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Abstract 

The IoT market continues to evolve exponentially while security concerns of IoT devices 

remain open with various malware and IoT vulnerabilities. Intrusion Detection Systems 

(IDS) are designed to detect cyberattacks, and machine learning (ML)-based IDS are 

actual today both in scientific and commercial worlds. The current thesis addresses two 

issues. First is that the ML process and application can be resource-consuming which is 

especially important for IoT devices as they are designed to have very low computational 

capacity. Second is that the ML models need a lot of data to learn. Transfer learning (TL) 

solves that by taking knowledge learned from a source domain and applying it to the 

target. This work uses N-BaIoT IoT dataset as the source and MedBIoT IoT dataset as 

the target domain to study economic neural networks (NN) and TL for binary 

classification of Mirai and BashLite botnets. The 2 and 3-layered NN models were tested 

against source and target domains with and without TL. Testing with both types of models 

without TL against N-BaIoT data got on average 94-96% accuracy while against 

MedBIoT it was ineffective. The 2-layered model showed good performance against the 

source domain with TL, but poor against the target domain. The 3-layered model 

performed much better being effective with TL against both domains. The study also 

tested the TL approach where the model was retrained on target domain benign data only 

which showed an unsatisfactory performance. This work found that 2 and 3-layered 

models are enough to create a model that can be directly applied to other IoT devices for 

malware detection within the same IoT network. The 3-layered model can be effectively 

applied to other IoT devices and networks with 90% accuracy using TL with only 10% 

of target domain training data. 

This thesis is written in English and is 80 pages long, including 7 chapters, 42 figures and 

25 tables.
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1 Introduction 

Internet of Things is an exponentially growing market, it is used in homes, fitness, 

entertainment, industrial and other fields. In 2022, 1 trillion USD is expected to be spent 

on IoT devices [1]. It is also estimated that there will be around 75 billion IoT devices in 

the world by 2025 [2]. At the same time, it is a well-known fact that the security aspect 

is a great problem for IoT, these devices lack proper security measures [3]. The nature of 

IoT is that they have very little computational power and cannot have large software 

components installed on them [4]. The IoT industry suffers from a lack of standardization 

and sometimes a lack of manufacturers expertise in cybersecurity, hence existence of 

vulnerabilities in these devices is no surprise [5]. As their cybersecurity element is 

commonly weak, they are vulnerable to various malware attacks. It has already happened 

before – in 2016 an army of IoT bots infected by the infamous Mirai malware took down 

major websites such as Twitter, Reddit and Netflix [6]. Mirai and BashLite, also known 

as Gafgyt, are malware created specifically for IoT. IoT are often exploited for DDoS 

(Distributed Denial of Service) attacks [7], as happened in the Mirai case, but they could 

also be used for illegal cryptocurrency mining, act as an entry point to some illegal 

network access or become a malware spreading mechanism. Therefore, protection of IoT 

still remains an actual topic for research.  

Often networks are protected by IDS (Intrusion Detection System). There are mainly three 

IDS strategies – signature-based, protocol awareness and behavioral analysis [8]. 

Signature-based protect against known attacks based on a set of rules, protocol awareness 

restores protocols that may be modified, and finally, behavioral is typical ML (Machine 

Learning) based IDS. It usually builds a common traffic pattern and seeks to detect 

anomalies. Because signature based can protect from known attacks, ML based can 

protect from unknown ones. IDS itself is a standard security mechanism deployed in all 

kinds of systems, infrastructures, and networks to protect from cyberattacks, including 

IoT.  
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Besides being used in IDS, ML has been heavily utilized to explore security strengthening 

possibilities in IoT [9]. DL (Deep Learning), being a subcategory of ML, has shown good 

results in identifying botnets within IoT networks as indicated by numerous research 

papers [9]. ML requires big amounts of training data for model creation. Every time a ML 

model needs to be created to solve a particular problem, it needs data from that specific 

environment so that it could learn about the problem. Sometimes this data is available in 

limited quantities or not available at all. ML requires input for learning to be structured 

and processed, for supervised learning also labelled. There are open-source datasets, such 

as images of fruits, animals, sounds, and collections of malware similar to the ones used 

in this research paper. Creation of these datasets is costly as an image collection of some 

kind requires at least a thousand pictures of an item taken in various circumstances that 

represent the natural variety of that item. Malware dataset creation is even more 

complicated as in this case researchers are dealing with a dangerous cyber-weapon, all 

operations with it must be performed in a controlled environment following logical and 

safe procedures. The complexity level of a good cybersecurity dataset can be seen from 

[10] and [11]. In addition, ethical and confidentiality issues can take place, for example 

when dealing with personal data which restricts dataset access for public usage. This issue 

is addressed by TL technology, a technique that takes advantage of model previous 

training and applies gained knowledge to a new environment. This technique has been 

applied in various fields, including the IoT for cybersecurity enhancements and has shown 

good results [12]. Still, there are research gaps in the field of IoT, ML, TL and various 

malware. Some datasets that have similar traits are not used in ML studies, many studies 

that explore cross-datasets IoT TL, focus on CNN and not other types of NN (Neural 

Networks), in example [13], [14], [12].  

The aim of this thesis is to measure effectiveness of a NN for botnets classification within 

and across two different datasets. The ANN (Artificial Neural Network) model would be 

trained on one dataset and tested against this and other’s dataset devices. Also, the TL 

technique would be applied to adapt it to those devices. During the experiments, it would 

be measured how well the model performs using various ML metrics such as accuracy, 

recall and confusion matrixes. In addition, those experiments allow a correlation study of 

two datasets that would be used in this work – N-BaIoT and MedBIoT. These datasets 

are similar as they both contain labelled communication traffic. Traffic is both benign and 

infected with Mirai and BashLite, those datasets also have similar feature sets, but 
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different IoT devices. Also, they focus on different life-cycle stages of botnets – N-BaIoT 

addresses later pre-attack and attack phases while MedBIoT addresses the spread and 

C&C (Command and Control). TL can be applied both within the same dataset and also 

against the other one. When applied within the same dataset, it means that model would 

be retrained using partial data of this dataset’s other devices. Applying TL against the 

other dataset technically would be a similar procedure – taking partial data of target 

devices from this dataset for retraining. The difference is in the datasets, in addition to 

the mentioned difference, data was still collected during different time periods and in 

different lab environments which raises complexity of model inter-datasets application. 

All code necessary for experimentation would be written manually using well-known ML 

software libraries.  

The current research aims to answer the following questions: whether 2 and 3-layered NN 

is enough to make practically effective ML model and how well it performs with TL with 

named datasets. Also, how incremental model complication influences direct testing and 

TL results. Experiments would be performed with different parameters and the results 

documented. 

The novelty of this research is about using two named datasets, having a different ANN 

learning approach to experiments and comparing different types of TL combinations. 

Most other TL studies that focus on IoT are dedicated to coming up with effective, but 

complex models. This research aims at testing how a NN with few layers would handle 

these tasks and how the model’s slight complication influences the model’s effectiveness. 

Also, to the best of the author’s knowledge, there are no TL studies that would use both 

N-BaIoT and MedBIoT.  
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2 Background and Literature Review 

2.1 Background 

The IoT (Internet of Things) is a network of devices that have specific functions and are 

interconnected with each other [4]. Usually, these devices have a very limited calculating 

capacity. IoT are used in smart homes, entertainment systems, industrial networks, fitness 

and others. Examples of IoT include security cameras, smart watches, smart fridges, lights 

at home and modern vehicles. IoT devices are often portable, for example smart watches, 

this also means that they can be potentially vulnerable from many places.  

IDS was partially discussed in the introduction chapter. Its usual purpose is to alert when 

it detects an attack against the network it was set up to protect. These alerts are often a 

starting point for investigators [15]. (N)IDS or Network Intrusion Detection Systems are 

“specialized sniffers, with the added capability of evaluating captured traffic to determine 

whether it is malicious or legitimate” [15]. They have various functionalities and can be 

configured to not only alert but also take certain actions on the network [15]. IDS 

detection modes can be divided into three categories: signature-based, protocol awareness 

and behavioral analysis [15]. Signature-based is the oldest strategy, it compares technical 

details of inspected traffic, such as contents of packets and headers against saved 

definitions of malicious bytes [15]. Signature-based method is not limited to single 

packets of inspection, but its analysis can span over traffic flows [15]. Protocol awareness 

method aims to detect if network traffic corresponds to RFC specifications because 

infected traffic often does not [15]. Protocol-aware IDS recreate passing traffic on various 

network layers to check that [15]. Lastly, behavioral analysis is a typical ML-based IDS 

[15]. It is anomaly based but can also be trained to detect behavior of specific malware. 

Anomaly-based IDS is fed benign network traffic so it could learn what normal traffic is 

like. Standard ML methods expect learning data with pre-determined features, but DL 

models are capable of automatic useful features extraction. For example, sudden rises of 

traffic volume that did not happen with benign, can be treated as an anomaly, and 

therefore trigger an alert. There are numerous studies regarding behavior-based IDS and 

some of them were reviewed for this thesis. 

ML is one of the AI (Artificial Intelligence) categories. As its name suggests, it 

specializes in automatic learning from existing data to be able to make predictions. ML 
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uses various mathematical algorithms to accomplish its tasks. By one of the definitions, 

it is ”A computer program is said to learn from experience E with respect to some task T 

and some performance measure P, if its performance on T, as measured by P, improves 

with experience E.“ [16] Examples of ML applications include face recognition on photo 

and video, image search in search engines and internet traffic anomalies detection for 

security purposes. ML is very actively used in commercial and scientific purposes. 

DL is a certain technique of ML. It uses different algorithms and utilizes NN. They are 

named after neurons in the human brain due to the similarity between how NN and the 

human brain functions. DL is also more effective than ML with large scale tasks and big 

data, for example, when training data has over 1 million instances, and DL solves 

nonlinear problems that standard ML algorithms cannot [17]. As numerous research 

suggests, it is suitable technology for IoT networks, and some of these researches are 

reviewed for this thesis. Major applications of DL include computer vision, speech 

recognition, bioinformatics and 5G+ (5th Generation) communications. A typical DL 

network consists of 3 or more layers as depicted in Figure 1. 

 

 

Figure 1. Example of a typical DL network. 
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DL also has applications in cybersecurity and IDS is one of them. Because DL often 

works with large scale data, it may require a lot of powerful hardware and time resources 

to train necessary models. Technology called TL (Transfer Learning) is an approach 

which addresses this issue. When a model is trained on one dataset, called source domain, 

TL attempts to retain this knowledge and adapt it to the other dataset, called target domain 

[18]. An advantage of this approach is that a fraction of target domain data can be enough 

to adapt ML model to effectively work with the target dataset. The term transferred 

knowledge means various model parameters and neuron weights. This can save a lot of 

computational resources, but also is very useful in situations where there is not enough 

target domain data to fully train a new model. For example, where source domain and 

target domain are related, but different, and there is training data available for the source 

domain but for the target it is very limited. Thanks to TL, it may not be necessary to 

conduct separate research to collect enough training data for the target domain. TL idea 

is visualized in Figure 2. 

 

Figure 2. TL illustration.
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FL (Federated Learning) is a decentralized approach to ML where training happens not 

on one central entity, but on different nodes using their local data [19]. In this case each 

node trains a separate model but shares parameters of this model with the others [19]. As 

a result, a global model is trained by aggregating learned individual models of each node 

[19]. This enhances data security as the data used for model training never leaves the 

device it was produced on [19]. For example, ML models could be trained on smartphones 

individually using local data and then ML model parameters combined into one, all done 

without personal data leaving the smartphones. TL and FL have a common idea of sharing 

and transferring knowledge in ML. 

ML, DL, FL, and TL are also used to protect IoT networks from various malware. 

Malware is malicious software designed to “steal data and damage or destroy computers 

and computer systems” [20]. Botnets are one type of malware used against IoT networks. 

Botnet is a network of hacked machines that is controlled by a hacker. This means that 

the hacker can issue commands to this network and, if he so wishes, orchestrate a massive 

cyberattack, such as DDoS. Mirai and BashLite are specifically IoT botnets that can be 

used for the abovementioned DDoS attack. While they are different software, Mirai is 

technically an evolution of BashLite [6]. In 2016, Mirai temporarily brought down major 

websites and services – Krebs on Security, OVH and Dyn [6]. The DDoS attack against 

Krebs on Security was larger than 600 Gbps (Gigabits per second) [6]. This massive 

attack volume was generated by an IoT botnets network. IoT by design have very little 

computational power, but an army of a few hundred thousand orchestrated devices can 

perform massive DDoS attacks. Over 40% of Mirai infected devices were in Brazil, 

Columbia and Vietnam [6]. Mirai infected a wide range of different devices such as IP 

cameras, routers and printers [6]. Its effectiveness is illustrated by the fact that in its first 

20 hours it managed to infect around 65,000 devices and at its peak Mirai had infected 

600,000 devices [6]. While most noticeable victims were the abovementioned huge 

companies, smaller service providers were also attacked such as game servers and even 

anti-DDoS service providers [6]. Eventually Mirai’s author was identified, but source 

code got still published [6]. Because Mirai’s source code was available, its evolved clones 

developed by other people started appearing, one of them temporarily disabled Deutche 

Telekom services [6]. When infecting devices, it exploited insecure passwords and 

companies producing infected IoT lacked security practices that would help prevent Mirai 

attack [6]. Botnets have four stages: delivery, C&C, attack and post-attack [7]. During 
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the delivery, a device gets infected with botnet malware and becomes a bot – controllable 

unit. During C&C the unit typically establishes connection with the attacker-controlled 

server and now, having established a communication channel, waits for commands. The 

main phase, attack one, is when a bot fulfills a hacker-issued order of performing harmful 

or illegal activity against other networks or devices. Post-attack phase includes 

propagation to other devices, software updates and maintenance. At the same time, phases 

and actions can be repeated multiple times. From 2018 to 2019 there was a 71.5% increase 

in botnet C&C servers with over 17,000 servers identified by Spamhaus only [21]. 

Botnets were used for credential stealing malware, frauds, ransomware, Remote Access 

Tools (RAT) and others. Botnet C&C servers are located in various countries and hosted 

on so called bulletproof hosts which are hard to reach for law enforcement due to 

geographic placement with weak laws prohibiting cybercrimes [22]. Also, bulletproof 

hosts have very flexible policies over what content is allowed on their servers [22]. 

Infrastructure for botnets is existing and they are heavily utilized for all kinds of 

cybercrimes. 

2.2 Literature review 

There are numerous studies on TL, IoT, and protection of IoT from malware, including 

the ones that study TL application for IoT in the context of protection from malware. We 

reviewed works related to malware detection using DL and TL, and IoT protection related 

papers.  There are mainly three categories of studies in the context of this thesis: about 

applying DL to protect IoT from malware, applying TL for malware detection and 

applying TL specifically in IoT networks for malware protection. Studies of the last 

category are the most relevant for this thesis. 

In [23] the authors experiment with TL in IoT network between different datasets. They 

built a DL model on BoT-IoT dataset and updated it using a small amount of data from 

TON-IoT dataset. TON-IoT dataset was created specifically for Industrial IoT and has 

benign and malicious traffic [24], BoT-IoT also contains malware-infected and benign 

IoT data [25]. As their DL model, the authors use CNN and during TL they freeze the 

convolutional base. They achieved reasonable detection rate for this approach and 

concluded that TL is ideal solution for compensating for a lack of training data and an 

effective way to update the IDS systems with little effort. In [26], the authors design DL 
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model for botnet detection in IoT devices and they utilize TL. In this study the authors 

transform traffic into image representation, train it with DenseNet and test it with and 

without TL application, where for TL they preload ImageNet weights for their models. 

The authors claim that models developed in this study are for IoT and wearable devices, 

but they utilize CTU-13 and ISOT Botnet Dataset datasets for evaluation and none of 

these datasets has data of IoT networks. ISOT Botnet Dataset contains general traffic 

captures for 9 different botnets and benign instances [27] and CTU-13 has general 

purpose network traffic with labelled instances of normal, background and botnets-

infected traffic [28]. In their work the authors determined that TL usage can improve 

accuracy from 33.41% up to 99.98%. In [29] the authors use TL to align two different 

datasets to eliminate the problem of different features. Then, they generate soft target 

labels instead of missing labelled data in the target domain. On top of that the authors 

develop DNN for detection of zero-day attacks. In this paper, zero-day attacks are called 

target domain data with no labelled instances. They use source domain labelled data to 

detect an attack in unlabelled target domain. [29] uses NSL-KDD and CIDD datasets. 

CIDD is a dataset that has benign and malicious instances of a cloud environment [30] 

and NSL-KDD is a labelled intrusion detection dataset that has benign and attack data 

[31]. In [32] the authors combine DL with TL. They develop a DL-based AutoEncoder 

model that is trained on labelled instances in source domain and unlabelled instances in 

the target domain. As a result, they use the trained AutoEncoder to detect IoT attacks in 

the target domain traffic. They also use the N-BaIoT dataset for their study. The authors 

concluded that their solution is “meaningful when having label information in the source 

domain but no label information in the target domain” [32]. In [13] the authors develop 

CNN models for binary and multiclass classification of attacks against IoT devices with 

TL application. For validation of their model the authors use BoT-IoT, IoT Network 

Intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-2 and IoT-DS-1 datasets. The authors 

concluded that their proposed model “achieved high accuracy, precision, recall, and an 

F1 score compared to existing DL implementations” [13]. In [14] the authors develop 

CNN named MCFT-CNN to predict unknown malware variants. Malware samples are 

transformed to greyscale images to be used as an input for ML models using image 

processing techniques. The model is built on top of ResNet50 (Residual Neural Network) 

by altering the last layer and it is combined with ImageNet model’s knowledge using TL. 

ResNet50 is a CNN that has 50 neural layers. The authors’ MCFT-CNN model is trained 

on the beforementioned images and the ImageNet model is applied to MCFT-CNN via 
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TL. MCFT-CNN consists of multiple convolutional and dense layers. The work uses 

Mallmg, Microsoft Malware Challenge Dataset and BIG 2015 datasets. The authors’ 

approach detects unknown malware without prior code analysis and feature engineering. 

The authors concluded that their approach outperforms similar studies that use malware 

image classification with DL. It is unclear why the name of the work includes IoT as in 

the research there is no mention of IoT and the utilized datasets are not comprised of IoT 

data.  Another [33] study creates DNN models and compares their performance with and 

without TL. The researchers use UNSW-NB15 dataset that has 9 cyberattack types. They 

conduct tests with 2 NN, one containing 2 dense layers and the other 5 layers. In TL case 

they retrain the last layer of NN while freezing the others. In terms of DNN details, the 

named work is similar to this thesis, but the authors of the named work use only one 

dataset and divide it into source and target domains, while this thesis uses two different 

datasets as source and target domains. Also the datasets in [33] are not IoT-specific. They 

concluded that TL is more effective than basic ML approach in context of little training 

data available. 

An anomaly-based detection method is proposed in [34]. The authors developed a model 

based on Recurrent Variational Autoencoder to take advantage of the sequential 

characteristics of botnets. This allows to detect evolving botnets by learning from normal 

data and recognizing anomalies. They also use TL to apply this technique between 

different botnets.  This study used CTU-13 dataset. In [35], the authors propose a 

framework that utilizes FL, DL and TL to protect IoT networks. The target network with 

unlabelled data would effectively learn from source network with labelled data. The 

authors’ DL approach can exchange knowledge without requiring matching datasets with 

identical features. Multiple datasets, including N-BaIoT, are used for experiments. In [36] 

the authors create ML models with long training time and use TL to improve them. In the 

research the authors focused on Low Power and Lossy Networks or LLN-based IoT 

networks which are specific IoT devices. They used TL in two ways: using TL to generate 

intrusion detection algorithms for new devices and using TL for detecting new attack 

types. Knowledge gained during new algorithms detection is transferred from the source 

domain to the target to detect new attack types. For solving these tasks, the authors use 

genetic programming (GP) which is a “population-based optimization algorithm” that 

“outputs a group of candidate solutions for the problem at hand” [36]. They concluded 
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that the model with TL showed better performance than without. Evaluation was done 

with simulated IoT devices.  

DL and TL application specifically for 5G IoT devices protection was studied in [37] with 

scenarios that included limited labelled training data from USTC-TFC 2016 dataset. The 

authors used EfficientNet-B0, BiT (ResNet-50) and LeNet-5 as the basis for their models. 

EfficientNet-B0 is a CNN that was trained on ImageNet data, BiT and LeNet-5 are also 

pre-trained models. As a result, they concluded that with TL, 10% of training data is 

enough to achieve performance comparable to when training with a full dataset. In [38] 

the authors propose a deep NN model with adaptive self-taught-based TL (DST-TL) 

technique. The authors extract features from NSL-KDD dataset with a pre-trained 

network and then provide combined features as an input to an auto-encoder. Autoencoder 

trained on combination of these features via DST-TL has shown to be more effective than 

compared to traditional learning. In [39] the authors propose a DL and a TL combined 

IDS model called P-ResNet for detection of normal and attack traffic. This model is 

created on a base of ResNet. Used dataset was generated from multiple different sources 

and the authors compared their model with other DL architectures. FNN (Feed-forward 

Neural Network) models are also studied with TL in IoT context in [40]. The authors 

propose FNN model with embedding layers for multiclass classification that is combined 

with TL technology to build a binary classifier on another FNN. This study achieved 

99.99% accuracy for binary classification and 99.79% for multiclass classification using 

BoT-IoT dataset.  

In [41] the authors develop multiple ML and DL-based models for binary and multiclass 

classification of attacks from N-BaIoT dataset. They develop CNN (Convolutional 

Neural Networks), RNN (Recurrent Neural Networks) and LSTM (Long Short-Term 

Memory) DL models. CNN showed best performance among others and the authors 

concluded that in IoT networks the “performance of botnet detection mostly depends on 

the type of training models rather than the type of IoT devices” [41]. In [42] the authors 

create ML-based malware detection approach named “B-stacking” for resource-

constrained IoT networks. The authors reduce dimensionality, use sampling and find a 

proper classification algorithm. As a result, their model detects malware and anomalies 

using little training data. For evaluation they used CICIDS2017 and NSL-KDD datasets. 

Their model has a high detection rate in multiple metrics that outperforms state-of-the-art 

solutions at the time of writing their paper. FL is also used in IoT networks for malware 
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protection as shown in [19]. Using the N-BaIoT dataset the authors explored possibilities 

of FL where they concluded that this approach has potential with the advantage of 

preserving data privacy of different IoT devices owners. In [43] the authors developed 

two deep NN-based models with 7 layers for Mirai and BashLite botnets detection. They 

used Principal Component Analysis (PCA) for feature extraction, tuned hyperparameters 

and tried multiclass classification to detect different kinds of provided datasets attacks. 

The models were evaluated using N-BaIoT dataset and the authors concluded that they 

achieved high accuracy with a low false alarm rate. In [44] the authors develop an IDS 

framework solution, called BotIDS, to protect IoT from botnets. They develop CNN and 

RNN models for multiclass classification. The developed models are trained and tested 

against Bot-IoT dataset. For training, the data is converted into image shape. The authors 

concluded that CNN is the one best suited for IDS as it identified different attack types 

with 99.94% accuracy. Another anomaly-based detection method for IoT is proposed in 

[45] where characteristics of different device types from network traffic are used in a 

supervised manner to create an ML model for different devices benign behavior. This is 

later used to detect anomalies in devices’ behavior. The performance of the model is 

evaluated by TL with autoencoders. The researchers created their own dataset for the 

study. 

Features minimization and its connection with ML models results interpretability was 

studied in [46], [47], [48] and [49]. In [46] the authors tested how features minimization 

in the dataset impacts performance on supervised ML models. For the research they used 

N-BaIoT dataset. The authors concluded that features reduction using their method did 

not have considerable loss on model’s performance. Similar work but for an unsupervised 

model was conducted in [47]. In [48] the authors explore different feature selection 

processes to reduce the number of unnecessary features for computational efficiency. In 

[49] the authors analyze features selection process and its impact on the models’ accuracy, 

then they analyze explanations for the results. The authors propose metric that connects 

feature-reduced model’s performance and post-hoc explanation. This shows that proper 

application of feature reduction and the explanation result in well performing 

interpretable models. [50] was also reviewed due to having analogous approach to one of 

the research methods of the current thesis. In this work the authors propose a process to 

use pre-trained ML model to apply in image classification. The researchers used 

ImageNet trained models and applied them without any fine-tuning to identify images of 
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handguns. The evaluation of this solution showed that direct application of a ready model 

against other datasets can be practical. In Table 1 is given an overview of reviewed 

literature that includes DL models and their characteristics. 

Table 1. Reviewed literature of works with DL models in IoT fields. 

Work DL model IoT Datasets TL used TL between 

datasets 

[35] AutoEncoder X N-BaIoT, KDD, NSL-KDD, 

UNSW 

X - 

[34] AutoEncoder - CTU-13 X - 

[26] CNN - CTU-13, ISOT Botnet 

Dataset 

X - 

[42] DNN - CIC-IDS2017, NSL-KDD - - 

[19] FFN, 

AutoEncoder 

X N-BaIoT - - 

[43] DNN X N-BaIoT - - 

[36] Genetic 

Programming 

X Personal X - 

[41] CNN, RNN, 

LSTM 

X N-BaIoT - - 

[29] DNN - NSL-KDD, CIDD X - 

[32] AutoEncoder X N-BaIoT X - 

[13] CNN X BoT-IoT, IoT Network 

Intrusion, MQTT-IoT-

IDS2020, IoT-23, IoT-DS-2, 

IoT-DS-1 

X X 

[37] CNN X USTC-TFC 2016 X - 

[14] CNN - Mallmg, BIG 2015, ImageNet X X 

[33] DNN - UNSW-NB15 X - 

[38] AutoEncoder - NSL-KDD X - 

[44] CNN, RNN X BoT-IoT - - 

[45] AutoEncoder X Personal X - 

[39] DNN, LSTM, 

CNN, RNN, 

FNN 

X Personal X - 

[40] FNN X BoT-IoT X - 

[23] CNN X BoT-IoT, TON-IoT X X 
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There are few works that included IoT, malware detection and TL between two different 

datasets all at once, and they used different NN approaches than this thesis. Also, there 

are no related works that use both MedBIoT and N-BaIoT datasets within one study. 

These datasets use the same malware but focus on different stages of its functions, and 

they have different IoT devices. This allows the exploration of how well knowledge 

transfer works between different IoT devices and between different stages of Mirai and 

BashLite operations. Lastly, this thesis studies if TL can noticeably improve ML model 

performance both against source and target domains using as little retraining data from 

target domain as possible, and what is the threshold of target domain data amount to make 

a significantly positive impact on the performance. 

In [11] the researchers propose a method for anomaly detection in IoT networks. They 

propose to train the autoencoder specifically for each device based on statistical features 

from them. When new data of a particular device is detected, it is treated as an anomaly. 

During the research, the authors also created a dataset called N-BaIoT consisting of 9 

different IoT devices labelled traffic data. They contain traffic data both benign and 

infected by Mirai and BashLite botnets. This dataset focuses on and has data of attack 

phases of these botnets. N-BaIoT is also used in this thesis. In [10] the authors created 

IoT dataset called MedBIoT that consists of labelled internet traffic of 83 IoT devices. 

Traffic has benign and infected instances. The malicious part of the traffic has Mirai and 

BashLite activity of spread and C&C phases. MedBIoT dataset is also used in this thesis. 
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3 Methodology 

This research used quantitative and experimental approaches. Data was preprocessed and 

unified, and to answer the research questions, a series of experiments were conducted. 

Experimentation was done using Python 3.10.2, Tensorflow 2.8.0, Numpy 1.22.3 and 

Sklearn 1.0.2.  

3.1 Datasets 

This research used two public datasets: N-BaIoT and MedBIoT. They both contain 

processed and labelled internet traffic of IoT devices that has benign and malicious types. 

Both datasets have Mirai and BashLite as attack botnets and they have similar features, 

but they have different IoT devices. N-BaIoT has rather industrial IoT devices and 

MedBIoT rather smart house ones. Also even though they have same malware they 

feature different attack traffic. N-BaIoT collected attack phase data of the malwares, and 

MedBIoT collected spread and C&C phases data. 

3.1.1 N-BaIoT 

N-BaIoT is dataset was collected in 2018. It comprises a collection of both benign and 

malicious labelled network traffic in IoT devices network. It is only available in processed 

form of .csv files and not in original. This processed dataset has extracted 23 distinct 

statistical features from the .pcap traffic files. These features are extracted for 5 different 

time windows: 100 ms, 500 ms, 1.5 sec, 10 sec, and 1min, and in total it makes 115 

features. A list of features is shown in Table 2. 

Table 2. N-BaIoT dataset extracted features. 

Value Statistic Aggregation group Features 

Packet size Mean, Variance Source IP, Source MAC-IP, 

Channel, Socket 

8 

Packet count Number Source IP, Source MAC-IP, 

Channel, Socket 

4 

Packet jitter Mean, Variance, Number Channel 3 

Packet size Magnitude, Radius, Covariance, 

Correlation coefficient 

Channel, Socket 8 
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Dataset features traffic of 9 different real IoT devices. The list of N-BaIoT devices is 

presented in Table 3. 

Table 3. List of N-BaIoT devices. 

Device model Device type Benign instances 

Danmini  Doorbell 49,548 

Ennio  Doorbell 39,100 

Ecobee  Thermostat 13,113 

Philips B120N/10  Baby monitor 175,240 

Provision PT-737E  Security camera 62,154 

Provision PT-838  Security camera 98,514 

SimpleHome XCS7-1002-WHT  Security camera 46,585 

SimpleHome XCS7-1003-WHT  Security camera 19,528 

Samsung SNH 1011 N  Webcam 52,150 

   

N-BaIoT recorded separately benign and infected traffic. The authors deployed BashLite 

and Mirai IoT botnets. Attacks executed in N-BaIoT are represented in Table 4.  

Table 4. N-BaIoT dataset attack types. 

Mirai BashLite 

Scan: Automatic scanning for vulnerable 

devices 

Scan: Scanning the network for vulnerable 

devices 

Ack: Ack flooding Junk: Sending spam data 

Syn: Syn flooding UDP: UDP flooding 

UDP: UDP flooding TCP: TCP flooding 

UDPplain: UDP flooding with fewer options, 

optimized for higher packets per second 

COMBO: Sending spam data and opening a 

connection to a specified IP address and port 

  

3.1.2 MedBIoT 

MedBIoT dataset was generated by 83 IoT devices infrastructure internet traffic. It 

comprises labelled benign and attack traffic. 3 devices are real and 80 are virtual. The list 

of MedBIoT devices is shown in Table 5. 
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Table 5. MedBIoT devices 

Device Type Number of devices 

Switch Physical 2 

Light bulb Physical 1 

Lock Virtual 20 

Fan Virtual 20 

Switch Virtual 20 

Light bulb Virtual 20 

   

Malicious traffic of MedBIoT is comprised of Mirai, BashLite and Torii botnets activities. 

This thesis only used Mirai and BashLite traffic. Processed traffic collected 20 statistical 

features per 5 different time windows - 100 ms, 500 ms, 1.5 sec, 10 sec, and 1min. In sum 

it made 100 features. MedBIoT features are represented in Table 6. Total amount of 

MedBIoT data is represented in Table 7.  

Table 6. MedBIoT processed dataset features. 

Category Features Total features 

Host-MAC&IP Packet count, mean and variance 3 

Channel Packet count, mean, variance, magnitude, radius, 

covariance, correlation 

7 

Network Jitter Packet count, mean, variance 3 

Socket Packet count, mean, variance, magnitude, radius, 

covariance, correlation 

7 

   

Table 7. MedBIoT dataset captured packets. 

Number of packets Traffic type 

4,143,276 BashLite 

842,674 Mirai 

319,139 Torii 

12,540,478 Benign 
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3.2 Datasets processing 

Both datasets have IoT devices, same botnets and similar features. But N-BaIoT has 115 

features and MedBIoT 100 features. To use those datasets in ML experiments in this 

research, they were unified and processed to be able to fit into one ML model. Datasets 

features correspondence with names used for features in respective research papers are 

shown in Table 8. 

Table 8. MedBIoT and N-BaIoT datasets features comparison. 

MedBIoT features N-BaIoT features 

Host-MAC & Host-IP packet count Source MAC and source IP packet count 

number 

Host-MAC & Host-IP mean Source MAC and source IP packet size (out) 

mean 

Host-MAC & Host-IP variance Source MAC and source IP packet size (out) 

variance 

Channel packet count Channel packet count number 

Channel mean Channel packet size (out) mean 

Channel variance Channel packet size (out) variance 

Channel magnitude Channel packet size (in & out) magnitude 

Channel radius Channel packet size (in & out) radius 

Channel covariance Channel packet size (in & out) covariance 

Channel correlation Channel packet size (in & out) correlation 

coefficient 

Network Jitter packet count Channel packet jitter number 

Network Jitter mean Channel packet jitter mean 

Variance of packet jitter in channel Channel packet jitter variance 

Socket packet count Socket packet count number 

Socket mean Socket packet size (out) mean 

Socket variance Socket packet size (out) variance 

Socket magnitude Socket packet size (in & out) magnitude 

Socket radius Socket packet size (in & out) radius 

Socket covariance Socket packet size (in & out) covariance 

Socket correlation Socket packet size (in & out) correlation 

coefficient 
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N-BaIoT has 3 more features for 5 different time windows, hence 15 extra features. 

During data import, those features were removed from N-BaIoT dataset and order of 

remaining features in imported data was equalized to the one of MedBIoT. For every 

training and testing experiment, after data import it was always normalized using 

MinMaxScaler. 

3.3 Research methods 

Experimentation was done using programming language Python 3.10.2 and libraries 

Tensorflow 2.8.0, Numpy 1.22.3 and Sklearn 1.0.2. Experiments were separated into 

three categories illustrated in Figure 3. 

Source domain in this research was N-BaIoT dataset and target domains both N-BaIoT 

and MedBIoT datasets. First category of experiments is direct trained ML model 

application against given devices data. Second category is standard TL where some layers 

of source model are frozen and other layers retrained with target domain data. Third 

 

Figure 3. Experiments categories illustrated. 
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category of experiments is TL procedure where some layers are retrained with only 

benign data of target domain. Idea behind that is the benign traffic obviously differs from 

device to device, but attack traffic should be similar as it does not depend on the specific 

IoT device and malware of the same type should behave similarly in different IoT devices. 

ML models used in this research were created using supervised learning. They are based 

on N-BaIoT dataset Provision PT-737E security camera and Danmini doorbell. During 

testing of these models, different effectiveness criteria were observed, such as accuracy, 

recall and confusion matrices. These metrics give good indicator of model’s overall 

performance or certain types of its functions, such as malware detection. Also, these 

metrics are used in combination with each other because sometimes using only one metric 

can be misleading. For example, if a model classifies everything as benign traffic, 

accuracy would be 50% but in fact the model would be useless. Hence, accuracy indicates 

a model’s overall performance, but should be verified together with confusion matrices. 

Metrics definitions are provided below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑇𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 =
2 ∗ (𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

Confusion matrix 

 Predicted values 

Actual 

values 

 Positive Negative 

Positive TP FN 

Negative FP TN 
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where: 

1. True Positive (TP): amount of correctly classified positive instances. 

2. True Negative (TN): amount of correctly classified negative instances. 

3. False Positive (FP): amount of wrongly classified negative instances as positives. 

4. False Negative (FN): amount of wrongly classified positive instances as 

negatives. 

and 

1) Accuracy – Fraction of examples correctly identified. 

2) Recall – Also sensitivity or True Positive Rate (TPR), fraction of correctly 

identified instances of all positive examples. 

3) Specificity – Also True Negative Rate (TNR), fraction of correctly identified 

instances of all negative examples. 

4) False Positive Rate (FTR) – Fraction of when negative instances are classified 

as positives, “false alarm” rate. 

5) Precision – Fraction of correctly identified positive instances from all positively 

classified instances. 

6) F1 score – Weighted average of Precision and Recall. 

7) Confusion matrix – Table that visualizes model’s performance and can be used 

for calculation of all other metrics. 

These experiments were conducted using different combinations of various parameters – 

for example learning rate and amount of training and testing data. Two different model 

architectures were designed, shown in Figure 4 and Figure 5. 
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Figure 4. Model architecture 1. 

 

Figure 5. Model architecture 2. 
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Model architecture 1 has 2 neural layers with 10 and 1 neurons. Architecture 2 features 

architecture with 3 layers consisting of 100, 10 and 1 neurons. Models were created using 

Keras1 software library which requires first layer to define data input dimension which 

was set to 100 for this thesis according to the number of features. Keras treats input as a 

tensor that sends data to the first hidden layer. All models were created using Adam 

optimizer, BinaryCrossentropy loss function and BinaryAccuracy metrics and learning 

rate of 0.001. For dense layers ReLu (Rectified Linear Unit) activation function was used 

and for output layers Sigmoid. ReLu is a linear function that is a popular choice for 

activation function in NN, it outputs input directly if it is positive and outputs zero if it is 

negative. Sigmoid is a logistic function that depending on the set threshold always outputs 

either 1 or 0. This thesis set threshold as 0.5 meaning that if the output is equal to or 

bigger than 0.5, then tested instance is considered malicious, otherwise benign.  

The first model was created using Provision PT-737E Security Camera data. This device 

was trained on randomly picked 100,000 instances, where 50,000 were benign traffic 

instances and 50,000 attack ones. As N-BaIoT differentiates 5 types of attack for Mirai 

and 5 for BashLite, it makes 10 attack types in total. Hence, for even distribution, 5,000 

instances were randomly picked from every attack type. This model will further be 

referenced as ‘model_737_2’. The model was trained on randomly selected instances. 

Upon training it got 99.8% training, test and validation accuracy. The rest of this model’s 

training details are shown in Table 9. 

The other two models were created using Danmini doorbell data as a training base. 

Doorbell is conceptually closer device to switch, lock, light and fan than a security camera 

because listed devices are home comfortability devices and so is a doorbell. Hence, it was 

hypothesized that a model based on doorbell data may yield better results when tested 

against MedBIoT dataset than a security camera.  

The only difference between the 2 Danmini doorbell models is that the model_danmini_2 

used 2 layers architecture and model_danmini_3 3 layers. In the Danmini doorbell models 

case, there are only 49,548 benign instances available. In total 99,548 traffic instances 

were used with 50,000 being Mirai and BashLite attack traffic for these models creation. 

 

 

1 https://keras.io/  

https://keras.io/
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Model_danmini_2 got 99.8% on training and testing accuracy and 99.9% on validation 

accuracy. Model_danmini_3 scored 99.9% on all three of these metrics. The rest of the 

models’ training details are shown in Table 9. 

Table 9. model_737_2, model_danmini_2 and model_danmini_3 training details. 

Training-testing ratio Learning rate Epochs Validation size 

80:20 0.001 15 20% 

    

All models were accuracy tested against other N-BaIoT devices. For consistent testing, 

where possible, testing was performed against randomly picked 100,000 instances with 

attack/normal ratio 50:50. Some N-BaIoT devices have less than 50,000 benign instances 

and picked attack instances amount was correlated accordingly. The amount of testing 

instances for N-BaIoT is depicted in Table 10 and MedBIoT in Table 11. Attack instances 

were always evenly divided between different attack types for both datasets. In addition, 

because Ennio doorbell and Samsung webcam do not have Mirai, for them all attack 

instances represent BashLite botnet. The ration of benign to attack instances was in every 

test held close to 50:50. During TL, the percentage of training represents what ratio of 

imported data was used for model retraining, the rest was used was testing. 

Table 10. Number of testing instances for N-BaIoT devices. 

Device Benign instances Attack instances 

Danmini doorbell 49,548 50,000 

Ennio doorbell 39,100 40,000 

Ecobee Thermostat 13,113 13,000 

Philips B120N/10 baby monitor 50,000 50,000 

Provision PT-737E security camera 50,000 50,000 

Provision PT-838 security camera 50,000 50,000 

SimpleHome XCS7-1002-WHT security camera 46,585 50,000 

SimpleHome XCS7-1003-WHT security camera 19,528 20,000 

Samsung SNH 1011 N webcam 50,000 50,000 
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Table 11. Number of testing instances for MedBIoT devices. 

Device Benign instances Attack instances 

Switch 50,000 50,000 

Lock 50,000 50,000 

Light 50,000 50,000 

Fan 50,000 50,000 

3.4 Experimentation 

3.4.1 Tests with model_737_2  

Direct testing and TL: For TL the model was retrained with 15 epochs, a 20% validation 

split and 0.001 learning rate. With N-BaIoT, TL was only applied to devices that had 

<98% accuracy after direct testing. TL was done by freezing the first layer with 10 

neurons and retraining the output layer with 1 neuron. It was experimented with 2%, 5%, 

10% and 20% of training data. With MedBIoT, TL was done with switch and light devices 

using 2%, 5%, 10%, 20% and 40% of training data. To verify consistency of results, all 

experiments were conducted four times and every experiment was documented. 

3.4.2 Tests with model_danmini_2 

Direct testing, TL: For TL, the model was retrained with 15 epochs, 20% validation split 

and 0.001 learning rate. TL was done by freezing the first layer with 10 neurons and 

retraining the output layer with 1 neuron. With N-BaIoT, TL was only applied to devices 

that had <95% accuracy after direct testing. TL was tried with 2%, 5%, 10% and 20% of 

training data. For different parameters, a different number of experiments were 

conducted. With MedBIoT, TL was done with switch and fan devices using 2%, 5%, 

10%, 20% and 40% of training data. To verify consistency of results, all experiments 

were conducted four times. 

Model_danmini_2 was also tested with TL 2-nd type that was retrained against only 

benign target domain data. This experiment was done with a learning rate of 0.00001. 

Due to the model being retrained with only normal data, to avoid the model converging 

too quickly and adapting to only benign data, the lower learning rate was chosen. It was 
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tested with switch and fan devices. Experiments were done with 252, 500, 1,000, 2,000 

and 4,000 benign instances which in relation to 100,000[ instances have 0.252%, 0.5%, 

1%, 2% and 4% ratio. With every set of parameters, experiments were conducted twice. 

3.4.3 Tests with model_danmini_3 

Direct testing, TL: For TL, the model was retrained with 15 epochs, 20% validation split 

and 0.001 learning rate. TL was done by freezing first layer with 100 neurons and 

retraining the last two layers with 10 and 1 neurons. With N-BaIoT, TL was only applied 

to devices that had <97% accuracy after direct testing. TL was tried with 2% and 5% of 

training data. For different parameters, a different number of experiments were 

conducted. With MedBIoT, TL was done with switch, light and fan devices using 2%, 

5%, 10%, 20% and 40%. To verify consistency of results, all experiments were conducted 

thrice. 

Model_danmini_3 was also tested with TL 2-nd type that was retrained against only 

benign target domain data. This experiment was done with a learning rate of 0.00001. It 

was tested with switch, light and fan devices. Experiments were done with 252, 500, 1000, 

2000 and 4000 benign instances. With every set of parameters, experiments were 

conducted four times. 
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4 Results 

4.1 Model_737_2 

Model named model_737_2 which was trained on 50,000 benign instances and 50,000 

attack instances of 737 security camera from N-BaIoT dataset, showed overall good 

results when tested against other N-BaIoT devices. The results are presented in Table 12.  

Table 12. Result of model_737_2 direct testing against other N-BaIoT devices. 

737 Camera tested against Accuracy (%) 

Provision_PT_838_Security_Camera 99.85 

Philips_B120N10_Baby_Monitor 99.64 

SimpleHome_XCS7_1002_WHT_Security_Camera 87.36 

SimpleHome_XCS7_1003_WHT_Security_Camera 99.31 

Danmini doorbell 99.83 

Ennio doorbell (has ONLY BashLite attacks) 78.8 

Samsung_SNH_1011_N_Webcam  98.37 

Ecobee thermostat 89.38 

  

Tests were run against randomly picked instances for each N-BaIoT device. Tests showed 

instantly over 99% accuracy for two security cameras, baby monitor, doorbell and 98% 

for web camera. A thermostat got 89% accuracy, this device has the lowest number of 

benign instances and was tested against 13,113 benign and 13,000 attack instances. The 

thermostat confusion matrix in Figure 6 shows that most of the errors come from false 

negatives. 
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Interestingly, while the 1003 security camera model got 99.31% accuracy, the 1002 

security camera got 87.36%. The 1002 camera was trained on more than twice as many 

instances as the 1003, because the 1002 has 46,585 benign instances available and the 

1003 only 19,528. 1002 camera confusion matrix in Figure 7 also shows that most errors 

come from false negatives.  

 

Figure 6. Confusion matrix for model_737_2 testing against Ecobee Thermostat. 

 

Figure 7. Confusion matrix for model_737_2 testing against 1002 security camera.
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The worst result is for the Ennio doorbell which only has BashLite attacks and none of 

Mirai, while the model_737_2 was trained for both Mirai and BashLite. In the case of the 

Ennio doorbell, all the errors come from false negatives with 0 false positives, confusion 

matrix shown in Figure 8. 

This shows that a simple neural model trained on one device can be practically applied 

within the same N-BaIoT dataset for deciding whether a packet is benign or malicious 

with some exceptions.  

The TL approach was tested with the model_737_2 against the 1002 security camera, the 

Ennio doorbell and the Ecobee thermostat to see if the results could be improved. For TL 

retraining and testing, where possible, 50,000 benign and 50,000 attack instances were 

taken. Table 13 shows accuracy results for testing retrained model against listed devices. 

“Exp” shortening in Table 13 and all following tables in this document means 

“Experiment”, all results are presented in percentages, and “% training data” indicates 

amount of training data. In example, “2% training data” means that out of 100,000 

instances, 2,000 were dedicated to TL and 98,000 for testing. 

 

 

 

 

 

Figure 8. Confusion matrix for model_737_2 testing against Ennio doorbell. 
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Table 13. Model_737_2 TL testing accuracy results against N-BaIoT devices. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

 2% training data 5% training data 

SimpleHome_X

CS7_1002_WH

T_Security_Ca

mera 85.93 86.58 97.04 97.7 97.75 86.69 97.6 87.07 

Ennio doorbell 79.2 78.09 99.66 99.77 99.74 99.67 99.74 99.66 

Ecobee 

thermostat 49.71 86.69 99.62 89.42 89.6 99.75 99.31 88.94 

 10% training data 20% training data 

SimpleHome_X

CS7_1002_WH

T_Security_Ca

mera 97.7 98.06 98.01 98.06 98.02 97.93 98.14 98.07 

Ennio doorbell 99.7 99.64 99.69 99.66 99.66 99.67 99.67 99.65 

Ecobee 

thermostat 99.56 89.69 88.71 99.85 99.85 99.82 99.61 99.65 

         

TL results are different for every device as can be seen from the Table 13 and plotted 

graphs in Figure 9, Figure 10 and Figure 11. Already from 2% of training data model 

achieved results of nearly 99% for all devices, but results are inconsistent up to 10% 

training data. In example, with 2% training data, the 1002 security camera and the Ecobee 

thermostat could get accuracy results even worse than with the model_737_2 direct 

application. 10% of training data showed no significant improvement, however, using 

this amount of training data all devices achieved mostly consistent results with some 

exceptions. For example, Ecobee thermostat in 10% Experiment 1 the accuracy was 

97.56% but in Experiment 2 it was 86.69%. Using 20% of training data results became 

very stable for the Ecobee as well.  
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Figure 9. Model_737_2 TL experiments against 1002 security camera of N-BaIoT DS. 

 

Figure 10. Model_737_2 TL experiments against Ennio doorbell of N-BaIoT DS. 
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Every device in this experiment behaved differently, but common denominator is that 5-

10% of training data is roughly enough to raise model accuracy up to 97% when testing 

with TL against source domain. 

Model_737_2 direct testing results against MedBIoT showed significantly worse results 

than same tests against N-BaIoT. The results are represented in Table 14. 

Table 14. Model_737_2 direct accuracy testing against MedBIoT devices. 

737 Camera tested against Accuracy (%) 

Switch 60.52 

Lock 51.67 

Light 56.08 

Fan 51.43 

  

Results for all MedBIoT devices are in the range of 51-60% accuracy. Their confusion 

matrices show that false negatives dominate the errors agenda. Exception is the lock 

where false positives and false negatives are in balance. This means that direct application 

of a model from source to target domain is not practical when these domains are different 

IoT networks, in this case N-BaIoT and MedBIoT. 

TL was performed against MedBIoT in the same manner as with N-BaIoT. Results are 

shown in Table 15. Model_737_2 TL testing accuracy against MedBIoT devices. TL with 

 

Figure 11. Model_737_2 TL experiments against Ecobee thermostat of N-BaIoT DS. 
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2%, 5% and 10% of training data did not give good results and, moreover, proved highly 

inconsistent as tested on switch and light devices. Using 2% training data, switch results 

difference could be significant between repeated experiments. For example, 10% data 

experiment lowest result was ~35% and highest ~61%. With the light, differences were 

less drastic but still as big as ~16% with 5% data.  

Table 15. Model_737_2 TL testing accuracy against MedBIoT devices. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

 2% training data 5% training data 

Switch 59.58 42.61 44 40.05 58.44 31.96 33.38 36.13 

Light 49.75 50.87 47.53 50.31 59.38 44.4 55.82 49.55 

 10% training data 20% training data 

Switch 61.11 35.54 60.14 37.28 60.46 59.19 61.63 58.19 

Light 50.7 46.06 47.26 45.71 45.57 47.77 45.17 64.96 

 40% training data 

Switch 59.77 59.27 60.06 60.03 

 Light 58.36 56.7 56.98 60.09 

      

TL with 20% data started showing consistent results, but for switch they remained at the 

same level as with direct testing against MedBIoT without TL, for the light device 

accuracy was even lower than without TL. Increasing training data up to 40% brought 

light accuracy to the same level as without TL, but it did not change anything for the 

switch. The models’ development over the experiments with given devices is visually 

represented in Figure 12 and Figure 13.  
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Overall, results with all experiments for model_737_2, up to 40% of training data 

included, were either equal to or worse than without TL. It can be concluded that for 

cross-datasets 2-layered NN with TL is ineffective. The result could potentially be 

improved by increasing training data ratio to testing data, but that destroys the main idea 

and advantage of TL of using little training data. Such result is most likely because 

retraining only one output neuron for such task is not enough, more training parameters 

are needed so the model could get a better understanding of MedBIoT data patterns. 

 

Figure 12. Model_737_2 TL accuracy testing against MedBIoT switch device. 

 

Figure 13. Model_737_2 TL accuracy testing against MedBIoT light device. 
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4.2 Model_danmini_2 

The model model_danmini_2 was trained on 49,548 benign and 50,000 attack traffic 

instances from N-BaIoT Danmini doorbell data. This model was directly tested against 

other devices N-BaIoT devices and the results are represented in Table 16. 

Table 16. model_danmini_2 accuracy testing against N-BaIoT devices. 

Model_danmini_2 tested against Accuracy (%) 

Provision_PT_737_Security_Camera 95.83 

Provision_PT_838_Security_Camera 94.01 

Philips_B120N10_Baby_Monitor 99.05 

SimpleHome_XCS7_1002_WHT_Security_Camera 95.92 

SimpleHome_XCS7_1003_WHT_Security_Camera 99.29 

Ennio doorbell (has ONLY BashLite attacks) 79.4 

Samsung_SNH_1011_N_Webcam  99.8 

Ecobee thermostat 99.46 

  

Model_danmini_2 got a better average accuracy against all N-BaIoT devices of 95.345% 

compared to model_737_2 that got 94.07% average. For security cameras model_737_2 

got higher results, i.e 737 and 838 security cameras got over 99% accuracy while 

model_danmini_2 got ~94% and ~95%. Interestingly, for 1002 security camera, 

model_danmini_2 achieved 95% while model_737_2 only 87% even though both 1002 

and 737 are both security cameras. For the Ecobee Thermostat, model_danmini_2 got 

over 99% accuracy while model_737_2 only 89%. Other devices got roughly the same 

result for both NN models. This shows that even though test results against different 

devices are different, models trained on different devices show approximately same 

average accuracy result when tested against their source domain. The worst result was 

again for the Ennio doorbell with its confusion matrix shown in Figure 14. While there 

are some false positives, 99.04% of all mistakes are false negatives. The reason for this 

is most likely because the Ennio doorbell has only BashLite attacks while the model 

expects to see Mirai too, and used amount of training instances was not enough for model 

to capture all BashLite traffic variations. 
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For the 1002 security camera, mistakes are balanced having a ratio of 57:43 of false 

positives to false negatives. For the 737 security camera, the mistakes are dominated by 

false positives, confusion matrix represented in Figure 15. 

For the 838 security camera model, contrarily, mistakes are dominated by false negatives, 

confusion matrix represented in Figure 16. This is an interesting difference, because the 

model_737_2 which was trained on the 737 security camera, had 99.85% accuracy 

against 838 camera which indicates that 737 and 838 are very similar in benign and attack 

traffic. 

 

Figure 14. Confusion matrix for model_danmini_2 tested against Ennio doorbell. 

 

Figure 15. Confusion matrix for model_danmini_2 tested against 737 security camera. 
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Similarly to model_737_2, TL was applied to model_danmini_2 to see if simple TL can 

improve testing results against source and target domains. For testing were chosen the 

838 security camera with 94% accuracy and the Ennio doorbell with the poorest 

performance of 79.4%. During TL, the first layer with 10 neurons was frozen and the 

output layer with 1 neuron retrained. To ensure the consistency, the described test was 

rerun 4 times with the same parameters. Resulted accuracy in percentage with is shown 

in Table 17. The results are consistent with using only 2% training data. For the 838 

camera there is no improvement, the results stay roughly the same. For the Ennio doorbell, 

the improvement is enormous jumping from 79.4% of accuracy up to over 99% with only 

2% of training data. The special trait of Ennio doorbell is that it only has BashLite attack 

instances, and such a huge improvement could be explained by the fact that using the 

Ennio data, the output layer was adjusted to react to a BashLite attack and mostly ignore 

a Mirai botnet. Because the experiment results were consistent with 2%, experiments for 

5%, 10% and 20% were repeated twice. Because the Ennio doorbell got over 99% 

accuracy already with 2% data, and the result was confirmed with 5%, experiments were 

not continued for this device.  

 

 

Figure 16. Confusion matrix for model_danmini_2 tested against 838 security camera. 
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Table 17. Model_danmini_2 TL accuracy testing results against N-BaIoT devices. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 

 2% training data 5% training data 

PT_838_Security_Camera 95.87 95.25 94.08 95.4 95.52 94.84 

Ennio doorbell 99.51 99.37 99.42 99.31 99.31 99.35 

 10% training data 20% training data 

 97.19 95.68 - - 98.27 98.34 

Ennio doorbell - - - - - - 

       

The Ennio doorbell result is a good example to say that even 2-layered NN model using 

TL algorithm and only 2% of training data is enough to adapt the model to target domain’s 

specialty, which in the Ennio case is having only BashLite malware. If there is a distinct 

feature about a device, then TL is a good choice to adapt the model for this device and 

get over 99% in accuracy. With the 838 camera, the model achieved over 98% stable 

accuracy using 20% of training data. It means that by going through whole TL procedure 

and using 20% of training data, the model only increased accuracy by 3-4% which may 

or may be not an effective trade-off depending on the circumstances. Possibly, a more 

complex NN model or more complex TL approach could bring down the required amount 

of training data to achieve 98% accuracy. Both with model_danmini_2 and model_737_2, 

using TL, less than 20% of training data was required to considerably increase accuracy 

for the tested N-BaIoT devices. Model_danmini_2 was also tested against the target 

domain MedBIoT without TL. For that, 100,000 instances were randomly picked from 

the target dataset with a 50:50 ration of benign to malicious. The results are presented in 

Table 18. The results are nearly identical to that of the model_737_2. The main difference 

is the fan that got 4% higher accuracy with model_danmini_2. Confusion matrices of 

model_737_2 and model_danmini_2 in general have similar balances with a few 

exceptions.  

Table 18. model_danmini_2 against MedBIoT devices direct accuracy testing results. 

Model_danmini_2 tested against  Accuracy (%) 

Switch 61.32 

Lock 49.59 

Light 57.97 

Fan 55.43 
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TL was applied to MedBIoT devices in analogous manner as with model_737_2. With 

the model_737_2, the switch and light examples were sufficient to show that up to 20% 

of training data usage provided unstable results. Model_danmini_2 TL approach was 

tested on switch and fan. Accuracy testing results of retrained model are presented in 

Table 19. To check the consistency of the results, every test was rerun 4 times. 

Table 19. Model_danmini_2 TL accuracy testing results against MedBIoT devices. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

 2% training data 5% training data 

Switch 60.66 67.9 67.77 65.99 65.92 67.54 59.84 61.32 

Fan 48.07 46.13 48.6 45.32 45.71 41 62.95 40.19 

 10% training data 20% training data 

Switch 64.46 70.39 64.05 62.14 68.91 71.01 68.66 70.53 

Fan 63.23 45.15 43.32 60.99 40.61 42.42 65.92 41.85 

 40% training data 

 

Switch 70.67 68.22 68.41 69.69 

Fan 67.41 42.36 67.19 64.03 

      

This series of experiments show that like model_737_2, the switch started showing 

consistent results starting from 20% of training data. Model_danmini_2 TL results with 

switch and fan are represented in Figure 17 and Figure 18. 

 

 

Figure 17. model_danmini_2 TL against MedBIoT fan worst and best results plot. 
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With 20% training data in every experiment series there can be about ~10% accuracy 

difference between best and worst attempt. This is more stable than model_737_2’s TL 

against the switch with 10% training data where accuracy difference between 2 

experiments performed under same conditions could be ~25%. The model_737_2, using 

20% and 40% of training data, managed to achieve an accuracy level equivalent to this 

of testing without TL. Model_danmini_2, on the other hand, showed potential 

improvement already starting with 2% training data. As can be seen from the graphs, the 

results for the switch and anton is cool fan are quite different. Up to 20% training data, 

switch result could be equal to the initial testing result or even slightly worse. But starting 

with 20%, the worst-case experiment showed an improved accuracy by ~7%. 20% and 

40% training data show mostly steady results except the fan which using 40% training 

data could perform worse than with no TL at all. This means that when applying a simple 

ANN model between source and target domains and sharpening it with TL, different 

devices will show different results. Also, at some point increasing training data ratio does 

not have a positive impact on the results anymore, and a different approach must be taken.  

Confusion matrixes were reviewed for the switch 2% training experiment no. 2 and 20% 

training experiment no. 1 where results are similar, 67.9% and 68.91% respectively. 

Confusion matrixes errors have similar proportions in both experiments with a slight 

difference in true positives and true negatives predictions. They are represented in Figure 

19 and Figure 20. 

 

Figure 18. model_danmini_2 TL against MedBIoT switch worst and best results plot. 
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Confusion matrix for the switch 2% TL experiment 1 with 60.66% accuracy, represented 

in Figure 21, shows that there is bigger proportion of false positives than in more 

successful experiments. Such results indicate that when applying TL procedure using 

little training data, the model can accidentally pick greater variety of possible network 

traffic or vice versa.  

 

Figure 19. Confusion matrix for switch 2% TL experiment 2. 

 

Figure 20. Confusion matrix for switch 20% TL experiment 1. 
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Model_danmini_2 was also tested with the second TL approach where the output layer 

was retrained with only normal data of the target domain. The idea is that various IoT 

devices have different benign traffic, but a malicious one is probably similar due to being 

specific to nature of the malware, not the IoT device, and attack data for TL may not 

always be available, unlike benign traffic in most cases. Retraining was performed on the 

switch and fan devices with different amount of normal traffic instances and low learning 

rate of 0.00001. Results of updated model accuracy testing against MedBIoT devices are 

presented in Table 20. 

Table 20. model_danmini_2 normal instances TL accuracy testing results. 

Device 252 instances 500 instances 1000 instances 

 Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2 

Switch 50 60.72 50 37.57 50 55.73 

Fan 53.8 50 50 50.79 48.45 50 

 2000 instances 4000 instances 

 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Switch 50 48.59 49.45 44.72 

Fan 46.21 57.08 50 50.22 

     

It can be clearly seen that results are below satisfactory; they were much better when TL 

was applied together with attack data. Visualisation of this approach performance is 

 

Figure 21. Confusion matrix for switch 2% TL experiment 1. 
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plotted in Figure 22. Increasing number of retraining instances does not have any positive 

impact on the performance of the model. In half of the cases the result was exactly 50%. 

In these cases, the model classified everything either as benign or as malicious as is shown 

on confusion matrixes in Figure 23 and Figure 24.  

 

 

 

Figure 22. model_danmini_2 benign data TL accuracy testing against MedBIoT devices. 

 

Figure 23. Model_danmini_2 confusion matrix of benign TL experiment 2 with 2000 instances against 

switch. 
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In cases where the model showed more diverse classification during the tests, it still 

performed worse than model’s direct testing. This model performed better than original 

testing with fan device only in one experiment with 2,000 instances giving only a 2% 

raise which is not enough to deem this approach successful. Confusion matrixes don’t 

show any specific direction of what kind of errors are dominating in results that are not 

purely 50%.  

4.3 Model_danmini_3 

Model_danmini_3 architecture is comprised of 2 hidden and 1 output layer that have 100, 

10 and 1 neurons, the rest of the parameters are equal to model_danmini_2. This model 

is slightly more complex than model_737_2 and model_danmini_2 having 1 additional 

layer with 100 neurons. While this model remains simple, experimenting with it can give 

an understanding how gradual complication of neural architecture also improves the 

effectiveness. This gives models more parameters to figure out what features of traffic 

instances help recognize benign and malicious traffic. This model was tested against other 

source domain N-BaIoT devices, with results presented in Table 21. 

 

Figure 24. Model_danmini_2 confusion matrix of benign TL experiment 2 with 252 instances against fan 

device. 
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Table 21. model_danmini_3 direct accuracy testing against N-BaIoT devices results. 

Model_danmini_3 tested against N-BaIoT Accuracy (%) 

Provision_PT_737_Security_Camera 86.08 

Provision_PT_838_Security_Camera 91.85 

Philips_B120N10_Baby_Monitor 96.18 

SimpleHome_XCS7_1002_WHT_Security_Camera 96.84 

SimpleHome_XCS7_1003_WHT_Security_Camera 99.22 

Ennio doorbell (has ONLY BashLite attacks) 99.57 

Samsung_SNH_1011_N_Webcam  97.81 

Ecobee thermostat 98.94 

  

Most results show that this model can be directly applied to other devices of the source 

domain to determine whether traffic has infection signs, quite similarly to the previous 

models. 2 devices got over 99% accuracy, 4 devices 96-99% and only the 737 and 838 

security cameras got 86% and almost 92% respectively. This model’s worst result is 86% 

for the 737 camera, while model_737_2 and model_danmini_2 worst results were around 

79% for the Ennio doorbell. Interestingly, model_danmini_3 immediately got 99.57% 

accuracy for Ennio doorbell. An additional neural layer had very positive impact on 

accounting for devices that differ from rest of the dataset. Model_danmini_3 worst results 

are for 737 and 838 security cameras, even the simpler Danmini doorbell-based model 

got better accuracy of 95.83% for the 737 and 94.01% for the 838. Also, just like the 

model_danmini_2, the current model displayed much better testing results for 1002 

security camera and Ecobee thermostat than model_737_2. Two different models that 

were trained using Danmini doorbell got similar testing results, the model that was trained 

using 737 security camera got different ones. It means that the 737 security camera and 

Danmini doorbell network traffic is different and its similarity to other IoT devices varies. 

The Danmini doorbell correlates better with the Ecobee thermostat and 1002 security 

camera rather than the 737 security camera. At the same time, the 737 security camera 

correlates better with the 838 security camera which is expected as they are the same 

device of slightly different models. Direct testing with model_danmini_3 also showed 

that deeper architecture gives more even accuracy spread between different devices. For 

model_737_2 the biggest difference between the two devices is 21.04%, for 
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model_danmini_2 20.4% and for model_danmini_2 13.49%. Comparison of the different 

models’ accuracy testing is shown in Figure 25. 

As seen in Figure 26, model_danmini_3 also got the highest average accuracy of 95.81% 

among 3 models tested in this thesis. Still, the difference is very little, approximately 1%. 

 

Figure 25. All models testing accuracy against N-BaIoT devices. 

 

Figure 26. Average accuracies of all models tested against other N-BaIoT devices. 
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Confusion matriсes of the experiments show that practically all errors on all devices come 

from false positives with a very small part of the errors being false negatives. This means 

that for this model it was hard to find a pattern to see where devices were trying to conduct 

legit communication, unlike model_danmini_2 that had a much more adequate FTR. 

Hence, such result must come from the architecture of the model. An additional hidden 

layer introduces more training parameters and possibly a slight imbalance in the training 

data, which was benign to malicious 49.5:50.5, could have influenced it. Some confusion 

matrixes are shown in Figure 27, Figure 28 and Figure 29. This is very different from 

model_danmini_2 and model_737_2 where errors were sometimes dominated by false 

positives, sometimes by false negatives and sometimes were balanced. 

 

 

Figure 27. Confusion matrix of model_danmini_3 direct testing against 737 camera. 



57 

 

TL was also applied with model_danmini_3 against N-BaIoT devices that received under 

97% accuracy in direct testing – 737 security camera, 838 security camera and 1002 

security camera. TL was done with 2% and 5% of training data. TL with 

model_danmini_3 was different from the one applied to model_737_2 and 

model_danmini_2. With the model_danmini_3, only the first layer with 100 neurons was 

frozen and the last 2 layers containing 10 and 1 neurons were retrained using the provided 

 

Figure 28. Confusion matrix of model_danmini_3 direct testing against Philips baby monitor. 

 

Figure 29. Confusion matrix of model_danmini_3 direct testing against Samsung webcam. 
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data. This allows to retain learned patterns on the densest layer. At the same time, it gives 

the model more flexibility in adapting to the target domain using as little training data as 

possible. Results of the application tests of retrained model against N-BaIoT devices are 

reflected in Table 22. The reason why no further experiments were conducted with 

increased training data is that 2% was enough to achieve stable results with an accuracy 

close to 100%. With 2% training data, 3 identical experiments were conducted to ensure 

consistency of the results.  

Table 22. Model_danmini_3 TL accuracy testing results against N-BaIoT data. 

2% training data Exp. 1 Exp. 2 Exp. 3 

Provision_PT_737_Security_Camera 99.71 99.73 99.73 

Provision_PT_838Security_Camera 99.84 99.8 99.86 

SimpleHome_XCS7_1002_WHT_Security_Camera 99.4 99.84 99.61 

5% training data Exp. 1 Exp. 2 

Provision_PT_737_Security_Camera 99.83 99.82 

   

Experiments with 5% were conducted to see if the accuracy would increase at all after 

adding training data with accuracy results already 99.7%. Increasing training data by 3% 

increased accuracy for the 737 security camera by 0.1%. Overall, it can be concluded that 

a simple NN model with only 3 layers trained on one of N-BaIoT devices is effective 

enough for immediate application to most devices of the source domain. For the others, 

result can be improved to nearly 100% accuracy using just 2% training data. This is 

effective and cheap because it is simple and requires very little data for training. For 

comparison, the model_danmini_2 was able to achieve ~98.2% accuracy for the 838 

camera through TL by requiring 20% training data. The model_737_2 also was able to 

achieve 97-99% for some N-BaIoT devices with 5% training data during the TL 

procedure, but this result was not stable as during some experiments the accuracy was 86-

89% instead of 97-99%. As far as errors are considered, the false positives and false 

negatives were mostly balanced with no anomalies.  

Model_danmini_3 was also directly tested against target domain MedBIoT with results 

shown in Table 23.  
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Table 23. Accuracy test results for model_danmini_3 against MedBIoT devices. 

Model_danmini_3 tested against MedBIoT Accuracy (%) 

Switch 43.11 

Lock 61.62 

Light 61.77 

Fan 40.06 

  

Compared to model_danmini_2, the results are different for each target device. Chart that 

sums up results of all 3 models accuracy test against MedBIoT devices is shown in Figure 

30. Model_danmini_3 got better results for lock and light, but worse for fan and switch 

than model_danmini_2. The average accuracy of model_danmini_3 is 51.64% which is 

also worse than that of model_danmini_2 with its 56.08% average. All average accuracies 

against MedBIoT domain are shown in Figure 31. Model_danmini_3 is a little more 

complex than the previous one and has had more N-BaIoT-specific learning. In 

model_danmini_3 case false positives are dominating over false negatives for all devices 

except light.  

 

 

Figure 30. Models’ direct accuracy testing results against MedBIoT devices. 
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model_danmini_3 was also tested with TL against the target domain. Again, the first layer 

with 100 neurons was frozen and the last two layers retrained. After retraining, the model 

was tested with the remaining data of the target device. Experiments were conducted 

using 2%, 5%, 10%, 20% and 40% training data. TL was done with switch and fan 

devices. To control consistency of the results, each training data amount phase was 

retrained and retested three times. Results of testing after TL are shown in Table 24. 

Table 24. Accuracy results of model_danmini_3 TL retrained model testing against MedBIoT devices. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 

 2% training data 5% training data 

Switch 76.28 75.85 77.62 80.69 84.49 81.21 

Light 79.49 78.38 79.99 86.68 85.02 86.6 

Fan 80.84 79.85 79.37 80.84 74.48 83.43 

 10% training data 20% training data 

Switch 81.41 87.86 88.21 89.38 88.79 89.43 

Light 88.47 88.73 93.46 93.76 92.09 92.9 

Fan 91.77 91.69 90.88 91.99 92.37 92.11 

 40% training data 

 

Switch 89.1 89.18 89.86 

Light 93.44 94.18 93.63 

Fan 92.09 92.81 92.7 

     

 

Figure 31. Models’ average accuracies of direct testing against MedBIoT devices. 
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It can be seen right from the start that already with 2% of training data, accuracy was 

dramatically improved for all 3 tested devices. TL results with gradual training data 

amount increase are plotted in Figure 32 and Figure 33. The worst result of every 

experiment is shown in Figure 32 and the best in Figure 33. 

 

 

 

Figure 32. model_danmini_3 TL worst results against MedBIoT devices. 

 

Figure 33. model_danmini_3 TL best results against MedBIoT devices. 
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The worst case 2% training data experiment for the switch immediately raised accuracy 

from ~43% to 76%. Raising training data to 5% can improve accuracy in 5-8% range. 

Subsequent raises of training data increased accuracy to nearly 90%. Meanwhile stable 

~89% are achievable with 20% training data. Raising training data to 40% does not give 

any improvements for none of the three tested devices. Improvements for the light device 

were humbler than switch and fan because light started off with 61.8% accuracy, but it 

still increased performance nearly 20% just with 2% training data. Additional 3% training 

data improved existing result by another ~6%. 20% training data raised the accuracy to 

stable 92% which is ~30% improvement. For the fan, the results were even better than 

for the switch as with 20% of training data it improved accuracy more than twice up to 

92%. The accuracy performance raising trend is alike between all three tested devices, 

effectiveness stops at 20% training data. This means that past this point, giving more 

training data is not effective and another approach, such as using more a complicated 

model, or different parameters, is necessary. Nevertheless, even with as little data as 2%, 

result improvement for all of three devices is considerable and very alike. This means, 

that possibly the starting accuracy of the learning point does not matter, and with given 

data, the model would reach results such as in the Table 24 anyway. 

This highly contrasts with TL experiments against MedBIoT using model_danmini_2 and 

especially model_737_2 where results were much worse in comparison. In model_737_2 

results were highly unstable and there was no improvement, in model_danmini_2 there 

was actual improvement, but not even close to the result achieved with model_danmini_3. 

This shows that incremental model complexity increase works has very positive impact 

when applying TL concepts between different domains and devices.  

From confusion matrixes it can be noted that in all experiments false negatives are 

dominating the errors narrative. The confusion matrices are shown in Figure 34, Figure 

35 and Figure 36. 
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Figure 34. model_danmini_3 switch TL 2% training data confusion matrix. 

 

 

Figure 35. model_danmini_3 switch TL 20% training data confusion matrix. 
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As model_danmini_3 turned out to be the most successful model out of the ones tested, 

it was decided to perform TL on benign data with this model. During TL, the first layer 

with 100 neurons is frozen and the 2 last layers are retrained with benign traffic instances 

of the target domain. For testing, random instances were picked the same way as for 

regular TL – where possible 50,000 benign and 50,000 malicious traffic objects according 

to the table described in the Methodology chapter. The learning rate used for this 

experiment was equal to 0.00001. Results of accuracy testing experiments after TL with 

different amounts of normal instances for training are shown in Table 25. Experiments 

were performed on switch, light, and fan. 

Table 25. TL of model_danmini_3 on normal data of target domain. 

Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

 252 benign instances 500 benign instances 

Switch 41.15 39.24 50 50 50 46.32 50.16 50 

Light 36.28 50 54.87 50 50 65.31 50 62.8 

Fan 53.29 41.79 43.85 48.72 50 62.4 50 54.41 

 1000 benign instances 2000 benign instances 

Switch 50 61.29 54.15 37.89 32.77 59.86 26.85 31.95 

Light 57.64 50 46.16 50 60.44 50 53.26 50 

Fan 50.31 62.8 37.68 43.32 50 48.1 50 61.96 

 

Figure 36. model_danmini_3 light TL 10% training data confusion matrix. 
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Device Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

 4000 benign instances 

 

Switch 49.25 50 47.79 50 

Light 50 54.81 50 50 

Fan 46.39 50 50 50 

      

Starting from the small number of 252 benign instances up to 4,000 this tactic is highly 

unstable and does not provide any reliable improvements for the model. Combined graph 

of all results is shown in Figure 37, it clearly shows that over the experiments there is no 

improvement. 

With every iteration of different instances amount for every device, in approximately half 

of the experiments model comes up with the pattern that recognizes all traffic either as 

benign or as malicious resulting in exactly 50% accuracy. Even though technically it is a 

higher accuracy than what direct testing originally achieved, it is misleading. Example of 

such confusion matrices are shown in Figure 38 and Figure 39.  

 

Figure 37. model_danmini_3 TL accuracy test against benign data of MedBIoT devices. 
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Some experiments resulted in 61.29% and 59.86% accuracy, a nearly 20% improvement, 

which in this case is also misleading as specificity is 100%, but recall is 22.6% as shown 

in Figure 40.  

 

Figure 38. Confusion matrix of TL for model_danmini_3 against light device on 4000 benign instances. 

 

Figure 39. Confusion matrix of TL for model_danmini_3 against fan device on 2000 benign instances. 
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There are improvements to the original accuracy score with direct testing for light and 

fan in some experiments, such as 65.31% trained on 500 benign instances in experiment 

2 for light or 62.8% for fan when trained on 1,000 instances in experiment 2. Their 

confusion matrixes are depicted in Figure 41 and Figure 42. While the experiment with 

the light does not have any anomalies in its confusion matrix and the result is meaningful, 

the fan confusion matrix represents the same issue as the case with the switch trained on 

1,000 instances – specifically 100%, but a very low recall, hence accuracy does not 

represent effectiveness in this case.  

 

 

Figure 40. Confusion matrix of TL for model_danmini_3 against switch device on 1000 benign instances. 

 

Figure 41. Confusion matrix of TL for model_danmini_3 against light device on 500 benign instances. 
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Overall, this approach does not work with a defined model architecture. There are 

improvements in certain experiments that also have meaningful confusion matrixes, but 

there is no tendency that would conform to the amount of normal instances used for 

retraining.  

  

 

Figure 42. Confusion matrix of TL for model_danmini_3 against fan device on 1000 benign instances. 
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5 Discussion 

Experimenting with 2-layered NN based on N-BaIoT dataset revealed that it can be 

enough to train a model capable of binary classification against different IoT devices in 

the same dataset. The model trained on one of the N-BaIoT devices for malicious traffic 

detection performed well when tested on other IoT devices of the same dataset with 

average accuracy of approximately 94-95% similarly to both 2-layered models tested in 

this thesis - model_737_2 and model_danmini_2. More complex, but from DL point of 

view still relatively simple, model_danmini_3, with 3 neural layers got ~1% worse 

accuracy than 2-layered models when tested against other N-BaIoT devices directly. 

Model_danmini_3 also had ~1% lower accuracy compared to 2-layered models when 

directly tested against MedBIoT. This is likely due this model having about 10,000 more 

parameters to train than 2-layered ones, hence it learned more device-specific traits in the 

context of being the most effective at classifying this device traffic, and more N-BaIoT 

dataset-specific traits meaning it learned better Mirai and BashLite late-stage behaviour.  

Such difference in two approaches where one is testing a trained model against devices 

of the same, N-BaIoT, dataset and the other is testing a model against devices of 

MedBIoT, indicates that the same malware, but different phases matter, as N-BaIoT 

focused on the later phases of Mirai and BashLite while MedBIoT focused more on 

spread and C&C. Also, the dataset generation methodology can create a difference in 

traffic of IoT devices. Possibly, if MedBIoT and N-BaIoT would be generated in identical 

environments with other factors remaining the same, the direct testing from N-BaIoT to 

MedBIoT would show a better performance. 

On the other hand, the 3-layered model performed much better on all experiments that 

involved TL with both source and target domains being N-BaIoT, and source N-BaIoT 

and target MedBIoT. The model_danmini_3 required only 2% training data from the 

target domain to show that within N-BaIoT it can achieve nearly 100% accuracy for every 

device when determining whether traffic is normal or a cyberattack. These results 

combined also indicate that when creating a model with source and target domain being 

the same network, it may not be necessary to come up with a complex NN architecture, a 

simple one with standard parameters may be just enough. But TL, being a more advanced 

technique, does not perform well with 2-layered models when source and target domains 
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are different datasets. Results were mostly unreliable and became more stable starting 

from using 20% learning data from target MedBIoT dataset. But still, depending on the 

experiment, the performance difference could be substantial. At the same time, a 3-

layered model trained on Danmini doorbell from N-BaIoT, showed consistent and 

significant accuracy improvement using TL already with 2% training data from 

MedBIoT. This shows how much difference the addition of a 1 neural layer can make, 

but at the same time shows that the standard 3-layered NN can perform well with TL 

technique between different datasets and devices. 

At the same time, the last experiment type where TL was attempted only with benign data 

of the target domain, showed low, unreliable, and unusable performance for all tested 

models. It is unclear why the result was so chaotic and difficult to interpret, but possibly 

the classical 3-layered DNN is not suitable for this strategy. The idea behind that approach 

could be worth more experimentation with either a modified NN architecture, different 

parameters or training and testing data balance.  

All models in this thesis were created based on N-BaIoT devices and all tests performed 

against other N-BaIoT devices or MedBIoT. Experiments in the current thesis were 

performed similarly with 3 different variations of models that allowed a comparison of 

different devices base and different model architectures for the same IoT device. They 

were a 2-layered ANN model built on N-BaIoT 737 security camera, and 2 and 3-layered 

models built on N-BaIoT Danmini doorbell. 

Authors of [13] and [14] designed different CNN models with input, multiple convolution 

layers, flatten, dense and output layers. In [13] authors managed to achieve nearly 100% 

accuracy for binary classification using TL among 6 different IoT datasets, whereas they 

applied TL between different datasets. Authors of [14] used model pretrained on 

ImageNet for TL and similarly to previous study, also achieved between 98% and nearly 

100% accuracy and high scores in other metrics with TL between different malware 

datasets. This means that CNN models were more effective at the TL between different 

datasets than the 2 and 3-layered ANN models reviewed in this study. 

In [12] authors also built a CNN model with multiple layers and similarly to the current 

thesis, tested the trained model directly and using TL both against original and other 

dataset. Authors trained their model on BoT-IoT and tested it against TON-IoT for 
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multiclass classification, hence it was a more complex task than this thesis which focused 

on a binary classification. Due to [12] being multiclass classifications, authors measured 

recall, F1 and precision for every class separately. Current thesis focused on accuracy 

metric and confusion matrices because this combination worked as good metric for the 

binary classification. Therefore, the results of these works cannot be directly compared 

one to one, but in this context accuracy of current thesis model test against a device is 

comparable to recall metric of one class in [12]. Recall there shows how well a certain 

class was identified, and the accuracy of the current thesis shows how well one device’s 

traffic was separated into benign and malicious. Authors of [12] obtained high results for 

most of the classes in direct testing against the original BoT-IoT dataset, but normal traffic 

class got 0% in recall. Benign instances were almost completely mistaken for other attack 

classes as only 4 out of 2,494 were correctly identified. One of the other attack classes, 

“Theft”, got 0 correctly identified instances. When testing the original model against 

TON-IoT dataset, the average performance noticeably decreased among all classes. 

Detection of “Normal” traffic again performed very poorly getting 3% recall with 3.25% 

of normal instances correctly identified. In this thesis, when the 3-layered model was 

tested against other devices of the source domain it achieved ~94% accuracy and 

specificity or, which in binary classification context is benign traffic recognition, varied 

between 72-99%. When tested directly against target dataset MedBIoT, the accuracy was 

approximately between 51-56% and specificity varied between 1-68% which makes it 

similar with [12]. But, if the model is not able to recognize normal traffic at all, then it is 

practically useless since all traffic would be triggering an attack alert. In this context, this 

research received a better result when tested directly against the original model as it was 

capable of adequately separating normal traffic from attacks. When [12] model got 

updated with TON-IoT data using TL, the authors achieved approximately 98-100% on 

precision, recall and F1 for all classes. But when applying TL and retraining classifier 

layers on top of frozen layers, the authors of [12] used 50% of target domain data for 

training, and 10% of original dataset data for training to avoid “model to be influenced 

only on the new attack’s behaviors” [12]. As far as the TL is concerned, [12] there was a 

dramatic improvement after applying TL, receiving nearly perfect results for all classes. 

Results for this thesis were more humble staying around 90% accuracy for different 

devices, but that result was achieved using only 10% of target domain data for retraining 

with no source domain data mixed in for additional training. Using 10% of data instead 

of 50% means less computational and time resources necessary to adapt the model which 
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is the core advantage of TL technique. If there is 50% of target domain data available for 

retraining, then possibly, the TL is not even necessary and the target device-specific 

model could be trained from scratch instead, which would be more effective. It would be 

interesting to do a multiclass classification with model_danmini_3 together with both 

target domain and source domain data used for retraining to get a better comparison 

perspective between current thesis and reviewed study.  

Results interpretations proposed in the current chapter would have a stronger foundation 

if all experiments could be redone from MedBIoT perspective, meaning that the models 

would be created based on MedBIoT devices and tested both directly and using TL 

against both datasets devices. Also, the false positive rate could be lowered, and this could 

possibly be achieved by changing the binary decision threshold or performing 

experiments with different training/testing data balances. Regarding the result metrics, 

the current thesis obtained overall lower results than compared works, but their DL 

models had more complexity and last work used considerably more target domain data 

for TL. In the current thesis the author attempted to determine if it was possible to achieve 

good results using both a simpler ANN model, which is easier for direct application in 

IoT environments or devices with a limited computational capacity, and a little portion of 

target domain data for TL training.  
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6 Conclusion and Future Work 

6.1 Conclusion 

This thesis had multiple goals. One of them was to measure if it is possible to train the 

ANN model on one IoT device and generalize its usage for other IoT devices and 

networks. This task was divided into two parts which are model testing against other 

devices of the source dataset which was N-BaIoT, and testing against target dataset which 

was MedBIoT. The models were trained to do binary classification for differentiation 

between malicious and benign traffic. All testing of that classification aimed at measuring 

accuracy and comparing confusion matrices. Another goal of this thesis was to measure 

what would be the minimum training data threshold to make TL effective when testing a 

model against both source and target datasets. 

Tests against source and target datasets were performed using 2 different TL approaches. 

In one case the model trained on attack and benign data of the source domain was 

retrained using both malicious and normal data of the target domain. In another case this 

model was retrained using only benign target data. The novelty of the current thesis and 

main difference from other studies is this thesis used 2 and 3-layered NN models and 

explored TL effects using small amounts of target domain training data. To the best of 

author’s knowledge, this thesis is also the first work to use both N-BaIoT and MedBIoT 

datasets and perform direct ML models testing and TL between them. These datasets 

employ different IoT devices, have similar feature sets, the same malware, but they were 

collected in different environments with different methodologies and have considerably 

different stages of its activity. MedBIoT data was collected in a lab using both real and 

virtual devices, but it simulated realistic device usage. Botnets typically have spread, 

infection, C&C and attack lifecycle stages [11]. MedBIoT collected mostly Mirai and 

BashLite propagation and C&C traffic activity from rather typical household IoT devices. 

N-BaIoT, on the other hand, focused on the attack stage data collection from 9 different 

real industrial IoT devices. Usage of these datasets allowed the study of described models 

and techniques on the same malware, but between different stages, different devices, and 

different environments.  

Results analysis showed that ANN with 2 layers performs well when model trained on N-

BaIoT and is directly tested against other data of this domain with no TL, but the 



74 

performance average falls drastically when tested against MedBIoT data. The 3-layered 

Danmini doorbell ANN model retained direct testing performance against source N-

BaIoT and target MedBIoT datasets approximately at the same level as the 2-layered 

Danmini doorbell model. The average result of the 3-layered model was only 1-2% 

accuracy-wise worse when compared to the 2-layered models. On the other hand, the 

additional neural layer had a significantly positive impact on the TL process with both 

domains. This model only needed 2% of target N-BaIoT device data for TL to bring 

accuracy of the model up to approximately 99.7%. TL results for the 3-layered model 

against MedBIoT showed that 10% of target domain data was enough to achieve accuracy 

of 80-90% depending on the target device, and 20% of target domain data was enough to 

achieve 89.43% - 93.76% for different devices. 

The last approach where the original model was trained on both attack and normal data, 

and during TL retrained on target domain’s normal data, did not have good results for any 

of the tested combinations. All experiments using this method resulted in the model either 

classifying everything as either benign or as attack traffic, or when results were more 

adequate the performance was worse than that of the direct testing.  

This research showed that the 2-layered ANN are effective when trained on one IoT 

device and used to detect malware in IoT devices network traffic of the source domain. 

The 3-layered ANN is enough to create a model that can achieve ~90% accuracy in binary 

classification using TL when the training data composes 10% of a target dataset, and 

source and target domains are different datasets or IoT networks.  

More complex models of other works showed better metrics with their datasets, however, 

this thesis was focused on a simpler ANN and using as little training data for TL as 

possible. Less retraining data for a model TL means saving computational resources. 

Besides, it can help in cases where there is not enough data to train a full model, because 

quality dataset collection is comprehensive work. 2 and 3-layered ANN architectures are 

also easier to implement and simpler algorithms are faster in computation than more 

complex models. This is relevant for IoT networks and devices because by nature their 

functionality is specific and their computational capacity is low. Also, unlike the model 

in [12], this work’s models did not experience an anomalous situation in which benign 

traffic was completely misclassified during no-TL testing against other data of the same 

domain.  
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6.2 Future work 

For future work it would be beneficial to perform all experiments in a mirrored way – 

create models on MedBIoT device data and test them against N-BaIoT to see if the results 

would be similar. Better comparison with other related works could be provided if similar 

tests as completed in these works would be conducted. For example, complete multiclass 

classification, using BoT-IoT and TON-IoT datasets, and metrics F1 and Recall for every 

class. These tests could be rerun with different model tuning and different model 

architecture. The last approach of this thesis, where TL was applied to only benign data, 

could be retested using [12] approach where the model was retrained using a combination 

of source and target domains data. In this case the model could be retrained using target 

domain benign data with a mix of source domain attack and benign data. 
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