NB type of Wuman bekastar




To whom it may concern

MONOTONE PHENOMENA OF
ISSUES BEHIND BARGAINING
GAMES AND DATA ANALYSIS

The book is intended for a very exclusive audi-
ence of hyper-knowledgeable specialists in Game
Theory and Data Analysis whose main interest
lies in Informatics and Communications, Welfare
and Network Economics or Social Sciences.
However, if you are a high performing under-
graduate or master student and have a strong de-
sire to undertake research at a PhD level, the ma-
terial presented here may be a useful source of
novel ideas.

Copenhagen Tallinn

ISBN-13 978-8740-92-082-4
Private Publishing Platform
Byvej 269
2650, Hvidovre, Denmark
mjoosep@gmail.com



Cover Illustration by J. E. Mullat

JOSEPH E. MULLAT

b

This is the final version of the work to which the author has dedicated
substantial time and effort. Monotone (Monotonic) Systems are usually
referred in pertinent literature as dynamic systems, and are described via
differential or difference equations. In this work, the term Monotone Sys-
tems is adopted, as originally proposed by the author, who was not aware
at the time that this term was already in use in a different context. There-
fore, it is just a coincidence that the term Monotone Systems is adopted
here, as it bears no connotation to its original usage.



In the present collection of
articles under the Monotone (or
Monotonic) System we under-
stand a totality of sets arranging
some indicators as credentials of
subsets elements possessing
monotone (monotonic) property,
which reflects the dynamic
nature of the indicators. The
indicators, as real numbers, are
increasing or decreasing along
with the partial order induced
by subsets of some general set of
indicators. Hereby, the Mono-
tone Systems formalizes and
generalizes the intuitive notion
of ordering, sequencing, or
arrangement of the elements in
subsets. The theory was
initiated by the author in 1971,
and since then was further
developed and published in
Russian periodical of MAIK in
1976. In English it was originally
distributed by Plenum Publish-
ing corporation.
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Preface

In social sciences, natural language is used to describe the phenomena
pertaining to numbers. This approach may be the reason for the problems
that often emerge in predictions that do not align well with the reality. In
natural sciences, converse is true, as numbers are used to describe and
predict phenomena of various origins, natural or artificial. Yet again, ap-
plying mathematical assumptions or postulates is rarely adequate for de-
picting the complexity of the phenomena in question.

The problem of prediction, perhaps, is not rooted in mathematics.
Rather, it likely stems from the issue of whether the actual mathematical
approach used is adequately defined. This can be likened to window
shopping instead of visiting a store when purchasing an item of interest.
Thus, to truly establish what mathematics really predicts, instead of rely-
ing on numbers, we must first try to explicate the subject under study us-
ing words. This approach will allow the subject to be well understood,
precluding a move in the wrong direction, through incorrect use of
mathematics. Still, in practice, this strategy can be protracted, as it can take
years, or even decades, of exploring known or unknown mathematical
schemes before we can portray the phenomenon is a sufficiently under-
standable form. It should also be noted that, we don’t generally require
mathematics in order to initiate seminal exploration of the phenomena of
interest for us humans.

Having said that, what direction should research take? This question is
very difficult to answer when the subject under study is diffused, the path
ahead is unknown, and “a suitable vehicle” for the journey is difficult to
identify. Is there a way to discover something hidden that can take us out
of this uncomfortable situation? How can we find among these seemingly
disparate subjects the one that could make the future for the researcher
more appealing? While none of these questions have a definitive answer,
it can be stated with certainty that the subject must be normatively chal-
lenging and comply with the coherence inherent in natural language.
Moreover, the words used to describe phenomena under study must be
sufficiently simple to be merged together. As the Danish philosopher
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Seren Kirkegard observed in his master’s thesis in 1840, any subject
should be described in a way that can be understood by a child. When
considering this assertion, it should be noted that, in his time, the master
degree thesis presentation and defense in an open session used to take
about 7-8 hours. Thus, to gain their degree, the candidates had to be quite
well prepared to answer the panel’s questions regarding a wide range of
phenomena. We will try to follow in their footsteps.

Graphs. To do so, we will start our exploration by depicting various
phenomena through graphs. Graph is a visual representation of relations
between points connected by lines. They are akin to picture books aimed
at young children, who are required to join numbered points to reveal the
final image. In natural language, we also encounter nodes even if we are
not aware of it. When their order is unimportant, they are connected by
lines/edges on the graph, otherwise arcs are used as illustrated below. The
other form of graph representation is given by quadrangle matrices, i.e.
matrices with equal number of rows and columns comprising of items
with either 0 or 1 value, thus denoting Boolean tables. In such case, rows
represent arcs pointing from vertices/nodes, i.e. out from nodes into other
vertices, while columns pertain to arcs pointing into the nodes. Graph
given in a Boolean table form is also a binary relation. In the discussions
that follow, graphs will be explained in terms of rows and columns.
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Summing up all 1-s in each row and all 1-s in each column allows form-
ing so-called “credentials” of rows and columns in graphs. In other words,
credentials represent the frequencies of 1-s in rows and columns, as they
are equivalent to the total number of incoming and outgoing arcs from
any particular node within a graph. Credentials can also be assigned to
cells in binary tables by summing up or multiplying credentials of rows
and columns in a pairwise fashion. Alternatively, these credentials can be
further extended by using various types of arithmetic composites. These
composites, as combined credentials, may characterize graphs, allowing
analysis to progress in a desirable direction. This approach is particularly
useful for emphasizing the dynamic nature of graph architecture—its
monotone phenomena. Indeed, simply eliminating an item assigned a
value of 1 from a Boolean table representing a graph would always result
in decreasing our credentials values. In other words, it is irrelevant
whether we employ composite or simple credentials. Similarly, replacing 0
with 1 would result in increasing credentials, creating reverse dynamics.
While this may seem rather complex, in essence, credentials of graph ele-
ments are nothing but frequencies of items filled with 1-s. This is the
foundation of the theory of Monotone Systems orderings.!

The need for ordering is pervasive and we encounter it in everyday life.
We seamlessly form orderly queues while waiting at a checkout counter,
we take for granted the chronological or lexicographical order that makes
our iPhone contact lists easier to use, we peruse table of contents to ex-
plore books and catalogs at glance, etc. In academic literature, the works
cited (also known as bibliography or references) are usually ordered lexi-
cographically. Some journals or periodicals, however, demand chrono-
logical order of citations for the same purpose. All these are examples of
word ordering.

' It is was originally published in 1971 in the article of Tallinn Technical University Pro-
ceedings, Ouepkn o O6paboTke VMnpopmuym n OynknmonaasHomy PrHaansy, Seria
A, No. 313, pp. 37-44, and in the same article extension “Uhest Neelavate Markovi
Ahelate Klassist,” “On Absorbing Class of Markov Chains” in EESTI NSV Teaduste
Akadeemia Toimetised, Fiitisika Matemaatika, 1972, vol. 21, No. 3.
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Numbers. Numbers are the preferred tool for statisticians, physicists,
natural scientists and economists. Think about various indicators, average
incomes, taxes, and many other areas that benefit from usage of figures
and values. Yet, while seemingly diverse, all these examples are nonethe-
less subject to the same lexicographical or chronological ordering rules.
Indeed, when examined closely, it is evident that any part, subset or sub-
list of lexicographical ordering, whether arranged in increasing or decreas-
ing order, is once again, independently from the original, so-called Grand
Ordering, subject to the same ordering, obeying the same lexicographical
or chronological rule in itself.

Let us examine an example of Grand Ordering of items and select two
items from the list, denoting them as Item A and Item B. We can always
establish that either A <B or B<A, otherwise A ~B. It is very easy to
form these relations when the Grand Ordering is available. However, at-
tempting to organize the Grand Ordering with the knowledge of relations
between only a various items is problematic. Indeed, suppose that given a
line of items A,B,C,...we can only say which one of these three relations
<,>,~ holds for any pair. Is it possible to arrange the items in this list us-
ing some numeric indicator in harmony with these rules? This was the
question that von Neumann and Morgenstern? attempted to answer. In
their pioneering work, they provided some very strong formal axioms for
rules allegedly applicable to pairs of items, denoted as the axioms of pair-
wise relations between items. The authors further posited that these rules
must be obeyed to guarantee the desired ordering property of some nu-
merical indicators, or what they referred to as utilities. von Neumann and
Morgenstern rigorously proved that the existence of such orderings con-
tirmed axioms’ validity, and thus established that these can be applied to
order the items in accordance with the increase or decrease in their corre-
sponding utilities. Their work was complemented by the famous theorem

2 John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behav-
ior, Princeton University Press, 1953.
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put forth by John Forbes Nash Jr. He provided its proof in the form of
axiomatic approach to the bargaining situations, confirming that the solu-
tion of the bargaining problem based on utility orderings, as a prerequi-
site, is unique given that the axioms reflect the phenomena of the bargain-
ing adequately.’

All orderings discussed thus far followed some usual numerical rules.
However, much simpler rules, relative to those proposed by von Neu-
mann and Morgenstern, were suggested by Arrow in relation to voting
schemes. Unfortunately, when ordering axioms presupposing democracy
were applied separately, although seemingly reasonable approach, this
resulted in a paradox, as it was not possible to satisfy the same axioms
applied simultaneously. This led to the conclusion, expressed in natural
language, that democracy does not exist. Still, it is worthwhile exploring
these axioms using more complex examples in which obvious coherence is
employed to explain various phenomena more precisely.

Surveys. Surveys are a common form of attaining views and opinions
of large groups of individuals and are employed in many contexts. Gov-
ernmental organizations, commissions, commodity markets analysts, etc.,
employ surveys with the goal of discovering peoples’ true incentives.
Typically, the investigation results are represented in a tabular form, as it
is a convenient way to visualize the data and store it in databases. In fact,
survey tables are an extension of graphs that range from quadrangle to
rectangular form. The only distinction is that instead of binary (1 and 0)
inputs, the items of such tables usually consists of codes (A,B,C,...) re-
ferred to as attributes measured on a nominal scale. Nominal scale is
nothing but a coded form of words or sentences, representing some prop-
erties of products, predefined respondents” attitudes to media, etc., usu-
ally accompanied by some personal data. When such data is analyzed,
findings are usually displayed in pie charts, as they allow the frequencies

3 Nash J.F., 1950, “The Bargaining Problem,” Econometrica, 18, 155-162.



Preface

of various responses to be visualized at glance. When data set is complex
and comprises of many inputs, many such charts are produced, as ana-
lysts wish to examine the same subject from different angles depending
on their goal. This form of representation is, once again, nothing but the
visual presentation of frequency density distribution related to different
answers. As already noted, the nominal scale frequency form allows pre-
senting the respondents’” answers orderings according to some classifica-
tion using personal data (typically, gender, age, education, etc.). How-
ever, it must be noted that arranging answers on a nominal scale may re-
sult in ordering the respondents themselves based on their answer fre-
quencies. This effect is evident in the ordering of universities, car manu-
facturers, rating scales, etc. Some researchers believe that such implemen-
tation of nominal scale implementation results in the so-called conforming
scale that in fact provides the truth. > We can, however, discover some-
thing novel when implementing nominal scale representation, in the form
of a defining ordering/sequence. ©

To proceed with the discussion, it is prudent to first explain the defin-

ing ordering through an example. Let us assume existence of a Grand
Ordering of items A,,B,,A;,A,,C,,D,,C,,E,. Our goal is to reorganize

the sequence according to their frequencies, i.e. frequencies 3,1,2,1,1 of

Karin Juurikas, Ants Torim and Leo Vohandu, “Mitmemootmeliste andmete visual-
iseerimine isoleeritud majandusruumis, kasutades monotoonsete siisteemide konform-
ismiskaalat: Uurimus Hiiumaa naitel,” (“Article: Multivariate Data Visualization in So-
cial Space using Monotone Systems conforming Scale: Case study on Hiiumaa Data”)
karin@tv.ttu.ee, torim@staff.ttu.ee, leov@staff.ttu.ee;
http://www.datalaundering.com/download/konform_scale.pdf.

Tonu Tamme, Leo Véhandu, and Ermo Tidks, A Method to Compare the Complexity of Legal

Acts, Nail.2014, 2" International WorkShop on “Network Analysis in Low,” December 5,
2014, Amsterdam.

¢ Joseph E. Mullat, Extremal Subsystems of Monotonic Systems, LILIII,
© 1976, 1977, Plenum Publishing Corporation, 227 West 17th Street, New York, 10011.
Translated from Avtomatica i Telemekhanika, No. 5, pp. 130 - 139, May, 1976, No. 8,
pp. 169 — 178, August 1976, and No. 1, pp. 109 — 119, January, 1977.
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A,B,C,D,E. The indices 1,2,3,4,5.6,7,8=18 assigned to the items

A,B,C,D,E in the sequence above denote their respective occurrences.
The lowest frequencies are associated with B,,D, and E,. Let us elimi-
nate these items from the sequence. After eliminating B,,D,,E,, we
eliminate C,,C,, as these now have the lowest frequencies, and then
A, A, A, This results in B,,D,E;,C,,C,,A,,A,,A,, referred to as the
Grand defining sequence, highlighting the frequencies of items in differ-
ent order. Namely, in contrast to its original form, the new sequence lists
items in increasing/decreasing order of frequencies 1,1,1,2,1,3,2,1. We can

immediately observe upward and downward changes in frequencies, e.g.
from 2 to 1, but also sliding frequencies, such as 3,2,1. In the collection of
our papers, these hikes are designated by Greek letters I',T;, ... and are

thus referred to as I' -hikes, reflecting the dynamic nature of such lists. In
fact, when subsets of respondents or their survey answers/attributes are
explored, it is always possible to arrange them into such dynamic lists,
reflecting decreasing/increasing order of their corresponding frequencies.
As a consequence, in line with representing Monotone Systems through
graphs, the frequencies scale is equivalent to the number of matching
responses to the survey questions. It is important to emphasize, however,
a fundamental property of the defining sequence. Namely, irrespective of
which subset, sub-list, or subsequence we take from the Grand Ordering,
we have independently arranged the subsequence by applying our defin-
ing rule, whereby its defining properties are in harmony with the Grand
defining sequence arrangement, from which the subsequence was ini-

tially extracted.
Indeed, let us extract a subsequence A,,C;,A,,C, form the list given

earlier. Arranging the items independently, in accordance with the defin-
ing sequence rule, we obtain the frequencies 2,1,2,1. It is irrelevant

11
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whether we eliminated A,,A, before C,,C, or vice versa— C,,C, first,
followed by A,,A,. Whichever path we take, we arrive at 2,1,2,1 as the
order of the frequencies. This is equivalent to generating the sequence
C,,C,,A,,A, in accordance with the Grand defining sequence
B,,D;.E,.C.,C,,A,A,, A, arrangement.

Many natural phenomena follow well defined rules and sequences,
such as Fibonacci series, in which any subsequent element is the sum of
two previous items (1,2,3,9,8,13,...), with 1.618 as its limit. This value is
also known as the golden ratio, indicating that the relationship between
two quantities is the same as the ratio of their sum to the greater of the
two. Golden ratios are widespread in nature, from the proportions of the
human body, to arrangements of leaves, spiraling shells, pinecones, etc.

Hence, we can say that our defining sequence obeys the Fibonacci rule.

Using the information presented above, we can apply the Grand defin-
ing sequence to a lexicographical or chronological order of words. It is im-
portant to recall that, when some items have been eliminated, similar to
the exercise above in which frequencies were presented on a nominal
scale, the value of frequencies/credentials decreases. The process starts
with searching for items that have the lowest credential values on the cre-
dentials scale, followed by those that are next in increasing/decreasing or-
der, while recalculating the remaining credentials as we proceed with item

replacement. This is best explained using survey tables.

Usually, survey tables are used to present respondents’” answers reflect-
ing their attitudes or views on a specific topic. For the sake of simplicity,
when answering survey questions, respondents are usually required to
select one of the options provided, and can thus be represented by
A,B,C,..., denoting their choice. Now, instead of presenting these items in

a straight line, we can proceed with elimination, taking two directions.

12
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Respondents, like nodes with outgoing arcs, are presented in the rows of

survey tables, while columns, like ingoing arcs in graphs, denote their re-
sponses to the survey questions, coded as A,B,C,.... The rows related to

individual respondents can be characterized by some credentials com-
posed from the corresponding frequencies of items A,B,C,.... Alterna-

tively, credentials of columns can be characterized by the same or distinct
compositions of frequencies using more sophisticated composites of cre-
dentials compiling, for example, arithmetic/numerical expressions as

products.”

In applying the compositions of credentials to rows and columns sum-
ming up matching answers, it is essential to ensure that the composition
functions remain non-decreasing.

Now, aiming to build the defining sequence of the respondents, we can
proceed in the same way with credentials of respondents, credentials of
their answers, or even combining these two types of credentials (the row
and column credentials). First, we must identify a cell with the lowest
composition, indicating the most unreliable answer type, suggesting that
the respondents are unwilling (for whatever reason) to answer the particu-
lar question truthfully. Such unreliable respondents should be eliminated,
along with their unreliable answers, before recalculating the credentials of
the remaining respondents and their answers. Once this is accomplished,
we search for the cell that now has the lowest credentials composite and,
in line with the above, remove the respondent (and his/her responses)
from any further consideration. As before, we make adjustments in the
credentials among all other frequencies of item (A,B,C,...) occurrences.
We proceed in the same manner until no items in the survey table remain,
as all respondents and answers will be removed. Note that, due to the na-

7 An example of such type arithmetic may be found in L. K. Véhandu, “Some Methods
to Order Objects and Variables in Data Systems,” Proceedings of Tallinn Technical
University, No. 482, 1980, pp. 43 — 50, English version available at
http://www.datalaundering.com/download/variable.pdf.
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ture of credentials, the dynamic is always decreasing. It is rather intuitive
to conclude that, as the removal procedure progresses, the remaining re-
spondents and their answers will assume increasing positions on the cre-
dentials scale—with the lowest credentials presented first—just because
we move upwards while building the defining sequence. However, once
we reach the peak, the credentials start to decline, indicating that the scale
is single peaked. Indeed, it can be demonstrated that the respondents’ cre-
dentials values will first show the tendency to grow, and once they reach a
certain point, their values will start to decline. This pattern corresponds to
a typical single-peakedness of the defining sequence. Therefore, the defin-
ing sequence does not only provide an ordinary order of the respondents,
but also allows identifying the conditions under which the credentials
reach the peak —the highest point on the scale.

Owing to this property, the defining sequence of credentials is a dou-
ble-folded order—as the values of its elements first increase until the peak
is reached, after which they start decreasing. In this respect, the defining
sequence formation is akin to the Greedy type algorithms, aimed to im-
proving some criteria.® Such algorithms are simple to use and are thus
suitable for programming. However, it must be ascertained a priori that the
result is an optimal solution, referred to as the Kernels. It is thus fortunate
that the optimality of a defining sequence can be rigorously proved. This
gives us confidence that we are not only proceeding in the right direction
but have also chosen a suitable vehicle for our journey. This will be dem-
onstrated through some significant examples below.

Internet. Internet promotes “media diversity” and is changing our read-
ing habits. However, not many users are aware of the underlying proc-
esses that enable us to contact our friends via Face book, “surf” various
sites for the latest news, or obtain a response on queries on the subject of

¥ Advances in Greedy Algorithms, Edited by Witold Bednorz, Published by In-Teh,
© 2008 In-teh, Www.in-teh.org, In-Teh is Croatian branch of I-Tech Education and Pub-
lishing KG, Vienna, Austria, ISBN 978-953-7619-27-5.
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our interest. Yes, we know that Internet is a complex network, but most
cannot fathom how it functions in practice. The following—keep in mind
the picture below —may shed some light on this amazing technological
invention.

I 146.166.179.165
46.188.177.185

In old days, when the personal computers were relative rarity, users
could only interact with the system via the Disk Operating System (DOS).
Some of the DOS commands can still be seen using the C:\ command
prompt. If the user, for example, types “PING www.microsoft.com” com-
mand, the answer will usually be given in 25 ms, confirming that the site
is active. If the response takes more than 25 ms to arrive, or we receive no
response at all, this indicates that something has gone wrong with the
Internet connection. Such commands will always confirm whether a data
packet sent from our PC has reached the designated server. The PING
command can be applied to make a connection between all websites—i.e.
any two Internet locations. Similarly, a “TRACERT www.microsoft.com”
command would yield information pertinent to any malfunction in the
delivery of packets that has occurred on route to the final destination.
Their path is possible to trace, because all data packets proceed along the
nodes/locations to their final destination. In this path, the first node is al-
ways occupied by the Gateway node on the local subnet—the first router

15
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in the chain of routers responsible for packet delivery. Each router is a
node, akin to a post office, and is responsible for routing the packets pass-
ing through, stamping each one with receipts for delivery or transit.
Therefore, if a direct communication cannot be established, it will be easy
to identify the location at which the error has occurred. As Internet design
allows for such malfunctions, whereby alternative paths are provided, any
issues on one path/node will have adverse effect on the total network
throughput for other locations. The inverse situation is also true, as im-
proving a direct connection somewhere on the Internet increases the over-

all throughput as well.

The process described above allows indicators to be assigned, corre-
sponding to the average number of attempts made by packets on the Net-
work (inclusive nodes, which do not have direct connections) to reach the
destination node from the source node. The number of nodes within the
network is extensive, and so is the total number of possible pairwise con-
nections. Using our earlier nomenclature, it is equal to the number of
items in the table of rows and columns—one of the standard forms of
network representation. Some of the items in the table will be empty be-
cause there are no direct connections, which can be established between

these nodes.

Clearly, the main feature of the Internet is its dynamic nature. The aver-
age number of packet deliveries —the number of attempts to reach the des-
tination—depends on current network structure, which can change these
averages. At a more rigorous level of abstraction, the Markov Chain,
meets some postulates of packet deliveries, and can be employed when
describing packet deliveries and processes required for these packets to
reach their respective destinations. Some indicators, or credentials, formed
by performing calculus on thus formed Markov Chains may help in eluci-
dating this process. In fact, the following excerpt from Wikipedia may be
useful:

16
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A Markov chain (discrete-time Markov chain or DTMC), named after Andrey
Markov, is a random process that undergoes transitions from one state to an-
other on a state space. It must possess a property that is usually characterized as
"memorylessness”: the probability distribution of the next state depends only on
the current state and not on the sequence of events that preceded it. This specific
kind of "memorylessness” is called the Markov property. Markov chains have
many applications as statistical models of real-world processes.’

While the assumption that the pertinent information of the preceding
states is implicitly included in the current state is an important property of
Markov Chains is highly beneficial, its dynamic nature is of primary im-
portance for the present discussion.

This principle can be applied to the Internet as the most common form
of communication network. We will try to elucidate what the dynamics
might represent in this context. In a real Web communication network, the
Internet can be depicted as a collection of routers or switches that are
“alive.” For the network to function, it is necessary to conduct periodic
repairs, reconstruction or extensions, whereby some nodes might be re-
moved or replaced. Malfunctions are also a common occurrence due to the
vastness and complexity of the network. So, what effect all these changes
have on the network performance? Intuitively, malfunctions compromise
the communication network abilities, while repairs enhance the quality of
services. New communication units bring about better throughput, while
removing the nodes requires that the traffic be restructured. Similarly,
traffic protocols are in place, allowing the packets along open routes to be
rerouted in order to reach their destinations automatically.

This is where the notion of “The Monotone System” is evident in its full
power. In case of positive actions (repairs/extensions), network perform-
ance in enhanced, as the components and processes become more reliable.

? An article was published on Markov Chain analysis in the spirit of this lines in Tallinn
Technical University Proceedings, Data Processing, Compiler Writing, Programming,
Anaans Jannsix, [locrpoenne Tpancasaropos, Bonpocsr IlporpamMmuposanms,

No. 464, 1979, pp. 71-84.
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Conversely, negative actions (malfunctions) exert negative effects,
whereby network performance worsens. However, in many cases, this
level of abstraction is overly simplistic. In nature, we do not expect local-
ized improvements to result in benefits to all elements and processes. In-
deed, in any system, some elements will remain unaffected, or even ex-
perience worsening. As mathematics is an exact discipline, it is sometimes
necessary to introduce some simplifications when describing such com-
plex systems. Thus, for the sake of the discussions that follow, we will fur-
ther postulate that the system performance as a whole is improving (wors-
ening) when an improvement or worsening occurs locally.

This assumption prompts a very reasonable question. What does this
view contribute to our understanding, explained above, of the communi-
cation networks functioning? It can, for example, allow us to proceed with
optimal design of communication networks, as it renders the design proc-
ess more precise.

Still, we will first revisit our Grand Ordering of items
A,,B,, AL A,,C.,D,,C,,E; when constructing the main, i.e. the Grand

defining sequence B,,D(,E;,C.,C,,A,,A,,A, and its defining subse-
quence C.,C,,A,A,. Let us examine the removed items B,,D,,A;,E,
more closely, in the context of constructing the sequence C,,C,,A,,A, —as
a result of which, the items B,,D,,A,,E, and their credentials are re-

moved. We can take an opposite approach and try to include these items
back into the sequence C,,C,,A,,A,. We can first consider B, and then

try with D, then with A, and finally E,. In so doing, we can recreate the
individual credentials for all items (B,,D;,A;,E;) even if they are not
included in the existing sequence C,,C,,A,,A,. In fact, using this strat-
egy would result in the following values: 1 for B,, 1 for D, 3 for A, and
1 for E,. If the objective was to increase credentials’ values, we can con-
clude from the above that only the addition of item A, to the sequence

C;,C,,A,,A, will have a posteriori a positive effect, as in all other cases

18
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the credentials decline below 2. In other words, inclusion of items B,, D,
and E, will worsen the situation, because the frequencies/credentials de-
crease from 2 to 1, whereas addition of A, does not change the value of
credentials, which remain equal to 2. Formally, including items into sub-
sequence can be viewed as a destabilization, or mapping of subsequences
of items. It can be shown that, in spite of the destabilization factor, the de-
fining sequence, however, at same point cannot be extended without
worsening its quality. In that case, we can say that it has reached a stable
or steady state condition.

This has beneficial implications for building a desirable network via
some mappings explorations. The nomenclature of these mappings is very
similar to the fixed point approach.! It is also evident that, attempting to
map a sequence C.,C,,A,,A, to C,,C,,A,,A,,A,, we have concluded
that the sequence expanded by the addition of item A, has reached its

most optimal condition. In other words, nothing can be added without
worsening its state. Actually, in the discussions that follow, this fixed
point approach will be used to explain some mappings, rather than rely-
ing on a defining sequence. Thus, the communication networks analysis

below will employ this fixed point line of reasoning.

When designing a relatively simple communication network, one of the
objectives might be to guarantee some throughput, such as stipulating that
all packets must reach their destination in a 25 ms interval. As previously
noted, the nodes of the communication networks consists of routers or
switches, responsible for redistributing and conducting packet movements
from their source points, via temporary locations, to their final destina-

"% Fixed point searching was first introduced in “Stable Coalitions in Monotonic Games,”
Translated from Avtom i Telemekh., No. 10, pp. 84-94, October, 1979 in the form of se-
quences, in accordance with parameter values upon which the mapping was con-
structed. Later, the mapping technique was explained in greater detail in “Contra
Monotonic Systems in the Analysis of the Structure of multivariate Distributions,”
Translated from Avtom. i Telemekh., No. 7, pp. 167-175, July, 1981.
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tions. Switches are superior to routers as they learn about packets’ tempo-
rary destinations, i.e. the path that must be taken when transmitting the
packets, thereby significantly improving the throughput. A potential geo-
graphical layout of these extremely sophisticated and expensive devices is
usually planned in the initial phase of the network design.

When deciding whether to place a router or a switch at the chosen geo-
graphical location, many factors must be taken into consideration.!! While
addition of a router or a switch will certainly improve the throughput, it
also increases network maintenance, drift expenses become uncertain, and
the costs of installation increase. In sum, not having an adequate number
of these sophisticated devices will not provide sufficient throughput,
whereas too many devices increase the costs. This dilemma is solved with
a compromise that requires multilevel optimization while designing the
communication networks. It seems intuitive that the aforementioned fixed
point search can help to solve, at least in some cases, the problem. It is also
advantageous to conduct Markov Chain analysis by building the net with
a desirable property to maintain the throughput above a certain level.
Thus, given a Markov Chain of potential network structure in tabular
form, we can proceed by adding further nodes or communication lines,
and analyze the outcome. While it is likely that this process will improve
the performance initially, at some point, further additions will be too

"' Extensive work, also based on the theory of “Monotone Systems” with cellular net-
works, has been, in this direction, done by O. A. llopuH, renepaabubiii gzupexTop 3AO
«HWPWUT», 4. 1. 1., oshorin@gmail.com, npodeccop, Kadpepa pasuoTEXHU-IECKIX
cucreM, Mockosckuit Texanoaornmuecknit Yausepcuret Casasu u Viangopmanuy; by P.
C. Tokaps, Texamdecknii crieruaanct OAO «MTC», roman.s.tokar@yandex.ru; "Elek-
trosvjaz," No.1, 2014, pp. 45-48, https://rucont.ru/efd/429075, in Russian;

P.C. ABepnsiHOB, AMPEKTOP IO Mpon3BoAcTBeHHOI AesiteAbHOCT OO0 «HCTT»,
ars@nxtt.org; T.O. Bokk, aupexrop o nHayke OO0 «HCTT», a.1.1., bokkg@yandex.ru,
and A.O. Illopun, Texanaeckuit aupekrop OO0 «HCTT», as@nxtt.org, “Optimizing the
size of the ring antenna and the rule formation of territorial clusters for cellular network
MCcWILL”, "Elektrosvjaz," No.1, 2017, pp. 22-27, https://rucont.ru/efd/580214, Method of
“Adaptive Distribution of Bandwidth Resource”, Russian Federation, Federal Service for
Intellectual Property, RU 2 640 030 C1, Application 2017112131, 11.04.2017, in Russian,
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costly for the benefits they provide. The problem thus reduces to finding
the most optimal arrangement of lines and nodes in the communication
network, which guarantee the best throughput, such as 25 ms stipulated
above. In doing so, we have the opportunity to convert the throughput
credentials into some sort of effective credentials of packets’ pass charac-
teristics, representing average number of pairwise hits between nodes
within the communication network obeying the monotonicity property in
line with that applied to items A,B,C,... above.

Highly effective procedures already exist, the aim of which is to find
the best stable solutions—the fixed points of Monotone Systems map-
pings. In these procedures, the defining sequence is constructed by means
other than those previously described. However, irrespective of the meth-
odology applied, the outcome is still the defining sequence characterized
by single peakedness. Most importantly, the point at which the maxi-
mum/minimum is reached will still represent our optimal solution. This is
one of the examples of solving NP hard problems with polynomial P-NP
complexity. Next on our agenda is Monotone Systems implementation,
this time in the context of retail networks.

Economy. In the field of economy, this approach is typically applied in
bilateral agreements between agents for goods delivery or production.
This will mandate designing an economic network the structure of which
can be visualized via graphs of potential agreements. The nodes of such
network represent agents, whereas connections represent contracts, i.e.
bilateral goods delivery or requests, etc. It should be noted that, when re-
questing or delivering goods and commodities, expenses, prices and profit
maintenance are the main consideration.

Let us consider this in an example of a client wishing to rent a car park-
ing spot at the airport for some price during the vacation period. Given
that, if the client is requesting a parking spot, this implies that he/she will
drive to/from the airport, so the cost of petrol and any other charges (such
as motorway tariffs) will have to be included in the overall cost of rental.
This should be compared to the expenses incurred by traveling by a taxi or
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public transport and determine whether the option is viable. Which option
the client will take will depend on any changes in prices, confirming that
the structure of economic network is indeed dynamic. In addition, each
agent has the right to decide with whom in the network to sign a contract.
In terms of game theory, this can be represented by strategies in the form
of lists of available agents, their corresponding services and costs.

Clearly, the structure of any economic network is dynamic—some new
contracts will emerge, while some old ones will not be realized. This proc-
ess is similar to that taking place in previously described communication
networks. Thus, once again, we are under the jurisdiction of a Monotone
System scheme. Indeed, in case of a bilateral agreement, certain action
somewhere in the retail chain will not be realized and will have a negative
impact on the performance of the entire chain. Forming new agreements,
on the other hand, is likely to have a positive effect. However, in practice,
addition of a new contract can also result in negative consequences, which
some firms accept as they hope to cover those losses in future. Therefore,
as was previously done, for simplification, we will postulate that, gener-
ally, new bilateral relations in the network always have a positive effect.

In analyzing the network, we might be interested in the abilities of the
economic network to counteract so-called market volatility arising when
prices of commodities and raw materials, or currency exchange rates, fluc-
tuate. Volatility causes additional disturbing forces in the reconstruction of
the network architecture. One of the known expenses affecting network
functioning are transaction costs. Transaction cost parameter allows order-
ing all transactions in the network on the transaction costs scale. Most im-
portantly, it enables us to apply the defining sequence of bilateral creden-
tials—this time, performing calculus of profit indicators with regard to
network architecture design.

Fixed point technique. The fixed point technique, when applied to eco-
nomic network design, may be understood as a search for some equilib-
rium state when the network bilateral agreements are in stable condition,
while the network as a whole is able to cope with economic volatility.
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When such a stable condition is achieved, it will be impossible to intro-
duce new contracts without revising the entire network structure. Single
peakedness of the defining sequence allows us to find the network parts
that are most resilient to volatility. In addition, it allows making efficient
decisions regarding delivery of commodities to their destinations and
making requests for raw materials from producers. Such advantages are
particularly relevant when attempting to attract new customers when try-
ing to restructure existing networks with the aim of finding new possibili-
ties to improve the services.

Thus far, we have considered Monotonic Systems consisting of atomic
items. In other words, it was always possible to count how many items
belong to the system, i.e. the number of items was finite. That was the case
with lexicographical or chronological ordering of some items, whereby the
credentials of items were chosen as frequencies. In such cases, the avail-
able items were presented sequentially and were clearly distinguished
from others. The communication networks that were considered in the
preceding discussions were also atomic, as the aim was to maximize the
packet throughput from source to destination (i.e. minimize the delivery
time). The same was the case in economic networks, where the network
structure was only viable if it was profitable, as measured by transaction
costs. In all these examples, our aim was to build a defining sequence in
order to find the peak—the kernel of the ordering, because such a se-
quence was single peaked. It was also emphasized that the aim was to find
a fixed point at which the structure design is optimal, whether we chose to
design a communication or economic network.

Extending the defining sequence notion to analytical functions defined
on various types of topologies is impossible because the resulting defining
sequence will be infinite. Instead, we will apply the standard perspective
when examining analytical single-peaked functions, aiming to find the
peak of these functions. There is nothing new in this approach. The nov-
elty, however, stems from the single-peaked phenomena, akin to the bar-
gaining games. In such cases, one side has single-peaked preferences, and
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thus exhibits non-conforming behavior, while the second player, aims to
maximize his/her benefits. In such scenario, the first player’s preferences
increase until they reach the peak, after which they start to decrease. In
contrast, while the first player is moving along his/her single-peaked pref-
erences, the second player’s preferences always increase. The reader may
benefit from exploring this further in the context of a sugar-pie game
scheme, which is a suitable example of such analytical preferences.’? In the
present discussion, it is important to appreciate the extension of the single-
peaked preferences representing the family of single-peaked functions, as
this is the main advantage of this fixed point approach. However, its ap-
plication requires finding roots of some equations in order to identify sta-
ble states, inclusive of those credentials located at the peak of the creden-
tials scale. A good example of such approach can be found in welfare eco-
nomics, where the credentials of our scheme actually represent the level of
transfer payments for those in need.

Taxes. Citizens sacrifice a part of their salaries as income taxes. When
new clients in need arrive, their transfer payments must be financed. Thus,
taxes increase and citizens’ after-tax income decreases. When a needy in-
dividual finds a job, the situation reverses, as the tax returns increase,
whereby the tax burden eventually decreases. When sufficient number of
unemployed find work, the post-tax positions of all citizens improve. This
situation can also be an example of what is now understood as mechanism
design in economics.”® It can thus be applied to design a political system
that has desirable properties. One of such properties can be depicted as
fixed points, reflecting the case in which the tax rules and norms stabilize
after the initial adjustment implementation—adjusting the rules twice is
exactly the same as doing it once.

' Joseph E. Mullat. “The Sugar-Pie Game: The Case of Non-Conforming Expectations,
Walter de Gruyter.” Mathematical Economic Letters 2, 2014: 27-31,
doi:10.1515/mel, 2013-0017.

" The 2007 Nobel Memorial Prize in Economic Sciences was awarded to
Leonid Hurwicz, Eric Maskin, and Roger Myerson "for having laid the foundations of
mechanism design theory".
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Here, rather than analyzing and trying to predict an economic or po-
litical behavior of agents in the standard way, we will place the agents in
desirable conditions in reverse order, expecting that the agents as rational
players will come to reasonable solutions by virtue of their own rational
behavior. In fact, such a scenario is explained by "The Sugar-Pie game" as
an example where the trading model is reversed. In other words, the goal
is not to find a solution as a result of the determination of the characteris-
tics of the participants, but rather as a fair division of the cake among all
players. In case of two players, dividing pie into two halves would be
deemed fair, and can thus be postulated as the desirable target. On the
other hand, we may wish to predict the characteristics of participants a
posteriori, i.e. after making this particular fair division, proclaimed as the
best solution. This solution should also be understood as a design of part-
ners’ trading skills in such a way that the determination of the effective
solution will be found to pursue this objective. However, it must be noted
that this is the objective of the designer, rather than the goal of rational
participants. Here, it must also be emphasized that we are not engaged in
a symmetrical trading model, but rather the trading model characterized
by so-called non-conforming interests of the participants. In fact, a stan-
dard economic situation involving company owners and company em-
ployees is not always 100% antagonistic with respect to wage negotia-
tions. Frequently, the interests of the workers and the owners are not in
conflict, even if this seems counterintuitive based on the well-known
principle of scissors.

The solution to the problem of pie division is also not straightforward
if further costs are considered. For example, if both parties hire solicitors,
they will charge fees for the services, which can be established based on
the strength of their negotiating power, e.g. €230 and €770. To summarize,
if any of the negotiators wishes to claim a larger portion of the cake,
he/she will have to pay more to the solicitor, who will have to work
harder to achieve this unequal partition. None of this can be realized
without building the defining sequence in search for a fixed point. In
other words, some mappings on the credentials scale are necessary.
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The Sugar-Pie Game:
The Case of Non-Conforming Expectations

Joseph E. Mullat *, Credits ™

Abstract:

Playing a bargaining game, the players with non-conforming expectations
were trying to enlarge their share of a sugar-pie. The first player, who was not
very keen on sweets, placed an emphasis on quality. In contrast, for the second
player, all sweet options, whatever they might be, were open. Thus, this paper
aims to determine the negotiating power of the first player, if equal division of
the pie was desirable, i.e. both players aimed to get %2 of the available sweets.

Keywords: game theory, bargaining power, non-conforming expectations

INTRODUCTION

When bargaining, the players are usually trying to split an economic
surplus in a rational and efficient manner. In the context of this paper, the
main problem the players are trying to solve during negotiations is the

* Former docent at the Faculty of Economics, Tallinn Technical University, Estonia,
mailto: mjoosep@gmail.com

“The Sugar-Pie Game: The Case of Non-Conforming Expectations, Walter de Gruyter.”
Mathematical Economic Letters 2 (2014): 27-31, doi:10.1515/mel-2013-0017.
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slicing of the pie. Slicing depends upon characteristics and expectations of
the bargainers. For example, while moving along the line at the z-axis (the
size), the u-axis in Fig.1 displays single-peaked expectations of player
No. 1. In comparison, concave expectations of player No. 2 are shown in
Fig. 2. The elevated single-peaked % -slice curve in Fig. 1 corresponds to
the lower, but adversely increasing, concave }; curve of expectations in
Fig. 2, and for the other sugar-pie allotment J;, % .

\\ | ] ¥ | ]

% -slice

g slice

u

L¢ size

Figure 1. Player No. 1 expectations Figure 2. Player No. 2 expectations

g slice L size -

L 1 1 1 1

Given that the players” expectations are non-conforming,' as shown in
Fig 1. and Fig. 2, splitting a pie no longer represents any traditional bar-
gaining procedure. Instead of dividing the slices, the procedures can be
resettled. Thus, we can proceed at distinct levels of one parameter—
parametrical interval of the size, which turns to be the scope of negotia-
tions. In fact, Cardona and Ponsatti (2007: 628) noticed that "the bargaining
problem is not radically different from negotiations to split a private surplus,"
when all the parties in the bargaining process have the same, conforming
expectations. This is even true when the expectations of the second player
are principally non-conforming, i.e. concave, rather than single-peaked.

1 We say also interpersonally incompatible, i.e. impossible to match through a monotone
transformation (Narens & Luce, 1983).
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Indeed, in the case of non-conforming expectations, the scope of negotia-
tions—also known as "well defined bargaining problem" or "bargaining set”
related to individual rationality (Roth 1977)—allows for dropping the
axiom of "Pareto efficiency." Thus, combined with the breakdown point, the
well-defined problem, instead of slices, can be solved inside parametrical
interval of the pie size.

With these remarks in mind, any procedure of negotiating on slices ac-
companied by sizes can be perceived as two sides of the same bargain
portfolio. Therefore, it is irrelevant whether the players are bargaining on
slices of the pie, or trying to agree on their size. This highlights the main
advantage of the parametric procedure—it brings about a number of dif-
ferent patterns of interpretations of outcomes in the game. For example, it
can link an outcome of an economy to a suitable size of production, scar-
city of resources, etc.—all of which are indicators of most desirable solu-
tions. Indeed, our initiative could serve to unify the theoretical structure of
economic analysis of productivity problem. Leibenstein (1979: 493) em-
phasized that “...the situation need not be a zero sum game. Tactics, that deter-
mine the division can affect the size of the pie." Clarifying these guidelines,
Altman (2006: 149) wrote:

"There are two components to the productivity problem: one relates to the
determination of the size of the pie, while the second relates to the division of
the pie. Looked upon independently, all agents can jointly gain by increasing
the pie size, but optimal pie size is determined by the division of pie size."

THE GAME

The game demonstrates how a sugar-pie is fairly sliced between two
players. The first player, denoted as HE, is a soft negotiator, not very keen
on sweets, and would not accept a piece of the pie if the size of the pie is
too small or too large. In HIS view, too small or too large sugar-pies are
not of reasonable quality. The second player, hereafter referred to as SHE,
is a tough negotiator and prefers obtaining sweets, whatever they are.?

2 Note that, for the purpose of the game, we do not ignore the size of the pie but put this
issue temporarily aside.
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The axiomatic bargaining theory finds the asymmetric Nash solution by
maximizing the product of players' expectations above the disagreement

point d = <d1,d2>:

argmax ..., f(x,y,0) = (u(x)-d,)* - (g(y) - d,)™,

the asymmetric variant (Kalai, 1977).

Although the answer may be known to the game theory purists, the
questions often asked by many include: What are x, y, o, u(x) and g(y) ?

What does the point <d1,d2> mean? How is the arg max formula used? The sim-

ple answer can be given as:

x 1s HIS slicing of the pie, and o

is HIS bargaining power, 0 < x <1, 0< a0 <1;
u(x) is HIS expectation, for example u(x) =X,
of HIS X slicing of the pie;

y is HER slicing of the pie, and 1—a

is HER bargaining power, 0 <y <1;

g(y) is HER expectation, for example g(y) = \/§ ,
of HER y slicing of the pie.

Based on the widely accepted nomenclature, we call s = <u(x), g(y)> the
utility pair. The disagreement point d = <d1 ,d2> denotes what HE and SHE
collect if they disagree on how to slice the pie. The sugar-pie disagreement
point is d = <d1,d2> = <0, 0>, whereby the players collect nothing. Further,
we believe that expectations from the pie are more valuable for HER, indi-
cating HER desire g(};) = \/% =0.707 for sweets, which is greater than
HIS desire u(}%)=0.5.

Now, considering the argmax formula f(X,y,a), one may ask a new

question: What is the standard that will help to redesign bargaining power o
facilitating HIS negotiations to obtain a desired half of the pie? SHE may only
accept or reject the proposal. A technical person can shed light on the solu-
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tion. We can start by replacing u(x) with x, y=1-x, g(y) with Ny

and taking the derivative of the result f(x,1-x,a) with respect to the

variable x by evaluating f! (x,1-x,a). Finally, with x = ), the equation

£/ (%, %,0)=0 can be solved for a; indeed, o =1/3 provides a solution
to the equation f! (}5,%,0)=0.

In general, one might feel comfort in the following judgment:
"Even in the face of the fact that SHE is twice as tough a negotiator,® to
count on the half of the pie is a realistic attitude toward HIS position of ne-

gotiations. Surely, rather sooner than later, since HE revealed that SHE pre-
fers sweets whatever they are, HE would have HER agree to a concession."

This attitude might well be the standard of redesigning the power of
HIS negotiation abilities if half of the pie is desirable as a specific outcome

of negotiations.

Returning to the pie size issue, it will be assumed that, in the back-
ground of HIS judgment, the quality of the pie first increases, when the
size is small. On the other hand, as the size increases, the quality eventu-
ally reaches the peak point, after which it starts to decline with the in-
creasing size. Thus, the quality is single-peaked with respect to the size.
For HER, the pie is always desirable. To handle the situation, we assume
that HE possesses all the relevant skills of the pie slicing. Nonetheless,
based on the aforementioned assumptions, for HIM, the slicing may, in
some cases, not be worth the effort at all. If the slicing does not meet its
goal, as just emphasized, HE can promote HIS own understanding of how
to slice the pie properly. HE can enforce decisions, or effectively retaliate
for breaches—recruiting for example "enthusiastic supporters,” (Kalai
1977: 131). SHE, on the other hand, lacks slicing abilities, knowledge,

3 Letus say that SHE pays HER solicitor twice as much as HE does.
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skills or competence. Thus, if interests of both players in the final agree-
ment are sometimes different or sometimes not, SHE cannot fully control
HIS actions and intentions. In these circumstances, SHE might show a
willingness to agree with HIS pie division, or at least not resist HIS privi-
leges to make arrangements upon the size of the pie. Hence, from HER
own critical point of view, by acting in common interest, SHE may admit
HER lack of knowledge and skill. This clarifies HIS and HER asymmetric

power dynamics.

Whether HE is committed or not is irrelevant for his decision to accept
HER recommendation regarding the size z. HE is committed, however,
only to slice x aligned in eventual agreement. The above can be restated,

then, with the condition that HE seeks an efficient size z of the pie deter-
mined by the slice x. Let, as an example, the utility pair <u,g> of HIS and

HER expectations be given by:
u(z,x)=z-[(1+x/2)-z] ; g(z.y) =z-ly, z€[01], x,y €[0.1].

The root z =} resolves <u'z(z, x)‘ X:O> =0 for z, and the root z =¥, re-

solves <u'z(z, X) X:1> accordingly. We can thus define efficient slices, rela-
tive to the size z, as a curve x(z), which solves u/(z,x) =0 for x. Evalu-
ating x from u/(z,x)=0 and subsequently replacing x(z) into u(z,Xx)
and g(z,x), yields u(z)=z" and g(z)= z-\3-4-7. Now, given the
scope zZ € [% A ] c [0,1] of the negotiations, the bargaining problem <S ,d>
passes then into parametric space 8, = <u(z),g(z)>. In HIS view, the pie

must fit the size requirements, since outside the interval [% ,%] - [0,1] the

size z is inefficient—too small and thus not useful at all, or too large and
of inferior quality. Therefore, the disagreement occurs at d = <u( %), g(%)>,
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d= < YA ,0>. The Nash symmetric solution to the game is found at z = 0.69,

x =0.74. On the other hand, HIS asymmetric power 0.21 is adequate for
negotiating with HER about receiving half of the pie. The size z = 0.62, for
example, in HIS view, fits the necessary capacities of a stovetop for provi-

sion of high quality sugar-pie.

Once again, to find the Nash symmetric solution, a technically minded per-
son  must resolve the equation f(z,a)=0 for z, where
f(z,a) = (u(z) —%)a -g(2)"™ when a=); z="0.69 provides a solution to
the equation. Thus, solving the equation u’,(0.69,x) =0 for X yields x =0.74
To find the power of asymmetric solution, we first solve the equation
u (z,)5)=0 for z, z=0.62, x = ). Then, we solve £(0.62,0.)=0 for o
and find that HIS power matches o= 0.21, which is adequate for negotiating
with HER when an equal slicing of the pie is desirable, i.e. both HE and SHE
receive Y2 of the pie.

BARGAINING PROCEDURE

The strategic bargaining game operates as a game of alternating offers.
Given some light conditions, it is well known that, when players partaking
in this type of game are willing to make concessions during the negotia-
tions, they are likely to embrace the axiomatic solution. That is the reason
why we continue our discussion in terms of a procedure similar to the

strategic approach.

To recall, there are two players in our game—HE, with emphasis on
quality, and SHE, with no specific preferences. A precondition for the
agreement was that the expectations of negotiators solely depend on HIS
framework of how to set the size parameter, rather than the slice. As a
consequence of this dependence, efficient sizes provide a fundamental
correspondence to crucial slices. Accepting the precondition, SHE will
only propose efficient sizes, as all other choices will be rejected by HIM.
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Nonetheless, it is realistic that SHE would —by negligence, mistake or
some other reason—recommend an inefficient size, which HE would mis-
takenly accept. On the contrary, it is also realistic that HE has an intention
to disregard an efficient recommendation. This will be irrational handling
as, in any agreement, no matter what is going on, both players are com-
mitted by proposals to slices. Therefore, making a new proposal, HER rec-
ommendation on sizes makes a rational argument that HE must accept or
reject in a standard way. Such an account, instead of an agreement upon
slices, as we believe, explains that the outcome of the bargaining game
might be a desirable size z° [21,22]. Hereby, only the interval, named
also the scope [21,22] of negotiations, bids proposals, which now, by de-
fault, are binding efficient sizes with slices x. Consequently, the bargain-
ing game performs exclusively in the interval [21, ZZ]. Hence, [z1, zz] is the
scope of HIS efficient sizes of most trusted sugar-pie platforms for nego-
tiations, where players would choose sizes, accepting or rejecting propos-
als. The negotiators’ expectations, depending on [Z1,22], arrange a bar-
gaining frontier 8, as a way to assemble the bargain portfolio. Therefore,
the negotiators may focus on making the size proposals. If rejected, the
roles of actors change and a new proposal is submitted. The game contin-
ues in a traditional way, i.e. by alternating offers.

Observation. In the alternating-offers sugar-pie game, the functions
(u(z)—d,)" and (g(z)—d,)™ imply HIS and HER expectations, respectively,
over the pie size Z € [21,22]. With the risk 1>>q >0 of negotiations to collapse
prematurely into disagreement point d = [d1, dz], the solution z° of well-defined
bargaining problem (8,,d) is enclosed into the interval [z,2"| c [z,,2,],

z° €7',2"]. The margins 7',z are solving the equations

1-9)-(u)-d ) =(u@)-d ), d-9)-(ez)-d,) " =(e(z)-,) "
for variables z',z* (c.f.., Rubinstein 1998: 75).
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In our example, when x =}, (the half of the pie is a desirable (ex-ante)
solution), HIS negotiation power 0.21 leads to the asymmetric solution
z=0.62. Let the risk factor of the premature collapse of negotiators be
q=0.05. Then, the interval [0.61,0.64] < [0,1] sets up pie sizes providing
the desirable solution, whereby the pie will be divided equally.

CONCLUSION

In

view of the above, a pretext for the analysis of the domain and the

extent of bargain portfolio for two fictitious negotiators, denoted as HE

and SHE, were established. The portfolio was supposed to account for the

players having non-conforming expectations. Instead of slicing the sugar-

pie, such an account allowed for the inclusion of a guide on how the even-

tual consensus ought to be analyzed and interpreted within the scope of

negotiations upon the size of the pie. Players’ bargaining power indicators

specified by the bargaining problem solution were used in compliance

with

their respective desired visions and ambitions.
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Abstract. This article reports not only a theoretical solution to the bargaining problem as
used by game theoreticians, but also provides pertinent calculus. An algorithm that can
produce the result within a reasonable timeframe is proposed, which can be performed
computationally. The aim is to increase the current understanding of one nontrivial case
of Boolean Tables.

JEL classification: C78

Key words: coalition; game; bargaining; algorithm; monotonic system *

“Rawls’ second principle of justice: The welfare of the worst-off individual is to be
maximized before all others, and the only way inequalities can be justified is if they
improve the welfare of this worst-off individual or group. By simple extension,
given that the worst-off is in his best position, the welfare of the second worst-off
will be maximized, and so on. The difference principle produces a lexicographical
ordering of the welfare levels of individuals from the lowest to highest.” Cit. Public
Choice III, Dennis C. Mueller, p.600

1. INTRODUCTION

Since the publication of “The bargaining problem” by John F. Nash, Jr.
in 1950, the framework proposed within has been developed in different
directions. For example, in their “Bargaining and Markets” monograph,
Martin Osborn and Ariel Rubinstein (1990) extended the “axiomatic” con-
cept initially developed by Nash to incorporate a “strategic” bargaining
process pertinent to everyday life. The authors posited that the “time

shortage” is the major factor encouraging agreement between bargainers.

* Monotonic Systems idea, different from all known ideas with the same name, was ini-
tially introduced in 1971 in the article of Tallinn Technical University Proceedings,
Ouepxn o O6pabotke Vinpopmpiiun u PynximonaasHomy PHaansy, Seria A,

No. 313, pp. 37-44.
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Various bargaining problem varieties emerged in the decades following
Nash’s pioneering work, prompting game theoreticians to seek their solu-
tions, most of which did not necessarily comply with all Nash axioms. Be-
yond any doubt, “Nonsymmetrical Solution” proposed by Kalai (1977);
Hursanyi’s (1967) “Bargaining under Incomplete Information”; “Experi-
mental Bargaining”, which was later proposed by Roth (1985); and the
“Bargaining and Coalition” paper published by Hart (1985) are among
some notable contributions to this field, confirming the fundamental im-

portance of bargaining theory.

Bargaining and rational choice mechanisms are interrelated concepts
and are treated as such in this work. In the context of general choice the-
ory, the choice act can be formalized through internal and external de-
scriptions, which requires use of binary relations and theoretical approach,
respectively. Thus, both description modes apply to the same object, albeit
from different perspectives. The Nash Bargaining Problem and its solution
express exactly the same phenomenon. Given a list of axioms, such as
“Pareto Efficiency” or “Independence of Irrelevant Alternatives”, in terms
of binary relations the rational actors must follow, the solution is reached
through scalar optimization applied to the set of alternatives. Indeed, the
scalar optimization is at the core of the Nash’s axiomatic approach and is
the reason for its success in performing the bargaining solution calculus.
In this respect, the motive of this work is to present a “calculus” of bar-
gaining solution on large Boolean Tables and some theoretical foundations
offered by the method. Unfortunately, in following the Nash’s scenario,

numerous difficulties emerged.

Boolean Table representation transforms the real life “cacophonous”
scenario into a relatively simple and understandable data format. How-

ever, allowing the scalar optimization not to be unique makes the picture
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more complex. Moreover, we are considering a purely atomic object that
does not intuitively satisfy the “invariance under the change of scale of
utilities” property typically assumed in the proofs. From the researcher’s
point of view, the issue stems from the incertitude pertaining to the most
optimal choice of the scalar criteria. The Nash axiomatic approach, how-
ever, suggests that employing the product of utilities is the most appropri-
ate, thus removing any uncertainty from further discussion. Nevertheless,
in the context of the method presented here, it is posited that a reasonable
solution might come into consideration, while game-analysts would be
advised to include the method into a wider range of applicable game

analysis tools.

In the next section, the main example of our bargaining game is intro-
duced. In addition, in the appendix, we also illustrate a different bargain-
ing between the coalition and its moderator applied to Boolean Tables us-
ing some conventional characteristic functions. It is worth noting that cer-
tain items in the main example, such as signals or misrepresentations, are
not the primary topic of our discussion. These items must rather be under-
stood as an illustration of the bargaining process complexity. In Section 3,
we attempt to explain our intentions in a more rigorous manner. Here, we
formulate our “Bargaining Problem on Boolean Tables” in pure strategies,
thus providing the foundation for Section 4, where we exploit our pure
Pareto frontier in terms of so-called Monotonic Systems chain-nested al-
ternatives—the Frontier Theorem. In order to implement the Nash theo-
rem for nonsymmetrical solution (Kalai, 1977), in Section 5, we introduce
what we deem to be an acceptable, albeit complex, algorithm in general
form. Even though lottery is not permitted in the treatment of Boolean
Tables subsets representing pure strategies, as this approach does not nec-

essary produce the typical convex collection of feasible alternatives, we
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claim that the algorithm will yield an acceptable solution. Finally, Section
6 presents an elementary attempt to formulate a regular approach of coali-
tion formation under the coalition formation supervisor-the moderator
structure. This attempt depicted in Figure 2, explaining the notation no-
menclature of chain-nested alternatives adopted in our Monotonic Sys-
tems theory, discussed in Section 4. Section 7 summarizes the entire analy-
sis, while also providing an independent heuristic interpretation, before

concluding the study in Section 8.

2. EXAMPLE

Manager of the “Well-Being” company is determined to encourage em-
ployees to partake in health-promoting activities. The manger hopes to
reduce company losses arising from disability compensations. To identify
the employees’ preferences, the manager has initiated a survey. According
to the survey responses, five health activities offered to the employees
generated varying degrees of interest, as shown in Table 1.

Tablel Employee preferences pertaining to the company-sponsored
health-promoting initiatives

Health | No Smok- Swimming  Bike  Moderate Fattening Total
activities ing Pool  Exercises  Alcohol Diet

Em. 1 X X 2
Em.2 X X X X 4
Em. 3 X X X 3
Em. 4 X X X X 4
Em..5 X X 2
Em. 6 X X X X 5
Em.7 X 2
Total 3 6 5 5 3 22
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The manager would like to treat the responses the employees have pro-
vided as an indication that they are willing to partake in the activities they
selected. However, aware of unreliable human nature, he is not confident
that they will keep their promises. Therefore, the manager decides to
award all employees that do participate in the health activities that will be
organized in “Health Club”. The manager has found a sponsor that has
issued 12 Bank Notes in lieu of the project expenses. However, upon
closer consideration of the awards policy, the manager realized that many

obstacles must be overcome in order to implement it in practice.

Fist, organizing activities that only a few employees would partake in is
neither practical nor cost-effective. Thus, it is necessary to stipulate a
minimum number of employees that must subscribe to each health activ-
ity. On the other hand, it is desirable to promote all activities, encouraging
the employees to attend them in greater numbers. For this initiative to be
effective, instructions (as a rule full of twists and turns) regarding the
awards regulations should be fair and concise. Usually, in such situations,
someone (a moderator) must be in charge of the club formation and award
allocation. However, as the manager is responsible for financing health
activities, he/she should retain control of all processes. Thus, the manager
proposes to write down the First Club Regulation: The manager awards 1
Bank Note to an employee participating in at least k different activities (where
k is determined by the manager).

Determining the most optimal value of the parameter k is not a
straightforward task, as it is not strictly driven by employees” preferences
regarding specific activities to participate in. In fact, this task is in the
moderator’s jurisdiction, while also being dependent on the employees’
decisions, as they act as the club members. The goal is to prohibit some
club members to “spring over” health activities preferred by other mem-
bers of the club by worsening, in the manager’s view, the situation, thus
requiring too many different activities to be organized. This issue can be
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avoided by the inclusion of the Second Club Regulation: If a certain em-
ployee in favor of receiving awards participated in fewer than k activities, no one
will be awarded. By instituting this regulation, the manager aims to encour-
age the moderator to eliminate activities that would not have sufficient
number of participants. Thus, the Third Club Regulation: moderator’s
award basket will be equal to the lowest number of participants per activity in the
list of activities among all actually participating club members. Indeed, to earn
more awards, the moderator might decide to organize a new club by ex-
cluding an activity with the lowest number of participants from the list of
activities some of the members chose to attend as a part of the already or-
ganized club. This would effectively result in the lowest number of par-
ticipants in the new and shorter list being higher than that in the previous
list. It should also be noted that the award regulation does not address the
situation in which a club member declines an activity, allowing an indi-
vidual outside the club to participate instead. In such a case, the club “ac-
tivities list” may become shorter than that presented in Table 1, and would
determine the size of the moderator’s award.

This scenario also provides the potential for the club members” prefer-
ences to be misrepresented to the company manager. Let us assume that
the manager makes a decision k =1, which has been, for whatever reason,
made accessible to the moderator. Knowing that k =1, the moderator ac-
tions can be easily predicted in accordance with the third club regulation.
Indeed, using the employees” survey responses, the moderator can iden-
tify the most “popular” health activity, as well as the individuals that in-
tend to participate in this activity. From the aforementioned regulations, it
is evident that the moderator would receive the maximum award if he
manages to persuade other employees to participate in that particular ac-
tivity only. Rational members would certainly agree to that proposal be-
cause, whether or not they take part in any other activity, their award is
still guaranteed.! The same logic obviously applies for k >1 as well.

1 We will disclose more complex misrepresentation opportunity later.
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Thus, the essence of establishing fair rules pertains to determining the
moderator’s award. If the moderator is not offered any awards, the grand
coalition formation is guaranteed, as all employees will become club
members. This is the case, as participating in at least one activity would
ensure that an employee receives an award. However, due to the modera-
tor actions, such grand coalition formation is not always feasible.

As previously noted, the moderator might receive a minor award if a
“curious” employee decides to take part in an “unpopular activity”. In-
deed, the third club regulation stipulates that the moderator award size is
governed by the number of participants in the most “unpopular activity”.
Being aware of the potential manipulation of the regulations, and being a
rational actor, the company manager will thus strive to keep the decision
k a secret. It is also reasonable to believe that all parties involved —the
club members, the moderator and the manager —will have their own pref-
erences regarding the value of k. Therefore, an explanation based on the
salon game principles is applicable to this scenario. Using this analogy, let
us assume that the manager has chosen a card k and has hidden it from
the remaining players. Let us also assume that the moderator and the club
members have reached an agreement on their own card choice in line with
the three aforementioned club regulations. The game terminates and
awards are paid out only if their chosen card is higher than that selected
by the manager. Otherwise, no awards will be paid out, despite taking
into consideration the club formation.

However, not all factors affecting the outcome have been considered
above. Indeed, the positive effect, f, , which the manager hopes to achieve,
depends on the decision k. We have to expect a single n-peakedness of
the effect function for some reason. As a result, this function separates the
region of k values into what we call prohibitive and normal range. In the
prohibitive range, which includes the low k values, the effect has not yet
reached its maximum value. On the other hand, when k value is high (i.e.
in the normal range), the f, limit is exceeded. Therefore, in the prohibitive
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range, the manager and the moderator interests compete with each other,
making it reasonable to assume that the manager would keep his/her deci-
sion a secret. However, in the normal range, they might cooperate, as nei-
ther benefits from very high k values, given that both can lose their pay-
offs. Consequently, using the previous card game analogy, in the normal
range, it is not in the manager’s best interests to hide the k card.

Given the arguments presented above, the game scenario can be illus-
trated more precisely. Using the data presented in Table 1, and assuming
that an award will be granted at k =1,2, the manager may count upon all
seven employees to become the club members. If all employees participate
in all activities, each would receive a Bank Note, and the moderator’s bas-
ket size would be equal to 3. However, it would be beneficial for the mod-
erator to entice to the club members to decline participation in “No Smok-
ing” and “Fattening Diet” activities, as this would increase his/her own
award to 5. As all club members will still preserve their awards, they have
no reason not to support the moderator’s suggestion, as shown in Table 2.

Table 2 Table 3
He'al‘tl‘z Swimming Bik? Moderate Total Swimming Total
activities Pool Exercises Alcohol Pool

Em. 1 X X 2 X 1
Em..2 X X 2 X 1
Em.. 3 X X X 3 X 1
Em.. 4 X X 2 X 1
Em. 5 X X 2 0
Em.. 6 X X X 3 X 1
Em..7 X X 2 X 1
Total 6 5 5 16 6 6

In this scenario, the sponsor would have to issue 12 Bank Notes, which
can be treated as expenses associated with organizing the club. The spon-
sor may also conclude that k =1 is undesirable based on the previous ob-
servation that the moderator can deliberately misrepresent the members’
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preferences for personal gain.? The sponsor is aware that the moderator
may offer one Bank Note to an employee that agrees to propose k =1.
Knowing that k =1, the moderator may suggest to the club members to
subscribe to the “Swimming Pool” activity only. However, in the sponsor’s
opinion, the moderator must compensate Employee no. 5 for the losses
incurred by offering him/her one Bank Note. Otherwise, Employee no. 5,
by participating in other activities distinct from “Swimming Pool” has the
right to receive an award and may report the moderator’s fraud to the
board. In this case, following the regulations in force (see Table 3), mod-
erator’s award will be equal to 4 (1 would be deducted for the signal and 1
for the compensation). However, this would still exceed the value indi-
cated in Table 1. Thus, in order to decrease sponsor expenses or avoid mis-
representations, the company board may follow the sponsor’s advice and
propose k >3 .

It could be argued that k > 3 results in decreased participation in health
activities because Employees no. 1, 5 and 7 will be excluded from the
club and will immediately cease to partake in any of their initially chosen
activities. However, based on Table 4, it can also be noted that, in such an

event, the remaining employees (i.e. 2,3,4 and 6) will still participate in

heath activities and will still be awarded.

Table 4

Health No  Swimming Bike  Moderate Fattening Total
activities| Smoking ~ Pool  Exercises  Alcohol Diet

Em.2 X X X X 4
Em.3 X X X 3
Em. 4 X X X X 4
Em.6 X X X X X 5
Total 3 4 2 4 3 16

> The more complex case of misrepresentation follows, as promised.
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Now, the moderator’s award basket is equal to 2, since only Employees
no. 3 and 6 would take part in “Bike Exercises”. Consequently, the sponsor
expenses decrease from 10 to 6. In this case, the manager may decide to
allow the moderator to retain his/her award of 3 by eliminating “Bike Ex-
ercises” from the activity list, as organizing it for two participants only is
not justified, as shown in Table 5. Note that Employee no. 3, due to this
decision, must be excluded from the club list, in line with the second club
regulation, c.f. the suggestion above to eliminate “No Smoking” and “Fat-

tening Diet” activities.

Bargaining game between club members and the moderator

Revenue Function = the number

¢ | of club members participating in

at least k activities and only this o6
E particular list of k activities
E 51 counts in the manager award's (@] (e} Q5
5 decision; k=1 .No any member
= (inclusive moderator) receives
S 44 . [©) o @)
2 an award if some club member
§ participates in less than k
= 3 activities. o o o o o
=
O
=
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D
==
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Figure 1
00 ! ! ! !
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Club Size = the Club Award
Table 5
Health No Smok- Swimming Moderate  Fattening Total
activities ing Pool Alcohol Diet
Em. no. 2 X X X X 4
Em. no. 4 X X X X 4
Em. no. 6 X X X X 4
Total 3 3 3 3 12

This decision does not seem reasonable, given that the aim of the initia-
tive was to motivate the employees to exercise and improve their health.
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Thus, let us assume that k =5 was the board proposal. This would result
in only Employee no. 6 being willing to participate in the health activities
offered, see Table 6.

Table 6

Health No  Swimming  Bike  Moderate Fattening Total
activities | Smoking ~ Pool Exercises Alcohol ~ Diet

Em. 6 X X X X X 5
Total 1 1 1 1 1 5

The moderator may decide not to organize the club, as this would result
in an award equal to only one Bank Note. Similarly, the manager is not
incentivized to promote all five activities if only one employee would take
part in each one. As a result, at the board meeting, the manager would
vote against the proposal k =95. In sum, the manager’s dilemma pertains
to the alternative k choice based on the information given in Table 7.

Table 7.
Club Club  Club members Sig- Bank  Bank
. Notes  Notes
members moderator compensation nal
used left
T.3, k=1 6 4 1 1 19 0
T.5 k=4 3 3 0 0 6 ‘

To clarify the situation presented in tabular form, it would be helpful to
visualize the manager’s dilemma using the bargaining game analogy,
where 12 Bank Notes are shared between the moderator and the club
members.
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The decision on the most optimal k value taken at the board meeting
will be revealed later, using rigorous nomenclature, as only a closing topic
is necessary to interrupt our pleasant story for a moment.?

Let us assume that three actors are engaged in the bargaining game: N
employees, one moderator in charge of club formation, and the manager.
Certain employees from N = {1,...,i,...n } — the potential members of the

club x, x €2, have expressed their willingness to participate in certain
activities y, ye2", M= {1,...,j,...,m } Let a Boolean Table W = H ain;n
reflect the survey results pertaining to employees’ preferences, whereby
a;; =1 if employee i has promised to participate in activity j, and a;; =0
otherwise. In addition, 2 denotes of allegedly subsidized activities,
whereby y € 2 have been examined.

We can calculate the moderator payoff F (H) using a sub-table H
formed by crossing entries of the rows X and columns y in the original
table W by further selection of a column with the least number F (H)
from the list y. The number of 1-entries in each column belonging to y
determines the payoff F(H). Characteristic functions family
vi(x,y)=Vv*(H), ke {1,...,k,...,kmax}, on N are known for the coalition
games; in particular, for every pair Lc G, L,G €2 x2", we suppose
that v*(L) <Vv*(G). Further assuming that the manager payoff function
f,(H) has a single n-peakedness, in line with the decisions

<1,...,k,...,kmax >, f, (H) reflects some kind of positive effect on the company

deeds. In this case, sponsor expenses will be equal to v*(H) +f, (H).

Finally, it is appropriate to share some ideas regarding a reasonable so-
lution of our game. The situation is similar to the Nash Bargaining Prob-

lem first introduced in 1950, where two partners—the club members and

* Those unwilling to continue with the discussions on bargaining presented in the subse-
quent sections should nonetheless pay attention to this closing remark.
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the moderator —are striving to reach a fair agreement. It is possible to find
the Bargaining Solution S, € {H}=2" x2" for each particular decision k,

see next sections. However, the choice of the number k is not straightfor-
ward, as previously discussed. For example, k =4,5 may be useful based
on some ex ante reasoning, whereas maximum payoffs are guaranteed for
the partners when k =1. As that decision is irrational, because only one
activity will be organized and, even though it will attract the maximum
number of participants, it would fail to yield a positive effect f(S,) on the
health deeds in general. The choice of higher k was previously shown to
be counterproductive (too many activities will be offered, but would have

only a few participants), yet the sponsor would benefit from issuing fewer

awards. For example, for k =k __, an employee with the largest number

max /

of preferred k,_  activities might become the only member of the club.

This is akin to the median voter scheme, discussed by Barbera et al. (1993).

However, a further consultation in this “white field” is necessary.

3. BARGAINING GAME APPLIED TO BOOLEAN TABLES

Suppose that employees who intend to participate in company activities
have been interviewed in order to reveal their preferences. The resulting

data can be arranged in an nxm table W = HOLi i

, where the entry o, =1

indicates that an employee 1 has promised to participate in activity j, oth-
erwise a,; =0. In this respect, the primary table W is a collection of Boo-
lean columns, each of which comprises of Boolean elements related to one
specific activity. In the context of the bargaining game, we can discuss an

interaction between the health club and the moderator. The club choice x
is a subset of rows <1,...,i,...,n> denoting the newly recruited club mem-

bers, whereby a subset y of columns <1,..., j,...m> is the moderator’s

choice—the list of available activities. The result of the interaction between
the club and the moderator can thus be represented by a sub-table H or a
block, denoting the players’ joint anticipation (x,y). The players are des-
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ignated as Player no. 1 — the club, and Player no. 2 — the moderator, and
both are driven by the desire to receive the awards. Let us assume that all
employees have approved our three award regulations.* While both play-
ers are interested in company activities, their objectives are different.
Player no. 1 might aim to motivate each club member to agree to partak-
ing in a greater number of company-sponsored activities. Player No. 2, the
moderator, might desire to subscribe maximum number of participants in
each activity arranged by the company. Let the utility pair (V(X),F(y))
denote the players’ payoff, whereby both players will bargain upon all
possible anticipated outcomes (V, F)

Our intention in developing a theoretical foundation for our story was
to follow the Nash’s (1950) axiomatic approach. Unfortunately, as previ-
ously observed, some fundamental difficulties arise when adopting simi-
lar approach. Below, we summarize each of these difficulties, and propose
a suitable equivalent. When proceeding in this direction, we first formu-
late the Nash’s axioms in their original nomenclature before reexamining
their essence in our own nomenclature. This approach would allow us to
provide the necessary proofs in the sections that follow.

As noted by Nash (1950), “... we may define a two-person anticipation
as a combination of two one-person anticipation. ... A probability combi-
nation of two two-person anticipations is defined by making the corre-
sponding combinations for their components” (p. 157). Readers are also
advised to refer to Sen Axiom 8*1, p. 127, or sets of axioms, as well as Luce
and Raiffa (1958), Owen (1968) and von Neumann and Morgenstern
(1947), with the latter being particularly relevant for utility index interpre-
tation. Rigorously speaking, the compactness and convexity of a feasible
set & of utility pairs ensures that any continuous and strictly convex
function on & reaches its maximum, while convexity guarantees the
maximum point uniqueness.

* We recall the main regulation that none of the club members, inclusive the moderator,

receive their awards if a certain club member participates in fewer than K activities.
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Let us recall the other Nash axioms. The solution must comply with
INV (invariance under the change of scale of utilities); IIA (independence
of the irrelevant alternatives); and PAR (Pareto efficiency). Note that, fol-
lowing PAR, the players would object to an outcome s when an outcome
s' that would make both of them better off exists. We expect that the play-

ers would act from a strong individual rationality principle SIR. An arbitrary
set 8 of the utility pairs s = (s1,s2) can be the outcome of the game. A

disagreement arises at the point d = (d,,d,) where both players obtain the

lowest utility they can expect to realize — the status quo point. A bargaining
problem is a pair <S ,d>5 and there exists s € § such that s, >d, for i=1,2

and d € 8. A bargaining solution is a function f(8,d) that assigns to every
bargaining problem <S , d> a unique element of §'. The bargaining solu-
tion f satisfies SIR if £(§,d) > 0 for every bargaining problem (8,d).

The advantage of our approach, which guarantees the same properties,
lies in the following. We define a feasible set & of anticipations, or in
more convenient nomenclature, a feasible set 8 of alternatives as a collec-
tion of table W blocks: 8 < 2". Akin to the disagreement event in the
Nash scheme, we define an empty block & as a status quo option in any
set of alternatives &, which we call the refusal of choice. Given any two
alternatives H and H' in &, an alternative HUH' belongs to 8. In
other words, in our case, the set 8§ of feasible alternatives always forms
an upper semi-lattice. Moreover, if an alternative H € 8, it follows that all
of its subsets 2" < &§. Although these arguments do necessitate further
discussion, at this juncture, we will state that this is our equivalent to the
convex property and will play the same role in proofs as it does in the

Nash scheme.

5 We use the bold notifications & close to the originals. Notification S is preserved for
stable point, see later.
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The Nash theorem asserts that there is a unique bargaining solution
f(§,d) for every bargaining problem <S , d>, which maximizes the prod-
uct of the players’ gains in the set 8 of utility pairs (81,82)6 8 over the
disagreement outcome d =(d,,d, ). This is a so-called symmetric bargain-
ing solution, which satisfies INV, IIA, PAR, and SYM - players symmetric
identify, if and only if

f(S§,d)=arg maX(d1,d2)§(s1,s2)(s1 - d1)‘ (32 - dz)- (D

It is difficult to make an ad hoc assertion regarding properties that can
guarantee the uniqueness of similar solution on Boolean Tables. Neverthe-
less, in the next section, we claim that our bargaining problem on 8 < 2%

has the same symmetric or nonsymmetrical shape:

£(8,2)=1(8) =argmax,_g v(H)’F(H)"’ 2)
for some 0 <0 <1 provided that Nash axioms hold.

4. THEORETICAL ASPECTS OF THE BOOLEAN GAME
Henceforth, the table W = H(x . JH will denote the Boolean table discussed

in the preceding section, representing employees’ promises to attend
company activities. It is beneficial to examine H rows x, symbolizing the

arrival of new members to the club, committed to participating in at least

k activities. Activities form, what we call here, a column’s activity list y,
k =23,..., where k represents the award decision. For each activity in the
activity list y, at least F(H) of club members intend to fulfill their prom-
ises. For example, let us consider the number of rows in H pertaining to
the gain v(H) of Player no. 1 (the club members), while the gain of Player
no. 2 (the moderator’s award) is represented by F(H).
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Let us look at the bargaining problem in conjunction with players’ pref-

erences. The anticipations of the coming club members i € X towards the

activity list y can easily be "raised" by 1, =3 a,; if , 2k, and 1, =0 if
jey

Z(xij <k, 1iex, jey. Similarly, the moderator’s anticipation towards

Jey

the same activity list y can be “accumulated” by means of table H as
C; :ZOCW JEY.

We now consider this scenario in more rigorous mathematical form. Be-
low, we use the notation H € W . The notation H contained in W will be
understood in an ordinary set-theoretical nomenclature, where the Boo-
lean Table W is a set of its Boolean 1-elements. All 0-elements will be
dismissed from the consideration. Thus, H as a binary relation is also a
subset of W . Henceforth, when referring to an element, we assume that it

is a Boolean 1-element.

For an element o =0,;; € W in the row i and column j, we use the
similarity index m;; = ¢;, counting only on the Boolean elements belonging
to H, iex and jey. As the value of 7;; =c; depends on each subset
Hc W, we may write n;; = n =m(a,H), where the set H represents the

n-function parameter. It is evident that our similarity indices m;; may

only increase with the “expansion” and decrease with the “shrinking” of

the parameter H. This yields the following fundamental definitions:

Definition 1. Basic monotone property. Monotonic System will be under-
stood as a family {TE(OL,H) :He ZW} of m-functions, such that the set H is a
parameter with the following monotone property: for two particular values
L,Ge2Y, LG of the parameter H, the inequality (o, L) <7(o,G) holds
for all elements o € W . In ordinary nomenclature, the w-function with the
definition area W x2" is monotone on W with regard to the second pa-
rameter on 2" .
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Definition 2. Let V(H) for a non-empty subset H € W by means of a
given arbitrary threshold u be the subset V(H) = {OL e W:n(a,H) > u}.

The non-empty H-set indicated by S is called a stable point with reference to the
threshold u if S=V(S) and there exists an element & S, where n(E,S)=u.

See Mullat (1979, 1981) for a comparable concept. Stable point S = V(S)
has some important properties, which will be discussed later.

Definition 3. By Monotonic System kernel we understand a stable point
S" =8, with the maximum possible threshold value u” =u

max *

Similar properties of Monotonic Systems and their kernels have been
investigated by Libkin et al. (1990), Genkin et al. (1993), Kempner et al.
(1997), and Mirkin et al. (2002). With regard to the current investigation, it
is noteworthy to state that, given a Monotonic System in general form,
without any reference to any kind of “interpretation mechanism”, one can
always consider a bargaining game between a coalition H — Player no. 1,
with characteristic function v(H), and Player no. 2 with the payoff func-

tion F(H) =min__, n(a, H). Following Nash theorem, a symmetrical solu-
tion has to be found in form (1). In addition, we will prove below that our
solution has to be found in the symmetrical or nonsymmetrical form (2).
Definition 4. Let d be the number of Boolean 1's in table W . An ordered
sequence O = <0c0,oc1,...,oc d_1> of distinct elements in the table W is called a de-
fining sequence if there exists a sequence of sets W =1y DI, D...D I such
that:
A. Let the set H, ={o,,0,,,....0, }. The value m(a,,H,) of an arbitrary
element o, €T, but o, ¢ I, is strictly less than F(I',;), j=01,...,p—1.
B. There does not exist in the set I a proper subset L that satisfies the strict
inequality F(I')) <F(L).

Definition 5. A defining sequence is complete, if for any two sets 1'; and T, ,

it is impossible to find I" such that T, D T'> T, while F(I')) <F(I") < F(T',,,),
j=01..,p-1.
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It has been established that, in an arbitrary Monotonic System, one can

always find a complete defining sequence (see Mullat, 1971, 1976). More-

over, each set I is the largest stable set with reference to the threshold

F(I';). This allows us to formulate our Frontier Theorem.

Frontier Theorem. Given a bargaining game on Boolean Tables with an arbi-
trary set 8 of feasible alternatives He S8, the anticipations points
(V(Fj),F (Fj)), j=01,...,p, of a complete defining sequence o arrange a Pareto

. . 2
frontier in R”.

Proof. Let W® € 8 be the largest set in & containing all other sets
He 8 : Hc WP, Let a complete defining sequence @ ¢ exist for W*. Let
the set H° be the set containing all such sets V(H), where
V(H)={oe W:n(a,H)>F(H)}. Note that HcV(H®) and
F(H®) 2 F(H) . Now, for accuracy, we must distinguish three situations: (a)
in the sequence o one can find an index j such that
F(I)) <FH")<F(T,,) j=01..,p—1; (b) F(H*)<F(W)=F(}); and (c)
F(H) > F(I',) . The case (c) is impossible because, on the set I' , the func-
tion F(H) reaches its global maximum. In case of (b), the anticipation
(v(T,),F(T},)), T, =W, is more beneficial than (v(H),F(H)), which con-
cludes the proof. In case of (a), let F(I';) <F(H"), otherwise the equality
F(I',) = F(H®) is the statement of the theorem (when reading the sentence
after the next, the index j+1 should be replaced by j). However, in this

case, the set H° must coincide with L. j=0,,...,p—1, otherwise the de-

tining sequence o is incomplete. Indeed, looking at the first element

a, € H in the sequence @, it can be ascertained that, if I';, = H® does not

+1

hold, the set H, = H® because it is the largest stable set up to the threshold

F(H®). Hence, the set H, represents an additional I"-set in the sequence

® We are not going to use any new notifications to distinguish between Boolean Tables

W and W°.
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o with the property A of a complete defining sequence. Due to
[,=H"2H and the basic monotonic property, the inequalities
F(I,,) =F(H®) 2 F(H) and v(I',,) = v(H) > v(H) are true. Thus, the point
(V(F ), F(I' j+1)) is more advantageous than (V(H),F(H)) .

J

+1

5. CALCULUS OF THE BARGAINING SOLUTION

To summarize, the discussion that follows is governed by the Nash
bargaining scheme. Some reservations (see, for example, Luce and Raiffa,
6.6) hold as usual because our bargaining game on Boolean Tables is
purely atomig, i.e. it does not permit lotteries (which are an important ele-
ment of any bargaining scenario). Given this restriction, the uniqueness of
the Nash solution cannot be immediately guaranteed. However, it is
important to note that “...the Nash solution of <S , d> depends only on dis-
agreement point d and the Pareto frontier of & . The compactness and
convexity of 8 are important only insofar as they ensure that the Pareto
frontier of & is well defined and concave. Rather than starting with the
set &, we could have imposed our axioms on a problem defined by a
non-increasing concave function (and disagreement point d)...” (Osborn
and Rubinstein, 1990, p. 24). In our case, (V(Fj),F(Fj)), j=01,...,p, repre-
sents the atomic Pareto frontier. Therefore, it is possible to provide the
proof of non-symmetrical solution (see Kalai, 1977, p. 132), as well as per-
form the calculus with the product of utility gains in its asymmetrical form
(2).” The problem of maximizing the product is primarily of technical na-
ture. In the discussions that follow, we will introduce an algorithm for that
purpose. We will first comment on the individual algorithm steps in rela-

tion to the definitions.

7 There are many techniques that guarantee the uniqueness of the product of utility
gains. We are not going to discuss this matter here, because this case is rather an ex-
emption than a rule.
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The algorithm’s last iteration, see below, through the step T detects the
largest kernel K =S"¢ (Mullat, 1995). The original version (Mullat, 1971) of
the algorithm aimed to detect the largest kernel and is akin to a greedy
inverse serialization procedure (Edmonts, 1971). The original version of
the algorithm produces a complete defining sequence, which is imperative
for finding the bargaining solution aligned with the Frontier Theorem. In
the context of the current version, however, it fails to produce a complete
defining sequence. Rather, it only detects some thresholds u;, and some

stable set I;=S,. The sequence u,,u,,... is monotonically increasing:
u, <u, <.. while the sequence I|,I,... is monotonically shrinking:
I, oI, D>..., whereby the set I, =W is stable towards the threshold

u, = F(W) = min &, .. Hence, the original algorithm is always character-
° iijew

ized by higher complexity. However, for finding the bargaining solution,
we can still implement an algorithm of lower complexity, which would
require modifying the indices n;; =c¢;.

Let us consider the problem of identifying the players’ joint choice H,_

representing a block argmax,,_¢ v(H)’F(H)"™ of the rows x and columns

y in the original table W satisfying the property > o, >k, i e x.

jey

Let an index 7, =1 -v’-c j1_69. The following algorithm solves the

problem.

Algorithm.

Step 1.Set the initial values.
1i. Assign the table parameter H to be identical with W, H< W,
Set the minimum and maximum bounds a,b on the threshold
u for m;; € H values.

8 It is possible that some smaller kernels exist as well.
’ This index obeys the basic monotone property as well.
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Step A. Establish that the next step B produces a non-empty sub-table
H. Remember the current status of table H by creating a tem-
porary table H°: H° < H.

la. Test u as @+ b% using step B. If it succeeds, replace a by u,
otherwise replace b by u and H by H°: H < H° - “regret ac-
tion”.

2a. Go to 1a.

Step B.  Test whether the minimum of 7, € H over i,j can be equal or
greater than u.

1b. Delete all rows in H where 1, =0. This step B fails if all rows in
H must be deleted, in which case proceed to 2b. The table H is
shrinking.

2b. Delete all elements in columns where ©; <u. This step B fails if

all columns in H must be deleted, in which case proceed to 3b.
The table H is shrinking.

3b.Perform step T if no deletions were made in 1b and 2b; other-
wise go to 1b.

Step T. Test whether the global maximum is found. Table H has halted
its shrinking.

1t. Among numbers =;; € H, find the minimum min < 7;;. Test

performing Step B with new value u = min. If it succeeds, set
a=min and return to Step A; otherwise, terminate the algo-
rithm.

6. BOOLEAN GAME COOPERATIVE ASPECTS

A cooperative game is a pair (N, V), where N symbolizes a set of play-
ers and v is the game characteristic function. Function v is called a su-
permodular if

v(L) +v(G) < V(LU G) +v(L " G)
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whereas it is submodular if the inequality sign < is replaced by 2,
L,G €2". Among others, see Cherenin et al. (1948) and Shapley (1971),
where various properties of supermodular set functions are specified. In
the appendix, we illustrate a game, which is neither supermodular nor
submodular, but rather a mixture of the two, where single and pairwise
players do not receive extra awards. On the other hand, it is obvious that
all properties of supermodular functions v remain unchanged for sub-

modular — v characteristic function or vice versa.
A marginal contribution into the coalition H of a player x (the player

marginal utility) is given by n(x;H) = 2—H, where
X

2—H =v(Hux)—-v(H) if x ¢ H, the player x joins the coalition,
X
and
oH . .
Ix =v(H)-v(H\ x) if x e H, the player x leaves the coali-
X

tion, for every He2". We denote in our nomenclature HUx =H +x,

and H\x = H —x, see later.

Suppose that the interest of player X to join the coalition equals the

player’s marginal contribution X A coalition game is convex (concave)
X

if for any pair L and G of coalitions L € G < W the inequality

oL _ oG (6L>8G

< > holds for each player x e W.
ox 0x \0x 0x

Theorem. For the coalition game to be convex (concave), it is necessary and
sufficient for its characteristic function to be a supermodular (submodular) set
function.
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Extrapolated from Nemhauser et al. (1978).1

Now, in view of the theorem, marginal utilities of players in the super-
modular game motivate them in certain cases to form coalitions. In a
modular game, where the characteristic function is both supermodular
and submodular, marginal utilities are indifferent to collective rationality
because entering a coalition would not allow anybody to win or lose their
respective payments. In contrast, it can be shown that collective rationality
is sometimes counterproductive in submodular games. Therefore, in su-
permodular games, formation of too many coalitions might be unavoid-
able, resulting in, for example, the grand coalition. In such cases, in
Shapley’s (1971) words, this leads to a “snowballing” or “band-wagon”
effect. On the other hand, submodular games are less cooperative. In order
to counteract these “bad motives” of players in both supermodular and
submodular games, we introduce below a second actor — the moderator.
Hence, we consider a bargaining game between the coalition and the

moderator.

Convex game induces an accompanied bargaining game with the utility
pair (V(H),F(H)), where F(H) =min__, 2—11 ; concave game induces utility
pair with F(H)=max _, 2—1;(1 Here, the coalition assumes the role of

Player no. 1 with the characteristic function v(H). The coalition modera-

tor, the Player no. 2, expects the award F(H).

'% Shapley (1971) recognized this condition as equivalent, whereby Nemhauser et al.
(1978) proposed similar derivatives in their investigation of some optimization
problems. Muchnik and Shvartser (1987) pointed to the link between submodular set
functions and the Monotonic Systems, see Mullat (1971).
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Proposition. The solution f(8,D) of a Nash’s Bargaining Problem (8,D),

which accompanies a convex (concave) coalition game with characteristic function
v, lies on its Pareto frontier Iy DI, ... D maximizing (minimizing) the
1-0

ol
product V(l“j)9 '8_0: for some j=01,....,p, and 0<0<1.

Proof: This statement is an obvious corollary from the Frontier Theorem. B

In accordance with the basic monotonic property, see above, given
oH

some monotonic function m(x;H)= 8_ on Nx2V, it is not immediately
X
apparent that there exists some characteristic function v(H) for which the

. : : . ... OH
function m(x;H) constitutes a monotonic marginal utility Ix The
X

following theorem, accommodated in line with the work of Muchnik and
Shvartser (1987), addresses this issue.

The existence theorem. For the function n(x,H) to represent a monotonic

. ... OH . L

marginal utility — of some supermodular (submodular) function v(H), it is
X

necessary and sufficient that

O M (xiH) - n(sH - y) = n(y;H) - n(y;H-x) = 1
0y ox 0x0y

holds for X,y € H < N. The interpretation of this condition is left for the

reader.

7. HEURISTIC INTERPRETATION

Only the last issue is relevant to our bargaining solution I =f(8,J) to

the supermodular bargaining game. The coalition I" is a stable point with
. I

reference to the threshold value u=F(')=min 2— This coalition
X

guarantees a gain u=F(I") to Player no. 2. Therefore, Player no.2 can
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prevent anyone X ¢ I outside the coalition I € 8§ from becoming a new

I
member of the coalition because the outsider’s marginal contribution Ix
X

reduces the gain guaranteed to Player no. 2. The same incentive governing
the behavior of Player no. 2 will prevent some members x € I' from leav-
ing the coalition. The unconventional interpretation given below might
help elucidate this situation.

Let us observe a family of functions on N x2" monotonic towards the

H
second set variable H, H e2". Let it be a function m(x;H)= 2— We al-
X

ready cited Shapley (1971), who introduced the convex games, with the
H

marginal utility 2— =v(H) - v(H-x), which is the one of many exact
X

utilizations of the monotonicity n(x,L) < n(x,G) for x e L € G. Authors

of some extant studies, including this researcher, refer to these marginal
v(H) - v(H-Xx) set functions as the derivatives of supermodular func-

tions v(H). By inverting the inequalities, we obtain submodular set func-

tions.

Convex coalition game, referring to Shapley(1971) once again, can have
a “snowballing” or “band-wagon” effect of cooperative rationality; i.e. in a
supermodular game, the cooperative rationality suppresses the individual
rationality. In contrast, in submodular games with the inverse property
n(x,L) =2 n(x,G) (an extrapolation this time), the individual rationality
suppresses the collective rationality. Hence, it is not beneficial in either
case. On a positive note, if the moderator is in charge for coalition forma-

tion, the moderator award will be equal to the least marginal utility

. H
u=FH)=min_, 2— of some weakest player in the coalition H under
X

formation. Now, we can focus on a two-person cooperative drama to be

played out between the moderator and the coalition.
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We start this discussion with our heuristic interpretation. Following the
apparatus of monotonic systems in terms of data mining (Mullat, 1971), it
is reasonable to find the Pareto frontier in terms of the game theory as

well. The potential moderator’s bargaining strategy is presented next.
First, in the grand coalition N =1, the moderator identifies the players

: N
with the least marginal utility u, = F(N) =min__, 2— The moderator will
X

advise them to stay in line and wait for their awards. All players that have
joined the line will be temporarily disregarded in any coalition formation.
Following the game convexity, one of the remaining players (i.e. those still
remaining in the coalition formation process) must find themselves worse
off owing to the players in line being excluded from the process. Modera-
tor would thus suggest to these players to also join the line and wait for
their awards. The moderator continues the line construction in the same
vein. This process will result in a scenario in which all remaining players

I', (outside the line) are better off than u, i.e. better off than those waiting

in line for their awards. Now, the moderator repeats the entire procedure
upon players I',I,...until all players from N are assigned to wait in line

to obtain their awards. Moderator, certainly, keeps a record of the events
0,1.... and is aware when the marginal utility thresholds increases from u,

to u,, etc. It is obvious that the increments are always positive:

U, <u, <..<u,.

What is the outcome of this process? Players staying in line arrange a

nested sequence of coalitions <F0,F1,...,Fp>. The most powerful marginal
players, those present when the last event p occurs, form a coalition I .

The next powerful coalition will be I’

b1, €tc,, coming back once again to

the starting event 0, when the players arrange the grand coalition N =T} .

Our Frontier Theorem guarantees that such a moderator bargaining strat-
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egy, in  convex  games, classifies ~a  Pareto  frontier
<(V(F0),u0), (V(F1),u1),...,(v(Fp),up)> for a bargaining game between the
moderator and coalitions under formation.! Thus, the game ends when a
bargaining agreement is reached between the moderator and the coalition.
However, some players might still stay in line, waiting in vain for their
awards, because the moderator might not agree to allow them to partake

in coalition formation. Indeed, due to the existence of those marginal play-

ers, the moderator may lose a large portion of his/her award F(I',), for

some k's € <1,...,p>. 12
8. CONCLUSION

Nash bargaining solution being understood as a point on the Pareto
frontier in Monotonic System might be an acceptable convention in the
framework of “fast” calculation. The corresponding algorithm for finding
the solution is characterized by a relatively few operations and can be im-
plemented using known computer programming “recursive techniques”
on tables. From a purely theoretical perspective, we believe that our tech-
nique is a valuable addition to the repertoire presently at the disposal of
the game theoreticians. However, our bargaining solution is presently not
tully grounded in validated scientific facts established in game theory.
Consultations with specialists in the field are thus necessary to develop
our work further. In our view, our coalition formation games are suffi-
ciently clear and do not require specific economic interpretations. Never-

theless, they need to be confirmed by other fundamental studies.

11 This sequence of players/elements in line arranges so-called defining sequence in data
mining process.

12 We refer to similar behaviour of players in “Left- and Right-Wing Political Power De-
sign: The Dilemma of Welfare Policy with Low-Income Relief” as political parties bar-
gaining game agents registered under the social security administration.
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APPENDIX. Illustration of a club formation bargaining game with neither
supermodular nor submodular characteristic function.

Recall the health club formation game from Section 2. Given the charac-
teristic function v(H), although whether the club members actually arrive

at individual payoffs or not is irrelevant, the club formation is still of our
interest. Let the game participants N = {1,2,3,4,5,6,7} try to organize a club.
Let the characteristic (revenue) function comply with the promises of in-
dividual employees to participate in the offered health activities in accor-
dance with their survey responses, see Table 1. However, we demand that
all five health activities be materialized.

Define v(H) = ‘H‘ + Zzslaxj ,where Hc N = {1,2,3,4,5,6,7}.

xeH j=1

In other words, a promise fulfilled by the club member contributes a
Bank Note to the player. In addition to all the promises fulfilled, a side
payment per capita is available. According to this rule v({1}) =3,
v({2}) =95,... Nonetheless, we are going to change the side payments rule,

so that the game transforms into neither supermodular nor submodular
7

game. Note that ZV({ 1}) =v(N) = v({1,2,3,4,5,6,7}) =29, which renders

the game non-essential.

Yes, indeed, the employees, whether they choose to cooperate or not,
will be discouraged from forming a club arriving at the same gains. To
change the situation into that similar to “the real life cacophonous”, let the
side payment per capita be removed for single and pairwise players while
keeping the awards intact for all other coalitions for which the size ex-
ceeds 2. Thus v({1h=2, v({2h=4, v{1.2h=6, v({3.6)=5,
v({2,3,5}) =12, etc. Moderator's gain, which was defined as

. OH
F(H) = min 2 = (v(H) — v(H - x), see above, makes the employees’ “co-
Xe X
operative behavior” close to grand coalition less profitable for the modera-

tor.
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Therefore, the moderator would benefit from encouraging the employ-
ees to enter the club of a “reasonable size”. In Table 8, we examine this
phenomenon using different moderator gain F(H) values.

Table 8.
Health Clubs List Marginal Utilities X y
p/capita

112(3]4|5|6|7]|1|2|3]|4]5|6|7]| v(H) |FH)

* 2 2 2

* 4 4 4

0% 2 4 6 2

* 3 3 3

* * 2 3 5 2

* * 3 2 5 2

* * * 5 6 5 10 5

* % * 7 6 5 12 5

koo * 3 5 4 3 15 3

* % 4 2 6 2

* 0% 5 7 5 11 5

* * * * * 4 5 3 6 3 21 3

* * * * * * 3 4 5 3 6 3 24 3

* * * * * * 5 4 5 3 6 3 26 3

* * * * * * * 3 5 4 5 3 6 3 29 3

At last, we illustrate the bargaining game in the graph below and make
some comments.

Bargaining game between club members and the moderator
Figure 2
35
= .
£ 30 Revenue Func.tl?n equa.ls. to total 29 1"0: { 1 ’2,3,4’5,6’7}
2 number of activites paticipated by
S 25 Tigi bers + additi
= s —
E , award per capita for coalitions with Fl_ {2’3 ’4’6}
%’ 0 not less than 2 members, [H| > 1. 20 F22{2,4,6}
-7
z 15 9
E 10 9 Q 1 1
3 s 8 o P8
TR
o o ©
0 1 2 3 4 5 6 7
Health Club Moderator Award
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N.B. Observe that utility pairs (29,3), (20,4), (16,5) and (1 1,6) constitute

the Pareto frontier of bargaining solutions for the bargaining problem in-
volving the moderator as Bargainer no. 1 and coalitions as Bargainer no. 2.
Accordingly, given the grand coalition N =T = {1,2,3,4,5,6,7}, three
proper coalitions T, ={2,3,4,6}, T, ={2,46} and T, ={2,6} exist. Solu-
tions (v(I',) =20,F(I,)) =4) and ( v(T,) =16,F(T,) = 5) maximize the prod-
uct of players’ gains over the disagreement point (0,0) at
20-4=16-5=80. More specifically, as noted at the beginning of the pa-

per, the solution might not be unique and some external considerations
may help. For example, the sponsor expenses for (20,4) are equal to 24,

while those pertaining to (16,5) are equal to 21, which might be decisive.
That is the case when the bargaining power 0 = of the coalitions I, I,
and the moderator are in balance. Otherwise, choosing the coalition bar-

gaining power 0 <2, the moderator will be better off materializing the
solution (5,1 6). Conversely, coalition I', will be better off if 0 > 5.

Bargaining game between club members and the moderator
35
Revenue Function equals Fi
S 30 tototal number of activites 7 ={1,2,3,4,5,6,7} igure 3
> paticipated by coalition Q 9
S ,5] members + additional ®
%‘) award per capita for g
2 coalitions with not less @ I'={2,3,4,6}
£ 20 v . 20
> than 3 members, [H| > 2. v
e e 16
S e 9
E g g T,={2,4,6}
SARTE
=
e
E s °®
- o (o) o
S (@)
0 ‘ : : : :
0 1 2 3 4 5 6 7 8
Health Club Moderator Award

NB. Comparison with Fig. 2 reveals that coalition T, = {2,6} is no longer

located on the Pareto frontier.
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Bargaining game between club members and the moderator

35

30 Revenue Function T=1{1,2,3,4,5,6,7} Figure 4
equals to total number 029
25 of activites ={2,3,4,6}

paticipated by
coalition members +
20
additional award per .20
capita for coalitions
with not less than 4

members, |H| > 3.

Health Club Revenue Function

10 Q
(]
5 8 8
5 % o 0]
1) @)
0O . . .
0 1 2 3 4 5 6 7 8

Health Club Moderator Award

N.B. Comparison with Fig. 3 indicates that coalition T, = {2,4,6} no

longer lies on the Pareto frontier.
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Abstract: The study addresses important issues relating to computational aspects of coali-
tion formation. However, finding payoffs—imputations belonging to the core—is, while
almost as well known, an overly complex, NP-hard problem, even for modern super-
computers. The issue becomes uncertain because, among other issues, it is unknown
whether the core is non-empty. In the proposed cooperative game, under the name of
singles, the presence of non-empty collections of outcomes (payoffs) similar to the core
(say quasi-core) is fully guaranteed. Quasi-core is defined as a collection of coalitions
minimal by inclusion among non-dominant coalitions induced through payoffs similar to
super-modular characteristic functions (Shapley, 1971). As claimed, the quasi-core is
identified via a version of P-NP problem that utilizes the branch and bound heuristic and
the results are visualized by Excel spreadsheet.

Keywords: stability; game theory; coalition formation.
1. INTRODUCTION

It is almost a truism that many university and college students abandon
schooling soon after starting their studies. While some students opt for
incompatible education programs, the composition of students following
particular programs may not be optimal; in other words, students and
programs are mutually incompatible. Indeed, so-called mutual mis-
matches of priorities were among the reasons (Vohandu, 2010) behind the
unacceptably high percentage of students in Estonian universities and col-
leges dropping out of schools, wasting their time and the entitlement to
government support. However, matching students and education pro-
grams more optimally could mitigate this problem.

" Former docent at the Faculty of Economics, Tallinn Technical University, Estonia

" A thesis of this paper was presented at the Seventh International Conference on
Game Theory and Management (GTM2013), June 26-28, 2013, St. Petersburg,
Russia
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Similar problems have been thoroughly studied (Roth, 1990; Gale, 1962;
Berge, 1958...) leading, perhaps, L. Vohandu (LV) to propose a way, in this
wide area of research, to solve the problem of students and programs mu-
tual incompatibility by introducing “matching total” as the sum of dup-
lets—priorities selected within two directions—horizontal priorities of
students towards programs, and vertical priorities of programs towards
students. The best solution found among all possible horizontal and verti-
cal duplet assignments, according to LV, is where the sum reaches its
minimum.

Finding the best solution, however, is a difficult task. Instead, LV pro-
posed a greedy type workaround. In LV’s words, the best solution to the
problem of matching students and programs will be close enough (consult
with Carmen et al., 2001) to a sum of duplets accumulated while moving
along direction of duplets in non-decreasing ordering. It seems that LV’s
proposal to the solution is a typical approach in the spirit of classical utili-
tarism, when the sum of utilities has to be maximized or minimized (Ben-
tham, The Principals of Morals and Legislation, 1789; Sidgwick, The
Methods of Ethics, London 1907).

As noted by Rawls in "Theory of Justice", the main weakness of utilitar-
ian approach is that, when the total max or min has been reached, those
members of society at the very low utility levels will still be receiving very
low compensations for incapacity, such as transfer payments to the poor.
Arguing for the principal of "maxima of the lowest", referred to as the
"Second Principal of Justice", Rawls suggested an alternative to the utilitar-
ian approach. The motive driving this study is similar. We address by ex-
ample an alternative to conventional core solution in cooperative games,
along the lines of monotonic game (Mullat, 1979), whereby the lowest in-
centive/compensation should be maximized. The reader studying match-
ing problems can also find useful information about these issues, where a
number of ways of constructing an optimal matching strategy have been
discussed (Veskioja, 2005).
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Learning by example is of high value because the conventional core
solution in cooperative games cannot be clearly explained unless the
readers are sufficiently familiar with utopian reality—a reality that
sometimes does not exist. Thus, a rigorous set up of a simple game will be
presented here, aiming to explain the otherwise rather complicated
intersection of interests. More specifically, we hope to shed light on what
we call a Singles-Game. It should be emphasized that, even though the
game primitives represent an independent mathematical object in a
completely different context, we have still “borrowed” the idea of LV
duplets to estimate the benefits of matching. For this reason, we changed
the nomenclature of duplets to mutual risks in order to justify the scale of
payoffs—the incentives and compensations.

The rest of the paper is organized as follows. We start with the prelimi-
naries, where the game primitives are explained. In Section 3, we intro-
duce the core concept of conventional stability in relation to the Singles-
game. In Section 4, the reader will come across an unconventional theory
of kernel coalitions, and nuclei coalitions, minimal by inclusion in accor-
dance with the formal scheme. In Section 5, we continue explaining our
techniques and procedures used to locate stable outcomes of the game.
The study ends with conclusions and suggestions for future work, which
are presented in Section 6. Appendix contains a visualization, which
brings to the surface the theoretical foundation of coalition formation. Fi-
nally, interested readers would benefit from exploring the Excel spread-
sheet, which helps visualize a "realistic" intersection of interests of 20 sin-
gle women and 20 single men. The addendum provides a sketched outline
for the evidence of some propositions.

2. PRELIMINARIES

Five single women and five single men are ready to participate in the
Singles Party. It is assumed that all participants exhibit risk-averse behav-

ior towards dating. To cover dating bureau expenses, such as refresh-
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ments, rewards, etc. the entrance fee is set at 50€ 1. Thus, the cashier will
be at the disposal of an amount of 500€. All the guests have been kindly
asked to take part in a survey, helping determine the attributes they look
for in their prospective partner. Those who choose to provide this infor-
mation have been promised to collect a Box of Delights > and are hereafter
referred to as participants, while others are labeled as dummies, by default,
and cannot participate in the game. In addition to the delights, promised to
those willing to reveal their priorities, we continue setting the rules of
payoffs in the form of incentives and mismatch compensations. However,
if all participants decide to date, as no reasonable justification exists for

incentives and compensations, the game terminates immediately.

We use index 1 for the women, and an index j for the men taking part
in the dating party. Assuming that all the guests have agreed to participate
in the game, there are {1,...,i,...5} women and {1,..., j,...5} men, resulting in
2x5x5 combinations. Indeed, when priorities have been revealed, they

,and M = Hmij

can form two 5x 5 tables, W = HW i , indicating that each

woman i, i = 1,5 revealed her priorities positioned in the rows of table W

towards men as horizontal permutations w, of numbers <1,2,3,4,5>. Simi-

larly, each man j, j= 1,_5, revealed his priorities positioned in columns of
the table M towards women as vertical permutations m;. As can be seen
in Table-1, priorities w,, (numbers <E3 = 1,2,3,4,5>) might repeat in both
the columns of the table W and in the rows of the table M. To be sure,
more than one man may prefer the same woman at priority level w,;, and
many women, accordingly, may prefer the same man at the level m ;.

Thus, duplets or mutual risks r,; =w,; +m,; occupy the cells in table

R=[r,|

' Note that red colour points at negative number.
2 In case the Box is undesirable it will be possible to get 10€ in return.
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M MMM M M MMMM
W 1 5 3 4 W 3 4 2 2
W 5 4 1 2 3 W 1 3 4 2 4
Tablel W W 3 5 4 2 1 M W 5 2 3 4 3
W 2 5 3 1 4 W 4 5 1 3 1
W 4 3 1 2 5 wW 2 1 5 5 5
Women Priorities Men Priorities

M M: Ms M Ms

Wi 4 9 5 6

W2 6 7 5 4 7

=R W 8 7 7 6 4

Wa 6 10 4 4 5

Ws 6 4 6 7 10

Mutual Duplets/Risks

Noting the assumption that all participants are risk-averse, some lucky
couples with lower level of mutual risks start dating. These lucky couples
will receive an incentive, such as a prepaid ticket to an event, free restau-
rant meal, etc. On the other hand, unlucky participants—i.e. those that did
not find a partner—may claim a compensation, as only high-level mutual
risk partners remained, given that the eligible participants at the low level

of mutual risk have been matched.

If no one has found a suitable partner, the question is—should the party
continue? Apparently, given that the original data that failed to produce
matches might have not been completely truthful, it would be unwise to
offer compensation in proportion to mutual risks r, ;. Nonetheless, let us

assume that the compensation equals ) r, ;-10€. In that case, couple’s [5,5]
profit may reach 50€! Instead, the dating bureau decides to organize the

game, encouraging the players to follow Rawls second principle of justice.

In Table-1, the minimum—the lowest mutual risk among all partici-
pants—is r,, = 3. Following the principle, the compensation to all unlucky

participants will be equal to )51, ,-10=15€. This setting is also fiscally rea-
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sonable from the cashier’s point of view. The balance of payoffs for all par-
ticipants, will be 25€, as 50€ paid as entrance fee will be reduced by 15€
compensation amount, and additionally by 10§, i.e. inclusive of the cost of
collected delights. Further on, we assume that each member of a dating
couple will receive an incentive that is offered to all dating couples and is

equal to double the compensation amount.

What happens when the couple [1,4] decides to date? The entire table

R should be dynamically transformed to reflect the fact that the partici-
pants [1,4] are matched. Indeed, as the women {2,3,4,5} and men {1,2,3,5}

can no longer count on [1,4] as their potential partners, the priorities will
decline, whereby the scale <1,2,3,4,5> dynamically shrinks to <1,2,3,4> 3. To

reflect this, Table-1 transforms into Table-2:

M MMMM MM MMM
W W
W 4 3 1 2 w 1 3 3 3
Ta- W W 2 4 3 +M 4 2 2
W 1 4 3 W 3 4 1
w 3 2 1 4 W 2 1 4 4
Women Priorities Men Priorities

Mi Mz Ms M: Ms

6 4 5

5
6 6 5
W448 4
5 8

Mutual Duplets/Risks

3 To highlight theoretical results of mutual risks, incitements or compensations, or
whatever the scales we use, the dynamic quality of monotonic scales is the only feature
fostering the birth of MS—the "monotone system." Otherwise, the MS terminology, if
used in any type of serialization methods applied for data analysis, will remain sterile.
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The minimum mismatch compensation did not change and is still equal
to 15€. However, couple’s [1,4] potential balance 50€+10€+2-15€ =10€ of
payoffs improves (w: and m: each receive 30€ as an incentive to date, based
on the rule that it is equal to twice the mismatch compensation). For those
not yet matched, the balance remains negative (in deficit) and equals 15€.
On the other hand, if, for example, the couple [3,5] decides to date, the

balance of payoffs improves as well.

The party is over and the decisions have been made about who will
date and who will leave the party without a partner. The results are
passed in writing to the dating bureau. What would be the best collective
decision of the participants based on the principle of "maxima of the low-

est" in accord with the rules of singles-game?

3. CONVENTIONAL STABILITY*

In this section, the aim is to present the well-established solution to the
singles-game by utilizing the conventional concept, called the core. First,

without any warranty, it is helpful to focus on the core stability.

In order to meet this aim, the original dating party arrangement is ex-
panded to a more general case. The game now has nxm participants, of
whom n are single women <1,...,i,...n> and m are single men <1,...,j,...m>.

Some of the guests expressed their willingness to participate in the game
and have revealed their priorities. Those who refused, in line with the
above, are referred to as dummy players. All those who agreed to play the
game will be arranged by default into the Grand Coalition &, fl" <n+m.

Thus, indices 1,j and labels a,...c€® are used to annotate the

guests participating in the game. Only the guests in & are regarded
as participants, whereas couples [i, ]] are referred to as a.,...,6. This differ-

N Terminology, which we shall use below, is somewhat conventional but mixed with our
own.
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entiation not only helps make notations short, when needed, but can
also be used in reference to an eventual match or a couple without any
emphasis on gender.

In the singles-game, we focus on the participants D c & who are
matched. Having formed a coalition, we suppose that coalition D has the
power and is in a position to enforce its priorities. It is assumed that par-
ticipants in D can persuade all those in X =%\ D, i.e. participants that
are not yet matched, to leave the party without a partner and thus receive
compensation. However, it is realistic to assume that the suppression of
interests of participants” in X is not always possible. It is conceivable that,
those in the coalition D' € X, whose interests would be affected (sup-
pressed), will still be capable to receive as much as the participants in D.
However, we exclude this opportunity, as it is better that no one expects
that coalition D’ can be realized concurrently with D and act as its direct
competition.

Insisting on this restriction, however, we still assume that others—those
participants suppressed in X—have not yet found their suitable partners
and have agreed to form their own coalition, even though they could re-
ceive compensation equal to 50% of the incentives in D. A realistic situa-
tion may occur when all participants in & are matched, D = &, or, in con-
trast, no one decides to date, D = . It is also reasonable that, after reveal-
ing their priorities, some individuals might decide not to proceed with the
game and will, thus, be labeled as a dummy player 6 ¢ &.

Among all coalitions D, we usually distinguish rational coalitions.
Couple a, joining the coalition D, extracts from the interaction in the coa-
lition a benefit that satistfies o € D. In the singles-game, we anticipate that
the extraction of benefits, i.e. the incentives and mismatch compensations,
strictly depend on the membership—couples in D or participants of coali-
tion X. Using the coalition membership D € &, we can always construct
a payoff x to all participants &, i.e. we can quantify the positions of all
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participants. The inverse is also true. Given a payoff X, it is easy to estab-
lish which couple belongs to the coalition D and identify those belonging
to the coalition X = & \ D. We label this fact as D . Recall that couples of
the coalition D_ receive an incentive to date, which is equal to the double
amount of the mismatch compensation. Thus, the allocation D may pro-
vide an opportunity for some participants ¢ € # to start, or initiate, new
matches, thus moving to better positions. We will soon see that, while the
best positions induced by special coalitions N, called the nuclei, have

been reached, this movement will be impossible to realize.

The inability of players to move to better positions by "pair compari-
sons" is an example of stability. In the work "Cores of Convex games",
convex games have been studied (Shapley, 1971); these are so-called
games with a non-empty core, where similar type of stability exists. The
core forms a convex set of end-points (imputations) of a multidimensional
octahedron, i.e. a collection of available payoffs to all players. Below, de-
spite the players’ asymmetry with respect to D, =%\ X, we focus on
their payoffs driving their collective behavior as participants & to form a
coalition D_, D, ¢ &; here, X = D, is called an anti-coalition to X.

In contrast to individual payoffs improving or worsening the positions
of participants, when playing a coalition game, the total payment to a coa-
lition X as a whole is referred to the characteristic function v(X)>0. In
classical cooperative game theory, the payment v(X) to coalition X is
known with certainty, whereby the variance v(X) —V(X\{G}) provides a
marginal utility n(c,X). Inequality TC(OL,X\{G}) <m(a, X) of the scale of
risks expresses a monotonic decrease (increase) in marginal utilities of the
membership for a € X. The monotonicity is equivalent to the supermodu-
larity v(X,)+ v(X,) < v(X, UX,)+v(X, "X,) (Nemhauser et al., 1978).
Thus, any characteristic function v(X), payment on which is built accord-

> QOur terminology is unconventional in this connection.
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ing to the scale of risks, is supermodular. The inverse submodularity was
used to find solutions of many combinatorial problems (Edmonds, 1970;
Petrov and Cherenin, 1948). In general, such a warranty cannot be given.

Recall that we eliminated all rows and columns in tables W = HW i ‘,
M = in line with X = D, . Table R = Hﬂ:((x X)=
o =i, _]]E X reflects the outcome of shrinking pr10r1t1es w,

L My ,then
some G € X have found a match and have formed a couple. Pr10r1t1es W,
m, ; are consequently decreasing. Given in the form of characteristic func-
t10n, e.g. the value v(X) =)
putation for the game v(X) is defined by a ‘fl" -vector fulﬁlling two condi-
tions: @) Y, _¢X, =V(P), G x, = V({ }) for all a €& . Condition (ii)
clearly stems from repetitive use of monotonic inequality

(o, X'\ {G}) <m(a, X).

n(a, X) sets up a coalition game.® An im-

aeX

A significant shortcoming of the cooperative theory given in the form of
the characteristic function stems from its inability to specify a particular
imputation as a solution. However, in our case, such imputation can be
defined in an intuitive way. In fact, the concept of risk scale determines a
popularity index of players. More specifically, the lower the risk of en-
gagement n(a, X) of o € X, the more reliable the couple’s o coexistence
is. Therefore, we set up a popularity index p, of a woman 1 among men in
the coalition X as number p,(X) =3 ,m,
man j among women, accordingly, is glven by p;(X) =2 W, We in-

. The index number p; of a

tend to redistribute the total payment v(X) in proportion to the compo-
nents of the vector p(X) :<pi(X),p j(X)>, or as the vector p(X). Hereby
we can prove, owing to monotonicity of the scale of priorities, that the
payoffs in imputation p(&#) cannot be improved by any coalition X c &
Therefore, the game solution, among popularity indices, will be the only
imputation p(#). In other words, popularity indices core of the coopera-
tive game v(X) consists of only one point p(&).

6 v(X) = ‘X‘Z . (JX‘ + 1) Check that V(&) = 150 for 5x 5-game, or use the Table-1.

80



© Joseph E. Mullat

In line with the terminology used above, we draw the readers’” attention
to the fact that the singles-game considered next is not a game given in the
form of a characteristic function. The above discussion was presented as

the foundation for the course of further investigation only.

4, CONCEPT OF A KERNEL

In the view of "monotone system" (Mullat, 1971-1995) exactly as in
Shapley’s convex games, the basic requirement of our model validity
emerges from an inequality of monotonicity m(a., X \ {o}) < m(a, X). This
means that, by eliminating an element ¢ from X, the utilities (weights) on
the rest will decline or remain the same. In particular, a class of monotone
systems is called p-monotone (Kuznetsov et al., 1982, 1985), where the or-
dering <TC(OL, X)> on each subset X of utilities (weights) follows the initial
ordering <n(0c,‘ll))> on the set W . The decline of the utilities on
p-monotone system does not change the ordering of utilities on any subset
X. Thus, serialization (greedy) methods on p-monotone system might be
effective. Behind a p-monotone system is the fact that an application of
Greedy framework can simultaneously accommodate the structure of all
subsets X © W . Perhaps, for different reasons, many will argue that
p-monotone systems are rather simplistic and fail to compare to the seri-
alization method. Nonetheless, many economists, including Narens and
Luce (1983), almost certainly, will point out that subsets X of p-monotone

systems perform on interpersonally compatible scales.

An inequality F(X, U X,) 2> min<F(X1),F(X2)> holds for real valued set
function F(X)=min_ n(a,X) , referred to as quasi-convexity (Mal-
ishevski, 1998). We observed monotone systems, which we think is impor-

tant to distinguish. The system is non quasi-convex when two coalitions
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contradict the last inequality. We consider such systems as non-quasi-

convex, which applies to the singles-game case.

The ordering of priorities in singles-games—i.e. what men look for in
women, and vice versa—tremain intact within an arbitrary coalition X.

However, in these systems, the ordering of mutual risks Hri H on Grand

Coalition & does not necessarily hold for some X c & . Contrary to initial

ordering on R(fl’)z”n(a, P)=r,||, the ordering of mutual risks on

R(X) = Hn(oc,X)H may be inverse of the ordering on R(&) for some cou-

ples. In that case, e.g. the ordering of two couples” mutual risks can turn
"upside down" while the risk scale is shrinking compared to the original
ordering on the Grand Coalition &#. Thus, in general, the mutual risks
scale is not necessarily interpersonally compatible. In other words, inter-
personal incompatibility of this risk scale radically differs from the
p-monotone systems. This difference became apparent when it was no
longer possible to find a solution using Greedy type framework of so-
called defining chain algorithm—i.e. the monotone system was non-quasi-
convex. Before proceeding with the formal side of these processes, it is

informative to understand the nature of the problem.

Definition 1 By kernel coalition we call a coalition K € argmax,_, F(X);
{F} is the set of all kernels.

Recalling the main quality of defining a chain—a sequence of elements
of a monotone system—it is possible to arrange the elements o € W, i.e.
the couples a € & of players by a sequence <OL1, ock>, k =1,n. The se-
quence follows the lowest risk ordering in each step k corresponding to
sequence of coalitions <Hk> , H=% , H_,<H\ {ak} ,

o, =argmin__, 7(a,H,). Given any arbitrarily coalition X < &, we say

aeHy

that the defining sequence obeys the left concurrence quality if there exists
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a superset H, such that H, © X, t =1k, where the first element a, € H,
to the left in the sequence <OL1,...,OLk> belongs to the set X, a, € X as well.
On the condition that the element ¢, is not a member of the superset
J€ = U\ e argmax,_, F(X)} including all kernels &, o, ¢ €, we ob-
serve that m(a,,X)<mn(a,,H,) . Hereby, we can conclude that
F(X) <m(a,,H,) is strictly less than the global maximum of the set func-
tion F(X)=min__, m(a,X). The left concurrence quality guarantees that

aeX

the sequence can potentially be used for finding the largest kernel . Due

to non-quasi-concavity, the left concurrence quality is no longer valid.
Eliminating a couple a, = [i, _]], see above, we delete the row 1 and the

column j in the mutual risks table R . Thus, the operation
H,, < H,_\ {(xk} is not an exclusion of a couple a, € H,, given that the
couple o, =i, j] is about to start dating, but rather an exclusion of adja-

cent couples a in [i,*]—row and [*, J] -column. We annotate the engage-
mentas H, , <~ H, —a, or as an equal notation D, , <~ D, +a, .

In conclusion, note, once again, that, despite the properties of monotone
system remaining intact, the chain algorithm, assembling the defining se-
quence of elements o € &, cannot guarantee the extraction of the suppos-
edly largest kernel €, particularly in the form given by Kempner et al.
(2008). Thus, we need to employ special tools for finding the solution. To
move further in this direction, we are ready to formulate some proposi-

tions for finding kernels # by branch and bound algorithm types.

The next step will require a modified variant of imputation (Owen,

1982). We define an imputation as the outcome connected to the singles-
game in the form of a ‘3" -vector of payoffs to all participants. More spe-

cifically, the outcome is a ‘fl" -vector, where each partner in a couple ¢ € X
receives the lowest mismatch compensation F(X), whereas each partner

in the couple 6 ¢ X belonging to the anti-coalition X = D, receives the
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incentive to date, which is equal to twice that amount, i.e. 2- F(X), cf. Ta-
bles 3 and Table 4. The concept of outcome (imputation) in this form is not
common because the amount to be claimed by all participants is not fixed
and equals ‘H’HF(X) : (‘X‘ +2‘i‘) Thus, it is likely that participants will
fail to reach an understanding, and will claim payoffs obtaining less than
available total amount (n + m)- 50 €. The situation, in contrast, when par-

ticipants will claim more than total amount, is also conceivable.

Any coalition X induces a ‘fl" -vector X = <XG> as an outcome X7

c

|2+ F(X) if c e X, S v x ‘\9\+F(X)'(1X\+2"i‘)
C12-(1+FX))it cgX. o 7 '

In this case, Xx_ is a quasi-imputation.

This definition of outcome is used later, adapting the concept of the
quasi-imputation for the purpose of the singles-game. We say that an arbi-

trary coalition X induces an outcome x. Computed and prescribed by
coalition X, the components of x consist of two distinct values F(X) and

2-F(X). Participants 6 € X could not form a couple, while participants
o € D, were able to match. Recall that the notation for X is also used as a

mixed notation for dating couples D _.

Before we move further, we will try to justify our mixed notation X.
Although a coalition X = D, uniquely defines both those D, among par-
ticipants # who went on dating, and those X =%\ D_ who did not, the

coalition X does not specifically indicate matched couples. In contrast,

7 Further, we follow the rule that capital letters represent coalitions X,Y,...,HK H,..

while lowercase letters X,Y,..., k.h,... represent outcomes induced by these coali-

tions.
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using the notation D_, we indicate that all participants in D, are matched,
whereas a couple 6 € D, also indicates an individual decision how to

match. More specifically, this annotation represents all men and all
women in D_ standing in line facing one member of the opposite

sex, with whom they are matched. However, any matching or engagement
among couples belonging to D_, or whatever matches are formed in D,
does not change the payoffs x_ valid for the outcome x. In other words,
each particular matching D induces the same outcome X . Decisions
in D_ with respect to how to match provide an example of individual
rationality, while the coalition D _ formation, as a whole, is an example

of collective rationality. Therefore, in accordance with payoffs x ,
the notation D_ subsumes two different types of rationality—the individ-

ual and the collective rationality. In that case, the outcome x accompany-
ing D represents the result of a partial matching of participants & .

Propositions below somehow bind the individual rationality with the

collective rationality.

One of the central issues in the coalition game theory is the question of
the possible formation of coalitions or their accessibility, i.e. the question
of coalition feasibility. While it is traditionally assumed that any coalition
X c & is accessible or available for formation, such an approach is gener-
ally unsatisfactory. We will try to associate this issue with a similar con-
cept in the theory of monotone systems. The issue of accessibility of sub-
sets X < W in the literature of monotone systems has been considered not
only in the context of the totality 2* of its subsets X € 2" but also with
respect to special collections of subsets F = 2. A singleton chain o, add-
ing elements step-by-step, starting with the empty set &, can, in principle,
access any set X € &, or access the set X by removing the elements start-
ing with the grand ordering W —so called upwards or downwards

accessibility.
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Definition 2 Given coalition X < &, where & is the Grand Coalition, we
call the collection of pairs C(X) = {argmin n((x,X)} naming C(X) as best

potential couples, capable of matching with the lowest mutual risk, within the
coalition X.

aeX

Consider a coalition D , generated by the formation by a chain of steps
D,, <D, +<0Lk>. Let X, =9, X, =% \D,, where D, are participants
trying to match during the step k; C(X, ) are couples in X, with the low-
est mutual risk among couples not yet matched in steps k = 1n, X . =9.
Coalitions in the chain X,,, =X, —«a, are arranged after the rows and
columns, indicated by couple o, , have been removed from W, M and
R . Mutual risks R have been recalculated accordingly.

Definition 3 Given the sequence <0c1,...,0ck> of matched couples, where
X, =, X, =X, —a,, we say that coalition D = X=9\X of matched (as
well as X of not yet matched) participants is feasible, when the chain
<X1,...,Xk+1 = X> complies with the rational succession
CX,,)2CX,)NnX,,. We call the outcome X , induced by sequence
<oc1 ,...,ak>, a feasible payoff, or a feasible outcome.

Proposition 1 The rational succession rationality necessarily emerges from
the condition that, under the coalition D_ formation a couple a., does not de-

crease the payoffs of couples <oc1 ,...ock71> formed in previous steps.

The accessibility or feasibility of coalition D formation offers convinc-
ing interpretation. Indeed, the feasibility of coalition D, means that the

coalition can be formed by bringing into it a positive increment of utilities
to all participants &, or by improving the position of existing participants
having already formed a coalition when new couples enter the coalition in
subsequent steps. We claim that, in such a situation, coalitions are formed
by rational choice. The rational choice C(X) satisfies so-called heritage or
succession rationality described by Chernoff (1954), Sen (1970), and Arrow
(1959). Below, we outline the heritage rationality in the form suitable for
visualization.
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The proposition states that, in matches, the individual decisions are also
rational in a collective sense only when all participants in D_ individually

find a suitable partner. We can use different techniques to meet the indi-
vidual and collective rationality by matching all participants only in D_,

which is akin to the stable marriage procedure (Gale & Shapley, 1962). In
contrast, the algorithm below provides an optimal outcome/payoff ac-

companied by partial matching only—i.e. only matching some of partici-
pants in & as participants of D_; once again, this is in line with the

Greedy type matching technique.

Proposition 2 The set {..‘76} of kernels in the singles-game arranges feasible
coalitions. Any outcome « induced by a kernel K e {HK} is feasible.

At last, we are ready to focus on our main concept.

Definition 4 Given a pair of outcomes X and 'y, induced by coalitions X and
Y, an outcome y dominates the outcome X, X <y:

(i) ISc P|VoeS—ox, <y,
(ii) the outcome vy is feasible.

Condition (i) states that participants/couples 6 € Sc & receiving pay-
offs x_ can break the initial matching in D_ and establish new matches

while uniting into D, . Alternatively, some members of X, i.e. not yet

matched participants in S, can find suitable partners amid participants in
D, or, even their compensations in Y may be higher than their incen-

tives in X . Thus, by receiving y_ instead of x_ the participants belonging

to S are guaranteed to improve their positions. The interpretation of the
condition (ii) is obvious. Thus, the relation x <y indicates that partici-

pants in S can cause a split (bifurcation) of D_, or are likely to undermine

the outcome X.
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Definition 5 A kernel N € {H} minimal by inclusion is called a nucleus—it
does not include any other proper kernel X c N : Kz N is true for all
HK=N.

Proposition 3 The set {n} of outcomes, induced by nuclei {./V }, arranges a
quasi-core of the singles-game. Outcomes in {n} are non-dominant upon each

other, i.e. n <n', or n = n' is false. Thus, the quasi-core is internally stable.

The proposition above clearly indicates that the concept of internal sta-
bility is based on "pair comparisons" (binary relation) of outcomes. The
traditional solution of coalition games recognizes a more challenging sta-
bility, known as NM solution, which, in addition to the internal stability,
demands external stability. External stability ensures that any outcome x
of the game outside NM-solution cannot be realized because there is an
outcome n € {n}, which is not worse for all, but it is necessarily better for
some participants in x. Therefore, most likely, only the outcomes n that
belong to NM-solution might be realized. The disadvantage of this sce-
nario stems from the inability to specify how it can occur. In contrast, in
the singles-game, we can define how the transformation of one coalition to
another takes place, namely, only along feasible sequence of couples.
However, it may happen that for some coalitions X outside the quasi-core
{N}, feasible sequence may stall unable to reach any nucleus N € {N},
whereby starting at X the quasi-core is feasibly unreachable. This is a sig-
nificant difference with respect to the traditional NM-solution.

5. FINDING THE QUASI-CORE

In general, when using Greedy type algorithms, we gradually improve
the solution by a local transformation. In our case, a contradiction exists
because nowhere is stated that local improvements can effectively detect
the best solution—the best outcome or payoffs to all players. The set of
best payoffs, as we already established above, arranges a quasi-core of the
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game. Usually, finding the core in the conventional sense is a NP-hard
task, as the number of "operations" increases exponentially, depending on
the number of participants. In the singles-game, or in almost all other
types of coalition games, we observe an extensive family of subsets consti-
tuting traditional core imputations. Even if it is possible to find all the
payoff vectors in the core, it is impractical to do so. We thus posit that it is
sufficient to find some feasible coalitions belonging to the quasi-core and
the payoffs induced by these coalitions.

This can be accomplished by applying a procedure of strong improve-
ments of payoffs, and several gliding procedures, which do not worsen the
players’ positions under coalition formation. Indeed, based on rationality,
known as the rational succession, Definition 3, it is not rational in some
situations to use the procedure of strong improvements, as these do not
exist. However, using gliding procedures, we can move forward in one of
the promising directions to find payoffs not worsening the outcome. Ex-
periments conducted using our polynomial algorithm show that, while
using a mixture of improvement procedure and gliding procedures, com-
bined with the succession condition, one can take the advantage of back-
tracking strategy, and might find feasible payoffs of the singles-game be-

longing to the quasi-core.

We use five procedures in total —one improvement procedure and four
variants of gliding procedures. Combining these procedures, the algo-
rithm below is given in a more general form. While we do not aim to ex-
plain in detail how to implement these five procedures, in relation to ra-
tional succession, it will be useful to explain beforehand some specifics of
the procedures because a visual interaction is best way to implement the

algorithm.

&9



Singles Party

In the algorithm, we can distinguish two different situations that will
determine in which direction to proceed. The first direction promises an

improvement in case the couple o € X decides to match. We call the situa-

tion when C(X-a)NC(X)=C as a potential improvement situation.
Otherwise, when C(X —a) N C(X) =, it is a potential gliding direction.
Let CH(X) be the set of rows C(X), the horizontal routes in the table R,
which contain the set C(X). By analogy CV(X) represents the vertical
routes, the set of columns, C(X) € CH(X)x CV(X). To apply our strategy
upon X, we distinguish four cases of four non-overlapping blocks in the
mutual risk table R :CH(X)xCV(X); CH(X)xCV(X); CH(X)xCV(X);
CH(X)xCV(X).

Proposition 4 An improvement in payoffs for all participants in the singles-
game may occur only when a couple oo € X complies with the potential improve-
ment situation in relation to the coalition X, the case of C(X-a)NC(X)={.

The couple o. € X is otherwise in a potential gliding situation.

The following algorithm represents a heuristic approach to finding a

nucleus # among nuclei {./V } of the singles-game.

Input  Build the mutual risks table, R = W + M —a simple operation
in Excel spreadsheet. Recall the notation & of players as the
game participants. Set k <1, X <~ & in the role of not yet
matched participants, i.e. as players available for potential
matching. In contrast to the set X, allocate indicating by
D,  « O the initial status of matched participants.
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Do Stepup: S Find amatch a, e CH(X)xCV(X), D, <~ D_+a,,
such that F(X)<F(X-a,), X« X-a,, X, =X, k=k+1, oth-
erwise Track Back.

Gliding: D Find a match a, € CH(X)xCV(X), D, <~ D_+a,,
such that F(X)=F(X-0,), X« X-a,, X, =X, k=k+1, oth-
erwise Track Back.

F Find a match o, e CH(X)xCV(X), D, <D +aqa,,
such that F(X)=F(X-a,), X« X-a,, X, =X, k=k+1, oth-
erwise Track Back.

G Find a match a, e CH(X)xCV(X), D, <D _+a,,
such that F(X)=F(X-a,), X< X-a,, X, =X, k=k+1, oth-
erwise Track Back.

H Find a match o, e CH(X)xCV(X), D, <D +a,,
such that F(X)=F(X-a,), X< X-a,, X, =X, k=k+1, oth-
erwise Track Back.

Loop Until no couples to match can be found in accordance with

cases S, D, F, G and H.
Output The set D, has the form D_ = <OL1,...,OLk>. The set

N =P \D, representsanucleus of the game while

the payoff r induced by N belongs to the quasi-core.

In closing, it is worth noting that a technically minded reader would

likely observe that coalitions X, are of two types. The first case is

X <~ X —a, operation when the mismatch compensation increases, i.e.

F(X,) <F(X, —a,). The second case occurs when gliding along the com-

pensation F(X, ) =F(X, —a,). In general, independently of the first or the

second type, there are five different directions in which a move ahead can

proceed. In fact, this poses a question—in which sequence couples o,

should be selected in order to facilitate the generation of the sequence
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D, = <OL1,...,OLk>? We solved the problem for singles-games underpinning

our solution by backtracking. It is often clear in which direction to move
ahead by selecting improvements, i.e. either a strict improvement by s) or
gliding procedures though d), f), g) or h). However, a full explanation of
backtracking is out of the scope of our current investigation. Thus, for
more details, one may refer to similar techniques, which effectively solve
the problem (Dumbadze, 1989).

6. CONCLUSIONS

The uniqueness of singles-game lies in the dynamic nature of priorities.
As the construction of the matching sequence proceeds, priorities dynami-
cally shrink, and finally converge at one point. Dynamic transformation,
or the monotonic (dynamic) nature of priorities, enabled constructing a
game based on so-called monotone system, or MS. One disadvantage be-
hind the use of the MS-system is its drawback in the respective interpreta-
tion of the analysis results. More specifically, when the process of extract-
ing the core terminates, the interpretation requires further corrections.
However, with regards to the choice of the best variants, i.e. the choice of
the best matches in the singles-game, the paper reports a scalar optimiza-
tion in line with "maxima of the lowest" principle, or rather an optimal
choice of partial matching. This view opens the way to consider the best
partial matching as the choice of the best variants—alternatives—and to
explore the matching process from the perspective of a choice problem.

Usually, when trying to analyze the results, a researcher must rely on
the common sense. Therefore, applying the well-known and well thought
out concepts and categories that have been successfully applied in the
past, we can move forward in the right direction. Our advantage was that
this relation was found, and was transformed into a shape similar to the
core, which is known concept in the theory of stability of collective behav-
ior, e.g. in the theory of coalitional games.
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Irrespective of the complexity of intersections in the interests of players,
deftly twisted rules for compensations in unfortunate circumstances, in-
citements, etc. singles-game, as it seems, makes a point. However, this is
not enough in social sciences, especially in economics, when a formal
scheme rarely depicts the reality, e.g. the difference in political views and
positions of certain groups of interest, etc. Perhaps, the individual compo-
nents of the game will still be helpful in moving closer to answering the
question of what is right or wrong, or what is good and what is bad,

which would be a fruitful path to explore in future studies of this type.
APPENDIX

Visualization

Recall that, in the singles-game, the input to the algorithm presented in
the main paper contains two tables: W = w, .—priorities w; the women
specify with the respect to the characteristics the men should possess, in
the form of permutations of numbers ,n in rows, and the table
M = m,;—priorities m; the men specify with the respect to the character-
istics the women should possess, in the form of permutations of numbers
‘I,_m in columns. These tables, and tabular information in general, are well-
suited for use in Excel spreadsheets that feature calculation, graphing
tools, pivot tables, and a macro programming language called

VBA—Visual Basic for Applications.

A spreadsheet was developed in order to present our idea visually, i.e.
the search for nuclei of the singles-game, and the stable coalitions with
outcomes belonging to the quasi-core induced by these coalitions. The
spreadsheet takes for granted the Excel functions and capabilities. Tables
W, M and R can be downloaded from

http://www.datalaundering.com/download/singles_game.xls :
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20 x 20 dimensions. We first provide the user with the list of macros writ-
ten in VBA. Then, we supply tables W, M and R extracted from the
spreadsheet by comments. We also hope that the spreadsheet exercise will
be useful in enhancing the understanding of our work. In particular, we
focus on the technology of backtracking, given by macros TrackR and
TrackB.

The list of macro-programming routines is in line with the steps of the

algorithm presented in Section 5.

e CaseS. Ctrl+s Trying to move by improvement along the block
CH(X) x CV(X) of cells [i, J] by"<" operator in order to find a new match at
the strictly higher level. 8

e CaseD. Ctrl+d Trying to move while gliding along the block
CH(X) x CV(X) of cells [i, J] by "<=" operator in order to find a new match at
the same or higher level.

e CaseF.  Ctrl+f Trying to move while gliding along the block
CH(X) x CV(X) of cells [i, J] by "<=" operator in order to find a new match at
the same or higher level.

e CaseG. Ctrl+g Trying to move while gliding along the block
CH(X)x CV(X) of cells [i, J] by "<=" operator in order to find a new match at
the same or higher level.

e CaseH. Ctrl+h Trying to move while gliding along the block
CH(X)x CV(X) of cells [i, J] by "<=" operator in order to find a new match at

the same or higher level.

I. SPREADSHEET LAYOUT
There are 20 single women and 20 single men attending the party, i.e.
n,m=20. Three tables are thus available: The Pink table W —women’s

priorities; The Blue table M —men’s priorities, and the Yellow table R
—the mutual risks table. The column to the right of the table R lists all

8 CH —cells in horizontal direction, CV —<cells in vertical direction
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women i =120 showing min level of risk of couples [i,*]. The row

j=1,20 1J

down of the bottom of table R lists all men j=120 showing min i b

level of risk of couples [ ] In the right hand bottom corner cell, the low-

est min_— cimm b T = F(X) level of risk over the whole table R is given.

Notice that the green cells in the table R visually represent the effect of

argmin - operation. Actually, the green cells visualize the choice

i=1,20,j=1,20 L
operator C(X). Arrays V24:A025 and V26:A026 will be implemented in
the process of generating the matching sequence together with the levels
of risk associated by this sequence. The players’” balance of payoffs occu-
pies the array V31:A032. Some cells reflecting the state of finances of cashier
are located below, in the array AP34:AP44. Cells in row-1 and column-A
contain the guests’ labels. We use these labels in all macros.

II. FUNCTIONAL TEST

The spreadsheet users are invited first to perform a functional test, in
order to become familiar with the effects of ctrl-keys attached to different
macros. Calculations in Excel can be performed in two modes, automatic
and manual. However, it is advisable to choose properties and set the cal-
culus in the manual mode, as this significantly speeds up the performance

of our macros.

The actions that can be taken if something goes wrong are listed below.

e Originate. [Ctrl+o] Perform the macro by Ctrlto, and then use Ctrl+b. This
macro restores the original status of the game saved by the BacKup, i.e. saved by
ctrl-k.

e RandM. [Ctrl+m] Perform the macro by Ctrl+m. It randomly rearranges col-

umns of Men'’s priority table M by random (permutations). Notice the effect upon
men’s priority table M.

e RandW. [Ctrl+w] Perform the macro by Ctrl+w. It randomly rearranges
rows of Women’s priority table W by random (permutations). Notice the effect
upon women’s priority table W.
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Proceed. [Ctrl+e] While procEeding with macros RandM and RandW, the
macro is using random permutations for men and women until it generates the pri-
ority tables M and W with minimum mutual risk equal to 4.

Dummy. [Ctrl+u] This macro is removing from the list of participants those
guests that do not wish to play the game, or who decide not to pursue the dating.
We call them dUmmy players. Activate the row-1, or column-A by pointing at man
ms:;, or woman wi: and then perform Ctrl+u excluding the chosen guests from play-
ing the game.

MCouple. [Ctrl+a] Try to mAtch [ctrl+a] a couple by pointing at the cell in
the upper block: pink color to the left (or yellow to the right) in the row wi (corre-
sponding to a woman) and the column mj (corresponding to a man).

TrackR. [Ctrl+r] Visualizes Tracking forwaRd. Memorizes the status of
Women-W and Men-M priorities to be restored by TrackB macro. The effect of this
macro is invisible. It can be used whenever it is appropriate to save the active status
of all tables and all the arrays necessary to restore the status by TrackB macro. Only
when the search for quasi-core coalitions is performed manually, the effect of macro
is visible.

TrackB. [Ctrl+b] Visualizes Tracking Back. Restores the status of Women-W
and Men-M priorities memorized by TrackR macro.

Happiness [Ctrl+p] The macro calculates an index of haPpiness using the ini-
tial risks table.
Coalition [Ctrl+n] The macro rebuilds the matching coalitioN following the

coalition matching list previously transferred into area "AV24:A025".
Chernoff [Ctrl+q] Useful when indicating by red font the status of the

Choice Operator C(X) = {arg min}. Using this macro will help to confirm the va-

lidity of the Succession Operator. To clear the status, use Ctrl+l.

ITII. EXTRACTING NUCLEI OF THE GAME

We came closer to the goal of our visualization, where we visually

demonstrate the main features of the theoretical model of the game by ex-

ample. Generating the matching sequence, which is performed in a step-

wise fashion, constitutes the framework of the theory. At each step, to the

right side of the sequence generated in the preceding steps, we add a cou-

ple found by one of the macros CaseS, CaseD,..., CaseH, i.e. a couple that

has decided to date. This process is repeated until all participants are

matched, and the sequence is complete. One can easily verify that, the lev-

els of risk initially increase, and decline towards the end. This single M-

96



© Joseph E. Mullat

peakedness is a consequence of the levels of mutual risk monotonicity
(o, H'\ {G}) <7(o, H). Indeed, recall that risk levels are recalculated after
each match. With the proviso of recommendations in our heuristic algo-
rithm, see above, due to the recalculation, the priority scales will "shrink"
or "pack together", as only not yet matched participants remain. Let us try
to generate a Matching Sequence using macros: CaseS, CaseD, CaseF,... .
The data, e.g. will occupy the array v24:028.

Table3 Couple nr. 1 2 3 4 5 6 7 8 9 10
Rowl W-matched |19 10 1 6 4 17 5 2 11 18
Row 2 M-matched 5 9 10 17 15 3 6 13 14 4
Row 3 Risk levels 3 3 4 5 6 6 6 6 6 6
Row4 W-payoffs [10€10€10€10€10€10€10€10€10€ 10€
Row 5 M-payoffs 10€10€10€10€10€10€10€10€10€ 10 €
Table3 Couple nr. 11 12 13 14 15 16 17 18 19 20
Row1l W-matched [20 8 3 9 15 12 7 13 16 14
Row 2 M-matched 1 11 2 12 8 19 16 18 7 20
Row 3 Risk levels 6 6 6 5 4 3 3 2 2 0
Row 4 W-payoffs 10€10€10€10€10€10€10€10€10€ 10 €
Row5 M-payoffs [10€10€10€10€10€10€10€10€10€ 10€

Observe that, starting with the couple no. 14, we can no longer use
macros of our heuristic algorithm. Couples no. 1-13 represent a nucleus nr
of the game. Thus, we can continue generating the sequence only by man-
ual macro MCouple—Ctrl+a.

In Table-3, in the Matching Sequence of length 20, k =120, we labeled
couple [i, j] by o using notation o, . Together with levels of mutual risks

in row 3, the rows 1,2 correspond to the sequence <0Lk>. Compensations

and incentives for dating are not payable at all, and only the costs of de-
lights (each worth 10€) occupy rows 4,5. Notice that, in accordance with
single N-peakedness, the lowest levels of risk first increase starting at 3,
and after reaching 6, starting at couple no. 13, they start declining down to
0. For couple no. 3, risks jump from 4 to 5, while, for couple no. 4, they
increase from 5 to 6.
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Let us look at Table-4, where only 13 matches are accomplished, i.e. all

columns to right including the couple no. 14 are empty. Table-4 visualizes

the nucleus below. Pink and Blue colors mark those who decided to date,

while Yellow marks those who have not yet taken their decisions. Hereby,

Yellow participants occupying rows 4-5 will mark the participants of a

nucleus coalition—a coalition inducing payoffs as incentives and mis-

match compensations to all 40 participants—20 women and 20 men. The

payoffs 40€ and 70€ corresponding to the nucleus make up the outcome.

The balance of the outcome —the total amount of 2000€ as entrance fees

minus payoffs 2380€ —is not in cashier’s favor.

Table4 Couple nr.

Row 1
Row 2
Row 3
Row 4
Row 5

W-matched
M-matched
Risk levels
W-payoffs
M-payoffs

REFERENCES

1 2 3 4 5 6 8§ 9 10 11 12 13

7
9 10 1 6 4 17 5 2 11 18 20 8 3
5 9 10 17 15 3 6 13 14 4 1 11 2
3 3 4 5 6 6 6 6 6 6 6 6 6

70€70€70€70€70€70€40€70€40€70€70€40 €40 €
70€70€70€70€70€70€40€40€70€70€70€40 €70 €

40€40€40€70€70€70€70 €
70€70€40€70€40€40€40 €

Aizerman, M. A., & Malishevski, A. V. (1981). Some Aspects of the general
Theory of best Option Choice, Automation and Remote Control, 42, 184-198.
Arrow, K. J. (1959). Rational Choice functions and orderings, Economica, 26(102),

121-127.
Berge, C. (1958). Théorie des Graphes et ses Applications, Dunod, Paris. Teopus
I'pagos u eé [lpumenenus, mepesod c ppaHIry3ckoro A. A. 3bIKOBa 104,

peaaknuen V1. A. Bainmrernina, Isaateansctso Vnocrpannoi Aurtepatypsl,

Mocksa 1962.

Chernoff, H. (1984). Rational selection of decision functions, Econometrica, 22(3),
422-443.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Greedy Algo-
rithms. In Introduction to Algorithms, Chapter 16,

Dumbadze, M. N. (1990). Classification Algorithms Based on Core Seeking in
Sequences of Nested Monotone Systems. Automation and Remote Control, 51,
382-387.

98



© Joseph E. Mullat

Edmonds, J. (1970). Submodular functions, matroids and certain polyhedral. In
Guy, R., Hanani, H., Sauer, N., et al. (Eds.), Combinatorial Structures and Their
Applications (pp. 69-87). New York, NY: Gordon and Breach.

Gale, D., & Shapley, L. S. (1962). College Admissions and the Stability of Mar-
riage. American Mathematical Monthly, 69, 9-15.

Kemprner, Y., Levit, V. E., & Muchnik, L. B. (2008). Quasi-Concave Functions and
Greedy Algorithms. In W. Bednorz (Ed.), Advances in Greedy Algorithms, (pp.
586-XX). Vienna, Austria: I-Tech.

Kuznetsov, E. N., & Muchnik, I. B. (1982). Analysis of the Distribution of Func-
tions in an Organization. Automation and Remote Control, 43, 1325-1332.

Kuznetsov, E. N., Muchnik I. B., & Shvartser, L. V. (1985). Local transformations
in monotonic systems I. Correcting the kernel of monotonic system. Automa-
tion and Remote Control, 46, 1567-1578.

Malishevski, A. V. (1998). Qualitative Models in the Theory of Complex Systems.
Moscow: Nauka, Fizmatlit, (in Russian).

Mullat, J. E. a) (1995), A Fast Algorithm for Finding Matching Responses in a
Survey Data Table. Mathematical Social Sciences, 30, 195-205, b) (1979), Stable
Coalitions in Monotonic Games. Aut. and Rem. Control, 40, 1469-1478, b)
(1976). Extremal subsystems of monotone systems. . Aut. and Rem. Control, 5,
130-139, c) (1971). On a certain maximum principle for certain set-valued
functions. Tr. of Tall. Polit. Inst, Ser. A, 313, 37-44, (in Russian).

Narens, L. & Luce, R. D. (1983). How we may have been misled into believing in
the Interpersonal Comparability of Utility. Theory and Decisions, 15, 247-260.

Nembhauser G. L., Wolsey L. A., & Fisher, M. L. (1978). An analysis of approxima-
tions for maximizing submodular set functions I. Math. Progr., 14, 265-294.

Owen, G. (1982). Game Theory (2nd ed.). San Diego, CA: Academic Press, Inc.

Petrov, A., & Cherenin, V. (1948). An improvement of train gathering plans de-
sign’s methods. Zheleznodorozhnyi Transport, 3, (in Russian).

Rawls, J. A. (2005). A Theory of Justice. Boston, MA: Belknap Press of Harvard
University. (original work published in 1971)

Roth, A. E., & Sotomayor, M. (1990). Two-sided Matching: A Study in Game-
Theoretic Modeling and Analysis. New York, NY: Cambridge University Press.

Shapley, L. S. (1971). Cores of convex games, International Journal of Game Theory,
1(1), 11-26.

99



Singles Party

Sen, A. K. (1971). Choice functions and revealed preference, Rev. Econ. Stud., 38
(115), 307-317.

Veskioja, T. (2005). Stable Marriage Problem and College Admission. PhD disserta-
tion on Informatics and System Engineering, Faculty of Information Technol-
ogy, Department of Informatics Tallinn Univ. of Technology.

Vohandu, L. V. (2010). Korgkooli vastuvottu korraldamine stabiilse abielu
mudeli rakendusena. Opetajate Leht, reede, veebruar, nr.7/7.1 (in Estonian).

ADDENDUM

We deem that it is necessary to provide a full proof of all propositions.

Proposition 1 Presented in terms of graph theory, the proposition
would be obvious. Treating the formation of coalitions as a chain of sets
X 1k, the proposition may be explained in the form of a chain of graphs
C(X,), whereby the lowest risk F(X,) is assigned to couples a ready to
match in the list <0c =argmin TC(G,Xk)>. The list represents a graph
C(X,) with edges <[i, il= OL>. Suppose that a couple ¢ € X, , not necessar-
ily listed in C(X, ), decides to date. The couple G leaves the game. As a
result, some less risky couples a € C(X,) must reconsider whom they
prefer to date, as their preferred partners, while the chain X, is under

formation, are no longer available. There are two possibilities. First, all
partners, who are yet unmatched and are present in couples o € C(X,),

preferred at least one of two partners in o, i.e. all these couples o. are ad-
jacent to o in the graph C(X,). Second, because for some couples
a' € C(X, ) not adjacent to couple G, the partners of ¢ do not appear for
o’ in the list C(X, ). The proposition presupposed that, in the process of
coalitions’” X, formation, the lowest risk function F(X,) does not de-

crease. Therefore, the statement of the proposition C(X,,,) 2 C(X,) N X,,,
holds in both situations.
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Proposition 2 The proof is explained in the basic terms. The idea is to
apply a mathematical induction scheme. We claim that, starting from the
initial state & of the game, where nobody has been matched yet, it is pos-
sible to reach an arbitrary coalition X by sequence <OL1,...,OLk>, X, =2,

X=X, —a, X=X,, Lk. The sequence will improve the payoffs x,
previous steps <OL1,...,OLk_1> in accordance with non-decreasing values
F(X,). First, the statement of the proposition can be verified by observa-
tion of all preference tables and all coalitions X that emerged from all

nxm tables, when both n and m are small integers. For higher n and m
values, it is NP-hard problem. Second, consider an arbitrary coalition X of

the n x m -game. While the coalition X = D, includes all matched couples,
in order to arrange a new couple, all participants in X are still unmatched.
We can thus always find a couple a, e X such that F(P)<F(&P-a,).
Consider (n —1)x (m —1)-game, which can be arranged from n x m -game
by declaring the partners of the couple o, as dummy players & ¢ &. By
the induction scheme, there exists a sequence of pairs <oc1,...,ock> with re-
quired quality of improving the payoffs x, starting from X, =% -a,.
Restoring the dummy couple a, to the role of players in the n x m -game,
we can, in particular, ensure the required quality of the sequence

<OLO,OL1,...,OLk>. The statement of the proposition is obviously the corollary

of the claim above. However, it is clear that, ensured by its logic, the claim
is a more general statement than the statement of the proposition.

Proposition 3 The first part of the statement is self-explanatory. The
coalition NV stops being a proper subset among kernels {J} as soon as the

payoff function F(N) allows improving the outcome n. The second part

of the proposition is the same statement, worded differently.
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1. INTRODUCTION

Political competition related to wealth redistribution often fosters
debate regarding what the state "should" or "should not" deliver. Wider
and more substantial welfare benefits and relief payments could be
problematic, as they might encourage certain behaviors, such as low
savings or productivity when economic security is guaranteed. Similarly,
they may lead to high wage demands, as an incentive to remain in
employment, given that unemployment benefits are substantial and are
compensated by high tax rates T. In addition, high taxes are an incentive
for entering a black labor market that avoids paying taxes, or
moonlighting, i.e. holding multiple jobs. Finally, high benefits typically
undermine social and geographical mobility. Evidence also shows that,
under these conditions, a few would opt for working just because
financially they would not be tempting, while many will be wondering
why studying is worth the efforts and sacrifices. In sum, excessive benefits
might result in human capital not developing quickly and well enough,
e.g. "...implicit support to those waiting on benefits looking for the ‘right type of
job” or a job that pays well enough," as noted by Oakley and Saunders [1].

As the welfare policy of the state presupposes the existence of both a
functioning market economy and a democratic political system, its
hallmark is that the distribution of public goods and services is
governmental responsibility and obligation. The term public in this context
refers solely to wealth redistribution. In particular, an obligation to ensure
that those on low incomes are awarded appropriate levels of social
benefits and relief payments results in a more egalitarian allocation of

wealth than can be provided by the free market. In this scenario,
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politicians face a dilemma of whether such allocation is just and fair to all
citizens. The solution depends on many factors, including the
characteristics and views of the main benefactors of wealth redistribution.
In the absence of a universal definition, in this work, we use the term
"wealth" in the scholarly sense, delivered through tax channels and
distributed by the state. Under this premise, the average taxable income

per capita represents the wealth W .

The primary goal of this experiment is to demonstrate fallacy of
arguments advocating in favor of higher benefits and relief payments.
Beyond the negative perception of higher benefits, it is also reasonable to
believe that distribution of citizens” incomes o is, perhaps, the only target
for control and an exclusive source of information for assessing the
amount of benefits available. Our goal is to highlight a hidden side of
public interests to welfare issues [2], its geographical, historical
justification and broad experimental support in analyzing credible income
distributions [3]. Since we approach welfare redistribution from a more
theoretical perspective, we need to have a different emphasis compared to
these issues. However, apart from this key aspect, the solution of the
welfare policy dilemma, based on numerical simulations, yields the
benetfits to the needy that are sufficiently close to be considered a realistic
match (see Table 1), as noted by Bowman [4] in 1973, to "what amounts to a
moving poverty line at %2 of median income."” In support of this approach, it is
worth noting that Rawls [5] pronounced the Fuchs [6] point as an
alternative to the measurement of poverty with no reference to social
position. The motive of the experiment presented here is thus to provide—
while acknowledging that a few examples clearly cannot make a trend —a
theoretical confirmation for the claim recognizing the poverty line, defined

as Y2p of the median income |, as a realistic political consensus.
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Table 1. Numerical simulation behind the left-right wing political power design;
IWP—Ileft-wing politicians, RWP—right-wing politicians
] ] Policy of P
Qmuma.wmm_&. by .Ewmﬂx,w Q.\,\.EQDEN equal— WP proposal | Preposal EHMM._WO_K_ RWP prepesal Policy of
&NK%Q distribution ﬁm. LEMFE w\ﬁ. symmetric accepied by nunirmizing of median accepied disagreement,
personal allowance ¢ = 4.03; political RWP wealthax | oo By LwP the breakdown
0 =61.9:h=-0.18,; m= 2.07; power
r =24 : g proportion to ANIQV N Ptaum..\_. A, q=0% Yapu Pm“num_,\__ 0
Poverty line; E= 79.23 40.79 45.50 41.15 50.28 6.39
welfare policy
Poverty rate: percentage of citizens A736% | 1573% | 19.15% | 15.99% | 22.81% 0.41%
below the poverty line
Political power of (&) 0.50 0.13 0.21 0.18 0.24 Not defined
left-wing politicians
LI netto; the after-tax 0 54 50 91 50 ca
residue of & u(é) 58.02 31.02 : 2 37.99 :
Account for public
g(&) 19.02 27.63 26.70 27.56 25.75 -2.49

goods expenses
Account for LI "
o B(&) 10.61 1.57 2.17 1.62 2.1 0.01
Account for public
spending, the size of = Z(§) 29.63 29.20 28.87 29.18 28.66 -2.48
the wealth-pie
Average taxable
income—the wealth W(E) 105.04 109.95 108.86 | 109.87 107.88 120.46
amount
Wealth-tax, (&) 28.21% | 26.56% | 26.52% | 26.56%  26.56% ~2.06%

marginal tax rate
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In our scheme, citizens earning low incomes (below a certain level, in
this case the poverty line §) receive relief payments, whereas those with

higher incomes (above the aforementioned level) do not. In this regard, it
should be noted that, in 1962, Milton Friedman [7] proposed a similar
scheme of wealth redistribution, combined with flat tax, called the
negative income tax—the NIT. According to the rules and norms of the
NIT, low-income earners receive a relief payment proportional to the
difference between their earnings and the predetermined NIT poverty
line. Most importantly, the total —the sum of the key income and the NIT
relief payment—is not subject to taxation. We argue that levying taxes in
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Figure1l. At the sample P(c, 6+h-%u) of the income
density  distribution, p  solves the  equation

g .
[[P(c,0+h-E)do=05 for &; p=8230. Appendix Al

contains the analytical form for the sample expression in
Figure 1.

compliance with the tax rules and norms in force for all, inclusive of low-
income citizens, would have the same result. Although the total income of
low-income citizens is now taxable, they would, even so, still be eligible
for the relief in line with NIT, similar to the widely adopted low-income —
LI relief. The known drawback of such an approach, and the relief, in
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particular, stems from the issue of social abuse by those earning low
income. In order to mitigate these undesirable effects, in this work, we
introduce the so-called hazard of working incentives, referred to as the
h-effect.

We thus present a theoretical model of visionary politicians, whereby
we consider a masquerade of life or a scenario of realistic utopia. In this
scenario, two actors/politicians, akin to two political coalitions, are playing
a bargaining game, each attempting to implement his/her own wealth
redistribution policy. Left-wing politicians tend to oppose the disproportion
in private consumption, unjust wealth redistribution, profit motive, and
private property as the main sources of socioeconomic evil. Right-wing
politicians, owing to a different ideology, tend to focus on regulating
business and financial risks, thus encouraging the government’s use of its
powers in combating corruption, criminal violence and commercial fraud.
While left-wing politicians prefer immediate and equitable sharing of the
available stock of goods and services, both sides are aware of the citizens’
sacrifices—in terms of direct contribution of a part of their income to the
funding of welfare benefits and public goods. We posit that applying the
rules and norms of wealth redistribution pertaining to the reliance on the
elevated relief would increase the quantity of the relief payments to be
delivered. Consequently, citizens will have to meet a greater tax burden.
This outcome is not ideal, given that lower tax burden and greater private
consumption always lie at the heart of citizens’ economic and political
aspirations. These private objectives prompt majority of voters, who hold
power in electing political parties, to oppose increasing the tax burden. As
a result, they are instrumental in the competition between the left- and
right-wing politicians and their views on tax policies.

Political consensus is rarely possible in reality. Consequently, we aim to
design an experiment capable of predicting an appropriate political
division between interest groups for desirable implementation of the
welfare policy. This approach does not require analysis of the voting
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system or a scheme by which voters-citizens express their arguments. In
adopting this approach, we analyze political power indicators as
replications (a,1—a), 0 < o <1, in line with Kalai’s bargaining game [8] in
which division of $1 is attempted. In this scenario, among other
assumptions, it is posited that a power a is appropriate to adopt the
ability to negotiate, or be in the position to request financial support to a
greater extent than the opposite side. Similar interpretation of players’
power dynamic may be found in the recent work of Mullat [9]. In short,
we adopted the view of Roberts who noted in 1977, [10], that “The point is
not whether choices in the public domain are made through a voting mechanism
but whether choice procedures mirror some voting mechanism.”

These brief remarks should be sufficient to elucidate some goals of the
state, allowing us to conclude that welfare policy in a representative
democracy always faces ideological controversies of politicians and
citizens. A further aim of this experiment is to shed light on how a
political consensus is reached and whether it reflects a criterion of tax
policy that results in the least burden to the citizens. To address this issue,
as already stated, we focus our analysis on two visionary politicians. For
the purpose of the experiment, we assume that these politicians are
granted a political mandate to initiate proposals ensuring that the relief
payments are allocated to citizens who are in need. We thus assume that,
in balancing the books accounting for finance of relief payments and for
vital public goods and services, expenses are constrained. This premise
ensures that the citizens control the negotiations, forcing the politicians to
act within the imposed budget constraints in order to pledge safe funding
for their proposals. While trying to reduce the after-tax income inequality,
the politicians in their respective roles of left- and right-wing actors are
committed to ensuring that the wealth is redistributed fairly.

At this point, it is essential to state the assumptions/limitations
underpinning the analysis of a hypothetical behavior of those occupying
three distinct roles in the negotiations—those of left- and right-wing
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politicians and voters-citizens. Throughout this work, we emphasize the
incomparability between the aims of the left-wing politicians struggling to
ensure adequate access to basic goods and the right-wing politicians
advocating for availability of non-primary but vital goods and services. In
the analysis, we implicitly assume that politicians do not have adequate
knowledge of citizens” needs in a more primitive environment. Hence,
they can only work with the monetary payoff specification. Given this
limitation, politicians are unaware that the provision of equivalently
valued public services is not a perfect substitute. For example, we assume
that politicians do not have any information on how household income is
assembled and used to buy private health insurance or services of nursing
housing, etc. Thus, we do not merit the debate on what is right or wrong in
the economic or political environment involving left- and right-wing
politicians and voters-citizens. In short, our work does not extend to the
democratic context of voters’ prototypes/characteristics. While
acknowledging the significance of prototypes, in this work, we view
voters” behavior as a binary process, allowing support for either left- or
right wing politicians. This, however, introduces a risk q >0 of premature
political breakdown of negotiations. In addition, we refer to the tax
revenue in accord with voters’ preferences as the "wealth-pie" ©-W ,
which is divided into two parts (x,y), whereby x denotes various social
benefits or relief payments, and y pertains to public goods, so that
x +y=1. We posit that any further enrichment of voters’ characteristics
would disrupt the delicate balance between the motives of our experiment
and the theoretical framework, which is already technically sophisticated.

Roadmap. Because of the narrative complexity, it is possible that the
reader would find proceeding with the content of the paper in
chronological order difficult. Thus, to mitigate this potential issue,
Section 3 presents the most relevant problems, in particular, the pre-equity
condition of political breakdown of the negotiations. In our view, it is

prudent to master the material presented in Section 3.1 before moving to
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Section 4. Similarly, Section 3.2 aims to assist with understanding of the
content of Section 5, while Section 3.4 supports Section 6. On the other
hand, those not wishing to delve deeply into the technical aspects of this
work could simply move onto Section 7. Nonetheless, Section 3.3 provides
a scheme pertaining to the pre-equity of breakdown of the negotiations

and, in our view, does not require further clarification.

2. PRELIMINARIES

Before delving deeper into our work, we specify the category of the
game payoffs functions u(§,x), g(&,y) and taxes 1(c,X) required for the
model validity. As noted above, Section3 provides background
information that assists in understanding material given in Section 4-6. In
Section 4, we disclose fiscally safe welfare policy in amalgamation with
imposed budget constraints for financing relief payments. Referred to as
volatility constraint, the amalgamation dynamically restricts the h-effect—
an inverse working incentives phenomenon of low-income citizens. In
Section 5, citizens’ ambivalence and multifaceted welfare policy
perceptions are discussed from the perspective of the alternating-offers
game. The policy on poverty associates the left- and right-wing politicians
with payoffs functions u(&,x) and g(&,y). Under these conditions, it is
possible to obtain an analytical solution to the game with incomes ©
density distribution P(c,&). Indeed, as will be shown, the calculus of
indicators (0(,,1—OL) complies with the political power design given in
Section 6. The results are discussed in Section 7, followed by concluding
remarks, presented in Section 8.

In the current experiment, an income G equal to the poverty line &,
¢ c[g,,&,] parameterizes all arguments and functions. In this vein, we

adopt quantitative measurement, whereby we utilize a scale quantum as
an average income with the income o density P(c,§) distribution,

0 <o <. The average establishes the ratio scale. Hence, we suggest that
u(g,x)= (1 -1(E, x)- (i — d))—i— ¢ (the after-tax residue of income G =¢§)
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signifies the 1% actor’s social position at the specified scale, i.e. the left-
wing political aims. We apply the residue formula based on Malcomson’s
[11] model, with a personal allowance parameter ¢, 0 < ¢ <&, determined
by the tax bracket [d),OO). The 2nd actor’s aim—the right-wing political
objective g(&,y) —is ensuring sufficient amount of the non-basic goods
per capita. Here, we refer to the citizen ¢ =& as marginal citizen. While, for
the minority of voters, the relief is more attractive than lower taxes, the 3+
actor is the implicit partaker embodying the majority of voters whose
preference is minimizing tax obligation t(c,X). This is a typical public
finance dilemma of efficient division (X,y) of the tax-revenue into shares
x+y=1. In this work, the dilemma is represented by the alternating-
offers bargaining game I'(q) with premature risk q, 0<q<<1, of
political breakdown. When q—0, the solution converges into Nash
axiomatic approach [12]. The relationship between the one that suggests
the alternating-offers bargaining and axiomatic solution is well known
from the work of Osborn and Rubinstein [13]. As this game is thoroughly
described by Osborn and Rubinstein, for brevity, no further elaboration is
offered here.

When negotiating on finance issues, under the guise of a "wealth-pie
workshop," politicians will allegedly try to divide the wealth-pie in a
rational and efficient manner. As a result, the tax 1(c,x) will increase as
will the wealth-pie, when increasing the poverty line & . Logically, a
decrease in taxes would yield the reverse effect. While taxes vary, the
division will depend upon the characteristics and expectations of the
bargainers involved. Indeed, the left- and right-wing political aims u(§, x)

pertaining to basic goods, as well as the objective g(&,y) related to the

non-basic goods, are controversial. We illustrate this tax controversy by
elevated single-peaked frontier of u(§,x), the % -share/slice in Figure 2,

which corresponds to the lower, but progressively increasing, concave
frontier of g(&,y), the % -share/slice in Figure 3, as well as for another
division of the pie, into shares/slices (x = J%,y =%). We believe, that,
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while (x =%,y = %) highlights the left-wing political aspirations, the
share/slice (% ,%) elucidates those of the right-wing political objective.
This premise appears to be crucial for understanding our primary goal in
resolving the welfare policy dilemma.

] ] P

2/5 Slice /

after tax
residue of
poverty line

1/8 Slice

tax burden

Figure 2. Left-wing politicians” emphases.

[ [} ]

non-bhasic goods
& per capita =

T
tax burden

7/8 Slice

& 3/5 Slice

1 il

Figure 3. Right-wing politicians” emphases.

In support of the aforementioned assumption, the political payoffs in
general, as shown in Figure 2 and Figure 3, emerge within a two-man
economy endowed by citizens” income abilities marginalized at the level
of poverty line. According to Black [14], single peakedness plays the key
role in collective decision making when the decision is reached by voting.
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The payoffs for the two actors, shaped in this way, are non-
conforming/incomparable, and are thus impossible to match through a
monotone transformation, as established by Narens and Luce [15]. The
single peakedness is nonetheless in line with Malcomson’s tax residue
u(&,x), when the terms of contract commit the actors to shares (X,y).
This, however, requires that the expenses covered by flat taxes will
balance the books, while accounting for relief payments, as shown in
Figure 2. Clearly, increasing the poverty line requires an excessive increase
in taxes, which in turn provides a greater amount of non-basic goods
g(&,y), as shown in Figure 3. An opposite scenario of increasing the
available amount of non-basic goods g(&,y) equally requires an excessive

tax increase, which may lead to the possibility of increasing poverty line.

Following the traditional procedure for division of the wealth-pie in the
alternating-offers game, when the pie is desirable at all the times, the
politicians ~(bargainers)—changing roles—commit to shares (x,y) ,
x+y="1. According to the shares (X,y), the valid rules and norms of
wealth redistribution, which guarantee a desirable level of relief
payments, require establishing a poverty line £ parameter. However, an
efficient division of the wealth-pie—as a result of single-peaked N-curves
depicted in Figure2—no longer represents any traditional bargaining
procedure. This is the case as, instead of division, the procedure can be
resettled. Indeed, we can proceed at distinct levels of one parameter—
within the poverty line interval [¢,,&,] —reflecting the scope of
negotiations. In fact, in 2007, Cardona and Ponsatti [16], also noted that
"the bargaining problem is not radically different from negotiations to split a
private surplus," when all the parties in the bargaining process have the
same, conforming expectations. This argument applies even when the
expectations of the first player are principally non-conforming, i.e. single-
peaked, rather than excessively concave in regard to the second player. In

our experiment, the scope of negotiations on the "contract curve" of non-
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conforming expectations allows for omitting the "Pareto efficiency” and

replacing the axiom by "well defined bargaining problem," as posited by
Roth [17]. The well-defined problem (x,y) of the wealth-pie division can
now be solved (resettled) inside the poverty line interval [§1 ,&s ]

Settings

In accordance with Friedman’s NIT system, in this work, we assume
that, for the unfair subsistence of the less fortunate citizen ¢ <&, the relief
amount r- (E, - G) , 0<r<1, serves as a monetary compensation
designated for purchasing an eligible "poverty basket" of food, clothing,
shelter, fuel, etc. According to Rawls [5], "primary goods are things which it is

supposed a rational man wants whatever he wants." In defining the parameter
§ in this manner, it becomes contingent on financing the relief. This can be

achieved by assuming that elevating the poverty line & requires an
increased marginal tax rate ©(c,X). In increasing the wealth-pie through
tax channels, we assume an acceleration t’(c,x)>0 of the tax rate
1(0,x) ; 1.(0,x)>0 inclusive all of those citizens who indicate the

marginal income & denoted by 6 =¢.

As noted previously, the marginal citizen 6 =& must bear the cost of
the left-wing political aims using tax residue u(&, x), as well as the right-
wing political objective g(&,x), referred to as "public or non-basic goods."
With the proviso that politicians commit to the shares (x,y), we conclude
that u(&,x) is a single n-peaked curve, due to the tax rate t(&,Xx) increase
upon &. While objective g(&,x) of right-wing politicians decreases with
an increase in x, the reverse is true with elevating & due to t(§,x)
acceleration. Here, payoffs <u, g> are considered analytic functions u(&, x),
g(€,x) . Given the interval [&1 <E< @2] , referred to as the scope of
negotiations, u(&,x) reflects single ~-peakedness— ui <0 upon &
increase, u;(&,,x)>0, u;(§,,x)<0. Following an increase in x, the

payoffs u(&, x) become convex, u’ >0, u’ >0, whereas an increase in &
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would produce concave payoffs g(&,x), with g, >0, g/ >0. It can be

shown that, with increasing X, payoffs g always decrease; in other words,
in both circumstances, either g’ >0 is convex, or g’ <0 is concave.

3. RELEVANT TRENDS AND ISSUES

In the extant literature [18-20], the welfare, economic, and political
issues are usually addressed in reference to specific questions. In our view,
a much deeper analysis is achieved when addressing them more
generally, adopting well established knowledge discovery methodologies.
In particular, our wealth-pie workshop concept, jointly adopting four
issues—(a) public finance, (b) alternating-offers game, (c) negotiations’
collapse analysis, and (d) political power design—leads to a more
informative point of departure.

To explain the root cause of the results in order to bring the welfare,
economic, and political content to the surface in a rigorous analytical form,
and to find bilaterally acceptable solutions to the game, we will visit all of
the classrooms in our workshop. Our goal is to lay the foundation for a
more constructive welfare policy comprehending the meaning of
following four narratives:

During the delivery to its final destinations, provided that the

books accounting for the relief payments finance have been
Fiscal policy balanced a priori, the wealth-pie must remain balanced

throughout and in spite of volatility in the economy;

The left- and right-wing political bargaining on how to share the
Negotiations wealth-pie complies with the rules and norms of the alternating-

offers bargaining game;

Political breakdown, or threat, point directly affects the
Pre-equity of bargaining solution. Pre-equity guarantees equal conditions for
breakdown  players before the bargaining game commences;

Bringing a motion to a vote is necessary to address the majority
Political opposition to high taxes and excessive public spending.
power design Whether it is viewed as positive or negative, or whether it ought

to be acknowledged or not, rejected or accepted, this motion

must be politically designed in advance.
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In our wealth-pie workshop, these four narratives can be understood as
obligations/constraints to be met by welfare policy rules and norms, akin
to "Rational man” deliberation of Rubinstein [21]. This interpretation
allows us to provide a scenario under which the narratives are embedded
into the welfare policy of the state. In addition, evaluating the welfare
policy from this perspective reveals that the analysis can be subject to and
performed by computer simulations, as shown in Appendix A2. Our
initiative could also serve to unify the theoretical structure of economic
analysis of public spending. It can be used to evaluate the political power
design of left- and right-wing politicians, or to launch systematic inquiry
into impacts of governmental decisions and actions on wealth

redistribution.

As the state has the duty to help the less fortunate, our experiment
approaches wealth redistribution in a two-fold manner. First, it addresses
the provision of basic necessities or goods, such as shelter and heating,
clean and fresh water, nutrition, efc., before focusing on non-basic goods,
including national defense, public safety and order, roads and highway
systems, and so on. Welfare policy issues, according to Boix [22], “...There
is wide agreement in the literature that governments controlled by conservative or
social democrats parties have distinct partisan economic objectives that they
would prefer to pursue in the absence of any external constrains.” Meeting this
challenge, based on income ¢ density distribution P(c,£), we identify an
effective approach to the division (X°,y°) into shares x"+y =1
pertaining to basic X° and non-basic goods y’. Fundamentally, the
efficient division (X° , y°) of the wealth-pie aims at just and fair delivery of
all aforementioned goods, traditionally perceived as public goods. In our
experiment, we refer to public goods as non-basic but vital goods, whereas
basic goods are deemed fundamental. Incidentally, during the delivery of
basic and non-basic goods to their end destinations, we treat both as

public goods.
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We assume that the left-wing politicians have the necessary political
influence—when an offer is made, irrespective of its legitimacy—to
control the redistribution of basic goods independently. Given the single-
peaked aspirations of the left-wing, in contrast to the objective of their
right-wing counterparts, the influence the left-wing politicians enjoy, is
supposed to be adequate enough to reach the peak of these expectations.
In particular, we believe that, beyond some peak position, inefficient
usage of basic goods would lead to an excessive decline in the quality of
welfare services, as well as cause deterioration in access to public goods
for all citizens. In making these suppositions, we agree with Rawls’s [5]
statement, about the precepts of perfect justice: "The sum of transfers and
benefits [...] from essential public goods should be arranged so as to enhance the
emphases of the least favored consistent with the required saving and the
maintenance of equal liberties."

An efficient usage of public resources implies that a consensus between
left- and right-wing politicians might be reached. Despite some views to
the contrary [23], we posit that the bargaining aimed at finding a just and
fair division of basic vs. non-basic goods is an acceptable path to the
bargaining dynamics. Based on this premise, we can identify relevant
connections in extant works on economic and political behavior that
analyze the sociological and political aims of ensuring adequate welfare
by using public finance. This is likely be the best starting point for visiting
our wealth-pie workshop.

3.1. Fiscally safe welfare policies, to be continued in Section 4

Public finance focuses on the revenue side of tax policy. In particular, it
pertains to the budget formation, as noted by Formby and Medema [24],
aiming to provide a guaranteed level of welfare to citizens endowed by
poor productivity. While the welfare policy is a separate issue, it should be
considered on the grounds of legal and moral rights of citizens. Empirical
evidence confirming that such policy is government’s legal obligation can
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be found in pertinent literature. For example, as noted by Saunders [25],
“...poverty line. The line was initially set (in 1966) equal to the level of the
minimum wage plus family benefits for one-earner couple with two children.”
Similarly, a hypothesis consistent with moral obligations can be found in
the literature of economic politics [26, 27].

In 1959, Musgrave [28], examined two basic approaches to taxation—
the "benefit approach" and "ability-to-pay," which put taxation into efficiency
and equity context, respectively. In this work, we utilized the benefit
approach in order to augment the existing standard of welfare policy,
whereby we allocate a guaranteed amount of income for minimum taxes.
We posit that a flat tax system—based on injecting optimal equity
according to the ability-to-pay principle of "proportional sacrifice"—

ensures that taxes remain fairly levied.

Taxation is a principal funding source of social costs and benefits. Thus,
the first postulate in our welfare policy workshop (see above) discloses an
obvious paradigm in social policy. According to the ability-to-pay
principle commonly adopted in public finance, in order to stabilize the
distortion of tax polices, the known terms of warranty must rely on
exogenous taxes enforced on the productivity of citizens. The concept,
proposed in 1996 by Berliant and Page Jr. [29], is a variant of the classic
public finance and similar approaches, applicable when an agent
characterized by a specific level of productivity does not shift his/her labor
supply after all adjustments to the tax formula have been implemented. In
other words, under this paradigm, optimal taxation enforces optimal labor
supply.

Yet another "treatment of policies," closely related to societal instability,
entails equity of pre- and post-tax positions of citizens. Such a view

demarcates between citizens and has attracted the attention of economists
and tax policy makers. In the view of Kesselman and Garfinkel [30], credit

119



Political Power Design

tax-scheme analysis opposes the income-tested program in the rich-and-
the-poor, also known as two-man economy. Poverty measurements have
also been addressed in the works of Sen [31], Atkinson, [32], Ebert [33],
and Hunter et al. [34]. According to Tarp et al. [35], "The poverty line acts as a
threshold with households falling below the poverty line considered poor and those
above poverty line considered nonpoor." In 2008, Garcia-Pefialosa [36]
investigated wealth redistribution as a form of social insurance in relation
to economic growth. On the other hand, Stewart et al. [37] attempted to
reduce horizontal inequalities, proposing “a reallocation in the production,
operation and consumption of publicly funded services.”

In the attempt to assess and control the circulation of wealth through
tax channels, we argue that, unless fiscal stabilization is not a required
condition when justifying public spending, it will be difficult to explain
how the citizens eligible for relief gain access to the benefits and relief
payments. Thus, while we continue to rely on fiscal stabilization, in order
to highlight a particular type of the dynamics stability, we refer to welfare
policy as idempotent. For clarity, a choice operation (or decision) applied
multiple times is deemed idempotent if, beyond the initial application, it
yields the same result [38]. Thus, based on this dynamic definition,
idempotent scheme allows the politicians to honor the pledges made
during the election campaign as, once the political decision is taken, it
eliminates the need for further stabilization. While visiting the workshop,
the circulation of wealth is supposed to be dynamically stable, i.e. it is
idempotent.

3.2. Bargaining the Welfare State rules and norms,
to be continued in Section 5

Bargaining is the key element of economics and is at the core of politics.
On the other hand, as pointed out by North [39], “The interface between
economics and politics is still in a primitive state in our theories but its
development is essential if we are to implement policies consistent with
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intentions.” More recently, Feldstein [40] noted, “Unfortunately, there is no
reason to be pleased about the analysis in policy discussions of the efficiency
effects...of the welfare consequences of proposed tax changes.” Similarly, in a
review on “Handbook of New Institutional Economics,” Richter [41]
stressed, “...that the sociological analysis...and large institutional structures in
economic life is still at an early stage...game theory, and computer simulation
could help to further develop the new institutional approach...game theory might
be a defendable heuristic device of NIE.” Indeed, the left- and right-wing
politicians, like an actors in the game, strive to implement their vision of
the state welfare institutions. This is succinctly explained by Ostrom [42],
who noted, “These flimsy structures, however, are used by individuals to
allocate resource flows to participants according to rules that have been devised in
tough constitutional and collective-choice bargaining situations over time.”

In order to achieve the aforementioned vision of collective choice, it is
appropriate to consider a scenario in which the actors/voters play the
“bargaining drama” of economic and political issues. Bargaining has been
a theme of a wide range of publications, including the work of Alvin E.
Roth [43]. Despite the simplification, the binary behavior of voters remains
at the root of the democratic transformation of public institutions. In this
regard, binary position fits particularly well into the bargaining game with
exogenous risk q, 0 < q << 1, of breakdown [13]. Actually, bargaining can
be risky for all interested actors because they may lose voters to the
competition if their terms are not met. Thus, it is essential to first clarify
political power dynamics of both the left-wing and the right-wing
politicians. Henceforth, they are respectively referred to as LWP, the 1
actor, benefiting from a power o, 0<a <1, and RWP, the 2" actor,
benefiting from a power 1-a..

Numerous factors—such as economic growth, decline or stagnation,
demographic shift or pit, political change or change in scarcity of
resources, skills and education of the labor force, etc. —might create fiscal
imbalance in a desirable welfare policy due to the transfers of benefits and
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relief payments. As a result, the size of the wealth-pie might be too small
(i.e. not worth the effort required for its redistribution), or too large
(introducing mutual traps) to achieve a stabilized public spending
mechanism. In either case, the actors may decide not to share the pie at all.
To address this controversy, as previously underlined, we assume that
politicians participate in relevant public institutions. If the institutions
cannot or do not want to follow RWP’s policy of wealth redistribution,
RWP —in order to promote their own understanding—can be sufficiently
legitimate to deliver the wealth "properly." In doing so, RWP can enforce
vital decisions by several means, including resource mobilization,
retaliation for breaches and criminal fraud, recruiting political volunteers
and managing public service commissions, soliciting private
contributions, efc. In other words, as Kalai [8] pointed out, RWP would
rely on an "enthusiastic supporter." On the other hand, as LWP face a decay
in political legitimacy for perfect justice, they cannot fully control RWP’s
actions and intentions when their political interests in the final agreement
are incomparable. In these circumstances, RWP are aware that their
abilities and access to information might necessitate agreeing with, or at
least not resisting, LWP’s privileges to make arrangements upon the size
of the pie. Hence, from the RWI’s critical point of view, whether acting
politically in common interest or not, it might be prudent to acknowledge
LWP’s welfare activities. This elucidates the asymmetric dynamics of

political power division between the LWP and RWP.

Returning to the main points of asymmetric bargaining, we will

illustrate an efficient solution (X°,y°) by division of $1 aimed at

maximizing the product of actors” payoffs above the disagreement point

d=(d,.d,):

(x*,y")=argmax ..., f(x,y,0)=(u(x)—d,)" -(g(y)-d,)"™".
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Although game theory purists might find the solution clear, the
questions asked by many often include: What are x, y, o, u(x), and
g(y) ? What does the point <d1,d2> mean, and how is the argmax formula

used? The simple answer, as initially provided by Kalai [8] as an

asymmetric variant of Nash [12] problem, is as follows:
e X is the 15t actor’s share of $1, with o as the 1t actor’s
asymmetric power indicator, 0 <x <1, 0 <o <1;
e u(x) denotes the 1% actor’s payoffs of the 1%t actor’s $1 share x;

oy is the 2" actor’s share of $1, where 1—a is the 2" actor’s
asymmetric power indicator, 0 <y <1;

e g(y) denotes the 2" actor’s payoffs of the 2" actor’s $1 share y .

Based on the widely accepted nomenclature, we refer to s = <u(X), g(y)>

as to the utility or payoffs pair. Thus, the disagreement/threat point
d= <d1,d2> represents the payoffs the two actors obtain if they cannot

agree on how to share the wealth-pie. In the same vein, d = <d1,d2> = <0, 0>

represents the disagreement or breakdown point, whereby the players

collect nothing.

In the subsequent sections, we will provide an analytical solution
exploiting payoffs in the form <u(§),g(§)> and taxes in the form 71(§)
within the scope of negotiations [&1,§2] comprising the endpoints of the
interval [5152] According to the analytical solution, implicitly hiding the
variables X,y , it follows that any negotiation of shares (X,y) can be

perceived as two sides of the same bargain’s portfolio, as the shares (x,y)

are accompanied by poverty lines &€ [&,,&,]. While hiding the variables

X,y, X+y=1, we may respond to the question of whether solution
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S [&1,§2] is efficient in a traditional sense. Indeed, akin to the above,
political bargaining can now be expressed by poverty line £" maximizing

the product of political payoffs above the threat point

d= <d1 =u(§).d, = g(iz)> :
g =argmax.|. . | (& 0)=(u©)~d,)" (g&)-d,)™".

On the other hand, unlike the traditional threat point d =(d,,d,), the

public/vital goods amount d, in the game—the d, component of the point

d —might be negative. This will apply in our experiment of a breakdown
of negotiations, whereby funds need to be borrowed or acquired through
other means in order to balance the books and account for the welfare
expenses—a situation of "genuine negative taxes." It is important to note
that, while this may seem counterintuitive to some readers, in the theory

of public finance, the use of genuine negative taxes is not prohibited.

Finally, we conclude that, all these remarks notwithstanding, it is
irrelevant whether the players are bargaining on shares (X, y) or trying to

agree on the poverty line level. This assertion highlights the main
advantage of hiding the variables X,y . In particular, it brings about a
number of different patterns of outcome interpretations in the game, such
as linking an outcome to the lowest tax rate, which is the most desirable
sacrifice of voters’” majority. In consideration of alternative approaches—
which describe outcomes of collective bargaining in the form of voting, or
partaking in any voting scheme in the form of bargaining—the scope of
negotiations [&UEJZ] brings the voting and bargaining schemes into the
same context, as both can be enriched by adopting this approach. Our
insight is forward-looking in the sense that it aims to identify an

alternative-offers game solution, whereby both actors accept at once the
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proposals (moves) made by the other side. Our initiative could also serve
to unify the theoretical structure of economic analysis of productivity
problem. Indeed, when referring to Leibenstein work [44], Altman in [45]

noticed:

Leibenstein (1979, 493) argued that there are two components to the
productivity problem: one relates to the determination of the size of the
pie, while the second relates to the division of the pie. Looked upon
independently, all agents can jointly gain by increasing the pie
size..."the situation need not be a zero-sum game. Tactics that
determine pie division can affect the size of the pie. It is this latter
possibility that is especially significant.

3.3. Pre-equity of political breakdown

Beyond the asymmetric dynamics, the game inherits a premature
disagreement or breakdown point, similar to that discussed by Osborn
and Rubinstein [13]:

We can interpret a breakdown as the result of the intervention of a
third party, who exploits the mutual gains. A breakdown can be
interpreted also as the event that a threat made by one of the parties to
halt the negotiations is actually realized. This possibility is especially
relevant when a bargainer is a team (e.g. government), the leaders of
which may find themselves unavoidably trapped by their own threats.

In our game, the asymmetric solution incorporates the left- and right-

wing political power indicators (o,1— o) into a breakdown policy. In
order to be addressed properly, the indicators cannot be given

exogenously. To overcome this obstacle, we introduce a policy of
endogenously extracted breakdown d = <d1,d2> into the game, based on a

condition referred to as the pre-equity of political breakdown.
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Traditionally, in the alternating-offers game, the breakdown
corresponds to two standard pairs of payoffs {<1,0>,<0,1>}, or in the words

of Osborn and Rubinstein [13], "to the worst outcome.” In the left- and right-
political bargaining, due to the implicit pressure from the voters, as both
politicians aim to find—at least from their perspective—a just and fair
solution, there will always be a temptation for binary voters to defect to
the other side. This puts the negotiations at risk 0 < q <<1 of a premature
collapse. Even under the worst circumstances, in the event of collapse, the
quality and the size of the wealth-pie should be equal for both politicians.
This premise holds in these unfavorable circumstances as the entire pie
will be decided upon by one of the politicians. Thus, when the premature
collapse occurs, it is important to arrange the terms of contract in such a
way that neither politician can exploit or misuse these adverse
circumstances to his/her own advantage. To meet this condition, when
normalizing the standard breakdown under the description valid for the
alternating-offers game I'(q), we are working toward an endogenous

form for equity in accordance with political non-conforming expectations.

As stated, the standard case of breakdown in the alternating-offers
game corresponds to two pairs {<1,0>,<0,1>} of payoffs. In this form, the

breakdown is generally found using ex-ante linear transformation, namely
the exogenous normalization of utilities. When the collapse is imminent,
the political breakdown exposes equity condition pertaining to the actual
event of breakdown. Unlike the standard case, once the most unfavorable
result occurs, the resulting collapse must include additional parameters—
the tax t and the wealth W . In order to equalize—endogenously
normalize—the breakdown, the politicians involved in negotiations can
make a priori arrangements, or sign binding agreements upon these two
parameters, i.e. T and W . Without availability or warranty of such a pre-
equity, an endogenous normalization is unrealistic. In the view of the
voters’ electoral maneuvering (discussed in the next subsection), even if
the pre-equity normalization is not always achievable, it is more constructive
to determine the breakdown according to some rational context.
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Before proceeding further with a detailed assessment of the
aforementioned definition, we recall the concept of wealth amount W,
redistributed by the state as the average taxable income per capita,
scholarly defined as "prosperity or a commodity." Next, according to the
conditions characterizing the collapsed environment, at the start of the
negotiations, the draft of a contract includes both taxes t and—in line
with our nomenclature—the wealth amount W . The product t(§)- W(§)
identifies the size z of the wealth-pie within an interval [&,,&,] within the
scope of negotiations, thus establishing the boundary for the two
politicians. The lower limit &, denotes the initial proposal, which is the
most attractive for RWP, while being the most unattractive for LWP. In the
same but inverse order u, = u(g,) can be paired with g, = g(§,). Having
set these limits, we can proceed with examining how the breakdown
{<u1, g1>,<u2,g2>} might be conditionally, albeit endogenously, encoded
into the game.

Indeed, we now contribute to implementing our wealth definition of
how the breakdown can be established endogenously. To do so, we
consider a situation driving the welfare policy in the context of cost-
benefit equity. When the collapse of negotiations is imminent, the
differences in the amounts of wealth and taxes for funding low-cost
welfare policy &, against an expensive policy &,, &, <&, —ie. funding
payoffs <u1,g1> for &, against <u2,g2> for §,, u,<u,, g >g, —can
amplify misunderstandings and contribute to traps. At the endpoints of
the scope [51,52], the wealth-pie sizes z(§,) and z(&,) at poverty lines &,
and &, can require the delivery of wealth amounts W(E,) and W(§,),
albeit at different prices, represented as taxes t©(&,) and 1(&,), Buchanan
[46]. Hence, prior to the start of the game, and in line with the cost-benefit
equity, in the most adverse circumstances, the payoffs s, = <u1,g1> and
S, =<u2, g2> should preserve equal prices t for the delivery of equal
amounts W of wealth. Such a market-driven interpretation of commodities
delivery to the end destinations relies heavily on the size of the wealth-pie,
which is equal to - W . It should be noted that this interpretation is only
relevant to the case of flat (proportional) taxes.
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To explicate the interpretation of reasoning in previous lines, it is worth
examining the "well defined bargaining problem," depicted as the contract
curve in Figure 4. Based on the discussion presented thus far, our goal is
to set an interval [§1,<§2] solving two non-linear equations, t(&,) =1(&,)

and W(E,) = W(E,), by attempting to find a cross-point (r*,W*) where
the curve crosses its own contour, as YX-axis coordinates, on the plane
with (1, W), which is equivalent to the roots & and &,. Although the

calculus of the point (r*,W*) does not extend beyond high school
mathematics, it does not confirm the possibility of normalization in
general. This, however, does not invalidate our discussion, as we do not
claim that the equity condition can be achieved in all circumstances. It
should still be pointed out that, in a number of examples where the
validity of the condition was detected, we found a breakdown
endogenously encoded into the game, indicating normalization in the
form of

(g ) (usg) )= {uE.e@)) (u(e).aE))).

The Swing of the Contract Curve within [&1 , };2]
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Figure 4. The graph depicts two different motions for a
vote. For the higher tax t=29.1% , marked by the
horizontal line, and the lowest tax T =26.52%, marked by
the vertical dash. Indicated by —, at cross-points of the
contract curve with the horizontal line, we observe
controversial expectations of voters. The shares of lower
basic but higher public goods are shown on the left, while
this payoff reverses towards the right side of the graph, as
the shares of basic goods increase while those of public
goods decrease. Thus, the higher tax t=29.1% cannot lead
to a political consent, in line with Observation 5.

In line with the above, as the aim is to bring the politicians, if possible,
into just and equal positions prior to negotiations, equalizing taxes T and
wealth amounts W in the collapsed environments &, and &, might be a

rational starting point. Under this premise, endogenously encoded into
the game, we label the equity condition, [r(@) =1(§,),W(E,) = W(Q)] as
a pre-equity of political breakdown. If valid, this condition equalizes fiscally
realistic and just demands for public spending prior to negotiations—in
particular, the size of the wealth-pie z(§,) = z(§,).

3.4. Voting and political power design, to be continued in Section 6

Only the voting results can reveal the true incentives of people that will
give the democracy its final judgment. The voting process is the only
avenue for the voters to assume the roles of current or upcoming
politicians to whom the opportunity will be granted in line with
population’s aspirations to redesign the rules and norms of wealth
redistribution. Voters’ inequalities, life plans, background, social class and
experience, native endowments, political capital, efc., determine the
bulletin collected at the voting table. Consequently, incongruence in
voters’ views or interpretations of reality affects the individual choices and
thus the voting results, thereby influencing political pre-election
campaign. Voting results are not fully predictable due to the deviations in
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voters” views and opinions on how the wealth redistribution ought to be
achieved. The problem stems from the fact that welfare policy proposals
that benefit minority of citizens sometimes require higher taxes. On the
other hand, majority of voters would be primarily guided by selfish
attitudes toward lower taxes, which would implicitly affect the political
bargaining positions. Such an attitude likely deserves a critical
examination. Given these arguments, our question is—Why should the
left- and right-wing politicians care about lower taxes?

It is timely to recall political outmaneuvering with an implicit risk q,
0 <q<<1, upon negotiations suffering a premature collapse. Indeed,
Figure 5 depicts the contract curve of efficient public policies/proposals &
upon poverty lines in the bargaining game I'(q). Politically rational and
economically effective proposals & , forming the curve, have been
projected onto the two-dimensional space of the tax rate t©(§) and taxable
income —the wealth amount W(&). Although the payoffs <u(§),g(§)> are

embedded in each point, they are not visible on the graph. These
invisible/hidden payoffs in the upper part of the graph symbolize wealth-
pie division (x,y) into lower basic x(£), yet higher of public goods shares
y(§), as left-wing politicians aim for u(&), whereas those in the right-
wing political party aspire towards g(§) accordingly. Similarly, the
payoffs in the lower part symbolize a reverse situation—the higher basic,
vs. lower public goods, as shown in Figure 4. Thus, once all views are
represented, the political payoffs <u(§),g(§)> for pledged tax hikes t(&)

are more favorable for some coalitions of voters compared to others. As
voters’ preferences for the balance between basic and public goods vary,
the approach to determining efficient poverty line resulting from eventual
agreement between politicians is two-fold. Indeed, unless the tax hikes are
excessively high, the upper coalitions’ representatives will always try to
outmaneuver the lower coalitions” representatives. The politicians are aware
of this dynamic when taxes are high. As they feel trapped in negotiations,
binary voters become more likely to defect to the other side, putting the
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negotiations at risk q > 0 of a premature collapse. In contrast, when taxes
are sufficiently low, the range of eventual voters’ electoral maneuvering
will substantially reduce or even vanish. The lowest tax is likely the one
that yields desirable outcomes for the majority of citizens.

In line of reasoning that concerns the majority of citizens, it is
appropriate to address of the design of the political power indicators
(Oc, 1- OL). Considering the bargaining outmaneuvering of left- and right-
wing politicians according to the alternate-offers game I'(q), we state that
the politicians on the opposite sides of the bargaining table might disagree
with respect to the terms of outcomes. Consequently, they would delay
the decision while consolidating a draft of a consensus document. This
document might not necessarily yield the best outcome for the citizens,
who represent the majority, and are of view that the policy that minimizes
taxes is always the most desirable choice. Despite knowing that the
majority will never endorse higher taxes, the minimum tax rate might not
necessarily be a desirable outcome from the political perspective. Thus,
politicians may choose to disregard the majority interests because political
power of LWP or RWP, as rational actors/politicians, might be strong
enough to negotiate selfish decisions that are beneficial only for them. In
order to entice politicians not to act selfishly, as this would likely result in
ultimate collapse in the negotiation process, their political power
indicators (oc, 1- OL) ought to represent a natural power consensus
motivating them to choose a desirable outcome for themselves and for the
majority of citizens—a platform that should ideally be designed in
advance. This completed our preliminary investigation of the problem.

4. ANALYSIS OF FISCALLY SAFE WELFARE POLICIES,
continued from Section 3.1

Delivery of basic goods, which counteracts negative contingency, if it
occurs, is the main political responsibility of the left-wing actors.
Herewith, the left-wing political intervention is of the greatest political
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importance. It is universal in the sense that it pertains to all citizens,
irrespective of individual situation before or after the contingency. Under
this premise, basic goods that are available to citizens are of sufficiently
high quality and poverty is not allowed, as stressed by Greve [47]. This
course provides a relatively high level of welfare spending and taxes,
creating misbalance in the books accounting for public finances, thereby
introducing volatility conditions into the wealth-pie delivery. Hence,
secured largely independently of market forces, the high level of basic
goods might have a conflict-driven effect on the welfare policy, which
should not be borne solely by citizens as, as already noted, the state has a
duty to help the disadvantaged.

Assuming that the conflict-driven welfare policy guides our political
actors in trying to reach an agreement, the left-wing politicians should aim
to secure an efficient size of the wealth-pie. Thus, LWP prescribe the size
of the pie and propose the division method, which the right-wing
politicians accept or reject. If rejected, the RWP would suggest their
preferred division, while only having the authority to recommend a size
that the LWP might not be obligated to accept. We also assumed that,
upon delivery to its end destinations, the wealth-pie remains fiscally safe,
i.e. it does not change its size. Under the rules of the alternating-offers
procedure (see later), the game will continue until a consensus is reached.
This process presupposes that left-wing politicians are committed to the
share of the pie, while not being committed to the size.

Let us now envisage a contrasting scenario, whereby the public
spending increases. Hence, both actors know that, upon delivery, the size
of the wealth-pie might change. This, in turn, leads to a misbalance
between the relief payments, which can put the pie size in doubt or make
it even more difficult to ascertain. As a result, the difficulty related to
political pledges might force both sides to retreat. In such volatile
conditions, the wealth-pie is no longer fiscally safe and might affect the
expectations of both politicians. Consequently, a fiscally safe plan in spite
volatile conditions for the delivery and division of the wealth-pie is
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needed. Otherwise, unless welfare policy fails to enforce fiscal safety, the
rules and norms of the relief payments are not living up to their claims. In
other words, having a criterion for determining whether a welfare policy
is fiscally safe is necessary.

It is helpful to focus first on welfare policy without any warranty of
fiscal safety. It could, for example, be determined by the poverty line &,
identifying the recipients of wealth redistribution. When & is low, the
variable o, 0 <6 <&, allocates the income of the needy or the benefit
claimants. In this scenario, the benefit claimant ¢ < § claims and receives
a relief payment proportional to &—c , ie. r-(§—c), as previously
discussed. In this scenario, all other citizens—both the wealthy and those
with marginal income, denoted as ¢ > & and o =&, respectively —receive

no relief payment.

Next, we study a specific scheme highlighting the readiness of the
society to fund welfare and public spending. For this analysis, we assume
that the average cost B of the relief payments and the average taxable
income W both depend on the poverty line parameter £, B=B(§),
W = W(§) —this is realistic, as shown in Appendix Al. As previously
scholarly defined, W(§) can refer to the wealth amount. Based on our
perception of income ¢ density P(c,&) distribution samples, the product
T- W(E) estimates the average tax revenue. Let the average cost of public
goods be g(&), whereas the size z(&) of the wealth-pie equals - W(E),
z(§) =1- W(E). We assume that welfare and public spending reached the
intended  recipients, = whereby the total spending equals
T-W(E)=B(&)+g(§). This suggests that the basic and non-basic goods
have been delivered to their final destinations. In other words, the wealth
collected through tax channels is spent.

Now, let us assume that politicians in the game preferred to commit to
the shares fixing (x,y) , and might agree to hold the balance
B()=x-1-W(§) of the books accounting for financing the relief
payments B. That is, the left-wing politicians must be ready to finance the
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relief, i.e. to deliver B(§) by dividing the wealth-pie 1- W(§) . In this
scenario, the politicians pledge to retain the balance B(§) =x-t- W(§) of
the relief payments between credits B() and debts x-t-W(§) as a
portion x of the wealth-pie t-W(E) . The balance also specifies the
welfare policy & —an implementation of the poverty line &, welfare
reform, pact, program, etc. While the aforementioned balance is initially
valid, it might not be in the future, putting the adjustment in & on the
agenda either once or repeatedly. Thus, the policy & might represent a
problem of fiscal imbalance. Almost all citizens, even if for different
reasons, will prefer the opposite in the long run—a fiscally safe policy &.
For this reason, we now shift the focus on examining a constraint that
corresponds to fiscal safety of welfare policy &, identifying—what we
called above as idempotent—the safe delivery of the wealth-pie to its end
destinations.

Idempotent rules and norms of wealth redistribution

The delivery of basic and public (non-basic) goods does not necessarily
safeguard the funding of the expenses. As the expenses neither match nor
prevent taxation hikes, the size of the wealth-pie could vary too rapidly.
This leads, as previously discussed, to numerous adjustments of welfare
policy rules and norms. To mitigate this issue, we have to examine at the
sequence .,&',&",. of multiple adjustments of the poverty line & . This
highlights the fact that, on delivery, no adjustments of the wealth-pie are
desirable. Consequently, it is better to keep the size of the pie unchanged,
i.e. fiscally safe. In other words, when replacing the old policy & with &",
the two must coincide. Similar schemes, known as idempotent, stem from
bounded rationality mechanisms [21,38] . This premise suggests that, even
if welfare policy rules and norms are subject to multiple adjustments,
these adjustments should not change the machinery of relief payments. In
particular, when implemented twice, the rules must produce the same
outcome. To guarantee the fiscal safety of the poverty line, such an
understanding requires that the poverty lines must coincide amid a
sequence of pairs (£',£") at some matching policy (&'=&").
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The need to balance the books accounting for the delivery of relief
payments B(§) =x-1- W(), in spite the wealth-pie volatility, can also be
seen as immunity for financing the welfare policy. In particular, the
immunity restricts, or at least realistically limits the h-effect of wealth
redistribution. Given the immune, i.e. fiscally idempotent, composition
[B(&),W(&)], the idempotent scheme is equivalent to implementing the
policy & only once. For this reason, we assume that the rules and norms of
the relief payments have been socially planned and redesigned
accordingly.

In this idempotent mode that outlines the fiscal safety of public
spending, the rules and norms must reflect idempotent policy & that
brings the spending policy into focus. We conclude that the expenses
x-T- W(E) designated for welfare spending must be in balance not only
for funding relief payments B(§), when the particular policy & takes
effect, but the policy £ must also enforce the fiscal safety in the full

spectrum of current and future events.

Clearly, the balance B(§) =x-1- W(E) is a static relationship leading to
B(¢)

X -

functional dependency 1= that links the arguments & and x.

Hereby, the tax rate t becomes a function of & and X, expressed as
T=1(&,X). According to rules and norms in force of relief payments, the
post-tax residue n(g,1) = (1 — ’C) . (&. — (|))+ ¢ of the marginal citizens’ 6 =¢&
comprises fiscal limitations of wealth redistribution, while ¢ determines
the personal allowance parameter, as shown above. The dependency
T=1(§,Xx) transforms mw(E,t) into a fiscally realistic social position
(&, (&, X)) . Irrespective of the current expenditure on basic goods, the
real cost of living does not necessarily match n(&, ©(€, x)). Hence, ensuring
realistic and fiscally idempotent rules and norms, and/or, in particular,
attempting to avoid the h-effect of this mismatch or adopt rules to keep

the effect tolerable at the least, an equation for a fiscally idempotent policy
€ should be solved.
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Observation 1. Constraint on left-wing political aims u = n(&,1(E, X)) is

necessary for upholding idempotent fiscal rules and norms of imposed budget
constraint B(§) =x-1- W(§).

According to this observation, whatever tax increase is implemented,
the poverty line residue u of the marginal citizens’ ¢ =& is unfeasibly

high and cannot be attained when the condition has been violated.

Corollary. When u = n(§, 1(&, X)) solves for &, the subsequent adjustments
&, &",... are unnecessary. An option to change their welfare positions is
irrational for citizens with incomes ¢ <& or ¢ >&; thus, the root & restricts

(realistically limits) the h-effect. All pertinent proofs are given in Appendix
A3.

The fiscally idempotent policies & induce the basis for solutions in our
game as fiscally idempotent compositions [B(&),W(£)]. A reasonable
question thus emerges: Which taxable income W(&) characterizes fiscally
idempotent welfare policies & for the delivery of relief payments B(E) ? The
answer is provided in the form of the following three constraints: !

Delivery constraint by which the
wealth-pie is spent—the basic and
public goods have been delivered.
This form of constraint makes sense T-W(E)=B(E)+g (1)
only for proportional or flat taxes.
Flat taxes will later substantially
simplify the method of function
minimization with constraints.

Budget constraint imposed on relief
payments finance in accordance
with the share X of the wealth-
pie—the tax-revenue. The left-wing B(E)) =X- ‘CW(E_,) (2)
politicians pledge to credit/debit the
account B(&) that must be equal to

the average of relief shifted by the
policy &.

' Below, we continue to refer to the average taxable income as “wealth.”
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Stability constraint that determines
fiscally idempotent property of (2).
In contrast to (G , T) S SRZ , we
distinguish poverty line residues u= (1 - T)' (i N (I)) +0 ©)
u=m(§,T) as one-dimensional

curves 1(E,7) € R < R°.

B
Taking the expression t(&,X) Eﬁ out of the constraint (2) and
x-W(S)
laci BE) . B h .
replacing W) into u = (g, (&, x)), the constraint given in (3) can be
X .

resolved with a fiscally idempotent policy for &, thus yielding:

L(& x,u)=(§-¢) B(&)—x-(§—u)- W(&) =0.

Referred to as the volatility constraint, the constraint (4) determines the
fiscal safety module. It holds down the h-effect amalgamating the
constraints (2) and (3) by balancing the books accounting for relief
payments.

Summary. The outcome ¢,§ = z,x,oc,r,<u, g> constitutes the citizens’

bargaining shield for wealth redistribution that relates to a bundle of
arguments or constants: ¢0,& are controls, and z,x,0,T are status

variables, 2 while <u, g> are the competing political proposals:

¢ - the personal allowance establishing the tax bracket [d),oo) ;
it is an ex-ante control (tuning) variable, 0 < ¢ = const < &;

§ - the income frame, the poverty line; a policy determining
who is living in poverty, as well as the choice or the control
parameter;

z - thesize z=1-W(§) of the wealth-pie; the amount of wealth-pie
that is equal to public spending per capita when taxes are
proportional;

* Status and control variables are the prerogatives of control theory.
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X — the share of the wealth-pie of size z; a portion X of z to be
deposited
in favor of the left-wing politicians for funding the relief
payments, 0 < x <1;

— the political power of the left-wing politicians, 0 < o <1;

T - the marginal tax rate, the rate t(&, x) of the wealth amount W(&)
determined by (1);

u - the after-tax residue of the income frame equal to the poverty line
&, the wants function u(g,x) of the left-wing politicians, as
determined by (2) and (3);

g - the objective function g(&,x) of the right-wing politicians,
determined by (1) and (2); the account for the refund of public
goods expenses per capita.

The share x and the marginal tax rate T, due to the constraints 1
through 3, become functions of arguments &,g : x=x(§,g) and
T=1(,Xx(&,g)). This form of dependence appears next in the module of
alternating-offers bargaining game.

5. ANALYSIS OF THE WELFARE STATE BARGAINING RULES AND NORMS,
continued from Section 3.2

Suppose that politicians, in pursuit of their commitments to a fair
division of the wealth-pie, agreed to play the alternating-offers bargaining
game I'(q) [13]. In doing so, rational politicians are motivated to align the
procedure to participate in any eventual agreement. The risk q >0 of a
premature collapse during negotiations, especially early in the game,
might be the driving force behind their commitment to reach the
consensus. Once a consensus on division is reached, they must agree on
who will determine the size of the pie. Politicians negotiate on such
matters when there are equal and symmetric preconditions in place that
guarantee their equal rights. Thus, both will play an equal role in the
decision regarding the pie size. Considering the right-wing vital political
objective of wealth redistribution, it will be realistic to reduce the scope of
RWP’s duties concerning welfare matters, while allowing them to retain
their advisory rights. Our subsequent discussions are based on this
premise.

138



© Joseph E. Mullat
5.1. Left- and right-wing politicians’ bargaining procedure

Previously, we emphasized that, in a representative democracy, the
division of the wealth-pie will always be subject to controversy. Recall that
we consider two politicians —one acting in the role of LWP, who is aiming
to provide basic goods to all citizens, and the other, representing RWP,
advocating for availability of non-basic goods. A precondition for the
bilateral agreement is that the expectations of these two politicians depend
solely on efficient policies of the LWP within the framework aimed at
setting the poverty line &. However, politicians are more concerned with
shares (x,y) than they are with the size of the wealth-pie. As a
consequence of this independence, efficient poverty line & provides
shares related to efficient divisions (X°,y°). Accepting this precondition,
the RWP will only propose an efficient line &°, as failure to do so would
result in all other shares being rejected with certainty by LWP.
Nonetheless, it is realistic that the RWP would —by negligence, mistake or
some other reason—recommend an inefficient poverty line &', which the
LWP would mistakenly accept. It is also possible that, in a reverse
scenario, the LWP would choose to disregard an efficient recommendation
¢". This would be an irrational choice as, in any agreement, regardless of
the underlying motives, both politicians are committed by proposals to
shares (x,y). Indeed, within the scope of negotiations [£,,&,], the
recommendation &’ concurs with RWP’s efficient share proposal y’.
Consequently, accepting 1—y”, while shifting LWP’s & mistakenly to
§'#&", at which both politicians must be committed to (X°,y°), the shift
&' becomes inefficient and thus superfluous. Hence, making a proposal,
the RWP’s recommendation on poverty lines makes a rational argument
that the LWP must accept or reject in a standard way. Such an account, in
our view, explains that the outcome of the bargaining game might be a
desirable poverty line & [@1 ,@2]. Hereby, the interval is referred to as the

scope [€,,&,] of negotiations or bids proposals that are now, by default,
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linking efficient lines & with shares (X°, y°) . The bargaining occurs
exclusively in the interval [£,,&,] as a scope for efficient lines & of most
trusted policy platforms for negotiations, where both players would either
accept or reject the proposals. Political competition, depending on [221, ﬁ2],
arranges a contract curve 8, (shown in Figure 4 and Figure 5) as a way to
assemble the bargain portfolio. Given that the portfolio "has changed its
color from shares to lines," the politicians can now conceive themselves as
making poverty line proposals. If a proposal is rejected, the roles of
politicians change and a new proposal is submitted. The game continues
in the traditional way by alternating offers.

The Contract Curve Projection within [?;1 , &, ]

89.3, ; . . r
L 3 9= 144 .54 Left-Wing Wants: Lower
E o public (non-basic) goods |
F B K but higher basic goods '
T
= 89.26
w L sex V52 8
I
= 249
1(\;1 g(&,) u(g,) = 6.44
.39.5 . . L J
P nght-ng Objectives: g(&,)=47.17 |
Lower basic goods but 1

A . .
Y i higher non-basic goods 1
o - >\ §=80
F
F
S 6‘4 ] | ] ]

-2.35 7.4 17.8 27.3 37.2 47.2

Figure 5. The aspirations of left-wing politicians expressed when
opposing the right-wing political objectives are depicted on the
vertical and horizontal axes, respectively. The graph shows the
contract curve sloping from &, toward §,, projected on the surface of
basic goods vs. vital goods—the projection of efficient poverty lines
¢ e[¢,,&,] resolving the contract constraint (5).
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5.2. Alternating-offers bargaining game analysis

We now proceed to a more accurate analysis of the game rules.
Although the rules can be perceived as fiscally idempotent, the game itself
contains a new challenge. The elevated poverty line & does not necessarily
increase the marginal citizens’ ¢ =& after-tax residue u(§,x). The low-
income citizens—the benefit recipients—can claim relief payments,
whereby an increased number of claims might have a reverse effect on
u(§,x) , which would consequently decline. Indeed, in contrast to

increasing poverty line & and despite the required unavoidable increase

in taxes—as the hazard (h-effect) is still present—in this scenario, the
residue u(§,x) will decrease. With the proviso that the left-wing
politicians commit to the share x, the right-wing politicians are left with
y =1-x. Thus, the fiscally idempotent poverty line tax residues u(,x)
correspond to a narrower set than 0 <x <1, 0 <y <1—the set of shares
<X,y> of what we refer to as a contract curve 8, of payoffs

<(u(§, x), g(&, y)> with poverty line £ as a parameter. °

Assuming that the maximum of a single N-peaked residue function
u(&,x) can be reached, the peak position & =arg max, u(§,x") indicates
an efficient welfare policy. Although the bargain portfolio of left-wing
politicians contains an efficient policy &” as a function of x°, the portfolio
also includes the share x = x". The maximum value given by u=1u’, in the
inverse situation, which corresponds to u’, consolidates an efficient policy
g e [Eﬂ,éz] . A unique share x° , which solves u(&’,x)=u’ and
corresponds to g(&°,y")=g’, represents the non-conforming expectations
of politicians. We can thus refer to the shares (X°,y°) as an efficient
division linked to the policy &°. This scenario is depicted in Figure 4 on

wealth amount W and taxes t —efficient peaks §°, which correspond to

’ We already highlighted the worsening quality of welfare services for all citizens when

the LI level is “climbing” high.
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efficient shares (x°,y°), and in Figure 5 in various projections on payoffs

<u°,g°> geometry. This geometry highlights the maximum values u” can

take—namely, efficient policies of left-wing politicians at peaks &’ that
refer to the well-known result obtained by Canto et al. [48], also known as
the Laffer curve:

The marginal tax-revenue raised decreases with increase in tax rates, finally
reaching some point where the marginal tax-revenue raised is zero. Beyond this
point, any tax rate increases will reduce revenue collection.

Our result pertaining to the single-peaked aspirations of the left-wing
politicians is similar. First, "poverty line residue u being proposed in the
normal range of poverty line parameter &." Next,

...by passing through the top point of u as a function, the proposals u will be
assessed and reviewed in the range of prohibited values of &.

We previously introduced an idempotent composition [B(&), W(&)] —
the average B(E) of the relief payments, and the average W() of the
taxable income, denoted as the wealth. The expectations of the two
politicians, reflecting their preferred rules and norms pertaining to relief
payments, can now be set using the composition [B(£), W(&)]. At the end
of the subsection, the composition will lead to an appropriately settled
bargaining problem that will associate the threat originating from the
implicit partaker—in the form of the electoral maneuvering of voters—
with an implicit risk of the negotiations collapsing prematurely. This
requires augmenting the standard rules of the game we have already
presented with two further rigorous suppositions. Let us first specify the
payoffs.

Political payoffs of the 1¢t/2nd actor and the third partaker’s implicit risk
factor are defined as follows:

Politician No. 1, u - the left-wing political aspirations, the marginal
citizens” ¢ = £ after-tax residue, basic
necessities of the needy, cost of living;

142



© Joseph E. Mullat

Politician No.2, g - the right-wing political objective, expenses that
benefit all citizens —expenses upon vital goods
alone, without relief payments;

Third Partaker, q,t — voters’ electoral maneuvering facing higher
taxes T expressing an implicit risk 0 < q << 1 of
the negotiations collapsing prematurely.

As promised, we now assume that the rules and norms of the wealth
redistribution that are efficient with respect to the wealth-pie division
include the volatility constraint (4), which certifies the idempotent
composition [B(§), W(&)] for the policy &. In the game, the composition
[B(&),W(&)] could not be implemented without the volatility constraint
L(E,x,u)=0 (Observation1). This assumption is contingent on the

conclusions of the previously undertaken analysis.

When varying & under their own rules and norms, let us assume that
LWP propose a fiscally idempotent policy &=¢&", which—for each share
x =x" they commit to—links X to &’, irrespective of who originates the
proposals X or y’. This ensures the efficient proposal of poverty line
residue u(§’,x")=max, u(§,x"). Clearly, inefficient recommendation &',
proposed by the RWP if £'# &’ for share y°, will be rejected by the LWP.
As a result, an efficient policy & =& must occur on contract curve amid
efficient shares x° at <u° =u(&’,x’), g’ = g(<§°,x°)> as an ongoing
precondition for the agreement—as previously discussed. Indeed, LWP
have no reason to reject efficient recommendation &°, as doing so, when
g'#&°, they cannot ultimately maintain the efficient commitment to x°.

Below, we assume the efficiency by default when it is convenient.

Observation 2.  Idempotent  policies & at the contract curve
S, :<u(§,x),g(§,x)>, which certifies the composition [B(i),W(i)], must

satisfy the constraint
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D(c:,x,u>=8%L<a,x,u>—8—é[(a 8)-B(E)—x- (5~ u)- W(&)]=0.

Particularly, when we collated sub-expressions and introduced some

simplifications upon

L&, x,u) = 0 — Volatility(4) on rules and norms of the

Q,1,2)=0 — Delivery(1) } enforcing constraints
D(&,x,u) =0  — Contract curve(5)

wealth redistribution.

These constraints, with the proviso of flat taxes, together with the
previously detailed preliminary settings 1. >0, t{ >0, u{ <0, u; >0,

u, <0, u; >0, u, >0, g.>0, gl >0, gz;tO, lead to an analytical

solution:

©
V(&) =1+(5-0) (B@ W@j r@:%@.

B(&) W(©)

g(&) = WE) B(&); the size of wealth-pie z(&) =B(&) + g(&) = m

V(&) V(&)
Now it is evident that payoffs <u,g> at the contract curve 8, depend
exclusively on policies &, <u(§),g(€_,)> € 8,. We conclude that politicians

are only concerned with making proposals that pertain to efficient policies
g, since effective shares (x,y) have been linked to &. Contract curve
8, =u(g) in Figure 4 illustrates the payoffs. The functions g(&) and u(§)
in the form presented above are, in fact, not a subject to any constraints.
They are mathematically derived in Appendix A4.

* = rates W(a) <0, W(%)ZO of the changes in the wealth amounts W(§) are
essential for the analysis, whereas the function B(&) is valid only when B(i) >0,
and 0<p<u<§.
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Before proceeding with further line of analysis, let us recall the threat
phenomenon created by voters that increases the implicit risk of the
negotiations collapsing prematurely. As noted previously, if politicians
reject their counterpart’s proposal —knowing that it is risky to continue
the bargain—they will likely consolidate a draft. This introduces the risk
that the voters will reject the draft when politicians, without fulfilling the
voters’ terms, try to continue bargaining over costly and controversial
proposals, thereby putting the negotiations at a risk of collapse, as
previously discussed.

Suppose that politicians bargain over all fiscally idempotent policies
&c[&,,&,] within the scope of negotiations [&,&,]. We follow the

alternating-offers game I'(q) with an exogenous risk 0<q<<1 of a

premature collapse, as described previously [13]. We posit that, each time
the proposal & is rejected by one of the politicians, the momentary phase

of the game results in a draft, which can be opposed by the voters, as just
recalled. In these circumstances, the politicians might be uncertain on how
to proceed, if the voters’ terms are not met. As a result, they might choose
to leave the bargaining table prematurely. Extracted from the endpoints
€, <&, of contract curve S, , the outcome

(u, g, (uy,2,) = {uE), 2E)), (u(E,),g(E,))} naturalizes this risk q in

the worst-case scenario.

What is known as the well-defined bargaining problem, first introduced by
Roth [17], or the individual rationality associated with the Nash [12]
bargaining scheme <S ,d>, seems to be instructive for further analysis.

Indeed, inequalities g,>g, and u,<u, hold for the pair
d:<d1 =u,,d, = g2> . Synthesizing the unfavorable political outcome
{<u1, g1>,<u2, g2>} into a policy & on poverty introduced below will
naturalize the Nash disagreement point d into the problem <Sb,d> ,
8, cR’. Thus, compared to the traditional approach of compact convex

set & c R?, inequalities s > d are also true for any pair s € 8,. The pair
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<Sb,d> for the contract curve 8, becomes a well-defined bargaining

problem. Given that it is not immediately apparent whether the policy 6
is a fiscally idempotent outcome of the game, the following observation
removes any doubt.

Observation 3. To test whether the point d = <d1,d2> = <u1, g2> becomes a

fiscally idempotent outcome of the left- and right-wing political bargaining, it is

necessary and sufficient that there exists a policy & on poverty, which solves the

equation:
(6-9)-(B(8)+d,)—(8—-d,)-W(8)=0; The condition &¢[&,,&,] must
hold true. (6)

It should be noted that, in the worst-case scenario o, the wealth
redistributed equals W(8) —the average of expenses for funding the relief
payments equal B(8) —whereby the proposal & depends on the
endpoints of the bargaining interval [ &,&,]. This dependence, provided
that the Equation (6) can be solved for 8, serves as the basis for validation
of the pre-equity condition of breakdown, as discussed in Section 7.

Observation 4. In the alternating-offers game I'(q) with the risk 0 < q <<1
of negotiations collapsing prematurely into the disagreement point <d1,d2>, the

functions (w(€)—d,)* and (g(&)—d,)™ imply bargaining payoffs of left- and
right-wing politicians, respectively. Thus, (without proof) for variables A,,\,
solving ~ the  equations (1-q)-(u(r)-d,)" =(u(r,)—-d,)"  and
(1-q)-(g(ry)—d,) ™ =(g(A,)—d,)™ , the solution \ of the well-defined
bargaining problem <Sb, d> is close to the pair (A, Ay), A, SASA,.

As explained by Osborn and Rubinstein [13], the outcome in our
experiment of bargaining game I'(q) encapsulates the power indicators
((x,1—0c) of the left- and right-wing politicians. In the next section, we
consider the design of political power indicators (oc,1—oc) using the

solution A that minimizes the tax burden with respect to an appropriately
settled bargaining problem <Sb , d> .
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6. ANALYSIS OF VOTING AND POLITICAL POWER DESIGN,
continued from Section 3.4

Here, we will elaborate on power indicators (a,1—a) specifically,
referring to the original bargaining scenario of $1 division, based on the
previously discussed axiomatic approach— a signifies LWP’s political

power, and 1—a the political power of RWP, 0 <a <1. Considering
(x.y)=argmax ..., f(xy.00 = ((x)~d,)" (g(y) ~d,) ™

the following questions emerge: What type of $1 division will assist a
moderator designing the power indicator o of the 1st actor? What will
ensure that, during the negotiations, the 1% actor will obtain a desired or
any other share x° of $1? To answer these questions, let us assume that
the 274 actor might only accept or reject the 1t actor’s proposals. We can
thus start redesigning the power indicators ((x,1—a) by replacing
y=1-x, and taking the derivative of the resulting f(x,1-x,a) with
respect to the variable x by evaluating f! (x,1-x, ). Finally, suppose for
a moment that x° share of $1 is a desirable solution. Given x =Xx", the
equation f] (x°,1-x",a) =0 can be solved for a =a".

In general, one might find comfort in the following egalitarian
judgment:

To count on X" share of $1 is a realistic attitude toward the 1+ actor’s position
of negotiations. Indeed, even if the 2" actor might have a stronger negotiating
power than the 1 actor, " <1—a", the 1% actor, sooner rather than later,
might predict the 2 actor’s preferences and thus force a concession.
When, for example, the voters’ representatives attempt to redesign
political power indicators to (OL,1 - a), we assume that politicians will try
to share the wealth-pie in the manner in which $1 was divided above. In
doing so, we suppose that both politicians are ready to proceed with tax
concessions. Reflecting just illustrated axiomatic bargaining toward
allegedly desirable $1 share x°, we proceed with our discussion.
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In accordance with our analytical solution without constraints, the
contract curve 8, =u(g) corresponds to a curve <u(§), g(§)>. Moving

along the curve while taking into account the scope of negotiations [?;1 ., ],

the expectations (&) of voters’ majority lead to detection of t_, <« T(&):

MiN ] 5| 1O =

With the proviso that t©(£) is concave and sufficiently smooth, the
detection point of t_ is the root A of the equation t(§)=0 .

Consequently, akin to the egalitarian judgment given above, the root A
might help in redesigning of the rules and norms of the wealth
redistribution. This can be done by adjusting the o in a way that the
political power a of the left-wing politicians will be sufficient to persuade
the right-wing politicians to agree upon the poverty line residue u(2).

Indeed, in the left- and right- political bargaining, the old standard
(discussed above) of how to share the $1 can now be a new Standard
pertaining to how to plan the wealth redistribution rules and norms.
Under this premise, we can set f(§,a) = (u(E_,) —d1)OL (g(?;) —dz)m, where
o facilitates the political power of the LWP. Instead of X =X", planning
the rules, we suppose that £ = A is an allegedly desirable solution. Hence,
we first take the derivative of f(§,a), with respect to &, evaluating

f! (€, a), which allows us to solve the equation f; (&‘ es,0) =0 for a. Asa

result, the root a” will correspond to the redesigned political power of the
left-wing politicians. This is the result as it appears.

Summary. To control the left- and right-wing political agreement on
shares (X,y) of the wealth-pie, akin to the new Standard above, the

majority of citizens can accept or reject a premature agreement archived at
the a particular point during the negotiations, thereby voting for or
against the division. As previously noted, the majority will favor the
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policy A that minimizes the tax burden. This restriction allows us to
rebalance the welfare institutions or finance resources by appropriate
design of power indicators (OL,1 - oc) of the left- and right-wing politicians,
ensuring that the most favorable shares (X°,y°) of the wealth-pie would
incorporate the Nash axiomatic—the minimum tax—solution A into the
bargain portfolio as the most optimal outcome. This is our case study of tax
policy in which only a minority would object to a proposal that
corresponds to the tax rate minimum at the contract curve. In doing so, the
implicit pressure of citizens will be lower. To be implemented in favor of
majority, the minimum appears to be a desirable consensus.

Observation 5. Given that politicians can reach a preliminary agreement on
tax ratet = 1(§), condition A =argmin .. ., ©(&) is necessary to put forward

a poverty proposal A before voters by appropriately designing the power
indicators (a,1—a) in advance. At the contract curve 8, , the proposal A

outlines a unique outcome §,& = z,X,0a., t(k),<u(k), g(k)> €, .

7. DISCUSSION

The true essence of the economic reality behind the left- and right-wing
political bargaining could be revealed by determining whether it is true
that funding relief payments of the needy and maintaining the budget in
balance will be difficult to sustain when the tax burden for all citizens is
decreasing. On the surface, it seems that, at some point, fairness and
equity might no longer be the main requirement because of the "risks
becoming a Downton Abbey economy" [49]. Economists, including Kittel
and Obinger [50], have analyzed the poverty gap issue. In the face of these
controversies, it is not possible to estimate the extent of potential fallout
that might result from such outcomes of tax burden cut.

The citizens are those that should ultimately decide what needs to be
done in order to socially plan and redesign the wealth redistribution rules
and norms. Taking advantage of this opportunity, it is instructive to
perform an exercise related to the most appropriate choice of welfare
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policy, as shown in the “minimizing wealth-tax” column of Table 1. > We
illustrated that, despite minimizing the tax burden for all citizens, the
minimum is, in fact, fiscally safe, while also ensuring just and fair
redistribution of wealth for all citizens.

Due to the assumptions made during the analysis, the following
discussion perhaps offers some guidance on doing the exercise. Before
commenting on those, it is worth noting that the experiment presented
here should be understood as purely normative—namely, "what ought to
be" in economic or political matters, as opposed to "what is." Despite the
fact that, in the preceding analysis, no actual situation was presented, our
theoretical results rest on the assumptions delineated below.

First, our work is based on the premise that politicians would only
make promises that can be fulfilled —fiscally safe proposals. Fiscal safety,
when taken separately, even when attempted in accordance with the rules
and norms in force, could lead to unjust and unfair solutions. Taken at
will, fiscal safety might be a profoundly mistaken idea of justice. In
Table 1, we presented the percentage of citizens below the poverty line,
thus establishing the poverty rate. ¢ Driven at will, the official poverty rate,
in accordance with the “disagreement” column of Table 1, could cause the
poverty rate to decline below 0.41%, which wrongly appears to be the

most just and the fairest.

Second, we postulated that the wealth redistribution compensates for
the inequalities in the income of citizens that were below the poverty line.
Usually, similar parameters are in the national government competence.
While taking into account increases in the cost of living, the official

Table 1 was created by numerical simulation carried out upon imaginary distribution
of citizens’ incomes.

Poverty rate determines the percent of anyone who lives with income below the official poverty
line. The poverty line separates the rich (those with an income above the poverty line), from the
less fortunate (having income below the line).
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number of individuals living in poverty should be adjusted annually
according to government guidelines. Although our key assumption was
that the right-wing politicians inherited no more than an advisory
authority, the rules and norms that govern the poverty line determination
have been solely under the mandate of the left-wing politicians. This
decision was made because, in the analysis, we deliberately emphasized
the distinctions between stereotypical motivations of left- and right-wing
politicians. In our view, welfare protection that is most likely to be just as
fair should be addressed as an independent institute, or better yet, as an
assembly of independent institutes or legal charity foundations. We
believe that, in our experiment of organizational independence, welfare
protection could be expected to yield efficient welfare policies. Thus, in
determining an efficient policy on poverty, we concluded that left-wing
politicians should be in a privileged position that allows them to prescribe
the poverty line independently. Only when these guidelines of
independence are applied, the value judgment based upon the data
presented in Table 1 makes sense. Still, it should be noted that the
characterization of whether setting up such a privilege was a positive or
negative restriction requires further investigation.

Next, we focused on the political power indicators (a.,1-a), which
highlight the amount of resources, skills and competence of left- and right-
wing politicians. The fundamental factor in our analysis was the welfare
protection of the society as a whole to justify and maintain welfare duties
under the principle of how the state ought to act when attempting to fulfill
its welfare mission. When the decision made by the politicians is not in
line with the objectives of special interest groups, as previously pointed
out, welfare protection could be a recurrent theme in political debates and
election campaigns, and a source of significant political competition. A
controversy with respect to political interests might lead to violent upsets,
providing the opportunity to develop policy in favor of these groups.
According to the foregoing account, which requires considerable
administrative efforts and fiscally unrealistic expenses—and previous
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observations pertaining to the independence of the welfare services—we
believe that having sophisticated left-wing institutions is unnecessary.
Recognizing the vital role of the right-wing politicians, due to their central
position in deciding who will be purchasing and delivering public goods,
in the interpretation of the parameter o, we believed that it was beneficial
to impose a lower a to the left-wing politicians, with a corresponding
higher share 1—o assigned to the right-wing politicians, ie. a<1-a,
0<a <1. Thus, it was reasonable to assume that left-wing politicians,
with almost no extra effort, would demonstrate an ample degree of
readiness to make efficient decisions. Herewith, in planning and
regulating the size of the wealth-pie to suit a fiscally realistic welfare
policy to settle and assist the state welfare mission, we attempted to
redesign the balance of political powers between the left- and right-wing
politicians by adjusting the power indicators o and 1—a, imposed on the
on the left- and right-wing politicians, respectively. With the goal in our
view, to benefit all citizens in society, this enabled us to adjust the state
rules and norms of the wealth redistribution, aligning them closer to the
legal responsibilities and moral obligations of the citizens. We referred to
the process of adjusting the power indicators ((x,1 - OL) as a political power
design. Such a politically designed outcome, as we supposed, justified the
time and effort invested, even if the vision was a utopia.

The design of political power indicators (o,1—a) is a difficult and
extremely time-consuming process. Indeed, prolonged political efforts
might not be in the interest of anyone—citizens might not pursue such
endeavor, even if the balance of political power can be ultimately reached.
In particular, we supposed that electoral maneuvering of voters might put
prolonged political efforts at risk of a premature collapse. It was deemed
acceptable to assume presence of an implicit risk of voters defecting to the
other side, which could interrupt negotiations ahead of the schedule.
Thus, we brought the problem of likelihood of negotiations collapsing into

focus. In our experiment, the failure of negotiations was deemed

152



© Joseph E. Mullat

extremely undesirable for both politicians, as we hoped that this would be
an incentive to move toward a solution faster. Alternatively, the actors
would be more motivated to agree on terms of a contract, where both
sides approach each other by making considerable concessions. In the
view of receipt of relief payments, a policy of higher tax rates might be the
most favorable and just solution for minority. From the majority
perspective, however, the minimum tax rate is always preferable. For the
citizens who finance the relief payments, as we assumed in the analysis,
the minimum tax rate provides a more just and fair redistribution of
wealth. In our experiment, the minimum rate also provided an outcome A
in which the designed political power indicators (c,1— o) visualize the
society’s common denominator. Assuming, as we previously did, in
accordance with the rules of the game, that outcome A minimizing taxes
could be politically designed —it provides insight into what policy should

entail.

Table 1, presenting all four assumptions, suggests several proposals for
citizens to vote on. Note that, when voting for policy of equal left- and
right-wing political power, the policy 1=79.23 is less just and less fair
than the outcome A =45.50, where the minimum 26.52% of marginal tax
rate is reached. Thus, only the policy/outcome A on the poverty line
(Figure 4) can be the desirable political consent. Indeed, in the variety of
rules in the game the left- and right-wing politicians play, when engaged
in an interaction aimed at implementing equal/egalitarian policy 1, the
equal political power a = 0.5 of the LWP was stronger than 0.21.
Consumers’ goal, however, can still be achieved by applying the weaker
policy A =45.50 for the tax rate 26.52% < 28.21%, although the outcome of
the weakened political power indicator a. =0.21 is yet to be confirmed.
Through a reduction of citizens’ obligations—even with LWP’s weakened
political position—the LWP will be able to come to a desirable agreement
with the RWP, maintaining the most just and fair poverty line of wealth
for all citizens.

153



Political Power Design

In closing the discussion, we would like to point to a decision § that
corresponds to the political breakdown of negotiations. Utopian society,
planned according to the event of a breakdown, as shown in Table 1,
seemingly ignores welfare protection because practically all citizens are
considered rich by default, i.e. poverty does not exist. Given this utopian
society, financing expenses almost entirely with respect to vital
public/non-basic goods, the breakdown policy & , under the equity
condition, requires —2.49 public debt per capita. This, in turn, will require
borrowing or money printing, promoting public spending, e.g. through
natural assets for refunding the debt. We admit that, based on the lowest
tax burden of 26.52%, a self-financing tax system has a better chance of

being implemented.

8. CONCLUDING REMARKS

Given the ideological controversies of the left- and right-wing
politicians, and the need to resolve the welfare policy dilemma, both
actors should be willing to make concessions. In most cases, the root of the
controversy is that, the left-wing politicians struggle—in response to
public aspirations—in pursuing their own political causes for the increase
of basic goods, whereas the right-wing politicians advocate for meeting
the needs for non-basic goods. In our experiment, left-wing politicians
gave credit to the tax system to guarantee a reasonably high living
standard for benefit claimants. Whatever public spending voters
preferred, both politicians were aware of voters’ electoral maneuvering,
which could put the negotiations at risk of a premature collapse. In our
work, this threat was the only driving force in reaching the consensus. We
argued that political arguments demanding higher taxes were weak, since
overly costly welfare proposals lead to an excessive number of relief
payments claimants, which, in spite of the tax increase, could diminish the
quality of the welfare services. In turn, the excessive number of claims
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could generate further requests for the additional financial support
through tax channels. In order to satisfy those who bear additional costs,
and who could only approve the requests on the terms of fiscally safe
welfare policies, we reduced the scope of negotiations to the fiscally
realistic domain of voters” expectations.

In view of the above, a pretext for the analysis of the domain and the
extent of bargain portfolio of two visionary politicians, denoted as LWP
and RWP, were established. The portfolio was supposed to account for
politicians having non-conforming expectations. Instead of the wealth-pie
division, such an account allowed for including a guide on how the
eventual consensus ought to be analyzed and interpreted within the scope
of negotiations [&1,§2] at the contract curve. In this context, the left- and

right-wing political power indicators, specified by the bargaining problem
solution, were supposed to be politically designed in advance and
subsequently tailored in accordance with the citizens’ visions and
ambitions.

It was initially deemed that, due to the uncertainty in the selection of
the breakdown policy, we could only treat the left- and right-wing
political power indicators as given exogenously. While this is true at least
in the valuable examples we provided, we found a condition where we
can encode the indicators endogenously, to which we referred as the pre-
equity of political breakdown.
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APPENDICES
Al. Example and results

We proceed with a specific allocation of the welfare policy,
encapsulating samples of income density distribution, parameterized by
poverty line &, similar to an exponential function:

1 c ! c
P(G’mh'@:(6+h-&)-r<m>(e+h-aj 'exp(_em-aj’

where 0=619 , m=207 , and h=-0.18 are additional ex-ante
parameters. More specifically, 0 controls the wealth of citizens—a

horizontal shift of samples; m controls inequality—a wvertical shift; h is a
hazard parameter; and I'(m) is an extension of (m—1)! to real numbers.
The sample & = Y2p (median income = p) can be presented as Lorenz
Curve, where citizens below an income 95.1, i.e. 49.92% of the population,
have 24.13% of a total cumulative income, while the remaining 50.08%,
with incomes at or above 95.1, have 75.87%, Figure 6. Gini Coefficient
equals 0.37 and is impervious to the horizontal shifts only. Relief
payments, delivered to the population in line with Friedman [7] personal
exception rule in force equal to Y2p applied upon the income distribution
sample & = ¥2p diminished the Gini coefficient to 0.33. Indeed, on Figure 7
citizens below an income 95.1, i.e. 49.83% of the population, have slightly
increased to 25.83% of a total cumulative income, while the remaining
50.17%, with incomes at or above 95.1, have slightly decreased to 74.17%.

The density function P(c,0+h-&), depending on &, reflects the initial
wealth redistribution through tax channels. Political decision &'> & shifts
the density distribution P(c,0+h-&) of incomes horizontally toward the
allocation P(c,0+h-&") that favors less wealthy. When shifted, the
distribution P(c,0) masks the h-factor, h =0, of the benefit claimants.
The rate of change Hz(§) =h-a(0+h-&) <0 of the policy & quantifies a
fiscally tolerable hazard (h <0).
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A2. Simulation foundation and illustration

In order to perform simulations, the expressions for average B(§) of

expenses on the relief payments and average taxable income —the wealth
amount W(&) —can incorporate income density distribution P(c,0+h-&)

in a more realistic but general form:

g
B(&)=r-[(¢-c)-P(c,0+h-E)ds; r-(¢-0)

is the LI-relief payment, 0 <r <1;

€
WE) =[(c+r-(¢-c)-¢)-P(c,0+h-E)do+

0

+ [(c—¢)-P(c,0+h-E) .
€

In the left- and right-wing political bargaining, the choice of &, in
general, is also determined by the ability to maintain the average income
a(@+h-&), in order to uphold a(0+h-&) > W(§) within the “striking”
distance from W(&), which can be ensured through proper choice of the
personal allowance constant ¢ >0, where ¢ identifies a flat tax bracket
[0,00) . The average a(0+h-&) of income G over the density sample

P(c,0+h-&) equals IJOG-P(G,OJrh-E,)dG.

The taxation of the total income G+r-(§—0) of the needy complies

with the rules and norms in force, while the h-factor reveals the inverse
working incentives, namely the feedback of the welfare recipients.

At this point, it is useful to verify that a disagreement policy 6 under
the primacy of equity principle of breakdown might be an outcome of the
game. There 1is no reason to assume that the equation
(5-9)-(B(8)+d,)-(5-d,)-W(8) =0, in accordance with Observation 3,

should have a solution in general. However, for the income density
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P(c,0+h-&) (see above), a solution can be found. Given payoffs <u,g> at
the endpoints <u1 =6.44,g, = 47.18>, <u2 =89.26,g, = —2.49> of the scope
of negotiations—within the interval [¢, = 8.00,&, = 144.54] —it can be
shown that the pair d = <d1 =u,,d, = g2> = <6.44, —2.49>, u, <u,, g>¢g,
consolidates an equity for breakdown policy =6.39¢[¢,,&,]; wealth
W™ =120.46 and tax T =-2.06%.

It should not be surprising that the amounts of public goods and tax
rates may be negative. Ensuring this game outcome, the interpretation
suggests that the simulated breakdown demonstrates a specific payoff
deficit on public goods when it is impossible to cover all the costs through
taxes. In such a scenario, as we have pointed out earlier, when discussing
negotiations breakdown, it is necessary to resort to an external loan,
money printing, or use of natural resources, if the latter are available.

The magnitude and dimension of poverty proposals to be debated or
implemented, as outcomes of the left- and right-wing political bargaining, are
given in Table 1.

Recall already known proposals for incomes n, A, A, A,, 6, whereby
8 is outside of the scope of negotiations, 8&[&,,&,] and the poverty

proposal ), with their definitions given as follows:

n  the policy on poverty with equal left- and right-wing political
power; the left- and right-wing political organizations are in
symmetrical positions or in equal roles;

A, the outcome of the alternating-offers game —representing what
the right-wing politicians accept;

A the policy on poverty minimizing wealth-tax;

72p Y2 of the median income, indicating that half of the population
earns income above p, while the income of the remaining half is
below p;

A, the outcome of the alternating-offers game — representing what

the left-wing politicians accept;
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d  theleast desirable outcome, resulting in the policy breakdown or
disagreement, which naturalizes the risk of negotiations’
premature collapse, caused, for instance, by mutual traps.

A3. Verification

Proof of observation1. Let us now assume an inverse scenario,
whereby u > u'=n(§, ©(€, x)). Here, the left-wing politicians—LWP —aim
to improve the poverty line residue u', i.e. an after-tax residue of a marginal
citizen ¢ =& with income equal to the poverty line £. By initiating a new
rule for policy £'>&, the LWP attempt to implement u > u'. Because of
the inequalities u > (o, t(§,x)) > u', for some highly pragmatic benefit
claimants o, it becomes apparent that they can be better off by claiming

relief payments. Consequently, actions of these claimants will increase the
expenditure B(&') > B(§) on the relief payments and shift the balance of

books B(§) = x-1(&,x)- W(E) toward deficit B(E') > x-1(&,x)- W(E). The
B(8)

x-W(E)

option that would ensure that the balance in maintained, as the LWP must

_BE) > 1(&, %),

x-W(S)

as x was fixed by the agreement. Otherwise, keeping the old policy &

balance was valid in the past, when 1(&,Xx) = . Thus, the only

stay committed to X, is to adjust ©(&,x) to 1(§,E',X) =

intact, the LWP could —through a decrease in X —violate the commitment
x. As LWP cannot directly change X, they resort to reducing the deficit via
a tax increase. If u > n(&',1(§,&’,x)), the LWP must continue with the tax

adjustment policy by t(&',&",x)>1(§,€',x), now adjusting upon the
welfare policy &' and proposing &"> &', whereby the new deficit becomes
B(E&")>x-1(E,8',x)- W(E') . These improvements u>u">u' initiate a
sequence of poverty policies (...,&">¢&'>¢,...) and after-tax residues
(...,u>u">u',...) of marginal citizens. Thus, the conditions u=u" and
§=E&" can never be met, as this would contradict the assumption that the
equation u = n(§, (&, x)) cannot be solved for &. For this reason, the
sequence ...,£"> &',... is infinite. B
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The chain of reasoning regarding u'> u is similar to that outlined above
and is presented as a set of instructions. It should first be noted that, at
low values u’ >u" > u, even when taxes are low, there would always be a
surplus to finance the LI benefits and relief payments. The surplus masks
a contradiction, since it is clear that, at low values of the after-tax residue
parameter u, benefits financing can always be balanced.

Replace to implement by  to make a decline in
an improved
- better off - worse off
- improve - decline
improvement deterioration
- to claim for —  that relief payments
relief payments have been revoked
- deficit - surplus
_ > > - <<
Transpose: an increase with  adecrease

In what follows, we investigate the payoffs <u,g> € 8, of the left- and
right-wing  politicians. =~ The consensus occurs at outcomes
$, = Z,X,OL,T,<L1, g> under the constraint that the variation in policy &
does not improve the position of the left-wing politicians; rather, the
policy emerges as the point on the contract curve 8, =u(g) as fiscally
idempotent outcome.

For fiscally idempotent outcomes, the arguments of after-tax residue u,
share x, policy &, and tax rate T depend on each other. The share x =x°,
if settled as eventual agreement, redirects the residue u = n(§, t(€,x°) to
become a function u = u(, x°). Thus, the peak policy u with regard to the
best welfare policy can be expressed as:

€° =arg max, u(&,x") (A1)

Lemma. Let us assume that left-wing politicians do not shift from the share
X =X" and that the volatility constraint (4) solves for two different policies
&, <&,. Let the tax sacrifice t(&,Xx°)=1(§,x")-(§—0¢) be a differentiable
function of & progressively increasing with & within the closed interval
[€,,&,] —namely, the following derivatives hold:
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2

O Ex") <0 and ;—ézt(é’;,x")>0.

oG

In such situation, the poverty line residue u(&,x°) =& —t(§,x°) is a single
M-peaked function of &.

0 o
>0, a—at(i,x )

&=5 &=&

Corollary. There exists a unique interior policy &° maximizing u at

=0.

gt

a o
8_§u(%:9 X )

Provided that the conditions of the lemma are fulfilled, the discussion

that follows concerns the necessary and sufficient conditions for the
fiscally idempotent policy & to occur at the contract curve.

Observation 2. Let us assume that the wvolatility constraint (4) is
differentiable from its arquments. The after-tax residue u=u(&,x") is
differentiable and single peaked with respect to the policy & within some closed
interval [EJ1 ,E, ] . For a  fiscally idempotent outcome

0,8’ = Z°,X°,0c,r°,<u°,g°> to occur on the contract curve 8, =u(g), it is

necessary and sufficient that the policy E° solves the set of equations:

@) a%L(ia x°,u®) =0, where u® =u(§’,x°) provided that
gt
(ii) QL(F’" x’,u)  #0
au s s . .
Proof
Necessity. Let the fiscally idempotent outcome

$,&° :>z°,x°,0c,r°,<u°,g°> on the contract curve 8, =u(g) maximize
(A1) at v’ =u(&’,7(€°,x")) . Varying & in the vicinity of &° of the
outcome ¢,&° :>ZO,X0,OL,’C0,<110,g0> and substituting u =u(g,1(§,x°%))

into the wvolatility constraint (4), we obtain an identity
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L(&,x°, (€, 1(&,x°))) =0. Within the proximity of (Ef’,uo), the following
equation holds for arguments &, u:

0 0 0
—L(E,x°,u’)+—L(E°,x°,u)-—n(&,t(€,x°)) =0, A2
a(i(i )&l(i )ag(i(i ) (A2)
from which we deduce the necessity statement for £=¢&" and u =u°.
Sufficiency. Suppose the condition (ii) holds. Let (i) solve for &° at the

fiscally idempotent outcome ¢,£° = z°,x°,0c,r°,<u°, g°> . Combining (i)

and (A2), we conclude that

0 o B
8_§ TC(&, T(E.w X )) e =0.

The sufficiency clause (Al) holds, since u=u(§,x°) is a convex
function of £.1

Proof of Observation 3. The clause is correct, provided that there exists
a fiscally idempotent policy 6 for the implementation of the pair <d1 ,d2> .

In order to identify such a policy, we first replace the variable g with
d, in the expression for the constraint (1). Next, we extract the expression
B(o) +
= % from (1) and substitute it into (1—1)... of the constraint

(3), where u should be replaced by d, in advance. By simplifying, we

for t

arrive at the statement of the observation.m

Sketch of the proof (Observation 5). Looking at the tax rate t>r1_ ,
for any outcome ...,t,<u,g> €8, , one may indeed prefer a counter
outcome as a motion ...,r,<u‘,g'>, which outlines ...,r,<u‘> u,g'< g> or
...,T,<u'< u,g'> g>. As the contract curve 8, =u(g) is a curve of efficient

preferences <u, g> guaranteeing the poverty line residue u(g), someone
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could put a

[ (Y]
outcome ...,T > rmin,<u g > .

motion u'>u° or g'>g° against

an

We argue that, in order to fulfill the

expectations and requests of citizens” majority, it is necessary to pursue

political consent via the proposal ...,t , = r(k),<u° =u(r),g’ = g(k)> N

T-W(©)=B()+g

B(&)=x-1-W(©)

u=>1-19-EC-9)+¢

u=&-1-(&-9)

Delivery constraint: the size of the welfare pie,

i.e. the average amount of tax returns is equal to
the sum of the average monetary value per
capita of primary goods and the average of non-
primary goods g .

Budget constraint imposed on the relief

payments finance in accordance with the share
X of the wealth-pie—the tax-revenue.

Stability constraint that determines fiscally

idempotent policy & .

After-tax residue constraint: an alternative form

of stability constraint, where U is after-tax
position of a marginal citizen with income
G =&, which concedes with the left-wing
political aspirations.

A4. Mathematical derivation

Replacing t=

B(©)

x-W(E)

from the budget constraint into the stability

constraint, we obtain the volatility constraint (4) as stated:

L(&x,u) = (£~ 0)-BE)-x-(6—u)- W(E) =0

that amalgamates budget constraint and after-tax residue. Contract curve

(5) is thus given by:
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D x,u) = L, (& x.u) =[E - ¢)- BE) - x-(E—u) W(E)]: =0;
L (&,x,u)=B(&)+(E—0) B(E)—x- W(&)—x-(§—u)- W(&) =0.

The last expression may be rewritten as:

D(Ex,w) =B(®) + (E-)-BE) - x-[W(©) + € -w)- W(©)]=0.
(€-9)-B©)
(E—u)- W(S)

substitute variable x into the rewritten expression for D(&,x,u). The

Extracting x = from the volatility constraint (4), we can

substitution results in the following expressions:

(E=9)-B(S)
(E—u)-W(E)

B(&)+ (& —¢)-B(&) - W@ +E-w-Wwe©)=0,or

[BE®)+@E-9) BE®)]-E-u) W) -
~(E-9)-BE): W@+ E-w) WE)]_,
E—u)- W(E)

Provided that (§—u)>0 and W(§) >0, we can conclude that the
following is true:
B&+E-0-B@lG-w-We)-
-(E-9)-BE)- [WE) +E-w- WE)]=0

This allows writing the sub-expression (& —u) in the form:

{BE)+E-0)BEO WE)-(E-0)BE) WE)] (E-u)-
—(€-9)-B(6)-W(©)=0.

As a consequence of presenting the sub-expression (£ —u) in the form

given above:
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£ uz (E-9)-BE)- W) -
B@+E-9)-BEI WE)-E-9)-BE-WE

We observe

that
. (E-4)-BE)-W(E) o
[BE&)+(E-)-BE) WE) - (E-)-BE) W(E)
We can now substitute the tax rate T from the delivery constraint into

PEE (¢ y).

the after-tax residue constraint. The result will be u=¢& —

W(©)
After replacing the result into the observed u -expression, we obtain:
_BO*E ¢ _y)-
ST w © (E-9)
—g- (€~ 9)-B(8)- W(©)

[B&)+(E-0)-BE)]- WE) - (E—9)-BE)- W(E)
W(E) [B(E)+(E-0)-B(E)] W(E) - (5~ ¢)-B(&)- W)
[B&)+g] (-9)=
_ (E-9)-B(©)- W(©)- W(®) |
IB(E) + (&~ 0)-B(E)| W(E) —(5—0) - B(E)- W(E)
IBE)+(E-0)-BE)] W(E) - (E—¢)-B(E)- W(&)
| B(£): W(&)- W(E) B,
[B(&) +(&—)-BE)] W(E)~(£-9)-B(E)- W()

We can now impose the denominator in the last expression for g on

g:

sub-expression for (& —¢), which can be written as:

[BE)+(E-0) BE)| W(E) - (E-9)-BE)- W(E) =
=B(E)-W(E)+(E-9) [BE)- WE)-BE)- W)
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Continuing with the expression for g(£) , we can replace the

denominator transformed above:

B(8)-W(8)-W(S)

T BE) W+ (E-0)[BE)- WE)-BE- W@
B(2) W(&) W(E)
o | BO-(BO WE) + -9 -[B0) WE) -BE)- Wo])|

B(E)- W(E) +(E—0)-[B(E)- W(E) - B()- W(&)]

Now, both the nominator and the dominator can be divided
by B(§)- W(E), yielding:

W()-B(&)- {B@ W)+ (- 4};))(-(: [ﬁ(@g(@ ~B(®)-W(®)] }
" { B(E)- W(E)+ (E—0)-[BE) W(E) - BE) W(E)] }
B(&)- W(2)

B) _W(©)
B(&) W()

evaluate the expression for the right-wing political objective on public but

J, as this allows us to

Let us define v(§)=1+(§—¢)- (

vital goods as:

W(E)-B(©)-v(©) _ W()
V(&) V(&)

g8 = —B(9).

In accordance with the delivery constraint, the size of the wealth-pie

(&) - W(E) equals B(§) +g(&) . Consequently, the tax rate is given by:

W)
B -B
B(®)+g(8) @{v@) @J 1

wE W(E) “vE)

&)=
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Replacing the 1 = in the after tax residue u=&§—-1-(§ —9), we can

v(

finally evaluate the expression for the left-wing political wants on basic

E-9) ¢)
ds as:
800 u)=§- )
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The Financing Dilemma

Supporting a Project
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Abstract. A concept of a kernel was re-visited for coalition formation in a
game of interconnected participants characterized by monotonic contribution

functions. We focused on special coalitions that have an advantage over the
remaining, due to yielding higher contribution of each individual participant.

Keywords: coalition, game, contribution, donation, monotonic, project
JEL Classification: C50, C71

In multi-person games (Owen 1971, 1982) a coalition is formed by a
subset of participants. Among all coalitions, rational coalitions are of par-
ticular interest, as these allow all participants to gain individual benefits. It
can further be stipulated that extraction of this benefit is ensured
independently of the actions of players that are not coalition members. In
this note, we construct different varieties of coalitions formed by players
that can be deemed “outstanding” in the sense of rationality, and indicate
relations between such coalitions.

The class of games proposed in this note is subjected to an additional
monotonic condition, which has been studied in previous work of Mullat
1979. However, it should be noted that no prior knowledge of the subject
matter discussed here is presupposed. Still, the formal theory of monotone
systems adopted in this note is identical to that described earlier by Mullat
1971-1977; the only difference arises in interpretation, and pertains to the
abstract indices of interconnection of the system elements, which are
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* Communicated with E.H. Kysnenios, Mucturyt npobaem yrpasaenms um. B.A.
Tpanesuukosa PAH Poccus, 117997, Mocksa, IIpo¢corosnas ya., 65. Previous work in
“Stable Coalitions in Monotonic Games”, Avt.. i Tel.,, No. 10, pp. 84 — 94, October, 1979.
Original article submitted October 3, 1978. Plenum Publishing Corporation, 227 West
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treated as donation intentions. The approach developed in this note en-
ables us to establish, in one particular case, the possibility of finding ra-
tional coalitions in accordance with the principle of independence of re-
jected alternatives according to Nash 1950. However, for the purpose of
simplicity, the following scenario might be informative.

PEDAGOGICAL SCENARIO

Here we are dealing with participants who intend to finance a specific
project by providing donations. Each participant, in principle, is ready to
donate a certain amount in favor of the project being developed. It is as-
sumed that the donation amount for each participant must correspond to a
certain distribution defined by the exponential density function:

1
F(x.B) = B-exp(—%) for x 20-
0 for x<0

Thus, in favor of the project it is expected to collect a certain fund to fi-
nance the project. However, as a result of negotiations about the appropri-
ateness of the planned project with like-minded participants, their prefer-
ences will be reoriented. It is assumed that a certain coalition game arises
here in accordance with the monotonic game scheme, the solution of
which is the concept of a kernel, Mullat 1979. The kernel is a somewhat
remarkable subset of the participants.

Intricacies of financing interests of the participants are presented in the
form of a solution called, as said, the kernel, that will constitute a certain
group of participants who agree to finance the project, but perhaps not to
the extent to which they were originally intended, but still within reason-
able limits. In fact, this reasonable limit is the best of all possible options
for financing the project in its final version. It should be noted here that
the best option is understood as a certain guaranteed payment at which
each kernel participant guarantees contribution to the total amount. For
the participant je H belonging to the kernel H', the guaranteed pay-
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‘ *

ment will be equal to F(H ) = rninjeH* P p;- Thus, the total guaranteed

payment constitutes ‘H*‘ -F(H"). Nevertheless, the question may arise

whether this total payment will be the largest of all possible options. It is,
however, conceivable that a larger number of participants with a lower
guaranteed payment intentions will be able to fund the project to a greater
extent than the kernel participants. The kernel, on the other hand, is re-
markable. Indeed

H' =arg max,_,, F(X).

The global maximum for the project funding by the kernel participants
will form the basis of independence in accordance with the hypothesis of
the so-called rejected alternatives, that is, regardless of the preferences of
the participants not included in the kernel, if any are found, which never-
theless consider it appropriate to participate in the kernel. But we should
not particularly believe them, as they will not be very reliable, and may
seek to change their preferences not in favor of the project.

Therefore, we assume that in case the participants, not belonging to the
kernel, refuse to participate in the project, then the point of view and their
actions regarding these latter will not affect the decisions of the project
participants belonging to the kernel. Here we are dealing, as said, with the
so-called principle of bounded rationality, that is, the principle of inde-
pendence from rejected alternatives, cf. Nash 1950. In essence, this princi-
ple in our particular case of project financing, ensures that project partici-
pants are kept abreast of developments. The kernel participants will not
change their decisions on financing regardless of what is happening or
what change the conditions for participation in the project, despite the fact
that some participants in the project refused to participate. If we give this
last consideration a somewhat more formal character, then we can say that
the stability property of decisions made by the kernel participants is noth-
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ing but the well-known so-called idempotent principle. Once a decision
has been made, with the conditions of the obligations assumed being un-
changed, it will not require any new adjustments and this decision will be

made in the same form as it was made earlier.

Example. Let we introduce in accord with exponential distribution the
preferences p,, i=1,n, of participants’ W = {i = ﬁ} We can designate as
X all participants who prefer to participate in the project together with
their like-minded people, while X prefer to reject the project or have other
reasons for participating in the project. To determine the preferences n for
the participants je X, let the contributions for all the participants partici-
pating in the project together with others in X be equal to

n(j,X) = (‘)%) p;. Obviously, if some participant could not at all to find a

suitable partner for the project, the intention to contribute will be equal to
n(i,{i}) =" - p.. Conversely, if all participants contribute to the project
and all participants are in an adequate company W, the estimated contri-
bution will be greater and equal to (i, W) =V’ - p. . If now for any rea-
son a participant je€ X decides to spend the rest of the project develop-
ment alone, the intention to contribute to all others remaining participants
in X, including those to which some like-minded participants X — {J} still
join, will decrease: m(i,X —{j}) < n(i,X) for i€ X -{j}. On the contrary,
their intentions to contribute will increase if one je X of the previously
single participants decides to join X and become a member of X + {j}:
(i, X + {j}) > n(i,X) forie X.

The graph below shows the donations of the participants in% relative to
the total amount of their initial intentions on the X-axis with the corre-
sponding contributions in%, as well as to the same amount indicated on
the Y-axis, where their donation preferences were reoriented. As the simu-
lation shows, kernel members are almost always ready to finance approx.
50% of their original intentions.
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The Dilemma Facing Participants Contributing a Project
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Figure 1. The kernel participants contribute at least 52.8% of their initial
intentions to the project. The blue dot is the largest guaranteed contribu-
tion in which participants continue to agree to participate in the project.

To be more precise, in the initial state, the percentage of contribution to
the total amount for financing the project, which reflects, as it was, the

starting point of the participants’ preferences on the X axis—donation
submission of participants.

The procedure for finding the kernel is very easy to set up. First, all the
expected donation preferences p,,i=1n, are sorted in ascending order,

constituting the order <pi>, the X-axis, and then a sequence 7, is con-

<pi>'(n+1_i) .
structed as T, = , which we have already denoted these re-
n

oriented m, preferences, i =1,n, the Y-axis. The latter sequence is called

defining. We then select the local maximum, i.e. the defining sequence.
This is the kernel of Mullat’s monotonic game, which is represented by a
blue dot in Figure 1.
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Finanseerimise Dilemma
Projekti Toetamisel

Kokkuvotte. Tuuma moistet kiilastati uuesti koalitsiooni moodustamiseks
proekti financeerimise mangus, mida iseloomustavad monotoonsed panuse-
funktsioonid. Keskendusime spetsiaalsetele koalitsioonidele, millel on eelis
tilejadanud osas, kuna iga osalemine koalitsioonis annab suurema panuse.

Mitme-isiku mangudes (Owen 1971, 1982) moodustatakse koalitsioon
osalejate alamriihmast. Koigist koalitsioonidest pakuvad ratsionaalsed
koalitsioonid eriti huvi, kuna need vdoimaldavad koigil osalejatel saada in-
dividuaalseid eeliseid. Veel voib tdpsustada, et selle hiivitise saamine ta-
gatakse soltumata mangijate tegevusest, kes ei ole koalitsiooni liikmed.
Selles markuses konstrueerime mangijate moodustatud koalitsioonide er-
inevaid variante, mida vOib ratsionaalsuse mottes pidada silmapaist-
vateks, ja osutame selliste koalitsioonide omavahelistele suhetele.

Selles markuses pakutud mangude klassile rakendatakse tdiendavat
monotoonset seisundit, mida on uuritud Mullati poolt 1979 aasta varase-
mas toos. Tuleb markida, et siin kasitletud teema eelteadmisi ei eeldata.
Kasutatud monotoonsete siisteemide teooria on identne sellega, mida on
varem kirjeldanud, Mullat 1971-1977; ainus erinevus ilmneb tolgendam-
ises ja puudutab siisteemielementide abstraktseid sidumisnaitajaid, mida
kasitletakse annetuste kavatsustena. Selles markuses vilja tootatud
lahenemisviis voimaldab meil iihel konkreetsel juhul luua véimaluse rat-
sionaalsete koalitsioonide leidmiseks kooskolas Nash’i 1950 vastavate ta-
gasiliikatud alternatiivide soltumatuse pohimottega. Lihtsuse huvides
jargmine stsenaarium voib aga olla informatiivne.

PEDAGOGIKA

Siin on tegemist osalejatega, kes kavatsevad annetuste kaudu rahastada
konkreetset projekti. Pohimotteliselt on iga osaleja valmis annetama aren-
datava projekti heaks teatud summa. Kokkuvoétlikult voib Gelda, et iga
osaleja annetussumma peab vastama teatud jaotusele, mis on madaratletud
eksponentsiaalse tiheduse funktsiooniga:

178



© Joseph E. Mullat

1
F(x.pB) = B-exp(—%) for x > 0.
0 for x<0

Seega loodetakse projekti kasuks koguda teatav fond projekti rahasta-
miseks. Kuid mottekaaslastega kavandatava projekti sobivuse iile
peetavate labiradkimiste tulemusel suunatakse nende eelistused timber.
Eeldatakse, et siin tekib teatud koalitsiooniméang vastavalt monotoonsele
manguskeemile, mille lahenduseks on tuuma mdiste, Mullat 1979. Tuum

on osalejate monevorra tahelepanuvaarne alamhulk.

Nagu juba 66ldud on osalejate finantseerimishuvide keerukus esitatud
lahenduse vormis, mida nimetatakse tuumaks, mis moodustab teatud osa-
lejate rithma, kes noustuvad projekti rahastama, kuid voib-olla mitte selli-
ses mahus, nagu need algselt olid moeldud, kuid siiski moistlikkuse pii-
res. Tegelikult on see maistlik piir parim voimalikest projekti 16ppfinant-
seerimisvoimaluste rahastamise voimalustest. Siinkohal tuleb markida, et
parimaks voimaluseks loetakse kindlat garanteeritud makset, mille korral

iga tuuma osaleja tagab panuse kogusummas. Tuuma H" kuuluva osaleja

* * . H*
jeH korral on tagatud makse vordne F(H )= min_. 4 ‘p; —ga.
Seega moodustab kogu tagatud makse ‘H‘F(H*) Sellegipoolest voib

tekkida kiisimus, kas see kogusumma on koigist voimalikest suurim.
Siiski on moeldav, et mingi suurem arv madalama garanteeritud mak-
sekavatsusega osalejaid suudab projekti suuremal madral rahastada kui
tuuma osalised. Tuum seevastu on tdhelepanuvaarne. Toepoolest

H' =arg max,_, F(X).

Tuuma poolt projektile eraldatav globaalse maksimumi kogurahastus
moodustab soltumatuse aluse vastavalt nn tagasiliikatud alternatiivide
hiipoteesile, st soltumata tuuma mittekuuluvate osalejate eelistustest, kui
neid leidub, mis peavad tuumas osalemist siiski asjakohaseks. Kuid me ei
tohiks eriti neid uskuda, kuna need ei ole vaga usaldusvaarsed ja voib-olla
soovivad nad oma eelistusi projektis osalemise kohta muuta.
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Seetottu eeldame, et kui osalejad, kes ei kuulu tuuma, keelduvad pro-
jektis osalemast, ei mojuta nende vaatenurka ja nende tegevusi viimase
suhtes tuuma kuuluvate projektis osalejate otsuseid. Siin on tegemist
nagu juba 60ldud, niinimetatud piiratud ratsionaalsuse pohimottega, see
tahendab soltumatuse pohimottega tagasiliikatud alternatiividest, vrd.
Nash 1950. Sisuliselt tagab see pohimote meie konkreetse projekti ra-
hastamise puhul, et projektis osalejad oleksid arengutega kursis. Tuuma
osalejad ei muuda oma rahastamisotsuseid olenemata sellest, mis toimub
vOi mis muudavad projektis osalemise tingimusi, hoolimata asjaolust, et
moned projektis osalejad keeldusid osalemast. Kui anname sellele vii-
masele kaalutlusele monevorra formaalsema iseloomu, siis voime 0elda, et
tuumast osavotjate tehtud otsuste stabiilsuse omadus pole midagi muud
kui tuntud idempotentsuse pohimote. Kui otsus on tehtud ja eeldatavate
kohustuste tingimusi ei muudeta, ei vaja see uusi muudatusi ja see otsus

tehakse samas vormis, nagu see tehti varem.

Niide. Tutvustame vastavalt eksponentsiaalsele jaotusele osalejate
W= {i = H} eelistusi p,, i:’l,_n. Voime X-na tdhistada koiki osalejaid,
kes eelistavad projektis osaleda, et koos oma mottekaaslastega kokku lep-

pida, samal ajal kui X -s olevad osalejad eelistavad projekti tagasi liikata
voi on neil muud pohjused projektis osalemiseks. Osalejate je X -is ee-
listuste m madramiseks olgu koigi projektis osalevate osalejate ja teiste
X -s osalejate eelistav sissemaks vordne m(j,X) = (P%)-p ;-ga. Ilmselt kui
moni osaleja ei suuda iildse projekti jaoks sobivat partnerit leida, on
kaast tegemise kavatsus vordne 7(i,{i}) = "4 - p.-ga. Ja vastupidi, kui
koik osalejad panustavad projekti ja koik osalejad on sobivas motte-
kaaslaste seas W, on nende viimaste eeldatav panus suurem ja vordne
(i, W) = V= - p. -iga. Kui niiiid méni osaleja j € X soovib vi otsustab
mingil pohjusel veeta iilejadanud projekti arenduse tiksi, vaheneb kavatsus
panustama koigile teistele X -is allesjadanud osalejatele, sealhulgas ka neile,
kellega moned mottekaaslased X-ga endiselt liituvad: ie X —{j},
(1, X — {J}) < m(1,X). Vastupidi, nende panustamiskavatsused suurene-

vad, kui iiks varem osalenud iiksikliikmeline je€ X osaleja otsustab liitu-
da X-igajasaada X + {]} liikmeks: (i, X + {J}) > (1, X).
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Ulaloleval joonisel, Figure 1, on naidatud osalejate annetused protsen-
tides, vorreldes nende esialgsete kavatsuste suhtes kogusumma panusena
X-teljel koos vastava sissemaksega protsentides, samuti sama summa koh-
ta, mis on ndidatud Y-teljel, kus nende annetuseelistused olid timber
orienteeritud. Nagu simulatsioon nditab, on tuuma liikmed peaaegu alati
valmis finantseerima umbes. 50% nende algsest kavatsusest. Kui tdpsem
olla, siis algseisundis on projekti finantseerimise kogusummast tehtud
panuse protsent, mis peegeldab osalejate eelistuste lahtepunkti X-teljel —
osalejate annetuste esitamine.

Tuuma H’ leidmise protseduuri on viga lihtne iiles ehitada. Esiteks jar-
jestatakse koik arvud p,,i=1,n, kasvavas jirjekorras, muutes jirjestust p,

jarjestuseks <pi>, ja seejarel konstrueeritakse jargmiste arvude jada, mida

me nagu eelpool juba neid arvu tdhistanud olime w,-ks: i=1n,

_ <pi>-(n+1—i)

1 n
teerimine. Seda jada nimetatakse maaravaks jadaks. Seejarel valime selle
viimase, jdrjestatud, st madratud jada pohjal, lokaalset maksimumi. See on

mis on Joonise 1 Y-teljel, nn osalejate {imberorien-

gi monotoonse mangu Mullati tuum, mis on Joonisel 1 tdhistatud sinise
punktina.
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1. FORMAL DEFINITIONS AND CONCEPTS

We consider a set of n players denoted by 1. Each player jel (j= 1,n)
is matched by a set R; from which the player j can select elements.
It is assumed that the sets R are finite and do not intersect. Their union
forms a set W =R, UR, U...UR_ . The elements selected by the player ]
from R; compose a set A'cR ;- The set A’ is called the choice of the

player j, while the collection <A1,A2,...,A“> is called the joint choice.

The case A = is not excluded and is called the refusal of k -th player
from the choice.

We introduce the utility functions of elements w € A’. We assume that

certain joint choice <A1,A2,...,A“> has been carried out. Let there be

uniquely determined, with the respect to the result of the choice, a collec-
tion of numbers mw, >0 that are assigned to the elements

weA’,j=12,.,n; on the remaining elements of W the numbers are not
determined. The numbers ©  are called utility indices, or simply utilities,

and by definition, are in general case functions n_(X,,X,,....,X,) of n

variables. The value of the variable X is the choice A’ of the player j.

We shall single out utility functions possessing a special monotonic
property.

" Former docent, Department of Economics, Tallinn Technical University (1973 — 1980).

™ Translated from Avtom. i Telemekh., No. 10, pp. 84 — 94, October, 1979. Original article
submitted October 3, 1978. Plenum Publishing Corporation, 227 West 17t Street, New
York, 10011. We alert the readers’ obligation with respect to copyrighted material.
Russian version: http://www.datalaundering.com/download/monogame-ru.pdf
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Definition 1. A set of utilities w is called monotonic, if for any pair of joint
choices <L1,L2,...,L“> and <G1,G2,...,G"> such that U' < G’, j=12,...,n
r, (L', L*,.,L")<n (G, G%..,G") (1)
is fulfilled for any w e L’ 1.

We now turn to the problem of coalition formation. We shall call any
nonempty subset of the set of players a coalition. Let there be given a coa-
lition V, and let its participants have made their choices. We compose
from the choices A’ of the participants of the coalition V a set-theoretic
union H, which is called the choice of the coalition V: H=U A2,

To determine the degree of suitability of the selection of an element
w e R for the player j, a participant of the coalition, we introduce an in-

dex of guaranteed utility. With this aim we turn our attention to the de-
pendence of the utility indices on the choice of the players not entering
into coalition. It is not difficult to note that as a consequence of the mono-
tonic condition of the functions m the worst case for the participants of
the coalition will be when all players outside the coalition V reject the
choice: A* =@, k¢ V, so that all elements outside H will not be chosen
by any of the players who are capable of making their choices. In other
words, the guaranteed (the least value) of utility ©  of an element w cho-

sen by a player in the case of fixed choices HNR; of his partners in the
coalition equals © (HNR, u AL HN R.).
The quantity
g.(H) =min (HAR,,...,A’,..,HNR))

T
weAl W
is called the guarantee of the participant j in the coalition V for
the choice H.

' We note that fulfilment of (1) is not required for the element W & L. Furthermore,

even the numbers T themselves may not be defined for w & L.

2 A choice H without indication about the coalition V, which has effected it, is not
considered, and if somewhere the symbol V is omitted, then under a coalition we un-
derstand a collection of players such and only such for which HMNR i 7 D .
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We assume that according to the rules of the game, for each chosen
element w € A’ a player je V must make a payment u°. It is obvious
that under condition of the payment u° the selection of each element
w € A is profitable or at least without loss to the player je V if and only
if T 2u®. In the calculation for the worst case this thus reduces to the cri-
terion g (H)>u®. In reality we shall be interested, in relation to the player
jeV, in all three possibilities: a) g,(H)>u°, b) g, (H)=u° and c)
g,(H) <u®. We shall say that a participant of the coalition V is above u®,

on the level of u®, and below u°, if the conditions a), b), and c) are ful-
tilled respectively. The size of the payment is further considered as a pa-
rameter u of the game being described and is called the threshold. We

shall say that a coalition V, having made a choice H, functions on the
level u[H]=min_,g (H).

Definition 2. A coalition V is called stable with the respect to a threshold
u® =u[H] if for a certain choice H all participants of the coalition are not below

u® while someone in the coalition K UV is below u° if any participant k ¢ V
outside the coalition V makes a nonempty choice A* =& .

The set of numerical values being attained by the function u[H] on sta-
ble coalitions will be called the spectrum. Each value of the function u[H]

will be called the spectral level (or simply the level). The entire construc-
tion described above will be called a monotonic parametric game on W .

Subsequently we will be interested in stable coalitions functioning on
the highest possible spectral level. It is obvious that the spectrum of each
monotonic game on a finite set W is bounded, and therefore there exists a

maximum spectral level u* =max,_,u[H].

Definition 3. A stable coalition V' such that for a certain choice H' the
level u": u[H]=u" is attained is called the kernel of the monotonic parametric

game on W .
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Theorem 1. If V, and V, are kernels of the monotonic game on W , then one
can always find the minimum kernel (in set-theoretic sense) V. such that

V. 2V, UV, . The proof is presented in the appendix.

Theorem 1 asserts that the set of kernels in the sense indicated by the
binary operation of coalitions is closed. The closeness of a system of ker-
nels allows as looking at the largest (in the set-theoretic sense) kernel, i.e. a
kernel K°® such that all other kernels are included in it. From the Theorem
1 it follows the existence of the largest kernel in any finite monotonic pa-
rametric game. The kernel is somewhat remarkable coalition as it supports

the principle of limited rationality of independence of rejected alterna-
tives, cf. Nash 1950.

The rest of the paper is devoted to the description of constructive meth-
ods of setting up coalitions that are stable with the respect to the threshold
u°, including those stable with the respect to the threshold u", i.e. the
kernels coalitions. In particular, a method of constructing the largest ker-
nel is suggested.

2. SEARCH OF STABLE COALITIONS

We consider a monotonic parametric game with n players. Below we
bring together a system of concepts, which allows us constructively to
discover stable coalitions with respect to an arbitrary threshold u® if they
exist. In the monotonic game only a limited portion of subsets of the
set W have to be searched in order to discover the largest stable coalition.
With this aim in the following we study coalitions V whose participants
do not refuse from a choice: for jeV the choice A'#J.
Such a coalition, which has effected a choice H, is denoted by V[H].
From here on, for the motive of simplicity of notation of guaranteed
utility TcW(HmR1,...,Aj,...,HmRn), where H is a subset of the set W,

we use T(w;H).
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Definition 4. A sequence o of elements <a0,oc1,...,ocm_1> (m is the number
of elements in W) from W is said to be in concord with respect to the threshold
u®, if in a sequence of subsets of the set W

(N, Ny, N UGN,

m-12

where Ng=W, N, =N;\a,, N =0, there exists a subset N such that:

a) The utility m(o;N,) <u® forall 1<p;
b) For each w e N _ the condition u®<n(w;N ) is fulfilled, or, this being
equivalent, for each je V(N,) the condition u® < g (N ) *is fulfilled.

A sequence a, in concord with the respect to the threshold u°,
uniquely defines the set N . This fact is written in the form N(a) =N, .

Definition 5. A set S°c W s said to be in concord with the respect to a

threshold u°, if there exists a sequence o of elements of W, in concord with re-
spect to the threshold u® and such that S°= N(a), while the coalition V(S°) is

said to be in concord with respect to the threshold u® .

The following two statements are derived directly from Definitions 4
and 5.

A. In the case where the set S°=W is in concord with the respect to
the threshold u®, all players jel are notbelow u°: g,(W)=u°.

B. If the set S°, in concord with the respect to the threshold u®, is
empty, then there exists a chain of constructing sets

(Ng,Np,u NN,

m-12
such that for each player jel, commencing with a certain N, in all
those coalitions V(N,), t < i, where the player j enters, this player is

below u°.

’ By definition g; (Np) = min n(w;Np).

weNmej
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Theorem 2. Let S° be a set that is in concord with respect to the threshold
u®. Then any stable coalition V functioning on the level not less than u°® makes
a choice H , which is a subset of the set S°: H < S°.

The proof is given in the appendix.

Corollary 1. The set S°, in concord with respect to the threshold u°, is
unique. Indeed, if we assume that there exists a set S', in concord with the respect
to the threshold u° and different from S°, then from theorem 2, S'< S°. But
analogously at the same time the inverse inclusion S’ ©S° must also be satisfied,
which bring us to conclusion that S'=S°.

Corollary 2. As the spectral levels of functioning of coalitions in the mono-
tonic parametric game grow, one can always find a chain of stable coalitions, in-
cluded in one another and being in concord with respect to each increasing spec-
tral level, as with respect to the growing threshold.

Indeed, from the formulation of the theorem it follows that a stable coa-
lition, in concord with the respect to a spectral level A <, satisfies the re-

lation V(S*)  V(S"), since in a set-theoretic sense S* > S*.

Below we arrange a certain sequence o, which use up all elements of
W . After the construction we formulate a theorem about the sequence o
thus constructed being in concord with respect to the threshold u°. The
arrangement proves constructively the existence of a sequence of elements
of W that is necessary in the formulation of the theorem.

Construction. Initial Step.

Stage 1. We consider a set of elements W . Among this set we search out
elements y, such that
T(yy; W) <u®, 2)
and order them in any arbitrary manner in the form of a se-
quence 7, . If there are no such elements, then all elements of W
are ordered arbitrarily in the form of a sequence o, and the

construction is completed. In this case W is assumed to be the
set N(a).
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Stage 2. Subsequently we examine the sequence y,. When considering

the t-th element y,(t) of this sequence y,, the sequence a is
supplemented by the element y,(t), which is denoted by the
expression G<—<E,y0(t)>, while the set W is replaces by
W\ . After the last element of v, is examined we go over to

the recursive step of the construction.
Recursive Step k.

Stage 1. Before constructions of the k -th step there is already composed

a certain sequence o of elements from W . Among the set
W\ o we seek out elements y, such that

n(y ;Wla)<u®, (3)

and order them in any arbitrary manner in the form of a se-
quence Y, . Analogously to the initial step, if there happen to be
no elements vy, , the construction is ended. In this case in the role

of the set N(a) we choose W\ @ while a is completed in an

arbitrary manner with all remaining elements from W .

Stage 2. Here we carry out constructions, which are analogous to stage 2
of the initial step. The entire sequence of elements y, is exam-

ined element by element. While examining the t-th element
7, (t) the sequence o is complemented in accordance with the

expression a<—<ﬁ,yk(t)>. After examining the last element
7, (t) of the sequences y, we return to stage 1 of the recursive

step.

On a certain step p, either initial or recursive, at stage 1 there are no

elements y, which are required by the inequalities (2) or (3), and the con-

struction could not continue any more.
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Theorem 3. A sequence o constructed according to the rules of the procedure
is in concord with the respect to the threshold u°. The proof is presented in the
appendix.

In the current section, in view of the use, as an example, of the concepts
just introduced, we consider a particular case of a monotonic parametric
game in which the difference in the individual and cooperative behavior
of the participants of the coalition is easily revealed. We assume that the
utilities

Ty (AL ATX AL AT

do not depend on X; in the case that choices specified by the remaining
players are fixed. In this case the j-s participant of the coalition V, under
the condition that the remaining participants of it keep their choices, can
limit his choice X; to a single element w'e R, on which the maximum

guarantee max ., g (H) is attained. However, such a selection narrowing
]

his choice down to a single-element, generally speaking, reduces the
choice (in view of monotonicity of utility indices 7 ) to the guarantee of
the remaining participants of the coalition. Consequently, individual be-
havior of the participants of a coalition contradicts their cooperative be-
havior. In spite of this contradiction, in the general case, in the given case,
using the concept of a stable coalition V(S°) in concord with respect to the
threshold u®, and having slightly modified the criteria of “individual in-
terests” of the players, we can convince someone that there always exists a
situation in which the individual interests do not contradict the coalition
interests.

We define the winnings of the j-th participant of the coalition in the
form of the sum of utilities after subtraction of all payments u®, i.e. as the
number

f,(H)=3,., [n(w;H)-u°]

190



© Joseph E. Mullat
(the winnings f, for k ¢ V are not defined). Having represented H as a
joint choice <A1,A2,...,A‘ V‘>, we can consider the behavior of each j-th

participant as player in a certain non-cooperative game selecting a strategy
Al

The situation of individual equilibrium in the sense of Nash [1] of the
participants of the coalition V in the game with winnings f; is defined as

their joint choice U, Al =H’ such that for each je V
1 -1 i At V| *
f(A. AT ALAT LAY ST (H)

for any A'cR ;- In other word, the situation of equilibrium exists if none

of the participants of the coalition has any sensible cause for altering his
choice A! under the condition that the rests keep to their choices.

Not every choice H of participants of the coalition V is an equilibrium
situation. To see this it is sufficient to consider a choice H such that in the

coalition V there are players having chosen elements w € A’ with utilities
n(w; H) <u®; for the selection of such an element the player pays more
than this element brings in winnings f i (H) and, therefore, for the player,

proceeding merely on the basis of individual interests, it would be advan-
tageous to refrain from selection of such elements. Refraining from the se-
lection of such elements of the set H is equivalent to non-equilibrium of
H in the sense of Nash.

Lemma. Let the utilities n(w;H) be independent of A'. Then a joint choice
S° of the participants of the stable coalition V(S°), in concord with the respect to

the threshold u°, is a situation of individual equilibrium.

Indeed, according to Theorem 2, S° is the largest choice in the set-
theoretic sense among all choices H of the stable coalition V(S°), where
for any weH the relation w(w;H)2>u® is fulfilled. Let the choice of
the participants of the coalition, with an exception of that of the j*
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participant, be fixed. Since the utilities m(W;S°) do not depend on A’,
the j" participant of V(S°) cannot secure an increase in the winnings

f,(S°) either by broadening or by narrowing his choice in comparison
with R; n§°.
3. COALITIONS FUNCTIONING ON THE HIGHEST SPECTRAL LEVEL

We consider the problem of search of the largest kernel. First of all we
present some facts, which are required for the solution of this problem.

From the definition of the guarantee g;(H) of the participant j effect-
ing the choice H we see that the equality

gj(H) = minweAJ n(w;H) 4)

is fulfilled. Hence, according to the definition of the level u[H] of func-
tioning of the coalition V(H) it follows that

u[H]=min__, n(w;H)

weH

If we carry out a search of the subset H™ of the set W on which the
value of the maximum of the function u[H] is achieved, then thereby the
search of a coalition functioning on the highest level u" =u[H] of the spec-

trum of a monotonic parametric game is effected. Without describing the
search procedure, we give the definition of a sequence of elements W al-

lowing us to discover the largest (in the set-theoretic sense) choice H® of

the largest coalition — a kernel K°.

Definition 6. A sequence o. of elements <a0,a1,...,am_1> (m is the number

of elements in W ) from W is called the defining sequence of the monotonic game,
if in the sequence of sets *

(Ng, N, N UGN

m-19

there exists a subsequence <FO,T 1,...,Fp> such that:

* The given sequence is constructed exactly in the same way as the one in Definition 4.
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a) foranyelement a, € I, \T,,, of the sequence o the utility
n(o;;N,) <u[l,,] (k=01,...,p-1);

b)  in the stable coalition V(I')) no sub-coalition exists on a level above
u[l'].

From the Definition 6 one can see that the defining sequence in many

ways is analogous to a sequence, which is in concord with the respect to
the level u°. Since any stable coalition V(I,) functions on the level

u* =u[T, ], it is not difficult to note that the defining sequence @ com-
poses strictly increasing spectral levels u[l]<u[l}]<...<u[l] of func-
tioning of stable coalitions V(I',) in the monotonic parametric game. As a
result, we require yet another formulation.

Definition 7. A stable coalition V 1 is said to be determinable, if there ex-
ists a defining sequence o of elements W such that among the choices of this
coalition there is a choice I') composed by o according to Definition 6.

Theorem 4. For each monotonic parametric game a determinable coalition ex-
ists and is unique. Among the choices of the determinable coalition there is a
choice on which the highest spectral level u* is attained.

The proof of the theorem is presented in the appendix.

Corollary to Theorem 4. The concepts of a determinable coalition and the
largest kernel are equivalent.

Indeed, directly from the formulation of the Theorem 4 we see that a
determinable coalition always is the largest kernel. Hence, since a deter-
minable coalition always exists, while the largest kernel is unique, it fol-
lows that the largest kernel coincides with the determinable coalition.

Thus, the problem of search of the largest kernel is solved if we con-
struct a defining sequence a of elements W . The construction of o can
be effected by the procedure of discovering kernels (KFP) from [2].
In conclusion we present yet another approach to the concept of
“stability” of a coalition.

> This approach is close to the concept of “M-stability” in cooperative n-person
games [1].
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Definition 8. A coalition V is said to be a critical, if for a certain choice H of
it no coalition V having a nonempty intersection with the coalition \Y functions
on a level higher than u[ﬁ]. The level G = u[fI] is called the critical level of the

coalition \A/', while the choice H is called its critical choice.

From the Definition 8, in particular, it follows at once the uniqueness of
the critical level of the coalition V. Indeed, on the contrary, if were two
different levels ' and 0", 0'< 0", then 0’ could not be a critical one ac-
cording to the definition: it is sufficient to consider the coalition V = V it-
self with the choice H”, which ensures 0" >1'.

It is obvious that kernels are critical coalitions. The inverse statement,

generally speaking, is not true; a critical coalition is not necessarily a ker-
nel.

We now consider the following hypothetical situation. Let V be a criti-
cal coalition and let H be its critical choice. We assume that this coalition
is stable with respect to the threshold u®;ie. u°< u[ICI] (see Definition 2).
We assume that an increase of the threshold u® up to the level u® > u[fI]

took place and the critical coalition V with the critical choice H was
transformed into unstable coalition with respect to the higher threshold
u°. Let the participants of the coalition \Y% preserving the stability of the
coalition attempt to increase their guarantees. One of the possibilities for

increasing the guarantee of a participant j, eV is to refrain from the

choice of an element o, € A” on which the value g i, (H) - the minimum

level of utility guaranteed for him, see (4), is attained. It is natural to as-

sume that a participant with a level of guarantee g, (ﬁ) = u[ﬁ] <u°® will

be among the participants attempting to increase their guarantees, and re-
frains from the selection of the element o, indicated above. It may happen

that the refusal of o, gives rise, for another participant j, € V(H\ o), to

a decrease from his guarantee g, (A)>u[H] to the quantity
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g, (H\a,)<u[H]. A participant j, € V(H\a,), acting from the same
considerations as j,, refrains from the selection of an element o, on which
g, (F\ 0,) is attained. Such a refusal of a, can give rise to subsequent re-
fusals, and emerges hereby a chain of “refusing” participants (j,, J;,--)

of the coalition V.

If a coalition V, stable with respect to the threshold u® in the sense of
Definition 2, with the choice H became unstable as the threshold u® in-
creases, then such a coalition, generally speaking, disintegrates; i.e. some
of its participants may become participants of a new coalition which al-
ready is stable with the respect to the increased threshold u°. By defini-
tion of a critical coalition, transaction of its participants into new stable
coalition, when the threshold u° increases is not possible, and it disinte-
grates completely. The theorem presented below and proved in the ap-
pendix reflects a possible character of complete disintegration of a critical
coalition in terms of the hypothetical system described above.

Theorem 5. Let there be given a critical coalition \% having a nonempty inter-
section with a certain coalition V: VAV =@ . Let H be the choice of the coali-
tion V and ¥ the critical choice of the coalition V. Then in the coalition V AV
there exists a sequence of its participants jz <j0,j1,...,jr71> such that: a) in the
sequence j there are represented all participants of the coalition VAV (the
players ], may be repeated, t is number of elements in HUH; b) for the se-

quence j we can construct a chain of contracting coalitions

(V(Ng), V(N )., VN ),

where N = HUH, N.,, ©N,, so that for any je€ 'V, commencing from a cer-
tain N, in all those coalitions V(N,), t <1, into which the player j enters, this

player is not above u[H].
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4. EXAMPLE OF A MONOTONIC GAME

We consider a game of n customers who at the same time are suppliers
of certain goods. Let each j*" customer supply goods of j-" designation,

j= 1,n. The situation under consideration is conveniently depicted in the
form of a set of arcs W of a graph G of potential deliveries of goods, and
the customer—supplier, in the form of a set of its nodes. A potentially ef-
fectible delivery of goods for sum of ¢ bank notes is depicted on the graph
by a c-fold arc.

We shall assume that a “player” in the sense of the scheme of the mono-
tonic game described above is each participant when he acts in the role of

a customer and decides from whom he orders the goods required by him.
We define the choice of the j-th customer in the form of a subset of arcs

A’ of the set of potential arcs R ;, entering into the node j in the graph
G; A’ cR,. The nodes of the graph from which w € A’ emerge are un-
derstood as the supplies of the goods, while a single arc w is interpreted

as a supply, to the customer, of goods for the amount of one bank note.
After all orders have been received, each j-th customer—supplier carries

out the supplies.

We call any subset V of the sets of nodes I of the graph G a coalition,

while the choice of a coalition is defined in the form of a set of arcs H de-
picting supplies of goods in bank notes ‘H , is the money equivalent to the

goods ordered by a coalition.

We assume that the participants of the coalition stimulate mutual busi-
ness contacts. A supplier of goods, being a participant of a coalition, can,
e.g. propose a certain rebate to his customer. Here the magnitude of rebate
is appropriately set in accordance with the business activity of the sup-
plier, having taken as a measure of its business activity the number of

suppliers to himself. Taking into account what has been said, we deter-
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mine the rebate in bank notes of goods supplied to the customer, in the
form 0 -b", where b" is the number of supplies with whom the supplier

concluded deals, having dispatched goods along the arc we A’, 0 is a
coefficient of proportionality.

Let h, be the money equivalent of the useful effect for the j-th partici-
pant of the coalition in the account in bank notes of goods being con-
sumed, ordered along the arc w e A’ (a loss, if h, <0 ). With the rebate

taken into account, the total useful effect amounts to
n,=h,+6_-b".

We determine utility of an order along the arc w € A’ as a quantity of
money equivalent to the overall m per bank note of the goods ordered.

The guarantee of the j-th participant of the coalition, just as in the general

scheme, is quantity

g(H=min__ =

R

We determine the aim of the coalition as creation of a certain fund by
means of deductions from utilities 7. A rational coalition V is one which
from the utility ©, per bank notes of goods ordered can deduct into the
fund a certain sum of money u°>0, ie. if and only if n, >u® for all
w € H. We shall show that the concept of a rational coalition is equivalent
to the concept of a stable coalition with respect to a threshold u°, if as

value of the parameter of the game of customers—suppliers we take the
amount deducted into the fund being created. Indeed, if © , >u® for any

we A’ then jeV, g ;2 u®, ie. the coalition V is stable with the respect
to the threshold u® (see Section 2) and visa versa.

From the results of Section 3 it follows that in the game of customers—
suppliers there exists a chain of enclosed rational coalitions, which con-

tract with the growth of the amount of deductions u®. The procedure of
search of rational coalitions allows us to uncover the structure of the chain,
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e.g. to answer the question: is the original set of customers-suppliers a ra-
tional coalition? On the basis of Theorem 4 we can find the largest kernel —
a critical coalition sustaining the maximum amount of deductions u",
which constitutes the main interest in this model.

Concluding, we turn our attention to the form of contradiction between
the individual and co-operative behavior of the participants of a coalition
in the monotone game, using the example of the game of custom-
ers-suppliers of goods. From the example it is seen that purely individual
behavior with the respect to the index of guarantee would lead to situation
in which each customer has a single supplier. It is obvious that a rational
coalition originates in general case a more “branched” network of contacts
between participants of the coalition so that the level of the index of guar-
antee by each of the participants will be much higher.

APPENDIX

Proof of Theorem 1. Let the level u* be attained for the coalitions V,
and V,, which effect the choices H, and H, respectively; i.e. u* =u[H;]
and u" =u[H,]. For player jel we consider two choices: H; =H; NR,
and H} =H, NR ¢ By the definition of guarantee g (H,) for the partici-

pant je V, of the coalition we have
minweH{nW(H],Hf,...,Hj‘)=gj(H:)2u“; (A1)
for the participant je V, we respectively have

minweH%nW(H;,Hg,...,H;) =g,(H;) > u". (A.2)

5 We note that, in the worst case, for player k ¢ V: (k ¢ Vz* ), HT = (H; =D).
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We determine the choice of a participant je V, UV, as ®' =H] UH],.
The monotonic property (1) allows us to conclude that the following ine-

qualities are valid:
min (P, D%, D")> minweH{nw(H],Hf,...,H?); (A.3)

weH] W

min__, 7, (@,0%.., @) 2min _ m, (Hy,Hy,. Hy).  (A4)

Combining (A.1) — (A.4), we obtain
min__ 7w (O, 0°,...,d")>u" (A.5)

forany jeV, UV, .If by ®  we denote the set H, U H;, then for the coa-
lition V, UV, effecting the choice ®" the inequality (A.5) is rewritten in

the form
g, (®H=u", jeV,UV,. (A.6)

Due to the monotonic property (1) some elements w ¢ @ (if one can
find such) may be added to ®" while the inequality (A.6) is still true 7. We
will denote the enlarged set by ®°: ®°>® and obviously for
V¢ =V(®°) we have V(®°)2V, UV, . By the definition of a spectral

level u", for the participant j'€ V¢, on which u[®°] is attained, we have
g, (%) =u[@*]<u", (A7)

since u" is the maximum spectral level of functioning of coalitions in the
monotonic game. Applying (A.7) and (A.6) to the choice ®° for the par-
ticipant j=j', we see that g (®°)=u", and the coalition V* oV UV,
functions on the spectral level u". The theorem is proved m,

Proof of Theorem 2. Let S° is a subset of the set W in concord with the
respect to the threshold u®; i.e. there exists a sequence o, in concord with
the respect to the threshold u°, such that S°=N(a). We assume that

there exists a coalition V effecting a choice H = S° and functioning on the
level u[H]>u®; H\S°#J. Let a,€H\S° and let a, be an element,

7 We suppose that such elements cannot be added to ®°.
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which is leftmost in the sequence o . Let p be the index of the set N in

the sequence <N0,N1,...,N Nm>. It is obvious that t<p and, conse-

m-12
quently,
(o ;N,)<u® (A.8)

in accordance with a) of the Definition 4. Since the game being considered
is monotonic, o, € H and H < N, there must hold

n(o H) < (o5 N,). (A9)
From inequalities (A.8) and (A.9) it follows
(o, ;N,) <u®<u[H] (A.10)

(the latter < by assumption). According to the inequality (A.10) and by
the definition of u[H] we have

n(a;H) <min_ g (H). (A.11)

Let the element o, be chosen by a certain q-th player; i.e. o, €AY,
g € V.. On the basis of (A.11) we assume that

n(a;H) <g, (H) (A.12)
is valid. By definition g (H)=min__  7(w;H). Following (A.12), we note
that m(a,;H) <min__ , n(w;H). The last inequality is contradictory, what
proves the theorem m.

Proof of Theorem 3. We assume that the construction of the sequence
a according to the rules of the procedure ended on a certain p-th step.

This means that o is made up of sequences y, (k=0,p), and also of ele-
ments of the set N, found according to the rules of the procedure and be-
ing certainties for the sequences v, . We consider any element o, of the

sequence thus constructed, being located on the left of the o -th element:
1<p. The given element in the construction process falls into certain set

Y,- By construction
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(o WY, Uy, UL Uy ) <u®. (A.13)

If to the sequence (Y,,7,...,7,.;) we add the elements y_, which in a
are on the left of the a,-th, then this set of elements together with the
added part y, composes the complement N. up to the set W (see Defini-
tion 4).

On the basis of the monotonic property (1) we conclude that
(o ; WAy, Uy, UL Uy 2 m(o; WAN,) =n(a;;N;). The last relation
in the combination with (A.13) shows that m(a,N,)<u®. From the con-
struction of the sequence a it is also obvious that for any je V(N ) the

guarantee g (N )=>u°. The theorem is proved m.

Proof of the Theorem 4. Theorem can be proved as follows. First, a se-
quence o, in concord with respect to the highest spectral level u", in the
monotonic game exists, according to Theorem 3, and is, at the same time, a

defining sequence; as the subsequence <F0,F1,...,Fp> in this case we have
to choose the sequence <W,S“ >, where S" is a set S"* € W which is in
concord with respect to the highest level u". The determinable coalition is
V(S"). The uniqueness of the coalition V(S") is proved in Corollary 1 to

the Theorem 1. Secondly, the choice S" of the coalition V(S"), playing the
part of the set I’ in the Definition 6, attains the maximum of the function

u[H], a fact which follows from Theorem 3 and b) of Definition 6; i.e.
u[S*]=u". Thirdly, the last statement of Theorem 4 is a particular case of

the statement of Theorem 2, if we put u®=u". The theorem is proved m.

Proof of the Theorem 5. We consider a monotonic game of participants
of a coalition VUV on the set HU H, where H is the critical choice of
the critical coalition \Af, and H is some choice of the coalition V. Below

the set HUH is denoted by €, while all concepts refer to a monotonic
sub-game on (2.
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Let u® be the threshold of the parameter u of the game on €2, and let
u®>u[H]. We construct a sequence o of elements €2, which is in concord
with respect to the threshold u®. Two variants could be represented: 1)
the set S°, in concord with the respect to the threshold u® is empty; 2) S°
is not empty. We consider them one after the other. First, in the variant 1)
from a sequence of elements & of elements of €2 in concord with respect
to the threshold u°, we uniquely determine a sequence of participants of

the coalition VUV choosing elements o, from sequence o and compos-
ing a certain chain j=<j0,j1,...,jr71> (r is the number of elements Q).
Secondly, from the sequence o we also uniquely determine the sequence
of coalitions (V(N,),V(N)),..,V(N_,)), where N;=Q, N,,=N\a,,
with j, € V(N,).

In the second variant none of the participants of the coalition V can be
in a coalition, which is in concord with the respect to the threshold
u®>u[H]. This would contradict the definition of a critical coalition V .
Therefore in the chain j thus constructed of participants of the coalition
Vuv (by the same method as in the first variant) all participants of the
coalition V are on the left of the j,-th player; p is uniquely determined

from the sequence a (see Definition 4). By property a) of the Definition 4
and from the definition of the guarantee of a player j, € V(N,) we have

g, (N;)<m(a;;N;)<u®. (A.14)

Proceeding from the structure of the spectrum of a monotonic paramet-
ric game on 2 (see Corollary 2 to the Theorem 2) the value u® marginally
close to u[H] is satisfied successfully in the two variants considered. The
first variant of the Theorem 5 forms the statement b) derived earlier from
Definition 4 and 5 (see section 2). The 2" variant of the statement of the
theorem is directly derived from the relation (A.14) m.
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'In his book review of “Ménard, C. and M.M. Shirley (eds.) [2005], Hand-
book of New Institutional Economics, Springer: Dordrecht, Berlin, Heidel-
berg, New York. XIII. 884 pp., Rudolf Richer, University of Saarland, no-
ticed that

North and Williamson stress, besides transaction costs, the role of bounded ra-
tionality, uncertainty, and imperfect rationality. Their objects of research differ:
Northian NIE focuses on macro institutions that shape the functioning of mar-
kets, firms, and other modes of organizations such as the state (section II) and
the legal system (section III). Williamsonian NIE concentrates on the micro in-
stitutions that govern firms (section 1V), their contractual arrangements (sec-
tion V), and issues of public regulation (section VI). Both the Northian and Wil-
liamsonian approaches to the NIE are used, i.e. in development and transforma-
tion economics: in efforts towards explaining the differences of exchange-
supporting institutions (section VIII).

It is worth to emphasize, in view of the above, that when the player
j€V must make a payment u® for the element w € A’, the payment is
well suited in the role of transaction cost. Indeed:

“In economics and related disciplines, a transaction cost is a cost incurred in
making an economic exchange. For example, most people, when buying or
selling a stock, must pay a commission to their broker; that commission is a
transaction cost of doing the stock deal. Or consider buying a banana from a
store; to purchase the banana, your costs will be not only the price of the banana
itself, but also the energy and effort it requires to find out which of the various
banana products you prefer, where to get them and at what price, the cost of
travelling from your house to the store and back, the time waiting in line, and
the effort of the paying itself; the costs above and beyond the cost of the banana
are the transaction costs. When rationally evaluating a potential transaction, it
is important to consider transaction costs that might prove significant.”
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Equilibrium in a Retail Chain with
Transaction Costs
J. E. Mullat * Credits: ™

Abstract. The paper addressed a situation of how a retail chain consisting of suppliers,
agents, and distributors transformed while the costs of transactions increased. When the
costs increased, the orders and deliveries between relevant interest groups resulted in the
formation of the most costs’ tolerant retail chain. The participants of the most tolerant
chain remained in equilibrium under condition that in any transaction the gain of trade
exceeded the transaction cost. Making to buy and sale decisions, the participants of the
chain supposed to follow the rules and norms of what the author called a monotonic
game.

Keywords: suppliers, distributors, monotonic game, retail chain

Businessmen in deciding on their ways of doing business and on what to produce have to take
into account transaction costs. If the cost of making an exchange are greater than the gains
which that exchange would bring, that exchange would not take place and the greater pro-
duction that would flow from specialization would not be realized. In this way transaction
costs affect not only contractual arrangements, but also what goods and services are pro-
duced. Ronald H. Coase, “The Institutional Structure of Production,” Ménard, C., and
M. M. Shirley (eds.) [2005], Handbook of New Institutional Economics, Spriner:
Dordrecht, Berlin, Heidelberg, New York. XIII. 884pp., p.35, ISBN 1-4020-2687-0.

1. INTRODUCTION

All, perhaps, know that prices on commodity markets sometimes con-
tinue to rise unabated on the back of an anticipated shortage in the global
raw materials availability and sharp volatility in the commodity future
markets and terminal prices on fears of an immediate shortage of materi-
als in the short term. Along with the significant increase in commodity

* Former docent at the Faculty of Economics, Tallinn Technical University, Estonia,
Independent researcher. Docent is an Eastern European academic title. The title is equivalent to
associate professor in USA. Residence: Byvej 269, 2650 Hvidovre, Denmark,

mailto: mjoosep@gmail.com .

A part of this article was translated from Avtomatica i Telemekhanika, 1980, 12,
pp. 124 — 131. Original article submitted 1979. Automation and Remote Control, Ple-
num Publishing Corporation 1981, pp. 1724-1729.
Russian version: http://www.datalaundering.com/download/network-ru.pdf
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prices, on one hand, the transaction costs increase on inputs like petro-
leum, electricity, etc. On the other, while currency of exchange rates also
moving adversely, the situation becomes uncertain. As an example, one
may point at recent market price increase of coffee raw materials, which
did not have immediate consequences for some known positions, while
the distributors ! of a retail chain, however, demonstrate readiness to
make loosing transactions. With this in mind, distributors are trying to
hold prices constant. However, it is also understandable that it would be
impossible for the distributor to make frequent price changes again and
again. Given the current context, they will have no other option but to
seek price increase for distributed commodities with an immediate effect.

Uncertainties in market prices of commodities always lead to an in-
crease of transaction costs. Transaction costs increase once again leads to
additional uncertainties, and the distributors in the retail chain end up in a
dead circle of price increase, which may result that the bilateral trade does
not take place, and the market old supply and demand structure to be re-
placed with a new. In the environment of constant price increase, the or-
ders and deliveries do not match any more for a given supply and de-
mand structure. In such situations, individual participants in the retail
chain are still assumed to act rationally finding a new ways of making
business with the object of maximizing the profit by trying to restructure
the chain. Worth to note that New Institutional Economics gives an expla-
nation for transactions as mediated through the market in two directions:
the vertical integration, Joskow [2, 2005], where the market structure is
mostly a vertical chain of semi-product components, and the horizontal
chain of services and products outsourced by companies if needed to pro-
duce the end product.

This paper addresses the above situation in question by setting up a re-
tail chain game of the participants in the chain grounding on supposition

that orders and deliveries be met with uncertainty of transaction costs. In

' A group of retail outlets owned by one firm and spread nationwide or worldwide.
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so doing, the paper attempts to develop a numerical description of the
supply and demand structure for the deliveries of commodities in the re-
tail chain. The allegedly rational behavior of a participant is not always
such, because the participants on purpose may attempt to enter but irra-
tionally into certain losing transactions in hope to offset the negative effect
of the former. Given this irrational situation the prices will increase addi-
tionally upon already profitable transactions. Numerical analysis of irra-
tional situations reveals, however, that in case the participants will try to
avoid all losing transactions, their behavior is once again becoming ra-
tional and in such situations the participants of the retail chain will end up
in the Nash equilibrium [8, 1953].

To our knowledge (or lack of that), the retail chain formation, or in
mundane terms the restructuring process of the retail chain is rather com-
plicated mathematical problem, which do not have satisfactory solutions.
However, in recent years it has become clear that a mathematical structure
known as antimatroid is well suited for such type a retail chain formation
process, c.f., Algaba, et al. [1, 2004]. Antimatroid is a collection of potential
interests groups—subsets of participants, i.e. those who make decisions to
buy and sale in bilateral trade transactions. That is to say, within antima-
troid one will always find a path of transactions connecting members of
the retail chain—if the latter forms of course—with each other by mutual
business interests inside groups/coalitions belonging to antimatroid and
making the exchange as participants of a characteristic retail chain.

We step up beyond convention of the theory of coalition games that the
solution mandatory has to be a core, and take the retail chain formation
process in terms of so-called defining sequence of transactions, Mullat
[6, 1979]. The sequence facilitates the retail chain formation as a transfor-
mation process of nested sets of bilateral transactions, which ends at its
last and highest costs” threshold —the most tolerant retail chain towards
costs—a kernel. Hereby, the kernel operates as a retail chain of partici-
pants capable to cover the highest transaction costs in case of uncertainty.
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In our case, the defining sequence of transactions produces the elements of
an antimatroid —some interest groups, c.f., Levit and Kempner, [5, 2001];
see also Korte et al., [4, 1991]. The defining sequence on antimatroid, in
particular, follows the Greedy heuristic procedure of Shapley’s value, but
in inverse order, c.f., Rapoport [10, 1985].

Bearing all this in mind, the suggested framework allows performing a
series of computer simulations. First, to determine the possible response of
the retail chain participants, to different supply and demand structures.
Second, to identify the participants, where the executive efforts might be
applied to prevent unpredictable actions that may misbalance the equilib-
rium in the retail chain. With this object, we used a model to assemble an
“elasticity” measure for the choice of customers; this measure is repre-
sented by transaction costs’ interval, for which the retail chain remains in
equilibrium.

The rest of this paper is structured as follows. The next section sets up
the basic concepts intending to bring at the surface the calculus of utilities
of participants in the retail chain. It is a preliminary step necessary to
move forward to the Section 3, where the general model of participants of
the chain is described. In Section 4, which is main part of the paper, the
retail chain game of customers addresses the process of the chain forma-
tion in details. Here the monotonic property of utilities plays its major
role. A summary of the results ends the study.

2. DESCRIPTION OF A RETAIL CHAIN: THE SIMPLE FORM

To consider the simplest case of commodities distribution in a retail
chain might be instructive. This elementary model is used at current stage

solely as a convenient means of simplifying the presentation.

The distribution of commodities in the retail chain is characterized by
sales figures that may be expressed as one of the following three alterna-
tive numbers: a) a demand mn which is disclosed to the particular partici-
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pant either externally or by other participant in the chain; b) a capable
supply & calculated at the cost of all commodities produced by the par-

ticipant for delivery outside the chain or to the other participants; c) actual
sales y calculated at the prices actually paid by the customers for the de-

livered commodities.

An order is thus defined as a certain quantity of a particular commodity
ordered by one of the participant’s from another participant in the retail
chain; a delivery is similarly defined as a certain quantity of a commodity
delivered by one of the participant’s to another participant in the chain.
We assume that the chain includes suppliers who are only capable of mak-
ing deliveries — the produces; participants, who both issue orders and
make deliveries — the agents; and the distributors, who only order com-

modities from other participants. !

In what follows we consider the retail chain of orders and deliveries for
the case like “pipeline” distribution without “closed circuits.” Therefore,
we can always identify a unique direction of “retail chain” of orders from
the distributors to the produces via agents and a “retail chain” of deliver-

ies in the reverse direction.

Let us consider in more detail this particular retail chain of orders and
deliveries of commodities. The direction of the chain of orders (deliveries)
is defined by assigning serial numbers — the indexes 12 and 3 -
to the producer, to the agent, and to the distributor, respectively. The
producer and the agent act as suppliers, the agent and the distributor act
as customers. The agent thus has the dual role of a supplier and a cus-
tomer, whereas the producer only acts as a supplier and the distributor

only acts as a customer.

' In subsequent sections, the distributors also act as suppliers to external customers.
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The chain of orders to the produces from the customers is characterized
by two numbers m,, and n,,. The number n,, (W =1,2;j=2,3) is the de-
mand n,, disclosed by the customer j to the supplier w. We assume that
sales are equal to deliveries. Two numbers &,, and &,,, which are inter-

preted as the corresponding capable sales similarly characterize the chain
of deliveries to the distributor.

Suppose that the demand of the distributor to the external customers is
fixed by d bank notes. The capable sales of the producer are s bank notes.
In other words, d is the estimated amount of orders from the external cus-
tomers and it plays the same role as the number n for the customers in the

retail chain. Similarly, s is the intrastate amount of estimated deliveries by
the producer, and it has the same role as § for the customers.

Let us now consider the exact situation in a chain. To make deliveries at
a demand amount of d bank notes, the distributor have to place orders
with the agent in the amount of n,, = v,, -d bank notes, where v,, are the

distributor’s cost of commodities sold (the cost per 1 bank note of sales).
The agent, having received an order from the distributor, will in turn place
an order with the supplier in the amount v,, -n,,, where v,, is the agent’s

cost per 1 bank note of sales. On the other hand, the estimated sales of the
producer are &,, bank notes, &,, =s . Assuming that all the transactions

between the suppliers and the customers in the retail chain are material-
ized in amounts not less than those indicated in the purchase orders, the
actual sales of the producer to the agent are given by v}, = min{ €125 Miy }

Now, since the agent paid the producer y;, for the commodities or-
dered, the agent’s revenue is &,, =y},/Vv,,, where clearly &, >v},. The dif-

ference between the revenue &,, and the costs 7;, is defined as

Ty =V '(1 — Vi )/V12 .
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From the same considerations, y), = min{ @23,1123} 2 give the actual sales

of the agent to the distributor. We similarly define the difference
Ty =Y -(1 —V, )/ V,, . The numbers m,, 7, represent the profit of the

customers in the retail chain.

In conclusion of this section, let us consider the numbers m,,, 7,, more

closely. We see from the above discussion that the material costs are the
only component of the costs of commodities sold for the customers in the
retail chain; no other producing or transaction costs are considered. And
yet in Section 4 the numbers w,,, ,, are used as the admissible bounds on

transaction costs, which are assumed to be unknown. It is in this sense we
construct a model of a monotonic game of customers, Mullat [6, 1979].

3. DESCRIPTION OF A RETAIL CHAIN: THE GENERAL FORM

Consider now a retail chain consisting of n participants indexed w,
j=12,..,n . The state of a supplier w is characterized by a (m+1)-

customer j by a (v+1)-component vector <sj,xj> = <sj,y1j,...,yvj>. The
components of the <dw , yw> and <s X j> vectors are interpreted as follows:
d, is the total orders amount of the supplier w acting as a customer; s, is
the capable sales total amount of the customer j acting as a supplier; n,

is the cost of orders placed by the customer j with the supplier w; y,, are

actual sales (deliveries) to customer j from the supplier w. As indicated
in the footnote, v, represents the deliveries valued at the selling prices of

the customer ] acting as a supplier. The vectors <dw,yw>, <sj,xj> are the

order and the delivery vectors, respectively.

* In subsequent sections, 'Yivj is replaced by Y. = ’Y’Wj / V,; - The numbers y z?nd Y
differ in the units of measurement of the commodities delivered to the user J. While
Y' represents the sales at the cost, ¥ represents the same sales at actual selling prices.

3 K is the number of produces, see below.
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With each participant in the retail chain we associate certain domains
in the nonnegative orthants R™"' of the (m+1) — and R*" of the (v+1)
— dimensional space. These domains R"" and R are the regions

of feasible values of vectors <dw,yw>, <sj,xj> in the (m+ v+2) — dimen-

sional space.

For some of the participants vectors with y >0 are inadmissible, and
for some participants vectors with n, >0 are inadmissible. Participants

having the former property will be called produces and those having the
latter property will be called distributors; all other participants in the retail
chain will be called agents. In what follows the numbers s, (w =12,...,k)

characterize the k produces; the number s represents the capable sales
controlled by the participant w. The numbers d; (j=v+1,v+2,...,n) cor-
respondingly characterize the r distributors: the number d; represents the
demand to the external customers (n —v =r).

Let us now impose certain constrains on the admissible vectors in this

retail chain. The following constrains are strictly “local,” i.e. they apply to
the individual participants in the retail chain.

The admissible retail chain states are constrained by balance conditions
equating the actual sales from all the suppliers to a particular customer to
capable sales of that customer acting as a supplier:

S, =2y (J=k+1k+2,...,n). (1)
We also require balance conditions between the cost of orders placed by

all the customers with a particular supplier and the demand figure of that

supplier acing as a customer:
d, =2 .M, (W=12..,v). (2)

As we have noted above, the retail chain considered in this article does
not allow “closed-circuit motion” of orders or deliveries until a particular

order reaches a producer or the delivery reaches a distributor. The indexes
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labeling the participants in such chains are ordered in a way * that if w is
a supplier and j is a customer, then w<j (w=12..v;
j=v+1Lv+2,..,n). We call such chains as of a retail-type, and their de-

scription requires certain additional assumptions.
Consider the constants o, >0 and B, >0 satisfying the following

constraints (w < j;j=k+1,...,n):
o, <1 (G>ww=12,.,v), 2B, <1 (3)
i w

For the supplier w, the number a,; is the fractional cost of orders

made to the customer j. For customer j, the number n,, =, -d; v,

is the fractional cost of the deliveries from supplier w, which are neces-

sary for meeting the sales target.

Suppose that purchase of orders in the retail chain move from distribu-
tors through agents to suppliers. This chain is conducted at the wholesale
prices. The deliveries, also conducted at the wholesale prices of the chain
in the opposite direction. We express the effective wholesale prices by a
set of constants v (w=12,.,v;j=k+1k+2,.,n), which represent

the participant’s cost per one bank note of sales for a customer acting
as a supplier.

The set of constants o, B,, and v, make it possible to uniquely de-
termine the amount of orders and deliveries in a given transaction. In-
deed, the amount of orders to the supplier w from the customer j is given
by n,, =B, -d,-v,,. The relation (see Section 2) determines the amount of

deliveries ¥/, =min {&Wj,nwj}, where &, =s,_ -a, are the capable sales

w wj

values at cost prices. Considering the difference in revenue from sales of
customer j acting as a supplier, we conclude that the deliveries from the
supplier w to the customer j are given by v,, =v,;/v,, -

* The term topological sorting originates from Knuth [3, 1972] to describe the ordering of
indexes having this property.
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In conclusion, let us consider one computational aspect of order and de-
livery vectors in a retail-type distribution chain. ° It is easily seen that the
components d;, s, N, and y (W:1,2,...,V; j:k+1,k+2,...,n) as ob-

tained from (1) and (2) are given by (w < j;j=k +1,...,n)
d,=>B,d; v, (j>w,w=12..v) (4)
j

Sj = zmin{sw .awj;Bwj .dj .ij}/ij (5)

The starting data in (4) is the demand of the distributors to external cus-
d .,d, . The starting data in (5) are the

capable sales amounts s,,s,,...,s, of the produces, which together with the

tomers, i.e. the numbers d

V412 Mv429°

numbers d,,d,,...,d, from (4) are used in (5) to compute the actual sales of

the customers.
4. A MONOTONIC GAME OF CUSTOMERS IN THE RETAIL CHAIN

In the previous section we considered a retail-type distribution in the
chain with participants indexed by w=12,..,v;j=k+1k+2,.,n: the
index j identifiers a customer, the index w identifiers a supplier.

Let us interpret the activity of the retail chain as a monotonic game,
Mullat [6, 1979], in which the customers need to decide from what sup-
plier to order a particular commodity.

Suppose that in addition to the cost of materials, the customers bear un-
certain transaction costs in their bilateral trade with suppliers. Because of
the uncertainty of transaction costs, it is quite possible that in some trans-
actions the costs will exceed the gross profit from sales. In this case, the
potentially feasible transactions will not take place.

Let the set R represents all the potential transactions corresponding to
the set of suppliers from which the customer j is to make his choice. The

choice of the customer j (j=k+1k+2,...,n)is a subset A’ of the set R, :

5 Here we need only consider the principles of the computational procedure.
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A'cR ; ; the case A" =(J is not excluded: it requires the customer’s re-
fusal to make a choice. The collection <Ak+1,Ak+2,...,A“> represents the

customer’s joint choice. It is readily seen that the sets R; are finite and

nonintersecting; their union corresponds toset W=R _,UR,, U..UR..

In what follows, we focus on the criterion by which the customer j
chooses his suppliers A’ while the lowest transaction costs, as a threshold
u’, increases. In contrast to the standard monotonic game, Mullat
[6, 1979], which is based on a coalition formation, we will consider the
strategy of individual customers whose objective is to maximize the profit
from the actual sales revenues. We will thus essentially deal with m play-
ers’ game, m=n—k.

Let us first introduce a measure of the utility of a transaction between
customer j and supplier we A’ (j=k+1k+2,.,n). The utility of a
transaction between customer j and supplier w is expressed by the corre-
sponding profit T, =7, (1 - ij).

The utility of a transaction with a supplier we A’ is a function
T (X Xiy25+ X, ) of many variables: the value of the variable X is the
choice A’ of the customer j, the number of variables is m =n —k. To es-

tablish this fact, it is sufficient to show how to compute the components of
the order and delivery vectors from the joint choice <Xk+1,Xk+2,...,Xn>.

Indeed, according to our description, a retail-type distribution in the chain
requires  defining  the  constants a, =0 and B, =0

(w=12,..,v;j=k+1,...,n) that satisfy the constraints (3). A pair of con-
stants a,; and B, can be assigned in a one-to-one correspondence to a

supplier w € R, rewriting (3) in the form

Yo, <t(w=12,..v) X B,<1(j=k+1..,n) (6)

weRJ- WGRJ

If the constrains (6) are satisfied, then the same constrains are of neces-
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sity satisfied on the subsets A’ of the set R ;- Thus, restricting (4) and (5)
to the sets X, € R, the numbers v, can be uniquely calculated for every
joint choice <Xk+1,Xk+2,...,Xn>. Finally, let us define the individual utility

criterion of the customer j in the form:

I, = Z}(Ttwj —uwj), ()

weA
where u,; are the customer j transaction costs allocable to the supplier
w e A’ ; we define I1 ; =0 if the customer j refused to make a choice —
A’ = . The function T (X Xiizr-» X, ) has the obvious property of
monotone utility, so that for every pair of joint choices of customers
(L, L,,L") and (G*',G**,..,G") such that U ¢ G’ (j=k+1...n)
we have

(U912, ") <1 (G*',G*,..,G"). 6)

The property of monotone utility leads to certain conclusions concern-

ing the behavior of customers depending on the individual utility crite-
rion. Under certain conditions, rational behavior of customer j (i.e. maxi-
mization of the profit I1;) is equivalent to avoid profit-loosing transaction

with all the suppliers w € A’. This aspect is not made explicit in Mullat

[7, 1979], although it is quite obvious. Thus, using the lemma, see the Eng-
lish version at p.1473, we can easily show that if the utilities n (..., X;,...)

are independent of the choice X, the customer j maximizes his profit IT,
by extending his choice to the set-theoretically largest choice. In what fol-

lows we will show that this result also applies under a weaker assump-

tions.

First, a few reservations about the proposed condition — see (9) below.
This condition has a simple economic meaning: the customer j entering

into loosing transactions cannot achieve a net increase in his utility of the
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losses. For example, if for fixed choices of all other customers in the retail
chain, the utilities m (..., X,...) for w € X, are independent of the choice

X, the condition (9) hold as strict inequalities. These conditions are also
reduces to strict inequalities when, for instance, the capable sales éwj in
each transaction between customer j and supplier w € A’ is not less than
the demand n,,; so that every customer can receive the entire quantity or-
dered from his suppliers. In particular, by increasing the producers’” sup-
ply s;,8,,...,8, with unlimited manufacturing capacity, we can always in-
crease the capable sales to such an extent that it exceeds the demand, so

that the conditions (9) are satisfied.

We can now formulate the final conclusion: the following lemma sug-
gests that each customer will make his choice so as to maximize the profit
I1;, providing all the other customers keep their choices fixed.

Let the suppliers not entering the set A; be assigned indexes q =1,2,....
Then the profit I1; of customer j is represented by a many-variable func-

tion IT(t,;,t,;,...) with variables t_; varying on [0,8 . j]. 7 The value of the

2j>
function IT(t,;,t,;,...) is the customer’s profit for the case when the cus-
tomer j has extended the choice by placing orders in the amounts of
t,;-d; v, with the suppliers q=12,... outside the choice A,. Thus the
set of variables t_; identifiers the suppliers q=12,... , and customers ]
who expand their choice A ;. If all t , =0, the choice A; is not expanded
and the profit IT;(0,0,...) coincides with (7).

The profit function I1(t,;,t,;,...) thus has to satisfy the following con-

2jo°

straint: for every t_ in [0,B,,] q=12,...
IT,(t,,t,;,...) <I1,(0,0,...). )

® The joint choice of users having this property is generally interpreted in the sense of
Nash equilibrium, [8, 1953], see also Owen, [9, 1968].

7 We recall that [3 q; is the fractional cost of all the orders placed with supplier (.
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Definition. A joint choice <A(‘j*1,..., A2> of the retail chain customers is said

to be rational with the threshold u° if, given a amount of transaction costs not
less than u® >0 , the utility measure T, >’ in every transaction of customer

j with the supplier we A’ (j=k+1,...,n).

Lemma. The set-theoretically largest choice S° = <A§”,...,A2> among all the
joint choices rational with threshold u° >0 ensures that the retail-type distribu-
tion chain is in equilibrium relative to the individual profit criterion 11, under
the following conditions: a) the transaction costs u,; for w € 8" do not exceed
minm,,, over w € S’ (1R ; b) inequality (9) holds.

Proof. Let S° be a set-theoretically largest choice among all the joint
choices rational with the threshold u’, i.e. S° is the largest choice H
among all the choices such that n,(HMR,,;,...,HNR)>u’. Suppose

that some customer p achieves a profit higher than Il by making the

choice AP cR, which is different from S°N R, ;

H;) =D ar (nwp(...,Ap,...) —uwp)> [T , subject to u’ <u, <min__ m, .
Clearly, the choice A’ is not a subset of S°, since this would contradict
the monotone property (8), so that A’ \S° #J. By the same monotone

property, the customer making the choice A" U (S° NR p) will achieve a
profit not less than IT . On the other hand, all transactions in A”\S° are

losing transactions for this customer, since S° is the set-theoretically larg-
est set of non-losing bilateral trade agreements tolerant towards the trans-
actions costs’ threshold u’® >0. For the customer p making the choice
AU (S° NR p) the profit IT  does not decrease only if the total increase in

utility due to the contribution m,  of the transactions w e€S" (1R ex-

ceeds the total negative utility due to the transactions in A’ \S°. Clearly,
because of the constraint (9), the customer p has no such an opportunity.

This contradiction establishes the truth of the lemma. m
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In conclusion, we would like to consider yet another point. With uncer-
tain transaction costs, the refusal to enter into any transaction may lead to
an undesirable “snowballing” of refusals by customers to choose their
suppliers. It therefore seems that customers will attempt at least to con-
clude transactions with m,, >u’, even when there is some risk that the
transaction costs will exceed the utility 7 ;. Thus, without exaggeration,
we may apparently state that the size of the interval [u®, min TEWj] reflects
the elasticity of the customer’s choice: the number minn  —u® is thus a
measure of a “risk” that the customer will get into non-equilibrium situa-
tion. Clearly, a customer with a small interval will have grater difficulties
to maintain the equilibrium than a customer with a wide interval.

5. FINAL REMARKS

It ends where we started. The paper investigated a situation of distrib-
uting commodities in the retail chain with participants making “to buy and
sales” decisions in a retail chain. One type of participants’” produce and
sale, others buy and sale, the third only buy for consumption. The price
system was set up via some constants, which are nothing but percentages
to perform calculus of how the sales price must depend and exceed the
purchasing prices to archive a satisfactory results for participants maxi-
mizing their profits. The situation becomes complex as soon as to buy and
sale decisions incorporated transaction costs. Transaction costs interact
into the behavior of participants by transforming potentially profitable
into loosing transactions. The paper investigated the situation, as global,
depending on the transaction costs” threshold varying the threshold from
low to high values until all transactions, allegedly profitable in bilateral
trade agreements, became loosing and do not any more form a basis for an
agreement between rational participants. The retail chain structure, while
the transaction costs’ threshold is increasing, changes like nested set of
retail chains each of them on the higher threshold is capable to counteract
higher transaction costs and still functioning in equilibrium. Condition for
such a rational behavior was that all participants in the retail chain must
avoid any loosing transaction. Beyond the goal of the retail chain forma-
tion to hold the retail chain in equilibrium, some elasticity intervals for
transaction costs, where it still was realistic to buy and sale rationally,
have been internally encoded into the scheme and calculated individually
for all participants in the chain.
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On The Maximum Principle for some Set Functions '

Summary. This article deals with the problem of finding extremal points for the function
given on all subsets of a finite set. The construction method for the function (1) results in
the separation of extremal sets. The main feature of the construction method is based on

an assumption that there exists a set of numbers { Ty, (OL)} for every element O, where

H is a subset of the finite setand oo € H..

1. INTRODUCTION. We consider in our investigation a problem of find-
ing an extreme of a function defined on all subsets of a given finite set. The
algorithm for the construction as described has been used for solving
some problems of object classification utilizing the technique of homoge-
nous Markov chains. In general form, the construction suggested here al-
lows to solve some problems on graphs as well, for example, to extract in
some sense “connected” subsets of vertexes in a graph. We formulate the
theoretical fundament of our construction in terms of transparent rules for
selection of subsets in a given finite set, and some sequences of the same
finite set elements. The result will be an extraction of the extreme subsets.

The types of problems of similar nature have a combinatorial character
and do belong mostly to the discrete programming problems. Cherenin
(1962), Cherenin and Hachaturov (1965) have successtully solved a pre-
eminent class of similar problems on the finite sets. In the framework of

' This idea at the moment, perhaps invisible from the first glance, is incorporated into
“Left- and Right-Wing Political Power Design” as political parties bargaining game.
Reg. “data analysis”, see also, J. E. Mullat, “Extremal Subsystems of Monotonic Sys-
tems, LILIII,” Automation and Remote Control, 1976, 37, 758-766, 37, 1286-1294; 1977,
38. 89-96.
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these papers a functions have been considered satisfying condition, which
can be formulated as follows. If ®, and @, are two representatives for

subsets of a given finite set then
f(o,)+f(0,) <f(o,vn,)+f(o,No,).

This condition with some reservation reflects the convexity of the func-
tion f .

An ultimate root for the class of functions considered in the manuscript
lies in a supposition about existence of some numbers/weights 2 disclosing
for each element of the finite set a degree of its entry into a subset. The
degree of the entry must satisfy the conditions 1,2 (see below).

Concerning the current investigation it is worthwhile to pay attention to
Mirkin’s (1970) work. In this work, a problem of optimal classification is
reduced to finding special “painting” on a non-ordered graph. The opti-
mal classification there is characterized by some maximum value of a
function, corresponding in its form to the definition (1), however hereby
we interpret (1) in a different sense. We do not consider in our function
definition a decomposition of a given set into two non-intersecting subsets
what was the main concern of Mirkin’s work.

2. Let {H} is a set of subsets of some finite set M . Suppose that we in-
troduce a m,; function for each set Hc= M of its elements as arguments.
Below by the collection {TCH} we entitle a system of weights on the set H.

The main supposition concerning the weight systems {{ Ty }} is as follows:

p.1 The weight n,,(a) of the element o € H is a real number.

p-2 Following dependencies inhere between different weight systems

for different subsets of the set M: for each element a € H and
each B e H\ a yields that n,, (B) < m, (o).

* Tt seems for the author that using “credentials” instead of “weights” suits better for the
purposes of disclosing connections between all issues discussed in current investiga-
tion in contrast to what was the similar purpose in the past.
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In other words, following p.2, the requirement is that a removal of an
arbitrary element o from a set H results in a new weight system {nH\a}
and the effect of the removed element a on the weights within the re-
maining part H\ o is only towards the direction of a decrease. We ex-
plain these two conditions by examples from the graph theory, although
there are examples from other jurisdictions, however less convenient for a
short discussion. Let consider non-oriented graphs, i.e. graphs with the
property when a relation of a vertex X to y implies a reverse relation of
vertex y to x.

Example 1. 3 Let M is a vertex set of a graph G. We define a weight
system {m,} on each subset of vertexes H as a collection of numbers
{nH(oc)}, where the number w,(a) is equal to the number of vertexes in

H related to the vertex o. The truthfulness of the pp. 1 and 2 is easily
checked, if one only remembers to recall that together with the removal of
a vertex o all connected to it edges have to be removed concurrently.

Example 2. * Let M is a set of edges in a graph G or the set of pairs of
vertexes related by the graph G . We define a weight system { 7, } on arbi-

trary subset H of edges in the graph G as a collection of numbers

3 Another example, Y. Kempner, B. Mirkin and I. Muchnik, Monotone Linkage Cluster-
ing and Quasi-Convex Set Functions, Appl. Math. Letters, 1997, v. 10, issue no. 4, pp.
19-24; B. Mirkin and I. Muchnik, Layered Clusters of Tightness Set Functions, Applied
Mathematics Letters, 2002, v. 15, issue no. 2, pp. 147-151.
http://www.datalaundering.dk/download/kmm.pdf,
http://www.datalaundering.dk/download/mm012.pdf

¢ Yet another examples, E.N. Kuznetsov, I.B. Muchnik, Moscow. Analysis of the Distri-
bution Functions in an Organization, Automation and Remote Control,
http://lwww.datalaundering.dk/download/organiza.pdf, Plenum Publishing Corporation,
1982, pp. 1325-1332; R. Kuusik, The Super-Fast Algorithm of Hierarchical Clustering
and The Theory of Monotonic Systems, Data Processing, Problems of Programming,
Transactions of Tallinn Technical University, 1993, No. 734, pp. 37-61; ].E. Mullat, 1995,
“A Fast Algorithm for Finding Matching Responses in a Survey Data Table,” Mathe-
matical Social Sciences 30, 195 — 205; A. V. Genkin (Moscow), I. B. Muchnik (Boston),
Fixed Approach to Clustering, Journal of Classification, Springer, 1993, 10, pp. 219-240,
http://www.datalaundering.dk/download/fixed.pdf .
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{TcH (oc)}, where aoe H and m,(a) is a number of triangles in the set of
edges H, containing the edge o.. The number 7, (a) is equal to the num-

ber of those vertexes on which the set H resides such, that if X is a
pointed vertex and the edge o =[b,e], then it ensues that [b,x]e H and
[e, X] eH.

In the examples, we have exploited the fact, that a graph is a topological
object from one side and a binary relation from the other side. Let now

consider the following set function
f(H) = min,_, 7, (o), 1)

where H c M. We suggest below a principle, valid for the subset /, on
which the global maximum of a type (1) function is reached. We formulate
this principle in terms of some sequences of the set M elements and the
sequences of the subsets of the same set M .

Let Ez{(xo,(x“...,ocH} is a sequence of elements of the set M and
k= ‘M‘ We define using the sequence o a sequence of sets

H(®)={H,,H,,...H, ,}, where H,=M and H,, =H, \a,.

Definition 1. We call a sequence of elements a from the set M a defin-
ing sequence, if in the sequence of sets H(@) there exists a sub sequence

G ={G,,G,,...,G, } such that:

1°. The weight m, (o) of an arbitrary element, belonging to G, but
not belonging to G ,,, is strictly less than f(G,,);

2°  In G, there do not exists such a strict subset L that f(G,) <F(L).

Definition 2. We call a subset H of the set M a definable, if there exists
a defining sequence such that H=G, .
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Below, we simply refer to the notification { nH} as a weight system with

respect to the set H.
Theorem. On the definable set H the function f(H) reaches its global

maximum. The definable set is unique. All sets, where the global maxi-
mum has been reached, lie within the definable set.

Proof. Let H is a definable set. Assume, that there exists L. such that
f(H) <F(L). Suppose that L\H = . 5 If not, then we have just to proof

the uniqueness of H, what we will accomplish below. Let H, is the small-
est from the sets H, (1=0,1,...,k—1), which include in it the set L\H.

From this fact one can easily conclude, that there exists an element /€L
such, that /e H , but /¢ H_ . Moreover, in combination with L\ H # <

the last conclusion ensues t < p. Inequality t <p disposes to an existence

t+1°

of at least one a subset in the sequence of sets G such, that

my,, (0) <f(G;)) (2)
and j>t+1.Since /¢ H ,, but G,cH , then /¢G,. Thus, the inequal-
ity

f(G)) <f(G,) )

is valid as a consequence of the property 2° for the defining sequence.

Now, let meL and the weight w, (m) is at the minimum in weight
system with the respect to the set L. Inequalities (2) and (3) allow us to
conclude, that m, (1) <= (m). Above we selected H, on the condition
that L < H,. Hereby, recalling the main property p.2 of the weight system
(the removal of elements), it is easily to establish that =, (L) <7, (/), i.e.
in the weight system with the respect to the set L, there exists a weight,

which is strictly less than the minimal. We came to a contradiction and by
this, we have proved that on H the global maximum has been reached.

> Here J symbolizes an empty set.
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Further, all such sets, different from H, where the global maximum is
likewise reached, might really be located within H. It remains to be
proved the uniqueness of the definable set. In connection of what we
proved above, one might suppose that a definable set H' is located within
H, however, proceeding with the line of reasoning towards H' similar to
those we proposed above for L, we conclude, that Hc H'. =

Corollary. Let {R} is a system of sets, where the function of type (1)
reaches its global maximum. Then, if H, G{R} and H, e{R} , then

H, UH, € {R}.

Proof. Following the p.2 (the main property) f(H,) <f(H, UH,), but
in addition f(H, UH,) < f(H,), consequently H, UH, € {R}. ®

Below we introduce an actual algorithm for constructing the defining
sequences of elements of a set M. For the availability of the algorithm is
exposed in the form of a block-scheme similar to some extent of a com-
puter program.

2. ALGORITHM ¢

a.l. Let the set R =M and sequences & and B 7 be empty sets in the
beginning, and let the index i=0.

a.2. Find an element p at the least weight with the respect to the set
R, record the value A =m,(1) and constitute o =a,B,u and

thereafter B =J.

a.3. Exclude the element p from the set R and take into account the
influence of the removed element 1€ R on remaining elements,
i.e. recalculate all values m,,, () forall Be R\ p.

¢ Further developments, see Muchnik, I., and Shvartser, L., 1990, "Maximization of gen-
eralized characteristics of functions of monotone systems," Automation and Remote
Control, 51, 1562-1572, http://www.datalaundering.dk/download/maxgench.pdf.

7 Hereby B ={B,,Bys-sB;see}
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a.4. In case, that among the remaining elements there exist such vy,
that
T (V) < A 4)
compose a sequence from those elements ?z{y1,y2,...,ys}and
substitute B = B,y .
a.5. Substitute the set R=R\p and the element pu=

the a.3 in case the element B, is the element for the sequence B

..1- Return to
increasing in this moment the index 1 by one.

a.6. In case, when the sequence @ has utilized the whole set M, the
construction is finished. Otherwise, return to a.2 initializing first

i=0.

Let us prove that the sequence a just constructed by the proposed al-
gorithm is defining. We consider the sequence H(a) and let one selects in
the role of the sequence G those sets, which start by the element p found
at the moment the algorithm is crossing the step a.2. The fact of crossing
the a.2 of the algorithm guarantees, that the condition (4) is not valid be-
fore the cross was occurred, and the element 3., is not in the sequence 3
at this stage. The above guarantees as well the condition 1° fulfillment for
the defining sequences. Suppose, that the condition 2° in the definition 1

do not hold, i.e. in the last set G , in the sequence G, there exists such a
subset L, that f(G,)<f(L). Let us consider the sequence B, which is

generated at the last crossing through the a.2 of the above-described algo-
rithm and let A symbolize the highest value among all such A . One has to
conclude, that A b < f(G p), and, from the supposition of an existence of a
set L, we come to the inequality A <f(L). By the construction, the se-

quence o and together with the sequence B (both of them), which is gen-
erated at last crossing though the a.2 of the algorithm has utilized all ele-
ments in M. Consequently, we can consider a set of elements K in the
sequence B, which start from the first confronted element ¢ € L, where
L < K. On the basis justified above, we have m, (/) =2 and, recalling the
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main property of the weight system p.2 (the removal of elements), we con-
clude moreover that 7, (/) <A . We reached to a contradiction and by that

we have proved the property 2° of the definition 1 for the sequence o . On
that account, the construction of defining sequences is possible by the
pointed above algorithm.

We emphasize the necessity of concretizing the notion of weight system
with the respect to a subset of a given finite set for solving some of the pat-
tern recognition problems, what should be the subject for further investi-
gation.

In conclusion, we will point out, that the construction of defining se-
quences has been realized in practice on a computer for one problem in
graph theory, related to an extraction of “almost totally connected” sub-
graphs in a given graph. The number of edges in such graphs has been
around 10
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" In his work “Cores of Convex Games” Shapley investigated a class of
n -person’s games with special convex (supermodular) property, Interna-
tional Journal of Game Theory, Vol. 1, 1971, pp. 11-26. When writing cur-
rent paper, in that time in the past, the author was not familiar with this
work and could not predict the close connection between the basic
monotonicity property pp.1-2, see above, and that of supermodular char-
acteristics functions in convex games induce the same property upon mar-
ginal utilities. We are going to explain the connection. We will conse-
quently do it in Shapley’s own words to make the idea crystal clear.

The core of an n -person game is the set of feasible outcomes that cannot be im-
proved upon by any coalition of players. A convex game is one that is based on a
convex set function; intuitively this means that the incentives for joining a coali-
tion increase as the coalition grows, so that one might expect a ‘snowballing” or
‘band-wagon’ effect when the game is played cooperatively...,” p.11... “In this
paper,” in the Shapleys’ paper “a game is a function v from lower case ring N
to the real numbers, satisfying v(J) =0.

It is supperadditive if

v(S)+v(T)<v(SuT),al S,TeN, with SNT =O. It is convex if
v(iS)+v(T)<v(SUT)+v(SNT),all S;TeN.”p.12.
“In the standard application in game theory the elements of N are ‘players’,
the elements of N are ‘coalitions’, and v(S), called ‘characteristic function’,
gives for each coalition the best payoff it can achieve without help from other
players.

Supperadditivity arises naturally in this interpretation, but convexity is an-
other matter. For example, in voting situation S and T, but not SN'T , might
be winning coalitions, causing” convexity “to fail. To see what convexity does
entail, regard the function m:

m(S,T) =v(SUT)—-v(S)—v(T)
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as defining the ‘incentive to merge” between disjoint coalitions S and T . Then
it is a simple exercise to verify that” convexity “is equivalent to the assertion
that m(S,T) is nondecreasing in each variable — whence the ‘snowballing” or

‘band wagon’ effect mentioned in the introduction.

Another condition that is equivalent to” convexity “ (provided N is finite) is
to require that

v(SU{iH—v(S) < wW(Tu{ip)-v(T),

for all individuals i € N and all Sc T < N \{i}. This express a sort of in-
creasing marginal utility for coalition membership, and is analogous to the ‘in-
creasing returns to scale’ associated with convex production functions in eco-
nomics.” p.13

We return now back from the “expedition” into Shapleys” work and make
some comments. The latter condition, which is equivalent to convexity, is
an exact, we repeat it once again, an exact utilization of our basic
monotonicity property pp.1-2. Set functions of this type are also known in
the literature as “suppermodular”. As it turns out now the author knew
such functions. To the knowledge of the author Cherenin was first who
introduced functions of this type already in 1948. Nemhauser et al., also
used v(S)+Vv(T)=2v(SUT)+Vv(SNT) but an inverse property intro-
duced in 1978 for computational optimization problems in “An Analysis
of Approximation for Maximizing Submodular Set Functions”, Mathe-
matical Programming 14, 1978, 265-294. Shapley also notes the latter in-
verse property in connection with rank function of a matroid known as
“submodular” or “lower semi-modular. Besides, in Nemhauser et al. pa-

per the reader may find the proof of the conditions

v(S)+ v(T) < v(SUT)+v(SNT) and
v(SU{ip) - v(S) < V(T U {i})— v(T) equivalency.
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However, the connection between the convex games and the
monotonicity property pp.1-2 is invisible. Only recently Genkin and
Muchnik pointed out (not in the connection with game theoretical models,
but actually in connection with the problems of object classification, see
“Submodular Set Functions and Monotone Systems in Aggregation Prob-
lems LII,” Translated from Automat. Telemekhanika:

http://www.datalaundering.dk/download/submod01.pdf,
http://www.datalaundering.dk/download/submod02.pdf ,

No.5, pp.135-148, © 1987 0005-1179/87/4805-0679, Plenum Publishing Cor-
poration), that the functions family n, (o) = v(H) — v(H \ { oc}) represent a
derivatives of suppermodular set functions in the form just exhibited in
Shapleys” work.

SUMMARIZING In convex games, following the theory developed in this
work from 1971, one can always find a coalition, where it members will be
awarded individually at least by some maximum payoff of guaranteed
marginal utility, see the Theorem. We call this coalition the largest kernel
(nuclei) or the definable set. A good example and its like, is the Example 1.
Here, in economic terms, the marginal utility highlights the number of
direct dealers with the player i€S (number of direct contacts, buyers,
sellers, direct suppliers, etc.). On the contrary, the Example 2 is not its like
and goes beyond the Shapleys” Convex Game idea.
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TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED
TPYIH TAJUIMHCKOTO DOJMTEXHWYECKOr'O0 JHCTUTYTA

CEPHA A ® 313 I971

YIK 51:65,012,122

H.3. Mymwiar

OB OIHOM IIPYHIMOIE MAKCYMYMA IiJi1 HEKOTOPHX
OYHRIMT MHOEECTB

I. Beemenme. B padoTe paccMaTpHEBAeTCS 3852492 HAXOE-
IeHHA SKcTpemyMa (yHKIEE, ompeleJeHHOR Ha BCceX HOIMHOXECT-
Bax JAHHOTO KOHEYHOT'o MHOXecTBa. OnmcaHHHZ ajxropdT™ MOCT-
POGHMA SKCTDPEMAJBHHX MHORECTB HCIOJB30BANCH A pemeHHAsn
HEKOTODHX 3a1aY RJIACCHPHEAIMA OCHLERTOB C CYMECTBEHHHM IpH-—
BIeUeHNeM ammapara oxHoporHux memeft Mapxoma. IlpessioxeHHAS
B 0o0meM BHIE KOHCTPYKIAA [IO3BOJSET peNaTh TaKkxe onpelneeH-
HHe 3araud Ha rpafax, Hampumep, BHABJAEHWe "CBA3HHX" B He-
KOTODOM CMHCJIE IOIMHOXECTB BEpIHMH 3afaHHoro rpaja. Teope-
THYeCKasd OCHOBA KOHCTPYRIMZ JOPMyJMpYyeTCA B BANE CHEIHANb-
HHX OpaBmi oTdopa HmOCJeNoBaTeNbHOCTE! MOIMHOXECTB JAHHOI'O
KOHEYHOI'O MHOXECTBAa H IocJjeloBaTeJbHocTe# ero 9JIEMEHTOB,
pe3yIbTaTOM KOTODHX ABJIACTCHA BHIEJIECHHEC SKCTPEMAJBHHX MHO-
XeCTB.

3azadH HONOGHOTO THIA HOCAT KOMOHMHATOPHHE XapaxkrTep H
OTHOCATCA CKOpee BCET0 K JHECKDPETHOMY IpOrpaMMrpoBaHmp. Om-
pereNieHHHR KiIacc sanay HA KOHEUHHX MHOKSCTBAX YCHEMHO pe-
maeTcs B padorax UYepesmHa [I,2] m Uepemmna ® XauaTypoea (3,
4]. B ykasaHEHX padoTax DACCMATpMBADTCA (QYHKINE, yIOBJIE-
TBODAKIHE YCJIOBED, KOTOPOE 3aKIWYAETCA B TOM, TTO,ECHH Wy
E W, IBa IOIMHOXECTBS JAHHOTO KOHEYHOTO MHOXECTBA, TO

fle)+ flwa) = flow,Uwe) + flw,nwy.

9TO yCJIOBME B HEKOTOPOR CTEmeHH OTpaxaeT BHIYRJIOCTh (yHK-
mm f.



OrpefeJAXMEM MOMEHTOM DACCMOTDEHHOTO B CTAThe RJAacCa
Gymamit ABIAETCA OPEIIOIOKSHHE O CYNECTBOBAHAE IVIT RaxIoro
9JICMEHTa IAHHOTO KOHEYHOrO MHOXECTBA WUCEN, XADAKTEPE3YD-
OFX CTENEeHb BXOXICHMA SJIEMEHTA B HOIMHOEECTBO KOHEYHOT'O
MHOEECTBA & YIOBIETBODANINEX YCJIOBASM HYHKTOB I,2 (CM. Hu-
xe).

B cBasz ¢ panmo#t padoroft clremyeT oOCpaTUThE BHHMaHHNe
Tarxe Ha padoTy Mupkmma [S5]. B [5] cramurcs omHa sagasa
RJIacCMprERanuEz, B KOTOPO# HaXOXIeHHe ONTHMAIBHOR Raaccufm—
Ranue CBEJEHO K HAXORICHMD CIENMANBHOX pacKpacKH HEOpHEeH-
THPOBAHHOT'O rpada. OnTmManbHAA RIACCEIMEAmEA B [5] Xapag-
Tepe3yeTca (axTHYECRE 3HAYCHHEM MaKCHEMyMA HEKOTOpo# fyH-
Rpmn, comnazamme# mo gopme ¢ oupereseHmeM (1), omHakoB (I)
BRIQIHBACTCA HHOE COIepEaHAe, IOCKOMBRY B ONpeleeHHH dyn-
KW B HacroAme# paGore He PACCMATPUBADTCA MHOKECTEA pas-
OueHHMit IAHHOT'O KOHEYHOTO MHORECTBA HA Hellepecekarmuecs
KIACCH, Kak 9TO nenaeTcd B padoTe Mupkuma.

2, Iycrs {H} = MHOXeCTBO MOJMHOXECTB HEKOTODOT'O KO-
HEYHOro MHOZecTBa TN . IIpeImONOKMM, YTO LA KAXNOTO MHO~
XecTBa H < T  3zamana QyHROEA T, ero ameMeEToB. Hige

MH HA3HBAeM COBOKYIHOCTB {TCH} cucTeMoil BECOB Ha MHOEeCT—
Be H . OCHOBHME NPeIUONOXEHWA OTHOCHTENBHO CHCTEM BECOB
{{ T, ]} caIeyDuZe ;

Iyekr I. Bec T, («) SJIeMEHTa « eH JefcTBATENEHOE
eI,

[yrer 2. CymecTByeT Cleiymmas 3aBHCEMOCTE MeXIy CHC—
TeéMaM# BECOB Das/MYHHX MNOIMHOXECTB MHOXECTBa 7N, ¢ s
JOOOTO BJIEMEHTA o &K B JRGOTO peH|e  BEmoONHAETCA

Tua(p) s T, (B).

Muevn cnoBamm, myHRT 2 TpedyeT, 9TOCH B pesyabrare yianre—
HI JIOOOI'O 3JIEMEHTa M3 MHOXeCTBa H Ha ocTaBmeca uwacTm
Hlo 00pasoBajiach OH HOBAg CHCTEMA BECOB {THM] , IIpmdaem

yIaneHHHE SIEMEHT o ORa3HBAJI GH BJIMAHEE Ha Beca TOJIBKO B
CTOPOHY yMeHbWleHVsA. [IOACHMM BT 1IBa IOpeIIONCKeHET opuMepa-—
MI I3 TeopuH rpajoB, XOTA CYmMECTBYLT OpEMEpH ¥ U3  [PYTHUX



oGnacrell, OMHARO MEeHee IOCTYIHHE A KPATKOrO HM3JOXeHHA.Pac-
CMATDHBAEM HEODHEHTHDOBAHHHE IpafH, TO €CThH eCJH CyleCTBYeT
OTHOMEHHE BEPWHMHH X K Yy , TO H OCpaTHO BepNEHA Yy HAXOIMT-
CA B OTHOWEHAH K X .

[pemep I. IycTs MM - MHOReCcTBO BepmmH rpada G . Ompemensa—
€M CHCTEeMy BeCcoB {xH} HA KaxIOM DOJMHORECTBE BepmEH H B
BHIe COBOKYTIHOCTH YHCeJ {TL'H(&)], rge oeH ®m TWyu(s)- HYHCIO

BepIMH MHOEReCTBa H., HaxomaAumxcsg B oTHomeHmu G ¢ BepmuHOR

o . Jlerko mpOBEpATH IOCTOBEDHOCTH IYHKTOB 1 M 2, ecim
BCIOOMHMTH, YTO BMeCTe C BEepIMHOE o HYXHO yIAJIHTh X Bce eit
HHITANIEHTHHe pelpa rpada.

Opmvep 2. IycTe T — MHOERecTBO pedep rpafa G (mwm MHOXe-
CTBO IAp BepIMH, HAXOIANMXCA B OTHomeHm: G ). OmpexeJaem cu—
CcTeMy BECOB {WH} Ha KaROoM IOIMHOEXeCTBe pedep H rpada 6

B BHIE COBOKYHHOCTH YHACEJ {EH(dJ} , TIe weH,a T, () - amc~
JIO TPEYTOJHLHAKOB MHOXECTBa DeGep, COIEpPRAlMX DPedpo o «

T, (&) — 9UCNO BEepNEH M3 MHOXECTBA BEDIHEH, HA KOTODOM [OCT-
POEHO MHOReCTBO H TaKmX, 4TO €CJH X - YKasaHHAd BepIMHA H
pedpo « =[b,e], To [b,x]e H = [e,x]eH.

B mpuBeneHHHX OpyMepax MH HCHOJB30BANIE TOT dakT,  d4TO
rpadp, ¢ omHOE CTODOHH, TONOJOTrMYECKM# OO0BEKT, a ¢ Ipyrof, -
CumHapHOE OTHOmEHHE.

PaccMoTpmM cieymuyw QYHKIED TOIMHOXECTB

F(H) = minTT, (&), | (1)
A EH

roe Hec TU.

Himxe MH nOpensaracM OpPHHIMAI, KOTODHR BHIOJMHAETCA IJIA MHO-
xectBa H Takoro, uTo Ha H [mOCTHTAETCA IVIOCAJIBHHIE MAKCEMYM
fyurmpm Buga (I). Ipmeman dopMympyeTcs Ha SA3HKE HEROTODHX
mocJenoBaTeNbHOCTEl BEMEHTOB MHOEeCTBa Tl I IoCJIe OBa~-
TesbHOCTER mOmMHOReCTB MHORECcTBa 7TIL.

Ilycts % ={°‘oa°\u*'w°"u_4}
1

MOCJIeOBATENLHOCTE BJIEMEETOB MHOKeCTBA TN M Kk =M}
OmpegesfeM MO o [OOCJEAOBATENHHOCTH MHOXECTB

-

. R(E)Z{HO7H4’...,HK“4},’



Trne
H°=m H-+‘=H'le~'b.

) L

Onpenenenme I. HasoBem IOCJIENOBATENHBHOCTH BJIEMEHTOB &

mEoRecTBa U ompemendmmeif, eciE B mOCJeIOBATENBHOCTHE MHO-—
zecTBa H(&) cymecTByeT HOIIOCJENOBATENBHOCTD

G ={G°,G,,...,GP
Tarag, 9TO
I° Bec Ty, (i) JNGOTO SJEMEHTa M3 IIOCJIeLOBATENb-
HOCTH o , NpUEAfTesamero Gj, HO He OPEHALIEEANETO Gj,,

CTDOTO MeHBIe f(GJH);

2° B GP HE CymeCTBYeT TaKor'o COCCTBEHHOI'O MOJMHOEES-
crBa L , 49TOOH BHIOOJHAJNIOCH YCJOBHE

fep=f L)

Ounpenenerme 2. lomvmosscTso H MHORecTBa TIU HazoBeM
ompeneJAMHM, €CJX CYmeCTBYeT olpeleJdnuas OCJIEOBATENb~
HOCTH Takad, 4ro H= GP'

Jagee, payu ynodcTBa, MH pacHAPpPOBHBAEM 00G03H&YEeHNe
{WH} KaK CHCTeMy BECOB OTHOCHTEJBHO MHOXecTBa H .

Teopema. Ha ompezeseHHOM MHOXECTBE H gymama f(H) mo-
CTHTAeT IVIOCAJBHOTO MAKCEMyMa. CymecTByeT eIAHCTBEHHOE Ol-
‘PelieymMOe MHOXECTBO. Bce MHOXeCTBa, HA KOTODHX IOCTHI@eT-

cA TVIOGAJbHHE MAKCWMyM, JEXaT BHYTDH ONPENEJMMOI0 MHOXECT-—
BA.

JlorazaTesabcTBO. IIycTs H - ompezesmmoe MHOXeCTBO.  Jo—
mycTEM, 9To cymecTByer L Taroe, wro f(H) < f(L). Ipemmoso-
xmM, gro- L|H $+ ¢. B mpoTmBHOM Cayduse ocTaHETCA  JLOKa-
3aTh JUIb €IAHCTBEHHOCTh H , YTO OyLEeT OCYmLeCTBIEHO HHXe.
llycts H, HamMeHbHee H3 MHOXECTB Hy (L=0,4,...,k-), RoTopHe
BRIp49awT L|H. U3 3roro garra Jslerko yCTaHOBATE, 9TO Cylue-
CTByeT aieMeHT Lel Tamo#t, wro leHy, HO L¢H,,, § .
Bosee Toro, BciencTBHe L|H#@ t<p. HepaBencTBo t<p BIe-

4eT CymecTBOBaHAEe XOTA GH OFHOI'O MHOXECTBA B nocJjenopa-
TEJBFHOCTH MHOXeCTB ( Ta&KOrO, 9TO

ere(L) < £(G;) (2)

1 37eCh ¢' 0003HaYaeT OyCcTOe MHOXECTBO.
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B j>t+t. Takmak L¢H, HO Gj S Hy,, 0 L¢G;
BHAUMT, CHDABEIMBO HEPABEHCTBO

fla) < £(g,), | (3)

BHTEKammee Kak CJeNCTBHe E3 cBoftcrma I° onpeneysome mo—
cJie IOBATEJBbHOCTH.

IycTs Temepp Mel ® Bec T (M) MIHEMAIeH B cHCTeMe
BECOB OTHOCHTEJHHO HOmMHOXecTBa L. HepamerctBa () m (3)
MO3BOJLINT 3aRDITH, 4T0 Ty, (L)<T(m). Bume H; BHOUpaiOCH
TakmM, 9410 L c H;, Torza, BCOOMMHAS OCHOBHOE cBoficTBO
IYHKTa < CHCTEeM BeCOB (yIaleHHe SJIEMEHTOB), JEIKO YCTaHO-
BETH, 9T0 T (L) < Ty,(l)y T.e. B cECTEME BECOB OTHOCHTEJNH—

HO MHOXeCTBa L CyuecCTByeT BeC,KOTODHI MeHHIEe MUHUMAJBHOT'O.Mu
ODHIUIE K IPOTHBODPEYMD X TeM CaMHM JIOKasaiM, 4ro Ha H mocrm-
raeTcAd IMOGANbHHI MAXCHMyM X 9TO MHOXECTBA, OTJMUHHE OT H ,
HA KOTODHX TOXe IOCTHTAeTCA TJIOGANLHHA MAKCHEMyM, MOTYT pas-
Be JIMIbF HAXOIMTHCA BHyTpum H. Ham ocraeTca nokasaTh, YTO Cy-
MEeCTByeT eIMHCTBEHHOE ONpeNeJEMOe MHOEEeCTBO. BCJeICTBHEE IO-
KA3aHHOTO BHIE MOXHO JIMIL IIPEIIIOJORATH, YTO HEKOTOpPOE Ompe-
JeNEMOe MHOXECTBO H' BRIpUeHo B H , OfHako, MpoBeld  pac—
CYXIEHES OTHOCHATENHHO H , aHAJOIWYHHE IPOBEICHHHM BHIE IJIA
L , sarum4aeM, 9ro HcH' u T.1.

CaencrBre. IllycTs {R} - CHCTeMa MHOXeCTB, H3a KOTODHX
fyurnms (1) mocTEraeT rioGaJbHOTO MakcmMyma. Torna, ecJym
Hoe{R} @ H,e{R}, Tom Hu Hoe{R}.

JorazaresscTBo, Ilo myErTy 2 (ocHoBHOe cBoftcTBO) f(Hi) <

< f(HUH), mHO m f(H,UH,) < f(H,) , uro BHTeRaeT m3 mo-
kasaHHO# TeopeMH, cJeloBaTEeNHHO,
HU Hy e (R}

Huze MH OpEBOLMM KOHKPETHHE alIrOPETM NOCTPOSHHA OINpe-—
IeJSIX mociegoBaTeasHocTet ajeMeETOB MHOZecTBa JU. Pamm
yIOGCTBa H3JOXEHHA AJTIODUTM OpPUBOIMTCA B dopme, KoTopas
CXOoImHa ¢ OJok-cxemoil HexoTopo#l mporpammu mis 3BM.

3. AsmropurM.

I. IojaraeM MHOFReCTBO R =71 1ocaenoBaTeJbHOCTHE & n2
2¥mac [ ={p, Bayeorbiee )
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P OycTHM#, WHEEKC L=0.

II. Haxommm sieMEHT u C HAWMEHBIMM BECOM OTHOCHTE/b-
HO MHOXecTBa R , 3amoMMHaeM 3HauYeHme A =T (u) € [OIa~
raeM IOCJHENOBATENHHOCTE & =&, [, 4 3aTeM p = ¢.

ITI. Vcruwp4aeM 3JEeMEHT o M3 MHOXeCTBA R I yUATHBAEM
BIHAHAE H3BATOIO JJIEMEHT2 M € R HA OCTANbHHE, T.€. BHIAC-
JiieM BCe BeJHYIHHH TRUJ(M LIS [:eRUJ-

IY. B ciydae, ecau CymeCTBYDT CpeI¥ OCTABUMXCA 3JIEMEH-
TH Tak#Ze, 49TO

'RMF(X) s A, (4)

TO 06pasyeM MOCJAeN0BATeNbHOCT: YRA3AHHHX 3JIEMEHTOB

X = {Ver
H DONOKEM D = f,Y-

Y. Honommv MHOXecTBO R=R|H B sjemenT A = fP;,4 X BO3-
BpamaeMcss k OyHETY III B ciyd9ae, KOrZa BJeMeHT [b;,, oIpe-
IeJNeH I MOCNeNOBATEJNHHOCTH [ , YBEJMIMBASA ODK 9TOM HH-
IEeKC | Ha eIFHMIY.

YI. B caydae, korma OOCHENOBATEJILHOCTh & HCUepnana
Bce MHOEeCcTBO TN , IOCTpOEHHE 3AaKOHYEHO, B IOPOTHBHOM CJIY-
Jae Bo3BpamaeMmcsa XK OyHKRTy 1I, mosarasd mHpekc L =C.

JlorageMm, 49TO OOCTPOEHHasd C IOMONMBD H3JIOREHHOT'O &Iro—
DETMA MOCJENOBATENBHOCTE  omOpenesdmmad. PaccmoTpmv mo-
CNeNoBATeNLHOCTE MHOXECTB H(X) ¥ B KadeCTBe IOIIOCIENO—
BATENLHOCTE O  BHOEDEM Te MHOXECTBA, KOTODHE HAYMHADTCA
C BJEMEHTOB M , HallleHHHX IpH OPOXORNEHWM HyHKTa II  Ha-
CTOANEro aaropurMa. M3 Toro paxra, uro 3a G j BHOHpamTCH
MHOEECTBa M3 mocJjenoBareasHocTE H(X) , o6pasopammedica mpu
OPOXOXIEeHMN nyHKTa 1I, cienyeT, 4YTO MpeIBAPHUTENBHO HE BH-
MOJHEHO ycJaoBme (4) U SJeMeHT (>, He omperneseH. /3 BH-
MeckZ3eHHOTO CJeLnyeT CBoHcTBO I° ompelesAnge#  mocJienoBa-
TEJLNOCTH, HOoUycTEM, 4TO CBOMCTBO 2 ompeneneHud I He  BH-
ToJMHARTCA, T.e. b I0CJHeNHeM MHOXECTRE Gp HocJIe NOBATEJIBHOC~
TE 3 cylecTByeT Takoe momvHomectso L, uro f(Gp) < f(L).
PacemoTpum NocnegoBaTeNbHOCTb [> , koropad odpasyeTcd Ha-
YAHBA ¢ NOCIeAHEero npoxoxienns IyHKTa [l OMMCAHHOTO  BHIE

AMTOPHTME, B CCU3FEYIM depe3 A P yauGoJabllee K3 BCeX 3HAYe-
it A

42



Vcxona ®Ws IONymeHWA CYmeCTBOBAHMA MHOXECTBA L X 3aMmevas,
aro Ay = f(G,), mpmxomm x HepaBeHCTBY A, < f(L).

Ilo DOCTPOEHMD MOCJENOBATEIBHOCTE [> OHA JOJEHA HCYepIATH
BCe MHOZeCTBO 7l BMecTe C MOCJELOBATEJBHOCTED & , oOpa-
30BaBmeiicd K MOMEHTY NOCJEIHEero OPOXOXNEHAT B  QiTOpHTME
gepes myHKT II., CremoBaTesbHO, MOXHO DACCMOTPETh MHOXECT—
BO SJMEGMEHTOB K HOCJeNOBATENBHOCTH f , 'BAUMHANMEECH  C
oepBoro BCTpeTuBmerocd ajemeHtra Lel , rme LcK. Ha ocuo-
BaHMZ BHUECKA3AHHOro moaydaeM T, (L)=Np m, Bemommmas oc-
HOBHO€ CBOMCTBO CHCTEM BECOB IyHKTa 2 (yIaneHHe  SAEMeH-
TOB), MOEEM SaKIDWTH, UTO mojaBHo T (L)< Xp. Mu mpm-
V¥ K OPOTEBODETMD, X TEM CaMHM NoKasaum cBoiicTo 2° om-
penesenua I 14 mOCJENOBATENHHOCTE & . TakmM o6pasoM, mO-
CTPOEHME ONpeesIAKNAX IocJeIoBaTeNbHOCTER ocymecTBEMO ¢
IOMOMBD YKA3AHHOT'O BHIIE AJTOPUTMA.

B cBA3E ¢ BOSMOXHOCTHD IPEMEHEHHA SKCTPEMAJBHHX 33—
Jad Ha KOHEYHHX MHOXSCTBAX B DacCHO3HABAHEM OCDA30B XeJa-—
TeJIbHO KOHKDETH3HPOBATEH NMOHATHE CHCTEMH BECOB OTHOCHTEJBHO
DOIMHORECTBA 34IAHHOI'O KOHEYHOI'O MHOXECTBa, 4TO JOJEHO
COCTABUTEL HIpeIMeT JalbHekumx mccJemoBaHMt,

B 3aruapdeHme oTMeTHM, 9TO HOCTDOEGHHE OINpeIesIANiMX HO—
CJEeNOBATEJNBHOCTE! OHJIO OCYmMECTBJEHO HPAKTHIESCKH HA oBM
Iona omHoRt samaum B TeopEE rpadoB, CBA3AHHOR C  BHABICHHEEM
"IOCTATOYHO MONHHX" MOAIpafioB 34maHHOTO rpafa. MomEocTs
pedep rpaa cocramisia okoxo I0%,

ITerTepaTypa

I. B.II. Ye pe # u H. PemenHe HEKOTODHX KOMOHHATOD-
HHX 34729 ONTHMAJIHHOTO ILIAHHPOBAHAA METONOM HOCJEeNOBATENb—
HHX pacyeToB. MarepaymH K KoHPepeHIMM IO OMHTY H HEpCHEK-
THEBaM IIPEMEHEHNSI MATeMATHYeCKEX MeTozoB @ 9BM B miaHmpoBa-
Hm1, HoBocmGmpck, I962.

2. BJII. Te pe H u H. PeueHne HeKOTOPHX KOMGHHATOD—
HHX 347129 ONTEMAJBHOTO ILIGHAPOBAHUA METOMNOM MOCJEIOBATENb-
HHX pacueToB. Hay4dHo-MeTOIMIECKUe MATEDPHAJH 3KOHOM.-MAaTeM.
ceMmHapa, BHI.2 J3MM z Bl AH CCCP, M., I962.
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J.Mullat

On the maximum principle for some set functions

Summary

‘This article deals with the problem of f£inding extre-
mal points for the function given on all subsets of a
finite set. The construction method for the function “n
results in the separation of extremal sets. The main fea-
ture of the construction method is based on an assumption
that there exists a number set {WH(&)} for every element
o« , where H 1is a subset of the finite set and «eH.
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(Translated from Russian)
VAK 519.217
M. Myaaart, Copenhagen, Denmark, mailto: mjoosep@gmail.com
OB OAHOM KAACCE ITOTI' A0 AIOIINMX LIETIEVT MAPKOBA

I. Mullat. UHEST NEELAVATE MARKOVI AHELATE KLASSIST
. Mullat. ON AN ABSORBING CLASS OF MARKOV CHAINS

In this note, we consider homogeneous Markov chains with a finite
number n of states and a discrete time.

Our goal is to establish the relations between the elements of funda-
mental matrix denoting an absorbing chain (see the definition. [1], p. 66),
on the condition that certain transitions per time unit have been declared
as prohibited. These relations are used in adjusting the corresponding
elements without imposing this restriction. It should be noted that similar
relations are encountered in compositions pertaining to the first and the
last occurrence of some Markov chain states (see [2], p. 75). However, in
spite of this obvious resemblance, such relations have not yet been consid-
ered in the literature.

Given without proof, the relations given in the form of theorems I-IV al-
low making a case for implementation of a general principle of maximum
for some functions, defined on finite sets [3]. The foundation for the con-
struction scheme [3], in particular, is contingent upon requirements ap-
plied to the functions in the form of inequalities given as a result of this
research.
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Absorbing Chains

In developing an efficient algorithm at the computer center of the Tal-
linn University of Technology, the theorems I-IV served as a foundation
for finding solutions for some notable pattern recognition classification
problems. Application of the algorithm improved the solution quality and
speed with which problems were solved computationally, in comparison
with those achieved by currently used algorithms.

Usually, homogenous chain can be represented as a directed graph
whose vertices correspond to the state of the chain, whereby the arcs de-
note possible unit transitions from one state to another at any point in
time. In addition, when the transition probability p,; is zero, the arc

u= (i, J) is not depicted on the graph. On the other hand, any graph I' can
be represented in the form of a homogeneous chain attributing the arcs of
the chain by satisfying the relation of the conditional probabilities. These
chains are referred to as chains associated with the graph I".

Let U(G) be the set of arcs of the graph G, and V(G) the set of verti-

ces. A graph I' can hence be produced by adding to the set of vertices
V(G) a vertex 0, which is in turn connected to any vertex in V(G) by an

arc leading into 0.

Consider the following homogeneous Markov chain associated with the
graph G:

1)  There exists a unique absorbing state 0 ¢ V(G);

2)  The probability of transition from i to j, 1,je V(G), p,; =p,, if
the arc (i,j) € U(G), and p, ; =0 otherwise;

3)  The probability of transition from the state i€ V(G) to the ab-
sorbing state 0 is givenby p,, =1->"p; ;.

It can be easily to verified that all states of the chain, identified by the
vertices of the graph G, are irrevocable, whereby the designated Markov

chain belongs to a class of absorbing chains (see [1], p. 55).
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Here, the numbers p; refer to the parameters of the Markov chain asso-
ciated with the graph I". We further suppose that p, >0 for any je V(G)
and je V(G), and X ,'p,; <1 for all vertices i of the graph G. It can be
demonstrated that, for any graph G, we can find a set of numbers {p i }, for

which the given constraints are satisfied. Indeed, let k represent the
greatest number of nonzero elements in the rows of the fundamental ma-

trix corresponding to the vertices of the graph G, then 0<p, < %{ .

Moreover, let H denote an arbitrary subset of arcs of the graph G, i.e.
H c U(G). Here, p(H,1, },k) designates the probability of transition from

the state 1 to the state j in k units of time, on the condition that the tran-
sitions along the arcs of the subset H are prohibited during this period.
Owing to this restriction, the subset H denotes a prohibited set of arcs, all
of which are thus prohibited as well.

Let p(H,1,j,0) =6, ; (where §, ; represents the Kronecker’s symbol) and

p(H,i,j) =X p(H,i,jn).

Due to the existence of a Markov chain associated with the graph I' of

an absorbing state 0, the entire set V(G) is irrevocable (see [2], p. 45) and
the series (1) converges.

We use the Greek letters ,p,... to denote prohibited arcs of the graph
G, whereby a” refers to the vertex (state) from which the arc emerges,

and o is the vertex toward which the arc is pointing.

Theorem I'!?

(i) pHa",j) ,
T+p, -p(H,a" ,a")

E(H +a,1, J) = E(Hv i, J) —P,-

' By H + o we denote the set theoretical operation H U ot .
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Absorbing Chains
Theorem II

p(H+ai,0) p(H+a,a,j) |

p(H,i,j)=p(H+0o,i,j)+p _
p(H,1, j) = p( D+p, —p. p(Hoa)

Let us now consider Markov chains associated with undirected graphs.
Moreover, let all the parameters of the Markov chain defined above be
equal. Consequently, the chain is characterized by a single parameter

V=p,=p,, where 0<V<%{.

It can be observed that any edge a of the graph G belonging to the set
of edges E(G) can be considered as the union of two oppositely directed

arcs oo and B. In accordance with this observation, the subset of edges
H c E(G) can be regarded as a subset of arcs U(G).

Given this observation, we introduce the concept of prohibited edges,
whereby any set of edges shall be regarded as a prohibited subset of arcs.

To indicate the prohibited graph edges, we use Latin letters a,b,..., as

well as a",a” denoting the vertices connected by the edge a, whereby H
refers to the prohibited subset of edges E(H).

Theorem III
p(H+a,i, j) = p(H,i, j) -
{&Hmw»aHﬂ,ﬁﬂ_
+p(H,i,a")-p(H,a", )
-V -(1+V-5(H,a+,a’))—
_V{RymaquLwaﬁﬁﬂ,ayﬂ
+p(H,i,a")-p(H,a",j)-p(H,a",a")

[(1+V-1_)(H,a+,a‘)2 —V-E(H,a+,a+)-}_)(H,a‘,a‘))J

> This might be interpreted as a consequence of malfunctions in the communication line O .
3 This might be interpreted as improvement in traffic efficiency following a repair on the line OL .
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Theorem IV
p(H,i,))=p(H+a,i,j)+
p(H+a,i,a*)-p(H+a,a ,j)+
+p(H+a,i,a)-p(H+a,a’,j)|
+v- -(1—V-§(H+a,a+,a’))+

p(H+a,i,a*)-p(H+a,a",j)-p(H+a,a",a”)+
+v-

+p(H+a,i,a”)-p(H+a,a",j)-p(H+a,a",a")

l(1—v-1_)(H+a,a+,a‘)2 —V-1_)(H+a,a+,a+)-1;(H+a,a‘,a‘))J

Corollary. It follows directly from the type of dependency in the state-
ments of Theorems I-IV that the inequalities below are valid, for the case of
oriented and non-oriented graphs, respectively:

p(H+0o,i,j)<p(H,i,j)  p(H+a,i,j)<p(H,i,j), (i,j=1n).
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294 Liihivurimusi * Kparxue coobujenun

(kpusan 3). Ilpu Bbiumcaenun sxo-mmnyabca no dopmyaam (9) (14)
OpHHATEL 3HaveHusa ao = 1,12; o = 0,01; oy = 0,012; o= —350 n
B = 2,62.
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H. MYJJIAT

Ob OAHOM KJIACCE MOTJIOWAKIUHUX LENEH MAPKOBA

I MULLAT. UHEST NEELAVATE MARKOVI AHELATE KLASSIST
I. MULLAT. ON AN ABSORBING CLASS OF MARKOV CHAINS

B nacrosulefl samerse paccmaTpuBaloTcsa onuopoassie uend MapKopa ¢ KOueuHBIM
UHCJIOM COCTOSIHHIL N W JAHCKPEeTHHIM BpeMeHeM.

Ml cTaBUM CBOEH 1€/bi0 NOJYYNTh COOTHOUIEHHS, CBS3LIBAIOUIHE 3AEMEHTH dynna-
MCHTATbHON MaTpHusr norjowaoiieli uenu (onpegesenve cum. ['], ¢. 66), npu yeaosun,
4TO HEKOTOpPLIE Nepexobl 3a CAHHHUY BpeMedH OOLABARIOTCH 3aNPELIeHHBIMH, C COOTBET-
CTBYIOLUIMH 37EMeHTaMH Gea nawnoro orpauuends. Caeayer orMmeTHth, uTO nogoGHHE
COOTHOLIEHHA anaJoTHYHEl PA3JI0KECHHAM OTHOCHTEILHO MEPBOrO W NOCJAEAHEr0 AOCTHHEHHS
.HEKOTOpDrD COCTOAHHH MaproBckod uenu (em. [2], c. 75), omHaxo, HecMoTpa Ha HX oOye-
BHIHOE CXOACTBO, OO CHX MOP HHKEM HE NPHBOAHINCE.

YKasaHHble COOTHOLWEHHA, AaHiibie (3 JOKA3aTedbcTs B opMe TeopeM 1—4, nosao-
A510T KOHKPETHSHPOBaTb ONMH OOUHI MPHHUMT MaKCHMYMa [JIR HEKOTOPEIX hyHKILHIL,
OTPeNe/ICHHEIX Ha KOHeuHbIX MHOomecTBaX [?]. B uacTHOCTH, OCHOBOMOJATAIOUIHM MOMEH-
TOM KOHWCTpYKuMH B [3] sBasioTca TpeGoBaHisi, HajaraeMble Ha (YHKUMH B Bijie NpHBO-
AWMLIX HHME HepaBeHCTs.

Hcnonezoranne teopem |—4 sBHAOCH OCHOBON /1% CO3MAHHOrO B BHYHCAHTEJILHOM
ucntpe TanMMHCKOTO NOAMTEXHHYECKOTO MHCTHTYTAZ SOQEKTHBHOTO afropHTMa pelneHas
3ajauM KhaccH(MKaUMH B pacnosHaBaHiH o06pasoB. ANrOPHTM NO3BOJNJ NOBBICHTL Kaue-
CTBO H CKOPOCTh pellenHs 3afay wa 3BM no cpaBHenuio ¢ ynorpebascMuIMH B HacTosllss
BPEMS AJTOPHTMAMH.
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OGbLIUHO OJHOPOJHYIO IleNb MOMKHO NPeACTABHTL B BHIAE HANpaBJeHHOTO
rpacta, BepulHHAM KOTOPOTO COOTBETCTBYIOT COCTOSIHHMSI liend, a ayram —
RO3MOMKHBIE 3a eIHHHILY BpeMeHH Mepexojibl H3 OJHOrC COCTOAHMS B JpYy-
roe. B cayuae, ecin BepOATHOCTb Nepexofda p; j paBHa HyJlo, TO Ayra
1= (i,j) na rpade He usobpaxaerca. M1 naobopor, xaxoii-tu6o rpagp I
MOXHO H300pasHThb B BHIAE HEKOTOPOH OJHOPOAHCH IlenH, NPHIHCLIBASA
AVraM 9HCJa pj, j, VIOBAETBOPSIIOLIME COOTHOUIGHHSIM ISl YC/JOBHBIX Bepo-
siTHOCTeil. Mbl Ha3BIBAEM TAKHE LEmt accOUMMPOBAHHBIMM LensMu ¢ rpa-
(pom T.

[Mycts U(G) — mnuoxkectBo ayr rpada G u V(G) — MHOMKecTBO Bep-
wn. Odpasyem rpag I' nyrem nobGasiennsi Kk mMHoxmectBy V(G) pepun-
HEl 0, KOTOpasi B CBOIO Ouepelb coeliHeHa c JoGoi sepumnoit ua V(G)
Ayroii, seayuteit B 0.

Pacemorpum cnepyiomylo accounnposainyio ¢ rpagom I' onnopoauyio
MapPKOBCKYIO 1eNb:

1) cyuiecTByer eiHHCTBeHHOe Morvomiawimee cocroanue 0 e V(G);

2) BeposiTHocTh niepexopa M3 i B | (i,je= V(G)) pij=p; ecad iyra
(i,jy e U(G), u pi,; =0 B NpOTHBHOM Cayuae;

3) BeposiTHOCTL Nepexojia B norjollawollee coctosHHe 6 H3  COCTOAHHA

n
i=V(G) pie=I _IE Pit.
=1

Jlerko MpoOBEpHTb, MTO BCE COCTOSIHHA LENH, OTOMIECTBJEHHBIE C BEp-
urnHaMu rpada G, HeBO3BPATHBIE H YKA3aHHAS MAPKOBCKAR 11eMb OTHOCHTCS
K Enaccy moraowamwonx ueneit (em. ['], c. 55).

Yucna p; Mbl Ha3blBAEM apamMeTpaMi MapKOBCKOH Lleni, acCOLHHPO-
pannoit ¢ rpagom . Mbl noaaraem, uto p; > 0 aas mwoboro j= V(G) n
n

3 pii<<1 1ns Bcex BepuinH i rpacda G. Herpyano vbeautbes, 4To Aad Ji0-
=1

Gore rpada G MOMHO y3HATH TaKoe MHOMKeCTBO umcesa {p;}, AAd KoTO-
poro npHBeJEHHbIE OrpaHHuenus BolnoJHensl. JleficrBuresnsno, nyers kb —
Han0oJblilee YHCA0 OTIHYHBIX OT HYJA 3JeMEHTOB B CTpoKax (yHIameH-
TaTkHON MAaTpHIB, OTBeUaloUMX Bepiimuam rpaga G, torna 0 << p; << /4.

Tlycts H — npoussosbioe muoxectso ayr rpada G, r. e. H < U(G).
OGosnauum uepes p(ff, i, j, k) BeposTHOCTb Tepexoja CHCTEMbBI H3 CO-
CTOSIHHA [ B COCTOAHHE [ 3a k eJIMHHLL BpeMeHH NPH YCJOBHH, 4YTO 3a 3TOT
nepHoj BpeMeHH HCKJIOMAIOTCA Mepexojibl Mo jayram Muoxecrsa f. Muo-
KecTBo /{ MBI HA3BIBAeM 3anpelleHHbIM MHOXKECTBOM YT H COOTBETCTBEHHO
JYTH, eMy NpHHajIerKalllie, 3anpeiieHtbiMH.

TMoaoxum p(H, i, j, 0) = 8i; (8:,; — cumBoa Kponexepa) u
p(H, i j)= Zp(H,i.].n). (1

BenefcTie CYLECTBOBAHHA Yy MapKOBCKOH 1leNH, acCOLMHPOBAHHOR ¢
rpadom I, morsomaiomero cocrosinns see MHoxectso V((G) HeBo3BpaTHO
(cm. [2], c. 45) u pax (1) cxommres.

Mbl BocHmOJb3yeMcsl rpevuecknMu Oyksamu a, B, ... A1 o0o3daveHus
sanpewennsx ayr rpada G; at — Bepwmna (coctosHue), oTKyAa Ayra a
MCXOJHUT, @~ — BeplunHa rpada, Kyla @ BXOJIMT.

Teopema 1.

UG =T Y o PR b RULES )
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Teopema 2.
P(HUq, i, at)-p(HUa, o, j)
l —'prx.—b(H UQI a-, [I.+)

Pp(H, i, ) =p(HUa i, j)4pa-

[MepeitaeM K paccMOTPeHHIO MAaPKOBCKHX llerel, acCOUHAPOBAHHBIX C He-
opiHeHTHPOBaHHLIMH Tpadamu. ITycTh Bece mapamerpol onpeje/eHHOl BblIe
MapKOBCKOH 1enmH paBHpl Mexay coboil. Torma mapkoBckas Ienb xapak-
Tepusyercs ofHumM napamerpom v, 0 << v < l/k.

Crenaem cJaefyiomee 3ameuanHe: qioboe pe6po a rpada G, npuHAal-
nexaitee MHoxecTBy Bcex pebep E(G), MOXKHO paccMaTpHBaTh KaK 00b-
eHHEeHHe ABYX MPOTHBOMOJOKHO HAaNpaBIenHbiX Ayr « i . B coorsercreun
¢ oM M MHOXKecTBo pefGep H — E£(G) MOMKHO cuMTaTh MHOMKECTBOM JyT.

VuutpiBasi 3TO 3aMeuaHde, BBeJeM IIOHATHe 3anpellenHoro pebpa, a
Jgroboe MHOXecTBO pebep OyaeM paccMaTpHBaTh Kak 3anpelleHHoe MHOMe-
CTBO AYT.

Insi o6osHauenusi 3anpeuieHHsix pebep rpada Bocnosb3yemca JaTHH-
ckumy Oykeamu a, b, ... ; at M a- — BepIIKHb, HHUHJAEHTHBIE pebpy
a; H — sanpemennoe MHOKecTsBO pebep.

Teopema 3.

p(HUa,i,j)=p (H,i,j)—o{Ip(H,i,a*) -p(H,a=j)+p(H,i,a") -p(H,a*,j) 1X
X (14-vp(H,a* ")) —v[p (H,i,a*)p(H,a* ) p(H,a-, a7) +
+p(H,i,a")p(H, a, j)p(H,a*, a") 1} X
X[ (14-vp(H,a+,a-))2—vp(H,a+,a%) -p(H,a-,a-) ],
Teopema 4.
p(H,i,j)=p(HUa,i,j)+v{[p(HUa,i,a*)p(HUa,a, j)--
+p(HUa,i,a~)p(HUa, a*,j)](1 — op(HUa,a+,a")) +
+[p(HUa,i,a*) -p(HUa, a*, j)p (HJa,a-,a") +
+p(HUa,i,a~)p(HUa,a~, j)p(HUa, a*,a*) ]} X
X[ (1 —vp(HUa,a+,a"))*—vp(HUa, a*,a*) p(HUa, a-, a~) ],

Cnencreue. Henocpedcrsenno u3 suda sasucumocted 8 yraepscoe-
Huu Teopem 1—4 caedyror HepaseHcTEA, cnpasedausble COOTEBETCTBEHHO 0AA
CAyHas OPUCHTUPOBAHHBIX W HEOPUEHTUPOBaHHbIX epaghos

p(HUa i, j)<p(H,i,j) u p(HUa,ij)<p(H,ij) (i,j=T,n).
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Abstract

The paper addresses an algorithm to perform an analysis on survey data tables with
some irreliable entries. The algorithm has almost linear complexity depending on the
number of elements in the table. The proposed technique is based on a monotonicity
property. An implementation procedure of the algorithm contains a recommendation
that might be realistic for clarifying the analysis results.

Keywords: Survey; Boolean; Data Table; Matrix.

1. INTRODUCTION

Situations in which customer responses being studied are measured by
means of survey data arise in the market investigations. They present
problems for producing long-term forecasts because the traditional meth-
ods based on counting the matching responses in the survey with a large
customer population are hampered by unreliable human nature in the an-
swering and recording process. Analysis institutes are making consider-
able and expensive efforts to overcome this uncertainty by using different
questioning techniques, including private interviews, special arrange-
ments, logical tests, “random” data collection, questionnaire scheme pre-
paratory spot tests, etc. However, percentages of responses representing
the statistical parameters rely on misleading human nature and not on a
normal distribution. It appears thereby impossible to exploit the most
simple null hypothesis technique because the distributions of similar an-

* “A Fast Algorithm for Finding Matching Responses in a Survey Data Table”, Mathe-
matical Social Sciences, 1995, 30, 195 — 205.
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swers are unknown. The solution developed in this paper to overcome the
hesitation effect of the respondent, and sometimes unwillingness, rests on
the idea of searching so-called “agreement lists” of different questions. In
the agreement list, a significant number of respondents do not hesitate in
choosing the identical answer options, thereby expressing their willing-
ness to answer. These respondents and the agreement lists are classified
into some two-dimensional lists — "highly reliable blocks".

For survey analysts with different levels of research experience, or for
the people mostly interested in receiving results by their methods, or
merely for those who are familiar with only one, "the best survey analysis
technique”, our approach has some advantages. Indeed, in the survey,
data are collected in such a way that can be regarded as respondents an-
swering a series of questions. A specific answer is an option such as dis-
pleased, satisfied, well contented, etc. Suppose that all respondents par-
ticipating in the survey have been interviewed using the same question-
naire scheme. The resulting survey data can then be arranged in a table
X =(x;,), where x,

iq 18 a Boolean vector of options available, while the
respondent i is answering the question g. In this respect, the primary table
X is a collection of Boolean columns where each column in the collection
is filled with Boolean elements from only one particular answer option.
Our algorithm will always try to detect some highly reliable blocks in the
Table X bringing together similar columns, where only some trustworthy
respondents are answering identically. Detecting these blocks, we can
separate the survey data. Then, we can reconstruct the data back from
those blocks into the primary survey data table X'= (x| ) format, where

some "non-matching/ doubtful" answers are removed. Such a
"data-switch" is not intended to replace the researchers” own methods, but
may be complementary used as a "preliminary data filter” - separator. The
analysts” conclusions will be more accurate after the data-switch has been
done because each filtered data item is a representative for some "well
known sub-tables".
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Our algorithm in an ordinary form dates back to Mullat (1971). At first
glance, the ordinary form seems similar to the greedy heuristic (Edmonds
1971), but this is not the case. The starting point for the ordinary version of
the algorithm is the entire table from which the elements are removed.
Instead, the greedy heuristic starts with the empty set, and the elements
are added until some criterion for stopping is fulfilled. However, the algo-
rithm developed in the present paper is quite different. The key to our pa-
per is that the properties of the algorithm remain unchanged under the
current construction. For matching responses in the Boolean table, it has a
lower complexity.

The monotone property of the proposed technique - “monotone sys-
tems idea” - is a common basis for all theoretical results. It is exactly the
same property (iii) of submodular functions brought up by Nemhauser et
al. (1978, p.269). Nevertheless, the similarity does not itself diminish the
fact that we are studying an independent object, while the property (iii) of
submodular set functions is necessary, but not sufficient.

From the very start, the theoretical apparatus called the "monotone sys-
tem" has been devoted to the problem of finding some parts in a graph
that are more "saturated" than any other part with "small" graphs of the
same type (see Mullat, 1976). Later, the graph presentation form was re-
placed by a Markov chain where the rows-columns may be split imple-
menting the proposed technique into some sequence of submatrices (see
Mullat, 1979). There are numerous applications exploiting the monotone
systems ideas; see Ojaveer et al. (1975). Many authors have developed a
thorough theoretical basis extending the original conception of the algo-
rithm; see Libkin et al. (1990) and Genkin and Muchnik (1993).

The rest of the paper is organized as follows. In Section 2, a reliability
criterion will be defined for blocks in the Boolean table B. This criterion
guarantees that the shape of the top set of our theoretical construction is a
sub-matrix - a block; see the Proposition 1. However, the point of the
whole monotone system idea is not limited by our specific criterion as de-
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scribed in Section 2. This idea addresses the question: How to synthesize
an analysis model for data matrix using quite simple rules? In order to
obtain a new analysis model, the researcher has only to find a family of
7 -functions suitable for the particular data. The shape of top sets for each
particular choice of the family of m-functions might be different; see the
note prior to our formal construction. For practical reasons, especially in
order to help the process of interpretation of the analysis results, in Section
3 there are some recommendations on how to use the algorithm on the
somewhat extended Boolean tables B*. Section 4 is devoted to an exposi-
tion of the algorithm and its formal mathematical properties, which are
not yet utilized widely by other authors.

2. RELIABILITY CRITERION

In this Section we deal with the criterion of reliability for blocks in the
Boolean tables originating from the survey data. In our case we analyze
the Boolean table B =(b,,) representing all respondents (1,...,1,...,n), but
including only some columns (1,..., j,...m) from the primary survey data
table X =(x,,); see above. The resulting data of each table B can be ar-
ranged in a n x m matrix. Those Boolean tables are then subjected to our
algorithm separately, for which reason there is no difference between any

sub-table in the primary survey data and a Boolean table. A typical ex-
ample is respondent satisfaction with services offered, where b, =1 if

respondent i is satisfied with a particular service j level, and b, =0 if

he is unsatisfied. Thus, we analyze any Boolean table of the survey data
independently.

Let us find a column j with the most significant frequency F of

1 -elements among all columns and throughout all rows in table B. Such
rows arrange a g =1 one column sub-table pointing out only those re-

spondents who prefer one specific most significant column j. We will
treat, however, a more general criterion. We suggest looking at some sig-
nificant number of respondents where at least F of them are granting at
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least g Boolean 1-elements in each single row within the range of a par-

ticular number of columns. Those columns arrange what we call an
agreement list, g =2,3,...; g is an agreement level.

The problem of how to find such a significant number of respondents,
where the F criterion reaches its global maximum, is solved in Section 4.
An optimum table S°, which represents the outcome of the search among
all “subsets” H in the Boolean table B, is the solution; see Theorem I.
The main result of the Theorem I ensures that there are at least F positive
responses in each column in table S". No superior sub-table can be found
where the number of positive responses in each column is greater than
F. Beyond that, the agreement level is at least equal to g =2,3,... in each
row belonging to the best sub-table S°; g is the number of positive re-
sponses within the agreement list represented by columns in sub-table
S". In case of an agreement level g=1, our algorithm in Section 4 will
find out only one column j with the most significant positive frequency F
among all columns in table B and throughout all respondents, see above.

Needless to say that it is worthless to apply our algorithm in that particu-
lar case g=1, but the problem becomes fundamental as soon as

g=23,....

Let us look at the problem more closely. The typical attitude of the re-
spondents towards the entire list of options - columns in table B can be
easily "accumulated" by the total number of respondent i positive hits -
options selected:

Similarly, each column - option can be measured by means of the entire
Boolean table B as
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It might appear that it should be sufficient to choose the whole table B
to solve our problem provided that 1, > g,i=1,...,n. Nevertheless, let us

look throughout the whole table and find the worse case where the num-
ber c;,j=1,...,m reaches its minimum F. Strictly speaking, it does not

mean that the whole table B is the best solution just because some "poor"
columns (options with rare responses - hits) may be removed in order to
raise the worst-case criterion F on the remaining columns. On the other
hand, it is obvious that while removing "poor" columns, we are going to
decrease some r, numbers, and now it is not clear whether in each row
there are at least g =2,3,... positive responses. Trying to proceed further

and removing those "poor" rows, we must take into account that some of
¢, numbers decrease and, consequently, the F criterion decreases as

well. This leads to the problem of how to find the optimum sub-table S,
where the worst case - F criterion reaches its global maximum? The solu-
tion is in Section 4.

Finally, we argue that the intuitively well adapted model of 100%
matching 1-blocks is ruled out by any approach trying to qualify the real
structure of the survey data. It is well known that the survey data matri-
ces arising from questionnaires are fairly empty. Those matrices contain
plenty of small 100% matching 1-blocks, whose individual selection
makes no sense. We believe that the local worst case criterion F top set,
found by the algorithm, is a reasonable compromise. Instead of 100%
matching 1-blocks, we detect somewhat blocks less than 100% filled with
1 -elements, but larger in size.

3. RECOMMENDATIONS

We consider the interpretation of the survey analysis results as an essen-
tial part of the research. This Section is designed to give a guidance on
how to make the interpretation process easier. In each survey data it is
possible to conditionally select two different types of questions: (1) The
answer option is a fact, event, happening, issue, etc.; (2) The answer is an
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opinion, namely displeased, satisfied, well contented etc.; see above. It
does not appear from the answer to options of type 1, which of them is
positive or negative, whereas type 2 allows us to separate them. The goal
behind this splitting of type 2 opinions is to extract from the primary sur-
vey data table two Boolean sub-tables: table B", which includes type 1
options mixed with the positive options from type 2 questions, and table
B~ where type 1 options are mixed together with the negative type 2 op-
tions - opinions. It should be noticed that doing it this way, we are replac-
ing the analysis of primary survey data by two Boolean tables where each
option is represented by one column. Tables B* and B~ are then subjected
to the algorithm separately.

To initiate our procedure, we construct a sub-table K| implementing

the algorithm on table B". Then, we replace sub-table K; in B" by zeros,

constructing a restriction of table B*. Next, we implement the algorithm
on this restriction and find a sub-table K, , after which the process of re-
strictions and sub-tables sought by the algorithm may be continued. For
practical purposes we suggest stopping the extraction with three sub-
tables: K;, K, and K; . We can use the same procedure on the table B,

extracting sub-tables K, K, and K.

The number of options-columns in the survey Boolean tables B* is
quite significant. Even a simple questionnaire scheme might have hun-
dreds of options - the total number of options in all questions. It is diffi-
cult, perhaps almost impossible, within a short time to observe those op-
tions among thousands of respondents. Unlike Boolean tables B, the sub-
tables Kj,, have reasonable dimensions. This leads to the following inter-

pretation opportunity: the positive options in K;,, tables indicate some

most successful phenomena in the research while the negative options in
K,; point in the opposite direction. Moreover, the positive and negative

sub-tables Kj,, enable the researcher in a short time to “catch” the
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“sense” in relations between the survey options of typel and posi-
tive/negative options of the type 2. For instance, to observe all Pearson’s r
correlation’s a calculator has to perform O(n-m’) operations depending
on the nxm table dimension, n-rows and m-columns. The reasonable

dimensions of the sub-tables K;,, can reduce the amount of calculations

drastically. Those sub-tables - blocks K7, ,, which we recommend to select
in the next Section as index-function F(H) top sets found via the algo-
rithm, are not embedded and may not have intersections; see the Proposi-
tion 1. Concerning the interpretation, it is hoped that this simple approach
can be of some use to researchers in elaborating their reports with regard
to the analysis of results.

4. DEFINITIONS AND FORMAL MATHEMATICAL PROPERTIES
OF THE ALGORITHM

In this Section, our basic approach is formalized to deal with the analy-
sis of the Boolean n x m table B, n-rows and m -columns. Henceforth, the
table B will be the Boolean table B* - see above - representing certain op-
tions-columns in the survey data table. Let us consider the problem of how
to find a sub-table consisting of a subset S of the rows and columns in

X

the original table B with the properties: (1) that r, = > b,; > g and (2) the
j
minimum over j of ¢; =2 b,; is as large as possible, precisely - the global

maximum. The following algorithm solves the problem.
Algorithm.

Step I. To set the initial values.
1i. Set minimum and maximum bounds a, b on threshold u for
c, values.

Step A. To find that the next step B produces a non-empty sub-table.
la. Test u as (a+b)/2 using step B.

If it succeeds, replace a by u. If it fails replace b by u.
2a. Goto 1a.
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Step B. To test whether the minimum over j can be at least u.
1b. Delete all rows whose sums r, < g.

This step B fails if all must be deleted; return to step A.
2b. Delete all columns whose sums ¢; <u.

This step B fails if all must be deleted, return to step A.
3b. Perform step T if none deleted in 1b and 2b; otherwise go to
1b.
Step T. To test that the global maximum is found.
1t. Among numbers c; find the minimum.

With this new value as u test performing step B.
If it succeeds, return to step A. If it fails final stop.

Step B performed through the step T tests correctly whether a sub-
matrix of B can have the rows sums at least g and the column sums at
least u. Removing row 1, we need to perform no more than m operations
to recalculate ¢ i values; removing column j, we need no more than n-

operations. We can proceed through 1b no more than n-times and
through 2b, m-times. Thus, the total number of operations in step B is
O(nm). The step A tests the step B no more than log,n times. Thus, the

total complexity of the algorithm is O(log,n x nm) operations.

Note. It is important to keep in mind that the algorithm itself is a par-
ticular case of our theoretical construction. As one can see, we are deleting
rows and columns including their elements all together, thereby ensuring
that the outcome from the algorithm is a sub-matrix. But, in order to ex-
pose the properties of the algorithm, we look at the Boolean elements
separately. However, in our particular case of m-functions it makes no
difference. The difference will be evident if we utilize some other family of
T -functions, for instance 7t =c¢; max(r;,,c;). We may detect top binary rela-

tions, which we call kernels, different from submatrices. It may happen
that some kernel includes two blocks - one quite long in the vertical direc-
tion and the other - in the horizontal. All elements in the empty area be-
tween these blocks in some cases cannot be added to the kernel. In gen-
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eral, we cannot guarantee either the above low complexity of the algo-
rithm for all families of m-functions, but the complexity still remains in
reasonable limits.

We now consider the properties of the algorithm in a rigorous mathe-
matical form. Below we use the notation H € B. The notation H con-
tained in B will be understood in an ordinary set-theoretical vocabulary,
where the Boolean table B is a set of its Boolean 1-elements. All
0 -elements will be dismissed from the consideration. Thus, H as a binary
relation is also a subset of a binary relation B. However, we shall soon see
that the top binary relations - kernels from the theoretical point of view are
also submatrices for our specific choice of m-functions. Below, we refer to
an element we assume that it is a Boolean 1-element.

For an element o € B in the row i and column ; we use the similarity
index m=c; if ;=g and n=0 if 1, <g, counting only on Boolean ele-
ments belonging to H. The value of n© depends on each subset H c B
and we may thereby write = (o, H): the set H is called the m-function
parameter. The m-function values are the real numbers - the similarity
indices. In Section 2 we have already introduced these indices on the en-
tire table B. Similarity indices, as one can see, may only concurrently in-
crease with the “expansion” and decrease with the “shrinking” of the pa-
rameter H. This leads us to the fundamental definition.

Definition 1. Basic monotone property. By a monotone system will be un-
derstood a family {n((x,H) ‘Hc B} of -functions, such that the set H is to be
considered as a parameter with the following monotone property: for any two sub-

sets L < G representing two particular values of the parameter H the inequality
(o, L) < (o, G) holds for all elements o € B.

We note that this definition indicates exactly that the fulfilment of the
inequality is required for all elements o € B. However, in order to prove
the Theorems 1,2 and the Proposition 1, it is sufficient to demand the ine-
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quality fulfilment only for elements a €L’ even the numbers © them-
selves may not be defined for a ¢ L. On the other hand, the fulfilment of
the inequality is necessary to prove the argument of the Theorem 3 and
the Proposition 2. It is obvious that similarity indices 7 =c; comply with

the monotone system requirements.
Definition 2. Let V(H) for a non empty subset H < B by means of a given

arbitrary threshold u°® be the subset V(H)={aeB:n(a,H)Zu°}. The

non-empty H-set indicated by S° is called a stable point with reference to the
threshold u® if S°=V(S°) and there exists an element &eS°, where

n(&,S°) =u°. See Mullat (1981, p.991) for a similar concept.

Definition 3. By monotone system kernel will be understood a stable set S’
with the maximum possible threshold value u” =u___ .

We will prove later that the very last pass through the step T detects the
largest kernel I' = S". Below we are using the set function notation

F(X)=min__ n(a, X).

Definition 4. An ordered sequence o.,,Q.,,...,0, , of distinct elements in the
table B, which exhausts the whole table, d =3} .b,, is called a defining sequence

if there exists a sequence of sets Iy DT, D... DT such that:

A. Let the set H, = {(xk,(xkﬂ,...,adf&. The value n(a,,H,) of an arbitrary
element o, €', but o, ¢ ', is strictly less than F(I',;), j=0,1,...,p—1.

B. In the set 1’| there does not exist a proper subset L, which satisfies the
strict inequality F(I' ) <F(L).
Definition 5. A subset D" of the set B is called definable if there exists a de-

fining sequence 0.y,0.,...,0L, 4 such that I = D"

Theorem 1. For the subset S’ of B to be the largest kernel of the monotone
system - to contain all other kernels - it is necessary and sufficient that this set is
definable: S" =D’ . The definable set D" is unique.
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We note that the existence of the largest kernel will be established later
by the Theorem 3.

Proof.
Necessity. If the set S™ is the largest kernel, let us look at the following
sequence of only two sets B=T, oI, =S . Suppose we have found ele-

ments o,,0,,...0,, in B\S such that for each i=1..,k the value

(o, B\ {0(0,...,0%71 }). is less than u° =u__, and o,,a,,...0, does not ex-

haust B\S". Then, some a,,, exists in (B\S")\{o,,...,a,} such that
n(a,,,(B\S)\{og,...,a, )<u’. For if not, then the set
(B\SH\{o,,...,0, } is a kernel larger than S* with the same value u’.

Thus the induction is complete. This gives the ordering with the property
(a). If the property (b) failed, then u” would not be a maximum, contra-
dicting the definition of the kernel. This proves the necessity.

Sufficiency. Note that each time the algorithm - see above - passes the
step T, some stable point S° is established as a set I, =S°, j=0,1,...,p—1,
where u; =min__.m(a,S°) . Obviously, these stable points arrange an em-

bedded chain of sets B=1, oI 2.5 =D’. Let a set L= B be the

largest kernel. Suppose that L is a proper subset of D", then by property
(b), F(D")>F(L) and so D" is also a kernel. The set L as the largest ker-

nel cannot be the proper subset of D and must therefore be equal to D”.

Suppose now that L is not the subset of D". Let H_ be the smallest set
H,={a,,a,.,,...,0,,} which includes L. The value n(a,,H,) by our basic
monotone property must be grater than, or at least equal to u’, since o, is
an element of H_ and it is also an element of the kernel L and L < H,. By

property (a) this value is strictly less than F(I',,) for some j=0.1,....,p—-1.

But that contradicts the maximality of u". This proves the sufficiency.
Moreover, it proves that any largest kernel equals D" so that it is the

unique largest kernel. This concludes the proof. m
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Proposition 1. The largest kernel is a sub-matrix of the table B.

Proof. et S* be the largest kernel. If we add to S™ any element lying in a
row and a column where S* has existing elements, then the threshold
value u” cannot decrease. So by maximality of the set S’ this element must
already bein S™. m

Now, we need to focus on the individual properties of the sets
I, oI o..o1I,, which have a close relation to the case u<u_, -asub-

ject for a separate inquiry. Let us look at the step T of the algorithm origi-

nating the series of mapping initiating from the whole table B in form of
V(B), V(V(B),... with some particular threshold u. We denote V(V(B))

by V*(B), etc.
Definition 6. The chain of sets B,V(B),V*(B),... with some particular

threshold u is called the central series of monotone system; see Mullat (1981) for

exactly the same notion.

Theorem 2. Each set I, DI, >..DI, in the defining sequence

the stable  point  for  some  particular thresholds values
F(W)=u,<u,<..<u, =F("). Each L is the largest stable point - including
all others for threshold values u > u; = F(I;).

It is not our intention to prove the statement of Theorem 2 since this

proof is similar to that of Theorem 1. Theorem 1 is a particular case for
Theorem 2 statement regarding threshold value u=u,.

Next, let us look at the formal properties of all kernels and not only the

largest one found by the algorithm. It can easily be proved that with re-
spect to the threshold u,, =u  the subsystem of all kernels classifies a

structure, which is known as an upper semilattice in lattice theory.
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Theorem 3. The set of all kernels - stable points - for u__ is a full semilattice.

X

Proof. Let €2 be a set of kernels and let K, € Q and K, € Q2. Since the
inequalities m(a,K,)>u, mn(a,K,)=>u are true for all K, and K, ele-
ments on each K,,K, separately, they are also true for the union set
K, UK, due to the basic monotone property. Moreover, since u=u___ -
we can always find an element €K, UK, where n(§,K, UK,)=u.
Otherwise, the set K, UK, is some H -set for some u' greater than u,, -
Now, let us look at the sequence of sets V*(K, UK,), k=2,3,..., which

certainly converges to some non empty set - stable point K . If there exists
any other kernel K'5>K,UK,, it is obvious, that applying the basic

monotone property we get that K' > K. m

With reference to the highest-ranking possible threshold value

u, =u,.., the statement of Theorem 3 guarantees the existence of the larg-

est stable point and the largest kernel S° (compare this with equivalent
statement of Theorem 1).

Proposition 2. Kernels of the monotone system are submatrices of the table
B.

Proof. The proof is similar to proposition 1. However, we intend to re-
peat it. In the monotone system all elements outside a particular kernel
lying in a row and a column where the kernel has existing elements belong
to the kernel. Otherwise, the kernel is not a stable point because these ele-
ments may be added to it without decreasing the threshold value u__ .

Note that Propositions 1,2 are valid for our specific choice of similarity
indices m=c;. The point of interest might be to verify what 7 -function

properties guarantee that the shape of the kernels still is a sub-matrix.

The defining sequence of table B elements constructed by the algo-
rithm represents only some part u, <u, <u, <..<u  of the threshold

values existing for central series in the monotone system. On the other
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hand, the original algorithm, Mullat (1971), similar to the inverse Greedy
Heuristic, produces the entire set of all possible threshold values u for all
possible central series, what is sometimes unnecessary from a practical
point of view. Therefore, the original algorithm always has the higher
complexity.
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Abstract.

The note addresses a data cleaning principle. The principle implementation
procedure presented here includes a recommendation that might be well suited
for explicating and illustrating the results yielded by survey data analysis.

1. INTRODUCTION

We are presented with various surveys, studies, statistics, opinions,
measurements, research results, etc., on a daily basis, in an infinite stream.
This type of information in various forms is used by enterprises, media
experts, universities and other entities to present reality in a certain way,
or explain how things work. While we take this influx of data for granted,
very few of us question whether this way of having reality served on a
platter is actually useful. Most people merely accept what the various ana-
lysts have presented and treat it as factual information. Thus, if more peo-
ple in a survey have answered that they prefer rye bread to the white vari-
ety, does the same assertion apply to the world population? Should we
infer from this finding that people in general eat more rye bread instead of
white? Certainly not. Reality is complex and consists of numerous choices,
possibilities, behavioral patterns, preferences, etc. As a result, a typical
survey based on which such ‘facts” are reported can never cover all rele-
vant data pertaining to any given subject and will invariably lead to com-
pletely nonsensical conclusions. More accurate approximations of reality
require a comprehensive statistical investigation. Therefore, as a rule,
when aiming to interpret data gathered based on a sample drawn from a
population of interest, one should seek input from a researcher or some
other qualified person, so that the results can be interpreted and analyzed.

*

Presented at the 19th Nordic Conference on Mathematical Statistics, June 9-13, 2002,
Stockholm, Sweden and at the “Symposium i Advent Statistik,” January 23-26, 2006,
Koebenhavn.
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Additionally, it is essential to take into consideration the researcher’s
knowledge and expertise on the subject, as well as carefully assess
whether the questions discussed pertain to the aim of the survey. It is
equally important to evaluate the respondents’ credibility and ability to
answer the questions posed, as this is one of the means to ensure the in-
strument reliability.

2. RELIABILITY

Reliability, as a generic concept, is difficult to define. In most cases, it is
interpreted in a specific context. Nevertheless, it can be shows that adopt-
ing the “maximum principle” will not only help the researcher in his/her
analytical endeavors, but will also “clean up” the investigation, filtering
out the more “unreliable” answers and thus remove some “interference”
or “outliers” —i.e. answers that are overly dissimilar from the rest or are
incongruent with the most conceivable result. However, it must be em-
phasized that the method of analysis is still central to the success of the
outcome. In other words, in spite of the aforementioned argument, the
final estimation should still be based on the subjective perception of real-
ity. After all, the primary difference between this method and the conven-
tional statistical analysis employed to interpret survey results is that the
former identifies both unreliable respondents and their unreliable answers.
Consequently, we hereby obtain a much more comprehensive picture of
reality simply by examining patterns that conform to the answers pro-
vided by the remaining group members. In order to describe the method,
an example of a survey in progress will be used. However, it should be
noted that what follows is significantly simplified, as the main objective is
to outline the foundations of the method.

Food is a subject of general interest and related data is thus frequently
under the analyst’s scrutiny. Hence, in this hypothetical example, the ob-
jective is to map people’s taste preferences. To do so, the survey respon-
dents are presented with five menus listed below and are asked to state
their daily consumption of each of the given food groups.
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The options they are given are as follows:

1. Dairy produce: cheese and milk

Cereals: bread, potatoes, rise and pasta

Vegetables: vegetables, fruit, etc.

Fish: shrimp, frozen/fresh fish

Meat products: various meats, sandwich spreads and sausages

AN

The results pertaining to seven study participants are presented in Ta-
ble 1, which will suffice for the upcoming food preferences investigation.

Table 1.

Dairy Cereal Vegetables Fish Meat Total

Respond. no. 1 X X 2
Respond.no.2 X X X X 4
Respond. no. 3 X X 2
Respond.no.4 X X X X 4
Respond. no. 5 X X 2
Respondno.6 X X X X X 5
Respond. no. 7 X X 2
Total 3 5 5 5 3 21

Considering the total score given at the bottom of the table, people’s
food choices seem healthy and nutritional. Moreover, it can be discerned

i

that “cereals,” “vegetables” and “fish” are most frequently consumed food
groups, as five of seven respondents stated that they consume these food-
stuffs daily. Can we conclude that, in general, people’s lifestyle is healthy?
Moreover, does this mean that 71% of population eats cereals, fish and
vegetables every day? This conclusion could be clearly misleading. In ad-
dition, even conclusions pertaining to this small group require close ex-
amination of the individual respondents’ answers, because some of them
differ from those of the other respondents in certain ways. For example,
respondents 1, 3, 5 and 7 have chosen only two food groups from the
given list. Respondents no. 1 and 7 stated that they consume only “cere-

als” and “vegetable” products on a daily basis, while no. 3 and 5 eat only
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“vegetables” and “fish” every day. Assuming that this is an exhaustive list
(again, note the simplifications in this example), it seems highly unlikely
that someone would not eat any products from other food groups. This is
a crucial point to consider, as we must believe that the answers respon-
dents provide and factual in order to include them in the analysis. Thus,
responses like those noted above are clearly unreliable reflections of real-
ity. Let us therefore experimentally discard the unreliable respondents
together with their answers to see whether we obtain a more credible re-
sult, which is a more accurate representation of reality.

3. AGREEMENT LEVEL — TUNING PARAMETER

Just as it is unusual to rely on only two food groups for sustenance, it is
unlikely that an individual would eat, for example, only bread from the
cereal menu, or solely shrimp from the fish menu. Thus, in “fine-tuning”
the experiment, the aim is to identify all the respondents that have chosen
only these two menus. The objective is, as was already emphasized above,
to obtain a clearer picture of reality. Table 2 below represents the results of
this data “cleaning,” based on the chosen “agreement level” or “tuning
parameter”. In this case, the agreement level is set to 4, i.e. none of the to-
tals in the last column is less than 4.

Table 2.

Dairy Cereal Vegetables Fish Meat Total

Respond.no.2 X X X X 4
Respond.no.4 X X X X 4
Respond.no.6 X X X X X 5
Total 3 3 1 3 3 13

This seems to be a very useful instrument for the experiment. However,
the tuning parameter will only be relevant when its value exceeds one. If,
for example, we try to set the agreement level (tuning) to 1 in Table 1, this
would render ALL respondents reliable, even though menus “Dairy” and
“Meat” are associated with the lowest frequency number, namely three.
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What can we conclude from the outcome of adopting tuning parame-
ter =1? The conclusion is exactly the same as that yielded by the original
analysis—“people’s lifestyle is healthy.” In contrast, setting the tuning pa-
rameter to 2, 3 or a higher value allows us to explore patterns in answers
that would not be otherwise apparent. Table 2 shows the distribution of
respondents based on the tuning parameter = 4.

Why should we use exactly this value as the tuning parameter? Be-
cause, in the analysis below, we are going to adopt a maximum principle
as a method of selection of reliable respondents. This will be done
through “agreement level”, see “totals” of columns, pertaining to a single
respondent. The value of the tuning parameter is not fixed, and can be
changed depending on the purpose of analysis, and is typically set at the
level that reveals the most adequate picture of reality. Roughly speaking,
we can compare the situation to rotating a tuner on TV or Radio, when we
attempt to receive a clear picture/sound by trying to select the right fre-
quency. The tuner value here is 4, and we assume that the selected re-

spondents are now reliable.

4. MAXIMUM PRINCIPLE

However, finding the correct tuner position is not sufficient, as will be
shown in the discussion that follows. For example, only one of the re-
maining, supposedly reliable, respondents chose the ”“vegetable” menu.
This would imply that only 33% of the sample is consuming vegetables
daily. While this is likely for such a small group of respondents, it is im-
portant to reiterate that this example is a simplification of an actual,
much larger survey, where such results would indeed be odd. Thus, the
fine-tuning must proceed further, this time addressing the menu content.
Fist, we can remove “vegetables” from the available options and see what

effect this would have on the analysis.
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The next step in our analysis is called “maximum principle” and will
be illustrated using an old merchant marketing example. If a merchant
wants to make a compromise between the highest possible demand on
some assortment of his/her commodities and to shorten the list of as-
sortments as well, he would intuitively do so by removing from the
assortment the commodity for which the demand is the lowest, assuming
that it is identified from the purchasing patterns of reliable customers
only. In the example considered in this study, the “vegetables” menu has
the lowest demand. Moreover, its removal from the available options re-
sults in equal frequencies associated with the remaining menus. In gen-
eral, removal of available options must be done with care, as it should
not result in a simultaneous removal of reliable respondents. In some
cases, however, it might be necessary to add further reliable respondents

to the sample, complying with our tuning parameter once again, etc.

In general, the maximum principle can be formulated as follows:
among all the reliable respondents, first remove options with the lowest
agreement level, those with the lowest frequency (in our example, the
menu “vegetables” in Table 2). As a result, the number of choices is re-
duced, but the remaining answers with the lowest frequency have a
higher contingency compared to those that have been removed. In short,
the aim is to remove available options in such a manner that ensures that
those remaining have high representation and there are more matches in
their answers. In other words, in the menu, where the matching is low,
the low match becomes relatively high due to the removal, which would
not be the case if the removed menus will still occupy a place in the table.
In other words, the goal is not only to separate a group of menus from

those that have higher matching responses, but also to find a group of
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respondents for whom the menu with the lowest level of matching is on a
relative high level. This is the key for understanding the maximum prin-
ciple. The respondents included in the analysis must be reliable, but the

answers producing such reliability must also be more or less identical.

In accordance with this argument, the menu “vegetables” is removed,
since the responses associated with it are not aligned with the general an-
swer pattern based on the maximum principle. Note that here, the re-
moval is not based on any qualitative tests, but is rather guided purely by

a pattern disclosed by matching the answers!

Table 3.

Dairy Grain Fish Meat Total

Respond.no.2 X X X X 4
Respond.no.4 X X X X 4
Respond.no.6 X X X X 4
Total 3 3 3 3 12

5. CONCLUSION

What can be concluded from the simplified survey scenario discussed
above? Put simply, it is evident that the final outcome is completely differ-
ent from the results yielded by the initial analysis. According to Table 1, in
general, people’s food preferences are healthy and in accordance with cur-
rent recommendations. On the other hand, Table 3 indicates that food hab-
its are, in fact, less healthy. Implementing our analysis principle has re-
duced the panel of reliable respondents, and this has changed the outcome
of our analysis.

Of course, it is natural to ask whether the proposed principle is more
credible than other methods of analysis. It is true that a subjective consid-
eration and personal choice have played in instrumental role in the ana-
lytical framework adopted to produce the final results. Some may argue
that this approach is flawed, as analyst/researcher intuition was the only
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basis for tuning the parameters, i.e. adjusting the “agreement level.” This
personal consideration cannot be excluded because the method described
here will sometimes coincide with what we might otherwise call common
sense, where the most frequent answers reflect the actual reality. This
should be the case when dealing with simple surveys in which the re-
spondents are asked questions such as “Will you vote for so and so the
coming election?” The value of this approach is really evident when sur-
veys including hundreds or thousands of respondents and many hun-
dreds of questions are conducted. They will inevitably generate diverse
responses forming patterns that “common sense” will be impossible to
wield, since unaided human intellect is incapable of grasping such com-
plicated patterns. This is where our method can make a substantial differ-
ence, because it is a way of locating erroneous or misleading patterns,
based on a comprehensive comparison within the full data set. This, how-
ever, does not undermine the analysts’ role, as these experts will be re-
sponsible for making the relevant judgments/decisions as to why certain
data is removed from the set. The goal is to identify and remove all “unre-
liable” respondents with the help of the “tuning parameter.” The aim of
this “cleansing procedure” is to retain only the most usable answers, in
accordance with our maximum principle. Thus, the method presented
here should be treated as an instrument, which has to be used correctly by
the analyst to tune into the clearest picture of reality. The aim is to reduce
the interference effect produced by unreliable respondents.

APPENDIX
A.1 Practical recommendations

The preliminary explanation above is a general introduction to our
maximum principle, the background of which is found in a much more
complex methodology and theory.! First, it is beneficial to demonstrate
how the results can be used and presented for the analyst, making the use
of the notion of positive/negative profile.

1 Some theoretical aspects may be found in Appendix A.2
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When designing a questionnaire, it is widely accepted that the available
responses associated with the individual questions should be presented in
the “same direction,” i.e. from positive to negative values/opinions or vice
versa. Using a more rigorous terminology, such ordering would be de-
noted numerically and represented on an nominal/ordinal scale. This no-
menclature is used primarily because, when implementing our method in
the form of a computer software, the analyst must separate the answers by
grouping them together into positive/negative scale ends—the (+/-)
pools. The next step will be to create profile groups within each (+) or (—)
pool range. A profile group of answers is created following their subject-
oriented field of interest. For example, one might be interested in partici-
pants” lifestyle, nutritional practices, exercising, etc. Thus, these profiles,

distinguished by their placement in (—i— / —) pools, are also either positive

or negative.

Once the analyst has created the (+ / —) profiles, the subsequent analy-
sis is conducted by an automated process utilizing our maximum princi-
ple, which further organizes the data into what we call a series of profile
components. Each profile component is a table, as above, located within
particular profile limits. Clearly, a component is differentiated from the
profile by the fact that, while a profile is a list of subject-specific questions
and the corresponding options/answers composed by the analyst, the
component is a table formed using the maximum principle. Therefore, the
list of answers constituting a component (and the resulting set of table
columns) is smaller, as only specific answers/columns from the full profile
are included. Thus, once again the components will be separated into
(+/-) components K;,K;,..., just as the profiles were separated into

(+ /—) profiles. The K{,Kj;,... separation provides not only conceptual

advantages, but also allows for more transparent illustration of the survey
tindings.
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Analysis findings increase in value if they are presented in the format
that can be easily comprehended. The simplest tool available for graphi-
cal presentation is a pie chart. Here, the pie can be divided into positive
K7,Kj7,..., and negative K;,K;,... components, represented in green and
red color, respectively. However, to depict these components accurately,

it is necessary to calculate some statistical parameters beforehand. For
example, one can merge the (+ / —) components into single (+ / —) table

and calculate the (+/—) probabilities? Hereby, statistical parameters

based on the (+ / —) probabilities may be evaluated and illustrated by a

pie chart divided into green and red area, effectively representing the
(+ / —) elements.® There are many techniques and graphical tools at the

analyst’s disposal, and a creative analyst may proceed in this direction
indefinitely. Still, it is plausible to wonder if the creation of the (+/-)

components is worthwhile. In other words, what is the advantage of us-
ing the “maximum principle” when interpreting the survey findings? The
answer is that the blurred nature of the data may hinder clear interpreta-
tion of the reality underlying the data, see above.

A.2 Some theoretical aspects

Suppose that respondents N = {1,...,i,...n} participate in the survey. Let

x, x €2, denote those who expressed their preferences towards certain
questions M = {1,..., j,...,m}. We lose no generality in treating the list M

as at a profile, whether negative or positive. Let a Boolean table

W= Haid Hm reflect the survey results related to respondents” preferences,

Certainly, some estimates only.

3 Please, find below a typical pie chart pertinent to what we just discussed. The positive
and negative profiles relate to 21 questions highlighting people’s behaviour, responses,
opinions, etc., regarding their daily work and habits. Answers to these questions can
be presented using an ordinal scale 1, 2, ..., 5, where 1, 2, 3 are at the negative, and 3, 4,
5 at the positive end of the scale.
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whereby a,; =1 if respondent i prefers the answer j, a,; =0 otherwise.
In addition, all lists 2" of answers y € 2" within the profile M have
been examined. Let an index Sij =0,iex,jey if 3 a,; <k, otherwise
8, =1,eg X . a2k, where k is our tuning parameter. We can calcu-
late an indicator F, (H) using sub-table H formed by crossing entries of
the rows X and columns y in the original table W . The number of
l-entries 8 -a,; =1 in each column within the range y determines the
indicator F _(H) by further selection of a column with the minimum
number F (H) from the list y.

Identification of the component K seems to be a tautological issue, in

the sense that following our maximum principle we have to solve the

indicator maximization problem K =argmax  ,F (H). The task thus

(x.y)
becomes an NP-hard problem, the solution of which includes operations
that grow exponentially in number. Fortunately, we claim that our K*
components might be found by polynomial O(m-n-log, n) algorithm, as

shown in the cited literature. Finally, we can restructure the entire proce-
dure by extracting a component K; first, before removing it from the

original table W and repeating the extraction procedure on the remain-

ing content, thus obtaining components K;, K3, ... etc. From now on, sta-
tistical parameters and other table characteristics, which empower (+ / —)
share, arise from components K;,K;,... and K;,Kj;,... only, and are
available to the analyst for illustration purposes, as depicted in the ex-
ample below.

REFERENCES
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A.3 Illustration

In the example, we use a sampling highlighting 383 people’s attitudes
towards 21 phenomenal questions. Each question requires a response on
an ordinal scale, with 1<2,...,<5, where 1<2 <3 are positive values at

the leftend, and 3<4 <5 are negative values at the right end.* Hence, our
sampling, depicted as a Boolean table, has 383x105 dimensions. As the

tuning parameter k =5 was chosen, we also extracted a set of three posi-
tive Ki,K;,K; and negative components. The actual values in the title

and those shares, which illustrate our positive (green) and negative (red)
(+/-) components, display that someone identified by pin-code
00- A0100270 at the graph is 5% more positively oriented than s/he had

testified in the survey.
Some typical sampling questions are given below:

1. Is your behavior slow/quick? — eating, talking, gesticulating,...
1.1  Absolutely slow
1.2 Somewhat slow
1.3 Sometimes slow and sometimes quick
14  Somewhat quick
1.5  Absolutely quick

2. Are you a person who prefers deadlines/postpones duties?
2.1  Absolutely always prefer deadlines
2.2.  Often prefer deadlines
2.3. Sometimes prefer deadlines or sometimes postpone my duties
2.4. Often postpone my duties
2.5. Absolutely always postpone my duties

* Sampling owner (Scanlife Vitality ApS in Denmark) kindly provided us with a permis-
sion to use the data for analysis purposes. We are certainly very grateful for such help.
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Negative/Positive Scale of the Questionnaire
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The figure shows more clearly the methodology of the positive/negative
analysis of surveys data tables to identify hidden preferences of respon-
dents. Whatever the analyst is doing to build a negative ordering of the
left half of the questionnaire, our negative defining sequence is then com-
pared with similar sequence of the right half of the questionnaire. As a
result, two credential scales have been formed, which can then be visual-
ized graphically in two-dimensional coordinate system on the plane. The

situation is illustrated by the front cover of the book.
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While cluster is a concept in common usage, there is currently no con-
sensus on its exact definition. There are many intuitive, often contradict-
ing, ideas on the meaning of cluster. Consequently, it is difficult to de-
velop exact mathematical formulation of the cluster separation task. Yet,
several authors are of view that clustering techniques are already well es-
tablished, suggesting that the focus should be on increasing the accuracy
of data analysis. The available examples of data clustering tend to be
rather badly structured, whereas application of the formal techniques on
such data fails to yield results when the classification is known a priori.
These issues are indicative of the fundamental deficiencies inherent in
many numerical taxonomy techniques.

Following the standard nomenclature, every object can be described by
a vector of measurements <X1,X2 ,...,Xk>. Thus, for every pair of objects E,

and E; a distance d;; between those objects can be defined as

dij:\/(xﬂ—xj1 +(Xi2—ij)z-|—...-|—(xik—xjk)z (1)

However, it should be noted that all measurements are usually standard-
ized beforehand.

Applying Eq. (1) on N objects yields a full matrix of distances

0d, d, .. d,

bl 0 dy Ly, 2

Authors of many empirical studies employ methods utilizing the full

matrix of distances as a means of identifying clusters on the set
{E,....E.,...E,}.
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In this section, we describe a new and highly effective clustering
method, underpinned by some ideas offered by the graph theory. As the
first step in our novel approach, we emphasize that, for elucidating the
structure of the system of objects, knowledge of all elements of the matrix
of distances given above is rarely needed. We further posit that, for every

object, it is sufficient to consider no more than M of its nearest neighbors.

To explicate this strategy, let us consider a system of 9 objects (Fig. 3)

with their interconnections—edges. The matrix of nearest neighbors for

such a graph is given by:

5(1) 6(1) 3(2) 0 0 0
4(1) 3(2) 7(3) 0 0 0
4(1) 5(1) 12) 2(2) 0 0
2(1) 3(1) 5(1) 7(3) 0 0
1(1) 3(1) 4(1) 6(1) 7(3) 0

MND = 1(1) 5(1) 7(3) 0 0 0
2(3) 4(3) 5(3) 6(3) 8(3) 9(3)
7(3) 9(3) 0 0 0 0
7(3) 8(3) 0 0 0 0

12

It can be easily verified that each row 1 of that matrix contains a list of
objects j directly connected with a given object E,, with the distances d;

given in parentheses. Based on this argument, henceforth, we will denote
the matrix of nearest neighbor distances by MND.
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In most cases, having data pertaining to about 8-10 nearest neighbors is
sufficient. This is highly important for computation, where the goal is to
minimize the required memory space. By applying this method on, e.g.,
the case of 1,000 objects, only 10,000 memory locations would be needed,
which is a significant saving relative to the 500,000 required when the full

matrix is processed.

We will use the MND defined above as a starting point to create some
useful mathematical constructs.

Let W be the list of edges (pairs of objects) in the MND. For every edge
e =[a,b], a subset W} of the list W can be defined as follows.

Definition 1. Subset W, of W represents a proximity space of edge
[a,b] if
a) for every pair of objects x and y, which are connected with at
least one edge in W, there exists a path joining x and y, and
b) every edge that is a member of that path belongs to the subset
According to the graph theory postulates, proximity space is a sub-
graph connected with the edge [a,b].
Example. Let us consider the edge [4,5] shown in Fig. 4. According to

the aforementioned rules, its proximity space, denoted as W, , is the sub-
graph W, ={[3,4][3,5][4.7][5.7],[2.4][1,5][5.6].[4.5] }.

Definition 2. The system of proximity spaces is referred to as the prox-
imity structure if for each edge w = [a,b] there exists a nonempty prox-
imity space W, in the system.

Sometimes it is useful to exclude the edge [a,b] from the proximity
space W, . In line with the Venn diagram annotation, this exclusion is de-
noted as W, \[a,b], whereby the resulting subset can be referred to as a

reduced proximity space.
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In the preceding discussion, for every edge [a,b], only the value of the
distance d[a,b] between [a,b] was taken into account. In what follows, it

is useful to introduce a new notation. For example, it is beneficial to assign
a real number (weight ), which is different from the distance, to every
edge on the graph. For example, let us define the weight of every edge in
the diagram shown in Fig. 4 as

nlx,y]=d[x, y]+1x,y],
where d[x, y] is the Euclidean distance (1) between x,y, and r[X, y] is the
number of triangles that can be built on the edge [X,y]. For example,

n[4,7]=3+2, n[7,8]=3+1.

Let us further assume that a proximity structure £ of a graph W is
known and that f(x) is a real function.

Definition 3. The function f, (n) defined for all weights of the edges in
W, is called the influence function of the proximity structure £ if the fol-

lowing holds
£ (nlx, y) < nfx, y]

for each [x,y]e W \ [a,b], where n[x, y] is the weight of the edge [x,y].
In other words, for every edge [X,y], we can find a new weight in the
reduced proximity space W' \ [a,b]
m[xy]= £ (alx.v]). ©

To demonstrate the benefit of introducing the influence function, let us
again consider the diagram depicted in Fig. 4. Graphically, the influence
function represents the value of the number of triangles after the elimina-
tion of the edge [a,b]e W, from the list W;'. Using the set W, as an ex-

ample, this corresponds to

f; (n[374]) = f54 ((d34 + I'34) = (1 + 1)) = (d34 + r34) = (1 + 0) =1;
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f54 (Tc[3,4]) = f54 ((dss + rss) = (1 + 0)) = (d34 T ) = (1 + 0) =1;
f54 (75[354]) = f54 ((d47 T 1, ) = (3 + 1)) = (d34 T ) = (3 + 0) =3.

5(3)
4(3)
4(3)
2(3)
MNW= 1(3)
1(2)
2(4)
7(4)
7(4)

6(2)
3(3)
5(3)
3(3)
3(3)
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8(4)
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4(3)
7(4)
5(5)
0
0
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0
2(3)
7(5)
6(3)
0
6(4)
0
0

0
0
0
0
7(5)
0
8(4)

0
0

0
0
0
0
0
0
9(4)
0
0

It is evident that knowledge of the influence function of an edge allows

us to easily find the set of new weights for an entire subset H e W. Let us
consider the set H=W \ H and arrange its edges in some order <e1,e2 ,>

Applying the steps shown above, we can find the proximity spaces of the

edges in <e1,ez,...> and apply Eq. (3) recursively.

Using the information delineated thus far, we can now introduce our

algorithm, the aim of which is to identify the data structure.

At this point, we can assume that steps pertaining to the selection of the

proximity structure and the influence function have been completed.

Thus, we can proceed through the algorithm as follows:

Al. Find the edge with the minimum weight and store its value.
A2. Eliminate the edge from the list of all edges and compute the
weights for proximity spaces of the minimal edge using the recur-

sive procedure (3).

A3. Traverse through the list of edges and identify the first edge with

the weight less or equal to the stored weight. Return to A2 to

eliminate that edge. If no such edge exists, proceed to A4.
A4. Check whether there are any further edges in W . If yes, return to

Al, otherwise terminate the calculations.
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Performance of the algorithm will be demonstrated by applying the
aforementioned steps to the graph shown in Fig. 4.

First, the weights for all edges should be defined using the following

expression:

nlx,y]=d[x, y]+x,y].

To do so, we must compute the matrix of weights using the matrix of
distances (2).
We will demonstrate all steps of the algorithm described above.

Al. Minimal edge is [1,6] and the associated weight is n[1,6]=2. To store
its value, let u=2.

A2. We eliminate the edge [1,6] from the list W and therefore have to
change the weights of

W\ [16]: ©'[1,3]=3; n'[15]=2; n'[5,6]=2; n'[6,7]=4.

A3. Proceeding through the list, we encounter the edge [1,5] as the first

edge with the weight less or equal to u. Now, we return to step A2.
After 9 steps with u =2, we have the following sequence of edges:

([.6].[1.5].1.3].[3.5].[3.4].[2.4].[2.3].[4.5].[5.6]).

Now, we consider the case u=3, and after applying the preceding
steps, we obtain <[2, 71.14.7].[5,7]. [6, 7]> Finally, using u=4 yields

([7.8].[7.9].[8.9]).

It can be easily verified that those ordered lists of edges provide accu-

rate representation of our graph’s structure.

For graphical output, we can utilize the ordered edges to construct a

connected tree (a tree is a graph without circles).
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For the example given above, we can construct the tree using the or-
dered lists of edges, while excluding all edges [a,b] if both their end

points, a and b, are already members of the list. This approach results in

the sequence
([r.6].[1.5].[1.3].[3.4].[2.4]. [2.7].[7. 8L [7.9])

based on which, the tree in Fig. 4 can be constructed.

Fig. 4

Using this simplified diagram, relative position of any object in the
tree can be established by considering the number S(x,y) of steps needed
to reach the point y from the point X on the tree (e.g., S(12)=3,
S(1,8) =5). Hence, for every object x, we can identify another object from
which the maximum number of steps is required to reach x. For example,
to identify the object at the top of the tree, we will take the object for which
that maximum is minimum. Using real data, and applying these rules, we
obtain the tree shown in Fig. 2.
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SKCTPEMAJIbHbBIE MOACUCTEMbl MOHOTOHHbIX CUCTEM. |
‘ M. 3. MYANIAT

(Tannun)

PaccmaTpuBaerca o0mas TeopeTHIECKAs MOJENb, NpelHasHAYeHHAA I
HAYaJIbHOTO HTAalla aHAIW3A CHCTEM B3aWMOCBSIBAHHBIX DJIEMEHTOB. B pamkax
MOJlelll W HCXORA U3 CIENUWATIbHO IOCTYIHPOBAHHCTO CBOHCTBA MOHOTOHHO-
CTH CHCTEM TapaHTHPYeTCs CYM[ecTBOBAHHE O0COOBIX HOMCHCTEM — sifiep. Yo-
TAHABIMBAETCA PAZ SKCTPEMAIbHBIX CBOHCTB M CTPYKTypa sfiep B MOHOTOH-
HEIX CHCTeMax. [leTalmsmpyerTcs f3BIK ONMCAHNSA MOHOTOHHBIX CHCTEM B3am-
MOCBA3QHHEIX DJIEMEHTOB HA 00IIeM TeOPeTHKO-MHOKECTBEHHOM YpPOBHE, K
Ha €0 OCHOBe BHPafaTHBaeTcs KOHCTPYKTHBHASA CHCTEMa IHOHATHH B CILy-
gae CHCTEM ¢ KOHEYHBIM YWCJIOM 3IeMeHTOB. lI3yduaeTcst psifi CBOMCTB 0CO-
GBIX KOHEYHBIX MOCIE/{0BATEIBHOCTEH HIEMEHTOB CHCTEMSBI, ¢ IOMOIIBI0 KOTO-
PHIX OCYIeCTBAMO BEIZIEIEHHE Afiep B MOHOTOHHEIX CHCTeMaXx.

1. Beegenume

Ilpy w3ydeHWu 1OBEIEHHS CIOKHON CHCTEMEI YaCTO IPUXONATCH CTAAKIU-
BaThCA ¢ 33fja9ell aHAIN3d KOHKPETHBIX IUCIOBEIX JAHHHIX 0 (YHKIEOHHPOBA-
Hum cmereMbl. Ha ocHOoBe mOoOGHBEIX [AHHBIX WHHOIJA TPeOyeTcs BHIACHHTS,
CYIEeCTBYIOT JU B CHCTeMe 0COOble DIEMEHTH WU MOJCUCTEMBl DJIEMEHTOB,
pearupyomux OJHOTHIHO HA KaKume-imbo «BO3JeficTBUAY, a TaKKe «OTHOIIe-
HEA» MEKLY OFHOTHIHBIMU nopcucremMamu. CBeeHHs O CYI[€CTBOBAHUEU yKa-
3aHHBIX 0COOGHHOCTEH WM 0 CTPYKTYPe» HW3yIaeMoil CHCTeMEl HeoOXOXHMEL,
HaIpuMep, A0 HPOBEJEeHMWs OOMMUPHBIX WA JOPOrOCTOANUX CTATHCTHIECKAX
WCCIIeOBAHMIA.

B ¢Ba3m ¢ mmpoKEM OpuMeHeHWeM BEIYHUCIUTEILHON TeXHUKA B HACTOMMIEE
BpeMsA Ha HAYAJIHHOM HTANE BEIABICHUA CTPYKTYDPHL CHCTEMBI HAMEIAETCS MOJ-
X0Jl, OCHOBAHHEIH Ha pa3JMIHOTO Pofa dBpHcTmIecKnx mopensx [1—4]. Tpm
TIOCTPOGHAT MOJeNeil MHOTHE aBTOPHI MCXOMAT W3 CONEPHHATENbHBIX TOCTAHO-
BOK 3a7jaq, a TaKsKe u3 (OPMEL IpefCcTaBIeHNA HeX0xHok madopmanum [5, 6].

EcrecrBennoit popMoii mpejcTaBieHus WHQOOPMALMY IS Leseil M3yIeHUS
CIIO}KHBIX cucreM sBisiercs opma rpada [7]. PacopocTpamenuEsM HOCHTENEM
mHOOPMANUE CIIYKAT TaKKe MaTPHUIA, HampuMep marpuna gampsix [8]. Mat-
PEOEL ¥ rpabl JerK0 FONYCKAIOT BLIAENCHZE ABYX MUHEMAILHEIX CTPYKTYD-
HBIX e{UHAL CHCTEMBI: «3JeMEHTOBY U «CBA3eM» MemKnmy siementamu *. B mam-
HOIl pabore MOHATUA (CBA3LY U «DIEMEHT» TPAKTYIOTCS MOCTATOYHO IIEPOKO.
Tak, WHOTTA KETATEIBHO PACCMATPUBATH CBASH B BUME DIEMEHTOB CHCTEMBI;
B 9TOM CJIyIae MOMKHO 00HAPYHKUTH 00/1€6 «TOHKWE» 3aBUCHMOCTH B WCXOXHOH
cmereme.

Ilpepcrasienre cucTeMsl B BHE €JWHOTO O0BEKTA — DJIEMEHTHI U CBASH
M@Ky dJIeMeHTaMK — I03BOJIAeT MPHUAATh Gojlee IETKUN CMBICI 3a/{ade BBIAB-
JeHAST CTPYKTYpH cmcrTeMEl. CIPYKTypa CHCTeMBI — 9TO TaKad OpPTaHW3AIUs
. DIIEMEHTOB CHCTEMEI B HOJCHCTEMEI, KOTOPas CKIAIBIBAETCS B BUIE MHOJKECTBA
. oTHOmeHHI Memay mnomcucremaMu. CTPYKTYPOH CHCTEMBI, HAIPEMED, MOKET
OBITH ECTeCTBEHHO CIOKUBINUICA CII0CO0 OOBENMHEHUS IO[CHCTEM B E€IWHEYIO

* B nmreparype IOOGHEIE CHCTEMBI HA3BIBAIOTCA CHCTEMAaMU B3aMMOCBABAHHEIX dile-
MEeHTOB.
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Extremal Subsystems of Monotonic Systems, I
J. E. Mullat, * Credits: *

Private Publishing Platform, Byvej 269,
2650 Hvidovre, Denmark;
mailto: mjoosep@gmail.com ; Tel.: +45-42714547

Abstract. A general theoretical method is described which is intended for the
initial analysis of systems of interrelated elements. Within the framework of the
model, a specially postulated monotonicity property for systems guarantees the
existence of a special kind of subsystems called kernels. A number of extremal
properties and the structure of the kernels are found. The language of description
of monotonic systems of interrelated elements is described in general set-
theoretic terms and leads to a constructive system of notions in the case of sys-
tems with finite number of elements. A series of properties of special finite se-
quences of elements are studied whereby kernels in monotonic systems are clas-
sified.

Keywords: monotonic, system, matrix, graph, cluster

1. INTRODUCTION

For the study of a complex system, it is often necessary to encounter the
problem of analyzing concrete numerical data about the system function-
ing. Sometimes based on similar data it is required to show whether in the
system there exist special elements or subsystems, reacting in one way to
some “actions” as well as “relations” between one-type subsystems. In-
formation on the existence of the indicated peculiarities or on the “struc-
ture” of the system under study is necessary, for example, before carrying
out extensive or expensive statistical investigation.

" Former docent, Department of Economics, Tallinn Technical University (1973 — 1980)

™ Translated from Avtomatica i Telemekhanika, No. 5, pp. 130 — 139, May, 1976. Original
article submitted August 13, 1975. © 1976 Plenum Publishing Corporation, 227 West
17t Street, New York, 10011. We alert the readers’ obligation with respect to copy-
righted material.
Russian version: http://www.datalaundering.com/download/extrem01-ru.pdf
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Concerning wide application of computational techniques, at the pre-
sent time, to initial detection of the structure of a system an approach
based on various kind of heuristic models is planned [1-4]. For construct-
ing models, many authors start with intuitive formulations of the problem
and also with the form of presentation of the initial data [5,6].

A natural form of presentation the data for the purpose of studying
complex systems is that of a graph [7]. A matrix, for example, a data ma-
trix [8] also serves as a widely spread carrier of information. Matrices and
graphs easily admit isolation of two minimal structural units of the sys-
tem: “elements” and “connections” between elements.! In this paper the
notions “connections” and “elements” are interrelated in a sufficiently
broad fashion. Thus, sometimes it is desirable to consider connections in
the form of elements of a system; in this case, it is possible to find more
“subtle” relations in the original system.

Representation of a system in the form of unique object — elements and
connections between elements — makes it possible to attach a more precise
meaning to the problem of revealing the structure of a system. A structure
of a system is an organization of elements of the system into subsystemes,
which is put together in the form of a set of relations between subsystems.
A structure can, for example, be a natural way of combining subsystems
into a single system, which is determined on the basis of “strong” and
“weak” connections between elements of the system. A similar approach
to the analysis of systems is described, for example, in [9], where the ques-
tion of assembling systems of interrelated elements is considered. Assem-
bling turns out to be a convenient macro-language foe expressing a struc-
ture of the system.

In the theory of systems, usually direct connections between elements
are considered. Situation, however, sometimes requires considering indi-
rect connections as well. This requirement is distinguished thus: that indi-
rect connections are dynamic relations in the sense that “degree” of de-
pendence is determined by a subsystem, in which this or that connection
is considered. Below we describe and study a certain subclass of similar
“dynamic” systems called monotonic systems.

' Analogous systems are called systems of interrelated elements in the literature.
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The monotonicity property for systems allows us to formulate in a gen-
eral form the concept of a kernel of a system as a subsystem, which in the
originally indicated sense reflects the structure of the whole system in the
large. A kernel represents a subsystem whose elements are “sensitive” in
the highest degree to one of two types of actions (positive or negative),
since “sensibility” to actions is determined by the intrinsic structure of the
system. The definition of positive and negative actions reduces to the exis-
tence of two type of kernels — positive and negative kernels.

Existence of kernels (special subsystems) is guaranteed by the mathe-
matical model described in this paper and the problem of “isolating” ker-
nels is typical problem in the description of a “large” system in the lan-
guage of a “small” system — kernel. In this sense, figuratively speaking, a
kernel of a system is a subsystem whose removal inflicts “cardinal”
changes the properties of that system: The system "gives up" the existing
structure.

For exposition of the material terminology and symbolism, the theory
of sets is used which requires no special knowledge. One should turn at-
tention to the special notation introduced, since the apparatus developed
in this paper is new.

2. EXAMPLES OF MONOTONIC SYSTEMS 2

1. In the n-dimensional vector space let there be given N vectors. For
each pair of vectors x and y one can define in many ways a distance

p(X,y) between these vectors (i.e. to scale the space). Let us assume that

the set of given vectors forms an unknown system W .

2 Kempner, Y., Mirkin, B., and Muchnik, I. B., "Monotone linkage clustering and quasi-concave
set functions," Applied Mathematics Letters, 1997, 4, 19-24,

http://www.datalaundering.com/download/kmm.pdf ; B. Mirkin and I. Muchnik, “Layered
Clusters of Tightness Set Functions,” Applied Mathematics Letters, 2002, v. 15, issue no. 2, pp.
147-151. http://www.datalaundering.com/download/mm012.pdf ; see also, A. V. Genkin
(Moscow), I. B. Muchnik (Boston), “Fixed Approach to Clustering, Journal of Classification,”

Springer, 1993, 10, pp. 219-240, http://www.datalaundering.com/download/fixed.pdf ; and
latest connection, Kempner, Y., Levit V. E., “Correspondence between two antimatroid algo-
rithmic characterizations,” Dept. of Computer Science, Holon Academic Institute of Technol-

ogy, July, 2003, Israel, http://www.datalaundering.com/download/0307013.pdf .
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For every vector in an arbitrary subsystem of W we calculate the sum
of distances to all vectors situated inside the selected subsystem. Thus,
with the respect to each subsystem of W and each vector situated inside
that subsystem, a characteristic sum of distances is defined, which can be

different for different subsystems.

It is not difficult to establish the following property of the set of sums of
distances. Because of removing a vector from the subsystem the sums
computed for the remaining vectors decrease while because of adding a
vector to the subsystem they increase. A similar property of sums for
every subsystem of system W is called in this paper the monotonicity
property and a system W having such a property is called a monotonic

system.

2. For studying schools, directions in various branches of science, the
so-called graphs of cited publications [10] are used. These are directed a-
cyclic graphs, since each author can cite only those authors whose papers
are already published. It is entirely reasonable to assume that the set of
publications W forms a certain system, where the system elements (pub-
lished papers) are exchanged with each other by information and by spe-
cial way, namely, by the help of citation. If we consider a subset from an
available survey of the set of publications W, then each publication can be
characterized by the number of bibliographical tittles, taken only over the
subset — subsystem — considered. It is clear that “removal” of publication
from the subsystem only decreases the quantitative evaluation thus intro-
duced for the degree of exchange of information in the subsystem while
the “addition” of a publication in the subsystem only increases that
evaluation for all publications in the subsystem. Thus, we have here a
monotonic citation system given in the form of a graph.

In connection with the above example, it is interesting to note [11],
where the author involuntarily considers an example of a monotonic sys-
tem in the form of a directed graph.
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3. Let us assume that there is a set W of telephone exchanges or points
of connection that are joined by lines of two-sided connections. Under the
absence of any connection between points in a system with communica-
tions, it is possible to organize a transit connection. If a functioning of a
similar system is observed for a long time, then the “quality” of connec-
tion” between each pair of points can be expressed, independently of
whether there exists a two-sided connection or not, by the average number
of “denials” in establishing a connection between them in a standard unit
of time. Generally speaking, if it is desired to characterize each point of the
system W in the sense of “unreliability” of establishing connections with
other points, then this second characteristic can be taken to be the average
number of denials in establishing connection with at least one point of the
system in a unit time. It is clear that these same numerical qualities (qual-
ity of connection, unreliability characteristic) can be defined only inside
every subsystem of the system with communications W .

The proposed model has the following obvious properties. A gap in any
line of two-sided connection increases the average number of denials
among all other points of connection; introduction of any new line, in con-
trast decreases the average number of denials. This is related with the fact
that load on the realization of a transit connection in a telephone commu-
nication network increases (decreases). In the case of curtailment of activ-
ity at any point of connection inside the given subsystem the unreliability
of all points of subsystem increases while in case of addition of a point of
connection to the subsystem the unreliability decreases.

Thus, there is a complete similarity with the examples of monotonic
systems considered above and one can state that the model described for
telephone communications is a monotonic system.

In the present paper a monotonic system is defined, to be a system over
whose elements one can perform “positive” and “negative” actions. In
addition, positive actions increase certain quantitative indicators of the
functioning of a system while the negative actions decrease those indica-
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tors. In the second example considered above the positive action is the ad-
dition of an element to a subsystem while the negative action is removing
an element from the subsystem; in the third example the converse holds.

In the second and third examples above, the kernel must have an intui-
tive meaning. Thus, in the citation graphs, a negative kernel must turn out
to be the set of publications citing each other in a considerable degree (by
authors representing a single scientific school) while a positive kernel
must consist of publications citing each other to a lesser degree (represent-
ing different schools).

In telephone communications networks the intuitive sense of a kernel
must manifest itself in the following. If we take as elements of a communi-
cation network the lines of connection, then a negative kernel is a collec-
tion of lines that give on the average a “mutually agreed upon” large
number of denials while a positive kernel has the opposite sense — a collec-
tion of lines that give on the average less denials. In case the system ele-
ments are taken to be the connection points of a telephone communication
network, a negative kernel is a set of mutually unreliable points while a
positive kernel is a set of more reliable points.

The intuitive meaning given to kernels of citation graphs and commu-
nication network is not based on a sufficient number of experimental facts.
The indicated properties are noted in analogy with available intuitive in-
terpretation of kernels obtained for solutions of automatic-classification
problems [12].

3. DESCRIPTION OF A MONOTONIC SYSTEM

One considers some system W consisting of a finite number of
elements, 3 i.e. ‘W‘ =N, where each element o of the system W plays

a well-defined role. It is supposed that the states of elements o of W
are described by definite numerical quantities characterizing the “signifi-
cance” level of elements a for the operation of the system as a whole
and that from each element of the system one can construct some discrete
actions.

3 If W is a finite set, then ‘W‘ denotes the number of its elements.
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We reflect the intrinsic dependence of system elements on the signifi-
cance levels of individual elements. The intrinsic dependence of elements
can be regarded in a natural way as the change, introducible in the signifi-
cance levels of elements f3, rendered by a discrete action produced upon

element o .

We assume that the significance level of the same element varies as a
result of this action. If the elements in a system are not related with each

other in any way, then it is natural to suppose that the change introduced
by element o on significance 3 (or the influence of o on ) equals zero.

We isolate a class of systems, for which global variations in the signifi-
cance levels introduced by discrete actions on the system elements bears a
monotonic character.

Definition. By a monotonic system, we understand a system, for which
an action realized on an arbitrary element o involves either only decrease

or only increase in the significance levels of all other elements.
In accordance with this definition of a monotonic system two types of
actions are distinguished: type @ and type ©. An action of type @ in-

volves increase in the significance levels while © involves decrease.

The formal concept of a discrete action on an element o of the system
W and the change in significance levels of elements arising in connection
with it allows us to define on the set of remaining elements of W an un-
countable set of functions whenever we have at least one real significance

function m: W — D (D being the set of real numbers).

Indeed, if an action is rendered on element o, the starting from the
proposed scheme one can say that function m is mapped into ©, or =
according as a the action @ or ©. Significance of system elements is redis-

tributed as action on element a changes from function 7 to 7, (n;) or,
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otherwise, the initial collection of significance levels {TC(@)‘ oe W}
changes into a new collection {n;(ﬁ)‘ Oe W} “Clearly, if we are given
some sequence O,,0,,0,,... of elements of W (arbitrary repetitions and

combinations of elements being permitted) and the binary sequence
+,—+,..., then by the usual means one can define the functional product of

. + - + . + -+
functions ©, , ©, , 7, inthe form n, w, 7, .

The construction presented allows us to write the property of mono-
tonic systems in the form of the following basic inequalities:

72 (0) 2 m(0) = 7, () M
for every pair of elements o,0 € W, including the pairs a,a or 0,0.

Let there be given a partition of set W into two subsets, i.e. HUH=W
and HNH =J. If we subject the elements a,,a,,0,,...€ H to positive

actions only, then by the same token on set W there is defined some func-
tion m_ m, m, ..., which can be regarded as defined only on the subset H

of W.5

If from all possible sequences of elements of set H we select a sequence

<0€1,O(,2,...,OLH>, ® where o, are not repeated, then on the set H function

T, T, .. is induced univalently.

o

We denote this function 7'H and call it a standard function. We shall
also refer to the function thus introduced as a weight function and to its

value on an element as an o weight.

* Functions T, TE; and T are defined on the whole set W' and, consequently, ﬂ; (0)
and T (0) are defined.

We are not interested in significance levels obtained as a result of operations on ele-
ments of H onto the same set H .

Here symbols <> are used to stress the ordered character of a sequence of ﬁ .
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In accordance with this terminology the set {TE+H(OL)‘ e H}, which is
denoted by IT"H is called a weight collection given on the set H or a
weight collection relative to set H. Let us assume that we are given a set
of weight collections {H+H‘ Hc W} on the set of all possible subsystems
P(W) of system W. The number of all possible subsystems is
[P(W)| =2,

Instead of considering a standard function for positive actions 7, 7, ...
one can consider a similar function for negative actions n"H. Thus, by
exact analogy one defines single weight collection
I[ITH= {TE’H(OL)‘ o e H} and the aggregate of weight collections
{MH|Hc W},

Let us briefly summarize the above construction. Starting with some

real function m defined on a finite set W and using the notion of positive
and negative actions on elements of system W, one can construct two

types of aggregate collections IT"H and IT"H defined on each of the Hof
subsets of W . Each function from the aggregate (weight collection) is con-
structed by means of the complement to H, equaling W\H, and a se-

quence <OL1,OL2,...,OLH> of distinct elements of the set H. For this actions
of types @ and © are applied to all elements of set H in correspondence

with the ordered sequence <OL1,OL2,...,OLH> in order to obtain IT"H and

IT"H respectively.

The concept of weight collections TT"H and IT"H needs refinement.
The definition given above does not taken into account the character of
dependence of function mH on the sequence of actions realized on the
elements of set H. ’Generally speaking, weight collection IT"H(IT H) is
not defined uniquely, since it can happen that for different orderings of set
H we obtain different function nH.

“_

7 Inthe sequel, if sign “~” or “+” is omitted from our notation, then it is understood to be either
“_n o
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In order that weight collection IT"H(IT"H) be uniquely defined by sub-
set H of the set W it is necessary to introduce the notion of commuta-

bility of actions.

Definition. An action of type @ or © is called commutative for system

W if for every pair of elements a,3 € W we have

In this case it is easy to show that the values of function nH on the set
H do not depend on any order defined for the elements of the set H by
sequence <OL1,OL2,...>. The proof can be conducted by induction and is

omitted.

Thus, for commutative actions the function ©'H(n H) is uniquely de-

termined by a subset of W .

In concluding this section, we make one important remark of an intui-
tive character. As is obvious from the above-mentioned definition of ag-

gregates of weights collection of type @ and ©, the initial weight collec-

tion serves as the basic constructive element in their construction. The ini-
tial weight collection is a significance function defined on the set of system
elements before the actions are derived from the elements. In other words,
it is the initial state of the system fixed by weight collection IT W. It is
natural to consider only those aggregates of weight collections that are

constructed from an initial @ collection, which is the same as the initial ©
collection. The dependence indicated between @ and © weight collections

is used considerably for the proof of the duality theorem in the second

part of this paper.
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4. EXTREMAL THEOREMS. STRUCTURE OF EXTREMAL SETS 8

Let us consider the question of selecting a subset from system W
whose elements have significance levels that are stipulated only by the
internal “organization” of the subsystem and are numerically large or,
conversely, numerically small. Since this problem consists of selecting
from the whole set of subsystems P(W) a subsystem having desired
properties, therefore it is necessary to define more precisely how to prefer

one subsystem over another.
Let there be given aggregates of weight collections {H+H ‘ Hc W} and
{HfH‘ Hc W} On each subset there are defined the following two func-

tions:
F.(H) = max n'H(a), F (H) = miHn n H(a).

Definition of Kernels. By kernels of set W we dub the points of global

minimum of function F, and of global maximum of function F .

A subsystem, on which F, reaches a global minimum, is called a @
kernel of the system W, while a subsystem on which F reaches a global
maximum, is called © kernel. Thus, in every monotonic system the prob-

lem of determining @ and © kernels is raised.

With the purpose of intuitive interpretation as well as with the purpose
of explaining the usefulness of the notion of kernels introduced above we
turn once again to the examples of citation graphs and telephone commu-

tation networks.

8 See also, Muchnik, 1., and Shvartser, L., 1990, "Maximization of generalized characteris-
tics of functions of monotone systems," Automation and Remote Control, 51, 1562-
1572, http:/lwww.datalaundering.com/download/maxgench.pdf.
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The definition of a kernel can be formulated with the help of a signifi-
cance levels of system elements, that is: a @ kernel is a subsystem of a

monotonic system, for which a maximal level among significance levels
stipulated only by internal organization of the subsystem is minimal, and

a © kernel is a subsystem for which a minimal level among those same

significance levels is maximal.

The definition of a kernel accords with the intuitive interpretation of a
kernel in citation graphs and telephone commutation networks. Thus, in
citation graphs a @ kernel is a subset (subsystem) of publications, in which
the longest list of bibliographical titles is at the same time very short;
though not inside the subset, but among all possible subsets of the selected
set of publications (among the very long lists). If in our subset of publica-
tions a very short list of bibliographical titles is at the same time very long

among the very short ones relative to all the subsets, then it is a © kernel

of the citation graph. It is clear that a © kernel publications cite one an-

other often enough, since for each publication the list of bibliographical
titles is at any rate not less than a very short one while a very short list is

nevertheless long enough. In a @ kernel the same reason

explains why in this subset one must find representatives of various scien-
tific schools.

In telephone commutation networks, one can consider two types of sys-
tem elements — lines of connections and points of connections. In a system

consisting of lines, a © kernel turns out to be a subset of lines, for which

the lines with the least number of denials in that subset are at the same
time the lines with the greatest number of denials among all possible sets
of lines. This means that at least the number of denials stipulates only by

the internal organization of a sub-network of lines of a © kernel is not less

than the number of denials for lines with the smallest number of denials
and, besides, this number is large enough. Hence one can expect that the
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number of denials for lines of a © kernel is sufficiently large. Similarly one
should expect a small number of denials for lines of a @ kernel. Formula-
tion for @ and © kernels for points of connection is exactly the same as for

the lines and is omitted here.

Before stating the theorems, we need to introduce some new definitions
and notations.

Let o = <oco,0c1,...,0ck_1> be an ordered sequence of distinct elements of
set W, which exhausts the whole of this set, i.e. k = ‘W‘ From sequence
a we construct an ordered sequence of subsets of W in the form

A, =(H,H,..H_)
with the help of the following recurrent rule
H,=W,H_,=H\{o};i=01,..,k-2°
Definition. Sequence o of elements of W is called a defining sequence

relative to the aggregate of weights collections {H_H‘ Hc W} if there

exists in sequence A _, a subsequence of sets
I, =(I,.T7,...T, ), such that:

a) weight n"H;(a,) of an arbitrary element o, in sequence o, be-
longing to set I but not belonging to set I, is strictly less than

values of F (Fj+1); 10

b) inset I'| there does not exist a proper subset L which satisfies the
strict inequality F (I')) <F_(L).

? Sign \ denotes the subtraction operation for sets.
' Here and everywhere, for simplification of expression, where it is required, the sign

“u oy

or “+” is not used twice in notations. We should have written F_ (Fj;1) or

F+ (Fj:1 ) .
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A sequence o with properties a) and b) is denoted by o . One simi-

larly defines a sequence ., .

Definition. Sequence & of elements of W is called a defining sequence
relative to the aggregate of weights collections {H+H‘ Hc W} if there

exists in sequence A _, a subsequence of sets
I, =(0y. 0 L),
such that:

c) weight n"H,(a;) of an arbitrary element o, in sequence o, be-
longing to set I'| but not belonging to set I';, is strictly greater than val-
uesof F (T',,);

d) inset I'] there does not exist a proper subset L which satisfies the
strict inequality F (I") > F (L).

A sequence o with properties a) and b) is denoted by o . One simi-

larly defines a sequence Q. .

Definition. Subset H, of set W is called definable if there exists a de-
fining sequence o, such that H, =T, .
Definition. Subset H  of set W is called definable if there exists a de-

fining sequence O _ such that H™ = L.

Below we formulate, but do not prove, a theorem concerning properties
of points of global maximum of function F . The proof is adduced in Ap-

pendix 1. A similar theorem holds for function F, . In Appendix 1 the par-
allel proof for function F, is not reproduced. The corresponding passage
from the proof for F to that of F, can be effected by simple interchange of

verbal relations “greater than” and “less than”, inequality signs “>” and
“<7, 7>7, <" as well as by interchange of signs “+” and “~”. The passage

from definable set H, to H' and from definition of sequence @, and @_,

is effected by what has just been said.
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Theorem 1. On a definable set H function F reaches a global maxi-
mum. There is a unique definable set H'. All sets, on which a global

maximum is reached, lie inside the definable set H' .

Theorem 2. On a definable set H, function F, reaches a global mini-
mum. There is a unique definable set H_. All sets, on which a global

minimum is reached, lie inside the definable set H.

In the proof of Theorem 1 (Appendix 1) it is supposed that definable set
H' exists. It is natural that this assumption, in turn, needs proof. The exis-

* . . .
tence of H_ is secured by a special constructive procedure. !!

The proof of Theorem 2 is completely analogous to the proof of Theo-

rem 1 and is not adduced in Appendix 1.

We present a theorem, which reflects a more refined structure of ker-

nels of W as elements of the set P(W) of all possible subsets (subsystems)
of set W.

Theorem 3. The system of all sets in P(W), on which function F_ (F,)
reaches maximum (minimum), is closed with the respect to the binary op-

eration of taking union of sets.

The proof of this theorem is given in Appendix 2 and only for the func-
tion F . The assertion of the theorem for F, is established similarly.

Thus, it is established that the set of all @ kernels (© kernels ) forms a

closed system of sets with respect to the binary operation of taking the
unions. The union of all kernels is itself a large kernel and, by the state-

ments of Theorems 1 and 2, is a definable set.

"' This procedure will be presented in the second part of the article, since here only the
extremal properties of kernels and the structure of the set of kernels are established.
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APPENDIX 1
Proof of Theorem 1. We suppose that a definable set H exists.

(Conducting the proof by contradiction) let us assume that there exists a
set L € W, which satisfies the inequality

F(H)<F(L). (A.1)

Thus two sets H and L are considered. One of the following state-

ments holds:

1) Either L/H #O, which signifies the existence of elements in L, not

belonging to H';
2)or L c H .

We first consider 2). By a property of definable set H™ there exists a de-
fining sequence a_ of elements of set W with the property b) (cf. the
definition of @_ ) such that the strict inequality F (H") <F (L) does not

hold and, consequently, only the equality holds in (A.1). In this case, the
first and the third statements of the theorem are proved. It remains only to

prove the uniqueness of H’, whish is done after considering 1).

Thus, let L/H™ # @ and let us consider set H, — the smallest of those
H, (i=01,..,k—1) from the defining sequence o _ that include the set
L/H". Then the fact that H, is the smallest of the indicated sets implies
the following: there exists element A € L, suchthat A, e H ,but A ¢ H ..

Below, we denote by 1(Q2) the smallest of the indices of elements of de-
fining sequence o._ that belong to the set Qc W.

Let I'] be the last in the sequence of sets <Fj_>, whose existence is
guaranteed by the sequence o _. For indices t and i(I';) we have the ine-

quality t<i(I")).
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The last inequality means that in sequence of sets <T i > there exists at

least one set I';, which satisfies
i, )=t+1. (A.2)

Without decreasing generality, one can assume that I is the largest

among such sets.

It has been established above that L € H,, but A¢ H

shows that I'| < H ,,, since the opposite assumption I'| > H ,, leads to

Inequality (A.2)

t+1°

the conclusion that i(I', ) >t +1 and, consequently I'. is not the largest of
the sets, for which (A.2) holds.

Thus, it is established that I'_, > H, . Indeed, if I'_, < H,, then for indi-
ces I(I'_,) and r wehave 1(I_,)>t.

Hence i(I'_,)+1>t+1 and the inequality i(I,)>i(I,)+1 implies
i(T,) =2 t +1. The last inequality once again contradicts the choice of set I,

as the largest set, which satisfies inequality (A.2).
Thus, A¢I,, but Ael_,, since AeH,, H, cI_,. On the basis of

property a) of the defining sequence a_, we can conclude that
wH,(\) <F.(T), (A3)
where 0 <s<p.

Let us consider an arbitrary set I'7 (j=0,1,..,p—1) and an element
tel 5. which has the smallest index in the sequence o _. In other words,
set Fj_ starts from the element 7 in sequence a_. In this case, set Fj_ is a
certain set H; in the sequence of imbedded sets <Hl> The definition of

F (H) and the property a) of defining sequence o_ implies that

F@)<nT,(v)<F(,).
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Hence
F(T)<FEI)<..<F())
and as a corollary we have for j=01,...,p
F((@)<F(I,)=FH), (A.4)
since Fp’ =H".

Let peL and let weight m L(n) be minimal in the collection of

weights relative to set L. On the basis of inequalities (A.1), (A.3), and
(A.4) we deduce that

n H ) <n L(w)=F (L). (A.5)

Above, H, was chosen so that L € H,. Recalling the fundamental

monotonicity property (1) for collection of weights (the influence of ele-
ments on each other), it easy to establish that

n L(A) <nH,(A). (A.6)
Inequalities (A.5) and (A.6) imply the inequality
n L(A) < L(p),

i.e. there exists in the collection of weights relative to set L a weight
which is strictly less than the minimal weight.

A contradiction is obtained and it is proved that set L can only be a
subset of H  and that all sets, distinct from H', on which the global

. . . . . *
maximum is also reached, lie inside H .

It remains to prove that if a definable set H' exists, then it is unique.

Indeed, in consequence of what has been proved above we can only sup-

pose that some definable set H , distinct from H, is included in H™ .
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It is now enough to adduce arguments for definable set H  similar to
those adduced above for L, considering it as definable set H ; this im-
plies that H' c H . The theorem is proved.

APPENDIX 2

Proof of Theorem 3. Let (2 be the system of set in P(W), on which
function F reaches a global maximum, and let K, € Q2 and K, € Q.

Since on K, and K, the function F reaches a global maximum, there-
fore we might establish the inequalities

F (K, UK,)<F (K,), F (K, UK,)<F (K,). (A7)

We consider element p € K, UK,, on which the value of function F on
set K, UK,, is reached, i.e.

n K, UK,(n)= mm n K,UK,(a).

aeK UK,

If nekK,, then by rendering © actions on all those elements of set
K,UK,, that do not belong to K,, we deduce from the fundamental
monotonicity property of collections of weights (1) the validity of the ine-
quality

T K, (p)<m K, UK,(u).

Since the definition of F implies that F (K,)<n"K,(1) and by the
choice of element p we have K, UK,(n) =F (K, UK,), therefore we
deduce the inequality

F (K)<F (K, UK,).
Now from the inequality (A.7) it follows that
F(K)=F(K,uKk,).

If, however, it is supposed that p € K,, then © actions are rendered on
elements of K, UK,, not belonging to K, ; in an analogous way we obtain
the equality

F_(Kz) = F_(K1 UKz)/

which was to be proved.
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Example 2d (A four-Component Structure):

3
—D—
1 2
O—0—| —
4
Figure. 9.4

Consider a system consisting of four components, and suppose that the system func-
tions if and only if components 1 and 2 both function and at least one of components
3 and 4 function. Its structure function is given by

¢(x) = X, - X, - max (X3:X4)-

Pictorially, the system is shown in Figure 9.4. A useful identity, easily checked, is that
for binary variables, (a binary variable is one which assumes either the value 0 or 1)
X, i=1..,n,

max (X,,....x, )=1-T](1-x,)
i=1
When n = 2, this yields
max (x,,x,)=1-(1-x,)-(1-x,) = x, +x, = X, -X,.
Hence, the structure function in the above example may be written as

¢(X):X1'X2'(X3+X4_X3'X4) %

It is natural to assume that replacing a failed component by a functioning one will
never lead to a deterioration of the system. In other words, it is natural to assume that

the structure function (I)(X) is an increasing function of X, that is, if X, < Y.,

i=1,...,n, then ¢(X) < d(y). Such an assumption shall be made in this chapter and

the system will be called monotone.
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YIK 62-50:519.2

DKCTPEMAIJIbHbBIE MOACHUCTEMbI MOHOTOHHbBIX CUCTEM. li
WU. 3. MYJIJIAT

(Tannun)

[IpegmaraeTca KOHCTPYKTHBHAS IpoIefypa IOCTPOEHMS OCOOBIX OIIpefe-
JAMAX TOCTe0BATENEHOCTeH DIIeMeHTOB MOHOTOHHBIX CHCTEM, PacCMOTDEH-
meIX B [1]. Usydalorcs B3samMHBIE CBOMCTBA ABYX OIPe[EISONMAX IIOCIeL0BA-

TOMbHOCTEIl 0 M O.4, W IOTYYeHHBIH pesyiabraT (OpMyIHPYeTCa B BUJE TEO-
pemel fiBoMcTBeHHOCTH. Ha OCHOBE TEOpeMbI [BOICTBEHHOCTH OIWCAH CIIOCO0
Cy/ReHHA O00NacTH MOHCKA DKCTPEMAlbHBEIX MOJCHCTEM — ANED MOHOTOHHOM
CHCTeMBbI I IPHUBEJIeHa COOTBETCTBYOMIAs CXeMa IIOMCKA.

1. BeepeHue

B [1] paspaGoram ocmoBmOii almapar BhIIeMeHAS B MOHOTOHHEIX CHCTe-
Max 0cOOBIX IIOfCECTEM — sfiep, 00IafalouX SKCTPeMATbHEIMA CBOHCTBAMH.
OCHOBHEIM NIOHATHEM pPasBUTOrO amilapara fABJAETCA ONPENeJuMOe MHOMKECT-
Bo [2]. B mpmEATOll TepMWHONOrME ONpEETMMOE MHOMKECTBO OKA3HIBAGTCS
HaunbOIBIIEM ALPOM MOHOTOHHOW CHCTEMBI B3aUMOCBABAHHLIX diaeMenToB. ITo-
HATHE OIPEMIeIIEMOr0 MHOKecTBa B [1] BBOAWIOCH ¢ TIOMOIHIO HPEHONOMKE-
HAA O CYIIECTBOBaHMU O0COOBIX HOMMOCJIEIOBATENbHOCTEN DIEMEHTOB W3ydae-
MOW CHCTeMbI, HA3BAHHEIX ONpeNeAomuMn O. (0. )-IM0CiHe[0BaTeIbHOCTAMM.

B pamHO# paboTe BOIpPOC CYIMIECTBOBAHUSA OIPENENSIONIX IIOCIET0BATEND-
HOCTejl pemIaeTcs KOHCTPYKTUBHO B BHje Tpoienyp — amropurMoB. OcHoBmbre
CBOMCTBA ONpefesiAlomell IOCIe0BATeIbHOCTH, IIOCTPOEHHOW MO0 HpaBmiIaM
OPONENypPHl W HWCYEPIBIBAIONIeil BCe MHOMKECTBO JIEMEHTOB cucTeMsl W, ra-
PAHTHPYeTCA TeOPEeMOii. .

PacemaTpmBasi TamsKe BOIPOC O TOM, KaKasg CYIIECTBYET CBA3h MEMIY OIl-
penesgiomuIMI OCTeI0BATeIbHOCTAMA 0 # O;. MOMHO IIPEUOIOKATE, YTO
ec/iH HOCTPOEHA OUPENeJAIONAsA I0CIeI0BATEIBHOCTE 0, TO CTOUT B3AThL TY
TOCJIE/I0BATEIHHOCTh B OOPATHOM HOPSIKe, KAK TMOIYIUTCS O -T0CTeT0BATeTh-
HOCTh. B ofmem ciyuae 310 me Tak. Tem He Menee mmeer mecto Goxee ciraboe
yreepsuaenme. Ha ocmose ompenenennsix s [1] momsrumit muekpermeix mefi-
crpuit THna © m © ma smementsr cucreMbl W pamHoe yTBepmeHWe (BOpMY-
IMpyeTcs 37ech B BHJIEe TEOPEMEI ABOHCTBeHHOCTH. B ciiydae BHIHOTHEHWS ye-
TOBHH TEOPEMEl [BOMCTBEHHOCTH W3JI0KEHHEIE ANTOPHTMBI IIOCTPOEHHS OIIpe-
IeNAMAX T0CTe[0BaTeTbHOCTeN NCIOMB3YIOTCS ISl 3HAYATENBHOTO CYKEeHHA
obracrz momcka ® m © apep cucremsr W. Anropmry cysxenus ofnacTn momcka
W3JI0KeH TaKXKe B BUIE ITPOTELYPEI — KOHCTPYKTHBHO.

2. Npouenypa sbigeneHus apep

Hwmme ommchiBaercss Iponegypa IOCTPOSHHS HEKOTOPOH YIHOPANOYEHHOI
MOCJIeR0BATENbHOCTH O BceX oiementoB W. CokpalneHHO mpomenypa Hasbi-
Baercs IIBA (upomenypa seimenernms amep).

IIpemraraemas mpomesypa 3a7aeTcs B BAJe IPABAI TeHEPEPOBAHAL H LPO-
CMOTpA YIOPANOYEHHOTO pAAA YHODAMOYEHHBIX MHOkecTB <B;> (mociemosa-
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Abstract. A constructive procedure is considered for obtaining singular-
determining sequence of elements of monotonic systems studied in [1a]. The rela-
tionship between two determining sequences 0. and ., is also examined, and
the obtained result is formulated as a duality theorem. This theorem is used for
describing a procedure of restricting the domain of search for extremal subsys-
tems (or kernels of a monotonic system); the corresponding search scheme is also
presented.
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1. INTRODUCTION

In [1a] we have developed the basic method of selection (from mono-
tonic systems) of singular subsystem, i.e. of kernels possessing extremal
properties. The main concept of this method is that of a definable set [1b].
In the terminology adopted by us, a definable set is the largest kernel of a
monotonic system of interrelated elements. In [1a] we introduced the con-
cept of a definable set with the aid of the system under consideration
called determining o (o, ) sequences.

In this paper the problem of existing of determining sequences is solved
constructively in the form of procedures (algorithms). The principal prop-
erties of determining sequences sequence constructed according to the
rules of a procedure and that exhausts the entire set of elements of the sys-
tem W are specified by a theorem.
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We shall also examine the relationship between two determining se-
quences o and a, . It can be assumed that after constructing a determin-
ing sequence a_, we could take this sequence in inverse order, thus ob-
taining an o, sequence. But in the general case this is not so. Nevertheless
we can make a weaker assertion. On the basis of the concepts (defined in
[1a]) of discrete operations of type @ and © on the elements of a system

W, this assertion will be formulated below as a duality theorem. Under
the conditions of the duality theorem, the algorithms of construction of
determining sequences described here will be used foe considerably re-

stricting the domain of search for @ and © kernels of the system W . The

algorithm of restriction of the domain of search is presented in the form of
a constructive procedure.

2. PROCEDURE OF FINDING THE KERNELS

Below we describe a procedure of construction of an ordered sequence
a of all the elements of W . In abbreviated form, this procedure is called
KFP (kernel-finding procedure).

This procedure consists of rules of generation and scanning of an or-

dered series of ordered sets <Ej> (sequences); here j varies from zero to a

value p, which is automatically determined by the rules of the procedure,

whereas the elements of each sequence Ej are selected from the set W 1.

This series <Ej> constructed by this rule forms a numerical sequence of
thresholds <u j> and a sequence of sets <Fj>. On the other hand the se-
quence of thresholds governs the transactions from EH to E} in the chain

<BJ> , and the sequence <Fj> terminates with a set, which is definable.

1 Let us recall that in a) the brackets <> denoted an ordered set; in the case under con-

sideration they denote an ordered set of ordered sets Bj .
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In the description of a rule we use the operation of extending a se-

quence BJ by adjoining to it another sequence Y. This operation is sym-

bolically expressed by

B« (B.7).

This rule of construction of the sequence a of all elements of the set W

can be recursively described step by step. Each step has two stages.

Zero Step

Stage 1.

Stage 2.

In the set W we find an element p, such that

n W(y,)=min, ,t W) =F (W) 2

We shall write u, = W(y,), a = <u0> and the set I, = W.
We select a subset of elements y from W such that

n W\a(y)<u,’

After that we order the elements in a certain manner (which
can be arbitrary selected). The thus-obtained ordered set is
denoted by ¥ . Let us write B, =7 .

We construct a recursive procedure for extending the se-
quences & and [3,. Here we denote by B,(i) the i-th ele-

ment of the sequence f,.

2 We are constructing a determining sequence O._. The construction of O, is entirely

similar and therefore not presented here. We shall only indicate where it is necessary
to invert the sign of inequalities, and where the search for an element with the minimal
weight must be replaced by search for an element with maximal weight, so as to be

able to construct O, . Thus the construction here of O, the element [, is obtained

from the condition

T W () = max ., W(3) = F, (W).

3 The construction of O, requires the selection of a Y such that

T W\a(y)=2u,,u, =1"W(y,).
315



Monotonic Systems, II

We specify one after another the elements of the sequence

B,. At each instant of specification we extend the sequence
o by the elements from B, of the sequence fixed at this in-

stant. In accordance with the symbolic notation of the opera-
tion of extension of a sequence o, we perform at each in-
stant t of specification the operation a<—<E,B0(t)>. Sup-

pose that all the elements of EO up to B,(1—1) inclusive have

been fixed. Then the sequence a will have the form
(Ho:Bo (). Bs (2)...-.Bo (i = 1)),

which corresponds to the symbolic notation of the operation
of extension of the sequences

o <« <a>BO (1)350 (2)7--'350 (1 - 1)>
in the case that o inside the brackets consists of one element
Ho-

Let us consider an element ,(i —1) of the sequence B,. At
the instant of specification of the element B,(i—1) we decide

during the above-mentioned operation of extension of o
also about any further extension or about stopping the exten-

sion of the sequence B, .

We must check the following two conditions:

a) In the set W \ @ there exist elements such that
T W\a(y)<u, %

b) the element B, (i) is defined for the sequence P, 5.

4 In constructing O, , this condition is replaced by 7" W \ al(y) > u,.
5 An element [3,(1) is assumed to be defined for a sequence Bo if the sequence Eo has

an element with an ordinal number i . Otherwise the element Bo (1) is not defined.
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There can be four cases of fulfillment or nonfulfillment of
these conditions. In two cases, when the first condition is sat-
isfied, irrespective of whether or not the second condition
holds, the sequence B, will be extended. This means that the
set of elements y in W \ & specified by the first condition is

ordered in the form of sequence ¥ . The sequence B, is ex-

tended in accordance with the formula BO «— <E0,7>.

In case when the first condition is not satisfied, whereas the
second condition is satisfied, we shall fix the element 3,(1)

and at the same time extend the sequence @, i.e.
o <« <G,BO (i)> , and the we have a new recursion(Stage II).

In case that neither the first nor the second condition holds,
the sequence B, will not be extended and the last fixed ele-

ment in the sequence P, will be the element B,(i—1).

Recursion Step

Stage1. Suppose that we have fixed all the elements of the sequence

B;. By that time we have constructed a sequence @ . Let us
consider the set W\ o and the weight system IT"W \ a. We
shall find an element in IT"W \ @ on which the minimum is
reached in the weight system IT"W \ a. The obtained ele-
ment is denoted by p, ¢ Thus, 7 W\ a(u,,,) =F.(W\Q).

Let us write u,, =7 W\a(u,,), and for the set
[,,=W\a; then we supplement the sequence & by the
element p_ ., i.e.

17

o ().

¢ In constructing O, the element [ i+1 is obtained from the condition
WA a(MjH) = max,_,,, T W\a@)=F (W\a).
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Stage 2.

In the same way as during the zero step, we select a subset of
elements y from W\ @ such that

©W\a(y)<u,,”’

The selected set can be ordered in any manner. The ordered
set is denoted by Y. The set EH is assumed to be equal to Y.

By analogy with the second stage of the zero step, the second
step of the recursion step will be described as a recursion
procedure. At this stage we also use the rule of extension of

the sequences o and f3 ;.

Suppose that we have fixed all elements of up to

i1
B,(i—1) inclusive. Then the sequence a will haveJ the form
o= <a,uj+1,[3j(1),...,[3j(i - 1)>, where o denotes the sequence
o obtained at the instant of fixing all the elements of Ej, or,
to rephrase, the sequence o prior to the (j+1)-st step. The
last equation corresponds to the symbolic operation of exten-
sion of the sequence o = <a,uj+1,[3j(1),...,[3j(i - 1)> in the case

that o inside the brackets denotes the sequence <E, u j+1> .

Let us consider an element 3, ,(i—1) of the sequence B, ,. At
the instant of fixing the element 3, ,(i—1) we decide about a

further extension or about stopping the extension of the se-

quence For this purpose we consider the weight system

1

IT"W \ o and we check two conditions:

a) The set W\@ contains elements y such that
T W\a(y)<u
b) the element 3, ,(i) is defined for the sequence B

1

8.
1

7 Here we select for O, a set of elements ¥ such that T°W \ a(y) > u,,,.

® For constructing OL, we must take elements Y such that "W\ a(y) > u; .
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By analogy with the step zero, we find that the sequence

j+1
is extended in two cases in which the first condition is satis-
fied irrespective of whether or not the second condition
holds. The set of elements y in W\ a specified by the first

condition is ordered in the form of a sequence Y The se-

quence Ejﬂ is extended in accordance with the formula
j+1 A <Bj+1’7> .
In the case that the first condition does not hold, whereas the

second condition is satisfied, the element 3, ,(i) will be fixed

and at the same time we extend the sequence «, i.e.
a <_ <aaBj+1 (1)> 7

and after that we proceed again in accordance with the rules
of Stage 2 of the recursion procedure of extension of the se-

quence f3,,.

In the case that neither the first, nor the second condition
holds, the sequence Ejﬂ will not be extended, and the last
tixed element of the sequence Ejﬂ will be the element

Bj+1(i_1)'

At some step p the sequence o will exhaust the entire set of

elements W .

Theorem 1. A sequence o constructed on the basis of a collection of

weights systems {H_H‘ Hc W} is a determining sequence a_, whereas

a sequence o constructed on the basis of {H+H‘ Hc W} is a determining

sequence d., .

The first part of the theorem (for a_ ) is proved in Appendix 1. The sec-

ond part (for o, ) can be proved in the same way.
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Let us note that a sequence a constructed by KFP rules has somewhat
stronger properties than required in obtaining a determining sequence.
More precisely, there does not exist a proper subset L for j=0,1,....,p—1

such that
I'oLol,

and F (T'})) <F (L).

This is not required for obtaining a determining sequence a_ (a, ). The
corresponding proof is not given here.

Let us note another circumstance. With the aid of the kernel-finding
procedure it is possible to effectively find (without scanning) the largest
kernel, i.e. a definable set. It is not possible to find an individual kernel
strictly included in a definable set (if the latter exists) by constructing a
determining sequence.

3. DUALITY THEOREM

Let us establish a relationship between the determining sequences o _

and o, of asystem W.

Theorem 2. Let o and o, be determining sequences of the set W
with respect to the collection of weights systems {H*H‘ Hc W},
{H+H‘ Hc W} respectively. Let <Fj_> be the subsequence of the sequence
A. (j=0,,..,p) needed in the determination of o _, and let <Fj+> be the

corresponding subsequence of the sequence A, (j=0.1,...,q).

Hence if for an m and a n we have

F.I)=F(@I,), 1)
then . c W\T", " c W\T_,.If
@) <E®T,) 7 (2)

then [ c W\T, I" c W\T..

n

’ In the following, the + and — sign will not be used twice in notation. This rule applies
also to Appendices 1 and 2.
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This theorem is important from two points of view. Firstly, under the
conditions (1) and (2) there exists a relationship between an o sequence
and o, . This relationship consists in the fact that elements of o, which
are at the “beginning” and form either the set W\I',,, or the set W\~
will include all the elements of the set I'_ that are at the “end” of o _. The
same applies also to sets W\I', ., or W\ T which are at the beginning of
a_, since they include in a similar way the set Fn+ . In other words, the
theorem states that the sequence o, does not differ “very much” (under
certain conditions) from the sequence, which is the inverse to a .
Let us note that the conditions (1) and (2) are sufficient conditions, and
it can happen that actual monotonic systems satisfying these conditions do

not exist. Nevertheless, in the third part of this article, we shall describe
actual examples of such systems.

4. KERNEL SEARCH PROCEDURE BASED ON DUALITY THEOREM

We just noted that a determining sequence ., differs “slightly” from
the inverse sequence of a_. For elucidating the possibility of a search for

kernels on the basis of the duality theorem, let us rephrase the latter. This
assertion can be formulated as follows: at the beginning of the sequence
o, we often encounter elements of the sequence o _, which are at the end

of the latter.

Such an interpretation of the duality theorem yields an efficient proce-
dure of dual search for @ and © kernels of the system W . This is due to
the fact if the elements are often encountered, there exists a higher possi-
bility of finding a @ kernel at the beginning of the sequence o, as com-
pared to finding it at the end of a_; the same applies also to a © kernel in

the sequence a_.

The procedure under construction is based on Corollaries I-IV of the
duality theorem presented in Appendix II, where we also prove this theo-

rem.
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The procedure of dual search for kernels described below is an applica-

tion of two constructive procedures, i.e. a KFP for constructing o, and a

KEFP for constructing o_. The procedure is stepwise, with two construct-

ing stages realized at each step, i.e. a stage in which the KFP is used for

constructing o, with @ operations, and a stage in which the same proce-

dure is used for constructing o with the aid of © operations on the ele-

ments of the system.

Zero Step

Stage 1.

Stage 2.

322

At first we store two numbers:
u, =F (W) and u, =0.

After that we perform precisely Stage 1 and 2 of the zero step
of the KFP used for constructing the determining sequence

a,.
This signifies that the set W contains an element p, such
that 7" W(y,) = max,_, " W(3)=F, (W). The threshold u,

is equal to T"W(u,), etc.

By using the constructions of the zero step of KFP at the pre-
vious stage of the dual procedure under construction, we ob-
tained a set I, € W. Then we examine the set W\ I} and

the weight system IT"W \I;". On the set W\I, with the
weight system IT"W\I," we perform a complete kernel-
tinding procedure for the purpose of constructing a deter-
mining sequence of @ operations only for the set W\ I} . As
a result, we obtain in the set W\T," a subset K' on which
the function F reaches a global maximum among all the
subsets of the set W\ T .
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Recursion Step

Stage 1.

Stage 2.

By applying the previous (j—1) steps to the j-th step, we
obtained a sequence of sets I'/,I7',...,T, and according to

the of construction of a determining sequence we have
[ oI 2.0l and [ =W.

At first we store two numbers:
u; =F (') and u; = F (H)).

By analogy with Stage 1 of the zero step of this procedure,
we perform the same construction consisting of two stages of

a KFP recursion step for constructing o, with the aid of &

operations.

At a given instant of Stage 1 of such dual construction we ob-

tained a set I, c I',". Then we consider the set W\, and

j+1

the weight system IT"W \ T, . In the same way as at the zero
step, we perform on the set W\I}, a complete kernel-

finding procedure with the purpose of constructing a se-
quence o_ only on the set W\T,,. As a result we obtain in

the set W\IT1 a subset H"' on which the function F

reaches a global maximum among all subsets of the set
WAT,.

Rule of Termination of Construction Procedure.

Before starting the construction of the j-th step of the proce-

dure under construction, we check the condition
u; <u;. 3)

If (3) is satisfied as a strict inequality, the construction will
terminate before the j-th step. If (3) is an equality, the con-
struction will terminate after the j-th step.
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5. DEFINABLE SETS OF DUAL KERNEL-SEARCH PROCEDURE

At the end of the construction process, the above procedure yields a set
H’ or a set H”"'. It can be asserted that one of the sets is definable set or

the largest kernel of the system W with respect to a collection of weights
systems {H’H‘ Hc W}

The assertion is based on the following. Firstly, by applying the KFP we
obtained the second stage of the j-th step of a dual procedure the maxi-

mal set H"' among all the subsets of the set W\, on which the func-

tion F reaches a global maximum in the system of sets of all the subsets
of the set W \T,,. Secondly, by virtue of Corollary 1 of the Theorem 2 (the

duality theorem), it follows that, prior to the j-th step and provided that

(3) is a strict inequality, the largest kernel (a definable set) will be con-
tained in the set W\ I, or it follows from the Corollary 2 of the Theorem

2, if (3) is a equality, that the largest kernel is included in the set W\T,.

Thus by comparing these two remarks we can see that either H’ or H'*'

is a definable set.

By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to

find by similar dual procedure also the largest kernel K ®- definable set.

This assertion can be proved in the same way as the assertion about H'

and H’"'; therefore this proof is not given here.

APPENDIX 1

Proof of Theorem 1. We shell prove that a sequence & constructed by
the KFP rules is a determining sequence for a collection of weight systems

(M H|Hc W},

324



© Joseph E. Mullat

First of all let us recall the definition of a determining sequence of ele-
ments of the system W . We shall use the notation A _ = <HO,H1,...,Hk_1>,

where H, =W, H.,=H. \a, (i=0],...,k—-2). A sequence of elements of
a set W is said to be determining with respect to a coalition of weights
systems {H_H‘ Hc W} if the sequence A_ has a subsequence of sets

r. = <r0,r1,...,rp>, such that

a) The weight n H,(a,) of any element o, of the sequence a that

is strictly

+17

belongs to the set I';, but does not belong to the set I

smaller than the weight of an element with minimal weight with
respect to the set I', ,, i.e. mH (o)) <F.(I,,), j=0...p—17;

b)  the set I'| does not have a proper subset L such that the strict
inequality F (I')) <F (L) is satisfied (the “~” symbol has been

omitted; see previous footnote).

We shall consider a sequence of sets A_ and take the subsequence I,
in the form of the sets I'; (j=0,1,...,p) constructed by the KFP rules. We

have to prove that sets I'; have the required properties of a determining

sequence. Assuming the contrary carries out the proof.

Let us assume that Property [1a] of a determining sequence is not satis-
fied. This means that for any set I'; there exists in the sequence of elements

B =(B;(1.B;(2).-)

an element [3,(r) such that

n_Hv+r(Bj(r)) 2 F_ (Fj+1) = uj+1 * (A]-)

' In the definition of O, sequence it is required that the following strict inequality be

satisfied:

n+Hi(a‘i) > F+ (l—‘j+1)r J: 0,1,...,q—1
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Here v is the index number of the element p; selected in Stage 1 of the

recursion step of the constructive procedure of determination of o ; in the
vocabulary of notation used in [1a] we have v =i(I).

According to the method of construction, the sequence BJ consists of

sequences Yy formed at the second stage of the j-th step of the construc-
tive procedure. Let M be a set in a sequence of sets A _ such that the first

element o, of the set M in the constructed sequence a is used at the

second stage of the j-th step for constructing the sequence y to which the
element [3,(r) belongs. This definition of M shows that H ,, ¢ M.

From the construction of the second stage of the j-th step and the prin-

cipal property of monotonicity of © operations in the system we obtain

the inequalities
©H,, (Bj(r)) < n_M(Bj(r)) < n_rj(}lj) = U, (A.2)

By virtue of the above method of selection of the set I, from the se-
quence of sets <Fj> and of the properties of a fixed sequence Bj, we obtain

at the j-th step

uj :Tcirj(uj+1)<n7rj+1(“j+1):uj+1’ (A3)

where j=01,...p—1.

According to the rule of constructing of the sequence @, the function

F reaches its value on the elements p; and p, . The elements p; and

W,., belong to the sets I'; and I, respectively; therefore the inequalities

(A.1) — (A.3) are contradictory.
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Thus our assumption is not true and Property [1a] of the determining
sequence a constructed by KFP rules has been proved.

Let as assume that Property b) does not hold, i.e. the last I'| of the se-

quence <Fj> contains a proper subset L such that

F (I,)<F (L). (A.4)

Let the element A € L, and suppose that it is the element with minimal
ordinal number in & belonging to L; moreover, let t denotes this num-
ber,i.e. t =1(L), o, = A. From the definition of ¢ it follows that Lc H,.

Our analysis carried out above for the set H , we repeat below for the

r

set H,. By analogy with the definition of the set M we define a set M'
with the aid of the element A and the sequence o .

The set M' is equated with the set of the sequence of sets A _ that be-
gins with an element used in the formation of a set y at the p-th step of
the constructive procedure such that A € 7.

By analogy with derivative of (A.2) we obtain

THQ)<aM@Q)z2nT (n)=u,. (A.5)

Since F (L)<mL(A), it follows from (A4) and (A.J5) that
n H (M) <n L(A).
We noted above that L ¢ H,, by virtue of the monotonicity of ® opera-
tions, it hence follows that
n LA)<n H (A).
The last two inequalities are contradictory, and hence Property b) of the
determining sequence is satisfied.

Thus we have proved that the sequence a constructed by the KFP rules
is a determining sequence with respect to a collection of weight systems

{H’H‘ Hc W}, and hence it can be denoted by @ _, whereas the sequence
<Fj> obtained by a constructive procedure can be denoted by I .
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APPENDIX 2

Proof of Duality Theorem. Below we shall show that I, c W\T,, i

F.(I’)=F (I')) (we omit a twice notation of + and — symbols; see Foot-
note 9).

Let us assume that there exists an element { €I’ and that E€ T,
I W\l

cording to the definition of the function F, we have the inequality
TCF;H (&) F(r +1)

For a determining sequence o, and for any j=0,1,..,q—1 we have

ie.

Hence follows that we have defined a weight nl",,(§). Ac-

n+1

inequalities
F(T,,,) <F(T)). (A6)
Let us consider an element g eI’ with the smallest index number in
a, . It follows from the definition of ., that
7T (g) > F(IL.,). (A7)

The choice of element g is convenient because it permits the use of
Property [1a] of a determining sequence (see Appendix 1), i.e. in this case
the set I is in the form of H, =I". Since F(I'') >l (g), we have
proved (A.6).

Since & eI'_, it follows that we have defined a weight nl’_(£). We have

the following chain of inequalities:
F(I,) <al (§) < W(§) = "W (&) <nl /(&) ™.

The first inequality follows from the definition of the function F_, and
the second inequality from the monotonicity of © operations. The equality
follows from the definition of the functions ®~ and ©", whereas the last

inequality follows from the monotonicity of © operations.

"' Let us recall that for any element & of the system W under consideration, we have in

a) the relation T W(8) = 1" W(J).
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By virtue of (A.6) and of the conditions of the theorem, we have also the
following chain of inequalities:

4 (&) <F(I.) <F(I7) =F(,).

By supplementing this chain by the previous chain of inequalities, we

hence obtain

(&) <l (8).

Since I'7, < I',, it follows from the monotonicity of ® operations that

Tcrn++1 (E.s) < nl—:ﬂ (EJ) .

The logical step used for obtaining the last inequality is valid, and
therefore the assumption that I', < W\ T, is untrue.

In the same way we can prove the inclusion I’ < W\ _,,. For this

+1°
purpose it suffices to change the signs of the inequalities and (whenever
necessary) to replace theset I, by I'_,,and I'_ by I',".

n+17

If condition (2) of the theorem holds, it is not necessary to use (A.6). In
this case the proof will be similar, being based on the following chain of
inequalities:

7L (&) SF(T)) < F() S al, () S mw W(E) < ol (8) =
The first inequality follows from the definition of F(I',"), the second fol-

lows from Condition (2) of the theorem, and the third from the definition
of F(I',). The last two relations express the properties of monotonic sys-

tems. Hence in this case we have under Condition (2) also

il (&) <l (8).

> The proof is based on assuming the contrary, so that I & W \ F; , i.e. there exists,

as it were, an element § € I’ and & € F: .
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This completes the proof of the theorem. =
Now follows several corollaries of Theorem 2.

Corollary 1. If for a n =0,1,...,q of a determining sequence o, there ex-
ists a subset Hc W\T such that F (H) > F(I',") then the kernel K ® will
belong to the set W\ I',". Indeed, since a definable set is also kernel, it fol-
lows that F (H)<F(I',), m=0,1,...,p, and hence (in any case) if m=p,
and n is selected on the basis of the condition of the corollary, then
F(I',) <F(I',) . By virtue of the theorem, we therefore obtain the assertion

of the corollary.

Corollary 2. If for n=0,1,...,q—1 of a determining sequence o, there
exists a subset Hc W\TI such that F (H)=F(I,), then the kernel K ®
will belong to the set W\T",.

The proof follows directly from Corollary 1, by virtue of (A.6).

Corollary 3. If for an m=0,1,...,p of a determining sequence o _ there
exists a subset H < W\ T such that F (H)<F(I',) then the kernel K ©
will belong to the set W\ I', . The proof of Corollary 3 is entirely similar to

that of Corollary 1. It is only necessary to change the signs of the inequali-
ties and replace the set I, by T, .

Corollary 4. If for m =0,1,...,p—1 of a determining sequence o _ there
exists a subset H < W\ T such that F (H)=F(I,), then the kernel K ©
will belong to the set W\T"

+1°
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SKCTPEMAJbHbLIE NOACUCTEMbl MOHOTOHHbBIX CUCTEM. Ill
WU. 3. MYJINIAT

(Tannuu)

PaccMaTpuBaeTcs BOBMOKHAS THOCTAHOBKA 3a/[a4d BLIIEJeHWsS JacTel u3
sajagHOro rpada, Golee «HACHILEHHBIX», 4eM KaKue-Iu00 pyrme 4YacTH,
OMHOTHIHHIME «MalsiMuy rpadaMu. PermeHue 3TO# 3afads, MCXO[A M3 IIPefi-
J0}KEeHHO# TOCTAHOBKY, OCYIIECTBISIETCS IyTeM 00pasoBaHHA MOHOTOHHOM
CHCTeMHBI Ha CTPYKTYPHBIX diaeMenTax rpadoB (gyrax mim Bepmmrax). Cxema
06pasoBaHMsa MOROTOHHOH CHCTEMEl U3 3a/jaHHOr0 rpafia IPUBOAMTCA B 00ImEM
BHJIe, 1 HeOOXOZHMEIe KOHCTPYRINE MOACHAITCA HA IIPIMepax,

Pafora smBigeTca mpoposKenneM [1, 2] m opmeHTMpOBaHA Ha WILIIOCTpPa-
A0 PasBATOTO TaM alIapaTa BHIJieIeHNA DKCTPeMAJbHLIX IOJCHCTeM A pe-
MeHAA HEKOTOPHIX 3afiad, BOSHUKAKWIINX B TYPHHEpAX, afUKIMIecKnx rpadax,
HEODPHOHTHPOBAHHEIX ¥ OPHEHTHDOBAHHEIX [A€PeBHX.

K o6mbexraM, K KOTODHIM B HACTOAIMIEe BPeMsI IIPOSBIIAETCS MHTePec MCCle-
noBaTeneil cIoKHEIX cmcTeM, orHocaATea rpadet [3]. C opgmoil cropomst, rpad —
MaTeMaTHYeCKUi 06HeKT, a ¢ [Pyroil — yHo0HOe CPEeACTBO ONMCAHAA W AHAIM3A
B3aEMO3ABUCHMOCTEH MEKIy DIeMEeHTaMU B cHCTeMe. B cirydae cmcreM ¢ He-
0ONBIINM 9IHCIOM DIEMEHTOB aHAIW3 rpadoB He IpeAcTaBlifeT HEKAKAX TPY.-
HOCTEI, HO, KOI/Ia 9ACII0 DIIEMEHTOB BEIMK0, BOSHAKAIOT MPOOIeMEI.

B pammoii pabore mpejaraercA aHamm3 Ipada 3aMeHHTH HOCIE[0BATENb-
HEIM aHATW30M BHIJEIsAeMBIX u3 rpada uacreir. B Teopmm rpagor mmeerca 6o-
raTeil anmapar BHIIENEHUA MOArpadoB, YacTedl m T. I., ONHAKO HOPH aHANH3E
Gonbmmx rpad)oB He BCEr[a YHAETCA KIACCHISCKHNe METOALL CBA3ATH ¢ KOHKDeT-
HBIME HYKAaMu mccnefoparens. VsBecTHo, HampmMep, 9TO HKCHEPEMEHTANb-
apie Tpadsl TOBOIHHO MYCTHE W MODTOMY COAePIKAT MHOTO MAKCHMANBHEIX IOJI-
HEIX TOTPag)0B, KOTOPEIE BEINETATH B OTJEIHHOCTH HET CMEBICIA.

C wmamieit TOYKW 3peHWsA, TPUTOMHEIA ammapaT BHeIeHNS dacTeir B rpade
MOKHO HOJYYHTH, ECIIA BOCIONB30BATHCS MOHATHEM MOHOTOHHON cmeremsr [1].
Ieno B Tom, aTo m3 rpada MoyKHO 00pA30BaTh HE ONHY, a MHOMECTBO MOHO-
TOHHBIX CHCTEM W COOTBETCTBEHHO NPeJIOMKUTH He e[NHCTBEHHOE peIIeHHe
MOCTABIEHHOH 3a[]aun, & [elioe MHOKeCTBO (ayke GECKOHETHOEe MHOKECTBO)
pemennit. WecregoBatemo rpada ciegyer Ha OCHOBE.COOCTBOHHOH WHTYHIAN
BHIOpATh JOMYCTHMEIH KIACC PeIIeHMIT M TOJBKO 3aTeM YiKe BOCIOIL30BATHCS
paspabaTriBaeMBIM 31eCh (POPMATHHEIM aTIapaToM. o

B paspeme 4 mpHBOXATCS HEKOTODHIE PEKOMEHJAIUM O TOM, KaK CJIEXyeT
BHIOEpATh KIACCHl PEIIeHUI B KOHKPETHHIX CIydasX Ha IPEMepe TypPHHPOE,
alEKINIeCKAX IpaoB, BOSHHKAOIIX TPY HCHOTL30BAHNY TEXHAKHA MOJYIb-
HOTO IPOrPAaMMUPOBAHWA, JePeBheB. B 0CTATBHEIX pasfenaXx CTPOUTCA 00mas
MOJieJTb He0OXOMMOT0 amnmapara BHIAEJNEHNS JacTell, KOTOpas WIICTPEPYeT-
ca mpumepamu. TepmuHOTOTHA Teopun rpaoB 3amMCTBOBaHA M3 MOHOrpadmit
[4—6].

1. CopepikarenbHas NOCTAHOBKA 3a/jauM BblACNEHHS
SKCTPpEeManbHbIX NoAcHcTeM — siiep Ha rpadax

Paccvorpum Ha rpadax samady TaKoTo THWA: 3aiaH «Gombmroity rpad G
u «vanstit» rpad I'. Heobxogumo B rpade G BrrgesmTs Takyio ero 9actb (MHO-
ecTBO Ayr Wim pebep), 4T00BI 9Ta BHETCHHAS 9YaCTh OBLIA (HACKIEHA)
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Abstract. An attempt is made to find parts of a given graph that are more “satu-
rated” than any other parts with “small” graphs of the same type. On the basis of
such a formulation, constructing a monotonic system from structural elements of
graphs (arcs or vertices) solves this problem. The scheme of producing a mono-
tonic system from a given graph is presented in general form, and the necessary
constructions are illustrated by examples. This paper is a continuation of [1a] and
[1b]; it has the purpose of illustrating the procedures (developed in the first two
parts) of finding extremal subsystems for solving certain problems arising in
tournaments, a-cyclic graphs, and undirected and directed trees.
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1. INTRODUCTION

Among the items that are at present of interest to investigators of com-
plex systems, let us mention graphs [1b]. On the other hand a graph is a
mathematical object, and on the other hand it is a conventional means for
describing and analyzing the relationship between the elements of a sys-
tem. In the case of systems with small number of elements, the analysis of
graphs does not present any difficulties, but in case of a large number of
elements we have problems.
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In this paper it is proposed to replace the analysis of a graph by a suc-
cessive analysis of parts of this graph. In graph theory there exist many
methods of selecting of sub-graphs, parts, etc.; however, in the analysis of
large graphs it is not always possible to adapt the conventional methods to
the actual requirements of the investigator. For example, it is well known
that experimental graphs are fairly empty, and therefore contain many
maximal complete sub-graphs whose individual selection makes no sense.

From our point of view it is convenient to select the parts of a graph by
a method based on the concept of monotonic system [la]. As a matter of
fact, from a graph it is possible to construct not one, but a whole set of
monotonic systems. The investigator of a graph must select on the basis of
its own intuition an admissible class of solutions, and only after that will
he be able to use the formal method developed here.

In Section 4 we give some recommendations how to select the classes of
solutions in actual cases, by using the example of tournaments and a-cyclic
graphs that occur in the technique of modular programming, as well as
trees. The other sections deal with the construction of a general model of
the required procedure of selection of parts that is illustrated by examples.
The terminology of graph theory has been adopted from [3 - 5].

2. PROBLEM OF SELECTION OF EXTREMAL SUBSYSTEMS
(KERNELS IN GRAPHS)

Let us consider the following problem on graphs. We are given a
“large” graph G and a “small” graph g. From the graph G it is required

to select a part (i.e. a set of arcs or edges) in such a way that this part is
“saturated” with small graphs g. The saturation part of a graph with

small graphs g can have different interpretations. For example, it can be

assumed that one part of a graph is more saturated than another part if the
tirst part contains a large number of graphs g as compared to the second.

The definition of saturation can be also obtained in the following “com-
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plex” manner. Let us consider a set of arcs or vertices of a graph G that
occur only in the part of interest to us. That then we can calculate not the
total number of small graphs g located there, but only the “individual”
graphs located “near” each arc or vertex. The individual number of small
graphs g located near an arc or vertex is defined as a number of such
graphs containing this vertex or arc; hence this number is expressed by an
integer. By proceeding in this way, we obtain precisely as many integers
specifying the part of interest to us, as there are arcs or vertices in it, and
each integer represents a “local” saturation of the graph G by small
graphs g.

On the basis of these integers there can be many ways of defining the
saturation of part of a graph. It is possible to calculate their mean value,
their variance, etc. Here we shall consider the simplest characteristic,
namely the least of all the local numbers of small graphs g located in the
selected part of a large graph G. Figuratively speaking we can say that
this is the number of sub-graphs of G in the “emptiest” place.

Below we present an exact formulation of the problem of determination
of the parts of a large graph G that have greatest saturation with small
graphs g. This problem can be formulated as follows: among all possible
parts of a graph G (or among the largest number of such parts), find the
part in which the least of all the local numbers of a small graphs g that are

entirely contained in it is maximal.

It is natural to expect that in the thus-obtained part it is possible to lo-
cate in the usual manner a large number of small graphs g. Indeed, at

each vertex or arc the number of small sub-graphs g is not less than at the
vertex or arc at which this number is minimal. On the other hand in an
external part this minimal number is nevertheless sufficiently large; we

especially selected this part in such a way that the condition of global
maximum of the minimum local number of graphs g is satisfied.
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In the same way it is possible to formulate the problem of determina-
tion of the least saturated part of a graph G by small graphs g. In this
case each part will be characterized by a number of sub-graphs of g at the
vertex or arc at which this number is maximal. Instead of seeking the
graph part in which the minimal local number of graphs g is maximal, we
seek on the contrary the part in which the maximal local number is mini-
mal. In this case the number of sub-graphs of g at each vertex or arc will
not be larger than their number at the “maximal” vertex or arc, this num-
ber being small by virtue of the condition of global minimum.

Let us note yet another advantage of the above-defined external parts of
graphs. As a rule, the saturation or non-saturation of these parts by small
graphs is “uniform.” Usually a saturated extremal part cannot have an
especially least number of graphs g at any vertex or arc, since the part of
the graph G without this vertex or arc is apparently more saturated with
sub-graphs of g in the above-mentioned “complex” sense. Conversely, for
the same reason an unsaturated extremal part cannot have an especially
large number of sub-graphs of g at any one arc or vertex.

The procedure of selection of parts of graph developed in this paper is
based on the concept of a monotonic system. In considering actual applica-
tions of this technique, we must be able to calculate the number of distinct
sub-graphs of g located at any given part of the large graph G. This is not
a simple problem, but many investigators dealing with the theory of
graphs have considered the calculation of distinct parts of a graph, such as
Euler circuits, regular trees [5], simple chains (paths) [6], and simple cir-
cuits [7]. Hence we possess a highly developed technique of calculation
that can be used for finding the extremal parts of graphs as defined above.

Among the meaningful problems that can be solved with the aid of the
method developed here, let us note the problem of selection, from family
of n object that have to be ordered, of the most unordered (unmatched),
or of the most (ordered) (matched) sets of objects. As a matter of fact, in
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the same way as in [8] we can take as a measure of compatibility the num-
ber of transitive triples, and as a matter of incompatibility the number of
cyclic triples. In our terminology, cyclic and transitive triples are certain

small graphs.

Such a development of monotonic systems on graphs can be used, for
example, in finding the “bottlenecks” of operational systems described in
the language of modules [9]. In such large systems it is not so easy to ori-
ent oneself in the hierarchy of mutually generating modules, and to un-

derstand the principal manners of construction of working programs.

3. GENERAL MODEL OF FINDING KERNELS ON GRAPHS

For a given graph G let us denote by V(G) or V the set of its vertices.
The set of arcs of a directed graph G will be denoted by U(G) or U, and
the set of edges of an undirected graph will be denoted by E(G) or E.

In graph theory we use the concept of a subgraph of a graph G. A
graph G' is a subgraph of a graph G = [V(G),U(G)] if V(G') < V(G) and
U(G') is the set of those and only those arcs of G that connect pairs of
vertices belonging to V(G'). The definition of a set of sub-graphs of an
undirected graph has the same form. Instead of an arc, we must consider
in this case an edge of G. Sometimes one uses the concept of part of a
graph G. A part G" of a graph G =[V(G),U(G)] is a graph such that
V(G") 2 V(G) and U(G") 2 U(G). In G" some of the arcs of the graph
G are simply absent. In the same way we can define a part of an undi-

rected graph G = [V(G),E(G)]. Let us note that one of the most important
concepts in this paper is the isomorphism of graphs [5].

The construction described in [1a] begins with the specification of the
elements of a system W . In graphs there exists two structural units — ver-

tices and arcs. First of all let us consider the case that as an element of the
system W we take a vertex of a graph G.
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In accordance with the construction proposed in [1a] it is necessary to
define the concept of ® and © actions over vertices (elements) of a system.
The definition of & action and © action requires the assignment of special
significance function 7 of the vertices of G. As a result of ® actions the
significance of vertex in a system must increase, whereas the © actions

decreases the significance.

The construction carried out in [1a] requires numerical arrays (weights)
on each subset H of elements of the system W . In [1a] we have shown
that for this purpose we need an initial weight array on W and a method
of realization of & and © actions. The initial weight array {n(oc)‘ oe V}
can be defined, for example, as follows. In addition to a “large” graph G,
let us consider also a “small” graph g. Let us calculate the number of dis-
tinct sub-graphs of G that are isomorphic to a graph g whose set of verti-
ces contains the vertex o . Let us take this integer as the initial significance
level m(a). For emphasizing the dependence of the just-introduced level
n(a) of “small” graphs, we shall also use the expression “the weight m(a.)
of a vertex o in the graph G with respect to g.”

Below we present two operations of generation new graphs from a
graph G; they are denoted by ® and ©. Let us consider a graph G and let
A be en empty graph, i.e. a graph that does not contain any arc, but which
has ‘ V(G) ‘ ! vertices. It is assumed that V(A) is an exact copy of V(G),

and in referring to a vertex o we have in mind a vertex of graph G,
through it apparently can be of two sorts, namely as a vertex of G and as
a vertex of A.

An operation of type © with a vertex o in the graph G consists of re-

moval of all the arcs leading to a vertex a of G.

An operation of type & with a vertex o in the graph G consists of re-

storing on an empty graph all the arcs leading to a vertex a of G.

! ‘M‘ is the number of elements of the set M
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It is easy to see that as a result of the © operation on any vertex a, the
weights of all the other vertices with respect to a selected small graph g
are either decreasing, or the at least remain at the previous level. In realiz-

ing the © operation, there naturally arises the question of what can be re-

garded as a weight of vertex after its realization.

This problem can be solved by the following construction. On the graph
A we calculate the proper weights of the vertices with respect to a small
graph g and we add them together with the weights on the vertices of G.
The thus-obtained sum is taken as a total weight of the vertices. In this
case we can observe the opposite effect; i.e. as a result of ® operation the
total weights either increase or they remain (as in case of © weights) at the
previous level. In general the initial array of weights {n(oc)‘ oe V} (i.e.
the array of weights prior to any operations) on the vertices of the graph
G can be taken as a total array of weights, since the contribution of the

graph A is zero. Below we shall consider only the total weights m(c) of

graph vertices that are called weights in the above sense.

Summing up, we can say that a @ operation is equivalent to defining a
@ action on elements of the system W, whereas © operation is equivalent
to © action if we take the above-defined total weights as significance levels
of the vertices of the graph G. Thus the monotonicity inequalities are sat-
isfied in the above scheme, this being the principal property of monotonic

systems [1a].

In constructing the sets of weight arrays of the system W it is necessary

to indicate in which manner the above-calculated array of initial weights
{TC(OL)‘ e V} is redistributed as a result of ® and © actions.
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Suppose we have specified a sequence of vertices a,,a,,0,,... forming
the set H <V 2 Let us successively perform © actions on the vertices of

the graph G in accordance with this sequence. As a result we obtain on
the set V(A) a part of the graph G. At each vertex belonging to V(A) in

this part it is possible to calculate the number of sub-graphs of the part
that are isomorphic to a small graph g, and obtain the weights on the

elements of the set H. Following the notation used in [la], we can write
that a new significance function has been defined on H that has the form

T (1)

0y ag

and which has been constructed from the initial array of weights
{n(oc)‘ o eV}.

Thus by specifying a sequence of vertices <0L1 , 0, ,> forming the set H,
we obtain on H a weight array specified by the function (1). This array
denoted by IT'H and called a weight array on the set of vertices H. The
weight arrays form a collection of weight arrays {H+H‘ Hc V}. Some-
times it is convenient to use the expression “collection of & arrays with

respect to a small graph g.”

The collection of weight arrays {H+H‘ Hc V} can be defined in a simi-
lar way. As above, the array of weights II"'H is defined by the function

Ty Ty, Ty oo (2)
and specified on the part of the graph G left over after applying a se-
quence of © actions to the vertices a.,,a.,,0,,..., forming the set H . Let us
only note that the array of weights on each subset H < V is actually a
proper array of the remaining part, and not the total array, since in this
case the contribution yielded by the graph A is equal to zero.

2 In contrast to the general model described in [1a], we do not allow here the repetition

of elements Q. The set H is the complement of H.
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Let us continue the construction of the procedure (needed below) of
finding extremal subsystems (kernels). In contrast to the foregoing, we

shall take an arc as an element of the system. The system W will be de-
fined as an interrelated set of arcs U(G) of the graph G. Following [1a], it

is necessary to specify & and © actions on the arcs of the graph G; as in
the case of a system of vertices, this requires the determination of the ini-
tial significance function m of arcs in the graph G.

Let us consider a small graph g. We shall calculate the number of dis-
tinct sub-graphs of the graph G that are isomorphic to a graph g whose

set of arcs contains the arc o. This integer is taken as the initial signifi-
cance level m(a) of the arc a in the graph G, and it is called the weight of
the arc o with respect to the graph g.

The concept of ® and © actions on arcs of the graph G can be defined

constructively and exactly according to scheme similar to the one used for

the vertices of the graph G.
Let us consider a graph G and let A be an empty graph with
‘ V(G) ‘ vertices. We shall assume that the set of vertices V(A) is an exact

copy of V(G).

An operation of type © on an arc o of a graph is called an operation of

removal of this arc on the graph G.

An operation of type @ on an arc @ is called an operation of restoration

of this arc on an empty graph A.

At the first let us consider the © operation. It is evident that as a result
of removing the arc a, the initial array of weights with respect to a small
graph g can either decrease or remain at the previous level. A decrease in
significance (weights) proves that the © operation is equivalent to the

definition of a © action on an element of the system W .
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Let us specify a sequence a,,,,... of distinct arcs of the graph G that
form a set H < U(G). Let us perform © actions on the arcs of the graph G
in accordance with this sequence. As a result, a certain part of the graph G
is left over on the set of vertices V(QG); the elements of this part are the
arcs of the set H, H < U(G). For each arc o € H let us calculate the num-
ber of sub-graphs that are isomorphic to g; this number is assumed to be

the value of the weight of the element o with respect to the set H. In ac-
cordance with our notations, this method of determination of weights

specifies a function 7, T, 7, ... on the elements (arcs) of the set H.

Thus, just as in case of assignment of collections of weight arrays on
vertices of a graph, we obtain on the arcs belonging to H < U(G) a weight
array {Tc*H Hc U(G) } on the arcs of the graph G. We shall use also the
expression “© collection of weight arrays of © actions on arcs with respect
to a small graph g.”

The determination of @ actions on the basis of @ operations over an
empty graph A requires a more detailed analysis. Suppose we have again
specified a sequence a.,,0,,0.,,... of arcs of the graph G that form a set H.
Let us successively perform @ operations on arcs of the set H. As a result
we obtain on the set of vertices V(A) a part of the graph G with a string
of arcs equal to H . Previously we calculated with the aid of a model at the
vertices the total weight of each vertex a € V(G). In the present case we
try to proceed in the same way and calculate the total weight of the arcs
forming the set H. The arcs of the set H are not drawn on the graph A,
and there naturally arises the question of how to calculate the number of
sub-graphs that are isomorphic to a graph g and that contain an arc a,
which is absent on the graph A . We shall proceed as follows: we shall as-
sume that this arc has been fictitiously drawn only at the instant of calcu-
lation of sub-graphs. Thus we obtain on the set of arcs H certain integers
that depend both on the graph G and on the part of the graph G that ap-
pears on the empty graph A . These numbers are the sum of two arrays of
numbers, i.e. of the initial array of weights on the arcs of the graph G with
respect to the small graph g, and the array of weights with respect to this
same graph g, but calculated only on the just-mentioned part.

342



© Joseph E. Mullat

In the manner described above we determine on the set H a function
T, T, T, - that specifies a weight @ array I1" = {n+H(a)‘ oe H} Thus
also in case of ® operations we can determine a collection of weights ar-
rays of & actions with respect to a small graph g. It is justified to use the
expression “® action,” since the total weights of elements not yet sub-

jected to @ action can either increase or remain at the same level.

4. ILLUSTRATIVE EXAMPLES ON DIRECTED GRAPHS

A graph G of partial ordering is defined as a binary relation G with
the following properties:
a) reflexivity, i.e. if o€ V(G), then aGa . The graph G has a loop at
the vertex a.
b) transitivity; if there exists an arc (OL,B) and (B, y), then the graph G
has an arc (Oc,y), or from o G} and B Gy it follows that a G y.

A complete order is defined as a graph of partial ordering in which any
pair of vertices a. and f is connected by an arc.

It is possible to formulate the following problem: in a given directed
graph it is required to find the (in certain sense) most “saturated” regions
that are “close” to a graph of partial ordering or to graphs of complete or-
dering. This problem will be solved by a method of organization (on a
graph) of a monotonic system with subsequent determination of kernels.
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In accordance with the scheme of organization of a monotonic system
on graphs described in the previous section, it is necessary to assign a
small graph g. Suppose that this graph consists of three vertices X,y,z,

and it is such that U(g) ={(x,y).(y,z).(x,z)}. The graph has a total of

three arcs (a transitive triple).

Now let us consider the assignment of collection of weights arrays at
the vertices of a graph shown in Fig.1. The loops on this graph have been
omitted.

According to the scheme of assignment of collections of weight arrays
at the vertices of a graph, it is required to determine an initial array of
weights { (o) }, where o =1,2,3,...,7. According to the method of calcula-
tion of the values m(a) with respect to the graph g (a transitive triple), we
obtain t(1)=3, n(2)=2, n(3)=2, n(4)=7, n(5) =4, n(6)=3, n(7)=3.
As an example, let us determine a weight array on a subset of vertices
H= {1,2,3,4,5}. By successively performing © actions on the set H-= { 6,7 },
we obtain on the set H a new weight array n(1) =3, n(2)=2, n(3) =2,
n(4)=4,n(d)=4,, n(d)=1.

The values of the function m;7; can be obtained in a similar way, but

for this purpose it is necessary to use the assignment of collections of total
@ arrays with respect to a transitive triple. According to Fig.2, the values
of this function in their order at the vertices {1,2,3,4,5} are as follows:
t(N)=3,, n(2)=2, n(3) =2, n(4)=8, m(5)=4.In exactly the same way
we can determine on any subset H of vertices V = {1,2,3,4,5,6,7 } a proper
weight array of @ or © actions with respect to a transitive triple.

Now let us consider a construction that is assigned not on vertices, but
on the arcs of the graph presented on Fig.1. In this case the set of elements
of the system W will be U(G) = { a,b,c,...,n,m } As the small graph g

we shall take the same graph as above, with a set

U(g) ={ (x, ¥ (v:2)(x,2) }.
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By analogy with the foregoing, we realize the construction in the same
succession. We determine an initial weight array {n(oc)‘ oeU } on the

arcs of the graph G in accordance with the general scheme. We find that
n(a) =1, n(b) =1, n(c) =1, n(d) =1, n(e) =2, n(f) = 3,
m(g) =2, n(h) =2, (k) = 2, n(n) = 2, 7(m) =1, n(v) = 3, n(p) = 2.

As an example, let us now perform © actions on the arcs f,k and m,
i.e. on the set H={f,k,m }. On the set H we hence obtain

n(a) =1, m(b) =0, n(c) =1, n(d) =1, n(e) = 2,
1(g) =0,n(h) =0,7n(n) =0,n(v) =2, n(p) = 2.

In accordance with the adopted system of notations this array of numbers
will be denoted by IT"H. For obtaining a II"H array, we must calculate
the total weights. The dashed lines in Fig.3 represent the arcs of graph A

that experience the effect of © actions performed on the arcs f,k and m.

According to Fig.3, the total weight array will be as follows:

n(a) =1, n(b)=1n(c)=1n(d) =1, 7n(ec) =2,
n(g) =3, n(h) =2, n(n) =3, n(v) =2, n(p) = 2.
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Fig. 3

Thus on any subset H of arcs of the graph shown in Fig.1 we can con-
struct the weight arrays [I'H and IT"H.

Next we describe the procedures of construction of determining
sequences of @ or © actions, at first for vertices, and then for arcs of

the graph shown in Fig.1. The construction is carried out for the purpose
of illustrating the concepts of @ or © kernels of the monotonic system

[1a], and also for ascertaining the effect of the duality theorem formulated
in [1b].
Let us consider an example in which © weight arrays are assigned at

vertices with respect to a transitive triple. According to the scheme pre-
scribed in [1b], the procedure of construction of a determining © sequence

of vertices of a graph on the basis of © actions (the kernel-finding proce-

dure KFP) consists of two steps (the zero-th and the first step) for the
graph shown in Fig.1; it yields two subsets I';, I, < V(G), where

I, =V(G)={123,..,7}, I, ={456,7},

and the thresholds u, =2, u, =3.
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The determining sequence of vertices constructed with the aid of © ac-
tions is as follows: o_ :<3,2,1,4,5,6,7>. Thus on the basis of Theorems 1
and 3 of [1a], and of Theorem 1 on KFP in [1b], it can be asserted that the
set {4,5,6,7 } is a definable set of vertices of the graph shown in Fig.1, and
hence this set is the largest K © kernel.

Now let apply the KFP for constructing a @-determining sequence. We
find that o, = {4,5,6,7,1,2,3 } The procedure terminates at the third step,
and it consists of four steps, namely the zero-th, the first, the second and
the third. According to the construction of @ sequences prescribed in the
KFP, we produce the sets I'": I, ={4,567123}, I} ={567123},
I; ={6,71,23}, Ty ={2,3} and a sequence of thresholds u, =7, u, =4,
u, =3, u, =2. As in the case of a @ sequence, we conclude on the basis of
Theorems 2 and 3 of [1a], and of Theorem 1 of [1b], that {2,3 } is the larg-
est K ® kernel of the system of vertices of the graph in Fig.1.

A careful analysis of Fig.1 shows that the K ® kernel is in fact com-
pletely ordered set, i.e. <4,5,6,7> . On the other hand the K ® indicates from

the point of view of the “structure” of a graph that the region, in which the
vertices are least ordered, it is ordered itself as well. This is in agreement
with the our formulation of the problem of finding kernels as representa-
tives of “saturated” or “unsaturated” regions (parts of a graph) with small

graphs g

Now let us use the KFP for constructing determining sequences of arcs
of the graph in Fig.1. The graph has a total of 13 arcs. After applying the
KFP, we obtain on the basis of © actions the following sequence:

o =<a,b,c,d,v,e,p,f,k,n,m,h,g>.

The procedure terminates at first step and it consists of two steps,
namely the zero-th step and the first step. At the zero-th step we have
I, =U(G), and at the first step we have I = { f,k,n,m,h,g }, with the
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thresholds u, =1 and u, =2 respectively. Summing up, we can assert on

the basis of the results of [1a] and [1b] that this is a definable set and at the
same time the largest K © kernel in the system of arcs.

From the point of view of the graph structure, the application of the
KEFP to arcs in the construction of a ©-determining sequence does not yield

anything new compared to the application of the KFP to vertices. We ob-
tain the same complete order (4,5,6,7) represented in the form of a string of

arcs, and it also corroborates our assertions concerning the saturation of a
K @ kernel by transitive triples. On the other hand the use of KFP for con-

structing ®-determining sequence of arcs yields a K © kernel
1_‘1+ = {ka m,n, ga ha c, p: ba a,C, d} ’

whose meaning with regard to “non-saturation” with transitive triples
cannot be ascertained.

Below we shall illustrate the peculiar features of using the duality theo-
rem from [1b] for finding K ® and K © kernels of a monotonic system

specified by vertices or arcs of a directed graph.

At first let us consider the monotonic system of vertices of the graph in
Fig.1. The sequence of sets <Fj+> specified by the KFP on the basis of @
actions uniquely determines the sets V\I} ={4}, V\I; ={45},
V\T; ={14,5,6,7 }. Above we have found that F,(I;)) =u, = 3. From the
construction of a determining sequence o._ of vertices of a graph we know
that F_{4,5,6,7 }= 3. Hence by virtue of Corollary 1 of Theorem 1 of [1b]
we can assert already after the second step of construction of an ., se-
quence that the set {1,4,5,6,7 } contains the largest K © kernel. Thus we

have shown that the sufficient conditions of the duality theorem of [1b] are
satisfied in the example of the graph represented in Fig.1.
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Now let us consider the set V\I; ={12,3 }. As was shown above, in-
side this set there exists a set Iy ={2,3} such that F (I';)=2. On the
other hand, F (I, ) =3. By virtue of Corollary 4 of the duality theorem we
can assert that set {1,2,3 | contains the largest K ® kernel of the system of
vertices of the graph (Fig.1); this likewise confirms that existence of the
conditions governing the theorem.

At last let us consider a collection of weight arrays on the arcs of the
graph. The determining o, sequence of arcs specifies a set
I = {k,m,n,g,h,e,p,b,a,c,d } It is easy to see that inside the set U\ T
there does not exist a set H as required by the conditions of Corollaries 1
and 2 of the duality theorem in [1b]. This shows that in comparison to ar-
rays on vertices, weight arrays on arcs do not satisfy the duality theorem.

5. METHODS OF CONSTRUCTING OF MONOTONIC SYSTEMS
ON A SPECIAL CLASSES OF GRAPHS

In contrast to the previous section, we do not carry out here a detailed
construction of collections of weight arrays and determining sequences
and kernels on any illustrative example. Here we shall show how to select
a small graph g and @ and © actions so as to match the selection of these
elements with the desired “saturation” of the investigated graph. The de-
sired saturation of a graph can be understood as the saturation desirable
for the investigator who usually has a working hypothesis with respect to
the graph structure. In view of this, we shall consider the following classes
of graphs: tournaments, a-cyclic (directed) graphs, and (directed or undi-
rected) trees.

Let us recall the definitions of these classes of graphs. A tournament is a
directed graph in which each pair of vertices (x,y) is connected by an arc,
c.f., [6]. An acyclic graph is a graph without cycles (in case of an undi-
rected graph), and a graph without circuits (in case of a directed graph).
Acyclic undirected graphs are trees, and we shall consider the most gen-
eral class of trees, as well as the class of directed trees.

In tournaments it is appropriate to consider regions of vertices that are
“saturated” with cyclic triples. A cyclic triple is a graph g such that
V(g)= { X,Y,Z }, U(g) = { (X,y),(y,z),(x,z)} . It can be assumed that a
tournament in which there exists such a region represents a structure of
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the participants of the tournament. This structure is non-uniform; i.e. there
exists a central region (set) of participants who can win against the other
players, but they are in neutral position with respect to one another.

For solving the above problem, we propose the following exact formu-
lation in the language of monotonic systems. In Section 2 we have consid-
ered weight arrays on vertices and arcs of a graph. Now let us consider the
above models on vertices or arcs in a certain order. In both models we take
a cyclic triple as the small graph g with respect to which the © function is
calculated. Suppose that the methods of assignment of collections of
weight arrays on vertices are the same as in Section 2. It is possible to
modify this scheme by taking as a ©-action on the vertex o the removal of
all arcs of a tournament that originates at o, whereas @-action is the resto-
ration of all the arcs in the graph A that originate at a.. In Section 2 we
performed the opposite operation, i.e. the removal of incoming arcs and
the restoration of these same incoming arcs.

The assignment of weight arrays on arcs of a tournament graph must be
carried out in accordance with a scheme similar to that described in Sec-
tion 2. Within the framework of the theory it is apparently impossible to
decide whether the scheme of determination of kernels on arcs of a tour-
nament is preferable to the scheme using vertices; therefore, it is necessary
to carry out computer experiments. There exists only one heuristic consid-
eration. If in a tournament there can exist several central regions saturated
with cyclic triples, it will be preferable to use the scheme of determination
of kernels on the arcs of tournament, since these regions can be found. The
model based on vertices makes it possible to find a kernel that consists
also of regions, but it does not permit finding an individual region. We do
not possess a string of arcs representing these regions.

Acyclic directed graphs are a convenient language for describing opera-
tion systems [9]. An operation system can be regarded as a system of
modules and interpreted as a library of programs. Each working program
is a path in an acyclic graph, or, in other words, the set of modules of a
library needed at a given instant. The modules are called one after another
if not all of them can be stored in the main memory. In case of a library of
a large size, there naturally arises the question of fixing the modules on
information carriers. Prior to solving this problem, it is appropriate to as-
certain the “structure” of an acyclic graph of a library of modules.
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For ascertaining the structure of a graph and for just-mentioned task of
fixing the modules, we have to find the principal (nodal) vertices or arcs.
The nodes are the “bottlenecks” of graphs or, in other words, the modules
that occur in many working programs.

We shall now formally describe this problem with the aid of a model of
organization of a monotonic system on a graph. As a small graph we shall
take directed graph in Fig.4. The structure of this graph is in accordance

Fig. 4 Fig. 5

with the above definition of bottlenecks of the acyclic graph under consid-
eration. It is possible to construct a monotonic system also on the arcs of
an acyclic graph of a library of modules. The collection of weight arrays
must be defined with the respect to the graph on Fig.4, and the ® and ©
actions must be defined in accordance with the general scheme of Section
2. After this it is necessary to use the procedure of finding vertex kernels
or arc kernels which in conjunction must indicate the bottlenecks in accor-
dance with the above definition. As in case of tournaments, which a
monotonic system is preferable of arcs or vertices requires experimental
checking.

In comparison to the two previous examples, the last example does not
have the aim of associating the application or description of any actual
problem with tees. Our aim is to try and find in a tree a region, which in
some sense is more similar to “cluster” than any other part of the tree.

At first let us consider undirected trees. We shall use a model of organi-
zation of a monotonic system on the branches of a tree. As a small graph
g we shall take the graph shown on Fig.5. As in the case of assignment of
collections of @ and © weight arrays on arcs, we assign the corresponding
® and © arrays with respect to the graph shown in Fig.5. The © arrays
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3 g + K*

4 12

13

Fig. 6

2

appear as a result of © actions (removal of edges), whereas the @ arrays
result from @ actions (restoration of edges on empty graph A ) by calcu-
lating the total weights of the tree G and its copy on A. As an example
we presented in Fig.6 the @ and © kernels of this tree. Together with each
edge we indicated the number of sub-graphs g that contain this edge and
which are isomorphic to the graph shown in the Fig.5.

Now let us consider directed trees. If it is of interest to separate “clus-
ters” in a directed tree, we shall proceed as follows. Let us consider the
following small graphs: g,, g, and g, (see Fig.7).

Fig. 7
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The weight function © on a directed tree can be calculated separately
with respect to each small graph g,, g, and g,; then the values of all these
three functions can be added up (a linear combination), thus yielding the
overall function with respect to the graphs g,, g, and g,. In the same way
we can assigh a monotonic system on arcs of a tree if © action signifies the
removal of an arc of a tree, @ action the restoration of an arc on a copy of
given tree on A . Thus we can pose on directed trees a similar problem of
finding cluster kernels. Let us note that we use in the last example with
trees a more general model of assignment of collections of weight func-
tions with respect to a series of small graphs. The model in Section 2 has
been presented for one graph g. A collection of weight arrays with respect
to a series of graphs has also the property of monotonicity, and apparently
such a model is more interesting in solving problems of determination of
“saturated” parts of graphs.

The author expresses his gratitude to L.K. Vohandu for his assistance
and steady interest and to E.M. Braverman and I.B. Muchnik for valuable
advice and remarks.
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An Explorative Method for Studying
Markov Chain Structure
I. INTRODUCTION

In the work presented here, the theory of monotonic systems developed
in an earlier publication [1] is applied to the Markov chains. The interest in
Markov chains stems from the fact that it is convenient to interpret a spe-
cial class of absorbing chains as monotonic systems. On the other hand, it
also provides a meaningful way of illustrating the main properties of
monotonic systems, as shown here using an example based on communi-
cation networks.! In order to disclose on conceptual level the technology
developed for extracting the extreme subsystems in Markov chains dis-
cussed in the current paper, we employ the communication network as an
example of monotonic system, albeit in a slightly modified form relative to
that originally proposed in the context of telephone network. This will en-
able us to elucidate the manner in which a Markov chain may be associ-
ated with the monotonic system and what principal operations may be
performed on it towards utilization of monotonic systems theoretical ap-
paratus described in the original work [1].

1 Tn the original paper, the term used was “telephone switch net,” which was not adopted
here, as it is outdated. Still, the concept underpinning the work remains highly relevant,
as forms of “switches” are still used in redirecting TCP/IP packages, in a manner com-
parable to the telephone net.

Russian version: http://www.datalaundering.com/download/markov-ru.pdf
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In the earlier paper on which this work is based [1], an example of a
communication network has been considered, whereby a set W compris-
ing of communication lines/channels between some nodes—
communicating units—was introduced.? Here, we will assume that each
line has certain built-in redundancy mechanisms, such as the main and the
reserved channels.? Thus, if a direct line is not available between nodes,
analogously to what was described in the previous work [1], the traffic
might be organized through pass-around channels. In addition to this
mechanism, in the present case, the possibility of employing pass-around
communication is not excluded even if a direct channel is available.

In the example presented in the original paper [1], an average number
of “denials” before establishing the contact characterizing each pair of
nodes was utilized. The number of denials usually characterizes the com-
munication lines in the communication network.* In the model described
below, and for the purpose of current investigation, it is more convenient
to use a value inverse to the number of denials, as this will characterize the
communication line throughput.

Let us assume that each communication line (comprising of both the
main and the reserved channels) is characterized by the throughput ¢, ; or,

in other words, by the maximum allowed bandwidth usage, expressed in
kilobytes for example. The value ¢;; thus denotes the throughput of main

and reserved channels. We then explicate the communication center s by

the maximum permissible usage

n

c. = Zci’j )
=1

2 Switch is a device of such type and can learn where to address the communication
packages.
3 In practice, network redundancy may be guaranteed by some additional channels/lines

activated only in urgent situations when the net usage exceeds some predefined thresh-
old.
* Network protocol analyzers can collect such types of statistical data.
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The traffic redirected through the node s along the main communica-
tion channel, as well as the reserved channel, between nodes s and j

specifies thereupon a share of maximum permitted usage c,. In an actual

communication network, the usage share must be lower than the maxi-

C .
mum allowed share p ; = % Moreover, the usage share p ; of the

communication channel can be interpreted as a probability of establishing
contact between the nodes s and j. Assuming that the main and the re-
served channels are treated as equitable, the quantity must satisfy an ine-

quality
2- Z}pid <1 (1)
J:

without exception, for all s.

Let a communication network, characterized by the aforementioned
pass-around traffic feasibility, function during a long period of time by
originating its main channels. We can characterize the traffic along each
main channel (more precisely, the nodes i and j) by the average number
of hits p,; that occur in the process of establishing either direct or indirect
(pass-around) contact. It is apparent that p, ; is slightly greater than the

corresponding p; ;.
If a malfunction occurs somewhere along the channel, the change® in
the communication network will be reflected in a decrease in p, ;. In such

a scenario, higher network usage can be accommodated by activating a
reserved channel. It is obvious that, in this case, all ﬁi’ ; values will increase

accordingly. Organized in this manner, the communication network

represents a monotonic system.

5 For example, the OSPF (Open Short Path First) protocol will automatically redirect the
traffic.
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However, a problem arises with respect to identifying the type of
change malfunctioning/activating of a main/reserved channel that would

influence the p, ; values. In order to find an appropriate solution, it is nec-

essary to explain the problem in Markov chains nomenclature.

Consider a set W of communication channels described by a square

matrix Hpi’an . When no channels exist, p;; =0. According to the theory of

Markov chains [2], such matrices may be associated with a set of returning

states for some absorbing Markov chain. In the nomenclature pertaining to
chains of this type, the value p;; can be interpreted as an average number

of hits from node i into node j along the Markov chain. Similarly, a mal-
function in the main channel, resulting in the activation of the reserved

channels, can be described through recalculating the average hit values

p;;- The above can be denoted as an action of type ©, whereas in the no-
menclature of monotonic systems, an action of type @ pertains to activat-

ing the reserved channel due to the malfunctioning in the main channel.

From the above discussion, it is evident that adopting this special class
of absorbing Markov chains allows approaching the problem from the
perspective of how to differentiate the Extremal Subsystem of Monotonic
System —the kernels. Along with the KFP procedure elaborated for this
purpose in [1], this approach can actually accomplish the kernel search
task.

In Section II below, the problem of kernel extraction on Markov chains
is described in more detail. In Section III, we show that the results of per-

forming the @ and © actions upon Markov chain entries in a transition

matrix lead to Sherman-Morrison [3] expressions for recalculating the

numbers of average hits (see Appendix).
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II. THE PROBLEM OF KERNEL EXTRACTION
ON MARKOV CHAINS

Consider a stationary Markov chain with a finite number of states and
discrete time. We denote the set of states by V. Stationary Markov chain
can be characterized by the property that the pass probability from the
state 1 to the state j at a certain point in time t+1 does not depend

upon the state s (s =12,...,n) the considered chain arrived in i in the
preceding moment t. We denote by p(i, j, k) (p(i, D= pi,j) the condi-

tional probability of this pass from i to j within k units of time.

Below, we consider only a special class of Markov chains that, for ar-
bitrary states 1 and j within some subset in V, is constrained by

lim p(i, k) =0

According to the theory of Markov chains, this limit equals zero when
the state j is returning, implying that there must be some reversible
states in such Markov chains. Without diminishing the generality of this
consideration, we will further examine chains with only one reversible
state, which must simultaneously be an absorbing state.

The absorbing chains utilized below satisfy the following properties:

1. There exist only one absorbing state 6 € V

2. All remaining states are returning, and the probability of a pass be-
tween the states in one step corresponds to an entry in the square

n
n

matrix Hpi i

3. The probability of a pass into an absorbing state 0 from some re-
turning state 7 in one step, in accordance with 1 and 2, is equal to

Pig = 1- Zpi,e .
=1
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The monotonic system mandates a definition of some positive and
negative (®, ©) actions upon system elements. For this purpose, we
make use of the average number of hits p, ; from the state i into the state
J along the chain [2]. It is known that the value of p,; is specified by the

series
ﬁi,j = ;p(iajak) . 2)

The sufficient condition for series (2) to converge is established if the
sum of entries in each row of the matrix Hp . an is less than one. Further, we

consider that elements elsewhere in the chains fulfill the conditions 1-3.
Let W be the set of all nonzero entries in the matrix Hpi’j H On the

transition W set of the Markov chain described above, we define the fol-
lowing actions.

Definition. The action type © on the element of the system W (non-
zero element of the matrix Hpi’j H) denotes a decrease in its value by some
Ap of its probability to pass in one step.

By analogy, we define the action @. In this case, the probability of a
pass in one step, which corresponds to the entry value p, ;, is increased by
Ap. In case of some nonzero increment in the matrix Hpi’ JH element (based

on straightforward probability considerations), all average numbers of hits
p;; must also increase accordingly. On the other hand, a Ap decrement

would result in a decrease in the corresponding p,; values. In sum, intro-
duced actions upon system W elements fully meet the monotonic condi-
tion [1], and system W transforms into a monotonic system.

At this juncture, it is important to emphasize that the Ap changes in
values of probabilities in one step within W are not specified in the defi-
nition of © and © actions upon the entries in the matrix p, ;. Relatively

rich possibilities exist for the change definition. For example, it can denote
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an increase (decrease) in each probability on a certain constant, or the
same change, but this time depending upon the probability value itself,

etc. When providing the definitions of @ and © actions on an absorbing

Markov chain, it is desirable to utilize authentic considerations. Below,
using an example of communication network, we describe one of such
considerations.

Let W be the set of all possible transitions in one step among all return-

ing states of an absorbing chain. These transitions in the set W retain the

correspondence with nonzero elements of the matrix Hp i H Let T be a cer-
tain subset of the set W, relating to the nonzero elements noted above.
Denote by p(T,1,j,k) the probability that the chain passes from the state 1
into the state j within k time units, constrained by the condition that,
during this period, all passes in one step upon the set T have been
changed by either @ or © actions. This condition corresponds to the asser-
tion that the passes along the set W\ T =T proceed in accordance with
the “old” probabilities, while those along T are in governed by the “new”
Probabilities. We do not exclude the case when no @ or © actions have
been implicated —the set T = . In this case, we simply omit the T sym-

bol notation in the corresponding probabilities.®

The average number of hits from 1 into j, subject to the constraint that

some passes in the set T have been changed by actions, is specified by a

series

(T, j) = z p(T,i,j,m). 3)

6 We suppose that actions do not violate the convergence of probability series, see condi-
tion (1).
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Let us now focus on the collections of weights specified by a monotonic
system W . We define a collection IT"H on the subset H € W as a collec-
(ij)e H} in case that the positive @ actions

(ij)e H} corre-

tion of real numbers {ﬁ(ﬁ, 1,])

occur on H=W \ H, while the collection IT H = {ﬁ(ﬁ,i, j)

sponds to the case of the negative © actions taking place.

In the original paper [1], we have proved that, in a monotonic system,
two kinds of subsystems always exist—the @ and © kernels. The defini-
tions introduced above, pertaining to the average number of hits p(H, i, j),

allow us to formulate the notion of ® and © kernels in the Markov chain.

Definition. By the Extremal Subsystem of passes on absorbing Markov
chain—the @ and © kernels—we call a system H®< W, on which the

functional
— H . . 4
max p(H,1, j) (4)

reaches its global minimum on 2", whereby © kernels will be a subsys-

tem H®c W where the functional
. p— ﬁ . . 5
min p(H, 1, j) ®)

reaches its global maximum as well.

We will now turn the focus toward the notions of @ and © kernels in-
troduced above, using an example on communication network described
earlier.

The probabilities of hits p;; (without any passes, i.e. in a single step) be-
tween nodes i and | (i, j= 1,2,...n) allow us to construct for the communi-

cation network an absorbing chain satisfying the conditions 1-3 above. In
fact, as we already noted, only one condition is mandatory to satisfy the
inequality (1), which is a natural condition for any communication net-
work. Conditions 2 and 3, on the other hand, can be guaranteed by the
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Markov chain design. In this case, numbers p,; may be interpreted as
probabilities of a pass in one step, whereby p, ; denotes an average num-
ber of hits from 1 into j, whether directly, or via an indirect pass-around

along other lines in the chain.

The search for the @ and © kernels on an actual Markov chain, recon-
structed from a communication network, mandates a precise definition of

® and © actions. In the beginning of the discussion, we observed that ©

action might represent a malfunctioning in the main channel, whereas @

action might pertain to the activation of a reserved channel. On the
Markov chain, the malfunctioning is denoted as null, reducing the corre-
sponding probability, while the activating of a reserved channel is re-
flected in the doubling of its initial probability value.” The condition (1)

guarantees that, in any circumstance that would necessitate such @ and ©

actions, the convergence of series (2) and (3) will not be violated.

We suggest a suitable interpretation of @ and © kernels in Markov

chain below, starting from the Markov chain characteristics, introduced
here in terms of communication network.

In Extreme Subsystem H®©, none of the communication lines/channels

are subject to changes, whereas in all lines outside H®, their reserved
channels have been activated. The extreme value of the functional (4)
shows that the average number of hits within channels belonging to H®,

including the indirect pass-around hits (by definition, an indirect hit re-
quires at least two steps to reach the destination), is relatively low. This

assertion implies that the lines within the H® kernel are “immune” with
respect to package delivery malfunctions, i.e. most of the transported

packages pass along direct lines. The set of lines in H® kernel is character-

7 We stress once again that € and © actions are subjective evaluations of an actual situa-

tion.
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ized by a reverse property. Thus, the main channels in H® kernel are the
most “appropriate” for organizing “high-quality” indirect communica-
tions, but are also a sensible choice for mitigating the malfunctions that
may result in a “snowballing” or “bandwagon” effects. Conversely, along

H @, the indirect communication is typically hampered for some reason.

II1. MONOTONIC SYSTEM WEIGHT FUNCTIONS
ON MARKOV CHAINS

In Section II, we defined some @ and © actions upon the transition ma-

trix entries in one step corresponding to returning states. In this section,
we will develop an apparatus that allows us to incorporate the changes
induced by these two types of actions into the average numbers of hits
from one returning state i into the other state j. We describe here and

deduce some tangible weight functions intended for use alongside our
formal monotonic system description, following the conventions pre-
sented in the previous work [1]. Let us first recollect the notion of weight
function before providing an account of the main section contents.

Suppose that, in the system W, which in the case of Markov chain is
characterized as a collection of entries in matrix Hpi,j H: corresponding to
passes among returning states, a subset H has been extracted. As a result,
the set H consists of one-step transitions. Owing to the successive actions
of type ©, by accounting for all individual sequential steps in the process

(see Section II) taken upon the elements in H (a complementary of H to
W), it is possible to establish the average number of hits within the transi-
tion set H —the weight system IT H. By analogy, on the set H, a succes-
sion of @ actions establishes the weight system IT"H. The average num-
ber of hits in the nomenclature given in Section II may be represented as
p(H, 1, j) —the limit values for series (2) on nonzero elements for the tran-

sition matrix P corresponding to the entries/lines within the set H. Fur-
ther, we will refer to the numbers p(H.,1i, j) as the weight functions.
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Let us now establish the general form of the weight functions on
Markov chains as a matrix series. This can explain the mechanism of ac-
tions the defined in Section II, performed upon the elements of a mono-
tonic system —the Markov chain.

The weight function on Markov chain may be found using the series (2),
where the single element (i, j) in the series presents the probability of the
chain pass from 1 into j, constrained by the condition that actions have

been performed upon the set H .

The general matrix form of such transition probabilities described in
Section II is given below: 0

10 ...0
Pio h ©)
where
P 7
pn,e
— absorbing state of the chain;

0 bsorbing f the chai
p;y — the probability of a pass from the i’s returning state into the ab-

sorbing state 0;
P - the transition matrix of probabilities between the returning
states within one step, where the matrix dimension is nxn.
Using Chapman-Kolmogorov equations [2], the element p(T,1, J,m) in
series (3) may be found as the m-s power of the matrix (6), whereby it oc-
cupies an entry in the matrix P".

In summary, the collection of series (3) may be written as the following
matrix series

P, =1+P, +P2+...3 (7)

8 We suppose that p(T,1, j,0) = J. ., which is what the unity matrix in Section I high-

Lj’
lights. In the nomenclature of the Markov chains [4] theory, matrices of type P, are re-

ferred to as the fundamental matrices.
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P, — the matrix, where type @ and © actions have been performed upon

all nonzero elements within the set. Recall that, in the definition of a
monotonic system, the weight function on the set H € W takes advantage
of a complementary set H to the set H only. The set H is actually the set

of performed actions. Given that the elements of the set W are also pre-
-1
, the latter matrix is the weight func-

sented as matrix entries P, = HI - Pﬁ‘
tions collection on the Markov chain, identical to the matrix limit of (7).

In the nomenclature of fundamental matrices, the actions upon the mono-
tonic system elements are transformations, taking place in succession,

“' Calculus of such a

from the matrix HI—PTH_1 to the matrix HI—PT

va

transformation is, however, a very “hard operation.” In order to organize
the search of @ and © kernels on the basis of constructive procedures

(KFP) described previously [1], the utilization of matrix form is inappro-
priate. To extract the extreme subsystems on Markov chains successfully
and take full advantage of the developed theory of monotonic systems, a
more effective technology is needed, which leads us to Sherman-Morrison
relationships [3].

The solution that can account for the changes emerging as a result of
the @ and © actions upon the transition matrix elements within one step
in the fundamental matrix of Markov chain may be archived in the follow-
ing manner. Suppose that, instead of the old probability p, denoting a
pass in between the returning states 1 and j, an updated (new) probabil-
ity p, =p, +Ap is utilized, where the action (i Ap) results in either an
increment or a decrement. In case of (+ Ap), the @ action has occurred,
whereas (— Ap) implies the © action. The change induced by one of these
actions may be treated as two successive effects. First, the probability p, is
replaced by 0 and the replacement is recalculated. Second, the transition
probability is subsequently reestablished with the new value p, and the
change in the fundamental matrix is recalculated immediately after the
first recalculation.
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The relationships accounting for the changes in the fundamental matrix
P, as a result of the element o having a null value and affecting the ma-

trix P,, as well as the relationships accounting for the changes in P,, also

in the reverse case of @ actions, may be found in Appendix L.

In sum, for the search of extreme subsystems following the theory of
constructing the defining sequences on system W elements with the aid
of KFP procedures introduced in the previous work [1], it is necessary to
obtain some well-organized and distinct recurrent expressions, which can
account for the changes in the matrix P, whereby it is transformed to the
matrix P, . The formulas for specified Ap, which allow us to transform

from P, in order to find the matrix P,

Tua

are given in Appendix II on the
basis of the expressions II 1.3 and 11 1.4.

With the aid of these recurrent expressions, in Appendix II, it is possible
to obtain on each set H < W the collection of weights [T'H or IT'H by
performing the successive implementation of expressions II 2.5 to all ele-

ments upon the set H. These expressions mirror the transformation of
system element weights 7 into w, in view of the theoretical apparatus of

monotonic systems [1]. Indeed, we construct the collection IT"H in the
case of Ap > 0, whereas the collection I1"H is constructed if Ap <0.

APPENDIX I

Consider the value p(T,1,]) produced by the series (3). Each compo-

nent of this series may be treated as the measure of all passes in m time
steps (time units) commencing in 1 and terminating in j. This assemblage

of transitions is a union of two nonintersecting collections. The first set
pertains to the passes from 1 to j with a mandatory transition, at least

once, along o € W. On the other hand, the second relates to the set of
passes from i to j avoiding this transition o . Each passage from the first

set consists of two passes: a pass avoiding o being in t steps long, and a

367



Markov Chains

pass in m—t—1 steps (time units), passing along o . In other words, the
passages in t steps avoid the pass along o, whereas passages in m—t —1
steps make use of this pass .

We introduce the following notation: p(T’,1i,]j,k) represents the aver-
age number of hits from 1 into j with the transition matrix P, where the
nonzero element o is null, and p(T’,i,j,k) denotes the probability of
transition without making use of o . Implementation of the introduced

notification results in:
p(Ta ia j’ 1’1’1) = p(TO 5 ia ja IIl) +

o . ; 1.1
pa-gp(T Jd,0,t)-p(T,a,,jm—t—1)

p(T.i, j,m) = p(T", i, j,m) +

o] . 0 ) , m1.2
P, .Z(;p(T,l,ocb,t)-p(T o, j,m—t—1)
t=l

where o, — the state from which a one-step pass begins, ending in o _;
p, — the pass along o in one step, corresponding to the element o of

the matrix P;.

The first component in II 1.1 and II 1.2 introduces the value of
p(T,1, j,m), denoting the measure of transitions avoiding the pass along

o . In addition, the components included in the summation represent the
probability that the states o, (for the relationship II 1.1) and a, (for the

relationship II 1.2) have been reached by the first and the last pass along
o in the moments t and t+1, respectively.
Let us calculate the p(T,1,j) values using the relationship II 1.1. We

conclude, after performing the summation of each of the equations II 1.1
from 1 to M and thereafter changing the order of sums in the double

summation, that
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M . . M 0o - .
;p(Ta 1, J) m) = ;p(T 717 _], m)

M—1 M-t -
D, ZOP(TO,I,ocb,t)- Z1p(T,0ce,J,s =)
t= s=

M-1
Dividing both parts of the latter equation yields > p(T’,i,a,,t).
t=0
Thus, based on the theorem of Norlund averages [2] considering the se-
M-t
quence a, =p(T’,i,a,,t) and b__. =Y p(T,a,,j,s—1), while increasing
s=1

M — oo for the sequences a, and b_, it can be concluded that the follow-

ing relations are valid:

ﬁ(T: i .]) = ﬁ(TO 1, .]) +P. - ﬁ(Toa i, OLb) ) ﬁ(Ta ., .]) II1.3
Analogous relationship can be deduced by exploiting the composition
I11.2, namely:
ﬁ(Ts i J) = I_)(TO 1, J) +P.- ﬁ(Ta i, (X'b) ) ﬁ(TOJ a., J) 111.4
APPENDIX II
We introduce the following notifications. Let p(T,,1,]) represent the

matrix P, element, and p(T,.i,j) denote the matrix P, element. Let us

Tua

also rewrite II 1.3 and II 1.4 with respect to these notifications, which re-
sults in:

ﬁ(Tnaiaj) = ﬁ(TO,I,J) +p, 'ﬁ(To,i,O(.b) 'ﬁ(Tﬂ,OLe,j)} 2.1
p(T,.i,)) =D(T",1, j) +p, - B(T,.i,a,) - B(T", ., j). 122

From the relationships II 2.1 and II 2.2, it follows that the new value for
the average hits from 1 into j is equal to

ﬁ(Tn 9i9j) = ﬁ(To 9i9j) + P, ﬁ(TO,i,CXb) : ﬁ(Tn 9aeaj) -

e 2.3
_po 'p(Toalaab)'p(T 7ae,J)

Substituting in II 2.1 the state 1 = o, we obtain

p(T,.a..j) = (T a.j)/(1-p, -P(T . a)),
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and from II 2.2, with the same 1= 0o, we get
ﬁ(To’ae’j) = ﬁ(To’aeﬂj)/(1 + po : ﬁ(T()’a’e’ab))'

Replacing the latter expression into the preceding one, and taking into
account that

P(T"o,0,) = (T, 0, 0,)/(1+p, - B(T, 1, 1,)),
we finally arrive at

(T, 0, ) = (T, 0, )/(1- Ap-B(T,, ., ). 124
The expression II 2.1 is valid if we replace T, by T, and p, by p,, and

if in the expression II 2.2 we make a reverse replacement. Substituting
Jj=a, in the expression II 2.2, first regrouping it by this reverse replace-

ment, results in
ﬁ(TO,ae’j) = 5(To9ae7j)/(1 + po : 5(To9ae7ab))'

Finally, we deduce the expression that can account for the changes in
the fundamental matrix P, by simplifying the last two equalities and the
expression II 2.4, after collecting sub-expressions and making rearrange-
ments to transform P, into the matrix P, ,. Adopting the standard no-
menclature given in Section III, the ultimate form of the expression is
given as follows:
ﬁ(T:ia a’b) ) ﬁ(Ta &y J)

o) . 2.5
1- Ap ' p(Taaeaa‘b)

p(Two,i, j)=p(T,i,j)+Ap-
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KOHTPMOHOTOHHbIE CMCTEMbI B AHAJIM3E CTPYKTYPbI
MHOTOMEPHbBIX PACHPELENEHMA

MYJUIAT U. 3.

(Tannun)

CraBuTcsl 3a7jada BHIIGNEHUA CIYINEHWN B MHOTOMePHOM HpPOCTDAHCTBE
W3MEDeHMii Ha OCHOBE BEKTODHOLO KpPHUTEDHs KadecTBa. [lIsd IOMCKa perre-
HEii HCIO0IB3yeTcsA CIeNuadbHAsd NapaMerpusanms (DYHROWiL, Opm KOTOPOR
¢ yBeJIWUeHWeM 3HAUYEHWH MapaMeTpoB 3HaueHHe (DYHKNW Bo Bceil obmactm
OolnpeiefeHd YMEHbBIIAEeTCH. ,

1. BBegeHue

Amanm3 CTPYKTYDH pacmpefiefeHus IJIOTHOCTH H3MepeHUid B n-MepPHOM
TPOCTPAHCTRBE — TPANUIUOHHAA TEMATHKA HCCIeOBAHMHA B TAKUX MPURIAN-
HEIX 06IacTsX, KAK MIaHpoBaHme sKcmepuMmenta |1], amamus wsoGpasxenuit
[2], amamms npusATEa pemennit [3], pacmosnaBarme 06pasos [4] u . .

Ha copepsxaTenbHOM ypoBHe CTPYKTYpa pacipefereHuss 00bITHO IIPefcTaB-
JIeTCS COBOKYIHOCTBIO CrYINEHHil, KOTOphle MHOT/A HA3BIBAIOTCA TaK/Ke MO-
mamu [5]. Amamus momo6HOH CTPYKTYDHI, €CIm He SBHO, TO KOCBEHHO, MOUTH
Bcerja CBOMUTCSA K BapPUANMOHHOW 3afade ONTHMU3ANNE — MAKCHMU3AMUN
KaRoro-mufo CKAJISPHOTO KPUTEPHSA RAUECTBA, ONEHUBAIOIIETO BHIf(eNseMEIE
CTyImeHEnsa. BMecTo CKAXAPHOTO B JAHHOH padoTe UCIOAB3YeTCA BEKTOPHBIA
KpHUTEpHil, a B OCHOBY IOHATNA ONTHMAILHOCTH IION0KEHO TaK HA3HIBAEMOE
paBHOBECHOE cocTosiHue B cMbicae Hoama [6].

IIpaBoMepHOCTE IOfXO7a C TOBUINKE COCTOSHUS PABHOBECHS K AHAJIH3Y
CTPYRTYDHL PacIpefielieHNsI INIOTHOCTH H3MEePeHUIl B 1-MEePHOM IIPOCTPaHCTBE
00BACHAETCA TEM, YTO 37eCh II0 CYIIECTBY IIPOUCXOIUT 3aMeHa OJHOI MHOTO-
MEpHOH MHOTUME (IIOYTH OJHOMEDHBIMU)» 3afadaMd B HPOEKIHAX HA OCH
roopmuuar. Ha mayRmoil ocum cryieHue BBIENAAETCA TAaK, 4YTO OCH «YBSBbI-
BAIOTCAY MEFKIY COOO0M CTPOTO OMPEeTeHHBIM 00pa3oM: CryIienue Ha NAHHOH
OCH HENb3S (CABUHYTH B CTOPOHY» 063 KaKOro-Iu00 yXY/IIEeHUs CIYIeHUs Ha
APYTEX OCAX B CMBICIe PAacCMaTPHBAEMOTO KPUTEPHS IPH YCIOBHU, YTO HTH
npyrue yike QUKCHPOBAHBL.

IIpenmymecTBo IPENIOMKEHHEOT0 IOAXOfAa HEe WHCYEPIEIBAGTCH YKA3aHHOM
«TeXHUYECKON TIOMPOOHOCTBIO» 3aMEHBI OFHOTO MHOTOMEDHOTO MPOCTPAHCTBA
OHOMEPHHIME TpoeRnuaAMu. J[emro B TOM, 4TO COCTOSIHEE PABHOBECHS, BHIE-
JseMoe TPW TIOMOINYM HCIOIb3YEeMOTO BEKTODHOTO KPUTEDPHsd, MapaMeTpUsmpy-
eTCAd TaK HA3HBAEMBIME IIOPOTAM¥, KOTODEIE 3aTai0T YPOBHHI IUIOTHOCTH CIy-
mennit. [lo xpaifHeii Mepe B HEKOTOPHIX JACTHBIX CIYyJagX COCTOSHWE PaBHO-
BeCHsi KaK peIIeHue CHCTeMHI YPAaBHOHHH MOMKHO AaHAIUTHYCCKM BHIPA3HTH B
dopMe (QYHKIUI IOPOTOB M TeM CAMBIM IIOJHOCTHI0 0003peTh BHITEIAEMBIE
CTYINEHNS B CIIEKTPe BO3MOKHBIX YPOBHEI IIOTHOCTH.

IlpepmaraemMas TeopHA BBIleNeHNA CTYIeHWI DIOTHOCTH W3MepeHwuil
B 1n-MEDHOM IOPOCTDAHCTBE WM3TaraercA B [BYX wacTAX. B mepsoii wacrm (pas-
men 2) TeopuWs He BBIXOJUT 34 PAMKU OOBIYHO IIPUMEHSEMEIX ITPeICTABIEHMIL
0 (pyHKIUAX MHOTHX TEPEMEHHBIX W 3aKQHUNBAETCA 3AIUCHI0 CHCTEMHI ypaB-
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Abstract. The problem of distinguishing condensations in multivariate space
of measurements based on a qualitative vector criterion is presented. We find
solutions by a special parameterization of functions, the values of which decrease
in all regions of the definition in inverse proportion to the values of the parame-
ters.

Keywords: monotonic, distributions, equilibrium, cluster

1. INTRODUCTION

The analysis of the structure of the probability density function of
measurements in an n-dimensional space is a traditional topic of investi-
gation in such applied fields as experimental design [1], image analysis
[2], the analysis of decision making [3], pattern recognition [4], etc.

At the conceptual level, the structure of a distribution is customarily
represented by a set of data clusters, sometimes called modes [5]. The
analysis of such a structure, indirectly if not explicitly, is usually reduced
to an optimization variational problem. i.e. the maximization of some sca-

" Former docent, Department of Economics, Tallinn Technical University (1973 — 1980)
™ Translated from Avtomatica i Telemekhanika, No. 7, pp. 167 — 175, July, 1981. Original
article submitted June 9, 1980. 005 — 1179/81/4207 — 0986 $7.50 © 1982 Plenum Publish-
ing Corporation 1179 We alert the readers’ obligation with respect to copyrighted ma-
terial.
Russian version: http://www.datalaundering.com/download/contra-ru.pdf
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lar performance indexes characterizing the identified clusters. Instead of
scalar performance index, in this article we use a vector index, and base
the concept of optimality on the so-called Equilibrium State in the sense of
Nash [6].

Approaching the analysis of the structure of a measurement density
function in n-dimensional space, our standpoint is the equilibrium state
concept. It is justified by the fact that, essentially, what happens, is the re-
placement here of a single multidimensional problem by many “almost
one-dimensional” problems in projections onto the coordinate axes. On
each axis a cluster is delineated in such a way as to “bind” the axes to-
gether in a rigorously defined way. So, exposed to such a “bind” the clus-
ter on a given axis cannot be “nudged” without in some measure deterio-
rating itself on the other axes in the sense of investigated performance in-
dex, subject to the condition that these others are fixed.

The superiority of the proposed approach is not restricted to the indi-
cated “technical detail” of replacing one multidimensional space by one-
dimensional projections. Indeed, an equilibrium state identified by means
of the given vector index is parameterized by so-called thresholds, which
satisfy the density levels of the clusters. In certain special cases, at any
rate, an equilibrium state as the solution of a system of equations can be
expressed analytically in the form of threshold functions, whereupon the
identified clusters can be fully scanned in the spectrum of possible density
levels.

The proposed theory for the identification of clusters of the probability
density of measurements in n-dimensional space is set forth in two parts.
In the first part (sec.2) the theory is not taken beyond the scope of custom-
ary multivariate functions and it concludes with a system equations,
namely the system whose solution in the form of threshold functions
makes it possible to scan the identified clusters. In the second part (Sec.3)
the theory now rests on a more abundant class of measurable functions
specified by the class of sets represented on the coordinate axes by at most
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countable set of unions or intersections of segments. Overall the construc-
tion described in this part is so-called contra-monotonic system; actually,
the first part on multi-parameter contra-monotonic systems is also dis-
cussed in these terms (special case).

The fundamental result of the second part does not differ, in any way,
from the form of the system of equations in the first part; the essential dif-
ference is in the space of admissible solutions. Whereas in the system of
equations of the first part the solution is a numerical vector, in the second
part it is a set of measurable sets containing the sought-after measurable
density clusters. As the solution of the system of equations, the set of
measurable sets serves as a fixed point of special kind mapping of subsets
of multidimensional space. This particular feature is utilized in an iterative
solving procedure.

2. CONTRA-MONOTONIC SYSTEMS OVER

A FAMILY OF PARAMETERS

Here a monotonic system represents first a one-parameter and then a
multi-parameter family of functions defined on real axis. This type of rep-
resentation is a special case of a more general monotonic system described
in the next section.

We consider a one-parameter family of functions m(x;h) defined on the
real axis, where h is a parameter. For definiteness, we assume that an in-
dividual copy m of the indicated family is a function integrable with re-
spect to x and differentiable with respect to h. The family of functions ©
is said to be contra-monotonic if it obeys the following condition: for any
pair of quantities / and g such that ¢ < g the inequality

n(x;/) = n(x;g) holds for any x.

The specification of a multi-parameter family of functions © is reduci-
ble to the following scheme. We replace the one function m by a vector
function © = <TE1,7I2,...,7tn>, each j-th component of which is a copy of the

function depending now on n parameters h,h,,..,h , ie.
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T, =T j(X;h1,h2,...,hn). The contra-monotonicity condition for any pair of
vectors (= <£1,€2,...,£n> and g= <g1,g2,...,gn> such that ¢, <g,
k=(12,.,n) is written in the form of n inequalities
(X050 el ) 2 T (X58,8,5---8,) - We note that this condition rigor-

ously associates with family of vector functions a component-wise partial
ordering of vector parameters.

We give special attention to the case of a so-called de-coupled multi-
parameter family of functions w. The family is said to be de-coupled if the
J-th component of a copy of vector function © does not depend on the j-

th component of the vector of parameters h, i.e. on h;. Therefore, a copy
of function m of a de-coupled multi-parameter family is written in the
form m,(x,h,,...h _,h . b)) (G=1,...,0).

-1

We now return to the original problem of analyzing a multi-modal em-
pirical distribution in multidimensional space. We first investigate the case
of one axis (univariate distribution).

Let p(x) be the probability density function of points in the x axis. For
the contra-monotonic family © we can choose, for example, the functions
n(x;h) =p(x)". It is easy verified that the contra-monotonicity condition

is satisfied.

We consider the following variational problem. With respect to an ex-
ternally specified threshold u® (0 <u’® <1) let it be necessary to maximize

the functional
+h
[1(h) = j[n(x;h) —u’dx.
~h

It is clear that for small h the quantity II(h) will be small because of

the narrow interval of integration, while for the large h it will be small by

the contra-monotonicity condition. Consequently, the value of max, I1(h)

will necessarily be attained foe certain finite nonzero h°.
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It is readily noted that if p(x) is a unimodal density function with zero
expectation, then the maximization of the functional II(h) implies the

identification of an interval on the axis corresponding to a concentration of
the density p(x). But if p(x) has a more complicated form, then the

maximum of II(h) specifies an interval in which is concentrated the “es-
sential part”, in some definite sense, of the density function p(x).

Directly from the form of function Il(h) we deduce the following nec-
essary condition for local maximum (the zero equation of the derivative
with respect to h: ZT1(h) =0 or, in the expanded form, the equation

+h
n(=h;h) + n(h;h) + [ Ln(x;y) [, dx =2u’. (1)

-h

The root of the given equation will necessarily contain one at which
I1(h) attains a global maximum. We have thus done with the problem: we
found the central cluster points of the density function on one axis in
terms of a contra-monotonic family of functions.

To find the central clusters of a multivariate distribution in 7-
dimensional space we invoke the notion of a multi-parameter contra-
monotonic family of functions 7. Let the family of functions 7 in vector
form be written, say, in the form m,(x;h,,...,h ) =pj(X)h, where
h=>7 h,, and p,(x) is a projection of the multivariate distribution on
the axis j-th axis. In the stated sense the goodness of the delineated cen-

tral cluster is evaluated by the multivariate (vector) performance index
IT= <H1,...,Hn>, where

h.]
I1,(h,,h,,..;h ) = [[r,(x;h,,...h ) —u Jdx (2)
~h;

and u; is the component of the corresponding externally specified multi-
dimensional threshold vector u: u= <u1,u2,...,un>. As in the one-

dimensional case, of course, it is meaningful to use the given functional
only distributions p,(x) with zero expectation.
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Once the goodness of a delineated cluster has been evaluated by the
vector index, it must be decided, based on standard [7] vector optimiza-
tion principles, what is an acceptable cluster. In this connection it desirable
to indicate simultaneously a procedure for finding an extremal point in
the space of parameters. It turns out that for so-called Nash-optimal Equi-
librium State there is a simple technique for finding solutions at least in
de-coupled family of contra-monotonic functions 7.

En equilibrium situation (Nash point) in the parameter space
h=<h1,...,hn> with indices II; is defined as a point h’ =<h:,h;,...,h:>
such that for every j the inequality

I, (h},s b b0 hD) S TT (B b e b))

n

£

i1

100

holds for any value of h;. In other words, if there are no sensible bases
in the sense of index I1; on the one ( j-th) axis, then the equilibrium situa-
tion is shifted with respect to the parameter h;, subject to the condition

that the quantities hz , k # j, are fixed on all other axes.

Clearly, a necessary condition at a Nash point in the parameter space
(as in the one-dimensional case) is that the partial derivatives tend to zero,
i.e. the n equalities 0/0h I1 j(h:,...,h:) =0 must hold. The sufficient con-

dition comprises the n inequalities 6°/6h’I1 (h,...,h;) <0.

An essential issue here, however, is the fact that the necessary condition
(equalities) acquires a simpler form for de-coupled family of contra-
monotonic functions than in the general case. Thus, by the decoupling of
the family n the partial derivative OI1;/dh; is identically zero, and the
system of equations, see (1) by analogy, with respect to the sought-after
point h” is reducible to the form

., (~hshyh ohh )+
+m,(h;h,,..h b

[RERLSTCEL

h)=2u, ©
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Now the sufficient condition is satisfied automatically for any solution
h" of Egs.(3).
In conclusion we write out the system of equations for two special cases

of a de-coupled family of contra-monotonic functions 7.

1. Let TCJ(X;h1""’hj—1>hj+19---ahn) = pj(X)G_hj ’
where 6 =h, +h, +...+ h . Then the system of equations (3) is

reducible to the form pj(—hj)whj + pj(hj)CFhj =2u; (j=1...,n).

2. Lettherole of m;(x;h,,....,h _,h

[RERSTEELE

h,)
be taken by the p,(x)"...p,,(x)""p,,,(x)""..p, (x)" function.

The system of equations (3) for finding a solution, i.e. an equilibrium

situation (Nash point) h", is written
p(=h))/p,(=h)" +p(h)/p,(h)" =2u; (j=1...n),

where p(x)=p,(x)"p,(x)"...p,(x)"™ is the product of univariate density
functions.

We conclude this section with an important observation affecting the
vector of thresholds u=<u,,u,,...,u_  >. By straightforward reasoning we

infer that each component h: of the equilibrium situation h" is a function
of thresholds and h™ can be represented by a vector function of thresholds
in the form hj = hjf(u1 ,U,,...,u, ). If the solution of the system of equations
(3) can be expressed analytically, then prolific possibilities are afforded for
scanning the equilibrium situations in the parameter space and, accord-
ingly, selecting an “acceptable” cluster in the spectrum of existing densi-
ties of measurements in a multidimensional space of thresholds. A similar
approach can be used when solutions of Egs. (3) are sought by numerical

methods.
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3. CONTRA-MONOTONIC SYSTEMS
OVER A FAMILY OF SEGMENTS

A multi-parameter family of contra-monotonic functions used for the
analysis of multivariate distributions, unfortunately, has one substantial
drawback. Generally speaking, there is no way to guarantee the identifica-
tion of homogeneous distribution clusters in projection onto the j-th axis,
because the segment [—~h,h;] can contain several distinct modes. On the

other hand, it is sometimes desirable to identify modes by merely indicat-
ing a family of segments containing each mode separately. The construc-
tion proposed below enlarges the possibilities for the solution of such a
problem by augmenting the contra-monotonic systems of the proceeding
section in natural way.

Thus, on real axis we consider subsets represented by at most countable
set of operations of union, intersection, and difference of segments. The
class of all such subsets is denoted by B, and each representative subset
by H € B (which we call a B set) is distinguished from like sets by length
p (by measure zero). A set L is congruent with G (G = L) if the measure
of the symmetric difference GAL is equal to zero (WGAL =0); a set L is
contained in G (L < G) with respect to measure p if puG\L =0. A meas-
ure on the real axis, being an additive function of sets (the length), is de-
termined by taking to the limit the length of the sets in the set of unions,
intersections, and differences of segments forming the B set. Then set-
theoretic operations over B sets will be understood to mean up to meas-
ure zero. By convention, all B sets of measure zero are indistinguishable.

We associate with every B set H a nonnegative function n(x;H),
which is Borel measurable (or simply measurable) and whose domain of
definition is on the real axis.! In other words, in contrast with the one-

1 A function 7(x;H) is Borel measurable if for any numerical threshold u° the set

of all x of the real scale for which 7(Xx;H) > u° is measurable: {x : m(x;H)>u"}
is B set.
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parameter family of contra-monotonic functions of the preceding section,
the parameter h is now generalized, namely, it is extended to the B set
H. As before, we say that a family of measurable functions w is contra-
monotonic if it obeys the following condition: for any pair of sets L and
G such that L € G the inequality

n(x;L) > n(x;G)

holds for any x.

The scheme of specification of a multi-parameter family of functions is
analogous to the previous situation. In place of a scalar function 7 we
now specify a vector function m = <n1,n2,...,nn>, each j-th component of

which is a copy of a function depending at the outset on n parameters
<H1,H2,...,Hn> (B sets), ie. m; =n,(x;H,,H,,...,H ). Again, the contra-

monotonicity condition is reducible to the statement that for any pair of
vectors (ordered sets of B sets) of the form L= <L1,...,Ln> and

G:<G1,...,Gn> such that L, € G, (k=12,...,n), the following n ine-
qualities are satisfied:?

T,(x;L,,... L)) 2 1, (xGy,e., G L)

These inequalities associate a partial ordering of sets of B sets with a

family of vector functions 7 in a rigorously defined way.

In the case of a de-coupled family of contra-monotonic functions, where
the j-th component of a copy of the vector function © does not depend on

the parameter H;, or B set on the j-th axis of definition of the function

m;, this component w; of the vector function =n is written

n, =n,(x;H,H,,....H ).

> Here X isa point on the ]-th axis. This is tacitly understood everywhere.
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Following again the order of discussion of Sec.2, we now consider the
original problem of analyzing the structure of a multi-modal empirical
distribution in a multidimensional space. We first investigate the case of a

one-dimensional (univariate) distribution.

Let p(x) be the density function of points on the x axis. In the role of

the contra-monotonic family of functions 7, we adopt functions of the
form 7(x;H)=p(x)""”, where F(H) =IH p(x)dx is the probability of a
random variable occurring in a B set under the probability density func-

tion p(x). Itis clear that the contra-monotonicity condition is satisfied.

We consider the following variational problem. Given the externally speci-

fied threshold u® (0 <u’ £1), maximize the functional

I[I(H) = j[n(x; H)—-u’]du.

The integral here is understood in the Lebegue sense with respect to

measure |, where P, as mentioned before, is the length of the B set on

the x axis.

Clearly, the quantity II(H) as a function of the length p (measure of
set H ) increases first and then, as pH — o, reverts to zero by the contra-

monotonicity condition on the family of functions w. Therefore, the value

of max, IT(H) will necessary be attained on a certain B set of finite meas-
ure L (see the analogous assertion in Sec.2).

It is impossible in the same simple way to deduce directly from the
form of the functional II(H) any maximum condition comparable with

the like condition of the preceding section (Eq.1). To do so would require
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elaborating the notation of a “virtual translation” from a B set H to a set
H similar to it in some sense, in such a way as to establish the necessary
maximum condition. These circumstances exclude the case of a univariate
distribution from further consideration. Nonetheless, as will be shown
presently, for multivariate distribution there are means for finding a B set
that will maximize the function II(H) at least in the case of a de-coupled

family of contra-monotonic functions.

As in the preceding section, we evaluate the goodness of an identified
central cluster by the multivariate (vector) performance index
I =(I1,,1,,...I1,): IT,(H,,H,,...H,) = [[n(x;H,,..,H,) —u,]du,
H;
where u; is the coordinate of the corresponding multidimensional vector

of thresholds u, specified externally: u = <u1 ,uz,...,un> .

At this point we call attention to the fact that, in contrast with the
analogous multivariate index of Sec.2, the given functional now has sig-
nificance for an arbitrary distribution, rather than only for the centered
condition of zero-valuedness of the expectation. We again look for the re-
quired cluster in multidimensional space as an equilibrium situation ac-
cording to the vector index Il = <H1,H2,...,Hn>. We regard a cluster as a

set of B sets H’ :<HT,H;,...,H:> such that the following inequalities
holds for every j:

*

1

In.(H;,..H H,H, .. H)<IH],.H, H) (j=1..,n).

1

In a de-coupled family of contra-monotonic functions it is feasible (as in
the multi-parameter case; see Eq. (3) ) to find an equilibrium situation.
Equilibrium situations are sought to be a special technique of mappings of

B sets onto real axes.
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We define the following type of mappings of B sets onto real axes:
V.(H) ={x:n,(x;H)) >u,},

where u; is the threshold involved in the expression for the functional IT,
(j=12,...,n). Thus defined, n such mappings are uniquely expressible in
the vector form

V(H) = {x: n(x;H) > u}.

Here H=H,xH, x...xH  denotes the direct product of sets H,. We

define a fixed point of the mapping V(H) as a set H™ for which the equal-
ity H = V(H") holds.

Theorem 1. For a de-coupled family of contra-monotonic functions 7, a fixed
point of the mapping V(H) generates an equilibrium situation according to the
vector index I1 = <H1,H2,...,Hn>.

The proof of the theorem is simple. Thus, because =; is independent of
LH})
does not depend on H;. Also, the set H =H, xH, x...x H_ in projection

the parameter H,, the form of the function nj(x;H:,...,HL,HjH,..
onto the j-th axis intersects the set Hj consisting exclusively of all points
x for which m,(x;H})>u;: H, ={x:n,(x;H))>u}. It is immediately
apparent that any H; distinct from HJ the value of the functional
IT,(H,,...H, ,H,,H
anything but smaller than the quantity IT, (H;,...H

*

12

£

,H) for immovable sets H, (k# j) cannot be
Hj,H LH).

[IRERE
*

12

*

o

It is important, therefore, to find the fixed points of the constructed

mapping of B sets.
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4. METHODS OF FINDING EQUILIBRIUM STATE FOR
DE-COUPLED FAMILIES OF CONTRA-MONOTONIC
FUNCTIONS

The ensuing discussion rests heavily on the contra-monotonicity prop-
erty of a function w. To facilitate comprehension of the formulations and
propositions we use the language of diagrams reflecting the structure of
the relations involved in the constructed mappings of B sets, in particular
the symbol — denoting the relation “set X, is nested in set X, (X, < X,)

“ X, > X,.
All diagrams of the relations between B sets are based on the following
proposition: the relation X, - X, (as a consequence of the contra-

monotonicity condition on 7) implies that V(X,) <~ V(X,).

Now let the mapping V be applied to the original space W of axes on
which the functions m; (j=12,...,n) are defined. After the image V(W)

has been obtained, we again apply the mapping V with the B set V(W)
as its inverse image, i.e. we consider the image V?(W), and so on. In this
way we construct a chain of B sets W, V(W), V*(W),..., which we call

the central series of the contra-monotonic system.

The following diagram of nestling of B sets of the central series is in-
ferred directly from the above stated proposition:

\! ™ N
W« V(W) > VZ(W) « V(W) > V(W) « V*(W)...
T L1 1

It is evident from the diagram that there exist in the central series two

monotonic chains of B sets: one shrinking and one growing. The mono-
tonically shrinking chain of B sets comprises the sequence
V(W) <~ V(W) «... with even powers of the mapping V. The mono-
tonically growing chain is the sequence V(W) — V(W) — V*(W) — ...
with odd powers of V.
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It is well known [8] that monotonically decreasing (increasing) chains in
the class of B sets always converge in the limit of sets of the same class.
For example, the limit of the sets V*(W) with even powers is the intersec-
tion L=N7_,V*(W), and the limit of sets V**'(W) with odd powers is
the union G =U7_ V*'(W).

Theorem 2. For the central series of a contra-monotonic system the nesting
L = G of the limiting B set L of even powers of the mapping V(X) in the lim-
iting B set G of odd powers of the same mapping is always true.

The theorem follows at once from the diagram of nestlings of the central
series.

We now resume our at the moment interrupted discussion of the prob-
lem of finding a fixed point of a mapping of B sets, such point generating
an equilibrium situation according to the vector index II (Theorem 1). In
contra-monotonic systems, as a rule, the strict nesting L = G of limiting B
sets holds in the statement of Theorem 2. The equality L = G would imply
convergence of the central series in the limit to a single set, namely a fixed
pint. In view of the exceptional status of the equality L =G, we give a
“more refined” procedure, which automatically in the number of cases of

practical importance yields the desired result, a solution of the equation
X =V(X).

Procedure for Solving the Equation X =V(X). A chain of B sets
H,,H,,..., is generated recursively according to the following rule. Let the
set H, (where H, is any B set of finite measure) be already generated in

the chain. We use the mapping V(X) to transform the following B sets:
VIVIHOUVHYY,  VIVH)NH,
V{V(H,)UH,}, VIVIH)NVH,

which we denote, in order, by L%,G,,L,,G?. By the contra-monotonicity

of the family of functions 7 it turns out that L% is a subset of G, and that
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L, is a subset of Gi. Picking any A, based on the condition
! < A, cG,, and then B, from the analogous condition L, = B, = GZ,

we put the set H,,, following H, in the constructed series of B sets equal
to A, UB,: H =A, UB, . The sets A, and B, can be chosen, for exam-

ple, according to mapping rules in the class of B sets, namely,

A, = {x: B2+ n(x;G,)] > ul,
B, = {x: 4[n(x;L,)+ n(x;G%)] > u}.
The conditions imposed on A, and B, are satisfied in this case.
Theorem 3. For the series of sets V(H,) to contain the limiting set
V(H") as k — o, which would be a solution of the equation X = V(X),
the following two conditions are sufficient:
a) lim,  uG, \L: =0,

b)  lim,_ uG:\L, =0.

k—o0

The plan of the proof is quickly grasped in the following nesting dia-
grams, which are consequences of the contra-monotonicity property of the
functions T, i.e.

I ViH,) « L’ ->G, « V(H,),
II. VMH)«L —>G:«V*H,).

Diagrams I and II imply the validity of the two chains:
) VY(H)\V(H)cV(H)\G, cL\G,,
2)  VH)\V*(H) < V(H)\G; <L, \G;.
The first chain implies that for the limiting set H' of the series
H,,H,.,..., the equality uV*(H,)\ V(H")=0 holds, i.e. V(H)c V*(H");
the second chain implies the opposite relation: V?(H") < V(H"). Conse-

387



Contramonotonic Systems

quently, V(H') is the solution of the equation X =V(X):
V(H") = V(V(H")). Of course, the conditions of the theorem are sufficient

for the existence of a solution of the equation X = V(X), and their absence

does not in any way negate some other solving technique, provided that

solutions exist in general. The possibility that solution H™ of the equation

X = V(X) do not exist should certainly not be dismissed.
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Postscript

Incidentally, the phenomena occurring in nature and in everyday life
were referred to in this work as Monotone Systems, not knowing that this
term was already in use in a different context. This coincidence does not,
however, preclude us from discussing the contributions of our efforts pre-
sented here.

In the discussions, we investigated Greedy type algorithms, which al-
lowed us to arrive at some ordering, as they facilitated arranging what we
called the defining sequence. According to the defining sequence prem-
ises, the credentials increase or decrease in harmony with partial order of
some sub-lists of elements belonging to a Grand Ordering of nodes in
graphs, survey table entries, routers along communications lines, agents in
retail chain, transfer payments, tax burden sacrifices, etc. The list of indica-
tors suitable for presentation in our defining sequence was indeed unlim-
ited. Our aim, when using a defining sequence to arrange the order of
elements, was two-fold. First, the credentials increase to some peak point,
after which their value decreases to zero. Alternatively, the work-around
scheme could be applied when the picture is reversed. We have utilized

some @ and © actions over items in sub-lists among all feasible sub-
lists—the Totality, where the Grand Ordering was the Totality representa-
tive. The @ actions improved the phenomena while © actions were

deemed to have adverse effects on the same phenomena.

The sub-lists in our Totality, which remained intact after @, © actions,
were investigated. We also introduced a notion of stable/steady sets, or
fixed points, which cannot be improved by @ or worsened by © actions

when applied upon subsets. In other words, we established that a fixed
point cannot be destabilized by some predefined mappings. However, the
ultimate aim was to find an optimal solution using the Greedy type algo-
rithms in the form of defining sequence of ordering. We have proved that
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the defining sequence guaranteed the optimal ordering, as well as ensured
discovery of optimal stable subsets—the kernels. In general, as a side-
effect, any defining sequence formation complied with the Fibonacci rule.

Other researchers have also investigated the Monotone System ap-
proach, the root of which is important to discuss. Some different types of
Monotone Systems were established, allowing more effective implementa-
tion of Greedy type algorithms due to their simplified architecture. Such a
convenient architecture of Monotone Systems was found when the stan-
dard order of credentials in the direction of increase or decrease on the
Grand Ordering of elements did not change while the defining sequence
was under formation. As was shown, any subset of credentials in such a
Totality of subsets remained in harmony with the initial Grand ordering of
credentials.

Easy Monotone Systems provided the opportunity to present the Grand
Ordering in either increased or decreased order using standard ordering
procedures—any procedure is adequate for this purpose. As a result, for-
mation of the defining sequence would require operations the extent of
which is proportional to the logarithmic scale of complexity, in contrast to
the hard general scheme.

It is, however, important to note that Monotone Systems allegedly al-
low the Greedy type algorithms to find the optimal solution with much
less computational effort relative to that required for solving NP hard
problems. The optimality was claimed to be guaranteed for a credential
function F(X)=min__, n(a,X) . As noted by other researchers,' when the
function F(X) is being optimized among subsets X € W in the Grand
Ordering W, F(X) must obey the quasi-convex property. In other words,

a) Yulia Kempner, Vadim E. Levit and Ilya Muchnik, “Quasi-Concave Functions and
Greedy Algorithms,” Advances in Greedy Algorithms, Book edited by: Witold Bed-
norz, ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria;

b) Yulia Kempner and Ilya Muchnik, “Quasi-concave functions on meet-semilattices,”
Discrete Applied Mathematics 156, 2008, 492-499.
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given any pair [X,Y] of subsets X and Y on the Grand Ordering W, the
inequality F(X U Y)>min[F(X),F(Y)] must hold. Exactly this inequality
guaranteed, allegedly, that the NP hard problem can be substituted by
polynomial complexity procedures, allowing the Greedy type algorithms
to perform in reasonable time.

We found through relatively simple examples, such as our single game
scheme, that quasi-convex property was not always satisfied for some
Monotone Systems. This means that Monotone Systems in general are
richer or more complex objects than was postulated in the beginning. Dis-
appointingly, the techniques based on the defining sequence of ordering
will fail for such systems, as they cannot be applied to search for optimal
solution when the goal is to find kernels. However, it is possible to find
the optimal solution by other means. Branch and Bound algorithms may
be suitable for this purpose. Despite the need for applying the twisted
rules of Branch and Bound algorithms, the complexity of which is much
higher than Greedy type used in case of quasi-convex set functions, the
Branch and Bound algorithms work effectively, when investigating the
conflict situations. They are particularly useful for describing, e.g., the
phenomenon of bilateral agreements, where the data set is usually of rea-
sonable size.

In conclusion, it would be, perhaps, interesting for the reader to learn
about the history of the Monotone Systems as it appears to the author of
these lines. Indeed, the author had the opportunity to attend the Institute
for Management Problems in Moscow, a laboratory under the guidance of
prof. Aizerman. Since the mid-50s of the last century, methods for auto-
matic classification of objects have been investigated in the laboratory.
One of the working hypotheses on the basis of which these methods were
supposed to work was that objects in a multidimensional space related to
similar phenomena, such as analysis of data, visual objects, sequences of
letters and words, etc., are usually located closer to each other than the
objects responsible for different phenomena. Most of the statistical data
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are always represented in this way and, thus, the hypothesis of the so-
called compactness of similar objects was expressed which should be dis-
tant to dissimilar objects.

Based on the compactness hypothesis, it was possible to develop nu-
merous classification algorithms, Braverman et. al, 1975 2, Mirkin et. al3,
the list goes on. It is important here that all these methods were based on
the fact that it was necessary to classify the objects in such a way that
within classes the objects would be located close to each other in the sense
of some metric, and objects from different classes would be far from each
other in the same sense the metric itself. In connection to this task, it is no-
ticeable to note the work of Professor in biometric of Leningrad State Uni-
versity P.V. Terentyev, who developed the method of correlation Pleiades,
which allowed him to successfully solve the problem of choosing from
among a mass of signs the most stable, “independent” ones. Terentyev
1959 ¢, applied his own method of his Pleiades in order to build a classifi-
cation of biological objects, which, as it seems, has in his time served and
as well as now still going serving on as the basis of a whole group of
methods of the so-called nearest neighbor linkage.

One of the simplest cases here is the problem of classifying objects into
two classes. Indeed, Vohandu and Frey 1966 °, published a similar method
in the Biological Series of the Estonian Academy of Sciences in order to
enlighten biologists in the new achievements of statistics.

2 Braverman E.M., Litvakov B.M., Muchnik I.B. and S.G. Novikov, “Stratified sampling

in the organization of empirical data collection”, Autom. Remote Control, 36:10 (1975),

1629-1641

Mirkin B.G. and L.B. Cherny, On a distance measure between partitions of a finite set,

1970, Automation and remote Control, 31, 5, pp. 786-792.

Tepentnes I1.B., Metoa Koppeasaunonnsix I1aesa, Bectaux AI'Y, 1959, No9,

http://www.datalaundering.com/download/Method-Pleiades.pdf.

5> Fray T. and L. Vohandu. Uus Meetod Klassifikatsiooniiihikute Piistitamiseks, Eesti
NSV Teaduste Akadeemia Toimetised, XV Koide, Bioloogiline Seeris, 1966, Nr.4.
Mspectna Axagemun Hayk Dceronckoit CCP, Tom XV, Cepusa buoaornueckas, 1966,
No46., http://www.datalaundering.com/download/New_Method.pdf .
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The author of these lines as a graduate student, whose supervisor was
L.K. Vohandu, and thanks to L. Vohandu, he was familiar with similar
methods and communicated with the late Prof. E. M. Braverman from the
Institute of Control Problems in Moscow especially fruitfully. As far as the
author remembers, when presenting his views on the problem of classifi-
cation in terms of monotone systems, Braverman noted that this was
something new. Indeed, in contrast to the nearest-neighbor method, a
formal mathematical construction of a purely combinatorial nature was
proposed at the same time with the possibility of constructing algorithms
for the effective search for so-called kernels of Monotonic Systems. The
essence of this method was an article published by the author in 1971 in
the Proceedings of Tallinn Technical University, where the method was
presented formally in the language of set theory and the totality of par-
tially ordered subsets in standard language used in mathematics, which
can be called, as the author later proposed, to call the scheme by a mono-
tone system. These lines will probably explain to all those who doubt what
exactly is called the Monotonous System.

We hope that the Monotone Systems scheme will be subject to more ex-
tensive research, as this will contribute to the theoretical understanding, as
well as assist in developing more affective algorithms aimed at finding the
best solutions. The most promising avenue to pursue going forward, in
our view, is the approach of steady states, or stable sets, which have been
demonstrated in the collection of papers presented here. In order to dis-
cover some important phenomena hiding in plain sight, we have offered
various perspectives on different subjects, in atomic or continuous form.
Our motive was to collate some articles that demonstrate the opportunities
for those enthusiasts that wish to open their minds and devote their time
to promotion and advancement of science.
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The implementation of the
Monotone (Monotonic) System
concept was discussed in two
contexts. It was first introduced
with the objective to reflect the
bargaining power adjustments of
Left- and Right-wing DPolitical
Parties, i.e., to elucidate the po-
litical mechanism design. And
second, it was also applied to
Data Analysis. Even though, the
idea of Monotonic System imple-
mentation in these two diverse
research fields may seem unex-
pected, the use of stable/steady
lists or topologies of credentials
provides a unifying perspective
for virtual experiments. This is
particularly beneficial when em-
ploying monotonic mappings
producing so called fixed points,
which preserve stability or equi-
librium of lists/topologies of cre-
dentials despite the credentials’
dynamic nature.
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