
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Raul Metsma 211774IAPM

MAN IN THE MIDDLE ATTACK PREVENTION FOR

SMART-ID USING BROWSER EXTENSIONS

Master’s Thesis

Supervisor: Ahto Buldas
PhD

Co-supervisor: Raul Kaidro

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Raul Metsma 211774IAPM

SMART-ID VAHENDUSRÜNNETE VÄLTIMINE

BRAUSERILAIENDUSTE ABIL

Magistritöö

Juhendaja: Ahto Buldas
PhD

Kaasjuhendaja: Raul Kaidro

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Raul Metsma

08.05.2023

1

Abstract

The thesis in hand analyses the weaknesses of the current Smart-ID and proposes a new
protocol to protect users against man-in-the-middle attacks. This thesis also gives proof
of concept solution web browser extension and provides a conceptual description of Web
Extension solution operating principles.

The thesis is written in English and is 56 pages long, including 6 chapters, 27 figures and 3
tables.

2

Annotatsioon
Smart-ID vahendusrünnete vältimine brauserilaienduste abil

Käesolevas lõputöös analüüsitakse praeguse Smart-ID nõrkusi ja pakutakse välja uus
protokoll, mis kaitseks kasutajaid vahendusrünnete eest. See lõputöö annab ka tõestuse
kontseptsioonilahenduse veebibrauseri laienduse kohta ja annab kontseptuaalse kirjelduse
veebilaienduse tööpõhimõtetest.

Lõputöö on kirjutatud inglise keeles ja on 56 lehekülge pikk, sisaldab 6 peatükki, 27 joonist
ja 3 tabelit.

3

List of Abbreviations and Terms

API Application Programming Interface
CCA Client Certificate Authentication
CORS Cross-Origin Resource Sharing
CSS Cascading Style Sheets
DNS Domain Name System
eID Electronic Identity
HMAC Keyed-hash Message Authentication Code
HSM Hardware Security Module
HTML HyperText Markup Language
HTTP The Hypertext Transfer Protocol
HTTPS The Hypertext Transfer Protocol Secure
ID Identity
IP Internet Protocol
JWK JSON Web Key
JWT JSON Web Token
KID Key Identifier
MAC Message Authentication Code
MITM Man In the Middle
NFC Near-Field Communication
PIN Personal Identificaton Number associated with an eID
QES Qualified Electronic Signature
QR Quick Response code
QSCD Qualified Signature Creation Device
RIA Estonian Information System Authority (Riigi Infosüsteemi Amet)
RP Relying Party
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem that is

widely used for secure data transmission.
SSL Secure Sockets Layer
SK SK ID Solutions AS (formerly AS Sertifitseerimiskeskus)
TCP Transmission Control Protocol
TLS Transport Layer Security
URL Uniform Resource Locator

4

List of Notations

x← v A variable x gets a value v

M Requested message or transaction, the Indent
m Calculated message hash value of M
cc Control code derived from message hash value m

ds Display string that is assigned to message M to give better
context (e.g. "Login", "Accept transfer")

K Pre-shared secret
qr QR Code
qrMac QR code that depends on M , URL and K

urlB URL of a malicious site
urlG URL of the Relying party site
sMD
U User’s share of the signature created by the Mobile Device
sSPU Server’s share of the signature created by the Service Provider
h Cryptographic hash function
f Function to derive control code from the hash value of a mes-

sage
SigU(m) Signature value of message digest value m

SigMD
U (m) Function to calculate user’s share of the signature of message

digest value m

SigSPU (m) Function to calculate server’s share of the signature of message
digest value m

Comp(sMD
U , sSPU) Function to compose signature value from user’s share sMD

U

and server’s share sSPU
survey(M) Information extracted from a message M

Json(X) JSON representation of data X

MacK(X) Message authentication code of data X computed with K

Qr(X) QR encoding of data X

5

Table of Contents

1 Introduction . 10
1.1 Background . 10
1.2 Observations . 10
1.3 The Problem . 11
1.4 Research Questions Topics . 11
1.5 Proposed Solution . 12
1.6 Expected Impact . 12
1.7 Structure of Work . 12
1.8 Contributions of Thesis . 13
1.9 Outline of the Thesis . 13

2 Background . 14
2.1 Working Principles of Smart-ID . 14
2.2 Man in the Middle Attacks . 15
2.3 Insufficiency of the Existing Measures 17

2.3.1 General Model . 17
2.3.2 Blind PIN Trial Attack . 18
2.3.3 Social Engineering Attack . 18
2.3.4 Man in the Middle Attack . 19
2.3.5 Man in the Browser Attack . 20
2.3.6 Countermeasures . 21

2.4 Measure: QR Code . 22
2.5 Browsers . 23

2.5.1 TLS/SSL and Client Certificate Authentication 24
2.5.2 Browser Extensions . 25
2.5.3 Web-Extensions - JavaScript API 26
2.5.4 Conclusion . 27

3 New Measures to Prevent Man in the Middle Attack 29
3.1 Key Establishment . 29
3.2 Modified Authentication Protocol . 30
3.3 Analysis . 32

4 Prototype Solution . 34
4.1 Scope of the Solution . 34

6

4.2 Description . 34
4.3 Sample Scenario . 36

4.3.1 Browser Extension Installation 38
4.3.2 Key Generation . 38
4.3.3 Pairing . 39
4.3.4 Authentication . 39
4.3.5 Authentication Failure . 41

5 Analysis, Conclusion and Future Research 42

6 Summary . 43

References . 44

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 46

Appendix 2 – Common JavaScript Module . 47

Appendix 3 – Extension . 48

Appendix 4 – Extension Background Script . 49

Appendix 5 – Extension Options Page . 50

Appendix 6 – Smart-ID Proof of Concept Project 51

Appendix 7 – Smart-ID Web Application . 52

Appendix 8 – Smart-ID Application . 54

Appendix 9 – Relying Party . 55

7

List of Figures

1 Smart-ID authentication protocol. 16
2 General model. 17
3 Blind PIN trial attack. 18
4 Social engineering attack. 18
5 Man in the middle attack. 20
6 Man in the browser attack. 20
7 Man in the middle attack with QR code. 23

8 Key exchange protocol with the browser extension. 30
9 Modified authentication protocol description. 31
10 Model: Authentication with the browser extension code. 31
11 Man in the middle attack with the browser extension code. 32

12 Key generation process description. 35
13 Authentication process description. 37
14 Missing extension. 38
15 Extension installation. 38
16 Extension installed. 38
17 Pair with Smart-ID mobile app. 38
18 Smart-ID mobile app scan button. 39
19 Scan pre-shared secret. 39
20 Login screen. 39
21 Scan authentication QR. 39
22 Smart-ID mobile app scan button. 40
23 Scan authentication token. 40
24 Smart-ID mobile app insert PIN. 40
25 RP authentication successful. 40
26 Malicious RP authentication. 41
27 RP authentication failure. 41

8

List of Tables

1 Attacks and countermeasures . 22
2 Extension Components . 26
3 JavaScript API Components . 26

9

1. Introduction

1.1 Background

Smart-ID is an electronic identity solution that takes advantage of the smart capabilities of
mobile devices while providing users with a high level of security and providing online
service providers with a reliable and secure means of end-user electronic authentication
and digital signature creation.

In the Baltic countries, Smart-ID has over 3 million users, with 680 859 of them in Estonia
[06.05.2023] 1. SK ID Solutions AS (SK) develops and operates Smart-ID in partnership
with Cybernetica AS. It allows for user authentication and the creation of digital signatures
for electronic services provided by both public and private entities. The commercial banks
generate the majority of transactions. Smart-ID is classified as a QSCD (qualified signature
creation device), meaning the signatures created are legally equivalent to handwritten
signatures.

1.2 Observations

On several occasions, the Smart-ID users’ behaviour and Smart-ID’s technical security
measures have been challenged, and there are many attempts to over-take users’ accounts.
Some of these attempts have already been successful [1, 2]. In the worst case scenarios,
the users have lost control over their bank accounts and therefore suffered serious financial
damages due to account hijacking. All of these have been possible due to the user’s
negligence towards the process details provided by the Smart-ID solution and the URL
used to access the service.

The user always remains the weakest link in the chain of the technical solution otherwise
considered to be secure [3]. The Estonian Association of Banks [4] and also the Estonian
State Information Authority have issued several calls to the users to be vigilant towards
possible attacks. Even though, SK ID Solutions has implemented various security measures
to ensure the maximum security of Smart-ID [5], dangers are still lurking for unsuspecting
users.

This work aims to identify and address potential attack vectors that can hijack Smart-ID

1Smart-ID https://www.smart-id.com/

10

https://www.smart-id.com/

authentication process. The focus is on the most pressing questions related to the Smart-ID
man-in-the-middle (MITM) attacks: What does the MITM attack vector look like? What
makes users become vulnerable to this type of attack? Why are the users not able to detect
fraudulent behaviour? What are the existing mechanisms currently being implemented
to protect the Smart-ID users? What solutions can be proposed to prevent these types of
attacks?

There are several studies on the MITM attacks against Mobile-ID, which is, from the
end-user’s point of view, similar to the Smart-ID. For example, Peeter Laud and Meelis
Roos completed the formal analysis of the Mobile-ID protocol in 2009 [6]. Also, a related
study was completed by Cybernetica in 2019 [7]. Both the cited studies conclude that the
technical protocol is secure, but the end user can be deceived and is not always able to
identify the MITM of the authentication process, which makes the MITM type of attack
possible.

1.3 The Problem

The current security measures are not sufficient to prevent a MITM attack. Previous news
articles have reported successful attempts of these attacks, highlighting the need for further
security improvements. To address this issue, there are proactive campaigns to improve
the users’ skillset in identifying fraudulent websites 2.

1.4 Research Questions Topics

What are the mechanisms by which the user fails to recognise a fraudulent website?
What protection mechanisms have SK ID Solutions and web browser manufacturers
already implemented? How can it ensure that the user is transacting through a fraudulent
middleman? The purpose is to identify the shortcomings of the given solutions and
approaches.

Research methods used in this work follow the usual standards of applied cryptography
research. The model of the system is constructed together with the assumed action model
of the attacker. The system is then modified, demonstrating that the attacker’s presumable
actions will not result in successful attacks in the modified model.
2https://www.itvaatlik.ee/kontrolli/

11

https://www.itvaatlik.ee/kontrolli/

1.5 Proposed Solution

The author will propose a solution with a browser extension with additional Smart-ID
changes. The extension will capture the browser’s current visited URL and transfer
captured info securely to relying party for additional checks.

1.6 Expected Impact

The solution presented in this work provides an alternative approach to implement addi-
tional security features in the form of a web browser extension to protect the end user
from MITM type of attacks. The method is yet to be used on any Estonian eID solutions.
The browser extension also significantly improves the user experience for the authentica-
tion process and provides additional assurance when identifying fraudulent websites and
possible attacks.

1.7 Structure of Work

The thesis will first introduce the Smart-ID background, its operating principles, the
concept and how the end-user and the relying party can use it. The thesis also describes the
motivation based on how successful MITM attacks have already been carried out. Then it
will raise research and development goals. The use case will be modelled during the study,
and the attack will be carried out using the model.

Proposing new security measures, to prevent MITM attackers from carrying out malicious
activity and relying on a party to identify users’ presence on the correct site. The solution’s
novelty lies in the technical approach where the user’s device and the service provider’s
website will have strong peer-to-peer authentication, making it very complicated to plant
an intermediary into an authentication session.

By implementing new security measures, it is no longer possible to launch successful
MITM attacks, as the user and the relying party shall be authenticated before the user
authentication process takes place.

Later the research focuses on the technical implementation of these attacks and attempts to
provide an additional security layer to protect the end user from malicious activity.

The model will prove that the attack is impossible to carry out and that the solution is as
secure as the public key cryptography used. Additional analysis is required to ensure that

12

no new attack vectors are made possible by implementing the solution provided.

1.8 Contributions of Thesis

The main contributions of the thesis are:

■ MITM attacks analysis
■ Description of the solution based on browser extension
■ Analysis of the solution
■ Implementing prototype and testing the prototype

The findings and recommendations from the current work can be used to improve the
security of future releases of the Smart-ID service. This will provide users with a higher
level of protection against MITM attacks. Additionally, finance entities, which typically
have a higher risk of these attacks, can also benefit from incorporating these improvements
into their security protocols. Doing so can ensure that their clients are better protected
against fraud and financial loss.

1.9 Outline of the Thesis

Section 2.1 gives a background on Smart-ID. Sections 2.2, 2.3, and 2.4 describe the MITM
attack types and countermeasures implemented in the Smart-ID protocol. In Section 2.5, the
working principles of browsers are described. In Sections 3.1 and 3.2, a new protocol and
related key establishment are proposed. Section 3.3 analyses the new protocol. Chapter 4
describes the created proof of concept solution. In Section 4.3, the user experience with the
new solution is outlined. Chapter 5 draws a conclusion about the new protocol and proof of
concept solution and raises some future research topics and necessary future developments.
Chapter 6 gives a summary of the current thesis. In Appendices, the code of the proof of
concept solution is provided.

13

2. Background

The following chapter describes the current situation and covers the basic overview of
Smart-ID and its operating principles. It also includes a basic introduction to the MITM
attacks and explains their relevance to the Smart-ID. Later in this chapter, the attack
models, the operating principles of an authentication process within browsers, the security
measures currently implemented and the solutions applied (although not compelling enough
to mitigate these threats) are analysed.

This chapter describes the background and the current solution. In Section 2.1 an overview
of Smart-ID operating principles is provided. Section 2.2 describes Smart-ID protocol
related MITM attacks. Section 2.3 shows that current measures are not effective protection
MITM attacks. Section 2.4 proposes an additional possible security measure. Section 2.5
describes that browser do not have built-in measures to prevent MITM attacks and available
tools to extend protocols.

2.1 Working Principles of Smart-ID

Smart-ID’s classification as a QSCD requires that the private key cannot be extracted. SK
ID Solutions does not store the entire private key in the Smart-ID application to meet this
requirement. Instead, the key is split into two parts: one is stored in the application, and the
other is stored in a hardware security module (HSM) (operated by SK ID Solutions). This
approach is detailed in the paper Server-Supported RSA Signatures for Mobile Devices
[8].

Using Smart-ID for authentication, the relying party (RP) requests the user’s personal code,
displays the calculated control code, and makes an API call to SK ID Solutions. Smart-ID
application requests control code verification, and the signature is created using the two
private key parts. The result is returned to the relying party, and if successful, the user is
authenticated and can access the e-service.

The following parties and components are involved in the Smart-ID protocol:

1. Browser is User’s web browser in Personal Computer (or Mobile Device) that is
used to access Relying Party online services.

2. Mobile Device is User’s Mobile Device that has Smart-ID application installed.

14

3. Relying Party (RP) is an organisation that provides online services to User, and
wants to authenticate User or get a signature of User.

4. Smart-ID App is Smart-ID application installed in User’s Mobile Device
5. Smart-ID Server is Smart-ID service who interacts between Relying Party and

Smart-ID application.
6. User is Smart-ID user with Mobile Device and wants use Relying Party online

services.

The authentication protocol has the following steps [9] (Figure 1):

1. User initiates authentication request in Browser.
2. Browser announces RP about an intention to continue with authentication.
3. RP prepares a "Request".
4. RP sends the "Request" to Smart-ID Server.
5. RP sends to Browser the consent screen.
6. Browser displays the consent dialogue screen that contains the Control Code (a

4-digit number computed as a deterministic function of hash value).
7. Smart-ID Server sends to Smart-ID App a "Request" message.
8. Smart-ID App displays the consent screen that contains the Control Code (Smart-ID

App computes it from the "Request" hash value), RP name and Display String
(metadata of transaction).

9. User verifies if the displayed control codes (by Browser and by Smart-ID App)
coincide, RP name and Display String correspond to the intended action and, as a
confirmation, enters PIN.

10. Smart-ID App creates User’s signature share and sends it to Smart-ID Server.
11. Smart-ID Server sends to RP "Response structure" message.
12. RP verifies the "Response structure" message.
13. If successful, User is authenticated and can access the e-service, otherwise an error

message is displayed on the website.
14. User is granted access to services on successful verification.

2.2 Man in the Middle Attacks

A MITM attack represents a cyberattack in which a malicious player inserts himself into a
communication between two parties, impersonates both of them and gains access to the
information that the two parties were trying to share. The malicious player intercepts,
sends, and receives data meant for someone else – or not meant to be sent at all, without
either outside party knowing until it’s already too late. One may find the man-in-the-middle
attack abbreviated in various ways: MITM, MitM, MiM or MIM.

15

Figure 1. Smart-ID authentication protocol.

In the wild, there are largely four different categories of MITM attacks:

1. Spoofing - IP, HTTPS, DNS, etc. - to lure User into using a malicious server in order
to gain access to data or services.

2. Hijacking - SSL, e-mail - the information shared between the victim’s device and
the server is intercepted by another endpoint and another server.

3. Cookie theft - by stealing cookies from your browsing sessions, criminals can obtain
passwords and various other types of exclusive data.

4. Eavesdropping - whole online activity (including login credentials and payment card
information) will be at the command of the middleman.

Main phishing-related security concerns are related to the following attacks:

1. Blind PIN trial, an attacker attempts to impersonate User at RP by sending a fake
authentication or signing request to Smart-ID App. The attacker hopes that User
will enter PIN to Smart-ID App.

2. Simple social engineering, an attacker tries to impersonate User at RP by tricking
(social-engineering) User into accepting an authentication request. This can be done
through various means, such as phishing emails, fake websites or other forms of
social engineering.

3. Man in the middle, an attacker tricks User into clicking on a fraudulent link to
intercept the communication between User and the RP and impersonates User to the
RP.

4. Man in the browser, an attacker tricks User into clicking on a fraudulent link to the

16

adversary’s website where a fraudulent script is downloaded to Browser. The script
then tries to impersonate User at RP.

2.3 Insufficiency of the Existing Measures

2.3.1 General Model

We describe a general model to help analyse attacks systematically later. All communica-
tions are done through cryptographically protected channels. The model has the following
steps (Figure 2):

1. At process start, request message (or transaction) M is created. RP computes a hash
of the message m← h(M) and derives control code using the deterministic function
from message hash cc← f(m). The display string is computed from the message:
ds ← survey(M). RP sends M and cc to Browser, where they are displayed to
User.

2. RP sends computed hash m and display string ds to Smart-ID Server.
3. Smart-ID Server forwards the previous step hash m and display string ds to Smart-ID

App. User verifies display string ds and that control code cc matches with Browser’s
visible control code cc.

4. As a confirmation, User enters PIN to Smart-ID App. The application creates User’s
share sMD

U ← SigMD
U (m) of the signature and sends sMD

U to Smart-ID Server.
5. Smart-ID Server creates Server’s share sSPU ← SigSPU (m) of the signature and

composes the whole signature SigU(m) ← Comp(sMD
U , sSPU). The composed

signature is verified with User’s public key. On successful result, SigU(m) is sent to
RP.

Figure 2. General model.

17

2.3.2 Blind PIN Trial Attack

Blind PIN trial attack is similar to the general model, except the process is started by a
malicious party and hopes that User blindly enters PIN (Figure 3):

1. At process start, request message (or transaction) M is created. RP computes a hash
of the message m← h(M) and derives control code using the deterministic function
from message hash cc← f(m). The display string is computed from the message:
ds← survey(M). RP sends M and cc to Attacker’s Personal Computer (or Mobile
Device) browser, where they are displayed to the Attacker.

2. RP sends computed hash m and display string ds to Smart-ID Server and Smart-ID
Server forwards them to Smart-ID App.

3. User ignores the display string ds and control code cc and blindly enters PIN to
Smart-ID App. The application creates User’s share sMD

U ← SigMD
U (m) of the

signature and sends sMD
U to Smart-ID Server.

4. Smart-ID Server creates Server’s share sSPU ← SigSPU (m) of the signature and
composes the whole signature SigU(m) ← Comp(sMD

U , sSPU). The composed
signature is verified with User’s public key. On the successful result, SigU(m) is
sent to RP. After that, the attacker has access to the RP service on behalf of User’s
account.

Figure 3. Blind PIN trial attack. Figure 4. Social engineering attack.

2.3.3 Social Engineering Attack

In social engineering, the attacker initiates a request and communicates over the phone or
other means indent M and control code cc to User (Figure 4):

1. At process start, request message (or transaction) M is created. RP computes a hash
of the message m← h(M) and derives control code using the deterministic function

18

from message hash cc← f(m). The display string is computed from the message:
ds← survey(M). RP sends M and cc to Attacker’s Personal Computer (or Mobile
Device) browser, where they are displayed to The Attacker. The Attacker forwards
request M and control code cc to User over the phone or other channels.

2. RP sends computed hash m and display string ds to Smart-ID Server and Smart-ID
Server forwards them to Smart-ID App.

3. User verifies the display string ds and that control code cc matches with Attacker’s
instructed control code cc and, as a confirmation, enters PIN to Smart-ID App. The
application creates User’s share sMD

U ← SigMD
U (m) of the signature and sends sMD

U

to Smart-ID Server.
4. Smart-ID Server creates Server’s share sSPU ← SigSPU (m) of the signature and

composes the whole signature SigU(m) ← Comp(sMD
U , sSPU). The composed

signature is verified with User’s public key. On successful result, SigU(m) is sent to
RP. After that, the attacker has access to the RP service on behalf of User’s account.

2.3.4 Man in the Middle Attack

In a MITM attack, User is tricked into visiting the attacker’s fraudulent site (e.g.,
https://www.bnak.eu) and the attacker hopes that User does not pay attention to the fact
that the domain is fake and that the attacker is impersonating the RP (Figure 5):

1. Fraudulent RP initiates at RP process start where request message (or transaction)
M is created. RP computes a hash of the message m← h(M) and derives control
code using the deterministic function from message hash cc← f(m). The display
string is computed from the message: ds ← survey(M). RP sends M and cc to
Fraudulent RP Service, where it is forwarded to Browser and is displayed to User.

2. RP sends computed hash m and display string ds to Smart-ID Server and Smart-ID
Server forwards them to Smart-ID App.

3. User ignores the display string ds. User verifies that the control code cc matches
with Browser’s visible control code cc and, as a confirmation, enters PIN to Smart-ID
App. The application creates User’s share sMD

U ← SigMD
U (m) of the signature and

sends sMD
U to Smart-ID Server.

4. Smart-ID Server creates Server’s share sSPU ← SigSPU (m) of the signature and
composes the whole signature SigU(m) ← Comp(sMD

U , sSPU). The composed
signature is verified with User’s public key. On successful result, SigU(m) is sent to
the RP. After that, the fraudulent RP has access to the RP service on behalf of User’s
account.

19

Figure 5. Man in the middle attack. Figure 6. Man in the browser attack.

2.3.5 Man in the Browser Attack

In the man in the browser attack, User is tricked into clicking on a fraudulent link to the
adversary’s website, where a fraudulent script is downloaded to Browser. The script then
tries to impersonate User at RP (Figure 6):

1. At process start, request message (or transaction) M is created. RP computes a hash
of the message m← h(M) and derives control code using the deterministic function
from message hash cc← f(m). The display string is computed from the message:
ds ← survey(M). RP sends M and cc to Browser, where they are displayed to
User.

2. RP sends computed hash m and display string ds to Smart-ID Server and Smart-ID
Server forwards them to Smart-ID App.

3. User verifies the display string ds and that control code cc matches with Browser’s
visible control code cc and, as a confirmation, enters PIN to Smart-ID App. The
application creates User’s share sMD

U ← SigMD
U (m) of the signature and sends sMD

U

to Smart-ID Server.
4. Smart-ID Server creates Server’s share sSPU ← SigSPU (m) of the signature and

composes the whole signature SigU(m) ← Comp(sMD
U , sSPU). The composed

signature is verified with User’s public key. On the successful result, SigU(m) is
sent to RP. After that, the fraudulent script has access to the RP service on behalf of
User’s account.

Most current Web browsers prevent carrying out this type of attack. Browsers have a
built-in mechanism called Cross-Origin Resource Sharing (CORS), which allows web
browsers to make cross-domain HTTP requests in a controlled manner. When a web page
served from one domain (origin) attempts to make a request to a resource on another

20

domain, the browser checks if the resource server explicitly allows the request by sending
an HTTP response header called "Access-Control-Allow-Origin". The Access-Control-
Allow-Origin header specifies the allowed origins for a resource. If the server allows the
request, the browser then checks if the resource server allows the request method, headers
and credentials (such as cookies or authentication tokens).

The CORS mechanism works as follows:

1. Browser sends an HTTP request to the resource server.
2. The resource server responds with an HTTP response that includes the "Access-

Control-Allow-Origin" header, indicating which origins are allowed to access the
resource.

3. If Browser’s origin is allowed, Browser checks if the resource server allows the
request method, headers and credentials.

4. If the request is allowed, Browser sends the request to the resource server.
5. The resource server sends a response to Browser.
6. Browser checks the response and any headers that the response can be shared across

origins.
7. If any checks fail, Browser will block the request and return an error to the JavaScript

code that made the request.

2.3.6 Countermeasures

Multiple countermeasures have been implemented to prevent carrying out the attacks. The
following provides a short overview of these measures:

1. Relying Party Name - The service name shown in Smart-ID App. It gives context to
the current transaction.

2. Display String - Additional text is shown in Smart-ID App. This should give a hint
about the intent of the current transaction. In version 1 of the Smart-ID API, the
limit is up to 60 characters, in version 2, it is increased to 200 characters.

3. Control Code - Shown in the RP service and also in Smart-ID App. User must verify
that they match before entering PIN for confirmation.

4. Control Code Choice - In Smart-ID API version 2, an optional choice for RP to use
Control Code is added. Smart-ID App shows three Control Code options and User
must find the correct code that matches the RP shown code. This helps to prevent
simple Blind PIN trial attacks.

5. QR code - A suggested measure for showing a complicated code in the browser that
helps to prevent Simple social engineering attacks (See 2.4).

21

6. CORS - the browser built-in measure to prevent injecting malicious code in RP web
page.

Table 1 describes the attack-thwarting power of existing security measures described in
sub-section 2.3 against various attacks. The index column describes the attack vector
and the index row describes the protection measures implemented or proposed. This
results in a matrix where the colour codes indicate the effectiveness of a particular security
measure. The index column describes the attack vector, and the index row describes the
protection measures implemented or proposed. This results in a matrix where the colour
codes indicate the effectiveness of a particular security measure:

■ Thwarts attack completely (green cell with Yes).
■ Provides a user-verifiable element during the process (yellow cell with Observable).
■ Does not have any influence on the attack (red cell with No).

Relying
Party
Name

Display
String

Control
Code

Control
Code
Choice

QR
code

CORS

Blind PIN
trial

Observable Observable No Yes Yes No

Social engi-
neering

Observable Observable No No Yes No

Man in the
middle

Observable Observable No No No No

Man in the
browser

Observable Observable No No No Yes

Table 1. Attacks and countermeasures

2.4 Measure: QR Code

The Control Code Choice measure helps to avoid simple PIN trial attacks but does not
help with social engineering attacks. One possible solution is to use a more complicated
Control Code alternative, such as a QR Code. This makes it harder for attackers to replay
the code to User over the phone or other channels. The idea is that instead of inserting
a control code or selecting the correct code, User must scan a QR code with Smart-ID
App and then the application verifies the code. The QR Code measure is still unsuccessful
against MITM attacks. The fraudulent application can still intercept the QR code and show
this to User on a fraudulent website (Figure 7).

22

Figure 7. Man in the middle attack with QR code.

1. Fraudulent RP initiates at RP process start where request message (or transaction)
M is created. RP computes a hash of the message m← h(M) and generates a QR
code using the deterministic function from message hash qr ← f(m). The display
string is computed from the message: ds← survey(M). RP sends M and qr to the
Fraudulent RP Service.

2. Fraudulent RP Service forwards M and qr to Browser and is displayed to User.
3. RP sends the computed hash m and the display string ds to Smart-ID Server.
4. Smart-ID Server forwards the previous step hash m and the display string ds to

Smart-ID App. User verifies the display string ds and scans the QR code qr with
Smart-ID App from Browser. Smart-ID App verifies that derived m← f(qr) from
the QR code matches with received m from Smart-ID Server.

5. As a confirmation, User enters PIN to Smart-ID App. The application creates User’s
share sMD

U ← SigMD
U (m) of the signature and sends sMD

U to Smart-ID Server.
6. Smart-ID Server creates the Server’s share sSPU ← SigSPU (m) of the signature

and composes the whole signature SigU(m)← Comp(sMD
U , sSPU). The composed

signature is verified with User’s public key. On the successful result, SigU(m) is
sent to RP. After that, the fraudulent RP has access to the RP service on behalf of
User’s account.

2.5 Browsers

A web browser is a software application that allows users to access and interact with
content on the World Wide Web. By entering a web address (URL) in a browser, several
tasks are executed to display the content of the web page:

23

1. Web address is resolved to an IP address using the DNS system.
2. Then TCP connection is established with the web server using the IP address from

the previous step. The browser sends a request for the web page to the server.
3. The server responds with the requested web page, which may include HTML, CSS,

JavaScript and other resources such as images and videos and the content is rendered
to the screen.

4. If the web page contains JavaScript code, the browser will execute it.
5. With the user interactions (e.g., scrolling, clicking on links), the browser may need

to request and render additional resources or update parts of the page dynamically
using JavaScript.

6. The browser also performs various security checks, such as verifying the TLS
certificate of the webserver to ensure that the connection is secure and protecting
against malicious code and phishing attacks.

2.5.1 TLS/SSL and Client Certificate Authentication

Transport Layer Security (TLS) is a protocol to have a secure connection over the internet.
It supersedes the Secure Sockets Layer (SSL). TLS is used to establish a secure, encrypted
connection between a Client (such as a web browser) and a Server (such as a web server).
An encrypted connection is needed to protect sensitive data such as login credentials, credit
card information, and other personal or financial information from being intercepted by
attackers.

1. A TLS handshake starts with Client’s request for a secure connection with Server
where Client presents supported cipher suites.

2. Server responds to the request with its selection from the previous cipher suites list
and provides a corresponding certificate including the public key and Server name.

3. Client verifies Server name and the certificate against the certificate authority.
4. Client uses Server’s public key to establish a secure connection with Server and to

generate a session key.
5. The session key is used for symmetric encryption during the session.

Additionally, Client can use Client Certificate Authentication (CCA) for authentication.
Client uses a government-issued electronic identity (eID) card or other cryptographic
tokens that contain an authentication certificate and is used during TLS handshake, to
prove their identity to Server. This prevents MITM attacks and gives assurance to Server
that the certificate is issued by a trusted certificate authority. Setting up TLS-CCA properly
can be challenging, as described in the paper "Practical Issues with TLS Client Certificate

24

Authentication" [10].

1. A TLS handshake starts with Client’s request for a secure connection with Server,
where Client sends supported chipher suites.

2. Server responds to the request with its selection from the previous cipher suites list
and provides a corresponding certificate including the public key and Server name.

3. Client verifies Server name and the certificate against certificate authority.
4. Client then sends its own certificate, which includes a public key, to Server.
5. Server verifies Client’s certificate and generates a session key and encrypts it with

Client’s public key.
6. Client decrypts the session key using its private key.
7. The session key is used for symmetric encryption during the session.

2.5.2 Browser Extensions

Browser extensions are browser add-ons or plugins that allow users to customise their web
browsers by adding or modifying new features. Web-Extensions are created using familiar
web-based technologies — HTML, CSS and JavaScript. They are built using standard web
technologies, but an extension has access to its own set of JavaScript API’s. Extensions
can be used to add functionality to web pages, change the appearance of the browser or
modify the behaviour of the browser itself.

Browser extensions are supported by most modern web browsers, including Google
Chrome, Mozilla Firefox, Microsoft Edge, Safari and Opera. Each browser has its own
extension platform with different API’s and development tools.

Browser extensions can perform a variety of tasks, such as:

■ Blocking ads or other content
■ Enhancing privacy and security
■ Adding new features to web pages
■ Modifying the appearance of the browser
■ Managing bookmarks and downloads

Browser extensions are usually distributed through repositories or stores maintained by
browser vendors. Users can browse and install extensions from these repositories and can
manage their extensions from within the browser’s settings.

25

2.5.3 Web-Extensions - JavaScript API

The current thesis covers only relevant Web-Extension components. These are: back-

ground.js, content.js and option.js as can be seen in Table 2.

Table 2. Extension Components

Component Description
content.js Executed within website context and this script has direct com-

munication with the website with no communication with back-

ground.js.

background.js Executed within the extension context and has the permission to
store to a secure area to which the website and also content.js
script have no access. Background scripts can use any of the Web-
Extension API’s in the script, as long as their extension has the
necessary permissions.

options.js The extension preferences window has permission to access the se-
cure area. It has the same level of permissions as the background.js

script.

In Table 3 are listed relevant JavaScript API’s to this thesis [11, 12, 13] that are used in
proof-of-concept solution in Chapter 4 and are supported by most commonly used web
browsers.

Table 3. JavaScript API Components

JavaScript API Description
browser.storage.local.get Retrieves one or more items from the storage area.

browser.storage.local.set Stores one or more items in the storage area or updates
existing items.

crypto.subtle.generateKey Uses the generateKey() method of the SubtleCrypto inter-
face to generate a new key (for symmetric algorithms) or
key pair (for public-key algorithms).

crypto.subtle.exportKey The exportKey() method of the SubtleCrypto interface
exports a key: that is, it takes as input a CryptoKey object
and gives you the key in an external, portable format.

Continues...

26

Table 3 – Continues...

JavaScript API Description
crypto.subtle.importKey The importKey() method of the SubtleCrypto interface

imports a key: that is, it takes as input a key in an external,
portable format and gives you a CryptoKey object that
you can use in the Web Crypto API.

crypto.subtle.sign The sign() method of the SubtleCrypto interface generates
a digital signature.

crypto.subtle.digest The digest() method of the SubtleCrypto interface gener-
ates a digest of the given data. A digest is a short fixed-
length value derived from some variable-length input.
Cryptographic digests should exhibit collision- resistance,
meaning that it’s hard to come up with two different in-
puts that have the same digest value.

qrcode library QR code/2d barcode generator [14].

2.5.4 Conclusion

Web browsers are facilitating a number of security mechanisms. For example, using
TLS certificates provides assurance that the website is genuine, and using TLS prevents
eavesdropping. These are effective against a number of attack vectors, but there is no
built-in protection in browsers that prevents MITM attacks. It is relatively easy to obtain
TLS certificates for fraudulent middlemen. This transfers the obligation to verify the
content of TLS certificates to the user. There is the option to use TLS/CCA, but this does
not apply to the Smart-ID protocol.

Widely used browsers (e.g. Chrome, Edge, Firefox, Safari) have various tools that enable
the use of browser extensions, which can provide increased security to current protocols.
Browser extensions can store data in a private context that is not leaked to websites, capture
the visited website URL, use cryptography API to sign messages, and provide a preference
page for extension configuration.

■ Browser extensions can use the browser’s Storage API to store data in the extension
context while the data is not accessible for websites. This can be used for storing
user settings and pre-shared secrets.

■ Browser extensions have access to the active website URL using Tabs API. This
is useful for capturing the URL of current web page and is used to prevent MITM
attacks.

27

■ Browser extensions can provide a preference page for the configuration of the
extension’s settings. This can be used to generate with SubtleCrypto API pre-shared
secrets and sign messages.

■ Browser extensions can show graphics (e.g. images and QR codes) to show additional
information to the user.

28

3. New Measures to Prevent Man in the Middle Attack

The aim was to develop a prototype that prevents MITM attacks on the current protocol
considering a list of following boundaries:

1. The authentication process must facilitate Smart-ID Server.
2. The solution must respect the limitations of the existing process flow.
3. The solution must not have the capability to connect directly to the Smart-ID API.
4. The current protocol must be improved but not replaced with OAuth [15] or any

other protocol.
5. The protocol must prevent the usage of URL redirects.
6. The proposed solution must be supported by the most widely used browsers and

devices.
7. The usage of QR code is permitted as all the devices compatible with Smart-ID have

cameras.
8. Other possibilities include Near-Field communication (NFC), but it is not preferable

due to restricted usage on Apple devices.

This chapter will introduce new measures to prevent MITM attacks. Section 3.1 will explain
how new pre-shared secret is generated and distributed to Smart-ID App. Section 3.2
describes a new and improved protocol. Section 3.3 shows that the attack will not carry
out on the new protocol.

3.1 Key Establishment

The process starts with User’s initiation of the browser extension installation using the
browser’s extension store. As the extension is installed, Browser initiates the pre-shared
secret generation process and generates the QR code to be scanned with Smart-ID App.
User then scans the QR code by connecting Smart-ID App to the browser extension. The
pre-shared secret shall be stored with Smart-ID App for future usage. The process is
described in detail in Figure 8 and contains the next steps:

1. User initiates browser extension installation request using Browser.
2. Browser downloads the browser extension from the browser’s extension store.
3. Browser installs the browser extension.
4. The installation status of the browser extension is displayed to User.

29

Figure 8. Key exchange protocol with the browser extension.

5. User initiates the generation of the pre-shared key.
6. Browser initiates the extension key generation process.
7. The extension generates pre-shared secret, stores it in secure area and the key is

encoded in a QR Code.
8. Browser renders the extension-generated QR code.
9. Browser displays QR Code to User.

10. User opens Smart-ID App.
11. Using Smart-ID App, User scans the QR code displayed by Browser.
12. Smart-ID App receives the response from the QR code.
13. Smart-ID App decodes the QR code and stores the pre-shared secret in secure

storage.
14. Key exchange successful, success message is displayed to User.

3.2 Modified Authentication Protocol

Using the browser extension enables the secure delivery of the URL currently used. The
service provider generates a M during the authentication process which will be used to
generate a QR code to be displayed on the website. Then, User, using Smart-ID App,
scans the QR code displayed and if the M matches both on the website and on Smart-ID
App, User is prompted for the corresponding PIN to confirm the transaction. The modified
authentication protocol is described in detail in Figures 9, 10 and consists of the following
steps:

1. User initiates authentication request using Browser.
2. Browser announces RP about intention to continue with the authentication process.

30

Figure 9. Modified authentication protocol description.

Figure 10. Model: Authentication with the browser extension code.

3. RP generates a M that is forwarded to Browser.
4. Browser launches the browser extension with the M as a parameter.
5. Browser extension fetches message sender url secure manner and incorporates the

M to the response.
6. The response is signed with the pre-shared secret and then encoded to a QR code

qrMac.
7. The generated QR Code is then forwarded to Browser.
8. Browser displays the rendered QR code to User.
9. User opens Smart-ID App.

10. User scans the rendered QR code with Smart-ID App.

31

11. Smart-ID App receives the QR code and decodes the message.
12. Smart-ID App finds the correct pre-shared secret referenced in the message and

verifies the signature.
13. If successful, User is prompted PIN for confirmation.
14. User confirms the transaction by entering corresponding PIN.
15. Smart-ID App sends the transaction to Smart-ID Server.
16. Smart-ID Server forwards User’s signed transaction to RP.
17. RP verifies the transaction content (url, M , signature).
18. On the successful result, User is authenticated.
19. User is granted access to the website.

3.3 Analysis

The following model on Figure 11 describes the process where a malicious URL is detected
by the relying party and therefore this renders the MITM attack unsuccessful. The browser
extension verifies the URL against RP. The verification fails because of the URL mismatch.

Figure 11. Man in the middle attack with the browser extension code.

1. Fraudulent RP initiates a RP process start where request message (or transaction) M
is created. RP sends M Fraudulent RP Service.

2. Fraudulent RP Service forwards M to Browser.
3. The browser extension is executed with given parameters M .
4. The browser extension acquires current web site urlB, in this case its Fraudulent

Party URL.
5. The browser extension generates qrMac from combining Fraudulent Party URL urlB

and the request message M , computes j ← Json(h(urlB),M), calculates MAC
with pre-shared secret d←MacK(j), and generates QR code that includes j, d and
renders it on the web page.

32

6. User scans the visible QR code qrMac and verifies message with the pre-shared
secret K. On positive result, gives confirmation by entering PIN to Smart-ID App.
The application creates User’s share sMD

U ← SigMD
U (j) of the signature, and sends

sMD
U , j to the Service Provider.

7. Smart-ID Server creates Server’s share sSPU ← SigSPU (j) of the signature and com-
poses the whole signature SigU(j)← Comp(sMD

U , sSPU). The composed signature
is verified with User’s public key. On the successful result, SigU(j) is sent to RP.
After that, RP detects that User is directed to a malicious URL h(urlG) ̸= h(urlB)

and therefore denies access to the service.

33

4. Prototype Solution

The new authentication solution is based on the idea that during the Smart-ID authentication
process, the system can securely identify the website where User is currently located and
link it to the authentication token. Later, the attacked service can verify whether User was
on their website and did not use any intermediate attack website. Since web browsers do
not have such technology today, it is necessary to use, for example, a browser extension to
implement it.

This chapter will propose a proof of concept solution. Section 4.1 will explain the scope
of created solution. Section 4.2 describes the details of created proof of concept browser
extension. Section 4.3 shows user experience of the newly created solution.

4.1 Scope of the Solution

The currently implemented solution is a proof of concept for the Firefox browser. The
author does not have access to the source code of the Smart-ID application or the Smart-ID
service. The Smart-ID key exchange behaviour and QR code authentication are emulated
in the JavaScript application.

The demo RP service is also created, and the Smart-ID back-end prototype is implemented
to emulate the newly created protocol. The prototype RP service allows testing the whole
process from the key pairing until successful authentication to the RP service. With the
prototype, the effectiveness against the MITM attacks of the new protocol can be presented
and verified.

4.2 Description

On the extension settings page (options.js), User is prompted to generate a new key. Then
crypto.subtle.generateKey is used for generating a new HMAC [16] key with SHA-512
parameter and exported to the crypto.subtle.exportKey in JSON Web Key (JWK) [17]
format.

Since User may have multiple browsers and multiple workstations in use, the Key Identifier
(KID) is added to the JWK by creating a hash message crypto.subtle.digest using the K

value of the key and encoded in base64url [18] format.

34

The JWK is stored in the secure area of the extension using browser.storage.local.set. A
QR code is generated from this JWK and shown on the settings page. User captures the
QR code with the Smart-ID App and stores decoded JWK from QR code in the Smart-ID
App. An illustration of the process is provided in Figure 12.

Figure 12. Key generation process description.

When User tries to authenticate on a page that requires the extension, the website sends
a message to the extension and provides a M and an identifier (URL) using which the
service provider SK ID Solutions can send a signed authentication token message back to
that page.

content.js receives this message and adds the URL of the given page to the message
and redirects to the background.js page. background.js securely loads the JWK key
from the extension’s secure area using the browser.storage.local.get and imports using
crypto.subtle.importKey API to SubtleCypto key format.

An object of type JSON Web Token (JWT) [19] is created with a reference to the type
‘typ’, the signature algorithm HS512 ‘alg’, and the key identifier ‘kid’ in the header. The
content of the message is the M ‘jti’ and captured page URL ‘sub’. A signature is added
to this object, which is calculated on the JWT header and content using crypto.subtle.sign.
A QR code is generated from the received content and displayed on the web page.

{

" a l g " : " HS512 " ,

" t y p " : "JWT" ,

" k i d " : " d74399e5deb20055b0bf19 . . . "

35

}

.

{

" sub " : " h t t p s : / / www. metsma . ee " ,

" j t i " : " fc652dc4 −40c8 −11 ec −973a −0242 ac130003 "

}

.

b a s e 6 4 u r l (s i g n a t u r e V a l u e)

User now captures the provided QR code with the Smart-ID application. It uses a KID
provided within JWT header and tries to match with previously stored JWK keys. If it finds
a key, it checks the validity of the given JWT signature. With a valid signature, a new JWT
is generated. User’s Smart-ID authentication certificate is added to the message header
within the ‘x5c’ array. The signature algorithm RS256 ‘alg’ is also provided and using the
previous message body, the given JWT is signed with User’s Smart-ID authentication key.
The JWT is forwarded to the Smart-ID Server.

{

" a l g " : " RS256 " ,

" t y p " : "JWT" ,

" x5c " : [" MIIG7zCCBNegAwIBAgIQEAA . . . "]

}

.

{

" sub " : " h t t p s : / / www. metsma . ee " ,

" j t i " : " fc652dc4 −40c8 −11 ec −973a −0242 ac130003 "

}

.

b a s e 6 4 u r l (s i g n a t u r e V a l u e)

The website receives User-signed JWT in order to verify its validity. User has the ap-
propriate access. The website checks if the M found inside the message matches the M

previously issued. Website checks if the URL belongs to this web page. If the criteria are
met, authentication is completed successfully. An illustration of the process is provided in
Figure 13.

4.3 Sample Scenario

The sample scenario is provided to demonstrate the behaviour of the solution in the context
of authentication.

36

Figure 13. Authentication process description.

The process starts with the installation of the browser extension, followed by the key
generation and pairing with the Smart-ID smartphone application. As the pairing has been
completed, User can now use the extension during the authentication process.

User tries to authenticate to Relaying Party. Opens Browser and opens the RP website.
The website has additional security enabled for Smart-ID protocol.

37

4.3.1 Browser Extension Installation

Here is visualised how User is requested to install the Smart-ID browser extension from
the Firefox add-ons store when missing Figure 14, 15.

Figure 14. Missing extension. Figure 15. Extension installation.

4.3.2 Key Generation

On extension installation User is greeted with a welcome page and offered to generate
a new pre-shared secret Figure 16. User initiates key generation. On the successful key
generation, a QR code is shown to User on the extension configuration page Figure 17.

Figure 16. Extension installed. Figure 17. Pair with Smart-ID mobile app.

38

4.3.3 Pairing

User is instructed to open the Smart-ID application and activate the QR scanning feature
Figure 18. The QR code is decoded on the scanning, and receives a pre-shared secret and
stored in the application’s private area Figure 19.

Figure 18. Smart-ID mobile app scan button. Figure 19. Scan pre-shared secret.

4.3.4 Authentication

Continuing with authentication on the RP website extension is activated with M parameter
Figure 20. Extension captures active web page URL, uses previously generated pre-shared
secret to sign the message, and shows the QR code to User Figure 21.

Figure 20. Login screen. Figure 21. Scan authentication QR.

39

User is instructed to open the Smart-ID App and activate the QR scanning functionality
Figure 22. On the successful QR scanning, the message signature is verified using the
previously-stored pre-shared secret Figure 23.

Figure 22. Smart-ID mobile app scan button. Figure 23. Scan authentication token.

When the message is successfully validated, the corresponding PIN is requested, and the
message is signed with User’s private key and sent to the RP using the Smart-ID Server
Figure 24. The RP completes additional verification, and User is greeted to use authorised
services on the successful result Figure 25.

Figure 24. Smart-ID mobile app insert PIN.
Figure 25. RP authentication successful.

40

4.3.5 Authentication Failure

When User wants to authenticate on a malicious RP website, the browser extension captures
the site URL and encodes it into the QR code Figure 26. On validating, the RP checks the
QR code URL parameter and responds with an authentication failure message Figure 27.

Figure 26. Malicious RP authentication. Figure 27. RP authentication failure.

41

5. Analysis, Conclusion and Future Research

Implementation of the prototype solution and testing against the prototype RP service gives
strong evidence that the new measure is implementable in practice and is effective against
MITM attacks. During the authentication process, the prototype service can differentiate if
the request is made from a malicious or legitimate site.

While this is still a proof-of-concept solution, it needs further analysis. It provides
confidence that the protocol modification with a security add-on and QR code can be
efficiently implemented in practice. Future analysis is needed to determine if the message
format is optimal for production usage. Feedback on the Web-eID protocol criticises using
JWT in a different context than the OAuth protocol [20].

Secondly, special care must be taken in communicating with browser extensions, e.g.
message passing and injecting QR codes to a website. Using secure coding best practices
ensures that the pre-shared secret is not leaked to websites. Injecting a QR code directly to
the website may be preferable, and using a browser built-in popup dialogue to show the
QR code.

Also, the solution needs further analysis from the end-user’s perspective. How complicated
is installing a browser extension from the browser’s repository and pairing the extension
with the pre-shared secret after or during installation? Additionally, it is necessary to
analyse that the new solution does not create additional attack vectors like it is hard to fake
the installation process and paring in a malicious party on a website.

This solution is relatively simple to implement because most building blocks are already
available in web browsers and require minimal third-party dependencies. The only external
dependency is the QR encoding library in use. For industrial solutions, the browser
extension needs to extend support to all major browsers and distribute browser repositories.
Extension code needs to be covered with automated tests. The current Smart-ID application
needs to be amended with the proposed key pairing mechanism, and also the support for
the new protocol must be added to the current Smart-ID protocol.

42

6. Summary

This work analyses the Smart-ID authentication protocol and covers the possible man-
in-the-middle attack vectors. The work proves that currently available measures are
insufficient to protect the user from a list of man-in-the-middle attacks. A new protocol is
proposed to prevent these types of attacks. A proof of concept prototype solution has been
built that provides confidence that the new protocol prevents the given man-in-the-middle
attacks. Visual reference of the user experience is also provided.

The new protocol requires a new browser extension that is acquired from the browser
repository. The extension generated pre-shared secret is paired with the user Smart-ID
application. Extension securely stores the relying party URL in a message and is distributed
to mobile devices with a QR code. On the user’s confirmation, the message is distributed
to the relying party through the Smart-ID service, where it can identify the described
man-in-the-middle attacks.

Additional development is needed to extend the support for Web-Extension to all major
browsers and distribute the extension to browser repositories. Future analysis is required
to verify that malicious actors cannot fake the same procedure on the website.

43

References

[1] RIA hoiatab: mobiil-id kasutajaid püüti petta parooli andma. [Accessed: 10-04-
2023]. URL: https://www.delfi.ee/artikkel/63757670/ria-
hoiatab - mobiil - id - kasutajaid - puuti - petta - parooli -

andma.

[2] Alatu skeem: kurjategijad koorisid ohvreid Smart-ID pettustega. [Accessed:
10-04-2023]. URL: https : / / tehnika . postimees . ee / 6682958 /
alatu- skeem- kurjategijad- koorisid- ohvreid- smart- id-

pettustega.

[3] Riik hindab Smart-ID-d ka pettustelaine järel turvaliseks lahenduseks. [Ac-
cessed: 10-04-2023]. URL: https : / / www . err . ee / 943492 / riik -
hindab-smart-id-d-ka-pettustelaine-jarel-turvaliseks-

lahenduseks.

[4] Pangaliit: Smart-ID pettusi aitab vältida ettevaatlikkus. [Accessed: 10-04-2023].
URL: https : / / www . ituudised . ee / uudised / 2019 / 05 / 23 /
pangaliit-smart-id-pettusi-aitab-valtida-ettevaatlikkus.

[5] Smart-ID tegemisel on nüüd suur muudatus, mis peaks välistama võltskon-

tode loomise. [Accessed: 10-04-2023]. URL: https : / / digi . geenius .
ee / rubriik / uudis / smart - id - tegemisel - on - nuud - suur -

muudatus-mis-peaks-valistama-voltskontode-loomise/.

[6] Laud, P., Roos, M.: Formal Analysis of the Estonian Mobile-ID Protocol. In: Audun

Jøsang, Torleiv Maseng, and Svein J. Knapskog, (Eds.): NordSec 2009, LNCS 5838,

pp.271–286 (2009).

[7] Cybernetica AS. Cryptographic Algorithms Lifecycle Report. 2016. URL: https:
//www.id.ee/wp-content/uploads/2020/02/cryptographic_

algorithms_lifecycle_report_2016.pdf. [Accessed: 29-11-2022].

[8] Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-supported RSA signatures for

mobile devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (Eds.): ESORICS 2017,

Part I. LNCS 10492, pp. 1–19 (2017).

[9] SK ID Solutions. Smart-ID Documentation. URL: https://github.com/SK-
EID/smart-id-documentation. [Accessed: 25-04-2023].

[10] Arnis Parsovs. Practical issues with TLS client certificate authentication. 2013.

44

https://www.delfi.ee/artikkel/63757670/ria-hoiatab-mobiil-id-kasutajaid-puuti-petta-parooli-andma
https://www.delfi.ee/artikkel/63757670/ria-hoiatab-mobiil-id-kasutajaid-puuti-petta-parooli-andma
https://www.delfi.ee/artikkel/63757670/ria-hoiatab-mobiil-id-kasutajaid-puuti-petta-parooli-andma
https://tehnika.postimees.ee/6682958/alatu-skeem-kurjategijad-koorisid-ohvreid-smart-id-pettustega
https://tehnika.postimees.ee/6682958/alatu-skeem-kurjategijad-koorisid-ohvreid-smart-id-pettustega
https://tehnika.postimees.ee/6682958/alatu-skeem-kurjategijad-koorisid-ohvreid-smart-id-pettustega
https://www.err.ee/943492/riik-hindab-smart-id-d-ka-pettustelaine-jarel-turvaliseks-lahenduseks
https://www.err.ee/943492/riik-hindab-smart-id-d-ka-pettustelaine-jarel-turvaliseks-lahenduseks
https://www.err.ee/943492/riik-hindab-smart-id-d-ka-pettustelaine-jarel-turvaliseks-lahenduseks
https://www.ituudised.ee/uudised/2019/05/23/pangaliit-smart-id-pettusi-aitab-valtida-ettevaatlikkus
https://www.ituudised.ee/uudised/2019/05/23/pangaliit-smart-id-pettusi-aitab-valtida-ettevaatlikkus
https://digi.geenius.ee/rubriik/uudis/smart-id-tegemisel-on-nuud-suur-muudatus-mis-peaks-valistama-voltskontode-loomise/
https://digi.geenius.ee/rubriik/uudis/smart-id-tegemisel-on-nuud-suur-muudatus-mis-peaks-valistama-voltskontode-loomise/
https://digi.geenius.ee/rubriik/uudis/smart-id-tegemisel-on-nuud-suur-muudatus-mis-peaks-valistama-voltskontode-loomise/
https://www.id.ee/wp-content/uploads/2020/02/cryptographic_algorithms_lifecycle_report_2016.pdf
https://www.id.ee/wp-content/uploads/2020/02/cryptographic_algorithms_lifecycle_report_2016.pdf
https://www.id.ee/wp-content/uploads/2020/02/cryptographic_algorithms_lifecycle_report_2016.pdf
https://github.com/SK-EID/smart-id-documentation
https://github.com/SK-EID/smart-id-documentation

[11] SubtleCypto API. [Accessed: 14-04-2023]. URL: https : / / developer .
mozilla.org/en-US/docs/Web/API/SubtleCrypto.

[12] StorageArea API. [Accessed: 14-04-2023]. URL: https : / / developer .
mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/

API/storage/StorageArea.

[13] Tabs API. [Accessed: 14-04-2023]. URL: https://developer.mozilla.
org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/

Tab.

[14] QR Code Package. [Accessed: 14-04-2023]. URL: https://www.npmjs.com/
package/qrcode.

[15] The OAuth 2.0 Authorization Framework. [Accessed: 14-04-2023]. URL: https:
//www.rfc-editor.org/rfc/rfc6749.

[16] Keyed-Hashing for Message Authentication. [Accessed: 14-04-2023]. URL: https:
//datatracker.ietf.org/doc/html/rfc2104.

[17] JSON Web Key. [Accessed: 14-04-2023]. URL: https://datatracker.ietf.
org/doc/html/rfc7517.

[18] The Base16, Base32, and Base64 Data Encodings. [Accessed: 14-04-2023]. URL:
https://datatracker.ietf.org/doc/html/rfc4648.

[19] JSON Web Token. [Accessed: 14-04-2023]. URL: https://datatracker.
ietf.org/doc/html/rfc7519.

[20] Arnis Parsovs. On the format of the authentication proof used by RIA’s Web eID

solution. 2021. URL: https://cybersec.ee/storage/webeid_auth_
proof.pdf.

[21] Html5-QRCode scanning Package. [Accessed: 14-04-2023]. URL: https://www.
npmjs.com/package/html5-qrcode.

45

https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/StorageArea
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/StorageArea
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/StorageArea
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/Tab
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/Tab
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs/Tab
https://www.npmjs.com/package/qrcode
https://www.npmjs.com/package/qrcode
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://cybersec.ee/storage/webeid_auth_proof.pdf
https://cybersec.ee/storage/webeid_auth_proof.pdf
https://www.npmjs.com/package/html5-qrcode
https://www.npmjs.com/package/html5-qrcode

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Raul Metsma

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Man in the middle attack prevention for Smart-ID using browser extensions”,
supervised by Ahto Buldas and Raul Kaidro
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

08.05.2023

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

46

Appendix 2 - Common JavaScript Module

Listing 1. common.js
export c o n s t KeyParams = {name : ’HMAC’ , hash : ’SHA-512’ } ;
c o n s t e n c o d e r = new Tex tEncoder () ;

export f u n c t i o n t o B a s e 6 4 u r l (b i n) {
re turn b t o a (S t r i n g . fromCharCode (. . . b i n))

. r e p l a c e (/ \ + / g ,’-’)

. r e p l a c e (/ \ //g,’_’)

. r e p l a c e (/ \ = + $ /m,’’) ;
}

export f u n c t i o n s t r T o U i n t 8 (s t r) {
re turn e n c o d e r . encode (s t r)

}

export f u n c t i o n a r r B u f T o U i n t 8 (b i n) {
re turn new U i n t 8 A r r a y (b i n) ;

}

export f u n c t i o n f romBase64Ur l (d a t a) {
re turn a t o b (d a t a . r e p l a c e (/ − / g , ’+’) . r e p l a c e (/ _ / g , ’/’)) ;

}

export f u n c t i o n f romBase64UrlToBin (d a t a) {
re turn U i n t 8 A r r a y . from (f romBase64Ur l (d a t a) , c => c . charCodeAt (0))

}

export f u n c t i o n p r e t t y P r i n t (d a t a) {
re turn JSON . s t r i n g i f y (JSON . p a r s e (f romBase64Url (d a t a)) , nul l , 2) ;

}

47

Appendix 3 - Extension

For extension setup, copy files manifest.json, common.js, content.js, background.html,
background.js, options.html, options.js, qrcode.js, icon.svg to an empty folder and load
manifest.json with Firefox Debug Add-ons option. QR Code JavaScript library qrcode.js is
available in NPM repository [14] and icon.svg is available from Smart-ID site.

Listing 2. manifest.json
{

" m a n i f e s t _ v e r s i o n " : 2 ,
" name " : " Smart −ID E x t e n s i o n " ,
" i c o n s " : {

" 16 " : " i c o n . svg " ,
" 48 " : " i c o n . svg " ,
" 128 " : " i c o n . svg "

} ,
" d e s c r i p t i o n " : " Smart −ID E x t e n s i o n " ,
" v e r s i o n " : " 1 . 0 " ,
" c o n t e n t _ s c r i p t s " : [

{
" matches " : [" < a l l _ u r l s > "] ,
" j s " : [" c o n t e n t . j s "]

}
] ,
" background " : { " page " : " background . h tml " } ,
" o p t i o n s _ u i " : { " page " : " o p t i o n s . h tml " } ,
" p e r m i s s i o n s " : [" s t o r a g e "] ,
" b r o w s e r _ s p e c i f i c _ s e t t i n g s " : {

" gecko " : {
" i d " : "{9 b61a3fa −f8dd −11eb −9a03 −0242 ac130003 }"

}
}

}

Listing 3. content.js
window . a d d E v e n t L i s t e n e r ("message" , e v e n t => {

c o n s o l e . l o g ("message" , e v e n t . d a t a) ;
b rowse r . r u n t i m e . sendMessage (e v e n t . d a t a)

. then (message => {
var DOMURL = window .URL | | window . webkitURL | | window ;
var svg = new Image (3 0 0 , 300) ;
svg . s r c = DOMURL. c rea t eOb jec tURL (new Blob ([message] , { t y p e : ’image/svg+xml’})) ;
c o n s t body = document . q u e r y S e l e c t o r (’#body’) ;
body . appendCh i ld (svg) ;

})
. catch (c o n s o l e . l o g) ;

}) ;

48

Appendix 4 - Extension Background Script

Listing 4. background.html
< !DOCTYPE html>

<html lang =" en ">
<head>

<meta c h a r s e t =" u t f −8 ">
< s c r i p t s r c =" q r co de . j s ">< / s c r i p t >
< s c r i p t type =" module " s r c =" background . j s ">< / s c r i p t >

< / head>
< / html>

Listing 5. background.js
import { KeyParams , s t r T o U i n t 8 , t o B a s e 6 4 u r l , a r r B u f T o U i n t 8 } from ’./common.js’ ;

b rowse r . r u n t i m e . o n I n s t a l l e d . a d d L i s t e n e r (_ =>
browse r . r u n t i m e . openOpt ionsPage ()) ;

b rowse r . r u n t i m e . onMessage . a d d L i s t e n e r (a sync (message , s ende r , _) => {
t r y {

i f (s e n d e r . u r l === u n d e f i n e d) {
re turn ’’ ;

}
c o n s t jwk = await browse r . s t o r a g e . l o c a l . g e t () ;
i f (jwk . k i d === u n d e f i n e d) {

re turn ’’ ;
}
c o n s t key = await c r y p t o . s u b t l e . impor tKey (’jwk’ , jwk , KeyParams , jwk . ex t , jwk .

key_ops) ;
c o n s t h e a d e r = JSON . s t r i n g i f y ({

t y p : ’JWT’ ,
a l g : jwk . a lg ,
k i d : jwk . k i d

}) ;
c o n s t body = JSON . s t r i n g i f y ({

sub : s e n d e r . u r l ,
j t i : message

}) ;
c o n s t d a t a = t o B a s e 6 4 u r l (s t r T o U i n t 8 (h e a d e r)) + ’.’ + t o B a s e 6 4 u r l (s t r T o U i n t 8 (body)) ;
c o n s t s i g n a t u r e = await c r y p t o . s u b t l e . s i g n (’HMAC’ , key , s t r T o U i n t 8 (d a t a)) ;
c o n s t j w t = d a t a + ’.’ + t o B a s e 6 4 u r l (a r r B u f T o U i n t 8 (s i g n a t u r e)) ;
re turn await QRCode . t o S t r i n g (jwt , { e r r o r C o r r e c t i o n L e v e l : ’L’ , t y p e : ’svg’}) ;

} catch (e r r o r) {
c o n s o l e . e r r o r (e r r o r) ;
re turn ’’ ;

}
}) ;

49

Appendix 5 - Extension Options Page

Listing 6. options.html
< !DOCTYPE html>

<html lang =" en ">
<head>

<meta c h a r s e t =" u t f −8 ">
< s c r i p t s r c =" q r co de . j s ">< / s c r i p t >

< / head>
<body>

< div >
< div id =" message ">< / div >
<button type =" b u t t o n " id =" g e n e r a t e "> P a i r w i th phone< / button >
< ca nv a s id =" ca nv as ">< / ca nv a s >

< / div >
< s c r i p t type =" module " s r c =" o p t i o n s . j s ">< / s c r i p t >

< / body>
< / html>

Listing 7. options.js
import { KeyParams , s t r T o U i n t 8 , t o B a s e 6 4 u r l , a r r B u f T o U i n t 8 } from ’./common.js’ ;

f u n c t i o n showKey (jwk) {
document . q u e r y S e l e c t o r (’#message’)

. innerHTML = jwk . k i d ? ’Paired key "’ + jwk . k i d + ’"’ : ’To use this extension

please pair with Smart-ID mobile app.’ ;
}

document . q u e r y S e l e c t o r (’#generate’) . a d d E v e n t L i s t e n e r ("click" , a sync _ => {
t r y {

c o n s t key = await c r y p t o . s u b t l e . g e n e r a t e K e y (KeyParams , true , [’sign’ , ’verify’]) ;
l e t jwk = await c r y p t o . s u b t l e . expor tKey (’jwk’ , key) ;
c o n s t d i g e s t = await c r y p t o . s u b t l e . d i g e s t (’SHA-256’ , s t r T o U i n t 8 (jwk . k)) ;
jwk [’kid’] = t o B a s e 6 4 u r l (a r r B u f T o U i n t 8 (d i g e s t)) ;
await browse r . s t o r a g e . l o c a l . s e t (jwk) ;
c o n s t c an va s = document . q u e r y S e l e c t o r (’#canvas’) ;
QRCode . toCanvas (canvas , JSON . s t r i n g i f y (jwk) , { e r r o r C o r r e c t i o n L e v e l : ’L’ }) ;
showKey (jwk) ;

} catch (e r r o r) {
c o n s o l e . e r r o r (e r r o r) ;

}
}) ;
b rowse r . s t o r a g e . l o c a l . g e t ()

. then (showKey)

. catch (c o n s o l e . e r r o r) ;

50

Appendix 6 - Smart-ID Proof of Concept Project

For project setup, copy build.gradle file to empty folder, file SmartIDExtensionApp.java

into src/main/java/eu/skidsolutions folder and files common.js, index.html, index.js, bank.js,
bank.html, bnak.html, html5-qrcode.js into folder src/main/resources/static. QR Code
scanning JavaScript library is available in NPM repository [21]. Execute gradle 2 tool
with parameters init and war to build Web-servlet. Servlet can be executed with command
bootRun.

Listing 8. build.gradle
p l u g i n s {

i d ’ o rg . s p r i n g f r a m e w o r k . boo t ’ v e r s i o n ’ 2 . 7 . 1 0 ’
i d ’ i o . s p r i n g . dependency −management ’ v e r s i o n ’ 1 . 1 . 0 ’
i d ’ j a v a ’
i d ’ war ’

}

group ’ eu . s k i d s o l u t i o n s ’
v e r s i o n ’ 1.0 −SNAPSHOT ’
s o u r c e C o m p a t i b i l i t y = J a va L an g u ag e Ve r s i o n . o f (1 1)

r e p o s i t o r i e s {
mavenCen t r a l ()

}

d e p e n d e n c i e s {
i m p l e m e n t a t i o n ’ o rg . s p r i n g f r a m e w o r k . boo t : s p r i n g −boot − s t a r t e r −web ’
i m p l e m e n t a t i o n ’ ee . sk . s m a r t i d : smar t − id − java − c l i e n t : 2 . 1 . 1 ’
i m p l e m e n t a t i o n ’ o rg . g l a s s f i s h . j e r s e y . i n j e c t : j e r s e y −hk2 : 2 . 2 6 ’
compi leOnly ’ o rg . p r o j e c t l o m b o k : lombok : 1 . 1 8 . 2 0 ’
a n n o t a t i o n P r o c e s s o r ’ o rg . p r o j e c t l o m b o k : lombok : 1 . 1 8 . 2 0 ’
p rov idedRun t ime ’ org . s p r i n g f r a m e w o r k . boo t : s p r i n g −boot − s t a r t e r − to mc a t ’
deve lopmentOnly ’ o rg . s p r i n g f r a m e w o r k . boo t : s p r i n g −boot − d e v t o o l s ’
t e s t I m p l e m e n t a t i o n ’ o rg . s p r i n g f r a m e w o r k . boo t : s p r i n g −boot − s t a r t e r − t e s t ’

}

2https://gradle.org

51

https://gradle.org

Appendix 7 - Smart-ID Web Application

Listing 9. SmartIDExtensionApp.java
package eu . s k i d s o l u t i o n s ;

import com . f a s t e r x m l . j a c k s o n . d a t a b i n d . Objec tMapper ;
import ee . sk . s m a r t i d . * ;
import ee . sk . s m a r t i d . r e s t . dao . * ;
import lombok . * ;
import lombok . e x t e r n . s l f 4 j . S l f 4 j ;
import org . s p r i n g f r a m e w o r k . boo t . S p r i n g A p p l i c a t i o n ;
import org . s p r i n g f r a m e w o r k . boo t . a u t o c o n f i g u r e . S p r i n g B o o t A p p l i c a t i o n ;
import org . s p r i n g f r a m e w o r k . web . b ind . a n n o t a t i o n . * ;

import j a v a . u t i l . * ;

@ S p r i n g B o o t A p p l i c a t i o n
@Slf4j
@ R e s t C o n t r o l l e r
p u b l i c c l a s s Smar t IDExtens ionApp {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
S p r i n g A p p l i c a t i o n . run (Smar t IDExtens ionApp . c l a s s , a r g s) ;

}

p r i v a t e s t a t i c f i n a l Base64 . Encoder b64Url =
Base64 . g e t U r l E n c o d e r () . w i t h o u t P a d d i n g () ;

p r i v a t e s t a t i c f i n a l S m a r t I d C l i e n t c l i e n t = new S m a r t I d C l i e n t () ;
p r i v a t e s t a t i c f i n a l Objec tMapper o b j e c t M a p p e r = new Objec tMapper () ;
p r i v a t e s t a t i c f i n a l Map< S t r i n g , S t r i n g > l o g g e d I n = new HashMap < > () ;
/ / h t t p s : / / g i t h u b . com / SK−EID / smar t − id − java − c l i e n t / w ik i / SSL− c o n f i g u r a t i o n
p r i v a t e s t a t i c f i n a l S t r i n g CRT = " −−−−−BEGIN CERTIFICATE−−−−−\n "

+ " . . . "
+ " −−−−−END CERTIFICATE−−−−−" ;

s t a t i c {
t r y {

c l i e n t . s e t Re ly i ng Pa r ty UU I D (" 00000000 −0000 −0000 −0000 −000000000000 ") ;
c l i e n t . s e t R e l y i n g P a r t y N a m e ("DEMO") ;
c l i e n t . s e t H o s t U r l (" h t t p s : / / s i d . demo . sk . ee / smar t − id − rp / v2 / ") ;
c l i e n t . s e t T r u s t e d C e r t i f i c a t e s (CRT) ;

} catch (E x c e p t i o n e) {
l o g . e r r o r (" SmartID i n i t f a i l e d : {} " , e . ge tMessage ()) ;

}
}

@PostMapping (" / a u t h ")
p u b l i c S t r i n g a u t h (@RequestParam S t r i n g pe r sona lCode , @RequestBody JWTBody body)

throws E x c e p t i o n {
/ / Workaround t o g e t a u t h c e r t i f i c a t e
S e m a n t i c s I d e n t i f i e r s e m a n t i c s I d e n t i f i e r = new S e m a n t i c s I d e n t i f i e r (

S e m a n t i c s I d e n t i f i e r . I d e n t i t y T y p e . PNO,
S e m a n t i c s I d e n t i f i e r . CountryCode . EE ,
p e r s o n a l C o d e) ;

52

S m a r t I d A u t h e n t i c a t i o n R e s p o n s e c e r t R e s p o n s e = c l i e n t . c r e a t e A u t h e n t i c a t i o n ()
. w i t h S e m a n t i c s I d e n t i f i e r (s e m a n t i c s I d e n t i f i e r)
. w i t h A u t h e n t i c a t i o n H a s h (A u t h e n t i c a t i o n H a s h . generateRandomHash ())
. w i t h C e r t i f i c a t e L e v e l ("QUALIFIED")
. w i t h A l l o w e d I n t e r a c t i o n s O r d e r (C o l l e c t i o n s . s i n g l e t o n L i s t (

I n t e r a c t i o n . d i sp layTex tAndPIN (" Log i n t o s e l f − s e r v i c e ? ")))
. a u t h e n t i c a t e () ;

JWTHeader jw tHeade r = new JWTHeader ("JWT" , " RS256 " , new S t r i n g [] {
b64Url . e n c o d e T o S t r i n g (c e r t R e s p o n s e . g e t C e r t i f i c a t e () . ge tEncoded ()) }) ;

S t r i n g j w t H e a d e r S t r i n g = o b j e c t M a p p e r . w r i t e V a l u e A s S t r i n g (jw tHeade r) ;
S t r i n g j w t B o d y S t r i n g = o b j e c t M a p p e r . w r i t e V a l u e A s S t r i n g (body) ;
S t r i n g d a t a T o S i g n = b64Url . e n c o d e T o S t r i n g (j w t H e a d e r S t r i n g . g e t B y t e s ())

+ " . " + b64Url . e n c o d e T o S t r i n g (j w t B o d y S t r i n g . g e t B y t e s ()) ;

A u t h e n t i c a t i o n H a s h s ignHash = new A u t h e n t i c a t i o n H a s h () ;
s ignHash . s e t H a s h (D i g e s t C a l c u l a t o r . c a l c u l a t e D i g e s t (

d a t a T o S i g n . g e t B y t e s () , HashType . SHA256)) ;
s ignHash . se tHashType (HashType . SHA256) ;

S m a r t I d A u t h e n t i c a t i o n R e s p o n s e s i g n R e s p o n s e = c l i e n t . c r e a t e A u t h e n t i c a t i o n ()
. withDocumentNumber (c e r t R e s p o n s e . getDocumentNumber ())
. w i t h A u t h e n t i c a t i o n H a s h (s ignHash)
. w i t h C e r t i f i c a t e L e v e l ("QUALIFIED")
. w i t h A l l o w e d I n t e r a c t i o n s O r d e r (C o l l e c t i o n s . s i n g l e t o n L i s t (

I n t e r a c t i o n . d i sp layTex tAndPIN (" Log i n t o s e l f − s e r v i c e ? ")))
. a u t h e n t i c a t e () ;

S t r i n g j w t = d a t a T o S i g n + " . "
+ b64Url . e n c o d e T o S t r i n g (s i g n R e s p o n s e . g e t S i g n a t u r e V a l u e ()) ;

l o g g e d I n . p u t (body . j t i , body . sub) ;
re turn j w t ;

}

@GetMapping (" / s t a t u s ")
p u b l i c S t r i n g s t a t u s (@RequestParam S t r i n g rng) {

S t r i n g sub = l o g g e d I n . g e t (rng) ;
i f (sub == n u l l)

re turn "PENDING" ;
i f (" h t t p : / / l o c a l h o s t : 8 0 8 0 / bank . h tml " . e q u a l s (sub))

re turn " S u c c e s s f u l l y a u t h e n t i c a t e d " ;
re turn "URL mismatch " ;

}

@Data
@ A l l A r g s C o n s t r u c t o r
s t a t i c c l a s s JWTHeader {

p r i v a t e f i n a l S t r i n g t y p ;
p r i v a t e f i n a l S t r i n g a l g ;
p r i v a t e f i n a l S t r i n g [] x5c ;

}

@Data
@NoArgsConst ructor (f o r c e = t rue)
s t a t i c c l a s s JWTBody {

p r i v a t e f i n a l S t r i n g j t i ;
p r i v a t e f i n a l S t r i n g sub ;

}
}

53

Appendix 8 - Smart-ID Application

Listing 10. index.html
< !DOCTYPE html>
<html lang =" en ">
<head>

< t i t l e >Smart −ID< / t i t l e >
<meta c h a r s e t =" u t f −8 ">
< s c r i p t s r c =" html5 − qr co de . j s ">< / s c r i p t >

< / head>
<body>
P e r s o n a l code : < input type =" t e x t " id =" p e r s o n a l C o d e ">
< div id =" r e a d e r " width=" 600 px ">< / div >
JWK: <pre id =" key ">< / pre>
JWT: <pre id =" r e s u l t ">< / pre>
MSG: <pre id =" msg ">< / pre>
< s c r i p t type =" module " s r c =" i n d e x . j s ">< / s c r i p t >
< / body>
< / html>

Listing 11. index.js
import { KeyParams , s t r T o U i n t 8 , t o B a s e 6 4 u r l , a r rBufToUin t8 ,

f romBase64Url , f romBase64UrlToBin , p r e t t y P r i n t } from ’./common.js’ ;
l e t impor tedKey = { } ;
new Html5QrcodeScanner ("reader" , { f p s : 10 , qrbox : 250 } , f a l s e)

. r e n d e r (a sync (decodedText , d e c o d e d R e s u l t) => {
t r y {

c o n s t jwk = JSON . p a r s e (decodedTex t) ;
impor tedKey = await c r y p t o . s u b t l e . impor tKey (’jwk’ , jwk , KeyParams , jwk . ex t , jwk .

key_ops) ;
document . q u e r y S e l e c t o r (’#key’) . innerHTML = JSON . s t r i n g i f y (jwk , nul l , 2) ;

} ca tch (e r r o r) {
// else Not JWK

c o n s t j w t = decodedTex t . s p l i t (’.’) ;
c o n s t d a t a = j w t [0] + ’.’ + j w t [1] ;
c o n s t i s V a l i d = await c r y p t o . s u b t l e . v e r i f y (’HMAC’ ,

importedKey , f romBase64UrlToBin (j w t [2]) , s t r T o U i n t 8 (d a t a)) ;
document . q u e r y S e l e c t o r (’#result’) . innerHTML = p r e t t y P r i n t (j w t [0])

+ ’\n.\n’ + p r e t t y P r i n t (j w t [1]) + ’\n.\n’ + j w t [2] + ’\n’

+ (i s V a l i d ? "Valid" : "Invalid") ;
c o n s t p e r s o n a l C o d e = document . q u e r y S e l e c t o r (’#personalCode’) . v a l u e ;
f e t c h (’/auth?personalCode=’ + per sona lCode , {

method : "POST" ,
h e a d e r s : { "Content-Type" : "application/json" } ,
body : f romBase64Url (j w t [1])

})
. then (r e s p o n s e => r e s p o n s e . t e x t ())
. then (t e x t => document . q u e r y S e l e c t o r (’#msg’) . innerHTML = t e x t)
. catch (c o n s o l e . warn) ;

}
} , c o n s o l e . warn) ;

54

Appendix 9 - Relying Party

Listing 12. bank.js
var rng = c r y p t o . randomUUID () ;
var p o l l S m a r t I d = () => f e t c h (’/status?rng=’ + rng)

. then (r e s p o n s e => r e s p o n s e . t e x t ())

. then (d a t a => {
i f (d a t a == "PENDING") {

s e t T i m e o u t (p o l l S m a r t I d , 3000) ;
} e l s e {

document . q u e r y S e l e c t o r (’#msg’) . innerHTML = d a t a ;
}

})
. catch (c o n s o l e . warn) ;

document . q u e r y S e l e c t o r (’#auth’) . a d d E v e n t L i s t e n e r ("click" , _ => {
window . pos tMessage (rng , ’*’) ;
p o l l S m a r t I d () ;

}) ;

Listing 13. bank.html
< !DOCTYPE html>
<html lang =" en ">
<head>

< t i t l e >Bank . eu< / t i t l e >
<meta c h a r s e t =" u t f −8 ">
< l i n k r e l =" s t y l e s h e e t " c r o s s o r i g i n =" anonymous "

hre f =" h t t p s : / / cdn . j s d e l i v r . n e t / npm / boo t s t r ap@5 . 2 . 3 / d i s t / c s s / b o o t s t r a p . min . c s s "
i n t e g r i t y =" sha384 −rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG65">

< / head>
<body>
< div c l a s s =" t e x t − c e n t e r " id =" body ">

<h1>Bank . eu< / h1>
<button type =" b u t t o n " c l a s s =" b t n btn − p r i m a r y " id =" a u t h "> A u t h e n t i c a t e < / button >
<pre id =" msg ">< / pre>

< / div >
< s c r i p t type =" module " s r c =" bank . j s ">< / s c r i p t >
< / body>
< / html>

55

Listing 14. bnak.html
< !DOCTYPE html>
<html lang =" en ">
<head>

< t i t l e >Bnak . eu< / t i t l e >
<meta c h a r s e t =" u t f −8 ">
< l i n k r e l =" s t y l e s h e e t " c r o s s o r i g i n =" anonymous "

hre f =" h t t p s : / / cdn . j s d e l i v r . n e t / npm / boo t s t r ap@5 . 2 . 3 / d i s t / c s s / b o o t s t r a p . min . c s s "
i n t e g r i t y =" sha384 −rbsA2VBKQhggwzxH7pPCaAqO46MgnOM80zW1RWuH61DGLwZJEdK2Kadq2F9CUG65">

< / head>
<body>
< div c l a s s =" t e x t − c e n t e r " id =" body ">

<h1>Bnak . eu< / h1>
<button type =" b u t t o n " c l a s s =" b t n btn − p r i m a r y " id =" a u t h "> A u t h e n t i c a t e < / button >
<pre id =" msg ">< / pre>

< / div >
< s c r i p t type =" module " s r c =" bank . j s ">< / s c r i p t >
< / body>
< / html>

56

	Introduction
	Background
	Observations
	The Problem
	Research Questions Topics
	Proposed Solution
	Expected Impact
	Structure of Work
	Contributions of Thesis
	Outline of the Thesis

	Background
	Working Principles of Smart-ID
	Man in the Middle Attacks
	Insufficiency of the Existing Measures
	General Model
	Blind PIN Trial Attack
	Social Engineering Attack
	Man in the Middle Attack
	Man in the Browser Attack
	Countermeasures

	Measure: QR Code
	Browsers
	TLS/SSL and Client Certificate Authentication
	Browser Extensions
	Web-Extensions - JavaScript API
	Conclusion

	New Measures to Prevent Man in the Middle Attack
	Key Establishment
	Modified Authentication Protocol
	Analysis

	Prototype Solution
	Scope of the Solution
	Description
	Sample Scenario
	Browser Extension Installation
	Key Generation
	Pairing
	Authentication
	Authentication Failure

	Analysis, Conclusion and Future Research
	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Common JavaScript Module
	Appendix 3 – Extension
	Appendix 4 – Extension Background Script
	Appendix 5 – Extension Options Page
	Appendix 6 – Smart-ID Proof of Concept Project
	Appendix 7 – Smart-ID Web Application
	Appendix 8 – Smart-ID Application
	Appendix 9 – Relying Party

