TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Vladimir Semjonov 142944|ALB

MSP432 BASED BLUETOOTH
DATALOGGER FOR ANDROID SMART
DEVICES

Bachelor’s thesis

Supervisor: Eero Haldre

Certified Engineer

Tallinn 2018

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Vladimir Semjonov 142944|ALB

MSP432 POHINE BLUETOOTH
ANDMELOGGER ANDROID
NUTISEADMETELE

Bakalaureuse t606

Juhendaja: Eero Haldre

Dipl. Insener

Tallinn 2018

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Vladimir Semjonov

21.05.2018

Abstract

This thesis is developed for Thomas Johann Seebeck electronics institute as a Bluetooth
Low Energy communication solution between Android smart device and Texas
Instruments microcontroller combination. The thesis project consists of an example
program from the “Texas Instruments” organization for MSP432 microcontroller and
companion booster packs, an Android application for smart devices and a guide for
students’ successful understanding and learning of the communication solution. The
thesis gives an overview the principles of Android application development for
communication with microcontroller combination. The Android application is an
essential tool for issuing sensor information, which makes possible to monitor the
information coming from the sensors and examine the application’s operation. This
graduation thesis is useful for students, who are interested in exploring the world of

microcontrollers and want to develop the system set up to achieve institute’s goals.

This thesis is written in English and is 64 pages long, including 5 chapters, 33 figures
and 4 tables.

Annotatsioon
MSP432 POHINE BLUETOOTH ANDMELOGGER
ANDROID NUTISEADMETELE

Antud 16putdd on loodud Thomas Johann Seebecki elektroonikainstituudile Texas
Instruments mikrokontrolleri MSP432 ja Android nutiseadme vahelise side
katsetamiseks Bluetooth Low Energy interfeisi kaudu. Loputéd projekt koosneb firma
»lexas Instruments poolt loodud nédidisprogrammist mikrokontrollerile, Android
rakendusest ja koostatud juhendist iilidpilastele. To0s antakse lilevaade mikrokontrolleri
tegevusest ja loodud Android rakendusest. Android rakendus on andurite informatsiooni
esitamiseks loodud toorist, millega on voimalik jdlgida anduritest tulevat informatsiooni
ja uurida rakenduse tootamist. Antud I0putdod tuleb kasuks {ilidpilastele, kes on
huvitatud mikrokontrollerite arendustéddest ja soovivad loodud vahendit edasi

arendada.

Loputdd on kirjutatud inglise keeles ning sisaldab teksti 64 lehekiiljel, 5 peatiikki, 33

joonist, 4 tabelit.

List of abbreviations and terms

ARIB Association of Radio Industries and Businesses
ARM Advanced RISC Machine

BLE Bluetooth Low Energy

CCS Code Composer™ Studio

CE Conformité Européenne

CPU Central Processing Unit

DSP Digital Signal Processor

EMC Electromagnetic Compatibility

EVM Evaluation Module

FCC Federal Communications Committee
110 Input / Output

I’C Inter-Integrated Circuit

IC Industry Canada

IDE Integrated Development Environment
IR Infrared

IrDA Infrared Data Association

JTAG Joint Test Action Group (named after group which codified it)
LED Light Emitting Diode

LGA Land Grid Array

LLC Limited Liability Company

LPM Low Power Mode

MCU Micro Controller Unit

0sS Operating System

PWM Pulse-Width-Modulation

RISC Reduced Instruction Set Computer
RTC Real-Time Clock

SDK Software Development Kit

SNP Simple Network Processor

SPI Serial Peripheral Interface

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter
Ul User Interface

USB Universal Serial Bus

Table of contents

L INEFOUUCTION .ttt enneenenennnn 12
2 TECNNICAl OVBIVIBW, 13

2.1 Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller

LaunchPad™ Development Kit..........ococveiiiiiiiiiiiiiii e 13
2.1.1 XDS110-ET Onboard Debug Probe..........cccooeiiiiiiiiiiiceesc s 15
2.2 Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in module......... 15
2.3 Texas Instruments SimpleLink™ Sensors BoosterPack™c.ccccccoiiieennn. 17
2.3.1 Texas Instruments “OPT3001” Light Sensorccoovvvviiiiiiniiiciiien, 17
2.3.2 Texas Instruments “TMPO007” Temperature Sensor..........cccoevververieervernnens 18
2.3.3 Bosch “BME280” Integrated Environmental Unit...........ccccoeviiiiiiniininnnnnn 18
2.4 Android and Bluetooth LOW ENEIQYc.ccveiiiieiieieiicceee e 19
2.4.1 Definition Of ANAroidc.oieiiiiiiiisieiee e 19
2.4.2 Android operating system importance in thesis projectcc.ccoccvevvvrinnns 19
2.4.3 BIUELOOTh LOW ENEIQY ..cvvoiiiiiieiiiiiisieeeeeeie e 19
2.4.4 Application of Bluetooth Low Energy in thesis project............cccocceevvevnnne. 20
2.5 OVErVIEW O the SYSIEMcuiiiie e 20
S PIaCHICAl PAIT ...t 21
3.1 Setup of MCU hardware and envVironmMeNt............ccocvevereereseeseesesieseese e 21
3.1.1 ChOICE OF IDEciiiiiiieieiie ettt ettt 21

3.1.2 Setting up the Code Composer™ Studio IDE.........ccccooviininienienieecee 21

3.1.3 Updating Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in

module with the latest SNP IMage........ccccveiiiiiiiiieiiie e 22
3.1.4 RUNNING the eXaMPIE ...c.viiiecece e 25
3.2 Android application deVelOPMENtcccviiiiiiiie e 27
3.2.1 ChOICE OF IDE......cciiiiieiciee e 27
3.2.2 Testing smart device setup for development ..o i, 29

3.2.3 Planning of the application structure and creation of the project in Android

STUAIO IDE ... 29
3.2.4 First additions and “Start” aCtiVItyccovvveririiineenise e 30
3.2.5 “SCAN" ACHIVILY .oouviiiiiiiiiiiiie i 32
3.2.6 “SensorOutPUL” ACHIVILY......ciiviiriiiiiieii e 32
A SUMIMAIY ...ttt ettt b et s bbb e bt e e e b e e bt et b e b e e e nne e e 40
S REFEIBNCES ... 41
Appendix 1 — MSP432 Datalogger User’s GUIAEcccourerrrierineniiinie e 43

List of figures

Figure 1: MSP-EXP432P401R LaunchPad™ Development Kit [1]......c..ccccovvrvveriannns 13
Figure 2: Overview of the EVM hardware [1]cccooieiiiiniiiiieecec e 14
Figure 3: XDS110-ET Debug Probe [1].....ccccoiiiiiieiice e 15

Figure 4: Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in module [2]

.. 16
Figure 5:BOOSTXL-SENSORS BoosterPack™ Plug-in Module [4]ccccoovvvninne. 17
Figure 6: Profile, service and characteristic locations in system [9]cccceceiiveiiennne 20
Figure 7: The thesis project's SYStemM OVEIVIEWcccccveieevieerieiiese e 20
Figure 8: MCU combination setup for SNP image programming...........cccceceeerererennnee 23

Figure 9: Snapshot from SmartRF™ Flash Programmer 2 including successful

reprogramming of CC2650 BoosterPack™cccocviiiiiiiiiiicee 24
Figure 10: MCU cOmMbBINAtIONcoveiiiiiciice e 25

Figure 11: Snapshot from Code Composer™ Studio IDE with active debug session of

Sensor BoosterPack™ example COAeooiviiiiiiiiiiiiiicieeee e 27
Figure 12: Android Studio SNAPSNOL...........ccoveiiiiiiccie e 28
Figure 13: Structure of the Android appliCation............ccccevvveeiieiiiiciic s 29
Figure 14: Example of the Bluetooth permission granted to the application................. 30
Figure 15: Snapshot of "Start™ activity of the Android applicationccccceevvrvennne 31
Figure 16: Successful finding of MSP432 SensorHUD ... 32
Figure 17: Connect method for sensor output actiVityccoceveeieniiiinieenenee e 33

9

Figure 18: Connection progress dialog..........cooviiiiiieieieieseseseseseee s 33
Figure 19: Sensor BoosterPack™ example code output in CCS terminal 33
Figure 20: Service diSCOVEry dialogccoveviiiiiiiciiic e 34

Figure 21: onConnectionStateChange method realization if the connection is successful

.. 34
Figure 22: Sensor enabling dialogcoeoviiiiiiiiiicee s 34
Figure 23: Sensor enabling PrOCESSccvciveiiiiieiieie e 35
Figure 24: onServicesDiscovered callback if the discovery is successful 36
Figure 25: onCharacteristicWrite GATT callbackccccooiiiiniiiiiiie 36

Figure 26: onCharacteristicRead GATT callback if the TEMP_DATA characteristic
equals the gotten characteristic UUIDccoveviiieiiece e 37

Figure 27: setNotifyNextSensor method example on temperature notification enabling

.. 37
Figure 28: onDescriptorWrite GATT callback...........coooviiiiiiiiiiiiicc e 37
Figure 29: Handler realization on temperature SENSOr CASE.........cvevveervereerreerresienreennens 38

Figure 30: onCharacteristicChanged GATT callback on example of temperature sensor

NANAIING - e 38
Figure 31: updateTemperatureValue Methodccooeieiiiiiininineee e 39
Figure 32: CCS terminal output after successful connection and sensor enabling 39
Figure 33: Data OQUIPUL Ul........oooiiiiicic et 39

10

List of tables

Table 1: OPTI110 PArAMETEIS......cceieieiiieitesierie ettt 18
Table 2: Sensor service output specification tablecooviiiiiiii 26
Table 3: Technical information of testing smart device.........cccccevevvevieevciiecece e, 29
Table 4: Case diStriDULION.........viiiiieee e 36

11

1 Introduction

The development of microelectronics and widespread use of its products in industrial
production and variety of management systems is one of the main science and
technology development directions today. The use of microcontrollers in production
increases the economic value (cost, reliability, energy consumption) of products and

allows shortening the development stage and delaying the moral aging.

In the recent years, production of smart devices has become one of the main trends in
microelectronics. The smart device has become relatively more comparable to personal
computers performance wise and now allows people to execute activities, which were
possible only on stationary device. Each smart device holds a host of microprocessors
and microcontrollers. The largest part of smart devices in the world is controlled by an

operating system called Android.

The main task of this bachelor thesis is to create a Bluetooth Low Energy
communication solution between the microcontroller platform and a smart device with
integrated Android operation system for Thomas Johann Seebeck Institute of
Electronics at Tallinn University of Technology, which will be useful for further
development by other students. This solution will provide a more intuitive and
accessible way to learn on how connect the devices with each other and read the sensor

data from application’s user interface.

The “Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller
LaunchPad™ Development Kit” microcontroller is introduced as the primary hardware
component. The “Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in
module” provides the existence of BLE technology in the system and “Texas
Instruments SimpleLink™ Sensors BoosterPack™* provides sensors that will be used

for our thesis.

12

2 Technical overview

The task of the technical overview is to introduce the technology used in the thesis
project and review the important technical information that will concern the practical

part of the thesis.

2.1 Texas Instruments MSP-EXP432P401R SimpleLink™

Microcontroller LaunchPad™ Development Kit

The SimpleLink MSP-EXP432P401R LaunchPad™ development kit is an easy-to-use
evaluation module for the MSP432P401R microcontroller. It contains everything
needed to start developing on the MSP432 LowPower and Performance ARM 32-bit
Cortex-M4F microcontroller (MCU), including onboard debug probe for programming,

debugging, and energy measurements. [1]

‘9 Texas
INSTRUMENTS

0y n
. o3 Wanest

A {
>

Figure 1: MSP -EXP432P40IR LaunchPad™ Development Kit [1]
13

Reset
MSP432P401R Reset

3

XDS110 onboard debug probe
Enables debugging and pregramming
as well as communication to the PC.
The XD3110 can also provide power
to the target MCU.

Button/Switch
S1

Jumper Isolation Block

40-pin BoosterPack
plug-in module connector
(J1-J4)

- Power
- GND, 5V, and 3V3

- Back-channel UART to the PC
-RXD, TXD

- JTAG
-RST, TMS, TCK, TDO, TDI

MSP432P401R Microcontroller
MSP1

|

User LEDs
LED1 and LED2

Figure 2: Overview of the EVM hardware [1]

The SimpleLink MSP432P401R MCU is the first MSP432 family device to feature

ARM Cortex-M4F core. This device’s features important for the thesis include:

e Up to 48-MHz system clock 32-bit ARM Cortex M4F with Floating Point Unit

and DSP acceleration

e Memory: 256KB Flash, 64KB SRAM and 32KB of ROM with SimpleLink

MSP432 SDK libraries
e Two buttons and two LEDs for User Interaction
e Back-channel UART via USB to PC

e Possibility to use BoosterPack™ plug-in modules to achieve environmental

sensing and wireless connectivity for the thesis project

The MSP43x family started from MSP430 MCU family, which led to the development
and production of MSP432. The MSP brand and architecture has always been based on

low-power optimization, but the MSP432 introduced the support of high performance

features.

14

2.1.1 XDS110-ET Onboard Debug Probe

{9 Texas
INSTRUMENTS

-
3 Waueer
A6

@
-
>
o
(-4
[ad
ha)
S
+
a
s N
™
'R
(=%
x
w
|
o
(2}
p =

Figure 3: XDS110-ET Debug Probe [1]

XDS110-ET Debug Probe is an additional interface that Texas Instruments
implemented in order to gain low-cost debug support, which satisfies the programming
needs. The programmers used in the past were overly expensive and XDS110-ET

Debug Probe makes development easy and very cost effective.

The Debug Probe contains an Isolation Block J101, which allows the user to connect or
disconnect signals that cross from the XDS110-ET domain into MSP432P401R target

domain.

In this thesis the XDS110-ET Debug Probe is being used for connecting and flashing
»lexas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in module” to meet the
onboard software requirements of the “Texas Instruments SimpleLink™ Sensors
BoosterPack™* example. The flashing process will be described in the practical part of
the thesis.

2.2 Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in
module

The SimpleLink Bluetooth low energy CC2650 BoosterPack™ plug-in module offers a
expedited way to provide an integrated hardware solution quickly, without having to

develop a new hardware board, integrate an antenna, and obtain approval from

regulatory agencies. [2]

15

Figure 4: Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in module [2]

This particular module contains:

e (CC2650 wireless microcontroller with an integrated antenna
e ARM Cortex-M3 32-bit processor

e In-system flash memory

e Fifteen Inputs/Outputs

e Precertification for FCC/IC, CE and ARIB radio standards.

The CC2650 device contains a 32-bit ARM Cortex-M3 processor that runs at 48 MHz
as the main processor and a peripheral feature set that includes ultralow power sensor
controller. In featured thesis project this sensor controller is needed to enable and
arrange output of analog and digital data out of sensors included in the “Texas
Instruments SimpleLink™ Sensors BoosterPack™”. In addition to the processor, the
module has number of resistors required for balanced voltage, as well as JTAG

connector for debugging and programming or flashing the device.

The guide included in thesis’s appendix will include the use of JTAG connector in order
to flash the CC2650 BoosterPack™ with the most recent software to achieve fault

exclusion during example debugging.

16

2.3 Texas Instruments SimpleLink™ Sensors BoosterPack™

The Sensors BoosterPack™ kit (BOOSTXL-SENSORS) is an easy-to-use plug-in

module for adding digital sensors to LaunchPad™ development kit design. [4]

Figure 5:BOOSTXL-SENSORS Booster Pack™ Plug-in Module [4]
BOOSTXL-SENSORS BoosterPack™ Plug-in Module contains a compilation of

sensors that are required for the thesis’s practical part. The sensors are the following:

e Texas Instruments ,,OPT3001” Ambient Light Sensor
e Texas Instruments “TMP007” Contactless Temperature Sensor

e Bosch “BME280” Integrated Environmental Unit

2.3.1 Texas Instruments “OPT3001” Light Sensor

The OPT3001 is a digital ambient light sensor (ALS) that measures the intensity of light
as visible by the human eye. Covering the sensor with a finger or shining a flashlight on
it changes the output of the OPT3001. [4] The precision of response and intense IR

rejection allows the sensor to accurately meter the intensity of light.

The OPT3001 is designed for systems that create light-based experiences for humans,
and an ideal preferred replacement for photodiodes, photoresistors, or other ambient

light sensors with less human eye matching and IR rejection. [5]
Important features for the thesis project:

e Precision Optical Filtering to Match Human Eye
e Measurements: 0.01 lux to 83000 lux

17

Parameters:

Table 1: OPT110 parameters

Spectral Bandwidth (nm) 460nm — 655nm
Supply Range (Nom) 1.6V to 3.6V
Signal Bandwidth (none) 10 samples/sec
Operating Temperature Range (C°) -40 to 85

2.3.2 Texas Instruments “TMP007” Temperature Sensor

The TMPO007 Temperature sensor is a thermal infrared sensor, which measures the
temperature of the object by sensing the infrared radiation emitted by the object. The
working principle of this sensor also contains measured voltage conversion to a digital
reading of the temperature, which is then sent to CC2650 BoosterPack™ and, having
the notifications and “enabling” code input on point, sends the information to Android

smart device.

This particular temperature sensor is produced according to “touchless” technology,
meaning that the sensor measures temperature without physical contact with the object.
Having resolution of 14-bit, the sensor’s precision converts to 0.03125 °C, what makes
it very accurate. TMPOOQ7 radiation sensitivity in the IR spectrum is measured from

approximately 4- to 16-um wavelength.

The list applications for this sensor contains mainly the noncontact temperature sensing
in power relays, laser printers, HVAC comfort optimization, but the “touchless”
technology enables this sensor to be used in security systems for gas concentration and

flame detection.

2.3.3 Bosch “BME280” Integrated Environmental Unit

The BME280 is an integrated environmental sensor developed specifically for mobile

applications where size and low power consumption are key design constraints.

18

The unit combines individual high linearity, high accuracy sensors for pressure,
humidity and temperature in an 8-pin metal-lid 2.5 x 2.5 x 0.93 mm* LGA package,
designed for low current consumption (3.6 pA @ 1Hz), long term stability and high
EMC robustness. [7]

The BME280 sensor delivers humidity and barometric pressure output for our thesis
project. By virtue of humidity sensor’s fast response time feature, its application to our
project supplies high accuracy and more precise access to information. The pressure
sensor measures barometric pressure with an optimized very low noise and high

resolution output.

2.4 Android and Bluetooth Low Energy

2.4.1 Definition of Android

Android is an operating system developed by Google LLC for mobile devices. The
Android OS is based on modified version of Linux kernel and other open source
software for touchscreen mobile devices. In addition to this, Android OS is being used

in television, car production, game consoles and other electronics.

2.4.2 Android operating system importance in thesis project

The smart device with an Android operating system will be used as a client, which will
be receiving sensor readings from MCU combination. Android system offers wide

possibilities of Bluetooth Low Energy application and a modern way of developing

apps.

2.4.3 Bluetooth Low Energy

Bluetooth Low Energy is a wireless network technology, which is applied in wide
spectrum of industries, including healthcare, fitness, security and home entertainment.
In comparison to Classic Bluetooth, Bluetooth Low Energy offers reduced power
consumption, delivering similar communication range. All Bluetooth Low Energy
devices use the Generic Attribute Profile, which terminology consists of the following

terms: client, server, characteristic, service, descriptor and identifiers.

19

-)

PROFILE

[SERVICE k
(CHARACTERISTIC]
[CHJ‘\RﬁCTERlSﬂC]
(CHARACTERISTIC]

L J

- ~
SERVICE

[CHARACTERISTIC]
(CHARACTERISTIC]

Figure 6: Profile, service and characteristic locations in system [9]
2.4.4 Application of Bluetooth Low Energy in thesis project

The “Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in module” uses
Bluetooth Low Energy in pursuit of best optimization and power consumption. In this
thesis project, a role of the “Server” is given to the MCU combination and the smart

device acts like a “Client” receiving sensor reading.

2.5 Overview of the system

Flashes with
sxampls code

Code Composer

Studio Android Studio

Installs the developed

Uses application
Uses
h 4 v
MCU combination Connected via USB port: Connected via USB port Android smart device
Outputs the received values
to the Ul
Outputs sensor readings Reads the received values

Figure 7: The thesis project's simplified system overview

20

3 Practical part

3.1 Setup of MCU hardware and environment

3.1.1 Choice of IDE

Code Composer™ Studio is an integrated development environment designed to
support Texas Instruments microcontrollers and embedded processors. As of 09"
March 2018 the latest version of Code Composer™ Studio is “v8”, which was used in
thesis project. In comparison to other IDE offered by IAR Systems — “IAR Embedded
Workbench”, Code Composer™ Studio offers a more comfortable and optimized
working process, what does not require any work done to make factory examples
perform. The CCS IDE makes it possible to run the “heavy” factory examples without
any problems, while the IAR Embedded Workbench allows using only 32KB of code in
the free version — this was the main reason for choosing CCS over IAR Embedded
Workbench.

3.1.2 Setting up the Code Composer™ Studio IDE

The very first part of the thesis was environment setup. The Code Composer™ Studio
IDE was chosen, because it delivers a wide spectrum of functionality in terms of
developing software needed to operate the microcontroller and includes the
functionality required for example project on-the-spot functionality. In order to achieve
Bluetooth Low Energy communication and “Texas Instruments SimpleLink™ Sensors
BoosterPack™” support, a compilation of add-ons and software development kits is

required to be downloaded from Texas Instruments official sources for the IDE.

1. TI-RTOS for MSP43x series microcontrollers. TI-RTOS is a real time operating
system developed by Texas Instruments for production microcontrollers. TI-
RTOS for MSP43x series microcontrollers enables ,, Texas Instruments MSP-
EXP432P401R SimpleLink™ Microcontroller LaunchPad™” capability and
developing support with Code Composer™ Studio.

2. TI-RTOS for CC13xx and CC26xx series microcontrollers. This real time

operating system enables Texas Instruments SimpleLink™ CC2650

21

BoosterPack™ plug-in module capability and developing support with Code

Composer™ Studio.

Bluetooth Low Energy software stack, called “BLE-STACK”. As of 28™ March
2018 the version is “V2.2.2”. BLE-STACK provides full-featured Bluetooth 4.2
and Bluetooth 5 certified stacks that include all necessary software to make
example application used in the thesis to work.

SimpleLink™ MSP432P4 high-precision ADC MCU Software Development
Kit. As of 16" March 2018 the version is “2.10.00.14”. The SimpleLink™
MSP432P4 SDK includes a compilation of software to recognize other MCU’s

in the combination.

Bluetooth Plugin for SimpleLink™ MCU SDK. The SimpleLink™ SDK
Bluetooth Plugin is an affiliate software package that enables the use of
Bluetooth radio on ,,Texas Instruments MSP-EXP432P401R SimpleLink™
Microcontroller LaunchPad™”. For the thesis project, this plugin is very
important, because it contains the “Sensors BoosterPack™ Example” that will

be used to output sensor data to Android smart device.

Sensors And Actuator Interface Library Plugin or SAIL. As of 02" February
2018 the version is “v1.20.00.02”. This plugin provides a set of application
programming interfaces required for “Texas Instruments SimpleLink™ Sensors

BoosterPack™” functionality of sensors.

3.1.3 Updating Texas Instruments SimpleLink™ CC2650 BoosterPack™ plug-in

module with the latest SNP image

The SNP image for the CC2650 BoosterPack™ includes hardware configuration for this

particular MCU and every BLE Plugin version may contain an updated SNP image. To

make sure that example debug is successful, it is required to update the SNP image.

The SNP image on the initial CC2650 BoosterPack™ that was used for the thesis

project, was outdated, what caused to move project completion to an impressive time

frame. The problem was caused by the mistake that Texas Instruments’s developers

made in the documentation for CC2650 BoosterPack™ external programming topic.

22

The mistake was related with power supply of CC2650 BoosterPack™ during the
process. The developers have not included the fact that CC2650 BoosterPack™ requires

3.3V and GND in order to be powered for reprogramming.
3.1.3.1 Hardware setup prerequisite for SNP image programming

Nevertheless, first of all, in order to update the CC2650 BoosterPack™ SNP image, it
was required to install the “TI SmartRF™ Flash Programmer 2” software utility from
Texas Instruments official source. Next, it was required to connect an external
programmer to the MCU. As it was explained in the theoretical part of the thesis before,
the “Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller
LaunchPad™” is equipped with XDS110 debugger and it simplifies the programming
process, just by granting access to J102 “XDS110 OUT” connector. In order to provide
power for CC2650 BoosterPack™, it was necessary to remove the jumpers from J101
Isolation Block, leaving the jumpers on “3.3V” and “GND” pins. Using the standard 10-
pin ARM programmer cable included in the CC2650 BoosterPack™ packaging, it was
required to connect MSP432 LaunchPad™ with the CC2650 BoosterPack™ and launch

the software utility.

Figure 8: MCU combination setup for SNP image programming

23

3.1.3.2 Programming process

After connecting the MCU combination showed above to the computer with USB
interface, the reprogramming process started from “TI SmartRF™ Flash Programmer 2”
software utility. The version of the software utility used was “ver. 1.7.5”. By
successfully locating the required hex file, the CC2650 BoosterPack™ was

programmed with updated SNP image.

£T) SmartRF Flash Programmer 2 - Texas Instruments ==

Smart ™Flash Programmer 2 w175

Connected devices:

4 XDS110, XDS-M4321005
PR | —— [—

4 Communications Port (COM1). _
© unknown @ single ¢ pvsimplelink_sdk_ble_plugin_1_40_00_4Z/sourceitisnp/cc2850/simple_np_cc2650bp_uart_pm_sbl_Z_02_01_13a_merge.nex

4 XDS110 Class ApplicationtUs.. 2 Mutiple
@ unknown .

Customer Config

‘ [”] Disable [| Keep C.

Flash lock

[7] Write-protect pages

[]

[7] Lock debug interfac

Program Verify

Secondary MAC Addre

Auto-detect Flash Address IEEE 802
Selscted target(1): L

© Allunprotected pages © Entire source file || Retain secondary

@ Pages filed with

CG2650 @ Pages inimage @ Exclude pages in image filed with: Flash Address BLE: Oxi

P ® s —
e S ectorers NN | o c —
[7] Retain secondar

Erase all unprotected pages, Program entire source image, Verify with CRC check

4 status
State: Normal access

Flash size: 128 KB

>Verffication finished successfully.
>Reset target

Ram size: 20 KB »Reset of target successfull

Chip revision: 2.3

Package size: 5x5 mm

Figure 9: Snapshot from SmartRF™ Flash Programmer 2 including successful reprogramming of
CC2650 BoosterPack™

3.1.3.3 Final hardware setup

Subsequently, the CC2650 BoosterPack™ SNP image was updated during
programming process and the jumpers on J101 Isolation Block were returned back to
default locations. For the example runtime it was required to run microcontrollers in

following combination:

e Texas Instruments SimpleLink™ Sensors BoosterPack™
e Texas Instruments SimpleLink™ CC2650 BoosterPack™
e Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller

LaunchPad™

24

Sensors BoosterPack

Figure 10: MCU combination

3.1.4 Running the example

The Sensors BoosterPack™ code example is a part of Bluetooth Low Energy plugin
which enables users to try out the sensors in action. Each sensor has its unique BLE
profile and provides the data from periodic sensor readings. The sensors used in the

thesis project are the following:

e Texas Instruments ,,OPT3001” Ambient Light Sensor
e Texas Instruments “TMP007” Contactless Temperature Sensor

e Bosch “BME280” Integrated Environmental Unit

Every sensor in this example, as it was said, has its own profile and set of services with
characteristics, corresponding to the sensors. This example relies on Sensor and
Actuator Interface Library (SAIL), which was required to install during IDE

preparation.

25

Table 2: Sensor service output specification table

Purpose UuID Format Unit | Properties
IR Temperature | FOOOAAO01-0451-4000- | IEEE-754 32- | °C Notify
Data B000-000000000000 bit floating
point
IR Temperature | FOOOAA02-0451-4000- | Integer N/A Read/Write
Config (enable) B000-000000000000
Humidity Data FOO0AA21-0451-4000- | IEEE-754 32- | Percent | Notify
B000-000000000000 bit floating
point
Humidity Config | FOOOAA22-0451-4000- | Integer N/A Read/Write
(enable) B000-000000000000
Barometer Data FOO0AA41-0451-4000- | Integer Pascals | Notify
B000-000000000000
Barometer Config | FOOOAA42-0451-4000- | Integer N/A Read/Write
(enable) B000-000000000000
Optic Data FOO0OAAT71-0451-4000- | IEEE-754 32- | lux Notify
B000-000000000000 bit floating
point
Optic Config | FOOOAAT72-0451-4000- | Integer N/A Read/Write
(enable) B000-000000000000

To run the example, it was required to import it to the IDE after installation of all

software add-ons and plugins, and run the debug session. In order to track the MCU

activity, the IDE offers a serial terminal what makes the working process impressively

easier. After all the actions were performed, the microcontroller part was finished and

project moved to Android application development.

26

A o O e e, R W = o

- B@~a-

- Det Expressions 111 Registers
I MSP_EXPA3ZPAOIR tirtos_ccs [Active - Debugl 4 &%
XP4I2PAIR release ccx

Figure 11: Snapshot from Code Composer™ Studio IDE with active debug session of Sensor
BoosterPack™ example code

3.2 Android application development

Android application development was the main task of this thesis.

In order to understand the code in the created project, to run the application and MCU
combination, it is required to have basic knowledge of language “C” and “Java”. It is
advised to read the book “Teach Yourself C in 24 hours” from author Tony Zhang and
complete all tasks in the book, also to reference to “Google Developers” Android
section, if the student has zero knowledge about programming.

The total working time devoted to this application development is approximately 600
hours in four months, what includes the learning time of the basics of language “C” and
“Java” from knowing nothing about the world of programming, development of the

application and working through debugging of the application to make it functional.

3.2.1 Choice of IDE

As the thesis project’s idea was to develop an Android application, which uses BLE
concept, the choice of IDE was known from the beginning of the working process. The
choice of IDE fell on Android Studio.

27

Android Studio is an official Android development IDE created by Google LLC and
announced on 16™ May 2013. In comparison to other IDE’s, the Android Studio offers
very comfortable layout work and will be supported as long as Android applications are
still being developed. The importance of this IDE for thesis project consists in the fact
that it has fast functionality, friendly Ul, comfortable layout, live logging possibility,

fast debugging process and, most importantly, very big support and guides from active

Google LLC. developers.

Q& 1- €+ O« [ONewst » =2 + @Louncher © Longusge +

*Rz00
MSP432 TUT BLE Datalogger

O»® o 4

© « stan
ttumept32ttubledatalogger
ftumspé32riubledatalogger

— — T MSP432 ImageView
” DataL.ogger

5 2 Favonter 40 Bulld Variants
i 30

Design [Ta
BTO0O 0 Messages [Terminal = & Logeat ® tventlog [E] Gradie Console
5] Gradie b finished i 35 115ms 35 minutes ag0)

Figure 12: Android Studio snapshot
Android Studio turned out to be a very good tool for thesis project development and
simplified a lot of questions by an implemented tip system, which solved most of the
programming questions inside the IDE. The Android Studio IDE version used in thesis

project was “3.1.2”.

28

3.2.2 Testing smart device setup for development

The smart device used for testing purposes was Samsung Galaxy S6 Limited Edition.

Table 3: Technical information of testing smart device

Smart device name Samsung Galaxy S6 Limited Edition
Model number SM-G920F
Android version 7.0
Baseband version G920FXXUGBERC?2
Build number NRD90M.G920FXXUGERC1
Kernel version 3.10.61-13115714

Every IDE requires the “Developer options” to be enabled on the smart device in order
to work with it successfully and enable debugging through this smart device. Developer
options are enabled by tapping several times on build number in settings menu.

3.2.3 Planning of the application structure and creation of the project in Android
Studio IDE

The overall structure of the application is shown in the following diagram:

Activity
Start

oA A

Proceed to scanning
with button click

NO—

Figure 13: Structure of the Android application
29

The project is created by simply starting a new project in Android Studio IDE. After

choosing the name for the project, it was required to choose the right API level for the

application. The decision fell on API level 23, as it has more advanced BLE functions

and has minor fixes, which made developing easier for thesis project completion.

3.2.4 First additions and “Start” activity

The first addition to the project was a combination of assigned permissions at

AndroidManifest.xml file:

BLUETOOTH permission is granted in order to use Bluetooth features in our

thesis project

BLUETOOTH_ADMIN permission is granted in order to initiate other device

discovery.

ACCESS_COARSE_LOCATION permission is granted, because APl 21+
requires location coarse enabled to make other device discovery function

correctly

ACCESS_FINE_LOCATION is a companion permission for
ACCESS_COARSE_LOCATION and is granted in order to illuminate possible

malfunctions during application working process

<uses-permission

android:name="android.permission.BLUETOOTH" />

Figure 14: Example of the Bluetooth permission granted to the application

This compilation of permissions is essential for thesis project, because the fulfilled

functionality of the application would not be realized.

The first, called “Start”, activity is a very simple, introductory activity that includes an

illustration of MSP432 LaunchPad™ and a button with a name “Scan” that moves the

user to next activity.

30

The tasks of the activity are the following:

e Initialize the view and the “Scan” button
e Ask the user to enable Bluetooth, if not enabled

e Ask the user to grant access to coarse location

As the API level is “23”, this means that the minimum Android OS version is “6.0” and
it is essential to grant coarse location permission for the scanning and connecting to
work. The development of this activity was the first steps in learning Android

developing and delivered general understanding on how the Java programming
language works.

MSP432 TUT BLE Datalogger

i3 TEXAS
INSTRUMENTS

MSP432
Datal.ogger

SCAN

Figure 15: Snapshot of "Start" activity of the Android application
31

3.2.5 “Scan” activity

The “Scan” button click leads the user to activity, where the MCU combination
searching is being executed. Even though the Bluetooth inquiry happened in the start of
the application, the scanning activity asks the user to enable Bluetooth once again, if it
iIs not enabled. The concept of this activity intends an immediate start of MCU
combination discovery, as the activity initializes and outputs the results in predefined
list view in the Ul. The handling of discovered Bluetooth activity is realized through
broadcast receiver. On list view click, the application parses the device address to intent

and leads the user to next activity, where the main functionality is executed.

Scan for BLE Devices

MSP432 SensorHub
AO:E6:F8:BA:2D:84

Figure 16: Successful finding of MSP432 SensorHub
3.2.6 “SensorQutput” activity

After successfully scanning for the MCU combination, receiving it’s name and address
in list view and clicking on the item from list view, application brings the user to the

final activity, where all the sensor outputs are received.
3.2.6.1 Connecting to the MCU combination

First of all, the application insures that the Bluetooth is enabled on the testing smart
device and attempts to connect to the MCU combination with the help of intent that
transferred MCU address to this activity. The connection to the testing smart device is

executed with help of “connect” method.

32

public void connect (BluetoothDevice device) {
if (mBluetoothGatt == null) {
mBluetoothGatt =

device.connectGatt (SensorOutput.this, false,
mGattCallback) ;

}

Figure 17: Connect method for sensor output activity

While the testing smart device attempts to connect to the MCU combination, a progress
dialog is shown:

’ Connecting to the device
'MSP432 SensorHub'.

Figure 18: Connection progress dialog
If the connection succeeds, the “Sensor BoosterPack™ example code” reacts to the

connection and logs the peer connection to the terminal in CCS IDE reporting the peer
address.

AB) Terminal 52 2 & | Iz G hﬂl & =8
B coms 52 |

--------- Sensor Booster Pack Example --------- -
Application Processor Initializing...

Done!

[State set to idle.

[Starting advertisement...

[Done!

Waiting for connection (or timeout)...
|Peer connected! (Peer: @x55F11964F46D)

Figure 19: Sensor BoosterPack™ example code output in CCS terminal

33

3.2.6.2 Discovering MCU combination services

After connecting to the MCU combination, the testing smart device attempts to discover

services, showing the following progress dialog:

, Discovering Services...

Figure 20: Service discovery dialog
The service discovery is being triggered by the “onConnectionStateChange” method of
GATT callback that performs an action after a certain stage of connection is achieved
by the Bluetooth GATT. In this method’s case, if the Bluetooth GATT succeeded and
the state changed to “STATE CONNECTED” on the Bluetooth profile, then the

application starts service discovery.

@Override
public void onConnectionStateChange (BluetoothGatt gatt, int
status, int newState) {

Log.d(TAG, "Connection State Change: " + status + " -> "
+ connectionState (newState));
if (status == BluetoothGatt.GATT SUCCESS && newState ==

BluetoothProfile.STATE CONNECTED) {
gatt.discoverServices () ;
mHandler.sendMessage (Message.obtain(null, MSG PROGRESS,
"Discovering Services...")); }

Figure 21: onConnectionStateChange method realization if the connection is successful

Thanks to the updated methods and functions in API 23, service discovery is realized in

a single command.

3.2.6.3 Enabling sensors

‘ , Enabling Sensors...

Figure 22: Sensor enabling dialog
In order to read and write the values to the characteristics, a client requires a “Client
Characteristic Configuration Descriptor”. The descriptor used for the needs of this
project is defined with a value “0x2902”, which grants the client a possibility to enable
and disable server’s notifications.

34

The next step for the application is to enable sensor broadcasting by writing a byte value
“0x01” to each of sensors’ configuration characteristic named “* CONFIG” (where * is
sensors’ name), also as to read each sensor and subscribe to each of the sensors. This
job is realized by “enableNextSensor”, “readNextSensor” and “setNotifyNextSensor”
methods which use the state machine to go through every case and enable every sensor

to send data to the client smart device.

The process of whole sensor enabling process is described in the following figure:

onServicesDiscovered

enableMextSensor

onCharactenstic\Write

readMextSensaor

onCharacteristicRead

setMotifySensar

onDescriptorérite

Figure 23: Sensor enabling process

35

Table 4: Case distribution

Case number Sensor
0 Temperature
1 Humidity
2 Barometer
3 Optic

After the services were discovered, the application uses a “onServicesDiscovered”
GATT callback, logs the service discovery status to console and initializes the progress
dialog with the “Enabling Sensors...” context, transferring action to

“enableNextSensor(gatt)” method.

@Override
public void onServicesDiscovered (BluetoothGatt gatt, int
status) {

Log.d(TAG, "Service discovery status: " + status);
mHandler.sendMessage (Message.obtain(null,

MSG PROGRESS, "Enabling Sensors..."));
reset () ;

enableNextSensor (gatt) ;

Figure 24: onServicesDiscovered callback if the discovery is successful

Before attempting to set the value of chosen sensor, the system logs the beginning of the
writing process, then sets the byte value of “0x01” to the characteristic. After setting the
value of characteristic, the “gatt.writeCharacteristic(characteristic)” is called to make
GATT write of the characteristic. To move to the next method, the GATT callback

“onCharacteristicWrite” is called to execute the “readNextSensor’” method.

@Override
public void onCharacteristicWrite (BluetoothGatt gatt,
BluetoothGattCharacteristic characteristic, int status) {
readNextSensor (gatt) ;

}
Figure 25: onCharacteristicWrite GATT callback

“readNextSensor” method reads the initial value of the “* CONFIG” characteristic and

this is when the “onCharacteristicRead” GATT callback triggers.

36

@Override
public void onCharacteristicRead (BluetoothGatt gatt,
BluetoothGattCharacteristic characteristic, int status) {
if (TEMP DATA.equals (characteristic.getUuid())) {
mHandler.sendMessage (Message.obtain(null, MSG TEMP,
characteristic));

}
setNotifyNextSensor (gatt) ;

Figure 26: onCharacteristicRead GATT callback if the TEMP_DATA characteristic equals the gotten
characteristic UUID

Finally, after the reading the written value of configuration characteristics, the
application moves to subscribing to the sensor’s data stream. This task is executed by
“setNotifyNextSensor” method. This is where CONFIG_DESCRIPTOR is used.

private void setNotifyNextSensor (BluetoothGatt gatt) {
BluetoothGattCharacteristic characteristic;
switch (mState) {
case O:
Log.d(TAG, "Set notify temperature");
characteristic = gatt.getService (TEMP SERVICE)
.getCharacteristic (TEMP DATA); }
gatt.setCharacteristicNotification (characteristic,
true);

BluetoothGattDescriptor desc =
characteristic.getDescriptor (CONFIG DESCRIPTOR) ;
desc.setValue (BluetoothGattDescriptor.ENABLE NOTIFICATION V
ALUE) ;

gatt.writeDescriptor (desc);

Figure 27: setNotifyNextSensor method example on temperature notification enabling

The GATT callback for writing a value is “onDescriptorWrite”, where the application

advances to the next case and begins from “enableNextSensor” method.

@Override
public void onDescriptorWrite (BluetoothGatt gatt,
BluetoothGattDescriptor descriptor, int status) {
advance () ;
enableNextSensor (gatt) ;

Figure 28: onDescriptorWrite GATT callback

37

After enabling and subscribing to all the sensors, the progress dialog is being dismissed
and application displays the values in predefined layout. The value updating in the Ul
happens through “onCharacteristicChanged” GATT callback, where every UUID is
being checked for equality to current chosen characteristic and sent to a handler, where

the “update*Value(characteristic)”, where “*” is sensor type, is being executed.

@SuppressLint ("HandlerLeak")
private Handler mHandler = new Handler () {
@Override
public void handleMessage (Message msg) {
BluetoothGattCharacteristic characteristic;
switch (msg.what) {
case MSG TEMP:

characteristic =
(BluetoothGattCharacteristic) msg.obj;
if (characteristic.getValue() == null) {

Log.w(TAG, "Error obtaining temperature
value.");

Toast.makeText (getApplicationContext (), "Error obtaining
temperature value. Returning to main
screen.",Toast.LENGTH SHORT) .show () ;
finish{();
return;
}
updateTemperatureValue (characteristic);
Log.1i(TAG, "Characteristic " +
characteristic.getUuid() + " changed value!");
break;
}
}i

Figure 29: Handler realization on temperature sensor case

The Ul is being refreshed every second with new sensor readings, which pass in their
respectable formats. The format handling and representation is being executed in

“update*Value” method.

@Override
public void onCharacteristicChanged (BluetoothGatt gatt,
BluetoothGattCharacteristic characteristic) {

if (TEMP DATA.equals (characteristic.getUuid())) {
mHandler.sendMessage (Message.obtain(null,
MSG TEMP, characteristic));

}

Figure 30: onCharacteristicChanged GATT callback on example of temperature sensor handling

38

@SuppressLint ("DefaultLocale™)
private void
updateTemperatureValue (BluetoothGattCharacteristic
characteristic) {

final byte[] data = characteristic.getValue();

float f1 =
ByteBuffer.wrap(data) .order (ByteOrder.LITTLE ENDIAN) .getFlo
at();

mTemperature.setText (String. format ("%.1f\u00BOC", f1));

}
Figure 31: updateTemperatureValue method
8 Terminal &3 =] | Iz G ."_*,_E]| &= 8
B coms 2
————————— Sensor Booster Pack Example --------- -
lApplication Processor Initializing...
Done !

State set to idle.

starting advertisement...

Done!

Waiting for connection (or timecut)...
Peer connected! (Peer: @xSADEGIEB3IBAT)
Temperature update enabled!

Humidity update enabled!

Barometer update enabled!

Optic update enabled!

4 | [l 3

Figure 32: CCS terminal output after successful connection and sensor enabling

Data Output DISCONNECT

27.5°C 43%

Ambient Temperature Humidity

102089 246.6
Pa lux

Barometric Pressure llluminance

Figure 33: Data Output Ul
39

4 Summary

The MSP432 based Bluetooth Low Energy solution got a fully working example of
communication with Android smart device. The author of this thesis has significantly
gained knowledge in Android development, CCS IDE application, Java and C language
and showed an example of what is possible to achieve with “zero” knowledge about the

world of programming.

The main task of the created system was to output sensor readings from MCU
combination and provide a solution that would display the readings in “user-friendly”

interface. The task completion was successfully achieved.

This thesis’s project is useful for further development, education purposes, application

in individual projects.
The further development possibilities could be the following:

e Create a solution to output readings from accelerometer and gyroscope

e Create a solution to output signal strength between MCU combination and
Android device in “Sensor Output” activity

e Create a solution to graph the received sensor outputs and save them for further
analysis on external memory

e Create a solution to support sensors not only from plug-in module, used in the
thesis project, but for sensors from other manufacturers

e Create a solution to review full device information from a menu item

It is possible to integrate a lot more functionality to this project and it may be a good
start for developing an universal MSP432 data logging Android smart device

application.

40

5 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

"MSP432P401R SimpleLink™ Microcontroller LaunchPad™ Development Kit
User's Guide (Rev. F), March 2018. [Online]. Awvailable:
http://www.ti.com/lit/ug/slau597f/slau597f.pdf. [Accessed 05 May 2018].

"Access Control Panel With Bluetooth® low energy, Capacitive Touch, and
Software Integration Reference Design,” Texas Instruments, February 2017.
[Online]. Available: http://www.ti.com/lit/ug/tiducp8/tiducp8.pdf. [Accessed 05
May 2018].

N. Siegel, "Using TI Certified Bluetooth® low energy Module (CC2650MODA) as
Single-Chip Wireless MCU," Texas Instruments, January 2017. [Online].
Available: http://www.ti.com/lit/an/swra534a/swra534a.pdf. [Accessed 05 May
2018].

"BOOSTXL-SENSORS Sensors BoosterPack™ Plug-in,” March 2017. [Online].
Available: http://www.ti.com/lit/ug/slau666a/slau666a.pdf. [Accessed 05 May
2018].

"OPT3001 Ambient Light Sensor (ALS) datasheet (Rev. C)," Texas Instruments,
November 2017. [Online]. Available:
http://www.ti.com/lit/ds/symlink/opt3001.pdf. [Accessed 05 May 2018].

Texas Instruments, "TMPO0O07 Infrared Thermopile Sensor with Integrated Math
Engine,” 2015.

Bosch, "BME280 Product Flyer,” [Online]. Available: https://ae-
bst.resource.bosch.com/media/_tech/media/product_flyer/BME280_Productflyer
BST_20170109.pdf. [Accessed 06 May 2018].

41

http://www.ti.com/lit/ug/slau597f/slau597f.pdf
http://www.ti.com/lit/ug/tiducp8/tiducp8.pdf
http://www.ti.com/lit/an/swra534a/swra534a.pdf
http://www.ti.com/lit/ug/slau666a/slau666a.pdf
http://www.ti.com/lit/ds/symlink/opt3001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BME280_Productflyer_BST_20170109.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BME280_Productflyer_BST_20170109.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BME280_Productflyer_BST_20170109.pdf

[8] Bosch, "BME280," 2018. [Online]. Available: http://www.bosch-
sensortec.com/en/bst/products/all_products/bme280. [Accessed 06 May 2018].

[9] K. Townsend, "Introduction to Bluetooth Low Energy," 2014.

42

http://www.bosch-sensortec.com/en/bst/products/all_products/bme280
http://www.bosch-sensortec.com/en/bst/products/all_products/bme280

Appendix 1 — MSP432 Datalogger User’s Guide

In order to understand the microcontroller combination example code running process
and the Android application project structure, it is required to have basic knowledge of
programming languages “C” and “Java”. Suggested book is “Teach Yourself C in 24
Hours” by Tony Zhang.

1 Hardware preparation

1.1 Installation and configuration of Code Composer™ Studio IDE

Step 1. To download Code Composer™ Studio IDE visit this link
(http://processors.wiki.ti.com/index.php/Download_CCS), refer to “Download the latest
CCS” section and download latest version of the IDE. It is advisable to install all the

IDE files at the destination predefined by manufacturer (C:\ti).

Step 2: After downloading and installing Code Composer™ Studio, it is required to

download and install a compilation of add-ons and software development kits:

1. TIRTOS for MSP43x.
http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

2. TIRTOS for CC26xx
http://software-

dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html

3. BLE STACK (Support for CC2640/CC2650)

http://www.ti.com/tool/ble-stack

4. SimpleLink MSP432P4 High-precision ADC MCU Software Development Kit
http://www.ti.com/tool/download/SIMPLELINK-MSP432-SDK

43

http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/index.html
http://www.ti.com/tool/ble-stack
http://www.ti.com/tool/download/SIMPLELINK-MSP432-SDK

5. Bluetooth Plugin for SimpleLink™ MCU SDK
http://www.ti.com/tool/download/SIMPLELINK-SDK-BLUETOOTH-PLUGIN

6. Sensor and Actuator Plugin for SimpleLink™ MCU SDKs
http://www.ti.com/tool/download/SIMPLELINK-SDK-SENSOR-ACTUATOR-
PLUGIN

In order to check, if the all software is installed in IDE, user has to navigate to “Window

— Preferences” and have the preferences window opened respectively:

type filter text Products

> General Product discovery path:
4 Code Composer Studic

> Advanced Tools i

. Build [C:/Program Files (x86)/ Texas Instruments

> Debug

. Grace Remove

> | Products

> Help
> Install/Update Installed products:

> Run/Debug 4 =i SimpleLink MSP432P4 SDK
- Team

!"::‘5 210014 [C:/tifsimplelink_mspd32pd_sdk_2 10_00_14]

» Terminal 4 =), SimpleLink SDK BLE Plugin
!"::‘5 1.40.042 [C:/ti/simplelink_sdk_ble_plugin_1_40_00_42] =

4 =, Simplelink Sensor and Actuator Plugin Uninstall
2% 1.200.02 [C:/tifsail_1_20_00_02]
a4 = TI-RTOS for CC13XX and CC26XX
S 221108 [C:/tiftirtos_ccl 3io_cc26wo_2_21_01_08]
a4 =, TI-RTOS for MSP43x
!"::‘5 2.20.0.06 [C:/tiftirtos_mspd3x_2_20_00_06]
a =i, XDCtools
!"::‘5 3.50.512_core [Ci/ftifxdctools_3_50_05_12_core]

Search for new installable products each time Code Composer Studio is started

’ Restore Defaults] ’ Apply]

|/'_?\| / 1
\£/) Show advanced settings [Apply and Close] ’ Cancel]

User's Guide Figure 1: CCS IDE preferences window

If all of the products are installed, it is possible to move to the next step.
1.2 Updating SNP image of the Texas Instruments CC2650 BoosterPack™

Step 1: To start with updating SNP image of CC2650 BoosterPack™ it is required to
install the following software

e TI SmartRF™ Flash Programmer 2 (v2)
http://www.ti.com/tool/FLASH-PROGRAMMER

44

http://www.ti.com/tool/download/SIMPLELINK-SDK-BLUETOOTH-PLUGIN
http://www.ti.com/tool/download/SIMPLELINK-SDK-SENSOR-ACTUATOR-PLUGIN
http://www.ti.com/tool/download/SIMPLELINK-SDK-SENSOR-ACTUATOR-PLUGIN
http://www.ti.com/tool/FLASH-PROGRAMMER

After installing the software, user has to open the flash programmer.

Connected devices:

Flash image(s) Image Overrides

@ Single Mo options avaiable before

() Multiple

N

A cted pag © Entire source file

SAilnuciedpancs @ Pages filed with
® Pages inimage ® Exclude pages in image filed wih:

® Pages
® speciicpages: [| ® cxcudepages:

Erase all unprotected pages, Program entire source image, Verify with CRC check

9

Selected target(0):

A status
State: unknown

Flash size: N.A,

Ram size: N.A.
Chip revision: N.A

Package size: HA

User's Guide Figure 2: Flash Programmer 2 snapshot

Step 2: Connect the microcontroller stack with USB and reprogram the SNP image.
For the example runtime it is required to run microcontrollers in following combination:

e Texas Instruments SimpleLink™ Sensors BoosterPack™
e Texas Instruments SimpleLink™ CC2650 BoosterPack™
e Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller

LaunchPad™

Using the standard 10-pin ARM programmer cable included in the CC2650
BoosterPack™ packaging, it is required to connect MSP432 LaunchPad™ with the
CC2650 BoosterPack™ and launch the software utility through JTAG connectors.

45

User's Guide Figure 3: MCU combination setup for reprogramming
In order to provide power for CC2650 BoosterPack™, it is necessary to remove the

jumpers from J101 Isolation Block, leaving the jumpers on “3.3V” and “GND” pins.

After doing this work, user needs to find the HEX image for reprogramming. The latest
HEX image 5 located in the BLE plugin folder
(C:Mtivsimplelink_sdk_ble_plugin_1 40 00_42\source\ti\snp\cc2650).

(£ Setect Flash Ima ==
[b <« LocalDisk(C:) » ti » simplelink sdk_ble plugin 1 40 0042 » source » ti » snp b cc2650 EEEETY)
e —

Organize « Mew folder 3= - EJ g_@_;.
i Mame . Date modified Type Size
| simple_np_cc2650bp_uart_pm_sbl_2_02_01_18a_merge.hex 03.04.2018 18:32 HEX File 344 KB
| simple_np_cc2650bp_uart_pm_xsbl_2_02_01_18a_merge.hex 03.04.2018 18:32 HEX File 344 KB
| simple_np_cc2650bp_uart_xprm_shl_2_02_01_1&a_merge.hex 32 HEX File 343 KB
| simple_np_cc2650bp_uart_xpm_xsbl_2 02_01_18z_merge.hex HEX File M3 KB
File name: simple_np_cc2650bp_uart_prn_sbl_2 02_01 18a_merge.hex - IImage Files (*.hex *.hem *.bin * 'l
[Open |v] [Cancel]

User's Guide Figure 4: SNP image location

46

After locating the HEX image, user has to just push the “Play” button and software does
all the work itself. Note: check the settings “Erase”, “Program” and “Verify” before

programming to suit the settings set on the figure.

£} SmartRF Flash Programmer 2 - Texas Instruments

Smart ™Flash Programmer 2 w175

Connected devices: Info Page | MAC Address

Flash image(s) Image Overrides:
" - Customer Config

n @ single ¢ ftisimplelink_sdk_ble_plugin_1_40_00_42/sourcefti'snplcc2650/simple_np_cc2650bp_uart_pm_sbl_2_02_01_13a_mergehex w s

4 XDST0 Class ApplicationiUs... | || &) Muttiple ‘ [7] Disable [] Kesp ¢

Unknowin Clear

Flash lock

[7] write-protect pages

[]

[7] Lock debug interfac

Program |G
— Secondary MAC Addre

-
Auto-detect : Flash Address [EEE 80
Selected target(1): ; [1

© Allunprotected pages ® Entire source file) e [Retain secondary

CC2650 ® Pages inimage @ Exclude pages in image filed with:

N al Flash Address BLE: Oxl
s
Miecs & specrepooes I | ® cxcuce ssces

Erase all unprotected pages, Program entire source image, Verify with CRC check

A Status

*Verification finished successfully.
»Reset target
Ram size: 20 KB »Reset of target successfull.

Chip revision: 2.3

Flash size: 128 KB

User's Guide Figure 5: Successful reprogramming in Flash Programmer 2

Place the jumpers back at default location after reprogramming.
1.3 Running the example code
Step 1: In order to run the example code it is required to assemble a MCU combination:

e Texas Instruments SimpleLink™ Sensors BoosterPack™
e Texas Instruments SimpleLink™ CC2650 BoosterPack™
e Texas Instruments MSP-EXP432P401R SimpleLink™ Microcontroller

LaunchPad™

47

&
a
=1
s
<
a
&
@
P
a
3
(]
1
a
&
£
3

User's Guide Figure 6: Final MCU combination setup

As this step is completed, the user can move to the next step.
Step 2: Importing and running the example code in the IDE
The steps are shown in the figures below.

Step 2.1: Go to View — Project Explorer

o TUT.Thesi - Cod
File Edit [View| Navigate Project Run Scripts Window Help
Resource Explarer Classic
Grace Snippets
Getting Started
€CS App Center

SEr €@

Bl

U1 Composer™ B
Project Explorer

Problems AeshifteQ X
Console Alt+Shifts Q. C
Advice

U

o # < 0OF

Debug
Memory Browser

Ragisters

Expressions

Varisbies AteShifteQ, v

s2E

Dissssembly
Breakpaints AltsShift+ Q. B
Mocdules

Terminal

Seripting Censole

Target Configurations

Outiine AeShiftQ O
Stack lsage

Memory Allocation

WP B O E

&

Optiemizer Assistant
Othe. At Shift+Q, Q

B Console 11

Na consales to display at this time.

Resource Explorer 5w e Quick Access

User's Guide Figure 7: Project Explorer location in “View” field

48

Step 2.2: Right click the Project Explorer window and do the following Import — CCS

projects

File Edit View Mavigate Project Run Scripts Window Help
= D i@ P e Qu\ckécczz::%“ﬁd
& | o Project Explorer 3 ES® = 0 =8
(2
o
&
New »
Shouw in Local Terminal »
Import »| 1 ccsProjects
5 Export.. @, Energia Sketch
Refresh F5 |y Import.
B Consele 52 ~M-=8
No consoles to display at this time,
Updates Available x
Updates are available for your software.
Click to review and install updates,
Set up Reminder options
0items selected #a

User's Guide Figure 8: CCS project import location

49

Step 2.3: As the user enters the import window, it is required to click the “Browse...”
button and locate the project at the plugin location
(C:\Mtivsimplelink_sdk_ble_plugin_1 40 00_42\examples\rtos\MSP_EXP432P401R\blu

etooth\sensor_boosterpack\tirtos\ccs)

Select CCS Projects to Import —r
Select a directory to search for existing CCS Eclipse projects. ; i

[ORT - 37313 WL 1S SR R bluetoothl\sensor_boosterpackitirtos'ccs|

() Select archive file: Browse...

Discovered projects:

|5 sensor_boosterpack MSP_EXP432P401R _tirtos_ccs [Cthsimp Select All
Deselect All

4 [3

Automatically import referenced projects found in same search-directory

Copy projects into workspace

Open Resource Explorer to browse a wide selection of example projects...

(‘E‘ Finish] [Cancel

User's Guide Figure 9: CCS project import window

After clicking finish, the Sensor BoosterPack example will be imported to the IDE.

e Project fun Scrigts indow Help

G-&-0 v e | | @)%

 MSP_EXPA32PAOLR tirtos_ccs [Active - Debugl
PU2PIOIR selemse ccs

&5 sencor boosterpack MSP EXP412PIR titos ccs

User's Guide Figure 10: Output of importing the example code project to the IDE

50

Step 2.4: Launching debug session.

In order to launch the debug session, user has to do the following: Right click on the
“sensor_boosterpack MSP EXP432P401R tirtos ccs” — Debug As — “1 Code

Composer Debug Session”.

5 [Project Explorer &% EE® =0
= > | sensor_boosterpack_MSP_EXP432P401R _tirtos_ces [Active - Dehual
. 5 tirtos_builds_MSP_EXP432P401R _release_ccs New L4
|
@ Show in Local Terminal 3
Add Files...
=] Copy Ctrl+C
Paste Ctrl+V
¥ Delete Delete
Refactor 2
Source 3
Move...
Rename... F2
Import 3
1 Export...
Show Build Settings...
Build Project
Clean Project
Rebuild Project
| Refresh F5
Close Project
Build Targets 2
Index 3
Build Configurations 3
Debug As » [|§% 1 Code Composer Debug Session
Restore from Local History... e ET e
Team 2
Compare With 3
Properties Alt+Enter

User's Guide Figure 11: Debug Session location
After this step, the IDE will launch the debug session. It may take some time for the

personal computer to launch the example.

text: 65504 of 222512 at (T exas Instruments {05110 USE Debug Probe/CORTEX_M4_0)

Diﬁtlways run in background:

[F'.unin Eackground] ’ Cancel] ’ Details ==

User's Guide Figure 12: Debug launching process

o1

Step 2.5: Connecting to the MCU combination via CCS IDE terminal.

In order to locate the terminal in the IDE, user has to do the following: View —

Terminal. The terminal window will pop up at the lower right corner of the screen.

File Edit [View] Project Tools Run Scripts Window Help

ir% v (| @ Resource Explorer @
& Resource Explorer Classic
25 Project| _ ~ =0
.)
(5 gepl 8 Getting Started k- Debug]
& tind & CCS App Center
GUI Composer™ >
[Project Explorer
[£ Problems Alt+Shift+Q, X
El Console Alt+Shift+Q, C
U Advice
35 Debug

0 Memory Browser

I Registers

Alt+Shift+Q, V

Alt+Shift+Q, B

Alt+Shift+Q, O

Alt=Shift=Q, Q

User's Guide Figure 13: Terminal location in CCS IDE
The serial port may be different due to personal computer’s port allocation and settings.
In order to find out the serial port required, user has to navigate the port at Device
Manager application. To do this, following actions are required: Push “Windows” key
— Write “Device Manager” in search window. The Device Manager should be

acquired.

Control Panel (3)
=4 Device Manager
View devices and printers

=1 Update device drivers

- See more results

Device Manage x | | Shut down | » |

User's Guide Figure 14: Device Manager location in Windows OS

52

In order to find the correct port, the user has to navigate to “Ports (COM & LPT” tab
and find the “XDS110 Class Application/User UART (COMS).

5-_! Device Manage: EEE}

File Action View Help
= @ HE®

4 1= gruwy-PC
> -JMl Computer

>y Disk drives

> .M, Display adapters

+ i DVD/CD-ROM drives

b 8% Human Interface Devices

- IDE ATA/ATAPI controllers

b £ Keyboards

> B Mice and other pointing devices

» Il Monitors

b LF Network adapters

475 Ports (COM & LPT)

‘? Communications Port (COML)
‘? XD5110 Class Application/User UART (COME)
'? X¥D5110 Class Auxiliary Data Port (COME)
b 2} Processors

> - 1| Razer Device
B % Sound, video and game controllers

- -4z Storage controllers

.:-"li System devices
> B, Texas Instruments Debug Probes
> - i Universal Serial Bus controllers

User's Guide Figure 15: Device Manager snapshot

To open the terminal settings, the user has to do the following keyboard combination:

Ctrl + Alt + Shift + T. After opening the settings menu, the settings must be set to the
same as the figure below.

Choose terminal: léSeriaITerminaI

Settings
Serial port: COM5

Baud rate: 115200

Data size: [8

Parity: [None

Stop bits: [1

Encoding: ’ Default (1S0-8859-1)

"
@

User's Guide Figure 16: Terminal settings

53

After successfully connecting to the COM port, the terminal window should look like
this.

A= Terminal &3 =] &‘«T| iz Ex B B S =0
& coms =3
4 L1 3

User's Guide Figure 17: Initial terminal view after successful connection via COM port
The IDE may contain errors during connection and it is advised to relaunch the IDE, if

any errors occur.
Step 2.6: Running the example

To run the example, user has to push the “F8” button, when the system is focused on the

IDE window. The successful running of the example is shown in the terminal window

below.
8 Terminal 23 E | i ® of B 8= O
& coms =3

--------- Sensor Booster Pack Example --------- e
Application Processor Initializing...

Done !

State set to idle.

User's Guide Figure 18: Successful example code execution in terminal
At this point, the example is successfully running, setting the MCU combination to idle.

54

2 Software preparation

The software preparation includes running the Android application project in Android
Studio IDE. The Android application is created for smart devices supporting APl 23
(Android 6.0). Lower version Android smart devices will not be able to run the

application.
2.1 Installing the Android Studio IDE

Step 1: The user has to acquire the latest version of Android Studio IDE, referencing to

this link: https://developer.android.com/studio/

Step 2: After successfully downloading the IDE, the user has to install it on his personal

computer following instructions set by manufacturer defaults.

Note: the “Android Virtual Device” installation is not required for this project
debugging. After installing the Android Studio IDE and launching it, the following

“welcome” screen will appear.

v

-

Android _S_tudio

Start a new Andreid Studie project

Open an existing Andreid Studio project
¥ Check out project from Version Control -
Profile or debug APK

Import project (Gradle, Eclipse ADT, etc.)

[Impert an Andreoid code sample

1 Events »+ % Configure v Get Help

User's Guide Figure 19: Snapshot from Android studio welcome screen

55

https://developer.android.com/studio/

2.2 Importing the project to the IDE

Step 1: To import the Android application project the user has to do the following:
“Open an existing Android Studio project” — locate the acquired project downloaded

from the provided source.

[MSP432TTUBLEDatalogger

User's Guide Figure 20: Look of the Android application project in the search window
Step 2: After choosing the project, user has to click “OK” to import the project. The
IDE will build the project’s gradle information and import it.

2.3 Running the project on the testing smart device

The testing smart device, as it was said before, has to have at least version 6.0 of
Android OS and support Bluetooth Low Energy. The smart device must be connected to

the personal computer via USB.
Step 1: Enabling “Developer options” mode on the testing smart device.

To successfully run the application on the testing smart device, it is required to enable
“Developer options” mode. To enable the “Developer options” mode, the user has to
reference to the testing smart device’s documentation. After enabling the mode, it is

required to enable two options:
e “USB debugging”

e “Select USB Configuration” — “MTP (Media Transfer Protocol)”

56

< DEVELOPER OPTIONS Q

ON «

DEBUGGING

USB debugging q

Debug mode when USB is connected
Revoke USB debugging authorisations

Bug report shortcut
Show a button in the power menu for taking
a bug report

Select mock location app
No mock location app set

Enable view attribute inspection

Select debug app

No debug application set

Wait for debugger

User's Guide Figure 21: USB debugging location in Android OS

< DEVELOPER OPTIONS Q

ON «

Enable Wi-Fi verbose logging
Increase Wi-Fi logging level, show per SSID
RSSI in Wi-Fi Picker

Aggressive Wi-Fi to Mobile hand..
When enabled, Wi-Fi will be more aggressive
in handing over the data connection to
Mobile, when Wi-Fi signal is low

Always allow Wi-Fi Roam Scans
Allow/Disallow Wi-Fi Roam Scans based
on the amount of data traffic present at the
interface

Mobile data always active
Always keep mobile data active, even when
Wi-Fi is active (for fast network switching)

Select USB Configuration
MTP (Media Transfer Protocol)

Disable absolute volume

Disables the Bluetooth absolute volume
feature in case of volume issues with
remote devic: uch as unacceptably loud
volume or lack of control

User's Guide Figure 22: USB configuration location in Android OS

57

This will allow the IDE to find the testing smart device.
Step 2: Building and running the project.

Step 2.1: In order to run the application, the IDE has to successfully build it. To build
the project, the user has to execute following keyboard combination: “Ctrl + F8”. From
now on, the IDE will start building the project and will show the finish of gradle build

in the lower left corner.
[Gradle build finished in 692ms (3 minutes ago)

User's Guide Figure 23: Successful gradle build
Step 2.2: To run the project, the user has to choose the running configuration by simply

navigating to the location shown in the figure below.

Analyze Befactor Build Run Took VC3 Window Help

a) B3ty) £ mepd32tubledatalogges) € Scan A Gwpsl b - &

o
s 5

User's Guide Figure 24: Running configuration location in Android Studio IDE
Clicking the green “play” button or executing following keyboard combination: “Shift +

F10” will bring the user to the “Select Deployment Target” window.

Connected Devices

Samsung 5M-G920F (Andreid 7.0, API 24)

Available Virtual Devices

[Mew Device AP127
W] Mexus 5X AP127 ¥86
[Nexus S AP127

Create New Virtual Device

m | Cancel | | Help |

User's Guide Figure 25: Deployment target selection window

58

If the testing smart device configuration was executed correctly, the user must see his
smart device in “Connected Devices” tab. After executing all the steps above, the user

has to push the “OK” button in order to let IDE import and install the APK and run the

application.

The application may take some time in order to run on the device.

59

3 Working with the configured software and hardware

As the MCU combination debug session and Android application launched, the main

process begins.

3.1 Meeting and allowing the Android application to use its

permissions

The Android application requires Bluetooth adapter to be enabled and location
permission to be granted by the user. As the Android application launches for the first
time, it takes some time to execute the “cold” start, when all the dependencies and

initialization are made for the first time.

Step 1: The user has to wait for the Bluetooth permission request shown in the figure

MSP432 TUT BLE Datalogger
{I"TEXAS

INSTRUMENTS I‘

Application is requesting

permission to turn on Bluetooth.
Allow?

below.

NO YES

DataL.ogger

SCAN

User's Guide Figure 26: Snapshot from Android application with Bluetooth permission request

Clicking “Yes” enables the Bluetooth adapter on the testing smart device.

60

Step 2: Right after the Bluetooth permission granted, the Android application asks the

user to allow to access the testing device’s location.

MSP432 TUT BLE Datalogger

Allow MSP432 TUT BLE
Datalo... to access this &
device's location?

DENY ALLOW

Datal.ogger

SCAN

User's Guide Figure 27: Snapshot from Android application with location permission request
Clicking “Allow” grants access to use device’s location to work with Bluetooth Low
Energy technology. Note: this permission does not enable the “Location” option on the

testing smart device nor track user’s location by any means.

As the permissions are granted, the Android application represents the Ul of “Start”

activity.
3.2 Enabling advertising on the MCU combination

From this point the user has to move back to the CCS IDE and track his actions in the

configured terminal.

To enable Bluetooth Low Energy advertising on the MCU combination, it is required to
toggle “S1 (P1.1)” button on the MSP432 LaunchPad as shown on the figure below.

61

e o
g[v 5 “i/; e

j PEEE ﬂ 35

)

J

Sensors BoosterPack

5aoo000°jﬁﬂ)g
ooooﬂ"‘)‘) -

User's Guide Figure 28: S1 button location on MCU combination

If the advertisement is launched correctly, the LED1 on the MSP432 board will light up
that will lead to the following output of the terminal.

A8 Terminal i3 2 | 'I =5 Eﬁ| @ = O
B coms i |

————————— Sensor Booster Pack Example ---------
Application Processor Initializing...

Done!

State set to idle.

Starting advertisement...

Done!

Waiting for connection (or timeout)...

4

i [k

User's Guide Figure 29: Terminal output after successful advertisement enabling

From now on, user has 30 seconds in order to connect to the MCU combination before
the example code cancels the advertisement.

62

3.3 Scanning for the MCU combination and connecting

Step 1: In order to connect to the MCU combination, user has to navigate to the “Scan”
activity using button “Scan”. After clicking the button, the application will transfer the
user to scanning activity, where the testing smart device will search for the MCU
combination. After successfully finding the MCU combination, the output of the
scanner must be the following. The name, set by the example code, is “MSP432

SensorHub”.

Scan for BLE Devices

MSP432 SensorHub
AO:E6:F8:BA:2D:84

User's Guide Figure 30: Snapshot from Android application after successful find of MSP432 SensorHub
Step 2: In order to connect to the MCU combination, user has to click on the list view
item and this will shift user to the “SensorOutput” activity, where the connection, sensor
enabling and value representation occurs. As the smart device connects and enables the
notifications on the MCU combination, the example code will output activity to the

terminal.
& Terminal £3 =] &"*?| i G BH £ =10
& coms 2
--------- Sensor Booster Pack Example --------- -
lwpplication Processor Initializing...
Done!

State set to idle.

Starting advertisement...

Done !

Waiting for connection (or timeout)...
Peer connected! (Peer: Bx795837722AF2)
Temperature update enabled!

Humidity update enabled!

Barometer update enabled!

Optic update enabled!

User's Guide Figure 31: Terminal output after successful connection and sensor enabling

63

The final result of this activity will show an Ul, where the readings of the sensor will be

updating every second.

Data Output DISCONNECT

34.0°C 36%

Ambient Temperature Humidity

101892 54.8
Pa lux

Barometric Pressure llluminance

User's Guide Figure 32: Snapshot from Android application’s “SensorOutput” activity
In order to disconnect from the MCU combination, the user has to simply click
“DISCONNECT” menu item and he will be forced back to the “Start” activity.

64

