TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Mohammad Alizadeh Ghoulan 165521

EMBEDDED LINUX CUSTOMIZITION AND
DRIVER DEVELOPMENT FOR SOC KIT

Master’s thesis

Supervisor: Dr. Alar Kuusik

Senior Research
Scientist

Tallinn2019

TALLINNA TEHNIKAULIKOOL
Infotehnoloogiateaduskond

Mohammad Alizadeh Ghoulan 165521

EMBEDDED LINUX-I KOHANDAMINE JA
DRAIVERITE ARENDAMINE SOC KIT
JAOKS

Magistritoo

Juhendaja: Dr. Alar Kuusik

vanemteadur

Tallinn2019

Author’s declaration of originality

| hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Mohammad Alizadeh Ghoulan

01.05.2019

Abstract

Linux driver development for SoC FPGA which uses full-length/low-performance
communication interface, and requires mastering in Linux programming, FPGA design
and C coding, leads to complexity for developers. This article tries to provide a clear
guidance of design flow by dividing the sequence in three different parts and supplying
detailed information based on the author’s experiences of Linux driver development for
SoC Kit. XOR driver development using SoC FPGA Lightweight bridge interfacing
presents simple and basic and at the same time comprehensive information for beginner
developers. This work provides the most practical instruction for junior developers to
verify hardware/software components and obtain a general overview of all creating
special Linux distribution, driver development flow as well as FPGA design and C
programming. This research is a part of Xiphera encrypting IP block project and has
resulted in XOR driver for SoC Kit.

This thesis is written in English and is 54 pages long, including 3 chapters, 41 figures.

Annotatsioon
Embedded Linux-i Kohandamine ja dDraiverite

ARrendamine SoC Kit jaoks

Linuxi draiverite arendamine SoC FPGA jaoks, mis kasutab tdispika / madala joudlusega
kommunikatsiooniliidest ja vajab Linuxi programmeerimise, FPGA disaini ja C-
kodeerimise rakendamist, viib arendajatele keerukuse. Kéesolevas artiklis piiitakse anda
selgeid juhiseid disainivoogude kohta, jagades jada kolmeks erinevaks osaks ja esitades
uksikasjaliku teabe, mis pdhineb autori kogemustel Linuxi draiveri arendamisel SoC
FPGA komplekti jaoks. XOR-i juhi arendamine SoC FPGA abil Kerge sillaiihendus
pakub algajatele arendajatele lihtsat ja pohilist ning samal ajal terviklikku teavet. See t66
annab noortele arendajatele kdige praktilisema juhendi riistvara / tarkvara komponentide
kontrollimiseks ja Uldise Ulevaate saamiseks kdigist, mis loovad spetsiaalse Linuxi

levitamise, draiveri arendamise voolu ning FPGA disaini ja C programmeerimise.

Selle projekti jaoks on vajaliku riistvarana kasutatud SoC FPGA komplekti. Juhatus on
kombineeritud Altera Cyclone V FPGA ja ARM Cortex-9 Dual core-protsessoriga. Kuigi
turul on veel Uks vdistluslaud (Xilinx), kuid arvestades SoC FPGA komplekti
konkurentsivéimelist hinda ja asjaolu, et Altera on niilid osa Intelist, kes suudab pakkuda
tehnilist tuge, alustas Xiphera oma projekti selle riistvaraplatvormi abil . See uuring on
osa Xiphera IP kriipteerimisprojektist ning selle tulemuseks on XOR draiver SoC FPGA
komplekti jaoks. See t60 viib arendajatele tldise ettekujutuse sellest, kuidas Linuxi

draiverit kujundada taispika liidesega.

LAputdd on kirjutatud [Inglise] keeles ning sisaldab teksti 54 lehekiljel, 3 peatiikki, 41

joonist.

List of abbreviations and terms

SoC System on Chip

FPGA Field-Programmable Gate Array

OoP Operating System

PC Personal Computer

RTOS Real Time Operating System

GNU GUN'’s Not Unix

GCC GNU Compiler Collection

API Application Program Interface

CPU Central Processing Unit

ARM Advanced RISC Machines

RISC Reduced Instruction Set Computing
U-Boot Universal Boot

RAM Random access Memory

ROM Read Only Memory

SPL Secondary Program Loader

1/0 Input / Output

loT Internet of Things

PROM Programmable Read Only Memory
PLD Programmable Logic Device

ASIC Application Specific Integrated Circuit
ASSP Application Standard Parts

FFTC Fast Fourier Transform Coprocessors
DDUC Digital Down Converter-Up Converter
VHSIC Very High-Speed Integrated Circuit
VHDL VHSIC Hardwar Description Language
FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

HPS Hard Processor System

MPU Microprocessor Unit

AXI Advanced eXtensible Interface

MM Memory Mapped

AMBA ARM Microcontroller Bus Architecture
UART Universal Asynchronous Receiver Transmitter

RBF
GHRD
CD
SOF
SRAM
QPF
PIO

TCL
DTS
DTB
BSP
MTD
RTS

TUT
VGA

Raw Binary File

Golden Hardware Reference Design
Compact disc

SRAM Object File

Static RAM

Quartus Program File
Parallel Input / Output
Intelligent Property

Tool Command Language
Digital Theater System
Device Tree Bulb

Board Support Package
Memory Technology Device
Remote Target System

Tallinn University of Technology
Video Graphics Array

Table of contents

Author’s declaration of OTIZINAIILYocvvviiiiiiiiic e 3
N 01 1 - Tod P SPR TSROSO 4
Annotatsioon [Thesis title in ESLONIAN]ccvieiiiiiiiicccceeee e, 5
List of abbreviations and tErMScoire i 6
TaDIE OF CONTENES. .. .eiiiiiie et e e e e e e snee e e snteeeaneee s 8
LISE OF FIGUIES ...ttt bttt 9
IR] £ o [0 ot A T o PP SUSSURRST 11
2 Customized Linux for Embedded SYStEMSccueeeiuieeiiiee e 12
2.1 WRY LINUX? 1ottt e a et e e et a e et e e e na e e e naaeennneeeannns 12
2.2 Why Customization for LinuX IS ReQUIred?..........ccovvveiiieeciiie e 14
2.3 Linux for Embedded SYStEMS.........cuvviiiie e 16
3 SO FPGAS ittt 22
3.1 SOC FPGA’S Evaluation.........cccooiiieiiii e, 23
KT 1o O (| SRS OP SR PPI 30
4 Driver Development for Embedded LiNUX..........ccccooiiieiiiee i 35
4.1 Software Requirement for Driver Development...........cccccveevieeeiieeeiiie e, 35
4.2 FPGA DESIGN FIOW ...ttt 39
4.3 Linux Distribution Development StEPS........cccveiiiveiiiee i 42
4.4 User Space APPLICALIONS........ceciiiie i 50
4.5 XOR Driver DevelOPMENLcc.vii i 59
O SUIMMIAIY .ottt e e e e e e e s e e e e e e e e s e s b bbb e e e e e e e e s s snsbbrreaaaeas 72

List of figures

Figure 1. Modular Structure 0f LINUXc.coiviiiieiiieiie e 14
Figure 2. Running different applications in Kernel and User spacescc.ccoevveninens 15
Figure 3. Five Elements of An Embedded Applicationccccooviiiiiiiiniiinieiienn 16
Figure 4. Generating an executable by Toolchainc.cccooiiiiiiiiis 18
Figure 5. Bootloader Initializing FIOW............ccoiiiiiii e 19
Figure 6. Generating PreLoader SEQUENCEScoiuieiieiiieriieniie e 21
Figure 7. Kernel FUNCLIONAITILIESoivieiiiiiiiiiie e 21
FIQUIE 8. SOC KL ...ttt 23
Figure 9. Advantages/disadvantages of FPGA and ASICccccooviviiiiiiiieniiennns 26
Figure 10. FPGA, ASIC/ASSP and SOC COMPAIISON........cueeivieriieiiiesiienireenieesveenineas 27
Figure 11. SoC FPGA compare With ASICccoeoiiie e 28
Figure 12. Fast Time t0 Marketcoouiiiiieeiie e 29
Figure 13. SOC Kit COMPONENTS.......vviiiiieeiieeeeiieesiir e e e e e sae e sae e sraeeesneeeseeeeanes 30
Figure 14. SOC Kit BIOCK DIagramccoovieiiireiiiie e e e see e 31
Figure 15. Cyclone V SOC BFAQEScccvveeiiieeiiie e 32
Figure 16. Master and Slave INterfaces.........cccoovvveiiiie i 33
Figure 17. AXI Master/Slave INterface.........cccoovvvveiiiieiiiie e 34
Figure 18. Quartus Prime 18.1 Lite EAItIONcc.ccoviveiiiie e 36
Figure 19. Platform Designer TOOI OF QSYSccocvvveiiuireiiiee e 36
FIGUPE 20. DS-5 .ttt ettt e e e et e e nna e e e rea e 38
Figure 21. DS-5 Debugger TOOIccoiiieeiiie e 39
Figure 22. CUSIOMIZEA TPcceiie et 41
Figure 23. Avalon INterface...........ooviiiiiie it 41
Figure 24. Device Tree Generating and U-Boot Compiling Steps.........ccccceevvvvveiiinenne 45
Figure 25. Kernel Configuration Windowcccovveiiiii e 47
Figure 26. Buildroot Configuration Windowcccccvviiiiii i 48
Figure 27. Target Configuration of BUildrootcccceeeeviiiiiii i 49
Figure 28. Toolchain Configuration of Buildroot.............cccccveviiiiiinc e 49
Figure 29. System Development FIOWccooiiiiiiiiiii e 50

file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986588
file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986589

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

Flash Device Connections With SOC FPG......ooveeeeieeeeee e 51

Access to MTD from Terminal Windowccocceviiiiiiiiieniciie e 52
MTD PArtILIONSeeiiiieiiiieiee it 52
Flash Memory Partitioningcocveiieiiieiiiiiie e 53
Creating a New Connection from RTS ... 54
Configuration 0f RTS IP AdUIesS.........cueeiiieiieiiiesiie e 54
DS-5 DebUGGEr MENUvviiiieiiieeie et 55
DS-5 Debugger Configuration MENUccoiveiiieiiiiiieiiese e 56
DS-5 DEDUGGET VIBW ...ttt 57
Full FIFO communication QSYS DESIGN..........ccoveiuiiiiiiiieiiieiie e 58
FIFO INTEITACE ... 59
Cyclone V SOC HPS MemOry Map.........cooviiiieiiieiiieniie e 63
Makefile compilation and transferring to the SD Card...........ccccovvvviiieninnns 70
XOR driver INIEIANZING........coivieiiiee e 71
Communicating with driver and executing XOR operation..............ccc....... 71

10

file:///C:/Users/Asus/Desktop/mohammad%20visa/Embedded%20Linux%20Customization%20and%20Driver%20Development%20for%20SoC%20Kit.docx%23_Toc7986593

1 Introduction

Combination of FPGA and SoC into a single board, to utilize both parts’ advantages, has
optimized productivity and efficiency. Synchronically, Linux has been used to run these
devices as it has been developers’ favourite OS due to its flexibility and open source data
base which provides freedom of design. Customization and driver development of
embedded Linux for SoC Kit is an article focusing on Linux for embedded concept and
its design flow. As the mentioned concept requires detailed knowledge and technical
experience in Linux programming, FPGA design, VHDL/VeriLog coding and C
programming, this research endeavours to provide a clear guidance by dividing design
sequence into three different parts and step by step explanations. Driver development for
SoC Kit requires Linux customization combining with Qsys design and HPS applications.
These development steps are related to each other and must be done in a correct order
otherwise the design process would be complicated and time consuming. This work tries
to solve the complication of the design process and provide a clear guidance.

The final purpose of this project is to develop a XOR driver as a simple representation of
the whole design sequence for SoC Kit. XOR driver verifies SoC Kit hardware/software
facilities, such as GHRD and low-performance bridge communication between FPGA
fabric and HPS sides using Avalon-MM interface. Full communication interface, which
requires HPS to FPGA and FPGA bridges’ interaction, has been described with a user
space application. Full-length communication is used for Xiphera encrypting IP block
development (which patented by Xiphera and is not a part of this work) and XOR driver
development is fundamental validation of hardware/software components of SoC Kit.
XOR driver provides Lightweight bridge communication by manipulation FPGA LEDs,
which is a very good lead to obtain a general overview of full-length communication that

can be used for more complicated projects.

This work consists of 3 sections. The first part investigates advantages of Linux
customization and its necessity. The second section, SoC FPGA background, explains
advantages and features of the SoC Kit, and finally, the third part engages in practicing
and experimenting the real task/project. In this part, all three different stages of embedded
Linux design flow, has been described separately. To provide the right materials for the

mentioned sections, electronic and online sources have been also utilized.

11

2 Customized Linux for Embedded systems

Linux is a Unix-like operating system for computers and servers. It has been developed
by Linus Torvalds, a computer science student at the University of Helsinki in 1991 [1].
The Unix system and the its hardware were both expensive and the Minix (a Unix version
which was available for free) did not meet his needs. Therefore, he decided to develop a
new Unix-like OS and shared his working result on the internet after six months of hard
working (which had made a little progress toward general utility of the system) and found
so many people who have the same desire. From 1991 Linux has been modified thousand
times by different developers (as it is an open source OS) and has achieved a level of

maturity that most of developers want.

In this chapter Linux properties and the reason that makes it the first option for the
embedded systems development are discussed; while Windows is used widely (almost 75

%) by end user consumers or even giant companies [2].

2.1 Why Linux?

Referring to the market share statistics, most of computer users prefer to use Windows
operating system while Linux has only 1.6 % of the whole market [2]. It is becoming
more interesting, if the reality that Linux is free of charge and there is no need to pay for
a license (except commercial distributions provided by vendors) is considered. The
second important issue about Linux is its open source development property. So, there is
freedom to develop new features and use whatever the project requires, and it is totally
free of charge; but still people are using Windows OS incredibly more than Linux; but

why?

After using Linux more actively in my professional life, the reason has been discovered.
I must confess that | have learned computer working by Windows OS like the most
people, but before my master | started to hear, learn and finally use Linux as the only OS
every day at my job. Here are more evidences to compare both OS features. Linux features

can be briefly listed as following:

12

1- Multiuser, multiprocessor and multiplatform: more than one user can be logged
in to a single computer at the same time. Kernel (the core of Linux OS)
multitasking property enables users to run multiple services on one computer; and

finally, it has been developed for more than 24 hardware systems.

2- Flexibility: Linux can be configured for a variety of usage such as network host,
router, web server, personal PC and many computing appliances that could be
thought of.

3- Efficiency: the modular design of Linux enables to include only required
components for running the desired service. Linux servers can work without any

crash for even decades which makes it more reliable comparing to Windows.

4- Security: although Linux is open source which makes it risk-bearing, but it is
highly secure OS because of its open source capability and a big group of
volunteer developers who can easily identify attacking risks and modify Linux

[3].

Considering above mentioned features, Linux is looking charming for developers who
want to have a free-to-customization, secure, reliable and free OS. So why do amateur
computer users prefer to use Window OS rather than Linux OS? The key words here are
developers who are known as coder or programmer verses normal people who use
computers as a device in daily life. Most people do not need to customize their OS, instead
they want to have an already customized and ready to use device with all adjustments and
configurations. Here the reason that Windows OS has taken the huge piece of market pie
must be declared: ease of use! Windows OS has already all configurations done and needs
only to be installed and run; moreover, it has a good support community which makes it
attracted for end computer users. Windows has defined short cuts for different needs of
users while in Linux it is needed to run a terminal window and execute a command
(assuming these commands have been memorized after several time using) to have even

a very basic feature.
On the contrary, developers prefer to use Linux because of its reliable and flexible

features which enable them to configure OS for any desired requirement. More

importantly, to develop a new project, which might need so many different adjustments

13

and configurations, the OS allows to play with different properties, use some of them or
even develop new ones. To sum up, the customization capability of Linux in addition to
its other features, are the main reasons that makes it interesting for developers.

2.2 Why Customization for Linux Is Required?

It was mentioned in the previous chapter that Linux modularity and open source features
make it interesting for developers to easily program the desired services. A traditional
monolithic OS uses one static-compiled image and runs in an all-or-nothing mode in
which the entire OS needs to be restarted, if any element or application fails. While
application and drivers in Linux have their own interface communicating with Kernel and
interacting with the other applications independently. Looking at below figures describes
the modular structure of Kernel:

User space application

I User space
* Kernel
System call interface
Character driver AP|
| |
1 1 1
input watchdog misc
subsystem subsystem subsystem
| | L
| 1 I | |
input input watchdog misc misc
driver 1 driver 2 driver A driver a driver b
12 Figure 1. Modular Structure of Linux [4, p. 293] 3

L API: Application Program Interface, which interacts between Kernel and the applications run on it.

2 Misc: Minimal Instruction Set computing, is a processor architecture with a very small number of basic
operations [1].

% Please note that all figures which have no citation in this project are screen shots from results of the
original work by the author.

14

user Space

| demo_map_test Il

| ioct]_test }

dd

{ cat / echo

——

SYSFS
interval

| demo_module_07 |

| demo_driver_7 |

demo_driver_subsys_0

| iorenap |
m demo,driver-1.0

Kernel Space IO Space

Figure 2. Running different applications in Kernel and User spaces [5, p. 129]

Taking into consideration that there are so many different platforms with different
developers who work on a variety of projects, justifies a need for free to develop system
that supports modular capability to provide different services for different developers.
Speaking more specifically about Linux for Embedded Systems, developers need a
system that allows them to use it for different purposes in different time periods.
Assuming an embedded system software developer who works on a project for
automotive industry. This project has its own specific requirements from Linux side
which may totally differ from another project for a different industry, for instance LED
TV’s. Therefore, such a system is required to provide all features needed for different
purposes and support variety of projects’ fundamental requirements.

To have a conclusion, developers prefer Linux because of freedom of configuration which
enables them to use it for different projects that require different set of drivers,

configurations and adjustments.

15

2.3 Linux for Embedded Systems

Linux is suitable for real time complex projects, especially when the connectivity among
the applications and tasks is required. There may be a need for an up-to-date host machine
(a laptop or personal PC) and a target board because Linux needs more resources
compared to the traditional real time OS (RTOS). Linux is popular for embedded systems
because of the same reasons were discussed in the previous chapter in general and mostly
for PC’s. Free software and open source community of Linux make it flexible for different
variety of embedded systems projects, especially for limited investments with high
returns. No need to mention again about Linux stability, reliability, network ability and
multiuser/multitask capability features, which make it the favourite OS for embedded

systems.

As it has been demonstrated in Figure 3, every project for embedded systems, which is
running embedded Linux, needs below listed five elements to be obtained and configured

properly. To begin:

User Space
Example configuration to enable {fiebi, Cnmpier, stet, gic)

evaluation and initial development Root File System

Kernel configuration to enable
evaluation and initial development Kernel

Up-streamed and community
supported drivers

Up-streamed mach-socfpga Machine Specific Layer
architecture

enables common kernel binary
Open-source, community U-Boot
supported boot loader

Development kit or custom board =———>
Board

Figure 3. Five Elements of An Embedded Application [6, p. 76]

Drivers

16

1- Toolchain: all steps for getting started a new project on an embedded board
depend on Toolchain. Toolchain is the set of code generated by compiler and other
tools for the target device. In Figure 3, Toolchain is not printed but it takes place
in the bottom of all other steps. The reason it is not shown in this figure lies in the
fact that Toolchain downloading, and configuration have been set by the host
machine and the other steps, which depend on Toolchain, are being generated and
put in a SD Card, which is used by the target board.

2- Bootloadr: after getting the Toolchain, the target board needs to be initialized;
which Bootlaoder takes the responsibility here. Bootloader is shown in Figure 3
as U-Boot (Universal Boot) which itself is a step of booting.

3- Kernel: heart of the system which manages all resources and interfacing with the
hardware. Kernel includes itself, drivers, machine specific layers and device tree
in the figure. In fact, the device tree is kind of interacting between BootLoader
and Kernel which defines hardware components of the embedded device. The
device tree is loaded by BootLoader and passed to Kernel and Kernel image
cannot be loaded without device tree compilation. A closer look at the device tree

in the third chapter of the third part of this article is given.

4- Root filesystem: includes programs and libraries and runs after Kernel

initialization [7].
5- Application: a collection of programs which you use for the project.

A closer look is taken at these five elements, as all these steps will be used later in order
to develop a driver for own Linux distribution; so it is needed to have at least a general
overview, (sometimes detailed expertise to solve problems is needed, as Linux is an open
source OS and there is no guarantee for software developers that everything work well in

all projects).

As it has been mentioned earlier, Toolchain is a set of tools that compiles required source
codes into an executable file that can be run on the embedded board; and it is absolutely

needed to be done before continuing the other steps of design sequence.

17

source code

file

Toolchain contains a compiler, linker and C libraries, (available Toolchain for Linux are
mostly based on GNU which is notably written in C. There are different types of
Toolchain that also include Assembly and C++ libraries). GNU is a Unix-like OS that
provides components for Toolchain’s using Linux. GNU is an acronym of “GNU’s Not
Unix” which has been developed and named by Richard Stallman, insisting that it is not
a Unix system but Unix-like OS. He stated that after playing with words and being
inspired from “The GNU” song has named his project GNU in 1983. This OS’s compilers
and linkers support Linux using Toolchain’s and provide C libraries to start each

embedded application. Every GNU Toolchain consists of three main components: [8]

8 —> | Compiler \ [Qﬁ

object code*

file

other /
object code
files

object code —
libraries

Linker

—

executable
file

Figure 4. Generating an executable by Toolchain [8, p. 7]

1- Binutils: s set of binary utilities containing assembler and linker.

2- GNU Compiler Collection (GCC): compilers for C and other languages depends

3- C Library: there are different C libraries which are provided as Application

on the version of GCC.

Program Interface (API). This API is the main component for interfacing Kernel

with applications.

18

It will be demonstrated how to use Toolchain to start booting the target device which
depends on the CPU (Central Processing Unit) and in this case is ARM Cortex-9.1
Choosing proper C libraries for the project will be also experienced. Altera’s? open source
database to download and set the Ttoolchain which supports Linux Ubuntu 16.042 (the
Linux version on the host machine) will be used. It is necessary to say that Ubuntu is an
open source Linux distribution based on Debain which is a Unix-like OS. To sum up with
the Toolchain matter, it is needed to download and configure it following the steps which
will be provided in the relevant chapter.

The second step of the embedded application design flow is Bootloader which boots the
embedded device and initialize it to get the Kernel. In fact, Bootloader prepares the target
device to get the Kernel and ready to run it. Figure 5 describes Bootloader initializing

flow:

%
| + Starts Running code at reset exception address
 EEE— //«_'j\ * Normal operation, BootROM is mapped to reset address
T e
Reset [~
4 . . E:
+ Hardcoded by Altera into device
I » Read Boot source from BSEL pins
|+ Setup minimal configuration to read flash
Boot ROM ‘__——\—— + Load Preloader from Flash or execute from FPGA
T+ Jumps to Preloader
— = 4
_,J__-/ + U-Boot SPL)
PreLoader ——— « Setup HPS I0s and pinmuxing
1 + Setup PLLs and clocking
* Initialize SDRAM
+ Load subsequent stage from Flash into SDRAM
\- Jump to subsequent stage (typically U-Boot)
Uboot | J
I e Load Linux w
Linux
) R —

Figure 5. Bootloader Initializing Flow [6, p. 95]

1 ARM, previously Advanced RISC Machines, and originally Acorn RISC Machines, is a family of
computer processors which follows Reduced Instruction Set Computing (RISC) architectures.

2 An American manufacturer of SoC FPGA’s and other programmable processors. Altera produces Stratix,
Aria and Cyclone V microprocessors series. It is now part of Intel.

% The Linux version can be seen by executing “cat/etc/os-release” in a terminal window for a Linux
running on the host machine.

19

Bootloader prepares the CPU of the target device for the Kernel initialization. It briefly
can be described as instruction code that is recognized by the target device’s processor
and it absolutely differs from different family of processors [8]. In this case, both SoC
and FPGA sides are using ARM Cortex-9 processor. After some adjustment and
cooperating with the CPU, Bootloader loads the Kernel into RAM and runs it. The Kernel
starts to initialize hardware devices and its sub-systems. Here are some definitions of the
concepts from the figure:

Boot ROM: is a very small piece of the ROM inside the CPU of the embedded device. It
contains a very basic instruction code which is mentioned above and is executed when

the device is powered on or reset.

BSEL pins: will be described further when the board will be explored; for now, it can be
briefly said that they are configured to make embedded device CPU operates in the

highest possible speed without modifying any software code.

PreLoader or SPL: Secondary Program Loader or PreLoader is a piece of software which
is called from Boot ROM with the only purpose of preparing the system for actual
BootLoader (U-Boot) [9]. Figure below shows the sequences for generating PreLoader

image which is necessary to boot the device.

20

Handoff Preloader Generator

X Preloader Config
Folder ()

Source Files e

: (*) - part of SoC EDS U-Boot Source
S O Code Archive ()

Figure 6. Generating PreLoader Sequences [10]

U- Boot: is a Universal Boot Loader and used to boot the Linux Kernel in ARM processor
using devices [11].

The third step of the mentioned embedded device application design sequences is Kernel
itself, which is responsible to manage all resources and interfacing with hardware

components. Figure 7 can describe Kernel and its functionalities:

Linux Kernel

Device drivers

Memory 3
management .
g driver frameworks
Low level Device Trees
Scheduler . o e
architecture specific (HW description),
Task management :
code on some architectures

Filesystem layer

: Network stack
and drivers

Figure 7. Kernel Functionalities [4, p. 24]

! Parts are indicated by red dot are generating by SoC EDS which is software platform for SoC board
manipulations and configurations.

21

Preloader
Image

After booting by BootLoader, Kernel starts to handle all hardware resources such as CPU,
memory and 1/O and provides a set of hardware independent API architectures to allow
user space applications and libraries to use the hardware components [12]. Kernel design
will be more discussed further.
The forth element of the design is Root Filesystem which includes all necessary files for
initializing the system. Depending on the application, it can consist of

1- An initializing program, which is the first application running after Kernel

booting.
2- A/dev directory to keep data, which is generated or required in user space.
3- Loadable modules, which are needed to be loaded during Kernel configuration
[9].

All these steps will be described in the third chapter of the third part of this article when
Linux Kernel distribution development is reviewed. Components of Root filesystem such
as Busy Box, libraries and other utilities will be explained more.
The last element of an embedded application design are applications defined by
developers for different projects with different purposes. This article is focusing on driver
development for SoC Kit.
In this chapter Linux features and reasons that make it interesting for developers and
specially embedded systems developers were discussed. Then, some basic information
about embedded Linux design flow was provided, to have a general overview of the
sequences of embedded design and other issued which will be concentrated during the

rest of this article.

3 SoC FPGA’s

The previous part was allocated to describe why developers need Linux customization for
their various projects with different purposes. In the first chapter of this part, the hardware
of the design which is SoC Kit will be discussed. A quick overview is given on
processors’ timelines, their evolution and progress to achieve nowadays’ maturity and

how development boards have been transformed to handle real time complex projects.

22

Afterwards, the second chapter will continue to discover the board for this project which
is SoC Kit (has been shown in the figure 8), manufactured by Terasic, its main features,
functionalities and hardware/software components requirements. By the end of this part,
an exact overview is provided on hardware constituent of the project. Besides, it is tried
to link embedded Linux explanation chapters with hardware clarification chapters in the
last part of this article.

Figure 8. SoC Kit [13, p. 1]

3.1 SoC FPGA'’s Evaluation

In this chapter the focus is on the development boards’ evolution and how they have been
transformed to the nowadays’ flexible and reliable boards. In order to have an exact idea

about this transformation timeline, reasons and phases, first, it is required to get an

23

overview about developers and market expectations from these boards. Developers,
students or any other interested groups of people to the embedded systems field, supposed
to know that the market expectations determine hardware, software and design timelines.
In the other word, companies, organizations, factories or even individuals, are looking for
greater solutions day by day. If developers’ solutions would not meet their anticipations,
there will be no other options for this kind of solutions, either to be terminated or be

enhanced in order to suit market qualifications.

Therefore, market conditions and expectations from this industry are discussed. Certainly,
the most important elements in the market are low cost, low power and high-performance
expectation which are every body’s desired parameters to evaluate any already existing
or to be existed solution. From aerospace and defence industry to scientific research and
medical industry and the other fields such as automotive, motor control, communication,
image processing, high performance computing, data servers and security, which are
some of main industry fields interested in FPGA, everybody is searching for the
mentioned properties of FPGA design. Moreover, Internet of Things (IoT) which seems
today’s inevitable concept of design and is going to become most popular or even
phenomenon of the forth industry revolution, is interested in FPGA design and

applications. In brief, market expectation from FPGA industry can be listed below:

1- Low cost, low power, which is ideal for all industrial solutions and always take

the first place of qualifications’ list.

2- High performance, high content, a greater performance can be achieved by higher
amount of hardware components and software elements. It is supposed to reach a
level of very good balance among high content/performance and low cost/ power

to idealize the final solution.

3- Well facility design and high integration property including peripherals and

interfacing with memory, in order to handle complexity of high range computing.

4- Fast time to market, which follows previous conditions and if all would be close
to what had been imagined, FPGA design flow would progress by desired

schedule.

24

5- Connectivity, if application fields of FPGA are considered, a very high and
reliable connectivity will be required and as it has been specified before, Linux
behaves well with connection protocols and has high networking features.
Therefore, a FPGA running Linux is needed to have high performance

networking.

Meeting all these expectations, the development boards have been evolved since 1984
and have been transformed to the nowadays’ SoC FPGA boards. A closer look at this
evolution and its different phases, which is the best way to understand why SoC FPGA is
used for the design, is beneficial. The FPGA industry began to develop since 1984 by
integrating Programmable Read Only Memory (PROM) and Programmable Logic Device
(PLD) which has been provided to the market by Altera. In 1985 Xilinx, one of nowadays’
FPGA manufacturer, delivered the first FPGA to the market with limited functionalities.

From the early ages, FPGA has been evolved in varied forms [1].

In a parallel way to FPGA timeline, there were other boards which have been used for
almost similar purposes. Application Specific Integrated Circuits (ASIC’s) are the most
popular ones since their properties meet market qualifications. Figure 9 is demonstrating
advantages/disadvantages of FPGA and ASIC to compare their reliability for complex

projects:

25

Time to Market
NRE

Design Flow
Unit Cost

Performance

Power Consumption

Unit Size

W

Figure 9. Advantages/disadvantages of FPGA and ASIC [14]

Looking at this figure may create a little bit of confusion as both FPGA and ASIC have
some advantages and some unwanted features which make developers to find a balance
considering these features. At first, a project which requires hardware platform choosing
should be considered. Moreover, depending on the budget and size of the project, time
schedule and essential functionalities, a better view of the existing options could be
achieved. If FPGA is chosen, for a high amount production, which has been scheduled
properly for research and development period (there is no rush for time to market), then
more financial resources is needed, as FPGA unit cost is higher compared to ASIC. FPGA
might be selected because of its design flow and contents which are simple and well-
integrated for this purpose. As it is clearly understood, FPGA has drawbacks in case they
would be chosen for their advantages such as low NRE, simple design flow and fast time
to market. So how these disadvantages could be compensated, or in better words, if these

features would be enhanced, then FPGA might be the first option for embedded design.

1 NRE: Non-Recurring Engineering, one-time expenditure for research, develop, design and test a new
product. NRE unlike the production costs, which must be paid constantly, is paid once as it is being
considered from fixed costs category [1].

26

Figure 10 provides a clear view on the options by analysing another type of ASIC’s,

System on Chip (SoC):

FPGA

Faster Time to Market - No layout, masks and
manufacturing steps needed

Field reprogrammability - Design changes can
be absorbed even in field and FPGA
reprogrammed

More power consumption and may not be high
performance because of programmable design
and low clock speeds

Good for prototyping and low volume designs
as cost would be less

Generally not possible to have analog/mixed

ASIC/ASSP - SOC/non-SOC

Need longer design times to take care of all
manufacturing steps

Once manufactured, need to spin again a new
chip in case of bugs

Custom design for an application helps in
designing for power/performance efficiencies

For larger volume of production, cost per unit
will be much less for an ASIC

Can support analog and mixed signal designs

signal designs and limited to what vendor
_supports

Figure 10. FPGA, ASIC/ASSP and SoC comparison [15, p. 7]

SoC is more integrated with more components on ASIC’s or ASSP’s with single or more
processor cores. (ASIC’s and ASSP’s can be SoC or non-SoC depending on if there is a
processor mounted or not). So, what if desired features of both sides would be combined
into a compact board to utilize all possible advantages. By this way a very good solution
for the projects is found. Before going to deeper details, it is better first to have a specific
definition of SoC FPGA by Altera (which has been merged into Intel since 2015):

“SoC FPGA'’s integrate both processor and FPGA architecture into a single device.
Consequently, they provide higher integration, lower power consumption, smaller board

size, and higher bandwidth communication between processor and FPGA. They also

1 ASSP: Application Specific Standard Parts.

27

include a rich set of peripherals, an FPGA-style logic array and high-speed transceivers”
[16].

SoC FPGA
ASIC FPGA

Figure 11. SoC FPGA compare with ASIC [16, p. 3]

Figure 11 shows how SoC FPGA has been transformed from similar type boards. There
are three commercially available SoC FPGA’s which all are using ARM processors.
Altera as one of the main competitors has Aria and Cyclone series from FPGA side (I am

using Cyclone V integrated with ARM Cortex-9 dual-core processor).

Finally, a comprehensive overview about what were discussed is provided by figure 12;
it is clearly demonstrated that if SoC FPGA’s are used, products can get to the market

more quickly [17].

28

Get products 3
to market X FASTER saving time in design and validation

t—Davs i WEEKS TO MONTHS Il

e Software C or C+-+
| 56

ot coe | 0
Algorithm

Floating- % i Floating Pt.C, C++ -
Point
Floating Pt.C, C++ Numerical Recipes Fixed-Point C

Algorithm
Floating P1.C, C++ | so¢ |
Product
Updates m Product 1 —VHDL =3
inoffs
o Product 2 - VHDL EN

12

Figure 12. Fast Time to Market [17, p. 4]

Floating point numbers and algorithms are an important data type in computation and
represent real numbers with a fractional part. According to IEEE, “754 floating point
standard” is the most common one used in the modern microprocessors, however, in 2008
it has been updated [18].

A clarification on exiting options, how and why to choose a more reliable hardware

platform, SoC FPGA, for the design, have been provided.

! ppuc: Digital Down Converter-Up Converter; converts a band limited signal to a lower frequency with

lower sampling rate to simplify the subsequent radio stage [1].

2 FFTC: Fast Fourier Transform Coprocessors; an accelerator module that can be used for performing FFT
and IFFT with higher floating-point rate.

29

3.2 SoC Kit

In this chapter the board SoC Kit is discovered. It “presents a robust hardware design
platform built around Altera FPGA combines with Dual-Core ARM Cortex-9 processor
that provides re-configurability paired with high-performance and low-power
consumption” [13, p. 5]. Figure 13 contains description for some of critical components

of the board and figure 14 is demonstrating a clear view of the board’s block diagram:

W HPS
1l FPGA
W System

USB-UART Controller-
12V DC Power Supply
Connector

Altera USB Blaster Il
Controller Chip

Power ON/OFF Switch

USB OTG Controller
(ULPI)

TSE PHY
LTC Connector

HPS DDR3 1GB

CLKSEL Jumper

128x64 Dots LCD —

G-Sensor

LCD Backlight Jumper

Bottom Side Components:

Ethernet VGA OUT z
USB 2.0 OTG 10/100/1000 VGA DB-15 Line Mic Line QSPIFiash64MB
Port Port 24-bit DAC Connector N In Out Micro SD Card Socket
JTAG USB Blaster Il USB-UART | | | *FPGA Configuration Mode Switch
Header Port Port ! !
a N a 1
: JTAG Switch
Audio Codec
& —— FPGA DDR3 1GB
EPCQ 256Mb
HSMC Connector

Altera 28-nm Cyclone V FPGA
with ARM Cortex-A9

BOOTSEL Jumper

Clock Circuit for
FPGA and HPS

=% Temperature Sensor
IR Receiver

HSMC Voltage-Level

| Jumper
HPS User FPGA User FPGA User Keys
Switches | Switches
HPS System HPS User Keys HPS User FPGA User FPGA Reset Key
Reset Keys LEDs LEDs

Figure 13. SoC Kit Components [13, p. 7]

30

QSPI LTC Connector

Bl to SPI/I2C Devices
JTAG% IxG Ix4 Ix2 Iﬂ

USB Mini-B

x4

o
¢ x88)
HSMC Connector x8 XCVR cyC’onegv
——p- *
SoC
RGMII, | al Ethernet
- e 5CSXFCEDEF31CHN JRowm, sy Ul Etremet

SDRAM x32 1024 MB

%—- USB 2.0 0TG
Em--- =

Dsub 15 pos
. 3.5mm N DDR3
Mic In " x72 SDRAM x32 1024 MB
H 3.5m ,A“dﬂ < x9
3.5 G2DEG FPGA HPS

use

’ Tto
o S —— — W—- Mini-8
%)(‘1 x4 Ix4 x4 |x6 x4 x4 xg:f Txﬁ
nn
-
Syste| HPS | gy
eset Reset | c
Mini
: , SD Card

B 08C T el

Butten Switch x8

I R
e
e

© -
e =
-

Figure 14. SoC Kit Block Diagram [13, p. 11]

As it has been clearly indicated in figure 14, the device brain consists of FPGA and Hard
Processor System (HPS); Cyclone V is the general name of these series with FPGA Fabric
and Dual-Core ARM Cortex-9 processor. The focus will be more on the board’s
functionalities to support the road map to design a driver for it; data sheet of the board
can be studied for more technical and detailed information. The driver will manipulate
four LEDs on FPGA side by giving the Exclusive OR (XOR) operation result to power
on matched LEDs.

In order to have access to FPGA side LEDs, either FPGA direct design or HPS user space
application, which give an ability to configure FPGA side LEDs via one of existing
bridges, can be tired. There is another way which is in fact more reliable for real life
projects and it is driver development which operates in the Kernel space. Now it is the

31

time for real work and having an experiment of how both sides of the board communicate
with each other; Figure 15 is specifying three bridges and their connections with FPGA
and HPS sides:

Cyclone V SoC

FPGA

32,64,128 bit AXI T T s2bitax

FPGA-to-HPS HPS-to-FPGA Lightweight HPS-to- H PS

bridge (FH) Bridge (HF) FPGA Bridge (LW)

7
EibitAN MPU: ARM Cortex A-9
07 -
wps- | % CPUD : CPU1 :
ocr [€ 2 L1 cache: L1 cache:
P> 32kB Data 32kB Data
32kB Instruct. | 32kB Instruct.
S SCuU
Boot | C > ACP
rom [€ L3 Main switch : v
{ L2cache512kB |

© >

g . - \ \ 1

E_ v N SDRAM Controller Subsystem

g B L3 Slave

© Perlp.heral N DMA

e Switch

Controller

Figure 15. Cyclone V SoC Bridges [19]

HPS-FPGA bridges allow masters in FPGA fabric to communicate with slaves in HPS
logic and vice versa. For instance, if a peripheral be implemented in FPGA side, HPS
component such as Microprocessor Unit (MPU) can access it. In the same way,
components implemented in FPGA fabric such as the driver, can access peripheral in HPS
side. Each bridge consists of a master/slave pair with two interfaces which are exposed
one to the FPGA and the other to HPS sides.

The FPGA to HPS bridge is supported by an Advanced eXtensible Interface (AXI) slave
that can be connected to AXI master or Avalon-Memory Mapped interface in the FPGA

32

side. HPS to FPGA and Lightweight HPS to FPGA bridges expose an AXI master
interface that can be connected to Avalon-MM slave interface in FPGA side [19]. Figure

16 has a detailed explanation of each master and slave interface with their data widths:

FPGA Fabric
- 4 3B -
32,64, or 128 Bits . 32, 64, or 128 Bits
(h2f_axi_dlk) (h2f_tw_axi_clk (f2h_axi_clk)
32 Bits 32 Bits
M S
5 | (14_mp_dk) (14_mp_dk)[S
(GPV) GPV
HPS-to-FPGA AR TTITTAET T) rpentots
Bridge _ _ Bridge
Lightweight
S -to- ' M
N HPS-to FPSGA Bridge R
AXl |(GPV)
64 Bits 32 Bits 64 Bits
(13_main_clk) (14_mp_dk) (13_main_clk)
M M S
AXI AX AXI
(L3 Main Switch) (L3 Slave Peripheral Switch) (L3 Main Switch)

L3 Interconnect

Figure 16. Master and Slave Interfaces [19]

As it is indicated in the figure 16, there are two bridges from HPS to FPGA which the

Lightweight one provides lower performance interface with only 32 Bits band width.
While, the other HPS to FPGA bridge as well as FPGA to HPS bridges perform with three
options of band widths. The Lightweight HPS to FPGA bridge has limited access with 2

MB address spaces. The bridge is connected to control and status registers of soft

peripherals in FPGA fabric.

It is needed to have a general idea about AXI and Avalon-MM interfaces because they

will be used during FPGA and user space application design. As it has been mentioned

previously, AXI is a set of specifications and a part of ARM Microcontroller Bus

Architecture (AMBA) protocol. This protocol states that how different modules on the

33

system can communicate with each other, using a Handshake-Like! producer before all

transmissions [11]. Figure 17 can describe more by illustrating master/slave interfaces:

Write Address
Write Data
Master Write Response Slave
Interface Interface

Read Address

Read Data

Channel connections between master and slave
interfaces

Figure 17. AXI Master/Slave Interface [11]

XOR project uses Write/Read data signals (shown in the above figure) for the FPGA

design.

“Avalon interfaces simplify system design by allowing developer to easily connect
components in Intel FPGA. These specifications define interface appropriate for high
speed data streaming, reading/writing registers and the memory, and enable developers
to incorporate custom components in Avalon interface to enhance interoperability of the
design” [20]. I will use this interface in the custom component for FPGA’s side LEDs
control. Avalon-MM interfaces can be used to implement read/write interface for
master/slave components such as memories, UART?’s and Timers; and typically include

only the signals required for the component logic.

To sum up, this part demonstrated hardware platform choosing, while getting an idea
about the FPGA and more importantly SoC FPGA features. A detailed look at the SoC
Kit and its bridges were provided, which will be used for the FPGA’s side design.

! Handshake is a process of communication that establishes all required protocols and links before the full
communication begins [1].

2 Universal Asynchronous Receiver Transmitter.

34

4 Driver Development for Embedded Linux

This part describes how the driver is built. The last two sections tried to give an overview
on Linux for embedded, its design sequence, SoC FPGA evolution and the SoC Kit
features. Obtaining a general and sometime a detailed idea about the background of the
practical task was essential. This part of the article demonstrates that without having at
least a general knowledge about embedded Linux design flow and the board specification,
it is not possible to have any kind of manipulation on the design. A driver to run FPGA’s
side LEDs will be generated by the end of this part, and during design steps, the necessity
of the background knowledge to manage sequence and handle probable problems is
understood. This part consists of five chapters including software requirements for both
FPGA and HPS sides, FPGA design explanation, obtaining a Linux distribution, user
space application (HPS work) and finally XOR driver development.

4.1 Software Requirement for Driver Development

It has been mentioned before that SoC Kit’s brain consists of FPGA and HPS and their
relevant components are integrated in the board cooperating by high data speed interfaces.
Although SoC Kit is a combination of efficiently integrated of FPGA and HPS
components, these components can be categorized in two different categories: FPGA and
HPS. What | am trying to insistently specify here is compacting two independent devices
into a single board, while it can be considered and configured either as two different
devices or as a single compact device. Thus, I will work with FPGA and have a
component design for it and work on HPS separately and interestingly work on them
together at the same time. This is really the handful property of the SoC FPGA’s which
is very useful for developers to have flexibility, efficiency of their design and fast time to

market products.

At first comes discussion about FPGA side design which will be explained in the next
chapter. Quartus as the platform, which enables developers to have FPGA design from

scratch or to modify already existing designs, is needed. Quartus Prime 18.1 Lite Edition

35

can be free of charge obtained from Intel web page from software for FPGA section.
Installation of Quartus is so simple and double clicking on the run file would be enough
and as it has been illustrated in figure 18 and 19, it has Platform Design Tool (formerly

known as Quartus System: Qsys) to create FPGA design and manipulate/modify

hardware components.

Quartus Prime Lite Editi

~ r 2 > % LD =

Project Navgator Hewchy :Q@@E & Home

‘Compilation Hierarchy

"

apf)

I EECEEELEELE

rasks complation s =eEm
Task Time
-
®|quartus prise Tcl con
e
"
® &
@ (O a4 A ®85nd. || §8Find vex
3
=(Type ID [Message
- W
v HED Frocessing
% 00000

Figure 18. Quartus Prime 18.1 Lite Edition

Ele Edl System Generate yiew [ools Help

=P catalog - of o] I system contents & - O
3 x 9 0
ropd ¥ [Use Base End 5] Tags Opcode Name |
Cor L) @ aspo0l_60cD E601_Boct
x ermal
= irq a
=l & dipsw_pio
B o
< — resat
n Memory Mapped Slave] & ox0o0_0oa0 oxeool_ooet
ermal_connec ut dipsw_plo_sxterna...
upt Sender lictky
w ry (RAM or ROM.
ko
ry Mapped slave ol ax0004_0000 oxonos_THHF
reset Input cikl
¥ 2 jtag_uant AR ntel FPGA IP
N ack Input ko
b roset sat Input]
avalan tag_slave Awalon Memory Mapped Slave ek & o002 0000 oui002_D007
irq Ink: t Sender l[cik]
wl S Ipga_only_ma. n Master Bridge
= el i o
— craset
mastar ry Mapped Master, ok
master_reset put
¥ 2 intr_capturer_0 rupt Capture Module
Hew. Edit. + Add —— clock
— — | reset sk
5 m— avalan,_slave & 00003 0000 oxE003_D007
—— -g0 | interrupt recem 1™ 0 7 I—!
soc_systen [soc_systes.qsys) ¥l 8 clk
1 sec_systen [soc_systes.qsys] o7 e
mal_connection | lreset
L etk 0
| ek reser
|2 cusiom leds 0 | |
| clock ko
avalan_slave 0 Awalon Memory Mapped Slave ciock] axs0on 0000 ou5060_B003
o{ conduit_end Conduit custom leds_output [clock]
| reset sink Feset Input ciock] -
“ T »
oo Current fiter:
52 Messages i1 o
Type _ . Path))) Message B
[X) 7 Info Messages 5
@ |soc system.button pio P simulation.
O [soc system_dipsw_pio P
O [soc system
(]
0 (] board
(]
[. £
7 =
© Errors. 3 Warnings Sanerata HoL., || Fnsh

Figure 19. Platform Designer Tool or Qsys

36

The next chapter describes the FPGA design flow, which has been developed and verified
by the author, using Qsys tool to generate Qsys file, and then useing Quartus file converter
to convert this Qsys file to Raw Binary File (.rbf), which FPGA needs to be configured
and programmed by Linux. FPGA can be configured in two ways; using Quartus by
adding the board from tools tab in menu bar and after recognizing the board by Quartus,
adding or changing .sof! file which is generated at the end of Qsys operation, and finally
running it. The result can be observed on FPGA LEDs. The second method is to copy .rbf
file to a SD Card and use Linux to run this .rbf file and program the FPGA. Quartus
creates a folder named “handoff folder”, describing hardware configurations, which is
required to have device tree generating as an important step of the embedded design;
because it includes hardware components’ configuration to introduce to the Kernel.
The HPS side of the board needs to be programmed using SoC EDS DS-5 platform which
is Intel specific ARM product. It is named simply DS-5 as the original name would be
confusing if it is considered the user interface of the platform which has a different name
of Eclipse. This software platform also can be obtained from Intel website but its
installation is slightly different for Linux running host machine compare to Quartus
setting up. DS-5 installation can be explained as below:
1- Running DS-5 from a terminal window. (There may be a need for changing the
mode using sudo chmod 777 “file name”.run).?
2- Not to install DS-5 yet, instead, starting Embedded Command Shell from the file
directory which was obtained when DS-5 package has been downloaded.
(This can be done by executing “./embedded_command_shell” in a terminal
window from correct directory).
3- Running DS-5 installation script from Embedded Command Shell and assigning
correct installation directory.
4- After installation, there may be a need for adding PATH or editing that from

.bashrc file which is hidden in the home directory. After adding the installation

1 SRAM Object File which is machine generated code and be created by the end of Qsys operation and can
be obtain with Quartus Programmer tool to run the FPGA. SRAM is static RAM which uses flip-flop
method to store each bit.

2 Changing mode in Linux is required because of hierarchic filing structure. “sudo” or super user enables
developer to execute commands with privilege and 777 enables developer to execute the desired file as top-
level hierarchic file.

37

path to the PATH by editing .bashrc file, it is reugired to run following command

line in a terminal window: “source ~/.bashrc” and by this installation is done.
5- To open Eclipse (user interface of DS-5), in Embedded Command Shell, it is

required to go to Eclipse directory and execute the following: “sudo bash

./eclipse”!

Figures 20 and 21 are showing DS-5 and its Debugger tool which are similar to

ARM Cortex software platform that is used in TUT Embedded courses:

2%

RO LY

()

Figure 20. DS-5

1 An appendix of useful Linux commands and their explanations will be provided.

38

socworkspace - DS-5 Debug - Eclipse Platform
file Edit Navigate Search Project

% Debug Control [Project Explorer 52 | #l RemoteSystems = O | M Commands £ M History & Scripts » § % = O ®rvariables &2 % Breakpoints = Registers ™' Expressions F

Variable information is not available.

i1} Disassembly &3 Memory = Stack Events S Outline

Disassembly information is not available.

maﬂm&m@@qm@

I App Console £2 [l Target Console ©) ErrorLog © Console

Preparing the debug session

% Flash disconnected (Linux Application Debug - Application Debug)

Figure 21. DS-5 Debugger Tool

4.2 FPGA Design Flow

After setting and running up the required software, now it is time to practice and execute
the real task. The first and very important stage of the driver development journey is the
Qsys design, because the driver, as software, will run this hardware component. It is
important to remind that the author is trying to manipulate FPGA side LEDs by a driver
which uses both FPGA and HPS utilities. Thus, it is required to analyse HPS facilities,

bridge interfaces and FPGA configuration in order to avoid possible problems.

As it has been mentioned previously, there are two different designs: one is Qsys and the
other is C programming in DS-5; which both require bridge interface manipulations as
bridges are connected to FPGA fabric and HPS. Here is a clear view of the road map
which consists of Qsys design with bridge interfaces and then C programming with
essential bridge interface in HPs side. To begin the Qsys design, it is needed to start
Quartus and from menu bar tab on Platform Designer tool to open it and then choosing
the Golden Hardware Reference Design (GHRD) file from right directory of the host
machine. GHRD file consists of all default hardware definitions and configurations which

comes with the board user guide CD and differs from a board to another board.

39

Developers can generate all required files inside this folder by starting Qsys design from
scratch which needs to have an absolute detailed knowledge of the board hardware
components’ specifications. In fact, Qsys design requires pin definitions, (in this project,
SoC Kit has more than 220 different pins, which should be mapped and defined one by
one). Moreover, facilities like display should be defined separately which is really hard
work and needs sometimes weeks of analysing data sheets and VHDL programming. As
this project has the GHRD folder ready, it can be started by uploading Quartus Project
File (.qpf) and opening Qsys, then uploading already existing .qsys file.

LED_PIO (Parallel Input/Output) component, which is default design of the board’s
LEDs, is found. In order to have the custom component, it is required to remove this
component and then add a new component instead, which needs to be designed. Here, the
author added VHDL codes as two different files because one of these files consists of the
IP block codes written to manipulate LEDs and the other is Avalon interface codes file.
Here a piece of the IP block code which does the XOR operation, and a part of Avalon

interface code, that includes required signals’ names, are provided:

begin

process (clk)
begin

if rising_edge(clk) then
if rst = "1" then
temp <= (others => '0");
elsif load = '1' then
temp <= din(7 downto 4) xor din(3 downto 9);
end if;
end if;
end process;

2

13

entity xiphera_test _block _avalon_interface is

port(
clk : in std_logic;
rst : in std_logic;
read ctrl : in std _logic;
write ctrl : in std_logic;
writedata : in std logic vector(7 downto 9);
readdata : out std logic vector(7 downto 9);

40

led_export : out std_logic_vector(3 downto @)
)

end xiphera_test block avalon_interface;

bh

Figures 22 and 23 are demonstrating the IP block general view and Avalon interface and
its signals which have been mentioned in the second code, respectively:

Component Editor - custom_leds_hw.tcl*

File Templates Beta View

Component Type 2% | Block Symbal & | Files | Parameters | Signals & Interfaces & - |

Show signals

customn_leds_inst

clock]

Ik clk

avalon_slave_0|
ritedata[7..0]
addata[7..0
ead_ctrl
rite_ctrl

itedata

readdata

read

conduit_end
d_export[3..0

reset_sink|

freset

custom_leds

Figure 22. Customized IP

Component Editor - custom_leds_hw.tcl*

Eile Templates Beta View

Component Type # | Block Symbol & | Files & | Parameters i | Signals & Interfaces & -
» About Signals

Name
»=avalon slave 0 Avalon Memory Mapp
= read_ctrl [1] read
=3 readdata [8] readdata
= write_ctrl [1] =]

= writedat:
wr\lt}adata .[8] casts Associated Reset: ‘reset_smk |v‘
<=add signal==

= clk [1] clk i

Name: [avalon_slave 0 | | Documentation

Type: ‘Avalon Memory Mapped Slave |v‘

Associated Clock: ‘clock |v‘

= conduit_end Condui 3 .
=3 lad_export [4] readdata [~ Block Diagram | |y| [Parameters
<=<add signal== Address units: WORDS |v|
| ink Reset Input :
r;_sfstt—ﬂr]]kegife np avalon_slave_0 Associated clock: clock
<=<add signal=> avalon_slave 0| Associated reset: [reset_sink
interface== ritedata[7..0] itedata Bits per symbol: g
Ele_a:datal 7.0 readdata Burstcount units: WORDS -
ead_ctri S
d i
rite_ctrl - i Explicit address span: 00000000000000000000
null [Timing
| setup: [o
Read wait: 1
Write wait: n |

Figure 23. Avalon Interface

41

During Qsys design before generating VHDL code (which is an available option in Qsys
tool), a very important issue, which will be used later in the device tree generating stage,
needs to be considered. It is required to modify Tool Command Language (.tcl) file!
which has been generated when the author started to Qsys design and has been used to
define the customized IP to the device tree. The definition of the IP block was added in
this file and it has been used to generate .dts file? and finally this .dts file has been used
for .dtb (Device Tree Bulb) creating which is one of Quartus final results and is used by
the device tree compiler. As it is clear from explanations, every step of the design depends
on the next one, so it requires due caution and doing the process step by step.

Now VHDL code can be generated and the process continues to the Quartus design. After
the same modification in VHDL code (inserting the IP block), it is time to start preparing
for analyzing and synthesis which is the final stage of Quartus design to generate .sof file.
Here, it is required to consider another important point that is running the .tcl script from
Quartus by choosing it from right directory, before starting the full synthesis. Then full
synthesis should be run and wait to have .sof file, which can be converted from Quartus
converting program files tool, to .rbf file to use from Linux to configure FPGA. Finally,
it is ready to try the result of the first step of design either by programming FPGA with
.sof file and run LEDs using Quartus, or by running .rbf file from a terminal window and
configure LEDs using Linux. This is the last operation before moving forward which gave
us all required files for the rest of development. Now FPGA design could be left aside,
and focus would be given on the Linux and HPS development stages which will be the

next chapters.

4.3 Linux Distribution Development Steps

This chapter will describe all necessary steps to obtain and source the Kernel to

manipulate its property and configure it as desired Linux distribution. As was mentioned,

1 TCL (also pronounced as tickle) is an open source, general purpose and dynamic programming language
[1].
2 DTS: Digital Theater System file format which saves data in audio type.

42

elements of every embedded design have been listed as: Toolchain, Bootloader, Kernel,
Root file system and User space application(s). It is clearly explained that obtaining the
Toolchain is the first step of design, but before going further it seems necessary to clarify
one issue. Toolchain is listed as the first step of every design but XOR project started with
FPGA design; but why? The answer simply can be declared that FPGA design was a pre-
request for the device tree which will be generated and added to the Kernel after U-Boot
stage. By this way the author organized the process and would not need to come back to
FPGA design in the middle of Linux development process. As it was insistently indicated
before, everything else related to embedded Linux design depends on Toolchain and in
this case, it is GCC which is installed when Linux distribution on the host computer was
installed. Toolchain compiles object code files (which have been obtained from Altera
open source data base) to its linker and then generates executable files which can be used
by Linux. Here, no further action in needed, because Toolchain effects are seen when it

is used to compile U-Boot and Kernel.

This part concentrates more on Bootloader step of the design. Booting sequences could
be briefly reminded here. Every time that the power button be pushed, Linux booting
happens by the following order: reset, boot ROM, pre-loader, U-Boot and finally Linux.t
As it has been illustrated in the first part of the thesis, after reset, the system starts to read
Boot ROM and check for some physical configuration (which must be done before any
kind of design considering SoC Kit user manual guide), then tries to do a set of
configurations to prepare flash. It is useful to specify the reason of storing some important
information in the flash. The type of the flash is None-Volatile NOR flash which can
reserve information permanently. By this way, significant information will be safe when
the system powered off or reset and this substantial data can be used to repeat basic
configuration of the board. After setting up the flash, Boot ROM tries to run Pre-Loader
which must be generated before going on. Therefore, the second part of the practical task

during this design will be pre-loader generating.

! For more see figure 5.

43

To begin, the author initially started with BSP* editor. Intel has Nios Il BSP editor coming
with the SoC EDS (Intel specific DS-5) installation package. | only started an Embedded
Command Shell (the procedure has been declared in chapter 4.1) and ran the following
command line “bsp-editor &”. This starts the editor window which asks for the file,
and from handoff folder in GHRD directory the “soc_system hps 0” file can be added.
After some modification (which can be found from online sources), simply pressed
generate and after a short while, closed the window and ran “make”. Note that all shell
commands must be execute in Embedded Command Shell terminal window. That’s all
about the pre-loader which is a pre-request element for Boot loader, then it is time to
prepare for actual U-Boot.

After getting done two pre-request tasks (Qsys design for the device tree and pre-loader
generating for U-Boot), now it is time to return to the original design flow with obtaining
and compiling toolchain. As it has been mentioned before, toolchain comes with Linux
installation, but it varies from one board to another, thus a new toolchain source for the
new Linux distribution is needed. It can be downloaded from Linaro web page with a
desired version.? Here, a very important matter, which is faced frequently, and is cross
compile environmental issue, which must be set properly, should be notified. To do this,
it is required to run the following from a terminal window “export cross_compile
Directory/arm-linux-gnueabihf-" and then to check if it sets properly with
“printenv”. Exporting the directory should be carefully done, because it can be source

of many problems during U-Boot or Kernel compilation.

Next, the source code of U-Boot is obtainable from Altera open source data base (the

desired version could be downloaded) and then U-Boot is compiled by:
“make socfpga_cyclone5 config

make”. It will generate U-Boot.img (image) file. Another file named boot.script is

required to complete U-Boot stage of the design. This file contains hardware information

! In embedded system a Board Support Package is a layer of software containing hardware specific drivers
to allow RTOS operates in a particular hardware environment [1].

2 versions 6.3.1 or 7.1.1 can be used as some other versions create problems during compilation, moreover,
the hardware might not suit recently released versions.

44

of FPGA that U-Boot requires to load and pass to the Kernel. This file can be created and
run to compile U-Boot and end the task here (its content can be found in Rocketboard [9]
web page: embedded Linux beginners guide).

Now it is time to generate the device tree which previously has been mentioned several
times. Before starting the process, an expert look at the device tree is required to realize
what it is or why it is needed at all. Each embedded board has its own specifications that
Kernel needs to know by obtaining its initialization code, which is provided by board
manufacturer. Before the device tree, manufacturers had to provide maintenance service
for Kernel every time that hardware configuration needed to be changed. Nowadays, the
device tree takes care of hardware structure definition and is independent from U-Boot
and the Kernel, which enables developers to modify only this file without concerning
about other files that require more repairing time. Figure 24 shows a clear view of the
device tree generating and U-Boot compiling steps:

> Linux
DT Blob

!

Different DTBs

Device Tree
Generator:
sopc2dts

Quartus Il

Regenerate when HW project is
e

recompiled
Bootloader Bootloader
DT Source DT Blob

Regenerate only when user options

boot source, etc.) change
Provided by Altera
Open Source Makefile

Input File
Intermediate File

U-Boot
Output File Src Code

© 2018 Altera—Public now part of Intel

DTC

Bootloader

Generator

bsp-editor
T

PR

mkpimage

U-Boot
Image

U-Boot
Binary

QL

Figure 24. Device Tree Generating and U-Boot Compiling Steps [6, p. 50]

Board Info files shown on the figure 24, come with GHRD folder in .xml format and
contain data for external peripherals. The FPGA should recognize the board peripherals
using these .xml files. It was needed to run essential codes (input is soc_system_sopcinfo

file, and output is soc_system.dts; for the design only soc_system_board_info.xml file as

45

external peripheral is required) to generate .dts file and finally compile it to .dtb file and
finish with the device tree. Note that it is needed to follow the instruction provided by
Rocketboards web site and execute correct code lines in the correct directory from
Embedded Command shell, in case of examining the process as a beginner.

The third and the most important stage, within the context of the Kernel design is the
Toolchain obtaining as the heart of the entire system of the embedded design sequence.
The Toolchain was obtained before, which is required to compile the Kernel. It can also
be used in this stage, just to remind that in case the Shell window has been closed, cross
compile command line could be ran again. The Kernel source needs to be acquired from
Altera open source data base (in case a recent version would not be found, other online
free resources could be searched). After downloading and unpacking the folder, its
directory from the Shell window! should be navigated and the following be executed:
“make ARCH=arm socfpga_defconfig” and then “make ARCH=arm menuconfig”. This
will open a window which is illustrating in figure 25 and after required configuration it is

possible to compile the Kernel.

! Navigating inside Linux file system can be done by “cd directory”.

46

.config - Lipux/arm 4.11.0 Kernel Configuration

Linux/arm 4.11.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y>
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to
exit, <?> for Help, </> for Search. Legend: [*] built-in []

I*- Patch physical to virtual translations at runtime

General setup --->
[¥] Enable loadable module support --->
[*] Enable the block layer --->
system Type --->
Bus support --->
Kernel Features --->
Boot options --->
CPU Power Management --->
Floating point emulation --->
Userspace binary formats --->
Power management options --->
Networking support --->
Device Drivers --->
Firmware Drivers --->
File systems --->
Kernel hacking --->
Security options --->
Cryptographic API --->
Library routines --->
Virtualization ----

< Exit > < Help> < Save > < Load >

Figure 25. Kernel Configuration Window [9]

Here two options need to be changed: The first, “Automatically append version
information of the version string” option which is in “General setup” tab and must be
unchecked. When a Kernel module (driver) is loaded, the Kernel checks its version and
in case of difference, the Kernel rejects loading. This feature of the Kernel could be
disabled in order to be able to load various versions of drivers. The second option which
needs to be changed is “Support for larger (2TB+) block devices and files” which can be
found from “Enable the block layer” tab and it must be on. This option enables developers
to mount ext4! file systems in write/read mode. (otherwise, ext4 can be mounted in read
only mode). Now it is time for compiling the Kernel which is very crucial for the project,
to do so “make ARCH=arm LOCALVERSION= zImage” should be ran. Once this operation
is done (it can take a while), a zImage file will be generated that is a compressed version

of the Linux distribution.

! Ext4 file system will be described in the SD Card creating part.

47

It is time now to take advantage of what have been done so far, which is creating own
Linux distribution. It only requires root file system to be completed and utilized running

on the target embedded board.

Finally, to create the own Linux distribution, a Root file system needs to be built and, as
was mentioned previously, it contains essential files to boot the system up. It is required

to configure a PATH to the Toolchain to compile Root file system:

“make -C buildroot ARCH=ARM
BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain directory_arm-linux-

gnueabihf nconfig” which will open a configuration window shown in figure 26:

File Edit View Search Terminal Help

Buildroot 2017.05.2 Configuration

Build options --->
Toolchain --->

System configuration
Kernel --->

Target packages --->
Filesystem images --->
Bootloaders --->

Host utilities --->
Legacy config options

ijsackgdlsaveggjl oadggsymSear chgllexi tog

Figure 26. Buildroot Configuration Window [9]

From this window the author changed some properties in Target and Toolchain options
on the base of the embedded Kernel features which is using ARM Cortex processor; so,
the Buildroot should be configured accordingly. The other manipulation part is for
Toolchain according to the compiled Toolchain which has been obtained from online

sources. The configurations are demonstrating in below figures respectively:

48

Figure 27. Target Configuration of Buildroot

Figure 28. Toolchain Configuration of Buildroot

After setting mentioned configuration, saving changes and exiting from the page (F6 +
Enter and then F9), then it is time for moving to the next step of setting Busy box by
running following piece of code: “make -C buildroot busybox-menuconfig”. it will
open the configuration window and there is no need to do any change there, so just saving
and exiting were needed. The only purpose of opening the Busy box without any
manipulation is to inform the Kernel that all configurations are done. At the end the code
that was used before to start the configurations of the Buildroot should be executed: “make
-C buildroot ARCH=ARM BR2_TOOLCHAIN_EXTERNAL_PATH=$(pwd)/Toolchain
directory_arm-linux-gnueabihf all” and the Root file system will be generated in
a few minutes, then it is time to think of the application which will be made as the Linux
distribution is ready to upload them.

This chapter tried to have a revision of generating customized Linux distribution with
desired FPGA design, Toolchain, U-Boot and Kernel source codes. | have used Terasic
GHRD source and added the XOR component, obtained other required items mostly from
Altera open source data base, and followed sequences to build the special Linux
distribution, that could handle the user space applications and the Kernel modules
(drivers). The next chapter demonstrates how to design a user space application by

considering some example.

49

4.4 User Space Applications

It was indicated before that it is possible to operate in both user space and the Kernel
space of the design. Their difference lies in their process running managements which
proves that the memory dedicating for all processes is well organized in the Kernel. When
developers run a process in the user space, only dedicated section of the memory, which
has been defined by the application itself and specified by the Kernel, takes care of the
process. Therefore, it is possible to run different application in the user space at the same
time, moreover, drivers can be uploaded in the Kernel space. Thus, the visible difference
of above-mentioned spaces can be specified as difference of applications’ format, space
for the process and memory indication. This chapter investigates user space application

design flow, as figure 29 describes perfectly:

Traditional System Development Flow

FPGA Design Flow Software Design Flow

%:. -Q VS Hardware Software
SRR - Development Development
4 \ ;
* Quartus Il design software oM Development =Siidio:s
» Qsys system integration tool 1 colenain
. Standard RTL flow Design Design + OS/BSP: Linux, VxWorks
» Hardware Libraries
« Altera and partner IP .
« Design Examples
) =
» ModelSim, VCS, NCSim, etc.
+ AMBA-AXI and Avalon bus Simulate Simulate - Virtual Platform
functional models (BFMs)
e —
e —— \
- SignalTap™ Il logic analyzer » GNU, Lauterbach, DS5
« System Console Debug Rebug
R — —— —
-
« Quartus |l Programmer
- In-system Update Release Release Flash Programmer
S———————————— — =m=_7

Figure 29. System Development Flow [21, p. 44]

As above figure illustrates, design flow for both user space applications and drivers
(modules) in case of FPGA design is almost the same, except for the device tree
generation for drivers which is not a part of user space application design sequence. Thus,

it was needed to write VHDL/VeriLog code and design Qsys system if this project

50

requires to have physical access to FPGA. Otherwise, the project on the target embedded
board using DS-5 (ARM Development Studio) could be tried, which is described in this
chapter. In other words, if the project does not contain complexity (such as study projects
or some professional ones that are being designed for simple purposes, for instance the
Flash writing/reading application), the author could handle the situation only by writing
code for DS-5 and examining the project on the board with Target Remote System if and
if the project would not require any hardware design such as inserting, removing or any
kind of components modification.

The author analyzed writing/reading from/to flash program as a user space application
that does not require any Qsys manipulation, then investigated communicating via FIFO
blocks, as an application that needs Qsys design, and inserted FIFO blocks as hardware
components. Here is an overview on the board flash device: SoC Kit is equipped by a
512M-bit serial NOR flash device which is used for non-volatile HPS information such
as Preloader image which is being used in U-Boot step of the design. Although the
manufacturer has provided an access to the flash device using Quartus programmer, it is
required to write C code in order to write to and read from the device. As it has been
shown in figure 14, the flash device is connected to HPs side and “the HPS flash
programmer sends file contents via USB Blaster I, to the HPS, and instructs the HPS to

write the data to the flash memory” [13, p. 42].

U46
A HPS_FLASH_DATA[3] » HOLD_n/DQ3
T
HPS_FLASH_DATA[2] » W v 5
HPS_F ATA[1
» S_FLASH_DATA[1] » Do
FLASH_DAT.
HPS_FLASH_DATA[0] o Bito
HPS_FLASH DCLK ¢
HPS_FLASH_NCSO
» S n
FLASH

Figure 30. Flash Device Connections with SoC FPG [13, p. 42]

The reason that the author chose this flash program is to remind U-Boot process and

emphasize on the importance of the non-volatile data structure type. Xiphera uses this

51

program to store a unique ID generated by its IP block in FPGA side. Due to the structure
type of the flash device, data remains when the SoC FPGA is powered off or reset, and
can be used for the repeating boot or other necessary applications.

Initially, it is important to understand the concept of Memory Technology Device (MTD)
which is different from other memory storage devices such as SD Card, hard disc or flash
disc. Basically, MTDs are NAND/NOR flash memory devices which are utilized for
keeping non/volatile data like boot image or configuration. Although, hard discs are used
for data storage but there are two differences between MTDs and the other data storage
devices. First, MTD needs to be erased before re-writing any data, which is the key
variation and requires to be considered when developers write the code to access to the
MTD. Second, MTDs have limited range of erasing operation (1000 — 10000 times) [22]
which makes them not good erase-block.

MTDs can be partitioned in Linux and can be reached by running “cat proc/mtd” which

is being demonstrated in below figures:

@ ® ® mammad@mammad-ThinkPad-E480: ~

Starting Lighttpd Web Server: lighttpd.
Starting blinking LED server
Stopping Bootlog daemon: bootlogd.

g B g S g b i
HHAHB R AR AR BR R ARRHRRHRRRHRRRR = =#
HHHHHHETE = - =R = == =#
A - =HEHBHHHHR RS = HHHH - =HHEH#HH#HE

HIHEHHHHAHEAEE - - === T - HHHHHHET

=it - - #H# ##= - HEHEH AR HEHEHE HEHHE - HEHHEE-
H## HHHE i - = -=--=HiH= HHH==# HIHHE- HEEE
HEH- #HE- -HHE =Hit##= =====H##= HH#HHE- H#HH H#HH
HHHE =HHHHE HIHEHE= - == -=#HHE- HEHE- iEHERE
-fi= - =H# HEHHH= HHER -#E= B #EEE- HHHBHAHH -
=##= #Hi HIHEHE= R = SRR HHH - =HiHH

HHHHBRHH == AR B = === = =R = - --- -- ===
(A R R i = =#
B G e e b B S S S s G b
socfpga login: root
root@socfpga:~# cat [proc/mtd
dev: size erasesize name
mtd6: 00800000 60010060 "Flash ® Raw Data"
mtdl: 3800000 OAO10AOO "Flash ® jffs2 Filesystem"
root@socfpga:~#

=#

Figure 31. Access to MTD from Terminal Window

Partitionl

Partition

Partition

Partition Sector

Partition Sector
Sector
Sector
Sector
Sector

Figure 32. MTD Partitions [22]

L

Ox¢o4q000000 [I 0
Root Filesystem }— Partition #1
0x00800000 (1emB)
Linux zlmage
Ox00a0000
U-boot Image
Ox0060000 — Partition #0
Device Tree Blob (8MB)
Ox0050000
Preloader Image
Ox0000000

Figure 33. Flash Memory Partitioning

After demonstrating MTDs general structure, it is possible to focus on the design and C
code to finalize the task about flash program. As it has been specified in this chapter, the
data storage structure requires erasing before writing, which is considered here. The code
general structure can be summarized as:

1- inserting an additional header file to control the MTD: “# include <mtd/mtd-
user.h>”

2- Accessing the device from user space, as was operated there, and opening the
device for reading and writing: “mtd-info-t mtd-info” , “int fd =
open(“dev/mtde” , ORDWR)”

3- Data erase structure including getting device info, setting erase block size and
erasing indicated block by following respectively: “erase-info-t ei”, “ioctl
(fd , MEMGETINFO , &mtd-info)”, “ei.length = mtd-info.erasesize”
and finally for the specified boundaries erasing operation: “ioctl (fd |,
MEMERASE , &ei)”

4- Reading from writing to the device: “read (fd, read-buffer, sizeof(read-
buf))”, “write (fd, data, sizeof(data))”. Unsigned char characters “read-
buffer” and “data”, which have been defined by the coder/author, include an
empty sector and data, that requires to be written to the MTD accordingly.

5- Finally, the MTD needed to be closed by “close (fd)”

Then, the code should be tested to see if works as expected. To examine the code, it is

needed to set DS-5 properly to have access to the SoC Kit. At the first chapter of this

53

section, it was described how to install DS-5 and open it from embedded Command Shell
and run essential codes.
Now it is explained how to debug a written code by using Remote Target System:

1- Opening Eclipse and then from main menu window — show view — other —
expand Remote Systems folder, choosing Remote System. After that, a new
connection by clicking the New Connection button, shown on below picture,
needs to be created.

o
= Create a new connection by clicking the New Connection button { =5

#% Debug Control] Project Explorer | Remote Systems & = 0| ce
£ | SN =l -
> E" Local h

I Define a connection to remote system h
‘

Figure 34. Creating a New Connection from RTS

Selecting SSH only — Next —, then putting the target's IP address! in the Host name field, while using
SoCK:it as the Connection name and clicking Next —

o New Connection

Remote SSH Only System Connection

Define connection information

Parent profile: mammad-ThinkPad-E480 =
Host name: 192.168.1.158 .
Connection name: [SoCKiI:]

Descripkion:

& verify host name

Configure proxy settings

@' <Back Next = Cancel | Finish

FAiTa " ®F

Figure 35. Configuration of RTS IP Address

e) get the IP address of the board: Boot the Linux on it by opening a communication window in a terminal
window: “sudo screen /dev/ttyUSBO 115200 and switch on the board to boot Linux on it. It may
ask for login password, give “root” to get in, then “ifconfig” to get the board IP address.

54

6-

Checking “ssh.files then clicking the “Finish” button. If “Next” is clicked instead
of “Finish”, the rest of the default settings would be: “processes.shell.linux”,
“ssh.shells”, and “ssh.terminals”.

Browsing the target's file system; Expanding “SoCKit” — “Sftp files” — “Root”.
If the connection has “Files” instead of “Sftp Files” option, then the connection
was not created correctly, and it is needed to disconnect, delete it and recreate it
again.

Entering User ID=root, leaving the password blank; checking Save user ID and
clicking the OK button. There will be a few authentication dialogs; accepting them

all. A remote connection with the board is created.

To debug the project using newly established RTS, from Eclipse main menu,

—debug configurations — DS-5 debugger should be run:

Create, manage, and run configurations) g
? Create, edit or choose a configuration to launch a DS-5 debugging session. ﬁ
|
| B v configure launch settings from this dialog:
i = -Press the '"New' button to create a configuration of the selected type.

=| - Press the 'Duplicate’ button to copy the selected configuration.
¢ [Ec/c++application

[E] ¢/C++ Attach to Applic
[E] ¢/C++Postmortem De 3% - Press the 'Filter' button to configure filtering options.

K -Press the 'Delete’ button to remove the selected configuration.

1 [c] c/c++Remote Applica - Edit or view an existing configuration by selecting it.
' @ IronPythen Run Configure launch perspective settings from the 'Perspectives’ preference page.

& IronPython unittest
Eil Java Applet
F| [JavaApplication
&" Jython run
&' Jython unittest
¢ ¥ Launch Group
1 B pyDevDjango
45 PyDev Google App Rui
a Python Run
&’ Python unittest

o

£ | Filter matched 17 of 17 item|

@' Close

Figure 36. DS-5 Debugger Menu

Clicking on new (top-right corner of the menu) to open the debug configuration

management window and giving the same name with the project and choosing

55

Download and debug application under Connections via gdbserver? in connection

view:

B © O bebug configurations

| Create, manage, and run configurations @
k@ [Files]: No target download directory details entered

b

jJoEx &%~ Name: |xor

,i @| || [+~ connection - [Files| % Debugger| & OS Awareness| ®= Arguments| B Environment | e4 Export,

| [Ec/c++Application Select target

| [E] c/C++Attach to Application Select the manuFacturer, board, project type and debug operation to use. Currently selected:

4 Cfces Postmortem Debugger Linux Application Debug / Application Debug / Connections via gdbserver / Download and debug application

[€] c/c++ Remote Application
14| ¥ % DS-5 Debugger
7 New_configuration
@ IronPython Run
; &’ IronPython unittest
[| Java Applet
Java Application
I¢| & Jythonrun
| @ Jythonunittest
¥/ # Launch Group
1| EPyDevDjango Ds-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the
15 PyDev Google App Run application. This configuration requires ssh and gdbserver on the target platform.
& Python Run Connections
& python unittest RSE connection | SoCKit = [
&, Remote Java Application
Address: [UseRSE Host i

~ Application Debug
» Connections via AArch64 gdbserver
~ Connections via gdbserver
Connect to already running application
Download and debug application
Start g and debug

gdbserver (TCP) | port: 5000
& Use Extended Mode

Revert Apply
Filter matched 18 of 18items Syey PPY
@ close

Figure 37. DS-5 Debugger Configuration Menu

In File view, assigning a directory for host machine to download (workspace is
recommended —flash — debug —flash). “flash” is my program name.

7- In the same view, choosing target download and working directory
(/home/root/flash for both of them in this case) and then selecting flash.o (object
file) to load symbols from file option from workspace —flash—debug —flash.o
and finally press apply and then debugging to open the DS-5 debugger view:

! gdbserver is a computer program that makes it possible to remotely debug other programs running on the
same system as the program to be debugged and allows the GNU Debugger to connect from another system
to the target board [1].

56

https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/GNU_Debugger

= O i Disassembly 21 1iMemory = Stack - Events & Outline =i

39

i App Console &2 1M Tar

Figure 38. DS-5 Debugger View

After setting up RTS, it is easy to debug the code to find problems, trace them and solve.
DS-5 debugger is similar to ARM Cortex one which is used in TUT embedded courses
and has a very convenient user interface which needs to be explored by spending short
time. It is required to switch off the board, turn it on again, boot Linux!, enter the Linux
and get the board’s IP address to connect again to the host computer and finally read the
content of the flash. If the read data is the same as it was written there a few minutes
before, then it is possible to make sure that the duty is done and there is a program to

write/read to/from the flash device.

It was explained that the SoC FPGA board’s bridges’ features before in chapter 3.2 and
indicated that the Lightweight HPs to FPGA bridge data transmission is limited by 32
Bits, while other two bridges have 64 and 128 Bits interface options additionally. These
mentioned features are considerably important, hence, they are analyzed and discussed in
the next program. Depending on the application, only the LW bridge or all of them can

be used. For instance, the XOR driver project, in FPGA design part, does not need so

! There is a default hardware setting with required files (GHRD) and Linux image generated on the base of
these default configurations, which comes with the SoC development board from manufacturer. This Linux
image contains all essential items for booting that can be copied on the SD Card and used to discover
board’s features by beginners. Own Linux distribution would be created by the end of this article and
replace the initial one.

57

much data transmission between HPS and FPGA side as it is only LEDs manipulation

project to examine the board property. However, sometimes a more complicated FPGA

design is needed, which requires data transmission range more than LW bridge can

provide. So, it is needed to utilize the other two bridges.

Different from the flash program, FIFO project requires Qsys design which includes

creating one FIFO block for writing and another for reading, as the project could be called
full communication between FPGA and HPS. In this example, HPS to FPGA FIFO block
receives data which is waiting in FIFO block, then FIFO block reads this data to a buffer
and sets a ready flag. Afterward, this data has been written to FPGA to HPS FIFO block

and the ready flag can be cleared now. Figures 39 and 40 are showing Qsys design and

FIFO block interface respectively:

t2h_irq1

~ & Onchip_SRAM
ck1

(= s1

resetl

s2

ck2

reset2

~ B clock_bridge_0
in_ck

out_ck

I B fifo_HPS_to_FPGA
ck_in

reset_in
ck_out
reset_out

in

s

out

Vsl

out_csr

in_csr

- B fifo_FPGA_to_HPS
dk_in

reset_in

dk_out

reset_out

= in

out

out_csr

o in_csr

Interrupt Receiver

On-Chip Memory (RAM or ROM)
Clock Input

Avalon Memory Mapped Slave
Reset Input

Avalon Memory Mapped Slave
Clock Input

Reset Input

Clock Bridge

(Clock Input

Clock Output

Avalon FIFO Memory

Clock Input

Reset Input

Clock Input

Reset Input

Avalon Memory Mapped Slave
Avalon Memory Mapped Slave
Avalon Memory Mapped Slave
Avalon Memory Mapped Slave
Avalon FIFO Memory

(Clock Input

Reset Input

Clock Input

Reset Input

Avalon Memory Mapped Slave
Avalon Memory Mapped Slave
Avalon Memory Mapped Slave

Avalon Memory Mapped Slave

clock_brid...
[ck1]

[ck1]

[ck2]
System_PL....
[fck2)

onchip_sram_s1

clock_bridge_0_in_clk

exported
clock_bridge...

System_PL...
[dk_in]
clock_brid...
[ck_out]
[ck_in]
fifo_hps_to_fpga_out [ck_out]
fifo_hps_to_fpga_out_csr|[ck_out]
‘[clk_in]
!clock_brid...
{[ck_in]
|System_PL...
|[ck_out]
|[ck_in]
|[ck_out]
[[ck_out)
fifo_fpga_to_hps_in_csr |[ck_in]

fifo_fpga_to_hps_in

0x0800_0000

0x0000_0000

0x0000_0000

0x0000_0010
0x0000_0020

IRQ 0

0x0800_03ff

0x0000_0003

0x0000_001f

0x0000_0013
0x0000_003f

IRQ 31

Figure 39. Full FIFO communication Qsys Design

Bridges’ interfaces have been shown before and in figure 40 only FIFO’s interface is

demonstrating. An Avalon-MM write master pushes data into FIFO and the read master

pops it from FIFO’s output port [23].

58

FIFO with Avalon-MM Input and Output Interfaces

system interconnect fabric

Input Status I/F Output Status I/F
(optional) (optional)

On-Chip FIFO

Memo
Wr i Rd

— m =l

Avalon-MM Slave Port

Figure 40. FIFO Interface [24, p. 2]

More detailed coding in XOR chapter will be shown and some points of the application
just need to be mentioned here. It is needed to specify exact base address for both bridges
and indicate the size of memory which will be occupied. Then opening the memory
device, sending data to FIFO and reading them back. The general structure of the code is
similar to the flash program code with only difference in code lines, as the target devices

are different.

4.5 XOR Driver Development

XOR driver development is a part of Xiphera’s IP block design process and tries to
provide the most efficient representation of the whole design flow. As it has been
described widely in previous chapters, driver development for embedded requires Linux
customization combining with FPGA design and HPS user space applications. These
development steps are related to each other and must be done in a correct order. Each step
includes generating/obtaining source codes and organizing them to arrange correct
configurations. The whole process is divided into 3 different sections, which require a
team of experts. Xiphera as a start-up company planned to verify the whole process by
the most efficient method to avoid excess financial and human recourses. The final
purpose of this project has been defined as verifying hardware/software component in the

most efficient way which is one of critical issues for start-up environments.

59

In the other words, developing more complicated drivers for SoC Kit (such as FIFO driver
development to design a full-length communication between FPGA and HPS using all 3
bridges which is ongoing) requires a more complicated Qsys design, Xiphera’s own
definition for SoC Kit’s pins assignment and Xiphera’s specific device tree. Developing
a pin map for SoC Kit without its peripherals (such as USB, UART and VGA connections
and LCD) can be used for other FPGA (and not only SoC Kit). This pin map would be
developer company’s specific design and boost the company’s reputation. However,
developing such a pin map would take a longer period of time and requires a team work
to divide definitions of pins to finalize the assignment in efficient way. Similarly,
generating respective device tree can optimize FPGA design work time and developers
can easily insert their new components to the device tree for different FPGSs. All
mentioned items are only FPGA related issues and combining these designs with the
Toolchain and Kernel source code must be considered before FPGA design. The
Toolchain and the Kernel source codes either must be written by Xiphera or obtained
from Altera open source data base. Most developers and start-up companies prefer to
utilize free Toolchain and Kernel sources, however, this issue challenges their FPGA
design; because all necessary versions of these sources are not available. Developing and
obtaining these items take a long time and needs a greater team of experts, while the
purpose of XOR project is verifying hardware/software component for Xiphera’s Linux
distribution in the fastest possible way. Therefore, a simple representation of the whole
design flow is organized to observe the result as soon as possible. Different aspects of
embedded Linux driver development and its sequences have been discussed in general.
The purpose of the project and the reason to optimize existing resources to achieve to the
final goal was explained. Now it is time to concentrate on actual purpose for this project

which is XOR driver development flow.
Similar to all Linux embedded projects, XOR has three different design steps:

1- Qsys design for FPGA side which is at the same time a pre-request design for the
device tree and Linux distribution generating. This part of design requires Quartus

platform, our host machine and the target board.

2- Linux distribution obtaining and configuration which needs to be generated in the
host computer and be tested on the board to observe if the recently created Linux

boots without problem.

60

3- The last step of the XOR driver development is composing code for driver itself
which can be done using C code and insert to the newly generated Linux from
host machine and finally be examined on the board.

At the end of each part of the design | needed to test the obtained results in order to
solve probable problems before continuing to the other part. All three parts have been
considered in different chapters, and now | am going to combine all previous
described information together and do a practical experiment. Please note that the
purpose of this project is verifying the board functionalities such as booting, hardware
component and LW bridge interface. This validation will be exposed on four LEDs
in FPGA side which can be controlled from Quartus, HPS side using DS-5 as well as
from Linux terminal window utilizing the produced driver. As it has been mentioned
before, XOR uses LW bridge AXI interface and takes an input value in the range of
1 — 255, changes this value to a HEX number, executes XOR operation between lower
and higher nibbles of this HEX integer and finally sends the result down to the FPGA
side LEDs. For instance, if one gives the input value of 100 from either DS-5 debugger
argument page or a terminal window, which is connected to the board with any screen
program, XOR converts it to 64 HEX-decimal integer and then execute XOR
operation between 4 (0100) and 6 (0110) = 0010 and send the result to the FPGA’s
LEDs and by the exposing result, the second LED will be turned on.

A general view of the project, by obtaining the purpose and functionality of it, has
been provided. Now, it is beneficial to continue step by step. Qsys design flow and its
necessity for device tree were explained in chapter 4.2. | inserted the customized
component which is called xiphera_test_block to the already existing GHRD Qsys
design and appended essential code line to .tcl file then generated VHDL code.
Eventually, requiring connections were added to the recently inserted component and
finished Qsys design. When a new component is meant to be added to the Qsys design,
from configuration menu of the new component, it is needed to add VHDL/VeriLog
code which in this case it was two VHDL files; one for xiphera IP block and the other
one for Avalon interface. Before synthesis in Quartus, it is needed to add
xiphera_test_block to the top level VHDL code instead of old component name which
in this case it was LED_PIO not forgetting to run tcl script file before full synthesis.
If directive is followed step by step,.sof file would be achieved which can be

converted to .rbf file using Quartus file converter.

61

The second part of the design is C code developing to try the FPGA design using DS-
5 platform. This part is a user space application project, but the necessity of this
section is understood when the driver’s code would be written. | needed to create a
new project in DS-5 and added the C code then built the project to generate executable
file and connected to the target board using RTS to debug it.

Now, the C code, which is a step toward the final C code of driver, needs to be

analysed.
The code can be summarized as:

1- Header files, specifying memory space and the base address which has been

illustrated in figure 41:
#define PAGE_SIZE 409600
#define LWHPS2FPGA BRIDGE BASE 0xf{200000

#define xiphera_ test block OFFSET ©x©”, variables definitions, indicating input

value boundaries (1 and 255)
2- Opening the memory device file with fd:

fd = open ("/dev/mem", ORDWR|O_SYNC); ” and mapping LW HPS to FPGA

bridge into process memory with mmap: “

bridge_map = mmap (NULL, PAGE_SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED, fd ,LWHPS2FPGA BRIDGE_BASE); ”

3- Getting the designed peripheral’s (xiphera test block) base address which is 00

in my case: “

xiphera_test_block_mem = (unsigned char *) (bridge map + BLINK_OFFSET)
5 7, write the input value into ” xiphera_test_block_mem” and close the file device by
“close (fd)”.

62

L3

(Default)
| HPS Slaves | 4GB
0xFF20_0000 — !
0xC000_0000 o
0x8000_0000 o
1GB
0x0000_0000 o

Default remap to 0x0 Remaps as
RAM & ROM or SDRAM

Figure 41. Cyclone V SoC HPs Memory Map [19, p. 55]

The code can be debugged to find solutions for possible problems, and if everything
works properly, then it is possible to continue with Linux distribution development part,
which has been already explained. To sum up, Quartus design, C code of user application
and customized Linux on the base of the Qsys design and device tree manipulations, have
been developed. Now, there remains only driver codes, Linux configuration to compile
the driver and finally, gather everything together, transfer to a SD Card and try on the
board.

The general structure of my driver C code can be summarized as:

1- Inserting header files: depending on the expected functionalities and aim of
the driver, header files needed to be added. Developing of the algorithm of the
driver design flow was one of the author’s crucial tasks during this project.
Having an algorithm design was helpful to find software requirements of the
driver. XOR driver needs to take an input value from user space and map this
value into the process memory and finally shows the value using FPGA’s
LEDs. As it is understood from the algorithm, XOR driver requires including

“<linux/uaccess.h>” to access user space and copy the input value into the

63

#tdefine

#tdefine

#tdefine

allocated memory. XOR also needed inserting “<linux/ioport.h> and
<linux/io.h>” to manipulate FPGA’s LEDs. Including “<linux/init.h>,
<linux/module.h>, <linux/kernel.h> and <linux/device.h>”,
provides essential prototypes for initializing/exiting, inserting/removing XOR
driver to the Kernel and functions such as “*drv” (driver)/“*buf” (buffer). In
order to define functions such as containing the input value, which is taken
from user space, and writing this value into the memory, XOR uses
“<linux/platform_device.h>”. Finally, XOR needs communicating
between user and the Kernel spaces which should be handled in file system
format as a requirement of Linux Kernel design. “<1inux/kobjects.h> and
<linux/sysfs.h>” header files include attributer functions such as
“DRIVER_ATTR show and store”. These header files create a directory in
“/sys/bus/platform/drivers/xiphera test block” of SoC Kit root and an entry
point in this directory. This directory and its entry point are used to
communicate with XOR driver which is in the Kernel space. Users can enter
an input value between 1 — 255 from the terminal window, which is used to
insert XOR driver to the Kernel. As it has been described initially, users
operate in user space and need to send the input value to the entry point of the
specified root directory of SoC Kit Kernel space.

Defining the inserted component address base which has been declared in SoC
Kit data sheet and can be obtained from Qsys design. This memory space has
been allocated on the base of LWbridge interface which has been used for this

project. 400 KB of the memory span was defined for XOR to be mapped: “
xiphera_test _block BASE 0xf{200000
xiphera_test_block SIZE PAGE_SIZE

PAGE_SIZE 409600,

Informing the Kernel about the device tree which is being used by XOR driver and linking

essential functions with XOR with following data structure: *

MODULE_DEVICE TABLE(of, xiphera_test block _dt _ids);

static struct platform_driver xiphera_test _block = {

64

.probe = xiphera_test_block_probe,
.driver = {
.name = "xiphera_ test block",
.owner = THIS MODULE,

.of _match_table = xiphera_test block dt ids

357,

declaring “driver_ attribute” which is the Kernel’s sysfile structure [25] and finally

registering the driver, specifying license and inserting initialize and exit lines?.

3- Creating directory and entry point of sysfs file and removing this
configuration after exiting from driver: “
driver_create_file(&xiphera_test block_driver,
&driver_attr_xiphera_test_block);
driver_remove_file(&xiphera_test block_driver,

&driver_attr_xiphera_test block);”.

4- Accessing to /O memory: “

res = request_mem_region(xiphera_test block BASE,

xiphera_test block SIZE, "xiphera_test block");
if (res == NULL) {

driver_unregister(&xiphera_test block_driver);

L Itis highly recommended that driver writers refer to Linux Device Drivers book as a really helpful material
in order to analyze module writing steps and techniques deeply and understand using of codes.

65

return -EBUSY; 1} ”, re-mapping the component’s address into processor memory
with “ioremap” function (as it has been done in XOR user space application code with
“mmap(PROT_READ|PROT_WRITE)”): «

xiphera_test block mem=ioremap(xiphera test block BASE,

xiphera_ test block SIZE);
if (xiphera_test_block_mem == NULL) {

release_mem_region(xiphera_test_block_BASE,

xiphera_ test block SIZE);

return -EFAULT;}” and finally write the input value which is a single bit into
“xiphera_test_block_mem”: “iowrite8(value,

xiphera test block _mem);”.

Then it is possible to setup required Kernel environment to compile XOR driver as it has
been mentioned previously in Linux distribution development chapter. It is needed to run
“export ARCH=arm” as this project aims to develop driver for ARM Cortex-9 processor
of SoC Kit. In addition, I defined “export CROSS_COMPILE= ..” which is path the
Toolchain directory in my host computer to compile and generate executable file using
already obtained Toolchain source. Moreover, “export OUT_DIR=..” was executed to
set the Kernel source directory in the host machine in order to use the Kernel source code.
Above mentioned lines of code required to be compiled either from Command Shell
window or using a Makefile from the host machine to set variables properly and compile
recently designed driver to insert it to the Kernel. XOR driver projects followed the first
method (compiling variable configurations from Command Shell terminal) to keep the

Makefile as simple as possible.

The next step was creating the Makefile and a Kbuild file with below contents

respectively:

“KDIR ?=0UT_DIR
default:

$(MAKE) -C $(KDIR) ARCH=arm M=$$PWD” and

66

“obj-m := xiphera_test_block.o”.

Compiling these two files generates “.ko” file which is containing all configuration and
codes of XOR driver. This “.ko” file would be uploaded into the SD Card and inserted to
the Kernel running on SoC Kit target. Then “make” command was executed from the
Embedded Command Shell window to generate “.ko” file in the indicated output
directory. Generating this file took a longer while than usual time in my case because
there were some error messages in my code which came up during compilation. All error
messages were written from terminal window and modified in “xiphera_test block.c”
file. So every time | needed to verify my code it was essential that the code would be
debugged and probable error messages get corrected. This process happens during the
driver code debugging before inserting the driver to the Kernel. In case the Makefile
compiling step would be passed without any error and the generated “.ko” file inserted to
the Kernel, the actual debugging starts. XOR debugging took a few days as | needed to
examine it on the board and found out its problem, modified occurred errors and re-
compile the Makefile again. The is a reasonable explanation for long while debugging
period; As it has been mentioned previously, XOR project is a combination of Qsys
design, Linux distribution development sequence and C code composing. These steps are
linked together and must be followed in a correct order to obtain the final “.ko” file. When
an error occurs, the developer has to debug all steps of background design flow. This
background includes hardware configuration and verification which must be checked
during development every step to avoid facing with possible problems. The hardware
maintenance was simple part of the XOR driver project as SoC Kit was recently
manufactured and tested. The most difficulty was software debugging process which
contains different items. There were so many software related issues during this design

period such as:

e MSEL pin configuration as there are different set of configurations for various
modes (such as FPGA running from Quartus, programming from HPS, etc.).
During Kernel booting into SoC Kit, incorrect MSEL pin configuration caused a
problem and board hung. There were problems with USB cables which
sometimes were stoping the design process. SD Card partitioning was another

critical problem which required formatting and re-partitioning again.

67

Qsys design related errors such as ignoring to run “.tcl” file before full synthesis
in Quartus. This mistake causes problem with the device tree and prevent
developer to add the pin assignment properly, consequently compile the device
tree correctly. The other issue was adding customized hardware component to the
device tree before generating VHDL during final step of Qsys design. If these
issues would be ignored, driver developer has to start Qsys design from beginning
which happened two times in XOR project.

Linux related problems such the Kernel source code obtaining and its existing
versions as well as the Toolchain code. In case other dominant items would be
verified, there is no doubt except the available Kernel source code and its version
if is matched with the Linux version on developer’s host machine.

C code modification which is required to be done every time before compiling
the Makefile.

The final step of XOR project was transferring generated files to a SD Card which

required to be partitioned by following steps:

[EEN
1

Inserting the SD Card (at least 1 GB memory space is required as the created
Linux image file and other essential files occupy more than 512 MB) and
mounting it?.

Executing “sudo fdisk /dev/sdb” (/dev/sdb is the SD Card directory in my
host computer and can be obtained by “lsblk™) gives instruction to specify
partitions’ size and type.

Creating 3 partitions with 1, 254 and 256 MB sizes and unknown, Linux and
FAT32 types respectively. (“n” for new partition, “t” for type specification and
“w” to save configurations).

Running “sudo partprobe /dev/sdb” to aware the host Kernel about changes
which have happened.

Creating file systems for the second and third partitions as the first one is a raw

file type. “sudo mkfs.ext4 /dev/sdbp2” and “sudo mkfs -t vfat

1“sudo mount /dev/sdb” sdb is my SD Card name which can be shown by running “1sblk”.

68

»
1

\I
1

(00]
1

O
I

“sudo

/dev/sdbp3” and then creating mount points for these partitions: “mkdir
sdbp2_mount

sudo mount /dev/sdbp2 sdbp2 mount/” and “

mkdir sdbp3 mount

sudo mount /dev/sdbp3 sdbp3 mount/”.

Copying “preloader-mkpimage.bin” file directly into the first partition (using
“sudo dd if=.. of=..”) and then executing “sync” to do physical copy operation.
Running

“sudo cp ../u-boot.img ../u-boot.scr soc_system.dtb! soc_system.rbf?
../zImage? sdbp3_mount/” and then “sync” to copy booting files and the Kernel
image to the FAT partition of the SD Card.

Running “sudo tar -xvf ../rootfs.tar -C sdbp2_mount/” and then “sync”

to extract required files into the second partition of the SD Card.
Copying “.ko” file to the second partition:

cp xiphera_test_block.ko sdbp2_mount/” and then “sync”.

10- Un-mounting the second and third partitions: *

sudo umount sdbp2_mount/

sudo umount sdbp2_mount/” and removing the SD Card and insert it to the

board.

Now it is time to boot Xiphera’s own Linux on the board. After booting XOR driver can

be initialized by running “insmod xiphera_test_block.ko”. The driver can be checked

by giving an input value:

13

! The device tree bulb, which is generated by device tree when the FPGA design is finished.

2 The output file of Quartus file converter, which has been converted from .sof as Qsys design result.

% Linux image file, which has been generated in Linux distribution development section.

69

echo “3p”

/sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block”

As it has been indicated before, the HEX representation of 30 is 1E with 0001 higher and
1110 lower nippers and XOR operation gives the 1111 result, which switches all FPGA’s
LEDs on for SoC Kit. (“rmmod xiphera_test_block.ko” is using to unload the driver).
Figures 42, 43 and 44 are demonstrating the Makefile compilation and copying
“xiphera_test block.ko” file to the SD Card, “xiphera test block” driver initializing and
verifying the XOR operation using this driver respectively:

(<] mammad@mammad-ThinkPad-E480: ~/test/software/test

mammad@mammad - ThinkPad-E480: ~/intelFPGA [en ed$./embedded_command_shell.sh
Intel FPGA Embedded Command Shell

version 18.1 [Bu11d 625]
mammad@mammad-ThlnkPad-E480.- nte 8.1/em L ps aux | grep screen
mammad 15183 0.0 0.0 225 H 0:00 grep --color=auto
mammad@mammad - ThinkPad-E480: nte G Jembedded$ ps aux | grep SCREEN
149067 0.0 0.0 35616 2572 ? Ss 17: 0:0 Jdev/ttyusBe 115280
15186 0.0 0.8 22516 928 pts/2 S+ 17: 0 grep --color=auto
mammad@mammad - ThinkPad-E480:~/intelFPGA/ fembedded$ sudo kill -9 14907
[sudo] password for mammad:
mammad@mammad-ThinkPad-E480:~/intelFPGA/ fembedde PATH=SPATH: /home fmammad /Mammad /SoCK1t/GHRD/software/gcc-1linaro-
7.1.1-2017.05-x86_64_arm-linux- gnueablhf/
mammad@mammad-ThinkPad-E480: 18
cc- 11naro 7.1.1- 4017 05- ASO

../linux_socfpga ARC /home /mammad /test/software/test
g Entering directory '/home/mammad/test/software/linux_socfpga’
cC [M] /[home/mammad/test/software/test/xiphera_test_block
Jhome /mammad [test/software/test/xiphera_test_block.c:9:0: : "PAGE_SIZE" redefined
#tdefine PAGE_SIZE 489600 [/ 400 KB the memory span we want mapped

In file included from ./archfarm/include/asm/thread_info.h:17:0,
from ./include/linux/thread_info.h:25,
from ./include/asm-generic/preempt.h:4,
from ./farchfarm/include/generated/asm/preempt.h:1,
./include/linux/preempt.h:80
. /include/linux/spinlock
./include/linux/seqlock
./include/linux/time.
./include/linux/stat. 8,
./include/linux/module.h: 10
]hone[nammad/test[software[test/xiphera test_block.c:1:
.farchfarmfinclude/asm/page.h : note: this is the location of the previous definition
#define PAGE_SIZE (_AC(1,UL) PAGE_SHIFT)

Building modules, stage 2.

MODPOST 1 modules

cC /home /mammad / test/software/test/xiphera_test_block.mod.o

LD [M] /home/mammad/test/software/test/xiphera_test_block.ko
make[1]: Leaving directory '/home/mammad/test/software/linux_socfpga’
mammad@mammad - ThinkPad - i~/ W [test$S sudo mount /dev/sdb2 /home/mammad/temp
mammad@mammad - ThinkPad- g sudo chmod 777 [home/mammad/temp/
mammad@mammad - ThinkPad - g e/test$ sudo cp xiphera_test_block.ko /home/mammad/temp/root
mammad@mammad - ThinkPad - / / sync
mammad@mammad - ThinkPad- sudo umount fdev/sdb2
mammad@mammad - ThinkPad - r~f 0 / sudo screen /dev/ttyuseBe 115206l

Figure 42. Makefile compilation and transferring to the SD Card

70

S & mammad@mammad-ThinkPad-E480: ~

response ©x900, card status 0x0
10.894874] mmcblk®: retrying using single block read

Initializing random number generator... done.
Starting network: OK

lWelcome to Buildroot
buildroot login: root
insmod xiphera_test block.ko
24.354870] mmcblk@: error -110 transferring data, sector 29442, nr 228, cmd
response 0x900, card status 0x0
L 24.394812] mmc_host mmc®: Bus speed (slot ©) = 200000000Hz (slot req 400000H
z, actual 400000HZ div = 250)
L 24.461285] mmc_host mmc®: Bus speed (slot ©) = 200000000Hz (slot req 2500000
OHz , actual 25000000HZ div = 4)
24.684870] mmcblk®: error -110 transferring data, sector 29442, nr 228,
response 0x900, card status Ox0
24.694827] mmcblk®: retrying using single block read
L 24.915421] random: crng init done
L 24.950499] xiphera_test_block: loading out-of-tree module taints kernel.
[24.957726] Initializing the Xiphera Xor Test module
[24.962820] Xiphera Xor_Test module successfully initialized!

Figure 43. XOR driver initializing

mammad@mammad-ThinkPad-E480: ~

5.934069] mmcblke: error -110 transferring data, sector 21948, nr 256, cmd response 8x900, card status 0x0
5.944029] mmcblke: retrying using single block read
6.284067] mmcblke: error -110 transferring data, sector 22716, nr 256, cmd response ©x900, card status @xe
6.324003] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 400000Hz, actual 400000HZ div = 250)
6.390486] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
6.614072] mmcblke: error -110 transferring data, sector 22716, nr 256, cmd response ©0x900, card status @xe
6.624032] mmcblke: retrying using single block read
6.964076] mmcblke: error -110 transferring data, sector 22428, nr 256, cmd response ©0x900, card status @xe
7.004003] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 400000Hz, actual 400000HZ div = 250)
7.870490] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
7.294069] mmcblke: error -110 transferring data, sector 22428, nr 256, cmd response ©0x900, card status @xe
7.304027] mmcblke: retrying using single block read
7.644065] mmcblke: error -110 transferring data, sector 282914, nr 256, cmd response 8x900, card status Ox@
7.684002] mmc_host mmc@: Bus speed (slot ©) = 200000000Hz (slot req 400000Hz, actual 400000HZ div = 250)
7.750493] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
7.974070] mmcblke: error -110 transferring data, sector 282914, nr 256, cmd response 8x900, card status 0x@
7.984202] mmcblke: retrying using single block read
8.454077] mmcblke: error -110 transferring data, sector 283530, nr 256, cmd response 8x900, card status Ox@
8.494003] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 400000Hz, actual 400000HZ div = 250)
8.560491] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
8.784071] mmcblke: error -110 transferring data, sector 283530, nr 256, cmd response 8x900, card status Ox@
8.794119] mmcblke: retrying using single block read
9.134096] mmcblke: error -110 transferring data, sector 22204, nr 200, cmd response ©x900, card status @xe
9.174003] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 400000Hz, actual 400000HZ div = 250)
9.240491] mmc_host mmc@: Bus speed (slot @) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
9.464072] mmcblke: error -110 transferring data, sector 22204, nr 200, cmd response ©0x900, card status @xe
9.474003] mmcblke: retrying using single block read
9.920072] EXT4-fs (mmcblkep2): re-mounted. Opts: data=ordered
10.034079] mmcblk@: error -110 transferring data, sector 283314, nr 168, cmd response ©x908, card status 0x@
10.074007] mmc_host mmc@: Bus speed (slot ©) = 200000000Hz (slot req 400P0@HZ, actual 400000HZ div = 250)
10.140492] mmc_host mmc@: Bus speed (slot ©) = 200000000Hz (slot req 25000000Hz, actual 25000000HZ div = 4)
10.364077] mmcblk@: error -110 transferring data, sector 283314, nr 168, cmd response 8x908, card status 0x@
10.374079] mmcblke: retrying using single block read

Ftarting logging: OK

[nitializing random number generator... done.

Ftarting network: 0K

elcome to Buildroot

buildroot login: root
rmmod xiphera_test_block.ko
insmod xiphera_test_block.ko
echo "200" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "100" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "128" > /[sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "228" > [sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "78" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "79" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "9" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block
echo "29" > /sys/bus/platform/drivers/xiphera_test_block/xiphera_test_block

=
=

Figure 44. Communicating with driver and executing XOR operation

The design flow was finalized, as XOR driver has been checked. The development and
the obtained result were confirmed, which was the purpose of this project. The same result

had been observed previously in Quartus design and user application processes.

71

5 Summary

Linux driver development for SoC FPGA requires deep knowledge of Linux
programming, driver development flow and SoC FPGA design sequence. Mastering in
these different fields needs years of experience while beginner developers who try to run
their desired Linux driver need a simple and at the same time a comprehensive guide of
whole process. This research pursued the fact of simplicity and practical guidance to
provide a clear instruction of Linux driver development. It started with importance of
customized Linux and its freedom and flexibility. In the second part, hardware component
has been described and finally at the last section, Linux distribution obtaining has been

explained.

All embedded designs require five elements of Toolchain, Bootloader, Kernel, Root
filesystem and applications which have been analysed step by step. FPGA Qsys design
which is pre-request of the device tree generation and the second item of mentioned
sequence, has been described separately. DS-5 platform installation and user space
applications has been considered with examples. Finally, | described how to design and
compile XOR driver which is a part of Xiphera encrypting Ip block project. The purpose
of XOR driver development project was verifying hardware/software component for SoC
Kit in efficient way, which required a simple driver representation of whole design
process. The aim of the project has been realized as the author could design and check

XOR driver on the board successfully.

72

References

[1] "Wikipedia," [Online]. Available: https://www.wikipedia.org/ [Please note that in
this research Wikipedia has been used only for superficial information such as
year of productions, nationality of the developers and explanation of
abbriviations].

[2] StatCounter, "Golobal market share held by operating systems,” 2013 - 20109.

[3] R. &. L.D.-A. Blum, Linux for Dummies, 9th Edition, Hoboken, NJ: Wiley
Publishing, Inc., 2009.

[4] Bootlin, "Linux Kernel and Driver Development Training," Bootlin, 2004-2019.

[5] Altera, "SoC Devices Workshop 3: Developing Drivers for Altera SoC," Altera-
Public, Austin, USA, 2016.

[6] Altera, "SoC Devices Workshop 2: Altera SoC Linux Introduction,” Altera,
Austin, USA, 2016.

[7] c. Simonds, Mastering Embedded Linux Programming, 2.edition, Birmingham,
UK: Packt Publishing Ltd., 2017.

[8] R. Blum, Professional Assembly Language, Indianapolis, IN: Wiley Publishing,
Inc., 2005.

[9] "RocketBoards," [Online]. Available:
https://rocketboards.org/foswiki/Documentation/EmbeddedLinuxBeginnerSGuide.

[10] Rocketboards, "SoC Kit Tutorials,” 2015.

[11] "ARM Community,” [Online]. Available:
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/293/u-
boot.

[12] Bootlin, "Linux Kernel and Driver Development Training," 2004-20109.
[13] A. &. T. &. Altera, "SoCKit User Manual," 2003-2014.

[14] "Anysilicon,” 30 January 2016. [Online]. Available: https://anysilicon.com/fpga-
vs-asic-choose/. [Accessed 2019].

[15] Ramdas, "ASIC vs SOC FPGA," Verification Excellence, 2016.
[16] Altera, "Architecture Brief of SoC FPGA," Altera, San Jose, CA, 2014.

[17] T. Instruments, "Multicore SoCs: stay a step ahead of SoC FPGASs," Texas,
Instruments, Dallas, Texas, 2016.

[18] V. Rajaraman, "IEEE Standard for Floating Point Numbers," Bengaluru, India,
2016.

[19] Altera, "Cyclone V hard Processor System Technical Reference Manual,” Altera,
San Jose, Ca, 2018.

[20] Intel, "Avalon Interface Specifications," 2018.

[21] Altera, "SoC Devices Workshop 1: Altera SoC SW Development Overview,"
Altera, Austin, USA, 2016.

[22] M. L. Jangir, "OpenSource," 2012. [Online]. Available:
https://opensourceforu.com/2012/01/working-with-mtd-devices/.

[23] Altera, "Embedded Peripheral IP User Guide," San Jose, CA, 2016.
[24] Altera, "On-Chip FIFI Memory Core," Altera, San Jose, CA, 2009.

73

[25] J. & R. A. &. K.-H. G. Corbet, Linux Device Drivers, 3.edition, Sebastopol, CA:
O'Reilly Media, Inc., 2005.

74

	Author’s declaration of originality
	Abstract
	Annotatsioon Embedded Linux-i Kohandamine ja dDraiverite ARrendamine SoC Kit jaoks
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	2 Customized Linux for Embedded systems
	2.1 Why Linux?
	2.2 Why Customization for Linux Is Required?
	2.3 Linux for Embedded Systems

	3 SoC FPGA’s
	3.1 SoC FPGA’s Evaluation
	3.2 SoC Kit

	4 Driver Development for Embedded Linux
	4.1 Software Requirement for Driver Development
	4.2 FPGA Design Flow
	4.3 Linux Distribution Development Steps
	4.4 User Space Applications
	4.5 XOR Driver Development

	5 Summary

