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1 Introduction

1.1 Motivation

The primary motivation for this thesis comes from a growing need on the market of drones.

The problem: long range, stable and hover-capable drone able to carry a payload.

The solution: tricopter tilt-rotor wing body aircraft.

The secondary of the possibility to make drone pilots more effective.

During the thesis a unique tricopter tiltrotor wing body design was developed, parametrized and

aerodynamically optimized. The propulsion system was verified by empirical tests and aerodynamic

analysis by benchmarking with known validation cases. The following engineering tasks were solved:

• Propulsion system

• Power system

• Structural and geometric composition

• Tilting Mechanisms

• Aerodynamic optimization

A novel combination was set up utilizing a state of the art acquisition function PESM based Bayesian

optimizer (by Harvard Intelligent Probabilistic Systems) alongside with an open source rapid aircraft

development and analysis program OpenVSP (by NASA). The results of the optimizer were compared

with industry standard MOO optimizers (B-MOO-s and genetic algorithm NSGA2)

1.2 Main objectives

No Requirement Type

1. Flight range 10km Mandatory

2. Flight/hover time 20 min Mandatory

3. Lightweight UAV (<7 kg) Mandatory

4. Max wingspan 1.5 m Mandatory

5. Payload weight 100g Mandatory

6. Expense without on-board computer and camera max 150€ Mandatory

7. Autonomous flight capability Nice-to-have

8. Brain-Computer interface Nice-to-have

Thesis main objectives:

1. Design a vertical take-off and landing fixed-wing drone.

2. Optimize the shape of the drone.

3. Build a brain-computer interface on the onboard computer.

9



1.3 Organisation of the Thesis

Chapter 1 – Introduction

This chapter explains the motivation behind the thesis tasks and justifies the relevance of the methods

used for solving the problem. It also contains the full list of requirements set for the general design of

the drone.

Chapter 2 – Research Overview

This chapter describes...

Chapter 3 – Materials and Methods

This chapter describes...

Chapter 4 – Design

This chapter describes...

Chapter 5 – Validation

This chapter describes...

Chapter 6 – Brain-Computer Interface

This chapter describes...

Chapter 7 – Conclusions and Future Work

This chapter describes...



2 Theory and Methods

In this chapter the theory behind the main concepts and methods used in the thesis are discussed

(except for topics involving the brain-computer interface subtask, which is covered in Chapter 5):

• Theory of aircraft aerodynamics

• Aerodynamic simulation methods

• Propulsion and power system

• Multi-Objective Optimization Methods

2.1 Theory of aircraft aerodynamics

In section 3.1 the preliminary design concepts are compared using basic low-speed aerodynamics laws

from Joseph Katz and Allen Plotkin textbook Low-Speed Aerodynamics. The formulas and theoretical

background of concepts used when designing and optimizing the drone are discussed in this chapter.

The first appeal is to make the aircraft aerodynamically efficient: decrease drag forceD to save energy

in forward flight and increase lift force L to achieve flight at lower speeds and carry more weight.

However, when achieving both of them by choosing a tailless aircraft, stability issues rise. First of which

is the aircraft behaviour in a change of pitch - be it due to increase of speed or a gust of wind. If the

aircraft is engineered unstable, the nose would pitch up and further increase lift, which can lead to a

crash. The second is the tendency to start a wobbling motion called the ”dutch roll” when side wind

forces the aircraft to yaw with respect to the airflow. This is an inherent problem to aircraft without

vertical stabilizers.

2.1.1 Forces of aerodynamic bodies

As illustrated in the free body diagram (figure 2.1) the main forces acting on an aircraft in straight and

level flight with no acceleration are in equilibrium. This means L = W and T = D, where L is total lift

force,W gross weight of the vehicle, T thrust force generated by the propulsion system andD the

total aerodynamic drag force acting on the vehicle. This state of steady flight with no moments acting

about the airplanes center of gravity (CG) is called trim. The main geometry parameters of a flying

wing aircraft are shown on figure 2.2: span length b, sweep Λ, root chord c0, tip chord ct and mean

aerodynamic chordMAC.

Firstly, based on Newtons third law of motion, a wing can only produce as much lift force as much

energy is exerted by changing the direction of the airflow through which the wing flies. Lift force is

therefore directly connected how well the body curves the airflow down. The dimensionless total lift

force coefficient of a body CL gives a good estimate of how well the geometry is designed in terms of

aerodynamic lift (in a given environmental setup). Relations between the CL and the lift force

necessary for the UAV to maintain flight are given by equation 2.1.

11



L =
ρSCLQ

2
∞

2
⇔ CL =

2L

ρQ2
∞S

, (2.1)

whereQ∞ is the flight speed, ρ the air density, L the lifting force (L = W ), CL the coefficient of lift

and S the projected surface area of the UAV.

F®¦çÙ� 2.1: Free body diagram of forces

acting on a trimmed airplane.

F®¦çÙ� 2.2: Basic flying wing geometry .

In essence the aircraft CL demonstrates lifting capability of the UAV given a certain physics

environment (airspeed, fluid properties and the reference area). This value can be both negative

(corresponding to negative lift), positive (positive lift) and has a zero value for no lift. In theory a

cross-section Cl maximum of 3.06 is possible to obtain for a non-varying airfoil section (cross-section of

infinite length)[2]. In practice, for a simple airfoil geometry this is not possible and depending on the

exact task maximum values between 1.0 to 2.0 are considered very good.

However, in the context of the final design optimization the overall CL value is not maximized, but kept

at a certain minimum value with respect to the surface area in order to maintain enough lift L. This
value value is therefore a constraint to decide the angle of attack α used for that particular wing

iteration.

For a flying body to maintain stable flight without acceleration the propulsion system needs to

overcome the drag forceD. The total coefficient of drag CD can be used to approximate the thrust

force T necessary to overcome combined drag forces and maintain at a certain airspeed.

The two main components of drag produced by a wing are parasitic and lift-induced drag (equation

2.2). The other drag components: wave and ram drag are trivial for the low-airspeed UAV case and are

therefore neglected. Relations between the CD and the drag force overcome to maintain a given flight

speed are given by equation 2.3.

D = Di +Do;CD = CD,i + CD,o (2.2)

Parasitic drag is a combination of form, skin friction and interference drag, which are connected to the

geometric size of the wing. Broadly, the increase in geometric values (chord length, projection area,

surface area) result in the increase of parasitic drag. An analytical approximation exists for the parasitic

dragDo at zero lift angle of attack:

Do =
ρSCDo

Q2
∞

2
⇔ CDo

=
2Do

ρQ2
∞S

, (2.3)

whereQ∞ is the flight speed, ρ the air density,D the drag force overcome to maintain speed (T = D),

CD the coefficient of drag and S the projected surface area of the UAV.

However, the lift-induced drag depends on pressure differences due to induced lift effects. As the

airflow around the wing gets modified, demanding a higher angle of attack to generate more lift, drag is

induced. This causes the airflow to produce wingtip vortices and thereby induce downwash behind the



wing. The induced drag coefficient CD,i can be found as follows.

CD,i =
C2

L

πAR
, (2.4)

The parasitic and lift-induced drag are in an opposite nonlinear correlation with each other with

respect to the flight velocity and therefore there is an airspeed where total drag is minimum (figure

2.3). However, at this speed the flight is unstable as fluctuations can cause loss of speed, which can

have a snowball effect to the decrease of lift. Therefore, in practice a flight speed that is slightly above

the minimum drag speed is chosen for optimality. The topics are further touched upon in the

aerodynamic simulation methods section as calculating exact values for these parameters has much to

do with the method used for solving them.

F®¦çÙ� 2.3: Illustration of drag component composition over time.

2.1.1.1 Induced drag and wingtip vortices

Based on two papers by Ludwig Prandtl (1922 and 1933) on the ”lifting line” theory two lift distributions

compete for minimizing induced drag. As stated in subsection 2.1.1 introduction, disturbances in the

induced downwash cause induced drag. Prandtl proposed the elliptic lift distribution in his 1922 paper

(figure 2.4a), which has a constant downwash angle. Although it has great performance characteristics

in ideal conditions, it can stall abruptly and cause loss of control. This method is very difficult to achieve

on swept wings and control surfaces are much more complex to design. It also has structural

disadvantages as the wings would need to be very rigid up to the wing tips and in the trailing edge.

Prandtl pointed out the structural disadvantages of the elliptical lift distribution and proposed the

bell-shaped lift distribution in his 1933 paper (figure 2.4b). As can be seen from the illustration, instead

of having a constant downwash it has a smoothly varying downwash that crosses to an upwash near

the tip of the wing. This causes vortices over the wing instead of having wingtip vortices and by

optimizing a non-linear leading edge twist, the effect of the induced drag can be reduced enough to

have the more efficient structure to outweigh an elliptical lift distribution wing. In 2016 a patent was

applied for a PRANDTL-D wing by a NASA research team, who proved the efficiency and stability

benefits for flying wing aircrafts. This method has proven to increase the maximum L/D ratio by ca

10% using the same weight for structure as the elliptic wing. The method also reduced transversed yaw

effect, which can lead to a Dutch roll (discussed further in subsection 2.1.2.2).

In practice it is very difficult to achieve ideal lift distributions and they are optimized very specifically to

a certain cruising speed and climbing condition. Another method to have weaker wing-tip vortices is to

have very long wings or winglets, which also act as an extension of the wing. As swept wings have

wingtips far behind the CG, the winglets also act as vertical stabilizers and having airflow aligned to



F®¦çÙ� 2.4: Comparison of the elliptic and bell shaped lift distribution effects.

the sweep angle, they also act as a sail increasing forward thrust. Using this same thrust the winglets

can attribute to either negative or positive pitching moment. As the CG of flying wings is designed to

have a negative pitching moment, this effect can be designed to help balance it in case of deviation of

the angle of attack.

2.1.2 Stability of aerodynamic bodies

Fixed wing aircraft have three stability axis through its center of gravity CG (figure 2.5): lateral (or roll

over x-axis), longitudinal (or pitch over y-axis) and normal (or yaw over z-axis). In flight the aircraft

rotates around these axis, having a moment to describe each rotation: Mx,My andMz . These

moments are evaluated by moment coefficients CMx, CMy and CMz respectively, which give insight

on how the aircraft would behave in disturbances, such as gusts of wind or turbulence. Calculating the

derivative values for these coefficients with respect to a disturbance, such as change in pitch or yaw

angle gives good insight to how the aircraft would behave in the real life system. There are two sides to

finding the optimal value: the more stable the airplane, the more difficult it is to maneuver.

F®¦çÙ� 2.5: Illustration of aircraft stability axis orientation.

The stability can be further separated into static and dynamic stability. An aircraft that has static

positive stability will return to its previous state of equilibrium after disturbances from turbulance or

wind. In addition, if this aircraft has dynamic positive stability it will oscillate with decreasing deflection

to the previous state, whereas negative dynamic stability would cause it to increase the deflection

oscillation until stall. These two types for longitudinal stability are illustrated on figure 2.6. The relevant

types of stability in respect to the aerodynamics optimization task and conceptual design reviews are

discussed in the following subtopics: 2.1.2.1 Longitudinal static stability and 2.1.2.2 Dutch roll.



(�) Aircraft static stability. (�) Aircraft dynamic stability.

F®¦çÙ� 2.6: Wing.

2.1.2.1 Longitudinal static stability

In order to achieve positive static stability in the longitudinal direction, the airplane needs to have an

opposite change in pitching moment (My) to the change of the angle of attack α:

dMy

dα
< 0 (2.5)

This would cause the aircraft to return to its original attitude as shown in figure 2.7. The pitching

moment is defined as the sum of aerodynamic forces of pressure fields and drag force and is

considered positive when it causes the nose to pitch up. The relation betweenMy and the pitching

moment coefficient CMy is described in equation 2.6. If the lift at the leading edge of the geometry

causes a higher moment around the CG than other force moments combined the aircraft will pitch its

nose up (positive pitching moment direction).

My =
ρScCMyQ

2
∞

2
⇔ CMy =

2My

ρQ2
∞Sc

, (2.6)

whereQ∞ is the flight speed, ρ is the air density,M the pitching moment, CM the pitching moment

coefficient, c the length of the chord of the airfoil and S the projected surface area of the UAV.

The stability condition would transform to:

dMy

dα
=

ρScQ2
∞

2

dCMy

dα
⇒ dCMy

dα
< 0 (2.7)

The resultant aerodynamic force acts through a point called the center of pressure (CP ), which is

analogous to the weight distributions center of gravity (CG) (equation ??). As there is no pitching

moment (CMy = 0) in CP this would intuitively be an ideal reference for designing the CG location.

This would be possible for a symmetrical airfoil, but most efficient airfoils used are asymmetric and the

CP location varies in respect to the change of the angle of attack:

CP = f(α) (2.8)

However, in engineering it is useful to use another point for reference: the aerodynamic center as in

this point the pitching moment remains constant when the α changes:

dCMy

dα
= 0 (2.9)



F®¦çÙ� 2.7: Comparison of statically stable and unstable aircraft’s behaviour with respect to change ofα.

Therefore, in order to to have a negative pitching moment, the CG should be placed fore of theAC. In

case the aircraft consists of many aerodynamic bodies the resultant point of all their separate

aerodynamic forces is found, the neutral pointNP . If the CG is placed in this position, the aircraft will

have neutral longitudinal static stability as seen in figure 2.6a.

F®¦çÙ� 2.8: Pitching moment components of a conventional aircraft.

A conventional tailed aircraft has the horizontal stabilizer to counteract the moment caused by the CG
(figure 2.8). It is a self-regulating system, with which an increase of α would cause less downwards

aerodynamic force from the tail and thus the moment stabilizes. Flying wing type aircraft have

sometimes a modified airfoil, which acts in a similar manner. The airfoils trailing edge twists up (reflex),

creating a downwards lift-force (figure 2.9). This effect decreases the overall lift of the aircraft and

increases drag. Having swept wings helps reduce the negative effects by increasing the moment arm

and bringing the AC more aft.

F®¦çÙ� 2.9: Coefficient of pressure distribution of a reflexed airfoil.



Finding a broad location of the AC can be done using the following formula:

MAC =
2c0(1 + λ+ λ2)

3(1 + λ)
= 0, (2.10)

where c0 is the root chord and λ = ct/c0 is taper ratio.

A more exact location of AC can be found using iterative fluid flow methods, such as Vortex Lattice

method and Computational Fluid Dynamics (subsection 2.2.2).

In the optimization section of the design chapter one of the optimized parameters is the derivative of

CMy with respect to change in pitching angle α this gives a good estimate of the static stability of the

aircraft pitching moment. As we are dealing with a wing body UAV, the counteracting surfaces have

very little effect to balance the pitching moment. Therefore, in order to achieve a stable flying wing,

the derivative of CMy could be minimized by a counteracting CG, but in the case of a tricopter flying

wing, its position is constrained by the propellers setup. To restore some of the stability the wing

sweep can be increased, which increases drag and changes the effect of lift. Higher Aspect Ratio (AR,

equation 2.11) UAV-s on the other hand have a higher CL and lower CD (long range aircraft have

AR ≈ 8), but decrease the surface area of the wing and therefore decrease the lift (and drag) as well.

AR =
b2

S
), (2.11)

where b is wing span and S wing planform area.

Therefore, there are a vast amount of parameters that could be tuned as well as output parameters

that could supplement the assessment of the aircraft. After careful consideration and lengthy trials the

parameters given in this subsection were chosen. Some were chosen on the basis of best practice,

analytical evaluation and robustness, others due to solver and geometry software issues (described in

more detail in the Methodology chapter).

2.1.2.2 Dutch roll

The second stability issue affecting tailless aircraft is a dynamic instability effect called dutch roll, which

can occur due to yaw or roll deviations and take long to dampen. The dutch roll is a sequential

alternation between a yawing and rolling motion of tumbling. If the swept flying wing yaws, the wing

that rotates forward will have an increase in both drag and lift. The first of which will cause the motion

to dampen and rotate back towards the original state. The second will cause that side of the aircraft to

roll up a bit, thus increasing the drag and wobbling into a yawing motion. This dynamic motion is

illustrated on figure 2.10.

On conventional aircraft this oscillatory instability is tackled with a response from the rudder. Flying

wings can reduce the effect by preventing the lift force from increasing/decreasing by adding wing

fences and winglets that prevent the air from span-wise sweeping over the wing. Having winglets

underneath the drone has three positive side effects: decreased drag, increase of roll and the pitching

moment stability.

F®¦çÙ� 2.10: Dutch roll illustrated with a Boeing 747.



2.1.3 Drone propulsion

The propulsion system encompasses the sequence starting with choosing a suitable propeller and

propeller speed, which is the basis to making an estimation to choose the power parameters of the

motor, electric speed controllers (ESC-s) and batteries. As the chosen design has a tilt-rotor tricopter

setup, the propulsion system should be optimized to be sufficient for hovering and forward flight. I the

design chapter estimates are made to assemble a suitable propulsion system and in the results chapter

these estimates are validated.

2.1.3.1 Hovering

The momentum theory is an analytic approach to conserve global balance of mass, momentum, and

energy to resolve forces of various flight modes. In this subsection relevant equations and solving

sequence for the hover condition are presented. The main intuition is similar to lift aerodynamics: to

conserve hover the massflow of air through the rotor plane must be in equilibrium with the rotor-crafts

weight (figure 2.11). The rotor disc a has radiusR, area A and is spinning at an angular velocity of Ω
(rad/s). There areNb number of blades that have a chord length c and zero-lift drag Cd0. The solidity of

the rotor is σ.

F®¦çÙ� 2.11: Basics of an ideal momentum theory based hovering system.

The ideal momentum theory assumes:

• Flow is considered 1D and uniform through the rotor disk.

• Flow is incompressible, inviscid and irrotational.

• The rotor is viewed consisting of infinite number of blades adding momentum to the flow.

• The pressure difference on either side is discontinuous, while the velocity is continuous.

• The wake is a uniform jet (meaning no swirl).

The thrust coefficient can be expressed as

CT =
T

ρairA (ΩR)2
(2.12)



The non-ideal power coefficient is given as

Cp = κ
C

3/2
T√
2

+
σCd0

8
(2.13)

Non-ideal losses are expected to add around 15% so κ = 1.15.

One of the design parameters is the power loading which is the thrust generated relative to power used

PL =
T

P1
=

CT

(ΩR)Cp
(2.14)

The hover time can then be found from energy capacity:

t =
Eavailable

Puse
(2.15)

2.1.3.2 Transition to forward flight

The transition effects from hover to forward flight and characteristics of forward flight are found

analytically using the momentum analysis for forward flight. In addition to the forces of lift from wing,

thrust from rotor, weight of the aircraft and drag forces of the aircraft the characteristics of rotor discs

are considered as well. The rotor momentum theory for forward flight gives an estimate of the power

consumption of the propellers and stable states with an airspeedQ∞ and rotor angle βr. r is measured

from hovering position and therefore a value of 90° indicates forward flight mode.

To find energy losses of the rotors, the induced velocity at the rotor disc needs to be calculated:

vi =
v2h√

(Q∞ cosβr)2 + (Q∞ sinβr + vi)2
, (2.16)

which can be solved iteratively and where the hover velocity is

v2h = T/2ρA (2.17)

The ideal rotor power is then be estimated

Pi = T (vi +Q∞ sinβ) (2.18)

15 % loss for non-ideal effects and drag estimations are added to Pi yielding a total estimated power

demand

P = 1.15Pi + P0, (2.19)

where

P0 =
1

8
ρNbΩ

3cCd0R
4 (2.20)

2.1.4 Propulsion power system

As can be deduced from equations 2.14 and 2.20 a key factor of hover and forward flight time is

angular speed Ω. The power loading PL has an inverse relation to Ω and the power losses a cubic

relationship to Ω. Therefore, propulsion systems using lower voltages and motors with lower voltage to

angular speed rating demand less power and are more efficient. Lower voltage systems have a lower

maximum thrust level and batteries have lower discharge rates. As we are dealing with a tricopter,

which thrust per rotor is semi-high an optimal middle ground should be found.



The discharge rate also sets some limits when choosing battery types. Although some Li-ion type

batteries have better gravimetric (Wh/kg) as well as volumetric (Wh/l) energy densities (figure 2.12),
Li-Po batteries should be preferred as they have more than five times higher discharge ratings. The

discharge rate is a rating by manufacturers to find the maximum current that can be constantly drawn.

It can be found by using the following formula:

Cr =
Puse

UEr
, (2.21)

where Cr is C-rate needed, U is the power system voltage and Er is rated energy stored in Ah (rated

capacity of the battery given by the manufacturer).

The hover time can then be found as

t =
Eavailable

Puse
, (2.22)

F®¦çÙ� 2.12: Overview of volumetric and gravimetric energy densities of batteries by compound.

Based on decisions of power supply and propeller dimensions, a suitable motor should be chosen.

Brushless motors type is favoured among drone builders as they are more durable, efficient and most

importantly weigh less compared to brushed motors. The other aspect to consider is torque moment

arm: inrunners have a shorter arm than outrunners. Therefore, outrunners have higher torque and a

more suitable angular speed for multirotors.



2.2 Aerodynamic simulation methods

In this section the physics solvers used for aerodynamic design are discussed. As correlation between

geometric parameters and the aerodynamic properties of the vessel are not analytically solvable a

variety methods can be used to find the optimum. Selecting a suitable physics solver for the task

depends on a balance between insight to the geometry, accuracy and the results and computational

cost. When using cheap physics solvers in a small feature space Grid Search can be an option to

guarantee the global optimal solution. However, for each added parameter the total cost of the search

gets exponentially bigger.

Two physics solver methods were used: 3D Vortex Lattice Method solver (VLM, program: OpenVSP) for

global optimization and design review and a 3D Computational Fluid Dynamics Finite Volume Method

solver (CFD CVM, program: Ansys Fluent). For meshing SnappyHexMesh from OpenFOAM was used,

but for simulations it is much less stable and problems are more difficult to solve than Ansys Fluent.

Considered solver methods are given in table 2.1. As Tornado lacked many of the features to build am

automated optimization system, OpenVSP was used instead.

Solver Case Method (interaction language) CPUh accuracy usage

XFoil 2D airfoil Panel Method (command line) low low easy

OpenVSP 3D UAV Vortex Lattice Method (Python) medium low medium

Tornado 3D UAV Vortex Lattice Method (Matlab) medium low medium

OpenFOAM 3D UAV CVM NS CFD (C++) very high medium difficult

Ansys Fluent 3D UAV CVM NS CFD (C++) very high medium medium

T��½� 2.1: List of considered physics solvers.

2.2.1 Computational Fluid Dynamics

Computational Fluid Dynamics Control Volume Method takes a volumetric approach to iteratively solve

the governing Navier-Stokes equations (NS). This is a thorough and CPUh costly method. The

simulation space is divided into small control volumes (figure 2.13) and initial values for crucial

elements of fluid flow are generated to the sides of those volumes. At each iteration the partial

differential equations of the NS are solved over the volumes. When overall mass, energy and

momentum balance and residuals converge, the iterations stop.

The method is very sensitive to the control volume mesh quality. As quality automatic CVM mesh

creation is difficult to achieve and even airfoil analysis can take a few days to converge, it is not suitable

for global optimization, but is used to verify the results.[3]

F®¦çÙ� 2.13: Example of an OpenFOAMmesh of Onera M6 wing.



2.2.2 Vortex Lattice Method

Similarly to CVM CFD iterating the values of a physics control volume environment to a close to

equilibrium state vortex lattice method divides the body of the aircraft into sections. Each section is

then solved separately using the panel method by assuming in that position a wing of infinite span and

non-varying cross-section. In this method NS equations are not solved. Instead it uses an inviscid

linear-vorticity panel method with a Karman-Tsien compressiblity correction to solve the airfoil as a 2D

case by dividing it into a few hundred small panels. XFoil, which is used within this project for

preliminary comparison of optimization algorithms, uses the same technique for 2D airfoil analysis

(figure 2.14).

F®¦çÙ� 2.14: Example of an XFoil airfoil mesh.

The VLM builds on the panel method solutions by cutting the aerodynamic body into sections and

interpolating the results over the span (figure 2.15). On the course of this the model is considered as an

infinitely thin sheet of vortices. Thus, the method neglects influence from thickness and viscosity. This

simplified method results with very low CPUh requirements and has lower accuracy outside specific

conditions.

F®¦çÙ� 2.15: Example of an OpenVSP flying wing section mesh.

Inaccuracies occur when compressibility and thermal energy needs to be balanced and also near stall

and turbulent conditions[4]. VLM is also limited to wings with AR > 3 as the rotational flow effects

that reach the mid chord are not accounted for. Furthermore, as is also shown in the validation

subsection lifting line based VLM method does not work well with thin plates outside α = ±5° as the

frontal area growth, which increases considerably is not accounted for. The CFD solver solved the flat

plate problem at lower and higher angles of attack well.

Despite the drawbacks, within these limitations complex wing geometries can be analyzed using the

method and since OpenVSP has an option to blend the wing sections, it is ideal for BWB UAV

prototyping. Also, the computational cost is quite cheap: approximately 15min per model.[5] Tornado,

As OpenVSP outputs values of CMy it can be used to find the AC position of the aircraft after solving

the simulation at two different angles of attack. By comparing the coefficients of moment and lift of the

aircraft at two different angles of attack α1 and α2.

AC =
CMy1 − CMy2

CL1 − CL2
(2.23)



2.3 Multi-Objective Optimization Methods

In the optimization task of the project a Bayesian multi-objective optimization method (B-MOO) is used

to search for a global optimum in the the less intuitive portion of the decision space. When selecting

the optimization method, a state-of-the-art B-MOO acquisition function Predictive Entropy Search (PES,

by Harvard Intelligent Probabilistic Systems []) is compared to conventional B-MOO types (table 2.2)

and to a non-dominated sorting genetic algorithm NSGA2.

Method Full name

PES Predictive Entropy Search

EHI Expected Hypervolume Improvement

ParEGO Pareto Efficient Global Optimization

SmsEGO S-Metric Selection-based Efficient Global Optimization

SUR Sequential Uncertainty Reduction

T��½� 2.2: List of implemented Multi-Objective Optimization methods.

The optimization task is set up as a black-box, sending the parameter vector to the physics solver

(adding points to the decision space) and retrieving the results vector to the objective space (figure

2.16).

F®¦çÙ� 2.16: The multi-objective decision and objective space paradigm.

As in aerodynamics analysis complex correlation between certain geometry parameters and the results

are not analytically solvable a variety methods can be used to find the optimum. When using

computationally cheap physics solvers in a small feature space Grid Search can be an option to

guarantee the global optimal solution. However, for each added parameter the total cost of the search

gets exponentially bigger. Considering an evaluation time of 1 s per parameter evaluation would mean

10 s for a 10 sample point grid with just one tunable parameter. When increasing the number of

parameters to 10, the total time consumption increases to 1010 seconds, which is more than 300 years.

The ability to have a complex and fully controllable geometry illustrates the curse of dimensionality.

Tackling the problem, scientists and engineers have both developed functions to create a smaller and

more efficient decision space. As an the Kulfan CST curve can produce a greater number of

aerodynamically efficient airfoil shapes with the same number of control points than its predecessors.

However, with the growing functionality of a curved line the intuition and convexity of the optimum

solution tends to become more intricate. With these tasks gradient based numerical solvers are not

very efficient either - thus, global optimizers and surrogate modeling are used. The latter seem very

promising to give engineers a real-time feedback to the designs physics condition (e.g new modules of

Ansys [? ]), whereas the former are more suitable for solving undocumented scenarios. Bayesian

Optimization is emerging as an efficient way to tackle the curse of dimensionality related problems,

when finding a global optimum.



2.3.1 Bayesian Optimization

Bayesian Optimization is a method that utilizes previous knowledge to fine-tune the input space

parameters so that the next test case explores the feature space where it has the highest potential of

increasing the reward. In essence it utilizes the Base Theorem on Gaussian Processes (GP) as shown in

equations 2.24 and 2.25.

P (f |D) =
P (f)P (D|f)

P (D)
(2.24)

P (f |D) = GP(f ;µy|D,Ky|D) (2.25)

Gaussian Processes (GP), in this context, can be thought of as multivariate Gaussian distributions over

an infinite dimensional space based on previous evaluations (D = {X, y}). The resulting GP (equation

2.26) is a set of distributions over functions described by a mean function µ and covariance functionK.

The resulting probability map can be used to predict the loss value for the next evaluation.

f(X) ∼ GP(µ(X),K(X, X′)) (2.26)

An acquisition function is used to determine which evaluation setup would be the most valuable to

observe (equation 2.27) and the real and predicted loss are compared after the new experiment.

xn+1 = argmax
x

α(x;Dn) (2.27)

New Gaussian Processes are formed based on all prior experiments as the next iteration begins. The

basic procedure of Bayesian Optimization for N iterations is shown in Algorithm 1. The main

hyperparameters to tune is the acquisition function and the kernel.

Algorithm 1 The Basic Bayesian Optimization Algorithm

Surrogate function f to propose a vector of Pareto optimal points XP

1: for n = 0, 1, ...N do

2: f(X) ∼ GP(µ(X),K(X, X′))
3: xn+1 = argmax

x

α(x|Dn)

4: yn+1 = f(xn+1)
5: Dn+1 = {Dn, xn+1, yn+1)
6: end for

2.3.2 Bayesian MOO tuning

Acquisition functions determine the balance between exploration (evaluating points around low mean)

and exploitation (evaluating points near high uncertainty) of the space. The following functions are

considered and compared: Expected Hypervolume Improvement (EHI), Sequential Uncertainty

Reduction (SUR), Pareto Efficient Global Optimization (ParEGO), S-Metric Selection-based Efficient

Global Optimization (SMSego), Predictive Entropy Search (PES). A single objective task and four

acquisition functions were programmed in Python to visualize and compare the process (figure 2.17).

Expected Improvement (equation 2.29) is widely used because of its property to not get stuck in local

minimas as its predecessor Probability of Improvement (PI) (equation 2.28) does. In the equationsΦ
denotes the cumulative density function of standard normal distribution and φ denotes the probability

density function of standard normal distribution. The PI only selects the next point with the highest
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F®¦çÙ� 2.17: Comparison of acquisition functions proposing the next test point.

variance below the optimal evaluation in the tested data setD. The EI on the other is a tradeoff

between exploitation (a low mean value) and exploration (high variance).[6]

αPI(x;Dn) = Φ

(
ŷ − µn(x)

σn(x)

)
(2.28)

αEI(x;Dn) = (ŷ − µn(x))Φ

(
ŷ − µn(x)

σn(x)

)
+ σn(x)φ

(
ŷ − µn(x)

σn(x)

)
(2.29)

EHI is an EI algorithm utilizing hypervolumes for multi-objective optimization, finding Pareto optimal

solutions. ParEGO, SMSego and SUR have their roots in EI to some degree. ParEGO uses weights to

convert a multi-objective problem into a single objective problem, thus becoming a fairly inexpensive

analysisO(N)3, where N is number of observations made.[7]

SMSego uses the Pareto front in a multi-objective framework: utilizing the S-metric or hypervolume of

the Pareto front to decide which solution is evaluated next. Maximizing the hypervolume within a real

multi-objective optimization shows superior results compared to ParEGO, but also has a higher

computational costO(KN3), where K is the number of objectives.[8]

SUR also utilizes the Pareto front hypervolumes for real multi-objective optimization, but has a more

complex strategy of sequential reducing by sampling entropy (an uncertainty measure)[9]. In essence

SUR looks for the next point, which reduces the uncertainty of the minimizer. SUR is considered

computationally very expensive as it relies on voluminous GP simulations. EHI, SMSego and SUR are

limited to 2-3 objective functions.[10]

A different method, PES or PESM for a multi-objectvie case is a recent method to tackle more than 3

objectives without converting them into a single objective problem. PES chooses evaluations to reduce

the entropy of the posterior distribution over the Pareto set. Unlike the other methods discussed,

Entropy Search based methods do not have closed-form expressions of the distribution and evaluating

the expected utility is much more complex. The computational cost of PES is in a linear connection to



the size of objectives K and it allows decoupling of evaluations. Therefore, PESM is the most prominent

acquisition function reviewed during this project. PESM is much more complex regarding its algorithm,

but is described as equation 2.30. [7]

αPES(x) = H[x∗|D]− Ey{H[x∗|D ∪ (x, y)]}, (2.30)

where the next decision x∗ should be made based on the entropy given dataH[x∗|D and the

expectation Ey with respect to the entropy and given data. This form of the acquisition function is not

feasible, therefore machine learning engineers work out methods to utilize the essence of the

model.[7]

The other major parameter of B-MOO, kernel, determines how the distributions are formed over the

mean values (e.g how smooth, ”wiggly” or periodic they are). The default Spearmint GP kernel is used

and is based on a Matérn 5/2 covariance function, which according to gptools documentation is one of

the fastest of the Matérn kernels.[11] The Matérn kernels (equation 2.31) are controlled by the

length-scale (l) and a smoothness paramete ν. The parameter ν gives extra flexibility to better adapt to

the true underlying function. It is suggested in literature that 3/2 and 5/2 might be most suitable for

this projects problem as 1/2 is too rough and 7/2 would not work well in noisy data.[12]

kM (r) =
21−ν

Γ(ν)
(

√
2νr

l
)νKν(

√
2νr

l
) (2.31)

A stable and well-capturing kernel was very difficult to compose and default settings yielded the best

along with fine-tuning α (a noise correction metric) to the data. The results shown on Figure 2.17 were

retrieved with α = 1e− 10. Although it is document in numerous documentation that PI would have

issues with finding a global minima, it seems to rank pretty close to the EI. However, EI, seems to stake

more on exploration as its peak is steeper. LCB seemed to yield flatter values and therefore might be

slower when dealing with a non-convex problem.

2.3.3 Comparison to NSGA2

Genetic Algorithms (GA) is a large set of search based optimization techniques inspired by the natures

process of natural selection (figure 2.18a). Unlike Bayesian Optimization methods discussed in the

previous subsection, GA-s evaluate new points by generation, which consist of many chromosomes

(selected evaluation points). Each chromosome consists of genes, i.e the decision space parameters,

which have values (alleles) for that specific evaluation point.[13] The algorithm (figure 2.18) is

initialized by creating a random or engineer selected generation. The generation is then evaluated by a

fitness function. Methods for crossover, mutation, elitism and survivor selection can be used to create

the next generation of chromosomes. The next chromosomes can be created by choosing the fittest

chromosomes and combining their gene alleles. Mutation is used to further enhance finding a globally

optimal solution as this gives random values to some chromosome genes. If the termination criteria has

been reached (either a given number of iterations or a certain fitness value), the algorithm loop stops.

In the preliminary steps of choosing a MOO, the EI B-MOO was compared to a non sorting genetic

algorithm NSGA2. NSGA2 is a simple Pareto efficiency based genetic algorithm, which is able to solve

non-convex and non-smooth problems enforcing constraints using a tournament selection-based

strategy. Mutation is also possible in this evolutionary algorithm.[14]

A 2D decision and 2D objective space was optimized: the impact of the airfoil leading edge upper and

lower curve variables x1 and x2 were were compared to Cl and Cd. Using Kulfan CST and Bezier curve

Python scripts to form an airfoil the XFoil 2D physics solver evaluated proposed airfoil shapes. While

the EI was simple enough to be coded up from scratch, NSGA2 was used from a Pyhton optimization

package DEAP[15]. Although the Kulfan-CST airfoil curve generator has more flexibility to explore the

decision space geometry, the Bezier curve was used in the following analysis as XFoil became unstable

to many seemingly smooth shapes. The NSGA2 parameters mutation, generation size and number of

generations were considered when tuning the model. Given that the maximum number of evaluations



(�) Hierarchy of a GA Population.

(�) A typical genetic algorithm sequence.

F®¦çÙ� 2.18: Basics of Genetic Algorithms.

would be 300, 10 genoms by 30 generations with a mutation factor of 0.2 yielded the best results

(Figure 2.19a). After 100 data points the best Cl value is 0.967 and after 300 trials 1.05 (Figure 2.19b).

It can be observed that the algorithm decreases the x2 value in the decision space to achieve

improvement from iteration 100 to iteration 300.

0.05 0.10 0.15 0.20
x1

0.05

0.10

0.15

0.20

x
2

Decision space

1.0 0.9 0.8 0.7 0.6 0.5

−Cl(x)

0.015

0.020

0.025

0.030

0.035

0.040

C
d
(x

)

Objective space

(�) 100 NSGA2 examined data points, Pareto-optimal solutions given by blue dots.

0.05 0.10 0.15 0.20
x1

0.05

0.10

0.15

0.20

x
2

Decision space

1.1 1.0 0.9 0.8 0.7 0.6 0.5

−Cl(x)

0.015

0.020

0.025

0.030

0.035

0.040

C
d
(x

)

Objective space

(�) 300 NSGA2 examined data points, Pareto-optimal solutions given by blue dots.

F®¦çÙ� 2.19: NSGA2 Decision and Objective space paradigm.



Using EI B-MOO, XFoil was first run 30 random data points to generate (within the same constraints as

NSGA2) and the prediction results were compared to NSGA2 solutions (figure 2.20). The EI-s best

suggestion data point was run and the Cl value was 1.0495 (GPR predicted 1.084). This illustrates why

Bayesian methods clearly have an advantage over GA-s finding a global minimum value of a

multi-objective and multi-variable problem. As can be seen from figure 2.20a, although after 30

random tests EI has a pretty solid estimation of the optimal area, NSGA2 at 100 data points is farther

from that area.

(�) NSGA2 at 100 evaluations compared to a Bayesian

contour map based off 30 random points.

(�) NSGA2 at 300 evaluations compared to a Bayesian

contour map based off 30 random points.

F®¦çÙ� 2.20: NSGA2 optimization results (red dots are optimal) compared to a Bayesian paradigm.



3 Design and Optimization

In this chapter the drone is designed and aerodynamic optimization is initialized. After working through

a general design morphological table, preliminary assumptions are made to the shape, structure,

weight and propulsion system of the aircraft. Once the main frame and mechanisms are chosen the

aerodynamic optimization task is set up and solved. Results of the optimization task and validation are

discussed in the results and validation section (Chapter 4).

3.1 General Design Concept

Over a dozen general concepts were researched and/or experimented with (based on the

morphological matrix in table 3.1) before choosing the final solution (shown in bold). Following is an

analysis of top 6 solutions considered.

No
Vertical

Propulsion

Horizontal

Propulsion

Transition

Method

Horizontal

Stability

Vertical

Stability
Roll Stability

1.
One

propeller

One

propeller

Separate

propulsion

systems

Tail

horizontal

stabilizer

Tail vertical

stabilizer

Tail vertical

stabilizer

2.
Two

propellers

Two

propellers
Tilt-rotor

Vectored

thrust

Vectored

thrust

Vectored

thrust

3.
Three

propellers

Three

propellers
Tilt-wing Winglets

Reflex of

airfoil

Counter

rotating

propellers

4.
Four

propellers

Four

propellers

Control

surfaces

Control

surfaces

Control

surfaces
Tail rotor

5.
Jet

propulsion

Jet

propulsion

Bell-shaped

lift

distribution

6. Duct Fan Duct Fan
Control

surfaces

T��½� 3.1: Morphological table of general design concept of the drone.

29



3.1.1 Design Concept 1 - dual tilt-propeller tail-sitter

The dual tilt propeller tail-sitter (figure 3.1) takes off and lands on its tail, or in this particular sketch on

its winglets. The transition from vertical hover to forward flight is made by using two tilting rotors and

control surfaces as levers. The simplicity of the design makes it light-weight and aerodynamic. It is,

however, difficult to keep stable and hovering demands much power. Increasing control surfaces and

using an airfoil with reflex could help overcome the first impediment. This will not help in case there is

wind. As the propellers would be used for forward flight as well, an optimal propulsion system that is

effective in both flight modes might be impossible.

F®¦çÙ� 3.1: Sketches of a dual tilt-propeller tail-sitter.

3.1.2 Design Concept 2 - dual propeller tilt-wing

The dual propeller tilt-wing drone(figure 3.2) with a tail is much more stable than the tail-sitter in

forward flight. Thanks to the tail and tilting wings this design would allow to speed down the forward

flight to do some tasks, which would otherwise need hovering: e.g feature recognition for a payload

delivery. However, it loses the simplicity of the geometry and is aerodynamically less optimal. It still

has the same problem to tackle of finding an optimal between two flight modes.

F®¦çÙ� 3.2: Sketches of a dual propeller tilt-wing.



3.1.3 Design Concept 3 - tilt-propeller flying wing tricopter

Tricopters are a unique group of multirotors as their tail-rotor sits on a servomotor, which tilts it in

order to pan. This iteration uses a typical tricopter setup with two modifications (figure 3.3): firstly, a

wing covers the otherwise bare frame of the tricopter, and secondly tilt mechanisms are added to both

front and the tail-rotor to transition between forward flight and hover. The solution is much more

stable in hover than dual propeller solutions, while it also decreases the difference between needs of

the different flight mode propeller and motor dimensions.

F®¦çÙ� 3.3: Sketches of a tilt-propeller flying wing tricopter.

3.1.4 Design Concept 4 - tilt-propeller flying wing quadcopter

Quadcopters are even more stable than tricopters in hover mode, however, the increase in electrical

equipment onboard the drone does not pay off in terms of budget, nor in increase of payload. In fact,

the structural build of the drone (figure 3.4) becomes bulkier and thus the wingspan might become an

obstacle when finding a low cruise speed. The increase of hover time from three to four propellers is

most likely trivial as preliminary estimations show an equivalent increase of gross weight.

F®¦çÙ� 3.4: Sketches of a tilt-propeller flying wing quadcopter.

3.1.5 Final General Design Concept

After careful consideration the tilt propeller flying wing tricopter was chosen as the general design of

the drone. As can be seen from table 3.2, the chosen solution is the only one estimated to meet all



conditions. The dual propeller systems have inferior hover time, which could be increased to an extent

by adding batteries, but would also make hover less inherently even less stable. Also, DC2 build will

become more expensive and difficult due to forces on the tilting mechanism. On the other hand adding

a fourth rotor (DC4) would increase the size and weight of the drone due to structural and mechanisms

needs. This version could potentially deliver longer hover time and longer range, but would also

significantly increase the cost of the drone.

DC1: Dual tilt-propeller

tailsitter

DC2: Dual propeller

tilt-wing

DC3: Tilt-propeller

tricopter wing

DC4: Tilt-propeller

quadcopter wing

Weight 1kg 1.5kg 1.5kg 3kg

Cost 80 € 150 € 100 € 450 €

Hover

time
5-10 minutes 5-10 minutes 20 minutes 30 minutes

Hover

stability
Poor Poor Good Best

Range 20 km 15 km 30 km 70 km

Flight

speed
up to 150 km/h up to 80 km/h up to 150 km/h up to 150 km/h

Pitch

stability
Poor Best Good Good

”Dutch

roll”
Poor Best Good Good

Build

simplicity
Medium Medium Difficult Difficult

PID com-

plexity
Difficult Difficult Medium Medium

Ease of

use
Difficult Difficult Medium Best

T��½� 3.2: Comparison of General Design Concepts.

3.2 Propulsion

As three identical rotors are used, each rotor is required to generate a minimal thrust equal to a third of

the weight of the drone:

T ≥ 1

3
W ≈ 5N

Roughly estimating a power load PL = 0.1 and considering that ideally the rotors will be equally

loaded, the total power consumption is estimated to be

P ≈ σ
15N

0.1
= 300W,

where σ is a safety margin to prevent heating of electronics devices such as motors, ESC-s and

batteries. Based on preliminary estimations a 11.1V power system is chosen as when comparing

batteries from retailers they have an optimal energy density and discharge rate suitable for this

particular setup. When considering lower voltage batteries, the discharge rate might be lower than

required by the system.

Cr =
300W

11.1 V2.2 A
= 12.3

1

h

A rough estimation is also set for the motor constant velocity based on formula 2.14: between 1200 kV

to 1500 kV. Two types of brushless outrunner motors were considered: disk and canister. The disk type

motors have a flatter winding geometry and therefore should have higher torque. Based on

comparisons of weight, price, maximum power load recommendation by the manufacturer and user



feedback at first the Turnigy L2210 1400kV disk type outrunner was chosen. As experimental results

showed, the decision was changed due to technical difficulties with grub screws (discussed in

subsection 4.1).

Name Type kV Battery Mass Power Price Thrust test* User approval

Turnigy

L2210
Disk 1400

7.4,

11.1V
50g 210W 10.79$

8.8N - 8x4.5 -

150W
High

Turnigy

Park450

Canis-

ter
1200

7.4,

11.1V
66g 175W 20.14$

8N - 8x4.3

Prop - 150W

High, reliable,

efficient

Turnigy

D2822

Canis-

ter
1450

7.4,

11.1V
38g 160W 9.98$

8.5N - 8x6 -

170W

High, efficiency

issues

NTM

2826A

Canis-

ter
1200

11.1,

14.8V
58g 215W 15.59$

7N - 8x4.5 -

145W

Good, bearing

issues

Turnigy

D2826

Canis-

ter
1400

7.4,

11.1V
50g 205W 11.33$

9N - 8x6 -

273.8W

Good, well

balanced

* Thrust test results from user feedback (Thrust - propeller dimensions - power).

T��½� 3.3: Comparison of brushless outrunner motors.

Air density at 15 ◦C sea level was used: ρ5 = 1.225 kg/m3 for hover calculations. The zero-lift drag for

the propeller is assumed approximately Cd0 ≈ 0.01, but this can vary depending on the specific

geometry. Figure 3.5 shows the power load versus thrust coefficient of a varying rotor diameter from

10 cm to 30 cm (calculated using formulas from subsection 2.1.3.1). The optimum is found to

correspond to a diameter of 226mm corresponding to a rotor solidity of σ = 0.04.

F®¦çÙ� 3.5: Power loading vs. CT

On figure 3.6 the power demand of 3 rotors and available power is shown (camera, onboard computer

and telemetry supply has already been subtracted). The power supply is sufficient for climbing and

maneuvering. The weight of the drone increases by ∼1.8N as a battery added. As the thrust is

changed, it also alters CT , Cp and P as noted in the equations. The relation between hover time and

added batteries is shown in 3.7. It is clear that at least 3 batteries are needed to provide hover longer

than the 20 minutes required.

The drag coefficient for the UAV central body, including exterior devices, is approximated as

CD,P ≈ 0.1 with an estimated frontal area of A = 0.2m2. The wing drag is estimated with the

lift-induced drag using formula 2.3 and the induced drag with the formula 2.4. Drag components are

shown in 3.8. It is evident that in forward flight the least amount of energy is lost near 11m/. A

suitable cruise speed would be slightly above it to maintain stability of the aircraft in turbulence or

other deviations. These results do not take into account the more complex setting of the rotors, which

affects both the performance the wing and the propellers.

A 9’’ (228.6mm) diameter carbon fiber propeller with a 5’’ (127mm) pitch is chosen as it fits closest to

the optimal propeller diameter. The medium pitch length would work well in faster forward flight

speeds as well as hover climb rate.



F®¦çÙ� 3.6: Power demand vs available

power for hover at aNb = 2, c = 15mm

F®¦çÙ� 3.7: Expected hover time with 1

or more batteries.

As the UAV is a tilt-rotor tricopter, it can take advantage of hybrid flight modes, which are impossible

for other kinds of drones: while cruising at speeds where the wing itself is alone not sufficient enough

to maintain flight it can continue cruising getting partial lift force from the rotors. This is highly

beneficial as at the same time the positive angle of the wing adds lift force from the forward flight

mode as well. This possibility to extend flight time at low speeds is beneficial to many observational

tasks, such as identifying objects with machine learning algorithms.

Using methods from section 2.1.3.2 an estimation is found how the range and flight time would alter if

the wing would travel through the air at a fixed angle of attack and forward flight would only depend

on the rotor changing its tilting position at a fixed angular speed.

Figure 3.9 illustrates how flight time and range estimates change over a vector of βr = 0° (vertical

hover) to βr = 90° (horizontal forward flight mode) over airspeed velocity from 0m/s to the slightly

above optimal point of 12m/s.

The proposed preliminary design of the aircraft at the proposed cruise speed of 12m/s gives good
promise of flight time over 50min and range over 30 km. Also hover time over 25min is found to be

likely with this setting. Therefore, based on these preliminary calculations, the chosen propulsion

system alongside the general geometric concept of the drone fulfill requirements.

F®¦çÙ� 3.8: Drag force components over air-

speed.
F®¦çÙ� 3.9: Flight time and range estimates .



3.3 Structure and Mechanisms

3.3.1 Structure

Research shows that very few flying wing tricopters are on the market and none have a tilting rear

motor. Some hobby project blogs have revealed that the main issue with the rear tilting rotor is that it

breaks often as it is far away from the main frame and has to face downwards in order to be usable for

forward flight. Another issue commonly complained about commercial wings is the vibration carrying

over the booms to the navigation system.

As discussed in subsection 2.1.2, a fixed wing forward flight aircraft that does not have a tail requires a

carefully positioned CG up front from the AC. The recommended static margin SM for flying wings is

approximately 10-15%. Tricopters, on the other hand, prefer the CG to be positioned at equal distance

from each of the rotors centers (as shown on figure 3.10). Therefore, a compromise in the design must

be made in order to secure stability.

F®¦çÙ� 3.10: Typical structural configurations of tricopters.

All mentioned structural aspects have been taken into account developing the rough estimate of a

reliable structure (figure 3.11). The main hull material is selected extruded polystyrene (XPS) as it is

very light (ρ =∼ 20 kg/m3), easy to process, cheap and has been proven by the industry to perform

well. If later experiments reveal the material is not strong enough, it can be covered with fiber glass.

Detailed drawings are provided in the appendix for manufacturing the frame and mechanisms part of

the project.

The traditional Y-frame tricopter has three rods symmetrically joint in the CG with a 120° angle

between them. This concept has proven to be very stable and controllable, which is why most autopilot

software has been designed for this circumstance. The alternative T-frame has the same distances

between the rotors and CG and therefore is only structurally different. The Y-frame is used as it is

sturdier and the front rotors are connected with a thin round rod to ensure simultaneous tilting.

A typical distance between rotors is L = 600mm, which has been chosen for this project as well to

make autonomous flight code writing easier. The distance between rotors is near optimal as rotors are

more efficient closer together in forward flight, but the back rotor should not be influenced by the

backwash of the front propellers. Therefore, as the clearance between the front rotors is 372mm and

the diameter of the rotor is 228mm the placement is considered optimal.

Using formula 2.10, a rough optimal geometry of the flying wing is found (figure 3.12). This

approximation satisfies the tricopter central CG location and the static margin requirement of

AC −GC = 5%...15% for longitudinal stability (respectively (225.5mm...195.6mm) from the aircraft

nose). A blunt nose is designed as it makes the tilt-rotor system structurally secure and enables to

accommodate batteries and payload up front to better regulate the CG position.

A 1mm aluminum main frame is glued to the inside of the UAV (figure 3.11)). Bends have been exerted

to make it more rigid and the inner filled area has been optimized for minimal weight. The most



F®¦çÙ� 3.11: The decision space of optimization

F®¦çÙ� 3.12: Preliminary planform of the geometry before optimization.

vulnerable area of the frame is the long canal reaching to the aft rotor. As seen on figure 3.14 stress

concentrated near the sharp cuts were ca 30% higher. If the distance was increased the directional

deformation at the rotor position started increasing considerably.

F®¦çÙ� 3.13: Main frame before (left) and after (right) modification.

Two pine booms with a cross section of 12mmx12mm are bolted to the frame. Wood is preferred over

carbon fiber rods as they dampen the vibration. Rubber bushings support the navigation system casing

to further dampen the vibration effects. For optimal CG batteries are free to be placed within the



F®¦çÙ� 3.14: Stresses on the frame before (left) and after (right) modification.

blunt nose container. Winglets point downwards and act as supports during landing. For a third

support point a wheel is unfolded from inside the blunt nose on landing.

3.3.2 Tilting Mechanisms

Front propellers are mounted on an 8mm aluminum rod, which is turned by two servo motors. The rod

is supported by bearings in four locations: near both servos and in casings attached to booms

(figure3.15 ).

F®¦çÙ� 3.15: Front rotor tilting mechanism.

After theCG towards the aft the aluminummain frame turns into a C-channel accommodating a servor

motor connected to an 8mm aluminum rod for the hover mode tilting (motion sketched on figure 3.17).

This motion is necessary for the tricopter to stay stable and acts simlarly to a helicopters tail rotor.

F®¦çÙ� 3.16: The front rotor tilting mechanism force components diagram



F®¦çÙ� 3.17: The aft rotor tilting mechanism.



3.4 Aerodynamic optimization setup

Flying wing configuration aircraft have high potential to outperform conventional airplanes. They

provide many design perks: eliminating the tail reduces energy loss and instead of a long high drag

coefficient fuselage the aircraft have an efficient space in the middle, which acts as a wing.

However, to optimize the shape hundreds of variables could be tuned, which are analytically difficult to

solve and iterative simulations are CPUh costly. This curse of dimentionality can be tackled with

effective Bayesian MOO optimizers. During research Predictive Entropy Search based optimizers were

not found to have been used in aerodynamic optimization cases.

3.4.0.1 Physics and geometry setup

The physics environment of the optimization task is set standard sea level (SSL) conditions: air at 15◦C
(288.15 K), 1 atm (101 325 Pa), air density 1.225kg/m3 and air viscosity 1.789 ∗ 10−5Pa ∗ s.

Within this aerodynamic optimization assignment the Bayesian optimization MOO with a PESM

acquisition function was handed a set of 15 constrained variables. Eight of the variables with constraint

limits are shown on figure 3.18. The other 9 variables were airfoil variables for the NACA 6-series

airfoils. These airfoils have very nice qualities and are at the same time more flexible than the NACA

4-series airfoils. Airfoil geometric parameters were assigned in three sections, where the wings

changed the shape most: from centerline to the main wing, the main wing and the winglet. The NACA

6-series airfoils have the capability to both form reflex on the back of the wing providing good stability

for the flying wing. On the other hand it is flexible enough to create high lift wings with camber in the

aft.

Kulfan CST and Bezier curves were also considered as they are potentially more versatile.

Most of the constraints are due to the rotor placement and the maximum wingspan. Some were set to

prevent the physics solvers from producing unrealistic (e.g the flat plat problem discussed in the

physics solvers section) or NaN answers.

F®¦çÙ� 3.18: The optimization decision space.

The optimization task focused on minimizing energy consumption and maximize stability of the aircraft

at 12 m/s - the cruising speed selected in previous sections. The objective space variables were CD,

CMyα and CMxβ .

To analytically connect the decision space variables to the objective space variable analytically is close

to impossible. Seasoned aerodynamics and CFD experts consulted at the Technical University of

Denmark relied more on learned experience and rule of thumb laws than direct formulations. Many of



them gave examples of how sometimes good solutions are found by mistake in the aerodynamics

domain. This might be the case of the Prandtls bell shaped lift distribution, which migt have been

ahead of its time due to the structural engineering limitations of that time period.

Therefore, the hypothesis is that the Bayesian based optimization algorithm develops am intuition.

One of the authors of the PESM approach describes the algorithms method of finding the next test

point as ”hallucinating” for lack of a better word.

As the optimization task provided is much more difficult to solve for humans, another non-convex

optimization task was set up to benchmark the MOO to a human engineer. 16 loosely constrained

parameters and a similar objective space to the current task were proposed. After 50 iterations both

PESM and the human engineer converged near the same geometry as shown on figures 3.19 and 3.20

respectively.

F®¦çÙ� 3.19: PESM converged solution.

F®¦çÙ� 3.20: Human converged solution.

3.4.1 Implementation

For the purpose of using this MOO software a special configuration of Linux Ubuntu 14.04 LTS was set

up to satisfy all the dependencies of the physics solvers and the optimizers. Pyhton was used as the

main scripting language. Code written within the scope of this thesis are handed in separately as meta

data.

Error handling of physics solvers became crucial as the optimizers get influenced by every objective

space result and indirectly by not retrieving a result as well. Physics solvers can give exponentially

inaccurate results if input geometry has bad quality or physics environment is not suitable for that



solver. The geometry solvers also crashed due to some algorithmic bugs. To tackle these problems

some test points decision space values were altered by one tenth of a millimeter in order to bypass this

technical problem. Also, thresholds were set to rate ridiculous values as low results. This is not an ideal

solution as it does not reflect real-life physics. It is the best however to overcome the issue temporarily.



4 Results & Validation

In this chapter the validation of the methods used and results are discussed:

• The propulsion system estimates were tested with a thrust measuring stand and a constrained

tricopter mock-up.

• The VLM solver OpenVSP was validated with thin plate experiments in regions between α = ±5

deg and a validated CFD analysis of a S5010 airfoil based wing.

• Ansys Fluent CFD solver was validated at α = 0...10 deg with the thin plate experiment.

• Results of the optimization are reviewed with Ansys Fluent.

4.1 Propulsion validation experiments

Testing the Turnigy L2210 using a thrust measuring stand (figure 4.1) confirmed the thrust and power

given by users, but also revealed a design flaw (figure 4.2). The grub screw tightening the winding to

the fixed inner shaft had insufficient grip or vibrated loose. A workaround would have been to add grub

screws and fix it with thread-locking glue. However, to minimize risks another motor (Turnigy Park450

1200kV) was chosen instead, as it had a lower kV rate and was deemed more reliable by users. The

tests confirmed the prediction of an average 150W power draw when used a 8’’x5’’ carbon prop

between 7.5N and 8N.

F®¦çÙ� 4.1: Thrust measuring

stand.

F®¦çÙ� 4.2: Broken wires due to grub screw

failure.

For the second test a frame was composed of 11mmx50mm pine board, which weighed 1.5kg with

added weights (figure 4.3). It was loosely attached to a table stand with long bolts and kept in hover
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mode for an avearge of 7.5 minutes using one 2200 mAh 35C LiPo battery. After that the battery was

critically low and had to be charged. Reflecting on this, the 15% shorter hover time might be due to

poor hover control when attached to the stand and peculiarities of LiPo batteries as they cannot be

discharged to less than having 3.0 volts per cell.

F®¦çÙ� 4.3: Tricopter test stand.

4.2 VLM and CFD validation

Validation cases

Flat plate experiment AR = 3, Q = 20 m/s, Re = 80 000 SG5010 rectangular wing validated analysis AR =

3, Q = 20 m/s, Re = 232 000

F®¦çÙ� 4.4: Flat plate geometry.

Figures/Tests/SG5010.png

F®¦çÙ� 4.5: SG5010 rectangular wing geome-

try.

Validation results

The VLM solver OpenVSP and CFD CVM solver Ansys Fluent physics environments were benchmarked.

As can be seen from figure 4.6, between−5° and 5° the VLM results are very similar to the

experimental results. However, when leaving that zone the CL values stay on course, whereas CD

values drift off. This can be attributed to the fact that the lifting line theory does not take into

consideration the growing frontal area of the wing causing drag and an air bubble on top of the wing.

Furthermore, the as the angle of attack increases dramatically flow rotation intensifies as well, which

makes the flow even more complex. Fortunately this should not affect the results of the optimizer as

they are mostly related to very thin wings and secondly most preferred CL values of the aircraft are

expected to lie between α = .



Ansys Fluent was validated between α = to be within 5% of the experimental value. Therefore, to a

reasonable degree of certainty OpenVSP results can be validated and further examined using Ansys

Fluent.

F®¦çÙ� 4.6: Flat plate validation results.

F®¦çÙ� 4.7: SG5010 rectangular wing validation results.

4.3 Analysis of optimal result

Comparing the B-MOO solvers results it is evident that for this particular run PESM achieved some of

the closest values to the underlying real Pareto optimal solution. This was not a persistent trend: in

some test tasks e.g SUR performed superior to PESM, so did EHI. At the same time, SUR and EHI were

more prone to crashing and had to be restarted many times. This was the case during this assignment

as well.

ParEGO and SMSego, as was discussed in section 2.3.2 performed on average slightly worse, but more

persistently drew out the Pareto front for some reason (see figure 4.8 the SMSEgo and ParEGO patterns

in comparison to a hectic SUR ). In essence this is the difference between an exploitation (SMSego) vs

exploration (SUR) type acquisition function characters.



F®¦çÙ� 4.8: Comparison of B-MOO optimizers in the dCMy , CD objective space.

A Pareto optimal point from the results of all acquisition functions was selected (figure 4.9). According

to VLM OpenVSP this optimal solution has the following properties: CD = 0.036, CMy,β = −0.12 and
CMx,α = 0.04.

F®¦çÙ� 4.9: The selected Pareto optimal geometry.

The lift distribution (figure 4.10) resembles roughly an elliptical form. As the rotors will increase the

airflow over the wing the higher lift near the nose will help maintain the smoothness and decrease the

potential rotation of flow if otherwise.



4.3.1 Analysis of optimal result

[Add mesh pictures and explanations here]

Converged surprisingly well thanks to very low Re. Also, new Ansys Fluent meshes more efficiently.

Figure 4.12

Pressure plot looks nice and smooth - this is good for stability, max lift and structure as well. The

pressure at nose is not very high. Figure 4.13

F®¦çÙ� 4.10: Lift distribution over the span of the Pareto optimal solution.

F®¦çÙ� 4.11: Boundary conditions for the Ansys Fluent CFD analysis.

F®¦çÙ� 4.12: Convergence of the CFD simulation.



F®¦çÙ� 4.13: Pressure plot of the CFD simulation



4.4 Final assembly of drone

F®¦çÙ� 4.14: Pressure plot

F®¦çÙ� 4.15: Pressure plot



5 Brain-Computer Interface

This chapter contains the methods, design and validation of the nice-to-have requirement of the

product: a brain-computer interface to communicate with the drone. The goal of training a policy to

distinguish motor movement was accomplished.

Brain Computer Interface (BCI) constitutes a mean of communication between a human brain and a

computer using the recording of brain signals. BCI technology is highly probable to integrate to our

daily life within the next decade. According to Gartner Hype Cycle for Emerging Technologies 2017 the

plateau of productivity will not be reached in less than ten years. In combination of highly sophisticated

machine learning and signal processing algorithms and rapidly evolving electronics there is an ocean of

neurons waiting to be discovered.

Drone pilots during missions (e.g surveillance, rescue, conflict situations etc) have a complex task to

resolve: while having hands filled with controllers they need to assign other commands besides

maneuvering. As the motion of the drone using FPV could be inherently similar to the intuition of

moving ones limbs and creating similar patterns in the brain signals. One study revealed even that

expert action video game players had a more developed sensorimotor network. Therefore it is likely

that future unmanned vehicle pilots conducting critical missions will be connected with an integrated

BCI system.

Work described in this chapter assesses the concept to control a drone in a three class system (move

left, no movement and move right) using real and motor imagery data collected with a modified

consumer EEG headset (figure ??). The EMOTIV EPOC+ is the property of the Department of Applied

Mathematics and Computer Science at Technical University of Denmark. The 14 electrodes and the

amplifier had been detached from the plastic headset and placed in an EEG cap according to the layout

shown in figure ??. The signal from those electrodes goes to the EMOTIV EPOC+ wireless amplifier,

which sends the data over Bluetooth to the laptop. On the drone there is a Raspberry Pi computer

directly connected to the navigation and control system of the drone and over Mavlink to the laptop.

This does not only provide autonomous flight capabilities to the drone, but also a fills the loop of the

BCI drone system.

(�) .

(�) New placement of electrodes

indicated by blue circles.

F®¦çÙ� 5.1: .

BCI systems consist of five main steps in a closed loop (figure 5.2)[16]:

• acquisition of brain signals
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• pre-processing raw data

• extraction of features

• classification

• application

• feedback

BCI systems using EEG signals are currently favored in many applications due to good temporal

resolution, easy portability, low-cost and non-invasive nature. Limitations, such as low spatial resolution

of EEG signals and an uncomfortable cap/device, still need to be overcome [1]. Amplifier-integrated

probe electrodes have proven successful to retrieve high quality α and β wave signals with no physical

contact to the scalp (at distances of ca 1-5mm from the skin). Using similar methods heartbeats have

been recorded at a 1m distance and there is evidence that with better spacial analysis techniques EEG

brainwaves could be mapped at a distance or with an inconspicuous device mounted on the head.

F®¦çÙ� 5.2: BCI system diagram of the main steps [1].

Sensorimotor brain activity within 7.5 – 12.5 Hz (µ rhythms) is most prominent in the sensorimotor

cortex (figure ??) [17]. A fraction of a second before actual motor movement, there is increased in

potentials in the premotor cortices. Data from this region connected to a command system would

therefore give faster reflexes to pilots. µ rythms are also triggered even when the movement is

planned but not executed. Although these rhythms It has been experienced that sensorimotor rhythms

present power decrease in the low frequency components, or event-related desynchronization (ERD),

and an amplitude increase in high frequency components, or event-related synchronization (ERS) [17].

5.1 Data recordings

As mentioned, data was received from 14 electrodes as shown on figure ??. The subjects sat

comfortably behind a desk in front of a laptop, where commands would show up on the screen to

either actively hold an open hand or fist or relax (figure 5.4). Therefore five brain states were recorded.

Pictures were chosen to be aesthetically pleasing and not too bright to ease the recording process and

help subject blink less during the recording. Also, the room was kept silent and dim.

The picture commands came up in a random sequence and data was labeled accordingly within a

Python script, which received channel signals over EMOTIV EPOC+ Bluetooth transmitter. The

commercial headset uses saline water for better conductivity, whereas the modified EEG-cap used a

viscous saline gel. The process of getting subjects mentally ready for recording and having good

conductivity was crucial as focusing on actively forming a gesture was demanding for subjects. To



(�) Sensorimotor related functional areas in the brain anatomy.

(�) µ frequency response of

planned movement of limbs [? ].

F®¦çÙ� 5.3: .

clarify: actively forming a gesture does not imply squeezing, but rather mindfully making a gesture. The

EEG signals were first referenced to the baseline between sessions: eyes open, blank dark screen on

the laptop. A maximum of 4-5 five minute sessions were recorded as the process is tiring. Six subjects

data was recorded as summarized in the results subsection.

F®¦çÙ� 5.4: .

5.2 Signal processing and classification methods

The raw data was first pre-processed (cleaned), transformed before classification algorithms were

trained. For the first two tasks were a Python EEG analysis and visualization libraray, MNE was used??.

For classification machine learning algorithms from Sklearn were used??.

First, the baseline was subtracted (eyes open recording) from each channel and ”noisy” electrodes

(electrodes that had transmitted unrealistic values) were removed from data. To further reduce noise

in the data a bandpass filter (Butterworth) was applied to separate the 11-30 Hz band, which involves µ
and β waves. This also eliminates external signals coming from power lines (50 Hz) and frequencies

from electronics, the human body and the Earth (Schumann resonance). Finally, ICA (Independent

Component Analysis) was applied for artifacts removal. ICA is based on the assumption that the

multi-channel data is constituted by linear independent basis (or components) in temporal domain.

This hypothesis allows to extract components such as eye blinking and muscle artifacts.



The data was transformed from the time/potential domain into the frequency domain using Fast

Fourier Transformation. As data was scarce (especially in the beginning of the project), the FFT function

moved over the data set one time step at a time taking 256 data points sequentially. Classifiers were

then trained and cross-validated to distinguish right-hand movement from no-movement (resting state)

and left-hand movement. The following five classifiers were considered: Linear Discriminant Analysis

(LDA), Support Vector Machine (SVM), Logistic Regression (LR), Multilayer Perceptron (MLP) and

Gradient Boosting Classifier (GBC). Their pros and cons are further discussed under the classifier

selection subsection.

5.2.1 Classifier selection

Linear Discriminant Analysis (LDA)

LDA is a much-used method for EEG-based BCI classification tasks. To distinguish between classes it

predicts two normal density functions by applying least squares estimation. This method is therefore

computationally effective and robust. LDA does not work well with non-linear separation and is

sensitive to outliers because of its method of projecting data points.

Logistic Regression (LR)

LR is widely used to predict cancer, given patient general and habit data. LR provides the probability of

a binary output and has similar properties to LDA, but instead of using density functions to distinguish

between classes, it uses using log-odd functions. LR is more robust than LDA and usually LDA gets a

worse result. LR performs very well with problems with not too many features can give very good

predictions to a data set with a binary output and the data is linearly separable. LR is robust, fast and

can be regularized to generalize well for new data. However, it has many disadvantages when there are

many features and mixed correlations between them; continuous systems and if data is not linearly

separable. As output is binary this method might work well, but depending on feature selection there

might be problems. For further accuracy, Logistic Regression maybe not the best choice here, but it has

good potential to be a weak learner.

Support Vector Machines (SVMs)

SVMs are widely used for EEG-based BCI classification problems, disease diagnosis and other problems

which are difficult to separate linearly. SVMs allow the ’kernel trick’ to separate linearly inseparable

data, meaning that it should get a better accuracy when properly tuned than LDA and LR. SVMs are

sometimes referred to as a black box as the separating vectors are complex. They are also

computationally quite costly and demand more training data when compared to other algorithms.

Therefore, this may be a limiting factor for our project. SVM is less robust than LR, which may cause

overfitting.

Gradient Boosting Classifier (GBC)

Gradient boosting is gaining popularity on Kaggle Machine Learning competition platform as it has

proved to be a very efficient way to continuously improve a model, while being computationally light

and less volunerable to overfitting. Most notably this method won the Netflix competition[18]. GBC

puts more emphasis on harder to classify data, while staying robust. Partly because of this more

iterations doesn’t make the model overfit. Using multiple weak learners makes it work well with

non-linearly separable data. However, it is computationally more costly than LDA and LR, but not

merely as costly as SVM-s. The data will be hard to connect to the model results to interpret, because

of many weak learners. Many learners and their combinations also create more hyperparameters for

tuning.



Multilayer Perceptron (MLP)

MLP is considered a form of Deep Learning as it takes advantage of the similar effect of hidden

perceptrons. The same concept of LR can be expanded to a feedforward neural nets perceptrons by

transforming the value with a sigmoid function. This is a very beneficial method of making it possible to

solve very complex problems. Although it is widely used, it has many disadvantages. Similarly to GBC,

the model is hard to interpret through logical assumptions of features and labels. It is also

computationally rather costly, uses many parameters and has a tendency to overfit. However, as it is

difficult to extract features from the 14 input channels while capturing still over 90% of the variance,

this might be considered as a good solution.

5.2.1.1 Workflow and metrics

First data is split into separate two groups training (80%) and testing (20%) and are treated as a three

class problem distinguishing between left and right hand movement and relaxation. The data can not

be shuffled and data from the same person from the same recording day should be used as brains tend

to shift their patterns overnight. A Naive modelling method is used for a reality check predicting the

biggest class label:

NaivePredictor =
tp

AllData
,

After the classification models are compared, one model is chosen to be further tuned with an

exhaustive grid search. Sklearns GridSearchCV function is used to evaluates all proposed combinations

of selected hyperparameters [19]. All results were evaluated using K-fold cross-validation with

Fβ − scoremetric [20]. Fβ score takes values between 1 (being the best precision score) and 0 (being

the worst) and can be defined as

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
, (5.1)

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

, (5.2)

where tp (true positive) = ”correct result”, fp (false positive) = ”unexpected result”, fn (false negative):

missing result and tn (true negative) correct absence of result.

To finally test the system the classifier should be trained during the recording session and validated

with an empirical test right away. For this a virtual environment was created in Python, where a box

would assume the direction of movement depending on which limb moved or was imagined moving

(figure 5.5).

F®¦çÙ� 5.5: BCI system diagram of the main steps [1].



5.2.2 BCI task results and discussion

After initial classification trials were done on the preliminary recorded data, it was desided that

Gradient Boosting Classifier would be the most prominent to be used. The three best classifier types are

shown on figure 5.6. It was a hard decision as the graph only shows the weighed average results. For

some subjects data one classifier worked better than for others, for another subject it was vice versa.

However, the other classifiers (LDA and SVM) scored steadily less than others. We can see that the MLP

and GBC require much more computational resources than LR. When we look at how much faster their

Fbeta scores decrease as the training portion grows we can make a safe assumption that LR is much less

prone to overfit and is more robust. However, only GBC is close to the naive classifier (dashed line).

GBC was decided to be used not only because it is the medium between the two extremes, but mostly

because of its architecture. It can be assumed that fine-tuning the hyperparameters, the weak

classifiers will generalize better and has the potential to score higher precision.

F®¦çÙ� 5.6: .

A grid search was conducted and training the classifier extensively during a session, it yielded actual

control function. Once all the data was recorded and the classifier sequentially tested and

cross-validated over each session, it achieved a consistently good score for both real motor movement

and imaginery motor movement (figure ??).

Component analysis was carried out (both PCA and ICA) in order to either join the information of two

channels into a single feature or eliminate less telling channels. This might prove beneficial in terms of

developing a more robust model that would generalize well to training different subjects and brain

states. However, as long as finding one model hyper parameter tuning that is best for a specific session

all information was vital.

As mentioned in the data recording subsection, six subjects data was recorded and their final

cross-validate results are summarized in table 5.1. To conclude, the brain-computer interface side-task

was a success: by connecting the onboard Raspberry Pi computer through a Mavlink to a ground

station, it is possible to assign tasks to the drone using the EEG cap as is by pressing right and left

arrows on a keyboard or controller on a transmitter.

Subject #sessions f-score comments

A 30 0.94 in depth classification analysis was done

B 10 0.53 ”noisy” channels in motor cortex

C 15 0.83 experienced with BCI, ”noisy” channels in motor cortex

D 10 0.59 ”noisy” channels in motor cortex

E 20 0.69 many distractions during recording

F 5 0.56 subject was tense, ”noisy” channels in motor cortex

T��½� 5.1: Results



(�) µ frequency response of planned movement of

limbs [? ].
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A An Appendix

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at pulvinar nisi. Phasellus hendrerit,

diam placerat interdum iaculis, mauris justo cursus risus, in viverra purus eros at ligula. Ut metus justo,

consequat a tristique posuere, laoreet nec nibh. Etiam et scelerisque mauris. Phasellus vel massa

magna. Ut non neque id tortor pharetra bibendum vitae sit amet nisi. Duis nec quam quam, sed

euismod justo. Pellentesque eu tellus vitae ante tempus malesuada. Nunc accumsan, quam in congue

consequat, lectus lectus dapibus erat, id aliquet urna neque at massa. Nulla facilisi. Morbi ullamcorper

eleifend posuere. Donec libero leo, faucibus nec bibendum at, mattis et urna. Proin consectetur, nunc

ut imperdiet lobortis, magna neque tincidunt lectus, id iaculis nisi justo id nibh. Pellentesque vel sem in

erat vulputate faucibus molestie ut lorem.

Quisque tristique urna in lorem laoreet at laoreet quam congue. Donec dolor turpis, blandit non

imperdiet aliquet, blandit et felis. In lorem nisi, pretium sit amet vestibulum sed, tempus et sem. Proin

non ante turpis. Nulla imperdiet fringilla convallis. Vivamus vel bibendum nisl. Pellentesque justo

lectus, molestie vel luctus sed, lobortis in libero. Nulla facilisi. Aliquam erat volutpat. Suspendisse vitae

nunc nunc. Sed aliquet est suscipit sapien rhoncus non adipiscing nibh consequat. Aliquam metus

urna, faucibus eu vulputate non, luctus eu justo.

Donec urna leo, vulputate vitae porta eu, vehicula blandit libero. Phasellus eget massa et leo

condimentum mollis. Nullam molestie, justo at pellentesque vulputate, sapien velit ornare diam, nec

gravida lacus augue non diam. Integer mattis lacus id libero ultrices sit amet mollis neque molestie.

Integer ut leo eget mi volutpat congue. Vivamus sodales, turpis id venenatis placerat, tellus purus

adipiscing magna, eu aliquam nibh dolor id nibh. Pellentesque habitant morbi tristique senectus et

netus et malesuada fames ac turpis egestas. Sed cursus convallis quam nec vehicula. Sed vulputate

neque eget odio fringilla ac sodales urna feugiat.

Phasellus nisi quam, volutpat non ullamcorper eget, congue fringilla leo. Cras et erat et nibh placerat

commodo id ornare est. Nulla facilisi. Aenean pulvinar scelerisque eros eget interdum. Nunc pulvinar

magna ut felis varius in hendrerit dolor accumsan. Nunc pellentesque magna quis magna bibendum

non laoreet erat tincidunt. Nulla facilisi.

Duis eget massa sem, gravida interdum ipsum. Nulla nunc nisl, hendrerit sit amet commodo vel, varius

id tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc ac dolor est. Suspendisse

ultrices tincidunt metus eget accumsan. Nullam facilisis, justo vitae convallis sollicitudin, eros augue

malesuada metus, nec sagittis diam nibh ut sapien. Duis blandit lectus vitae lorem aliquam nec euismod

nisi volutpat. Vestibulum ornare dictum tortor, at faucibus justo tempor non. Nulla facilisi. Cras non

massa nunc, eget euismod purus. Nunc metus ipsum, euismod a consectetur vel, hendrerit nec nunc.
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