

TALLINN UNIVERISTY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Information Systems

Migrating the Monolith to a

Microservices Architecture:

the Case of TransferWise
Bachelor Thesis

Author: Erko Risthein

 123869IAPB

Supervisor: Raul Liivrand

Tallinn

2015

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem

kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,

kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

(kuupäev) (allkiri)

Annotatsioon

Käesoleva töö eesmärgiks on analüüsida monoliitse rakenduse migreerimisprotsessi

mikroteenustel põhinevale arhitektuurile. Töö põhineb TransferWise’i näitel.

Töös käsitletud põhiprobleem seisneb selles, kuidas TransferWise’i kiire kasvutempo juures

jätkusuutlikult skaleeruda, ilma produktiivsust kaotamata.

Töö olulisemateks tulemusteks on ühe näidismikroteenuse implementatsioon ja üldistatud

metoodika järgmise mikroteenuse monoliidist eraldamiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 5 peatükki, 17 joonist

ja 7 tabelit.

Abstract

The aim of this thesis is to analyze the migration process from a monolithic application to a

microservices based architecture. It is a case study of TransferWise.

The main problem that is tackled in this paper is how to sustainably scale a tech startup

company without compromising productivity.

The main result of this paper is a successfully implemented proof-of-concept microservice and

a generalized methodology for extracting microservices from a monolithic application.

The thesis is in English and contains 46 pages of text, 5 chapters, 17 figures and 7 tables.

Glossary of Terms and Abbreviations

ABA American Bankers Association

Android Mobile operating system based on Linux

AngularJS Web application framework

AOP Aspect-Oriented Programming

API Application Programming Interface

BDD Behavior Driven Development

BIC Business Identifier Code

CD Continuous Delivery

Classpath Parameter that defines the location of classes

CPU Central Processing Unit

DI Dependency Injection

Docker Deployment automation tool using software containers

DTO Data Transfer Object

Elasticsearch Search server based on Lucene

Gradle Build automation tool

Grails Web framework for the Java/Groovy platform

Groovy Object-oriented programming language for the Java platform

GUI Graphical User Interface

H2 In-memory relational database management system written in Java

Hamcrest Library of matcher objects

Hibernate ORM Framework

HTTP Hypertext Transfer Protocol

IBAN International Bank Account Number

IDE Integrated Development Environment

IoC Inversion of Control

iOS Mobile operating system by Apple Inc.

ISO International Organization for Standardization

Jackson JSON processor for Java

JAR Java Archive

Java Object-oriented programming language

Java Bytecode Instruction set for the JVM

Java EE Java Enterprise Edition

JDK Java Development Kit

JPA Java Persistence API

JSON JavaScript Object Notation

JUnit Unit testing framework for Java

JVM Java Virtual Machine

Kibana UI for Elasticsearch

KPI Key Performance Indicator

Logback Logging library for Java

Logstash Tool for managing logs

Mockito Mocking framework for Java

MVC Model-View-Controller

MVP Minimum Viable Product

MySQL Relational Database Management System

OOP Object Oriented Programming

ORM Object-Relational Mapping

OS Operating system

Quartz Job scheduling library

REST Representational State Transfer

Servlet Java program that runs within a web server

Slf4j Simple Logging Facade for Java

SOLID Five basic principles of OOP design: Single responsibility,

Open-closed, Liskov substitution, Interface segregation and

Dependency inversion

Spock Testing framework

Spring Framework Application framework and an IoC container

SQL Structured Query Language

SWIFT Society for Worldwide Interbank Financial Telecommunication

Tomcat Web server and servlet container

TransferWise Peer-to-peer money transfer service

UI User Interface

VM Virtual machine

WAR Web application Archive

XML Extensible Markup Language

Table of Figures

Figure 1 TransferWise Technology Stack .. 14

Figure 2 Layered Architecture .. 15

Figure 3 Model-View-Controller Pattern ... 16

Figure 4 Monolithic Architecture ... 18

Figure 5 Microservices Architecture .. 20

Figure 6 TransferWise Plugin Dependencies ... 22

Figure 7 Spring Boot Sample Application ... 23

Figure 8 Spring Boot Sample Application Web Dependency .. 24

Figure 9 Entity Relationship Diagram .. 27

Figure 10 Class Diagram of the Microservice .. 31

Figure 11 Sequence Diagram of Recipient Creation .. 32

Figure 12 Test Automation Pyramid .. 32

Figure 13 Scale Cube .. 34

Figure 14 Centralized Log Management .. 35

Figure 15 Containers vs. Virtual Machines .. 36

Figure 16 TransferWise Deployment Pipeline ... 37

Figure 17 Architectural Vision of TransferWise .. 38

Table of Tables

Table 1 POST /api/v1/recipient/create parameters ... 25

Table 2 GET /api/v1/recipient/details parameters .. 25

Table 3 POST /api/v1/recipient/update parameters .. 26

Table 4 POST /api/v1/recipient/delete parameters ... 26

Table 5 GET /api/v1/recipient/list parameters.. 26

Table 6 GET /api/v1/recipient/listTypes parameters .. 27

Table 7 Entity Field Descriptions ... 28

Table of Contents

1. Introduction .. 12

1.1 Scope and Goals ... 12

1.2 Methodology ... 13

1.3 Outline .. 13

2. Technological Background ... 14

2.1 TransferWise Architecture ... 14

2.2 Monolithic Architecture ... 17

2.3 Microservices Architecture ... 19

3. Implementation ... 22

3.1 Building the Microservice .. 23

3.2 API Contract ... 25

3.3 Implementation ... 27

3.4 Testing .. 32

3.5 Scalability ... 33

3.6 Service Discovery ... 35

3.7 Logging ... 35

3.8 Containerization.. 36

3.9 Deployment .. 37

4. Architectural Vision ... 38

4.1 Building Microservices ... 39

5. Summary ... 40

References .. 42

Appendix 1. License ... 45

Appendix 2. Metadata... 46

12

1. Introduction

A year ago there were 60 people working at TransferWise. Today, there are over 300. How do

you scale a startup company at such a growth rate without sacrificing productivity?

TransferWise has a flat organizational structure, which means that there are no middle managers

between the staff and the executives. This essentially means that all the teams have to be self-

managing. There is no boss to tell you what to do. The whole organization is built upon

autonomous independent teams. [1]

People at TransferWise strongly believe that this is the only way to sustainably scale a business.

Other more hierarchical organizational structures tend to encourage blind submission to

superiors and repress individual creativity and freedom. This, in turn, means that people work

for their bosses, not for the customers.

However, a horizontal organizational structure creates challenges at the same time. How should

a company organize its development efforts when it comprises numerous five-to-seven-person

teams? Over the past year, it has become evident that it is increasingly hard to arrange the work

between the teams when everybody is working on a single monolithic application. Therefore,

it became apparent that some architectural refactoring needs to be done.

Currently, TransferWise is moving towards the microservices architecture. Microservices is a

software architecture paradigm that constitutes an application of small and independent services

communicating with one another through standardized APIs. [2]

1.1 Scope and Goals

The main goals of this thesis are:

1. Analyze the pros and cons of the microservices architecture compared to the monolithic

architecture.

2. Extract a single microservice from the monolithic application.

3. Provide a generalized approach to decomposing an application into microservices.

13

1.2 Methodology

This thesis is an empirical case study of TransferWise. The research design is experimental: the

experiment is conducted by implementing a single proof-of-concept microservice and then

generalizing the learnings into a replicable process.

1.3 Outline

The thesis consists of 5 chapters:

1. The first chapter defines the goals, scope and the methodology of the study.

2. The second chapter gives a technological background of TransferWise and discusses the

main differences between the monolithic architecture and the microservices architecture.

3. The third chapter provides the implementation details and challenges of building the proof-

of-concept microservice.

4. The fourth chapter declares a high-level architectural vision for TransferWise.

5. Finally, the fifth chapter outlines the main conclusions of this thesis.

14

2. Technological Background

Organizations which design systems are constrained to produce designs which are copies of

the communication structures of these organizations.

—M. Conway [3]

2.1 TransferWise Architecture

2.1.1 Technology Stack

The TransferWise codebase is mainly written in the Groovy programming language. Groovy is

a dynamic object-oriented programming language that runs on the JVM. Groovy is considered

to be an extension of the Java language as most Java code is also syntactically valid Groovy

code. Groovy source code is compiled into Java bytecode which means that you can run Groovy

code on any Java Virtual Machine, given that the Groovy JAR file is present in the classpath at

runtime. [4]

Figure 1 TransferWise Technology Stack

Most of the TransferWise codebase is based on the Grails framework. Grails is a Groovy-based

web framework that leverages the best-of-breed Java frameworks like Spring MVC, Spring DI

and Hibernate ORM. [5] The Grails framework advocates convention over configuration which

in layman terms means that the application auto-wires itself based on naming conventions

Java Virtual Machine

Java Language Groovy Language JDK

Java EE Spring Hibernate Quartz

Grails

Public-web Back-office

G
ra

d
le

MySQL

15

instead of using an extensive set of XML configuration. It is based on the Java EE architecture,

uses the Gradle build automation tool and is deployed to the Tomcat container. [6] Spock is the

default testing and specification framework used in Grails.

2.1.2 Monolithic Architecture

The current software architecture style of TransferWise is largely monolithic. The main

characteristics of a monolithic system are [7]:

 written in a single programming language

 single source code repository

 single IDE project

 compiled and packaged into a single runtime application

 high coupling

 low cohesion

Many teams structure their software code by layers. TransferWise is no different.

Figure 2 Layered Architecture

Presentation Layer

Business Layer

Data Layer

Database

Client

16

2.1.2.1 Presentation Layer

On the top, you have the client, which could either be a physical person using your software or

another information system. The client communicates with the presentation layer over the

HTTP protocol. The presentation layer contains all the user-oriented logic that manages the

user interaction with the system. The presentation layer acts as a bridge between the user and

the encapsulated business logic in the business layer. The presentation layer is implemented

using the MVC design pattern. As the name suggests, it consists of 3 main parts: the Model, the

View and the Controller. The Model represents the underlying data. The View provides a GUI

to the user (or an API to an application). The Controller is responsible for interpreting the user

input (HTTP requests in this case), validating it, calling the correct Service in the Business

Layer, which returns the Model, and finally injecting the Model into the View. [8]

Figure 3 Model-View-Controller Pattern

2.1.2.2 Business Layer

The business layer contains the core functionality of the information system. It mostly consists

of business entities and service classes which, in collaboration, define your domain model, your

main business workflows and use cases. The service layer exposes a set of public interfaces that

are used by the presentation layer and, in turn, communicates with the data layer to query the

necessary persistence entities (classes that are mapped to database tables). [9]

2.1.2.3 Data Layer

The data layer consists of persistence entities that represent the underlying relational database

tables and the main purpose of this layer is to centralize the data access functionality. This

makes the application easier to maintain and configure. Many ORM frameworks like Hibernate

Client

Controller

Request

View

Response

Model

Manipulate

Update

17

implementing the data access components automatically, so the developers have to write a

smaller amount of (error-prone) boilerplate code. [10]

2.2 Monolithic Architecture

Allegedly, the very first version of TransferWise was written by one of the cofounders of the

company over the weekend as a minimum viable product (MVP). When working in a fast-pace

tech startup context, it is perfectly reasonable to build your application as a single monolith.

2.2.1 Advantages

An application built with a monolithic architecture has a number of advantages over other

architectural styles (namely, the microservices architecture): [11]

 Simple to develop – you can import a single project into an IDE and easily run the whole

application on your development machine.

 Simple to test – it is straight-forward to run automated functional tests and end-to-end

tests on a single monolithic application.

 Simple to deploy – a monolithic application is packaged into a single deployable WAR

file which can be easily deployed onto an application container (i.e. Tomcat).

 Simple to scale – you can easily run multiple instances of the same application behind

a load balancer to scale the application horizontally.

18

Figure 4 Monolithic Architecture

2.2.2 Downsides

However, as your application grows and your team size becomes larger, it becomes evident that

the monolithic architecture has several downsides: [11], [12]

 Synchronous release cycles – a change made in a small subset of the system requires

the entire monolith to be rebuilt, retested and redeployed. Continuous deployment is

difficult and this discourages frequent and small updates.

 Modularity – over time, with many new developers joining the company, it becomes

increasingly hard to keep your codebase modular. This, in turn, makes your code harder

to understand, harder to develop and more error-prone, which slows down development.

 Slow IDE – loading the whole monolithic project into your development environment

can make it painfully slow.

Client

Load Balancer

Request

Database

Tomcat

WAR

PaymentService

UserService

…

…

Tomcat

WAR

PaymentService

UserService

…

19

 Slow startup times – When running a single application in a single web container the

startup time gradually slows down as the application grows. This impacts both

development and deployment.

 Scaling – Each component of the monolithic system usually has different system

requirements. Some may be CPU intensive, some memory intensive. It is impossible to

scale individual components independently.

 Independent teams – once the organization grows and more developers join the

engineering department, it makes sense to split them into independent teams. Each team

can focus on a single functional area (for example, transfer creation or payment

processing) and have a well-defined KPI (for example, the conversion rate or payment

processing speed). Nevertheless, if all the teams are working on a single codebase, they

need to coordinate and plan their development efforts, deployments and architectural

decisions.

 Technological agnosticism – a monolithic application is based on a single technology

stack. The whole application is written in a single programming language using a single

framework and a common set of libraries. Different components of the system cannot

be written in different programming languages. A monolithic system is, by definition,

not technology agnostic.

2.3 Microservices Architecture

The microservices architecture pattern aims to address the limitations of the monolithic

architecture pattern. The application is split into functional services: each service has high

cohesion, and is, in most cases, relatively small (hence the name, microservice). For example,

an application might be composed of services such as payment service, user service, etc. [13]

20

Figure 5 Microservices Architecture

2.3.1 Benefits

There are several benefits to using microservices architecture pattern: [14]

 Independent deployability – easy to frequently deploy new versions of a service. This,

in turn, means that teams can develop, deploy and scale each service independently of

all the other teams. This is a key factor for having truly autonomous teams at

TransferWise.

 Lower complexity – each service is relatively small, has a single responsibility (the "S"

in "SOLID" stands for the single responsibility principle), high cohesion and loose

coupling. This makes understanding the subsystem easier for new team members and

they can become productive much faster.

 Fast IDE – since every microservice is relatively small, it will not slow down the

development environment and developers can be more productive.

 Technological freedom – each microservice could theoretically be coded in a different

programming language and use a different technology stack. However, it still might

make sense to keep the underlying platform of the microservices relatively

Client

Payment

 Database

Linking

Database

UserService PaymentService

Front

Application

LinkingService

User

Database

Request

21

homogeneous. This allows to make the hiring process more standardized and makes it

easier for developers to switch between teams. For example, TransferWise sticks with

the JVM-based languages (Java, Groovy etc.).

 Easy to rewrite – microservices are, by definition, small. For that reason, it is

comparatively easy to rewrite them. As long as the interface or the API contract does

not change, the development team responsible for that specific microservice has the

freedom to change any implementation details. This way, teams are able to

independently take advantage of new emerging technologies (frameworks, libraries,

etc.).

 Fault isolation – with microservices all boundaries are isolated, which means that the

scope of potential problems is also isolated. This reduces the potential for damage and

makes the systems easier to maintain.

2.3.2 Drawbacks

Regardless of the numerous benefits microservices have, it is important to understand the

drawbacks of the microservices architecture pattern:

 Increased complexity – a distributed system is inherently more complex. Running the

full application stack in your development machine is not as straight-forward as a

monolithic application.

 Testing – integration testing different versions of microservices to make sure they are

compatible with each other and running end-to-end tests is more complex in a

distributed microservices-based application.

 Latency – it takes time to communicate through a network socket. It takes time to

marshal and unmarshal objects to and from JSON (for example, in case of REST). [15]

 Overhead – each microservice runs in a separate JVM and uses its own application

server, which requires extra computation time, memory and bandwidth.

22

3. Implementation

At TransferWise, there are 2 major monolithic applications. The first one is the public web that

can be accessed from transferwise.com and is called tw-web. The second one is the back-office

application that is used internally by the operations team and by the customer support team. It

is called tw-ninjas, for historical reasons. As we can see from Figure 6, there are several

interdependent submodules that are shared between these applications. Most of them are in the

form of Grails plugins that are compiled and packaged into JAR files.

Figure 6 TransferWise Plugin Dependencies

Most of the Grails plugins were originally parts of the monolithic application. Over time, they

were extracted as separate plugins and some of them have evolved into microservices. This is

Android

tw-ninjas

(back-office)

tw-web

(public)

iOS AngularJS

tw-email-template tw-payout-submission tw-workitem tw-security

tw-common tw-email tw-linking

tw-verification

tw-event-queue tw-domain

tw-push-notifications tw-platform

tw-currency

tw-rates

3rd party

23

a perfectly normal iterative approach to evolve the software architecture. In that sense,

incrementally migrating the monolithic application to independent microservices is an organic

part of the software evolution process.

3.1 Building the Microservice

The proof-of-concept microservice that will be built is called the RecipientService. Its main

responsibility is to manage Recipients. Recipients represent bank accounts for receiving

payments, and are country and currency specific. In other words, a BrazilianLocalRecipient has

different fields with different validation rules than a SwissLocalRecipient.

3.1.1 Framework

There is a number of possible frameworks to choose from. Here, in TransferWise, the preferred

choice is Spring Boot. Spring Boot is a convention-over-configuration framework that is

designed to get you up and running as fast as possible. It takes an opinionated view on the

Spring Framework and 3rd party libraries and allows you to create production-ready applications

with minimum fuss. It features an embedded application server (Tomcat, by default), so there

is no need to deploy WAR files. You can just create a simple Java class with the main method

and run it from your favorite IDE. [16]

The simplest possible Spring Boot application looks like this (Java imports have been omitted

for brevity):

@SpringBootApplication

@RestController

public class RecipientService {

 @RequestMapping("/")

 public String root() {

 return "The RecipientService works!";

 }

 public static void main(String[] args) {

 SpringApplication.run(RecipientService.class, args);

 }

}

Figure 7 Spring Boot Sample Application

24

dependencies {

 compile("org.springframework.boot:spring-boot-starter-web:1.2.3.RELEASE")

}

Figure 8 Spring Boot Sample Application Web Dependency

When you run the application, it will boot up Tomcat on port 8080 and run the Spring

Application. If you visit the website through your browser, you see the message “The

RecipientService works!”

When using Spring Boot, there is not a single line of XML configuration, not even web.xml

(because of Servlet 3.0+). However, should you need control over what is happening with the

application, you can easily override any of the default configuration values.

3.1.2 Libraries

In addition to the Spring MVC Framework, the technology stack includes:

 Spring Security for security

 Spring AOP for crosscutting concerns

 Spring Data JPA for the JPA-based data access layer

 Hibernate as the JPA specification implementation

 H2 in-memory database for integration testing

 MySQL database

 Slf4j and Logback for logging

 Jackson for JSON marshalling

 Tomcat as the application container

 JUnit for unit testing

 Mockito as the mocking framework

 Hamcrest for rule matching in tests

25

3.2 API Contract

Table 1 POST /api/v1/recipient/create parameters

Parameter Name Data Type Required Description

name String yes The name of the recipient. Either

personal or business. Length between 3-

255 characters. Only alphanumeric

characters, cannot be blank.

type String yes The recipient type. For example: iban,

sortCode, aba, swiftCode. Must be a

valid type.

currency String yes The currency code of the recipient. For

example: GBP, USD, EUR. Must be a

supported currency.

email String yes The email address of the recipient.

Must be valid.

receiverType String no The receiver type: either PRIVATE or

BUSINESS.

addressFirstLine String no The first line of the recipient address.

Maximum length 255 characters.

addressPostCode String no The post code of the recipient.

Maximum length 32 characters.

addressCity String no The city of the recipient.

Maximum length 255 characters.

addressCountryCode String no The ISO3 country-code of the recipient.

addressState String no The state of the recipient. US-specific.

Maximum length 2 characters.

Every recipient has also some currency/country specific fields.

Table 2 GET /api/v1/recipient/details parameters

Parameter Name Data Type Required Description

recipientId Long yes The unique identifier of the recipient.

26

Table 3 POST /api/v1/recipient/update parameters

Parameter Name Data Type Required Description

recipientId String yes The unique identifier of the recipient.

email String yes The email address of the recipient.

Must be valid.

bic String no BIC or the Business Identifier Code of

the bank. Maximum length 8

characters. Must be a valid BIC code.

addressFirstLine String no The first line of the recipient address.

Maximum length 255 characters.

addressPostCode String no The post code of the recipient.

Maximum length 32 characters.

addressCity String no The city of the recipient.

Maximum length 255 characters.

addressCountryCode String no The ISO3 country-code of the recipient.

addressState String no The state of the recipient. US-specific.

Maximum length 2 characters.

POST /api/v1/recipient/validate

The same as the /api/v1/recipient/create request, but only goes through the validation phase.

Table 4 POST /api/v1/recipient/delete parameters

Parameter Name Data Type Required Description

recipientId Long yes The unique identifier of the recipient.

Table 5 GET /api/v1/recipient/list parameters

Parameter Name Data Type Required Description

currency String no The currency code of the recipient. For

example: GBP, USD, EUR.

country String no The ISO3 country-code of the recipient.

27

Table 6 GET /api/v1/recipient/listTypes parameters

Parameter Name Data Type Required Description

sourceCurrency String no The source currency code of the

transfer. For example: GBP, USD,

EUR.

targetCurrency String no The target currency code of the transfer.

For example: GBP, USD, EUR.

amount String no The amount of the transfer. For

example: 1000.54

amountType String no The fix type of the transfer. Either

“source” or “target”.

GET /api/v1/recipient/listRefundTypes

The same as the /api/v1/recipient/listTypes request, but only for refund recipients.

3.3 Implementation

Recipient

-id : Long

-name : String

User

-id : Long

-owner : User

-type : RecipientType

-currency : Currency

-receiverType : ReceiverType

-address : Address

-bankAccountId : String

-enableRecurringPayment : Boolean

-recurringPaymentReference : String

-recurringPaymentReminder : RecurringPaymentReminder

-email : String

-active : Boolean

<<Enumeration>>

RecipientType

<<Enumeration>>

ReceiverType RecurringPaymentReminder

<<Enumeration>>

Currency

-email : String

-verifiedBank : Boolean

-password : String

-salt : String

-active : Boolean

-avatar : Avatar

-termsAcceptedAt : Date

-verifiedBankDate : Date

-invitationKey : String

-openId : OpenId

-userProfiles : Set<UserProfile>

-language : Language

-feeCredit : FeeCredit GBP

PRIVATE

BUSINESS

IBAN

ABA

SWIFT

SWISS_LOCAL

...

EUR

USD

...

-id : Long

-lastExecutionDate : Date

-dayOfMonth : Integer

-enabled : Boolean

-recipient : Recipient

Address

-id : Long

-addressFirstLine : String

-postCode : String

-city : String

-countryCode : String

-state : String

Figure 9 Entity Relationship Diagram

28

Table 7 Entity Field Descriptions

Entity

Name

Field Name Data Type Description

Recipient id Long Unique identifier of the recipient.

Recipient name String Bank recipient owner's full name. Either

personal or business name. Length

between 3-255 characters. Only

alphanumeric characters, cannot be

blank.

Recipient owner User Reference to the owner of the recipient.

Recipient type RecipientType Reference to the recipient type. Not null.

Recipient currency Currency Reference to the Currency. The recipient

can receive funds in this currency only.

Not null.

Recipient receiverType ReceiverType A reference to the ReceiverType. Not

null.

Recipient bankAccountId String The bank account identifier in the

CurrencyCloud system.

Recipient address Address A reference to the Address. Not null.

Recipient enable-

Recurring-

Payment

Boolean Whether the user has set up a recurring

payment to the recipient. Defaults to

false.

Recipient recurring-

Payment-

Reference

String Recurring payment reference. Nullable.

Recipient recurring-

Payment-

Reminder

Recurring-

Payment-

Reminder

(RPR)

Reference to the

RecurringPaymentReminder. Nullable.

Recipient email String Email address of the recipient. Must be

valid. Not null.

Recipient active Boolean Whether the recipient is in active state or

not. Defaults to true.

29

Entity

Name

Field Name Data Type Description

User id Long Unique identifier of the user.

User email String Email address of the user. Not null.

User password String Password of the user. Not Null.

User salt String Password encryption salt. Not null.

User active Boolean Whether the user is in active state or not.

Defaults to false.

User verifiedBank Boolean Whether the user has a verified bank

account. Default to false.

User verifiedBank-

Date

Date Date when the bank account was

verified. Nullable.

User invitationKey String If the user was invited by another user,

the invitation key is stored in this field.

Nullable.

User openId OpenId Reference to the OpenId. Nullable.

User termsAccepted

At

Date Date when the user accepted the terms.

Nullable.

User userProfiles Set

<UserProfile>

A collection of the UserProfiles

(business or personal). Not empty.

User language Language Reference to the language of the user.

Defaults to English. Not null.

User feeCredit FeeCredit Reference to the fee credit of the user.

These can be manually assigned to users

or given for referrals. Nullable.

30

Entity

Name

Field Name Data Type Description

Address id Long Unique identifier of the address.

Address addressFirst-

Line

String The address first line. Maximum length

255 characters. Not null, not blank.

Address postCode String Post code. Maximum length 32

characters. Nullable.

Address city String City. Maximum length 255 characters.

Not null, not blank.

Address countryCode String Country code. Maximum length 16

characters. Not null, not blank.

Address state String US state. Maximum length 2 characters.

RPR id Long Unique identifier of the

RecurringPaymentReminder.

RPR recipient Recipient Reference to the Recipient.

RPR dayOfMonth Integer Day of month. Minimum 1,

maximum 31.

RPR enabled Boolean Whether the reminder is enabled.

Defaults to true.

RPR lastExecution-

Date

Date The last execution date. Nullable.

Each TransferWise user has 0 or more Recipients. Each Recipient must have one and only one

ReceiverType (either private or business), RecipientType (IBAN, SWIFT or some other type),

Currency (the British Pound, the Euro or some other supported currency) and Address (user-

defined). Optionally, a Recipient can have a RecurringPaymentReminder, in case they have set

up a recurring payment.

31

Recipient

Address

User

RecipientService

RecipientRepository

RecipientController

DB

UserServiceRecipientUpdateService

User

Microservice

ReceiverType

RecipientType

Currency

RecurringPaymentReminder

Figure 10 Class Diagram of the Microservice

The Recipient microservice has a single Controller, where all the API endpoints described in

chapter 3.2 are defined. The controller is thin and hardly contains any logic. A Controller’s sole

responsibility is to take the incoming HTTP requests and delegate them to the Service. The

services and domain entities is where the business logic is described.

The RecipientService class has a similar public interface to the RecipientController, except the

method input parameters are validated DTOs. Since the Recipient update command has more

complex business rules, then this logic is separated into its own class. The update call is

delegated to the RecipientUpdateService.

The RecipientRepository is a JPA implementation of the Repository enterprise architecture

pattern. “The Repository mediates between the domain and data mapping layers using a

collection-like interface for accessing domain objects.” [17]

Figure 11 depicts the recipient creation request handling flow. The DispatcherServlet

dispatches the request to the RecipientController. To do that, first it hands over the request to

the HandlerMapping which delivers a handler that matches the incoming request. The

HttpMessageConverter maps the incoming JSON into an object which, in turn, is passed to the

RecipientController. All the necessary validations are done in the Controller layer and the

32

validated DTO is passed on to the RecipientService. This is where most of the business logic

lies (verifications, blacklists etc.).

Once the service is done with all the necessary procedures, it inserts a new row into the database

though the RecipientRepository. It then returns a special RecipientResponse DTO to the

controller layer that only exposes the fields that are necessary for the view layer. The controller

returns it to the DispatcherServlet which converts the DTO back into a JSON HTTP response.

DispatcherServlet HandlerMapping RecipientControllerHttpMessageConverter RecipientService RecipientRepository Database

RecipientRequest

Request
getHandler()

RecipientController

create()
create()

save()
INSERT

Recipient
Recipient

Response

RecipientResponse

readInternal()

HttpOutputMessage
Response

writeInternal()

Figure 11 Sequence Diagram of Recipient Creation

3.4 Testing

TransferWise follows the test automation pyramid ideology. The test pyramid concept was first

described by Mike Cohn in the book “Succeeding with Agile: Software Development Using

Scrum” [18]. It is visualized in Figure 12:

Figure 12 Test Automation Pyramid

API

Integration

Unit

Cost

Run time

Fragility

33

3.4.1 Unit Testing

The test automation pyramid argues [19] that you should focus much more on writing unit tests

than other types of tests (interface tests and integration tests). First, they are relatively easy to

write. Using a unit testing framework like JUnit, you can just create an instance of a class, call

some public methods with dummy input data and verify if they return the expected results.

Second, they are extremely fast to run: you can run thousands of unit tests in a couple of

seconds. Third, as they only test a single unit of code (usually a class), they can only break

when the class under the test changes, which is a good thing. Behavior Driven Development

(BDD) unit tests are very robust, since they only test the behavior of the unit, not the specific

implementation details.

3.4.2 Integration Testing

Integration testing means that individual software components are combined together and tested

as a group. This verifies that individual components (classes) interact correctly. Essentially it

tests the interface between units. Since integration tests test a larger amount of units at once,

they are slower to initialize and run than unit tests. Also, mocking out dependencies might be

more complex than for unit tests (when using dependency injection, you can easily inject mock

implementations of the services that your class uses). Moreover, integration tests are more

fragile than unit tests, since they depend on the implementation of all individual units combined.

A single line change in a single unit could break the whole integration test.

3.4.3 End-To-End Testing

End-to-end testing in the context of microservices means testing your service through the public

(REST) API. To run end-to-end tests, we have to boot up the whole application, including the

whole framework and libraries and start an in-memory database (H2, for example) with some

sample data. This essentially means that running the tests is slow, writing the tests is often more

complex, and they could easily break when a single implementation detail of the system

changes. Therefore, it makes sense to minimize the amount of end-to-end tests you write and

only focus on the happy path. Intrinsically, it should just be an automated smoke test.

3.5 Scalability

“Scalability is the ability of a system, network, or process to handle a growing amount of work

in a capable manner or its ability to be enlarged to accommodate that growth.” [20]

34

Figure 13 Scale Cube

The scale cube is an easy way to visualize the 3 main ways to scale an application. [21]

3.5.1 X-Axis Scaling

First, X-axis scaling is done by cloning the monolithic application across multiple nodes. This

way, the load is spread across multiple instances and it is usually the first and the easiest step

to scaling your application. Oftentimes, this strategy is sufficient to serve the needs of a

medium-sized business. However, in case of a fast-growing global startup company like

TransferWise, this solution is not adequate enough.

3.5.2 Y-Axis Scaling

Second, Y-axis scaling is done by decomposing the monolithic application into services.

Usually, a single service represents a set of use cases. According to the Single Responsibility

Principle, every service should be responsible over a single functionality provided by the

application and that functionality should be encapsulated by the service. Robert C. Martin

defines responsibility as a reason to change. Thus, a service should have one and only one

reason to change. [22] For example, the RecipientService is only responsible for handling

recipients (and not payments or users, etc.).

3.5.3 Z-Axis Scaling

Third, Z-axis scaling is done by splitting requests or transactions to a single service. For

example, requests could be split based on some user characteristic. Essentially, Z-axis scaling

is very similar to X-axis scaling: in both cases, server nodes run cloned copies of the application.

X-Axis – scale by cloning

Y-Axis – scale by

splitting functionality

into different services

Z-Axis – scale by

data partitioning

35

However, the main difference is that for Z-axis scaling each node handles only a subset of the

incoming requests (and might only hold a subset of the data).

3.6 Service Discovery

The microservice architecture is not only about building individual microservices, but also

about how to make the communication and discovery process between services as reliable and

fault-tolerant as possible. To accomplish that, a service registry is needed. The service registry

is the central repository that registers services and allows other services to look up and connect

to services in that directory. One could think of it as a phone book for your microservices. [23]

There are three main requirements to the service registry:

1. high availability and consistency

2. service registration and monitoring mechanism

3. service lookup and connecting mechanism

Currently, TransferWise does not use a service discovery mechanism yet, but as the number of

microservices grows, it will soon become a necessity.

3.7 Logging

TransferWise uses the sylog standard to aggregate logs from all the different services and

applications. Syslog is essentially a central logging server, where applications send event

messages. Most of the applications use the RFC 5424 syslog standard, which has a good support

for multiline stacktraces that are essential for debugging errors in production.

On top of syslog, TransferWise uses the Elasticsearch ELK stack. That is: Elastisearch,

Logstash and Kibana.

Figure 14 Centralized Log Management

Log

Logstash

Elastic-

search Kibana

Log

Log

Log

36

As we can see from Figure 14:

 Logstash collects logs, indexes logs, processes logs and ships logs

 Elasticsearch stores the logs

 Kibana visualizes the logs

Distributed systems like the microservices architecture are great. However, they bring their own

challenges. One of them being the traceability of requests across the network of microservices.

Luckily, there is an easy solution to this problem. A common solution is to consistently carry a

correlation identifier alongside every message that transits through the distributed system.

Correlation IDs allow all downstream requests to be correlated with each other based on the

unique ID. As TransferWise uses a central logging system, it is very easy to see the request

trace throughout the entire distributed application stack (in Kibana). [24]

3.8 Containerization

Spring Boot builds a fat JAR file with all the required dependencies packaged including the

Spring Framework, embedded Tomcat, etc. The size of this JAR file can be around 20MB. [25]

However, in the containerization world, libraries and the application should be separated. The

application changes much more often than the underlying libraries, so it makes sense to separate

them as they change for different reasons (SRP). This also speeds up the packaging process of

the application, since only the application code is packaged without all the external

dependencies.

Figure 15 Containers vs. Virtual Machines

VM

Application

Binaries/Libraries

OS

Hardware

Guest OS

Container

Application

Binaries/Libraries

OS

Hardware

37

TransferWise uses Docker containers to build, ship and run some of its microservices. The

main difference between containers and virtual machines is the (lack of a) virtualized OS. The

virtual OS poses a significant overhead with its own kernel, memory management and device

drivers. Therefore, to solve this problem, containers are executed with the Docker engine

instead of the virtual machine hypervisor. Containers are smaller than VMs, enabling faster

startups and shutdowns, native performance and smaller file size. However, they provide less

isolation and greater compatibility requirements due to the shared drivers and kernel. [26]

3.9 Deployment

TransferWise is a Continuous Delivery (CD) company. It means that the engineering teams at

TransferWise have short release cycles and the next version of the application can be reliably

and automatically released at any time.

Figure 16 TransferWise Deployment Pipeline

Usually, a new version is released daily, sometimes multiple times per day. To be able to do

this, it is essential to have a comprehensive test suite: unit tests, integration tests and functional

tests (UI tests). The aim is to automate things as much as possible and for that reason

TransferWise does not hire any manual testers or quality assurance engineers. In fact, there are

none.

The same principles must hold true for microservices. Moreover, microservice allow

TransferWise to extend its continuous delivery process even further. Ideally, every pushed

commit should be automatically deployed to production, assuming that the build was successful

and all the tests passed. Furthermore, there must be an automatic monitoring system in place

that detects issues in production. If the error rates cross the predefined thresholds, the release is

automatically rolled back.

Push a
Commit

Build
Run

Automated
Tests

Deploy to
Production

Monitor

38

4. Architectural Vision

Figure 17 Architectural Vision of TransferWise

The architectural vision that is proposed for TransferWise is a fully distributed system. It

consists of a pool of technology-agnostic microservices that all communicate with each other

through a central high-availability service registry. Each microservice can use a different

communication protocol, framework and database.

Each microservice exposes a public API that is aggregated into a single API endpoint. However,

this API endpoint is not directly exposed to the public. Each public API consumer is provided

with a client-specific adapter that aggregates individual API requests and provides a specifically

tailored API response. [27]

Android iOS AngularJS 3rd party

API Adapter API Adapter API Adapter API Adapter

API

Risk

NoSQL

RiskService

Service Registry

VerificationService

Recipient

 RDBMS

RecipientService

MQ

Workers

REST REST REST REST

Thrift REST REST

39

4.1 Building Microservices

The core principles of building microservices can be summarized as follows:

 Modeled around business concepts – microservices should be structured around

bounded contexts. Explicitly define the context of each boundary and be explicit about

their interrelationships. [28]

 Hidden implementation details – microservices must be technology agnostic. All of the

internal implementation details must be hidden, including the specific database

technology.

 Independent deployability – each microservice must be independently deployable. This

means that one should strive for a limited number of outgoing dependencies on other

microservices. This allows the teams to work independently, too. Teams should not

constantly orchestrate their deployments to production.

 Full automation – Automated testing is an essential part of the microservices

architecture. Without full automation and continuous delivery it can become

cumbersome to manually coordinate the infrastructure.

 Decentralization – Make sure the Conway’s law is applicable to your organization. Each

team should own their own service(s) and weak code ownership should be promoted.

 Failure isolation – Failures should be planned for. We should assume that service calls

sometimes fail. Make sure that timeouts are reasonable, and understand what the impact

on the customers is if a single module of the system is failing.

 Monitoring – Monitoring single service instances does not guarantee that the system as

a whole works correctly. Set up a high level view of the system to make sure it functions

correctly. Use correlation IDs for debugging.

40

5. Summary

The main goals of this thesis were as follows:

1. Analyze the pros and cons of the microservices architecture compared to the monolithic

architecture.

2. Extract a single microservice from the monolithic application.

3. Provide a generalized approach to decomposing an application into microservices.

All of the abovementioned goals have been achieved. It is clear that the microservices

architecture has an important role in the business growth of TransferWise. A horizontal business

must also scale horizontally. The only way to do this sustainably is to decompose your

application into independent autonomous services.

However, TransferWise is still far from ideal. There is a lot of work that needs to be done.

The evolutionary architecture of TransferWise is firmly moving towards microservices.

Change is inevitable – adapt to it.

41

Kokkuvõte

Käesoleva töö põhieesmärgid olid:

1. Analüüsida mikroteenuste arhitektuuri omadusi ning võrrelda neid monoliitse

arhitektuuriga.

2. Eraldada üks näidismikroteenus monoliitsest rakendusest.

3. Kirjeldada üldistatud printsiipe järgmise mikroteenuse monoliidist eraldamiseks.

Antud töö raames said kõik eelnimetatud eesmärgid edukalt täidetud. Mikroteenuste

arhitektuuril on TransferWise’i jaoks monoliitse arhitektuuri ees suur eelis. Mikroteenuste

arhitektuur peegeldab ettevõtte horisontaalset struktuuri ja kommunikatsioonimudelit. Tarkvara

arhitektuuri visandamine ettevõtte-näoliseks (ja vastupidi) aitab TransferWise’l jätkusuutlikult

oma äri- ja arendustegevust skaleerida.

Palju on veel teha, praegune arhitektuur on veel kaugel ideaalsest visioonist. Ainuõige viis on

inkrementaalselt liikuda samm-sammult uue arhitektuuri poole. Muutused on paratamatud,

nendega tuleb õppida kohaneda.

42

References

[1] N. Peiris, "We Inspire Smart People and We Trust Them," TransferWise, 4 March 2015.

[Online]. Available: http://tech.transferwise.com/we-inspire-smart-people-and-we-trust-

them. [Accessed 10 May 2015].

[2] S. Newman, Building Microservices, O'Reilly Media, 2015.

[3] M. E. Conway, "How Do Committees Invent?," Datamation, pp. 28-31, April 1968.

[4] L. Vogel, "Groovy with Eclipse - Tutorial," Vogella, 29 January 2015. [Online].

Available: http://www.vogella.com/tutorials/Groovy/article.html. [Accessed 12 May

2015].

[5] The Grails Project, "The Grails Framework," 11 May 2015. [Online]. Available:

http://grails.org. [Accessed 12 May 2015].

[6] L. Vogel, "Grails Development - Tutorial," Vogella, 8 December 2014. [Online].

Available: http://www.vogella.com/tutorials/Grails/article.html. [Accessed 12 May

2015].

[7] M. Zaleski, "CSC407 Software Architecture & Design," University of Toronto, Toronto,

2004.

[8] Microsoft, "Presentation Layer Guidelines," in Microsoft Application Architecture

Guide, Seattle, Microsoft Press, 2009, pp. 67-82.

[9] Microsoft, "Business Layer Guidelines," in Microsoft Application Architecture Guide,

Seattle, Microsoft Press, 2009, pp. 83-94.

[10] Microsoft, "Data Layer Guidelines," in Microsoft Application Architecture Guide,

Seattle, Microsoft Press, 2009, pp. 95-114.

[11] C. Richardson, "Pattern: Monolithic Architecture," 2014. [Online]. Available:

http://microservices.io/patterns/monolithic.html. [Accessed 12 May 2015].

[12] M. Fowler and J. Lewis, "Microservices," 25 March 2014. [Online]. Available:

http://martinfowler.com/articles/microservices.html. [Accessed 12 May 2015].

[13] C. Richardson, "Building Microservices with Spring Boot – Part 1," 1 April 2014.

[Online]. Available: http://plainoldobjects.com/2014/04/01/building-microservices-

with-spring-boot-part1. [Accessed 11 May 2015].

43

[14] C. Richardson, "Pattern: Microservices Architecture," 2014. [Online]. Available:

http://microservices.io/patterns/microservices.html. [Accessed 12 May 2015].

[15] R. C. Martin, "Microservices and Jars," 19 September 2014. [Online]. Available:

http://blog.cleancoder.com/uncle-bob/2014/09/19/MicroServicesAndJars.html.

[Accessed 13 May 2015].

[16] Pivotal Software, Inc., "Spring Boot," 2015. [Online]. Available:

http://projects.spring.io/spring-boot. [Accessed 29 April 2015].

[17] M. Fowler, "Repository: Catalog of Patterns of Enterprise Application Architecture," 1

January 2003. [Online]. Available: http://martinfowler.com/eaaCatalog/repository.html.

[Accessed 2015 May 25].

[18] M. Cohn, Succeeding with Agile: Software Development Using Scrum, Addison-

Wesley Professional, 2009.

[19] M. Fowler, "Test Pyramid," 1 May 2012. [Online]. Available:

http://martinfowler.com/bliki/TestPyramid.html. [Accessed 20 May 2015].

[20] A. B. Bondi, "Characteristics of Scalability and Their Impact on Performance," ACM,

New York, 2000.

[21] M. L. Abbott and M. T. Fisher, The Art of Scalability: Scalable Web Architecture,

Processes, and Organizations for the Modern Enterprise, Addison-Wesley, 2009.

[22] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices, Prentice

Hall, 2002.

[23] J. Long, "Microservice Registration and Discovery with Spring Cloud and Netflix's

Eureka," 20 January 2015. [Online]. Available:

https://spring.io/blog/2015/01/20/microservice-registration-and-discovery-with-spring-

cloud-and-netflix-s-eureka. [Accessed 18 May 2015].

[24] D. Bryant, "Implementing Correlation Ids in Spring Boot (for Distributed Tracing in

SOA/Microservices)," 29 May 2014. [Online]. Available:

http://java.dzone.com/articles/implementing-correlation-ids. [Accessed 22 May 2015].

[25] S. Egorov, "Spring Boot's Fat Jars vs. Docker," 16 April 2015. [Online]. Available:

http://bsideup.blogspot.com/2015/04/spring-boots-fat-jars-vs-docker.html. [Accessed 22

May 2015].

44

[26] S. Seshachala, "Docker vs VMs," 24 November 2014. [Online]. Available:

http://devops.com/2014/11/24/docker-vs-vms. [Accessed 22 May 2015].

[27] D. Jacobson, "Embracing the Differences: Inside the Netflix API Redesign," Netflix, 9

July 2012. [Online]. Available: http://techblog.netflix.com/2012/07/embracing-

differences-inside-netflix.html. [Accessed 1 May 2015].

[28] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,

Prentice Hall, 2003.

45

Appendix 1. License

Mina, Erko Risthein (sünnikuupäev: 5. juuli 1991),

1. annan Tallinna Tehnikaülikoolile tasuta loa (lihtlitsentsi) enda loodud teose „Migrating

the Monolith to a Microservices Architecture: the Case of TransferWise“, mille

juhendaja on Raul Liivrand,

1.1. reprodutseerimiseks säilitamise ja elektroonilise avaldamise eesmärgil, sealhulgas TTÜ

raamatukogu digikogusse lisamise eesmärgil kuni autoriõiguse kehtivuse tähtaja

lõppemiseni;

1.2. üldsusele kättesaadavaks tegemiseks Tallinna Tehnikaülikooli veebikeskkonna kaudu,

sealhulgas TTÜ raamatukogu digikogu kaudu kuni autoriõiguse kehtivuse tähtaja

lõppemiseni.

2. Olen teadlik, et punktis 1 nimetatud õigused jäävad alles ka autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta kolmandate isikute intellektuaalomandi ega

isikuandmete kaitse seadusest ja teistest õigusaktidest tulenevaid õigusi.

______________ (allkiri)

______________ (kuupäev)

46

Appendix 2. Metadata

Töö pealkiri (eesti keeles):

Monoliidi migreerimine mikroteenuste arhitektuurile: TransferWise'i näide

Töö pealkiri (inglise keeles):

Migrating the Monolith to a Microservices Architecture: the Case of TransferWise

Autor: Erko Risthein

Juhendaja: Raul Liivrand

Kaitsmise kuupäev:

Töö keel: eng

Asutus (eesti keeles): Tallinna Tehnikaülikool

Asutus (inglise keeles): Tallinn University of Technology

Teaduskond (eesti keeles): Infotehnoloogia teaduskond

Teaduskond (inglise keeles): Faculty of Information Technology

Instituut (eesti keeles): Informaatikainstituut

Instituut (inglise keeles): Department of Informatics

Õppetool (eesti keeles): Infosüsteemide õppetool

Õppetool (inglise keeles): Chair of Information Systems

Märksõnad (eesti keeles): mikroteenused, monoliit, tarkvara arhitektuur, TransferWise

Märksõnad (inglise keeles): microservices, monolith, software architecture, TransferWise

Õigused: juhul kui ligipääs on piiratud, siis sellekohane märkus

