
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C44

Security Protocols Analysis in the
Computational Model — Dependency Flow

Graphs-Based Approach

ILJA TŠAHHIROV

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Informatics

Dissertation was accepted for the defence of the degree of Doctor of Philoso-
phy in Engineering on November 12, 2008.

Supervisor: Professor Dr. Jaak Tepandi
Department of Informatics
Faculty of Information Technology
Tallinn University Of Technology

Opponents: Professor Dr. Varmo Vene
Department of Computer Science
University of Tartu

Dr. Cédric Fournet
Microsoft Research

Consultant: Dr. Peeter Laud
Faculty of Mathematics and Computer Science
Institute of Computer Science, Chair of Cryptography
University of Tartu

Defence of the thesis: December 15, 2008

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achieve-
ment, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted for any academic degree.

/ Ilja Tšahhirov /

Copyright: Ilja Tšahhirov, 2008
ISSN 1406-4731
ISBN 978-9985-59-869-6

INFORMAATIKA JA SÜSTEEMITEHNIKA C44

Turvaprotokollide analüüs arvutuslikul
mudelil — sõltuvusgraafidel põhinev

lähenemisviis

ILJA TŠAHHIROV

Acknowledgements

I would like to thank my supervisor Professor Jaak Tepandi for introducing me
to the topic of cryptographic systems interoperability, which served as a solid
basis for my research, for accepting my decision to adjust the initial direction
of the research into the area of the cryptographic protocols analysis, and for
all the support and advice during the years I spent working on this thesis.

I am thankful to Peeter Laud for introducing me to the world of language-
based security, the ideas, support and guidance he provided, essentially, fulfill-
ing the role of my second supervisor, and a pleasant experience we had while
working on the theory and analyser prototype.

I also wish to thank the managers of the Department of Informatics of the
Tallinn University of Technology, who provided me with a great support in
dealing with formal matters, which allowed me to completely concentrate on
the research.

I would like to thank the Doctoral School in ICT (Measure 1.1. of the
Estonian NDP for the Implementation of the European SF) and the Estonian
Information Technology Foundation for the financial support of this research.

Finally, I thank my parents and wife Ksenia for their support and patience.

5

Contents

1 Introduction 9
1.1 Dependency analysis . 10
1.2 Use of Cryptography . 11
1.3 Related Work and Our Contribution 11
1.4 Thesis Overview . 13

2 Abbreviations, Terms, and Symbols 14

3 Protocol Language 15
3.1 Syntactic Definition . 15
3.2 Execution Semantics . 17

4 Dependency graphs 22
4.1 Finite Dependency Graph . 22
4.2 Infinite Dependency Graph . 27
4.3 Execution Semantics . 32
4.4 Indistinguishability of Protocols 34

5 Translation from the Protocol Language to DG 35
5.1 EtoDG — Translation from Aexpr / Bexpr to DGR 35
5.2 AStoDG — translation from AS to DGR 47
5.3 StoDG — translation from S to DGR 52

6 Transforming the Dependency Graphs 59
6.1 Dependency Graph Fragments 59

6.1.1 Semantics . 59
6.1.2 Indistinguishability . 61
6.1.3 Transformations Specification 61
6.1.4 Correctness proofs . 61

6.2 Dependency Graph Fragment Representation 66
6.2.1 Semantics . 66
6.2.2 Indistinguishability . 66
6.2.3 Transformations Specification 66
6.2.4 Correctness proofs . 67

7 Transformations 69
7.1 Dead Code Removal . 69
7.2 Local Simplifications . 70

7.2.1 Other Bit String Operation Simplifications 71
7.3 Duplicate Computations Removal 73
7.4 Changing the Computations Order 73

6

7.5 Cryptographic Primitives . 74
7.6 Implied Analysis . 79

7.6.1 Introducing the ⇒ Nodes 80
7.6.2 Removal of the And inputs, depending on each other . . 81
7.6.3 Application to Bit String Nodes 82

7.7 Not-And Analysis . 82
7.7.1 Introducing the Nand Nodes 83
7.7.2 Application to Boolean Nodes 84
7.7.3 Application to Bit String Nodes 84

7.8 Independence Analysis . 84
7.8.1 Replacing the IsEq Operation not Influenced by Adver-

sary Input . 85
7.8.2 Replacing the IsNeq Operation not Influenced by Adver-

sary Input . 86
7.8.3 Replacing the IsEq Influenced by Adversary Input . . . 87

8 Experimental Results 93

9 Conclusions and Future Work 94
9.1 Using the Dependency Analysis 94
9.2 Contributions of the Dissertation 95
9.3 Future Work . 96

References 97

Publications by the author 101

Abstract (In Estonian) 102

Abstract 103

Curriculum Vitae (in Estonian) 104

Curriculum Vitae 106

Appendix 1: Cryptographic Notions 108

Appendix 2: Transformations 112

7

1 Introduction

Security is an important aspect of a computer system. Information security,
as defined in [36], means protecting information and information systems from
unauthorized access, use, disclosure, disruption, modification, or destruction.

The security comprises the concepts of confidentiality, integrity, and avail-
ability:

Confidentiality is preventing the disclosure of information to the unau-
thorized systems or individuals;

Integrity is preventing an unauthorized modification of information;

Availability means that the system services are available when needed.

Most of modern computer systems — ranging from a simple client-server
applications on a mobile phone to complex clustered systems performing a
distributed computation — consist of several computing entities, connected
via network. An important aspect of such systems is the communication pro-
tocol — a convention that enables the connection, communication, and data
exchange between several computing entities, or participants.

The design of a protocol has a significant impact on the security properties
of the system based on it — the flaw in the protocol can make the system
vulnerable to the security attacks, even if the individual system components
operate properly. Therefore there is a need for methods for indicating whether
the given protocol satisfies the given security property or not. The latter is
simpler than the first — having an example of successful attack breaching the
property of interest is sufficient to show that the protocol does not satisfy
it. Showing that the protocol is secure with respect to certain properties is
essentially convincing ourselves that no attack (known or unknown) breaching
these properties exists.

The topic of this thesis is the development of such method. We focus on
confidentiality and integrity properties. The system availability is also impor-
tant (the operation of any reasonable system should be hard to disrupt), but
is different from the first two properties, as both confidentiality and integrity
mean the absence of undesired functionality, while the availability means that
the system desired functionality is present. Therefore we advocate that the
single theory can be well-suited for proving either the confidentiality and in-
tegrity, or the availability. In our analysis we concentrate on the first two
properties.

Each security analysis is based on certain assumptions about the adversary.
The adversary model we use is an active adversary. It is quite powerful model
— we assume that the whole network and the scheduling of participants exe-
cution is fully controlled by the adversary. We advocate that while considering

9

the design of the protocols it is the most reasonable model, as in most of the
real life setups the network contains fragments, which are under the control
of a third party, therefore there’s no guarantee that the communication is not
being listened to or tampered with. Also, if the security property holds in this
model, it also holds with less powerful (e.g. passive) adversary.

1.1 Dependency analysis

As the communication protocol is one of the key system design components,
replacing it on already developed system is extremely hard and is usually as-
sociated with high costs (as the system needs to be essentially redeveloped).
Therefore, for the system designer it makes sense to analyze the security prop-
erties of the protocol before it is actually implemented and used. This type of
analysis is similar to program static analysis.

The topic of this thesis is dependency analysis. We analyze the dependen-
cies between the computations and values sent to or received from the network
in order to see whether the security properties hold.

If the value sent to the network does not depend on a secret data, we
conclude that there is no information flow from the secret data to this public
output, and, therefore, the confidentiality of the protocol is not broken. If
this statement holds for all the values which can be sent to the network, we
conclude that the confidentiality property holds for a given protocol.

By tracking the dependencies between the operations, it is also possible
to examine whether the certain invariants hold in any run of the protocol.
It is possible to represent the system integrity properties by choosing these
invariants, and then, by proving these invariants, prove that the integrity
property of interest holds.

Another key concepts of our approach are protocol indistinguishability and
transformations. Two protocols are indistinguishable if by observing their
public outputs (in case of active adversary, also tampering with them) it is
still not possible to determine (with non-negligible probability) which of the
two protocols is run. If the protocols are indistinguishable, then they are both
secure or insecure. Therefore, instead of analyzing a protocol, it is possible
to analyze another protocol, indistinguishable from the original one, and get
the same results. Using the approach, we get a sequence of games, where the
adversary advantage decreases only negligible from game to game, and in the
final game the adversary has obviously no advantage at all.

In this thesis we propose a framework for examining the protocol security
properties based on the notion of computational indistinguishability, assum-
ing certain properties of cryptographic operations. Currently the framework is
used for checking the preservation of confidentiality and integrity properties in
protocols. In principle, the framework should be suitable for verifying all prop-

10

erties whose fulfilment can be observed by the protocol participants and/or
the adversary — the transformation process does not change the observable
properties of protocols.

1.2 Use of Cryptography

In order to prevent unauthorized access to the information and / or tampering
with it, the security-related functions and cryptographic methods are used.
Each such function or method should have certain properties — for instance
it should be hard to decrypt the encrypted information without having the
corresponding decryption key. The notion of “hardness” can be formulated
(on the example of decryption) using one of the following approaches:

The formal approach, also referred to as a Dolev-Yao model [24], assum-
ing that without having a key it is not possible to decrypt the message
at all.

The complexity-theory based approach [35], based on a more realistic
assumption that the decryption not having the key is possible, but with
a very small probability (a function of the length of the key).

Our analysis relies on the complexity-theoretic definitions. The result of
the protocol security examination is stated in form: the protocol is secure
(except for the cases, which can occur only with a negligible probability),
assuming that the cryptographic methods, used in it, are secure (also, in the
complexity-theoretic sense).

Any cryptographic primitive, the properties of which can be formalized
this way, can be used in the protocol, serving as the input for our analysis. In
this thesis we supply the definitions for the symmetric (secret key) encryption,
asymmetric (public key) encryption, and digital signature.

1.3 Related Work and Our Contribution

The research presented in this thesis belongs to a body of work attempting to
bridge the gap between the two main approaches for modeling and analyzing
the cryptographic protocols — the Dolev-Yao model [24] and the complexity-
theory-based approach [35]. The most related, and also a source of inspiration
to our work has been the protocol analysis framework by Blanchet [18, 19, 20].
The difference of our approaches is in the choice of the program (protocol) rep-
resentation. We believe that the use of dependency graphs instead of a more
conventional representation allows our analyzer to better focus on the impor-
tant details of data and control flow. Both frameworks are based on the view
of cryptographic proofs as sequences of games [17, 10]. In both frameworks,
in order to prove a protocol correct, the automated analyzer constructs such

11

a sequence where the adversary’s advantage diminishes only negligibly from
one game to the next one, and where the adversary has obviously no advan-
tage in the final game. Another difference with [18, 19, 20] is the degree of
automation – the analyzer from [18, 19, 20] still requires the human-produced
hints on the set and order of transformations to apply for some protocols; the
analyzer prototype implemented based on our framework does not require any
hints.

The work in this area has been started by Abadi and Rogaway [13], who
considered the relationship of formal and computational symmetric encryption
under passive attacks and provided a procedure to check whether two formal
messages have indistinguishable computational semantics. The same primi-
tive and class of attacks have been further considered in [14, 31, 26, 30, 15],
in these papers the language has been expanded (the constraints have been
weakened) and the security definitions have been clarified. Further on, the
active attacks with the range of cryptographic primitives were considered in
[22, 25, 29] (based on the translation of protocol traces from the computational
to the formal model) and [27, 16] (based on the application of the universally
composable [21, 32] cryptographic library [4]).

Another body of research the present work is based on is the static analysis
on the intermediate program representations. We use the protocol representa-
tion close to [33]. Unlike some of the frameworks based on protocol rewriting
– [10, 12], the protocol transformations we perform do not produce several
sub-protocols which are to be analyzed separately; the representation chosen
is capable of holding all the possible information flows and execution variants,
therefore having better potential for analyzing the replication and data flows
between different protocol runs.

The basis of the analysis — protocol semantics and the set of assumptions
on the cryptographic operations we used — is similar to [10, 12], while the
protocol language is much more powerful, and the analysis methodology is
significantly different. The basic principles of applying the dependency graph
for this purpose are outlined in [34]. The integrity properties, which can be
further investigated using the developed approach range from traditional defi-
nitions of protocol integrity (injective and non-injective agreement) to system
interoperability (e.g. to formally prove the findings described in [11]).

Our main contribution, distinguishing our work from the works mentioned
above, is the introduction of the support for the replication to the analyzed
protocols, and using the approach based on the extensive usage of the de-
pendency graphs, similar to those introduced in [33], for the analysis of the
protocols’ security. Also, the framework described in this thesis, is suitable
for producing the automated, computationally sound proofs for the protocols
security.

12

1.4 Thesis Overview

This thesis has the following structure.
The terms, abbreviations, and symbols, used in the thesis, are described

in the sec. 2. Then, in sec. 3, we describe the procedural language for speci-
fying the input to our analysis: both the syntax (sec. 3.1) and the execution
semantics (sec. 3.2) are covered. The language itself is similar to [37], but con-
tains the means for specifying the computations performed during the protocol
execution with enough details to perform the analysis.

Sec. 4 is dedicated to the dependency graphs — the protocol representa-
tion used for the analysis. First, the graphs of a finite size are described
(sec. 4.1), followed by more complex case of a graph with infinite number of
nodes (sec. 4.2). The execution semantics of the dependency graphs are de-
fined in sec. 4.3. The section is concluded by defining the indistinguishability
of two protocols, represented by the dependency graphs (sec. 4.4)

The method for translating a protocol (preserving its semantics) from the
procedural language to the dependency graph language is described in sec. 5.
The language for specifying the dependency graph transformations is described
in sec. 6, followed by the transformations we used, specified in this language
(sec. 7).

The final sections of the thesis discuss the achieved practical results (sec. 8),
conclusions, and possible directions for future research (sec. 9).

The definition of the properties of the cryptographic operations we used
(this is just one possible definition, not being the part of the core framework,
as different set of cryptographic primitives and/or stronger/weaker properties
can be considered as well), and the full list of transformations we defined,
reside in the thesis appendix.

13

2 Abbreviations, Terms, and Symbols

The terms and symbols used in the thesis are listed in table 1.

Table 1: Terms and Symbols

Symbol Explanation
DG Dependency Graph
DGR Dependency Graph Representation
DGF Dependency Graph Fragment
DGFR Dependency Graph Fragment Representation
B Set of boolean values (true and false)
N Set of numeric values
P Power set
Dim, d A category of replication dimensions and its member
Num, n A category of numerals and its member
Aexpr, a A category of arithmetic expressions and its member
Var, x A category of variables and its member
Bexpr, b A category of boolean expressions and its member
Expr, e A category of expressions and its member
Stmt, S A category of protocol statements and its member
Lab, l A category of protocol expression labels and its member
A Arithmetic expression semantics function
B Boolean expression semantics function
S Protocol statement semantics function
Lab Set of DG/DGR labels
Lab→ Set of DG/DGR labels of Send-nodes
Lab← Set of DG/DGR labels of Receive and Req-nodes
Lab∗ Set of DG/DGR labels of RS and Secret-nodes
Labf Set of DGF/DGFR labels
Labf→ Set of DGF/DGFR labels of OutputB and OutputS-nodes
Labf← Set of DGF/DGFR labels of InputB and InputS-nodes
Labf ∗ Set of DGF/DGFR labels of RS and Secret-nodes
GR, gr A category of DGRs and its member
G, g A category of DGs and its member
Fix Fixed point operator

14

3 Protocol Language

We represent a protocol, which is the input to our analysis, in a WHILE-style
procedural language. The language comprises statements, which, in turn, may
contain arithmetic or boolean expressions. So-called atomic statement repre-
sents a single operation (in our case — variable assignment, sending the value
to the network, and the instructions for marking the initiation and comple-
tion of the session (needed to investigate the integrity property). The atomic
statements can be composed into the compositional statements (or just state-
ments). Using the compositional statements we define the sequential, par-
allel, or conditional execution of the atomic statements. Process replication
is also supported. The common expressions are supported: constant genera-
tion, tupling, projection, boolean logic operations, and so on. We’ve supplied
the definition of several cryptographic operations as examples (asymmetric
encryption, symmetric encryption, nonce generation, and digital signature);
more cryptographic operations can be brought in if needed for the purpose
of analyzing a particular protocol. The language is formally described in the
remained of this section.

3.1 Syntactic Definition

The language consists of the following syntactic categories. For each category,
the name of the meta-variable (which can be sub- or superscripted), ranging
over it, is given.

• n ranges over numerals, Num;

• x ranges over variables, Var;

• l ranges over expression and statement labels, Lab; the label of the
statement or expression is used to identify the “external” values con-
sumed or produced by the statement or expression. The examples are:
value sent to or received from the network, and random coins;

• d ranges over replication dimension names, Dim; Each protocol state-
ment can be replicated (executed many times in parallel). If the state-
ment is replicated, it has the coordinate in (exactly one) replication
dimension. The value of the coordinate is used to identify the particular
instance of the replicate operation;

• a ranges over arithmetic expressions, Aexpr;

• b ranges over boolean expressions, Bexpr;

15

• AS ranges over atomic statements (each of this statements can be exe-
cuted in one step), AStmt;

• S ranges over compositional statements, Stmt.

The exact structure of numerals, variables, labels, and dimension names is not
defined here. Any reasonable implementation (for instance, numbers being
sequence of digits and other mentioned categories being the sequence of letters)
would be be sufficient for our purposes, so we leave it flexible. The remaining
syntactic categories are defined in Figure 1. Given the above definitions, the

a ::= x | n | nonce l

| keypair l | pubkey(a) | pubencl (a1, a2)
| pubdec(a1, a2) | svkpair l | verkey(a)
| sig l (a1, a2) | getmsg(a) | symkey l

| symencl (a1, a2) | symdec(a1, a2) | receive l

| tuplen(a1, . . . , an) | proj n,n ′(a) | secret l

b ::= a1 = a2 | a1 6= a2 | testsig(a1, a2)
| and(b1, b2) | or(b1, b2) | isok(a)

AS ::= x := a | send la | begin la
| end la

S ::= parn(S1, . . . ,Sn) | rep(d ,S) | if b then S1

| iff b then AS finally S | stop | AS ;S

Figure 1: Syntactic Categories of the Protocol Language

protocol is described by S ∈ Stmt.
To illustrate the capabilities of the language, let us consider the well-known

Needham-Schroeder-Lowe key-exchange protocol:

A → B : {NA, A}pk(B)

B → A : {NA, NB, B}pk(A)

A → B : {NB}pk(B)

This public-key protocol is used to establish the shared secrets NA and NB

between A and B. In our modeling, NB is the shared key KAB established
between A and B. To examine the secrecy of payloads, we add an extra
message from B to A containing the encryption of a secret payload under the

16

key KAB. Hence the protocol we’re currently considering is

A → B : {NA, A}pk(B)

B → A : {NA,KAB, B}pk(A)

A → B : {KAB}pk(B)

B → A : {M}KAB

A → B : OK

(1)

I.e. the party A acknowledges the receipt of the secret M after the received
message has been successfully decrypted.

This protocol is depicted by the following protocol language statement:

// Protocol Initialization
sk(A) := keypair1;
pk(A) := pubkey ;
sk(B) := keypair2;
pk(B) := pubkey ;
par2(

// Participant A
NA := nonce3;
send4 pubenc5(pk(B), tuple(NA, pk(A)));
m2 := pubdec(sk(A), receive10);
if proj 1,3(m2) = NA then
if proj 3,3(m2) = pk(B) then
K ′

AB := proj 2,3(m2);
send11 pubenc12(pk(B),K ′

AB);
if isok(symdec16(K ′

AB, receive17)) then
send12 1,

// Participant B
m1 := pubdec(sk(B), receive6);
if proj 2,2(m1) = pk(A) then
KAB := symkey7;
send8 pubenc9(pk(A), tuple(proj 1,2(m1),KAB,pk(B)))
m3 := pubdec(sk(B), receive13);
if m3 = KAB then
send14 symenc15(KAB, secret))

3.2 Execution Semantics

In this section we define the structural operational semantics of the protocol.
First, we define the sets and semantic functions.

In order to represent the replication dimensions of a given statement we
introduce dv ∈ P(Dim) (note that in the protocol language each statement

17

can have at most one coordinate in a given replication dimension). The coordi-
nates of a statement are represented by a partial function from the replication
dimensions to the coordinate values: cv ∈ CrdVect : Dim ↪→ N.

The Σ is the set of all the bit strings, on which the computations are
performed. Let τ = Σ × Σ → Σ be an injective function. Finally, let T =
{true, false} be the set of boolean values. The mathematical functions involved
in computations are underlined in the semantic definitions below.

The values received from the network and generated random coins are
supplied to the protocol via the following functions (both taking the label and
the coordinates of the corresponding expression):

• inp ∈ Rand = Lab× CrdVect → Σ

• rand ∈ In = Lab× CrdVect → Σ

The current state of the computations is defined by the following sets:

• s ∈ State. The state is the storage for variables defined in the pro-
tocol. The variable is identified by its name and the coordinates of
the statement where it has been defined. Formally, it has the type
State : Var× CrdVect → Σ;

• t ∈ Thread . The thread represents the single sequence of instructions
(represented by S) which is yet unexecuted, along with its coordinates.
Note that the thread does not hold the variable values, which are stored
(globally) in s ∈ State. Formally, it has the type Thread = (S , cv);

• ts ∈ Threads. It is a collection of the treads. Initially the protocol starts
with a single thread; the additional threads are then created by the rep
and par statements. Formally, it has the type Threads = P(Thread)

• ps ∈ ProtState. Finally, the protocol state is no more than a collection
of threads and a global state. Formally, ProtState = 〈ts, s〉.

Given the above definitions, the semantics of the protocol are defined by the
semantic function (executing the S):

inp, rand ` S : ProtState ↪→ ProtState

This function, in turn, relies on the semantics of the atomic statement, arith-
metic and boolean expressions:

• Atomic statement execution: inp, rand ` AS : AStmt → (CrdVect ×
State → State);

• Arithmetic expression evaluation: inp, rand ` A : Aexpr → (CrdVect ×
State → Σ);

18

• Boolean expression evaluation: inp, rand ` B : Bexpr → (CrdVect ×
State → T).

The semantic functions are defined as shown in the Figures 2, 3, 4, and
5. Note that the statements send , begin, and end do not modify the program
state — send makes the expression value available to the adversary; begin and
end (the statements are used for the examination of the integrity properties)
just evaluate the given expression at the given point.

inp, rand ` A[[x]] cv s = s x cv
inp, rand ` A[[n]] cv s = const(n)
inp, rand ` A[[nonce l]] cv s = nonce(rand l cv)
inp, rand ` A[[keypair l]] cv s = keypair(rand l cv)
inp, rand ` A[[pubkey(a)]] cv s = pubkey(A[[a]] cv s)
inp, rand ` A[[pubencl (a1, a2)]] cv s = pubenc(A[[a1]] cv s,

A[[a2]] cv s, rand l cv)
inp, rand ` A[[pubdec(a1, a2)]] cv s = pubdec(A[[a1]] cv s,A[[a2]] cv s)
inp, rand ` A[[svkpair l]] cv s = svkpair(rand l cv)
inp, rand ` A[[verkey(a)]] cv s = verkey(A[[a]] cv s)
inp, rand ` A[[sig l (a1, a2)]] cv s = sig(A[[a1]] cv s,A[[a2]] cv s, rand l cv)
inp, rand ` A[[getmsg(a)]] cv s = getmsg(A[[a]] cv s)
inp, rand ` A[[symkey l]] cv s = symkey(rand l cv)
inp, rand ` A[[symencl (a1, a2)]] cv s = symenc(A[[a1]] cv s,

A[[a2]] cv s, rand l cv)
inp, rand ` A[[symdec(a1, a2)]] cv s = symdec(A[[a1]] cv s,

A[[a2]] cv s)
inp, rand ` A[[receive l]] cv s = inp l cv
inp, rand ` A[[secret l]] cv s = rand l cv
inp, rand ` A[[tuplen(a1, . . . , an)]] cv s = τ(A[[a1]] cv s, τ(. . . ,

τ(A[[an − 1]] cv s,A[[an]] cv s)) . . .)
inp, rand ` A[[projn,n ′(a)]] cv s = σn′ ; σ′0 = A[[a1]] cv s;

(σm, σ′m) = τ−1(σ′m−1)

Figure 2: Semantic function A

The execution of a protocol (represented by a top-level statement S), in
parallel with the adversary A and with the secret payload M , proceeds as
follows:

1. s is set to map every variable ⊥. rand is initialized with the (uniformly
generated) random coins used in the execution. The value rand(l) for a

19

inp, rand ` B[[isok(a)]] cv s =
{

true if A[[a]] cv s 6= ⊥
false if A[[a]] cv s = ⊥

inp, rand ` B[[a1 = a2]] cv s =
{

true if A[[a1]] cv s = A[[a2]] cv s
false if A[[a1]] cv s 6= A[[a2]] cv s

inp, rand ` B[[a1 6= a2]] cv s =
{

true if A[[a1]] cv s 6= A[[a2]] cv s
false if A[[a1]] cv s = A[[a2]] cv s

inp, rand ` B[[testsig(a1, a2)]] cv s = testsig(A[[a1]] cv s,A[[a2]] cv s)

inp, rand ` B[[b1andb2]] cv s =

true if B[[b1]] cv s = true∧
B[[b2]] cv s = true

false if B[[b1]] cv s = false∨
B[[b2]] cv s = false

inp, rand ` B[[b1orb2]] cv s =

true if B[[b1]] cv s = true∨
B[[b2]] cv s = true

false if B[[b1]] cv s = false∧
B[[b2]] cv s = false

Figure 3: Semantic function B

inp, rand ` AS[[x := a]] cv s = s[x 7→ A[[a]] cv s]
inp, rand ` AS[[send la]] cv s = s if A[[a]] cv s 6= ⊥
inp, rand ` AS[[begin la]] cv s = s if A[[a]] cv s 6= ⊥
inp, rand ` AS[[end la]] cv s = s if A[[a]] cv s 6= ⊥

Figure 4: Semantic function AS

secret-expressions is set to M . The mapping inp (containing the values
received by the protocol participants from the network) is set to map
every value to ⊥; the initial protocol state is set to 〈{(S , cv0)}, s〉 (cv0

maps every replication dimension to 0);

2. The adversary is invoked with the internal state it returned during the
previous invocation (if this is the first invocation then the internal state is
empty), the set of threads ts (during the first invocation it is {(S , cv0)}),
and with the value sent to the network during the last step (or ⊥, if
nothing has been sent to the network);

3. If the adversary indicates to stop, then stop the execution. Otherwise,
the adversary produces a new internal state, the thread t to be executed
(such that ts = {t}∪ ts ′′) and a new mapping inp′, satisfying inp ≤ inp′.
The computational cost of outputting inp′ is defined to be the number
of labels l where inp(l) 6= inp′(l);

20

inp, rand ` S〈(parn(S1, . . .Sn), cv) ∪ ts, s〉 = 〈⋃n
j=1(Sj , cv) ∪ ts, s〉

inp, rand ` S〈(rep(d ,S), cv) ∪ ts, s〉 = 〈⋃j∈N(S , cv [d 7→ j]) ∪ ts, s〉
inp, rand ` S〈(AS ;S , cv) ∪ ts, s〉 = 〈(S , cv) ∪ ts, AS[[AS]] cv s〉
inp, rand ` S〈(if b then S1, cv) ∪ ts, s〉 = 〈(S1, cv) ∪ ts, s〉

if B[[b]] cv s = true
inp, rand ` S〈(if b then S1, cv) ∪ ts, s〉 = 〈ts, s〉

if B[[b]] cv s = false
inp, rand ` S〈(iff b then AS 1 finally S1 cv) ∪ ts, s〉 = 〈(AS 1;S1, cv) ∪ ts, s〉

if B[[b]] cv s = true
inp, rand ` S〈(iff b then AS 1 finally S1 cv) ∪ ts, s〉 = 〈(S1, cv) ∪ ts, s〉

if B[[b]] cv s = false
inp, rand ` S〈(stop, cv) ∪ ts, s〉 = 〈ts, s〉

Figure 5: Semantic function S

4. One execution step is performed in the thread selected by the adversary.
Let 〈ts ′, s′〉 = inp, rand ` S〈{t} ∪ ts ′′, s〉. If during the execution a value
has been sent to the network, it is stored to be passed to the adversary
in the step 2;

5. Let s := s′, ts := ts ′, and inp := inp′. Continue from step 2.

As a result, we get a list of inputs to and outputs from the adversary. We call
the probability distribution (given by the probabilistic generation of rand and
the adversary’s coin-tosses) over these lists the view of the adversary A when
executed with the protocol S and the secret M . We denote this distribution
by viewS

M (A).
If two protocols are indistinguishable to an adversary then they are simul-

taneously secure or insecure. We define the indistinguishability of protocols
using the notion of adversary view. Two protocols, implemented by S1 and
S2, are indistinguishable, if for all polynomial-time constructible distributions
DM of the secret M , and all probabilistic polynomial-time adversaries A, the
distributions viewS1

M (A) and viewS2
M (A) are indistinguishable, if M is sampled

according to DM .

21

4 Dependency graphs

We represent the protocol as a dependency graph. The dependency graph is
a directed graph, where each node corresponds to a computation, producing
a value. The edges of the graph indicate which nodes use values produced at
another nodes. The examples of the computations happening at nodes are:
execution of the cryptographic algorithm, arithmetic, or boolean operation.
The values produced are either bit strings or boolean values. The values
produced outside of the graph (for example, random coin tosses, incoming
messages, secret payloads, and constants) are brought into it via special nodes,
having no incoming edges. Additionally, certain nodes explicitly make their
input values available to the adversary (representing sending the values to the
insecure channel).

Program dependency graphs have originated as a program analysis and op-
timization tool [2], systematically recording the computational relationships
between different parts of a program. Since then, several flavors of depen-
dency graphs have been proposed, some of them admitting a formal semantics
[1, 3], thus being suitable as intermediate program representations in a com-
piler. Programs represented as dependency graphs are amenable to aggressive
optimizations as all program transformations we may want to apply are incre-
mental on dependency graphs. However, the translation from an optimized
dependency graph back to a sequence of instructions executable on an actual
processor may be tricky as the optimizations may have introduced patterns
that are not easily serializable. The introduction of such patterns may be
avoided by introducing extra dependency edges between nodes (for example,
nodes corresponding to reads from and writes to the heap may depend on all
previous writes to the heap) but these edges reduce the number of applicable
optimizations. However we do not have this issue because we do not have
to translate the optimized / simplified / analyzed protocol back to a more
conventional form.

4.1 Finite Dependency Graph

A protocol, consisting of a finite number of sessions, can be represented by a
Finite Dependency Graph (FDG). Formally, the FDG consists of:

• Finite set of nodes, each of them representing a computation. The node
n is identified by:

– `(n) — node identity. The set of all the identities is Lab.

– λ(n) — an operation. An operation is either bit string-valued or
boolean-valued. The operation dictates which input ports the node
has.

22

• For each input port of each node, an edge connecting some node to this
input port.

The operations, which can occur in FDG (including the input ports), are
listed in the Figure 6. Each operation, having the input port cd, performs
computation only if the value at this port is true; if the value is false, the
⊥ is returned. The operation Nonce(cd,R) computes the bit-string repre-
sentation of the random coins R. Operations Keypair(cd,R), PubKey(cd,K),
PubEnc(cd,R,K, T), and PubDec(cd,K, T) abstract the asymmetric encryp-
tion scheme — they compute the public-private key pair from the random
coins R, extract the public key component from the key pair K, encrypt the
message T using the public key K and the random coins R, and decrypt the
message T with the private key contained in the key pair T , respectively. The
operation PubEncZ(cd,R,K) encrypts the string of zeroes using the private key
from the key pair K and the the random coins R. The symmetric encryption
scheme is abstracted by the operations SymKey(cd,R), SymEnc(cd,R,K, T),
SymDec(cd,K, T), and SymEncZ(cd,R,K) (a string of zeros is encrypted, as
in PubEncZ). The digital signature scheme is abstracted by the operations
SigVer(cd,R) (computation of signature-verification key pair from the random
coins R), VerKey(cd,K) (extraction of verification key from the key pair K),
Signature(cd,R, K, T) (signing the message T with the secret key from the key
pair K and using the random coins R), SignedMsg(cd, T) (extraction of the
message component from the signed message), and TestSig(K, M) (verifica-
tion of the signature on the message M using the verification key K). The
semantics of the operation TestSigP are identical to the TestSig (those opera-
tions are separated for the purposes of the analysis; additional details on that
are supplied when the corresponding transformation is described). Tupling
(Tuplen(cd,X1, ..., Xn)) and projection (Projmn (cd, T)) are also supported. The
operations IsEq(X1, X2) and IsNeq(X1, X2) test two values for the equality.
IsOK(X) returns true if its argument is different from ⊥ and false otherwise.
The Id(cd,X) returns its argument. Error, True, and False return the constants
⊥, true, and false, respectively.

The operation Send(cd,X) makes the value X (or constant ⊥, if its control
dependency is not set to true) available to the adversary. The operations
RS(cd), Consti(cd), Secret(cd), Receive(cd), and Req return the inputs to the
dependency graph (computed outside of it): random coins, bit-string constant,
secret payload, incoming message, and the flag, indicating the adversary’s
wish to evaluate certain graph output, respectively. Finally, the operations
Begin(cd,X) and End(cd,X) do not perform any computation; they are used
for the analysis of the integrity properties, to examine the possible order of
the operations.

23

λf (n) ::= RS(cd) | Nonce(cd,R)
| Const(cd) | Keypair(cd, R)
| PubKey(cd,K) | SigVer(cd,R)
| VerKey(cd,K) | SymKey(cd,R)
| PubEnc(cd,R, K, T) | SymEnc(cd,R, K, T)
| PubEncZ(cd, R, K) | SymEncZ(cd,R,K)
| Signature(cd,R,K, T) | SignedMsg(cd, T)
| Tuplen(cd,X1, ..., Xn) | Projmn (cd, T)
| PubDec(cd,K, T) | SymDec(cd,K, T)
| Send(cd,X) | Begin(cd,X)
| End(cd,X) | Receive(cd)
| Secret(cd) | Mergen(cd,X1, ..., Xn)
| Id(cd,X) | Error
| Andn(B1, ..., Bn) | Orn(B1, ..., Bn)
| Req | True
| False | IsOK(X)
| IsEq(X1, X2) | IsNeq(X1, X2)
| TestSig(K, M) | TestSigP(K, M)

Figure 6: FDG operations

To illustrate the FDG concept, let us represent the Needham-Schroeder-
Lowe key-exchange protocol as an FDG. The protocol from the previous sec-
tion (1), where only these five messages are sent (i.e. there is only one session
for A in the role of the initiator and one session for B in the role of the respon-
der) is depicted as a FDG in Figure 7. In this figure, at the left of each node
n is written the operation λ(n) that it performs; to the right is the unique
identifier `(n) of that node.

The specification of the protocol starts with generating the public encryp-
tion and secret decryption key for both A and B. The key pairs are generated
at the nodes 3 (for A) and 15 (for B); the public key is extracted from the
pairs (nodes 12 and 24).

To produce the first message from A, a nonce has to be generated, this
occurs at node 27. We then form a pair of the generated nonce and the identity
of A (represented by the public key of A). This pair is constructed at node
69. At node 72 it is then encrypted with the public key of B. The resulting
cipher text is sent to the network at the node 78. Note that we do not specify
the intended recipient here, as the network is under the full control of the
adversary.

The node for receiving the first message at B has the identity 165 (in the
semantics of dependency graphs, the adversary controls the value produced

24

Keypair 3

Pubkey 12

Pubdec 87

or 26

RS 6

Keypair 15

RS 18

Pubkey 24

tuple 69

=? 286

Pubenc 210

Pubdec 168

Pubdec 225

Pubenc 72

=? 280

Pubenc 132

tuple 207

req 217

Receive 165

2/2 177

req 79

Nonce 27

RS 30

RS 75

Send 78

and 82

=? 278

Receive 84

1/3 96

req 139

3/3 111

2/3 123

Symdec 147

RS 135

Send 138

and 142

Receive 144

req 160

OK? 150

Const (1) 156

Send 159

1/2 198

Symkey 186

=? 291

RS 189

RS 213

Send 216

and 220

Receive 222

req 271

Symenc 264

Secret 261

RS 267

Send 270

Figure 7: Single session of Needham-Schroeder-Lowe key-exchange protocol

25

by it). This message is then decrypted using the secret decryption key (repre-
sented by the key pair) of B. The decryption (or possibly any other operation)
may fail; if any node receives failure as one of its inputs, the result is failure,
too (except at certain special cases). Next, B checks that the decrypted mes-
sage claims to originate from A (note that this check is not explicit in (1)) —
it takes the second component of a 2-tuple and checks at node 286 whether it
is equal to the public key of A. Node 286 produces a boolean value as a result
(all other nodes we have mentioned so far produce bit-strings). If any of the
inputs to node 286 is a failure, the result is false. In Figure 7 the black edges
carry bit-strings while the blue edges carry booleans. Each node producing
bit-strings also has a special input — the boolean-valued control dependency.
A node is evaluated only if its control dependency is true; the result of any
node with false control dependency is a failure.

We see that the rest of the construction of the second message of the
protocol is performed only if the test at node 286 returns true. We extract
the first part of the 2-tuple at node 198 (this should equal NA), generate the
shared key KAB at node 186, form the triple (NA,KAB, B) at node 207 (again,
the identity of B is represented by his public key), encrypt it and send it away.

Node 84 is supposed to receive the second message sent by B (if the adver-
sary forwards it directly to A). We see that this message is decrypted using
the public key of A, the first component of the plain text (which is supposed
to be a triple) is compared against the nonce NA and the third component is
compared against the identity of B. If both these checks succeed then the third
message is constructed by encrypting the second component of the received
plain text triple. The message is then sent away.

Note that although the control dependency of the nodes constructing and
sending the third message (nodes 123, 132, 135 and 138) comes just from node
280, their execution also depends on the result of the comparison at node 278.
Indeed, node 278 produces the control information for node 111, and if the
result of node 278 is false, then node 111 produces a failure and node 280
returns false, too (note also that comparing failure to failure results in false,
too).

The rest of the graph depicted in Figure 7 (apart from the nodes with
the operation Req) represents the reception of the third and fourth message
and the construction of the fourth and fifth message. The secret payload is
represented by a node with the operation Secret. After receiving the fourth
message at node 144, the party A attempts to decrypt it and if the decryption
succeeds emits the acknowledgement message (which is a constant).

When are the depicted operations actually performed, i.e. how are the
parties A and B scheduled? We take a common approach to scheduling by
giving the adversary the control over it [7, 4]. The adversary performs the
scheduling by requesting the parties to deliver a certain message. For receiving

26

those requests, the protocol contains the nodes with the operations Req. The
value of these nodes is false initially, but the adversary may set them to true
in the course of the computation. Setting some of the Req-nodes to true may
result in the control dependencies of some Send-nodes becoming true, too, and
the values reaching those nodes are then sent to the adversary. The adversary
sees which Send-nodes are the sources of messages. In our examples, there is a
one-to-one correspondence between Send-nodes and Req-nodes. This is indeed
a natural way for representing protocols, although not strictly necessary from
the semantics point of view.

The graph in Figure 7 corresponds to just a single session by A as the
initiator and a single session by B as the responder. To model more sessions
we simply have to add more nodes to the graph. For example, to have A act
as the initiator in three sessions of the protocol, all nodes to the left of the
dashed red line in Figure 7 have to be included three times. Similarly, to have
B act as the responder in two sessions of the protocol, all nodes to the right
of the dashed green line have to be included twice. The edges between those
nodes connect nodes belonging to the same copy. Each edge from the central
part (where the public key pairs are generated) to the left will become three
edges, going to each of the copied nodes, while each edge from the central part
to the right will become two edges. In Figure 7 there is just a single edge from
the left part to the center (from node 79 to node 26) and a single edge from
the right part to the center (from node 217 to node 26). In the graph with
multiple sessions, these edges are replaced by multiple edges as well.

4.2 Infinite Dependency Graph

As dependency graphs defined above contain a node for each operation that
a party may want to perform, the graphs representing unbounded number of
rounds of a protocol may be infinite.

The Infinite Dependency Graph (IDG) is still defined as a collection of
nodes and edges. The important difference from the FDG is that each node
may also have one or more coordinates in so-called replication dimensions (the
coordinate corresponds to the index of a session a party is running).

Being infinite, the graph stays regular enough to be represented in the
finite form. We call this form the Infinite Dependency Graph Representation
(IDGR).

Certain additional operations, not occurring in FDG, are possible — the
full list of IDGR operations is supplied in Figure 8. The Longor is the Or
with an infinite number of inputs. IfDef and CfDef-operations are multiplex-
ors, having potentially infinite number of selector-value pairs, and returning
the value, the selector of which is set to true. The difference between them
is that the CfDef operates on boolean values, while IfDef — on bit strings.

27

The above operations, in addition to the input ports, have another kind of
important attribute — the dimensions among which the coordinates of the
inputs may range (it will be explained in more details on the example be-
low). The DimEq and DimNeq represent the set of boolean nodes, True or
False depending on whether the values of the given coordinates of the node
are equal or not. Finally, the CTakeDimEq (operating on boolean values) and
DTakeDimEq (operating on bit strings) correspond to the set of And1 (in case
of CTakeDimEq) or Id (in case of DTakeDimEq) operations, having its inputs
with two certain coordinates being equal.

λi(n) ::= λf (n) | Longor(B)
| IfDefn(cd,B1, X1, ..., Bn, Xn) | CfDefn(cd,B1, B

′
1, ..., Bn, B′

n)
| DimEq | DimNeq
| DTakeDimEq(X) | CTakeDimEq(X)

Figure 8: FDG operations

As an example, consider the implementation of the Needham-Schroeder-
Lowe protocol (1), where

• A is able to run an unbounded number of sessions as the initiator with
the principal B (i.e. A makes use of B’s public key);

• B is able to run an unbounded number of sessions as the responder with
the principal A;

• A is able to run an unbounded number of sessions as the initiator with
unbounded number of other parties whose public key is given to it (under
the control of the adversary).

This configuration is interesting because the Lowe’s attack is applicable to the
original Needham-Schroeder protocol [6] in this setting. Our representation
of the (infinite) dependency graph representing such execution of the NSL-
protocol is given in Figure 9.

We see that the main addition to the plain dependency graphs are the
replication dimensions depicted at the right of the nodes. A node with k ≥ 1
dimensions represents a countable number of nodes in the actual dependency
graph; these nodes are in one-to-one correspondence with the elements of Nk.
In Figure 9, the dimension AtoB corresponds to the sessions where A talks to
B, and BtoA to the sessions where B talks to A. The dimension AtoOthers
accounts for the other parties that A may talk to, the public key of the other
party is obtained at node 163. The dimension AtoOne corresponds to the

28

Keypair 3

Pubkey 12

Pubdec 88 AtoB

Pubdec 228
AtoOthers

AtoOne

or 26

RS 6

Keypair 15

RS 18

Pubkey 24

tuple 70 AtoB

tuple 210
AtoOthers

AtoOne

=? 446 BtoA

Pubenc 352 BtoA

Pubdec 309 BtoA

Pubdec 367 BtoA

Pubenc 73 AtoB

=? 428 AtoB

Pubenc 133 AtoB

tuple 349 BtoA

ooor 312 BtoA ooor 166
AtoOthers

AtoOne
ooor 33 AtoB

Nonce 27 AtoB

=? 426 AtoB

req 80 AtoB

RS 30 AtoB

RS 76 AtoB

Send 79 AtoB

and 83 AtoB

Receive 85 AtoB

1/3 97 AtoB

req 140 AtoB

3/3 112 AtoB

2/3 124 AtoB

Symdec 148 AtoB

RS 136 AtoB

Send 139 AtoB

and 143 AtoB

Receive 145 AtoB

req 161 AtoB

OK? 151 AtoB

Send 160 AtoB

ooor 414 AtoB

Const (1) 454

Send 300
AtoOthers

AtoOne

Receive 163 AtoOthers

Pubenc 213
AtoOthers

AtoOne

=? 439
AtoOthers

AtoOne

Pubenc 273
AtoOthers

AtoOne

ooor 173 AtoOthers AtoOne

req 220
AtoOthers

AtoOne

Nonce 167
AtoOthers

AtoOne

RS 170
AtoOthers

AtoOne

RS 216
AtoOthers

AtoOne

Send 219
AtoOthers

AtoOne

and 223
AtoOthers

AtoOne

=? 437
AtoOthers

AtoOne

Receive 225
AtoOthers

AtoOne

1/3 237
AtoOthers

AtoOne

req 280
AtoOthers

AtoOne

3/3 252
AtoOthers

AtoOne

2/3 264
AtoOthers

AtoOne

Symdec 288
AtoOthers

AtoOne

RS 276
AtoOthers

AtoOne

Send 279
AtoOthers

AtoOne

and 283
AtoOthers

AtoOne

Receive 285
AtoOthers

AtoOne

req 301
AtoOthers

AtoOne

OK? 291
AtoOthers

AtoOne

ooor 416
AtoOthers

AtoOne

Receive 306 BtoA

req 359 BtoA

2/2 319 BtoA

1/2 340 BtoA

Symkey 328 BtoA

=? 451 BtoA

RS 331 BtoA

RS 355 BtoA

Send 358 BtoA

and 362 BtoA

Receive 364 BtoA

req 413 BtoA

Symenc 406 BtoA

Send 412 BtoA

RS 409 BtoA

ooor 418 BtoA

Secret 419

or 453

Figure 9: Unbounded number of sessions for the Needham-Schroeder-Lowe
protocol

29

sessions where A talks to one of those parties. An edge between two nodes
in the representation corresponds to a set of edges in the actual dependency
graph between the nodes with the same coordinates. If the source of the edge
has less dimensions at the representation than its target, then each of the
corresponding source nodes in the actual dependency graph is connected to
an infinite number of target nodes.

Figure 9 contains a kind of nodes that were not present in Figure 7. These
are the nodes with the operation Longor (disjunctions with infinite number of
inputs). The replication dimensions of these nodes are depicted at the second
slot from the right (the dimension of node 173 is AtoOthers and the set of
dimensions of other Longor-nodes is empty) while the rightmost slot lists the
dimensions that these nodes contract. In the actual dependency graph, the
Longor-nodes correspond to Or-nodes whose set of input edges is infinite. In
Sec. 6 we will describe another nodes (IfDef, CfDef) that may have an infinite
number of inputs in the actual dependency graph.

Formally, a node n in the IDGR has the following attributes:

• Its identity `(n);

• The operation it performs λi(n). As it is the case with FDG, the oper-
ation determines the input ports of the node;

• Its replication dimensions — a mapping r(n) : D → N;

• For special nodes

– Longor-nodes: the dimensions it contracts — a mapping c(n) : D →
N;

– IfDefn- and CfDefn-nodes: for each input port pair (Bi, Xi) the
dimensions it contracts — a mapping ci(n) : D → N;

– DimEq- and DimNeq-nodes: the dimension Dc and a two indices c1

and c2 of the coordinates compared;

– DTakeDimEq(X)- and CTakeDimEq(X)-nodes the dimension Dc and
an index c1 of the coordinate compared with the coordinate r(Dc).

Each edge e of the IDGR has the following attributes:

• Its source and target nodes s(e) and t(e);

• For each D ∈ D: a mapping mD(e) from {1, . . . , r(s(e))(D)} to
{1, . . . , inpdimst(e)(D)} where inpdimsn equals

– r(n) for nodes with operations from λf , DimEq- and DimNeq-nodes;

– r(n) + c(n) (pointwise addition) for Longor-nodes;

30

– r(n) + ci(n) (pointwise addition) for i-th input port of IfDef- and
CfDef-nodes;

– r(n) + (Dc, 1) for DTakeDimEq(X), CTakeDimEq(X)-nodes.

IDGR is translated to IDG in the following way:

• For each node n in the representation there are nodes
n[iD1

1 , . . . , iD1
r1 , . . . , iDk

1 , . . . , iDk
rk

] in the dependency graph,
where {D1, . . . , Dk} = D, ri = r(n)(Di), and
iD1
1 , . . . , iD1

r1
, . . . , iDk

1 , . . . , iDk
rk

∈ N. All these nodes have the same oper-
ation as n, unless the operation of n is:

– Longor, in which case the operation of the corresponding nodes in
the IDG is Or;

– DimEq, in which case the operation is: True (if iDc
c1 = iDc

c2) or False
(if iDc

c1 6= iDc
c2);

– DimNeq, in which case the operation is False (if iDc
c1 = iDc

c2) or True
(if iDc

c1 6= iDc
c2);

– DTakeDimEq, in which case the operation is Id;

– CTakeDimEq, in which case the operation is And1;

• For n′ with λi(n′) 6∈ {CTakeDimEq, DTakeDimEq}:
– For each edge e from n to the port p of n′ and each coordinate

vector
(iD1

1 , . . . , iD1
r1

, . . . , iDk
1 , . . . , iDk

rk
) there is an edge from

n[iD1
1 , . . . , iD1

r1
, . . . , iDk

1 , . . . , iDk
rk

] to the port p of the nodes
n′[jD1

1 , . . . , jD1
r1

, . . . , jDk
1 , . . . , jDk

rk
], where

∗ jD
mD(e)(l) = iDl for all D ∈ D and l ∈ {1, . . . , r(n)(D)};

∗ the rest of the coordinates of n′ vary freely over N.

• For n′ with λi(n′) ∈ {CTakeDimEq, DTakeDimEq}:
– For each edge e from n to the port p of n′ and each coordinate

vector
(iD1

1 , . . . , iD1
r1

, . . . , iDk
1 , . . . , iDk

rk
) there is an edge from

n[iD1
1 , . . . , iD1

r1
, . . . , iDc

1 , . . . , iDc
c1 , . . . , iDc

rDc
= iDc

c1 , . . . , iDk
1 , . . . , iDk

rk
] to

the port p of the nodes n′[jD1
1 , . . . , jD1

r1
, . . . , jDk

1 , . . . , jDk
rk

], where

∗ jD
mD(e)(l) = iDl for all D ∈ D and l ∈ {1, . . . , r(n)(D)};

∗ the rest of the coordinates of n′ vary freely over N.

31

4.3 Execution Semantics

To speak about the correctness of transformations, we have to specify what
it means to execute a dependency graph. Informally, the execution starts
with the tossing of coins for all RS-nodes. Also, the secret payload(s) is/are
fixed. The current values for all nodes are set to ⊥, denoting failure (for nodes
computing bit-strings) or false (for nodes computing booleans). The following
steps are then repeatedly executed, until the adversary decides to break the
cycle:

1. The adversary will set the value of some Req-nodes to true and/or set
(but not change) the computed values for some Receive-nodes.

2. The operations in the nodes are performed as long as possible. Tech-
nically, a certain least fixed point is computed. The fixed points exist
because the semantics of all operations is monotone.

3. The values of all Send-nodes (or: all Send-nodes that changed from ⊥ to
some bit-string) are given to the adversary.

Formally, let Lab be the set of all nodes of the dependency graph. Let Lab∗
be the subset of Lab containing all nodes with operations RS or Secret. Let
Lab← ⊆ Lab be the set of all nodes with operations Receive or Req. Let Lab→
be the set of all nodes with operations Send. Let Lab• = Lab\(Lab← ∪ Lab∗),
i.e. Lab• contains all nodes whose value is computed in the “usual” way, not
making any use of some outside information.

Let B = {false, true}, ordered with false ≤ true. Let Σ = {0, 1}∗ and
Σ⊥ = Σ ∪̇ {⊥} ordered with ⊥ ≤ x for all x ∈ Σ. Let Val = B ∪̇ Σ⊥. A
configuration of a dependency graph is a triple 〈ρ, φ, ψ〉 ∈ Conf , where

• ρ : Lab → Val gives the current value of each node;

• φ : Lab← → Val gives the values that have been set by the adversary;

• ψ : Lab∗ → Val gives the values that are set during the initialization.

In an initial configuration, ρ and φ map all nodes to ⊥ or false (depending on
the types of operations in nodes).

All operations have associated semantic functions. For example,

[[PubEnc]](cd , R,K, T) =

⊥, if cd = false

⊥, if some of R, K, T equals ⊥
ER(K,T), if cd = true, R, K, T ∈ Σ,

where E is the actual algorithm implementing the public-key encryption, using
R as the randomness, K as the key and T as the plain text. In particular,

32

the semantics of all operations of nodes in Lab• computing with bit-strings is
strict, i.e. it returns ⊥ / false unless all of its inputs are different from ⊥ /
false. In particular, [[IsEq]](⊥,⊥) = false.

The semantics of most of the operations in nodes in Lab• should be obvious
— there has to be an algorithm with the correct number of inputs; this algo-
rithm is invoked whenever all incoming edges of the node carry non-bottom
values. We mention only that we assume that all message constructors (key
generation, public-key extraction, tupling, encryption, nonce generation) tag
the resulting bit-string with its type, such that two bit-strings produced by
different types of constructors are always different.

Each node n is associated with a step function fn : Conf → Val. For
n ∈ Lab•, the evaluation of fn(〈ρ, φ, ψ〉) extracts the values ρ(ni) for the
source nodes ni of the edges ending at n, and applies [[λ(n)]] to them. As the
functions [[op]] are all monotone, the step functions fn are also monotone.

If λ(n) = Receive and u is the source node for the control dependency of
n, then fn(〈ρ, ψ, φ〉) is φ(n) if ρ(u) = true, and ⊥ otherwise. If λ(n) = Req
then fn((〈ρ, ψ, φ〉) = φ(n). If v ∈ Lab∗ and u is the source node for n’s control
dependency then fn(〈ρ, ψ, φ〉) equals either ψ(n) or ⊥, depending on whether
ρ(u) is true or false.

The parallel application of all the step functions for nodes gives us a step
function of the whole configuration:

f(〈ρ, φ, ψ〉) = 〈ρ[v 7→ fv(〈ρ, φ, ψ〉)], φ, ψ〉 .

The function f is monotone and continuous.
The execution of a dependency graph, in parallel with the adversary A and

with the secret payload M , proceeds as follows:

1. ρ is set to map every dependency to ⊥ / false. ψ is initialized with the
(uniformly generated) random coins used in the execution. For each v
with λ(v) = RS, the value ψ(v) is a sufficiently long random bit-string
that is independent from every other value. The value ψ(v) for a Secret-
node is set to M . The mapping φ (containing information on which of
the protocol outputs are to be evaluated and the values to be fed to the
graph from the network) is set to map every Req operation to false and
every Receive operation to ⊥.

2. The adversary is invoked with the internal state it returned during the
previous invocation (if this is the first invocation then the internal state
is empty) and with the mapping ρ|Lab→ .

3. If the adversary indicates to stop, then stop the execution. Otherwise,
the adversary produces a new internal state and a new mapping φ′ :

33

Lab← → Σ⊥ satisfying φ ≤ φ′. The computational cost of outputting φ′

is defined to be the number of labels l where φ(l) 6= φ′(l).

4. The graph is evaluated — let 〈ρ′, φ′, ψ〉 be the least fixed point of f that
is greater or equal to 〈ρ, φ′, ψ〉. The existence of such fixed point follows
from the properties of f .

5. Let ρ := ρ′, φ := φ′. Continue from step 2.

As a result, we get a list of inputs to and outputs from the adversary. We call
the probability distribution (given by the probabilistic generation of ψ and
the adversary’s coin-tosses) over these lists the view of the adversary A when
executed with the given dependency graph G and the secret M . We denote
this distribution by viewG

M (A).

4.4 Indistinguishability of Protocols

If two protocols (both implemented as dependency graphs) are indistinguish-
able to an adversary then they are simultaneously secure or insecure. Having
defined the notion of adversary’s view, it is easy to define the indistinguisha-
bility of protocols. Two protocols, implemented by G1 and G2 are indistin-
guishable if for all polynomial-time constructible distributions DM of the se-
cret M , and all probabilistic polynomial-time adversaries A, the distributions
viewG1

M (A) and viewG2
M (A) are indistinguishable, if M is sampled according to

DM .

34

5 Translation from the Protocol Language to DG

In order to analyze the protocol, we need to represent it as a DG first. The
common way of describing a protocol is a procedural language. We use the
language, defined in sec. 3.1. In this section we describe how to compose a
DG, corresponding to a given protocol, expressed in the procedural language.

In the process of translating a protocol, specified in the procedural lan-
guage, to the DGR, two functions are used:

• Expression translation (function EtoDG);

• Atomic statement translation (function AStoDG);

• Compositional statement translation (function StoDG).

Translating a protocol (represented by a top-level statement) is performed
by application of StoDG to it. Additionally, StoDG takes the DGR, generated
so far, as an argument (for the initial call, the empty DGR). If the statement
processed by the StoDG consists of several statements, it recursively calls itself
for translating each of them (passing the statement to translate and the DGR,
generated so far, as an argument). During the translation of a statement,
the functions AStoDG and EtoDG are called (the DGR, generated so far, is
passed as an argument).

The rest of this section contains the detailed specification of the translation
functions, proofs for their correctness (with respect to the equivalence of the
resulting DG semantics and the semantics of the statement or the expression
being translated), and the formal algorithm for translating the protocol by
applying the mentioned functions.

5.1 EtoDG — Translation from Aexpr / Bexpr to DGR

Let Expr = Aexpr ∪̇Bexpr. Formally, the function EtoDG has type:

EtoDG : Expr

→ (P(Dim)×GR× (Var → (Lab× Lab× Lab))× Lab

→ (GR× Lab× Lab× Lab))

The arguments to the EtoDG function are:

• e ∈ Expr: expression to translate;

• dv ∈ P(Dim): function specifying the replication dimensions the ex-
pression should have a coordinate in;

• gr ∈ GR: DGR, containing the nodes for calculating the variables which
may be used in e and the continuation node;

35

• vartonodes ∈ Var → (Lab×Lab×Lab): Function returning for each of
the free variables in e the labels of three nodes — so called Or-node, And-
node, and val -node. The requirements put on those nodes are discussed
below;

• cn ∈ Lab: the continuation node. The dependency, the value of which
should be equal to true, in order for the expression to be evaluated.

The DGR passed to EtoDG as an argument should contain all the oper-
ations for each variable in FV (e). For each variable there are three sets of
nodes, the labels of which are returned by vartonodes. Suppose that for some
v ∈ FV (e) the vartonodes v = ea eo en. These nodes are in a certain relation
between themselves and the semantics of the protocol corresponding to the
gr . The relation is following. Given that

• A protocol, corresponding to gr , is currently in configuration 〈ts, s〉,
• on the dependency graph, corresponding to gr , ρ[eo.cv] is set to true,

• the dependency graph is evaluated,

the following holds:

• The ρ[ea.cv] = true,

• The ρ[en.cv] = s v cv .

Intuitively, the graph, specified by gr , corresponds to the part of the pro-
tocol, preceding the evaluation of e. Additional condition we put on the gr
is that the ρ[cn] (with the corresponding coordinate vector cv ′, which is (by
the number of coordinates in each dimension) less than or equal to cv) should
be equal to true. This condition (established and maintained in StoDG and
used in EtoDG) ensures that all the invariants set by the preceding if and iff
statements, are checked prior to the expression evaluation.

The general idea behind the EtoDG is the following. Given the DGR gr ,
and node cn, which (with the coordinate vector cv ′, corresponding to cv)
is guaranteed to be true when the protocol is executed to the point when the
expression e (at the statement with coordinate vector cv) is evaluated (let this
state be 〈ts, s〉, given the adversary input inp, the random coins rand), and the
triple of nodes for each of the variables free in e, we construct a new graph gr ′,
which is equal to gr , but has the triple of nodes with labels vo, va, vn such that
if ρ[vo.cv] is set to true, and the graph gr ′ is evaluated, the ρ[va.cv] = true,
and the ρ[vn.cv] = inp, rand ` A[[e]] cv s, given that φ = inp and ψ = rand .
The definition of EtoDG (as well as the structure of expressions it handles) is
strictly compositional — it calls itself for generating the dependency graphs

36

corresponding to the sub-expressions the expression e is composed of, before
constructing the graph for e.

Evaluation of EtoDG [e] dv gr vartonodes cn results in the gr ′ and the labels
o, a, v, and proceeds in the following way, depending what the e is:

1. e is x . As x ∈ FV (e), vartonodes x is defined. Let (xa , x o , x v) =
vartonodes x. As it will be shown during the definition of StoDG , the
nodes xa , x o , and x v have the same number of coordinates. Also, it
will be shown during the definition of StoDG , that during the proto-
col translation, the replication dimensions can only be extended, so the
number of coordinates in each dimension for every operation present in
the gr will be smaller than or equal to dv . The result of the translation
depends on whether the x o has equal amount or less coordinates, than
specified by dv :

(a) If the node xo has same replication dimensions as given by dv , then
the gr ′ is equal to gr , with the following changes:

• The node xo (having n inputs; let the i-th input be x osi
, with

the coordinate mapping λi) is removed;
• The node with label o, the operation Or, and replication di-

mensions dv is added. So far the node has no inputs;
• The node with label a, the operation And, and replication di-

mensions dv is added. The node inputs are:
– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– xa , with identity coordinate mapping;

• The node v, the operation Id, and replication dimensions dv .
The node control input is a, with identity coordinate mapping.
The data input is x v , with identity coordinate mapping;

• The node x o , operation Or, replication dimensions dv , and n+1
inputs, is added. For 1 ≤ i ≤ n the i-th input is xosi

, with the
coordinate mapping λi; the n + 1-th input is o, with identity
coordinate mapping.

(b) If the number of xo dimensions, given by dv ′, is strictly less than
the dv , then the gr ′ is equal to gr , with the following changes:

• The node xo (having n inputs; let the i-th input be x osi
, with

the coordinate mapping λi) is removed;
• The node o, the operation Or, and replication dimensions dv ,

is added. So far the node has no inputs;
• The node a, the operation And, and replication dimensions dv ,

is added. The node inputs are:

37

– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– xa , with identity coordinate mapping;

• The node lo, the operation Longor, and replication dimensions
dv ′, is added. The input is o, with identity coordinate mapping.
All the dv coordinates, not existing dv ′, are contracted;

• The node v , the operation Id, and replication dimensions dv ,
is added. The node control input is a, with identity coordi-
nate mapping. The data input is x v , with identity coordinate
mapping;

• The node xo , operation Or, replication dimensions dv ′, is added.
The node has n+1 inputs: for 1 ≤ i ≤ n the i-th input is xosi

,
with the coordinate mapping λi; the n + 1-th input is lo, with
identity coordinate mapping.

2. e is an arithmetic expression taking zero or more arguments, and not
using the random coins. Out of the expressions we supplied in the pro-
tocol language, the following operations fall into this group: n, secretl ,
receivel (0 arguments), pubkey(a), verkey(a), getmsg(a), projn,n′(a) (1
argument), pubdec(a1, a2), symdec(a1, a2) (2 arguments), and
tuplem(a1, . . . , am) (m arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai. First, the expression arguments are processed in
the following way:

gr1, o1, a1, v1 = EtoDG [a1] dv gr vartonodes cn
. . .

grn, on, an, vn = EtoDG [an] dv grn−1 vartonodes cn

The result of the translation is grn, with the following changes:

• The nodes oi for 1 ≤ i ≤ n (having no inputs, as they has just been
created during the EtoDG invocation) are removed;

• The node o, the operation Or, and replication dimensions dv , is
added. So far the node has no inputs;

• The node a, the operation And, and replication dimensions dv , is
added. The node has n + 2 inputs:

– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– for 1 ≤ i ≤ n, a i , with identity coordinate mapping;

38

• The node v, the operation corresponding to the expression being
processed (e.g. Const for n, Tuple for tuplen, and so on), and repli-
cation dimensions dv , is added. The control input is a, with identity
coordinate mapping. The node has n data inputs: for 1 ≤ i ≤ n, v i ,
with identity coordinate mapping; Note that the label v is chosen
to be equal to l (the label of the expression);

• The nodes oi for 1 ≤ i ≤ n, with the operation Or, replication di-
mensions dv , and a single input o, with identity dimension mapping,
are added.

3. e is an arithmetic expression taking zero or more arguments, and using
the random coins. Out of the expressions we supplied in the protocol
language, the following fall into this group: nonce l , keypair l , symkey l ,
svkpair l (0 arguments and random coins), pubencl (a1, a2),
symencl (a1, a2), sig l (a1, a2) (2 arguments and random coins).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai. First, the expression arguments are processed in
the following way:

gr1, o1, a1, v1 = EtoDG [a1] dv gr vartonodes cn
. . .

grn, on, an, vn = EtoDG [an] dv grn−1 vartonodes cn

The result of the translation is grn, with the following changes:

• The nodes oi for 1 ≤ i ≤ n (having no inputs, as they has just been
created during the EtoDG invocation) are removed;

• The node o, the operation Or, and replication dimensions dv , is
added. So far the node has no inputs;

• The node ro , the operation Or, and replication dimensions dv , is
added. The node input is o, with identity coordinate mapping;

• The node ra , the operation And, and replication dimensions dv is
added. The node inputs are:

– cn, with identity coordinate mapping;
– ro , with identity coordinate mapping;

• The node rv , the operation is RS. The replication dimensions are
dv . The node control input is ra , with identity coordinate mapping.
Note that the label rv is chosen to be equal to l (the label of the
expression);

39

• The node a, the operation And, and replication dimensions dv , is
added. The node has n + 3 inputs:

– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– for 1 ≤ i ≤ n, a i , with identity coordinate mapping;
– lra, with identity coordinate mapping;

• The node v, the operation corresponding to the expression being
processed (e.g. Nonce for nonce, PubEnc for pubenc, and so on),
and replication dimensions dv , is added. The control input is a,
with identity coordinate mapping. The node has n+1 data inputs:
the rv (random coins input), with identity coordinate mapping,
and, for 1 ≤ i ≤ n, v i , with identity coordinate mapping;

• The nodes oi for 1 ≤ i ≤ n, with the operation Or, replication di-
mensions dv , and a single input o, with identity dimension mapping,
are added.

4. e is a boolean expression taking arithmetic arguments. Out of the expres-
sions we supplied in the protocol language, the following operations fall
into this group: isok(a) (1 argument), a1 = a2, a1 6= a2, testsig(a1, a2)
(2 arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai. First, the expression arguments are processed in
the following way:

gr1, o1, a1, v1 = EtoDG [a1] dv gr vartonodes cn
. . .

grn, on, an, vn = EtoDG [an] dv grn−1 vartonodes cn

The result of the translation is grn, with the following changes:

• The nodes oi for 1 ≤ i ≤ n (having no inputs, as they has just been
created during the EtoDG invocation) are removed;

• The node o, the operation Or, and replication dimensions dv , is
added. So far the node has no inputs;

• The node a, the operation And, and replication dimensions dv , is
added. The node has n + 2 inputs:

– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– for 1 ≤ i ≤ n, a i , with identity coordinate mapping;

40

• The node v′, the operation corresponding to the expression being
processed (e.g. IsOK for isok , etc.), and replication dimensions dv ,
is added. The node has n data inputs: for 1 ≤ i ≤ n, v i , with
identity coordinate mapping;

• The node v, And operation, replication dimensions dv , and two
inputs: a and v′, both with identity coordinate mappings, is added;

• The nodes oi for 1 ≤ i ≤ n, with the operation Or, replication di-
mensions dv , and a single input o, with identity dimension mapping,
are added.

5. e is a boolean expression taking boolean arguments. Out of the expres-
sions we supplied in the protocol language, the following operations fall
into this group: and(b1, . . . , bm), or(b1, . . . , bm) (m arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai. First, the expression arguments are processed in
the following way:

gr1, o1, a1, v1 = EtoDG [b1] dv gr vartonodes cn
. . .

grn, on, an, vn = EtoDG [bn] dv grn−1 vartonodes cn

The result of the translation is grn, with the following changes:

• The nodes oi for 1 ≤ i ≤ n (having no inputs, as they has just been
created during the EtoDG invocation) are removed;

• The node o, the operation Or, and replication dimensions dv , is
added. So far the node has no inputs;

• The node a, the operation And, and replication dimensions dv , is
added. The node has n + 2 inputs:

– cn, with identity coordinate mapping;
– o, with identity coordinate mapping;
– for 1 ≤ i ≤ n, a i , with identity coordinate mapping;

• The node v, the operation corresponding to the expression being
processed (e.g. And for and , etc.), and replication dimensions dv ,
is added. The node has n data inputs: for 1 ≤ i ≤ n, v i , with
identity coordinate mapping;

• The nodes oi for 1 ≤ i ≤ n, with the operation Or, replication di-
mensions dv , and a single input o, with identity dimension mapping,
are added.

41

Theorem 1. For any e ∈ Expr, dv ∈ P(Dim), DG g (corresponding to
the DGR gr), vartonodes ∈ Var → (Lab × Lab × Lab), cn ∈ Lab, the
configuration inp, rand ` 〈ts, s〉, and the graph configuration ρinit, φinit, ψinit

satisfying the following conditions:

• vartonodes defined for all FV (e),

• vartonodes x = xo, xa, xv, such that:

– The nodes xo (operation Or), xa (operation And), and xv (any
operation), belong to the gr ;

– The nodes xo, xa, and xv have same number of coordinates in each
replication dimension;

– For any coordinate vector cv , corresponding to the dimensions of
the xo, and 〈ρ′, φ′, ψ′〉 = Evalg(〈ρinit[xo.cv 7→ true], φinit, ψinit〉),
the ρ′[xa.cv] = true, ρ′[xv.cv] = s x cv , and ρ′[cn.cv] = true

• rand l = σ ⇒ ψ[l] = σ

• inp l = σ ⇒ φ[l] = σ

and gr ′, o, a, v = EtoDG [e] dv gr vartonodes cn the following holds (g ′ is the
DG corresponding to the DGR gr ′): For any coordinate vector cv , correspond-
ing to the replication dimensions dv , and 〈ρ′′, φ′′, ψ′′〉 = Evalg

′
(〈ρinit[o.cv 7→

true], φinit, ψinit〉), the ρ′′[a.cv] = true, and ρ′′[v.cv] = inp, rand ` A[[e]] cv s.
Proof. The proof is done by induction on the syntactic structure of the e.
First we show that in the base cases (when the translation is made in one step)
the theorem holds. Then, assuming that the theorem holds for translating the
subexpressions e1, . . . , en of e, we show that the theorem also holds for the
construction of e.

In course of the proof we assume that the EtoDG parameters are fixed.
Also, we take some fixed coordinate vector cv , corresponding to the replication
dimensions dv .

The bases cases are:

1. e is x .

Let xo, xa, xv = vartonodes x (the function is defined for x ∈ FV (e)).
Let dv ′ be the replication dimensions of the node xo. Two cases are
possible:

(a) dv ′ = dv .
Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg

′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We

observe that:

i. ρ′[xo.cv] = true (by the definition of fxo
);

42

ii. ρ′[xa.cv] = true, ρ′[xv.cv] = s x cv , ρ′[cn.cv] = true (by the
requirements we put on g , vartonodes, and cn);

iii. ρ′[a.cv] = true (by the definition of fa)
iv. ρ′[v.cv] = ρ′[xv.cv] = s x cv (by the definition of fv)

But, by definition of A, inp, rand ` A[[x]]cv s = s x cv . So, for this
sub-case the required result holds.

(b) dv ′ < dv .
Let cv ′ be the subset of cv coordinates, according to the subset of
dimensions dv ′). Then, as in the previous sub-case, let 〈ρ′, φ′, ψ′〉 =
Fix (Evalg

′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We observe that:

i. ρ′[lo.cv ′] = true (by the definition of f lo),
ii. ρ′[xo.cv ′] = true (by the definition of fxo

),
iii. ρ′[xa.cv ′] = true, ρ′[xv.cv ′] = s x cv ′, ρ′[cn.cv] = true (by the

requirements we put on g , vartonodes, and cn);
iv. ρ′[a.cv] = true (by the definition of fa)
v. ρ′[v.cv] = ρ′[xv.cv] = s x cv ′ (by the definition of fv)

Then note that, by the definition of s, the
(s x cv1 = σ1 ∧ (cv2 includes cv1)) =⇒ s x cv2 = σ1. Therefore,
the s x cv ′ = s x cv . Finally, by the definition of A, inp, rand `
A[[x]] cv s = s x cv . This completes the proof for e = x .

2. e is an expression with no arguments and not using the random coins.
The expressions secretl , receivel , and n fall into this category.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) ρ′[cn.cv] = true (by the requirements we put on g).

(b) ρ′[a.cv] = true (by the definition of fa)

(c) χ[v.cv] is defined (by fv), where χ is ψ if the expression translated
is secretl , φ if the expression is receivel , or ρ if the expression is n.

As the v was set to be equal to the label of the expression l , the ψ[v.cv] =
rand l cv (if secret was translated), or φ[v.cv] = inp l cv (if receive was
translated). If e is n, the above property is not significant for the proof.
In either case, the inp, rand ` A[[e]] cv s is equal to χ[v.cv].

3. e is an expression with no arguments, using the random coins. The
expressions noncel , keypairl , symkeyl , and svkpairl fall into this cate-
gory. Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg

′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We

observe that:

43

(a) ρ′[cn.cv] = true (by the requirements we put on g);

(b) ρ′[ro.cv] = true (by the definition of f ro
);

(c) ρ′[ra.cv] = true (by the definition of f ra
);

(d) ρ′[rv.cv] = ψ[rv] (by the definition of f rv
);

(e) ρ′[a.cv] = true (by the definition of fa);

(f) ρ′[v.cv] = op(ψ[rv.cv]) (by the definition of fv), where op is noncel ,
keypairl , symkeyl , or svkpairl .

As the rv is equal to the label of the expression, the op(ψ[rv.cv]) =
op(rand l cv) (where op is the operation in question). Then, by definition
of A, inp, rand ` A[[opl]] cv s = op(rand l cv), which what the ρ′[v.cv] is
equal to.

The “induction step” cases are:

1. e is an arithmetic expression taking one or more arguments, and not
using the random coins. Out of the expressions we supplied in the pro-
tocol language, the following operations fall into this group: pubkey(a),
verkey(a), getmsg(a), projn,n′(a) (1 argument), pubdec(a1, a2),
symdec(a1, a2) (2 arguments), and tuplem(a1, . . . , am) (m arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai.

Let gr0 = gr . We assume the theorem holds for each i, 1 ≤ i ≤ n,
and gr i, oi, ai, vi = EtoDG [ai] dv gr i−1 vartonodes cn. Note that the in-
duction step is made for the subexpressions independently, since, when
translating the i-th subexpression, the nodes corresponding to the i− 1-
th are not used.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) ∀i, 1 ≤ i ≤ n.ρ′[oi.cv] = true (by the definition of foi
),

(b) ∀i, 1 ≤ i ≤ n.ρ′[ai.cv] = true, ρ′[vi.cv] = inp, rand ` A[[ai]] cv s (by
the induction hypothesis);

(c) ρ′[cn.cv] = true (by the requirements we put on g1);

(d) ρ′[a.cv] = true (by the definition of fa);

(e) ρ′[v.cv] = op(ρ′[v1.cv], . . . , ρ′[vn.cv]) =
= op(inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s) — by the
definition of fv (op is the expression translated.)

44

But, by definition of A, inp, rand ` A[[op(a1, . . . , an)]] cv s is equal to
op(inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s), which is what we
are required to prove.

2. e is an arithmetic expression taking one or more parameters and us-
ing random coins. Out of the expressions we supplied in the protocol
language, the following operations fall into this group: pubencl (a1, a2),
symencl (a1, a2), and sigl (a1, a2).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai.

Let gr0 = gr . We assume the theorem holds for each i, 1 ≤ i ≤ n,
and gr i, oi, ai, vi = EtoDG [ai] dv gr i−1 vartonodes cn. Note that the in-
duction step is made for the subexpressions independently, since, when
translating the i-th subexpression, the nodes corresponding to the i− 1-
th are not used.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) ∀i, 1 ≤ i ≤ n.ρ′[oi.cv] = true (by the definition of foi
),

(b) ρ′[ro.cv] = true (by the definition of f ro
),

(c) ∀i, 1 ≤ i ≤ n.ρ′[ai.cv] = true, ρ′[vi.cv] = inp, rand ` A[[ai]] cv s (by
the induction hypothesis);

(d) ρ′[ra.cv] = true (by the definition of f ra
);

(e) ρ′[rv.cv] = ψ′[rv.cv] (by the definition of f rv
);

(f) ρ′[cn.cv] = true (by the requirements we put on g1);

(g) ρ′[a.cv] = true (by the definition of fa);

(h) ρ′[v.cv] = op(ψ[rv.cv], ρ′[v1.cv], . . . , ρ′[vn.cv]) =
= op(rand l cv , inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s)
— by the definition of fv (op is the expression translated.)

But, by definition of A, inp, rand ` A[[op(a1, . . . , an)]] cv s is equal to
op(rand l cv , inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s), which
is what we are required to prove.

3. e is a boolean expression taking arithmetic arguments. Out of the expres-
sions we supplied in the protocol language, the following operations fall
into this group: isok(a) (1 argument), a1 = a2, a1 6= a2, testsig(a1, a2)
(2 arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai.

45

Let gr0 = gr . We assume the theorem holds for each i, 1 ≤ i ≤ n,
and gr i, oi, ai, vi = EtoDG [ai] dv gr i−1 vartonodes cn. Note that the in-
duction step is made for the subexpressions independently, since, when
translating the i-th subexpression, the nodes corresponding to the i− 1-
th are not used.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) ∀i, 1 ≤ i ≤ n.ρ′[oi.cv] = true (by the definition of foi
),

(b) ∀i, 1 ≤ i ≤ n.ρ′[ai.cv] = true, ρ′[vi.cv] = inp, rand ` A[[ai]] cv s (by
the induction hypothesis);

(c) ρ′[cn.cv] = true (by the requirements we put on g1);

(d) ρ′[a.cv] = true (by the definition of fa);

(e) ρ′[v′.cv] = op(ρ′[v1.cv], . . . , ρ′[vn.cv]) =
= op(inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s) — by the
definition of fv′ (op is the expression translated);

(f) ρ′[v.cv] = true ∧ ρ′[v′.cv] =
= op(inp, rand ` A[[a1]] cv s, . . . , inp, rand ` A[[an]] cv s) — by the
definition of fv.

The value of the ρ′[lv.cv] is defined in the same way as inp, rand `
B[op(a1, . . . , an)] cv s

4. e is a boolean expression taking boolean arguments. Out of the expres-
sions we supplied in the protocol language, the following operations fall
into this group: and(b1, . . . , bm) and or(b1, . . . , bm) (m arguments).

Let the number of the expression arguments be n, and the i-th argument
(for 1 ≤ i ≤ n) be ai.

Let gr0 = gr . We assume the theorem holds for each i, 1 ≤ i ≤ n,
and gr i, oi, ai, vi = EtoDG [bi] dv gr i−1 vartonodes cn. Note that the in-
duction step is made for the subexpressions independently, since, when
translating the i-th subexpression, the nodes corresponding to the i− 1-
th are not used.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
′
(〈ρinit[o.cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) ∀i, 1 ≤ i ≤ n.ρ′[oi.cv] = true (by the definition of foi
),

(b) ∀i, 1 ≤ i ≤ n.ρ′[ai.cv] = true, ρ′[vi.cv] = inp, rand ` B[bi] cv s (by
the induction hypothesis);

(c) ρ′[cn.cv] = true (by the requirements we put on g1);

46

(d) ρ′[a.cv] = true (by the definition of fa);

(e) ρ′[v.cv] = op(ρ′[v1.cv], . . . , ρ′[vn.cv]) =
= op(inp, rand ` B[b1] cv s, . . . , inp, rand ` B[bn] cv s) — by the
definition of fv (op is the expression translated.)

The value of the ρ′[lv.cv] is defined in the same way as inp, rand `
B[op(b1, . . . , bn)] cv s

Having shown that the theorem holds in all the base and induction cases, we
have it proved. ¤

5.2 AStoDG — translation from AS to DGR

Formally, the function has type:

AStoDG : AStmt

→ (P(Dim)×GR× (Var → (Lab× Lab× Lab))×
×Lab× {Lab}

→ (GR× Lab× (Var → (Lab× Lab× Lab))))

The arguments to the AStoDG function are:

• AS ∈ AStmt: statement to translate to the DGR;

• dv ∈ P(Dim): function specifying the replication dimensions the atomic
statement should have a coordinate in;

• gr ∈ GR: DGR, containing the operations for calculating the variables
which may be used in AS , the continuation and request nodes;

• vartonodes ∈ Var → (Lab×Lab×Lab): Function returning for each of
the variables that many be used in AS the labels of Or-node, And-node,
and val-node.

• cndown ∈ Lab: the continuation node. The dependency, the value of
which should be equal to true, in order for the statement to be executed;
this parameter is optional;

• cnups ∈ {Lab}: the request node(s). If any of these dependencies is set
to true, the evaluation of the DG corresponding to DGR g is triggered.

Evaluation of AStoDG [AS] dv gr vartonodes cndown cnups results in the
gr ′, the labels o (node to be set to true to initiate the atomic statement evalu-
ation), a (when the atomic statement evaluation is complete, it is set to true),
the mapping vartonodes ′ (reflecting the variable mapping after the statement
is executed), and proceeds in the following way, depending on what AS is:

47

1. AS is x := a. Let gre, ao, aa, av = EtoDG [a] dv gr vartonodes cndown.
First, each of the nodes belonging to cnups is replaced with a new one.
The following procedure is performed for each cnup ∈ cnups (let the
DGR with all the cnup nodes processed be grs):

(a) If the cnup has same replication dimensions as dv , then:

• The node cnup (with n inputs; let the i-th input be cnupi, with
the coordinate mapping λi) is removed;

• The node cnup, Or operation, and replication dimensions dv is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi);
– The n+1-th input is ao, with the identity coordinate map-

ping.

(b) If cnup (let its replication dimensions be dv ′) has less coordinates
than specified by dv , then:

• The node cnup (with n inputs; let the i-th input be cnupi, with
the coordinate mapping λi) is removed;

• The node lo, the operation Longor, and replication dimensions
dv ′, is added. The input is ao, with identity coordinate map-
ping. All the dv coordinates, not existing in dv ′, are contracted;

• The node cnup, Or operation, the same replication dimensions
as cnup had, is added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is lo, with the identity coordinate map-

ping.

The result of the translation is gr ′, ao, aa, vartonodes[x 7→ ao, aa, av].

2. AS is send l a.

Let gre, ao, aa, av = EtoDG [a] dv gr vartonodes cndown. First, each of
the nodes belonging to cnups is replaced with a new one. The following
procedure is performed for each cnup ∈ cnups (let the DGR with all the
cnup nodes processed be grs):

(a) If the cnup has same replication dimensions as dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node cnup, Or operation, replication dimensions dv , is
added. The node has n + 1 inputs:

48

– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate
mapping λi;

– The n+1-th input is ao, with the identity coordinate map-
ping;

• The node ao (having no inputs) is removed;
• The node ao, Or operation, and replication dimensions dv , is

added. The node input is req , with identity coordinate map-
ping;

• The node req , operation Req, and replication dimensions dv , is
added;

• The node a, And operation, and replication dimensions dv , is
added. The node inputs are:
– req , with identity coordinate mapping;
– aa, with identity coordinate mapping;

• The node s, operation Send, and replication dimensions dv , is
added. The control input is a, with identity coordinate map-
ping. The data input is av, with identity coordinate mapping.

(b) If cnup (let its replication dimensions be dv ′) has less replication
dimensions than dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node lo, the operation Longor, replication dimensions dv ′,
the input ao, with identity coordinate mapping, is added. All
the dv coordinates, not existing in dv ′, are contracted;

• The node cnup, Or operation, replication dimension dv ′, is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is lo, with the identity coordinate map-

ping;
• The node ao (having no inputs) is removed;
• The node req , operation Req, and replication dimensions dv , is

added;
• The node ao, Or operation, replication dimensions dv , is added.

The node input is req , with identity coordinate mapping;
• The node a, And operation, replication dimensions dv , is added.

The node inputs are:
– req , with identity coordinate mapping;
– aa, with identity coordinate mapping;

49

• The node s, Send operation, replication dimensions dv , is added.
The control input is a, with identity coordinate mapping. The
data input is av, with identity coordinate mapping.

The result of the translation is grrs, ao, aa, vartonodes.

3. AS is begin l a, or end l a.

Let gre, ao, aa, av = EtoDG [a] dv gr vartonodes cndown. In the below
description, begin is used as an example; end is processed in the same
way. First, each of the nodes belonging to cnups is replaced with a new
one. The following procedure is performed for each cnup ∈ cnups (let
the DGR with all the cnup nodes processed be grs):

(a) If the cnup has same replication dimensions as dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node cnup, Or operation, replication dimensions dv , is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is ao, with the identity coordinate map-

ping;
• The node a, And operation, replication dimensions dv , is added.

The node inputs are:
– ao, with identity coordinate mapping;
– aa, with identity coordinate mapping;

• The node s, Begin operation, replication dimensions dv , is
added. The control input is a, with identity coordinate map-
ping. The data input is av, with identity coordinate mapping.

(b) If cnup (let its replication dimensions be dv ′) has less replication
dimensions than dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node lo, Longor operation, replication dimensions dv ′, the
input ao, with identity coordinate mapping. All the dv coordi-
nates, not existing in dv ′, are contracted;

• The node cnup, Or operation, replication dimensions dv ′, is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;

50

– The n+1-th input is lo, with the identity coordinate map-
ping;

• The node a, operation And, replication dimensions dv , is added.
The node inputs are:
– ao, with identity coordinate mapping;
– aa, with identity coordinate mapping;

• The node s, Begin operation, replication dimensions dv , is
added. The control input is a, with identity coordinate map-
ping. The data input is av, with identity coordinate mapping.

The result of the translation is grs, ao, aa, vartonodes.

We say that the gr , cnups, cndown, vartonodes captures the protocol state s in
the environment inp, rand , if for some coordinate vector cvcnup , the evaluation
of the DG g (corresponding to the DGR gr) in the DG state 〈ρinit , φinit , ψinit〉,
defined as following:

• ρinit , mapping some cnup ∈ cnups.cvcnup to true, and everything else to
⊥/false;

• φinit , such that for all l, cv l, inp l cv l = φinit [l.cv l];

• ψinit , such that for all l, cv l, rand l cv l = ψinit [l.cv l];

results in the DG state 〈ρfinal , φfinal , ψfinal〉, such that ρfinal [cndown] = true,
and if (for any x and cv) the s x cv = σ, then:

• vartonodes x cv = xa, xo, xv;

• ρfinal [xo] = ρfinal [xa] = true;

• ρfinal [xv] = σ.

Theorem 2. Let gr , cnups, cndown, vartonodes capture the state s. For any
atomic statement AS , and any replication dimensions dv , the
gr ′, cnup′, cndown ′, vartonodes ′ = AStoDG [AS] dv vartonodes cnup, cndown
captures (for any cv ′) the state s ′ = AS[[AS]]cv ′s.
Proof. The theorem validity can be checked by examining all the possible
steps performed in the AStoDG (which is fairly trivial, as the function is not
recursive).

51

5.3 StoDG — translation from S to DGR

Formally, the function has type:

StoDG : Stmt

→ (P(Dim)×GR× (Var → (Lab× Lab× Lab))×
×Lab× {Lab}

→ (GR× Lab))

The arguments of the StoDG function are:

• S ∈ Stmt: statement to translate to the DGR;

• dv ∈ P(Dim): function specifying the replication dimensions the state-
ment should have a coordinate in;

• gr ∈ GR: DGR, containing the operations for calculating the variables
which may be used in S , the continuation and request nodes;

• vartonodes ∈ Var → (Lab × Lab × Lab): Function returning for each
of the variables that many be used in S the labels of Or-node, And-node,
and val-node.

• cndown ∈ Lab: the continuation node. The dependency, the value of
which should be equal to true, in order for the statement to be executed;
this parameter is optional;

• cnup ∈ {Lab}: the request node. Setting any of the dependencies in
this set to true, triggers the evaluation of the DG corresponding to DGR
g ; this parameter is optional.

Evaluation of StoDG [S] dv gr vartonodes cndown cnups results in the gr ′, the
set of labels o, and proceeds in the following way, depending on what the S is:

1. S is stop. In this case the gr ′ is equal to gr and o equal to cnups.

2. S is AS ;S1.

Let
gras, aso, asa, vartonodes ′ = AStoDG [AS] dv gr vartonodes cndown cnup.
The result of the translation is
gr ′, o = StoDG [S1] dv gras vartonodes ′ asa aso.

3. S is parn(S1, . . . ,Sn).

52

The result of the translation is gr ′,∪n
i=1{oi}, defined as following:

gr1, o1 = StoDG [S1] dv gr vartonodes cndown cnup
. . .

gr ′, on = StoDG [Sn] dv grn−1 vartonodes cndown cnup

4. S is rep(d ,S1).

The result of the translation is gr ′, o, defined as following:

gr ′, o = StoDG [S1] dv ′ gr vartonodes cndown cnup

The dv ′ is obtained from dv by adding a coordinate to the dimension d .

5. S is if b then S1.

Let gre, bo, ba, bv = EtoDG [b] dv gr vartonodes cndown. First, each of
the nodes belonging to cnups is replaced with a new one. The following
procedure is performed for each cnup ∈ cnups (let the DGR with all the
cnup nodes processed be grs):

(a) If the cnup has same replication dimensions as dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node cnup, Or operation, replication dimensions dv is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is bo, with the identity coordinate map-

ping.

(b) If cnup (let its replication dimensions be dv ′) has less replication
dimensions than dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node lo, Longor operation, replication dimensions dv ′, the
input bo, with identity coordinate mapping, is added. All the
dv coordinates, not existing in dv ′, are contracted;

• The node cnup, Or operation, replication dimensions dv ′, is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;

53

– The n+1-th input is lo, with the identity coordinate map-
ping.

The results of the translation is
gr ′, o′ = StoDG [S1] dv grs vartonodes ba bo

6. S is iff b then AS 1 finally S1.

Let gre, bo, ba, bv = EtoDG [b] dv gr vartonodes cndown. First, each of
the nodes belonging to cnups is replaced with a new one. The following
procedure is performed for each cnup ∈ cnups (let the DGR with all the
cnup nodes processed be grs):

(a) If the cnup has same replication dimensions as dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node cnup, Or operation, replication dimensions dv is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is bo, with the identity coordinate map-

ping.

(b) If cnup (let its replication dimensions be dv ′) has less replication
dimensions than dv , then:

• The node cnup (having n inputs; let the i-th input be cnupi,
with the coordinate mapping λi) is removed;

• The node lo, Longor operation, replication dimensions dv ′, the
input bo, with identity coordinate mapping, is added. All the
dv coordinates, not existing in dv ′, are contracted;

• The node cnup, Or operation, replication dimensions dv ′, is
added. The node has n + 1 inputs:
– For 1 ≤ i ≤ n the i-th input is cnupi, with the coordinate

mapping λi;
– The n+1-th input is lo, with the identity coordinate map-

ping.

The results of the translation is gr2, o2, defined as following:

gr1, o1, a1, vartonodes1 = AStoDG [AS 1] dv gr s vartonodes ba bo

gr2, o2 = StoDG [S1] dv gr1 vartonodes1 cndown {bo, o1}

54

Theorem 3. Given the:

• protocol state s and environment inp, rand ,

• DG g , corresponding to the DGR gr ,

• nodes cnup, cndown, function vartonodes,

• DG state 〈ρinit, φinit, ψinit〉,
such that for 〈ρ1, φ1, ψ1〉 = Evalg(〈ρinit[cnup 7→ true], φinit, ψinit〉), the
(s x cv = σ) ⇒ ρ1[xa.cv] = true ∧ ρ1[xv.cv] = σ ((xo, xa, xv) = vartonodes x),
the DG g ′, corresponding to DGR gr ′, cnup′, constructed by
StoDG [S] dv gr vartonodes cndown cnup, will capture the adversary view, gen-
erated by the statement S , executed in state s.

Specifically, for some cv , if inp, rand ` S〈(S , cv), s〉 ⇒∗ 〈(send l aS ′, cv ′) ∪
ts, s ′′〉 and inp, rand ` A[[a]] cv ′ s ′′ = σ, then there exist two nodes req (Req
operation) and val (Send operation), such that for
〈ρ2, φ2, ψ2〉 = Evalg

′
(〈ρinit[req .cv ′ 7→ true], φinit, ψinit〉), the ρ2[val .cv ′] = σ.

Note that during the execution of the protocol, specified in the procedural
language, the choices of adversary (feeding the participants with the values
received from the network and the participants scheduling) are made by se-
lecting the next thread to execute. In case of DG the adversary controls the
execution by setting that values of Receive- and Req-nodes.
Proof. The proof is constructed by induction on the length of the derivation
sequence 〈{S , cv}, s〉 ⇒∗ 〈{send l aS ′, cv ′} ∪ ts, s′′〉. Note that the case S is
stop is not considered in the proof, as stop is the final statement in the protocol
(so there can be no send -statement (the property of which we prove) after it).
The possible cases are:

1. Base case

We show that the theorem holds for all the derivation sequences of length
0. The derivation sequence 〈{S , cv}, s〉 ⇒∗ 〈{send l aS ′, cv ′}∪ ts, s′′〉 has
the length 0 if and only if S = send l aS ′.

Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg
s
(〈ρinit[req .cv 7→ true], φinit, ψinit〉)). We ob-

serve that:

(a) The node lo is present only if the translated statement has more
coordinates than cnup; ρ′[lo.cv] = true(by definition of f lo)

(b) ρ′[cnup.cv] = true (by definition of f cnup),

(c) ρ′[ao.cv] = true (by the definition of fao
),

(d) ρ′[aa.cv] = true (by the Theorem 1),

(e) ρ′[av.cv] = inp, rand ` A[[a]] cv s (by Theorem 1),

55

(f) ρ′[a.cv] = true (by the definition of fa),

(g) ρ′[s.cv] = inp, rand ` A[[a]] cv s (by the definition of f s).

The last equality (ρ′[s.cv] = inp, rand ` A[[a]] cv s) is what is required
to prove.

2. Induction step

Assuming the theorem holds for all the derivation sequences of length
k0, we show that it also holds for the sequences of length k0 + 1.

The derivations in sequence of length k0 + 1

〈{S , cv}, s〉 ⇒k0+1 〈(send l a S ′, cv ′) ∪ ts, s ′′〉

starts with configuration rewriting according to one of the semantic rules,
depending on what the S is, so the aforementioned sequence can be re-
written as:

〈(S , cv), s〉 ⇒ 〈ts, s ′〉 ⇒k0 〈(send l a S ′, cv ′) ∪ ts, s ′′〉

For each case (depending on what the first statement is), we show that
the intermediate graph constructed inside the StoDG and passed during
the recursive call to StoDG (for a statement, corresponding to derivation
sequence of length of maximum k0) satisfies the premises of the theorem
(so, by induction hypothesis, it holds).

The possible cases are:

(a) S is AS 1;S1.
In this case the derivation sequence is

inp, rand ` 〈(AS ;S1, cv), s〉 ⇒ 〈(S1, cv), s ′〉
⇒k0 〈(send l aS ′, cv ′) ∪ ts, s′′〉

Per Theorem 2, the gras, produced by the AStoDG , captures every
variable, defined in the state s ′, therefore, satisfying all the require-
ments put on the arguments to the StoDG function, so for the DG
g1, o, the statement S1 dv , and the state s ′ the theorem holds by
induction hypothesis.

(b) S is parn(S1, . . . ,Sn).
In this case the derivation sequence is

inp, rand ` 〈(parn(S1, . . . ,Sn), cv), s〉 ⇒ 〈∪n
i=1{(Si, cv)}, s〉

⇒k0 〈{send l aS ′, cv ′} ∪ ts, s ′′〉

56

For each of the DGs g i obtained by translating the i-th statement,
the theorem holds by induction hypothesis (as the derivation se-
quence for each of the statements can contain at most k0 steps).

(c) S is rep(d ,S1).
In this case the derivation sequence is

inp, rand ` 〈(rep(d ,S1), cv), s〉 ⇒ 〈
⋃

j∈N

{(S1, cv [d 7→ j])}, s〉

⇒k0 〈(send l aS ′, cv ′) ∪ ts, s ′′〉

For the DG g1, obtained by translating the statement S1, the the-
orem holds by induction hypothesis (as the derivation sequence for
it can contain at most k0 steps).

(d) S is if b then S1.
In this case the derivation sequence is either

inp, rand ` 〈(if b then S1 cv), s〉 ⇒
⇒ 〈(S1, cv), s〉 ⇒k0 〈(send l a S ′, cv ′) ∪ ts, s ′′〉

if B[[b]] cv s = true, or

inp, rand ` 〈(if b then S1 cv), s〉 ⇒ 〈∅, s〉

if B[[b]] cv s = false.
Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg

′
(〈ρinit[bo.cv 7→ true], φinit, ψinit〉)). We

observe that:

i. The operation lo is present only if the translated statement has
more coordinates than cnup; ρ′[lo.cv] = true (by definition of
f lo)

ii. ρ′[cnup.cv] = true (by definition of fcnup),
iii. ρ′[lba.cv] = true (by Theorem 1),
iv. ρ′[lbv.cv] = inp, rand ` B[b] cv s (by Theorem 1),

The induction hypothesis can be applied to the
gr ′, o′ = StoDG [S1] dv grs vartonodes ba bo, as it is evaluated from
the state s in at most k0 derivations. Note that the bv (the semantics
of which are equal to inp, rand ` B[[b]] cv s) defines whether the
nodes of the graph, corresponding to the S1 are evaluated or not
(exactly as in the protocol semantics the corresponding derivation
rules is chosen). The second case (if the S1 is not evaluated is trivial
— as the derivation sequence is completed in one step).

57

(e) S is iff b then AS 1 finally S1.
In this case the derivation sequence is either

inp, rand ` 〈(iff b then AS 1 finally S1, cv), s〉 ⇒
⇒ 〈(AS 1;S1, cv), s〉 ⇒k0 〈(send l a S ′, cv ′) ∪ ts, s ′′〉

if B[[b]] cv s = true, or

inp, rand ` 〈(iff b then AS 1 finally S1, cv), s〉 ⇒
⇒ 〈(S1, cv), s〉 ⇒k0 〈(send l a S ′, cv ′) ∪ ts, s ′′〉

if B[[b]] cv s = false.
Let 〈ρ′, φ′, ψ′〉 = Fix (Evalg

′
(〈ρinit[bo.cv 7→ true], φinit, ψinit〉)). We

observe that:

i. The operation lo is present only if the translated statement has
more coordinates than cnup; ρ′[lo.cv] = true (by definition of
f lo)

ii. ρ′[cnup.cv] = true (by definition of fcnup),
iii. ρ′[lba.cv] = true (by Theorem 1),
iv. ρ′[lbv.cv] = inp, rand ` B[[b]] cv s (by Theorem 1),

Per Theorem 2, the gr1, and cnup / cndown nodes produced by
the AStoDG , satisfy the requirements put on the arguments to the
StoDG function. The induction hypothesis can be applied to the
gr2, o2 = StoDG [S1] dv gr1 vartonodes1 cndown {bo, o1}, as it is eval-
uated from the state s in at most k0 derivations. Note that the bv

(the semantics of which are equal to inp, rand ` B[[b]] cv s) defines
whether the nodes of the graph, corresponding to the AS 1 are eval-
uated or not (exactly as in the protocol semantics the corresponding
derivation rules is chosen).

Having shown that for all the cases the required property holds, we’ve
proved the Theorem 3. ¤
Theorem 4. The DG g , corresponding to the DGR gr , constructed with
StoDG [S] ∅ gr0 vartonodes0 ∅, ∅, where the gr0 is an empty DGR, and
vartonodes0 has empty domain, captures the adversary view of the protocol
S , as described in Theorem 3.
Proof. The validity of the theorem 4 follows from the Theorems 1, 2, and 3.
¤

58

6 Transforming the Dependency Graphs

Dependency graph transformation is replacement of one graph with another,
the adversary view of which is computationally indistinguishable from the first
one. We specify the transformation as an equivalence of two graph fragments
(subgraphs with a certain interface to the graph which may contain it). Equiv-
alence means that the two equivalent graph fragments, being executed, cannot
be distinguished with non-negligible probability. The application of a trans-
formation to the graph is replacing a subgraph, contained in it, with another
equivalent subgraph. We show that the resulting graph, obtained by applying
the transformation, is indistinguishable from the original one.

6.1 Dependency Graph Fragments

A dependency graph fragment (DGF) is a dependency graph without Send-,
Receive- or req-nodes, but with extra input and output nodes (both boolean
and bit-string). The operations defined on the graph fragments are listed in
the Figure 10

λgf (n) ::= λi(n) | InputB | InputS
| OutputB(B) | OutputS(X)

Figure 10: Dependency graph fragment operations

6.1.1 Semantics

The dependency graph fragment nodes are categorized in a way, similar to
dependency graph nodes categorization. Let Labf be the set of all nodes of
the dependency graph fragment. Let Labf ∗ be the subset of Labf containing
all nodes with operations RS or Secret. Let Labf← ⊆ Lab be the set of all
nodes with operations InputB or InputS. Let Labf→ be the set of all nodes
with operations OutputB or OutputS. Let Labf • = Labf \(Labf← ∪ Labf ∗),
i.e. Labf • contains all nodes whose value is computed in the “usual” way, not
making any use of some outside information.

A Dependency graph fragment configuration is a triple 〈ρf , φf , ψf 〉 ∈ Conf ,
where

• ρf : Labf → Val gives the current value of each node;

• φf : Labf← → Val gives the values of the input nodes (that are set
outside of the fragment);

• ψf : Labf ∗ → Val gives the values that are set during the initialization.

59

In an initial configuration, ρf and φf map all nodes to ⊥ or false (depending
on the types of operations in nodes).

Similarly to the dependency graph, all nodes have associated step func-
tions. For the nodes with operations, occurring in the dependency graph (all
the operation except for InputB, InputS, OutputB, and OutputS), the step
function is the same as defined for the dependency graph.

If λ(v) ∈ {InputB, InputS} then fv((〈ρf , ψf , φf 〉) = φf (v). If λ(v) ∈
{OutputB, OutputS} and u is the source node for the dependency of v, then
fv(〈ρ, ψ, φ〉) is ρ(u).

The parallel application of all the step functions for nodes gives us a step
function of the whole configuration:

f(〈ρf , φf , ψf 〉) = 〈ρf [v 7→ fv(〈ρf , φf , ψf 〉)], φf , ψf 〉 .

The function f is monotone and continuous.
The execution of a dependency graph fragment H, in parallel with the

driver algorithm A proceeds as follows:

1. ρf is set to map every dependency to ⊥ / false. ψ is initialized with
the (uniformly generated) random coins used in the execution. For each
v with λ(v) = RS, the value ψf (v) is a sufficiently long random bit-
string that is independent from every other value. The mapping φf

(containing information on inputs of the fragment) is set to map every
InputB operation to false and every InputS operation to ⊥.

2. A is invoked with the internal state it output during the previous in-
vocation (if this is the first invocation then the internal state is empty)
and with the mapping ρ|Labf→ .

3. If A indicates to stop then stop the execution. Otherwise, A produces
a new internal state and a new mapping φ′ : Labf← → Σ⊥ satisfying
φ ≤ φ′. The computational cost of outputting φ′ is defined to be the
number of labels l where φ(l) 6= φ′(l).

4. The graph fragment is evaluated — let 〈ρ′, φ′, ψ〉 be the least fixed point
of f that is greater or equal to 〈ρ, φ′, ψ〉. The existence of such fixed
point follows from the properties of f .

5. Let ρ := ρ′, φ := φ′. Continue from step 2.

As a result, we get a list of inputs to and outputs from the driver algorithm A.
We call the probability distribution (given by the probabilistic generation of
ψ and the coin-tosses used by the driver algorithm) over these lists the public
view of the driver algorithm A when executed with the given dependency
graph fragment H. We denote this distribution by viewH(A).

60

6.1.2 Indistinguishability

Two dependency graph fragments, H1 and H2 are indistinguishable if for all
probabilistic polynomial-time driver algorithms A, the distributions viewH1(A)
and viewH2(A) are indistinguishable. Note that H1 and H2 are, in general case,
infinite.

6.1.3 Transformations Specification

A graph G contains graph fragment H if:

1. There exists a subgraph G′ of G that is isomorphic to H without the
input and output nodes;

2. If there is an edge from a node v in G′ to some other node in G (including
G′) that has no corresponding edge in H without the input and output
nodes, then there must be an edge from the corresponding node v′ in H
to some output node.

I.e. the dependency graph fragments indicate the results of which nodes may
be used outside that fragment. Also, when matching the fragment onto some
graph, we are allowed to use as inputs the outputs of the graph fragment.

The graph transformation is defined by supplying the two fragments. If the
graph subject to the transformation contains the first fragment, the graph can
be transformed by replacing the first fragment with the second. An example
of such a pair of the fragments is given in Figure 11.

6.1.4 Correctness proofs

Theorem 5. If two graph fragments H and H ′ have computationally indis-
tinguishable public views and graph G contains the fragment H, graph G′,
constructed from the G by replacing the H with the H ′, has adversary view,
computationally indistinguishable from the G.
Proof. The idea of the proof is to show that from the adversary able to distin-
guish G from G′ it is fairly easy to construct a driver algorithm distinguishing
H from H ′. But as the latter can only be done with a negligible probability, so
the G could be distinguished from G′ with the same (negligible) probability.

First, let us define the set of labels used in the below discussion:

• The sets of the labels of the graphs G and G′ are categorized into the
following sets (on the example of G; the sets for G′ are defined in the
same way): LabG is the set of labels of all the nodes, Lab∗G is the set
of labels of all the RS- and Secret-nodes, Lab←G is the set of labels
of all the Receive- and req-nodes, Lab→G is the set of labels of all the
Send-nodes, and, finally, Lab•G is LabG\(Lab←G ∪ Lab∗G).

61

tuple 1

1/2 2

Input

Output

tuple 1

ID 11

Input

Output

OK? 9

and 10

InputB 3 InputS 5

InputB 4 InputS 6

OutputS 8 OutputS 7

InputB 3 InputS 5

InputB 4 InputS 6

OutputS 8 OutputS 7

Figure 11: An example of a transformation, graphical form

• The labels of nodes of the graph fragments H and H ′ are categorized into
the following sets (on the example of H; the sets for H ′ are defined in the
same way): LabH is the set of labels of all the nodes, Lab∗H is the set of
labels of all the RS- and Secret-nodes, Lab←H is the set of labels of all the
InputB- and InputS-nodes, Lab→H is the set of labels of all the OutputB-
and OutputS-nodes, and, finally, Lab•H is LabH\(Lab←H ∪ Lab∗H).

Note that as it is possible to replace H with H ′, the sets of input and output
nodes of H and H ′ are equal: Lab←H = Lab←H′

and Lab→H = Lab→H′
.

Suppose there is an adversary AG, able to distinguish G from G′. Let SAG

be the state of AG. During each invocation, AG receives ρ|Lab→ on input and
produces either command stop or the mapping φ′ : Lab← → Σ⊥ on output.
Let viewG

M (AG) and viewG′
M (AG) be the adversary views produced by executing

the SAG
in parallel with the G and the G′, correspondingly. Suppose that the

distribution viewG
M (AG) can be distinguished from the viewG′

M (AG) with some
probability.

The driver algorithm AH for distinguishing the H from the H ′ is con-
structed as follows:

1. The state SAH
consists of the following components:

(a) SAG
– The state of the AG

(b) ρAH : Lab•G\{LabH\{Lab←H ∪ Lab→H}} → Val

62

(c) φAH : Lab←G → Val

(d) ψAH : Lab∗G\Lab∗H → Σ⊥

2. The input to the each algorithm invocation is the state SAH
and the

mapping ρH |Lab→H

3. The output of the algorithm invocation could be either an indication to
stop the execution, or a new internal state and a new mapping φ′H :
Lab←H → Σ⊥

4. The procedure performed during the algorithm invocation is the follow-
ing:

(a) If the SAH
is empty (it is the first invocation), initialize the state.

The SAH
.ρAH and SAH

.φAH are set to map every bit string value
to ⊥ and every boolean value to false. The SAH

.ψAH is initialized
with the (uniformly generated) random coins used in the execution.

(b) The portion of the graph G laying outside of H is evaluated —
let 〈ρAH

′
, SAH

.φAH , SAH
.ψAH 〉 be the least fixed point of f (The

step-function for defined for all nodes in Lab•G\{LabH\{Lab←H ∪
Lab→H}}) that is greater or equal to
〈SAH

.ρAH , SAH
.φAH , SAH

.ψAH 〉.
(c) If ρAH

′
> SAH

.ρAH then let SAH
.ρAH = ρAH

′; return the SAH
and

SAH
.φAH .

(d) If ρAH
′ = SAH

.ρAH then

i. Invoke AG, passing SAH
.SAG

and SAH
.ρAH |Lab→G as parame-

ters
ii. If AG indicates to stop, return the “stop” command.
iii. If AG returns the state S′AG

and the mapping φAG
′ : Lab←G →

Val, set SAH
.SAG

= S′AG
and update the SAH

.ρAH and
SAH

.φAH with the values changed in φAH
′; return the SAH

and
SAH

.φAH .

Now let us consider the execution (defined in sec.4.3) of the dependency
graph G in parallel with SAG

. Note that some of the steps are split into two.
Namely, we separate all the nodes into two groups — the ones belonging to
the H (except for input and output nodes), and the rest of the nodes; and first
perform the computations related to one group, followed by the computations
from the other one. When computing the fixed point, we repeat both steps
iteratively until the fixed point is reached. As we are free to define the order
of computations, choosing this particular order have no influence on the result
of the computation.

63

1. Initialization

(a) Initialization of ρG is performed in two steps:

i. ρG is set to map every l ∈ Lab•G\{LabH\{Lab←H ∪ Lab→H}}
to ⊥ / false

ii. ρG is set to map every l ∈ LabH\{Lab←H ∪ Lab→H} to ⊥ /
false

(b) Initialization of ψG is also done in two steps:

i. ψG is set to map every l ∈ Lab∗G\Lab∗H to uniformly generated
random coins

ii. ψG is set to map every l ∈ LabpH to uniformly generated ran-
dom coins

(c) The mapping φG is set to map every req operation to false and
every Receive operation to ⊥.

2. The SAG
is invoked with the internal state it output during the previous

invocation (if this is the first invocation then the interal state is empty)
and with the mapping ρG|Lab→G .

3. If the adversary indicates to stop then stop the execution. Otherwise,
the adversary produces a new internal state and a new mapping φG′ :
Lab←G → Σ⊥.

4. The graph G is evaluated — let 〈ρG′, φG′, ψG〉 be the least fixed point
of f (step-function for the whole graph G) that is greater or equal to
〈ρG, φG′, ψG〉. The computation of ρG′ can be performed by repeating of
the following steps until the fixed point is reached (i.e. once the ρG3 = ρG

we set ρG′ := ρG and go to the step 5):

(a) Let fH be the step-function for the graph fragment H.
Let 〈ρG2

, φG′, ψG〉 be the least fixed point of fH that is greater or
equal to 〈ρG, φG′, ψG〉.

(b) Let fG be the step-function defined for the nodes belonging to G
but not belonging to H (except for input and output nodes). Let
〈ρG3

, φG′, ψG〉 be the least fixed point of fG that is greater or equal
to 〈ρG, φG2

, ψG〉.
5. Let ρG := ρG′, φG := φ′G. Continue from step 2.

The result is the distribution viewG
M (A) — the probability distribution

(given by the probabilistic generation of ψG and the adversary’s coin-tosses)
over the φG and ρG|GLab→ .

64

It is easy to verify that the same computations in the same order are
performed when the graph fragment H is executed in parallel with the driver
algorithm AH — for each step in the execution of G there is a corresponding
step in execution of H. Initialization steps 1.(a).ii and 1.(b).ii are performed
during the initialization of the H execution. Then, upon the first invocation
of AH , the steps 1.(a).i, 1.(b).i, and 1.(c) are performed (in step 4.(a) of AH).
Step 4.(b) of the first invocation of AH does not modify the configuration (as
every control dependency is set to ⊥. The AG is invoked in step 2 of the G
execution and in the step 4.(d) of the AH . Evaluation of G, performed in
step 4 of the G execution, corresponds to a sequence of steps 4.(c) of the AH

and the evaluation of H, which are performed until the fixed point is reached.
Finally, once the AG indicates to stop the execution, it is stopped in both
cases.

So, the execution of the H in parallel with AH results in the same distribu-
tion of viewG

M (A) of the φG and ρG|GLab→ components of the driver algorithm
state. Therefore, if the AG gives two distributions for G and G′, the AH re-
turns the same two distributions for H and H ′. But, by the requirement to
H and H ′, these distributions could not be distinguished with non-negligible
probability, which is what we are required to prove. ¤

The remainder of this section outlines the strategy used to proof the indis-
tinguishability of the public views of the two graph fragments. The following
approach is used:

1. For each public output of the first and the second graph fragment, we
write down the formula of its evaluation, according to the semantics of
the fragment. The formula may take the inputs of the subgraph as a
parameter

2. If the formulae for the particular output of the first and the second
fragment is the same, the semantics is obviously equal

3. If the formulae differ, then we show that the values computed by them
are computationally indistinguishable. While doing so, we usually rely
on the properties of the underlying cryptographic primitives

Additionally, as the analyzer performs the transformations over the depen-
dency graph (i.e. given the graph G it produces the graph G′), we show that
each of these transformations consists of no more than replacing the graph
fragments.

65

6.2 Dependency Graph Fragment Representation

Like DG, the DGF can be infinite. The DGF structure is regular enough to be
represented by a finite graph. We call this finite representation Dependency
Graph Fragment Representation, or DGFR.

Formally, the DGFR comprises nodes and edges. Each DGFR node v has:

• `(v) — identity;

• λgf (v) — operation;

• r(v)(D) — number of coordinates the node has in each dimension.

Each edge e on the fragment representation has:

• s(e) — edge source;

• t(e) — edge target;

• port(e) — identifier of the input port on the edge target;

• m(e)(D) — function mapping the source to target coordinate indices.

The procedure converting the DGFR to DGF is the same as the procedure
converting DGR to DG.

6.2.1 Semantics

The semantics of the DGFR is equal to the semantics of the DGF, represented
by it.

6.2.2 Indistinguishability

Two DGFRs are computationally indistinguishable if the DGFs, represented
by them, are computationally indistinguishable.

6.2.3 Transformations Specification

The idea of the process of the transformation is following — if the DG, rep-
resented by the DGR, contains a sub-graph, isomorphic to DGF, represented
by the first DGFR without input and output nodes, then the DGR is replaced
with new DGR, representing the DG with the sub-graph replaced with the
DGF, represented by the second DGFR.

The sub-graph of DG, represented by the DGR, is isomorphic to the DGF,
represented by DGFR, if

• For each DGFR node there is corresponding DGR node;

66

• For each DGFR edge there is corresponding DGR edge;

• For each DGFR node replication dimension mapping there is a corre-
sponding node dimension mapping on DGR;

• For each DGR edge dimension mapping there is a corresponding edge
dimension mapping on DGR.

Additionally, we require that if the DGR contains an edge originating in
the node, which corresponds to DGFR node, and the DGFR does not contain
the corresponding edge, there should be an edge from the DGFR node to
some output node. The transformation is thus specified by a pair of DGFRs.
If the DG contains a sub-graph isomorphic to the first DGFR, the DGR of
the transformed sub-graph is obtained by replacing the nodes of the sub-graph
with the second DGFR, with corresponding dimension mappings.

6.2.4 Correctness proofs

Theorem 6. If two DGFRs fr1 and fr2 are computationally indistinguishable
and DGR gr contains the fragment fr1, the DG g′, corresponding to DGR
gr′, constructed from the gr by replacing the fr1 with the fr2, has adversary
view, computationally indistinguishable from the DG g, corresponding to the
DGR gr.
Proof sketch Per definition of the DGFR indistinguishability, the DGFs f1

and f2, corresponding to fr1 and fr2, have indistinguishable public views.
Therefore, replacing the f1 with f2 in DG g, corresponding to DGR gr, results
in DG g′′, having adversary view, computationally indistinguishable from the
DG g. Therefore, all we have to prove is that the gr′, constructed by DGFR
replacement, will also correspond to g′′, constructed by DGF replacement. In
order to prove that, for each node on g′ we should allocate corresponding node
on g′′.

First, let us consider DGFR transformation: in the gr we find fr′1, iso-
morphic to fr1 without input and output nodes. For each combination of
replication dimensions of fr1 nodes we have corresponding combination of
replication dimensions of fr′1 nodes. During the transformation the nodes be-
longing to fr′1 are removed from the gr, and the nodes and edges belonging to
fr′2 (the graph, isomorphic to fr2, but with replication dimensions changed
using the same function which maps the dimensions of fr1 nodes to fr′1 nodes)
are added.

But exactly the same operation is performed on g — as the f1 is represented
by fr1 (with fixed dimension mappings), the f2 — by fr2 (with the same
dimension mapping), and the rest of the g nodes are left untouched.

67

So, the DGs g′ and g′′ are isomorphic, therefore, the g′′ is represented by
gr′, and the semantics of the DGs, represented by gr and gr′, are computa-
tionally indistinguishable. ¤

68

7 Transformations

In this section we describe the DGR transformations we used for protocol
analysis.

We mention all the transformations we applied, while describe in details
only the most representative of them. The Appendix 2 contains the detailed
descriptions of all the transformations.

7.1 Dead Code Removal

One of the most trivial transformations is removal of the dead code. Despite
being trivial it stands separately of other transformations, as it is the generic
(only operation-independent) transformation that makes the DGR smaller
(other transformations only add additional operations to the graph.)

A node in a dependency graph is live if it is a Send-node or if the value
produced by it is consumed by a live node. All nodes that are not live may
be removed from the graph.

Formally, let the initial DGFR be the following:

• Inputs

– Ii, for 1 ≤ i ≤ n, the operation is either InputB or InputS and the
replication dimensions are given by ιi;

• Regular nodes

– A, any operation, except for Send; the replication dimensions are
given by α. Let the node have n input ports; the input of the i-th
input port is Ii, with coordinate mapping λIiA;

• The DGFR has no outputs.

The DGFR can be replaced with the following one:

• Inputs

– Ii, for 1 ≤ i ≤ n, the operation is either InputB or InputS and the
replication dimensions are given by ιi;

• The DGFR has no regular nodes or outputs.

It is obvious that the adversary view of the resulting graph is the same as
for the initial graph (since A is not used to compute anything which is made
available to the adversary).

69

7.2 Local Simplifications

The transformations belonging to this group are based on the properties of
the operation semantics. Most of these transformations only require analyzing
the arguments of the operation being transformed.

The typical transformation from this group is replacing the sequence of
Tuple and Proj operations with the copy of corresponding argument of the
Tuple operation. Note that in order for the Proj operation to return non-⊥ bit
string, just having the corresponding input of the Tuple equal to that bit string
is not enough – the other inputs of of the Tuple also need to be different from ⊥.
The control input of the Id operation, introduced during the transformation,
reflects this.

Formally, let the initial DGFR be the following:

• Inputs

– Ii, for 1 ≤ i ≤ n, the operation is either InputB or InputS and the
replication dimensions are given by ιi;

– CT , InputB operation and replication dimensions ιCT
;

– CP , InputB operation and replication dimensions ιCP
;

• Regular nodes

– T , Tuple operation; replication dimensions α; the control input is
CT , with coordinate mapping λCT T ; let the node have n input ports;
the input of the i-th input port is Ii, with coordinate mapping λIiT ;

– P , Projni operation (for some i, 1 ≤ i ≤ n); replication dimensions
β; the control input is CP , with coordinate mapping λCP P ; the data
input is T , with coordinate mapping λTP ;

• Outputs

– OT , OutputS operation, replication dimensions α, the node input is
T , with identity coordinate mapping;

– OP , OutputS operation, replication dimensions β, the node input is
P , with identity coordinate mapping.

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

– T , same as in the initial DGFR;

70

– OK T , IsOK operation; replication dimensions α; the node input is
T , with identity coordinate mapping;

– A, And operation with two inputs; replication dimensions β; the
node inputs are OK T (coordinate mapping λTP) and CP (coordi-
nate mapping λCP P);

– P ′, opid operation; replication dimensions β; the control input is A,
with identity coordinate mapping; the node data input is Ii, with
coordinate mapping λIiT ◦ λTP ;

• Outputs

– OT , same as in the initial DGFR; the node input is T , with identity
coordinate mapping;

– OP , OutputS operation, replication dimensions β, the node input is
P ′, with identity coordinate mapping.

In order to verify that the initial and transformed DGFRs are indistinguish-
able, let us examine the semantic functions of the public outputs. For OT the
semantics are clearly the same, as the node and all its predecessors are iden-
tical in the initial and transformed DGFRs. The semantics of the OP node
are:

• In the initial DGFR, it is equal to the i-th component of the tuple (Ii),
if the control input of the projection node (CP) is equal to true, and the
data input of the projection node (T) is n-tuple (which means, it has to
be different from ⊥). If any of the above mentioned conditions does not
hold, the OP is ⊥;

• In the transformed DGFR, the OP is equal to the Ii, if and only if the
control dependency of the node P ′ is true, which is only the case if the
value of OK T is true (the result of T is different from ⊥), and CP is
equal to true. Otherwise, the OP is ⊥.

As we see, the OP semantics are the same in the initial and the transformed
DGFRs, therefore the OP will always have the same value on both of the
fragments. Having shown that the public outputs of the fragments are always
the same, we have demonstrated that they cannot be distinguished.

7.2.1 Other Bit String Operation Simplifications

The other transformation similar (in terms of the type of the underlying se-
mantics and graph analysis required to perform it) are:

71

Simplifying Equalities
Two constructor-type nodes (which tag the produced value with its
type), having the different operations always produce different bit strings.
Two constructor-type nodes, having the same operation produce the
same bit string if and only if all their inputs are the same. Two random
coins (produced by RS-node) are always not different. We can use these
properties in order to replace the IsEq and IsNeq operations either with
constants or with a comparisons of the original operations’ inputs. Since
all the operations, including the IsNeq, are strict (IsNeq(⊥,⊥) = false),
when replacing the IsNeq operation we always check that its inputs are
different from ⊥;

Simplifying the Computations Resulting in Error
The bit string operations performing computations according to some
algorithm (a Proj is a good example) check if their inputs are tagged
by the corresponding constructors, so it the input is produced by the
“wrong” constructor, the operation will always return ⊥. All the bit
string operations have strict semantics — if any of the data inputs is
⊥, or the control input is false, the result is always ⊥ (or false, for the
bit string operations returning booleans). Using these properties we are
able to replace some of the operations with constants (false or ⊥);

Simplifying the IsOK Operations
The operation can only succeed (return bit string different from ⊥) if
all it arguments are different from false / ⊥. Therefore, the IsOK of
the operation result can be replaced with the conjunction of IsOK of the
operation arguments and its control input. In case one of the arguments
has invalid type or the control input is false, the IsOK can be replaced
with constant (False);

Simplifying the Boolean Algebra Operations
The operations And, Or, and Longor obey the rules of boolean algebra.
If one of the And inputs is false, then the operation result is always false
(the dual statement holds for the Or operation. The And or Or operation
having a single input can be replaced with that input. The sequence of
two And operations (a dual statements hold for Or and Longor) can be
replaced with a single operation, with a union of the operations inputs.
Finally, the sequence of Or and And operations can be modified according
to the distribution law (A ∧B ∨A ∧ C = A ∧ (B ∨ C)).

72

7.3 Duplicate Computations Removal

This group consists of a transformations detecting the set of computations
always leading to the same result, and, if such a set exists, leaving only one
copy of these computation.

The transformations are:

Redundant Coordinate Removal
If a node has a coordinate, which has no corresponding coordinate in
each of its inputs (i.e. the values of the node with all other coordinates
fixed and this coordinate varying are all equal), this coordinate can be
removed from the node (and re-introduced in the coordinate mapping
from the node to its successors);

Combining Nodes with Same Inputs
If several nodes have the same set of inputs, all the nodes using the value
computed at these nodes can be modified to use the value computed at
the first node in the set; As a special case, it makes sense to leave only
the one copy of the operation with no inputs (Const, True, False, Error).

7.4 Changing the Computations Order

If some node returns (under some condition) the value of its argument (the
examples of such nodes are Id and IfDef), and the result of this node is used
in some other computation, the order of these two nodes can be modified to
first perform the computation and then take its value.

For example, let the initial DGFR be the following:

• Inputs

– CID, InputB operation and replication dimensions ιCID
;

– IID, InputS operation and replication dimensions ιIID
;

– Ii, for 1 ≤ i ≤ n− 1, the operation is either InputS and the replica-
tion dimensions are given by ιi;

– COP , InputB operation and replication dimensions ιCOP
;

• Regular nodes

– ID , Id operation; the replication dimensions are given by α; the
control input is CID, with coordinate mapping λCIDID; the node
data input is IID, with coordinate mapping λIIDID;

– OP , any operation returning bit string value and having one control
and n data inputs; the replication dimensions are given by β; the
control input is COP , with coordinate mapping λCOP OP ; the input

73

of the j-th (for a single j, 1 ≤ j ≤ n) input port is ID, with
coordinate mapping λIDOP ; for all i 6= j, 1 ≤ i ≤ n the input of
the i-th input port is either Ii with coordinate mapping λIiOP (if
i < j) or Ii+1 with coordinate mapping λIi+1OP (if i > j)

• Outputs

– OID, OutputS operation, replication dimension α, the node input
is ID, with identity coordinate mapping;

– OOP , OutputS operation, replication dimension β, the node input
is OP , with identity coordinate mapping.

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

– ID , Id operation; the replication dimensions are given by α; the
control input is CID, with coordinate mapping λCIDID; the node
data input is IID, with coordinate mapping λIIDID;

– A, And operation with two inputs; the replication dimensions are
given by β; the inputs are COP , with coordinate mapping λCOP OP

and CID, with coordinate mapping λCIDID ◦ λIDOP ;

– OP ′, same operation as for OP node; the replication dimensions
are given by β; the control input is A, with identity coordinate
mapping; the input of the j-th input port is IID, with coordinate
mapping λIIDID ◦ λIDOP ; for all i 6= j, 1 ≤ i ≤ n the input of the
i-th input port is either Ii with coordinate mapping λIiOP (if i < j)
or Ii+1 with coordinate mapping λIi+1OP (if i > j)

• Outputs

– OID, OutputS operation, replication dimension α, the node input
is ID, with identity coordinate mapping;

– OOP ′ , OutputS operation, replication dimension β, the node input
is OP , with identity coordinate mapping.

7.5 Cryptographic Primitives

One of the key transformations is making use of the security definition of
encryption primitives. Let us consider the asymmetric encryption operation.
We require the encryption system to satisfy the IND-CCA2 property as defined
in sec. 9.3 — i.e. it should be impossible to distinguish two cipher texts

74

produced by the encryption oracle for two plain texts given by the adversary
with non-negligible probability in polynomial time even if the adversary is
given the ability to decrypt everything except the challenge cipher text. It
means that encryption of the plain text with the given public key could be
replaced with the encryption of the string of zeroes (or any other constant)
of equal length, and that latter cipher text will be indistinguishable from the
first for anyone, except for the one having the corresponding private key. On
the decryption side we first check whether the cipher text matches one of the
cipher texts already produced, and if it does, the corresponding plain text is
returned. If no match is found, the decryption operation is performed.

Formally, let the initial DGFR be the following:

• Inputs

– CRK , InputB operation, replication dimensions ιRK ;

– CKP , InputB operation, replication dimensions ιKP ;

– CPK , InputB operation, replication dimensions ιPK ;

– CREi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCREi
;

– CEi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCEi
;

– CDj , for 1 ≤ j ≤ m, InputB operation, replication dimensions ιCDj
;

– PTi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιPTi ;

– CTj , for 1 ≤ j ≤ m, InputS operation, replication dimensions ιCTj ;

• Regular nodes

– RK, RS operation, the replication dimensions α, the control input
CRK , with coordinate mapping λCRKRK ;

– KP , Keypair operation, the replication dimensions α, the control
input CKP , with coordinate mapping λCKP KP ; the data input RK
with identity coordinate mapping;

– PK, PubKey operation, the replication dimensions α, the control
input CPK , with coordinate mapping λCPKPK ; the data input KP
with identity coordinate mapping;

– REi, for 1 ≤ i ≤ n, RS operation, the replication dimension βi, the
control input CREi , with coordinate mapping λCREi

REi ;

– Ei, for 1 ≤ i ≤ n, PubEnc operation, the replication dimension βi,
the control input CEi , with coordinate mapping λCEi

Ei ; the data
inputs are:

∗ Random coins: REi, with identity coordinate mapping;
∗ Key: PK, with coordinate mapping λPKEi ;

75

∗ Plain text: PTi, with coordinate mapping λPTiEi ;

– Dj , for 1 ≤ j ≤ m, PubDec operation, the replication dimension γj ,
the control input CDj , with coordinate mapping λCDj

Dj ; the data
inputs are:

∗ Key: KP , with coordinate mapping λPKDj ;
∗ Cypher text: CTj , with coordinate mapping λCTjDj ;

• Outputs

– OPK , the OutputS operation, the replication dimensions α, the in-
put PK, with identity coordinate mapping;

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions βi, the input Ei, with identity coordinate mapping;

– ODj , for 1 ≤ j ≤ m, the OutputS operation, the replication dimen-
sions γj , the input Dj , with identity coordinate mapping;

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

– RK, RS operation, the replication dimensions α, the control input
CRK , with coordinate mapping λCRKRK ;

– KP , Keypair operation, the replication dimensions α, the control
input CKP , with coordinate mapping λCKP KP ; the data input RK
with identity coordinate mapping;

– PK, PubKey operation, the replication dimensions α, the control
input CPK , with coordinate mapping λCPKPK ; the data input KP
with identity coordinate mapping;

– REi, for 1 ≤ i ≤ n, RS operation, the replication dimensions βi,
the control input CREi , with coordinate mapping λCREi

REi ;

– OKi, for 1 ≤ i ≤ n, IsOK operation, the replication dimensions βi,
the input is PTi, with coordinate mapping λPTiEi ;

– Ai, for 1 ≤ i ≤ n, And operation, the replication dimensions βi, the
operation has two inputs: CEi , with coordinate mapping λCEi

Ei ,
and OKi, with identity coordinate mapping;

– E′
i, for 1 ≤ i ≤ n, PubEncZ operation, the replication dimensions

βi, the control input Ai, with identity coordinate mapping; the data
inputs are:

∗ Random coins: REi, with identity coordinate mapping;

76

∗ Key: PK, with coordinate mapping λPKEi ;

– EQij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, IsEq operation, the replication
dimension γj + βi (pointwise addition), the inputs are:

∗ CTj , with identity coordinate mapping;
∗ E′

i, with coordinate mapping λ(d, n).γj(d) + n;

– Dj , for 1 ≤ j ≤ m, PubDec operation, the replication dimension γj ,
the control input CDj , with coordinate mapping λCDj

Dj ; the data
inputs are:

∗ Key: KP , with coordinate mapping λPKDj ;
∗ Cypher text: CTj , with coordinate mapping λCTjDj ;

– OKj , for 1 ≤ j ≤ m, IsOK operation, the replication dimension γj ,
the input Dj , with identity coordinate mapping;

– D′
j , 1 ≤ j ≤ m, IfDef operation, the replication dimension γj , the

control input CDj , with coordinate mapping λCDj
Dj ; the operation

has n + 1 pair of data inputs:

∗ for 1 ≤ i ≤ n, the check-input is EQij , with the identity coordi-
nate mapping; the data-input is PTi, with coordinate mapping
λ(d, n).γj(d) + λPTiEi ; the contracted dimensions are βi

∗ for i + 1-th pair, the check-input is OKj , with identity coordi-
nate mapping; the data-input is Dj , with identity coordinate
mapping; there are no contracted dimensions;

• Outputs

– OPK , the OutputS operation, the replication dimensions α, the in-
put PK, with identity coordinate mapping;

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions β, the input E′

i, with identity coordinate mapping;

– ODj , for 1 ≤ j ≤ m, the OutputS operation, the replication dimen-
sions γ, the input D′

j , with identity coordinate mapping;

Theorem 7. The public view of the transformed DGF H ′ (corresponding to
the transformed DGFR) is indistinguishable from the public view initial DGF
H (corresponding to the initial DGFR).
Proof. In the H ′ the ρ[OPK] returns the public key, computed in the same
way as in the H; ρ[OEi] returns the encryption of the string of zeroes of the
length equal to the length of the plain text ρ[PTi]; the ρ[ODj] is either one of
the plain texts earlier encrypted in the DGF, or the result of the decryption
operation (if the cipher text being decrypted has not been encrypted in the
DGF).

77

Also it is possible that ρ[ODj] would be equal to >. The IfDef operation
can return > only in two cases:

• More than one node EQij (comparison operation) returns true; the prob-
ability that it happens is negligible, as the values compared with (the
result of the node E′

i) are functions of independent random coins (gen-
erated at the nodes with labels REi).

• Some node EQij returns true and the result of the decryption semantics
of the PubEnc operation (it will return ⊥ if the result of the decryption
is 0).

Having shown that ρ[ODj] can be equal to > only with negligible probabil-
ity, we go on with demonstrating that from the driver algorithm AH , producing
the public views of H from H ′ and the algorithm A, distinguishing these public
views, the algorithm AE , winning the IND-CCA2 game (as defined in sec. 9.3)
with the same probability, can be constructed.

The AE behaves like AH , but instead of returning to the graph fragment
evaluation function, it calls the oracle defined in sec. 9.3:

• When AH first sets the ρ[CKP], ρ[CRK] to true the AE executes Initialize
and saves the returned public key,

• when AH first sets the ρ[CPK] to true the AE sets the ρ[OPK] to the
saved public key.

• when AH first sets (for some coordinate vector cv) the
ρ[CEi .cv], ρ[CREi .cv] to true and the ρ[PTi.cv] to M0, the AE executes
LR(M0, (0)|M0|), and puts the returned value to ρ[OEi .cv],

• when AH first sets (for some coordinate vector cv′) the ρ[CDj].cv′ to true

and the ρ[CTj].cv′ to C, the AE executes Dec(C), and puts the returned
value to ρ[ODj].cv′,

• finally, when AH indicates to stop with the public view, and the algo-
rithm A is executed to produce the bit b, indicating whether the public
view corresponds to H or H ′, the AE calls Finalize(b).

By examining the semantics of the graph fragment step functions, it can be
checked that indeed the evaluation of H or H ′ will set the outputs according
to the rules implemented by AE above. As it is assumed that all the random
coins, including those used by encryption oracle and by the RS operation on
the graphs, are generated according to the same distribution, so the key pairs
generated in node KP and encryption oracle in the game are.

78

So, the AE will win the IND-CCA2 game with the same probability as the
A will distinguish the view viewH(AH) from viewH′

(AH). By the requirement
we put on the encryption scheme, this probability is negligible. ¤

The similar transformations are defined for symmetric encryption and dig-
ital signature schemes.

7.6 Implied Analysis

During this analysis the relations between the results of different operations,
following from the semantics of these operations, are made explicit. For in-
stance, the result of an And operation being true implies that each argument
of this operation has also to be true.

These relations are documented by introducing a special node with oper-
ation ⇒(A,B). This node stands for the sequence of two nodes:

• C , the operation is Before′, the inputs are:

– A, any operation returning boolean value;

– B , any operation returning boolean value;

• D , the operation is Halt, the input is C .

The semantics of the Before′ is the following: a node Before′(v1, v2) equals
false. But:

• If, after a fix-point computation, the value v1 is true and the value v2 is
false, then the node is replaced with a true-node;

• if, after a fix-point computation, the value v2 is true, then the node is
replaced with a false-node.

If any of the Before′-nodes were replaced with true, then the fix-point compu-
tation is repeated.

The semantics of the Halt is defined as:

• Halt(v) = true if v = false

• Halt(v) = > if v = true

Therefore, the ⇒(A,B) indicates that if A is true, B should also be true,
or the DG evaluation will be stopped.

79

7.6.1 Introducing the ⇒ Nodes

We introduce the ⇒ node if value of one node being true (in case of boolean
node) or different from ⊥ (in case of a node returning a bit string — then the
IsOK of the node result is true) implies the value of another node being true
or non-⊥.

This process is done iteratively — initially we document the relations be-
tween the nodes and / or their inputs, and then propagate the created ⇒
nodes (due to the operation transitivity throughout the graph).

During the initial step the following relations are taken into account:

• A node always implies itself;

• Or, Longor-nodes imply its arguments;

• an argument of a And-node implies the node;

• an argument of a node with strict semantics implies its result (all bit
string and bit string-to-boolean operations have strict semantics);

• check-input of an IfDef node with the single pair of inputs implies the
result of the operation;

The propagation of the ⇒ nodes is done according to the following princi-
ples (the process is repeated until no more ⇒ operations could be created):

• If the node A implies the node B and the node B implies the node C,
then node A implies the node C;

• A node implying the input of the And node also implies the operation
result;

• If an input to the Or node implies some node, then the node also implies
it;

• Similarly to the above three cases, it is possible to introduce new ⇒
operation if the initial ⇒ operations are connected to the original nodes
through the Longor.

Each of the transformations outlined above, can be “reversed” — the re-
sulting DGFR can be replaced with the initial one (having less ⇒ operations).
Note, however, that it can only be done if all the nodes created during the
transformation are present, as in the absence of the rest of the DGFR-result
of the transformation, they can turn to >, thus stopping the execution of the
DGF, corresponding to the DGFR.

Once introduced, the ⇒ operations can be used to simplify the graph.
An example of such transformation is removing the And inputs, dependent

on each other.

80

7.6.2 Removal of the And inputs, depending on each other

If an input of the the And operation implies another input of the same opera-
tion, that another input can be removed from the inputs list.

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, the operation is InputB and the replication
dimensions are given by ιi;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λBiA be the coordinate mapping of i-th input (1 ≤ i ≤
n).

– D , the operation is ⇒, the number of dimensions is β. The inputs
are:

∗ Bi1 , with dimension mapping λBi1
D

∗ Bi2 , with dimension mapping λBi2
D.

• Outputs

– OA, OutputB operation, replication dimensions α, the node input
is A, with identity coordinate mapping;

We require that the dimension mappings present in the initial DGFR guar-
antee the (constant) correspondence of coordinate of the And inputs — i.e.
that irrespective of whether we “trace” the coordinate of Bi1 to a coordi-
nate of Bi2 through the A node, or through the D node, the same coordinate
correspondence relations should be obtained.

If the requirements are met, the initial DGFR can be replaced with the
new DGFR:

• Inputs — same as in the initial DGFR

• Regular nodes

– A′, And operation with dimensions α, inputs
B1, . . . , Bi2−1, Bi2+1, . . . , Bn. For i-th input the dimension mapping
is λBiA.

– D , the operation is ⇒, the number of dimensions is β. The inputs
are:

∗ Bi1 , with dimension mapping λBi1
D

81

∗ Bi2 , with dimension mapping λBi2
D.

• Outputs

– OA, OutputB operation, replication dimensions α, the node input
is A′, with identity coordinate mapping;

7.6.3 Application to Bit String Nodes

The implied analysis can also be applied for simplifying the nodes operating
on bit strings. If a control input of some node implies the result of some IsEq
node, involving one of the node data inputs, then this data input will (at the
moment of the node evaluation) be always equal to the another input of the
IsEq node.

In order to take it into account, we introduce the special node Merge(v1, v2),
having the following semantics:

• Merge(v1, v2) = ⊥ if v1 6= v2

• Merge(v1, v2) = v1 if v1 = v2

Similarly to ⇒, the Merge is introduced iteratively. During the initial step
we look for all the cases when the node control dependency implies the IsEq
operation, involving one of its data inputs. If found, we replace this input
with the Merge of the original input and the second IsEq input.

Then, we iteratively combine two Merge operations — if one Merge is used
as an input to another, then the inputs of the first node could be used as the
inputs of the second.

Once all the possible Merge nodes are introduced, we use them in the local
transformations. An example of such usage is during the type check, when
the input B of some node A is non-constructor-type node (e.g. Receive), while
after the implied analysis the input B is replaced with Merge(B, C). If the
C is a constructor-type node, we now can decide whether the type of C (and
thus B) is acceptable for A or not.

7.7 Not-And Analysis

During the Not-And (NAND) analysis the relations between the results of
different nodes, following from the semantics of these operations, are made
explicit. The relationships created in the NAND analysis make it explicit that
two values cannot be true at the same time. An example of this situation is
that two operations — IsEq and IsNeq — having the same inputs cannot both
be true.

These relations are documented by introducing a special node with oper-
ation Nand(A,B). This node stands for the sequence of two nodes:

82

• C , the operation is And, the inputs are:

– A, any operation returning boolean value;

– B , any operation returning boolean value;

• D , the operation is Halt, the input is C .

Therefore, the Nand(A,B) indicates that A and B cannot be true at the
same time, or the DG evaluation will be stopped.

7.7.1 Introducing the Nand Nodes

This process is done iteratively — initially we document the relations between
the nodes, and then propagate the created Nand nodes (due to the operation
transitivity throughout the graph).

During the initial step the following relations are taken into account:

• False and Error (through the IsOK) nodes have NAND-relation with any
node;

• IsEq and IsNeq nodes with the same inputs are in NAND-relation;

• A comparison of a cypher text-input to the PubDec node with a cypher
text produced by PubEncZ node is in NAND relation with the (IsOK of
the) result of this PubEncZ node. The dual statement holds for SymDec
and SymEncZ nodes.

The propagation of the Nand nodes is done according to the following
principles (the process is repeated until no more Nand operations could be
created):

• if a node is in NAND-relation with a And node input, then it also is in
NAND-relation with the And node result;

• if a node is in NAND-relation with a Or or Longor node, then it also is
in NAND-relation with the node inputs;

• if a node is in NAND-relation with a control input or (through the IsOK)
with a data input of a node returning bit string, then it also is in NAND-
relation with the IsOK of this node;

83

7.7.2 Application to Boolean Nodes

If a node is in NAND-relation with itself, it cannot be true, and thus can be
replaced with False.

More complex cases are also possible — for example, if the result of the
And node A, having among this arguments the Or node C, implies the node
B, and B is in the NAND-relation with one of the C inputs, then this input
can be removed from the C.

7.7.3 Application to Bit String Nodes

If an IsOK of a node is in NAND-relation with itself, then the node cannot
have non-⊥ value, and thus can be replaced with Error.

Each of the transformations outlined above, can be “reversed” — the re-
sulting DGFR can be replaced with the initial one (having less Nand opera-
tions). Note, however, that it can only be done if all the nodes created during
the transformation are present, as in the absence of the rest of the DGFR-
result of the transformation, they can turn to >, thus stopping the execution
of the DGF, corresponding to the DGFR.

7.8 Independence Analysis

The idea of this group of transformations is that two nodes, which performing
based on the independent inputs (the transitive reflexive closure of their inputs
do not intersect), will produce (with non-negligible probability) a different
result, if at least one of them uses randomness as its input.

These transformations rely, in addition to the initial DGFR, to the infor-
mation, indicating which nodes are can potentially influence the value of each
DGFR node.

This information is captured by the following functions:

• (v′,m−1(d, n)) ∈ Inputs(v) if DGFR contains an edge from v′ to v with
coordinate mapping m(d, n).

• The RTCInputs(v) is a reflexive transitive closure of Inputs(v).

• Independent(v, v′) is:

– false if RTCInputs(v) and RTCInputs(v′) intersect (note that as the
functions return coordinate mappings, those also need to be equal);

– false, if for one of v′′ ∈ {v, v′} the RTCInputs(v′′) contains the node
with Receive operation;

– true otherwise.

84

Additionally, we use the function Random(v), which indicates whether the
node v is computed using the random coins. It is defined as following:

• if λ(v) = RS then Random(v) = true;

• if λ(v) is Nonce, Keypair, PubEnc, PubEncZ, SymKey, SymEnc, SymEncZ,
SigVer, or Signature, with input from v′ used as random coins, then
Random(v) = Random(v′);

• if λ(v) is PubKey or VerKey with input from v′ used as key pair, then
Random(v) = Random(v′);

• otherwise, Random(v) = false

If neither of the nodes has the adversary input as its source (as defined by
the Independent function), the information captured by the above functions
is enough to perform the following two transformations.

7.8.1 Replacing the IsEq Operation not Influenced by Adversary
Input

Let the initial DGFR contain the following nodes:

• Inputs

– X1, InputS operation, replication dimensions ιX1 ;

– X2, InputS operation, replication dimensions ιX2 ;

• Regular nodes

– EQ , IsEq operation, replication dimensions δ, and the following
inputs:

∗ X1, with coordinate mapping λX1EQ ;
∗ X2, with coordinate mapping λX2EQ ;

• Outputs

– OEQ , OutputB operation, replication dimensions δ, the node input
is EQ , with identity coordinate mapping.

If the nodes X1 and X2 cannot influence each other — or, formally,
Independent(X1, X2) = true, and Random(X1) = true, then the initial DGFR
can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

85

– EQ , False operation, no replication dimensions;

• Outputs

– OEQ , OutputB operation, replication dimensions δ, the node input
is EQ , with identity coordinate mapping.

7.8.2 Replacing the IsNeq Operation not Influenced by Adversary
Input

Let the initial DGFR contain the following nodes:

• Inputs

– X1, InputS operation, replication dimensions ιX1 ;

– X2, InputS operation, replication dimensions ιX2 ;

• Regular nodes

– NEQ , IsNeq operation, replication dimensions δ, and the following
inputs:

∗ X1, with coordinate mapping λX1NEQ ;
∗ X2, with coordinate mapping λX2NEQ ;

• Outputs

– ONEQ , OutputB operation, replication dimensions δ, the node input
is NEQ , with identity coordinate mapping.

If the nodes X1 and X2 cannot influence each other — or, formally,
Independent(X1, X2) = true, and Random(X1) = true, then the initial DGFR
can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– OK 1, IsOK operation, replication dimensions ιX1 , input X1 (iden-
tity coordinate mapping);

– OK 2, IsOK operation, replication dimensions ιX2 , input X2 (iden-
tity coordinate mapping);

– NEQ , And operation, replication dimensions δ, and the following
inputs:

∗ OK 1, with coordinate mapping λX1NEQ ;
∗ OK 2, with coordinate mapping λX2NEQ ;

86

• Outputs

– ONEQ , OutputB operation, replication dimensions δ, the node input
is NEQ , with identity coordinate mapping.

7.8.3 Replacing the IsEq Influenced by Adversary Input

If one of the IsEq inputs depends on the Receive-node, we can apply neither of
the transformations described above, as the Independent(X1, X2) = false.

First, we introduce the function Independent ′, to capture this condition

• Independent ′(v, v′) is:

– false if RTCInputs(v) and RTCInputs(v′) intersect (note that as the
functions return coordinate mappings, those also need to be equal);

– false, if for one of v′′ ∈ {v, v′} the RTCInputs(v′′) contains the
node with Receive operation, and for v′′′ ∈ {v, v′}, v′′′ 6= v′′) the
RTCInputs(v′′) contains the node with Receive operation;

– true otherwise.

Then, we analyze the condition under which the other IsEq input may
influence the adversary view, and add that condition to the IsEq operation.

We introduce the node I(c, r) (c is a condition input port, r is a value
input port) for documenting whether the node r can influence the DG public
outputs. The node I(c, r) documents the fact that if the public view of the
two DGs, differing only in the value of ψ[r], can be distinguished, then the
ρ[c] must be equal to true.

Formally, the node I(c, r) on the DGFR gr means that the following game
cannot we won with non-negligible probability — it is given the value of ψ[r]
and two DGFRs:

• gr ′, equal to gr , but with additional node T (Halt operation, input c);

• gr ′′, equal to gr ′, but using different (but taken according to the same
distribution) random coins in the node r

The task is to determine which of two DGFRs uses the given value of ψ[r] (i.e.
to distinguish the gr ′ from gr ′′.

As the node I(c, r), returns no value, and has no effect on the “normal”
execution of the DGR / DGFR where it occurs, therefore it does not have the
execution semantics defined.

The I nodes are introduced iteratively — initially we document the rela-
tions between the nodes, and then propagate the created I nodes.

The initial step is performed as following. Let the initial DGFR be:

87

• Inputs

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– R, RS operation, replication dimensions α. The node control input
is C, with the coordinate mapping λCR;

• Outputs

– OR, OutputS operation, replication dimensions α, the node input is
R, with identity coordinate mapping.

The initial DGFR can be replaced with the the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– R, same as in the initial DGFR;

– T , True operation, no replication dimensions;

– OK , IsOK operation, replication dimensions α. The operation input
is R, with identity coordinate mapping;

– A, And operation, replication dimensions α. The operation inputs
are T and R, both with identity coordinate mappings;

– O , Or operation, replication dimensions α. The operation input is
A, with identity coordinate mapping;

– I , operation I, replication dimensions α. The operation condition
and value inputs are O and R, correspondingly; both with identity
coordinate mappings;

• Outputs — same as in the initial DGFR.

Each iteration is formalized as following. Let the initial DGFR be:

• Inputs

– Ai, 1 ≤ i ≤ a, InputB operation, replication dimensions ιAi ;

– Ci, 1 ≤ i ≤ c, InputB operation, replication dimensions ιCi ;

– CR, InputB operation, replication dimensions ιCR;

– CV , InputB operation, replication dimensions ιCV ;

– DV i, 1 ≤ i ≤ v, InputS operation, replication dimensions ιDV i ;

– CV i, 1 ≤ i ≤ k, InputB operation, replication dimensions ιCV i ;

88

– DV ij , 1 ≤ i ≤ k, 1 ≤ j ≤ ki, InputS operation, replication dimen-
sions ιDV ij ;

– CV ′
i, 1 ≤ i ≤ k′, InputB operation, replication dimensions ιCV ′

i
;

– V ′
i Check j , 1 ≤ i ≤ k′, 1 ≤ j ≤ k′i, InputB operation, replication

dimensions ιV ′
i CDj

;

– V ′
i Dataj , 1 ≤ i ≤ k′, 1 ≤ j ≤ k′i, InputS operation, replication

dimensions ιV ′
i CDj

;

– V ′
i CheckV , 1 ≤ i ≤ k′, InputB operation, replication dimensions β;

– CV ′′
i , 1 ≤ i ≤ k′′, InputB operation, replication dimensions ιCV ′′

i
;

– CV (3)
i , 1 ≤ i ≤ k(3), InputB operation, replication dimensions

ι
CV

(3)
i

;

– DV (4)
ij , 1 ≤ i ≤ k(4), 1 ≤ j ≤ k

(4)
i , InputS operation, replication

dimensions ι
DV

(4)
ij

;

• Regular nodes

– R, RS operation, replication dimensions α. The node control input
is C, with the coordinate mapping λCRR.

– V , any operation returning bit string value; replication dimensions
β. Let the operation have v inputs: the i-th input is DV i, with
coordinate mapping λDV iV ;

– OK , IsOK operation, replication dimensions γOK . The input is V ,
with coordinate mapping λVOK ;

– A, And operation, replication dimensions γA. The operation has
c + 1 inputs: OK (coordinate mapping λOKA) and, for 1 ≤ i ≤ c,
Ci (coordinate mapping λCiO);

– O , Or operation, replication dimensions γO . The operation has
a + 1 inputs: A (coordinate mapping λAO) and, for 1 ≤ i ≤ a, Ai

(coordinate mapping λAiO);

– I , operation I, replication dimensions γI . The operation condition
and value inputs are O (coordinate mapping λOI) and R (coordinate
mapping λRI), correspondingly;

– Vi, 1 ≤ i ≤ k, any operation returning bit string value, replication
dimensions βi. The node control input is CV i, with coordinate
mapping λCV iVi . Let the node have ki + 1 data inputs: V (coordi-
nate mapping λVVi) and, for 1 ≤ j ≤ ki, DV ij (coordinate mapping
λDV ijVi);

89

– V ′
i , 1 ≤ i ≤ k′, IfDef operation, replication dimensions β′i. The

node control input is CV i, with coordinate mapping λCV ′
iV

′
i
. Let

the node have k′i + 1 pairs of check and data inputs: V ′
i CheckV

and V (coordinate mapping λVV ′
i

and contracted dimensions δi0),
and, for 1 ≤ j ≤ k′i, V ′

i Check j and V ′
i Dataj , (coordinate mapping

λV ′
i CDjV ′

i
and contracted dimensions δij);

– V ′′
i , 1 ≤ i ≤ k′′, Send operation, replication dimensions β′′i . The

node control input is CV ′′
i , with coordinate mapping λCV ′′

i V ′′
i
. The

data input is V , with coordinate mapping λVV ′′
i
;

– V (3)
i , 1 ≤ i ≤ k(3), Begin or End operation, replication dimensions

β
(3)
i . The node control input is CV (3)

i , with coordinate mapping
λ

CV
(3)
i V

(3)
i

. The data input is V , with coordinate mapping λ
VV

(3)
i

;

– V (4)
i , 1 ≤ i ≤ k(4), an operation returning boolean value, replica-

tion dimensions β
(4)
i . Let the node have k

(4)
i + 1 data inputs: V

(coordinate mapping λ
VV

(4)
i

) and, for 1 ≤ j ≤ k
(4)
i , DV (4)

ij (coordi-

nate mapping λ
DV

(4)
ij V

(4)
i

);

• Outputs

– OR, OutputS operation, replication dimensions α, the node input is
R, with identity coordinate mapping;

– OV , OutputS operation, replication dimensions β, the node input
is V , with identity coordinate mapping;

– OOK , OutputB operation, replication dimensions γOK , the node
input is OK , with identity coordinate mapping;

– OA, OutputB operation, replication dimensions γA, the node input
is A, with identity coordinate mapping;

– OO , OutputB operation, replication dimensions γO , the node input
is O , with identity coordinate mapping;

– OVi , 1 ≤ i ≤ k, OutputS operation, replication dimensions βi, the
node input is Vi, with identity coordinate mapping;

– OV ′
i
, 1 ≤ i ≤ k′, OutputS operation, replication dimensions β′i, the

node input is V ′
i , with identity coordinate mapping;

– O
V

(4)
i

, 1 ≤ i ≤ k(4), OutputB operation, replication dimensions β
(4)
i ,

the node input is V (4)
i , with identity coordinate mapping.

The initial DGFR can be replaced with the the following DGFR:

90

• Inputs — same as in the initial DGFR;

• Regular nodes

– R, V , OK , A, O , Vi (1 ≤ i ≤ k), V ′
i (1 ≤ i ≤ k′), V ′′

i (1 ≤ i ≤ k′′),
V (3)

i (1 ≤ i ≤ k(3)), V (4)
i (1 ≤ i ≤ k(4)) — same as in the initial

DGFR;

– NewOK i, 1 ≤ i ≤ k, IsOK operation, replication dimensions βi.
The input is Vi, with identity coordinate mapping;

– NewAi, 1 ≤ i ≤ k, And operation, replication dimensions γNewAi .
The operation has c+1 inputs: NewOK i (identity coordinate map-
ping) and, for 1 ≤ j ≤ c, Cj (coordinate mapping λCjNewAi);

– NewOK ′
i, 1 ≤ i ≤ k′, IsOK operation, replication dimensions β′i.

The input is V ′
i , with identity coordinate mapping;

– NewA′i, 1 ≤ i ≤ k′, And operation, replication dimensions γNewA′i .
The operation has c+2 inputs: NewOK ′

i (identity coordinate map-
ping), V ′

i CheckV (identity coordinate mapping), and, for 1 ≤ j ≤ c,
Cj (coordinate mapping λCjNewA′i);

– NewA′′i , 1 ≤ i ≤ k′′, And operation, replication dimensions γNewA′′i .
The operation has c+2 inputs: OK (identity coordinate mapping),
CV ′′

i (identity coordinate mapping), and, for 1 ≤ j ≤ c, Cj (coor-
dinate mapping λCjNewA′′i);

– NewO , Or operation, replication dimensions γNewO . The operation
has either a + k + k′ + k′′ or a + k + k′ + k′′ + 1 inputs, depending
on k(4) value:

∗ Ai, 1 ≤ i ≤ a (coordinate mapping λAiO);
∗ NewAi, 1 ≤ i ≤ k, (coordinate mapping λNewAiNewO);
∗ NewA′i, 1 ≤ i ≤ k′, (coordinate mapping λNewA′iNewO);
∗ NewA′′i , 1 ≤ i ≤ k′′, (coordinate mapping λNewA′′i NewO);

∗ If k(4) > 0 then A (coordinate mapping λANewO) (if k(4) = 0
this input is absent);

– NewI , I operation, replication dimensions γNewI . The operation
condition and value inputs are NewO (coordinate mapping
λNewONewI) and R (coordinate mapping λRNewI), correspondingly.

• Outputs — same as in the initial DGFR.

The newly introduced replication dimensions and coordinate can be chosen
freely as long as any two coordinates mapped to the same I coordinate, are
mapped to the same NewI coordinate.

91

Finally, the I node can be used for modifying the IsEq node. Let the initial
DGFR contain the following nodes:

• Inputs

– X1, InputS operation, replication dimensions ιX1 ;

– X2, InputS operation, replication dimensions ιX2 ;

– C , InputB operation, replication dimensions δ;

– R, InputS operation, replication dimensions ιR;

• Regular nodes

– I , I operation, replication dimensions γ, and the following inputs:

∗ C , with coordinate mapping λCI ;
∗ R, with coordinate mapping λRI ;

– EQ , IsEq operation, replication dimensions δ, and the following
inputs:

∗ X1, with coordinate mapping λX1EQ ;
∗ X2, with coordinate mapping λX2EQ ;

• Outputs

– OEQ , OutputB operation, replication dimensions δ, the node input
is EQ , with identity coordinate mapping.

If the Independent ′(X1, X2) = true, Random(X1) = true, and
R ∈ RTCInputs(X1), then the initial DGFR can be replaced with the following
DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– EQ , same as in the initial DGFR;

– NewEQ , And operation, replication dimensions δ, and the following
inputs:

∗ EQ , with identity coordinate mapping;
∗ C , with identity coordinate mapping;

• Outputs

– OEQ , OutputB operation, replication dimensions δ, the node input
is NewEQ , with identity coordinate mapping.

92

8 Experimental Results

The automatic protocol analyzer has been implemented. The analyzer works
with the protocols specified in the protocol language. First, the protocol is
translated to the DGR. Then, the transformations are applied in iterations,
until no more transformations are possible.

The resulting DGR can then be easily interpreted by human. For instance,
in relation to the confidentiality property, the interpretation is following:

• If the DGR does not contain the Secret operation, then the protocol
satisfies it;

• If the CGR still contains it, then the protocol confidentiality could not
be proved with this set of transformations.

The analyzer has been applied to several protocols from the secure proto-
cols open repository (http://www.lsv.ens-cachan.fr/spore/):

• Needham-Schroeder public key,

• Lowe’s fixed version of Needham-Schroeder Public Key,

• Needham-Schroeder secret key,

• Kao-Chow Authentication,

• TMN.

TMN and Needham-Schroeder public key were not proved to be secure
(corresponding graphs still contain secret message even after all the transfor-
mations applied); for both protocols there are known attacks.

Graphs corresponding to Lowe’s fixed version of Needham-Schroeder Pub-
lic Key and Kao-Chow Authentication were transformed to a form not con-
taining the secret message, thus indicating that confidentiality property holds.

The Needham-Schroeder secret key is considered secure under the con-
dition that previously exchanged key is not compromised;the Denning-Sacco
key freshness attack (if the adversary has obtained the key used in one of the
previous sessions) was also successfully detected.

Analysis of the Needham-Schroeder-Lowe public key protocol takes 10 min-
utes on Pentium M 1.60 GHz machine. The current implementation of the
protocol analyzer has some room for optimization (mostly — reusing the in-
termediate calculations between transformations), so the time of the analysis
could be significantly reduced.

93

9 Conclusions and Future Work

In this thesis we have created a framework suitable for computationally sound
analysis of the security properties of cryptographic protocols. It is based on
finding out the data and control flows on the protocol representation, and
modifying the representation based on the semantics of the individual oper-
ations and connections between them. We have shown that the dependency
graphs, previously used mainly in the optimizing compilers, can be efficiently
used as the protocol representation. We have also shown that it is realistic to
automate the analysis performed using our framework.

Let us present the overview of the achieved results and provide some
thoughs about the directions, in which this work can be continued.

9.1 Using the Dependency Analysis

The common way of presenting the protocols is a process language, similar to
[37]. Unfortunately, the notation used in [37] still leaves significant protocol
details assumed and not explicitly stated (for example the equality checks
happening in the protocol, possible communication across different sessions of
the same protocol, etc.), therefore, we started with sec. 3, defining the process
language, providing the abilities for specifying all the details, significant for the
analysis. The translation rules from this process language to the dependency
graphs are given in sec. 5.

Despite the difference between the semantics of the process language (which
is defined, quite naturally, in a structural operational semantics style), and the
semantics of the dependency graphs (which can only be defined in denotational
style, as the order ot the computations performed in the dependency graph
is not fixed), it turned out to be relatively easy to create an algorithm for
translation from the process language to the dependency graphs and show
that it preserves the aspects of the semantics significant for the security anal-
ysis (adversary view). This result is described in sec. 5. Note, however, that
the translation in the opposite direction (from the dependency graphs to the
process language) is not a trivial, as the dependency graphs may contain the
computation patterns, which are not easily serializable. Fortunately, this “re-
verse” translation is not needed for the security analysis we perform.

The dependency graphs can be tailored for the analysis of the important se-
curity properties, such as confidentiality (secrecy) and integrity (non-injective
and injective correspondence). The flavor of the dependency graphs, amenable
to this analysis, is defined in sec. 4. The main principles of the dependency
graph operation remain close to those defined in [33], while the semantics,
including the concept of the dependency graph execution by the adversary,
is new. The concept of transforming the adversary games (in our case, these

94

games are defined by the rules according to which the adversary executes the
dependency graph (this part is constant and not transformed), and the depen-
dency graph itself (which is amenable to transformation)) has the important
advantage over our earlier works ([10, 12]), that the single dependency graph
is capable of holding all the information flows between all the runs of the pro-
tocols (in multiple sessions). Therefore, each transformation results in exactly
one game, covering all the cases, and not in a set of games (one game per
case).

The developed framework does not dictate the particular set of transfor-
mations to be defined and applied during the analysis, as it operates purely on
the level of dependency graph fragments (without taking their semantics into
the account). The definition of each transformation (two dependency graph
fragments, having the equivalent semantics) is the part where the semantics
equivalence should be controlled. The set of transformations sufficient for
achieving the practical results, described in the previous section, is defined in
sec. 7 and Appendix 2.

9.2 Contributions of the Dissertation

The contributions of this dissertation can be summarized as follows:

• A definition of the process language capturing all the details necessary
for the analysis of confidentiality and integrity of the protocols;

• A new approach (extensible framework) for the computationally sound
analysis of the security protocols, based on a combination of two tech-
niques (dependency graphs and game transformations), previously never
used together for this purpose;

• An algorithm, translating the protocol from the process language to a
dependency graph;

• A set of dependency graph transformations (input to the framework)
sufficient for analysing several well-known protocols:

– Needham-Schroeder public key,

– Lowe’s fixed version of Needham-Schroeder Public Key,

– Needham-Schroeder secret key,

– Kao-Chow Authentication,

– TMN.

95

9.3 Future Work

The possible directions for the further research directions are: application of
the framework for determining other security properties, enriching the pro-
gramming language with more cryptographic primitives, calculation of the
exact (negligible) probability of distinguishing the semantics of the resulting
graph from the initial one, and running the framework on more protocols. In
particular, it would be interesting to verify protocols that are not so easily
expressible in the Dolev-Yao model because of the cryptographic primitives
they are using (e.g. verifiable secret sharing) and the security properties we
are trying to prove. Voting schemes (for example, [23]) are obvious candidates
for testing our framework.

96

References

[1] Robert A. Ballance, Arthur B. Maccabe, Karl J. Ottenstein. The Pro-
gram Dependence Web: A Representation Supporting Control-, Data-,
and Demand-Driven Interpretation of Imperative Languages. ACM SIG-
PLAN’90 Conference on Programming Language Design and Implemen-
tation, pages 257–271, 1990.

[2] Jeanne Ferrante, Karl J. Ottenstein, Joe D. Warren. The Program De-
pendence Graph and Its Use in Optimization. ACM Transactions on
Programming Languages and Systems 9(3):319–349, July 1987.

[3] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, Paul
Stodghill. Dependence Flow Graphs: an Algebraic Approach to Program
Dependencies. Advances in Languages and Compilers for Parallel Pro-
cessing, , MIT Press, Cambridge, MA, pages 445–467, 1991.

[4] Michael Backes, Birgit Pfitzmann, Michael Waidner. A composable cryp-
tographic library with nested operations. 10th ACM Conference on Com-
puter and Communications Security, pages 220–230, 2003.

[5] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key
Protocol Using FDR. TACAS 1996, LNCS 1055, pages 147–166, 1996.

[6] Roger M. Needham, Michael D. Schroeder. Using Encryption for Authen-
tication in Large Networks of Computers. Communications of the ACM
21(12):993-999, December 1978.

[7] Mihir Bellare, Phillip Rogaway. Entity Authentication and Key Distri-
bution. CRYPTO 1993, LNCS 773, pages 232–249, 1993.

[8] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
Relations among Notions of Security for Public-Key Encryption Schemes.
CRYPTO ’98, LNCS 1462, pages 26–45, 1998.

[9] Mihir Bellare, Chanathip Namprempre. Authenticated Encryption: Rela-
tions among Notions and Analysis of the Generic Composition Paradigm.
Proceedings of the 6th International Conference on the Theory and Appli-
cation of Cryptology and Information Security: Advances in Cryptology,
ISBN:3-540-41404-5, pages 531–545, 2000.

[10] Peeter Laud. Symmetric encryption in automatic analyses for confiden-
tiality against active adversaries. 2004 IEEE Symposium on Security and
Privacy, pages 71–85, May 2004.

97

[11] Ilja Tšahhirov, Jevgeni Bolotov, Jaak Tepandi. Digital signature systems
— an interoperability outlook. Scientific proceedings of Riga Technical
University, computer science, pages 60–68, 2004.

[12] Ilja Tšahhirov and Peeter Laud. Digital signature in automatic analyses
for confidentiality against active adversaries. Nordsec 2005, Proceedings
of the 10th Nordic Workshop on Secure IT Systems, pages 29-41, October
2005

[13] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptogra-
phy (The Computational Soundness of Formal Encryption). International
Conference IFIP TCS 2000, LNCS 1872, pages 3–22, August 2000.

[14] Mart́ın Abadi and Jan Jürjens. Formal Eavesdropping and its Com-
putational Interpretation. Theoretical Aspects of Computer Software,
4th International Symposium (TACS 2001), LNCS 2215, pages 82–94,
September 2001.

[15] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Sound-
ness of formal encryption in the presence of key-cycles. 10-th European
Symposium on Research in Computer Security (ESORICS 2005), LNCS
3679, pages 374-396, September 2005.

[16] M. Backes and P. Laud. Computationally Sound Secrecy Proofs by Mech-
anized Flow Analysis. 13th ACM Conference on Computer and Commu-
nications Security (CCS 2006), pages 370–379, 2006.

[17] M. Bellare and P. Rogaway. The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs. Eurocrypt 2006, LNCS
4004, pages 409–426, 2006. (also: Cryptology ePrint Archive, Report
2004/331, http://eprint.iacr.org)

[18] B. Blanchet. A computationally sound mechanized prover for security
protocols. Proc. 27th IEEE Symposium on Security & Privacy, 2006.

[19] B. Blanchet and D. Pointcheval. Automated Security Proofs with Se-
quences of Games. CRYPTO 2006, LNCS 4117, pages 537–554, 2006.

[20] B. Blanchet. Computationally Sound Mechanized Proofs of Correspon-
dence Assertions. Proc. 20th IEEE Computer Security Foundations Sym-
posium, 2007.

[21] Ran Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. 42nd Annual Symposium on Foundations of
Computer Science (FOCS 2001), pages 136–145, October 2001.

98

[22] Veronique Cortier and Bogdan Warinschi. Computationally Sound, Au-
tomated Proofs for Security Protocols. 14th European Symposium on
Programming (ESOP 2005), LNCS 3444, pages 157–171, April 2005.

[23] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Se-
cure and Optimally Efficient Multi-Authority Election Scheme. EURO-
CRYPT’97, LNCS 1233, pages 103–118, 1997.

[24] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT-29(12), pages 198–208,
March 1983.

[25] Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The Faithful-
ness of Abstract Protocol Analysis: Message Authentication. 8th ACM
Conference on Computer and Communications Security (CCS 2001),
pages 186–195, November 2001.

[26] Peeter Laud. Handling Encryption in Analysis for Secure Information
Flow. 12th European Symposium on Programming (ESOP 2003), LNCS
2618, pages 159–173, April 2003.

[27] Peeter Laud. Secrecy Types for a Simulatable Cryptographic Library.
12th ACM Conference on Computer and Communications Security (CCS
2005), pages 26–35, 2005.

[28] Gavin Lowe. A Hierarchy of Authentication Specification. 10th Computer
Security Foundations Workshop, pages 31–44, 1997.

[29] Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing
the Picture: Soundness of Formal Encryption in the Presence of Active
Adversaries. 14th European Symposium on Programming (ESOP 2005),
LNCS 3444, pages 172–185, April 2005.

[30] Daniele Micciancio and Saurabh Panjwani. Adaptive Security of Symbolic
Encryption. 2nd Theory of Cryptography Conference (TCC 2005), LNCS
3378, pages 169–187, February 2005.

[31] Daniele Micciancio and Bogdan Warinschi. Completeness Theorems for
the Abadi-Rogaway Logic of Encrypted Expressions. Workshop in Issues
in the Theory of Security (WITS 2002), January 2002.

[32] B. Pfitzmann, M. Waidner. A Model for Asynchronous Reactive Sys-
tems and its Application to Secure Message Transmission. 2001 IEEE
Symposium on Security and Privacy (IEEE S&P 2001), pages 184–200,
2001.

99

[33] K. Pingali and M. Beck and R. Johnson and M. Moudgill and P. Stodghill.
Dependence Flow Graphs: an Algebraic Approach to Program Dependen-
cies. Advances in Languages and Compilers for Parallel Processing, MIT
Press, Cambridge, MA, pages 445–467, 1991.

[34] Ilja Tšahhirov and Peeter Laud. Application of Dependency Graphs to
Security Protocol Analysis. Trustworthy Global Computing (TGC 2007)
post-proceedings, Heidelberg: Springer, Berlin, pages 294–311.

[35] Andrew C. Yao. Theory and Applications of Trapdoor Functions (ex-
tended abstract). 23rd Annual Symposium on Foundations of Computer
Science, pages 80–91, November 1982.

[36] US Code Title 44 § 3542 (b)(1) (2006)

[37] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authen-
tication. Technical Report 39, Digital Systems Research Center, february
1989.

100

Publications by the author

Tšahhirov, I. , Bolotov, J. , Tepandi, J. (2004). Digital signature systems —
an interoperability outlook. In Scientific proceedings of Riga Technical
University, computer science, Riga, 2004 (pp.60-190).

Tšahhirov, I. , Laud, P. (2005). Digital signature in automatic analyses for
confidentiality against active adversaries. In Nordsec 2005, Proceedings
of the 10th Nordic Workshop on Secure IT Systems, October 20-21, 2005
(pp. 29-41).

Tšahhirov, I. , Laud, P. (2008). Application of Dependency Graphs to Security
Protocol Analysis. In Post-proceeding of Trustworthy Global Computing
(TGC 2007), 2008 (pp. 294-311)

101

Turvaprotokollide analüüs arvutuslikul mudelil —
sõltuvusgraafidel põhinev lähenemisviis

Lühikokkuvõte

Käesolevas töös pakutakse välja raamistik turvaprotokollide konfidentsiaal-
suse ja tervikluse omaduste analüüsiks. Töös kasutatud konfidentsiaalsuse
definitsioon põhineb protokolli avalike väljundite arvutuslikul sõltumatusel
salajastest sisenditest. Kuna krüptograafiliste primitiivide omaduste definit-
sioonid kasutavad tavaliselt arvutuslikku mudelit, on selline lähenemisviis eelis-
tatav informatsiooniteooriale (Dolev-Yao mudelil) tugineval lähenemisel.

Pakutud raamistik baseerub sõltuvusgraafidel ja ründaja mängude teisen-
damisel, mida ei ole seni turvalisuse analüüsil koos kasutatud. Me lähtume
sõltuvusgraafist, kus on esitatud andme- ja kontrollivoo sõltuvused kõikide
protokollis toimuvate arvutuste vahel ja asendame krüptograafilisi primitiive
konstruktsioonidega, mis on “ilmselt turvalised”. Transformatsioone rakenda-
takse selliselt, et esialgse ja transformeeritud sõltuvusgraafi semantikad olek-
sid arvutuslikult eristamatud. Transformeeritud graafi analüüsitakse uuesti.
Protsess jätkub, kuni jõuame graafini, mida ei ole enam võimalik transfor-
meerida. Protokoll on turvaline, kui selle transformeeritud versioon on tur-
valine.

Loodud raamistiku praegune versioon sobib nende protokollide analüüsiks,
mis kasutavad sümmeetrilist või asümmeetrilise krüpteerimist ja digitaalall-
kirja. Raamistikku saab laiendada ulatuslikumale operatsioonide ja krüpto-
graafiliste primitiivide hulgale, et analüüsida protokolle, mis neid primitiive
kasutavad.

Pakutud raamistik sobib protokollide turvalisuse automatiseeritud tõesta-
miseks. Raamistiku põhjal on loodud turvaprotokollide automatiseeritud ana-
lüsaator. Analüsaatorit on testitud järgmistel protokollidel: Needham-Schroe-
der public key, Needham-Schroeder-Lowe public key, Needham-Schroeder sec-
ret key, Kao-Chow authentication, ja TMN. Testimine näitas, et analüsaator
töötab õigesti ning seda võib edaspidi kasutada uute protokollide analüüsiks.

Võtmesõnad: staatiline analüüs, turvaprotokollide analüüs, sõltuvusgraafid.

102

Security Protocols Analysis in the Computational
Model — Dependency Flow Graphs-Based Approach

Abstract

This thesis presents a framework for a static protocol analysis for the
confidentiality and integrity properties. The definition of the confidentiality is
based on computational independence of the protocol public outputs from its
secret inputs, thus allowing to gracefully handle the cryptographic primitives,
usually having their security defined in computational, not in the information-
theoretical, model.

The framework is a combination of two techniques, which had not been
applied together for the protocol analysis before: the dependency flow graphs
(widely used in program optimisations) and the game transformations.

We start with the protocol representation as a dependency graph indicating
the control and data flows in all possible runs of the protocol and replace the
cryptographic operations with constructions, which are “obviously secure”.
Transformations are made in such a way that the semantics of the resulting
dependency graph remains computationally indistinguishable from the initial
graph; the transformed graph is analysed again; the transformations are be
applied until no more transformations are possible. A protocol is deemed
secure if its transformed version is secure.

The technique is presented as an extensible framework, with support for
most common operations and several cryptographic primitives (symmetric and
asymmetric encryption, digital signatures) already implemented. The frame-
work is extensible with additional operations or cryptographic primitives, in
order to analyse the protocols using them.

The framework is well-suited for producing fully-automated proofs for
protocol security. The automatic protocol analyser has been implemented
and tested on several protocols: Needham-Schroeder public key, Needham-
Schroeder-Lowe public key, Needham-Schroeder secret key, Kao-Chow authen-
tication, and TMN. The testing results comply to the publicly available infor-
mation, so the analyser can be used for new protocols analysis.

Keywords: static analysis, security protocol analysis, dependency graphs.

103

Curriculum Vitae (in Estonian)

1. Isikuandmed

Ees- ja perekonnanimi: Ilja Tšahhirov
Sünniaeg ja -koht: 02.11.1977, Tallinn
Kodakondsus: Eesti

2. Kontaktandmed

Aadress: 15 Raja Street, Tallinn 12618
Telefon: +372 529 2264
E-post aadress: ilja.tshahhirov@ttu.ee

3. Hariduskäik
Õppeasutus Lõpetamise Haridus

(nimetus lõpetamise ajal) aeg (eriala/kraad)
Tallinna Tehnikaülikool 2002 M.Sc. (informaatika)
Tallinna Tehnikaülikool 2000 B.Sc. (informaatika)

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase
Eesti keel Kõrgtase
Inglise keel Kõrgtase
Vene keel Kõrgtase

5. Teenistuskäik
Töötamise aeg Tööandja nimetus Ametikoht

2007-. . . Invision Software Tarkvara arendusjuht
2006-2007 Hansapank Süsteemide halduse

osakonna juhataja
2005-2006 Hansapank Projektijuht
2005-2006 Tallinna Tehnikaülikool Erakorraline teadur
2002-2005 Datalane Projektijuht
1999-2001 Previo Estonia Vanem tarkvara arendaja
1998-1999 Stac Estonia Tarkvara arendaja
1997-1998 Datlin Software Tarkvara kaasarendaja

6. Teadustegevus

Tšahhirov, I. , Bolotov, J. , Tepandi, J. (2004). Digital signature systems
— an interoperability outlook. In Scientific proceedings of Riga Technical
University, computer science, Riga, 2004 (pp.60-190).

104

Tšahhirov, I. , Laud, P. (2005). Digital signature in automatic analyses
for confidentiality against active adversaries. In Nordsec 2005, Proceed-
ings of the 10th Nordic Workshop on Secure IT Systems, October 20-21,
2005 (pp. 29-41).

Tšahhirov, I. , Laud, P. (2008). Application of Dependency Graphs to
Security Protocol Analysis. In Post-proceeding of Trustworthy Global
Computing (TGC 2007), 2008 (pp. 294-311)

7. Kaitstud lõputööd

“Tooteliini spetsialiseeritud arendus- ja hooldusprotsess”
M.Sc. (Informaatika), Tallinna Tehnikaülikool, 2002

“Hajutatud süsteemitehnoloogia. Platvormist sõltumatu lähenemisviis”
B.Sc. (Informaatika), Tallinna Tehnikaülikool, 2000

8. Teadustöö põhisuunad

Krüptograafilised meetodid, staatiline analüüs, protokollide analüüs, ha-
jutatud arvutus, süsteemide koostalitlusvõime

105

Curriculum Vitae

1. Personal data

Name: Ilja Tšahhirov
Date and place of birth: 2 November 1977, Tallinn
Citizenship: Estonian

2. Contact Information

Address: 15 Raja Street, Tallinn 12618
Phone: +372 529 2264
E-mail: ilja.tshahhirov@ttu.ee

3. Education
Educational institution Graduation year Education

(field of
study/degree)

Tallinn University of 2002 M.Sc. (Informatics)
Technology

Tallinn University of 2000 B.Sc. (Informatics)
Technology

4. Language skills (basic, intermediate or high level)

Language Level
Estonian High Level
English High Level
Russian High Level

5. Professional Employment

Period Organisation Position
2007-. . . Invision Software Software Development Manager
2006-2007 Hansapank Head of System Administration
2005-2006 Hansapank Project Manager
2005-2006 Tallinn University of Extraordinary Researcher

Technology
2002-2005 Datalane Project Manager
1999-2001 Previo Estonia Senior Software Developer
1998-1999 Stac Estonia Software Developer
1997-1998 Datlin Software Associated Software Developer

106

6. Scientific work

Tšahhirov, I. , Bolotov, J. , Tepandi, J. (2004). Digital signature systems
— an interoperability outlook. In Scientific proceedings of Riga Technical
University, computer science, Riga, 2004 (pp.60-190).

Tšahhirov, I. , Laud, P. (2005). Digital signature in automatic analyses
for confidentiality against active adversaries. In Nordsec 2005, Proceed-
ings of the 10th Nordic Workshop on Secure IT Systems, October 20-21,
2005 (pp. 29-41).

Tšahhirov, I. , Laud, P. (2008). Application of Dependency Graphs to
Security Protocol Analysis. In Post-proceeding of Trustworthy Global
Computing (TGC 2007), 2008 (pp. 294-311)

7. Defended theses

“Tooteliini spetsialiseeritud arendus- ja hooldusprotsess”
(“Specialized process for incremental development and maintenance of
a product line”)
M.Sc. (Informatics), Tallinn University of Technology, 2002

“Hajutatud süsteemitehnoloogia. Platvormist sõltumatu lähenemisviis”
(“System distribution technology. Inter-platform approach”)
B.Sc. (Informatics), Tallinn University of Technology, 2000

8. Research Interests

cryptographic methods, static analysis, protocol analysis, distributed
computations, system interoperability

107

Appendix 1

Appendix 1: Cryptographic Notions

We require the cryptographic primitives, used in the protocols analyzed, to
satisfy certain security requirements. This section contains the formal defini-
tion of the cryptographic primitives, which may occur in the protocols ana-
lyzed, along with the definition of the requirements put on them. Some of the
transformations (defined in sec. 7) refer to these requirements.

Note that the definitions the properties specified in this section are just
one possible option. If another set of the cryptographic primitives and/or
properties could be considered by the same core framework, the the definitions
(and transformations relying on them), need to be adjusted accordingly.

Public Key Encryption

A asymmetric key encryption scheme (throughout this paper we also use the
term public key encryption scheme), as defined in [8], is given by a triple of
algorithms (K,E,D), where

• Kr(1k), the key generation algorihtm, is a probabilistic algorithm that
takes a security parameter k ∈ N (provided in unary) and returns a pair
(pk, sk) of matching public and secret keys. The random coins generated
and used by K are denoted by r.

• Er, the encryption algorithm, is a probabilistic algorithm that takes a
public key pk and a message x ∈ {0, 1}∗ to produce a cipher text y. The
random coins generated and used by E are denoted by r.

• D, the decryption algorithm, is a deterministic algorithm which takes a
secret key sk and cipher text y to produce either a message x ∈ {0, 1}∗
or a special symbol ⊥ to indicate that the cipher text was invalid.

It is also required that for all (pk, sk) which can be output by Kr(1k), for all
x ∈ {0, 1}∗, and for all y that can be output by Er

pk(x), that Dsk(y) = x. The
K, E, and D can be computed in polynomial time.

The encryption scheme (K,E,D) is said to be IND-CCA2-secure, if for
every adversary A, which operates in polynomial time, the probability of win-
ning the game, defined below (by guessing the bit b), is a negligible function
of a security parameter. The game is defined as an interface to the oracle,
encapsulating the asymmetric encryption scheme:

• proc Initialize

(sk, pk) $← Kr; b
$← {0, 1}; S ← ∅; Return pk

• proc LR(M0,M1)

C
$← Er

pk(Mb); S ← S ∪ (C, M0); Return C

108

Appendix 1: continued

• proc Dec(C)
If (C, X) ∈ S then M ← X else M ← Dsk(C)
Return M

• proc Finalize(d)
Return (d = b)

Note that our definition of IND-CCA2 is slightly different from the one in [8]:
We allow calling Dec with the cipher texts previously encrypted with LR, but
always return M0, passed to the corresponding invocation of LR. As M0 is
always returned irrespectively of what b is, this modification does not give any
additional information to the adversary.

Secret Key Encryption

A symmetric key encryption scheme, per definition in [9], is a triple of algo-
rithms (K,E,D), where:

• Kr(1k), the key generation algorihtm, is a probabilistic algorithm that
takes a security parameter k ∈ N and returns the key K. The random
coins generated and used by K are denoted by r.

• Er, the encryption algorithm, is a probabilistic algorithm that takes a
key K and a message x ∈ {0, 1}∗ to produce a cipher text y. The random
coins generated and used by E are denoted by r.

• D, the decryption algorithm, is a deterministic algorithm which takes a
key K and cipher text y to produce either a message x ∈ {0, 1}∗ or a
special symbol ⊥ to indicate that the cipher text was invalid.

It is required that for all K which can be output by Kr(1k), for all x ∈ {0, 1}∗,
and for all y that can be output by Er

K(x), that DK(y) = x. The K, E, and
D can be computed in polynomial time.

The encryption scheme (K, E, D) is said to be IND-CCA-secure, if for every
adversary A, which operates in polynomial time, the probability of winning the
game, defined below (by guessing the bit b), is a negligible function of a security
parameter. The game is defined as an interface to the oracle, encapsulating
the symmetric encryption scheme:

• proc Initialize

K
$← Kr; b

$← {0, 1}; S ← ∅
• proc LR(M0,M1)

C
$← Er

K(Mb); S ← S ∪ (C, M0); Return C

109

Appendix 1: continued

• proc Dec(C)
If (C, X) ∈ S then M ← X else M ← DK(C)
Return M

• proc Finalize(d)
Return (d = b)

As with the asymmetric encryption scheme, we use the definition of IND-
CCA, which is slightly different from [9]: We allow calling Dec with the cipher
texts previously encrypted with LR, but always return M0, passed to the
corresponding invocation of LR. As M0 is always returned irrespectively of
what b is, this modification does not give any additional information to the
adversary.

Additionally, we require that the symmetric encryption scheme satisfies the
integrity property, meaning that a valid cipher text cannot be produced with
non-negligible probability without knowing the key. The formal definition of
this property can be found in [10].

Digital Signature

We use the same definition of the signature scheme as in [12]. A signature
scheme is a triple of polynomial-time algorithms (K, S, T). K and S are prob-
abilistic, T is deterministic. Here K is the key pair generation algorithm, S is
the signature generation algorithm, and T is the signature verification algo-
rithm. All algorithms take the security parameter n (represented in unary 1n)
as an argument. Additionally, S takes two more arguments — secret signing
key and message to sign. Also, T takes three more arguments — public test
key, signature, and message to verify this signature with. Let msg ∈ Σ. For all
pairs (sk, pk) that may be returned by K and for all signatures s that may be
returned by S(1n, sk, msg), the algorithm T(1n, pk, s, msg) must return true.
This definition only states that T should recognize signatures, correctly gen-
erated with S. We also want the signature system to be secure, i.e. forging
the signature without possessing the secret key should be hard.

The signature scheme (K, S, T) is said to be existentially unforgeable under
adaptive chosen message attack (ACMA), if for every adversary A, which
operates in polynomial time, the probability of winning the game, defined
below, is a negligible function of a security parameter. The game is defined as
an interface to the oracle, encapsulating the signature scheme:

• proc Initialize

(sk, pk) $← Kr(1n); Return pk

• proc Sign(M)

S
$← Sr(1n, sk, M); Return S

110

Appendix 1: continued

• proc Verify(S, M)
b ← T(1n, pk, S, M)
Return b

The goal of the adversary is to finally output two values m and s (meant
as a forged signature for the message m) with Verify(s,m)=true and where m
is not among the messages previously signed by Sign.

111

Appendix 2

Appendix 2: Transformations

This section contains the full list of transformations we used in out analy-
sis. The transformations are specified in the same formal language, and are
categorized as in the thesis main part.

Bit String-to-Boolean Nodes Simplifications

Equality of a Node with Itself

Let the initial DGFR be the following:

• Inputs

– S, InputB operation; replication dimensions ιS ;

• Regular nodes

– Eq , IsEq operation, with replication dimensions α, and both inputs
equal to S, with coordinate mapping λSEq;

• Outputs

– OEq , OutputS operation, with replication dimensions α and input
Eq , with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– OK , IsOK operation, with replication dimensions ιS , and input S,
with identity coordinate mapping;

• Outputs

– OEq , OutputS operation, with replication dimensions α and input
OK , with coordinate mapping λSEq.

Equality of Values Produced by Different Constructor-Type Oper-
ations

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

112

Appendix 2: continued

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

– S2j , for 1 ≤ j ≤ m (m may be equal to zero!), InputS operation,
replication dimensions ιS2j ;

• Regular nodes

– S1, any constructor-type operation having n data inputs and re-
turning bit string, replication dimensions α. The operation control
input is CS1 , with coordinate mapping λCS1

S1 . The operation i-th
data input is S1i, with coordinate mapping λS1iS1 ;

– S2, any constructor-type operation, which is either different from
S1, or, if S1 is RS, the S2 may also be RS. Let the operations have
m data inputs and replication dimensions β. The operation control
input is CS2 , with coordinate mapping λCS2

S2 . The operation j-th
data input is S2j , with coordinate mapping λS2jS2 ;

– Eq , IsEq operation, the replication dimensions γ. The operation
inputs are S1 (with coordinate mapping λS1Eq) and S2 (with coor-
dinate mapping λS2Eq);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

– OEq , OutputB operation, replication dimensions γ, and input Eq ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S1, S2, defined in the same way as on the initial DGFR;

– F , False operation with no replication;

• Outputs

– OS1 , OS2 , defined in the same way as on the original DGFR;

– OEq , OutputB operation, replication dimensions γ, and input F ,
with identity coordinate mapping.

113

Appendix 2: continued

Equality of Values Produced by Same Constructor-Type Operation

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

– S2i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS2i ;

• Regular nodes

– S1, any constructor-type operation having n data inputs and re-
turning bit string, replication dimensions α. The operation control
input is CS1 , with coordinate mapping λCS1

S1 . The operation i-th
data input is S1i, with coordinate mapping λS1iS1 ;

– S2, same operation as for S1. Let the operations have n data inputs
and replication dimensions β. The operation control input is CS2 ,
with coordinate mapping λCS2

S2 . The operation i-th data input is
S2i, with coordinate mapping λS2iS2 ;

– Eq , IsEq operation, the replication dimensions γ. The operation
inputs are S1 (with coordinate mapping λS1Eq) and S2 (with coor-
dinate mapping λS2Eq);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

– OEq , OutputB operation, replication dimensions γ, and input Eq ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S1, S2, defined in the same way as on the initial DGFR;

114

Appendix 2: continued

– Eq i, for 1 ≤ i ≤ n, IsEq operation, the replication dimensions γ.
The operation inputs are S1i, with coordinate mapping λS1Eq ◦
λS1iS1 and S2i, with coordinate mapping λS2Eq ◦ λS2iS2 .

– OK 1, IsOK operation, replication dimensions α, the input is S1,
with identity coordinate mapping;

– OK 2, IsOK operation, replication dimensions β, the input is S2,
with identity coordinate mapping;

– A, And operation, replication dimensions γ. The operation has
n + 2 inputs: OK 1, OK 2, and Eq i, for 1 ≤ i ≤ n, all with identity
coordinate mappings;

• Outputs

– OS1 , OS2 , defined in the same way as on the original DGFR;

– OEq , OutputB operation, replication dimensions γ, and input A,
with identity coordinate mapping.

Equality of a Value and the Result of Merge operation

Let the initial DGFR be the following:

• Inputs

– CM , InputB operation, replication dimensions ιCM
;

– S1i, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιS1i ;

– S2, InputS operation, replication dimensions ιS2 ;

• Regular nodes

– M , Merge operation, with replication dimensions α. The operation
control input is CM , with the coordinate mapping λCMM . The op-
eration has n data inputs, the i-th data input is S1i, with coordinate
mapping λS1iM ;

– Eq , IsEq operation, the replication dimensions β. The operation
inputs are M (with coordinate mapping λMEq) and S2 (with coor-
dinate mapping λS2Eq);

• Outputs

– OM , OutputS operation, replication dimensions α, and input M ,
with identity coordinate mapping;

– OEq , OutputB operation, replication dimensions β, and input Eq ,
with identity coordinate mapping.

115

Appendix 2: continued

The initial DGFR can be replaced with the following DGFR:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– M , defined in the same way as in the initial DGFR;

– Eq i, for 1 ≤ i ≤ n, IsEq operation, and replication dimensions β.
The operation inputs are S1i, with coordinate mapping λS1iM ◦
λMEq , and S2, with coordinate mapping λS2Eq ;

– OKM , IsOK operation, replication dimensions α, the input is M ,
with identity coordinate mapping;

– OK S2 , IsOK operation, replication dimensions ιS2 , the input is S2,
with identity coordinate mapping;

– A, And operation, replication dimensions β. The operation has
n + 2 inputs: OKM , with coordinate mapping λMEq , OK S2 , with
coordinate mapping λS2Eq , and Eq i, for 1 ≤ i ≤ n, with identity
coordinate mappings;

• Outputs

– OM , defined in the same way as in the initial DGFR;

– OEq , OutputB operation, replication dimensions β, and input A,
with identity coordinate mapping.

Equality of a Value and the result Tuple operation

This transformation is useful for analyzing both the IsEq and IsNeq operations.
When one of the values being compared is produced by Tuple node, and the
other one is not, the second comparison operand is first decomposed into the
appropriate number of components (using the Proj operations), and then again
assembled into the tuple.

Let the initial DGFR be the following:

• Inputs

– CT , InputB operation, replication dimensions ιCT
;

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιS1i ;

– S2j , for 1 ≤ j ≤ m (m may be equal to zero!), InputS operation,
replication dimensions ιS2j ;

• Regular nodes

116

Appendix 2: continued

– T , Tuple operation, replication dimensions α. The operation control
input is CT , with coordinate mapping λCT T . The operation has n
data inputs; the i-th data input is S1i, with coordinate mapping
λS1iT ;

– S2, any operation returning the bit string value, except for Tuple.
Let the operations have m data inputs and replication dimensions
β. The operation control input is CS2 , with coordinate mapping
λCS2

S2 . The operation i-th data input is S2i, with coordinate map-
ping λS2iS2 ;

– Comp, IsEq or IsNeq operation, the replication dimensions γ. The
operation inputs are T (with coordinate mapping λTComp) and S2

(with coordinate mapping λS2Comp);

• Outputs

– OT , OutputS operation, replication dimensions α, and input T , with
identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

– OComp , OutputB operation, replication dimensions γ, and input
Comp, with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– T , S2, defined in the same way as on the initial DGFR;

– Pi, for 1 ≤ i ≤ n, the Proj(i, n) operation (taking the i-th compo-
nent of n-tuple), with replication dimensions β, the control input
CS2 (coordinate mapping λCS2

S2), and data input S2 (identity co-
ordinate mapping);

– T2, Tuple operation, replication dimensions β. The operation con-
trol input is CS2 (coordinate mapping λCS2

S2). The operation has
n data inputs; the i-th data input is Pi, with identity coordinate
mapping;

– Comp′, same operation as Comp, the replication dimensions γ. The
operation inputs are T (with coordinate mapping λTComp) and T2

(with coordinate mapping λS2Comp);

• Outputs

117

Appendix 2: continued

– OT , OS2 , defined in the same way as on the original DGFR;

– OComp , OutputB operation, replication dimensions γ, and input
Comp′, with identity coordinate mapping.

Inequality of the Node to Itself

Let the initial DGFR be the following:

• Inputs

– S, InputB operation; replication dimensions ιS ;

• Regular nodes

– Neq , IsNeq operation, with replication dimensions α, and both in-
puts equal to S, with coordinate mapping λSNeq;

• Outputs

– ONeq , OutputS operation, with replication dimensions α and input
Neq , with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– F , False operation, with no replication dimensions;

• Outputs

– ONeq , OutputS operation, with replication dimensions α and input
F , with identity coordinate mapping.

Inequality of the Values Produced by Different Constructor-Type
Operations

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

118

Appendix 2: continued

– S2j , for 1 ≤ j ≤ m (m may be equal to zero!), InputS operation,
replication dimensions ιS2j ;

• Regular nodes

– S1, any constructor-type operation having n data inputs and re-
turning bit string, replication dimensions α. The operation control
input is CS1 , with coordinate mapping λCS1

S1 . The operation i-th
data input is S1i, with coordinate mapping λS1iS1 ;

– S2, any constructor-type operation, which is either different from
S1, or, if S1 is RS, the S2 may also be RS. Let the operations have
m data inputs and replication dimensions β. The operation control
input is CS2 , with coordinate mapping λCS2

S2 . The operation j-th
data input is S2j , with coordinate mapping λS2jS2 ;

– Neq , IsNeq operation, the replication dimensions γ. The opera-
tion inputs are S1 (with coordinate mapping λS1Neq) and S2 (with
coordinate mapping λS2Neq);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

– ONeq , OutputB operation, replication dimensions γ, and input Neq ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S1, S2, defined in the same way as on the initial DGFR;

– OK 1, IsOK operation, replication dimensions α, the input is S1,
with identity coordinate mapping;

– OK 2, IsOK operation, replication dimensions β, the input is S2,
with identity coordinate mapping;

– A, And operation, replication dimensions γ. The operation has
2 inputs: OK 1 and OK 2, with coordinate mappings λS1Neq and
λS2Neq , correspondingly;

• Outputs

119

Appendix 2: continued

– OS1 , OS2 , defined in the same way as on the original DGFR;

– ONeq , OutputB operation, replication dimensions γ, and input A,
with identity coordinate mapping.

Inequality of the Values Produced by Same Constructor-Type Op-
eration

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

– S2i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS2i ;

• Regular nodes

– S1, any constructor-type operation having n data inputs and re-
turning bit string, replication dimensions α. The operation control
input is CS1 , with coordinate mapping λCS1

S1 . The operation i-th
data input is S1i, with coordinate mapping λS1iS1 ;

– S2, same operation as for S1. Let the operations have n data inputs
and replication dimensions β. The operation control input is CS2 ,
with coordinate mapping λCS2

S2 . The operation i-th data input is
S2i, with coordinate mapping λS2iS2 ;

– Neq , IsNeq operation, the replication dimensions γ. The opera-
tion inputs are S1 (with coordinate mapping λS1Neq) and S2 (with
coordinate mapping λS2Neq);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

– ONeq , OutputB operation, replication dimensions γ, and input Neq ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following:

120

Appendix 2: continued

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S1, S2, defined in the same way as on the initial DGFR;

– Neq i, for 1 ≤ i ≤ n, IsNeq operation, the replication dimensions
γ. The operation inputs are S1i, with coordinate mapping λS1Neq ◦
λS1iS1 and S2i, with coordinate mapping λS2Neq ◦ λS2iS2 .

– OK 1, IsOK operation, replication dimensions α, the input is S1,
with identity coordinate mapping;

– OK 2, IsOK operation, replication dimensions β, the input is S2,
with identity coordinate mapping;

– O , Or operation, replication dimensions γ. The operation has n+2
inputs: OK 1, OK 2, and Neq i, for 1 ≤ i ≤ n, all with identity
coordinate mappings;

• Outputs

– OS1 , OS2 , defined in the same way as on the original DGFR;

– ONeq , OutputB operation, replication dimensions γ, and input O ,
with identity coordinate mapping.

Inequality of a Value and the Result of Merge operation

Let the initial DGFR be the following:

• Inputs

– CM , InputB operation, replication dimensions ιCM
;

– S1i, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιS1i ;

– S2, InputS operation, replication dimensions ιS2 ;

• Regular nodes

– M , Merge operation, with replication dimensions α. The operation
control input is CM , with the coordinate mapping λCMM . The op-
eration has n data inputs, the i-th data input is S1i, with coordinate
mapping λS1iM ;

– Neq , IsNeq operation, the replication dimensions β. The opera-
tion inputs are M (with coordinate mapping λMNeq) and S2 (with
coordinate mapping λS2Neq);

• Outputs

121

Appendix 2: continued

– OM , OutputS operation, replication dimensions α, and input M ,
with identity coordinate mapping;

– ONeq , OutputB operation, replication dimensions β, and input Neq ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– M , defined in the same way as in the initial DGFR;

– Neq i, for 1 ≤ i ≤ n, IsNeq operation, and replication dimensions
β. The operation inputs are S1i, with coordinate mapping λS1iM ◦
λMNeq , and S2, with coordinate mapping λS2Neq ;

– OKM , IsOK operation, replication dimensions α, the input is M ,
with identity coordinate mapping;

– OK S2 , IsOK operation, replication dimensions ιS2 , the input is S2,
with identity coordinate mapping;

– O , Or operation, replication dimensions β. The operation has n+2
inputs: OKM , with coordinate mapping λMNeq , OK S2 , with co-
ordinate mapping λS2Neq , and Neq i, for 1 ≤ i ≤ n, with identity
coordinate mappings;

• Outputs

– OM , defined in the same way as in the initial DGFR;

– ONeq , OutputB operation, replication dimensions β, and input O ,
with identity coordinate mapping.

Moving the IsOK over the Constructor-type Node

Let the initial DGFR be the following:

• Inputs

– CS , InputB operation, replication dimensions ιCS1
;

– Si, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιSi ;

• Regular nodes

122

Appendix 2: continued

– S, any constructor-type operation having n data inputs and re-
turning bit string, replication dimensions α. The operation control
input is CS , with coordinate mapping λCSS . The operation i-th
data input is Si, with coordinate mapping λSiS ;

– OK , IsOK operation, the replication dimensions γ. The operation
input is S (with coordinate mapping λSOK);

• Outputs

– OS , OutputS operation, replication dimensions α, and input S, with
identity coordinate mapping;

– OOK , OutputB operation, replication dimensions γ, and input OK ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S, defined in the same way as on the initial DGFR;

– OK i, for 1 ≤ i ≤ n, IsOK operation, the replication dimensions ιSi .
The operation inputs are Si, with identity coordinate mapping;

– OK ′, And operation, replication dimensions γ. The operation has
n + 1 inputs: CS (coordinate mapping λCSS) and OK i, for 1 ≤ i ≤
n, all with coordinate mapping λSiS ;

• Outputs

– OS , defined in the same way as on the original DGFR;

– OOK , OutputB operation, replication dimensions γ, and input OK ′,
with identity coordinate mapping.

Simplifying Computations Resulting in Error

This group of transformations relies on the fact that the constructor-type
operations (the nodes which compose the value out of components, like Tuple,
in contrast to the operations extracting the value — e.g. Proj) tag the result
with the type identifier, and certain operations expect the value received on
inputs ports, to be of the certain type.

The constructor type operations, referred below, are: Error, RS, Nonce,
Const, Keypair, PubKey, SigVer, VerKey, SymKey, PubEnc, SymEnc, PubEncZ,
SymEncZ, Signature, Tuple, and Secret.

123

Appendix 2: continued

Argument of Incompatible Type for the Bit String Node

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

– CS2 , InputB operation, replication dimensions ιCS2
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

– S2j , for 1 ≤ j ≤ m) (m may be equal to zero!), InputS operation,
replication dimensions ιS2j ;

• Regular nodes

– S1, a constructor-type operation, returning the value of a type dif-
ferent from what is expected by the port p of S2. The compatibil-
ity table is supplied below. Let the node have n data inputs and
replication dimensions α. The operation control input is CS1 , with
coordinate mapping λCS1

S1 . The operation i-th data input is S1i,
with coordinate mapping λS1iS1 ;

– S2, the operation checking the type of the input port p. Let the op-
eration have m + 1 data inputs and replication dimensions β. The
operation control input is CS2 , with coordinate mapping λCS2

S2 .
Let the k be the input, corresponding to input port p. The opera-
tion j-th data input is either S2j (if j < k), with coordinate map-
ping λS2jS2 , or S2j , with coordinate mapping λS2j+1S2(if j < k), or
S1, with coordinate mapping λS1S2 (if j = k);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions β, and input S2,
with identity coordinate mapping;

The operations checking the types of the arguments, and the corresponding
compatible types are listed in the table 2.

If the S1 has the type incompatible with what the port p of the S2 expects,
the initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

124

Appendix 2: continued

Table 2: Acceptable constructor types for operations arguments

Operation Port Acceptable Constructor
Nonce, Keypair, SigVer, SymKey, Random coins RS
PubEnc, SymEnc, Signature,
PubEncZ, SymEncZ

PubEnc, PubEncZ Key PubKey

SymEnc, SymEncZ, SymDec Key SymKey

Signature Key SigVer

PubDec Key PubKey

Proj(i, n) Data Tuple(n)
Any bit string operation Any port Different from Error

Any bit string operation Control Different from False

– S1, defined in the same way as on the initial DGFR;

– E, Error operation, no replication dimensions;

• Outputs

– OS1 , defined in the same way as on the original DGFR;

– OS2 , OutputS operation, replication dimensions β, input E, with
identity coordinate mapping.

Argument of Incompatible Type for the Bit String-to-Boolean Node

Let the initial DGFR be the following:

• Inputs

– CS1 , InputB operation, replication dimensions ιCS1
;

– S1i, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιS1i ;

– S2j , for 1 ≤ j ≤ m) (m may be equal to zero!), InputS operation,
replication dimensions ιS2j ;

• Regular nodes

– S1, a constructor-type operation, returning the value of a type dif-
ferent from what is expected by the port p of S2. The compatibil-
ity table is supplied below. Let the node have n data inputs and
replication dimensions α. The operation control input is CS1 , with
coordinate mapping λCS1

S1 . The operation i-th data input is S1i,
with coordinate mapping λS1iS1 ;

125

Appendix 2: continued

– S2, the bit string-to-boolean operation checking the type of the in-
put port p. Let the operation have m+1 data inputs and replication
dimensions β. Let the k be the input, corresponding to input port
p. The operation j-th data input is either S2j (if j < k), with coor-
dinate mapping λS2jS2 , or S2j , with coordinate mapping λS2j+1S2(if
j < k), or S1, with coordinate mapping λS1S2 (if j = k);

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputB operation, replication dimensions β, and input S2,
with identity coordinate mapping;

The operations checking the types of the arguments, and the corresponding
compatible types are listed in the table 3.

Table 3: Acceptable constructor types for operations arguments

Operation Port Acceptable Constructor
TestSig, TestSigP Key VerKey

Any operation Any port Different from Error

If the S1 has the type incompatible with what the port p of the S2 expects,
the initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– S1, defined in the same way as on the initial DGFR;

– F , False operation, no replication dimensions;

• Outputs

– OS1 , defined in the same way as on the original DGFR;

– OS2 , OutputB operation, replication dimensions β, input F , with
identity coordinate mapping.

IfDef Node

There are four possible cases when the IfDef (same applies to CfDef) node can
be transformed:

• The check-data input pair with the check input equal to false can be
removed;

126

Appendix 2: continued

• The check-data input pair with the data input equal to Error (or False
in case of CfDef) can be removed;

• If the IfDef has only a single pair of check-data inputs, it can be replaced
with Id;

• Finally, if the node has no check-data input pairs, its result is Error (False
in case of CfDef).

The formal definition of these transformations is similar to the transformations
described above, so we omit it here.

Transformations Based on Boolean Arithmetic

Simplifying Boolean Operations Having a Single Input

An And or Or node, having the single input, can be replaced with its input.
A Longor operation, with no replication dimensions contacted can also be
replaced with its input.

Formally, let the initial DGFR be the following:

• Inputs

– B, InputB operation, replication dimensions ιB;

• Regular nodes

– A, And or Or or Longor (with no contacted dimensions) operation;
replication dimensions α; the input is B, with coordinate mapping
λBA;

• Outputs

– OA, OutputB operation, replication dimensions α, and input A,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as in the initial DGFR;

• No regular nodes

• Outputs

– OA, OutputB operation, replication dimensions α, and input B,
with coordinate mapping λBA;

127

Appendix 2: continued

Simplifying Boolean Operations Always Evaluating to a Constant

In certain cases the boolean operation always evaluates to constant, irrespec-
tive of its inputs. In these cases the operation can be replaced with the con-
stant it evaluates to. These cases are:

• And operation evaluates to false if one of its inputs is False;

• Or operation evaluates to true if one of its inputs is True;

• Longor operation evaluates to true if its input is True;

• DimEq(i, i) and DimNeq(i, i) operations (comparing the coordinate with
itself) evaluate to true and false, respectively;

• IsOK operation evaluate to false, if its input is Error.

Let us illustrate the transformation on the example of And. Formally, let
the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– B, False operation, replication dimensions β;

– A, And operation with replication dimensions α; The operation has
n + 1 inputs: B (coordinate mapping λBA) and, for 1 ≤ i ≤ n, Bi

(coordinate mapping λBiA);

• Outputs

– OA, OutputB operation, replication dimensions α, and input A,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as in the initial DGFR;

• Regular nodes

– B, False operation, no replication dimensions;

• Outputs

– OA, OutputB operation, replication dimensions α, and input B,
with coordinate mapping λBA;

128

Appendix 2: continued

Simplifying a Sequence of And or Or Operations

Let the initial DGFR be the following:

• Inputs

– B1i, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιB1i ;

– B2j , for 1 ≤ i ≤ m, InputB operation, replication dimensions ιB2j ;

• Regular nodes

– A1, And or Or operation with replication dimensions α1; The oper-
ation has n inputs: for 1 ≤ i ≤ n, B1i (coordinate mapping λB1iA1);

– A2, same operation as A1, replication dimensions β; The operation
has m+1 inputs: A1 (coordinate mapping λA1A2) and, for 1 ≤ j ≤
m, B2j (coordinate mapping λB2jA2);

• Outputs

– OA1 , OutputB operation, replication dimensions α, and input A1,
with identity coordinate mapping;

– OA2 , OutputB operation, replication dimensions β, and input A2,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as in the initial DGFR;

• Regular nodes

– A1, defined in the same way as on the initial DGFR;

– A′2, same operation as A1, replication dimensions β; The operation
has m+n inputs: for 1 ≤ i ≤ n, B2i (coordinate mapping λB1iA1)◦
λA1A2) and, for 1 ≤ j ≤ m, B2j (coordinate mapping λB2jA2);

• Outputs

– OA1 , defined in the same way as on the initial DGFR;

– OA2 , OutputB operation, replication dimensions β, and input A′2,
with identity coordinate mapping;

129

Appendix 2: continued

Simplifying a Sequence of Longor Operations

Let the initial DGFR be the following:

• Inputs

– B1, InputB operation, replication dimensions ιB1 ;

• Regular nodes

– LO1, Longor operation with replication dimensions α. The opera-
tion input is B1, with coordinate mapping λB1LO1 and contracted
dimensions α′;

– LO2, Longor operation with replication dimensions β. The opera-
tion input is LO1, with coordinate mapping λLO1LO2 and contracted
dimensions β′;

• Outputs

– OLO1 , OutputB operation, replication dimensions α, and input LO1,
with identity coordinate mapping;

– OLO2 , OutputB operation, replication dimensions β, and input LO2,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as in the initial DGFR;

• Regular nodes

– LO1, defined in the same way as on the initial DGFR;

– LO′
2, Longor operation with replication dimensions β. The opera-

tion input is B1, with coordinate mapping λB1LO1 ◦ λLO1LO2 and
contracted dimensions α′ + β′ (pointwise addition);

• Outputs

– OLO1 , defined in the same way as on the initial DGFR;

– OLO2 , OutputB operation, replication dimensions β, and input LO′
2,

with identity coordinate mapping;

130

Appendix 2: continued

Simplifying a Sequence of Or and Longor Operations

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– O, Or operation with replication dimensions α; The operation has
n inputs: for 1 ≤ i ≤ n, Bi (coordinate mapping λBiO);

– LO, Longor operation with replication dimensions β. The oper-
ation input is O, with coordinate mapping λOLO and contracted
dimensions β′;

• Outputs

– OLO, OutputB operation, replication dimensions β, and input LO,
with identity coordinate mapping;

Let the initial DGFR be the following:

• Inputs - same as in the initial DGFR;

• Regular nodes

– LO′
i, for 1 ≤ i ≤ n, Longor operation with replication dimensions β.

The operation input is Bi (coordinate mapping λBiO), contracted
dimensions β′;

– O′, Or operation with replication dimensions β; The operation has
n inputs: for 1 ≤ i ≤ n, LO′

i, all with identity coordinate mapping;

• Outputs

– OLO, OutputB operation, replication dimensions β, and input O′,
with identity coordinate mapping;

Distributing the Inputs of the Or Node

Let the initial DGFR be the following:

• Inputs

– Ai, for 1 ≤ i ≤ a, InputB operation, replication dimensions αi;

– Bij , for 1 ≤ i ≤ c, 1 ≤ j ≤ bi (bi has a separate value for each
1 ≤ i ≤ c), InputB operation, replication dimensions βij ;

131

Appendix 2: continued

• Regular nodes

– Ci, for 1 ≤ i ≤ c, And operation, replication dimensions γi. The
node has a+bi inputs: Ak (for 1 ≤ k ≤ a), with coordinate mapping
λAkCi , and Bij (for 1 ≤ j ≤ bi), with coordinate mapping λBijCi ;

– D, Or operation, replication dimensions δ. The node has c inputs -
the i-th input (for 1 ≤ i ≤ c) is Ci, with coordinate mapping λCiD;

• Outputs

– OCi , for 1 ≤ i ≤ c, OutputB operation, replication dimensions γi.
The input is Ci, with identity coordinate mapping;

– OD, OutputB operation, replication dimensions δ. The input is D,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as on the initial DGFR;

• Regular nodes

– Ci, defined in the same way as on the original DGFR;

– NewAnd i, 1 ≤ i ≤ c, the operation is And with bi inputs, the
number of dimensions is γi. The inputs are Bij , for 1 ≤ j ≤ bi,
with dimension mapping λBijCi ;

– NewOr , the operation is Or with c inputs, the number of dimen-
sions is δ, the inputs are NewAnd i, 1 ≤ i ≤ c, with dimension
mapping λCiD;

– Ḋ, the operation is And with a + 1 inputs, replication dimensions
is δ, the inputs are

∗ Ai, 1 ≤ i ≤ a, with coordinate mapping λAiC1 ◦ λC1D;
∗ NewOr , with identity coordinate mapping.

• Outputs

– OCi , defined in the same way as on the initial DGFR;

– OD, OutputB operation, replication dimensions δ. The input is Ḋ,
with identity coordinate mapping;

The transformation of the graph fragment with a = 2, c = 2, b1 = 1, b2 = 2,
and all dimensionsion mappings empty (mapping every D ∈ Dim to 0) is
illustrated in Figure 12.

132

Appendix 2: continued

InputB A1 InputB A2 InputB B11 InputB B21 InputB B22

And C1 And C2

Or D

OutputB

InputB A1 InputB A2 InputB B11 InputB B21 InputB B22

And

New

And
1

And

New

And
2

Or
New

Or

OutputB

And D

Before

After

.

Figure 12: Example of Distribute Or transformation

133

Appendix 2: continued

Distributing the Inputs of the Longor Node

If the input to the Longor-node is an And-node, and some if its inputs has
the same or less number of coordinates than Longor-node, these inputs could
be processed in the new And node, after the Longor node computation is
performed.

Formally, it means that for all 1 ≤ i ≤ a the αi does not contain coordinates
which are not present in δ.

Let the initial DGFR be the following:

• Inputs

– Ai, for 1 ≤ i ≤ a, InputB operation, replication dimensions αi;

– Bj , for 1 ≤ j ≤ b, InputB operation, replication dimensions βj ;

• Regular nodes

– C, And operation, replication dimensions γ. The node has a + b
inputs: Ai (for 1 ≤ i ≤ a), with coordinate mapping λAiC , and Bj

(for 1 ≤ j ≤ b), with coordinate mapping λBjC ;

– D, Longor operation, replication dimensions δ. The node input is
C, with coordinate mapping λCD and contracted dimensions δ′;

• Outputs

– OC , OutputB operation, replication dimensions γ. The input is C,
with identity coordinate mapping;

– OD, OutputB operation, replication dimensions δ. The input is D,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• Inputs - same as on the initial DGFR;

• Regular nodes

– C, defined in the same way as on the original DGFR;

– NewAnd , the operation is And with b inputs, the number of di-
mensions is γ. The inputs are Bj , for 1 ≤ j ≤ b, with dimension
mapping λBjC ;

– NewLO, Longor operation, replication dimensions δ. The node
input is NewAnd , with coordinate mapping λCD and contracted
dimensions δ′;

– Ḋ, the operation is And with a + 1 inputs, replication dimensions
is δ, the inputs are

134

Appendix 2: continued

∗ Ai, 1 ≤ i ≤ a, with dimension mapping λAiC1 ◦ λC1D;
∗ NewLO , with identity coordinate mapping.

• Outputs

– OCi , defined in the same way as on the initial DGFR;

– OD, OutputB operation, replication dimensions δ. The input is Ḋ,
with identity coordinate mapping;

Removing Duplicate Copies of Operations

The transformations in this section are based on the fact that certain nodes
will always return the same value, so it is possible to group them. For instance,
two nodes (except for RS and Receive), having the same inputs, will return
the same value.

Superfluous Dimension of an Node with Control Input

Let the initial DGFR be the following:

• Inputs

– CS , InputB operation, replication dimensions ιCS1
;

– Si, for 1 ≤ i ≤ n (n may be equal to zero!), InputS operation,
replication dimensions ιSi ;

• Regular nodes

– S, any operation, except for RS and Receive, having n data inputs
and returning bit string, replication dimensions α. The operation
control input is CS , with coordinate mapping λCSS . The operation
i-th data input is Si, with coordinate mapping λSiS ;

• Outputs

– OS , OutputS operation, replication dimensions α, and input S, with
identity coordinate mapping;

If the replication dimensions α contains a coordinate, which has no corre-
sponding coordinate (through the ι−1

Si
) in any of the operation data inputs Si,

then the initial DGFR can be replaced with the following one:

• Inputs — the same as in the initial DGFR;

• Regular nodes

135

Appendix 2: continued

– LO, Longor operation, replication dimensions α′, input CS , with
coordinate mapping λCSS , and contracted dimensions β;

– S′, same operation as for S, replication dimensions α′. The oper-
ation control input is LO, with identity coordinate mapping. The
operation i-th data input is Si, with coordinate mapping λSiS ;

– ID, Id operation, replication dimensions α, control input input CS ,
with coordinate mapping λCSS , and data input S′, with identity
coordinate mapping;

• Outputs

– OS , OutputS operation, replication dimensions α, and input ID,
with identity coordinate mapping;

The replication dimensions α′ includes only those replication dimensions
given by α, which have the corresponding coordinate (through the ι−1

Si
) in at

least on of the Si (for 1 ≤ i ≤ n). The rest of coordinates given by α are
contracted in β.

Superfluous Dimension of an Node with no Control Input

Let the initial DGFR be the following:

• Inputs

– Xi, for 1 ≤ i ≤ n, InputS or InputB operation, replication dimen-
sions ιSi ;

• Regular nodes

– X, any operation, except for RS and Receive, having n inputs and
replication dimensions α. The operation i-th input is Xi, with
coordinate mapping λXiX ;

• Outputs

– OX , OutputS or OutputB operation, replication dimensions α, and
input X, with identity coordinate mapping;

If the replication dimensions α contains a coordinate, which has no corre-
sponding coordinate (through the ι−1

Xi
) in any of the operation inputs Xi, then

the initial DGFR can be replaced with the following one:

• Inputs — the same as in the initial DGFR;

• Regular nodes

136

Appendix 2: continued

– X ′, same operation as X, replication dimensions α′. The operation
i-th input is Xi, with coordinate mapping λXiX ;

• Outputs

– OX , same operation as the corresponding node on the original
DGFR, replication dimensions α, and input X, with identity co-
ordinate mapping;

The replication dimensions α′ includes only those replication dimensions
given by α, which have the corresponding coordinate (through the ι−1

Si
) in at

least on of the Xi (for 1 ≤ i ≤ n).

Superfluous Dimension of an Node with no Inputs

Let the initial DGFR be the following:

• No inputs

• Regular nodes

– X, an operation with no inputs and replication dimensions α;

• Outputs

– OX , OutputS or OutputB operation, replication dimensions α, and
input X, with identity coordinate mapping;

If the replication dimensions α contains a coordinate not influencing the
operation result, this coordinate can be removed. The coordinates α′ influ-
encing the results of the operations with no inputs are given in the table 4.

Table 4: Replication dimensions influencing the result of the operation with
no inputs

Operation Replication Dimensions α′

True, False, Const(i), Error α(d) = 0
DimEq(d1, i, j),DimNeq(d1, i, j) α(d1) = 2

α(d 6= d1) = 0

If α is different from α′, then the initial DGFR can be replaced with the
following one:

• No inputs

• Regular nodes

137

Appendix 2: continued

– X, an operation with no inputs and replication dimensions α′;

• Outputs

– OX , same operation as the corresponding node on the original
DGFR, replication dimensions α, and input X, with identity co-
ordinate mapping;

Two nodes with Identical Inputs

Let the initial DGFR be the following:

• Inputs

– Xi, for 1 ≤ i ≤ n, InputS or InputB operation, replication dimen-
sions ιSi ;

• Regular nodes

– X, any operation, except for RS and Receive, having n inputs and
replication dimensions α. The operation i-th input is Xi, with
coordinate mapping λXiX ;

– X ′, same operation as X, replication dimensions α. The operation
i-th input is Xi, with coordinate mapping λXiX ;

• Outputs

– OX , OutputS or OutputB operation, replication dimensions α, and
input X, with identity coordinate mapping;

– OX′ , OutputS or OutputB operation, replication dimensions α, and
input X ′, with identity coordinate mapping;

The initial DGFR can be replaced with the following one:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– X, defined as in the original DGFR;

• Outputs

– OX , defined as in the original DGFR;

– OX′ , same operation as the corresponding node on the original
DGFR, replication dimensions α, and input X, with identity co-
ordinate mapping;

138

Appendix 2: continued

Two nodes with Identical Data Inputs, but Different Control Input

Let the initial DGFR be the following:

• Inputs

– C1, InputB operation, replication dimensions ιC1 ;

– C2, InputB operation, replication dimensions ιC2 ;

– Si, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιSi ;

• Regular nodes

– S1, any operation, except for RS and Receive, having the control
and n data inputs and replication dimensions α. The operation
control input is C1, with coordinate mapping λC1S1 . The operation
i-th data input is Si, with coordinate mapping λSiS ;

– S2, same operation as S1, replication dimensions α. The operation
control input is C2, with coordinate mapping λC2S2 . The operation
i-th data input is Si, with coordinate mapping λSiS ;

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input S1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions α, and input S2,
with identity coordinate mapping;

The initial DGFR can be replaced with the following one:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– O, Or operation, replication dimensions α. The node has two in-
puts: C1 with coordinate mapping λC1S1 and C2 with coordinate
mapping λC2S2 ;

– S, same operation as S1, replication dimensions α. The operation
control input is O, with identity coordinate mapping. The opera-
tion i-th data input is Si, with coordinate mapping λSiS ;

– ID1, Id operation, replication dimensions α, control input C1 with
coordinate mapping λC1S1 and data input S, with identity coordi-
nate mapping;

– ID2, Id operation, replication dimensions α, control input C2 with
coordinate mapping λC2S2 and data input S, with identity coordi-
nate mapping;

139

Appendix 2: continued

• Outputs

– OS1 , OutputS operation, replication dimensions α, and input ID1,
with identity coordinate mapping;

– OS2 , OutputS operation, replication dimensions α, and input ID2,
with identity coordinate mapping;

Two Nodes With no Inputs

Let the initial DGFR be the following:

• No Inputs

• Regular nodes

– E1, Error operation, replication dimensions α;

– E2, Error operation, replication dimensions β;

• Outputs

– OE1 , OutputS operation, replication dimensions α, and input E1,
with identity coordinate mapping;

– OE2 , OutputS operation, replication dimensions β, and input E2,
with identity coordinate mapping;

The initial DGFR can be replaced with the following:

• No Inputs

• Regular nodes

– E, Error operation, no replication dimensions;

• Outputs

– OE1 , OutputS operation, replication dimensions α, and input E,
with identity coordinate mapping;

– OE2 , OutputS operation, replication dimensions β, and input E,
with identity coordinate mapping;

The same transformation can be performed to the nodes with the False and
True operations.

140

Appendix 2: continued

Propagating Control Dependencies

Propagating Control Dependency to an IfDef-Node

Let the initial DGFR be the following:

• Inputs

– CI , InputB operation and replication dimensions ιCI
;

– Check i, for 1 ≤ i ≤ n + 1, InputB operation, the replication dimen-
sions are given by ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, the replication dimensions
are given by ιCDi ;

– COP , InputB operation and replication dimensions ιCOP
;

– Argj , for 1 ≤ j ≤ m, opinputs operation, and replication dimen-
sions ιArgj ;

• Regular nodes

– OP , any operation returning bit string value and having one control
and m data inputs; the replication dimensions are given by ιCDn+1 ;
the control input is COP , with coordinate mapping λCOP OP ; the
j-th input (1 ≤ j ≤ m) is Argj with coordinate mapping λArgjOP ;

– I , IfDef operation; the replication dimensions are given by α; the
control input is CI , with coordinate mapping λCII ; the node has
n + 1 pairs of check-data inputs - the for 1 ≤ i ≤ n i-th pair is
Checki and Datai, with the coordinate mapping λCDiI and con-
tracted dimensions γi; The n + 1-th pair comprises the check in-
put Checkn+1 and data input OP , with the coordinate mapping
λCDn+1I and contracted dimensions γn+1;

• Outputs

– OOP , OutputS operation, replication dimension ιCDn+1 , the node
input is OP , with identity coordinate mapping.

– OI , OutputS operation, replication dimensions α,the node input is
I, with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs - same as on the initial DGFR;

• Regular nodes

– OP , same as on the initial DGFR;

141

Appendix 2: continued

– NewCheckn+1, And operation, replication dimensions ιCDn+1 . The
operation inputs are Checkn+1 (identity coordinate mapping) and
COP (λCOP OP coordinate mapping);

– NewI , IfDef operation; the replication dimensions are given by α;
the control input is CI , with coordinate mapping λCII ; the node
has n + 1 pairs of check-data inputs - the for 1 ≤ i ≤ n i-th pair
is Checki and Datai, with the coordinate mapping λCDiI and con-
tracted dimensions γi; The n + 1-th pair comprises the check input
NewCheckn+1 and data input OP , with the coordinate mapping
λCDn+1I and contracted dimensions γn+1;

• Outputs

– OOP , OutputS operation, replication dimension β, the node input
is OP , with identity coordinate mapping.

– OI , OutputS operation, replication dimensions α,the node input is
NewI , with identity coordinate mapping;

Propagating Control Dependency to a Node with Control Depen-
dency

Let the initial DGFR be the following:

• Inputs

– COP1 , InputB operation and replication dimensions ιCOP1
;

– COP2 , InputB operation and replication dimensions ιCOP2
;

– Arg1i, for 1 ≤ i ≤ n, opinputs operation, and replication dimen-
sions ιArg1i ;

– Arg2j , for 1 ≤ j ≤ m, opinputs operation, and replication dimen-
sions ιArg2j ;

• Regular nodes

– OP1 , any operation returning bit string value and having one con-
trol and n data inputs; the replication dimensions α; the control
input is COP1 , with coordinate mapping λCOP1

OP1 ; the i-th input
(1 ≤ i ≤ m) is Arg1i with coordinate mapping λArg1iOP1 ;

– OP2 , any operation returning bit string value and having one con-
trol and m + 1 data inputs; the replication dimensions beta; the
control input is COP2 , with coordinate mapping λCOP2

OP2 . The
j-th data input is: for a single j = k, OP2 (coordinate mapping
λOP1OP2); for all j < k, Arg2j with coordinate mapping λArg2jOP1 ;
for all j > k, Arg2j+1 with coordinate mapping λArg2j+1OP1 ;

142

Appendix 2: continued

• Outputs

– OOP1 , OutputS operation, replication dimension α, the node input
is OP1, with identity coordinate mapping;

– OOP2 , OutputS operation, replication dimension β, the node input
is OP2, with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs - same as on the initial DGFR;

• Regular nodes

– OP1 , same as on the initial DGFR;
– NewC S2 , And operation, replication dimensions β. The operation

inputs are COP1 (λCOP1
OP1 ◦ λOP1OP2 coordinate mapping) and

COP2 (λCOP2
OP2 coordinate mapping);

– NewOP2, same operation as OP2; the replication dimensions beta;
the control input is NewC S2 , with identity coordinate mapping.
The data inputs are the same as for the OP2 node.

• Outputs

– OOP1 , same as on the initial DGFR;
– OOP2 , OutputS operation, replication dimension β, the node input

is NewOP2, with identity coordinate mapping.

Propagating Control Dependency to a Node without Control De-
pendency

Let the initial DGFR be the following:

• Inputs

– COP1 , InputB operation and replication dimensions ιCOP1
;

– Arg1i, for 1 ≤ i ≤ n, opinputs operation, and replication dimen-
sions ιArg1i ;

– Arg2j , for 1 ≤ j ≤ m, opinputs operation, and replication dimen-
sions ιArg2j ;

• Regular nodes

– OP1 , any operation returning bit string value and having one con-
trol and n data inputs; the replication dimensions α; the control
input is COP1 , with coordinate mapping λCOP1

OP1 ; the i-th input
(1 ≤ i ≤ m) is Arg1i with coordinate mapping λArg1iOP1 ;

143

Appendix 2: continued

– OP2 , any operation returning boolean value and having m+1 data
inputs; the replication dimensions beta; The j-th data input is: for
a single j = k, OP2 (coordinate mapping λOP1OP2); for all j < k,
Arg2j with coordinate mapping λArg2jOP1 ; for all j > k, Arg2j+1

with coordinate mapping λArg2j+1OP1 ;

• Outputs

– OOP1 , OutputS operation, replication dimension α, the node input
is OP1, with identity coordinate mapping;

– OOP2 , OutputB operation, replication dimension β, the node input
is OP2, with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs - same as on the initial DGFR;

• Regular nodes

– OP1 , OP2 , same as on the initial DGFR;

– NewOP2 S2
, And operation, replication dimensions β. The opera-

tion inputs are COP1 (λCOP1
OP1 ◦ λOP1OP2 coordinate mapping)

and OP2 (identity coordinate mapping);

• Outputs

– OOP1 , same as on the initial DGFR;

– OOP2 , OutputS operation, replication dimension β, the node input
is NewOP2, with identity coordinate mapping.

Transformations Specific to IfDef Operations

Combining two IfDef Operations

Let the initial DGFR be the following:

• Inputs

– CI1 , InputB operation and replication dimensions ιCI1
;

– Check1i, for 1 ≤ i ≤ n, InputB operation, the replication dimensions
are given by ιCD1i ;

– Data1i, for 1 ≤ i ≤ n, InputS operation, the replication dimensions
are given by ιCD1i ;

– Check2j , for 1 ≤ j ≤ m + 1, InputB operation, the replication
dimensions are given by ιCD2j ;

144

Appendix 2: continued

– Data2j , for 1 ≤ j ≤ m, InputS operation, the replication dimensions
are given by ιCD2j ;

• Regular nodes

– I1, IfDef operation; the replication dimensions are given by ιCD2m+1 ;
the control input is CI1 , with coordinate mapping λCI1

I1 ; the node
has n pairs of check-data inputs - for 1 ≤ i ≤ n i-th pair is Check1i

and Data1i, with the coordinate mapping λCD1iI1 and contracted
dimensions γ1i;

– I2 , IfDef operation; the replication dimensions β; the control input
is CI2 , with coordinate mapping λCI2

I2 ; the node has m+1 pairs of
check-data inputs - for 1 ≤ j ≤ m j-th pair is Check2j and Data2j ,
with the coordinate mapping λCD2jI2 and contracted dimensions
γ2j ; The m+1-th pair comprises the check input Checkm+1 and data
input I1 , with the coordinate mapping λCDm+1I and contracted
dimensions γ2m+1;

• Outputs

– OI1 , OutputS operation, replication dimensions ιCD2m+1 , the node
input is I1, with identity coordinate mapping;

– OI2 , OutputS operation, replication dimensions β, the node input
is I2, with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs - same as on the original DGFR;

• Regular nodes

– I1, same as on the original DGFR;

– NewI 2, IfDef operation; the replication dimensions β; the control
input is CI2 , with coordinate mapping λCI2

I2 ; the node has m + n
pairs of check-data inputs - for 1 ≤ j ≤ m the j-th pair is Check2j

and Data2j , with the coordinate mapping λCD2jI2 and contracted
dimensions γ2j ; for m + 1 ≤ j ≤ m + n the j-th pair is Check1j−m

and Data1j−m, with the coordinate mapping λCD1j−mI1 ◦ λCDm+1I

and contracted dimensions γ1j−m + γ2m+1 (pointwise addition);

• Outputs

– OI1 , same as on the original DGFR;

– OI2 , OutputS operation, replication dimensions β, the node input
is NewI 2, with identity coordinate mapping;

145

Appendix 2: continued

CfDef Decomposition

Let the initial DGFR be the following:

• Inputs

– CI , InputB operation and replication dimensions ιCI
;

– Check i, for 1 ≤ i ≤ n, InputB operation, the replication dimensions
are given by ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputB operation, the replication dimensions
are given by ιCDi ;

• Regular nodes

– I , CfDef operation; the replication dimensions are given by α; the
control input is CI , with coordinate mapping λCII ; the node has n
pairs of check-data inputs - the i-th pair is Check i and Datai, with
the coordinate mapping λCDiI and contracted dimensions γi;

• Outputs

– OI , OutputS operation, replication dimensions α,the node input is
I, with identity coordinate mapping.

The initial DGFR can be replaced with the following:

• Inputs — the same as in the initial DGFR;

• Regular nodes

– Ai, for 1 ≤ i ≤ n, And operation, replication dimensions ιCDi . The
operation inputs are Check i and Datai, with identity coordinate
mappings;

– LO i, for 1 ≤ i ≤ n, Longor operation, replication dimensions α.
The operation input is Ai, with the coordinate mapping λCDiI ,
and contracted dimensions γi;

– O, Or operation, replication dimensions α. The operation has n
inputs; the i-th input is LO i, with identity coordinate mapping;

– I ′, And operation, replication dimensions α. The operation has
two inputs: O, with identity coordinate mapping, and CI , with
coordinate mapping λCII ;

• Outputs

– OI , OutputS operation, replication dimensions α,the node input is
I ′, with identity coordinate mapping.

146

Appendix 2: continued

Moving Operations over IfDef

Let the initial DGFR be the following:

• Inputs

– CI , InputB operation and replication dimensions ιCI
;

– Check i, for 1 ≤ i ≤ n, InputB operation, the replication dimensions
are given by ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, the replication dimensions
are given by ιCDi ;

– COP , InputB operation and replication dimensions ιCOP
;

– Argj , for 1 ≤ j ≤ m, opinputs operation, and replication dimen-
sions ιArgj ;

• Regular nodes

– I , IfDef operation; the replication dimensions are given by α; the
control input is CI , with coordinate mapping λCII ; the node has n
pairs of check-data inputs - the i-th pair is Checki and Datai, with
the coordinate mapping λCDiI and contracted dimensions γi;

– OP , any operation returning bit string value and having one control
and m + 1 data inputs; the replication dimensions are given by β;
the control input is COP , with coordinate mapping λCOP OP ; the
input of the k-th (for a single k, 1 ≤ j ≤ m) input port is I, with
coordinate mapping λIOP ; for all j 6= k, 1 ≤ j ≤ m the input of the
j-th input port is either Argj with coordinate mapping λArgjOP (if
j < k) or Argj−1 with coordinate mapping λArgj+1OP (if j > k)

• Outputs

– OI , OutputS operation, replication dimensions α,the node input is
I, with identity coordinate mapping;

– OOP , OutputS operation, replication dimension β, the node input
is OP , with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs - same as in the initial DGFR;

• Regular nodes

– I , as defined in the initial DGFR;

147

Appendix 2: continued

– Ai , for 1 ≤ i ≤ n, And operation, the replication dimensions β +γi.
The operation inputs are: CI , with λIOP ◦λCII coordinate mapping;
Check i, with the λIOP ◦λCDiI coordinate mapping, and COP , with
λCOP OP coordinate mapping;

– OP ′
i , same operation as for OP ; the replication dimensions β + γi;

the control input is Ai, with identity coordinate mapping; the input
of the k-th input port is Datai, with identity coordinate mapping;
for all j 6= k, 1 ≤ j ≤ m the input of the j-th input port is either
Argj with coordinate mapping λArgjOP (if j < k) or Argj−1 with
coordinate mapping λArgj+1OP (if j > k);

– I ′, IfDef operation; the replication dimensions β; the control input
is COP , with coordinate mapping λCOP OP ; the node has n pairs
of check-data inputs - the i-th pair is Check i and OP ′

i , with the
coordinate mapping λCDiI and contracted dimensions γi;

• Outputs

– OI , defined as in the initial DGFR;

– OOP , OutputS operation, replication dimension β, the node input
is I ′, with identity coordinate mapping.

The similar transformation can be performed if the OP is an operation
returning a boolean value. In this case, the node I ′ has the operation CfDef,
which has the same semantics as IfDef, but operates on boolean values (i.e.
all the Datai are boolean-type inputs). Later on, the CfDef operation can be
decomposed into the combination of And, Or, and Longor operations.

Removing the coordinates from IfDef inputs

Let the initial DGFR be the following:

• Inputs

– Control , InputB operation, replication dimensions ιC ;

– Check i, for 1 ≤ i ≤ n, InputB operation, replication dimensions
ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιCDi ;

• Regular nodes

– I , IfDef operation, let α be its dimensions; let Control be its con-
trol input with dimension mapping λCI ; let for (1 ≤ i ≤ n) the

148

Appendix 2: continued

(Check i,Datai) be its pairs of check- and data-inputs, with dimen-
sions βci and βdi, dimension mappings λCi and λDi , correspond-
ingly, and contracted dimensions γi.

• Outputs

– OI , OutputS operation, replication dimensions α, and input I , with
identity coordinate mapping.

The transformation is possible if, for some j the Check j has more coordinates
then Dataj . Then (given we have such j) , the initial DGFR can be replaced
with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– LO , Longor operation, with dimensions βdj, input Check j), with
dimension mapping λCj , and all the coordinates, not present in
βdi, contracted;

– I ′, IfDef operation, with dimensions α; control input Control (with
dimension mapping λCI); let for (1 ≤ i ≤ n, i 6= j) the
(Check i,Datai) be its pairs of check- and data-inputs, with dimen-
sions βci and βdi, dimension mappings λCi and λDi , correspond-
ingly, and contracted dimensions γi. The j-th pair of inputs is
(LO ,Dataj), with dimension mappings λLOI ′ and λ′Dj

, correspond-
ingly, and contracted dimensions γ′j .

• Outputs

– OI , OutputS operation, replication dimensions α, and input I ′, with
identity coordinate mapping.

The newly introduced dimensions γ′j and coordinate mappings λLOI ′ , λ′Dj
are

identical to γj , λCj , and λDj , except for not having the dimensions, contracted
in LO .

Implied Analysis

Introducing ⇒ at Boolean Nodes

Let the initial DGFR be the following:

• Inputs

– Si, for 1 ≤ i ≤ n, InputB or InputS operation, replication dimensions
ιSi ;

149

Appendix 2: continued

• Regular nodes

– B , any operation having n inputs and returning boolean value; let
β be its dimensions. The i-th input is Si, with coordinate mapping
λSiB;

• Outputs

– OB , OutputB operation, replication dimensions β, and input B ,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– B , same as in the initial DGFR

– DepB , ⇒, operation, replication dimensions β, the inputs are:

∗ B , with identity coordinate mapping;
∗ B , with identity coordinate mapping;

• Outputs - same as in the initial DGFR.

Introducing ⇒ at Bit String Nodes

Let the initial DGFR be the following:

• Inputs

– Si, for 1 ≤ i ≤ n, InputB or InputS operation, replication dimensions
ιSi ;

• Regular nodes

– S , any operation having n inputs and returning bit string value; let
β be its dimensions. The i-th input is Si, with coordinate mapping
λSiB;

• Outputs

– OS , OutputS operation, replication dimensions β, and input S , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

150

Appendix 2: continued

• Regular nodes

– S , same as in the initial DGFR

– OKS , the operation is IsOK, the number of dimensions is β, the
input is S , with identity dimension mapping;

– DepS , the operation is⇒, the number of dimensions is β, the inputs
are:

∗ OKS , with identity coordinate mapping;
∗ OKS , with identity coordinate mapping;

• Outputs — same as in the initial DGFR.

Introducing ⇒ at Or Nodes

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– O , Or operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λi be the dimension mapping of i-th input (1 ≤ i ≤ n).

• Outputs

– OO , OutputB operation, replication dimensions α, and input O ,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– O , same as in the initial DGFR

– Depi, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is
α. The inputs are:

∗ Bi, with the dimension mapping λ(d, n).λi(d, n);

• Outputs - same as in the initial DGFR.

151

Appendix 2: continued

Introducing ⇒ at Longor Nodes

Let the initial DGFR be the following:

• Inputs

– B, InputB operation, replication dimensions ιBi ;

• Regular nodes

– LO , Longor operation; let α be its dimensions and γ the dimensions
it contracts; let B be its input; let λB be the dimension mapping
of the input.

• Outputs

– OLO , OutputB operation, replication dimensions α, and input LO ,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– O , same as in the initial DGFR

– Dep, the operation is ⇒, the number of dimensions is α + γ. The
inputs are:

∗ B , with the dimension mapping λ(d, n).λB(d, n);
∗ LO , with identity dimension mapping.

• Outputs - same as in the initial DGFR.

Introducing ⇒ at And Nodes

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λi be the coordinate mapping of i-th input (1 ≤ i ≤ n).

• Outputs

152

Appendix 2: continued

– OA, OutputB operation, replication dimensions α, and input A,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– A, same as in the initial DGFR

– Depi, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is
α. The inputs are:

∗ A, with identity dimension mapping;
∗ Bi, with the dimension mapping λ(d, n).λi(d, n).

• Outputs - same as in the initial DGFR.

Introducing ⇒ at Bit String-to-Boolean Nodes

Let the initial DGFR be the following:

• Inputs

– Si, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιSi ;

• Regular nodes

– B : IsEq, IsNeq, TestSig, or TestSigP operation; let α be its dimen-
sions; let S1, . . . , Sn be its inputs; let λi be the coordinate mapping
of i-th input (1 ≤ i ≤ n);

• Outputs

– OB , OutputB operation, replication dimensions α, and input B ,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– B , same as in the initial DGFR

– OK i, 1 ≤ i ≤ n, the operation is IsOK, the number of dimensions
is α. The input is Si, with the dimension mapping λ(d, n).λi(d, n);

– Depi, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is
α. The inputs are:

153

Appendix 2: continued

∗ B , with identity dimension mapping;
∗ OK i, with identity dimension mapping.

• Outputs — same as in the initial DGFR.

Introducing ⇒ at Nodes with Control Dependency

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Si, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιSi ;

• Regular nodes

– S : Nonce, Const, Keypair, PubKey, SigVer, VerKey, SymKey, PubEnc,
SymEnc, PubEncZ, SymEncZ, Signature, SignedMsg, Tuple, Proj,
PubDec, SymDec, Send, Begin, End, Receive, Secret, Merge,
DTakeDimEq, or Id operation; let α be its dimensions; let C be
its control input with dimension mapping λCS ; let S1, . . . , Sn be
the data inputs; let λSiS be the dimension mapping of i-th input
(1 ≤ i ≤ n);

• Outputs

– OS , OutputS operation, replication dimensions α, and input S , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– S , same as in the initial DGFR

– OK , the operation is IsOK, the number of dimensions is α. The
input is S , with identity dimension mapping;

– DepC , the operation is ⇒, the number of dimensions is α. The
inputs are:

∗ OK , with identity dimension mapping;
∗ C , with the dimension mapping λ(d, n).λC (d, n);

– OK i, 1 ≤ i ≤ n, the operation is IsOK, the number of dimensions
is α. The input is Xi, with the dimension mapping λ(d, n).λi(d, n);

154

Appendix 2: continued

– Depi, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is
α. The inputs are:

∗ S , with identity dimension mapping;
∗ OK , with identity dimension mapping.

• Outputs — same as in the initial DGFR.

Introducing ⇒ at IfDef-Nodes

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Check i, for 1 ≤ i ≤ n, InputB operation, replication dimensions
ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιCDi ;

• Regular nodes

– I , IfDef operation, let α be its dimensions; let C be its control input
with coordinate mapping λCI . The node has n check-data pairs;
the i-th pair is Check i, Datai with coordinate mapping λCDiI ;

• Outputs

– OI , OutputS operation, replication dimensions α, and input I , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– I , same as in the initial DGFR

– OK , the operation is IsOK, the number of dimensions is α. The
input is I , with identity dimension mapping;

– DepC , the operation is ⇒, the number of dimensions is α. The
inputs are:

∗ OK , with identity dimension mapping;
∗ C , with the dimension mapping λ(d, n).λC (d, n).

• Outputs — same as in the initial DGFR.

155

Appendix 2: continued

Introducing ⇒ at IfDef-Nodes with Single Pair of Inputs

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Check , InputB operation, replication dimensions ιCD;

– Data, InputS operation, replication dimensions ιCD;

• Regular nodes

– I , IfDef operation, let α be its dimensions; let the (Check ,Data) be
its only pair of check- and data-inputs, with dimensions β, dimen-
sion mapping λCDI , and contracted dimensions γ;

• Outputs

– OI , OutputS operation, replication dimensions α, and input I , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– I , same as in the initial DGFR

– LOCheck , operation is Longor, the number of dimensions α, the
contracted dimensions γ. The inputs is Check , with dimension
mapping λCD ;

– OKD, operation is IsOK, the number of dimensions β. The input
is Data, with identity dimension mapping;

– LOData , operation is Longor, the number of dimensions α, the con-
tracted dimensions γ. The input is OKD, with dimension mapping
λCD ;

– OK I , operation is IsOK, the number of dimensions α. The input is
I , with identity dimension mapping;

– AndCD, operation is And, the number of dimensions α. The inputs
are:

∗ LOCheck , with identity dimension mapping;
∗ LOData , with identity dimension mapping;

– Dep, the operation is⇒, the number of dimensions is α. The inputs
are:

156

Appendix 2: continued

∗ OK I , with identity dimension mapping;
∗ AndCD , with identity dimension mapping;

• Outputs — same as in the initial DGFR.

Transitive Relation on ⇒ Nodes

Let the initial DGFR be the following:

• Inputs

– B1, B2, B3, InputB operations, replication dimensions ιB1 , ιB2 , and
ιB3 , correspondingly;

• Regular nodes

– A1, ⇒ operation; let α1 be its replication dimensions; let B1 and
B2 be its inputs, with dimension mappings λB1A1 and λB2A1 , cor-
respondingly;

– A2, ⇒ operation, with α2 replication dimension, and two inputs:
B2 and B3, with dimension mappings λB2A2 and λB3A2 , correspond-
ingly.

• No outputs

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– A1, A2, same as in the initial DGFR;

– A3 , the operation is⇒, the number of dimensions is α3. The inputs
are:

∗ B1, with dimension mapping λB1A3 ;
∗ B3, with dimension mapping λB3A3 ;

• Outputs - same as in the initial DGFR.

The coordinate mappings λB1A3 and λB3A3 can be defined in any way, as long
as the following requirement is met:

∀i, 1 ≤ i ≤ k :

if ∃j.λB3A2(d, j) = λB2A2(d, λ−1
B2A1

(d, λB1A1(d, i))) then

λB1A3(d, i) = λB3A3(d, j)
otherwise ∀j : λB1A3(d, i) 6= λB3A3(d, j)

157

Appendix 2: continued

The number of dimensions α(3) is the minimum number of dimensions required
to allow defining the dimension mappings this way. Formally, the number of
dimensions of the newly created node can be defined as follows:

α3(d) = Σk
i=1

{
1
2 if ∃j.λB3A2(d, j) = λB2A2(d, λ−1

B2A1
(d, λB1A1(d, i)))

1 if ∀j.λB3A2(d, j) 6= λB2A2(d, λ−1
B2A1

(d, λB1A1(d, i)))
+

+ Σk
j=1

{
1
2 if ∃i.λB1A1(d, i) = λB2A1(d, λ−1

B2A2
(d, λB3A2(d, j)))

1 if ∀i.λB1A1(d, i) 6= λB2A1(d, λ−1
B2A2

(d, λB3A2(d, j)))

Propagating the ⇒ through the And-Nodes

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operations, replication dimensions ιBi ;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λBiA be the dimension mapping of i-th input (1 ≤ i ≤ n).

– Di, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is βi.
The inputs are:

∗ C , with dimension mapping λCDi

∗ Bi, with the dimension mapping λBiDi .

• Outputs

– OA, OutputB operation, replication dimensions α, input A, with
identity coordinate mapping;

Additionally, we require that the initial DGFR dimension mappings guarantee
the (constant) correspondence of coordinate of the And inputs — the following
equality should either hold or both parts of it are to be undefined for any i
(1 ≤ i ≤ n) and j (1 ≤ j ≤ n):

∀d, ∀l : λ−1
BiA

(d, λBjA(d, l) =

= λ−1
BiDi

(d, λCDi(d, λ−1
CDj

(d, λBjDj (d, l))))

If the requirements are met, the initial DGFR can be replaced with the fol-
lowing DGFR:

• Inputs — same as in the initial DGFR;

158

Appendix 2: continued

• Regular nodes

– A, Di (for 1 ≤ i ≤ n), same as in the initial DGFR;

– D , the operation is ⇒, the number of dimensions is γ. The inputs
are:

∗ C , with dimension mapping λCD

∗ A, with the dimension mapping λAD.

• Outputs - same as in the initial DGFR.

The dimension mappings λCD and λAD can be defined in any way, as long as
the following requirement is met:

∀i, 1 ≤ i ≤ n,∀d,∀l :

λ−1
BiDi

(d, λCDi(d, l)) = λ−1
BiA

(d, λ−1
AD(d, λCD(d, l)))

The number of dimensions γ is the minimum number of dimensions required
to allow defining the λCD and λAD this way.

Propagating the ⇒ through the Or-Nodes

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operations, replication dimensions ιBi ;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– O , Or operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λBiO be the dimension mapping of i-th input (1 ≤ i ≤ n).

– Di, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is βi.
The inputs are:

∗ Bi, with the dimension mapping λBiDi .
∗ C , with dimension mapping λCDi

• Outputs

– OO, OutputB operation, replication dimensions α, input O , with
identity coordinate mapping;

159

Appendix 2: continued

The requirements we put on the dimension mappings are the same as in case
of the previous transformation: the following should hold for any i (1 ≤ i ≤ n)
and j (1 ≤ j ≤ n):

∀d,∀l : λ−1
BiO

(d, λBjO(d, l) =

= λ−1
BiDi

(d, λCDi(d, λ−1
CDj

(d, λBjDj (d, l))))

If the requirements are met, the initial DGFR can be replaced with the fol-
lowing DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– O , Di (for 1 ≤ i ≤ n), same as in the initial DGFR;

– D , the operation is ⇒, the number of dimensions is γ. The inputs
are:

∗ O , with the dimension mapping λOD.
∗ C , with dimension mapping λCD

• Outputs — same as in the initial DGFR.

The dimension mappings λCD and λOD can be defined in any way, as long as
the following requirement is met:

∀i, 1 ≤ i ≤ n,∀d,∀l :

λ−1
BiDi

(d, λCDi(d, l)) = λ−1
BiO

(d, λ−1
OD(d, λCD(d, l)))

The number of dimensions γ is the minimum number of dimensions required
to allow defining the λCD and λOD this way.

Transitive Relation on ⇒ Nodes through the Longor Nodes

Let the initial DGFR be the following:

• Inputs

– B1, B2, B3, InputB operations, replication dimensions ιB1 , ιB2 , and
ιB3 , correspondingly;

• Regular nodes

– LO21, Longor operation; let β21 be its dimensions and γ21 the di-
mensions it contracts; its input is B2, with dimension mapping
λB2LO21 ;

160

Appendix 2: continued

– LO22, Longor operation; let β22 be its dimensions and γ22 the di-
mensions it contracts; its input is B2, with dimension mapping
λB2LO22 .

– A1, ⇒ operation; let α1 be its replication dimensions; let B1 and
LO21 be its inputs, with dimension mappings λB1A1 and λLO21A1 ,
correspondingly;

– A2, ⇒ operation, with α2 replication dimensions, and two inputs:
LO22 and B3, with dimension mappings λLO22A2 and λB3A2 , corre-
spondingly.

• Outputs

– OLO21 , OutputB operation, replication dimensions β21, input LO21

with identity coordinate mapping;

– OLO22 , OutputB operation, replication dimensions β22, input LO22

with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– LO21, LO22, A1, and A2, as in the initial DGFR;

– LO13, Longor operation; let β13 be its dimensions and γ13 the di-
mensions it contracts; its input is B1, with dimension mapping
λB1LO13 ;

– LO33, Longor operation; let β33 be its dimensions and γ33 the di-
mensions it contracts; its input is B3, with dimension mapping
λB3LO33 ;

– A3, the operation is ⇒, the number of dimensions is α3. The inputs
are:

∗ LO13, with dimension mapping λLO13A3 ;
∗ LO33, with dimension mapping λLO33A3 .

• Outputs - same as in the initial DGFR.

The dimensions contracted by the newly introduced Longor operations are
defined as follows - every dimension of B1, corresponding to a dimension,
contracted in LO22, should be contracted in LO13. Similarly, every dimension
of B2, corresponding to a dimension, contracted in LO21, should be contracted
in LO33.

161

Appendix 2: continued

The dimension mappings λB1LO13 , λB3LO33 , λLO13A3 , and λLO33A3 can be
chosen freely, as long as two dimensions of B1 and B3 correspond to the same
dimension of A3 if and only if they correspond to the same dimension of B2.
The number of dimensions of the newly introduced nodes is the minimum
number of dimensions required to allow defining the dimension mappings this
way.

Propagating the ⇒ through a sequence of And and Longor Nodes

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operations, replication dimensions ιBi ;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λBiA be the dimension mapping of i-th input (1 ≤ i ≤ n).

– LOB i, 1 ≤ i ≤ n, the operation is Longor; let βLOBi be its dimen-
sions and γLOBi the dimensions it contracts; its input is Bi, with
dimension mapping λBiLOBi ;

– LOC i, 1 ≤ i ≤ n, the operation is Longor; let βLOCi be its dimen-
sions and γLOCi the dimensions it contracts; its input is C , with
dimension mapping λCLOCi ;

– Di, 1 ≤ i ≤ n, the operation is ⇒, the number of dimensions is δi.
The inputs are:

∗ LOCi , with dimension mapping λLOCiDi

∗ LOB i, with the dimension mapping λLOBiDi .

• Outputs

– OA, OutputB operation, replication dimensions α, input A, with
identity coordinate mapping;

– OLOBi , 1 ≤ i ≤ n, OutputB operation, replication dimensions
βLOBi , and the input LOB i, with identity coordinate mapping;

– OLOCi , 1 ≤ i ≤ n, OutputB operation, replication dimensions
βLOCi , and the input LOC i, with identity coordinate mapping.

Similarly to the transformation without Longor, we require that the dimension
mappings present in the initial DGFR guarantee the (constant) correspon-
dence of coordinate of the And inputs — i.e. that irrespective of whether we

162

Appendix 2: continued

“trace” the coordinate of Bi to a coordinate of Bj through the A node, or
through the LOB i, Di, LOC i, C , LOC j , Dj , and LOB j , the same coordinate
correspondence relations should be obtained. If the requirements are met, the
initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– A, LOB i, LOC i, and Di (for 1 ≤ i ≤ n), same as in the initial
DGFR;

– LOC , Longor operation; let βLOC
be its dimensions and γLOC

the
dimensions it contracts; its input is C , with dimension mapping
λCLOC

;

– LOA, Longor operation; let βLOA
be its dimensions and γLOA

the
dimensions it contracts; its input is A, with dimension mapping
λALOA

;

– D , the operation is ⇒, the number of dimensions is δ. The inputs
are:

∗ LOC , with dimension mapping λLOCD

∗ LOA, with the dimension mapping λLOAD.

• Outputs - same as in the initial DGFR.

The dimensions contracted by the newly introduced Longor operations are
defined as follows — every dimension of C , corresponding to a dimension,
contracted in every LOB i (1 ≤ i ≤ n), can be contracted in LOC . Similarly,
every dimension of A, corresponding to a dimension, contracted in LOC i, shall
be contracted in LOA.

The dimension mappings λCLOC
, λALOA

, λLOCD, and λLOAD can be cho-
sen freely, as long as two dimensions of A and C correspond to the same
dimension of D if and only if they correspond to the same dimension of each
Bi. The numbers of dimensions βLOC

, βLOA
, and δ is the minimum number

of dimensions required to allow defining the dimension mappings this way.

Propagating the ⇒ through a sequence of Or and Longor Nodes

The transformation is identical to the previous one, except for the direction of
implied dependencies (the order of the arguments to the ⇒ operations is the
opposite).

163

Appendix 2: continued

The ⇒ removal

Every transformation, defined above, has a dual transformation, defined as
following: the new DGFR (result of the transformation) can be replaced with
the original DGFR, without affecting the DGFR semantics. Note that it is
not allowed to just remove the ⇒ operations, as, in the absence of the rest of
the DGFR-result of the transformation, they can turn to >, thus stopping the
execution of the DGF, corresponding to the DGFR.

Introducing Merge

The transformation described in this section use the result of the implied
analysis. If the control dependency of some operation implies one if its input
being equal to some other value, this input is replaced with the Merge (the
inputs are the values being equal).

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Xi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιXi ;

– X, InputS operation, replication dimensions ιX ;

• Regular nodes

– S : Nonce, Const, Keypair, PubKey, SigVer, VerKey, SymKey, PubEnc,
SymEnc, PubEncZ, SymEncZ, Signature, SignedMsg, Tuple, Proj,
PubDec, SymDec, Send, Begin, End, Receive, Secret, Merge,
DTakeDimEq, or Id operation; let β be its dimensions; let C be
its control input with dimension mapping λCS ; let X1, . . . , Xn be
the data inputs; let λXiS be the dimension mapping of i-th input
(1 ≤ i ≤ n).

– A, IsEq operation; let α be its dimensions; let Xj (for some j, such
that 1 ≤ j ≤ n) and X be its inputs, with dimension mappings
λXjA and λXA, correspondingly.

– D , the operation is ⇒, the number of dimensions is γ. The inputs
are:

∗ C , with dimension mapping λCD

∗ A, with dimension mapping λAD.

• Outputs

– OS , OutputS operation, replication dimensions α, and input S , with
identity coordinate mapping;

164

Appendix 2: continued

We require that the dimension mappings present in the initial DGFR guaran-
tees the correspondence of coordinate of the X inputs, independent of chosen
edge path — i.e. that irrespective of whether we “trace” the coordinate of Xj

to a coordinate of S directly (using the λXjA dimension mapping), or through
the A, D , and C nodes, the same coordinate correspondence relations should
be obtained.

If the requirements are met, the initial DGFR can be replaced with the
following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– M , Merge operation, with dimensions α. The control input is A,
with identity dimensions mapping. The data inputs are Xj and X ,
with dimension mappings λXjA and λXA, correspondingly.

– S ′: same operation as S ; dimensions are β; C is its control input
with dimension mapping λCS ; The data inputs are
X1, . . . , Xj−1,M,Xj+1, . . . , Xn; the dimension mapping of i-th in-
put (1 ≤ i ≤ n, i 6= j) is λXiS . The dimension mapping of M is
λMS′ .

• Outputs

– OS , OutputS operation, replication dimensions α, and input S ′,
with identity coordinate mapping;

The newly introduced dimension mapping λMS′ can be chosen freely, as long
as two dimensions of Xj and X correspond to the same dimension of S ′ if and
only if they correspond to the same dimension of D .

Combining two Merge

This transformation use the result of the implied analysis. If the result of one
Merge is used as an input to another, then the inputs of the first operation
could be used as the inputs of the second.

Let the initial DGFR be the following:

• Inputs

– B1, InputB operation, replication dimensions ιB1 ;

– B2, InputB operation, replication dimensions ιB2 ;

– X1i, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιX1i ;

165

Appendix 2: continued

– X2j , for 1 ≤ i ≤ m − 1, InputS operation, replication dimensions
ιX2j ;

• Regular nodes

– M1, with dimensions α, control input B1 with dimension mapping
λB1M1 , and data inputs X11, . . . , X1n. The dimension mapping of
i-th data input (1 ≤ i ≤ n) is λX1iM1 .

– M2, with dimensions β, control input B2 with dimension mapping
λB2M2 , and data inputs
X21, . . . , X2j−1, M1, X2j+1, . . . , X2m. The dimension mapping of i-
th input (1 ≤ i ≤ m, i 6= j) is λX2iM1 . The dimension mapping of
j-th input is λM1M2 .

• Outputs

– OM1 , OutputS operation, replication dimensions α, and input M1 ,
with identity coordinate mapping;

– OM2 , OutputS operation, replication dimensions β, and input M2 ,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– M1 , as in the initial DGFR;

– M3 , Merge operation, with dimensions β. The control input is B2 ,
with dimensions mapping λB2M2 . The (m + n− 1) data inputs are:

∗ For each i, 1 ≤ i ≤ n: X1i, with dimension mapping λ(d, n) =
λM1M2(d, λX1iM1(d, n));

∗ For each i, 1 ≤ i ≤ m, i 6= j: X2i, with dimension mapping
λ(d, n) = λX2iM2(d, n).

• Outputs

– OM1 , as in the initial DGFR;

– OM2 , OutputS operation, replication dimensions β, and input M3 ,
with identity coordinate mapping;

166

Appendix 2: continued

Removing And inputs, depending on each other

If an input of the the And operation implies another input of the same opera-
tion, that another input can be removed from the inputs list.

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λBiA be the dimension mapping of i-th input (1 ≤ i ≤ n).

– D , the operation is ⇒, the number of dimensions is β. The inputs
are:

∗ Bi1 , with dimension mapping λBi1
D

∗ Bi2 , with dimension mapping λBi2
D.

• Outputs

– OA, OutputB operation, replication dimensions α, and input A,
with identity coordinate mapping;

We require that the dimension mappings present in the initial DGFR guaran-
tee the (constant) correspondence of coordinate of the And inputs — i.e. that
irrespective of whether we “trace” the coordinate of Bi1 to a coordinate of Bi2

through the A node, or through the D node, the same coordinate correspon-
dence relations should be obtained.

If the requirements are met, the initial DGFR can be replaced with the
following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– D , as on the initial DGFR;

– A′, And operation with dimensions α, inputs
B1, . . . , Bi2−1, Bi2+1, . . . , Bn. For i-th input the dimension mapping
is λBiA;

• Outputs

– OA, OutputB operation, replication dimensions α, and input A′,
with identity coordinate mapping;

167

Appendix 2: continued

Removing Or inputs, depending on each other

If an input of the the Or operation implies another input of the same operation,
the first input can be removed from the inputs list.

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– A, Or operation; let α be its dimensions; let B1, . . . , Bn be its in-
puts; let λBiA be the dimension mapping of i-th input (1 ≤ i ≤ n).

– D , the operation is ⇒, the number of dimensions is β. The inputs
are:

∗ Bi1 , with dimension mapping λBi1
D

∗ Bi2 , with dimension mapping λBi2
D.

• Outputs

– OA, OutputB operation, replication dimensions α, and input A,
with identity coordinate mapping;

We require that the dimension mappings present in the initial DGFR guaran-
tee the (constant) correspondence of coordinate of the Or inputs — i.e. that
irrespective of whether we “trace” the coordinate of Bi1 to a coordinate of Bi2

through the A node, or through the D node, the same coordinate correspon-
dence relations should be obtained.

If the requirements are met, the initial DGFR can be replaced with the
following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– D , as on the initial DGFR;

– A′, Or operation with dimensions α, inputs
B1, . . . , Bi1−1, Bi1+1, . . . , Bn. For i-th input the dimension mapping
is λBiA.

• Outputs

– OA, OutputB operation, replication dimensions α, and input A′,
with identity coordinate mapping;

168

Appendix 2: continued

Removing IfDef inputs not affecting the computation result

Let the initial DGFR be the following:

• Inputs

– Control , InputB operation, replication dimensions ιC ;
– Check i, for 1 ≤ i ≤ n, InputB operation, replication dimensions

ιCDi ;
– Datai, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιCDi ;

• Regular nodes

– I , IfDef operation, let α be its dimensions; let Control be its con-
trol input with dimension mapping λCI ; let for (1 ≤ i ≤ n) the
(Check i,Datai) be its pairs of check- and data-inputs, with dimen-
sions βi, dimension mapping λCDi , and contracted dimensions γi.

– LO , Longor operation with dimensions δ, input Check j (for some
j, 1 ≤ j ≤ n), having dimension mapping λCheckjO and contracted
dimensions δc;

– Dep, ⇒ operation with dimensions ε, the following inputs:
∗ Control , dimension mapping λControlDep;
∗ LO , dimension mapping λLODep;

• Outputs

– OI , OutputS operation, replication dimensions α, and input I , with
identity coordinate mapping.

Additionally we require that all the coordinates contracted in j-th pair of
inputs (i.e. in γj), are also contracted in the LO operation.

If the requirements are met, the initial DGFR can be replaced with the
following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– LO , Dep, as on the initial DGFR;
– I ′, IfDef operation, with dimensions α, control input Control (with

dimension mapping λCI); and a single pair of inputs (Check j ,Dataj)
with dimension mapping λCDj , and contracted dimensions γj .

• Outputs

– OI , OutputS operation, replication dimensions α, and input I ′, with
identity coordinate mapping.

169

Appendix 2: continued

Adding Coordinates to the Longor nodes

Let the initial DGFR be the following:

• Inputs

– B, InputB operation, replication dimensions ιB;

– Bi, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιBi ;

• Regular nodes

– LO1, Longor operation with dimensions β, input B with dimension
mapping λBLO1 and contracted dimensions βc;

– A, And operation with dimensions γ, n + 1 inputs LO1,B1, . . . ,Bn,
having dimension mappings λLO1A, λB1A, . . . , λBnA

– LO2, Longor operation with dimensions δ, input B with dimension
mapping λBLO2 and contracted dimensions δc;

– Dep, ⇒ operation with dimensions ε. The operation has the fol-
lowing inputs:

∗ A, with dimension mapping λAD;
∗ LO2 , with dimension mapping λLO2D;

• Outputs

– OLO1 , OutputB operation, replication dimensions β, input LO1 with
identity coordinate mapping;

– OLO2 , OutputB operation, replication dimensions δ, input LO2 with
identity coordinate mapping;

– OA, OutputB operation, replication dimensions γ, input A with
identity coordinate mapping;

If a coordinate of B , having the corresponding coordinate in A (through the
sequence of nodes LO2 and Dep), is contacted in LO1, the initial DGFR can
be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– LO1, LO2, same as in the initial DGFR;

– LO ′
1, Longor operation with dimensions β′, input B with coordi-

nate mapping λBLO′1 and contracted dimensions β′c;

– A′, And operation, replication dimensions γ, n + 1 inputs
LO ′

1,B1, . . . ,Bn, with coordinate mappings λLO′1A, λB1A, . . . , λBnA;

170

Appendix 2: continued

• Outputs

– OLO1 , OLO2 , same as in the initial DGFR;

– OA, OutputB operation, replication dimensions γ, input A′ with
identity coordinate mapping.

The newly introduced dimension mappings, contracted dimensions, and node
dimensions are chosen to be equal to the corresponding mappings of the initial
DGFR, except for the coordinates of B , having the corresponding coordinate
in A (through the sequence of nodes LO2 and Dep), are mapped to the same
coordinate of A through the LO ′

1.

Introducing the CTakeDimEq at Longor

Let the initial DGFR be the following:

• Inputs

– B , InputB operation, replication dimensions α;

• Regular nodes

– LO , Longor operation, with dimensions β and contracted dimen-
sions βc; the input to the operation is B , with coordinate mapping
λBLO;

– DE , DimEq operation with dimensions γ, and the dimension d co-
ordinates i and j compared;

– Dep, with dimensions δ, and the following inputs:

∗ B , with coordinate mapping λBDep;
∗ DE , with coordinate mapping λDEDep;

• Outputs

– OLO, OutputB operation, replication dimensions β, and input LO,
with identity coordinate mapping;

– ODE , OutputB operation, replication dimensions γ, and input DE,
with identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– DE, Dep, as in the initial DGFR;

171

Appendix 2: continued

– CTDE , CTakeDimEq operation, with dimensions ε, the dimension
d coordinates i′ and j′ compared; the input to the operation is B ,
with coordinate mapping λBCTDE ;

– LO ′, Longor operation, with dimensions β and contracted dimen-
sions βc; the input to the operation is B , with coordinate mapping
λBLO;

• Outputs

– ODE , as in the initial DGFR;

– OLO′ , OutputB operation, replication dimensions β, and input LO′,
with identity coordinate mapping;

The newly introduced dimensions and the coordinate mappings should map
the dimension d coordinates i and j of the DE node to the coordinates i′ and
j′ of the CTDE node, and the rest of the coordinates in the same way as
λBLO does.

Introducing the CTakeDimEq and DTakeDimEq at IfDef

Let the initial DGFR be the following:

• Inputs

– Control , InputB operation, replication dimensions ιC ;

– Check i, for 1 ≤ i ≤ n, InputB operation, replication dimensions
ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιCDi ;

• Regular nodes

– I , IfDef operation, let β be its dimensions; let Control be its con-
trol input with dimension mapping λCI ; let for (1 ≤ i ≤ n) the
(Check i,Datai) be its pairs of check- and data-inputs, with dimen-
sions βi, dimension mapping λCDi , and contracted dimensions γi.

– DE , DimEq operation with dimensions γ, and the dimension d co-
ordinates ci and cj compared;

– Dep, with dimensions δ, and the following inputs:

∗ Check j (for some j, 1 ≤ j ≤ n), with coordinate mapping
λCheckjDep;

∗ DE , with coordinate mapping λDEDep;

• Outputs

172

Appendix 2: continued

– OI , OutputS operation, replication dimensions β, and input I , with
identity coordinate mapping.

– ODE , OutputB operation, replication dimensions γ, and input DE ,
with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– DE, Dep, as in the initial DGFR;

– CTDE , CTakeDimEq operation, with dimensions εc, the dimension
d coordinates c′i and c′j compared; the node input is Check j , with
coordinates mapping λCheckjCTDE;

– DTDE , CTakeDimEq operation, with dimensions εd, the dimension
d coordinates c′i and c′j compared; the node input is Dataj , with co-
ordinates mapping λDatajDTDE; the control input is the control
input of the Dataj , with the corresponding coordinates mapping;

– I ′, IfDef operation with dimensions β and control input Control
with dimension mapping λCI ; The data inputs are:

∗ For (1 ≤ i ≤ n, i 6= j) the (Check i,Datai), with coordinates
mapping λCDi , and contracted dimensions γi.

∗ The (CTDE ,DTDE), with coordinates mapping λ′CDj
, and

contracted dimensions γ′j .

• Outputs

– ODE , as in the initial DGFR;

– OI , OutputS operation, replication dimensions β, and input I ′, with
identity coordinate mapping.

The newly introduced dimensions and the coordinate mappings should map
the dimension d coordinates i and j of the DE node to the coordinates i′ and
j′ of the CTDE and DTDE nodes, and the rest of the coordinates in the same
way mappings on the initial DGFR do.

Replacing the CTakeDimEq or DTakeDimEq with its Input

Let the initial DGFR be the following:

• Inputs

– X , InputB or InputS operation, with dimensions α;

173

Appendix 2: continued

• Regular nodes

– D , CTakeDimEq and DTakeDimEq operation with dimensions β,
and dimension d and coordinate i compared (with the coordinate
β(d) + 1). The operation input is X , with coordinate mapping
λXD. If the operation of the node is DTakeDimEq, then let C be
its control inputs, with dimension mapping λCD

• Outputs

– OD , OutputS or OutputS operation, replication dimensions β, and
input D , with identity coordinate mapping.

If one or both dimension d coordinates i , β(d) + 1, are not present (through
the λ−1

XD mapping) in X node, then the initial DGFR can be replaced with
the following DGFR:

• Inputs — same as in the initial DGFR;

• No regular nodes

• Outputs

– OD , OutputS or OutputS operation, replication dimensions β, and
input X , with identity coordinate mapping.

Propagating the CTakeDimEq and DTakeDimEq to the Node Inputs

Let the initial DGFR be the following:

• Inputs

– Xi , for 1 ≤ i ≤ n, InputB or InputS operation, with dimensions ιXi ;

• Regular nodes

– X , any operation with n inputs and replication dimensions α; the
i-th input is Xi, with the coordinate mapping λXiX ;

– D , CTakeDimEq and DTakeDimEq operation with dimensions β,
and dimension d and coordinate i compared (with the coordinate
β(d) + 1). The operation input is X , with coordinate mapping
λXD. If the operation of the node is DTakeDimEq, then let C be
its control inputs, with dimension mapping λCD

• Outputs

174

Appendix 2: continued

– OD , OutputS or OutputS operation, replication dimensions β, and
input D , with identity coordinate mapping.

Additionally we require that both dimension d coordinates i , β(d) + 1, are
present (through the λ−1

XD mapping) in X node.
If the requirements are met, then the initial DGFR can be replaced with

the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– For 1 ≤ i ≤ n, if both dimension d coordinates i , β(d) + 1, are
present (through the λ−1

XD and λ−1
XiX

mappings) in Xi node, the
node X ′

i:

∗ If Xi returns bit string, then the DTakeDimEq operation (di-
mension d and coordinates corresponding to i , β(d) + 1 coor-
dinates of D), with input Xi, and control input C ;

∗ If Xi has the operation returning boolean value, then the
CTakeDimEq operation (dimension d and coordinates corre-
sponding to i , β(d) + 1 coordinates of D), with input Xi;

– D ′, same operation as X , with dimensions β, and n inputs. The
i-th input is:

∗ if both dimension d coordinates i , β(d)+1, are present (through
the λ−1

XD and λ−1
XiX

mappings) in Xi node, the node X ′
i, with

dimension mapping λXiD′ ;
∗ otherwise, the node Xi, with dimension mapping λX′

iD
′ .

• Outputs

– OD , OutputS or OutputS operation, replication dimensions β, and
input D ′, with identity coordinate mapping.

The requirement towards the newly introduced dimensions and coordinate
mappings is that the coordinates of the Xi nodes should map to the same
coordinate of D ′ as in D .

Not-And Analysis

IsEq and IsNeq operations with same inputs

Let the initial DGFR contain the following nodes:

• Inputs

175

Appendix 2: continued

– X, InputS operation, replication dimensions ιX ;

– Y , InputS operation, replication dimensions ιY ;

• Regular Nodes

– E , IsEq operation, with dimensions α and inputs X , Y , with di-
mension mappings λXE and λY E , correspondingly;

– N , IsNeq operation, with dimensions β and inputs X , Y , with
dimension mappings λXN and λY N , correspondingly;

• Outputs

– OE , OutputB operation, replication dimensions α, input E with
identity coordinate mapping;

– ON , OutputB operation, replication dimensions β, input N with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– E, N , as in the initial DGFR;

– AMO , Nand operation, with dimensions γ, and the following inputs:

∗ E , with dimension mappings λEAMO;
∗ N , with dimension mappings λNAMO;

• Outputs — as in the initial DGFR;

The coordinate mappings λEAMO and λNAMO can be chosen freely, as long as
two coordinates of X and Y correspond to the same coordinate of AMO if and
only if they correspond to the same coordinates of E and N . The numbers of
coordinates γ is the minimum number of coordinates required to allow defining
the coordinate mappings this way.

False and Any Node Returning Bit String

Let the initial DGFR contain the following nodes:

• Inputs

– X, InputS operation, replication dimensions ιX ;

• Regular Nodes

176

Appendix 2: continued

– F , False operation, no replication dimensions;

• Outputs

– OF , OutputB operation, no replication dimensions, input F with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– F , as in the initial DGFR;

– OK , IsOK operation, with dimensions ιX , and input X , with iden-
tity coordinate mapping;

– AMO , Nand operation, with dimensions ιX , and the following in-
puts:

∗ F , with identity dimension mapping;
∗ OK , with identity dimension mapping.

• Outputs — as in the initial DGFR;

False and Any Node Returning Boolean Value

Let the initial DGFR contain the following nodes:

• Inputs

– B, InputB operation, replication dimensions ιB;

• Regular Nodes

– F , False operation, no replication dimensions;

• Outputs

– OF , OutputB operation, no replication dimensions, input F with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– F , as in the initial DGFR;

177

Appendix 2: continued

– AMO , Nand operation, with dimensions ιB, and the following in-
puts:

∗ F , with identity dimension mapping;
∗ B , with identity dimension mapping.

• Outputs — as in the initial DGFR;

Error and Any Node Returning Bit String

Let the initial DGFR contain the following nodes:

• Inputs

– X, InputS operation, replication dimensions ιX ;

• Regular Nodes

– E , Error operation, no replication dimensions;

• Outputs

– OE , OutputS operation, no replication dimensions, input E with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– E, as in the initial DGFR;

– OK 1, IsOK operation, no replication dimensions, and input E , with
identity coordinate mapping;

– OK 2, IsOK operation, replication dimensions ιX , and input X , with
identity coordinate mapping;

– AMO , Nand operation, with dimensions α, and the following inputs:

∗ OK1 , with identity coordinate mapping;
∗ OK2 , with identity coordinate mapping.

• Outputs — as in the initial DGFR;

178

Appendix 2: continued

Error and Any Node Returning Boolean Value

Let the initial DGFR contain the following nodes:

• Inputs

– B, InputB operation, replication dimensions ιB;

• Regular Nodes

– E , Error operation, no replication dimensions;

• Outputs

– OE , OutputS operation, no replication dimensions, input E with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– E, as in the initial DGFR;

– OK , IsOK operation, no replication dimensions, and input E , with
identity dimension mapping;

– AMO , Nand operation, with dimensions α, and the following inputs:

∗ OK1 , with identity coordinate mapping;
∗ B , with identity coordinate mapping;

• Outputs — as in the initial DGFR;

Propagating Nand Through And

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operations, replication dimensions ιBi ;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– A, And operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λi be the dimension mapping of i-th input (1 ≤ i ≤ n).

– AMO , Nand operation, with dimensions β, and the following inputs:

179

Appendix 2: continued

∗ Bj (for some j, 1 ≤ j ≤ n), with dimension mapping λBjAMO;
∗ C , with dimension mapping λCAMO.

• Outputs

– OA, OutputB operation, replication dimensions α, input A, with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– A, AMO , same as in the initial DGFR;

– AMO2, Nand operation, with dimensions α, and the following in-
puts:

∗ A, with identity dimension mapping;
∗ C , with dimension mapping λ(d, n).λi(d, n).

• Outputs — same as in the initial DGFR.

Propagating Nand Through the Control Input of Bit String Node

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Xi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιXi ;

– D, InputB operation, replication dimensions ιD;

• Regular nodes

– S : IfDef, Nonce, Const, Keypair, PubKey, SigVer, VerKey, SymKey,
PubEnc, SymEnc, PubEncZ, SymEncZ, Signature, SignedMsg, Tuple,
Proj, PubDec, SymDec, Send, Begin, End, Receive, Secret, Merge,
DTakeDimEq, or Id operation; let α be its dimensions; let C be
its control input with dimension mapping λC ; let X1, . . . , Xn be
the data inputs; let λi be the dimension mapping of i-th input
(1 ≤ i ≤ n).

– AMO , Nand operation, with dimensions β, and the following inputs:

∗ C , with dimension mapping λCAMO;
∗ D , with dimension mapping λDAMO;

180

Appendix 2: continued

• Outputs

– OS , OutputS operation, replication dimensions α, and input S , with
identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– S , AMO , same as in the initial DGFR

– OK , IsOK operation, replication dimensions α and input S , with
identity coordinate mapping;

– AMO2, Nand operation, replication dimensions α, and the following
inputs:

∗ OK , with identity dimension mapping;
∗ C , with dimension mapping λ(d, n).λC ;

• Outputs — same as in the initial DGFR.

Propagating Nand Through the Data Input of a Bit String Node

Let the initial DGFR be the following:

• Inputs

– C, InputB operation, replication dimensions ιC ;

– Xi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιXi ;

– D, InputB operation, replication dimensions ιD;

• Regular nodes

– S : Nonce, Const, Keypair, PubKey, SigVer, VerKey, SymKey, PubEnc,
SymEnc, PubEncZ, SymEncZ, Signature, SignedMsg, Tuple, Proj,
PubDec, SymDec, Send, Begin, End, Receive, Secret, Merge,
DTakeDimEq, or Id operation; let α be its dimensions; let C be
its control input with dimension mapping λC ; let X1, . . . , Xn be
the data inputs; let λi be the dimension mapping of i-th input
(1 ≤ i ≤ n).

– OK 1, IsOK operation, with dimensions γ and input Xj , with iden-
tity dimension mapping λXjOK1 ;

– AMO , Nand operation, with dimensions β, and the following inputs:

181

Appendix 2: continued

∗ OK 1, with dimension mapping λOK1AMO;
∗ D , with dimension mapping λDAMO;

• Outputs

– OS , OutputS operation, replication dimensions α, and input S , with
identity coordinate mapping.

– OOK 1 , OutputB operation, replication dimensions γ, and input OK 1,
with identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– S , OK 1, AMO , same as in the initial DGFR

– OK , IsOK operation, replication dimensions α and input S , with
identity coordinate mapping;

– AMO2, Nand operation, replication dimensions α, and the following
inputs:

∗ OK , with identity dimension mapping;
∗ C , with dimension mapping λ(d, n).λC .

• Outputs — same as in the initial DGFR.

Propagating Nand Through Or Node

Let the initial DGFR be the following:

• Inputs

– Bi, for 1 ≤ i ≤ n, InputB operations, replication dimensions ιBi ;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– O , Or operation; let α be its dimensions; let B1, . . . , Bn be its
inputs; let λi be the dimension mapping of i-th input (1 ≤ i ≤ n).

– AMO , Nand operation, with dimensions β, and the following inputs:

∗ O , with dimension mapping λOAMO;
∗ C , with dimension mapping λCAMO.

• Outputs

182

Appendix 2: continued

– OO, OutputB operation, replication dimensions α, input O , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– O , AMO , same as in the initial DGFR;

– AMO i, 1 ≤ i ≤ n, the operation is Nand, replication dimensions β.
The inputs are:

∗ Bi, with the coordinate mapping λ(d, n).λOAMO(d, λi(d, n));
∗ C , with coordinate mapping λCAMO.

• Outputs — same as in the initial DGFR.

Propagating Nand through Longor

Let the initial DGFR be the following:

• Inputs

– B, InputB operations, replication dimensions ιB;

– C, InputB operation, replication dimensions ιC ;

• Regular nodes

– LO , Longor operation; let α be its dimensions and γ the dimensions
it contracts; let B be its input; let λB be the coordinate mapping
of the input.

– AMO , Nand operation, with dimensions β, and the following inputs:

∗ LO , with coordinate mapping λLOAMO;
∗ C , with coordinate mapping λCAMO;

• Outputs

– OLO, OutputB operation, replication dimensions α, input LO , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

183

Appendix 2: continued

– LO , AMO , same as in the initial DGFR;

– AMO2, Nand operation, with dimensions δ, and the following in-
puts:

∗ B , with dimension mapping λBAMO2 ;
∗ C , with dimension mapping λCAMO2 ;

• Outputs — same as in the initial DGFR.

The coordinate mappings λBAMO2 and λCAMO2 can be chosen freely, as long
as two coordinate of B and C correspond to the same coordinate of AMO2 if
and only if they correspond to the same coordinate of AMO . The numbers of
coordinate δ is the minimum number of coordinate required to allow defining
the coordinate mappings this way.

Propagating Nand through the IfDef

Let the initial DGFR be the following:

• Inputs

– Control , InputB operation, replication dimensions ιControl;

– Check i, for 1 ≤ i ≤ n, InputB operation, replication dimensions
ιCDi ;

– Datai, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιCDi ;

– C , InputB operation, replication dimensions ιC ;

• Regular nodes

– I , IfDef operation, let α be its dimensions; let Control be its con-
trol input with coordinate mapping λCI ; let for (1 ≤ i ≤ n) the
(Check i,Datai) be its pairs of check- and data-inputs, with dimen-
sions βi, coordinate mapping λCDi , and contracted dimensions γi;

– AMO , Nand operation, with dimensions δ, and the following inputs:

∗ I , with coordinate mapping λIAMO;
∗ C , with coordinate mapping λCAMO;

• Outputs

– OI , OutputS operation, replication dimensions α, and input I , with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

184

Appendix 2: continued

• Regular nodes

– I , AMO , same as in the initial DGFR

– AMOChecki (1 ≤ i ≤ n), Nand operation, relication dimensions ε,
and the following inputs:

∗ Check i, with coordinate mapping λCDiAMOi ;
∗ C , with coordinate mapping λCAMOi ;

– OKDi (1 ≤ i ≤ n), operation is IsOK, replication dimensions βi.
The input is Datai , with identity coordinate mapping;

– AMODatai (1 ≤ i ≤ n), Nand operation, replication dimensions ε,
and the following inputs:

∗ OKDi , with coordinate mapping λCDiAMOi ;
∗ C , with coordinate mapping λCAMOi ;

– AMOControl, Nand operation, replication dimensions δ, and the fol-
lowing inputs:

∗ Control , with coordinate mapping λ(d, n).λIAMO(d, λCI (d, n));
∗ C , with coordinate mapping λCAMO;

• Outputs — same as in the initial DGFR.

The coordinate mappings λCDiAMOi and λCAMOi can be chosen freely, as
long as two coordinates of Check i and C correspond to the same coordinate of
AMOChecki (the same also holds for AMODatai) if and only if they correspond
to the same coordinates of AMO . The replication dimensions ε is the minimum
number of replication dimensions required to allow defining the coordinate
mappings this way.

The Nand operation removal

Every transformation, defined above, has a dual transformation, defined as
following: the new DGFR (result of the transformation) can be replaced with
the original DGFR, without affecting the DGFR semantics. Note that it is
not allowed to just remove the Nand operations, as, in the absence of the rest
of the DGFR-result of the transformation, they can turn to >, thus stopping
the execution of the DGF, corresponding to the DGFR.

Using the NAND Analysis Results at Boolean Nodes

Let the initial DGFR contain the following nodes:

• Inputs

185

Appendix 2: continued

– Si, for 1 ≤ i ≤ n, InputB or InputS operation, replication dimensions
ιSi ;

• Regular Nodes

– B , any operation having n inputs and returning boolean value; let α
be its replication dimensions. The i-th input is Si, with coordinate
mapping λSiB;

– AMO , Nand operation, replication dimensions β. The node has the
following inputs:

∗ B , with coordinate mapping λBAMO;
∗ B , with coordinate mapping λBAMO;

• Outputs

– OB, OutputB operation, replication dimensions α, input B with
identity coordinate mapping;

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– F , False operation, no replication dimensions;

• Outputs

– OB, OutputB operation, replication dimensions α, input F with
identity coordinate mapping.

Using NAND Analysis Results at Bit String Nodes

Let the initial DGFR contain the following nodes:

• Inputs

– Si, for 1 ≤ i ≤ n, InputB or InputS operation, replication dimensions
ιSi ;

• Regular Nodes

– X , any operation having n inputs and returning bit string value;
let α be its replication dimensions. The i-th input is Si, with coor-
dinate mapping λSiX ;

186

Appendix 2: continued

– OK , IsOK operation, replication dimensions β and input X , with
the coordinate mapping λXOK

– AMO , Nand operation, replication dimensions γ. The operation
has the following inputs:

∗ OK , with coordinate mapping λOKAMO;
∗ OK , with coordinate mapping λOKAMO;

• Outputs

– OX , OutputS operation, replication dimensions α, input X with
identity coordinate mapping;

– OOK , OutputB operation, replication dimensions β, input OK with
identity coordinate mapping.

The initial DGFR can be replaced with the following DGFR:

• Inputs — same as in the initial DGFR;

• Regular nodes

– F , False operation, no replication dimensions;

– E , Error operation, no replication dimensions;

• Outputs

– OX , OutputS operation, replication dimensions α, input E with
identity coordinate mapping;

– OOK , OutputB operation, replication dimensions β, input F with
identity coordinate mapping.

Removing Or Inputs Having No Effect on the Computation Result

Let the initial DGFR be the following:

• Inputs

– B1i, for 1 ≤ i ≤ n, InputB operation, replication dimensions ιB1i ;

– B2j , for 1 ≤ i ≤ m, InputB operation, replication dimensions ιB2j ;

– B, InputB operation, replication dimensions ιB;

• Regular nodes

– O , Or operation with dimensions α and n inputs B11, . . . ,B1n, hav-
ing dimension mappings λB11O, . . . , λB1nO;

187

Appendix 2: continued

– A, And operation with dimensions β and m + 1 inputs
O ,B21, . . . ,B2m, having dimension mappings
λOA, λB21A, . . . , λB2mA;

– Dep, ⇒ operation with dimensions γ, the following inputs:
∗ A, dimension mapping λADep;
∗ B , dimension mapping λBDep;

– Amo, Nand operation with dimensions δ, the following inputs:
∗ B , dimension mapping λBAmo;
∗ B1j (for some j, 1 ≤ j ≤ n), dimension mapping λB1jAmo;

• Outputs

– OO, OutputB operation, replication dimensions α, and input O,
with identity coordinate mapping;

– OA, OutputB operation, replication dimensions β, and input A,
with identity coordinate mapping.

Additionally we require that the dimension mappings present in the initial
DGFR guarantee that the coordinates of B1j correspond to the same dimen-
sions of Amo, irrespective whether we “trace” the coordinate of B1j through
the nodes O , A, Dep, and B ; or directly through the mapping the λB1jAmo.

If the requirements are met, the initial DGFR can be replaced with the
following:

• Inputs - same as in the initial DGFR;

• Regular nodes

– Amo, O , as in the initial DGFR;
– O ′, Or operation with dimensions α and n− 1 inputs

B11, . . . ,B1j−1,B1j+1, . . . ,B1n, with coordinate mappings
λB11O, . . . , λB1nO;

– A′, And operation with dimensions β and m + 1 inputs
O ′,B21, . . . ,B2m, with coordinate mappings λOA, λB21A, . . . , λB2mA;

– Dep, ⇒ operation with dimensions γ, the following inputs:
∗ A′, dimension mapping λA′Dep;
∗ B , dimension mapping λBDep;

• Outputs

– OO, as in the initial DGFR.
– OA, OutputB operation, replication dimensions β, and input A′,

with identity coordinate mapping.

188

Appendix 2: continued

Removing Longor Inputs Having no Effect on the Computation Re-
sult

Let the initial DGFR be the following:

• Inputs

– B1, InputB operation, replication dimensions ιB1 ;

– B2j , for 1 ≤ i ≤ m, InputB operation, replication dimensions ιB2j ;

– B, InputB operation, replication dimensions ιB;

• Regular nodes

– LO , Longor operation, replication dimensions α, input B1, with
coordinate mapping λB1O and contracted dimensions αc;

– A, And operation, replication dimensions β and m + 1 inputs
LO ,B21, . . . ,B2m, with coordinate mappings
λLOA, λB21A, . . . , λB2mA;

– Dep, ⇒ operation, replication dimensions γ, and the following in-
puts:

∗ A, coordinate mapping λADep;
∗ B , coordinate mapping λBDep;

– Amo, Nand operation, replication dimensions δ, and the following
inputs:

∗ B , coordinate mapping λBAmo;
∗ B1, coordinate mapping λB1Amo;

• Outputs

– OLO, OutputB operation, replication dimensions α, and input LO,
with identity coordinate mapping;

– OA, OutputB operation, replication dimensions β, and input A,
with identity coordinate mapping.

Additionally we require that at least one B1 coordinate, contracted in LO , has
corresponding (through the nodes Amo, B , and Dep) A coordinate. The rest
of the coordinates of B1 should correspond to the same dimensions of Amo,
irrespective whether we “trace” the coordinate of B1 through the nodes LO ,
A, Dep, and B ; or directly through the mapping the λB1Amo.

If the requirements are met, the initial DGFR can be replaced with the
following:

• Inputs - same as in the initial DGFR;

189

Appendix 2: continued

• Regular nodes

– Amo, LO , as in the initial DGFR;

– LO ′, Longor operation, replication dimensions α′, input B1, with
coordinate mapping λB1O and contracted dimensions α′c;

– A′, And operation, replication dimensions β and m + 1 inputs
O ′,B21, . . . ,B2m, with coordinate mappings λOA, λB21A, . . . , λB2mA;

– Dep, ⇒ operation with dimensions γ, the following inputs:

∗ A′, dimension mapping λA′Dep;
∗ B , dimension mapping λBDep;

• Outputs

– OLO, as in the initial DGFR;

– OA, OutputB operation, replication dimensions β, and input A′,
with identity coordinate mapping;

The newly introduced dimensions and dimension mappings should map the
B1 coordinates, previously contracted in LO , but having the corresponding A
coordinate (through the Amo, B , and Dep mappings), to that A coordinate.

Cryptographic Primitives

Symmetric Encryption Replacement

We require the encryption system to satisfy the IND-CCA and cipher text
integrity properties defined in Appendix 1. The encryption of the plain text
with the given public key is replaced with the encryption of the string of
zeroes (or any other constant) of equal length, and that latter cipher text
is indistinguishable from the first for anyone, except for the one having the
corresponding key. On the decryption side we first check whether the cipher
text matches one of the cipher texts already produced, and if it does, the
corresponding plain text is returned. The difference with the asymmetric
encryption is that if the cipher text is not equal to one of the cipher texts
produced, the result of the decryption is, due to the cipher text integrity,
always ⊥.

Formally, let the initial DGFR be the following:

• Inputs

– CRK , InputB operation, replication dimensions ιRK ;

– CK , InputB operation, replication dimensions ιK ;

– CREi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCREi
;

190

Appendix 2: continued

– CEi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCEi
;

– CDj , for 1 ≤ j ≤ m, InputB operation, replication dimensions ιCDj
;

– PTi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιPTi ;

– CTj , for 1 ≤ j ≤ m, InputS operation, replication dimensions ιCTj ;

• Regular nodes

– RK, RS operation, the replication dimensions α, the control input
CRK , with coordinate mapping λCRKRK ;

– K, SymKey operation, the replication dimensions α, the control
input CK , with coordinate mapping λCKK ; the data input RK
with identity coordinate mapping;

– REi, for 1 ≤ i ≤ n, RS operation, the replication dimension βi, the
control input CREi , with coordinate mapping λCREi

REi ;

– Ei, for 1 ≤ i ≤ n, SymEnc operation, the replication dimension βi,
the control input CEi , with coordinate mapping λCEi

Ei ; the data
inputs are:

∗ Random coins: REi, with identity coordinate mapping;
∗ Key: K, with coordinate mapping λKEi ;
∗ Plain text: PTi, with coordinate mapping λPTiEi ;

– Dj , for 1 ≤ j ≤ m, SymDec operation, the replication dimension
γj , the control input CDj , with coordinate mapping λCDj

Dj ; the
data inputs are:

∗ Key: K, with coordinate mapping λKDj ;
∗ Cypher text: CTj , with coordinate mapping λCTjDj ;

• Outputs

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions βi, the input Ei, with identity coordinate mapping;

– ODj , for 1 ≤ j ≤ m, the OutputS operation, the replication dimen-
sions γj , the input Dj , with identity coordinate mapping;

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

– RK, RS operation, the replication dimensions α, the control input
CRK , with coordinate mapping λCRKRK ;

191

Appendix 2: continued

– K, SymKey operation, the replication dimensions α, the control
input CK , with coordinate mapping λCKK ; the data input RK
with identity coordinate mapping;

– REi, for 1 ≤ i ≤ n, RS operation, the replication dimensions βi,
the control input CREi , with coordinate mapping λCREi

REi ;

– OKi, for 1 ≤ i ≤ n, IsOK operation, the replication dimensions βi,
the input is PTi, with coordinate mapping λPTiEi ;

– Ai, for 1 ≤ i ≤ n, And operation, the replication dimensions βi, the
operation has two inputs: CEi , with coordinate mapping λCEi

Ei ,
and OKi, with identity coordinate mapping;

– E′
i, for 1 ≤ i ≤ n, SymEncZ operation, the replication dimensions

βi, the control input Ai, with identity coordinate mapping; the data
inputs are:

∗ Random coins: REi, with identity coordinate mapping;
∗ Key: K, with coordinate mapping λKEi ;

– EQij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, IsEq operation, the replication
dimension γj + βi (pointwise addition), the inputs are:

∗ CTj , with identity coordinate mapping;
∗ E′

i, with coordinate mapping λ(d, n).γj(d) + n;

– D′
j , 1 ≤ j ≤ m, IfDef operation, the replication dimension γj , the

control input CDj , with coordinate mapping λCDj
Dj ; the operation

has n pair of data inputs: for 1 ≤ i ≤ n, the check-input is EQij ,
with the identity coordinate mapping; the data-input is PTi, with
coordinate mapping λ(d, n).γj(d) + λPTiEi ; the contracted dimen-
sions are βi

• Outputs

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions β, the input E′

i, with identity coordinate mapping;

– ODj , for 1 ≤ j ≤ m, the OutputS operation, the replication dimen-
sions γ, the input D′

j , with identity coordinate mapping;

Theorem 8. For the symmetric encryption transformation described above,
the public view of the transformed DGF H ′ (corresponding to the transformed
DGFR) is indistinguishable from the public view initial DGF H (corresponding
to the initial DGFR).
Proof. In the fragment H ′ the ρ[OEi] returns the encryption of the string
of zeroes of the length equal to the length of the plain text ρ[PTi] and the

192

Appendix 2: continued

ρ[ODj] = ρ[D′
j] is one of the plain texts earlier encrypted by the fragment, or

⊥ (if the cipher text being decrypted has not been encrypted by the fragment).
It is possible that ρ[D′

j] would be equal to >. The IfDef operation can
only return > if more than one node EQij returns true; the probability that
it happens is negligible, as the values compared with (the result of the node
E′

i) are functions of independent random coins (generated at the nodes with
labels REi).

Having shown that ρ[D′
j] (and thus ρ[ODj]) can be equal to > only with

negligible probability, we go on with demonstrating that from the driver al-
gorithm AH , producing the public views of H from H ′ and the algorithm A,
distinguishing these public views, the algorithm AE , winning the IND-CCA
game with the same probability, can be constructed.

The AE behaves like AH , but instead of returning to the graph fragment
evaluation function, it calls the symmetric encryption oracle defined in Ap-
pendix 1:

• when AH first sets the ρ[CK] and ρ[CRK] to true the AE executes
Initialize;

• when AH first sets (for some coordinate vector cv) the ρ[CEi .cv] and
ρ[CREi .cv] to true, and the ρ[PTi.cv] to M0, the AE executes LR(M0,
(0)|M0|), and puts the returned value to ρ[OEi .cv],

• when AH first sets (for some coordinate vector cv′) the ρ[CDj .cv
′] to true

and the ρ[CTj .cv′] to C, the AE executes Dec(C), and puts the returned
value to ρ[ODj .cv

′],

• finally, when AH indicates to stop with the public view, and the algo-
rithm A is executed to produce the bit b, indicating whether the public
view corresponds to H or H ′, the AE calls Finalize(b).

By examining the semantics of the graph fragment step functions, it can be
checked that indeed the evaluation of H or H ′ will set the outputs according
to the rules implemented by AE above. As all the random coins, including
those used by encryption oracle and by the RS operation on the graphs, are
generated according to the same distribution, so the keys generated in node
K and encryption oracle in the game are.

So, the AE will win the IND-CCA game with the same probability as the
A will distinguish the view viewH(AH) from viewH′

(AH). By the requirement
we put on the encryption scheme, this probability is negligible. ¤

Signature Replacement

We require the signature scheme abstracted by the operations SigVer, Verkey,
Signature, SignedMsg, and TestSig to be ACMA-secure, as defined in Ap-

193

Appendix 2: continued

pendix 1. The idea of the transformation is: if the secret key used to produce
the signatures is used for this purpose only (and, therefore, is unknown to the
driver algorithm), the signature verification operation is replaced with a con-
junction of the signature verification operation and a check that the message
being verified belongs to the set of messages previously signed with the same
key.

Formally, let the initial DGFR be the following:

• Inputs

– CRK , InputB operation, replication dimensions ιRK ;

– CSV , InputB operation, replication dimensions ιSV ;

– CV K , InputB operation, replication dimensions ιV K ;

– CRSi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCRSi
;

– CSi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCSi
;

– Mi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιMi ;

– CSMj , for 1 ≤ j ≤ m, InputB operation, replication dimensions
ιCSMj

;

– CSMjSk
, for 1 ≤ j ≤ m and 1 ≤ k ≤ kj , InputS operation, replica-

tion dimensions ιSMjSk

• Regular nodes

– RK, RS operation, the replication dimensions α, the control input
CRK , with coordinate mapping λCRKRK ;

– SV , SigVer operation, the replication dimensions α, the control
input CSV , with coordinate mapping λCSV SV ; the data input RK
with identity coordinate mapping;

– V K, VerKey operation, the replication dimensions α, the control
input CV K , with coordinate mapping λCV KV K ; the data input SV
with identity coordinate mapping;

– RSi, for 1 ≤ i ≤ n, RS operation, the replication dimension βi, the
control input CRSi , with coordinate mapping λCRSi

RSi ;

– Si, for 1 ≤ i ≤ n, Signature operation, the replication dimension βi,
the control input CSi , with coordinate mapping λCSi

Si ; the data
inputs are:

∗ Random coins: RSi, with identity coordinate mapping;
∗ Key: SV , with coordinate mapping λSV Si ;
∗ Message: Mi, with coordinate mapping λMiSi ;

194

Appendix 2: continued

– SMj , for 1 ≤ j ≤ m, any operation returning a bit string value;
the replication dimensions are ιSMj . The control input is CSMj

(with coordinate mapping λCSMj
SMj). The data inputs are (for

1 ≤ k ≤ kj) SMjSk, with coordinate mapping λSMjSk
SMj ;

– Vj , for 1 ≤ j ≤ m, TestSig operation, the replication dimension γj ,
with the following inputs:

∗ Key: V K, with coordinate mapping λV KVj ;
∗ Signed message: SMj , with coordinate mapping λSMjVj ;

• Outputs

– OV K , the OutputS operation, the replication dimensions α, the in-
put V K, with identity coordinate mapping;

– OSi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions βi, the input Si, with identity coordinate mapping;

– OSMj , for 1 ≤ j ≤ m, the OutputS operation, the replication di-
mensions ιSMj , the input SMj , with identity coordinate mapping;

– OVj , for 1 ≤ j ≤ m, the OutputB operation, the replication dimen-
sions γj , the input Vj , with identity coordinate mapping.

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

– RK, SV , V K, RSi (1 ≤ i ≤ n), Si (1 ≤ i ≤ n), and Vj (1 ≤ j ≤ m)
nodes, defined as in the initial DGFR;

– SM ′
j , for 1 ≤ j ≤ m, SignedMsg operation, replication dimensions

ιSMj , and the following inputs:

∗ Control: CSMj , with coordinate mapping λCSMj
SMj ;

∗ Message: SMj , with identity coordinate mapping;

– EQij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, IsEq operation, replication
dimensions ιSMj + βi (pointwise addition), the inputs are:

∗ SM ′
j , with identity coordinate mapping;

∗ Mi, with coordinate mapping λ(d, n).ιSMj (d) + n;

– Aij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, And operation, replication
dimensions ιSMj + βi (pointwise addition). The operation has two
inputs: CSi , with coordinate mapping λCSi

Si , and EQij , with iden-
tity coordinate mapping;

195

Appendix 2: continued

– LOij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, Longor operation, replication
dimensions γj , and all the coordinates, present in the ιSMj +βi, but
not present in γj , contracted;

– Oj , for 1 ≤ j ≤ m, Or operation, replication dimensions γj , and n
inputs. The i-th input (1 ≤ i ≤ n) is LOij , with identity coordinate
mapping;

– Aj , for 1 ≤ j ≤ m, And operation, replication dimensions γj . The
operation has two inputs: Oj and Vj , both with identity coordinate
mapping;

• Outputs

– OV K , OSi , and OSMj nodes, defined as in the initial DGFR;

– OVj , for 1 ≤ j ≤ m, the OutputB operation, the replication dimen-
sions γj , the input Aj , with identity coordinate mapping.

Theorem 9. For the digital signature transformation described above, the
public view of the transformed DGF H ′ (corresponding to the transformed
DGFR) is indistinguishable from the public view initial DGF H (corresponding
to the initial DGFR).
Proof. The only difference between the H and H ′ is how the ρ[OVj] is com-
puted – in H it is a result of TestSig operation, while in H ′ it is a concatenation
of the TestSigP operation (having the same semantics as TestSig; we use differ-
ent names just to avoid the repeated application of this transformation) and
checking that the message being verified belongs to the set of the messages
previously signed at Si (for all i, 1 ≤ i ≤ n).

In order to prove the theorem, we demonstrate that from the driver al-
gorithm AH , producing the public views of H from H ′ and the algorithm A,
distinguishing these public views, the algorithm AS , winning the ACMA game
(as defined in Appendix 1) with the same probability, can be constructed.

The AS behaves like AH , but instead of returning to the graph fragment
evaluation function, it calls the oracle defined in Appendix 1:

• When AH first sets the ρ[CRK], ρ[CSV] to true the AS executes Initialize
and saves the returned public key;

• when AH first sets the ρ[CV K] to true the AS sets the ρ[OV K] to the
saved public key;

• when AH first sets (for some coordinate vector cv) the ρ[CRSicv] and
ρ[CSi .cv] to true, and the ρ[Mi.cv] to M , the AS executes Sign(ρ[M.cv]),
and puts the message M , concatenated with the signature (returned
value) to ρ[OSi .cv];

196

Appendix 2: continued

• when AH first sets (for some coordinate vector cv′) the ρ[CSMj .cv
′] to

true and (for the given j and all k, 1 ≤ k ≤ kj) the ρ[CSMjSk
.cv′] to non-

⊥ values, the AS first computes the ρ[SMj .cv′] and sets the ρ[OSMj .cv
′]

to the resulting value. Then, it executes Verify(V , OSMj .cv
′), and puts

the returned value to ρ[OVj].cv′;

• finally, when AH indicates to stop with some public view, AS also stops.

By examining the semantics of the graph fragment step functions, it can be
checked that indeed the evaluation of H or H ′ will set the outputs according to
the rules implemented by AS above. As all the random coins, including those
used by encryption oracle and by the RS operation, are generated according
to the same distribution, so the keys generated at SV and signature oracle in
the game are.

Since the algorithm A is able to distinguish the public views, and the
ρ[OV K], ρ[OSi], and ρ[OSMj] are computed according to the same formulae,
the values of ρ[OVj] should be different. Given the semantics of the graph, it
is only possible that for some j and coordinate vector cv′ the ρ[OVj].cv′ is true
in H, but is false in H ′ — it means that some message successfully passed the
signature test operation, but it has not been signed by the signature oracle
(all the checks Aj fail), and, therefore, the ACMA game is won. By the
requirement we put on the signature scheme, this probability is negligible. ¤

Public Key Analysis

In this transformation, we consider the value used as a public key in asymmet-
ric encryption operation, and analyze separately the cases where it is equal
to each of the public keys corresponding to the key pairs generated in the
protocol, and the case where it is not equal to any of those public keys.

Formally, let the initial DGFR be the following:

• Inputs

– CRKj , for 1 ≤ j ≤ m, InputB operation, replication dimensions
ιRKj ;

– CKPj , for 1 ≤ j ≤ m, InputB operation, replication dimensions
ιKPj ;

– CPKj , for 1 ≤ j ≤ m, InputB operation, replication dimensions
ιPKj ;

– CDj , for 1 ≤ j ≤ m, InputB operation, replication dimensions ιCDj
;

– CTj , for 1 ≤ j ≤ m, InputS operation, replication dimensions ιCTj ;

– CEi , for 1 ≤ i ≤ n, InputB operation, replication dimensions ιCEi
;

197

Appendix 2: continued

– PK ′
i, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιPK′

i
;

– Ri, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιRi ;

– PTi, for 1 ≤ i ≤ n, InputS operation, replication dimensions ιPTi ;

• Regular nodes

– RKj , RS operation, the replication dimensions α, the control input
CRKj , with coordinate mapping λCRKj

RKj ;

– KPj , Keypair operation, the replication dimensions α, the control
input CKPj , with coordinate mapping λCKPj

KPj ; the data input
RKj with identity coordinate mapping;

– PKj , PubKey operation, the replication dimensions α, the control
input CPKj , with coordinate mapping λCPKj

PKj ; the data input
KPj with identity coordinate mapping;

– Dj , for 1 ≤ j ≤ m, PubDec operation, the replication dimension γj ,
the inputs are:

∗ Control: CDj , with coordinate mapping λCDj
Dj ;

∗ Key: KPj , with coordinate mapping λPKjDj ;
∗ Cypher text: CTj , with coordinate mapping λCTjDj ;

– Ei, for 1 ≤ i ≤ n, PubEnc operation, the replication dimension βi,
the inputs are:

∗ Control CEi , with coordinate mapping λCEi
Ei ;

∗ Random coins: REi, with identity coordinate mapping;
∗ Key: PK ′

i, with coordinate mapping λPK′
iEi

;
∗ Plain text: PTi, with coordinate mapping λPTiEi ;

• Outputs

– OPKj , the OutputS operation, the replication dimensions α, the
input PKj , with identity coordinate mapping;

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions βi, the input Ei, with identity coordinate mapping;

– ODj , for 1 ≤ j ≤ m, the OutputS operation, the replication dimen-
sions γj , the input Dj , with identity coordinate mapping;

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

• Regular nodes

198

Appendix 2: continued

– RKj , KPj , PKj , and Dj nodes, defined as in the initial DGFR;

– EQij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, IsEq operation, the replication
dimensions βi + γj (pointwise addition), the inputs are:

∗ PK ′
i, with coordinate mapping λ(d, n).λPK′

iEi
(d, n);

∗ PKj , with coordinate mapping βi(d) + λPKjDj ;

– NEQij , for 1 ≤ i ≤ n and 1 ≤ j ≤ m, IsNeq operation, the
replication dimensions βi + γj (pointwise addition), the inputs are:

∗ PK ′
i, with coordinate mapping λ(d, n).λPK′

iEi
(d, n);

∗ PKj , with coordinate mapping βi(d) + λPKjDj ;

– Ai, for 1 ≤ i ≤ n, And operation. The replication dimensions are
βi + γj (pointwise addition). The operation has m inputs, the j-th
input is NEQij l

– PK ′′
i , 1 ≤ i ≤ n, IfDef operation, the replication dimension βi, the

control input CEi , with coordinate mapping λCEi
Ei ; the operation

has m + 1 pair of data inputs:

∗ for 1 ≤ j ≤ m, the check-input is EQij , with the identity
coordinate mapping; the data-input is PKj , with coordinate
mapping βi(d) + λPKjDj ; the contracted dimensions are γj ;

∗ for i + 1-th pair, the check-input is Ai, with identity coordi-
nate mapping; the data-input is PK ′

i, with coordinate mapping
λ(d, n).λPK′

iEi
(d, n); the contracted dimensions are γj ;

– E′
i, for 1 ≤ i ≤ n, PubEnc operation, the replication dimension βi,

the inputs are:

∗ Control CEi , with coordinate mapping λCEi
Ei ;

∗ Random coins: REi, with identity coordinate mapping;
∗ Key: PK ′′

i , with identity coordinate mapping;
∗ Plain text: PTi, with coordinate mapping λPTiEi ;

• Outputs

– OPKj and ODj , defined as in the initial DGFR;

– OEi , for 1 ≤ i ≤ n, the OutputS operation, the replication dimen-
sions βi, the input E′

i, with identity coordinate mapping;

The correctness of this transformation follows from the definition of the se-
mantics of the IfDef operation, and the structure of the transformed DGFR —
it is obvious that (with non-negligible probability) any given value can be equal
to at most one public keys considered (as the public keys are extracted from
the public-secret key pairs, each generated from random coins (used only for

199

Appendix 2: continued

that), and are not used for anything else than for the extraction of the public
key component or the decryption (using the secret key component). There-
fore, for any given coordinate vector cv, exactly one of the check-connections
of PK ′′

i will always be set to true (so, IfDef will not return > or ⊥ if its control
dependency (the same as for the Ei) is true), and, as the data-connections will
always return the same public key used in the original operation, the E′

i will
use the same key as the corresponding Ei operation in the initial DGFR. So,
the ρ[OEi] are computed in the initial and the transformed DGFR in the same
way, as the remaining outputs are.

Decryption of the result of PubEncZ

Formally, let the initial DGFR be the following:

• Inputs

– R, InputS operation, replication dimensions ιR;

– K, InputS operation, replication dimensions ιK ;

– X, InputS operation, replication dimensions ιX ;

– Y , InputS operation, replication dimensions ιY ;

• Regular nodes

– P , PubEncZ operation; let α be its dimensions; let R and K be its
randomness, and public key inputs, with coordinate mappings λRP

and λKP , correspondingly;

– E , IsEq operation, with dimensions β and inputs P , X , with di-
mension mappings λPE and λXE , correspondingly;

– D , PubDec operation, with dimensions γ, and inputs X , Y , with
dimension mappings λXD and λY D, correspondingly;

• Outputs

– OP , OutputS operation, replication dimensions α, input P with
identity coordinate mapping;

– OE , OutputB operation, replication dimensions β, input E with
identity coordinate mapping;

– OD, OutputS operation, replication dimensions γ, input D with
identity coordinate mapping;

The DGFR can be replaced with the following one:

• Inputs - same as in the initial DGFR;

200

Appendix 2: continued

• Regular nodes

– OK , IsOK operation, with dimensions γ, and input D , with identity
dimension mapping;

– AMO , Nand operation, with dimensions δ, and the following inputs:

∗ OK , with dimension mappings λOKAMO;
∗ E , with dimension mappings λEAMO.

• Outputs - same as in the initial DGFR;

The dimension mappings λOKAMO and λDAMO can be chosen freely, as long
as two dimensions of X correspond to the same dimension of AMO regardless
of whether the mapping is taken through the E node, or through the sequence
of D and OK nodes. The numbers of dimensions δ is the minimum number
of dimensions required to allow defining the dimension mappings this way.

201

