the YOLO v3

and YOLO v4 families have been compared with the same samples for the object

detection efficiency while camera parameter utilization, geometrical approach, and

machine learning methods have been juxtaposed to see their distance estimation accuracy

scores.

5.1 Object Detection Results

The experiment for comparing the performance results of different object detection

methodologies requires these detectors to be tested out on the same frames. Even though

the detectors under investigation have more performance criteria for the Camera-Based

Vehicle Location Detection project, this study mainly compares them in terms of accuracy

since this parameter also affects the distance estimation experiment crucially.

To construct the experiment, five different sample images from a recording of the traffic

have been selected and the algorithms MobileNet SSD, YOLO v3, YOLO v3-tiny, YOLO

v4, and YOLO v4-tiny have all been inspected to see which algorithms detect the most

vehicles with high confidences. The frames taken from flowing traffic allow the

procurement of various types of vehicles while generating a challenging environment for

the detectors due to the lighting and weather conditions. Even though the images from

the decks of the vessels do not pose as much concern in terms of environmental distresses,

testing the algorithms in a harsher system can uncover various issues of the models to be

realized.

Although the implementation of these detectors is able to notice the objects that are not

necessarily vehicles such as traffic lights, these detections do not contribute to the

accuracy evaluation of the tests in this study as these objects are out of scope for the

46

project. Some images with the detection results of each model are provided in Appendix

2, and a sample frame with the outputs of the YOLO v4 detector is presented in Figure

13. Furthermore, the object detection results from all of the models whose

implementations are studied in this work are compared in Table 1.

As observed from Figure 13, the test frames in fact contain numerous vehicles if the ones

that are quite distant from the camera are also counted. However, the experiment expects

the detections of only the objects that can fairly be identified which creates an interest

radius of approximately 30 meters. As the distance information from the radar sensor

embedded into the test setup suggests, objects that are farther away than this value tend

to become indistinguishable by the detectors. This borderline has been considered while

determining the number of vehicles on the frames provided in Table 1.

Table 1. The experimental results of the object detection methods.

Frame

Number

Number of

Vehicles

MobileNet

SSD

YOLO v3-

tiny

YOLO

v3

YOLO v4-

tiny

YOLO

v4

Frame #1 3 cars 1 car

1 bus (FP)

No objects

detected

2 cars 1 car 2 cars

Frame #2 5 cars 1 car

1 bus (FP)

1 car 5 cars 1 car 4 cars

Frame #3 2 cars

1 bus

1 bicycle

1 bicycle

1 bus (FP)

No objects

detected

2 cars

1 bus

1 bicycle

1 car

1 bus

1 bicycle

2 cars

1 bus

Figure 13. A sample frame with YOLO v4 model used for object detection (Frame #3 in Table 1).

47

Frame

Number

Number of

Vehicles

MobileNet

SSD

YOLO v3-

tiny

YOLO

v3

YOLO v4-

tiny

YOLO

v4

Frame #4 3 cars 1 car

1 bus (FP)

1 car 1 car 2 cars 2 cars

Frame #5 3 cars

1 bus

1 bus

1 bus (FP)

No objects

detected

2 cars

1 bus

1 car 2 cars

1 bus

The frames in the table are indexed from 1 to 5 where each detected object on the frames

is indicated for all of the detectors to be tested. Both the figures in Appendix 2 and the

results shown in Table 1 suggest that YOLO v3 and YOLO v4 are the best choices

addressing the need of being able to detect as many vehicles as possible on the frame

while the other algorithms have either failed to detect any objects on some of the frames

or detected some false positive (FP) objects. The lighting coming from an advertisement

on the top left of the images has always been incorrectly deduced as a bus by MobileNet

SSD while the number of vehicle detections on the frames has not reached a decent score.

The panel has never been mistaken for a bus on the detectors of the YOLO family and

the detection numbers appear to be acceptable. YOLO v3 and YOLO v4 models

performed the top-notch results in this elementary experiment while their tiny variants

did not function as successfully which is a predictable outcome due to their sacrifice in

accuracy while growing faster and more compact. Moreover, the tests on the frames from

a ferry, taken specifically for the Camera-Based Vehicle Location Detection project that

cannot be shown in this study due to confidentiality reasons also concluded that YOLO

v4 performs better than its v3 variant on the complex cases where vehicles are positioned

close to one another.

5.2 Distance Estimation Results

Resembling the object detection experiment, the distance estimation techniques have

been analyzed for their accuracy in a similar test setup where the estimation with camera

parameters, geometrical approach, and machine learning are assessed with various sample

frames. The true distance and the findings of each methodology are compared to obtain a

percentage of error for every estimation benefiting the relation between the results and

the error:

𝐸𝑟𝑟𝑜𝑟 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (𝐸𝑃) =
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡 − 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡
 × 100 (21)

48

The reason that the numerator in Equation (21) is not used as the absolute value of the

subtraction is to be able to determine whether the estimation is smaller or larger than the

correct value. When the experimental result outputted from a distance estimation

algorithm is smaller than the accepted result delivered by the radar system, the error

percentage is denoted as a negative value while it becomes positive provided that the

predictions are larger than the radar measurements. Later, a mean error for each of these

methods is calculated in order to devise a reasonable judgment regarding the precision of

the alternatives. Some of the images with the estimated distance values for the camera

parameters and the geometrical approach are presented in Appendix 3 although the

machine learning estimations are not adjoined since those predictions are obtained as a

data frame and not integrated with their corresponding images. Moreover, an example

frame having the distance estimation results conducted with the geometrical approach is

presented in Figure 14. The outcomes of all of the methods in meters along with their

calculated error percentages for each frame are demonstrated in Table 2 as well as the

measured distance with radar sensor in meters. The frame number (FN) indicates an index

for the test samples for proper tracking.

Table 2. The experimental results of the distance estimation methods.

FN Object

Type

Object

Distance

Camera

Parameters |

Error Percent

Geometrical

Calculation |

Error Percent

Machine

Learning |

Error Percent

1 Person 6.91 12.99 87.97% 8.30 20.14% 7.45 7.82%

2 Person 6.92 14.43 108.64% 8.53 23.39% 6.98 0.95%

3 Car 10.78 11.64 7.97% 12.63 17.21% 10.69 -0.82%

4 Car 14.09 10.52 -25.38% 12.78 -9.35% 12.57 -10.80%

5 Car 22.06 19.71 -10.68% 16.95 -23.17% 22.42 1.64%

6 Car 11.05 6.14 -44.38% 10.05 -9.04% 10.14 -8.22%

7 Car 14.09 11.16 -20.80% 12.96 -8.04% 12.75 -9.53%

8 Bicycle 6.23 22.57 262.28% 6.58 5.63% 6.15 -1.33%

9 Car 23.21 21.66 -6.70% 21.31 -8.19% 23.25 0.15%

10 Car 27.57 47.55 72.49% 28.84 4.62% 25.68 -6.85%

11 Car 21.31 24.86 16.65% 19.96 -6.33% 21.77 2.17%

12 Car 15.78 14.88 -5.73% 14.97 -5.15% 13.97 -11.46%

13 Car 17.67 13.34 -24.52% 15.87 -10.20% 16.69 -5.57%

49

FN Object

Type

Object

Distance

Camera

Parameters |

Error Percent

Geometrical

Calculation |

Error Percent

Machine

Learning |

Error Percent

14 Car 34.03 27.34 -19.66% 20.12 -40.88% 31.01 -8.86%

15 Car 22.64 35.28 55.82% 23.43 3.50% 22.42 -0.96%

16 Car 12.42 8.82 -28.99% 11.68 -6.00% 11.52 -7.29%

17 Car 24.66 29.96 21.48% 21.59 -12.48% 24.34 -1.30%

18 Car 11.13 6.06 -45.59% 9.64 -13.43% 9.83 -11.71%

19 Bus 18.12 8.60 -52.58% 16.16 -10.83% 16.39 -9.57%

20 Car 21.50 29.56 37.48% 20.80 -3.23% 22.63 5.25%

21 Car 23.51 24.58 4.52% 21.89 -6.89% 24.01 2.12%

Mean Error Percentage 18.59% -4.70% -3.53%

As deduced from Table 2, calculation with camera parameters may lead to large errors

due to various reasons. Firstly, this method is applied on an embedded camera although

it produces better estimations on advanced cameras. Moreover, the average height

assumption made during the implementation of this approach can yield erroneous results

when the vehicle whose distance is to be calculated largely deviates from this mean

height. Another aspect to be taken under consideration is that the center of the image

plane is estimated better with this methodology while the rest of the frame has more errors

due to angular differences not considered with this technique. Utilization of the camera

parameters has produced its largest errors on the estimation of person and bicycle classes

in Table 2 both of which are the only classes with the true distance smaller than 10 meters

while the rest of the errors of this technique appear to have occurred evenly on the distance

intervals of 5 meters. However, Table 2 results suggest that the geometrical approach and

Figure 14. An example frame with the geometrical approach used for distance estimation (Frame #12 in

Table 2).

50

machine learning produce fairly well approximations between 10 and 15 meters as well

as 20 and 25 meters. Although this small experiment set may not be enough to make

deductions regarding the operation range of these algorithms, further experiments might

be able to generalize these observations with sizable datasets.

Unlike the first practice, the geometrical approach and machine learning result in

significantly more precise deductions making them more superior alternatives.

Geometrical approximation to model the environment can consider the camera pitch

angle and object orientation more fittingly than the formula derived from the camera

parameters while machine learning takes time to investigate the environment in detail to

devise findings that are nearly exact. Yet, the model construction and training processes

applied at the machine learning method make it computationally expensive while the

geometrical approach formula can be friendlier to be implemented on an embedded

system. Hence, even though its error percentage is mildly higher than the machine

learning technique, utilizing a formula derived from geometrical modeling seems to be a

more suitable expedient to the Camera-Based Vehicle Location Detection project.

The angle calculation in the geometrical approach provided with Equation (17), Equation

(18), and Equation (20) is also experimented to compare the outcomes of the equations

with the measured tilt angle and the fields of view obtained from the datasheet of the

camera lens. The camera utilized for this test is e-CAM130A_CUXVR whose lens has a

horizontal field of view with 87.26° and a vertical field of view with 64.96° [40]. As the

angle α is equal to the half of the vertical field of view whereas θ represents one half of

the horizontal field of view, the true values for these angles can be deduced as:

𝛼 =
𝐹𝑂𝑉𝑉

2
 =

64.96°

2
 = 32.48° (22)

𝜃 =
𝐹𝑂𝑉𝐻

2
 =

87.26°

2
 = 43.63° (23)

In Equation (22), FOVV signifies the vertical field of view while FOVH in Equation (23)

indicates the horizontal field of view. Moreover, the tilt angle β is measured as 9°. To

understand the effect of selecting proper points for angle calculation through the

equations, three solution sets have been considered. Three frames where the coordinates

of the detected objects are in extreme points have been put to the experiment as the first

solution set. The second and third solution sets consist of two frames each as two objects

create the smallest possible sets. The object coordinates of these points are provided as:

51

𝑆𝑒𝑡 #1 {

(𝑥1,1, 𝑦1,1, 𝑧1,1) = (−0.77, 4.03, 4.1), (𝑢1,1, 𝑣1,1) = (1297.0, 1412.0)

(𝑥1,2, 𝑦1,2, 𝑧1,2) = (0.0, 34.88, 4.1), (𝑢1,2, 𝑣1,2) = (995.5, 785.5)

(𝑥1,3, 𝑦1,3, 𝑧1,3) = (−10.97, 11.99, 4.1), (𝑢1,3, 𝑣1,3) = (730.5, 819.5)

 (24)

𝑆𝑒𝑡 #2 {
(𝑥2,1, 𝑦2,1, 𝑧2,1) = (2.86, 6.75, 4.1), (𝑢2,1, 𝑣2,1) = (1945.0, 1251.5)

(𝑥2,2, 𝑦2,2, 𝑧2,2) = (−6.05, 11.39, 4.1), (𝑢2,2, 𝑣2,2) = (812.5, 991.5)
 (25)

𝑆𝑒𝑡 #3 {
(𝑥3,1, 𝑦3,1, 𝑧3,1) = (3.06, 32.48, 4.1), (𝑢3,1, 𝑣3,1) = (1439.5, 737.5)

(𝑥3,2, 𝑦3,2, 𝑧3,2) = (−5.96, 6.86, 4.1), (𝑢3,2, 𝑣3,2) = (338.5, 1291.5)
 (26)

The angle calculation results of the solution sets provided in Equation (24), Equation (25),

and Equation (26) are shown in Table 3. In the first set, the points (𝑥1,1, 𝑦1,1, 𝑧1,1) and

(𝑥1,2, 𝑦1,2, 𝑧1,2) along with their representative coordinates on the image plane (𝑢1,1, 𝑣1,1)

and (𝑢1,2, 𝑣1,2) respectively, are utilized to calculate the angles α and β while the last

point (𝑥1,3, 𝑦1,3, 𝑧1,3) and its placement on the image plane (𝑢1,3, 𝑣1,3) are exploited to

obtain the θ angle. However, the first points at Set #2 and Set #3 are applied for finding θ

as well since the information of one point is sufficient to perform the calculation for it.

Table 3. The results of the angle calculations for different solution sets.

 Angle Read from the Datasheet / Measured Set #1 Set #2 Set #3

α 32.48° 47.02° 33.58° 32.47°

β 9.0° 5.09° 9.54° 8.14°

θ 43.63° 99.23° 43.89° 42.29°

It can be concluded from the results of Table 2 that not all solution sets obtained from the

system can be applicable to deduce acceptable estimations for angular variables. In fact,

designating a set of points that can induce values with minor errors appears to be a

challenging problem. Nonetheless, the experiments indicate that the points near the center

of the frame are typically less prone to erroneous estimations. As a matter of fact, having

deductions that are close to the actual angles, the values outputted from Set #2 are utilized

to calculate the distances of the points denoted in Table 2.

Certain assessments have been conducted while implementing the machine learning

model as well so that the efficiency of the models can be evaluated. As the regression

models to address the aim of this project should produce decimal numbers, the

performance metrics applied cannot be “accuracy” because of the fact that accuracy

checks if the estimated value is exactly the same as the true value. Hence, other criteria

52

to evaluate the performance are employed instead so that the estimated x and y-axes

coordinates can be analyzed in terms of their proximity to the real values. All of the

metrics investigated during this work are related to the errors of the train and test data of

the models except for the cosine similarity analysis. Cosine similarity represents the

angular difference between the two results. As the values become similar, the angle

between their corresponding vectors gets closer to 0 making them alike. The similarity

test results are shown for the x and y-axis models in Figure 15. Furthermore, the losses

from the mean squared error of both of the models are provided in Figure 16. The

outcomes of the remaining investigations regarding other types of errors are provided for

both models in Appendix 4.

The formula for calculating the cosine similarity of two lists, denoted as A and B, is

presented in Equation (27) where the sets become perfectly opposite as the equation

outputs -1 and perfectly similar as the product calculates to 1. The angle θ in Equation 24

symbolizes the angle between the two collections to be compared, and the equation

divides the dot product of the lists to the multiplication of their magnitudes. Ai indicates

an arbitrary element belonging to list A of n elements whereas Bi is utilized for an arbitrary

element of list B of the same number of elements as A.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = cos 𝜃 =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
 =

∑ 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖 = 1

√∑ 𝐴𝑖
2𝑛

𝑖 = 1 × √∑ 𝐵𝑖
2𝑛

𝑖 = 1

 (27)

Mean squared error is another valuable statistical analysis as the sizable deviations from

the real value add more weight to the analysis while the principle always assures a positive

output. As the name suggests, this method takes the average of the sum of the squared

errors. Equation (28) describes the calculation of this technique. Similar to Equation (24),

n denotes the number of elements on which the error is estimated while yi is an arbitrary

true value, and �̃�𝑖 is the estimated representation of this value.

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =
1

𝑛
 × ∑ (𝑦𝑖 − �̃�𝑖)

2𝑛
𝑖 = 1 (28)

Figure 15 depicts that the cosine similarity of both of the models approaches to 1 as the

number of epochs of models increases although the convergence to 1 reaches a steady-

state for both train and test data after some epochs. The similarity of the x-axis can be

said to have reached its maximum near 4000 epochs for the test and 2500 for the train

while the maximum reach occurred near 2000 epochs for the y-axis. Furthermore, Figure

53

16 describes the mean squared error with respect to the increasing epoch numbers which

indicates that the losses decrease as epochs increase in the train and test data of both of

the models as expected. However, especially with the x-axis model, the test data can be

seen to descend to lower error values than the training set which might indicate that the

test samples generalized better as the size of the test samples is rather small. Generating

novel train and test sets with different separation percentages can simply illuminate the

reason for this phenomenon. Yet, the decrease of the error observed in all datasets of both

models to diminutive values after 3000 epochs in x-axis and 2000 epochs in y-axis, in

fact, proves that the networks operate successfully.

54

(a)

(b)

Figure 15. Model performance analysis via cosine similarity for (a) the x-axis estimations and (b) the y-

axis estimations.

55

Figure 16. Model loss analysis via mean squared error for (a) the x-axis and (b) the y-axis estimations.

(a)

(b)

56

6 Summary

Camera-Based Vehicle Location Detection is a project to be developed on an embedded

system that utilizes image processing features to create a mapping analysis of the system

environment. The system is intended to be implemented on the decks of ferries and

possibly other types of Ro-Ro ships to be able to monitor the vehicle traffic on the ship

in real-time. The camera on the system can produce a live feed of the deck to which

certain object detection and distance estimation algorithms are applied. Therefore, the

coordinates of the vehicles on the ships can be tracked down in a convenient manner.

This thesis work analyzed certain algorithms for detecting objects and their locations so

that the optimized solution methodology could be crafted for the project. For object

detection, some of the most common one-stage detectors were implemented and

compared for accuracy, namely MobileNet SSD, YOLO v3 along with its alternative

YOLO v3-tiny, and YOLO v4 as well as YOLO v4-tiny. Comparing these models showed

that YOLO v4 is more successful than the rest in delivering accurate findings with the

ability to perform satisfactorily in complex cases. Furthermore, three different distance

estimation techniques were put to test in order to inspect their precision. The first

formulation using intrinsic camera parameters to represent the object depth functioned

more defectively whereas constructing a set of equations to evaluate the distances in

different axes for mapping with the help of geometric modeling proved to be a fast,

simple, and a rather accurate approach. Lastly, a machine learning model was also

developed so as to analyze how much the accuracy improves compared to the geometrical

methodology, and the results confirmed that the enhancement on the error percentage was

not at a grand scale to make the geometrical representation a poor alternative.

The experiments have mainly demonstrated that the error percentage difference between

the geometrical approach and the machine learning models are not grand where the

network models performed with an average error percentage of -3.53% from 21 arbitrarily

selected frames and the geometrical calculation resulted in -4.70%. As the reasons for

errors are relatively larger with camera parameters utilization, the method performed

poorly with an average error percentage of 18.59%.

57

The further tasks to be executed for the Camera-Based Vehicle Location Detection project

mainly involves the implementation of the algorithms proposed in this study on the

selected hardware platform as well as the detailed performance analysis with the different

criterion on the embedded system. Additional detailed and explicit analyses of the angle

calculation technique might also uncover more criteria for the proper solution set

selection. Finally, although the object coordinates deduction strategies have been

implemented, these findings need to be adapted for a generic mapping representation of

the vessel which requires some extra work on the outcomes of this thesis work.

58

References

[1] Puisa, R. (2018). Optimal stowage on Ro-Ro decks for efficiency and safety. Journal of

Marine Engineering & Technology, 20, 1-17.

[2] Park, D.J., & Choi, Y.B. (2006). Implementation of Ubiquitous Port Operation System

Using RTLS. The Journal of the Korea Contents Association, 6, 128–135.

[3] Hur, D.C., & Lee, K.Y. (2007). Design and Implementation of Physical Distribution

Management System Using RFID and GPS. Proceedings of the Korean Institute of

Information and Commucation Sciences Conference, The Korea Institute of Information

and Commucation Engineering.

[4] Roehrig, C., Heller, A., Heß, D., & Künemund, F. (2014). Global Localization and Position

Tracking of Automatic Guided Vehicles using passive RFID Technology.

[5] M’hand, M.A, Boulmakoul, A., Badir, H., & Lbath, A. (2019). A scalable real-time tracking

and monitoring architecture for logistics and transport in RoRo terminals. Procedia

Computer Science, 151, 218-225.

[6] Tian, D., Lin, C., Zhou, J., Duan, X., Cao, Y., Zhao, D., & Cao, D. (2020). SA-YOLOv3:

An Efficient and Accurate Object Detector Using Self-Attention Mechanism for

Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems, 1-12.

[7] Soviany, P., & Ionescu, R. (2018). Optimizing the Trade-Off between Single-Stage and

Two-Stage Deep Object Detectors using Image Difficulty Prediction. 2018 20th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), 209-214.

[8] Bochkovskiy, A., Wang, C.Y., & Liao, H.Y.M. (2020). YOLOv4: Optimal Speed and

Accuracy of Object Detection.

[9] Jocher, G., Kwon, Y., guigarfr, Veitch-Michaelis, J., perry0418, Ttayu, Marc, Bianconi, G.,

Baltacı, F., Suess, D., Chen, T., Yang, P., idow09, WannaSeaU, Xinyu, W., Shead, T.M.,

Havlik, T., Skalski, P., NirZarrabi, LukeAI, LinCoce, Hu, J., IlyaOvodov, GoogleWiki,

Reveriano, F., Falak, & Kendall, D. (2020). ultralytics/yolov3: 43.1mAP@0.5:0.95 on

COCO2014. doi:10.5281/zenodo. 3785397.

[10] Tan, M., Pang, R., & Le, Q.V. (2020). EfficientDet: Scalable and Efficient Object

Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 10778-10787.

[11] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., & Fu, C.Y., & Berg, A.

(2016). SSD: Single Shot MultiBox Detector. Lecture Notes in Computer Science, 21-37.

[12] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer

Vision and Pattern Recognition, 580-587.

[13] Girshick, R. (2015). Fast R-CNN. 2015 IEEE International Conference on Computer

Vision (ICCV), 1440-1448.

59

[14] Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39.

[15] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2018). Mask R-CNN.

[16] Hu, X., Xu, X., Xiao, Y., Chen, H., He, S., Qin, J., & Heng, P.A. (2019). SINet: A

Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE

Transactions on Intelligent Transportation Systems, 20(3), 1010-1019.

[17] Forrest, N.I., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., & Keutzer, K. (2016).

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.

[18] Schönberger, J., & Frahm, J.M. (2016). Structure-from-Motion Revisited. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 4104-4113.

[19] Zhang, J., Hu, S., & Shi, H. (2018). Deep Learning based Object Distance Measurement

Method for Binocular Stereo Vision Blind Area. International Journal of Advanced

Computer Science and Applications, 9.

[20] Liao, Y., Huang, L., Wang, Y., Kodagoda, S., Yu, Y., & Liu, Y. (2016). Parse

Geometry from a Line: Monocular Depth Estimation with Partial Laser Observation.

[21] Mustafah, Y., Noor, R., Hasbi, H., & Azma, A. (2012). Stereo vision images processing

for real-time object distance and size measurements. 2012 International Conference on

Computer and Communication Engineering (ICCCE), 659-663.

[22] Akepitaktam, P., & Hnoohom, N. (2019). Object Distance Estimation with Machine

Learning Algorithms for Stereo Vision. 2019 14th International Joint Symposium on

Artificial Intelligence and Natural Language Processing (iSAI-NLP), 1-6.

[23] Pratama, M., Budi, W., Dimyani, S., Praptijanto, A., Nur, A., & Putrasari, Y. (2019).

Performance of Inter-vehicular Distance Estimation: Pose from Orthography and Triangle

Similarity. 2019 International Conference on Sustainable Energy Engineering and

Application (ICSEEA), 37-41.

[24] Chiu, Y.C., Tsai, C.Y., Ruan, M.D., Shen, G.Y., & Lee, T.T. (2020). Mobilenet-SSDv2:

An Improved Object Detection Model for Embedded Systems. 2020 International

Conference on System Science and Engineering (ICSSE), 1-5.

[25] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 779-788.

[26] Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger.

[27] Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.

[28] Adarsh, P., Rathi, P., & Kumar, M. (2020). YOLO v3-Tiny: Object Detection and

Recognition using one stage improved model. 2020 6th International Conference on

Advanced Computing and Communication Systems (ICACCS), 687-694.

[29] Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-time object detection method based on

improved YOLOv4-tiny.

[30] Kendal, D. (2007). Measuring distances using digital cameras. Australian Senior

Mathematics Journal, 21.

[31] Joglekar, A., Joshi, D., Khemani, R., Nair, S., & Sahare, S. (2011). Depth Estimation

Using Monocular Camera.

[32] Taylor, T., Geva, S., & Boles, W. (2004). Monocular Vision as a Range Sensor.

60

[33] Jin, F., Zhao, Y., Wan, C., Yuan, Y., & Wang, S. (2021). Unsupervised Learning of

Depth from Monocular Videos Using 3D-2D Corresponding Constraints. Remote Sensing,

13(9).

[34] Xiong, L., Wen, Y., Huang, Y., Zhao, J., & Tian, W. (2020). Joint Unsupervised

Learning of Depth, Pose, Ground Normal Vector and Ground Segmentation by a Monocular

Camera Sensor. Sensors, 20, 3737.

[35] Zhu, J., Fang, Y., Abu-Haimed, H., Lien, K.C., Fu, D., & Gu, J. (2019). Learning

Object-specific Distance from a Monocular Image. 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), 3838-3847.

[36] Haseeb, M. (2018). DisNet: A novel method for distance estimation from monocular

camera.

[37] Dargan, S., Kumar, M., Ayyagari, M., & Kumar, G. (2019). A Survey of Deep Learning

and Its Applications: A New Paradigm to Machine Learning. Archives of Computational

Methods in Engineering, 1-22.

[38] Chauhan, N., & Singh, K. (2018). A Review on Conventional Machine Learning vs

Deep Learning. 2018 International Conference on Computing, Power and Communication

Technologies (GUCON), 347-352.

[39] Patel, H. (2020). KITTI distance estimation. Retrieved from

https://github.com/harshilpatel312/KITTI-distance-estimation. (Accessed in 2021).

[40] e-con Systems™ (2020). e-CAM130A_CUXVR Lens Datasheet. Revision 1.4.

[41] Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., & Geiger, A. (2017).

Sparsity Invariant CNNs. International Conference on 3D Vision (3DV).

[42] Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan,

Y., Baldan, G., & Beijbom, O. (2020). nuScenes: A multimodal dataset for autonomous

driving.

[43] e-CAM130A_CUXVR - Multiple Camera Board for NVIDIA® Jetson AGX Xavier™.

Retrieved from https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-

cameras/four-synchronized-4k-cameras.asp. (Accessed in 2021).

https://github.com/harshilpatel312/KITTI-distance-estimation
https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-cameras/four-synchronized-4k-cameras.asp
https://www.e-consystems.com/nvidia-cameras/jetson-agx-xavier-cameras/four-synchronized-4k-cameras.asp

61

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Mustafa Furkan Kopar

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Camera-Based Vehicle Location Detection”, supervised by Uljana Reinsalu,

Jürgen Soom and Mairo Leier

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

02.08.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

62

Appendix 2 – Object detection results for selected images

The experimental results for object detection conducted by Mobile SSD, YOLO v3,

YOLO v3-tiny, YOLO v4, and YOLO v4-tiny detectors are presented from Figure 17 to

Figure 19 provided that objects were able to be detected on the samples by the

corresponding detectors. The tiny variant of YOLO v3 was not able to detect any vehicles

on the sample image in Figure 17 while MobileNet SSD has a false positive detection of

a bus in each figure. The deduction of YOLO v3 and v4 being superior to the tiny variants

in terms of the number of detections can also be derived from these images.

(a)

(b)

63

(c)

(d)

Figure 17. Results of the vehicle detection on a sample image (Frame #1 in Table 1) with (a) MobileNet

SSD, (b) YOLO v3, (c) YOLO v4-tiny, and (d) YOLO v4. YOLO v3-tiny failed to detect objects on this

sample.

64

(a)

(b)

65

(c)

(d)

66

(e)

Figure 18. Results of the vehicle detection on a sample image (Frame #2 in Table 1) with (a) MobileNet

SSD, (b) YOLO v3-tiny, (c) YOLO v3, (d) YOLO v4-tiny, and (e) YOLO v4.

67

(a)

(b)

(c)

68

(d)

(e)

Figure 19. Results of the vehicle detection on a sample image (Frame #4 in Table 1) with (a) MobileNet

SSD, (b) YOLO v3-tiny, (c) YOLO v3, (d) YOLO v4-tiny, and (e) YOLO v4.

69

Appendix 3 – Distance estimation results for selected images

The experimental results for distance estimation conducted by camera parameters

utilization and geometrical approach are presented from Figure 20 to Figure 22 where the

object detection is performed with YOLO v4 detector. The results from the machine

learning methodology were not inspected on the frames but obtained as a resulting

dataset. Comparing the results of the two algorithms provided in these frames suggests

that their estimations generally differ from each other on a large scale while most of the

time, the calculations of the geometrical approach are the ones producing more sensible

and accurate results.

(a)

(b)

Figure 20. Results of the distance estimation on a sample image (Frame #10 in Table 2) with (a) camera

parameters utilization and (b) geometrical approach.

70

(a)

(b)

(a)

(b)

Figure 21. Results of the distance estimation on a sample image (Frame #15 in Table 2) with (a) camera

parameters utilization and (b) geometrical approach.

Figure 22. Results of the distance estimation on a sample image (Frame #20 in Table 2) with (a) camera

parameters utilization and (b) geometrical approach.

71

Appendix 4 – Performance analysis for machine learning

models

The experimental results for estimating the performance of the machine learning models

are presented in Figure 23 and Figure 24. Figure 23 represents the mean absolute error of

the models calculated by the formula presented in Equation (29), and Figure 24 shows

the root mean squared error of the models according to Equation (30).

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =
1

𝑛
 × ∑ |𝑦𝑖 − �̃�𝑖|𝑛

𝑖 = 1 (29)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √𝑀𝑆𝐸 = √
1

𝑛
 × ∑ (𝑦𝑖 − �̃�𝑖)2𝑛

𝑖 = 1 (30)

The results for both MAE and RMSE are indeed rather similar to the results of the loss

function MSE provided in Figure 16. The difference between the train and test error

performances that is especially more notorious with the x-axis model stems from the same

analogy described in Section 5.2 where the small test dataset results in a better fit with

smaller errors. However, this does not necessarily mean that the models are faulty or

performed poorly, new datasets with various sizes can be applied to the model to confirm

the reason for this observation. As the error values decrease rather drastically with the

increasing epochs, usually around 2000 in the y-axis model and near 3000 in the x, the

networks can be concluded to operate as expected.

72

(a)

(b)

Figure 23. Model performance analysis via mean absolute error for (a) the x-axis estimations and (b) the y-

axis estimations.

73

(a)

(b)

Figure 24. Model performance analysis via root mean squared error for (a) the x-axis estimations and (b)

the y-axis estimations.

74

Appendix 5 – The repository link of the thesis work

The link to the Tallinn University of Technology GitLab repository which includes the

basic data and source codes described in the thesis “Camera-Based Vehicle Location

Detection” is as follows:

▪ https://gitlab.cs.ttu.ee/mukopa/camera-based-vehicle-location-detection

https://gitlab.cs.ttu.ee/mukopa/camera-based-vehicle-location-detection

	Author’s declaration of originality
	Acknowledgement
	Abstract
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Literature Review
	2.1 Cargo Organization in Ro-Ro Ships
	2.2 Object Detection
	2.2.1 One-Stage Detector
	2.2.2 Two-Stage Detector

	2.3 Distance Estimation

	3 Methods
	3.1 Object Detection Methods
	3.1.1 MobileNet SSD
	3.1.2 YOLO v3
	3.1.3 YOLO v4

	3.2 Distance Estimation Methods
	3.2.1 Using Camera Parameters
	3.2.2 Using Geometrical Approach
	3.2.3 Using Machine Learning

	4 Implementation
	4.1 Object Detection Implementation
	4.1.1 MobileNet SSD
	4.1.2 YOLO v3 and YOLO v4

	4.2 Distance Estimation Implementation
	4.2.1 Using Camera Parameters and Geometrical Approach
	4.2.2 Using Machine Learning

	5 Results
	5.1 Object Detection Results
	5.2 Distance Estimation Results

	6 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Object detection results for selected images
	Appendix 3 – Distance estimation results for selected images
	Appendix 4 – Performance analysis for machine learning models
	Appendix 5 – The repository link of the thesis work

