





Monotone Systems

The implementation of the concept of a
monotone (monotonic) system was discussed
in two contexts. Firstly, the concept of mo-
notony was introduced to reflect the adjust-
ment of negotiating power in bargaining
situations, in particular in negotiations be-
tween left and right political parties, that is,
to clarify the structure of the political mecha-
nism design. And secondly, the same concept
was applied to data analysis. Although the
application of monotonic systems in these
two different areas may seem unexpected,
they are united by the same idea or what is
called stable or "stable lists" of elements in
sets or topologies. Stable sets, by assigning
certain certificates to their elements, provide
a unifying perspective for virtual experi-
ments. These virtual experiences create a ba-
sis for stability or equilibrium, as opposed to
volatility in the economy or fuzziness in em-
pirical research.
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THE MONOTONE PHENOMENA

In this collection of articles, by a monotone or monotonic sys-
tem, we understand a set of subsets ordering some indicators.
Indicators or credentials of subset elements have a monotonic
property synchronizing the dynamic nature of indicators. In-
dicators in the form of real numbers increase or decrease
along with the partial ordering caused by the inclusion of sub-
sets taken from some general set of indicators. Hereby, the
Monotone Systems formalizes and generalizes the intuitive
notion of ordering, sequencing, or arrangement of the ele-
ments in subsets. The theory was initiated by the author in
1971, and since then was further developed and published in
Russian periodical of MAIK in 1976. In English it was origi-
nally distributed by Plenum Publishing corporation.

Concise Glossary of Mathematical Nomenclature

W — A common or general set of indicators, elements, objects, etc
Fj, Xi s Hi, H’ s H1 , H2 ... — Subsets of the General Set W

For i,j =1,2,..,1n instead we sometimes use short notation i,j =1,n

o, B, Y., U, T,... — Greek letters as elements of W, Hi, |
Credential TC(OL,HJ.) assigned to an element o0 € H ; of the subset H i

Type @ and type © operations on elements OL,B,...

& ,[_3 , — Sequences or sets <0Li> , <BJ> , of ordered elements QL , joe
H=9, c, o, c,D, Hc W, WoTI',... —Pairwise relations
H,WH,,H nH,, W\ &, — Pairwise operations

IT'H, IT H — Collections or arrays of general set W subsets
{HfH‘ Hc W} — This means that {HfH ‘,where Hc W}, etc.

X — Denotes the complement W \ X ofaset X tothe set W
YV — Generality quantifier and 3 is existential quantifier
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PREFACE

MONOTONE PHENOMENA OF ISSUES
BEHIND BARGAINING GAMES AND DATA
ANALYSIS

BYJOSEPH E. MULLAT

Introduction

In social sciences, natural language is used to describe the phenomena
pertaining to numbers. This approach may be the reason for the problems
that often emerge in predictions that do not align well with the reality. In
natural sciences, converse is true, as numbers are used to describe and
predict phenomena of various origins, natural or artificial. Yet again, ap-
plying mathematical assumptions or postulates is rarely adequate for de-
picting the complexity of the phenomena in question.

The problem of prediction, perhaps, is not rooted in mathematics.
Rather, it likely stems from the issue of whether the actual mathematical
approach used is adequately defined. This can be likened to window-
shopping instead of visiting a store when purchasing an item of interest.
Thus, to truly establish what mathematics really predicts, instead of rely-
ing on numbers, we must first try to explicate the subject under study us-
ing words. This approach will allow the subject to be well understood,
precluding a move in the wrong direction, through incorrect use of
mathematics. Still, in practice, this strategy can be protracted, as it can
take years, or even decades, of exploring known or unknown mathematical
schemes before we can portray the phenomenon is a sufficiently under-
standable form. It should also be noted that, we don’t generally require
mathematics in order to initiate seminal exploration of the phenomena of
interest for us humans.

Having said that, what direction should research take? This question is
very difficult to answer when the subject under study is diffused, the path
ahead is unknown, and “a suitable vehicle” for the journey is difficult to
identify. Is there a way to discover something hidden that can take us out
of this uncomfortable situation? How can we find among these seemingly
disparate subjects the one that could make the future for the researcher
more appealing? While none of these questions have a definitive answer, it
can be stated with certainty that the subject must be normatively challeng-
ing and comply with the coherence inherent in natural language. More-
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over, the words used to describe phenomena under study must be suffi-
ciently simple to be merged together. As the Danish philosopher Seren
Kirkegard observed in his master’s thesis in 1840, any subject should be
described in a way that can be understood by a child. When considering
this assertion, it should be noted that, in his time, the master degree thesis
presentation and defense in an open session used to take about 7-8 hours.
Thus, to gain their degree, the candidates had to be quite well prepared to
answer the panel’s questions regarding a wide range of phenomena. We
will try to follow in their footsteps.

To do so we start with a "visual" or "pedagogical exhibit". At first
glance, our exhibit may seem frivolous, but it is much easier to suggest
something new if the essence of the matter is presented in the form of an
allegory, which can be interpreted in such a way as to reveal the hidden
meaning of reality. We preface everything that concerns theory with this
simple example of further reasoning. The reader will find this passage
again, but in a more precise mathematical form, in a separate article later
in the text.

Wine Menu

The need for order is all-encompassing and we encounter it in every-
day life. We seamlessly form orderly queues while waiting at a checkout
counter, we take for granted the chronological or lexicographical order
that makes our iPhone contact lists easier to use, we peruse tables of con-
tents to explore books and catalogs at glance, etc. In academic literature,
cited works (also known as a bibliography or references) are usually or-
dered or numbered chronologically. Some journals or periodicals require
lexicographic citation order for the same purpose. These are all examples
of events and word orderings. The next one might be more appealing.

When accepting an order at a restaurant, the sommelier explains that at
the moment some relatively inexpensive, and in other cases the cheapest
wines indicated by the guest on the list as possible attractive ones are tem-
porarily absent. The lack of comparatively inexpensive wines on the list
will likely encourage guests to expand, or at least maintain, the list of
cheap wines that at first glance are already approved. On the contrary, the
lack of approved, at first glance, cheap wines may induce the sommelier to
suggest more expensive wines in favor of others available for order, also
cheaper, but quite good and better wines.

Yes, indeed, the world of wine is exciting, and price is definitely a pa-
rameter that many pay attention to. Taste "unfortunately" is individual and,
of course, there is not always a connection between price and "good wine".
However, we will use price as our primary parameter.
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The wine list is ordered in descending order of price, and 1 multiplies
the price of the most expensive wine, 2 multiplies the next local price, then
3 the next, and so on. We call these numbers as price credentials. The local
maximum of credentials and the price of wine are selected when this peak
location from the top of the ordered list — the maximum is reached. The
guest decides to accept the price of the wine at the local credential’s
maximum as an acceptable level of price significance when choosing
wines with a higher or equal price level. We call this ordering the defining
sequence of credentials. The defining sequence is single-peaked, where the
peak denotes the kernel (Mullat, 1971-1995) of a monotonic system. By
definition, a credential is nothing more than the price multiplied by the
number of different wines in the particular sub-list of wines to which a
particular wine belongs. In fact, credentials defined this way organize
nested subsets of wines from a wine list.

Graphs

We will continue our exploration by depicting various phenomena
through graphs. A graph is a visual representation of relations between
points connected by lines. They are akin to picture books aimed at young
children, who are required to join numbered points to reveal the final im-
age. In natural language, we also encounter nodes even if we are not aware
of it. When their order is unimportant, they are connected by lines/edges
on the graph; otherwise arcs are used as illustrated below. The other form
of graph representation is given by quadrangle matrices, i.e., matrices with
an equal number of rows and columns comprising items with either 0 or 1
value, thus denoting Boolean tables. In such case, rows represent arcs
pointing from vertices/nodes, i.e., out from nodes into other vertices, while
columns pertain to arcs pointing into the nodes. A graph given in a Boo-
lean table form is also a binary relation. In the discussions that follow,
graphs will be explained in terms of rows and columns.
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Summing up all 1-s in each row and all 1-s in each column allows
forming so-called “credentials” of rows and columns in graphs. In other
words, credentials represent the frequencies of 1-s in rows and columns, as
they are equivalent to the total number of incoming and outgoing arcs
from any particular node within the graph. Credentials can also be as-
signed to cells in binary tables by summing up or multiplying credentials
of rows and columns in a pair wise fashion. Alternatively, using various
types of arithmetic composites can further extend these credentials. These
composites, as combined credentials, may characterize graphs, allowing
analysis to progress in a desirable direction. This approach is particularly
useful for emphasizing the dynamic nature of graph architecture — its
monotone phenomena. Indeed, simply eliminating an item assigned a
value of 1 from a Boolean table representing the graph would always re-
sult in decreasing our credentials values. In other words, it is irrelevant
whether we employ composite or simple credentials. Similarly, replacing 0
with 1 would result in increasing credentials, creating reverse dynamics.
While this may seem rather complex, in essence, credentials of graph ele-
ments are nothing but frequencies of items filled with 1-s. This is the
foundation of the theory of Monotone Systems orderings."

Indicators

Indicators are the preferred tools for statisticians, physicists, natural
scientists and economists. Think of different metrics, average incomes,
taxes, and many other areas where numbers and values are helpful. Never-
theless, despite the apparent diversity, all of these examples obey the same
lexicographic or chronological ordering rules. Indeed, upon closer exami-
nation, it becomes apparent that any part, subset or sub-list of the lexico-
graphic ordering, regardless of whether they are in ascending or descend-
ing order, again, regardless of the original, so-called general ordering, are
subject to the same ordering lexicographic or chronological rule.

It is was originally published by Mullat (1971) in the article of Tallinn Techni-
cal University Proceedings, Ouepxu o O6padorke Mudopmbrmu u
OynkrmonansHoMy OHanmsy, Seria A, No. 313, pp. 37-44 (in Russian), and
(1972) in the article extension “Uhest Neelavate Markovi Ahelate Klassist,” On
Absorbing Class of Markov Chains in EESTI NSV Teaduste Akadeemia To-
imetised, Fiitisika Matemaatika, vol. 21, No. 3, in Russian.
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Let us examine an example of Grand Ordering of items and select two
items from the list, denoting them as Item A and Item B. We can always
establish that either A <B or B < A, otherwise A =B . It is very
easy to form these relations when the Grand Ordering is available. How-
ever, attempting to organize the Grand Ordering with the knowledge of
relations between only a various items is problematic. Indeed, suppose that
given a line of items A, B, C,...we can only say which one of these
three relations <,>,~ holds for any pair. Is it possible to arrange the

items in this list using some numeric indicator in harmony with these
rules? This was the question that von Neumann and Morgenstern > at-
tempted to answer. In their pioneering work, they provided some very
strong formal axioms for rules allegedly applicable to pairs of items, de-
noted as the axioms of pairwise relations between items. The authors fur-
ther posited that these rules must be obeyed to guarantee the desired order-
ing property of some numerical indicators, or what they referred to as utili-
ties. Von Neumann and Morgenstern rigorously proved that the existence
of such orderings confirmed axioms’ validity, and thus established that
these can be applied to order the items in accordance with the increase or
decrease in their corresponding utilities. Their work was complemented by
the famous theorem put forth by John Forbes Nash Jr. He provided its
proof in the form of axiomatic approach to the bargaining situations, con-
firming that the solution of the bargaining problem based on utility order-
ings, as a prerequisite, is unique given that the axioms reflect the phenom-
ena of the bargaining adequately.?

All orderings discussed thus far followed some usual numerical rules.
However, Arrow, relative to those proposed by Von Neumann and
Morgenstern, suggested much simpler rules, in relation to voting schemes.
Unfortunately, when ordering axioms presupposing democracy were ap-
plied separately, although seemingly reasonable approach, this resulted in
a paradox, as it was not possible to satisfy the same axioms applied simul-
taneously. This led to the conclusion, expressed in barmaid language, that
democracy does not exist. Still, it is worthwhile exploring these axioms
using more complex examples in which obvious coherence is employed to
explain various phenomena more precisely.

2 John von Neumann and Oscar Morgenstern, (1953) Theory of Games and
Economic Behavior, Princeton University Press.

Nash J.F. (1950) The Bargaining Problem, Econometrica, Vol. 18, No. 2,
155-162.

3
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Surveys

Polls are a common form of gathering the views and opinions of large
groups of people and are used in many contexts. Government agencies,
commissions, product market analysts, etc., conduct surveys to identify the
true incentives of people. Typically, research results are presented in tabu-
lar form because it is a convenient way to visualize data and store it in
databases. In fact, overview tables are extensions of charts that range from
a quadrilateral to a rectangle. The only difference is that instead of binary
(1 and 0) inputs, the elements of such tables usually consist of codes

(A,B,C,...) called attributes, measured on a nominal scale. The nomi-

nal scale is nothing more than a coded form of words or sentences reflect-
ing some properties of products, a predetermined attitude of respondents
towards the media, etc., usually accompanied by some personal data.

When such data is analyzed, the results are usually displayed as pie
charts because they allow you to visualize the frequency of different re-
sponses at a glance. When a dataset is complex and consists of many in-
puts, many such diagrams are created, as analysts want to study the same
subject from different angles depending on their purpose. This form of
presentation is, again, nothing more than a visual representation of the
frequency density distribution associated with different responses. As al-
ready noted, the form of the nominal frequency scale makes it possible to
present the order of respondents' answers in accordance with some classi-
fication using personal data (as a rule, gender, age, education, etc.). It
should be noted, however, that placing responses on a nominal scale might
lead to ranking of respondents themselves based on their response rates.
This effect manifests itself in the ranking of universities, car manufactur-
ers, rating scales, etc.

Some researchers believe that this implementation of the nominal scale
leads to the so-called conforming scale, which actually provides the
truth *3. However, we can discover something new by implementing the
nominal scale in the form of a defining ordering/sequence.

Karin Juurikas, Ants Torim and Leo V&handu. (2000) “Mitmemdotmeliste andmete visu-
aliseerimine isoleeritud majandusruumis, kasutades monotoonsete siisteemide konform-
ismiskaalat: Uurimus Hiiumaa néitel,” (Article: Multivariate Data Visualization in Social
Space using Monotone Systems conforming Scale: Case study on Hiiumaa Data).
> Ténu Tamme, Leo Vohandu, and Ermo Tiks. (2014) A Method to Compare the Com-
plexity of Legal Acts, NaiL, 2" International WorkShop on “Network Analysis in Low,”
December 5, Amsterdam.
Joseph E. Mullat. (1976) Extremal Subsystems of Monotonic Systems, I, Translated from
Avtomatica i Telemekhanika, No. 5, pp. 130 — 139.
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To proceed with the discussion, it is prudent to first explain the defin-
ing ordering through an example. Let us assume existence of a Grand Or-

dering of items A1 R B2 R A3 R A4 , C5 R De R C7 R Es . Our goal is to reor-
ganize the sequence according to their frequencies, i.e., frequencies
3.1,2,1.1 of A,B,C,D,E. The indices 1,2,3,4,5,6,7,8 =1,8 as-
signed to the items A,B,C,D, E in the sequence above denote their
respective occurrences. The lowest frequencies are associated with
B2 R D6 and Es- Let us eliminate these items from the sequence. After

eliminating B2 , D6 ,E g» We eliminate C5 , C7, as these now have the
lowest frequencies, and then A1 R A3 A 4- This results in
B,,D,,E,,C,,C,,A,A;,A,, referred to as the Grand defining

sequence, highlighting the frequencies of items in different order. Namely,
in contrast to its original form, the new sequence lists items in increas-

ing/decreasing order of frequencies 1,1,1,2,1,3,2,1. We can immediately

observe upward and downward changes in frequencies, e.g., from 2 to 1,
but also sliding frequencies, such as 3,2,1. In the collection of our papers,

these hikes are designated by Greek letters E R 1“2, ... and are thus referred

to as I -hikes, reflecting the dynamic nature of such lists. In fact, when
subsets of respondents or their survey answers/attributes are explored, it is
always possible to arrange them into such dynamic lists, reflecting de-
creasing/increasing order of their corresponding frequencies. As a conse-
quence, in line with representing Monotone Systems through graphs, the
frequencies scale is equivalent to the Indicator of matching responses to
the survey questions. It is important to emphasize, however, a fundamental
property of the defining sequence. Namely, irrespective of which subset,
sub-list, or subsequence we take from the Grand Ordering, we have inde-
pendently arranged the subsequence by applying our defining rule,
whereby its defining properties are in harmony with the Grand defining
sequence arrangement, from which the subsequence was initially ex-
tracted.

Indeed, let us extract a subsequence A1,C5,A4,C7 form the list

given earlier. Arranging the items independently, in accordance with the
defining sequence rule, we obtain the frequencies 2,1,2,1 . It is irrelevant

whether we eliminated A1 LA 4 before C5 5 C7 or vice versa — C5 R C7
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first, followed by A1 A 4 - Whichever path we take, we arrive at 2,1,2,1

as the order of the frequencies. This is equivalent to generating the se-
quence Cs,C7,A1,A4 in accordance with the Grand defining se-

quence B29D69E8’C55 C7,A1,A3,A4 arrangement.

Many natural phenomena follow well-defined rules and sequences,
such as Fibonacci series, in which any subsequent element is the sum of
two previous items (1,2,3,5,8,13,...), with 1.618 as its limit. This value

is also known as the golden ratio, indicating that the relationship between
two quantities is the same as the ratio of their sum to the greater of the
two. Golden ratios are widespread in nature, from the proportions of the
human body, to arrangements of leaves, spiraling shells, pinecones, etc.
Hence, we can say that our defining sequence obeys the Fibonacci rule.

Using the information presented above, we can apply the Grand defin-
ing sequence to a lexicographical or chronological order of words. It is
important to recall that, when some items have been eliminated, similar to
the exercise above in which frequencies were presented on a nominal
scale, the value of frequencies/credentials decreases. The process starts
with searching for items that have the lowest credential values on the cre-
dentials scale, followed by those that are next in increasing/decreasing
order, while recalculating the remaining credentials as we proceed with
item replacement. This is a best-explained using survey table.

Usually, survey tables are used to present respondents’ answers reflect-
ing their attitudes or views on a specific topic. For the sake of simplicity,
when answering survey questions, respondents are usually required to se-
lect one of the options provided, and can thus be represented by
A,B,C,..., denoting their choice. Now, instead of presenting these
items in a straight line, we can proceed with elimination, taking two direc-
tions. Respondents, like nodes with outgoing arcs, are presented in the
rows of survey tables, while columns, like ingoing arcs in graphs, denote
their responses to the survey questions, coded as A, B, C,.... Some cre-
dentials composed from the corresponding frequencies of items can char-
acterize the rows related to individual respondents A, B, C,.... Alterna-
tively, credentials of columns can be characterized by the same or distinct
compositions of frequencies using more sophisticated composites of cre-
dentials compiling, for example, arithmetic/numerical expressions as
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products. ” In applying the compositions of credentials to rows and col-
umns summing up matching answers, it is essential to ensure that the
composition functions remain non-decreasing.

Now, aiming to build the defining sequence of the respondents, we can
proceed in the same way with credentials of respondents, credentials of
their answers, or even combining these two types of credentials (the row
and column credentials). First, we must identify a cell with the lowest
composition, indicating the most unreliable answer type, suggesting that
the respondents are unwilling (for whatever reason) to answer the particu-
lar question truthfully. Such unreliable respondents should be eliminated,
along with their unreliable answers, before recalculating the credentials of
the remaining respondents and their answers. Once this is accomplished,
we search for the cell that now has the lowest credentials composite and,
in line with the above, remove the respondent (and his/her responses) from
any further consideration. As before, we make adjustments in the creden-
tials among all other frequencies of item (A, B, C,...) occurrences. We

proceed in the same manner until no items in the survey table remain, as
all respondents and answers will be removed. Note that, due to the nature
of credentials, the dynamic is always decreasing. It is rather intuitive to
conclude that, as the removal procedure progresses, the remaining respon-
dents and their answers will assume increasing positions on the credentials
scale — with the lowest credentials presented first — just because we
move upwards while building the defining sequence. However, once we
reach the peak, the credentials start to decline, indicating that the scale is
single peaked. Indeed, it can be demonstrated that the respondents’ creden-
tials values will first show the tendency to grow, and once they reach a
certain point, their values will start to decline. This pattern corresponds to
a typical single-peakedness of the defining sequence. Therefore, the defin-
ing sequence does not only provide an ordinary order of the respondents,
but also allows identifying the conditions under which the credentials
reach the peak — the highest point on the scale.

Owing to this property, the defining sequence of credentials is a dou-
ble-folded order — as the values of its elements first increase until the
peak is reached, after which they start decreasing. In this respect, the de-
fining sequence formation is akin to the Greedy type algorithms, aimed to

7 An example of such type arithmetic may be found in L.K. Vohandu. (1980)

Some Methods to Order Objects and Variables in Data Systems, Proceedings of
Tallinn Technical University, No. 482, pp. 43 — 50..
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improving some criteria.® Such algorithms are simple to use and are thus
suitable for programming. However, it must be ascertained a priori that
the result is an optimal solution, referred to as the Kernels. It is thus fortu-
nate that the optimality of a defining sequence can be rigorously proved.
This gives us confidence that we are not only proceeding in the right direc-
tion but have also chosen a suitable vehicle for our journey. This will be
demonstrated through some significant examples below.

Cellular Networks

In particular, in the narrow sense of the term, “A cellular network or
mobile network is a communication network where the link to and from
end nodes is wireless. The network is distributed over land areas called
"cells", each served by at least one fixed-location transceiver (typically
three cell sites or base transceiver stations). These base stations provide
the cell with the network coverage, which can be used for transmission of
voice, data, and other types of content...” this paragraph is quoted from
open sources.

In the broadest sense of the word, cellular networks promote “media
diversity” and are changing our reading habits. However, not many users
are aware of the underlying processes that enable us to contact our friends
via face book, “surf” various sites for the latest news, or obtain a response
on queries on the subject of our interest. Cellular networks are a complex
objects. Indeed, most cannot fathom how they function in practice. The
following — keep in mind the picture below — may shed some light on
this amazing technological invention.

% Advances in Greedy Algorithms, Edited by Witold Bednorz. Published by

In-Tech (2008). In-Tech is Croatian branch of I-Tech Education and Publishing
KG, Vienna, Austria, ISBN 978-953-7619-27-5.
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In old days, when the personal computers were relative rarity, users
could only interact with the system via the Disk Operating System (DOS).
Some of the DOS commands can still be seen using the C:\ command
prompt. If the user, for example, types “PING www.microsoft.com” com-
mand, the answer will usually be given in 25 ms, confirming that the site
is active. If the response takes more than 25 ms to arrive, or we receive no
response at all, this indicates that something has gone wrong with the
Internet connection. Such commands will always confirm whether a data
packet sent from our PC has reached the designated server. The PING
command can be applied to make a connection between all websites —
i.e., any two Internet locations. Likewise, for example, the "TRACERT
www.microsoft.com" command will provide information pertaining to any
packet delivery failure that occurs on route to its final destination. Their
path is possible to trace, because all data packets proceed along the
cells/locations to their final destination. In this path, the first cell is always
occupied by the Gateway cell on the local subnet — the first router in the
chain of routers responsible for packet delivery. Each router is a cell, akin
to a post office, and is responsible for routing the packets passing through,
stamping each one with receipts for delivery or transit. Therefore, if a di-
rect communication cannot be established, it will be easy to identify the
location at which the error has occurred. As cellular networks design al-
lows for such malfunctions, whereby alternative paths are provided, any
issues on one path/cell will have adverse effect on the total network
throughput for other locations. The inverse situation is also true, as im-
proving a direct connection somewhere on the cellular networks increases
the overall throughput as well.

The process described above allows indicators to be assigned, corre-
sponding to the average number of attempts made by packets on the Net-
work (inclusive cells, which do not have direct connections) to reach the
destination cell from the source cell. The number of cells within the net-
work is extensive, and so is the total number of possible pairwise connec-
tions. Using our earlier nomenclature, it is equal to the number of items in
the table of rows and columns — one of the standard forms of network
representation. Some of the items in the table will be empty because there
are no direct connections, which can be established between these cells.

Clearly, the main feature of the cellular networks is its dynamic nature.
The average number of packet deliveries — the number of attempts to
reach the destination — depends on current network structure, which can
change these averages. At a more rigorous level of abstraction, the Markov
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Chain, meets some postulates of packet deliveries, and can be employed
when describing packet deliveries and processes required for these packets
to reach their respective destinations. Some indicators, or credentials,
formed by performing calculus on thus formed Markov Chains may help
in elucidating this process. In fact, the following excerpt from Wikipedia
may be useful:

A Markov chain (discrete-time Markov chain or DTMC), named after
Andrey Markov, is a random process that undergoes transitions from
one state to another on a state space. It must possess a property that is
usually characterized as "memorylessness": the probability distribution
of the next state depends only on the current state and not on the se-
quence of events that preceded it. This specific kind of "memory less-
ness" is called the Markov property. Markov chains have many applica-
tions as statistical models of real-world processes.”

While the assumption that the pertinent information of the preceding
states is implicitly included in the current state is an important property of
Markov Chains is highly beneficial, its dynamic nature is of primary im-
portance for the present discussion.

This principle can be applied to the cellular networks as the most
common form of communication network. We will try to elucidate what
the dynamics might represent in this context. In a real Web communica-
tion network, the cellular networks can be depicted as a collection of
routers or switches that are “alive.” For the network to function, it is nec-
essary to conduct periodic repairs, reconstruction or extensions, whereby
some cells might be removed or replaced. Malfunctions are also a common
occurrence due to the vastness and complexity of the network. So, what
affect all these changes have on the network performance? Intuitively,
malfunctions compromise the communication network abilities, while
repairs enhance the quality of services. New communication units bring
about better throughput, while removing the cells requires that the traffic
be restructured. Similarly, traffic protocols are in place, allowing the pack-
ets along open routes to be rerouted in order to reach their destinations
automatically.

’ Mullat J.E. (1979) An article was published on Markov Chain analysis in the

spirit of this lines in Tallinn Technical University Proceedings, Data Process-
ing, Compiler Writing, Programming, Ananu3 [lannsix, IToctpoenne
Tpancastopos, Bonpocs! IIporpammupoBanus, No. 464, pp. 71-84.
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This is where the notion of “The Monotone System” is evident in its
full power. In case of positive actions (repairs/extensions), network per-
formance in enhanced, as the components and processes become more
reliable. Conversely, negative actions (malfunctions) exert negative ef-
fects, whereby network performance worsens. However, in many cases,
this level of abstraction is overly simplistic. In nature, we do not expect
localized improvements to result in benefits to all elements and processes.
Indeed, in any system, some elements will remain unaffected, or even ex-
perience worsening. As mathematics is an exact discipline, it is sometimes
necessary to introduce some simplifications when describing such com-
plex systems. Thus, for the sake of the discussions that follow, we will
further postulate that the system performance as a whole is improving
(worsening) when an improvement or worsening occurs locally.

This assumption prompts a very reasonable question. What does this
view contribute to our understanding, explained above, of the communica-
tion networks functioning? It can, for example, allow us to proceed with
optimal design of communication networks, as it renders the design proc-
ess more precise.

Still, we will first revisit our Grand Ordering of items

A1 s B2 . A3 s A4 , C5 , D6 , C7 , E8 when constructing the main, i.e., the
Grand defining sequence B2 , D6 R Es , C5 R C7 R A1 R A3 , A4 and its
defining subsequence C5 R C7 R A1 A 4 - Let us examine the removed
items B2 R Dea A3 ,E g more closely, in the context of constructing the
sequence C5 5 C7 , A1 A 4 — as a result of which, the items

B,,D,,A,,E; and their credentials are removed. We can take an op-

posite approach and try to include these items back into the sequence
C5 , C7 R A1 , A4 . We can first consider B2 and then try with DG, then

with A3 and finally Es- In so doing, we can recreate the individual cre-
dentials for all items (B,, Dy, A,, E;) even if they are not included in
the existing sequence C 5s C7 R A1 A 4 - In fact, using this strategy would
result in the following values: 1 for Bz, 1 for Dea 3 for A3 and 1 for
Es . If the objective was to increase credentials’ values, we can conclude

from the above that only the addition of item A3 to the sequence
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C5 . C7 s A1 A 4 Will have a posteriori a positive effect, as in all other

cases the credentials decline below 2. In other words, inclusion of items
Bz’ D6 and E8 will worsen the situation, because the frequen-

cies/credentials decrease from 2 to 1, whereas addition of A 3 does not

change the value of credentials, which remain equal to 2. Formally, in-
cluding items into subsequence can be viewed as a destabilization, or
mapping of subsequences of items. It can be shown that, in spite of the
destabilization factor, the defining sequence, however, at same point can-
not be extended without worsening its quality. In that case, we can say that
it has reached a stable or steady state condition.

This has beneficial implications for building a desirable network via
some mappings explorations. The nomenclature of these mappings is very
similar to the fixed-point approach.'® It is also evident that, attempting to

map a sequence C,,C.,A.,A, to C.,C,,A,,A.,A,, we have
557545 LAy 5574y gy L2y

concluded that the sequence expanded by the addition of item A3 has

reached its most optimal condition. In other words, nothing can be added
without worsening its state. Actually, in the discussions that follow, this
fixed-point approach will be used to explain some mappings, rather than
relying on a defining sequence. Thus, the communication networks analy-
sis below will employ this fixed-point line of reasoning.

When designing a relatively simple communication network, one of
the objectives might be to guarantee some throughput, such as stipulating
that all packets must reach their destination in a 25 ms interval. As previ-
ously noted, the cells of the communication networks consist of routers or
switches, responsible for redistributing and conducting packet movements
from their source points, via temporary locations, to their final destina-
tions. Switches are superior to routers as they learn about packets’ tempo-
rary destinations, i.e., the path that must be taken when transmitting the
packets, thereby significantly improving the throughput. A potential geo-
graphical layout of these extremely sophisticated and expensive devices is
usually planned in the initial phase of the network design.

1% Mullat J.E. (October 1979) Fixed point searching was first introduced in “Sta-
ble Coalitions in Monotonic Games,” Translated from Avtom i Telemekh., No.
10, pp. 84-94, in the form of sequences, in accordance with parameter values
upon which the mapping was constructed. Later (July 1981), the mapping tech-
nique was explained in greater detail in “Counter Monotonic Systems in the
Analysis of the Structure of multivariate Distributions,” Translated from Av-
tom. i Telemekh., No. 7, pp. 167-175.
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When deciding whether to place a router or a switch at the chosen geo-
graphical location, many factors must be taken into consideration." While
addition of a router or a switch will certainly improve the throughput, it
also increases network maintenance, drift expenses become uncertain, and
the costs of installation increase. In sum, not having an adequate number
of these sophisticated devices will not provide sufficient throughput,
whereas too many devices increase the costs. This dilemma is solved with
a compromise that requires multilevel optimization while designing the
communication networks.

It seems intuitive that the aforementioned fixed-point search can help
to solve, at least in some cases, the problem. It is also advantageous to
conduct Markov Chain analysis by building the net with a desirable prop-
erty to maintain the throughput above a certain level. Thus, given a
Markov Chain of potential network structure in tabular form, we can pro-
ceed by adding further cells or communication lines, and analyze the out-
come. While it is likely that this process will improve the performance
initially, at some point, further additions will be too costly for the benefits
they provide. The problem thus reduces to finding the most optimal ar-
rangement of lines and cells in the communication network, which guaran-
tee the best throughput, such as 25 ms stipulated above. In doing so, we
have the opportunity to convert the throughput credentials into some sort
of effective credentials of packets’ pass characteristics, representing aver-
age number of pair wise hits between cells within the communication net-
work obeying the monotonic property in line with that applied to items

A,B,C....
Highly effective procedures already exist, the aim of which is to find

the best stable solutions — the fixed points of Monotone Systems map-
pings. In these procedures, the defining sequence is constructed by means

" In this direction, an extensive study, also based on the theory of “Monotone
Systems” with cellular networks, was carried out by O. A. llopun (2006),
rerepaibhbiid upextop 3AO «HUPUT», 1. 1. H., mpodeccop, kadeapa
paauoTeXHHUECKUX cucTeM, MockoBckuil TexHonornyeckuii Y HUBEpCUTET
Cesi3u 1 Undopmarnmu; by P. C. Tokaps (2014), TeXHUUECKHI CTICIIHATHCT
OAO «MTCp, "Elektrosvjaz," No.1, pp. 45-48, , in Russian; P.C. ABepbsiHOB,
JUPEKTOp 1o mpousBoacTBeHHOM aesrensHocTH OO0 «HCTTy»; I'.O. bokk
(2017), mupexrop mo nHayke OOO «HCTT», n.1.H., and A.O. llopuH,
texunueckuit mupekrop OO0 «HCTTy,, “Optimizing the size of the ring an-
tenna and the rule formation of territorial clusters for cellular network
McWILL”, "Elektrosvjaz," No.1, pp. 22-27,, Method of “Adaptive Distribution
of Bandwidth Resource”, Russian Federation, Federal Service for Intellectual
Property, RU 2 640 030 C1, Application 2017112131, in Russian,
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other than those previously described. However, irrespective of the meth-
odology applied, the outcome is still the defining sequence characterized
by single peakedness. Most importantly, the point at which the maxi-
mum/minimum is reached will still represent our optimal solution. This is
one of the examples of solving NP hard problems with polynomial P-NP
complexity.

Economy

Next on our agenda is Monotone Systems implementation, this time in
the context of retail networks. In the field of economy, this approach is
typically applied in bilateral agreements between agents for goods delivery
or production. This will mandate designing an economic network the
structure of which can be visualized via graphs of potential agreements.
The cells of such network represent agents, whereas connections represent
contracts, i.e., bilateral goods delivery or requests, etc. It should be noted
that, when requesting or delivering goods and commodities, expenses,
prices and profit maintenance are the main consideration.

Let us consider this in an example of a client wishing to rent a car
parking spot at the airport for some price during the vacation period.
Given that, if the client is requesting a parking spot, this implies that
he/she will drive to/from the airport, so the cost of petrol and any other
charges (such as motorway tariffs) will have to be included in the overall
cost of rental. This should be compared to the expenses incurred by travel-
ing by a taxi or public transport and determine whether the option is vi-
able. Which option the client will take will depend on any changes in
prices, confirming that the structure of economic network is indeed dy-
namic. In addition, each agent has the right to decide with whom in the
network to sign a contract. In terms of game theory, this can be repre-
sented by strategies in the form of lists of available agents, their corre-
sponding services and costs.

Clearly, the structure of any economic network is dynamic — some
new contracts will emerge, while some old ones will not be realized. This
process is similar to that taking place in previously described communica-
tion networks. Thus, once again, we are under the jurisdiction of a Mono-
tone System scheme. Indeed, in case of a bilateral agreement, certain ac-
tion somewhere in the retail chain will not be realized and will have a
negative impact on the performance of the entire chain. Forming new
agreements, on the other hand, is likely to have a positive effect. However,
in practice, addition of a new contract can also result in negative conse-
quences, which some firms accept as they hope to cover those losses in
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future. Therefore, as was previously done, for simplification, we will pos-
tulate that, generally, new bilateral relations in the network always have a
positive effect.

In analyzing the network, we might be interested in the abilities of the
economic network to counteract so-called market volatility arising when
prices of commodities and raw materials, or currency exchange rates,
fluctuate. Volatility causes additional disturbing forces in the reconstruc-
tion of the network architecture. One of the known expenses affecting
network functioning is transaction cost. Transaction cost parameter allows
ordering all transactions in the network on the transaction costs scale.
Most importantly, it enables us to apply the defining sequence of bilateral
credentials — this time, performing calculus of profit indicators with re-
gard to network architecture design.

Fixed Point Technique

The fixed point technique, when applied to economic network design,
may be understood as a search for some equilibrium state when the net-
work bilateral agreements are in stable condition, while the network as a
whole is able to cope with economic volatility. When such a stable condi-
tion is achieved, it will be impossible to introduce new contracts without
revising the entire network structure. Single peakedness of the defining
sequence allows us to find the network parts that are most resilient to
volatility. In addition, it allows making efficient decisions regarding de-
livery of commodities to their destinations and making requests for raw
materials from producers. Such advantages are particularly relevant when
attempting to attract new customers when trying to restructure existing
networks with the aim of finding new possibilities to improve the ser-
vices.

Thus far, we have considered Monotonic Systems consisting of atomic
items. In other words, it was always possible to count how many items
belong to the system, i.e., the number of items was finite. That was the
case with lexicographical or chronological ordering of some items,
whereby the credentials of items were chosen as frequencies. In such
cases, the available items were presented sequentially and were clearly
distinguished from others. The communication networks that were con-
sidered in the preceding discussions were also atomic, as the aim was to
maximize the packet throughput from source to destination (i.e., minimize
the delivery time). The same was the case in economic networks, where
the network structure was only viable if it was profitable, as measured by
transaction costs. In all these examples, our aim was to build a defining
sequence in order to find the peak — the kernel of the ordering, because
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such a sequence was single peaked. It was also emphasized that the aim
was to find a fixed point at which the structure design is optimal, whether
we chose to design a communication or economic network.

Extending the defining sequence notion to analytical functions defined
on various types of topologies is impossible because the resulting defin-
ing sequence will be infinite. Instead, we will apply the standard perspec-
tive when examining analytical single-peaked functions, aiming to find
the peak of these functions. There is nothing new in this approach. The
novelty, however, stems from the single-peaked phenomena, akin to the
bargaining games. In such cases, one side has single-peaked preferences,
and thus exhibits non-conforming behavior, while the second player, aims
to maximize his/her benefits. In such scenario, the first player’s prefer-
ences increase until they reach the peak, after which they start to decrease.
In contrast, while the first player is moving along his/her single-peaked
preferences, the second player’s preferences always increase. The reader
may benefit from exploring this further in the context of a sugar-pie game
scheme, which is a suitable example of such analytical preferences.'? In
the present discussion, it is important to appreciate the extension of the
single-peaked preferences representing the family of single-peaked func-
tions, as this is the main advantage of this fixed-point approach. However,
its application requires finding roots of some equations in order to iden-
tify stable states, inclusive of those credentials located at the peak of the
credentials scale. A good example of such approach can be found in wel-
fare economics, where the credentials of our scheme actually represent
the level of transfer payments for those in need.

Mechanisms Design

Instead of analyzing and trying to predict the economic or political
behavior of agents based on known standards of economic or political
behavior, we will place agents in a desirable environment, expecting
agents, as rational players, to come to reasonable decisions by virtue of
their own rational behavior, or in the power of their own rational actions.
In fact, such a scenario is explained by "The Sugar-Pie game" as an ex-
ample where the trading model is reversed. In other words, the goal is not
to find a solution as a result of the determination of the characteristics of
the participants, but rather as a fair division of the cake among all players.
In case of two players, dividing pie into two halves would be deemed fair,

2 Joseph E. Mullat. (2014) “The Sugar-Pie Game: The Case of Non-Conforming
Expectations, Walter de Gruyter.” Mathematical Economic Letters 2, 27-31..
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and can thus be postulated as the desirable target. On the other hand, we
may wish to predict the characteristics of participants a posteriori, i.e.,
after making this particular fair division, proclaimed as the best solution.
This solution should also be understood as a design of partners’ trading
skills in such a way that the determination of the effective solution will be
found to pursue this objective. However, it must be noted that this is the
objective of the designer, rather than the goal of rational participants.
Here, it must also be emphasized that we are not engaged in a symmetri-
cal trading model, but rather the trading model characterized by so-called
non-conforming interests of the participants. In fact, a standard economic
situation involving company owners and company employees is not al-
ways 100% antagonistic with respect to wage negotiations. Frequently,
the interests of the workers and the owners are not in conflict, even if this
seems counterintuitive based on the well-known principle of scissors.

The solution to the problem of sweet pie division is also not straight-
forward if further costs are considered. If both parties hire lawyers, they
will thereby charge a fee for service, which can in proportion of be set
depending on their negotiating strength, cf., €230 and €770 in the Sugar-
Pie game. If any of the negotiators wish to claim more of the pie, he/she
will have to pay more for a lawyer who will have to work harder to
achieve this fair but unequal position. In other words, some mappings on
the credentials scale are necessary. In particular, the proposed sweet cake
scheme can be used to create the desired political solutions in negotiations
on the division of the tax pie collected by the state.

Indeed, citizens donate part of their salary as income tax. When new
needy clients come along, their transfer payments must be funded. Thus,
taxes increase, and after-tax incomes of citizens' decrease. With enough
unemployed fined to work, the situation is reversed as tax revenues in-
crease, ultimately leading to an after-tax benefit for all citizens. This
situation can also be an example of what is now understood as the design
of economic mechanisms." It can thus be applied to design a political
system that has desirable properties. One of these properties can be de-
picted as fixed points, reflecting the case when taxation reaches its abso-
lute minimum, and when it is reached and the necessary adjustments to
the rules and norms of taxation are made, the political system stabilizes
with respect to economic volatility.

3 The 2007 Nobel Memorial Prize in Economic Sciences was awarded to
Leonid Hurwicz, Eric Maskin, and Roger Myerson "for having laid the founda-
tions of mechanism design theory".






The Sugar-Pie Game:
The Case of Non-Conforming Expectations’
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Abstract: Playing a bargaining game, the players with non-conforming
expectations were trying to enlarge their share of a sugar-pie. The first
player, who was not very keen on sweets, placed an emphasis on quality.
In contrast, for the second player, all sweet options, whatever they might
be, were open. Thus, this paper aims to determine the negotiating power of
the first player, if equal division of the pie was desirable, i.e., both players
aimed to get 5 of the available sweets.

Keywords: game theory; bargaining power; non-conforming expectations

1. INTRODUCTION

When bargaining, the players are usually trying to split an economic
surplus in a rational and efficient manner. In the context of this paper, the
main problem the players are trying to solve during negotiations is the
slicing of the pie. Slicing depends upon characteristics and expectations of

Mullat J.E. (2014) The Sugar-Pie Game: The Case of Non-Conforming Ex-
pectations, Walter de Gruyter.” Mathematical Economic Letters 2 ,27-31.
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the bargainers. For example, while moving along the line at the z-axis (the
size), the u-axis in Fig. 1 displays single-peaked expectations of player
No. 1. In comparison, concave expectations of player No. 2 are shown in
Fig. 2. The elevated single-peaked % -slice curve in Fig. 1 corresponds to

1

the lower, but adversely increasing, concave /5 curve of expectations in

Fig. 2, and for the other sugar-pie allotment % ,% .
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Figure 1. Player No. 1 expectations Figure 2. Player No. 2 expectations

Given that the players’ expectations are non-conforming,' as shown in
Fig 1., and Fig. 2, splitting a pie no longer represents any traditional bar-
gaining procedure. Instead of dividing the slices, the procedures can be
resettled. Thus, we can proceed at distinct levels of one parameter —
parametrical interval of the size, which turns to be the scope of negotia-
tions. In fact, Cardona and Ponsatti (2007, p. 628) noticed that "the bar-
gaining problem is not radically different from negotiations to split a pri-
vate surplus," when all the parties in the bargaining process have the same,
conforming expectations. This is even true when the expectations of the
second player are principally non-conforming, i.e., concave, rather than
single-peaked. Indeed, in the case of non-conforming expectations, the
scope of negotiations — also known as "well defined bargaining problem"
or "bargaining set" related to individual rationality (Roth, 1977) — allows
for dropping the axiom of "Pareto efficiency." Thus, combined with the
breakdown point, the well-defined problem, instead of slices, can be
solved inside parametrical interval of the pie size.

1 We say also interpersonally incompatible, i.e., impossible to match through a
monotone transformation (Narens & Luce, 1983).
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With these remarks in mind, any procedure of negotiating on slices ac-
companied by sizes can be perceived as two sides of the same bargain
portfolio. Therefore, it is irrelevant whether the players are bargaining on
slices of the pie, or trying to agree on their size. This highlights the main
advantage of the parametric procedure — it brings about a number of
different patterns of interpretations of outcomes in the game. For example,
it can link an outcome of an economy to a suitable size of production,
scarcity of resources, etc. — all of which are indicators of most desirable
solutions. Indeed, our initiative could serve to unify the theoretical struc-
ture of economic analysis of productivity problem. Leibenstein (1979, p.
493) emphasized that "...the situation need not be a zero sum game. Tac-
tics, that determine the division can affect the size of the pie." Clarifying
these guidelines, Altman (2006, p. 149) wrote:

"There are two components to the productivity problem: one re-
lates to the determination of the size of the pie, while the second re-
lates to the division of the pie. Looked upon independently, all
agents can jointly gain by increasing the pie size, but optimal pie
size is determined by the division of pie size."

2. THE GAME

The game demonstrates how a sugar-pie is fairly sliced between two
players. The first player, denoted as HE, is a soft negotiator, not very keen
on sweets, and would not accept a pie if the size of the pie is too small or
too large. In HIS view, too small or too large sugar-pies are not of reason-
able quality. The second player, hereafter referred to as SHE, is a tough
negotiator and prefers obtaining sweets, whatever they are.’

The axiomatic bargaining theory finds the asymmetric Nash solution
by maximizing the product of players' expectations above the disagree-

ment point d = <d1 ,d2>:
argmax ..., f(x,y,0) = (u(x)~d,)" - (g(y) - d,)"™",

the asymmetric variant (Kalai, 1977).

2 Note that, for the purpose of the game, we do not ignore the size of the pie but
put this issue temporarily aside.
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Although the answer may be known to the game theory purists, the
questions often asked by many include: What are X, y, O, u(X) and
g(y) ? What does the point <d1 ,d2> mean? How is the arg max for-

mula used? The simple answer can be given as:

o X is HIS slicing of the pie, and QL is HIS bargaining power,
0<x<1,05a<l;
o u(x) is HIS expectation, for example u(x) =X, of HIS X
slicing of the pie;
e Y is HER slicing of the pie, and 1—o is HER bargaining
power, 0< y < 1
. g(y') is HER expectation, for example g(}/) = \/§ of
HER Y slicing of the pie.
Based on the widely accepted nomenclature, we call
S = <u(x), g(y)> the utility pair. The disagreement point
d= <d1 ,d2> denotes what HE and SHE collect if they disagree on how
to slice the pie. The sugar-pie disagreement point is
d= <d1 , d2> = <0, 0> , whereby the players collect nothing. Further, we
believe that expectations from the pie are more valuable for HER, indicat-
ing HER desire g(}4) = \/% =(0.707 for sweets, which is greater than
HIS desire u(}5) =0.5.

Now, considering the arg max formula f(X, Y, OL) , one may ask a

new question: What is the standard that will help to redesign bargaining
power QU facilitating HIS negotiations to obtain a desired half of the pie?
SHE may only accept or reject the proposal. A technical person can shed

light on the solution. We can start by replacing U(X) with X,
y=1-x, g(y) with V1 =X, and taking the derivative of the result
f(X,l - X, OL) with respect to the wvariable X by evaluating
f' (x,l—Xx,0).  Finally, with X=)§, the equation
f; (%,%,0)=0 can be solved for O ; indeed, 0L = l/ 3 provides a
solution to the equation f}: ( % , % , OL) =0.
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In general, one might feel comfort in the following judgment:

"Even in the face of the fact that SHE is twice as tough a negotiator,” to
count on the half of the pie is a realistic attitude toward HIS position of nego-
tiations. Surely, rather sooner than later, since HE revealed that SHE prefers
sweets whatever they are, HE would have HER agree to a concession."

This attitude might well be the standard of redesigning the power of
HIS negotiation abilities if half of the pie is desirable as a specific out-
come of negotiations.

Returning to the pie size issue, it will be assumed that, in the back-
ground of HIS judgment, the quality of the pie first increases, when the
size is small. On the other hand, as the size increases, the quality eventu-
ally reaches the peak point, after which it starts to decline with the increas-
ing size. Thus, the quality is single-peaked with respect to the size. For
HER, the pie is always desirable. To handle the situation, we assume that
HE possesses all the relevant skills of the pie slicing. Nonetheless, based
on the aforementioned assumptions, for HIM, the slicing may, in some
cases, not be worth the effort at all. If the slicing does not meet its goal, as
just emphasized, HE can promote HIS own understanding of how to slice
the pie properly. HE can enforce decisions, or effectively retaliate for
breaches — recruiting for example "enthusiastic supporters,” (Kalai, 1977,
p-131). SHE, on the other hand, lacks slicing abilities, knowledge, skills or
competence. Thus, if interests of both players in the final agreement are
sometimes different or sometimes not, SHE cannot fully control HIS ac-
tions and intentions. In these circumstances, SHE might show a willing-
ness to agree with HIS pie division, or at least not resist HIS privileges to
make arrangements upon the size of the pie. Hence, from HER own criti-
cal point of view, by acting in common interest, SHE may admit HER lack
of knowledge and skill. This clarifies HIS and HER asymmetric power
dynamics.

Whether HE is committed or not is irrelevant for his decision to accept
HER recommendation regarding the size Z . HE is committed, however,
only to slice X aligned in eventual agreement. The above can be restated,
then, with the condition that HE seeks an efficient size Z of the pie de-

termined by the slice X. Let, as an example, the utility pair <u,g> of

HIS and HER expectations be given by:
u(z,x)=z-[(1+x/2)-z] ;

g(z,y)=2z-4y, ze[O,l], X,ye[O,l].

3 .. .
Let us say that SHE pays HER solicitor twice as much as HE does.
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The root Z =} resolves <u’z (z, X)‘ X:0> =0 for z, and the root
zZ= % resolves <u;(Z, X)‘ X:1> accordingly. We can thus define effi-
cient slices, relative to the size Z, as a curve X(Z), which solves
u;(Z, x)=0 for X. Evaluating X from u'z(z, x)=0 and subse-
quently replacing X(Zz) into U(z,X) and g(z,X), yields u(z) = 7
and g(Z) =27-43—4-z . Now, given the scope Z € [%,%]C [0,1]
of the negotiations, the bargaining problem <S R d> passes then into pa-
rametric space SZ = <u(z), g(Z)>. In HIS view, the pie must fit the
size requirements, since outside the interval [% , %] C [0,1] the size Z is
inefficient — too small and thus not useful at all, or too large and of infe-
rior quality. Therefore, the disagreement occurs at d = <u( %), g(%)>,
d= < u ,O> . The Nash symmetric solution to the game is found at

z=0.69, x =0.74 . On the other hand, HIS asymmetric power 0.21

is adequate for negotiating with HER about receiving half of the pie. The
size Z=10.62, for example, in HIS view, fits the necessary capacities of

a stovetop for provision of high quality sugar-pie.

Once again, to find the Nash symmetric solution, a technically minded

person must resolve the equation fz’ (Z, OL) =0 for z, where
f(z,0) = (u(z) = %) - 2(2)™ when o.="; z=0.69 provides
a solution to the equation. Thus, solving the equation 1,1’Z (0.69, X) =0

for X yields X =0.74. To find the power of asymmetric solution,
we first solve the equation u;(z,%) =0 for z, z=0.62,
X = ). Then, we solve f;(0.62,ot) =0 for o and find that
HIS power matches o, = 0.21, which is adequate for negotiating with
HER when an equal slicing of the pie is desirable, i.e., both HE and SHE

receive ¥ of the pie.
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3. BARGAINING PROCEDURE

The strategic bargaining game operates as a game of alternating offers.
Given some light conditions, it is well known that, when players partaking
in this type of game are willing to make concessions during the negotia-
tions, they are likely to embrace the axiomatic solution. That is the reason
why we continue our discussion in terms of a procedure similar to the
strategic approach.

To recall, there are two players in our game — HE, with emphasis on
quality, and SHE, with no specific preferences. A precondition for the
agreement was that the expectations of negotiators solely depend on HIS
framework of how to set the size parameter, rather than the slice. As a
consequence of this dependence, efficient sizes provide a fundamental
correspondence to crucial slices. Accepting the precondition, SHE will
only propose efficient sizes, as HE will reject all other choices.

Nonetheless, it is realistic that SHE would — by negligence, mistake
or some other reason — recommend an inefficient size, which HE would
mistakenly accept. On the contrary, it is also realistic that HE has an inten-
tion to disregard an efficient recommendation. This will be irrational han-
dling as, in any agreement, no matter what is going on, both players are
committed by proposals to slices. Therefore, making a new proposal, HER
recommendation on sizes makes a rational argument that HE must accept
or reject in a standard way. Such an account, instead of an agreement upon

slices, as we believe, explains that the outcome of the bargaining game

might be a desirable size Z° € [Z1 »Z, ] Hereby, only the interval, named
also the scope [Z1,Zz] of negotiations, bids proposals, which now, by

default, are binding efficient sizes with slices X . Consequently, the bar-
gaining game performs exclusively in the interval [21,22 . Hence,

[Z1 R Zz] is the scope of HIS efficient sizes of most trusted sugar-pie plat-

forms for negotiations, where players would choose sizes, accepting or
rejecting proposals. The negotiators’ expectations, depending on [21 2y |,
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arrange a bargaining frontier SZ as a way to assemble the bargain portfo-

lio. Therefore, the negotiators may focus on making the size proposals. If
rejected, the roles of actors change and a new proposal is submitted. The
game continues in a traditional way, i.e., by alternating offers.

Observation. In the alternating-offers sugar-pie game, the functions

1—
(u(z) — d1)a and (g(z) — dz) * imply HIS and HER expectations,
respectively, over the pie size Z € [Z1 ,Z, ] With the risk 1 >> q> 0 of

negotiations to collapse prematurely into disagreement point

d= [d1 , dz]’ the solution Z° of well-defined bargaining problem
<SZ, d> is enclosed into the interval [Z',Z"] - [Z1,Z2 ]

z° € [Z',Z"]. The margins Z’, z" are solving the equations

1-9)-(u)-d,) =(uz)-d,)"

1-a 1-a

(1-)-(ez)-d,) * =(g(z)-d,)
for variables z' ,Zz (cf. Rubinstein 1998, p. 75).

In our example, when X = % (the half of the pie is a desirable (ex-

ante) solution), HIS negotiation power 0.21 leads to the asymmetric
solution Z = 0.62. Let the risk factor of the premature collapse of nego-

tiators be = 0.05. Then, the interval [0.61, 0.64]C [O, 1] sets up

pie sizes providing the desirable solution, whereby the pie will be divided
equally.

4. CONCLUSION

In view of the above, a pretext for the analysis of the domain and the
extent of bargain portfolio for two fictitious negotiators, denoted as HE
and SHE, were established. The portfolio was supposed to account for the
players having non-conforming expectations. Instead of slicing the sugar-
pie, such an account allowed for the inclusion of a guide on how the even-
tual consensus ought to be analyzed and interpreted within the scope of
negotiations upon the size of the pie. Players’ bargaining power indicators
specified by the bargaining problem solution were used in compliance
with their respective desired visions and ambitions.
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Bargaining Solution on Boolean Tables

X Y z Y’ XY iz F= (X.Y) + (Y'.2)
0 0 0 1 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 0 1 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 1 0 1

Abstract. This article reports not only a theoretical solution to the bargain-
ing problem as used by game theoreticians, but also provides pertinent cal-
culation. An algorithm that can produce the result within a reasonable time
frame is proposed, which can be performed computationally. The aim is to
increase the current understanding of one nontrivial case of bargaining.
Key words: coalition; game; bargaining; algorithm; monotonic system

“Rawls’ second principle of justice: The welfare of the worst-off
individual is to be maximized before all others, and the only way
inequalities can be justified is if they improve the welfare of this
worst-off individual or group. By simple extension, given that the
worst-off is in his best position, the welfare of the second worst-off
will be maximized, and so on. The difference principle produces a
lexicographical ordering of the welfare levels of individuals from
the lowest to highest.” Cit. Public Choice III, Dennis C. Mueller,
p.600

1. INTRODUCTION

Since the publication of “The bargaining problem” by John F. Nash, Jr.
in 1950, the framework proposed within has been developed in different
directions. For example, in their “Bargaining and Markets” monograph,
Martin Osborn and Ariel Rubinstein (1990) extended the “axiomatic”
concept initially developed by Nash to incorporate a “strategic” bargaining
process pertinent to everyday life. The authors posited that the “time
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shortage” is the major factor encouraging agreement between bargainers.
Various bargaining problem varieties emerged in the decades following
Nash’s pioneering work, prompting game theoreticians to seek their solu-
tions, most of which did not necessarily comply with all Nash axioms.
Beyond any doubt, the “Nonsymmetrical Solution” proposed by Kalai
(1977); Hursanyi’s (1967) “Bargaining under Incomplete Information”;
“Experimental Bargaining”, which was later proposed by Roth (1985); and
the “Bargaining and Coalition” paper published by Hart (1985) are among
some notable contributions to this field, confirming the fundamental im-
portance of bargaining theory.

Bargaining and rational choice mechanisms are interrelated concepts
and are treated as such in this work. In the context of general choice the-
ory, the choice act can be formalized through internal and external descrip-
tions, which requires use of binary relations and the theoretical approach,
respectively. Thus, both description modes apply to the same object, albeit
from different perspectives. The Nash Bargaining Problem and its solution
express exactly the same phenomenon. Given a list of axioms, such as
“Pareto Efficiency” or “Independence of Irrelevant Alternatives”, in terms
of binary relations the rational actors must follow, the solution is reached
through scalar optimization applied to the set of alternatives. Indeed, the
scalar optimization is at the core of the Nash’s axiomatic approach and is
the reason for its success in performing the bargaining solution calcula-
tion. In this respect, the motive of this work is to present a “calculation” of
bargaining solution on large Boolean Tables and some theoretical founda-
tions offered by the method. Unfortunately, in following Nash’s scenario,
numerous difficulties emerged.

Boolean Table representation transforms the real life “cacophonous”
scenario into a relatively simple and understandable data format. However,
allowing the scalar optimization not to be unique makes the picture more
complex. Moreover, we are considering a purely atomic object that does
not intuitively satisfy the “invariance under the change of scale of utilities”
property typically assumed in the proofs. From the researcher’s point of
view, the issue stems from the incertitude pertaining to the most optimal
choice of the scalar criteria. The Nash axiomatic approach, however, sug-
gests that employing the product of utilities is the most appropriate, thus
removing any uncertainty from further discussion. Nevertheless, in the
context of the method presented here, it is posited that a reasonable solu-
tion might come into consideration, while game-analysts would be advised
to include the method in a wider range of applicable game analysis tools.
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In the next section, the main example of our bargaining game is intro-
duced. In addition, in the appendix, we also illustrate a different bargain-
ing between the coalition and its moderator applied to Boolean Tables
using some conventional characteristic functions. It is worth noting that
certain items in the main example, such as signals or misrepresentations,
are not the primary topic of our discussion. These items must rather be
understood as an illustration of the bargaining process complexity. In
Section 3, we attempt to explain our intentions in a more rigorous manner.
Here, we formulate our “Bargaining Problem on Boolean Tables” in pure
strategies, thus providing the foundation for Section 4, where we exploit
our pure Pareto frontier in terms of so-called Monotonic Systems chain-
nested alternatives — the Frontier Theorem. In order to implement the
Nash theorem for nonsymmetrical solution (Kalai, 1977), in Section 5, we
introduce what we deem to be an acceptable, albeit complex, algorithm in
general form. Even though lottery is not permitted in the treatment of
Boolean Tables subsets representing pure strategies, as this approach does
not necessary produce the typical convex collection of feasible alterna-
tives, we claim that the algorithm will yield an acceptable solution. Fi-
nally, Section 6 presents an elementary attempt to formulate a regular
approach of coalition formation under the coalition formation supervisor—
the moderator structure. This attempt depicted in Figure 2, explaining the
notation nomenclature of chain-nested alternatives adopted in our Mono-
tonic Systems theory, discussed in Section 4. Section 7 summarizes the
entire analysis, while also providing an independent heuristic interpreta-
tion, before concluding the study in Section 8.

2. EXAMPLE

Manager of the “Well-Being” company is determined to encourage
employees to partake in health-promoting activities. The manger hopes to
reduce company losses arising from disability compensations. To identify
the employees’ preferences, the manager has initiated a survey. According
to the survey responses, five health activities offered to the employees

generated varying degrees of interest, as shown in Table 1.
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Health |No Smok- Swimming  Bike = Moderate Fattening Total

activities ing Pool  Exercises Alcohol Diet
Em. 1 X X 2
Em. 2 X X X X 4
Em. 3 X X X 3
Em. 4 X X X X 4
Em.. 5 X X 2
Em. 6 X X X X 5
Em. 7 X 2
Total 3 6 5 5 3 22

Table 1 Employee preferences pertaining to the company-sponsored
health-promoting initiatives

The manager would like to treat the responses the employees have pro-
vided as an indication that they are willing to partake in the activities they
selected. However, aware of unreliable human nature, he is not confident
that they will keep their promises. The manager decides to reward all em-
ployees who actually participate in the wellness activities, and those who
will be organized in the "Health Club". The manager has found a sponsor
who has issued 12 Bank Notes in lieu of the project expenses. However,
upon closer consideration of the rewards policy, the manager realized that
many obstacles must be overcome in order to implement it in practice.

Fist, organizing activities that only a few employees would partake in
is neither practical nor cost-effective. Thus, it is necessary to stipulate a
minimum number of employees that must subscribe to each health activ-
ity. On the other hand, it is desirable to promote all activities, encouraging
the employees to attend them in greater numbers. For this initiative to be
effective, instructions (as a rule full of twists and turns) regarding the
rewards regulations should be fair and concise. Usually, in such situations,
someone (a moderator) must be in charge of the club formation and reward
allocation. However, as the manager is responsible for financing health
activities, he/she should retain control of all processes. Thus, the manager
proposes to write down the First Club Regulation: The manager rewards
one Bank Note to an employee participating in at least k different activi-
ties (Where k is determined by the manager).
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Determining the most optimal value of the parameter K is not a
straightforward task, as it is not strictly driven by employees’ preferences
regarding specific activities to participate in. In fact, this task is in the
moderator’s jurisdiction, while also being dependent on the employees’
decisions, as they act as the club members. The goal is to prohibit some
club members to “spring over” health activities preferred by other mem-
bers of the club by worsening, in the manager’s view, the situation, thus
requiring too many different activities to be organized. This issue can be
avoided by the inclusion of the Second Club Regulation: If a certain

employee in favor of receiving rewards participated in fewer than k

activities, no one will be rewarded. By instituting this regulation, the man-
ager aims to encourage the moderator to eliminate activities that would not
have sufficient number of participants. Thus, the Third Club Regulation:
moderator’s reward basket will be equal to the lowest number of partici-
pants per activity in the list of activities among all actually participating
club members. Indeed, to earn more rewards, the moderator might decide
to organize a new club by excluding an activity with the lowest number of
participants from the list of activities some of the members chose to attend
as a part of the already organized club. This would effectively result in the
lowest number of participants in the new and shorter list being higher than
that in the previous list. It should also be noted that the reward regulation
does not address the situation in which a club member declines an activity,
allowing an individual outside the club to participate instead. In such a
case, the club “activities list” may become shorter than that presented in
Table 1, and would determine the size of the moderator’s reward.

This scenario also provides the potential for the club members’ prefer-
ences to be misrepresented to the company manager. Let us assume that

the manager makes a decision k =1, which has been, for whatever rea-

son, made accessible to the moderator. Knowing that k =1, the modera-
tor actions can be easily predicted in accordance with the third club regula-
tion. Indeed, using the employees’ survey responses, the moderator can
identify the most “popular” health activity, as well as the individuals that
intend to participate in this activity. From the aforementioned regulations,
it is evident that the moderator would receive the maximum reward if he
manages to persuade other employees to participate in that particular activ-
ity only. Rational members would certainly agree to that proposal because,
whether or not they take part in any other activity, their reward is still

guaranteed.' The same logic obviously applies for K >1 as well.

1 We will disclose more complex misrepresentation opportunity later.
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Thus, the essence of establishing fair rules pertains to determining the
moderator’s reward. If the moderator is not offered any rewards, the grand
coalition formation is guaranteed, as all employees will become club
members. This is the case, as participating in at least one activity would
ensure that an employee receives a reward. However, due to the moderator
actions, such grand coalition formation is not always feasible.

As previously noted, the moderator might receive a minor reward if a
“curious” employee decides to take part in an “unpopular activity”. In-
deed, the third club regulation stipulates that the number of participants in
the most “unpopular activity” governs the moderator reward size. Being
aware of the potential manipulation of the regulations, and being a rational

actor, the company manager will thus strive to keep the decision k a
secret. It is also reasonable to believe that all parties involved — the club
members, the moderator and the manager — will have their own prefer-

ences regarding the value of K . Therefore, an explanation based on the
salon game principles is applicable to this scenario. Using this analogy, let

us assume that the manager has chosen a card K and has hidden it from
the remaining players. Let us also assume that the moderator and the club
members have reached an agreement on their own card choice in line with
the three aforementioned club regulations. The game terminates and re-
wards are paid out only if their chosen card is higher than that selected by
the manager. Otherwise, no rewards will be paid out, despite taking into
consideration the club formation.

However, not all factors affecting the outcome have been considered
above. Indeed, the positive effect, fk, which the manager hopes to

achieve, depends on the decision k. We have to expect a single
N-peakedness of the effect function for some reason. As a result, this
function separates the region of K values into what we call prohibitive
and normal range. In the prohibitive range, which includes the low k val-
ues, the effect has not yet reached its maximum value. On the other hand,
when k value is high (i.e., in the normal range), the fk limit is exceeded.

Therefore, in the prohibitive range, the manager and the moderator inter-
ests compete with each other, making it reasonable to assume that the
manager would keep his/her decision a secret. However, in the normal

range, they might cooperate, as neither benefits from very high K values,
given that both can lose their payoffs. Consequently, using the previous
card game analogy, in the normal range, it is not in the manager’s best

interests to hide the K card.
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Given the arguments presented above, the game scenario can be illus-
trated more precisely. Using the data presented in Table 1, and assuming

that a reward will be granted at K =1,2, the manager may count upon all

seven employees to become the club members. If all employees participate
in all activities, each would receive a Bank Note, and the moderator’s
basket size would be equal to 3. However, it would be beneficial for the
moderator to entice to the club members to decline participation in “No
Smoking” and “Fattening Diet” activities, as this would increase his/her
own reward to 5. As all club members will still preserve their rewards,
they have no reason not to support the moderator’s suggestion, as shown
in Table 2.

Table 2 Table 3

Health | Swimming BikeEx- Moderate Swimmin

activities Pool ¢ ercises  Alcohol Total Pool ¢ Total
Em. 1 X X 2 X 1
Em.. 2 X X 2 X 1
Em.. 3 X X X 3 X 1
Em.. 4 X X 2 X 1
Em. 5 X X 2 0
Em.. 6 X X b'e 3 X 1
Em.. 7 X X 2 X 1
Total 6 5 5 16 6 6

In this scenario, the sponsor would have to issue 12 Bank Notes,
which can be treated as expenses associated with organizing the club. The

sponsor may also conclude that K =1 is undesirable based on the previ-
ous observation that the moderator can deliberately misrepresent the
members’ preferences for personal gain.” The sponsor is aware that the
moderator may offer one Bank Note to an employee that agrees to propose

k =1. Knowing that k =1, the moderator may suggest to the club
members to subscribe to the “Swimming Pool” activity only. However, in
the sponsor’s opinion, the moderator must compensate Employee No. 5 for
the losses incurred by offering him/her one Bank Note. Otherwise, Em-
ployee No. 5, by participating in other activities distinct from “Swimming
Pool” has the right to receive a reward and may report the moderator’s
fraud to the board. In this case, following the regulations in force (see
Table 3), moderator’s reward will be equal to 4 (1 would be deducted for

> The more complex case of misrepresentation follows, as promised.
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the signal and 1 for the compensation). However, this would still exceed
the value indicated in Table 1. Thus, in order to decrease sponsor expenses
or avoid misrepresentations, the company board may follow the sponsor’s

advice and propose k >3 .

It could be argued that K >3 results in decreased participation in

health activities because Employees No. 1, 5 and 7 will be excluded
from the club and will immediately cease to partake in any of their initially
chosen activities. However, based on Table 4, it can also be noted that, in

such an event, the remaining employees (i.e., 2,3,4 and 0) will still
participate in heath activities and will still be rewarded.

Table 4
Health |No Smok- Swimming  Bike  Moderate Fattening Total
activities ing Pool  Exercises Alcohol Diet
Em. 2 X X X X 4
Em. 3 X X X 3
Em. 4 X X X X 4
Em. 6 X X X X X 5
Total 3 4 2 4 3 16
Bargaining game between club members and the moderator
Figure 1
T
Revenue Function = the number of
_ ¢4 club members participating in at @6
E least kactivities and only this
é = particular list of kactivities counts o o a5
b in the manager award's decision; k
£ + 1.No any mem.ber (mcluswe. . - o
§ moderator) receives an aw ard if
= some club member participates in
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i less than k activities.
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2
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Now, the moderator’s reward basket is equal to 2, since only Em-
ployees No. 3 and 6 would take part in “Bike Exercises”. Consequently,
the sponsor expenses decrease from 10 to 6. In this case, the manager
may decide to allow the moderator to retain his/her reward of 3 by elimi-
nating “Bike Exercises” from the activity list, as organizing it for two
participants only is not justified, as shown in Table 5. Note that Employee
No. 3, due to this decision, must be excluded from the club list, in line
with the second club regulation, cf. the suggestion above to eliminate “No
Smoking” and “Fattening Diet” activities.

Table 5
Health No Smok-  Swimming  Moderate  Fattening Total
activities ing Pool Alcohol Diet
Em. No. 2 X X X X 4
Em. No. 4 X X X X 4
Em. No. 6 X X X X 4
Total 3 3 3 3 12

This decision does not seem reasonable, given that the aim of the ini-
tiative was to motivate the employees to exercise and improve their health.
Thus, let us assume that K = 5 was the board proposal. This result would

only concern Employee No. 6 being willing to participate in the health
activities offered, see Table 6.

Table 6
Health |No Smok- Swimming  Bike  Moderate Fattening Total
activities ing Pool  Exercises Alcohol  Diet
Em. 6 X X X X X 5
Total 1 1 1 1 1 5

The moderator may decide not to organize the club, as this would re-
sult in a reward equal to only one Bank Note. Similarly, the manager is not
incentivized to promote all five activities if only one employee would take
part in each one. As a result, at the board meeting, the manager would vote
against the proposal K =15. In sum, the manager’s dilemma pertains to

the alternative K choice based on the information given in Table 7.
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Table 7.

Club- Clubmod- Compen- Signal Bank Notes — Bank

members erator  sation used  Notes left

T.1, k=2 7 3 0 0 10 2
T.2, k=2 7 5 0 0 12 0
T.3. k=1 6 4 1 1 12 0
T.4, k=4 3 1 0 0 4 8
T.5, k=4 3 3 0 0 6 6
T.6, k=5 1 1 0 0 2 10

To clarify the situation presented in tabular form, it would be helpful to
visualize the manager’s dilemma using the bargaining game analogy,
where 12 Bank Notes are shared between the moderator and the club

members.

The decision on the most optimal K value taken at the board meeting
will be revealed later, using rigorous nomenclature, as only a closing topic

is necessary to interrupt our pleasant story for a moment.’

Let us assume that three actors are engaged in the bargaining game:
N employees, one moderator in charge of club formation, and the man-
ager. Certain employees from N = { L...,1,..0n } — the potential mem-
bers of the club X, X € 2N, have expressed their willingness to partici-
m
pate in certain activities Y, Yy € 2M W = H a in . Let a Boolean Table
n
m
W = H a. JH reflect the survey results pertaining to employees’ prefer-
n

ences, whereby a.

i =1 if employee 1 has promised to participate in

activity j, and a; i= 0 otherwise. In addition, 2™ denotes of allegedly

L L M .
subsidized activities, whereby Y € 2" have been examined.

* Those unwilling to continue with the discussions on bargaining presented in the
subsequent sections should nonetheless pay attention to this closing remark.
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We can calculate the moderator payoff Fk (H) using a sub-table H

formed by crossing entries of the rows X and columns Y in the original

table W by further selection of a column with the least number F, (H)
from the list Y . The number of 1-entries in each column belonging to y

determines the payoff F (H). Characteristic functions family
Vk(X, y)= Vk(H) ke {1,..., k,...,kmax }, on N are known for the
coalition games; in particular, for every pair L © G, L,G € 2N x 2M,

we suppose that Vk(L) < Vk(G). Further assuming that the manager
payoff function fk (H) has a single n-peakedness, in line with the deci-

sions <l,..., k,..., kmax>, fk (H) reflects some kind of positive effect on

the company deeds. In this case, sponsor expenses will be equal to
v (H) + £, (H).

Finally, it is appropriate to share some ideas regarding a reasonable so-
lution of our game. The situation is similar to the Nash Bargaining Prob-

lem first introduced in 1950, where two partners — the club members and
the moderator — are striving to reach a fair agreement. It is possible to

find the Bargaining Solution S, € {H} =2 x 2™ for each particular

decision K, see next sections. However, the choice of the number K is
not straightforward, as previously discussed. For example, K = 4,5 may
be useful based on some ex ante reasoning, whereas maximum payoffs are
guaranteed for the partners when K =1. As that decision is irrational,
because only one activity will be organized and, even though it will attract
the maximum number of participants, it would fail to yield a positive ef-
fect £(S,) on the health deeds in general. The choice of higher K was

previously shown to be counterproductive (too many activities will be
offered, but would have only a few participants), yet the sponsor would

benefit from issuing fewer rewards. For example, for K = k an em-

max
ployee with the largest number of preferred kmax activities might become
the only member of the club. This is akin to the median voter scheme

(discussed by Barbera et al, 1993). However, a further consultation in this
“white field” is necessary.
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3. BARGAINING GAME APPLIED TO BOOLEAN TABLES

Suppose that employees who intend to participate in company activi-
ties have been interviewed in order to reveal their preferences. The result-

, where the entry

ing data can be arranged in N X M table W = HOLi i

o= 1 indicates that an employee 1 has promised to participate in ac-

tivity j, otherwise Q; i= 0. In this respect, the primary table W is a

collection of Boolean columns, each of which comprises of Boolean ele-
ments related to one specific activity. In the context of the bargaining
game, we can discuss an interaction between the health club and the mod-

erator. The club choice X is a subset of rows <1,...,i,...,n> denoting the

newly recruited club members, whereby a subset y of columns
<1,...,j,...m> is the moderator’s choice — the list of available activities.

The result of the interaction between the club and the moderator can thus
represent a sub-table H or a block, denoting the players’ joint anticipa-

tion (X, y). The players are designated as Player No. 1 — the club, and

Player No. 2 — the moderator, and both are driven by the desire to receive
the rewards. Let us assume that all employees have approved our three
reward regulations.* While both players are interested in company activi-
ties, their objectives are different. Player No. 1 might aim to motivate each
club member to agree to partaking in a greater number of company-
sponsored activities. Player No. 2, the moderator, might desire to subscribe
maximum number of participants in each activity arranged by the com-
pany. Let the utility pair (V(X),F(y)) denote the players’ payoff,

whereby both players will bargain upon all possible anticipated outcomes

(v,F).

Our intention in developing a theoretical foundation for our story was
to follow the Nash’s (1950) axiomatic approach. Unfortunately, as previ-
ously observed, some fundamental difficulties arise when adopting similar
approach. Below, we summarize each of these difficulties, and propose a

* We recall the main regulation that none of the club members, inclusive the
moderator, receive their rewards if a certain club member participates in fewer

than K activities.
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suitable equivalent. When proceeding in this direction, we first formulate
the Nash’s axioms in their original nomenclature before reexamining their
essence in our own nomenclature. This approach would allow us to pro-
vide the necessary proofs in the sections that follow.

As noted by Nash (1950), “... we may define a two-person anticipation
as a combination of two one-person anticipation. ... A probability combi-
nation of two two-person anticipations is defined by making the corre-
sponding combinations for their components” (p. 157). Readers are also
advised to refer to Sen Axiom 8*1, p. 127, or sets of axioms, as well as
Luce and Raiffa (1958), Owen (1968) and von Neumann and Morgenstern
(1947), with the latter being particularly relevant for utility index interpre-
tation. Rigorously speaking, the compactness and convexity of a feasible

set & of utility pairs ensures that any continuous and strictly convex
function on & reaches its maximum, while convexity guarantees the
maximum point uniqueness.

Let us recall the other Nash axioms. The solution must comply with
INV (invariance under the change of scale of utilities); IIA (independence
of the irrelevant alternatives); and PAR (Pareto efficiency). Note that,
following PAR, the players would object to an outcome S when an out-

come S' that would make both of them better off exists. We expect that
the players would act from a strong individual rationality principle SIR.

An arbitrary set & of the utility pairs 8 = (S1 R Sz) can be the outcome
of the game. A disagreement arises at the point d= (d1 R dz) where both
players obtain the lowest utility they can expect to realize — the status quo
point. A bargaining problem is a pair <S , d> 5 and there exists S € &

such that S, > di for i=1,2 and d € S A bargaining solution is a
function f(S ,d) that assigns to every bargaining problem <S ,d> a

unique element of S . The bargaining solution f satisfies SIR if
f(S R d) >0 for every bargaining problem <S , d> .

The advantage of our approach, which guarantees the same properties,
lies in the following. We define a feasible set 8 of anticipations, or in

more convenient nomenclature, a feasible set 8 of alternatives as a col-

5 We use the bold notifications & close to the originals. Notification S is
preserved for stable point, see later.
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lection of table W' blocks: & < 2% . Akin to the disagreement event in
the Nash scheme, we define an empty block & as a status quo option in
any set of alternatives S , which we call the refusal of choice. Given any
two alternatives H and H' in & , an alternative H U H' belongs to
8 . In other words, in our case, the set 8 of feasible alternatives always

forms an upper semi-lattice. Moreover, if an alternative H € S8 | it fol-

lows that all of its subsets 2" c S Although these arguments do neces-

sitate further discussion, at this juncture, we will state that this is our
equivalent to the convex property and will play the same role in proofs as
it does in the Nash scheme.

The Nash theorem asserts that there is a unique bargaining solution

or every bargaining problem , which maximizes the

f(8§,d) f ry bargaining problem (8, d), which maximizes th
product of the players’ gains in the set 8 of utility pairs (S1 »S, ) cS

over the disagreement outcome d = (d1,d2). This is a so-called sym-

metric bargaining solution, which satisfies INV, IIA, PAR, and SYM —
players symmetric identify, if and only if

f(8§,d)=arg max g 4, s, ,52)(81 —d, ) (s2 —d, )

It is difficult to make an ad hoc assertion regarding properties that can
guarantee the uniqueness of similar solution on Boolean Tables. Neverthe-
less, in the next section, we claim that our bargaining problem on

8§ c 2" has the same symmetric or nonsymmetrical shape:
f(8,2)=1(8)=argmax,,_q v(H)"F(H)"

for some 0 < 0 <1 provided that Nash axioms hold.

4. THEORETICAL ASPECTS OF THE BOOLEAN GAME

Henceforth, the table W = HOL ; JH will denote the Boolean table dis-

cussed in the preceding section, representing employees’ promises to at-
tend company activities. It is beneficial to examine H rows X , symboliz-
ing the arrival of new members to the club, committed to participating in
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at least K activities. Activities form, what we call here, a column’s activ-
ity list y, k =2,3,..., where K represents the reward decision. For

each activity in the activity list Yy, at least F(H) of club members intend

to fulfill their promises. For example, let us consider the number of rows
in H pertaining to the gain V(H) of Player No. 1 (the club members),

while the gain of Player No. 2 (the moderator’s reward) is represented by
F(H).

Let us look at the bargaining problem in conjunction with players’
preferences. The anticipations of the coming club members 1 € X to-
wards the activity list ¥ can easily be "raised" by I, = Z:OLi i if

Jey
r.>2k,and 1, =0 if o, <k,i€X, jey. Similarly, the mod-
jey
erator’s anticipation towards the same activity list ¥ can be “accumu-

lated” by means of table H as C, = ZOL”. ,JEY.
1€X
We now consider this scenario in more rigorous mathematical form.
Below, we use the notation H < W . The notation H contained in W
will be understood in an ordinary set-theoretical nomenclature, where the
Boolean Table W is a set of its Boolean 1-elements. All 0-elements will

be dismissed from the consideration. Thus, H as a binary relation is also
a subset of W . Henceforth, when referring to an element, we assume that

it is a Boolean 1-element.

For an element 0L = Q;; € W in the row 1 and column j, we use
the similarity index TT; i =C counting only on the Boolean elements
belonging to H, 1€ X and j€y. As the value of T, ; = C; depends
on each subset H © W, we may write T, =ET= n(o, H), where

the set H represents the 7T -function parameter. It is evident that our

similarity indices T0;; may only increase with the “expansion” and de-

crease with the “shrinking” of the parameter H . This yields the following
fundamental definitions:
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Definition 1. Basic monotone property. Monotonic System will be un-
derstood as a family {TC(O(,, H) :He 2W} of T -functions, such that
the set H is a parameter with the following monotone property: for two
particular values L,G € 2% ., L < G of the parameter H, the ine-
quality TC(OL,L) < TC(OL,G) holds for all elements o0 € W . In ordi-

. . iy W,
nary nomenclature, the T -function with the definition area W X 2" is

. w
monotone on W with regard to the second parameter on 2" .

Definition 2. Let V(H) for a non-empty subset H C W' by means
of a given arbitrary  threshold U be  the  subset
V(H) = {OL e W: TC(OL,H) 2> u}. The non-empty H -set indicated
by S is called a stable point with reference to the threshold W if
S = V(S) and there exists an element & € S, where T(E,S) =1u . See

Mullat (1979, 1981) for a comparable concept. Stable point S = V(S)
has some important properties, which will be discussed later.

Definition 3. By Monotonic System kernel we understand a stable

point S :Smax with the maximum possible threshold value

*

u =u

max *

Libkin et al (1990); Genkin et al (1993); Kempner et al (1997); and
Mirkin et al (2002) have investigated similar properties of Monotonic
Systems and their kernels. With regard to the current investigation, it is
noteworthy to state that, given a Monotonic System in general form, with-
out any reference to any kind of “interpretation mechanism”, one can
always consider a bargaining game between a coalition H — Player No. 1,
with characteristic function V(H), and Player No.2 with the payoff
function F(H)=min__, m(o,H). Following Nash theorem, a
symmetrical solution has to be found in form (1). In addition, we will

prove below that our solution has to be found in the symmetrical or

non-symmetrical form (2).
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Definition 4. Let d be the number of Boolean 1’s in table W . An
ordered sequence O = <OLO,OL1,...,OL d71> of distinct elements in the

table W is called a defining sequence if there exists a sequence of sets
WZFO DD 3...3Fp such that:

A. Let the set H, = {ock,ockﬂ,...,ocdﬁ. The  value
TE(OLk R Hk) of an arbitrary element O, € Fj, but o, & Fj+1 is strictly
less than F(Fj+1), j=0,1,...,p-1.

B.  There does not exist in the set Fp a proper subset L that satis-

fies the strict inequality F(Fp) <F(L).

Definition 5. 4 defining sequence is complete, if for any two sets Fj
and Fjﬂ it is impossible to find 1" such that Fj >I'> Fj+1 while
F(T,) < F(M) < F(T.,), j=0,1,...p—1.

It has been established that, in an arbitrary Monotonic System, one can
always find a complete defining sequence (see Mullat, 1971, 1976). More-

over, each set Fj is the largest stable set with reference to the threshold
F(Fj) . This allows us to formulate our Frontier Theorem.

Frontier Theorem. Given a bargaining game on Boolean Tables with
an arbitrary set Y of feasible alternatives H € 8 the anticipations
points (V(Fj),F(Fj)), _] = O,l,...,p , of a complete defining sequence

QL arrange a Pareto frontier in 9%2 .

Proof. Let W e 8 be the largest set in & containing all other sets
HeS: H c W®. Leta complete defining sequence O ° exist for
W?® . Let the set H® be the set containing all such sets V(H), where
V(H) = {o. € W : m(at, H) > F(H)}. Note that H < V(H®) and
F(H®) > F(H). Now, for accuracy, we must distinguish three situa-

® We are not going to use any new notifications to distinguish be-
tween Boolean Tables W and W?.
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tions: (a) in the sequence O one can find an index _] such that
F(Fj) <F(H) < F(FH) j=0,1,...,p—1; the case (b)
F(H®) <F(W) =F(I,); and (¢) F(H) > F(I',). The case (c) is
impossible because, on the set Fp , the function F(H) reaches its global
maximum. In case of (b), the anticipation (V(FO), F(FO)), I,=W.,is
more beneficial than (V(H), F(H)), which concludes the proof. In case
of (a), let F(Fj) < F(H®), otherwise the equality F(Fj) =F(H®) is
the statement of the theorem (when reading the sentence after the next, the

index ]+ 1 should be replaced by ]). However, in this case, the set H°

must coincide with I j= 0,1,...,p —1, otherwise the defining se-

i+
quence QU is incomplete. Indeed, looking at the first element o, € H°®
in the sequence L, it can be ascertained that, if Fj = H°® does not hold,
the set Hk = H° because it is the largest stable set up to the threshold

F(H®) . Hence, the set H, represents an additional I -set in the se-
quence O with the property A of a complete defining sequence. The

inequalities F(FM) =F(H") > F(H), V(er) =v(H*)>v(H),
due to Fj = H® > H and the basic monotonic property, are true. Thus,

the  point (V(Fj +1),F(Fj +1)) is more advantageous than
(v(H).F(H)).=

5. CALCULATION OF THE BARGAINING SOLUTION

To summarize, the discussion that follows is governed by the Nash
bargaining scheme. Some reservations (see, for example, Luce and Raiffa,
6.6) hold as usual because our bargaining game on Boolean Tables is
purely atomic, i.e., it does not permit lotteries (which are an important
element of any bargaining scenario). Given this restriction, the uniqueness
of the Nash solution cannot be immediately guaranteed. However, it is

important to note that “...the Nash solution of <S R d> depends only on
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disagreement point d and the Pareto frontier of S . The compactness and
convexity of 8 are important only insofar as they ensure that the Pareto
frontier of & is well defined and concave. Rather than starting with the
set & , we could have imposed our axioms on a problem defined by a
non-increasing concave function (and disagreement point d ...Osborn and
Rubinstein, 1990, p. 24). In our case, (V(Fj),F(Fj)), ]= 0,1,...,p,
represents the atomic Pareto frontier. Therefore, it is possible to provide
the proof of non-symmetrical solution (see Kalai, 1977, p. 132), as well as
perform the calculation with the product of utility gains in its asymmetri-
cal form (2).” The problem of maximizing the product is primarily of tech-
nical nature. In the discussions that follow, we will introduce an algorithm

for that purpose. We will first comment on the individual algorithm step in
relation to the definitions.

The algorithm’s last iteration, see below, through the step T detects the

largest kernel K = S™® (Mullat, 1995). The original version (Mullat,
1971) of the algorithm aimed to detect the largest kernel and is akin to a
greedy inverse serialization procedure (Edmonts, 1971). The original ver-
sion of the algorithm produces a complete defining sequence, which is
imperative for finding the bargaining solution aligned with the Frontier
Theorem. In the context of the current version, however, it fails to produce

a complete defining sequence. Rather, it only detects some thresholds U,
and some stable set Fj =S i The sequence U, U,,... is monotonically
increasing: U, < U, <... while the sequence FO,E,... is monotoni-
cally shrinking: Fo ) F1 D..., whereby the set Fo =W s stable
towards the threshold U, = F(W) = (m)in T;;. Hence, the original
i,j)eW
algorithm is always characterized by higher complexity. However, for
finding the bargaining solution, we can still implement an algorithm of

lower complexity, which would require modifying the indices T, i =€

7 There are many techniques that guarantee the uniqueness of the product of
utility gains. We are not going to discuss this matter here, because this case is
rather an exemption than a rule.

¥ Tt is possible that some smaller kernels exist as well.
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Let us consider the problem of identifying the players’ joint choice

H_  representing a block arg max, ¢ V(H)e F(H)H’ of the rows

max
X and columns Y in the original table \\Y satisfying the property
da, 2k, iex.
jey

09

1—
Let an index T, i =L vl.c j The following algorithm solves

the problem.
Algorithm.
I.  Set the initial values.

1i. Assign the table parameter H to be identical with W, H <= W . Set

the minimum and maximum bounds a,b on the threshold U for
Ttij € H values.

A. Establish that the next Step B produces a non-empty sub-table H . Remem-
ber the current status of table H by creating a temporary table H°:

H°«<H.
a+b
la. Test U as ( % using Step B. If it succeeds, replace 4 by U,

otherwise replace b by U and H by H°: H<«< H° - “regret action”.
2a. Go to 1a.

B. Test whether the minimum of 7'[:ij e H over 1,J can be equal or greater
than U .
1b. Delete all rows in H where r, = 0. This Step B fails if all rows in H

must be deleted, in which case proceed to 2b. The table H is shrinking.
2b. Delete all elements in columns where Ttij < U. This Step B fails if all

columns in H must be deleted, in which case proceed to 3b. The table H
is shrinking.
3b. Perform Step T if no deletions were made in 1b and 2b; otherwise go to 1b.
T.  Test whether the global maximum is found. Table H has halted its shrink-
ing.
1t. Among numbers T, i eH , find the minimum min <~ 1 i and then

perform Step B with new value U = min. If it succeeds, set 4 = min
and return to Step A; otherwise, terminate the algorithm.

? This index obeys the basic monotone property as well.
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6. BOOLEAN GAME COOPERATIVE ASPECTS

A cooperative game is a pair (N,V), where N symbolizes a set of
players and V is the game characteristic function. Function V is called a
super modular if V(L) + v(G) < v(LUG)+ V(L NG) whereas

it is sub modular if the inequality sign < is replaced by >, L,G € 2N,

Among others (see Cherenin et al, 1948 and Shapley, 1971), where various
properties of supermodular set functions are specified. In the appendix, we
illustrate a game, which is neither supermodular nor submodular, but
rather a mixture of the two, where single and pairwise players do not re-
ceive extra rewards. On the other hand, it is obvious that all properties of
supermodular functions V remain unchanged for submodular —V char-
acteristic function or vice versa.

A marginal contribution into the coalition H of a player X (the

. L oH
player marginal utility) is given by TE(X;H) = a—, where
X

oH
6_ =v(Hux)—v(H) if x ¢ H, the player X joins the coalition,
X

H
and 2— = V(H) - V(H \ X) if X € H, the player X leaves the
X

coalition, for every H e 2% . We denote in our nomenclature
Hux=H+x,and H\x =H — X, sce later.
Suppose that the interest of player X to join the coalition equals the

player’s marginal contribution 8_ A coalition game is convex (con-
X

cave) if for any pair L. and G of coalitions L € G < W the inequal-
ity oL < oG ( dL > oG
ox oO0x \0x 0x

j holds for each player X € W ."°

10 Shapley (1971) recognized this condition as equivalent, whereby similar
derivatives in their investigation of some optimization problems (Nemhauser et
al, 1978) have been proposed; Muchnik and Shvartser (1987) also pointed to the
link between submodular set functions and the Monotonic Systems, see Mullat
(1971).
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Theorem. For the coalition game to be convex (concave) it is neces-
sary and sufficient for its characteristic function to be a supermodular
(submodular) set function. Extrapolated (1978) from Nemhauser et al.

Now, in view of the theorem, marginal utilities of players in the su-
permodular game motivate them in certain cases to form coalitions. In a
modular game, where the characteristic function is both supermodular and
submodular, marginal utilities are indifferent to collective rationality be-
cause entering a coalition would not allow anybody to win or lose their
respective payments. In contrast, it can be shown that collective rationality
is sometimes counterproductive in submodular games. Therefore, in su-
permodular games, formation of too many coalitions might be unavoid-
able, resulting in, for example, the grand coalition. In such cases, in
Shapley’s (1971) words, this leads to a “snowballing” or “band-wagon”
effect. On the other hand, submodular games are less cooperative. In order
to counteract these “bad motives” of players in both supermodular and
submodular games, we introduce below a second actor — the moderator.
Hence, we consider a bargaining game between the coalition and the mod-
erator.

Convex game induces an accompanied bargaining game with the util-

ity pair (V(H),F(H)), where F(H) = Inil’lXeH S—H; concave game
X

induces utility pair with F(H) = maxera—. Here, the coalition
X

assumes the role of Player No. 1 with the characteristic function V(H).

The coalition moderator, the Player No. 2, expects the reward F(H) .
Proposition. The solution f(S R @) of a Nash’s Bargaining Problem

<S ,@>, which accompanies a convex (concave) coalition game with

characteristic  function V, lies on its Pareto frontier
FO ) E D...D Fp maximizing  (minimizing)  the  product
-0

V(Fj)9 6_0: for some j=0],....,p, and 0 <0 <1, This state-

ment is an obvious corollary from the Frontier Theorem. B
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In accordance with the basic monotonic property, see above, given

oH

. . N .. .
some monotonic function TE(X; H) =——on Nx2", it is not imme-

diately apparent that there exists some characteristic function V(H) for

which the function n(x;H) constitutes a monotonic marginal utility

8—. The following theorem, accommodated in line with the work of
X

Muchnik and Shvartser (1987), addresses this issue.
The existence theorem. For the function TC(X,H) to represent a

monotonic marginal utility —— of some supermodular (submodular)
X

function V(H) it is necessary and sufficient that

LM rxH) - n(xH-y) =
0y 0x
holds for X,y € Hc N.

0 0
=n(y;H)-n(y;H-x)=—"—
n(y; H) — n(y; H-x) ox 0y

The interpretation of this condition is left for the reader.

7. HEURISTIC INTERPRETATION

Only the last issue is relevant to our bargaining solution
I'= f(S R @) to the supermodular bargaining game. The coalition I" is
a stable point with reference to the threshold value

. I
u= F(F) =m1nxeKa—. This coalition guarantees a gain
X

u =F(I') to Player No. 2. Therefore, Player No. 2 can prevent anyone
X &I outside the coalition I' € & from becoming a new member of

the coalition because the outsider’s marginal contribution 8_ reduces
X

the gain guaranteed to Player No. 2. The same incentive governing the



34 Chapter One

behavior of Player No. 2 will prevent some members X € I from leaving
the coalition. The unconventional interpretation given below might help
elucidate this situation.

. . N .
Let us observe a family of functions on N X 2" monotonic towards

the second set variable H, He2™. 1Let it be a function

cH , :
n(x; H) = ——. We already cited Shapley (1971), who introduced the
0x

oH
convex games, with the marginal utility 8_ =v(H)-v(H-x),
X

which is the one of many exact utilizations of the monotonicity
n(x,L) < n(x,G) for X € L < G. Authors of some extant studies,

including this researcher, refer to these marginal V(H) — v(H — X) set

functions as the derivatives of supermodular functions V(H). By invert-
ing the inequalities, we obtain submodular set functions.

Convex coalition game, referring to Shapley(1971) once again, can
have a “snowballing” or “band-wagon” effect of cooperative rationality;
i.e., in a supermodular game, the cooperative rationality suppresses the
individual rationality. In contrast, in submodular games with the inverse
property TC(X, L) 2> TC(X, G) (an extrapolation this time), the individual
rationality suppresses the collective rationality. Hence, it is not beneficial
in either case. On a positive note, if the moderator is in charge for coalition

formation, the moderator reward will be equal to the least marginal utility

. oH
u=FH)= min__, 8_ of some weakest player in the coalition H
X

under formation. Now, we can focus on a two-person cooperative drama to

be played out between the moderator and the coalition.

We start this discussion with our heuristic interpretation. Following the
apparatus of monotonic systems in terms of data mining (Mullat, 1971), it
is reasonable to find the Pareto frontier in terms of the game theory as
well. The potential moderator’s bargaining strategy is presented next.
First, in the grand coalition N = I}, , the moderator identifies the players
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. ON
with the least marginal utility u, = F(N) =min__ 8_ The mod-
X

erator will advise them to stay in line and wait for their rewards. All play-
ers that have joined the line will be temporarily disregarded in any coali-
tion formation. Following the game convexity, one of the remaining play-
ers (i.e., those still remaining in the coalition formation process) must find
themselves worse off owing to the players in line being excluded from the
process. Moderator would thus suggest to these players to also join the line
and wait for their rewards. The moderator continues the line construction
in the same vein. This process will result in a scenario in which all remain-

ing players F1 (outside the line) are better off than U, i.e., better off than

those waiting in line for their rewards. Now, the moderator repeats the
entire procedure upon players r1,F2,...unti1 all players from N are

assigned to wait in line to obtain their rewards. Moderator, certainly, keeps
a record of the events 0,l,... and is aware when the marginal utility

thresholds increases from U, to U, etc. It is obvious that the increments

are always positive: U, <Uu, <...< u,.

What is the outcome of this process? Players staying in line arrange a
nested sequence of coalitions <F0,1“1,..., Fp>. The most powerful mar-
ginal players, those present when the last event P occurs, form a coalition
Fp. The next powerful coalition will be prw etc., coming back once

again to the starting event ), when the players arrange the grand coalition

N =1I,. Our Frontier Theorem guarantees that such a moderator bar-
gaining strategy, in convex games, classifies a Pareto frontier
<(V(r0),u0),(V(r1),u1),...,(V(rp),up)> for a bargaining game

between the moderator and coalitions under formation.'" Thus, the game
ends when a bargaining agreement is reached between the moderator and
the coalition. However, some players might still stay in line, waiting in

11" This sequence of players/elements in line arranges so-called defining
sequence in data mining process.
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vain for their rewards, because the moderator might not agree to allow
them to partake in coalition formation. Indeed, due to the existence of
those marginal players, the moderator may lose a large portion of his/her

reward F(I ), for some k's € <1,...,p> 2

8. CONCLUSION

Nash bargaining solution being understood as a point on the Pareto
frontier in Monotonic System might be an acceptable convention in the
framework of “fast” calculation. The corresponding algorithm for finding
the solution is characterized by a relatively few operations and can be
implemented using known computer programming “recursive techniques”
on tables. From a purely theoretical perspective, we believe that our tech-
nique is a valuable addition to the repertoire presently at the disposal of
the game theoreticians. However, our bargaining solution is presently not
fully grounded in validated scientific facts established in game theory.
Consultations with specialists in the field are thus necessary to develop our
work further. In our view, our coalition formations games are sufficiently
clear and do not require specific economic interpretations. Nevertheless,
they need to be confirmed by other fundamental studies.

APPENDIX. Illustration of a club formation bargaining game with
neither supermodular nor submodular characteristic
function.

Recall the health club formation game from Section 2. Given the
characteristic function V(H), although whether the club members
actually arrive at individual payoffs or not is irrelevant, the club formation
is still of our interest. Let the game participants N = {1,2,3,4,5,6,7}
try to organize a club. Let the characteristic (revenue) function comply
with the promises of individual employees to participate in the offered

health activities in accordance with their survey responses, see Table 1.
However, we demand that all five-health activities be materialized.

12- We refer to similar behaviour of players in “Left- and Right-Wing Political
Power Design: The Dilemma of Welfare Policy with Low-Income Relief” as
political parties bargaining game agents registered under the social security ad-
ministration.
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5
Define v(H) = ‘H‘ + Z Zaxj , where

xeH j=1

Hc N={,2,3,4,56,7}.

In other words, a promise fulfilled by the club member contributes a

Bank Note to the player. In addition to all the promises fulfilled, a side
payment per capita is available. According to this rule V({l }) =3,

V({Z}) =35,... Nonetheless, we are going to change the side payments

rule, so that the game transforms into neither supermodular nor submodu-

lar game. Note that iv({ if) = v(N) =v({1,2,3,4,5,6,7}) = 29,

which renders non-essential game.

Yes, indeed, the employees, whether they choose to cooperate or not,
will be discouraged from forming a club arriving at the same gains. To
change the situation into that similar to “the real life cacophonous”, let the
side payment per capita be removed for single and pairwise players while

keeping the rewards intact for all other coalitions for which the size ex-
ceds 2. Thus v({I)=2. v({2h=4. v({,2) =6,
V({3,6}) =3, V({2,3,5}) =12, etc. Moderator’s gain, which was

. OH
defined as F(H) = mlHn 6_ = (V(H) -v(H- X), see above,
Xe X
makes the employees’ “cooperative behavior” close to grand coalition less
profitable for the moderator.

Therefore, the moderator would benefit from encouraging the employ-

ees to enter the club of a “reasonable size”. In Table 8, we examine this

phenomenon using different moderator gain F(H) values.
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Table 8.
Health Clubs List Marginal Utilities X y
p/capita

112]3|4|5|6|7|1]2|3|4|5]6]|7| v(H) | FH)

* 2 2 2

* 4 4 4

* % 2 4 6 2

* 3 3 3

* * 2 3 5 2

* * 3 2 5 2

* * * 5 6 5 10 5

* % * 7 6 5 12 5

* % * 3 5 4 3 15 3

* % 4 2 6 2

* * % 5 7 5 11 5

L 4 5 3 6 3 21 3

* o ¥ o ¥13 4 5 3 6 3 24 3

* * * * * * 5 4 5 3 6 3 26 3

* ox o x x % x *13 5 4 5 3 6 3 29 3

At last, we illustrate the bargaining game in the graph below and make

some comments.

Bargaining game between club members and the moderator
Figure 2
as
2 Revenue Function equals T=§1.23456.7}
-,9_ to total number of activites D 9
£ , | paticipatedby coalition
'?_, - members +additional r={2.3.46}
£ 20 award per capita for C={246
é coalitions with not less @20 =246}
= |5 J than 2 members, [H|>1. 8 @16
=
3]
= 10 g @11
E g T2}
S )
o
o o
0 T T T T T
0 1 2 3 4 5 ] 7
Health Club Moderator Award




Boolean Tables 39

N.B. Observe that utility pairs (29,3), (20,4), (1 6,5) and (1 1,6)
constitute the Pareto frontier of bargaining solutions for the bargaining

problem involving the moderator as Bargainer No. 1 and coalitions as
Bargainer No.2.  Accordingly, given the grand coalition

N= Fo = { 1,2,3,4,5,6,7}, three proper coalitions F1 = { 2,3,4,6},
Fz = { 2,4,6} and F3 = { 2,6} exist. Solutions v(Fl) =20,
F(I',)=4 and v(I,)=16, F(I',) =5, maximize the product of
players’  gains over the disagreement point (0,0) at

20-4=16-5=280. More specifically, as noted at the beginning of the
paper, the solution might not be unique and some external considerations

may help. For example, the sponsor expenses for (20,4) are equal to
24 | while those pertaining to (16,5) are equal to 21, which might be
decisive. That is the case when the bargaining power 6 =% of the coali-
tions R , Fz and the moderator are in balance. Otherwise, choosing the
coalition bargaining power 0 < %, the moderator will be better off mate-
rializing the solution (5,16). Conversely, coalition F2 will be better off

ifO>%.

Bargaining game between club members and the moderator

Figure 3
s

Revenue Function
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NB. Comparison with Fig. 2 reveals that coalition 1“3 = {2,6} is no

longer located on the Pareto frontier.
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Bargaining game between club members and the moderator
Figure 4
35
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N.B. Comparison with Fig. 3 indicates that coalition Fz = {2,4,6}

no longer lies on the Pareto frontier.
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How to arrange a Singles’ Party:
Coalition Formation in Matching Game*
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Abstract: The study addresses important issues relating to computational
aspects of coalition formation. Finding payoffs — imputations belonging
to the core — is, while almost as well known, an overly complex, NP-hard
problem, even for modern supercomputers. The problem becomes vague
because, among other issues, it is unknown whether the core is non-empty.
In the proposed cooperative game, under the name of singles, the presence
of non-empty collections of outcomes (payoffs) similar to the core (that
being said quasi-core) is fully guaranteed. Quasi-core is defined as a col-
lection of coalitions minimal by inclusion among non-dominant coalitions
induced through payoffs similar to super-modular characteristic functions.
As claimed, the quasi-core is identified via a version of P-NP problem that
utilizes the branch and bound heuristic and the results are visualized by
Excel spreadsheet.

Keywords: stability; game theory; coalition formation.

A thesis of this paper was presented at the Seventh International Conference on
Game Theory and Management (GTM2013), June 26-28, 2013, St. Petersburg,
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1. INTRODUCTION

It is almost a truism that many university and college students abandon
schooling soon after starting their studies. While some students opt for
incompatible education programs, the composition of students following
particular programs may not be optimal; in other words, students and
programs are mutually incompatible. Indeed, so-called mutual mismatches
of priorities were among the reasons (Vohandu, 2010) behind the unac-
ceptably high percentage of students in Estonian universities and colleges
dropping out of schools, wasting their time and the entitlement to govern-
ment support. However, matching students and education programs more
optimally could mitigate this problem.

Similar problems have been thoroughly studied (Roth, 1990; Gale,
1962; Berge, 1958) leading, perhaps, L. Vohandu (LV) to propose a way,
in this wide area of research, to solve the problem of students and pro-
grams mutual incompatibility by introducing “matching total” as the sum
of duplets — priorities selected within two directions — horizontal priori-
ties of students towards programs, and vertical priorities of programs
towards students. The best solution found among all possible horizontal
and vertical duplet assignments, according to LV, is where the sum
reaches its minimum.

Finding the best solution, however, is a difficult task. Instead, L'V pro-
posed a greedy type workaround. In LV’s words, the best solution to the
problem of matching students and programs will be close enough (consult
with Carmen et al, 2001) to a sum of duplets accumulated while moving
along direction of duplets in non-decreasing ordering. It seems that LV’s
proposal to the solution is a typical approach in the spirit of classical utili-
tarism, when the sum of utilities has to be maximized or minimized (Ben-
tham, The Principals of Morals and Legislation, 1789; Sidgwick, The
Methods of Ethics, London 1907).

As noted by Rawls in "Theory of Justice", the main weakness of
utilitarian approach is that, when the total max or min has been reached,
those members of society at the very low utility levels will still be
receiving very low compensations for incapacity, such as transfer
payments to the poor. Arguing for the principal of "maxima of the
lowest", referred to as the "Second Principal of Justice", Rawls suggested
an alternative to the utilitarian approach. The motive driving this study is
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utilitarian approach. The motive driving this study is similar. We address
by example an alternative to conventional core solution in cooperative
games, along the lines of monotonic game (Mullat, 1979), whereby the
lowest incentive/compensation should be maximized. The reader studying
matching problems can also find useful information about these issues,
where a number of ways of constructing an optimal matching strategy
have been discussed (Veskioja, 2005).

Learning by example is of high value because the conventional core
solution in cooperative games cannot be clearly explained unless the read-
ers are sufficiently familiar with utopian reality — a reality that sometimes
does not exist. Thus, a rigorous set up of a simple game will be presented
here; aiming to explain the otherwise rather complicated intersection of
interests. More specifically, we hope to shed light on what we call a Sin-
gles-Game. It should be emphasized that, even though the game primitives
represent an independent mathematical object in a completely different
context, we have still “borrowed” the idea of LV duplets to estimate the
benefits of matching. For this reason, we changed the nomenclature of
duplets to mutual credentials in order to justify the scale of payoffs — the
incentives and compensations.

The rest of the paper is organized as follows. We start with the pre-
liminaries, where the game primitives are explained. In Section 3, we
introduce the core concept of conventional stability in relation to the Sin-
gles-game. In Section 4, the reader will come across an unconventional
theory of kernel coalitions, and kernel coalitions, minimal by inclusion in
accordance with the formal scheme. In Section 5, we continue explaining
our techniques and procedures used to locate stable outcomes of the game.
The study ends with conclusions and suggestions for future work, which
are presented in Section 6. Appendix contains a visualization, which
brings to the surface the theoretical foundation of coalition formation.
Finally, interested readers would benefit from exploring the Excel spread-
sheet, which helps visualize a "realistic" intersection of interests of 20
single women and 20 single men. The addendum provides a sketched
outline for the evidence of some propositions.

2. PRELIMINARIES

Five single women and five single men are ready to take part in the
party. It is assumed that all participants are not very inclined to take risks
when looking for new acquaintances. All guests were asked to take part in
a survey to determine the qualities they are looking for in their potential
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partner. Those who choose to provide this information have been prom-
ised to collect a box of goodies and are henceforth referred to as partici-
pants, while others are marked as dummies by default and cannot partici-
pate in the game. In addition to the goodies promised to those who want to
reveal their priorities, we continue to set the rules for payments in the
form of encouraging successful participants in the game or compensation
in case of failure to find the right partner. The game is played in stages:
the players enter into agreements (duplets or matches) in pairs, after which
they no longer participate in the game. Gradually, the list of duplets ex-
pands, and the list of potential or new possible duplets narrows. At the
request of the participants, the game can end at any stage or continue until
all possible matches are created. Conventionally, we can also say that the
game ends either with a partial match in most cases, or with a complete
match. In order to cover the expenses of the dating agency, such as soft
drinks, rewards, etc., the entry fee is set at -50 €. Thus, the amount of 500
€ will be at the disposal of the cashier.

We use index 1 for the women, and an index j for the men taking
part in the dating party. Assuming that all the guests have agreed to par-
ticipate in the game, there are {1,...,i,...5} women and {1,...,j,...5}

men, resulting in 2X 5X 5 combinations. Indeed, when priorities have

, and

been revealed, they can form two 5xJ5 tables, W ZHWi’j
M= Hmm’

ties positioned in the rows of table W towards men as horizontal permu-

, indicating that each woman 1, 1=1,5 revealed her priori-

tations W . of numbers <1,2,3,4,5>. Similarly, each man j, j:1,_5,

revealed his priorities positioned in columns of the table M towards
women as vertical permutations M i As can be seen below in W

Table-1, now it is convenient to nominate as priorities Wi, (numbers
<1,5 = 1,2,3,4,5>) might repeat in both the columns of the table W

and in the rows of the table M . To be sure, more than one man may
prefer the same woman at priority level W, i and many women, accord-

ingly, may prefer the same man at the level M, i Thus, duplets or mutual

credentials Li=W, + m, ; occupy the cells in table R = Hri’j H
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ML M, M; My Ms

w, 1 5 3 4
W, 5 4 1 2
Table 1 W W; 3 5 4 2 1
W, 2 5 3 1 4
Ws 4 3 1 2 5
= Women Priorities
M M, M; M, M;
W, 3 4 2 2
W, 1 3 4 2 4
Table 2 +M W; 5 2 3 4 3
W, 4 5 1 3 1
Ws 2 1 5 5 5
Men Priorities
M M, M; My M
W, 4 5 6
W, 6 5 4 7
Table 3 =R W; 8 7 6 4
W, 6 10 4 4 5
Ws 6 4 6 7 10

Mutual Duplets/Credentials

Noting the assumption that all participants are risk-averse, some lucky
couples with lower level of mutual credentials start dating. These lucky
couples will receive an incentive, such as a prepaid ticket to an event, free
restaurant meal, etc. On the other hand, unlucky participants — i.e., those
that did not find a partner — may claim compensation, as only high-level
mutual risk partners remained, given that the eligible participants at the
low level of mutual risk have been matched.

If no one has found a suitable partner, the question is — should the
party continue? Apparently, given that the original data that failed to pro-
duce matches might have not been completely truthful, it would be unwise

to offer compensation in proportion to mutual credentials T; i Nonethe-
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less, let us assume that the compensation equals % L -10€. In that case,

couple’s [5,5] profit may reach 50€! Instead, the dating bureau decides to

organize the game, encouraging the players to follow Rawls second prin-
ciple of justice. In Table-3, the minimum — the lowest mutual risk

among all participants — is I} , = 3. Following the principle, the com-

pensation to all unlucky participants will be equal to % I, , -10=15€. This

setting is also fiscally reasonable from the cashier’s point of view. The
balance of payoffs for all participants, will be —25€, as —50€ paid as en-
trance fee will be reduced by 15€ compensation amount, and additionally
by 10€, i.e., inclusive of the cost of collected goodies. Further on, we
assume that each member of a dating couple will receive an incentive that
is offered to all dating couples and is equal to double the compensation
amount.

What happens when the couple [1,4] decides to date? The entire table

R should be dynamically transformed to reflect the fact that the partici-
pants [1,4] are matched. Indeed, as the women {2,3,4,5} and men

{1,2,3,5} can no longer count on [1,4] as their latent partners, the pri-
orities will decline, whereby the scale <1,2,3,4,5> dynamically shrinks

to <1,2,3,4> ! To reflect this, Tabs.1-3 transform into Tabs.4-6:

M, M, M; M, M;
W,
W, 4 3 1 2
Tabled W W, 2 4 3
w, 1 4 3
W, 3 2 1 4

Women Priorities

To highlight theoretical results of mutual credentials, incitements or compensa-
tions, or whatever the scales we use, the dynamic quality of monotonic scales is
the only feature fostering the birth of MS — the "monotone system." Other-
wise, the MS terminology, if used in any type of serialization methods applied

for data analysis, will remain sterile.
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M M, M; My M;

Wi

W, 1 3 3 3
Table 5 + M 4 2 2 2

W, 3 4 1 1

W; 2 1 4 4

Men Priorities
M, M, M; M, M;

W,

W, 5 6 4 5
Table 6 =R W, 6 6 5 3

W, 4 8 g 4

W; 5 3 5 8

Mutual Duplets/Credentials

The minimum mismatch compensation did not change and is
still equal to 15€. However, couple’s [1,4] potential balance

—50€+10€+2-15€ =—10€ of payoffs improves (W; and My each receive
30€ as an incentive to date, based on the rule that it is equal to twice the
mismatch compensation). For those not yet matched, the balance remains
negative (in deficit) and equals 15€. On the other hand, if, for example,

the couple [3,5] decides to date, the balance of payoffs improves as well.

The party is over and the decisions have been made about who will
date and who will leave the party without a partner. The results are passed
in writing to the dating bureau. What would be the best collective decision
of the participants based on the principle of "maxima of the lowest" in
accord with the rules of singles-game?

2. CONVENTIONAL STABILITY"

In this section, the aim is to present the well-established solution to the
singles-game by utilizing the conventional concept, called the core. First,
without any warranty, it is helpful to focus on the core stability.

Terminology, which we shall use below, is somewhat conventional but mixed
with our own.
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In order to meet this aim, the original dating party arrangement is ex-
panded to a more general case. The game now has 1 X M participants, of

who N are single women <1,...,i,...n> and M are single men

<1,...,j,...m> . Some of the guests expressed their willingness to partici-

pate in the game and have revealed their priorities. Those who refused, in
line with the above, are referred to as dummy players. All those who
agreed to play the game will be arranged by default into the Grand Coali-

tion &, ‘9" <n + m. Thus, indices i,j and labels O,...,6 € P are

used to annotate the guests participating in the game. Only the guests in
P are regarded as participants, whereas couples i,j are referred to as
Q,...,0 . This differentiation not only helps make notations short, when

needed, but can also be used in reference to an eventual matching or a
couple without any emphasis on gender.

In the singles-game, we focus on the participants D < & who are
matched. Having formed a coalition, we suppose that coalition D has the
power and is in a position to enforce its priorities. It is assumed that par-
ticipants in D can persuade all those in X = & \ D, i.e., participants

that are not yet matched, to leave the party without a partner and thus
receive compensation. It is realistic to assume that the suppression of

interests of participants’ in X is not always possible. It is conceivable
that, those in the coalition D’ C X, whose interests would be affected
(suppressed), will still be capable to receive as much as the participants in
D . However, we exclude this opportunity, as it is better that no one ex-

pects that coalition D' can be realized concurrently with D and act as its
direct competition.

Insisting on this restriction, however, we note that the coalition D are
those participants who are involved in partial matching at some final stage

of the game, while X are those others who were unlucky and left the
party without suitable partners since the game ended. Participants in X
by the rules of the game receive 50% of the incentives in D. A realistic
situation may occur when all participants in & are matched, D = &, or,
in contrast, no one decides to date, D = . 1t is also reasonable that,
after revealing their priorities, some individuals might decide not to pro-
ceed with the game and will, thus, be labeled as a dummy player O & P.
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Among all coalitions D, we usually distinguish rational coalitions.
Couple O, joining the coalition D, extracts from the interaction in the
coalition a benefit that satisfies 0L € D . In the singles-game, we antici-
pate that the extraction of benefits, i.e., the incentives and mismatch com-
pensations, strictly depend on the membership — couples in D or par-
ticipants of coalition X . Using the coalition membership D < &, we
can always construct a payoff X to all participants &, i.e., we can quan-
tify the positions of all participants. The inverse is also true. Given a pay-
off X, it is easy to establish which couple belongs to the coalition D and
identify those belonging to the coalition X = & \ D . We label this fact

as Dx. Recall that couples of the coalition DX receive an incentive to

date, which is equal to the double amount of the mismatch compensation.
Thus, the allocation Dx may provide an opportunity for some partici-

pants O € & to start, or initiate, new matches, thus moving to better
positions. We will soon see that, while the best positions induced by spe-
cial coalitions JV , called the kernel, have been reached, this movement
will be impossible to realize. *

The inability of players to move to better positions by "pair compari-
sons" is an example of stability. In the work "Cores of Convex games",
convex games have been studied (Shapley, 1971); these are so-called
games with a non-empty core, where similar type of stability exists. The
core forms a convex set of end-points (imputations) of a multidimensional
octahedron, i.e., a collection of available payoffs to all players. Below,

despite the players’ asymmetry with respect to DX =9 \ X, we focus
on their payoffs driving their collective behavior as participants I to
form a coalition DX , DX C 9 . here, X = DX is called an anti-
coalition to X.

In contrast to individual payoffs improving or worsening the positions
of participants, when playing a coalition game, the total payment to a

coalition X as a whole is referred to the characteristic function
V(X) > 0. In classical cooperative game theory, the payment V(X) to

coalition X is known with certainty, whereby the variance

3 our terminology is unconventional in this connection.
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v(X)-v(X \ {G }) provides a marginal utility (G, X) . Inequality
(o, X \ {(5 }) <m(o, X) of the scale of credentials expresses a

monotonic decrease (increase) in marginal utilities of the membership for
o€ X . The monotonicity is equivalent to the supermodularity

v(X,) +v(X,) 2 v(X, UX,)+v(X,NX,) (Nemhauser et al,

1978). Thus, any characteristic function V(X), payment on which is

built according to the scale of credentials, is supermodular. The inverse
submodularity was used to find solutions of many combinatorial problems
(Edmonds, 1970; Petrov and Cherenin, 1948). In general, such a warranty
cannot be given.

Recall that we eliminated all rows and columns in tables

W=|w,| . M=|m | in tne win X=D, . Table

R =[n(ee. X) = w,,(X) +m, (X)

, o= [i,j] € X reflects the

outcome of shrinking priorities W, ., M, i when some G € X have

i,j°
found a match and have formed a couple. Priorities W, i»
quently decreasing. Given in the form of characteristic function, e.g., the

value V(X) = Z TE(OL, X) sets up a coalition game.* An imputation
for the game V(X) is defined by a ‘f/) ‘ -vector fulfilling two conditions:

M X, X, = V(P), G x, > v({a)), for all e P. Condition
(i1) clearly stems from repetitive use of monotonic inequality
(o, X\ {c}) < n(at, X).

A significant shortcoming of the cooperative theory given in the form
of the characteristic function stems from its inability to specify a particular
imputation as a solution. However, in our case, such imputation can be
defined in an intuitive way. In fact, the concept of risk scale determines a
popularity index of players. More specifically, the lower the risk of en-
gagement T(0l, X) of G € X, the more reliable the couple’s Ol coex-

mij are conse-

aeX

istence is. Therefore, we set up a popularity index P, of a woman 1

4 V(X) = ‘X‘Z . QX‘ + 1) Check that V(f/j) =150 for 5% 5 -game, or
use the Table-1.
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among men in the coalition X as number pi(X) = ZjEX m; ;. The
index number P i of a man j among women, accordingly, is given by

p; (X)= ZieX W, ; - We intend to redistribute the total payment v(X)

in proportion to the components of the vector
p(X)= <pi(X),pj(X)>, or as the vector P(X). Hereby we can

prove, owing to monotonic scale of priorities, that the payoffs in imputa-
tion p(fp ) cannot be improved by any coalition X C & . Therefore, the
game solution, among popularity indices, will be the only imputation
p(fl’ ) In other words, popularity indices core of the cooperative game

V(X)) consists of only one point p(P).

In line with the terminology used above, we draw the readers’ atten-
tion to the fact that the singles-game considered next is not a game given
in the form of a characteristic function. The above discussion was pre-
sented as the foundation for the course of further investigation only.

3. CONCEPT OF A KERNEL

In the view of "monotone system" (Mullat, 1971-1995) exactly as in
Shapley’s convex games, the basic requirement of our model validity
emerges from an inequality of monotonicity
TC(OL,X\ {G}) < TC(OL, X) This means that, by eliminating an ele-
ment/match G from X, the utilities (weights) on the rest will decline or
remain the same. In particular, a class of monotone systems is called
p-monotone (Kuznetsov et al, 1982, 1985), where the ordering

<7T(OL, X)> on each subset X of utilities (weights) follows the initial

ordering <TC(OL, ‘ll))} on the set W . The decline of the utilities on

p-monotone system does not change the ordering of utilities on any subset
X.. Thus, serialization (greedy) methods on p-monotone system might be
effective. Behind a p-monotone system lays the fact that an application of
Greedy framework can simultaneously accommodate the structure of all
subsets X C W . Perhaps, for different reasons, many will argue that
p-monotone systems are rather simplistic and fail to compare to the seri-
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alization method. Nonetheless, many economists, including Narens and
Luce (1983), almost certainly, will point out that subsets X of
p-monotone systems perform on interpersonally compatible scales.

An inequality F(X1 ) Xz) 2> min<F(X1 ), F(X2)> holds for real
valued set function F(X)=min aeX m(ot, X) , referred to as quasi-

convexity (Malishevski, 1998). We observed monotone systems, which
we think is important to distinguish. The system is non quasi-convex when
two coalitions contradict the last inequality. We consider such systems as
non-quasi-convex, which applies to the singles-game case.

The ordering of priorities in singles-games — i.e., what men look for
in women, and vice versa — remain intact within an arbitrary coalition

X. However, in these systems, the ordering of mutual credentials Hl‘1 JH
on Grand Coalition J does not necessarily hold for some X < & .

, the ordering of

Contrary to initial ordering on <9 > = HTC(OL,fP ) =T
mutual credentials on <X> = HR(OL,X)H may be inverse of the ordering

on <fi' > for some couples. In that case, e.g., the ordering of two couples’

mutual credentials can turn "upside down" while the risk scale is shrinking
compared to the original ordering on the Grand Coalition . Thus, in
general, the mutual credentials scale is not necessarily interpersonally
compatible. In other words, interpersonal incompatibility of this risk scale
radically differs from the p-monotone systems. This difference became
apparent when it was no longer possible to find a solution using Greedy
type framework of so-called defining chain algorithm — i.e., the mono-
tone system was non-quasi-convex. Before proceeding with the formal
side of these processes, it is informative to understand the nature of the
problem.

Definition 1 By kernel coalition we call a coalition
K earg max, o F(X); {j{} is the set of all kernels.
<

Recalling the main quality of defining a chain — a sequence of ele-
ments of a monotone system — it is possible to arrange the elements
oW , ie, the couples oL € P of players by a sequence

<OL1,...,OLk>, k =1,n. The sequence follows the lowest risk ordering
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in each step K corresponding to sequence of coalitions <Hk> ,
(o, H,) .

Given any arbitrarily coalition X < & , we say that the defining se-

H =%, H,_ «<H\{o}. o =argmin

oeHy

quence obeys the left concurrence quality if there exists a superset Ht
such that Ht oX,t= 1,_1(, where the first element O, € Ht to the
left in the sequence <0L1,...,0Lk> belongs to the set X, a, € X as
well. On the condition that the element ¢, is not a member of the superset
F€ = {..‘7{ €argmaxy , F(X)} including all kernels J, a, & F€,
we observe that 7I(OLt ,X) < 7I(OLt ,H ) ). Hereby, we can conclude that
F(X) < 7I(OLt , Ht) is strictly less than the global maximum of the set

function F(X) = minan TE(OL, X) . The left concurrence quality guar-
antees that the sequence can potentially be used for finding the largest
kernel F€ . Due to non-quasi-concavity, the left concurrence quality is no

longer valid. Eliminating a couple O, = [i, J], see above, we delete the
row 1 and the column j in the mutual credentials table HI‘L JH Thus, the

operation Hk W Hk \ {Otk} is not an exclusion of a couple
a, € Hk, given that the couple O, = [i, _]] is about to start dating, but
rather an exclusion of adjacent couples Ol in [i,*] -row and [*, J] -
column. We annotate the engagement as Hk v < Hk — QO or as an

equal notation Dk+1 <~ Dk +Q, .

In conclusion, note, once again, that, despite the properties of mono-
tone system remaining intact, the chain algorithm, assembling the defining
sequence of elements OL € &, cannot guarantee the extraction of the
supposedly largest kernel J€ , particularly in the form given by Kempner
et al (2008). Thus, we need to employ special tools for finding the solu-
tion. To move further in this direction, we are ready to formulate some
propositions for finding kernels K by branch and bound algorithm types.
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The next step will require a modified variant of imputation (Owen,
1982). We define an imputation as the outcome connected to the singles-

game in the form of a ‘fl) ‘ -vector of payoffs to all participants. More spe-
cifically, the outcome is a ‘fl) ‘ -vector, where each partner in a couple
G € X receives the lowest mismatch compensation F(X) , whereas
each partner in the couple O & X belonging to the anti-coalition
i = Dx receives the incentive to date, which is equal to twice that
amount, i.e., 2 - F(X) , cf. Tables 3 and Table 6. The concept of outcome
(imputation) in this form is not common because the amount to be claimed

by all participants is not fixed and equals ‘fl’ ‘ + F(X) . QX‘ +2- )

Thus, it is likely that participants will fail to reach an understanding, and

X

will claim payoffs obtaining less than available total amount
(1’1 + 1’1’1) 50 €. The situation, in contrast, when participants will claim

more than total amount, is also conceivable.

Any coalition X induces a “(I) ‘ -vector X = <Xc> as an outcome X :°

2+F(X) if ceX,
X_ = -
° | 2-(1+FX)) it ceX.
5 x, = 2+ Fx)- (x| +2-[x]).
GE{])
In this case, X is a quasi-imputation.

This definition of outcome is used later, adapting the concept of the
quasi-imputation for the purpose of the singles-game. We say that an arbi-
trary coalition X induces an outcome X . Computed and prescribed by

coalition X, the components of X consist of two distinct values F(X)

5 Further, we follow the rule that capital letters represent coalitions
X,Y,...,f]{,%,... while lowercase letters X,y,...,&,fl,... represent

outcomes induced by these coalitions.
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and 2 - F(X) Participants G € X could not form a couple, while par-

ticipants O € Dx were able to match. Recall that the notation for X is

also used as a mixed notation for dating couples DX .

Before we move further, we will try to justify our mixed notation X .
Although a coalition X = DX uniquely defines both those DX among
participants & who went on dating, and those X = &\ D, who did

not, the coalition X does not specifically indicate matched couples. In
contrast, using the notation DX , we indicate that all participants in DX

are matched, whereas a couple G € Dx also indicates an individual deci-
sion how to match. More specifically, this annotation represents all men
and all women in DX standing in line facing one member of the opposite
sex, with whom they are matched. However, any matching or engagement
among couples belonging to Dx, or whatever matches are formed in

DX , does not change the payoffs X _ valid for the outcome X . In other
words, each particular matching DX induces the same outcome X . Deci-
sions in DX with respect to how to match provide an example of individ-

ual rationality, while the coalition Dx formation, as a whole, is an exam-
ple of collective rationality. Therefore, in accordance with payoffs X, the
notation DX subsumes two different types of rationality — the individual
and the collective rationality. In that case, the outcome X accompanying
DX represents the result of a partial matching of participants J . Propo-

sitions below somehow bind the individual rationality with the
collective rationality.

One of the central issues in the coalition game theory is the question of
the possible formation of coalitions or their accessibility, i.e., the question
of coalition feasibility. While it is traditionally assumed that any coalition
X C & is accessible or available for formation, such an approach is
generally unsatisfactory. We will try to associate this issue with a similar
concept in the theory of monotone systems. The issue of accessibility of
subsets X C W in the literature of monotone systems has been consid-
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ered not only in the context of the totality 2% ofits subsets X € 2" but
also with respect to special collections of subsets F C 2% A singleton

chain O, adding elements step-by-step, starting with the empty set J,

can, in principle, access any set X € &, or access the set X by remov-
ing the elements starting with the grand ordering U — so called
upwards or downwards accessibility.

Definition 2 Given coalition X C &P, where P is the Grand Coali-
tion, we call the collection of pairs C(X) = {arg min R(OL,X)}

naming C(X) as best latent couples, capable of matching with the low-

aeX

est mutual risk, within the coalition X .

Consider a coalition DX, generated by the formation by a chain of
steps D, ,, <~ D, +<Otk> cLet X, =2, X, =fl)\Dk , where
Dk are participants trying to match during the step K ; C(Xk) are
couples in Xk with the lowest mutual risk/credential among couples not
yet matched in steps K =1,_1], Xn = & . Coalitions in the chain
Xk q= Xk — O, are arranged after the rows and columns, indicated by

couple O, , have been removed from W, M and R . Mutual creden-

tials R = ‘

L H have been recalculated accordingly.

Definition 3 Given the sequence <OL1,...,OLk> of matched couples,
where X1 =9 s Xk+1 = Xk —Q, , we say that -coalition
Dx = i =9 \ X of matched (as well as X of not yet matched) par-
ticipants is feasible, when the chain <X1,...,Xk+1 = X> complies with
the rational succession C(Xk+1) ) C(Xk) N X, ,,. We call the out-

come X, induced by sequence <OL1 ,...,OLk>, a feasible payoff, or a fea-

sible outcome.
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Proposition 1 The rational succession rationality necessarily emerges

from the condition that, under the coalition DX Jormation a couple O,

does not decrease the payoffs of couples <0L1,...Otk71> formed in previ-

ous steps.

The accessibility or feasibility of coalition DX formation offers con-

vincing interpretation. Indeed, the feasibility of coalition DX means that
the coalition can be formed by bringing into it a positive increment of
utilities to all participants &, or by improving the position of existing
participants having already formed a coalition when new couples enter the
coalition in subsequent steps. We claim that, in such a situation, coalitions

are formed by rational choice. The rational choice C(X) satisfies so-

called heritage or succession rationality described by Chernoff (1954), Sen
(1970), and Arrow (1959). Below, we outline the heritage rationality in
the form suitable for visualization.

The proposition states that, in matches, the individual decisions are
also rational in a collective sense only when all participants in DX indi-

vidually find a suitable partner. We can use different techniques to meet
the individual and collective rationality by matching all participants only

in DX, which is akin to the stable marriage procedure (Gale & Shapley,

1962). In contrast, the algorithm below provides an optimal out-
come/payoff accompanied by partial matching only—i.e., only matching

some of participants in J as participants of DX; once again, this is in
line with the Greedy type matching technique.

Proposition 2 The set {.7(} of kernels in the singles-game arranges

feasible coalitions. Any outcome K induced by a kernel K € {..7{} is

feasible.
At last, we are ready to focus on our main concept.

Definition 4 Given a pair of outcomes X and Yy, induced by coali-
tions X and Y , an outcome V dominates the outcome X, X <VY:

() IScPVoeS—>x_<y,,

(ii) the outcome Y is feasible.



60 Chapter One

Condition (i) states that participants/couples G € S C & receiving
payoffs X _ can break the initial matching in Dx and establish new

matches while uniting into Dy . Alternatively, some members of X, ie.,

not yet matched participants in S, can find suitable partners amid partici-

pants in Dy , or, even their compensations in Y may be higher than their

incentives in X . Thus, by receiving Yy instead of X the participants

belongings to S are guaranteed to improve their positions. The interpreta-
tion of the condition (ii) is obvious. Thus, the relation X <y indicates
that participants in S can cause a split (bifurcation) of DX , or are likely

to undermine the outcome X .

Definition 5 4 kernel N € {f]{} minimal by inclusion is called a
kernel — it does not include any other proper kernel K < N :

Kz N istrueforall K#N .

Proposition 3 The set {n} of outcomes, induced by kernel {./V } ar-
ranges a quasi-core of the singles-game. Outcomes in {n} are non-

dominant upon each other, i.e., # < n', orn>-n' are false. Thus, the
quasi-core is internally stable.

The proposition above clearly indicates that the concept of internal
stability is based on "pair comparisons" (binary relation) of outcomes. The
traditional solution of coalition games recognizes a more challenging
stability, known as NM solution, which, in addition to the internal stabil-
ity, demands external stability. External stability ensures that any outcome
X of the game outside NM-solution cannot be realized because there is an
outcome B € {JV }, which is not worse for all, but it is necessarily better

for some participants in X . Therefore, most likely, only the outcomes n
that belong to NM-solution might be realized. The disadvantage of this
scenario stems from the inability to specify how it can occur. In contrast,
in the singles-game, we can define how the transformation of one coalition
to another takes place, namely, only along feasible sequence of couples.
However, it may happen that for some coalitions X outside the quasi-
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core {./V } , feasible sequence may stall unable to reach any kernel
ne {./V }, whereby starting at X the quasi-core is feasibly unreachable.

This is a significant difference with respect to the traditional NM-solution.

4. FINDING THE QUASI-CORE

In general, when using Greedy type algorithms, we gradually improve
the solution by a local transformation. In our case, a contradiction exists
because nowhere is stated that local improvements can effectively detect
the best solution — the best outcome or payoffs to all players. The set of
best payoffs, as we already established above, arranges a quasi-core of the
game. Usually, finding the core in the conventional sense is a NP-hard
task, as the number of "operations" increases exponentially, depending on
the number of participants. In the singles-game, or in almost all other
types of coalition games, we observe an extensive family of subsets con-
stituting traditional core imputations. Even if it is possible to find all the
payoff vectors in the core, it is impractical to do so. We thus posit that it is
sufficient to find some feasible coalitions belonging to the quasi-core and
the payoffs induced by these coalitions.

This can be accomplished by applying a procedure of strong improve-
ments of payoffs, and several gliding procedures, which do not worsen the
players’ positions under coalition formation. Indeed, based on rationality,
known as the rational succession, Definition 3, it is not rational in some
situations to use the procedure of strong improvements, as these do not
exist. However, using gliding procedures, we can move forward in one of
the promising directions to find payoffs not worsening the outcome. Ex-
periments conducted using our polynomial algorithm show that, while
using a mixture of improvement procedure and gliding procedures, com-
bined with the succession condition, one can take the advantage of back-
tracking strategy, and might find feasible payoffs of the singles-game
belonging to the quasi-core.

We use five procedures in total — one improvement procedure and
four variants of gliding procedures. Combining these procedures, the algo-
rithm below is given in a more general form. While we do not aim to ex-
plain in detail how to implement these five procedures, in relation to ra-
tional succession, it will be useful to explain beforehand some specifics of
the procedures because a visual interaction is best way to implement the
algorithm.
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In the algorithm, we can distinguish two different situations that will
determine in which direction to proceed. The first direction promises an
improvement in case the couple 0L € X decides to match. We call the

situation when C(X —a) NC(X) = as a latent improvement
situation. Otherwise, when C(X —a)NC(X) =, it is a latent
gliding direction. Let CH(X) be the set of rows C(X), the horizontal
routes in R Tables 3 & 6, which contain the set C(X). By analogy
CV(X) represents the vertical routes, the set of columns,
C(X) c CH(X)xCV(X) . To apply our strategy upon X , we
distinguish four cases of four non-overlapping blocks in the mutual risk

R =t [ Tables3 & 6: CH(X)x CV(X) : CH(X)x CV(X) :
CH(X)xCV(X): CH(X)x CV(X).

Proposition 4 An improvement in payoffs for all participants in the
singles-game may occur only when a couple 0. € X complies with the
latent improvement situation in relation to the coalition X, the case of

CX—-a)NC(X)=D. The couple QL € X is otherwise in a latent
gliding situation.

The following algorithm represents a heuristic approach to finding a
kernel # among kernel {JV } of the singles-game.

Input  Build the mutual credentials Tables 3 & 6, R=W+M_a simple
operation in Excel spreadsheet. Recall the notation P of players as the

game participants. Set k « 1, X < &P in the role of not yet
matched participants, i.e., as players available for latent matching. In

contrast to the set X , allocate indicating by DX < I the initial

status of matched participants.
Do Step up: S, Find amatch O, € CH(X) X CV(X),
[)x < I)X + QL , such that F(X) < F(X — O(,k) s
X<« X- o, Xk =X, k=k+1 , otherwise Track Back.
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Gliding: D, Find a match a, € CH(X)xCV(X),

D, <~ D_+a,, such that F(X)=F(X- a,),

X« X-a,, X, =X, k=k+1, otherwise Track Back.
Jump  F, Find a match o, € CH(X)xCV(X),

D, <~ D_+a,, such that F(X)=F(X- Otk),

X X-a,, X, =X, k=k+1, otherwise Track Back.
Jump G, Findamatch O, € CH(X)xCV(X),

D, < D_+a«,, such that F(X)=F(X- OLk),

X X-a,, X, =X, k=k+1, otherwise Track Back.

Jump  H, Find a match o, € CH(X)x CV(X),
D, < D_+a,, such that F(X)=F(X- Otk),
X« X-— o, Xk =X,k=k +1,otherwise Track Back.

Loop Until no couples to match can be found in accordance with cases S,
D, F, G and H.

Output The set D has the form D, = <OL1,...,OLk>. The set
N=2 \ DX represents a kernel of the game while the pay-
off m induced by N belongs to the quasi-core.

In closing, it is worth noting that a technically minded reader would
likely observe that coalitions Xk are of two types. The first case is
X« X-— O, operation when the mismatch compensation increases,
ie, F(X,)<F(X, —0,) . The second case occurs when gliding
along the compensation F(X, ) = F(X, —a, ). In general, independ-

ently of the first or the second type, there are five different directions in
which a move ahead can proceed. In fact, this poses a question — in

which sequence couples O, should be selected in order to facilitate the

generation of the sequence Dx = <OL1 yeens Oy > ? We solved the problem
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for singles-games underpinning our solution by backtracking. It is often
clear in which direction to move ahead by selecting improvements, i.e.,
either a strict improvement by s) or gliding procedures though d), f), g) or
h). However, a full explanation of backtracking is out of the scope of our
current investigation. Thus, for more details, one may refer to similar
techniques, which effectively solve the problem (Dumbadze, 1989).

5. CONCLUSIONS

The uniqueness of singles-game lies in the dynamic nature of pair wise
priorities. As the construction of the matching sequence proceeds, priori-
ties dynamically shrink, and finally converge at one point. Dynamic trans-
formation, or the monotonic (dynamic) nature of priorities, enabled
constructing a game based on so-called monotone system, or MS. One
disadvantage behind the use of the MS-system is its drawback in the re-
spective interpretation of the analysis results. More specifically, when the
process of extracting the core terminates, the interpretation requires
further corrections. However, with regards to the choice of the best vari-
ants, i.e., the choice of the best matches in the singles-game, the paper
reports a scalar optimization in line with "maxima of the lowest" princi-
ple, or rather an optimal choice of partial matching. This view opens the
way to consider the best partial matching as the choice of the best variants
(alternatives), and to explore the matching process from the perspective of
a choice problem.

Usually, when trying to analyze the results, a researcher must rely on
the common sense. Therefore, applying the well known and well thought
out concepts and categories that have been successfully applied in the
past, we can move forward in the right direction. Our advantage was that
this relation was found, and was transformed into a shape similar to the
core, which is known concept in the theory of stability of collective be-
havior, e.g., in the theory of coalitional games.

Irrespective of the complexity of intersections in the interests of play-
ers, deftly twisted rules for compensations in unfortunate circumstances,
incitements, etc., singles-game, as it seems, makes a point. However, this
is not enough in social sciences, especially in economics, when a formal
scheme rarely depicts the reality, e.g. the difference in political views and
positions of certain groups of interest, etc. Perhaps, the individual compo-
nents of the game will still be helpful in moving closer to answering the
question of what is right or wrong, or what is good and what is bad, which
would be a fruitful path to explore in future studies of this type.
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APPENDIX
Visualization

Recall that, in the singles-game, the input to the algorithm presented in
the main body of the paper contains three tables (cf. Tables 1-6):

W = HWL JH — priorities table W, the women specify with the respect
to the characteristics the men should possess, in the form of permutations
of numbers 1,_1’1 in rows; M = Hml JH — priorities m, the men specify
with the respect to the characteristics the women should possess, in the

form of permutations of numbers 1m in columns; and

= HW +m, ‘ These tables, and tabular information in general, are

well suited for use in Excel spreadsheets that feature calculation, graphing
tools, pivot tables, and a macro programming language called VBA —
Visual Basic for Applications.

A spreadsheet was developed in order to present our idea visually, i.e.,
the search for kernel of the singles-game, and the stable coalitions with
outcomes belonging to the quasi-core induced by these coalitions. The
spreadsheet takes for granted the Excel functions and capabilities can be
downloaded from http://datalaundering.com/download/singles_game.xls (Accessed
23.12.2021)

SPREADSHEET LAYOUT

There are 20 single women and 20 single men attending the party, i.e.,
n,m =20 . Three tables are thus available: The Pink table W —

women’s priorities; The Blue M — men’s priorities, and the Yellow R
— the mutual credentials table. The column to the right of the R lists all

women 1= 1 ,20 showing mm g By Gy = W My : the level of

risk of couples [1 *] The row down of the bottom of R lists all men
level of risk of couples [*,_]] In the
=F(X)

]j= 1 ,20 showing min. iz L

right hand bottom corner cell, the lowest min._ =y AR L
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level of risk over the whole R is given. Notice that the green cells in the

R table visually represent the effect of arg mlnm,j:@ I; ; operation.

Actually, the green cells visualize the choice operator C(X) . Arrays
V24:A025 and V26:A026 will be implemented in the process of generat-
ing the matching sequence together with the levels of risk associated by
this sequence. The players’ balance of payoffs occupies the array
V31:A032. Some cells reflecting the state of finances of cashier are lo-
cated below, in the array AP34:AP44. Cells in row-1 and column-A con-
tain the guests’ labels. We use these labels in all macros.

EXTRACTING KERNEL OF THE GAME

We came closer to the goal of our visualization, where we visually
demonstrate the main features of the theoretical model of the game by
example. Generating the matching sequence, which is performed in a
stepwise fashion, constitutes the framework of the theory. At each step, to
the right side of the sequence generated in the preceding steps, we add a
couple found by one of the macros CaseS, CaseD, CaseH, i.e., a couple
that has decided to date. This process is repeated until the mutual regrets
(i.e., credentials) sequence reached the level 6. When using these macros
one can easily verify that, the levels of risk initially increase, and decline
towards the end in case we proceed further with these macros. This single
N-peakedness is a consequence of the levels of mutual credential
monotonicity 70(ot, H \ {G }) < 7(o, H). Indeed, recall that credential

levels are recalculated after each match. With the proviso of recommenda-
tions in our heuristic algorithm, see above, due to the recalculation, the
priority scales will "shrink" or "pack together", as only not yet matched
participants remain. Let us try to generate a Matching Sequence using
macros: CaseS, CaseD, CaseF,...The data, e.g., will occupy the array
V24:028. It is possible to come back to the initial status of the spread-
sheet by using macros: Ctrl+o, Ctrl+b and Ctrl+l. As an example of these
macros we have prepared the result in cells BS1:L52. Just copy the con-
tents of these cells into V24:F25 and then use the macro Ctrl+n, which
will visualizes a kernel of 11 matches of the game.
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Table 7

Match No. [ 2 3 4 5 7 8 9 10 11
Women 19 10 1 6 4 11 7 9 5 2 15
Men 5 9 10 17 15 6 13 11 7 14 2
Duplets 3 3 4 5 6 6 6 6 6 6 6
Table 8

Participant No. 1 2 3 4 5 6 7 8 9 10
Women' payoffs 70€ 40€ 40€ 70€ 70€ 70€ 40€ 40€ 40€ 70€
Mens’ payoffs 70€ 40€ 70€ 70€ 70€ 70€ 40€ 40€ 70€ 70€
Participant No. 11 12 13 14 15 16 17 18 19 20
Women' payoffs 70€ 40€ 70€ 40€ 70€ 40€ 40€ 70€ 70€ 70€
Mens’ payoffs 40€ 70€ 70€ 70€ 70€ 40€ 40€ 40€ 40€ 40€

Let us look at Tables 7, where only 11 matches are accomplished, i.e.,
all columns to right starting at from the match [19,5] till [15,2] visualize
the kernel of our single game. Table 7 marks those participants who de-
cided to date, while all the rest but on this particular list are not yet taken
their decisions or have been, perhaps, unlucky to find a partner.

Table 8 will note the payoffs, that is, the imputation caused by the ker-
nel coalition, i.e., the size of payoffs as incentives, or compensation for
non-compliance, to all 40 participants — 20 women and 20 men. Payoffs
of 40€ and 70€ correspond to the kernel makes up the result in cash. The
result is the total amount of 2000€ in the form of participation fees minus
payoffs, what makes 2260€ not in favor of the cashier.

We can continue creating the sequence with macros using mAtch
[ctr] + a], pointing to the cell in the top box: pink on the left (or yellow on
the right), until all participants have been matched. Please note this, start-
ing with pair No.12; we can no longer use the macros of our heuristic
algorithm. There are no couples with increasing duplets — 1-11 represents
the maximum point — a kernel # of the game.

In the Tables 9-10 below, the Matching Sequence consists of length
20, k£ =120 ; we labeled couple [i,j] by O using notation O, . To-

gether with levels of mutual Duplets in row 3, the rows 1,2 correspond to

the sequence <0Lk>. Compensations and incentives for dating are not

payable at all, and only the costs of goodies (each worth 10€) occupy rows
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4,5. Notice that, in accordance with single N-peakedness, the lowest levels
of risk first increase starting at 3, and after reaching 6, starting at couple
No.12, they start declining down to 0. For couple No.3, Duplets jump
from 4 to 5, while, for couple No.4, they increase from 5 to 6.

Table 9

Match No. 1 2 3 4 5 6 7 8 9 10
Women 19 10 1 6 4 11 17 9 5 2
Men 5 9 10 17 15 6 13 11 7 14
Duplets 3 3 4 5 6 6 6 6 6 6

W-payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€
M-payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€

Table 10

Match No. 11 12 13 14 15 16 17 18 19 20
Women 15 18 20 7 13 16 8 14 3 12
Men 2 1 4 12 20 18 19 3 16 8
Duplets 6 5 5 4 0 3 3 3 2 0

W-payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€
M-payoffs 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€ 10€

The list of macros used.

e CaseS. Ctrl+s, Trying to move by improvement along the block
CH(X) X CV(X) of cells O = [1, _]] by"<" operator in or-
der to find a new match at the strictly higher level. °

e CaseD. Ctrl+d, Trying to move while gliding along the block

CH(X) X CV(X) of cells O = [I,J] by "<=" operator in
order to find a new match at the same or higher level.
e CaseF. Ctrl+f, Trying to move while gliding along the block

CH(X) X CV(X) of cells [1, _]] by "<=" operator in order
to find a new match at the same or higher level.

e CaseG. Ctrl+g, Trying to move while gliding along the block
CH(X) X CV(X) of cells O = [1, _]] by "<=" operator in
order to find a new match at the same or higher level.

e CaseH. Cul+h, Trying to move while gliding along the block

CH(X) X CV(X) of cells O = [1, J] by "<=" operator in

order to find a new match at the same or higher level.

6 CH — cells in horizontal direction, CV — cells in vertical direction
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FUNCTIONAL TEST

The spreadsheet users are invited first to perform a functional test, in
order to become familiar with the effects of ctrl-keys attached to different
macros. Calculations in Excel can be performed in two modes, automatic
and manual. However, it is advisable to choose properties and set the
calculus in the manual mode, as this significantly speeds up the perform-
ance of our macros. The steps one can take if something goes wrong are
listed below.

e Originate. [Ctrl+o], Perform the macro by Ctrl+o, and then use Ctrl+b. This macro
restores the original status of the game saved by the BacKup, i.e., saved by
ctrl-k.

e RandM. [Ctrl+m], Perform the macro by Ctrl+m. It randomly rearranges columns of
Men’s priority M table by random (permutations).
Notice the effect upon men’s priority M.

e RandW. [Ctrl+w], Perform the macro by Ctrl+w. It randomly rearranges rows of
Women’s priority table W by random (permutations). Notice the effect
upon women’s priority table W.

* Proceed. [Ctrl+e], While procEeding with macros RandM and RandW, the macro is
using random permutations for men and women until it generates the prior-
ity tables M and W with minimum mutual risk equal to 4.

e Dummy. [Ctrl+u], This macro is removing from the list of participants those guests
that do not wish to play the game, or who decide not to pursue the dating.
We call them dUmmy players. Activate the row-1, or column-A by pointing
at man my, or woman wy and then perform Ctrl+u excluding the chosen
guests from playing the game.

e MCouple. [Ctrl+a], Try to mAtch [ctrl+a] a couple by pointing at the cell in the upper
block: pink color to the left (or yellow to the right) in the row w; (corre-
sponding to a woman) and the column m; (corresponding to a man).

e TrackR. [Ctrl+r], Visualizes Tracking forwaRd. Memorizes the status of Women-W
and Men-M priorities to be restored by TrackB macro. The effect of this
macro is invisible. It can be used whenever it is appropriate to save the ac-
tive status of all tables and all the arrays necessary to restore the status by
TrackB macro. Only when the search for quasi-core coalitions is performed
manually, the effect of macro is visible.

e TrackB. [Ctrl+b] Visualizes Tracking Back. Restores the status of Women-W
and Men-M priorities memorized by TrackR macro.

o Happiness [Ctrl+p], The macro calculates an index of haPpiness using the initial
Duplets table.

e Coalition [Ctrl+n], The macro rebuilds the matching coalitioN following the coalition
matching list previously transferred into area "AV24:A025".

e Chernoff [Ctrl+q], Useful when indicating by red font in Excel the status of the

Choice Operator C(X) = {arg mln} Using this macro will help to

confirm the validity of the Succession Operator. To clear the status, use
Ctrl+l.
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ADDENDUM

If one wants to understand the essence of the proposition below in a
simpler way, then one can outline the situation in the following passage.
The situation is such that the game is viewed as a dynamic transformation
of the preferences of the participants in the formation of our coalitions

X, » step by step from k to k+1, when a couple of participants leave
the game, shortening the coalitions Xk ) Xk .1 in the chain, thereby

depriving the players in X without partners from adhering to their prefer-

ences. However, in the case when the best preferences of some pairs of the
participants in Xk .1 Who have not yet been brought together remain the

same as in Xk , then in the new situation Xk . these latent pairs of par-

ticipants are still present in their previous role of the best choice in the

new situation.
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One circumstance must be kept in mind here. On the one hand, we are
dealing with matchings, but on the other hand, the considered matchings
are also a certain set of cells or blocks X embedded into N X M tables
in our coalition game, and therefore it is quite appropriate here to consider
matchings from the point of view of set theory, where the usual operations

of inclusion, intersection of table cells as elements, etc. are allowed.

As the coalition-formation chain Xk shrinks into Xk D Xk "
blocks the proposition below can be explained by latent least-risk function
F(X,)= min 1(0,X, ) generating choices C(X, ) in the form

ceXy
of a list <Ot =arg mincexk TC(G,Xk )> of couples 0L € X, .

The list C(Xk) represents matchings O =<OL0,OLI,...,OLk> that

couples OL decide to date. A couple O EXk ,; how in the role of
Q,,; = O will try to realize their latent relations. In the new situation all

participants in X must reconsider to whom they prefer to date, as

k+1°

their favored G, while the chain Xk is under formation, due to the fact

that all participants in O no longer will be available.

Based on the remarks above, the following can be stated.
Proposition 5. For function F(X) = mincex m(o, X) the state-

ment C(X, ) 2 C(X, )N X,,, is true if F(X,) <F(X,,,). The
set C(X, )NX,,, = J in case when F(X,) <F(X,,,). It revises

”

rational choice succession postulate: ..., which is the same as Postulate 4
of Chernoff, 1954, or condition o of Sen, 1971, or the axiom C2 of Arrow-
Uzawa, Arrow 1959, ” cf. Malishevski 1981. 7

The proof may be explained in the basic terms. The idea is to apply a
mathematical induction scheme. We claim that, starting from the initial
state P of the game, where nobody has been matched yet, it is possible to

In the language of the barmaid, this statement reads: "Old love does not rust."
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reach an arbitrary coalition X not yet matched participants by sequence

— — —
<oc0,a1,...,ock>, X, =9, X,=X,-a, X=X_,,1k.
The sequence will improve payoffs X, on previous steps <Ot1 . Otk_1>

in accordance with non-decreasing values F(X, ).

First, the statement of the proposition can be verified by observation of
all preference tables and all coalitions X that emerged from all n X M
tables, when both N and M are small integers. For higher N and M

values, it is NP-hard problem. Second, consider an arbitrary coalition X

of the N X M -game. While the coalition X = DX includes all matched

couples, in order to arrange a new couple, all participants in X are still
unmatched. We can thus always find a couple O, € X such that
F(®)<F& - OLO) . Consider (n - 1)>< (m - 1) -game, which can

be arranged from N X M -game by declaring the partners of the couple
O, as dummy players 0¢%.

By the induction scheme, there exists a sequence of pairs

<OL1 ,...,ock> with required quality of improving the payoffs X starting
from X1 =9 — Q. Restoring the dummy couple Q. to the role of

players in the N X M -game, we can, in particular, ensure the required

quality of the sequence <OL0,OL1 ,...,Otk>. The statement of the proposi-

tion is obviously the corollary of the claim above. However, it is clear
that, ensured by its logic, the claim is a more general statement than the
statement of the proposition. The first part of the statement is self-
explanatory. The coalition JV stops being a proper subset among kernels
{5(} as soon as the payoff function F(N) allows improving the out-
come # . The second part of the proposition is the same statement,
worded differently. Nonetheless, we consider it necessary to provide com-
plete proofs of all statements, since proofs are presented here only in a

concise form.
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The Left- and Right-Wing
Political Power Design:
The Dilemma of Welfare Policy
with Low-Income Relief

Abstract: Findings from this experiment contributed novel insights into the
theoretical field of welfare policy, addressing fundamental questions about
wealth redistribution rules and norms. The expenses of the redistribution
pertaining to basic goods, as well as those associated with public (non-
basic) but vital goods, are separately estimated by transforming the ex-
penses into functions of the poverty line. The findings reveal that, along
the poverty line that treats all citizens equally, the politicians representing
opposing ideologies decide how the redistribution of basic and vital goods
should be financed. Politicians should come to an agreement, subject to an
approval of their decisions by voters-citizens. However, in the absence of
such approval, politicians have no alternative but to continue the negotia-
tions. Based on this premise, we concluded that political decisions with an
elevated poverty line, as a parameter, would give rise to inverse working
incentives of benefits claimants. This may result in unbalanced books, due
to the expenditure on the delivery of basic and non-basic goods to their
respective destinations. By keeping the books in balance, we postulate that
% of median income 1, which is recognized as Fuchs point, it may be used
in the form of poverty line as 2 p for just and fair wealth redistribution in
resolving the ideological controversies between left- and right-wing politi-
cians. As a result of modeling the rules and norms of compensation pay-
ments, which have been known since 1962 as the Negative Friedman In-
come Tax (NIT), the wealth redistribution exclusion rule by income level
% 1, has reduced the Gini coefficient.

Keywords: bargaining; welfare policy; public goods; taxation; voting
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1. INTRODUCTION

Political competition related to wealth redistribution often fosters de-
bate regarding what the state "should" or "should not" deliver. Wider and
more substantial welfare benefits and relief payments could be problem-
atic, as they might encourage certain behaviors, such as low savings or
productivity when economic security is guaranteed. Similarly, they may
lead to high wage demands, as an incentive to remain in employment,
given that unemployment benefits are substantial and are compensated by
high tax rates T . In addition, high taxes are an incentive for entering a
black labor market that avoids paying taxes, or moonlighting, i.e., holding
multiple jobs. Finally, high benefits typically undermine social and geo-
graphical mobility. Evidence also shows that, under these conditions, a
few would opt for working just because financially they would not be
tempting, while many will be wondering why studying is worth the efforts
and sacrifices. In sum, excessive benefits might result in human capital not
developing quickly and well enough, e.g., "...implicit support to those
waiting on benefits looking for the ‘right type of job’ or a job that pays
well enough," as noted by Oakley and Saunders (2011).

As the welfare policy of the state presupposes the existence of both a
functioning market economy and a democratic political system, its hall-
mark is that the distribution of public goods and services is governmental
responsibility and obligation. The term public in this context refers solely
to wealth redistribution. In particular, an obligation to ensure that those on
low incomes are awarded appropriate levels of social benefits and relief
payments results in a more egalitarian allocation of wealth than can be
provided by the free market. In this scenario, politicians face a dilemma of
whether such allocation is just and fair to all citizens. The solution de-
pends on many factors, including the characteristics and views of the main
benefactors of wealth redistribution. In the absence of a universal defini-
tion, in this work, we use the term "wealth" in the scholarly sense, deliv-
ered through tax channels and distributed by the state. Under this premise,
the average taxable income per capita represents the wealth W .

The primary goal of this experiment is to demonstrate fallacy of argu-
ments advocating in favor of higher benefits and relief payments. Beyond
the negative perception of higher benefits, it is also reasonable to believe
that distribution of citizens’ incomes o is, perhaps, the only target for
control and an exclusive source of information for assessing the amount of
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benefits available. Our goal is to highlight a hidden side of public interests
to welfare issues (Flora, ed., 1987), its geographical, historical justification
and broad experimental support in analyzing credible income distributions
(Huber et al, 2008). Since we approach welfare redistribution from a more
theoretical perspective, we need to have a different emphasis compared to
these issues. However, apart from this key aspect, the solution of the wel-
fare policy dilemma, based on numerical simulations, yields the benefits to
the needy that are sufficiently close to be considered a realistic match (see
Table 1), as noted by Bowman in 1973, to "what amounts to a moving
poverty line at Y of median income.” In support of this approach, it is
worth noting that Rawls (1971, 2005) pronounced the Fuchs (1965) point
as an alternative to the measurement of poverty with no reference to social
position. The motive of the experiment presented here is thus to provide
— while acknowledging that a few examples clearly cannot make a trend
— a theoretical confirmation for the claim recognizing the poverty line,
defined as 21 of the median income |, as a realistic political consensus.

Table 1. Numerical experiment behind the welfare policy dilemma
of income redistribution; sa—social Agencies, PA—Public Agencies

Obtained by means of fuconte Policy

: Income Policy of
o N Y X of equal, SA propesal  Proposal y _ PAproposal bt
distribution density (Fig. 3i; spmneiric  accepted J— ll;ll?;:e.::]a';u accepted i:;?:;c
personal allovwance ¢ = 4.03: powersf g py wenlilt (0 income by 84 Dreakdown
8 =61.9: R =-0.11;m= 207  negetiaturs s
subsidy fimetion s(& = 0.83&. 7 jT =5 A geme Pof A qus50% &
Income floor- £ = 65.94 3403 38.40 45,32 42.81 6.64

welfare policy

Poverty rale: percentageofagents 3y 910 pofre,  [304% 1730 1577 0.44%
below the income fleor N : ) ) . :
Negotiating power 2 ) 0.50 0.14 0.17 0.24 022 Not

of social agencies defined
Guaranteed e N ~ " - a7
social minimumn ll((:) AT ST 38 2863 3355 Hi o
Account for public, FY— » s
aoods expenses g(&) 16.15 3015 28.72 26.18 27.15 —19.75
Account for subsi- _ ~ .

dies transfers B(&) 17.53 298 417 6.57 562 0.02

Account for pnblic

spending, the size of Z(g ) 33.68 3314 32.89 3275 3277 -19.73
the welfare-pie

Average taxable

income—the W(f) 113,52 116.38 11573 114.84 1504 121.59
wealth amount

gf;f:l‘;;x e (&) 2967%  2847%  28.47%  WSW%  2846%  —16.22%
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In our scheme, citizens earning low incomes (below a certain level, in

this case the poverty line (i ) receive relief payments, whereas those with

higher incomes (above the aforementioned level) do not. In this regard, it
should be noted that, in 1962, Milton Friedman (2002) proposed a similar
scheme of wealth redistribution, combined with flat tax, called the nega-
tive income tax — the NIT. According to the rules and norms of the NIT,
low-income earners receive a relief payment proportional to the difference
between their earnings and the predetermined NIT poverty line. Most
importantly, the total — the sum of the key income and the NIT relief
payment — is not subject to taxation. We argue that levying taxes in com-
pliance with the tax rules and norms in force for all, inclusive of low-
income citizens, would have the same result. Although the total income of
low-income citizens is now taxable, they would, even so, still be eligible
for the relief in line with NIT, similar to the widely adopted low-income
— LI relief. The known drawback of such an approach, and the relief, in
particular, stems from the issue of social abuse by those earning low in-
come. In order to mitigate these undesirable effects, in this work, we in-
troduce the so-called hazard of working incentives, referred to as the
h-effect.

T = & & & o0 T = & & & 008 T T & 0 0 160
0007

L 0.006

0.00s

= (L0043

0002

= (L0017

7_ 1 2 o gpgpypl 1 1 o ppqpal 1 Q0000

1] 1o 100 1000

Figure 1. At the sample P(G , 0+h- 1/2},t) of the income density distribution,

3
Lt solves the equation J-o P(c,0+h-§)do =05 for §, n=82.30.

Appendix Al contains the analytical form for the sample expression in Figure 1.
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We thus present a theoretical model of visionary politicians, whereby
we consider a masquerade of life or a scenario of realistic utopia. In this
scenario, two actors/politicians, akin to two political coalitions, are playing
a bargaining game, each attempting to implement his/her own wealth re-
distribution policy. Left-wing politicians tend to oppose the disproportion
in private consumption, unjust wealth redistribution, profit motive, and
private property as the main sources of socioeconomic evil. Right-wing
politicians, owing to a different ideology, tend to focus on regulating busi-
ness and financial risks, thus encouraging the government’s use of its
powers in combating corruption, criminal violence and commercial fraud.
While left-wing politicians prefer immediate and equitable sharing of the
available stock of goods and services, both sides are aware of the citizens’
sacrifices — in terms of direct contribution of a part of their income to the
funding of welfare benefits and public goods. We posit that applying the
rules and norms of wealth redistribution pertaining to the reliance on the
elevated relief would increase the quantity of the relief payments to be
delivered. Consequently, citizens will have to meet a greater tax burden.
This outcome is not ideal, given that lower tax burden and greater private
consumption always lie at the heart of citizens’ economic and political
aspirations. These private objectives prompt majority of voters, who hold
power in electing political parties, to oppose increasing the tax burden. As
a result, they are instrumental in the competition between the left- and
right-wing politicians and their views on tax policies.

Political consensus is rarely possible in reality. Consequently, we aim
to design an experiment capable of predicting an appropriate political
division between interest groups for desirable implementation of the wel-
fare policy. This approach does not require analysis of the voting system
or a scheme by which voters-citizens express their arguments. In adopting
this approach, we analyze political power indicators as replications
(OL,1 - OL), 0 <o <1, in line with Kalai’s bargaining game (1977) in
which division of $1 is attempted. In this scenario, among other assump-
tions, it is posited that a power QU is appropriate to adopt the ability to
negotiate, or be in the position to request financial support to a greater
extent than the opposite side. Similar interpretation of players’ power
dynamic may be found in the recent work of Mullat (2014). In short, we
adopted the view of Roberts who noted in 1977, “The point is not whether
choices in the public domain are made through a voting mechanism but
whether choice procedures mirror some voting mechanism.”
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These brief remarks should be sufficient to elucidate some goals of the
state, allowing us to conclude that welfare policy in a representative de-
mocracy always faces ideological controversies of politicians and citizens.
A further aim of this experiment is to shed light on how a political consen-
sus is reached and whether it reflects a criterion of tax policy that results in
the least burden to the citizens. To address this issue, as already stated, we
focus our analysis on two visionary politicians. For the purpose of the
experiment, we assume that these politicians are granted a political man-
date to initiate proposals ensuring that the relief payments are allocated to
citizens who are in need. We thus assume that, in balancing the books
accounting for finance of relief payments and for vital public goods and
services, expenses are constrained. This premise ensures that the citizens
control the negotiations, forcing the politicians to act within the imposed
budget constraints in order to pledge safe funding for their proposals.
While trying to reduce the after-tax income inequality, the politicians in
their respective roles of left- and right-wing actors are committed to ensur-
ing that the wealth is redistributed fairly.

At this point, it is essential to state the assumptions/limitations under-
pinning the analysis of a hypothetical behavior of those occupying three
distinct roles in the negotiations — those of left- and right-wing politicians
and voters-citizens. Throughout this work, we emphasize the incompara-
bility between the aims of the left-wing politicians struggling to ensure
adequate access to basic goods and the right-wing politicians advocating
for availability of non-primary but vital goods and services. In the analy-
sis, we implicitly assume that politicians do not have adequate knowledge
of citizens’ needs in a more primitive environment. Hence, they can only
work with the monetary payoff specification. Given this limitation, politi-
cians are unaware that the provision of equivalently valued public services
is not a perfect substitute. For example, we assume that politicians do not
have any information on how household income is assembled and used to
buy private health insurance or services of nursing housing, etc. Thus, we
do not merit the debate on what is right or wrong in the economic or po-
litical environment involving left- and right-wing politicians and voters-
citizens. In short, our work does not extend to the democratic context of
voters’ prototypes/characteristics. While acknowledging the significance
of prototypes, in this work, we view voters’ behavior as a binary process,
allowing support for either left- or right wing politicians. This, however,

introduces a risk q > 0 of premature political breakdown of negotiations.
In addition, we refer to the tax revenue in accord with voters’ preferences
as the "wealth-pie" T- W, which is divided into two parts (X, y),
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whereby X denotes various social benefits or relief payments, and Yy

pertains to public goods, so that X +y = 1. We posit that any further
enrichment of voters’ characteristics would disrupt the delicate balance

between the motives of our experiment and the theoretical framework,
which is already technically sophisticated.

Roadmap. Because of the narrative complexity, it is possible that the
reader would find proceeding with the content of the paper in chronologi-
cal order difficult. Thus, to mitigate this potential issue, Section 3 presents
the most relevant problems, in particular, the pre-equity condition of po-
litical breakdown of the negotiations. In our view, it is prudent to master
the material presented in Section 3.1 before moving to Section 4. Simi-
larly, Section 3.2 aims to assist with understanding of the content of Sec-
tion 5, while Section 3.4 supports Section 6. On the other hand, those not
wishing to delve deeply into the technical aspects of this work could sim-
ply move onto Section 7. Nonetheless, Section 3.3 provides a scheme
pertaining to the pre-equity of breakdown of the negotiations and, in our
view, does not require further clarification.

2. PRELIMINARIES

Before delving deeper into our work, we specify the category of the
game payoffs functions U(E,X), g(&,y) and taxes T(G,X) required

for the model validity. As noted above, Section 3 provides background
information that assists in understanding material given in Section 4-6. In
Section 4, we disclose fiscally safe welfare policy in amalgamation with
imposed budget constraints for financing relief payments. Referred to as
volatility constraint, the amalgamation dynamically restricts the h-effect
— an inverse working incentives phenomenon of low-income citizens. In
Section 5, citizens’ ambivalence and multifaceted welfare policy percep-
tions are discussed from the perspective of the alternating-offers game.
The policy on poverty associates the left- and right-wing politicians with

payoffs functions U(&,X) and g(&,y). Under these conditions, it is
possible to obtain an analytical solution to the game with incomes O
density distribution P(G,&). Indeed, as will be shown, the calculus of
indicators (OL,'] - OL) complies with the political power design given in
Section 6. The results are discussed in Section 7, followed by concluding
remarks, presented in Section 8.
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In the current experiment, an income G equal to the poverty line E_,,

§e [@ ,3;2] parameterizes all arguments and functions. In this vein, we
adopt quantitative measurement, whereby we utilize a scale quantum as an

average income with the income G density P(G, &) distribution,

0<o<o0. The average establishes the ratio scale. Hence, we suggest
that u(&,Xx) = (1 —1(&, X)- (& - ¢)+ d (the after-tax residue of in-
come O = E_, ) signifies the 1* actor’s social position at the specified scale,

i.e., the left-wing political aims. We apply the residue formula based on
Malcomson’s (1986) model, with a personal allowance parameter ¢,

0 < ¢ <&, determined by the tax bracket [(I), OO). The 2™ actor’s aim —

the right-wing political objective g(&,y) — is ensuring sufficient
amount of the non-basic goods per capita. Here, we refer to the citizen
G =& as marginal citizen. While, for the minority of voters, the relief is

more attractive than lower taxes, the 3" actor is the implicit partaker em-
bodying the majority of voters whose preference is minimizing tax obliga-

tion ’E(G s X). This is a typical public finance dilemma of efficient divi-
sion (X, y) of the tax-revenue into shares X +y =1. In this work, the
dilemma is represented by the alternating-offers bargaining game F(q)
with premature risk ¢, 0 < q <<1, of political breakdown. When

q— 0, the solution converges into Nash axiomatic approach (1950).

The relationship between the one that suggests the alternating-offers bar-
gaining and axiomatic solution is well known from the work of Osborn
and Rubinstein (1990). As this game is thoroughly described by Osborn
and Rubinstein, for brevity, no further elaboration is offered here.

When negotiating on finance issues, under the guise of a "wealth-pie
workshop," politicians will allegedly try to divide the wealth-pie in a ra-

tional and efficient manner. As a result, the tax T(0, X) will increase as

will the wealth-pie, when increasing the poverty line (2 . Logically, a de-

crease in taxes would yield the reverse effect. While taxes vary, the divi-
sion will depend upon the characteristics and expectations of the bargain-

ers involved. Indeed, the left- and right-wing political aims W(&, X) per-
taining to basic goods, as well as the objective g(&,y) related to the
non-basic goods, are controversial. We illustrate this tax controversy by
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elevated single-peaked frontier of u(?’;,x), the % -share/slice in Fig-
ure 2, which corresponds to the lower, but progressively increasing, con-
cave frontier of g(&, V), the ¥ -share/slice in Figure 3, as well as for
another division of the pie, into shares/slices (X =%,y= %) We be-
lieve, that, while (X =%,y = %) highlights the left-wing political
aspirations, the share/slice (% ,%) elucidates those of the right-wing

political objective. This premise appears to be crucial for understanding
our primary goal in resolving the welfare policy dilemma.

/5 Slice

after tax residue
of povery line

1/8 Slice

Figure 2. Left-wing politicians” emphases.

T T T

g non-hasic goods
H per capita

T
. tax burden "

L T/% Slice d
35 Slice-

Figure 3. Right-wing politicians’ emphases.
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In support of the aforementioned assumption, the political payoffs in
general, as shown in Figure 2 and Figure 3, emerge within a two-man
economy endowed by citizens’ income abilities marginalized at the level
of poverty line. According to Black (1948), single peakedness plays the
key role in collective decision making when the decision is reached by
voting. The payoffs for the two actors, shaped in this way, are non-
conforming/incomparable, and are thus impossible to match through a
monotone transformation, as established by Narens and Luce (1983). The
single peakedness is nonetheless in line with Malcomson’s tax residue
u(&,X), when the terms of contract commit the actors to shares (X, y).

This, however, requires that the expenses covered by flat taxes will bal-
ance the books, while accounting for relief payments, as shown in Fig-
ure 2. Clearly, increasing the poverty line requires an excessive increase in
taxes, which in turn provides a greater amount of non-basic goods

g(ci, y), as shown in Figure 3. An opposite scenario of increasing the
available amount of non-basic goods g(a, y) equally requires an exces-

sive tax increase, which may lead to the possibility of increasing poverty
line.

Following the traditional procedure for division of the wealth-pie in the
alternating-offers game, when the pie is desirable at all the times, the poli-

ticians (bargainers) — changing roles — commit to shares (X, y),

X +y =1. According to the shares (X, y), the valid rules and norms of
wealth redistribution, which guarantee a desirable level of relief payments,
require establishing a poverty line & parameter. However, an efficient

division of the wealth-pie — as a result of single-peaked N-curves de-
picted in Figure 2 — no longer represents any traditional bargaining pro-
cedure. This is the case as, instead of division, the procedure can be reset-
tled. Indeed, we can proceed at distinct levels of one parameter — within

the poverty line interval [?;1 R 222] — reflecting the scope of negotiations.

In fact, Cardona and Ponsatti (2007), also noted that "the bargaining prob-
lem is not radically different from negotiations to split a private surplus,"
when all the parties in the bargaining process have the same, conforming
expectations. This argument applies even when the expectations of the
first player are principally non-conforming, i.e., single-peaked, rather than
excessively concave in regard to the second player. In our experiment, the
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scope of negotiations on the "contract curve" of non-conforming expecta-
tions allows for omitting the "Pareto efficiency" and replacing the axiom
by "well defined bargaining problem," as posited by Roth (1977). The

well-defined problem (X, y) of the wealth-pie division can now be solved
(resettled) inside the poverty line interval [&1 R 9’52 ]

Settings
In accordance with Friedman’s NIT system, in this work, we assume

that, for the unfair subsistence of the less fortunate citizen G < &, the

relief amount T - (& e ), 0<r<1, serves as a monetary compensa-

tion designated for purchasing an eligible "poverty basket" of food, cloth-
ing, shelter, fuel, etc. According to Rawls, "primary goods are things
which it is supposed a rational man wants whatever he wants." In defining

the parameter & in this manner, it becomes contingent on financing the
relief. This can be achieved by assuming that elevating the poverty line f;
requires an increased marginal tax rate T (G , X) . In increasing the wealth-
pie through tax channels, we assume an acceleration ‘Cg ((5 , X) >0 of
the tax rate T(C,X); ’E'U (0,x) > 0 inclusive all of those citizens who
indicate the marginal income & denoted by & =& .

As noted previously, the marginal citizen G = g must bear the cost of
the left-wing political aims using tax residue u(&,,x), as well as the
right-wing political objective g({",, X) , referred to as "public or non-basic
goods." With the proviso that politicians commit to the shares (X, y), we
conclude that U(&,X) is a single N-peaked curve, due to the tax rate
T ((Y;, X) increase upon & . While objective g(&, X) of right-wing politi-
cians decreases with an increase in X , the reverse is true with elevating &
due to T(E,X) acceleration. Here, payoffs <u,g> are considered ana-
Iytic functions U(&,Xx), g(&,X). Given the interval [&1 <g< gz],
referred to as the scope of negotiations, U(E,X) reflects single
M-peakedness — ug <0 wupon & increase, u;(é';1 ,X)>0,

ué(ﬁ,z, X) <0. Following an increase in X, the payoffs u(i, X) be-
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" ! . .
come convex, U, > 0 , U, > 0 , whereas an increase in é:j, would pro-

duce concave payoffs g(&,X), with gé >0, gg > 0. It can be shown
that, with increasing X, payoffs g always decrease; in other words, in

. . " . " .
both circumstances, either g > 0 is convex, or g < 0 is concave.

3. RELEVANT TRENDS AND ISSUES

In the extant literature (Espring-Andersen, 1990; Iversen, 2005;
Swank, 2002) the welfare, economic, and political issues are usually ad-
dressed in reference to specific questions. In our view, a much deeper
analysis is achieved when addressing them more generally, adopting well-
established knowledge discovery methodologies. In particular, our wealth-
pie workshop concept, jointly adopting four issues — (a) public finance,
(b) alternating-offers game, (c) negotiations’ collapse analysis, and (d)
political power design — leads to a more informative point of departure.

To explain the root cause of the results in order to bring the welfare,
economic, and political content to the surface in a rigorous analytical
form, and to find bilaterally acceptable solutions to the game, we will visit
all of the classrooms in our workshop. Our goal is to lay the foundation for
a more constructive welfare policy comprehending the meaning of follow-
ing four narratives:

During the delivery to its final destinations, provided

that the books accounting for the relief payments fi-
Fiscal policy nance have been balanced a priori, the wealth-pie must

remain balanced throughout and in spite of volatility in

the economy;

The left- and right-wing political bargaining on how to
Negotiations share the wealth-pie complies with the rules and norms

of the alternating-offers bargaining game;

Political breakdown, or threat point, directly affects the
Pre-equity of  bargaining solution. Pre-equity guarantees equal condi-
breakdown tions for players before the bargaining game com-

mences;

Bringing a motion to a vote is necessary to address the
Political power majority opposition to high taxes and excessive public
design spending. Whether it is viewed as positive or negative,

or whether it ought to be acknowledged or not, rejected

or accepted, this motion must be politically designed in

advance.
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In our wealth-pie workshop, these four narratives can be understood as
obligations/constraints to be met by welfare policy rules and norms, akin
to "Rational man” deliberation of Rubinstein (1998). This interpretation
allows us to provide a scenario under which the narratives are embedded
into the welfare policy of the state. In addition, evaluating the welfare
policy from this perspective reveals that the analysis can be subject to and
performed by computer simulations, as shown in Appendix A2. Our initia-
tive could also serve to unify the theoretical structure of economic analysis
of public spending. It can be used to evaluate the political power design of
left- and right-wing politicians, or to launch systematic inquiry into im-
pacts of governmental decisions and actions on wealth redistribution.

As the state has the duty to help the less fortunate, our experiment ap-
proaches wealth redistribution in a two-fold manner. First, it addresses the
provision of basic necessities or goods, such as shelter and heating, clean
and fresh water, nutrition, etc., before focusing on non-basic goods, in-
cluding national defense, public safety and order, roads and highway sys-
tems, and so on. Welfare policy issues, according to Boix (1998),
“...There is wide agreement in the literature that governments controlled
by conservative or social democrats parties have distinct partisan eco-
nomic objectives that they would prefer to pursue in the absence of any
external constrains.” Meeting this challenge, based on income G density

distribution P(G R E_,), we identify an effective approach to the division
(X° , yo) into shares X~ +y° =1 pertaining to basic X and non-basic

goods yo. Fundamentally, the efficient division (XO s yo) of the wealth-

pie aims at just and fair delivery of all aforementioned goods, traditionally
perceived as public goods. In our experiment, we refer to public goods as
non-basic but vital goods, whereas basic goods are deemed fundamental.
Incidentally, during the delivery of basic and non-basic goods to their end
destinations, we treat both as public goods.

We assume that the left-wing politicians have the necessary political
influence — when an offer is made, irrespective of its legitimacy — to
control the redistribution of basic goods independently. Given the single-
peaked aspirations of the left-wing, in contrast to the objective of their
right-wing counterparts, the influence the left-wing politicians enjoy, is
supposed to be adequate enough to reach the peak of these expectations. In
particular, we believe that, beyond some peak position, inefficient usage of
basic goods would lead to an excessive decline in the quality of welfare
services, as well as cause deterioration in access to public goods for all
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citizens. In making these suppositions, we agree with Rawls’s statement,
about the precepts of perfect justice: "The sum of transfers and benefits
[...] from essential public goods should be arranged so as to enhance the
emphases of the least favored consistent with the required saving and the
maintenance of equal liberties."

An efficient usage of public resources implies that a consensus be-
tween left- and right-wing politicians might be reached. Despite some
views to the contrary (Rothstein, 1987), we posit that the bargaining aimed
at finding a just and fair division of basic vs. non-basic goods is an accept-
able path to the bargaining dynamics. Based on this premise, we can iden-
tify relevant connections in extant works on economic and political behav-
ior that analyze the sociological and political aims of ensuring adequate
welfare by using public finance. This is likely being the best starting point
for visiting our wealth-pie workshop.

3.1.  Fiscally safe welfare policies, to be continued in Section 4

Public finance focuses on the revenue side of tax policy. In particular,
it pertains to the budget formation, as noted by Formby and Medema
(1995), aiming to provide a guaranteed level of welfare to citizens en-
dowed by poor productivity. While the welfare policy is a separate issue, it
should be considered on the grounds of legal and moral rights of citizens.
Empirical evidence confirming that such policy is government’s legal
obligation can be found in pertinent literature. For example, as noted by
Saunders (1997), “...poverty line. The line was initially set (in 1966) equal
to the level of the minimum wage plus family benefits for one-earner cou-
ple with two children.” Similarly, a hypothesis consistent with moral
obligations can be found in the literature of economic politics
(Eichenberger, 1996; Feld, 2002).

In 1959, Musgrave examined two basic approaches to taxation — the
"benefit approach" and "ability-to-pay," which put taxation into efficiency
and equity context, respectively. In this work, we utilized the benefit ap-
proach in order to augment the existing standard of welfare policy,
whereby we allocate a guaranteed amount of income for minimum taxes.
We posit that a flat tax system — based on injecting optimal equity ac-
cording to the ability-to-pay principle of "proportional sacrifice" — en-
sures that taxes remain fairly levied.

Taxation is a principal funding source of social costs and benefits.
Thus, the first postulate in our welfare policy workshop (see above)
discloses an obvious paradigm in social policy. According to the ability-
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to-pay principle commonly adopted in public finance, in order to stabilize
the distortion of tax polices, the known terms of warranty must rely on
exogenous taxes enforced on the productivity of citizens. The concept,
proposed in 1996 by Berliant and Page Jr., is a variant of the classic public
finance and similar approaches, applicable when an agent characterized by
a specific level of productivity does not shift his/her labor supply after all
adjustments to the tax formula have been implemented. In other words,
under this paradigm, optimal taxation enforces optimal labor supply.

Yet another "treatment of policies," closely related to societal instabil-
ity, entails equity of pre- and post-tax positions of citizens. Such a view
demarcates between citizens and has attracted the attention of economists
and tax policy makers. In the view of Kesselman and Garfinkel (1978),
credit tax-scheme analysis opposes the income-tested program in the rich-
and-the-poor, also known as two-man economy. Poverty measurements
have also been addressed in the works of Sen (1976), Atkinson, (1987),
Ebert (2009), and Hunter (2002) et al. According to Tarp (2002) et al:
"The poverty line acts as a threshold with households falling below the
poverty line considered poor and those above poverty line considered
nonpoor." Garcia-Pefialosa (2008) investigated wealth redistribution as a
form of social insurance in relation to economic growth. On the other
hand, Stewart et al (2009) attempted to reduce horizontal inequalities,
proposing “a reallocation in the production, operation and consumption of
publicly funded services.”

In the attempt to assess and control the circulation of wealth through
tax channels, we argue that, unless fiscal stabilization is not a required
condition when justifying public spending, it will be difficult to explain
how the citizens eligible for relief gain access to the benefits and relief
payments. Thus, while we continue to rely on fiscal stabilization, in order
to highlight a particular type of the dynamics stability, we refer to welfare
policy as idempotent. For clarity, a choice operation (or decision) applied
multiple times is deemed idempotent if, beyond the initial application, it
yields the same result (Malishevski, 1998). Thus, based on this dynamic
definition, idempotent scheme allows the politicians to honor the pledges
made during the election campaign as, once the political decision is taken,
it eliminates the need for further stabilization. While visiting the work-
shop, the circulation of wealth is supposed to be dynamically stable, i.c., it
is idempotent.
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3.2.  Bargaining the Welfare State rules and norms,
to be continued in Section 5

Bargaining is the key element of economics and is at the core of poli-
tics. On the other hand, as pointed out by North (2005), “The interface
between economics and politics is still in a primitive state in our theories
but its development is essential if we are to implement policies consistent
with intentions.” More recently, Feldstein (2008) noted, “Unfortunately,
there is no reason to be pleased about the analysis in policy discussions of
the efficiency effects...of the welfare consequences of proposed tax
changes.” Similarly, in a review on “Handbook of New Institutional Eco-
nomics,” Richter (2006) stressed, “...that the sociological analysis...and
large institutional structures in economic life is still at an early
stage...game theory, and computer simulation could help to further de-
velop the new institutional approach...game theory might be a defendable
heuristic device of NIE.” Indeed, the left- and right-wing politicians, like
actors in the game, strive to implement their vision of the state welfare
institutions. This is succinctly explained by Ostrom (2005), who noted,
“These flimsy structures, however, are used by individuals to allocate
resource flows to participants according to rules that have been devised in
tough constitutional and collective-choice bargaining situations over
time.”

In order to achieve the aforementioned vision of collective choice, it is
appropriate to consider a scenario in which the actors/voters play the “bar-
gaining drama” of economic and political issues. Bargaining has been a
theme of a wide range of publications, including the work of Alvin E.
Roth (1985). Despite the simplification, the binary behavior of voters
remains at the root of the democratic transformation of public institutions.
In this regard, binary position fits particularly well into the bargaining
game with exogenous risk (], 0< qQ<< 1, of breakdown (Osborn and

Rubinstein). Actually, bargaining can be risky for all interested actors
because they may lose voters to the competition if their terms are not met.
Thus, it is essential to first clarify political power dynamics of both the
left-wing and the right-wing politicians. Henceforth, they are respectively
referred to as LWP, the 1* actor, benefiting from a power O, O<acx<l,

and RWP, the 2™ actor, benefiting from a power 1 — ot .

Numerous factors — such as economic growth, decline or stagnation,
demographic shift or pit, political change or change in scarcity of re-
sources, skills and education of the labor force, etc., — might create fiscal
imbalance in a desirable welfare policy due to the transfers of benefits and
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relief payments. As a result, the size of the wealth-pie might be too small
(i.e., not worth the effort required for its redistribution), or too large (in-
troducing mutual traps) to achieve a stabilized public spending mecha-
nism. In either case, the actors may decide not to share the pie at all. To
address this controversy, as previously underlined, we assume that politi-
cians participate in relevant public institutions. If the institutions cannot or
do not want to follow RWP’s policy of wealth redistribution, RWP — in
order to promote their own understanding — can be sufficiently legitimate
to deliver the wealth "properly." In doing so, RWP can enforce vital deci-
sions by several means, including resource mobilization, retaliation for
breaches and criminal fraud, recruiting political volunteers and managing
public service commissions, soliciting private contributions, etc. In other
words, as Kalai pointed out, RWP would rely on an "enthusiastic sup-
porter." On the other hand, as LWP face decay in political legitimacy for
perfect justice, they cannot fully control RWP’s actions and intentions
when their political interests in the final agreement are incomparable. In
these circumstances, RWP are aware that their abilities and access to in-
formation might necessitate agreeing with, or at least not resisting, LWP’s
privileges to make arrangements upon the size of the pie. Hence, from the
RWP’s critical point of view, whether acting politically in common inter-
est or not, it might be prudent to acknowledge LWP’s welfare activities.
This elucidates the asymmetric dynamics of political power division be-
tween the LWP and RWP.

Returning to the main points of asymmetric bargaining, we will illus-

trate an efficient solution (XD ,¥ ) by division of $1 aimed at maximizing
the product of actors’ payoffs above the disagreement point

d=(d,d,):

(XO ’yo): argmax ..« f(x, Y, a)=

=(u(x)-d,)" -(g(y)-d,)"™

Although game theory purists might find the solution clear, the ques-
tions asked by many often include: What are X, y, O, u(x), and
g(Y) ? What does the point <d1 ,d2> mean, and how is the arg max

formula used? The simple answer, as initially provided by Kalai as an
asymmetric variant of Nash problem, is as follows:



92 Chapter One

e X is the 1% actor’s share of $1, with O as the 1% actor’s
asymmetric power indicator, 0 <X <1, 0<a <1;
u(X) denotes the 1* actor’s payoffs of the 1% actor’s $1
share X ;
. y is the 2" actor’s share of $1, where 1 — at is the 2™ ac-

tor’s asymmetric power indicator, 0 <y <1;

g(y) denotes the 2" actor’s payoffs of the 2" actor’s $1
share y .

Based on the widely accepted nomenclature, we refer to
S = <u(x), g(y)> as to the utility or payoffs pair. Thus, the disagree-
ment/threat point d = <d1,d2> represents the payoffs the two actors
obtain if they cannot agree on how to share the wealth-pie. In the same
vein, d = <d1,d2> = <0, 0> represents the disagreement or breakdown
point, whereby the players collect nothing.

In the subsequent sections, we will provide an analytical solution ex-
ploiting payoffs in the form <u(§), g(E_,)> and taxes in the form T(§)
within the scope of negotiations [&1 R &,2] comprising the endpoints of the
interval [éﬂ,é]. According to the analytical solution, implicitly hiding
the variables X, Y, it follows that any negotiation of shares (X, y) can be

perceived as two sides of the same bargain’s portfolio, as the shares
(X, y) are accompanied by poverty lines f‘, € [&1 R Z‘,z ] While hiding the

variables X,y , X +y =1, we may respond to the question of whether
solution &" € [E.n , &2] is efficient in a traditional sense. Indeed, akin to

the above, political bargaining can now be expressed by poverty line E:,

maximizing the product of political payoffs above the threat point

d=(d, =u().d, =g(,)):
& =argmax.. . (& 0)=(u®-d,)" (g&)-d,)"™".
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On the other hand, unlike the traditional threat point d = (d1 , d2 ),
the public/vital goods amount d2 in the game — the d2 component of

the point d — might be negative. This will apply in our experiment of a
breakdown of negotiations, whereby funds need to be borrowed or ac-
quired through other means in order to balance the books and account for
the welfare expenses — a situation of "genuine negative taxes." It is im-
portant to note that, while this may seem counterintuitive to some readers,
in the theory of public finance, the use of genuine negative taxes is not
prohibited.

Finally, we conclude that, all these remarks notwithstanding, it is ir-
relevant whether the players are bargaining on shares (X, y) or trying to
agree on the poverty line level. This assertion highlights the main advan-
tage of hiding the variables X,y . In particular, it brings about a number
of different patterns of outcome interpretations in the game, such as link-
ing an outcome to the lowest tax rate, which is the most desirable sacrifice
of voters’ majority. In consideration of alternative approaches — which
describe outcomes of collective bargaining in the form of voting, or par-
taking in any voting scheme in the form of bargaining — the scope of
negotiations &1 ,f‘,z] brings the voting and bargaining schemes into the

same context, as both can be enriched by adopting this approach. Our
insight is forward-looking in the sense that it aims to identify an alterna-
tive-offers game solution, whereby both actors accept at once the propos-
als (moves) made by the other side. Our initiative could also serve to unify
the theoretical structure of economic analysis of productivity problem.
Indeed, when referring to Leibenstein’s work (1979), Altman (2006)
noticed:

Leibenstein (1979, p.493) argued that there are two
components to the productivity problem: one relates to the
determination of the size of the pie, while the second relates
to the division of the pie. Looked upon independently, all
agents can jointly gain by increasing the pie size..."the
situation need not be a zero-sum game. Tactics that deter-
mine pie division can affect the size of the pie. It is this latter
possibility that is especially significant.
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3.3.  Pre-equity of political breakdown

Beyond the asymmetric dynamics, the game inherits a premature dis-
agreement or breakdown point, similar to that discussed by Osborn and
Rubinstein:

We can interpret a breakdown as the result of the inter-
vention of a third party, which exploits the mutual gains. A
breakdown can be interpreted also as the event that a threat
made by one of the parties to halt the negotiations is actu-
ally realized. This possibility is especially relevant when a
bargainer is a team (e.g., government), the leaders of which
may find them unavoidably trapped by their own threats.

In our game, the asymmetric solution incorporates the left- and right-
wing political power indicators (OL,I - OL) into a breakdown policy. In
order to be addressed properly, the indicators cannot be given exoge-
nously. To overcome this obstacle, we introduce a policy of endogenously
extracted breakdown d = <d1 ,d2> into the game, based on a condition

referred to as the pre-equity of political breakdown.

Traditionally, in the alternating-offers game, the breakdown corre-
sponds to two standard pairs of payoffs {<1,0>, <0,1>}, or in the words of

Osborn and Rubinstein, "to the worst outcome.” In the left- and right-
political bargaining, due to the implicit pressure from the voters, as both
politicians aim to find — at least from their perspective — a just and fair
solution, there will always be a temptation for binary voters to defect to
the other side. This puts the negotiations at risk 0 < q<< I of a prema-

ture collapse. Even under the worst circumstances, in the event of collapse,
the quality and the size of the wealth-pie should be equal for both politi-
cians. This premise holds in these unfavorable circumstances, as the entire
pie will be decided upon by one of the politicians. Thus, when the prema-
ture collapse occurs, it is important to arrange the terms of contract in such
a way that neither politician can exploit or misuse these adverse circum-
stances to his/her own advantage. To meet this condition, when normaliz-
ing the standard breakdown under the description valid for the alternating-
offers game F(q) , we are working toward an endogenous form for equity

in accordance with political non-conforming expectations.
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As stated, the standard case of breakdown in the alternating-offers
game corresponds to two pairs {<1,0>, <0,1>} of payoffs. In this form, the

breakdown is generally found using ex-ante linear transformation, namely
the exogenous normalization of utilities. When the collapse is imminent,
the political breakdown exposes equity condition pertaining to the actual
event of breakdown. Unlike the standard case, once the most unfavorable
result occurs, the resulting collapse must include additional parameters —
the tax T and the wealth W . In order to equalize — endogenously nor-
malize — the breakdown, the politicians involved in negotiations can
make a priori arrangements, or sign binding agreements upon these two
parameters, i.e., T and W . Without availability or warranty of such a
pre-equity, an endogenous normalization is unrealistic. In the view of the
voters’ electoral maneuvering (discussed in the next subsection), even if
the pre-equity normalization is not always achievable, it is more construc-
tive to determine the breakdown according to some rational context.

Before proceeding further with a detailed assessment of the aforemen-
tioned definition, we recall the concept of wealth amount W , redistrib-
uted by the state as the average taxable income per capita, scholarly de-
fined as "prosperity or a commodity." Next, according to the conditions

characterizing the collapsed environment, at the start of the negotiations,
the draft of a contract includes both taxes T and — in line with our no-

menclature — the wealth amount W . The product T(§)- W () identi-
fies the size Z of the wealth-pie within an interval [51,52] within the
scope of negotiations, thus establishing the boundary for the two politi-
cians. The lower limit &1 denotes the initial proposal, which is the most
attractive for RWP, while being the most unattractive for LWP. In the
same but inverse order U, = u(iz) can be paired with g, = g(éz)-
Having set these limits, we can proceed with examining how the break-
down {<u1 e >,<u2 g, >} might be conditionally, albeit endogenously,
encoded into the game.

Indeed, we now contribute to implementing our wealth definition of
how the breakdown can be established endogenously. To do so, we con-

sider a situation driving the welfare policy in the context of cost-benefit
equity. When the collapse of negotiations is imminent, the differences in

the amounts of wealth and taxes for funding low-cost welfare policy E_m
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against an expensive policy &.,2, E_,1 < &,2 — 1i.e., funding payoffs

<u1,g1> for Eﬂ against <u2,g2> for 532, u, <u,, g,>g, —can
amplify misunderstandings and contribute to traps. At the endpoints of the

scope [51,952], the wealth-pie sizes Z(&,) and z(E,) at poverty lines
g and E_,z can require the delivery of wealth amounts W(EM) and
W(E_,z), albeit at different prices, represented as taxes ’C(é) and
T(&z), Buchanan (1967). Hence, prior to the start of the game, and in

line with the cost-benefit equity, in the most adverse circumstances, the

payoffs §, = <u1, g1> and S, = <u2 ,g2> should preserve equal prices

T for the delivery of equal amounts W of wealth. Such a market-driven
interpretation of commodities delivery to the end destinations relies heav-
ily on the size of the wealth-pie, which is equal to T+ W . It should be
noted that this interpretation is only relevant to the case of flat (propor-
tional) taxes.

To explicate the interpretation of reasoning in previous lines, it is
worth examining the "well defined bargaining problem," depicted as the
contract curve in Figure 4. Based on the discussion presented thus far, our
goal is to set an interval [&,1,&2] solving two non-linear equations,

’E((t_n) = T(Eaz) and W(&n) = W((iz), by attempting to find a cross-

E3 £
point (’C , W ) where the curve crosses its own contour, as YX-axis

coordinates, on the plane with (’E, W), which is equivalent to the roots

E_,T and &; Although the calculus of the point (’C*, W*) does not ex-

tend beyond high school mathematics, it does not confirm the possibility
of normalization in general. This, however, does not invalidate our discus-
sion, as we do not claim that the equity condition can be achieved in all
circumstances. It should still be pointed out that, in a number of examples
where the validity of the condition was detected, we found a breakdown
endogenously encoded into the game, indicating normalization in the form
of

{21 us0) = @) ue @)}
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The Swing of the Contract Curve within [5.';1 , Esz]

F 39.3% T T T T
L Right-Wing Objectives:
A Lower basic goods but
T T higher non-basic goods ]
T
A
X +34.2%
P Left-Wing Wants: Lower
Ié -31.6% public (non-basic) goods
P but higher basic goods
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TAXFBLE INCOME — THE WEALTH PER CAPITA

Figure 4. The graph depicts two different mo-
tions for a vote. For the higher tax T =129.1%,
marked by the horizontal line, and the lowest tax
T = 26.52% , marked by the vertical dash. Indicated
by —, at cross-points of the contract curve with the
horizontal line, we observe controversial expectations
of voters. The shares of lower basic but higher public
goods are shown on the left, while this payoff re-
verses towards the right side of the graph, as the
shares of basic goods increase while those of public
goods decrease. Thus, the higher tax T = 29.1% can-
not lead to a political consent, in line with Observa-
tion 5.

In line with the above, as the aim is to bring the politicians, if possible,
into just and equal positions prior to negotiations, equalizing taxes T and

wealth amounts W in the collapsed environments E.m and &, might be a

rational starting point. Under this premise, endogenously encoded into the
game, we label the equity condition, as a pre-equity of political break-
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down.: [t(&,)=1(&,), W(E,)=W(E,)]. If valid, this condition

equalizes fiscally realistic and just demands for public spending prior to
negotiations — in particular, the size of the wealth-pie Z(Z;) = Z(E_,z) .

3.4. Voting and political power design, to be continued in Section 6

Only the voting results can reveal the true incentives of people that will
give the democracy its final judgment. The voting process is the only ave-
nue for the voters to assume the roles of current or upcoming politicians to
whom the opportunity will be granted in line with population’s aspirations
to redesign the rules and norms of wealth redistribution. Voters’ inequali-
ties, life plans, background, social class and experience, native endow-
ments, political capital, etc., determine the bulletin collected at the voting
table. Consequently, incongruence in voters’ views or interpretations of
reality affects the individual choices and thus the voting results, thereby
influencing political pre-election campaign. Voting results are not fully
predictable due to the deviations in voters’ views and opinions on how the
wealth redistribution ought to be achieved. The problem stems from the
fact that welfare policy proposals that benefit minority of citizens some-
times require higher taxes. On the other hand, majority of voters would be
primarily guided by selfish attitudes toward lower taxes, which would
implicitly affect the political bargaining positions. Such an attitude likely
deserves a critical examination. Given these arguments, our question is —
Why should the left- and right-wing politicians care about lower taxes?

It is timely to recall political outmaneuvering with an implicit risk (],
0< q<< 1, upon negotiations suffering a premature collapse. Indeed,
Figure 5 depicts the contract curve of efficient public policies/proposals &
upon poverty lines in the bargaining game I'(q). Politically rational and
economically effective proposals Z;, forming the curve, have been pro-
jected onto the two-dimensional space of the tax rate T(§) and taxable
income — the wealth amount W(&) Although the payoffs
<u(2’;), g(§)> are embedded in each point, they are not visible on the

graph. These invisible/hidden payoffs in the upper part of the graph sym-
bolize wealth-pie division (X,y) into lower basic X(&), yet higher of

public goods shares y(§), as left-wing politicians aim for u(§),
whereas those in the right-wing political party aspire towards g(&) ac-



Political Power Design 99

cordingly. Similarly, the payoffs in the lower part symbolize a reverse
situation — the higher basic, vs. lower public goods, as shown in Figure 4.

Thus, once all views are represented, the political payoffs <u(§), g(a)>

for pledged tax hikes T(§) are more favorable for some coalitions of

voters compared to others. As voters’ preferences for the balance between
basic and public goods vary, the approach to determining efficient poverty
line resulting from eventual agreement between politicians is two-fold.
Indeed, unless the tax hikes are excessively high, the upper coalitions’
representatives will always try to outmaneuver the lower coalitions’ repre-
sentatives. The politicians are aware of this dynamic when taxes are high.
As they feel trapped in negotiations, binary voters become more likely to

defect to the other side, putting the negotiations at risk ¢ > 0 ofa prema-

ture collapse. In contrast, when taxes are sufficiently low, the range of
eventual voters’ electoral maneuvering will substantially reduce or even
vanish. The lowest tax is likely the one that yields desirable outcomes for
the majority of citizens.

In line of reasoning that concerns the majority of citizens, it is appro-
priate to address of the design of the political power indicators

(OL,I—OL). Considering the bargaining outmaneuvering of left- and

right-wing politicians according to the alternate-offers game I'(q), we

state that the politicians on the opposite sides of the bargaining table might
disagree with respect to the terms of outcomes. Consequently, they would
delay the decision while consolidating a draft of a consensus document.
This document might not necessarily yield the best outcome for the citi-
zens, who represent the majority, and are of view that the policy that
minimizes taxes is always the most desirable choice. Despite knowing that
the majority will never endorse higher taxes, the minimum tax rate might
not necessarily be a desirable outcome from the political perspective.
Thus, politicians may choose to disregard the majority interests because
political power of LWP or RWP, as rational actors/politicians, might be
strong enough to negotiate selfish decisions that are beneficial only for
them. In order to entice politicians not to act selfishly, as this would likely
result in ultimate collapse in the negotiation process, their political power

indicators (OL, 1- OL) ought to represent a natural power consensus mo-

tivating them to choose a desirable outcome for themselves and for the
majority of citizens — a platform that should ideally be designed in ad-
vance. This completed our preliminary investigation of the problem.
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4. ANALYSIS OF FISCALLY SAFE WELFARE POLICIES,
continued from Section 3.1

Delivery of basic goods, which counteracts negative contingency, if it
occurs, is the main political responsibility of the left-wing actors. Here-
with, the left-wing political intervention is of the greatest political impor-
tance. It is universal in the sense that it pertains to all citizens, irrespective
of individual situation before or after the contingency. Under this premise,
basic goods that are available to citizens are of sufficiently high quality
and poverty is not allowed, as stressed by Greve (2008). This course pro-
vides a relatively high level of welfare spending and taxes, creating mis-
balance in the books accounting for public finances, thereby introducing
volatility conditions into the wealth-pie delivery. Hence, secured largely
independently of market forces, the high level of basic goods might have a
conflict-driven effect on the welfare policy, which should not be borne
solely by citizens as, as already noted, the state has a duty to help the dis-
advantaged.

Assuming that the conflict-driven welfare policy guides our political
actors in trying to reach an agreement, the left-wing politicians should aim
to secure an efficient size of the wealth-pie. Thus, LWP prescribe the size
of the pie and propose the division method, which the right-wing politi-
cians accept or reject. If rejected, the RWP would suggest their preferred
division, while only having the authority to recommend a size that the
LWP might not be obligated to accept. We also assumed that, upon deliv-
ery to its end destinations, the wealth-pie remains fiscally safe, i.e., it does
not change its size. Under the rules of the alternating-offers procedure (see
later), the game will continue until a consensus is reached. This process
presupposes that left-wing politicians are committed to the share of the
pie, while not being committed to the size.

Let us now envisage a contrasting scenario, whereby the public spend-
ing increases. Hence, both actors know that, upon delivery, the size of the
wealth-pie might change. This, in turn, leads to a misbalance between the
relief payments, which can put the pie size in doubt or make it even more
difficult to ascertain. As a result, the difficulty related to political pledges
might force both sides to retreat. In such volatile conditions, the wealth-pie
is no longer fiscally safe and might affect the expectations of both politi-
cians. Consequently, a fiscally safe plan in spite volatile conditions for the
delivery and division of the wealth-pie is needed. Otherwise, unless wel-
fare policy fails to enforce fiscal safety, the rules and norms of the relief
payments are not living up to their claims. In other words, having a crite-
rion for determining whether a welfare policy is fiscally safe is necessary.
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It is helpful to focus first on welfare policy without any warranty of
fiscal safety. It could, for example, be determined by the poverty line Ej,,

identifying the recipients of wealth redistribution. When é is low, the
variable O, 0<o< é, allocates the income of the needy or the benefit
claimants. In this scenario, the benefit claimant G < & claims and re-
ceives a relief payment proportional to ZS —0O,le, I (f; -0 ), as previ-
ously discussed. In this scenario, all other citizens — both the wealthy and
those with marginal income, denoted as G > & and © =, respectively
— receive no relief payment.

Next, we study a specific scheme highlighting the readiness of the so-
ciety to fund welfare and public spending. For this analysis, we assume

that the average cost B of the relief payments and the average taxable
income W' both depend on the poverty line parameter &, B = B(§),
W = W(E) — this is realistic, as shown in Appendix Al. As previ-
ously scholarly defined, W(&) can refer to the wealth amount. Based on
our perception of income G density P(G, E.>) distribution samples, the
product T+ W(&) estimates the average tax revenue. Let the average cost
of public goods be g(&) , whereas the size Z(a) of the wealth-pie equals

T-W(E), z(§)=1-W(E). We assume that welfare and public
spending reached the intended recipients, whereby the total spending
equals T- W(E) = B(&) + g(&) . This suggests that the basic and non-
basic goods have been delivered to their final destinations. In other words,
the wealth collected through tax channels is spent.

Now, let us assume that politicians in the game preferred to commit to
the shares fixing (X, y), and might agree to hold the balance
B(E) =x:1-W(E) of the books accounting for financing the relief
payments B . That is, the left-wing politicians must be ready to finance
the relief, i.e., to deliver B(§) by dividing the wealth-pie T- W(E) . In
this scenario, the politicians pledge to retain the balance
B(§) =x-1- W(§) of the relief payments between credits B(§) and

debts X -T- W(E) as a portion X of the wealth-pie T- W(E). The
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balance also specifies the welfare policy f; — an implementation of the
poverty line ct,, welfare reform, pact, program, etc. While the aforemen-

tioned balance is initially valid, it might not be in the future, putting the
adjustment in ﬁ on the agenda either once or repeatedly. Thus, the policy

E_, might represent a problem of fiscal imbalance. Almost all citizens, even
if for different reasons, will prefer the opposite in the long run — a fiscally
safe policy & . For this reason, we now shift the focus on examining a

constraint that corresponds to fiscal safety of welfare policy é , identify-

ing — what we called above as idempotent — the safe delivery of the
wealth-pie to its end destinations.

Idempotent rules and norms of wealth redistribution

The delivery of basic and public (non-basic) goods does not necessar-
ily safeguard the funding of the expenses. As the expenses neither match
nor prevent taxation hikes, the size of the wealth-pie could vary too rap-
idly. This leads, as previously discussed, to numerous adjustments of wel-
fare policy rules and norms. To mitigate this issue, we have to examine at
the sequence ., ct,', é",. of multiple adjustments of the poverty line ZS
This highlights the fact that, on delivery, no adjustments of the wealth-pie
are desirable. Consequently, it is better to keep the size of the pie un-
changed, i.e., fiscally safe. In other words, when replacing the old policy
&’ with EJ", the two must coincide. Similar schemes, known as idempo-
tent, stem from bounded rationality mechanisms (Rubinstein, 1998;
Malishevski, 1998). This premise suggests that, even if welfare policy
rules and norms are subject to multiple adjustments, these adjustments
should not change the machinery of relief payments. In particular, when
implemented twice, the rules must produce the same outcome. To guaran-
tee the fiscal safety of the poverty line, such an understanding requires that

the poverty lines must coincide amid a sequence of pairs (ﬁ' s <tj") at some
matching policy (é'z &").

The need to balance the books accounting for the delivery of relief
payments B(§) =X -T-W(E), in spite the wealth-pie volatility, can
also be seen as immunity for financing the welfare policy. In particular,

the immunity restricts, or at least realistically limits the h-effect of wealth
redistribution. Given the immune, i.e., fiscally idempotent, composition
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[B(E_,),W(g)], the idempotent scheme is equivalent to implementing
the policy & only once. For this reason, we assume that the rules and
norms of the relief payments have been socially planned and redesigned
accordingly.

In this idempotent mode that outlines the fiscal safety of public spend-

ing, the rules and norms must reflect idempotent policy é that brings the

spending policy into focus. We conclude that the expenses X - T+ W(&)
designated for welfare spending must be in balance not only for funding
relief payments B(ﬁ) , when the particular policy a takes effect, but the

policy & must also enforce the fiscal safety in the full spectrum of current
and future events.

Clearly, the balance B(EJ) =X-T: W(&) is a static relationship

B(©)

leading to functional dependency T = T that links the argu-
X .

ments ?; and X . Hereby, the tax rate T becomes a function of E_> and X,
expressed as T = T(, X) . According to rules and norms in force of relief
payments, the post-tax residue T(E,T) = (1 — ‘E)- (g - (I))+ ¢ of the
marginal citizens’ G = a comprises fiscal limitations of wealth redistri-
bution, while (I) determines the personal allowance parameter, as shown
above. The dependency T = T(E_,, X) transforms n(&, T) into a fiscally
realistic social position R(E_,, T (Ej,, X)) . Irrespective of the current expen-
diture on basic goods, the real cost of living does not necessarily match
75(%, T(i,X)). Hence, ensuring realistic and fiscally idempotent rules

and norms, and/or, in particular, attempting to avoid the h-effect of this
mismatch or adopt rules to keep the effect tolerable at the least, an equa-
tion for a fiscally idempotent policy EJ should be solved.

Observation 1.  Constraint  on  left-wing  political  aims
u=m(E,1(E, X)) is necessary for upholding idempotent fiscal rules

and norms of imposed budget constraint B(§) = X - 1- W(E).
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According to this observation, whatever tax increase is implemented,
the poverty line residue U of the marginal citizens’ G = i is unfeasibly
high and cannot be attained when the condition has been violated.

Corollary. When U = T(§, T(E,X)) solves for §, the subsequent
adjustments E_,', an,... are unnecessary. An option to change their wel-
fare positions is irrational for citizens with incomes O < E_, or G > é
thus, the root EJ restricts (realistically limits) the h-effect. All pertinent
proofs are given in Appendix A3.

The fiscally idempotent policies & induce the basis for solutions in
our game as fiscally idempotent compositions [B(i), W(&)] A reason-
able question thus emerges: Which taxable income W(E) characterizes
fiscally idempotent welfare policies € for the delivery of relief payments
B(g) ? The answer is provided in the form of the following three con-

: 1
straints:

Delivery constraint by which the
wealth-pie is spent — the basic
and public goods have been de-

livered. This form of constraint T-W(E) =
makes sense only for propor- (1)
tional or flat taxes. Flat taxes =B(&)+¢g

will later substantially simplify
the method of function minimi-
zation with constraints.

Budget constraint imposed on
relief payments finance in ac-
cordance with the share X of
the wealth-pie — the tax-
revenue. The left-wing politi- B(é) -

cians pledge to credit/debit the =X-T- W(Z‘,)

account B(&) that must be

equal to the average of relief
shifted by the policy a .

2

1 . .
Below, we continue to refer to the average taxable income as “wealth.”
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Stability constraint that deter-
mines fiscally idempotent prop-
erty of (2). In contrast to
(G,’C)E mz,we distinguish u =(1 —’E)-
poverty line residues . (a _ d)) +0
u= TE(?;, ’E) as one-
dimensional curves

(€, 1) € R < R

3

B(©)

Taking the expression T (@, X) =—
x-W(E)

B(©)

and replacing ————— into U = n(?,, ‘C(a, X)), the constraint given
x-W(E)

in (3) can be resolved with a fiscally idempotent policy for E_, , thus yield-

ing:

LEXw)=(E-0)-BE) -x-(E-u)-WE=0. ©
Referred to as the volatility constraint, the constraint (4) determines the

fiscal safety module. It holds down the h-effect amalgamating the con-
straints (2) and (3) by balancing the books accounting for relief payments.

out of the constraint (2)

Summary. The outcome (1),?; = 7,X,0,T ,<u, g> constitutes the
citizens’ bargaining shield for wealth redistribution that relates to a bundle

of arguments or constants: (1),% are controls, and Z,X ,0, T are status

variables, ? while <u, g> are the competing political proposals:

(I) — the personal allowance establishing the tax bracket [(I), OO);
it is an ex-ante control (tuning) variable,
O<¢d=const<§;

a — the income frame, the poverty line; a policy determining

who is living in poverty, as well as the choice or the control
parameter;

2 Status and control variables are the prerogatives of control theory.
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Z — thesize Z =T W() of the wealth-pie; the amount of

wealth-pie that is equal to public spending per capita when
taxes are proportional;

X  — the share of the wealth-pie of size Z ; a portion X of Z to be
deposited
in favor of the left-wing politicians for funding the relief pay-

ments, 0 < x <1;

o — the political power of the left-wing politicians, 0 < oL <1;

T  — the marginal tax rate, the rate T(§, X) of the wealth amount
W(‘:) determined by (1);

U — the after-tax residue of the income frame equal to the poverty

line &, the wants function U(&, X) of the left-wing politi-
cians, as determined by (2) and (3);

g — the objective function g(a, X) of the right-wing politicians,

determined by (1) and (2); the account for the refund of public
goods expenses per capita.

5. ANALYSIS OF THE WELFARE STATE BARGAINING RULES AND
NORMS, continued from Section 3.2

Suppose that politicians, in pursuit of their commitments to a fair
division of the wealth-pie, agreed to play the alternating-offers bargaining
game F(q) (Osborn and Rubinstein). In doing so, rational politicians are
motivated to align the procedure to participate in any eventual agreement.
The risk q > 0 ofa premature collapse during negotiations, especially

early in the game, might be the driving force behind their commitment
to reach the consensus. Once a consensus on division is reached, they must
agree on who will determine the size of the pie. Politicians negotiate
on such matters when there are equal and symmetric preconditions in
place that guarantee their equal rights. Thus, both will play an equal role in
the decision regarding the pie size. Considering the right-wing vital politi-
cal objective of wealth redistribution, it will be realistic to reduce the
scope of RWP’s duties concerning welfare matters, while allowing them to
retain their advisory rights. Our subsequent discussions are based on this
premise.
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5.1. Left- and right-wing politicians’ bargaining procedure

Previously, we emphasized that, in a representative democracy, the di-
vision of the wealth-pie will always be subject to controversy. Recall that
we consider two politicians — one acting in the role of LWP, who is aim-
ing to provide basic goods to all citizens, and the other, representing RWP,
advocating for availability of non-basic goods. A precondition for the
bilateral agreement is that the expectations of these two politicians depend
solely on efficient policies of the LWP within the framework aimed at
setting the poverty line E_, . However, politicians are more concerned with

shares (X, y) than they are with the size of the wealth-pie. As a conse-
quence of this independence, efficient poverty line E_, provides shares
related to efficient divisions (Xo, y’ ) Accepting this precondition, the

RWP will only propose an efficient line ao, as failure to do so would

result in all other shares being rejected with certainty by LWP. Nonethe-
less, it is realistic that the RWP would — by negligence, mistake or some
other reason — recommend an inefficient poverty line a' , which the LWP

would mistakenly accept. It is also possible that, in a reverse scenario, the
LWP would choose to disregard an efficient recommendation &’ . This

would be an irrational choice as, in any agreement, regardless of the un-
derlying motives, both politicians are committed by proposals to shares
(X,y). Indeed, within the scope of negotiations [321,?;2], the recom-

mendation & concurs with RWP’s efficient share proposal y°. Conse-
quently, accepting 1- yc , while shifting LWP’s 2; mistakenly to
E'# £’ at which both politicians must be committed to (XO Y ), the

shift é' becomes inefficient and thus superfluous. Hence, making a pro-

posal, the RWP’s recommendation on poverty lines makes a rational ar-
gument that the LWP must accept or reject in a standard way. Such an
account, in our view, explains that the outcome of the bargaining game
might be a desirable poverty line é € [&1,5',2]. Hereby, the interval is

referred to as the scope [&1 R E.>2 ] of negotiations or bids proposals that are
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now, by default, linking efficient lines ﬁ with shares (Xo,yo). The

bargaining occurs exclusively in the interval [Eﬂ R éQ] as a scope for effi-

cient lines é of most trusted policy platforms for negotiations, where
both players would either accept or reject the proposals. Political competi-
tion, depending on [@,Q], arranges a contract curve Sb (shown in
Figure 4 and Figure 5) as a way to assemble the bargain portfolio. Given
that the portfolio "has changed its color from shares to lines," the politi-
cians can now conceive themselves as making poverty line proposals. If a
proposal is rejected, the roles of politicians change and a new proposal is
submitted. The game continues in the traditional way by alternating offers.

The Contract Curve Projection within [?;1 , &, ]

89.3, = . ; ;
L —
L g, =144.54
F L 797 Left-Wing Wants: Lower |
T - & public (non-basic) goods
W but higher basic goods
I - 561 u(E,)=289.26
N
G g(Ey) =249 u(gy) =644
P[P g(§)) =47.17
A Right-Wing Objectives:
Y Lower basic goods but
Ic:) " 230 higher non-basic goods <\:‘-’1 =8.00 7
F >
S

6‘4 i bl ] [

-2.5 7.4 17.8 27.3 37.2 47.2

Figure 5. The aspirations of left-wing politicians expressed
when opposing the right-wing political objectives are depicted on
the vertical and horizontal axes, respectively. The graph shows the

contract curve sloping from F;z toward &1, projected on the sur-
face of basic goods vs. vital goods — the projection of efficient
poverty lines & € [221 , Q] resolving the contract constraint (5).



Political Power Design 109

5.2. Alternating-offers bargaining game analysis

We now proceed to a more accurate analysis of the game rules. Al-

though the rules can be perceived as fiscally idempotent, the game itself
contains a new challenge. The elevated poverty line E_, does not necessar-

ily increase the marginal citizens’ G = & after-tax residue U(E,X). The

low-income citizens — the benefit recipients — can claim relief payments,
whereby an increased number of claims might have a reverse effect on
u(&,x), which would consequently decline. Indeed, in contrast to in-

creasing poverty line Z‘: and despite the required unavoidable increase in

taxes — as the hazard (h-effect) is still present — in this scenario, the
residue U(E,X) will decrease. With the proviso that the left-wing politi-

cians commit to the share X, the right-wing politicians are left with
y =1—X. Thus, the fiscally idempotent poverty line tax residues

u(&,X) correspond to a narrower set than 0 < x <1, 0<y <1 —

the set of shares <x,y> of what we refer to as a contract curve Sb of
payoffs <(u(§, X), g(&, y)> with poverty line & as a parameter. >

Assuming that the maximum of a single N-peaked residue function
u(&,X) can be reached, the peak position & = arg max, u(g,x")
indicates an efficient welfare policy. Although the bargain portfolio of
left-wing politicians contains an efficient policy &’ as a function of X°,
the portfolio also includes the share X = X~ . The maximum value given
by U=1", in the inverse situation, which corresponds to U°, consoli-
dates an efficient policy & € [&1 , iz ] A unique share X, which solves
u(§’,x)=1u’ and corresponds to g(§°,y")=g", represents the non-

conforming expectations of politicians. We can thus refer to the shares

> We already highlighted the worsening quality of welfare services for all citizens

when the LI level is “climbing” high.
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(Xo R y° ) as an efficient division linked to the policy Z:, . This scenario is
depicted in Figure 4 on wealth amount W and taxes T — efficient peaks

", which correspond to efficient shares (Xo,y°), and in Figure 5 in
various projections on payoffs <u°, g°> geometry. This geometry high-

lights the maximum values U~ can take — namely, efficient policies of
left-wing politicians at peaks E, that refer to the well-known result ob-

tained by Canto et al (1981), also known as the Laffer curve:

The marginal tax-revenue raised decreases with increase in tax rates, fi-
nally reaching some point where the marginal tax-revenue raised is zero.
Beyond this point, any tax rate increases will reduce revenue collection.

Our result pertaining to the single-peaked aspirations of the left-wing
politicians is similar. First, "poverty line residue W being proposed in the

normal range of poverty line parameter E_, ." Next,

...by passing through the top point of W as a function, the proposals U

will be assessed and reviewed in the range of prohibited values of a .

We previously introduced an idempotent composition [B(E_,), W(é)]
— the average B(&) of the relief payments, and the average W (&) of

the taxable income, denoted as the wealth. The expectations of the two
politicians, reflecting their preferred rules and norms pertaining to relief
payments, can now be set using the composition [B(E_,),W(&)] At the
end of the subsection, the composition will lead to an appropriately settled
bargaining problem that will associate the threat originating from the im-
plicit partaker — in the form of the electoral maneuvering of voters —
with an implicit risk of the negotiations collapsing prematurely. This
requires augmenting the standard rules of the game we have already
presented with two further rigorous suppositions. Let us first specify the

payoffs.
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Political payoffs of the 17/2™ actor and the third partaker’s implicit risk
factor are defined as follows:

Politician No. 1, Politician No. 1, U — the left-wing political aspirations,
the marginal citizens’ O = EJ after-tax residue,

basic necessities of the needy, cost of living;
Politician No. 2, g — he right-wing political objective, expenses that

benefit all citizens — expenses upon vital goods
alone, without relief payments;
Third Partaker, (, T — voters’ electoral maneuvering facing higher taxes

T expressing an implicit risk 0< q<< 1of
the negotiations collapsing prematurely.

As promised, we now assume that the rules and norms of the wealth
redistribution that are efficient with respect to the wealth-pie division
include the volatility constraint (4), which certifies the idempotent compo-

sition [B(C:),W(?;)] for the policy &. In the game, the composition
[B(&),W((t,)] could not be implemented without the volatility con-

straint L(é, X,u) =0 (Observation 1). This assumption is contingent on
the conclusions of the previously undertaken analysis.
When varying a under their own rules and norms, let us assume that

LWP propose a fiscally idempotent policy ?:j,= E_,O, which — for each
share X =X they commit to — links X' to &, irrespective of who
originates the proposals X or yo. This ensures the efficient proposal of
poverty line residue U(§",X") =max, u(&,x"). Clearly, inefficient
recommendation &', proposed by the RWP if &'# &° for share y~, will
be rejected by the LWP. As a result, an efficient policy §= ?; must

occur on contract curve amid efficient shares X at
<u° =u(§,x"), g’ = g(§°,x°)> as an ongoing precondition for
the agreement — as previously discussed. Indeed, LWP have no reason to

reject efficient recommendation &, as doing so, when &'#&’, they

cannot ultimately maintain the efficient commitment to X' . Below, we
assume the efficiency by default when it is convenient.
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Observation 2. Idempotent policies E:, at the contract curve
= <u(<‘§, x), g(&, X)> which  certifies  the  composition
[B(é), W(é)] must satisfy the constraint

D(&, x,u) = iL(i, X,u) =
5 % .0
=g [E-0) BE)~x-(-u) W(©)]=0

Particularly, when we collated sub-expressions and introduced some sim-
plifications upon

Q(E” T, g) =(0 — Delivery(1) enforcing constraints
L(E,, X, 1) = 0 —> Volatility(4) ‘ on rules and norms of

the wealth redistribu-
D(E), X, u) =(Q — Contract curve(5) tion.

These constraints, with the proviso of flat taxes, together with the pre-
viously detailed preliminary settings ’Cé >0, T" >0, u" <0,
! ! 4 ! ! "
u; >0, u; <0, uf >0, u, >0, g£. >0, g/ >0, g} #0,
V(&)

B(®) W(@] )=
B(E) W() V(&)

—B(&) ; the size of wealth-pie

wE
V()

lead to an analytical solution: U(§) =& — , where

v()=1+(g- ¢)(

W©)
V(&)

2(8) =B(8) +g(8) =

g(8)=

4+ rates W(E.,) <0 s W(&) >0 ofthe changes in the wealth amounts
W(EJ) are essential for the analysis, whereas the function B(é) is valid

only when B(§)>0,and O<(|)<L1< E_,
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Now it is evident that payoffs <u,g> at the contract curve Sb

depend exclusively on policies &, <u(E_,),g(E_,)> € Sb. We conclude

that politicians are only concerned with making proposals that pertain to
efficient policies &, since effective shares (X, y) have been linked to & .

Contract curve Sb =u(g) in Figure 4 illustrates the payoffs. The
functions (&) and W(E) in the form presented above are, in fact,

not a subject to any constraints. They are mathematically derived in
Appendix A4.

Before proceeding with further line of analysis, let us recall the threat
phenomenon created by voters that increases the implicit risk of the nego-
tiations collapsing prematurely. As noted previously, if politicians reject
their counterpart’s proposal — knowing that it is risky to continue the
bargain — they will likely consolidate a draft. This introduces the risk that
the voters will reject the draft when politicians, without fulfilling the vot-
ers’ terms, try to continue bargaining over costly and controversial pro-
posals, thereby putting the negotiations at a risk of collapse, as previously
discussed.

Suppose that politicians bargain over all fiscally idempotent policies
Ee [ €, ,6}2] within the scope of negotiations [ 51,52]. We follow the
alternating-offers game F(q) with an exogenous risk 0< q<< 1 ofa

premature collapse, as described previously (Osborn and Rubinstein). We
posit that, each time the proposal E_, is rejected by one of the politicians,

the momentary phase of the game results in a draft, which can be opposed
by the voters, as just recalled. In these circumstances, the politicians might
be uncertain on how to proceed, if the voters’ terms are not met. As a
result, they might choose to leave the bargaining table prematurely. Ex-
tracted from the endpoints &, < &, of contract curve Sb , the outcome

{<u1,g1>,<u2,g2>}:
—{lu(e,).g&)). (u(E, ), 2(,)))

naturalizes this risk ( in the worst-case scenario.
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What is known as the well-defined bargaining problem, first intro-
duced by Roth, or the individual rationality associated with the Nash bar-

gaining scheme <S ,d>, seems to be instructive for further analysis.
Indeed, inequalities g, >¢g, and U, <U, hold for the pair
d= <d1 = u1,d2 = g2>. Synthesizing the unfavorable political out-
come {<u1 » 84 >, <u2 , 2, >} into a policy O on poverty introduced below
will naturalize the Nash disagreement point d into the problem <Sb R d> ,
Sb R Thus, compared to the traditional approach of compact con-
vex set & < R? , inequalities S > d are also true for any pair S € Sb.

The pair <Sb,d > for the contract curve Sb becomes a well-defined

bargaining problem. Given that it is not immediately apparent whether the
policy O is a fiscally idempotent outcome of the game, the following
observation removes any doubt.

Observation 3. To test whether the point d = <d1 ,d2> = <u1,g2>

becomes a fiscally idempotent outcome of the left- and right-wing political
bargaining, it is necessary and sufficient that there exists a policy O on
poverty, which solves the equation:

(8-¢)-(B()+d,)~(5-d,)- W(®) =0;
The condition O & [ &, éz] must hold true.

It should be noted that, in the worst-case scenario O, the wealth redis-
tributed equals W (O) — the average of expenses for funding the relief

payments equal B(S) — whereby the proposal O depends on the end-
points of the bargaining interval [ 51 , 932 ] This dependence, provided that

the Equation (6) can be solved for O, serves as the basis for validation of
the pre-equity condition of breakdown, as discussed in Section 7.

Observation 4. In the alternating-offers game F(q) with the risk
0< q<< 1 of negotiations collapsing prematurely into the disagree-

ment point <d1 ,d2>, the functions (u(i) - d1 )(X and (g(&) - d2 )1_(1
imply bargaining payoffs of left- and right-wing politicians, respectively.
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Thus, (without proof) for variables 7\.1 A , Solving the equations
(1_q)'(u(}\‘l)_dl)a :(u(}\'z)_dl)a and
A-q)-(gn,)—d,) ™ =(g(r,)~d,) ™, the solution A of the
well-defined bargaining problem <Sb R d> is close to the pair (M A 2) ,
M <A<,

As explained by Osborn and Rubinstein, the outcome in our experi-
ment of bargaining game I'(q) encapsulates the power indicators
(OL, 1- OL) of the left- and right-wing politicians. In the next section, we
consider the design of political power indicators (OL, 1- OL) using the
solution A that minimizes the tax burden with respect to an appropriately
settled bargaining problem <Sb , d> .

6. ANALYSIS OF YOTING AND POLITICAL POWER DESIGN,
continued from Section 3.4

Here, we will elaborate on power indicators (Ot,l — OL) specifically,

referring to the original bargaining scenario of $1 division, based on the
previously discussed axiomatic approach — O signifies LWP’s political

power, and 1— oL the political power of RWP, 0 < oL < 1. Considering
(Xo ? yo ): arg max 0<x+y<l f(X9 y7 G‘) =

=(u(x)-d,)" (g(y)-d,)"™

the following questions emerge: What type of $1 division will assist a
moderator designing the power indicator O of the 1* actor? What will
ensure that, during the negotiations, the 1% actor will obtain a desired or

any other share X of $1? To answer these questions, let us assume that
the 2" actor might only accept or reject the 1% actor’s proposals. We can

thus start redesigning the power indicators (OL,1—OL) by replacing
y= 1—X, and taking the derivative of the resulting f(X,l —X,OL)
with respect to the variable X by evaluating f): (X,1 - X,OL). For a

moment suppose, finally, that X° share of $1 is a desirable solution.
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Given X =X, the equation f): (X° ,1 -x’, OL) =0 can be solved for

oL =" . In general, one might find comfort in the following egalitarian
judgment:

To count on X share of $1 is a realistic attitude toward the I ac-
tor’s position of negotiations. Indeed, even if the 2" actor might
have a stronger negotiating power than the 1" actor,

o’ <1—=a°, the I* actor, sooner rather than later, might predict
the 2" actor’s preferences and thus force a concession.

When, for example, the voters’ representatives attempt to redesign po-
litical power indicators to (OL, 1-— OL), we assume that politicians will try
to share the wealth-pie in the manner in which $1 was divided above. In
doing so, we suppose that both politicians are ready to proceed with tax
concessions. Reflecting just illustrated axiomatic bargaining toward alleg-

edly desirable $1 share X", we proceed with our discussion.

In accordance with our analytical solution without constraints, the con-
tract curve Sb = u(g) corresponds to a curve <u(§),g(§)> . Moving

along the curve while taking into account the scope of negotiations
[&1,6,2 ], the expectations T(E) of voters’ majority lead to detection of

Tin < T(i) :

S CILOE

With the proviso that T(§) is concave and sufficiently smooth, the de-

tection point of T . is the root A of the equation T() = 0. Conse-

min
quently, akin to the egalitarian judgment given above, the root A might
help in redesigning of the rules and norms of the wealth redistribution.
This can be done by adjusting the O in a way that the political power O
of the left-wing politicians will be sufficient to persuade the right-wing

politicians to agree upon the poverty line residue u(K) .
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Indeed, in the left- and right- political bargaining, the old standard
(discussed above) of how to share the $1 can now be a new Standard per-
taining to how to plan the wealth redistribution rules and norms. Under

this premise, we can set f(E_,, OL) = (u(&) - d1 )Ot (g(&) - d2 )17(1,

where O facilitates the political power of the LWP. Instead of X = X",
planning the rules, we suppose that & = A is an allegedly desirable solu-

tion. Hence, we first take the derivative of f(é, OL) , with respect to i,

evaluating fé (a, OL), which allows us to solve the equation

fé ((:‘ H,a) =0 for 0. As a result, the root 0" will correspond to

the redesigned political power of the left-wing politicians. This is the re-
sult as it appears.

Summary. To control the left- and right-wing political agreement on
shares (X,y) of the wealth-pie, akin to the new Standard above, the

majority of citizens can accept or reject a premature agreement archived at
the a particular point during the negotiations, thereby voting for or against
the division. As previously noted, the majority will favor the policy A
that minimizes the tax burden. This restriction allows us to rebalance the
welfare institutions or finance resources by appropriate design of power

indicators (OL,1 — OL) of the left- and right-wing politicians, ensuring that

the most favorable shares (XO R yo) of the wealth-pie would incorporate

the Nash axiomatic — the minimum tax — solution A, into the bargain
portfolio as the most optimal outcome. This is our case study of tax policy
in which only a minority would object to a proposal that corresponds to
the tax rate minimum at the contract curve. In doing so, the implicit pres-
sure of citizens will be lower. To be implemented in favor of majority, the
minimum appears to be a desirable consensus.

Observation 5. Given that politicians can reach a preliminary agree-
ment on tax rateT =T(E), condition A =arg min tel, ] T(€) is

necessary to put forward a poverty proposal A before voters by appro-
priately designing the power indicators (OL,1 —OL) in advance. At the

contract curve Sb , the proposal A\ outlines a unique outcome

0.6 = z,x,a, (1), (u(h),g(1)) €S, .
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7. DISCUSSION

The true essence of the economic reality behind the left- and right-
wing political bargaining could be revealed by determining whether it is
true that funding relief payments of the needy and maintaining the budget
in balance will be difficult to sustain when the tax burden for all citizens is
decreasing. On the surface, it seems that, at some point, fairness and equity
might no longer be the main requirement because of the "risks becoming a
Downton Abbey economy" (2014). Economists, including Kittel and Ob-
inger (2003), have analyzed the poverty gap issue. In the face of these
controversies, it is not possible to estimate the extent of potential fallout
that might result from such outcomes of tax burden cut.

The citizens are those who decide what needs to be done and what
should ultimately bring order to socially plan, or how to redesign the
wealth redistribution rules and norms. Taking advantage of this opportu-
nity, it is instructive to perform an exercise related to the most appropriate
choice of welfare policy, as shown in the “minimizing wealth-tax” column
of Table 1. > We illustrated that, despite minimizing the tax burden for all
citizens, the minimum is, in fact, fiscally safe, while also ensuring just and
fair redistribution of wealth for all citizens.

Due to the assumptions made during the analysis, the following discus-
sion perhaps offers some guidance on doing the exercise. Before com-
menting on those, it is worth noting that the experiment presented here
should be understood as purely normative — namely, "what ought to be"
in economic or political matters, as opposed to "what is." Despite the fact
that, in the preceding analysis, no actual situation was presented, our theo-
retical results rest on the assumptions delineated below.

First, our work is based on the premise that politicians would only
make promises that can be fulfilled — fiscally safe proposals. Fiscal
safety, when taken separately, even when attempted in accordance with the
rules and norms in force, could lead to unjust and unfair solutions. Taken
at will, fiscal safety might be a profoundly mistaken idea of justice. In
Table 1, we presented the percentage of citizens below the poverty line,
thus establishing the poverty rate. ® Driven at will, the official poverty rate,

> Table 1 was created by numerical simulation carried out upon imaginary distri-

bution of citizens’ incomes.

6 Poverty rate determines the percent of anyone who lives with income
below the official poverty line. The poverty line separates the rich
(those with an income above the poverty line), from the less fortunate
(having income below the line).
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in accordance with the “disagreement” column of Table 1, could cause the
poverty rate to decline below 0.41%, which wrongly appears to be the
most just and the fairest.

Second, we postulated that the wealth redistribution compensates for
the inequalities in the income of citizens that were below the poverty line.
Usually, similar parameters are in the national government competence.
While taking into account increases in the cost of living, the official num-
ber of individuals living in poverty should be adjusted annually according
to government guidelines. Although our key assumption was that the right-
wing politicians inherited no more than an advisory authority, the rules
and norms that govern the poverty line determination have been solely
under the mandate of the left-wing politicians. This decision was made
because, in the analysis, we deliberately emphasized the distinctions be-
tween stereotypical motivations of left- and right-wing politicians. In our
view, welfare protection that is most likely to be just as fair should be
addressed as an independent institute, or better yet, as an assembly of
independent institutes or legal charity foundations. We believe that, in our
experiment of organizational independence, welfare protection could be
expected to yield efficient welfare policies. Thus, in determining an effi-
cient policy on poverty, we concluded that left-wing politicians should be
in a privileged position that allows them to prescribe the poverty line inde-
pendently. Only when these guidelines of independence are applied, the
value judgment based upon the data presented in Table 1 makes sense.
Still, it should be noted that the characterization of whether setting up such
a privilege was a positive or negative restriction requires further investiga-
tion.

Next, we focused on the political power indicators (OL,1 - OL), which

highlight the amount of resources, skills and competence of left- and right-
wing politicians. The fundamental factor in our analysis was the welfare
protection of the society as a whole to justify and maintain welfare duties
under the principle of how the state ought to act when attempting to fulfill
its welfare mission. When the decision made by the politicians is not in
line with the objectives of special interest groups, as previously pointed
out, welfare protection could be a recurrent theme in political debates and
election campaigns, and a source of significant political competition. A
controversy with respect to political interests might lead to violent upsets,
providing the opportunity to develop policy in favor of these groups. Ac-
cording to the foregoing account, which requires considerable administra-
tive efforts and fiscally unrealistic expenses — and previous observations
pertaining to the independence of the welfare services — we believe that
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having sophisticated left-wing institutions is unnecessary. Recognizing the
vital role of the right-wing politicians, due to their central position in de-
ciding who will be purchasing and delivering public goods, in the interpre-
tation of the parameter OL, we believed that it was beneficial to impose a
lower QU to the left-wing politicians, with a corresponding higher share

1-a assigned to the right-wing politicians, i.e., O < 1-a,
O<a<1.

Thus, it was reasonable to assume that left-wing politicians, with al-
most no extra effort, would demonstrate an ample degree of readiness to
make efficient decisions. Herewith, in planning and regulating the size of
the wealth-pie to suit a fiscally realistic welfare policy to settle and assist
the state welfare mission, we attempted to redesign the balance of political
powers between the left- and right-wing politicians by adjusting the power
indicators o and 1— 0, imposed on the on the left- and right-wing poli-
ticians, respectively. With the goal in our view, to benefit all citizens in
society, this enabled us to adjust the state rules and norms of the wealth
redistribution, aligning them closer to the legal responsibilities and moral
obligations of the citizens. We referred to the process of adjusting the
power indicators (OL,'I — OL) as a political power design. Such a politi-

cally designed outcome, as we supposed, justified the time and effort in-
vested, even if the vision was a utopia.

The design of political power indicators ((1,1 - OL) is a difficult and

extremely time-consuming process. Indeed, prolonged political efforts
might not be in the interest of anyone — citizens might not pursue such
endeavor, even if the balance of political power can be ultimately reached.
In particular, we supposed that electoral maneuvering of voters might put
prolonged political efforts at risk of a premature collapse. It was deemed
acceptable to assume presence of an implicit risk of voters defecting to the
other side, which could interrupt negotiations ahead of the schedule. Thus,
we brought the problem of likelihood of negotiations collapsing into focus.
In our experiment, the failure of negotiations was deemed extremely unde-
sirable for both politicians, as we hoped that this would be an incentive to
move toward a solution faster. Alternatively, the actors would be more
motivated to agree on terms of a contract, where both sides approach each
other by making considerable concessions. In the view of receipt of relief
payments, a policy of higher tax rates might be the most favorable and just



Political Power Design 121

solution for minority. From the majority perspective, however, the mini-
mum tax rate is always preferable. For the citizens who finance the relief
payments, as we assumed in the analysis, the minimum tax rate provides a
more just and fair redistribution of wealth. In our experiment, the mini-
mum rate also provided an outcome A in which the designed political

power indicators (OL,1 — OL) visualize the society’s common denominator.

Assuming, as we previously did, in accordance with the rules of the game,
that outcome A, minimizing taxes, could be politically designed — it
provides insight into what policy should entail.

Table 1, presenting all four assumptions, suggests several proposals for
citizens to vote on. Note that, when voting for policy of equal left- and
right-wing political power, the policy 1 =79.23 is less just and less fair

than the outcome A =45.50, where the minimum 26.52% of marginal tax
rate is reached. Thus, only the policy/outcome A on the poverty line (Fig-
ure 4) can be the desirable political consent. Indeed, in the variety of rules
in the game the left- and right-wing politicians play, when engaged in an
interaction aimed at implementing equal/egalitarian policy ™M, the equal
political power L =0.5 of the LWP was stronger than 0.2]. Consumers’
goal, however, can still be achieved by applying the weaker policy
A =45.50 for the tax rate 26.52% < 28.21%, although the outcome of the
weakened political power indicator OL =0.2/ is yet to be confirmed.
Through a reduction of citizens’ obligations — even with LWP’s weak-
ened political position — the LWP will be able to come to a desirable
agreement with the RWP, maintaining the most just and fair poverty line
of wealth for all citizens.

In closing the discussion, we would like to point to a decision O that
corresponds to the political breakdown of negotiations. Utopian society,
planned according to the event of a breakdown, as shown in Table 1,
seemingly ignores welfare protection because practically all citizens are
considered rich by default, i.e., poverty does not exist. Given this utopian
society, financing expenses almost entirely with respect to vital pub-
lic/non-basic goods, the breakdown policy O, under the equity condition,
requires —2.49 public debt per capita. This, in turn, will require borrowing
or money printing, promoting public spending, e.g., through natural assets
for refunding the debt. We admit that, based on the lowest tax burden of
26.52%, a self-financing tax system has a better chance of being imple-
mented.
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8. CONCLUDING REMARKS

Given the ideological controversies of the left- and right-wing politi-
cians, and the need to resolve the welfare policy dilemma, both actors
should be willing to make concessions. In most cases, the root of the con-
troversy is that, the left-wing politicians struggle — in response to public
aspirations — in pursuing their own political causes for the increase of
basic goods, whereas the right-wing politicians advocate for meeting the
needs for non-basic goods. In our experiment, left-wing politicians gave
credit to the tax system to guarantee a reasonably high living standard for
benefit claimants. Whatever public spending voters preferred, both politi-
cians were aware of voters’ electoral maneuvering, which could put the
negotiations at risk of a premature collapse. In our work, this threat was
the only driving force in reaching the consensus. We argued that political
arguments demanding higher taxes were weak, since overly costly welfare
proposals lead to an excessive number of relief payments claimants,
which, in spite of the tax increase, could diminish the quality of the wel-
fare services. In turn, the excessive number of claims could generate fur-
ther requests for the additional financial support through tax channels. In
order to satisfy those who bear additional costs, and who could only ap-
prove the requests on the terms of fiscally safe welfare policies, we re-
duced the scope of negotiations to the fiscally realistic domain of voters’
expectations.

In view of the above, a pretext for the analysis of the domain and the
extent of bargain portfolio of two visionary politicians, denoted as LWP
and RWP, were established. The portfolio was supposed to account for
politicians having non-conforming expectations. Instead of the wealth-pie
division, such an account allowed for including a guide on how the even-
tual consensus ought to be analyzed and interpreted within the scope of

negotiations [&1,};2] at the contract curve. In this context, the left- and

right-wing political power indicators, specified by the bargaining problem
solution, were supposed to be politically designed in advance and subse-
quently tailored in accordance with the citizens’ visions and ambitions.

It was initially deemed that, due to the uncertainty in the selection of
the breakdown policy, we could only treat the left- and right-wing political
power indicators as given exogenously. While this is true at least in the
valuable examples we provided, we found a condition where we can en-
code the indicators endogenously, to which we referred as the pre-equity
of political breakdown.
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APPENDICES
Al. Example and results

We proceed with a specific allocation of the welfare policy,
encapsulating samples of income density distribution, parameterized by
poverty line &, similar to an exponential function:

P(G,0+h-£)=

B 1 ( c jm_l~ex (_L’
“(O+h-6)T(m)l0+h-¢ Pl o+h-e

where 0 =61.9, m=2.07, and h =—0.18 are additional ex-ante
parameters. More specifically, O controls the wealth of citizens — a hori-
zontal shift of samples; M controls inequality — a vertical shift; h is a
hazard parameter; and F(m) is an extension of (m - 1)! to real num-
bers. The sample & = %51 (median income = p) can be presented as Lorenz
Curve, where citizens below an income 95.1, i.e., 49.92% of the popula-
tion, have 24.13% of a total cumulative income, while the remaining
50.08%, with incomes at or above 95.1, have 75.87%, Figure 6. Gini Coef-
ficient equals 0.37 and is impervious to the horizontal shifts only. Relief
payments, delivered to the population in line with Friedman personal ex-
ception rule in force equal to 'z applied upon the income distribution
sample & = %2y diminished the Gini coefficient to 0.33. Indeed, on Figure 7
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citizens below an income 95.1, i.e., 49.83% of the population has slightly

increased to 25.83% of a total cumulative income, while the remaining

50.17%, with incomes at or above 95.1, have slightly decreased to

74.17%.

The density function P(c,0+h-&), depending on &, reflects the

initial wealth redistribution through tax channels. Political decision
E'> & shifts the density distribution P(5,0+h-§) of incomes hori-

zontally toward the allocation P(c,0+h-E") that favors less wealthy.
When shifted, the distribution P(c,0) masks the h-factor, h = 0, of the
benefit claimants. The rate of change Hz(§) =h-a(0+h-&) <0 of

the policy (2 quantifies a fiscally tolerable hazard (h < 0 ).

Lorenz curve without contingency
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Lorenz curve: contingency improved
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Simulation foundation and illustration

90

In order to perform simulations, the expressions for average B(&) of
expenses on the relief payments and average taxable income — the wealth

amount W(§) — can incorporate income density distribution

P(c,0+h-&) inamore realistic but general form:

&

B(E)=r-[(¢-0)-P(c,0+h-E)do; r-(§—0) is the Li-relief
0

payment, O<r< 1;

€
WE) =[(c+r-(§-06)-9)-P(c,0+h-E)do +

+[(6-9)-P(c,0+h-E) .
€

In the left- and right-wing political bargaining, the choice of E_, , In
general, is also determined by the ability to maintain the average income

a(0+h-&),inorder to uphold a(0+h - &) > W(E) within the
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“striking” distance from W(E_,) , which can be ensured through proper
choice of the personal allowance constant () > 0, where ¢ identifies a

flat tax bracket [(I),OO). The average a(0 +h - &) of income G over the
density sample P(5,0 +h &) equals J;DG -P(c,0+h-&)do.

The taxation of the total income O +1I - (?; -0 ) of the needy com-
plies with the rules and norms in force, while the h-factor reveals the in-
verse working incentives, namely the feedback of the welfare recipients.

At this point, it is useful to verify that a disagreement policy O under
the primacy of equity principle of breakdown might be an outcome of the
game. There is no reason to assume that the equation

(5-¢)-(BG)+d,)-(5-d,)- W(5)=0.

in accordance with Observation 3, should have a solution in general. How-
ever, for the income density P(5,0+h - &) (see above), a solution can

be found. Given payoffs <u, g> at the endpoints
(u, =6.44,g =47.18), (u, =89.26, g, = —2.49) of the scope
of negotiations — within the interval [E_,l =8.00, E_»z = 144.54] — it

can be shown that the pair

d= <d1 =u,,d, = g2> = <6.44, —2.49>, u, <u,, g >g,
consolidates an equity for breakdown policy & = 6.39 ¢ [E,.l > ‘t:.z] ;
wealth W =120.46 andtax T =—2.06% .

It should not be surprising that the amounts of public goods and tax
rates may be negative. Ensuring this game outcome, the interpretation
suggests that the simulated breakdown demonstrates a specific payoff
deficit on public goods when it is impossible to cover all the costs through
taxes. In such a scenario, as we have pointed out earlier, when discussing
negotiations breakdown, it is necessary to resort to an external loan,
money printing, or use of natural resources, if the latter are available.

The magnitude and dimension of poverty proposals to be debated or
implemented, as outcomes of the left- and right-wing political bargaining,
are given in Table 1.
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Recall already known proposals for incomes 1, 7»1 , A, 7»2 , 0,
whereby O is outside of the scope of negotiations, O & [ ?;1 R &2] and the
poverty proposal % L, with their definitions given as follows:

n the policy on poverty with equals left- and right-wing political power;

the left- and right-wing political organizations are in symmetrical posi-
tions or in equal roles;

7\,1 the outcome of the alternating-offers game — representing what the
right-wing politicians accept;

}\4 the policy on poverty minimizing wealth-tax;

1/2“ % of the median income, indicating that half of the population earns
income above |l , while the income of the remaining half is below
M

7\‘2 the outcome of the alternating-offers game — representing what the
left-wing politicians accept;

o the least desirable outcome, resulting in the policy breakdown or dis-

agreement, which naturalizes the risk of negotiations’ premature col-
lapse, caused, for instance, by mutual traps.

A3. Verification

Proof of observation 1. Let us now assume an inverse scenario,
whereby U > u'= (&, 1(§, X)). Here, the left-wing politicians —
LWP — aim fo improve the poverty line residue U', i.e., an after-tax
residue of a marginal citizen G = & with income equal to the poverty line
Z; . By initiating a new rule for policy (i' > (2, the LWP attempt to imple-
ment U > U'. Because of the inequalities U > 7(c, T(§, X)) > u', for

some highly pragmatic benefit claimants G, it becomes apparent that they
can be better off by claiming relief payments. Consequently, actions of

these claimants will increase the expenditure B(E') > B(&) on the
relief  payments and shift the balance of  books
B() =x-1(§,x)-W(E) toward deficit
B(€") > x-1(&,x)- W(E). The balance was valid in the past, when
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(©)

B
T(E,X) = ———=—. Thus, the only option that would ensure that the
x-W(E)

balance in maintained, as the LWP must stay committed to X, is to adjust

WEX) 1o (E, a',x)=%

the agreement. Otherwise, keeping the old policy i intact, the LWP could

> 1(E,X), as X was fixed by

— through a decrease in X — violate the commitment X . As LWP can-
not directly change X, they resort to reducing the deficit via a tax in-

crease. If u > (&', T(&, 2:', X)), the LWP must continue with the tax
adjustment policy by ’E(E’;’, (.t,",X) > ’E(Z‘,,é’;', X), now adjusting upon
the welfare policy g' and proposing a"> E_,', whereby the new deficit
becomes B(E") > x-1(§,E',X)- W(E'). These improvements
u > u'"> u' initiate a sequence of poverty policies (..., ﬁ"> §'> é,...)
and after-tax residues (...,U > Uu">Uu',...) of marginal citizens. Thus,
the conditions U =" and & = £" can never be met, as this would con-
tradict the assumption that the equation U = 7(&, T(€, X)) cannot be

solved for f‘, For this reason, the sequence ...,&V;"> &',... is infinite. W

The chain of reasoning regarding U'> U is similar to that outlined
above and is presented as a set of instructions. It should first be noted that,

at low values u' >u" >u , even when taxes are low, there would al-
ways be a surplus to finance the LI benefits and relief payments. The sur-
plus masks a contradiction, since it is clear that, at low values of the after-
tax residue parameter U , benefits financing can always be balanced.

Replace to implement by  to make a decline in
an improved
- better off - worse off
Improve Decline
- improvement a deterioration
to claim for that relief payments
- relief payments - have been revoked
- deficit - surplus
- >,> - <,<

Transpose: an increase with  a decrease
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In what follows, we investigate the payoffs <u, g> € Sb of the left-
and right-wing politicians. The consensus occurs at outcomes
(I),é."3 = Z,X,OL,’C,<L1, g> under the constraint that the variation in pol-
icy & does not improve the position of the left-wing politicians; rather,
the policy emerges as the point on the contract curve Sb =u(g) as
fiscally idempotent outcome.

For fiscally idempotent outcomes, the arguments of after-tax residue
U, share X, policy ?'; , and tax rate T depend on each other. The share

X =X", if settled as eventual agreement, redirects the residue

u="mn(§, 1, X") to become a function u =u(§,x°). Thus, the
peak policy U with regard to the best welfare policy can be expressed as:

g% =arg max, u(&,x")

Lemma. Let us assume that left-wing politicians do not shift from the

share X =X° and that the volatility constraint (4) solves for two differ-
ent policies E_,1 < az- Let the tax sacrifice

t(&,,XO) = ‘C(&,,Xo) . (a - (1)) be a differentiable function of {j, pro-
gressively increasing with E_, within the closed interval [EM,E_,Z] —

namely, the following derivatives hold:

Otex) >0, x| <0 and & t(&,x°) > 0
— N , T N and ——— 9 .
o8 e, 08 s, &

In such situation, the poverty line residue U(E,X°) =& —t(§,X°) isa
single N-peaked function of E_,

Corollary. There exists a unique interior policy éo maximizing U at

0 o B
6_§u(E”X )g_&o =0.
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Provided that the conditions of the lemma are fulfilled, the discussion
that follows concerns the necessary and sufficient conditions for the fis-

cally idempotent policy & to occur at the contract curve.

Observation 2. Let us assume that the volatility constraint (4) is dif-
ferentiable from its arguments. The after-tax residue U = u(é,x") is
differentiable and single peaked with respect to the policy a within some

closed interval [§1,§2]. For a fiscally idempotent outcome
(1),&,0 :>ZO,XO,OL,’CO,<u0,g°> to occur on the contract curve

Sb = u(g) , it is necessary and sufficient that the policy E_,o solves the

set of equations:

) iL(&, x°,u’)  =0,where u’ =u(g’,x")

% gt
provided that
0
(ii) —L(E,x°,u) #0.
ou
Proof
Necessity. Let the fiscally idempotent outcome

$,&° = ZO,XO,OL,’CO,<u0,gO> on the contract curve 8, =u(g)
maximize (Al) at U° = u(&" R ’E(ao , X’ )) . Varying a in the vicinity of
E_,O of the outcome d),ci;o = ZO,XO,OL,‘EO,<uO,gO> and substituting

u=1u(§,t(g,x")) into the volatility constraint (4), we obtain an iden-

tity L(a, x°, R(E_,, T(a, x° ))) = (. Within the proximity of (&0 ,u’ ),
the following equation holds for arguments (2, u:

8 o oy, O 1 g0 o iy, 0 °)) =
a_gL(g,x ,u )+8uL(§ ,X%,0) agn(i,r(&,x ) =0, (A2

from which we deduce the necessity statement for & =&° and u =u”.
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Sufficiency. Suppose the condition (ii) holds. Let (i) solve for &,0 at

the fiscally idempotent outcome (I),(%O = ZO,XO,OL,’EO,<u°,g°> .
Combining (i) and (A2), we conclude that

0 o B
a—éﬂ(ﬁ, (& x")) L 0.

The sufficiency clause (A1) holds, since U = U(&,X"°) is a convex
function of & .M

Proof of Observation 3. The clause is correct, provided that there ex-
ists a fiscally idempotent policy O for the implementation of the pair

(d,.d,).
In order to identify such a policy, we first replace the variable g with

d2 in the expression for the constraint (1). Next, we extract the expression

= —B(S) +d, from (1) and substitute it into (1— T)... of the
W(d)

constraint (3), where U should be replaced by d1 in advance. By simpli-

for T

fying, we arrive at the statement of the observation.®

Sketch of the proof (Observation 5). Looking at the tax rate

T>7T for any outcome ...,r,<u,g> € Sb, one may indeed prefer a

min ?
counter outcome as a motion ...,T, <u', g'>, which outlines
cees Ty <u'> u,g'< g> or ...,1:,<u'< u,g'> g>. As the contract curve
Sb =u(g) is a curve of efficient preferences <u, g> guaranteeing the
poverty line residue U(g), someone could put a motion u'>u® or
g'> go against an outcome..., T > ’Cmin,<u°,g0>. We argue that, in

order to fulfill the expectations and requests of citizens’ majority, it is
necessary to  pursue political consent via the proposal

ey T = t(k),<u° =u(A),g° = g(k)> |
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T-W(©)=B(5) +¢

B(&)=x-1-W(g)

u=1-19-C-¢)+¢

u=6-1-(5-9)

Chapter One

Delivery constraint: the size of the
welfare pie, i.e., the average amount
of tax returns is equal to the sum of
the average monetary value per capita
of primary goods and the average of
non-primary goods g .

Budget constraint imposed on the
relief payments finance in accordance
with the share X of the wealth-pie —
the tax-revenue.

Stability constraint that determines
fiscally idempotent policy f .
After-tax residue constraint: an

alternative form of stability constraint,
where U is after-tax position of a

marginal citizen with income G =&,

which concedes with the left-wing
political aspirations.

A4. Mathematical derivation

B(©)

Replacing T =
x-W

from the budget constraint into the stabil-

ity constraint, we obtain the volatility constraint (4) as stated:

L(& x,u)=(5—¢) B(&)—x-(§—u)- W(&) =0

that amalgamates budget constraint and after-tax residue. Contract curve

(5) is thus given by:

D(&,x,u)=L. (&, x,u) =

~[e-4)-BE) -x-(&—u)- W©)]: =0

L. (& x,u)=

=B(&)+(—9)-BE) -x-W()—x-(&-u)-W(E) =0

The last expression may be rewritten as:
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D(&,x,u) =
=B()+(E-0)-BE)-x-(WE) +(E-u)- W(©)=0
Extracting X = (%—_1?))57((2)) from the volatility constraint (4),

we can substitute variable X into the rewritten expression for
D(ﬁ, X, u) . The substitution results in the following expressions:

B(&)+ (&~ 0)-B()-

G0 BE) (o4 ()t

o wey WO E-wWE)

(BE)+(E-0)-BE) (E-u)- W(E)-

~(E-9)-BE)- (W@ +E-w0-W@) _,
(E—u) W(®)

Provided that (§ —u) > 0 and W(E) > 0, we can conclude that
the following is true:

(B&) +(E-9)-BE))- (5—u)- W(E) -
—(E—9)-B(®)-(W(E) + (E—u)- W(®))

, or
0

0

This allows writing the sub-expression (§ — 1) in the form:

( (BE)+E-)-BE)- WE) —j Emu)-
-(E-9)-B©)- W)
~(E=4)-BE)- W(©)=0.

As a consequence of presenting the sub-expression (§—U) in the
form given above:
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£ —u = (5-9)-BE)- W) o
(BE)+(E-0)-BE)) W(E)-(E—)-BE)- W(E)

We observe that

. (5-9)-BE)- W) o
(B(®)+(E—0)-B(E))- W(E) - (E—)-B(E)- W(E)

We can now substitute the tax rate T from the delivery constraint into
the  after-tax  residue  constraint.  The  result will be

u= &—m -(§—d). After replacing the result into the ob-
W(©)

served U -expression, we obtain:

g2 (g g)-

W(E)
e (5-9)-BE)- W(E) |
(B©) +(&-9)-B(&))- W(E) - (£—9)-B(E)- W(&)

B +E . . _
W €Y

_ (5-9)-B(E)- W(E) |
(B©) +(&-9)-B©) W(E) - (£—9)-B(E)- W(E)

(B(&)+g) (E-9)=
_ (E-9)-B(&)- W(©) W() _
(B(&)+(&-9)-B(&)) W(E)- (&~ ¢)-BE)- W(E)

B(®)+g=

_ BE): W(E)- W) _
(BE)+(E-0)-BE) WE) - (E-0)-BE)-WE)
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. B(E)- W()-W(E) .
(BE)+E-9)-BE) WE-E-9)BE)- WE
-B()

We can now impose the denominator in the last expression for € on

sub-expression for (§ — @), which can be written as:

(B&)+(E—9)-B(E))- W(E&) —(E—)-BE)- W(E) =
—B()- W(&) +(&—)-(BE)- W(®) -B(®)- W)

Continuing with the expression for g (Ej,) , we can replace the denomi-

nator transformed above:

_ B(E)- W()-W(5) o
B(&)- W(&)+(E—9)-(BE)- W(E)-B(&)- W(©))
-B(©)

g

B()- W(E)- W(E)-
B(&)- W —0)-
_B@( © WE+E-0)- )

(BE)- W(E)-BE)- WE©))
B(E)- W(E)+(E—9)-
(BE)- W(E)-BE)- W)

g:

Now, both the nominator and the dominator can be divided

by B(§) - W(E), yielding:
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(B(E_,) W) +(E-9)- j

W(E)-B(£)- ) (B(EJ) : \g((;)-ﬁ((;) : W@))

&= [B(é)-W(i)H&—@)- j
(BE)- WE)-BE)- WE))

Let us define V(&)= 1+(§ d)- (EEE; ggz;j, as this al-

lows us to evaluate the expression for the right-wing political objective on
public but vital goods as:

W) -B(©) v(©) _ W(©)

O="""6

~B(©).

In accordance with the delivery constraint, the size of the wealth-pie

T(E) - W(E) equals B(E) + g(&) . Consequently, the tax rate is given

by:
WE©) _
s+ (M9 e
o) - BO+ @) _ Yo ) |
W(E) W(©) v(©)
Replacin, the T= L in the after ta residue

o v(®)
u=E&—1-(§—09), we can finally evaluate the expression for the left-
wing political wants on basic goods as: u()=§¢- (a d))

V(&)
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Irrational Behavior when Buying

and Selling Stocks:
Monotone Linkage Choice Model *

Abstract. We focused on the possibility of the irrationality of transactions when
buying shares at a higher price. To show this phenomenon, we use an innovative
procedure for statistical analysis of buying and selling stocks in the stock market,
whose indicators with a higher dynamics of change compared to other indicators
have an advantage in predictive ability.

Keywords: indicators; credentials; monotonic; system; kernel

1. INTRODUCTION

We start with a "visual" or "pedagogical exhibit". When accepting the
order in a restaurant, the sommelier explains that at the moment some of
the most expensive, and in other cases may be, the cheapest wines indi-
cated by the guest on the list as possible favorite choices are temporarily
absent. The absence on the list of the most expensive wines, for sure, will
encourage guests to expand the list of cheap wines with those that at first
glance have not yet been approved, or at least keep the list of those cheap
wines that have already been approved. On the contrary, the lack of ap-
proved, at first glance, cheap wines may induce the sommelier to suggest
more expensive wines in favor of others available for order, also cheaper,
but quite good and better wines. More often than not, guests agree with
such a proposal. This irrational behavior was our main motive for inform-
ing the reader about "these events." The phenomenon of irrationality is
illustrated based on a probabilistic-statistical analysis of the numerical
indicators of the exchange market.

In probabilistic-statistical analysis two opposing approaches can be
distinguished: from subjective to objective knowledge and in the opposite
direction — from objective to subjective. In the first approach, such spe-
cialists as a physician, biologist, astronomer, practitioner or market ana-
lyzer... those who have knowledge in their field, use data visualization for
objective statements about the obtained estimates of experimental data,

Miinich Personal RePEc Archive, https://mpra.ub.uni-muenchen.de/101591/
(Acessed 23.12.2021)
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observations, etc. With this approach, from a subjective assessment to an
objective assessment, probability research includes: Markov processes
(Rogers and Williams, 2000), Lévy processes (Applebaum, 2004), Gaus-
sian processes (Lifshits, 2012), random fields (Adler, 2010)... Statatistical
analysis includes space state models (SSM, Koller and Friedman, 2009),
parameter estimation (Walter and Pronzato, 1997), management and deci-
sion-making problems (Narula and Weistroffer, 1989), continuous model-
ing, multiple time series (Voelkl et al, 2012) and computational methods
(Mirkin et al, 1995). In both areas the knowledge of the distribution of
judgments about the object under study is necessary that is not always the
case.

The objective to subjective assessment, both to statistical and probabil-
istic indicators, at first glance, seems to be contradictory. It seems that
specialized knowledge is also required. Nevertheless, it is very possible to
do without special knowledge, as well as knowledge about the distribution
of numerical parameters — indicators.

The procedure of the objective to subjective approach considered be-
low could be called the "blind glance of statistical scoring", which is what
we need. The only thing the Data Explorer uses in blind scoring is that one
number is greater/less than another. If common sense is achieved, then the
well-known law of parsimony or "Qccam's razor" will come into force.
A procedure that requires fewer assumptions about reality can be consid-
ered the most reliable. Our parsimonious procedure is somewhat consistent
with the postulates of bounded rationality of choice when buying and
selling stocks on the stock market.

In particular, when studying the dynamics of time series, instead of ab-
solute values, we are often interested in indicators over/under estimating
these values relative to some given threshold U . Since the procedure
described in the article can set the threshold of significance U of absolute
values in a certain time interval, now the same procedure can be applied to
the “induced” indicators & A of “overshoot” or “undershoot”. As a result,

we will be able to calculate some interval [— A1 +u,u+ A2 ], where -

— A1 is the underestimation undershoot, and + A2 is the overestimation

overshoot threshold relative to the same absolute threshold U . Download
an EXCEL spreadsheet (see below), where the Ctrl+s macro can be ap-
plied to both positive and negative values in columns, rows, or even tables.
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2. PARSIMONIOUS APPROACH

The wine list is ordered in descending order of price, and 1 multiplies
the price of the most expensive wine, 2 multiplies the next local price, then
3 the next, and so on. We call these numbers as price credentials. The local
maximum of credentials and the price of wine are selected when this peak
location from the top of the ordered list — the maximum is reached. The
guest decides to accept the price of the wine at the local credential maxi-
mum as an acceptable level of price significance when choosing wines
with a higher or equal price level.

Before we get to the main part of the note, we will highlight some of
the points of our short notice. We use extended quotes from well-known
experts on the decision theory (bounded rationality) that was found online
(Tomasz Strzalecki, TS, Accessed via Google: December 28, 2021, avail-
able to download from http://datalaundering.com/download/notes.pdf),
since excessive or own repetition of the main provisions of the theory, it
seems to us, cannot improve the explanation of the postulates of the the-

ory.
3. SIGNIFICANCE INDICATORES

Here we will look at just a few details of our procedure for analyzing
stock market data. Let's define a set of indicators P i € W, ‘W‘ =n, of

n indicators, j=1,1n. In particular, let the sample, denoted as H , com-
pare all indicators P i € H as potential candidates for significance. We

can further define a totality of sets {H} ofall 2" samples HC W . Let
credentials n(pj,H) =D; ‘H‘ (in terms of Kempner et al., pp. 19-24,

1997, as monotone linkage functions) evaluate the level of significance.
The procedure for finding the most significant indicators is easy to set

up. First, all the indicators P j»are sorted in descending order, constituting

(like wines order in wine list) the order <p j> , and then a sequence of

credentials TC=<TCj>=<p j>-j, is constructed. The sequence TU is

called defining. The visualized indicators <p j>, in contrast to original

indicators P j» are necessary descending.
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4. SIGNIFICANCE LEVEI

The credentials <TC j> , j= I,n, are single peaked, where the peak

denotes the kernel H (Mullat, 1971-1995) of a monotone system. The

N
set H constitutes the rational, i.e., the monotone linkage choice imple-

1,n

mented in our findings. The local arg max._ <TC j> denotes a peak

* *
indicator P, at a location k  from the top of the defining sequence,

where the local maximum is reached. This value p:; will be called the

level of significance of indicators P ;.

Proposition. Among the totality of all samples H C W | i.e.,, among
all the sets {H} of all 211 samples, the kernel H guarantees reaching
the global maximum of the credential function F(H) of samples H

equal to min, _, 7(p;, H) : H' = argmax,,_,, F(H).

The proposition confirms the postulate of independence from rejected
alternatives, known in two-persons games since 1950 in the bargaining
problem solution, Nash John F.

5. BOUNDED RATIONALITY POSTULATES

We emphasize it once again, as said, that the theory of bounded ration-
ality choice (e.g., Arrow 1959) is better explained not by my own words,
but by the words of specialists in this field. Below I shell slightly modify
the nomenclature for my own purpose. I downloaded these notes from the
public domain, licensed under a Creative Commons Attribution Non-
Commercial-No Derivatives 4.0 license, Tomasz Strzalecki, TS,
available online (Accessed: 9 July 2020):

“These notes are based on lectures I gave at Harvard in 2010{17 and also
those I gave when visiting the Cowles Foundation at Yale in 2012...

...Models in Economics are micro founded, which means that at the bottom of
every model there is an economic agent (often many of them) choosing an action
from an opportunity set. This set, often called the budget set or a menu, represents
the various actions that are available to the agent. But which action will the agent
choose? By far the most popular theory is that the agent will choose the alternative
with the highest utility. In the most basic version of the theory the utility function is
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an as-if concept, which means that we don't claim it exists in any material sense
nor is it necessarily related to the agent's well being, emotions, or biology. It is just
a mathematical construct that helps the analyst make sense of observed choices:
the agent behaves as if he maximizes a utility function. We don't care how the
agent manages to maximize the utility (it may be a hard mathematical problem)
because utility is just a language of description and it is not taken literally.” ...

..Let X be a set of alternatives that the agent is choosing between. They can
be either immediate “payoffs" (for example different candy bars of which your diet
lets you eat only one) or more structured objects (such as retirement plans). There
are three main “languages" that help us describe choice:”

The following item is the most important for us.

“A choice function, TS. The analyst observes which element the agent
chooses from every nonempty set A C X. Let C(A) denote that ele-
ment.”

We use an uppercase letter for the selection function C(A), which
emphasizes that the user can observe for analysis not a single element but
a set C(A) to decide the set of best alternatives selected from A . In

fact, the set A selected for choice action will be considered as an area in
the EXCEL spreadsheets — as cells in a column, a row or tables that can

be selected using the “pasted” option. The choice function C(A), fol-

lowing the basic wine selection procedure described above (December 27,
2021), was programmed using the Cntrl-s macro, available online,
http://datalaundering.com/download/TyskeAktier29062020%202.xls

Finally, we recall in a more formal form the postulates (cited by Aiz-
erman and Malishevski, 1981, pp. 65-83, English version translated from
Russian, p. 189 ) that we will note in connection with the procedure of
supposedly rational choice of our guests in restaurant:

o Independence with respect to dropping rejected alternatives (or, for
brevity, elimination of options), Postulate 5 (Chernoff, 1954, pp.
422-443) or Axiom 2 (Jamison and Lau, 1973, pp. 901-912):

C(X)  X'c X thar C(X') = C(X) ;

o Succession, which is the same as Postulate 4 (Chernoff; 1954), or
condition QL (Sen, 1971, pp. 307-317) or the axiom C2 of Arrow-
Uzawa (Arrow, 1959, pp. 121-127):

C(X")2C(X)NX'!

! Recall that we spoke in the language of barmaid about this postulate in our

"Game of Singles": "The old love does not rust."
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o Strict Succession or constant residual choice (it is the same as pos-
tulate 6 (Chernoff, 1954), and one of the forms of the "weak
axiom of revealed preference” of Samuelson, , i.e., the axiom C4
(Arrow, 1959, pp. 121-127):

C(X')=CX)nX'.
6. FINDINGS AND EXPERIMENTS

We tried to confirm these postulates predictive abilities in our experi-
ments programmed in the EXCEL spreadsheet with share prices on the
German stock market using the statistical approach of our parsimonious
procedure. As one would expect, our experiments confirm the postulate of
independence of rejected alternatives. However, succession or strict suc-
cession occurs only in relation to the most valuable stocks in the market.
In contrast, the exclusion of certain cheap stocks from the sale presumably
forces buyers in some situations to refuse to buy other cheap stocks that
are still available for sale in favor of more expensive ones. Therefore,
within the framework of the monotonic choice model, it must be admitted
that transactions to buy more expensive shares are irrational.
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APPENDIX

Some comments are necessary in order to explain the implementation
of the aforementioned “procedure” for the analysis of the stock market
dynamics. The reliability of data on the sale and purchase of stocks on the
market is guaranteed by the fact that the Nordet online, exchange was
used, where all transaction data have been available to everyone. The
spreadsheet ~was compiled using Nordnet public domain
https://www.nordnet.dk/markedet/aktiekurser/ (Accessed: Monday, De-
cember 27, 2021).
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The stock market monitoring spreadsheet consists of 620 Germany
companies. Some columns show relative £% rise and fall in stocks prices,
last purchase, sale, etc. As you can see, some cells differ from others in
certain patterns and frames. These highlighted patterns and frames are the
result of using the macro — Cntrl-s. Cntrl-s means, as said, that an analy-
sis of the significance levels of the negative/positive values of the stocks
indicators dynamic has been conducted. Using the macro in columns,
rows, or selected (“pasted”) areas of the spreadsheet in their entirety may
consist of negative/positive numbers distributed throughout the areas
without any special order for negative or positive numbers. However, the
standard EXCEL data sorting options allow you to sort selected areas in
ascending or descending order depending on the specified columns or
rows. Thus, having, for example, negative values scattered across a
spreadsheet in different cells, these cells can be redistributed together into
“contiguous areas” of negative or positive values in the columns or row
patterns to satisfy the necessary conditions. Such contiguous areas can
help visualize the analysis results.

A note may be helpful. If macro Cntrl-s produces only a few selected
cells or an unsatisfactory small number of special patterns and frames —
in the case of very high positive or very low negative values — the same
macro can be reused, now outside these sharp numerical jumps that were
designated as unsatisfactory, i.e., when the macro detects too small areas.
In doing so columns or rows must be first reordered in ascending descend-
ing order to bring the positive/negative indicators into contiguous areas.
Now, reusing Cntrl-s macro in the gap, i.e., against not yet patterned and
framed cells, to add additional meaningful cells in addition to previously
selected cells, can help to improve the situation.

Negative significance level = | -1.67% | € 34.60

Positive significance level > | 1.36% | € 0.60 €44.80 €43.01] €44.59|
Company in Germany Today % Today +/— Last Buy Sell
181 DrillischAktiengeselischaft 1.656% | £0.38 €2267 €2265 €2270
11 88 0 Solutions AG 2.16% | £0.03 €136 €136 €142
2G En. AG 446% | €280 €65.60] €6560 €66.40
3M Co. 043% €058 | €136.08] €134.86] €136.08
3U Hold. AG €0.04 €160 €158 €164
4SC AG -0.60% €0.01 €167 €163 €167
4basebio AG £0.04 €199 €199 €200

Stock Market Table, shortened.
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One can read the following about Nordnet
(https://nordnetab.com/about/nordnet-overview. Accessed: 23 August 2020):

“Our target group is Nordic savers and investors. We offer prod-
ucts and services to both experienced investors and beginners, no mat-
ter if they have knowledge or need guidance, wish to spend hours on
your investments every day or simply review your savings a few min-
utes a week.”

Our vision is to become the Nordic private savers’ first choice. To
achieve this objective, we must always continue to challenge and inno-
vate, keeping user-friendliness and savings benefit at the top of the
agenda. Only then can we achieve the high level of customer satisfac-
tion and brand strength required to become a leader in the Nordic re-
gion in terms of attracting new customers and producing loyal ambas-
sadors for Nordnet.

We help people and money grow. We are passionate about creating
a world-class user experience. We simplify to make it easier for people
to make smart investment decisions. We share our knowledge and in-
spiration without any hidden agendas.

The overarching purpose of Nordnet’s operations is to democratize
savings and investments. By that, we mean giving private savers access
to the same information and tools as professional investors. This pur-
pose has driven us since we started in 1996 and remains our direction
to this day. In the 1990s, the idea of democratization entailed offering
easily accessible and inexpensive share trading via Internet, and build-
ing a fund supermarket with products from a number of different com-
panies where savers could easily compare returns, risk and fees. Dur-
ing the journey, we have simplified matters and pressed down fees on,
for example, pension savings, index funds and private banking ser-
vices. In recent years, we have democratized the financial sector with,
for example, the stock lending program. We are always on the savers’
side, and pursue issues of, for example, the right to transfer pension
savings free of charge and reasonable and predictable taxation of
holdings of stocks and mutual funds.

Our target group is Nordic savers and investors. We offer products
and services to both experienced investors and beginners, no matter if
they have knowledge or need guidance, wish to spend hours on your
investments every day or simply review your savings a few minutes a
week.”



gettyimages =~ %

Tetra Images

149260888




151

Financing Dilemma Supporting a Project

Abstract. This article can be considered as an independent but at the same
time complementary addendum to the previous article on bounded ration-
ality in decision-making. With this in mind, the concept of rational deci-
sion-making core (the kernel) was re-visited to form coalitions in the game
of interconnected players, characterized by monotonous contribution func-
tions. We have focused on ad hoc coalitions that have an advantage over
the rest due to the higher contribution of each individual member.
Keywords: coalition; game; contribution; donation; monotonic; project

1. INTRODUCTION

In multi-person games (Owen, 1971, 1982) a coalition is formed by a
subset of participants. Among all coalitions, rational coalitions are of par-
ticular interest, as these allow all participants to gain individual benefits. It
can further be stipulated that extraction of this benefit is ensured inde-
pendently of the actions of players that are not coalition members. In this
note, we will deal with one of the simplest cases of player-formed coali-
tions, all of which can be considered as “outstanding” in terms of bounded
rationality. Bounded rationality is the idea that rational decision making of
people is limited by people’s irrational nature.

The class of games proposed is subjected to an additional monotonic
condition, which has been studied in previous work of Mullat (1979).
However, it should be noted that no prior knowledge of the subject matter
discussed here is presupposed. Still, the formal theory of monotone sys-
tems adopted in this note is identical to that described earlier by Mullat
(1971-1977); the only difference arises in interpretation, and pertains to
the abstract indices of interconnection of the system elements, which are
treated as donation intentions. The approach developed in this note enables
us to establish, in one particular case, the possibility of finding rational
coalitions in accordance with the principle of independence of rejected al-
ternatives according to Nash (1950). However, for the purpose of simplic-
ity, the following scenario might be informative.

Communicated with E.H. Ky3nenos, UactutyT npo6siem ynpasnenust uM. B.A.
Tpane3nukoa PAH Poccust, 117997, Mocksa, [Ipodcoro3nas yi., 65. Previous
work in “Stable Coalitions in Monotonic Games”, Avt.. i Tel., No. 10, pp. 84 —
94, October, 1979 (Russian version). Original article submitted October 3,
1978. Plenum Publishing Corporation, 227 West 17" Street, New York, 10011.
We alert the readers’ obligation with respect to copyrighted material;
https://mpra.ub.uni-muenchen.de/96879/ (Accesed 24/01/2022).
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2. PEDAGOGICAL SCENARIO
Here we are dealing with participants who intend to fund a project be-
ing under development through donations. In principle, each participant

j =1,n is willing to contribute a certain amount p; supporting the pro-
ject. In summary, each participant's donation amount P i might be in ac-

cord with distribution defined by an exponential density function:

1
F(x.B) = E'exp(—%) for XZO,.
0 for x<0.

In favor of the project it is expected to collect a certain fund to finance
the project. However, as a result of negotiations about the appropriateness
of the planned project with like-minded participants, their preferences will
be reoriented. It is assumed that a certain coalition game arises here in ac-
cordance with the monotonic game scheme, the solution of which is the
concept of a kernel (Mullat 1979). Intricacies of financing interests of the
participants are presented in the form of a solution called the kernel that
will constitute a certain group of participants who agree to finance the pro-
ject, but perhaps not to the extent to which they were originally intended,
but still within reasonable limits. In fact, this reasonable limit is the one
most reasonable of all possible options for financing the project in its final
version. It should be noted here that a reasonable scenario is understood as
a certain guaranteed payment, in which each project participant guarantees

a contribution to the expected total amount.

We define the credential of participant j € H as 7(j, H) = ‘H‘ P
Thus, it indicates that the total expected payments of all in H will not be
less than F(H) = minjeH Tl',(j,H). The kernel H in this scenario

will be understood as participants H = argmaxy F(X) . The ker-
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nel H is remarkable in that it guarantees a contribution F(H ) to the
project. Can more participants with lower individual P j payments inten-
tions fund the project to a greater extent? Such situation is possible, how-

ever, such payments cannot be guaranteed — this is the point. In what fol-
lows, we will focus only on payments guaranteed by project participants

belonging to the kernel H .

The global maximum for the project funding by the kernel participants
will form the basis of independence in accordance with the hypothesis of
the so-called rejected alternatives, that is, regardless of the preferences of
the participants not included in the kernel, if any are found, which never-
theless consider it appropriate to participate in the kernel. But we should
not particularly believe them, as they will not be very reliable, and may

seek to change their preferences not in favor of the project.

Therefore, we assume that non-kernel participants refusing to partici-
pate in the project will not affect those who belong to the kernel, i.e., the
views and activities of the kernel members. Here we are dealing, as said,
with the so-called principle of bounded rationality, that is, the principle of
independence from rejected alternatives (cf. Nash, 1950). In essence, this
principle in our particular case of project financing ensures that project
participants are kept abreast of developments. The kernel participants will
not change their decisions on financing regardless of what is happening or
what change the conditions for participation in the project, despite the fact
that some participants in the project refused to participate. If we give this
last consideration a somewhat more formal character, then we can say that
the stability property of decisions made by the kernel participants is noth-
ing but the well-known so-called idempotent principle. After the decision
is revised in the conditions when the commitments and priorities assumed
remain unchanged, it will not require any new adjustments, and this deci-

sion will be made in the same form in which it was adopted earlier.
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Example. Let we introduce in accord with exponential distribution the

preferences P, of participants’ W= {J = 1,11}. We can designate as

X, all participants who prefer to participate in the project together with
their like-minded people, while X prefer to reject the project or have

other reasons for participating in the project.

Let we now try to determine the preferences 7T for the participants J
in X, _] € X, supposing that their contributions in the project together
with others in X be equal to 7(J, X) = ‘X‘ "P; - Obviously, if some par-

ticipant could not at all find a suitable partner for the project, the intention
to contribute will be equal to 7T(], { J}) = ‘{J}‘ ‘P ‘{]}‘ =1. Con-

versely, if all participants contribute to the project and all participants are
in an adequate company W , the estimated contribution will be greater
and equal to 71(j, W) = QW‘ = n)- P;- If now for any reason a partici-
pant J € X decides to spend the rest of the project development alone,
the intention to contribute to all others remaining participants in X, in-
cluding those to which some like-minded participants X — {]} still join,
will decrease: (1, X — {_]}) <n(1,X) for i€ X — {J} On the con-
trary, their intentions to contribute will increase if one J ¢ X of the pre-

viously single participants decides to join X and become a member of

X+ {j}: n(, X + {j}) > n(i,X) for i € X.

The graph below shows the donations of the participants in% relative
to the total amount of their initial intentions on the X-axis with the corre-
sponding contributions in%, as well as to the same amount indicated on
the Y-axis, where their donation preferences were reoriented. As the simu-
lation shows, kernel members are almost always ready to finance approx.

50% of their original intentions.
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The Dilemma Facing Participants Contributing a Project
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Figure 1. The kernel participants contribute at least 52.8% of their ini-
tial intentions to the project. The blue dot is the largest guaranteed con-

tribution in which participants continue to agree to participate in the
project.

To be more precise, in the initial state, the percentage of contribution
to the total amount for financing the project, which reflects, as it was, the

starting point of the participants’ preferences on the X-axis — donation
submission of participants.

The procedure for finding the kernel is very easy to set up. First, all the

expected donation preferences P ,j=1,1, are sorted in descending or-

der, constituting the order <p j>, the X-axis, and then a sequence TU is

constructed as T = <TCJ.> = <pj> * J, by which we have denoted these re-
oriented <TC j> preferences, the Y-axis. The latter sequence is called defin-

ing. We then select the local maximum, i.e., the defining sequence. This is

the kernel of Mullat’s monotonic game, which is represented by a blue dot
in Figure 1.
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I. FINANSEERIMISE DILEMMA PROJEKTI TOETAMISEL

Kokkuvétte. Tuuma mdistet kiilastati uuesti koalitsiooni moodustamiseks
proekti financeerimise méngus, mida iseloomustavad monotoonsed panuse-
funktsioonid. Keskendusime spetsiaalsetele koalitsioonidele, millel on eelis iile-
jédnud osas, kuna iga osalemine koalitsioonis annab suurema panuse.

Mitme-isiku méngudes (Owen 1971, 1982) moodustatakse koalitsioon
osalejate alamriihmast. Kdigist koalitsioonidest pakuvad ratsionaalsed
koalitsioonid eriti huvi, kuna need vdimaldavad kdigil osalejatel saada in-
dividuaalseid eeliseid. Veel voib tipsustada, et selle hiivitise saamine taga-
takse sOltumata méngijate tegevusest, kes ei ole koalitsiooni liikmed.
Sonumis késitleme méngijate poolt moodustatud koalitsioonide {ihte kdige
lihtsamat juhtumit, mida vdib pidada piiratud ratsionnaalsuse mdttes sil-
mapaistvateks. Ratsionaalsus on piiratud sellega, et inimeste ratsionaalset
otsustamist piirab inimeste irratsionaalne olemus.

Pakutud méngude klassile rakendatakse tdiendavat monotoonset
seisundit, mida on uuritud Mullati poolt (1979) monotoonses méngus ja
varasemastes toodes. Tuleb markida, et siin késitletud teema eelteadmisi ei
ndua. Kasutatud monotoonsete siisteemide teooria on identne sellega, mida
Mullat (1971-1977) on varem kirjeldanud; ainus erinevus ilmneb tdlgen-
damises ja puudutab siisteemielementide abstraktseid sidumisnéitajaid,
mida késitletakse annetuste kavatsustena. Vilja todtatud ldahenemisviis
vOimaldab meil tihel konkreetsel juhul esiletuua lihtsa metoodika rat-
sionaalsete koalitsioonide leidmiseks, mis on kooskdlas (Nash, 1950) ta-
gasiliikatud alternatiivide sdltumatuse pShimottega. Lihtsuse huvides
jargmine pedagoogiline stsenaarium voib aga olla informatiivne.

II. PEDAGOGIKA

Siin on tegemist osalejatega, kes kavatsevad arendusjirgus olevat
projekti rahastada annetuste kaudu. POhimdtteliselt on iga osaleja

j= I,n ndus projekti toetamiseks teatud summa p; panustama.

Kokkuvotlikult voib iga osaleja annetussumma P i olla kooskdlas

jaotusega, mis on méadratletud eksponentsiaalse tiheduse funktsiooniga:

1
f(x,B) = E'GXP(—%) for x>0,
0 for x<O.
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Seetottu loodetakse hankida projekti rahastamiseks teatud fond.
Labirddkimised mottekaaslastega kavandatava projekti sobivuse iile viivad
aga nende viimaste eelistused iimbersuunamiseks. Eeldatakse, et siin tekib
vastavalt monotoonsele minguskeemile teatud koalitsiooniming, mille
lahendab tuuma kontseptsioon (Mullat, 1979). Tuum on osalejate
monevorra tahelepanuviédrne alamhulk.

Nagu juba 66ldud on osalejate finantseerimishuvide keerukus esitatud
lahenduse vormis, mida nimetatakse tuumaks, mis moodustab teatud
osalejate rithma, kes ndustuvad projekti rahastama, kuid voib-olla mitte
sellises mahus, nagu need algselt olid mdeldud, kuid siiski mdistlikkuse
piires. Tegelikult on see mdistlik piir mis on parim tulemus projekti
16ppfinantseerimisvoimaluste rahastamisel. Siinkohal tuleb mérkida, et
garanteeritud stsenaariumi all moeldakse teatud garanteeritud makset,
mille puhul iga projektis osaleja garanteerib oma panuse eeldatavasse
kogusummasse.

Miiratleme osaleja J € H mandaadi kui 7(j,H) = ‘H‘ P, Seega

nditab see, et koigi sissemaksete eeldatav kogusumma ei ole viiksem kui
F(H) =min ieH 7(J,H). Selle stsenaariumi tuuma all m@istetakse

osalejaid H". Tuum on tdhelepanuvairne selle poolest, et see tagab

projekti panuse F(H*) Kas viiksemate individuaalsete maksete

kavatsustega P; osalejad saavad projekti suuremal kui F(H*) miral

rahastada? Selline olukord on vdimalik, aga selliseid makseid garanteerida
el saa — see on asja mote. Jargnevalt keskendume ainult nendele

maksetele, mille tagavad tuuma H' kuuluvad projektis osalejad.

Tuuma poolt projektile eraldatav globaalse maksimumi kogurahastus
moodustab sdltumatuse aluse vastavalt juba nn tagasiliikatud alternatiivide
hiipoteesile, st soltumata tuuma mittekuuluvate osalejate eelistustest, kui
neid leidub, mis peavad tuumas osalemist siiski asjakohaseks. Kuid me ei
tohiks eriti neid uskuda, kuna need ei ole vdga usaldusvéirsed ja vdib-olla
soovivad nad oma eelistusi projektis osalemise kohta muuta.

Seetdttu eeldame, et kui tuuma mittekuuluvad osalejad keelduvad pro-
jektis osalemast, siis ei mojuta see neid kes kuuluvad tuuma, st tuumaliik-
mete vaateid ja nende tegevusi. Siin on tegemist nagu juba 66ldud, nn
piiratud ratsionaalsuse pohimdttega, see tdhendab soltumatuse pShimdt-
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tega tagasililkatud alternatiividest, vt Nash 1950. Sisuliselt tagab see
pohimote meie projekti rahastamise puhul, et projektis osalejad oleksid
labirddkimiste arengutega kursis. Tuuma osalejad ei muuda oma ra-
hastamisotsuseid olenemata sellest, mis toimub vdi mis muudavad projek-
tis osalemise tingimusi, hoolimata asjaolust, et moned projektis osalejad
keeldusid osalemast. Kui anname sellele viimasele kaalutlusele mdnevorra
formaalsema iseloomu, siis voime Oelda, et tuumast osavotjate tehtud
otsuste stabiilsuse omadus pole midagi muud kui tuntud idempotentsuse
pOhimdte. Pérast otsuse ldbivaatamist tingimustes, kus vdetud kohustused
ja prioriteedid jddvad muutumatuks, ei vaja see uusi muudatusi ning see
otsus tehakse samal kujul, nagu see varem vastu voeti.

Niide. Tutvustame vastavalt eksponentsiaalsele jaotusele osalejate
W= {J = I,_Il} eclistusi P;, j= 1,_1’1 Voime X -na tihistada koiki
osalejaid, kes eelistavad projektis osaleda, et koos oma mottekaaslastega
kokku leppida, samal ajal kui i—s olevad osalejad eelistavad projekti
tagasi litkkata voi on neil muud pohjused projektis osalemiseks.

Proovime niiiid médrata kindlaks X -s osalejate j € X eelistused,
eeldades, et nende panus projekti koos teistega X -s on vdrdne
(], X) = ‘X‘ *P; - lmselt kui moni osaleja ei suuda tildse projekti jaoks
sobivat partnerit leida, on kaastod tegemise kavatsus vordne
Tt(j,{ J}) = ‘{]}‘ =1- p;-ga. Ja vastupidi, kui kdik osalejad panustavad
projekti ja kdik osalejad on sobivas mottekaaslaste seas W , on nende
viimaste eeldatav panus suurem ja vordne T0(j, W)= (JW‘ = n)-p i
iga. Kui niiiid moni osaleja _] € X soovib vdi otsustab mingil pdhjusel
veeta ilejddnud projekti arenduse iiksi, vdheneb kavatsus panustama
koigile teistele X -is allesjaanud osalejatele, sealhulgas ka neile, kellega
moned mbttekaaslased X -ga  endiselt liituvad: 1€ X — {_]},
(i, X — {J}) <m(1,X). Vastupidi nende panustamiskavatsused
suurenevad, kui iiks varem osalenud iiksiklilkmeline j& X osaleja
otsustab liituda X-iga ja saada X + {J} 1€ X liikmeks:
n(i, X +{j}) > n(i,X).
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Ulaloleval joonisel, Figure 1, on niidatud osalejate annetused
protsentides, vorreldes nende esialgsete kavatsuste suhtes kogusumma
panusena X-teljel koos vastava sissemaksega protsentides, samuti sama
summa kohta, mis on ndidatud Y-teljel, kus nende annetuseelistused olid
iimber orienteeritud. Nagu simulatsioon néitab, on tuuma liikmed peaaegu
alati valmis finantseerima umbes. 50% nende algsest kavatsusest. Kui tép-
sem olla, siis algseisundis on projekti finantseerimise kogusummast tehtud
panuse protsent, mis peegeldab osalejate eelistuste lahtepunkti X-teljel —
osalejate annetuste esitamine.

Tuuma H  leidmise protseduuri on viga lihtne iiles ehitada. Esiteks

Jarjestatakse koik arvud P, ,j =1,n, langevas jirjekorras, muutes jirjes-

tust P, jarjestuseks <p j> , ja seejdrel konstrueeritakse jargmiste arvude

jada, mida me nagu eelpool juba neid arvu tdhistanud olime 7T -ks:
T= <7t j> = <p i > . J mis on Joonise 1 Y-teljel, nn osalejate panuste iim-

berorienteerimine. Seda jada nimetatakse médravaks jadaks. Seejirel
valime selle viimase, jdrjestatud, st méddratud jada pohjal, lokaalset
maksimumi. See ongi monotoonse méngu Mullati tuum, mis on Joonisel 1

tahistatud sinise punktina.
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Equilibrium in a Retail Chain
with Transaction Costs:
Rational Coalitions in Monotonic Games *

Abstract. In a given context, a situation is considered when a retail chain
of suppliers, agents and distributors transforms while transaction costs
increase. As costs increased, orders and deliveries between relevant chain's
groups resulted in the most cost-resilient retail chain. The participants in
such a resilient chain remain in equilibrium, provided that in any transac-
tion, the profit from trading exceeds the cost of the transaction, including
transportation costs. In making decisions about buying and selling, the
participants in the chain had to follow the rules and regulations of what the
author called a monotonous game. A formal scheme of coalition formation
in this monotonic game of connected retail trade participants with mono-
tonic utility functions is described. Special coalitions are studied that have
an advantage for each of the participants over the rest in the sense of a
greater ability to withstand the volatility of the supply market.

Keywords: suppliers; distributors; monotonic game; retail chain; coalition.

Businessmen in deciding on their ways of doing business and on what to pro-
duce have to take into account transaction costs. If the cost of making an ex-
change are greater than the gains which that exchange would bring, that ex-
change would not take place and the greater production that would flow from
specialization would not be realized. In this way transaction costs affect not
only contractual arrangements, but also what goods and services are produced.
Ronald H. Coase, “The Institutional Structure of Production,” Ménard,
C., and M. M. Shirley (eds.) (2005), Handbook of New Institutional Eco-
nomics, Spriner: Dordrecht, Berlin, Heidelberg, New York. XIII. 884pp.,
p-35, ISBN 1-4020-2687-0.

1. INTRODUCTION

Everybody, probably knows that prices on commodity markets some-
times continue to rise unabated on the back of an anticipated shortage in
the global raw materials availability and sharp volatility in the commodity
future markets and terminal prices on fears of an immediate shortage of
materials in the short term. Along with the significant increase in com-

A part of this article was translated from Avtomatica i Telemekhanika, 1980,
12, pp. 124 — 131. Original article submitted 1979. Automat. and Remote Con-
trol, Plenum Publishing Corporation, 1981, pp. 1724-1729. Russian version.
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modity prices, on one hand, the transaction costs increase on inputs like
petroleum, electricity, etc. On the other, while currency of exchange rates
also moving adversely, the situation becomes uncertain. As an example,
one may point at recent market price increase of coffee raw materials,
which did not have immediate consequences for some known positions,
while the distributors ' of a retail chain, however, demonstrate readiness to
make loosing transactions. With this in mind, distributors are trying to
hold prices constant. However, it is also understandable that it would be
impossible for the distributor to make frequent price changes again and
again. Given the current context, they will have no other option but to seek
price increase for distributed commodities with an immediate effect.

Uncertainties in market prices of commodities always lead to an in-
crease of transaction costs. Transaction costs increase once again leads to
additional uncertainties, and the distributors in the retail chain end up in a
dead circle of price increase, which may result that the bilateral trade does
not take place, and the market old supply and demand structure to be
replaced with a new. In the environment of constant price increase, the
orders and deliveries do not match any more for a given supply and
demand structure. In such situations, individual participants in the retail
chain are still assumed to act rationally finding a new ways of making
business with the object of maximizing the profit by trying to restructure
the chain. Worth to note that New Institutional Economics gives an expla-
nation for transactions as mediated through the market in two directions:
the vertical integration, Joskow (2005), where the market structure is
mostly a vertical chain of semi-product components, and the horizontal
chain of services and products outsourced by companies if needed to pro-
duce the end product.

This paper addresses the above situation in question by setting up a re-
tail chain game of the participants in the chain grounding on supposition
that orders and deliveries be met with uncertainty of transaction costs. In
so doing, the paper attempts to develop a numerical description of the
supply and demand structure for the deliveries of commodities in the retail
chain. The allegedly rational behavior of a participant is not always such,
because the participants on purpose may attempt to enter but irrationally
into certain losing transactions in hope to offset the negative effect of the
former. Given this irrational situation the prices will increase additionally
upon already profitable transactions. Numerical analysis of irrational situa-
tions reveals, however, that in case the participants will try to avoid all

A group of retail outlets owned by one firm and spread nationwide or world-
wide.
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losing transactions, their behavior is once again becoming rational and in
such situations the participants of the retail chain will end up in the Nash
equilibrium (1953).

To our knowledge (or lack of that), the retail chain formation, or in
mundane terms the restructuring process of the retail chain is rather com-
plicated mathematical problem, which do not have satisfactory solutions.
However, in recent years it has become clear that a mathematical structure
known as antimatroid is well suited for such type a retail chain formation
process (cf. Algaba, et al, 2004). Antimatroid is a collection of potential
interests groups — subsets of participants, i.e., those who make decisions
to buy and sale in bilateral trade transactions. That is to say, within
antimatroid one will always find a path of transactions connecting mem-
bers of the retail chain — if the latter forms of course — with each other
by mutual business interests inside groups/coalitions belonging to
antimatroid and making the exchange as participants of a characteristic
retaWehstap up beyond convention of the theory of coalition games that the
solution mandatory has to be a core, and take the retail chain formation
process in terms of so-called defining sequence of transactions (Mullat,
1979). The sequence facilitates the retail chain formation as a transforma-
tion process of nested sets of bilateral transactions, which ends at its last
and highest costs’ threshold — the most tolerant retail chain towards costs
— a kernel. Hereby, the kernel operates as a retail chain of participants
capable to cover the highest transaction costs in case of uncertainty. In our
case, the defining sequence of transactions produces the elements of an
antimatroid — some interest groups, cf. Levit and Kempner, (2001); see
also (1991) Korte et al. The defining sequence on antimatroid, in particu-
lar, follows the Greedy heuristic procedure of Shapley’s value, but in in-
verse order, cf. Rapoport (1985).

Bearing all this in mind, the suggested framework allows performing a
series of computer simulations. First, to determine the possible response of
the retail chain participants, to different supply and demand structures.
Second, to identify the participants, where the executive efforts might be
applied to prevent unpredictable actions that may misbalance the equilib-
rium in the retail chain. With this object, we used a model to assemble an
“elasticity” measure for the choice of customers; this measure is repre-
sented by transaction costs’ interval, for which the retail chain remains in
equilibrium.

The rest of this paper is structured as follows. The next section sets up
the basic concepts intending to bring at the surface the calculus of utilities
of participants in the retail chain. It is a preliminary step necessary to
move forward to the Section 3, where the general model of participants of
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the chain is described. In Section 4, which is main part of the paper, the
retail chain game of customers addresses the process of the chain forma-
tion in details. Here the monotonic property of utilities plays its major role.
In Sections 5-6, we construct different varieties of coalitions of retail net-
work players that are “outstanding” in the sense of rationality, and indicate
relations between such coalitions. Also, constructive processes described
in Section 7 for discovering these outstanding players, described in addi-
tional Section 8. A summary of the results ends the study. The proofs of
all theorems, etc., ... are given in the Appendix.

2. DESCRIPTION OF A RETAIL CHAIN: THE SIMPLE FORM

To consider the simplest case of commodities distribution in a retail
chain might be instructive. This elementary model is used at current stage
solely as a convenient means of simplifying the presentation.

The distribution of commodities in the retail chain is characterized by
sales figures that may be expressed as one of the following three alterna-
tive numbers: a) a demand 1] which is disclosed to the particular partici-
pant either externally or by other participant in the chain; b) a capable
supply E:, calculated at the cost of all commodities produced by the par-
ticipant for delivery outside the chain or to the other participants; c) actual
sales Y calculated at the prices actually paid by the customers for the
delivered commodities.

An order is thus defined as a certain quantity of a particular commodity
ordered by one of the participant’s from another participant in the retail
chain; a delivery is similarly defined as a certain quantity of a commodity
delivered by one of the participant’s to another participant in the chain.
We assume that the chain includes suppliers who are only capable of mak-
ing deliveries — the produces; participants, who both issue orders and make
deliveries — the agents; and the distributors, who only order commodities
from other participants.

In what follows we consider the retail chain of orders and deliveries for
the case like “pipeline” distribution without “closed circuits.” Therefore,
we can always identify a unique direction of “retail chain” of orders from
the distributors to the produces via agents and a “retail chain” of deliveries
in the reverse direction.

The distributors also act as suppliers to external customers.
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Let us consider in more detail this particular retail chain of orders and
deliveries of commodities. The direction of the chain of orders (deliveries)

is defined by assigning serial numbers — the indexes 1,2 and 3 — to the
producer, to the agent, and to the distributor, respectively. The producer
and the agent act as suppliers, the agent and the distributor act as custom-
ers. The agent thus has the dual role of a supplier and a customer, whereas
the producer only acts as a supplier and the distributor only acts as a cus-
tomer.

The chain of orders to the produces from the customers is characterized

by two numbers 1,; and 1, . The number M (W =12;j= 2,3) is
the demand Ny, disclosed by the customer ] to the supplier W. We

assume that sales are equal to deliveries. Two numbers §12 and §23,
which are interpreted as the corresponding capable sales similarly charac-
terize the chain of deliveries to the distributor.

Suppose that the demand of the distributor to the external customers is
fixed by d bank notes. The capable sales of the producer are s bank

notes. In other words, d is the estimated amount of orders from the
external customers and it plays the same role as the number M for the

customers in the retail chain. Similarly, S is the intrastate amount of
estimated deliveries by the producer, and it has the same role as & for the

customers.

Let us now consider the exact situation in a chain. To make deliveries
at a demand amount of d bank notes, the distributor have to place orders
with the agent in the amount of M,; =V, d bank notes, where V,; are
the distributor’s cost of commodities sold (the cost per 1 bank note of
sales). The agent, having received an order from the distributor, will in
turn place an order with the supplier in the amount V,, - 1,, , where V,,

is the agent’s cost per one bank note of sales. On the other hand, the esti-

mated sales of the producer are &,, bank notes, &,, =S . Assuming that

all the transactions between the suppliers and the customers in the retail
chain are materialized in amounts not less than those indicated in the pur-
chase orders, the actual sales of the producer to the agent are given by

Vi = min{ E,'mmz}'
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Now, since the agent paid the producer ’y;z for the commodities or-
dered, the agent’s revenue is 6223 = y;z / V,, , where clearly 2’523 2 y;z.

The difference between the revenue &,23 and the costs Y ;2 is defined as

Ty = Vo '(1 - V12)/V12 .

From the same considerations, y'23 = min{ ézaanzs} *give the ac-
tual sales of the agent to the distributor. We similarly define the difference
Ty = ’}/'23 (1 —Vy )/V23 . The numbers T,,, T,; represent the profit
of the customers in the retail chain.

In conclusion of this section, let us consider the numbers T,,, TT,,

more closely. We see from the above discussion that the material costs are
the only component of the costs of commodities sold for the customers in
the retail chain; no other producing or transaction costs are considered.

And yet in Section 4 the numbers T,,, 70, are used as the admissible

bounds on transaction costs, which are assumed to be unknown. It is in
this sense we construct a model of a monotonic game of customers
(Mullat, 1979, p.6).

3. DESCRIPTION OF A RETAIL CHAIN: THE GENERAL FORM

Consider now a retail chain consisting of N participants indexed W,
j:1,2,...,n . The state of a supplier W is characterized by a

(m+ 1)—component vector ¢ <dw 'Yy > = <dw »lekﬂ,..,ﬂwn > s
(n — Kk = m); the state of a customer J by a (V + 1)-component vector

<Sj,Xj>=<Sj,y1j,...,yvj>. The components of the <dw,yw> and

<S i X j> vectors are interpreted as follows: dw is the total orders

In subsequent sections, ’Y:Nj is replaced by Y, = y,wj / V. - The numbers

! . . . .. .
Y and Y differ in the units of measurement of the commodities delivered to

: . !
the user J. While Y represents the sales at the cost, Y represents the same

sales at actual selling prices.

* Kk is the number of produces, see below.



Retail Chains 167

amount of the supplier W acting as a customer; S j is the capable sales
total amount of the customer J acting as a supplier; Ny, is the cost of
orders placed by the customer J with the supplier W ; Yy are actual

sales (deliveries) to customer ] from the supplier W . As indicated in the

footnote, Y represents the deliveries valued at the selling prices of the

customer ] acting as a supplier. The vectors <dW » Y. > , <S i» X j> are the
order and the delivery vectors, respectively.

With each participant in the retail chain we associate certain domains
. . 1 1
in the nonnegative orthants R™" of the (m+1) — and K" of the
(Vv +1) — dimensional space. These domains R™ and R are the
regions of feasible values of vectors <dw 'Yy >, <S X j> in the

(m + v + 2 ) — dimensional space.

For some of the participants vectors with Y wi =~ 0 are inadmissible,

and for some participants vectors with Ny > 0 are inadmissible. Partici-

pants having the former property will be called produces and those having
the latter property will be called distributors; all other participants in the

retail chain will be called agents. In what follows the numbers S
(w =1,2,...,K) characterize the K produces; the number S, repre-
sents the capable sales controlled by the participant W . The numbers dj
(j =v+1,v+2,..,1n) correspondingly characterize the I distribu-
tors: the number d j Tepresents the demand to the external customers
(n—v=r).

Let us now impose certain constrains on the admissible vectors in this
retail chain. The following constrains are strictly “local,” i.e., they apply to
the individual participants in the retail chain.

The admissible retail chain states are constrained by balance conditions
equating the actual sales from all the suppliers to a particular customer to
capable sales of that customer acting as a supplier:
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S, =2 aVy (J=k+Lk+2,..n). (1)

J

We also require balance conditions between the cost of orders placed
by all the customers with a particular supplier and the demand figure of
that supplier acing as a customer:

dw = Z?:i+1nwj (W = 1,2,...,V). (2)

As we have noted above, the retail chain considered in this article does
not allow “closed-circuit motion” of orders or deliveries until a particular
order reaches a producer or the delivery reaches a distributor. The indexes
labeling the participants in such chains are ordered in a way ° that if W is

a supplier and J is a customer, then W < j (w=12,...,v;
j =v+1,v+2,...,n). We call such chains as of a retail-type, and their
description requires certain additional assumptions.

Consider the constants ., >0 and Bwj >0 satisfying the follow-

ing constraints (W < _],J =k+1,..,n):

Z(ij <l(g>w;w=12,..,v), ZBWj <1 3)

]
For the supplier W, the number O, is the fractional cost of orders

made to the customer j. For customer ], the number
Ny = [3 wi d iV is the fractional cost of the deliveries from sup-

plier W, which are necessary for meeting the sales target.

Suppose that purchase of orders in the retail chain move from distribu-
tors through agents to suppliers. This chain is conducted at the wholesale
prices. The deliveries, also conducted at the wholesale prices of the chain
in the opposite direction. We express the effective wholesale prices by a
set of constants Vi (W= 1,2,...,V;j =k+1,k+2,..,n), which

represent the participant’s cost per one bank note of sales for a customer
acting as a supplier.

The term topological sorting originates from Knuth (1972) to describe the
ordering of indexes having this property.
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The set of constants ;s Bwj and Vi make it possible to uniquely

determine the amount of orders and deliveries in a given transaction. In-
deed, the amount of orders to the supplier W from the customer J is

given by Ny = Bwj -d.j V- The relation (see Section 2) determines
. N ! .

the amount of deliveries Y . =min { &Wj ,T]Wj} ,  where

&Wj =8, Q,, are the capable sales values at cost prices. Considering

the difference in revenue from sales of customer ] acting as a supplier, we

conclude that the deliveries from the supplier W to the customer j are

. o
givenby Y . = ywj/ij .
In conclusion, let us consider one computational aspect of order and
delivery vectors in a retail-type distribution chain. ® It is easily seen that

the components dj, Sywr My and Y i (W =1,2,...,v;
j:k+1,k+2,...,n) as obtained from (1) and (2) are given by
(W<Jj=k+1,..,n)

d,=2B,d;-v, G>w;w=12,.,v) @)
i

s, =y min{s, -o ;B -d, -ij}/ij (5)

The starting data in (4) is the demand of the distributors to external
d . dn. The starting data in (5)

are the capable sales amounts S,,S,,...,S, of the produces, which to-

customers, i.e., the numbers d

V12 Yv+29°

gether with the numbers d1 , dza"'a dV from (4) are used in (5) to com-

pute the actual sales of the customers.

4. A MONOTONIC GAME OF CUSTOMERS IN THE RETAIL CHAIN

In the previous section we considered a retail-type distribution in the
chain with participants indexed by w=12,...,v;
j: k+1,k+2,...,n: the index J identifiers a customer, the index

W identifiers a supplier.

Here we need only consider the principles of the computational procedure.
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Let us interpret the activity of the retail chain as a monotonic game
(Mullat, 1979), in which the customers need to decide from what supplier
to order a particular commodity.

Suppose that in addition to the cost of materials, the customers bear
uncertain transaction costs in their bilateral trade with suppliers. Because
of the uncertainty of transaction costs, it is quite possible that in some
transactions the costs will exceed the gross profit from sales. In this case,
the potentially feasible transactions will not take place.

Let the set R ; represents all the potential transactions corresponding
to the set of suppliers from which the customer J is to make his choice.
The choice of the customer J (j =k+Lk+2,..,n)is a subset Al
of the set R i A’ cR i the case A? = is not excluded: it requires
the customer’s refusal to make a choice. The collection

<Ak+1 R A*? ,...,A"> represents the customer’s joint choice. It is readily
seen that the sets R ; are finite and nonintersecting; their union corre-
sponds to set W = Rk+1 U Rk+1 U U Rn.

In what follows, we focus on the criterion by which the customer ]

chooses his suppliers A’ while the lowest transaction costs, as a thresh-

old u°, increases. In contrast to the standard monotonic game (Mullat,
1979), which is based on a coalition formation, we will consider the strat-
egy of individual customers whose objective is to maximize the profit
from the actual sales revenues. We will thus essentially deal with m

players’ game, m =n — k..

Let us first introduce a measure of the utility of a transaction between
customer _] and supplier W € A’ (j =k+1k+2,...,n). The utility
of a transaction between customer ] and supplier W is expressed by the
corresponding profit T =Y (1 - ij).

The utility of a transaction with a supplier W € A’ is a function

T (Xk +1an +2,...,Xn) of many variables: the value of the variable

X i 1s the choice A’ of the customer j, the number of variables is
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m = n k. To establish this fact, it is sufficient to show how to compute
the components of the order and delivery vectors from the joint choice

<Xk 1 Xk L9 90ee Xn > . Indeed, according to our description, a retail-type
distribution in the chain requires defining the constants ., >0 and
Bwj >0 (W= 1,2,...,V;j =k+ I,...,n) that satisfy the constraints
(3). A pair of constants Q. and Bwj can be assigned in a one-to-one

correspondence to a supplier W € R i rewriting (3) in the form

Zocwj <L(w=12,..,v), ZBWj <L(j=k+1,..,n) (6

WERJ weRj

If the constrains (6) are satisfied, then the same constrains are of neces-

sity satisfied on the subsets A’ of the set R i Thus, restricting (4) and
(5) to the sets X i C R i the numbers Yy can be uniquely calculated for
every joint choice <Xk > Xk PP Xn > Finally, let us define the indi-
vidual utility criterion of the customer j in the form:

=3 (r,-u,) (7)

weA!

where u,; are the customer _] transaction costs allocable to the supplier
w € A’; we define T1 i= 0 if the customer ] refused to make a choice

— A"=(. The function T, (X115 X, p0-+0» X, ) has the obvious
property of monotone utility, so that for every pair of joint choices of

customers <Lk+1 R [+ geees Ln> and <Gk+1 , G**? yeees Gn> such that

L'cG’ (j=k+1,...,n) we have

m, (L L% L) < (GH,GM7,.,GY). (8)
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The property of monotone utility leads to certain conclusions concern-
ing the behavior of customers depending on the individual utility criterion.
Under certain conditions, rational behavior of customer J (i.e., maximiza-

tion of the profit I1 j) is equivalent to avoid profit-loosing transaction
with all the suppliers W € A’ This aspect is not made explicit in Mullat
(1979), although it is quite obvious. Thus, using the lemma, see the Eng-
lish version at p.1473, we can easily show that if the utilities
Tcwj(...,Xj,...) are independent of the choice Xj, the customer |
maximizes his profit I1 i by extending his choice to the set-theoretically
largest choice. In what follows we will show that this result also applies

under a weaker assumptions.

Below we first start with a few reservations about the proposed condi-
tion — see (9). This condition has a simple economic meaning: the cus-
tomer J entering into loosing transactions cannot achieve a net increase in

his utility of the losses. For example, if for fixed choices of all other cus-
tomers in the retail chain, the utilities Tcwj(...,X j,...) for w € X j are

independent of the choice X i the condition (9) hold as strict inequalities.

These conditions are also reduces to strict inequalities when, for instance,
the capable sales E;Wj in each transaction between customer j and sup-

plier W € A is not less than the demand M, so that every customer

can receive the entire quantity ordered from his suppliers. In particular, by
increasing the producers’ supply S,S,,...,S, with unlimited manufactur-

ing capacity, we can always increase the capable sales to such an extent
that it exceeds the demand, so that the conditions (9) are satisfied.

We can now formulate the final conclusion: the following lemma sug-
gests that each customer will make his choice so as to maximize the profit
IT i providing all the other customers keep their choices fixed. ’

7 The joint choice of users having this property is generally interpreted in the

sense of Nash equilibrium (1953); see also Owen (1968).
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Let the suppliers not entering the set A i be assigned indexes
q =1,2,.... Then the profit I1 ; of customer ] is represented by a many-
variable function II j(t1 j9t2 j,...) with variables t qj varying on
[O,qu]. ¥ The value of the function Hj(t1j, tzj,...) is the customer’s

profit for the case when the customer ] has extended the choice by plac-

ing orders in the amounts of t 4" d i+ Vg, Wwith the suppliers ( = 1,2,...
outside the choice A j- Thus, the customers ] who expand their choice
A i identify the suppliers q = 1,2,...by the set of variables t ai If all
tqj =0, the choice Aj is not expanded and the profit HJ(O,O,...)

coincides with (7).

The profit function I1 j(t1 i t, j,...) thus has to satisfy the following
constraint: for every tqj in [O, qu] q=12,..

IT,(t;;, t,;,...) <T1,(0,0,...). )

Definition. 4 joint choice <A1;+1 yeees A;‘> of the retail chain custom-
ers is said to be rational with the threshold U’ if, given an amount of
transaction costs not less than u° >0 , the utility measure nwj >u’ in
every transaction of customer J with the supplier W € Ai,
j=k+1,..,n.

Lemma. The set-theoretically largest choice S° = <A1;+1,...,A2>
among all the joint choices rational with threshold 1° > 0 ensures that
the retail-type distribution chain is in equilibrium relative to the individual
profit criterion 11 i under the following conditions: a) the transaction
costs U.Wj for W € S° do not exceed min TCWj over w € S° ﬂ Rj;
b) inequality (9) holds.

¥ We recall that B ai is the fractional cost of all the orders placed with

supplier (] .
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Proof. Let S° be a set-theoretically largest choice among all the joint
choices rational with the threshold u°’, i.e., S° is the largest choice H
among all the choices such that i (H N Rk+1""7 HN Rn) >u’.

Suppose that some customer p achieves a profit higher than I1 » by mak-
ing the choice A’ - Rp , which is different from S° ﬂ R -
Hp :ZWEAP(TCWP(...,AP,...)—uwp)> Hp , subject to

u’ < u.. < 1’1’linW T, - Clearly, the choice A" is not a subset of

eAP
S, since this would contradict the monotone property (8), so that
AP\S* 2. By the same monotone property, the customer making
the choice A" U (SO ﬂ Rp) will achieve a profit not less than H;. On

the other hand, all transactions in A" \ S° are losing transactions for this

customer, since S° is the set-theoretically largest set of non-losing bilat-
eral trade agreements tolerant towards the transactions costs’ threshold

u’ > 0. For the customer P making the choice AP U (SO ﬂ R p) the
profit H;) does not decrease only if the total increase in utility due to the
contribution Mo of the transactions W € S° n R » exceeds the total

negative utility due to the transactions in A" \ S°. Clearly, because of
the constraint (9), the customer P has no such an opportunity. This con-
tradiction establishes the truth of the lemma. B

In conclusion, we would like to consider yet another point. With uncer-
tain transaction costs, the refusal to enter into any transaction may lead to
an undesirable “snowballing” of refusals by customers to choose their
suppliers. It therefore seems that customers will attempt at least to con-

clude transactions with i > 1°: even when there is some risk that the
transaction costs will exceed the utility Ty Thus, without exaggeration,

we may apparently state that the size of the interval [u°,min Tcwj]

reflects the elasticity of the customer’s choice: the number
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min T — U’ is thus a measure of a “risk” that the customer will get

into non-equilibrium situation. Clearly, a customer with a small interval
will have greater difficulties to maintain the equilibrium than a customer
with a wide interval.

5. RATIONAL COALITIONS IN MONOTONIC GAMES

In many-persons games (Owen, 1971) by a coalition we shall under-
stand a subset of participants. Among all coalitions we usually single out
rational coalitions — a participant in such coalition extracts from the in-
teraction in the coalition a benefit, which satisfies him. In addition, some-
times it is further stipulated that extraction of this benefit is ensured inde-
pendently of the actions of the players not entering into the coalition.

The class of games proposed in this paper is subjected to an additional
monotonic condition, which has been studied earlier in Mullat (1976,
1977) (although knowledge of the latter is not presupposed). There is no
difference between the formal scheme of the present paper and that of
Mullat in essence; the difference involved in interpretation is in abstract
indices of interconnection of elements of the system, which are understood
as utility indices. The approach developed enables us to establish, in one
particular case, the possibility of finding rational coalitions in the state of
individual equilibrium according to Nash.

6. FORMAL DEFINITIONS AND CONCEPTS

We consider a set of N players denoted by I. Each player jEI
(j= 1,_n) is matched by a set R ; from which the player J can select
elements. It is assumed that the sets R j are finite and do not intersect.
Their union forms a set W =R, UR, U...UR_. The elements
selected by the player J from R j compose a set A’ cR i The set A’
is called the choice of the player j, while the collection
<A1 ,AZ,...,An> is called the joint choice. The case A* = is not

excluded and is called the refusal of & -th player from the choice.
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We introduce the utility functions of elements W € A'. We assume
that certain joint choice <A1,A2,...,An> has been carried out. Let
there be uniquely determined, with the respect to the result of the choice, a
collection of numbers T = O that are assigned to the elements
W e Aj,j =1,2,...,n; on the remaining elements of W the numbers
are not determined. The numbers T, are called utility indices, or simply
utilities, and by definition, are in general case functions

T, (X1 , X, ,...,Xn) of N variables. The value of the variable Xj is

the choice A’ of the player _] . We shall single out utility functions pos-

sessing a special monotonic property.
Definition 1. 4 set of utilities T, is called monotonic, if for any pair
of joint choices <L1 R L? yeees Ln> and <G1 R G’ yeres Gn> such that
L'cG', j=12,..n
n, (U',L%,..,L")<n (G, G%..,G") (10)

is fulfilled for any W € L.

We now turn to the problem of coalition formation. We shall call any
nonempty subset of the set of players a coalition. Let there be given a

coalition V, and let its participants have made their choices. We compose

from the choices A’ of the participants of the coalition V a set-theoretic
union H, which is called the choice of the coalition V:

H= Uje\/ Aj 10

°  We note that fulfilment of (1) is not required for the element W & Lj . Fur-

thermore, even the numbers T themselves may not be defined for W g,

10" A choice H without indication about the coalition V' , which has affected it,

is not considered, and if somewhere the symbol V is omitted, then under a
coalition we understand a collection of players such and only such for which

Hm&¢®.



Retail Chains 177

To determine the degree of suitability of the selection of an element
weR j for the player J , a participant of the coalition, we introduce an

index of guaranteed utility. With this aim we turn our attention to the de-
pendence of the utility indices on the choice of the players not entering
into coalition. It is not difficult to note that as a consequence of the mono-

tonic condition of the functions 7T, the worst case for the participants of
the coalition will be when all players outside the coalition V reject the

choice: A¥ =@, k &V, so that all elements outside H will not be
chosen by any of the players who are capable of making their choices. In

other words, the guaranteed (the least value) of utility 7T of an element w

chosen by a player in the case of fixed choices H M R ; of his partners in
the coalition equals 7T (Hm R1 ,...,Aj yeeey HN Rn ).

The quantity
g(H)=min__ 7 (HN R,,...A’,.,HAR )
is called the guarantee of the participant J in the coalition V for the
choice H.

We assume that according to the rules of the game, for each chosen
element W € A’ a player J € V must make a payment U°. It is obvi-
ous that under condition of the payment U° the selection of each element
weAlis profitable or at least without loss to the player j € V if and
onlyif T = U°. In the calculation for the worst case this thus reduces to
the criterion g, (H) > u®. In reality we shall be interested, in relation to
the player j€ V, in all three possibilities: a) g i (H)>u®, b)
g; (H)=u® andc) g; (H) <u®. We shall say that a participant of the

coalition V is above U°, on the level of U, and below U°, if the con-
ditions a), b), and c) are fulfilled respectively. The size of the payment is
further considered as a parameter U of the game being described and is

called the threshold. We shall say that a coalition V , having made a
choice H, functions on the level u[H] = minjevgj (H) .
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Definition 2. A coalition V is called rational with the respect to a
threshold U° =u[H] if for a certain choice H all participants of the
coalition are not below U° while someone in the coalition K\ UV is

below U° if any participant K & V outside the coalition V makes a
nonempty choice A 2.

The set of numerical values being attained by the function u[H] on
rational coalitions will be called the spectrum. Each value of the function
u[H] will be called the spectral level (or simply the level). The entire
construction described above will be called a monotonic parametric game

onW.

Subsequently we will be interested in rational coalitions functioning on
the highest possible spectral level. It is obvious that the spectrum of each

monotonic game on a finite set W is bounded, and therefore there exists

a maximum spectral level U" = max HCWU.[H] .

Definition 3. 4 rational coalition V' such that for a certain choice
H™ the level u*: u[H]=u" is attained is called the kernel of the

monotonic parametric game on W .

£ £
Theorem 1. If V1 and V2 are kernels of the monotonic game on
W | then one can always find the minimum kernel (in set-theoretic sense)

V: such that V: ) V: U Vz*- The proof'is presented in the appendix.

Theorem 1 asserts that the set of kernels in the sense indicated by the
binary operation of coalitions is closed. The closeness of a system of ker-
nels allows as looking at the largest (in the set-theoretic sense) kernel, i.e.,

a kernel K® such that all other kernels are included in it. From the Theo-
rem 1 it follows the existence of the largest kernel in any finite monotonic
parametric game.

The rest of the paper is devoted to the description of constructive
methods of setting up coalitions that are rational with the respect to the

threshold U°, including those rational with the respect to the threshold

u", i.e., the kernels coalitions. In particular, a method of constructing the
largest kernel is suggested.
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7. SEARCH OF RATIONAL COALITIONS

We consider a monotonic parametric game with N1 players. Below we
bring together a system of concepts, which allows us constructively to
discover rational coalitions with respect to an arbitrary threshold u® if

they exist. In the monotonic game only a limited portion of subsets of the
set W have to be searched in order to discover the largest rational coali-

tion. With this aim in the following we study coalitions V whose partici-
pants do not refuse from a choice: for j € V' the choice A’ # @ . Such
a coalition, which has affected a choice H, is denoted by V[H]. From

here on, for the motive of simplicity of notation of guaranteed utility
n,(HAR,,..,A",..,HNR ), where H is a subset of the set

W, we use ﬂ(W;H) .

Definition 4. 4 sequence Ol of elements <OL0 s Olysenns OLm71> (m is

the number of elements in W ) from W is said to be in concord with

respect to the threshold U° , if in a sequence of subsets of the set W

(N, N, NN,

m-12
where N0 =W, Ni+1 = Ni \Oti, Nm = @, there exists a subset
Np such that:
a) The utility TT(oL;;N,) <u° forall 1<p;
b) For each W € Np the condition 1° < ﬁ(W;Np) is
fulfilled, or, this being equivalent, for each J € V(N p) the condition
u®<g (N) "is fulfilled.

A sequence O, in concord with the respect to the threshold u°,

uniquely defines the set Np. This fact is written in the form

N(@) =N, .

1 By definition gj(Np) = min TC(W;NP).

weNmej
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Definition 5. 4 set S° C W is said to be in concord with the respect
to a threshold U° | if there exists a sequence O. of elements of W , in
concord with respect to the threshold U° and such that S° = N(Q),
while the coalition V(S°) is said to be in concord with respect to the
threshold U1° .

The following two statements are derived directly from Definitions 4
and 5.

A. In the case where the set S° =W is in concord with the respect
to the threshold U°, all players ] € | are not below u°: g; (W)=>u°.

B. Ifthe set S°, in concord with the respect to the threshold U°, is
empty, then there exists a chain of constructing sets

(N, N, NN,

m-12

such that for each player _] € I, commencing with a certain Nt ,in all
those coalitions V(Ni), t < 1, where the player _] enters, this player

is below u®.

Theorem 2. Let S° be a set that is in concord with respect to the
threshold U° . Then any rational coalition V functioning on the level not
less than U° makes a choice H, which is a subset of the set S°:

H < S°. The proof is given in the appendix.

Corollary 1. The set S° , in concord with respect to the threshold U° ,
is unique. Indeed, if we assume that there exists a set S’ , in concord with
the respect to the threshold U° and different from S, then from theorem
2, § < S°. But analogously at the same time the inverse inclusion
S D S° must also be satisfied, which bring us to conclusion that
S'=8°.

Corollary 2. As the spectral levels of functioning of coalitions in the
monotonic parametric game grow, one can always find a chain of rational
coalitions, included in one another and being in concord with respect to
each increasing spectral level, as with respect to the growing threshold.
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Indeed, from the formulation of the theorem it follows that a rational
coalition, in concord with the respect to a spectral level A < L, satisfies

. A L .
the relation V(S") 2 V(S"), since in a set-theoretic sense S* o8,

Below we arrange a certain sequence O, which use up all elements of

W . After the construction we formulate a theorem about the sequence

o thus constructed being in concord with respect to the threshold u° .

The arrangement proves constructively the existence of a sequence of
elements of W' that is necessary in the formulation of the theorem.

Construction. Initial Step.

Stage 1.

Stage 2.

We consider a set of elements W . Among this set we search
out elements Y, such that TT(y,; W) <u®,

and order them in any arbitrary manner in the form of a se-
quence 7Y, . If there are no such elements, then all elements of
W are ordered arbitrarily in the form of a sequence O, and
the construction is completed. In this case W' is assumed to be
the set N(t).

Subsequently we examine the sequence 70 . When considering
the t-th element Y,(t) of this sequence 7, , the sequence O
is supplemented by the element 7, (t) , which is denoted by the
expression Ol ¢— <a, Yo (t)> , while the set W is replaces by
W\ & . After the last element of Y, is examined we go over
to the recursive step of the construction.

Recursive Step k.

Stage 1.

Before constructions of the K -th step there is already com-
posed a certain sequence O of elements from W . Among the
set W\ O we seek out elements Y . such that

TE(Yk ;W \E) <u° and order them in any arbitrary manner
in the form of a sequence Vk . Analogously to the initial step, if
there happen to be no elements 7Y, , the construction is ended.
In this case in the role of the set N(0) we choose W \a
while O is completed in an arbitrary manner with all remain-
ing elements from W .
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Stage 2. Here we carry out constructions, which are analogous to stage 2
of the initial step. The entire sequence of elements Y, is exam-
ined element by element. While examining the t-th element
Y (t) the sequence O is complemented in accordance with
the expression Ol <— <a, Y (t)> After examining the last
element 7y, (t) of the sequences Y, Wwe return to stage 1 of the

recursive step.
On a certain step P, either initial or recursive, at stage 1 there are no

elements Y, which are required by the inequalities (2) or (3), and the
construction could not continue any more.

Theorem 3. A sequence O. constructed according to the rules of the

procedure is in concord with the respect to the threshold U° . The proof is
presented in the appendix.

In the current section, in view of the use, as an example, of the concepts
just introduced, we consider a particular case of a monotonic parametric
game in which the difference in the individual and cooperative behavior of
the participants of the coalition is easily revealed. We assume that the
utilities

T (AL ATLX AT AT

do not depend on X i in the case that choices specified by the remaining

players are fixed. In this case the j—s participant of the coalition V', un-
der the condition that the remaining participants of it keep their choices,
can limit his choice X jtoa single element w'eR ; on which the

maximum guarantee Max . g J(H) is attained. However, such a
J

selection narrowing his choice down to a single-element, generally speak-
ing, reduces the choice (in view of monotonicity of utility indices T ) to
the guarantee of the remaining participants of the coalition. Consequently,

individual behavior of the participants of a coalition contradicts their co-
operative behavior. In spite of this contradiction, in the general case, in the

given case, using the concept of a rational coalition V(SO) in concord

with respect to the threshold U°, and having slightly modified the criteria
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of “individual interests” of the players, we can convince someone that
there always exists a situation in which the individual interests do not
contradict the coalition interests.

We define the winnings of the j—th participant of the coalition in the

form of the sum of utilities after subtraction of all payments U°, i.e., as
the number

fi(H)=3,., [n(w;H) - u°]
(the winnings fk for K & V are not defined). Having represented H as

.. . 1 A2 v . .
a joint choice <A A ,...,A‘ ‘> , we can consider the behavior of each

j—th participant as player in a certain non-cooperative game selecting a
strategy A’

The situation of individual equilibrium in the sense of Nash (Owen, 1971)
of the participants of the coalition V in the game with winnings fj is

defined as their joint choice Ujev Ai — H" such that for cach J cV
(AL AT ALAM AN < (H)

for any A’ < R i In other word, the situation of equilibrium exists if
none of the participants of the coalition has any sensible cause for altering

his choice Ai under the condition that the rests keep to their choices.

Not every choice H of participants of the coalition V is an equilib-
rium situation. To see this it is sufficient to consider a choice H such that

in the coalition V' there are players having chosen elements W € A’
with utilities 7T(W;H) <u®; for the selection of such an element the

player pays more than this element brings in winnings fj(H) and, there-

fore, for the player, proceeding merely on the basis of individual interests,
it would be advantageous to refrain from selection of such elements. Re-
fraining from the selection of such elements of the set H is equivalent to
non-equilibrium of H in the sense of Nash.
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Lemma. Let the utilities TE(W;H) be independent of A’ Then a
Joint choice S° of the participants of the rational coalition V(SO) , in

concord with the respect to the threshold U° | is a situation of individual
equilibrium.

Indeed, according to Theorem 2, S° is the largest choice in the set-
theoretic sense among all choices H of the rational coalition V(S°),

where for any W € H the relation w(w;H) >u® is fulfilled. Let the
choice of the participants of the coalition with an exception of that of the
J™" participant be fixed. Since the utilities 7T(W;S°) do not depend on

A, the j™ participant of V(S°) cannot secure an increase in the win-
nings fj (So) either by broadening or by narrowing his choice in com-
parison with R iM Se.

8. COALITIONS FUNCTIONING ON THE HIGHEST SPECTRAL LEVEL

We consider the problem of search of the largest kernel. First of all we
present some facts, which are required for the solution of this problem.

From the definition of the guarantee g J(H) of the participant ] ef-
fecting the choice H we see that the equality
g;(H)=min__n(w;H))
is fulfilled. Hence, according to the definition of the level U[H] of func-
tioning of the coalition V(H) it follows that

n(w;H)

If we carry out a search of the subset H™ of the set W on which the
value of the maximum of the function U[H] is achieved, then thereby the

u[H] = min

weH

search of a coalition functioning on the highest level u" =u[H] of the
spectrum of a monotonic parametric game is affected. Without describing
the search procedure, we give the definition of a sequence of elements W

allowing us to discover the largest (in the set-theoretic sense) choice H

of the largest coalition — a kernel K.
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Definition 6. 4 sequence Ol of elements <OL0,OL1 ,...,Otm71> (m is

the number of elements in W ) from W is called the defining sequence
of the monotonic game, if in the sequence of sets >

(Ng, N NN

m-12

there exists a subsequence <F0 R E yeees Fp> such that:

a) for any element O, € Fk \Fk+1 of the sequence O the utility
n(o;N) <u[l ] (k=01,...,p—1);
b) in the rational coalition V(l"p) no sub-coalition exists on a

level above u[l"p ].

From the Definition 6 one can see that the defining sequence in many
ways is analogous to a sequence, which is in concord with the respect to
the level U°. Since any rational coalition V(I ) functions on the level

u = u[Fk], it is not difficult to note that the defining sequence O
composes strictly increasing spectral levels
u[FO] < u[F1] <...< u[l"p] of functioning of rational coalitions
V(Fk) in the monotonic parametric game. As a result, we require yet
another formulation.

Definition 7. A rational coalition V C 1 is said to be determinable, if
there exists a defining sequence O. of elements W such that among the

choices of this coalition there is a choice Fp composed by O according
to Definition 6.

Theorem 4. For each monotonic parametric game a determinable
coalition exists and is unique. Among the choices of the determinable

coalition there is a choice on which the highest spectral level U" is at-
tained. The proof of the theorem is presented in the appendix.

2 The given sequence is constructed exactly in the same way as the one in
Definition 4.
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Corollary to Theorem 4. The concepts of a determinable coalition
and the largest kernel are equivalent.

Indeed, directly from the formulation of the Theorem 4 we see that a
determinable coalition always is the largest kernel. Hence, since a deter-
minable coalition always exists, while the largest kernel is unique, it fol-
lows that the largest kernel coincides with the determinable coalition.

Thus, the problem of search of the largest kernel is solved if we con-
struct a defining sequence O of elements W . The construction of O
can be effected by the procedure of discovering kernels (KFP) from Mul-
lat. In conclusion we present yet another approach to the concept of “sta-
bility” of a coalition. "

A

Definition 8. A coalition V is said to be a critical, if for a certain

A

choice H of it no coalition V' having a nonempty intersection with the

A~ A

coalition 'V  functions on a level higher than u[H] . The level
U =u[H] is called the critical level of the coalition V , while the choice
H is called its critical choice.

From the Definition 8, in particular, it follows at once the uniqueness

of the critical level of the coalition V . Indeed, on the contrary, if were
two different levels U and ﬁ", u' <" , then U’ could not be a critical
one according to the definition: it is sufficient to consider the coalition

A

V =V itself with the choice H" , which ensures a’'>1u'.

It is obvious that kernels are critical coalitions. The inverse statement,
generally speaking, is not true; a critical coalition is not necessarily a ker-
nel.

A

We now consider the following hypothetical situation. Let V be a

A

critical coalition and let H be its critical choice. We assume that this

A

coalition is rational with respect to the threshold u°; i.e., u°<u[H]

(see Definition 2). We assume that an increase of the threshold U° up to

' This approach is close to the concept of “M-stability” in cooperative n-person
games, G. Owen.
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the level u°> u[ﬁ] took place and the critical coalition V with the

A~

critical choice H was transformed into unstable coalition with respect to

the higher threshold U° . Let the participants of the coalition V preserv-
ing the stability of the coalition attempt to increase their guarantees. One

of the possibilities for increasing the guarantee of a participant jo S \7 is
to refrain from the choice of an element O, € A" on which the value
g (H) - the minimum level of utility guaranteed for him, see (4), is
attained. It is natural to assume that a participant with a level of guarantee
g (ﬁ) =u[ﬁ] <u° will be among the participants attempting to
increase their guarantees, and refrains from the selection of the element
O, indicated above. It may happen that the refusal of O, gives rise, for
another participant j1 € V(ﬁ \ OLO), to a decrease from his guarantee
g, (ﬁ) > u[ﬁ] to the quantity g, (H \ OLO) < u[ﬁ] . A participant
j1 € V(I:I \ OLO), acting from the same considerations as jo , refrains

from the selection of an element OL; on which g, (H\ 0,) is attained.

Such a refusal of O, can give rise to subsequent refusals, and emerges

hereby a chain of “refusing” participants <_]0 , j1 ,> of the coalition V .

If a coalition V , rational with respect to the threshold U° in the sense
of Definition 2, with the choice H became unstable as the threshold u°
increases, then such a coalition, generally speaking, disintegrates; i.e.,
some of its participants may become participants of a new coalition which
already is rational with the respect to the increased threshold U°. By
definition of a critical coalition, transaction of its participants into new
rational coalition, when the threshold U increases is not possible, and it
disintegrates completely. The theorem presented below and proved in the
appendix reflects a possible character of complete disintegration of a criti-
cal coalition in terms of the hypothetical system described above.
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Theorem 5. Let there be given a critical coalition V having a non-
empty intersection with a certain coalition V: VNV # & . Let H be
the choice of the coalition V and H the critical choice of the coalition

V. Then in the coalition V NV there exists a sequence of its partici-
pants j:<j0,j1,...,jr71> such that: a) in the sequence _] there are

represented all participants of the coalition V MV (the players ji may

be repeated, T is number of elements in H\U H ; b) for the sequence _]

we can construct a chain of contracting coalitions

(V(N,), V(N),.... V(N,_)).
where N0 ZﬁUH, N

ing from a certain Nt, in all those coalitions V(Ni) , t<1, into which

1 & Ni , S0 that for any _] eV, commenc-

the player J enters, this player is not above u[H]

APPENDIX

Proof of Theorem 1. Let the level U" be attained for the coalitions
V: and Vz* , which effect the choices HT and HZ respectively; i.e.,
u* =u[H:] and u" :u[H;]. For player J€1 we consider two
choices: Hi = H: M Rj and H% = H; M Rj 1. By the definition of
guarantee g (H:) for the participant J € V1* of the coalition we have

minwemnw (H,Hf,...,H) =g H)=u"; (@D
for the participant J € Vz* we respectively have
minweH%nw(H;,Hﬁ,...,Hg‘) =g, (Hy)>u". (a2

' We note that, in the worst case, for player K & V1* (k¢ Vz* ), H;( =0
k
(H, =)
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. * *
We determine the choice of a participant J€V1 UVZ as

D' = Hf ) HJ2 . The monotonic property (1) allows us to conclude that

the following inequalities are valid:

. 1 2 n
mlnweH{nw(CI) ,D°,...,d") >

: 1 2 n ’ (A3)

>min .7, (H,,H,,...H})
: 1 2 n

mmweﬂjznw(d) ,D7,..., 0" >

) | 5 o (A4)
Zmin T, (H,,H;,...,H})

Combining (A1) — (A4), we obtain

min 7w (O, 0%, 0")>u (AS)

for any _] € V: Y Vz* . If by @ we denote the set H: ) HZ , then
for the coalition V: Y Vz* affecting the choice D the inequality (AS5)

is rewritten in the form

gj(CI)*)Zu“, jeV, LYV,. (A6)

Due to the monotonic property (1) some elements W ¢& d° (if one
can find such) may be added to @ while the inequality (A6) is still
true '*. We will denote the enlarged set by @°: @ D D" and obvi-

ously for V' = V(D) we have V(DP°) D V: U Vz* . By the defini-
tion of a spectral level U", for the participant j' € V¢, on which

u[®D°] is attained, we have

gj,(q)c):u[CI)C]Su”, (A7)

" We suppose that such elements cannot be added to ®°.
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since U" is the maximum spectral level of functioning of coalitions in the
monotonic game. Applying (A7) and (A6) to the choice D for the par-
ticipant = j' , we see that g, (®°)=u", and the coalition
Vo V: O V; functions on the spectral level U" . The theorem is
proved. B

Proof of Theorem 2. Let S° is a subset of the set W in concord
with the respect to the threshold U°; i.e., there exists a sequence O, in
concord with the respect to the threshold U°, such that S° = N(at). We
assume that there exists a coalition V affecting a choice H < S° and

functioning on the level u[H]>u®, H \S° = Let o,eH \ S°

and let OL, be an element, which is leftmost in the sequence O . Let P be

the index of the set Np in the sequence <N0 R N1 peees NnH , Nm> Ctis
obvious that t < P and, consequently,
(o ;N,)<u® (A8)

in accordance with a) of the Definition 4. Since the game being consid-
ered is monotonic, O, € Hand Hc N . there must hold

(o ;H) <m(a;sN,). (A9)
From inequalities (A8) and (A9) it follows
(o ;N,) <u®<u[H] (A10)

(the latter < by assumption). According to the inequality (A10) and
by the definition of U[H] we have

n(a;H) <min,_ g (H). (A11)
Let the element ¢, be chosen by a certain (-th player; i.e.,
a, € A1, qe V . On the basis of (A11) we assume that

(o H) <g (H) (A12)
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is valid. By definition g (H)= minweAq m(w;H) and following
(A12), we note that (o, ; H) < Inil’lWEAq 7(w; H). The last inequal-
ity is contradictory, what proves the theorem. B

Proof of Theorem 3. We assume that the construction of the sequence
0, according to the rules of the procedure ended on a certain P -th step.
This means that O, is made up of sequences ?k (k = 0, p) , and also of
elements of the set N p? found according to the rules of the procedure and

being certainties for the sequences ?k . We consider any element O, of
the sequence thus constructed, being located on the left of the Ol -th ele-
ment: 1< P. The given element in the construction process falls into

certain set Y o - By construction
(o WAy, Uy, V.. Uy ) <u®. (A13)

If to the sequence (Y, ,...,7q71> we add the elements Y, which
in O are on the left of the QL -th, then this set of elements together with

the added part Vq composes the complement ﬁi up to the set W (see
Definition 4).
On the basis of the monotonic property (1) we conclude that
10 W\ {7, U, U U7, ) 2 1o WA N = (3N,
The last relation in the combination with (A13) shows that

m(o,N.) <u®. From the construction of the sequence O it is also
. . o
obvious that for any ] € V(Np) the guarantee g j(Np) >u®. The

theorem is proved. B

Proof of the Theorem 4. Theorem can be proved as follows. First, a

sequence O, in concord with respect to the highest spectral level U" , in
the monotonic game exists, according to Theorem 3, and is, at the same

time, a defining sequence; as the subsequence <F 0,1"1,...,1"p> in this
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case we have to choose the sequence <W,S“>, where S" is a set

S* < W which is in concord with respect to the highest level U" . The
determinable coalition is V(S"). The uniqueness of the coalition
V(S”) is proved in Corollary 1 to the Theorem 1. Secondly, the choice
S* of the coalition V(S“) , playing the part of the set Fp in the Defini-
tion 6, attains the maximum of the function U[H], a fact which follows
from Theorem 3 and b) of Definition 6; i.e., u[S”] =u". Thirdly, the

last statement of Theorem 4 is a particular case of the statement of Theo-

rem 2, if we put U° =u" . The theorem is proved. B

Proof of the Theorem 5. We consider a monotonic game of partici-
pants of a coalition V UV on the set H U H , where H is the critical
choice of the critical coalition V, and H is some choice of the coalition

V . Below the set HWU H is denoted by €2, while all concepts refer to
a monotonic sub-game on {2 .

Let U° be the threshold of the parameter U of the game on {2, and
let u® > u[H]. We construct a sequence O of elements €2, which is in
concord with respect to the threshold U°. Two variants could be repre-
sented: 1) the set S, in concord with the respect to the threshold U° is
empty; 2) S° is not empty. We consider them one after the other. First, in
the variant 1) from a sequence of elements O of elements of €2 in con-
cord with respect to the threshold U°, we uniquely determine a sequence

of participants of the coalition V \U V' choosing elements Q, from se-

quence O and composing a certain chain j = <j0,j1 ,...,jr_ > (T is the

number of elements {2). Secondly, from the sequence O we also

uniquely determine the sequence of coalitions
(V(Ny), V(N),.... VN, ), where Ny =Q, N, =N, \ a,
with J, € V(N,).
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In the second variant none of the participants of the coalition V can
be in a coalition, which is in concord with the respect to the threshold
u®>u[H]. This would contradict the definition of a critical coalition

V . Therefore in the chain J thus constructed of participants of the coali-

tion VU V (by the same method as in the first variant) all participants

of the coalition V are on the left of the j » -th player; P is uniquely

determined from the sequence O (see Definition 4). By property a) of the
Definition 4 and from the definition of the guarantee of a player

ji € V(N,) we have
g; (N} <m(a;;N;)<u®. (A14)

Proceeding from the structure of the spectrum of a monotonic paramet-
ric game on €2 (see Corollary 2 to the Theorem 2) the value U° margin-
ally close to U[H] is satisfied successfully in the two variants considered.

The first variant of the Theorem 5 forms the statement b) derived earlier
from Definition 4 and 5 (see section 2). The second variant of the state-
ment of the theorem is directly derived from the relation (A14). &
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' In his book review of “Ménard, C. and M.M. Shirley. (eds., 2005)
Handbook of New Institutional Economics, Springer: Dordrecht, Berlin,
Heidelberg, New York. XIII. 884 pp., Rudolf Richer, University of
Saarland, noticed that

North and Williamson stress, besides transaction costs, the role of bounded ra-
tionality, uncertainty, and imperfect rationality. Their objects of research dif-
fer: Northian NIE focuses on macro institutions that shape the functioning of
markets, firms, and other modes of organizations such as the state (section II)
and the legal system (section Ill). Williamsonian NIE concentrates on the mi-
cro institutions that govern firms (section IV), their contractual arrangements
(section V), and issues of public regulation (section VI). Both the Northian and
Williamsonian approaches to the NIE are used, i.e., in development and trans-
formation economics: in efforts towards explaining the differences of ex-
change-supporting institutions (section VIII).

It is worth to emphasize, in view of the above, that when the player

J € V must make a payment U° for the element W € A’, the payment
is well suited in the role of transaction cost, see below.

In economics and related disciplines, a transaction cost is a cost incurred in
making an economic exchange. For example, most people, when buying or
selling a stock, must pay a commission to their broker; that commission is a
transaction cost of doing the stock deal. Or consider buying a banana from a
store; to purchase the banana, your costs will be not only the price of the
banana itself, but also the energy and effort it requires to find out which of the
various banana products you prefer, where to get them and at what price, the
cost of travelling from your house to the store and back, the time waiting in
line, and the effort of the paying itself; the costs above and beyond the cost of
the banana are the transaction costs. When rationally evaluating a potential
transaction, it is important to consider transaction costs that might prove
significant.

FINAL REMARKS

It ends where we started. The paper investigated a situation of distrib-
uting commodities in the retail chain with participants making “to buy and
sales” decisions in a retail chain. One type of participants’ produce and
sale, others buy and sale, the third only buy for consumption. The price
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system was set up via some constants, which are nothing but percentages
to perform calculus of how the sales price must depend and exceed the
purchasing prices to archive a satisfactory results for participants
maximizing their profits. The situation becomes complex as soon as to buy
and sale decisions incorporated transaction costs. Transaction costs
interact into the behavior of participants by transforming potentially prof-
itable into loosing transactions. The paper investigated the situation, as
global, depending on the transaction costs’ threshold varying the threshold
from low to high values until all transactions, allegedly profitable in bilat-
eral trade agreements, became loosing and do not any more form a basis
for an agreement between rational participants. The retail chain structure,
while the transaction costs’ threshold is increasing, changes like nested set
of retail chains each of them on the higher threshold is capable to
counteract higher transaction costs and still functioning in equilibrium.
Condition for such a rational behavior was that all participants in the retail
chain must avoid any loosing transaction. Beyond the goal of the retail
chain formation to hold the retail chain in equilibrium, some elasticity
intervals for transaction costs, where it still was realistic to buy and sale
rationally, have been internally encoded into the scheme and calculated
individually for all participants in the chain.
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On The Maximum Principle for
Some Set Functions '

Abstract. This article discusses the problem of finding extreme points for
functions defined on all subsets of some large or general finite set. The
construction method leads to the detection of extreme subsets. The main
feature of the construction method is based on the assumption that on each
subset, and for each of its elements, some numbers are given, i.e. creden-
tials or weights, satisfying the monotonicity conditions p.1 and p.2.
Keywords: classification; graphs; convex functions; algorithm

1. INTRODUCTION *'

In our study, we consider the problem of finding the global extremum
of a function defined on all subsets of a given finite set. The described
construction algorithm was used to solve some problems of object classifi-
cation using the technique of homogeneous Markov chains. In general
terms, the proposed construction allows one to solve some problems on
graphs, for example, to single out, in a sense, “connected” subsets of the
vertices of the graph. We formulate the theoretical foundations of our
construction in terms of transparent rules for choosing subsets in a given
finite set and some sequences of the same elements of a finite set. The
result will be extracting the extreme subsets.

The types of problems of similar nature have a combinatorial character
and do belong mostly to the discrete programming problems. Cherenin
(1962), Cherenin and Hachaturov (1965) have successfully solved a pre-

This idea at the moment, perhaps invisible from the first glance, is incorporated
into “Left- and Right-Wing Political Power Design” as political parties bargain-
ing game. Reg. “data analysis”, see also, J. E. Mullat (1976-1977) Extremal
Subsystems of Monotonic Systems, L,ILIII, Automation and Remote Control,
37, pp. 758-766, 37, pp. 1286-1294; 38. pp. 89-96.
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eminent class of similar problems on the finite sets. In the framework of
these papers a functions have been considered satisfying condition, which

can be formulated as follows. If 0, and @, are two representatives for

subsets of a given finite set then
f(o,)+f(0,) <f(o,vn,)+f(o,No,).

This condition with some reservation reflects the convexity of the
function f .

The main property or requirement for the class of functions considered
in the manuscript is the assumption of the existence of some numbers or
weights that reveal for each element of a finite set the degree of its occur-

rence in the subset. The degree of occurrence must satisfy conditions (1)
and (2), see below.

Concerning the current investigation it is worthwhile also to pay atten-
tion to Mirkin’s (1970) work. In this work, a problem of optimal classifi-
cation is reduced to finding special “painting” on a non-ordered graph. The
optimal classification there is characterized by some maximum value of a
function, corresponding in its form to the definition (1), however hereby
we interpret (1) in a different sense. We do not consider in our function
definition a decomposition of a given set into two non-intersecting subsets
what was the main concern of Mirkin’s work.

2. THE MODEL

Let {H} is a set of subsets of some finite set W . Suppose that we in-
troduce a T, function for each set H < W ofits elements as arguments.
Below by the collection {RH} we entitle a system of weights on the set
H . The main supposition concerning the weight systems {{ Ty }} is as

follows:

p.1 the credential T, (QL) of the element O € H is a real number.

p.2 Following dependencies inhere between different credential, i.e.,
credential systems for different subsets of the set M : for each
element o0 € H and each B € H \ {OL} yields that

T (B) < 70, ().
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In other words, following p.2, the requirement is that a removal of an

arbitrary element O from a set H results in a new credential system

{TCH\u} and the effect of the removed element OU on the credentials

within the remaining part H \ {OL} is only towards the direction of a

decrease. We explain these two conditions by examples from the graph

theory, although there are examples from other jurisdictions, however less

convenient for a short discussion. Let consider non-oriented graphs, i.e.,
graphs with the property when a relation of a vertex X to y implies a

reverse relation of vertex ¥ to X.

Example 1.’

Let W is a vertex set of a graph (G. We define a credential system
{TCH} on each subset of vertexes H as a collection of numbers

{ Ty (OL)}, where the number T (o) is equal to the number of ver-
texes in H related to the vertex 0. The truthfulness of the pp. 1 and 2

is easily checked, if one only remembers to recall that together with the

removal of a vertex Ol all connected to it edges have to be removed

concurrently.

2

Kempner Y., Mirkin B. and I. Muchnik (1997) have given another example in
Monotone Linkage Clustering and Quasi-Convex Set Functions, Appl. Math.
Letters, v. 10, issue no. 4, pp. 19-24. Mirkin B. and 1. Muchnik. (2002) Layered
Clusters of Tightness Set Functions, Applied Mathematics Letters, v. 15, issue
no. 2, pp. 147-151.

Yet another examples, Kuznetsov E.N. and I.B. Muchnik, Moscow (1982)
Analysis of the Distribution Functions in an Organization, Automation and
Remote Control, Plenum Publishing Corporation, pp. 1325-1332; Kuusik R.
(1993) The Super-Fast Algorithm of Hierarchical Clustering and The Theory of
Monotonic Systems, Data Processing, Problems of Programming, Transactions
of Tallinn Technical University, No. 734, pp. 37-61; Mullat J.E., (1995) A Fast
Algorithm for Finding Matching Responses in a Survey Data Table, Mathe-
matical Social Sciences 30, pp. 195-205; Genkin A.V. and I. B. Muchnik
(1993) Fixed Approach to Clustering, Journal of Classification, Springer, 10,
pp. 219-240,.
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Example 2.

Let W is a set of edges in a graph G or the set of pairs of vertexes
related by the graph G. We define a credential system { TCH} on ar-
bitrary subset H of edges in the graph G as a collection of numbers
{ Ty (OL)}, where o0 € H and 7, () is a number of triangles in
the set of edges H , containing the edge Ol . The number Ty (a) is
equal to the number of those vertexes on which the set H resides
such, that if X is a pointed vertex and the edge OL = [b, e], then it en-
sues that [b,X] € H and [e, X] eH.

In the examples, we have exploited the fact, that a graph is a topologi-
cal object from one side and a binary relation from the other side. Let now
consider the following set function

f(H) = min,_, 7, (), (1)

where H C W . We suggest below a principle, valid for the subset H ,

on which the global maximum of a type (1) function is reached. We for-
mulate this principle in terms of some sequences of the set W elements
and the sequences of the subsets of the same set W .

Let OO = { Oy, Oysenny Otk_1} is a sequence of elements of the set W

and k :‘W‘ We define using the sequence O a sequence of sets
H(@)={H,,H,,..,H, }:as H =W and H,, =H, \ {o, }.

Definition 1. We call a sequence of elements O from the set W a

defining sequence, if in the sequence of sets H(OL) there exists a sub

sequence I = {Fo s Fl geees Fp } such that:
1°. The credential TT,; (o i) of an arbitrary element, belonging to l“j,

but not belonging to Fj is strictly less than f(l—wj 1 ) ;

+1°

2° In Fp there do not exists such a strict subset L that
£(T,) <F(L).



Maximum Principle 201

Definition 2. We call a subset H of the set W a definable, if there

exists a defining sequence such that H = Fp .

Below, we simply refer to the notification { ﬂH} as a credential sys-
tem with respect to the set H .

Theorem. On the definable set H the function f(H) reaches its

global maximum. The definable set is unique. All sets, where the global
maximum has been reached, lie within the definable set.

Proof. Let H is a definable set. Assume, that there exists L such that
f(H) <f(L). Suppose that L \H # J, * otherwise we have just to

proof the uniqueness of H, what we will accomplish below. Let Ht is
the smallest from the sets H ; (i = 0,1,..., k— 1) , which include in it the
set L \ H . From this fact one can conclude, that there exists an element
/el such, that £ € Ht, but /& Ht .1+ Moreover, in combination
with L\ H # & the last conclusion ensues t < p. Inequality t <p

disposes to an existence of at least one a subset in the sequence of sets I’
such, that

Ty, (0) <£(T)) )
and j>t+1. Since / ¢ H, ., and Fj c H,,, are true, it follows that
l¢ Fj . Thus, the inequality

f(I)<f(T),) 3)
is valid as a consequence of the property 2° for the defining sequence.

Now, let £ € L and the credential Tt L (?) is at the minimum in cre-
dential system with the respect to the set L . Inequalities (2) and (3) allow
us to conclude, that 7T, (¢)<m, (£). Above we selected H, on the
condition that L < H .- Hereby, recalling the main property p.2 of the

credential system (the removal of elements), it is easily to establish that
7, (¢) <7y, (£),ie., in the credential system with the respect to the set

* Here & symbolizes an empty set.
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L, there exists a credential, which is strictly less than the minimal. We
came to a contradiction and by this, we have proved that on H the global
maximum has been reached. Further, all such sets, different from H,
where the global maximum is likewise reached, might really be located
within H . It remains to be proved the uniqueness of the definable set. In
connection of what we proved above, one might suppose that a definable
set H' is located within H , however, proceeding with the line of reason-

ing towards H' similar to those we proposed above for L, we conclude,
that Hc H'. =

Corollary. Let {R} is a system of sets, where the function of type (1)
reaches its global maximum. Hereby, if H1 € {R} and H2 € {R} are

valid, then H, UH, € {R}.

Proof. Following the p.2 (the main  property)
f(H)<f(H,UH,), but in addition f(H, UH,)<f(H,),
consequently H, UH, € {R} .

Below we introduce an actual algorithm for constructing the defining
sequences of elements of a set W . For the availability of the algorithm is
exposed in the form of a block-scheme similar to some extent of a com-

puter program.

3. ALGORITHM °

a.l. Lettheset R =W and sequences O and B % be empty sets in
the beginning, and let the index 1=10.

a.2. Find an element |L at the least credential with the respect to the
set R, record the value A= LTS (L) and constitute
o =0, B, and thereafter f =J.

Further developments, see Muchnik, 1., and Shvartser, L. (1990) Maximization
of generalized characteristics of functions of monotone systems, Automation
and Remote Control, 51, pp. 1562-1572,

®  Hereby B = {Bsz 7""Bi ’}
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a.3.  Exclude the element [L from the set R and take into account the
influence of the removed element L € R on remaining ele-

ments, i.e., recalculate all values Tl (B) forall BeR \ {},l}
a.4. In case, among the remaining elements there exist such Y, that
T (V) <A )
compose a sequence from those elements Y = { YisYgseeesY s}
and substitute B = B, .
a.5. Substitute the set R =R\ {}.L} and the element [L =3, . Re-
turn to the a.3 in case the element Bi .1 1s the element for the se-
quence E increasing in this moment the index 1 by one.

a.6.  In case, when the sequence O has utilized the whole set W , the
construction is finished. Otherwise, return to a.2 initializing first

i=0.
Let us prove that the sequence Ol just constructed by the proposed al-
gorithm is defining. We consider the sequence H(@) and let one selects

in the role of the sequence I those sets, which start by the element 9!

found at the moment the algorithm is crossing the step a.2. The fact of
crossing the a.2 of the algorithm guarantees, that the condition (4) is not

valid before the cross was occurred, and the element Bi 41 1s not in the

sequence B at this stage. The above guarantees as well the condition 1°

fulfillment for the defining sequences. Suppose, that the condition 2° in

the definition 1 do not hold, i.e., in the last set Fp in the sequence f,
there exists such a subset L, that f(l“p) <f(L). Let us consider the
sequence E, which is generated at the last crossing through the a.2 of the
above-described algorithm and let A » Symbolize the highest value among
all such A . One has to conclude, that A b = f(l“p) , and, from the suppo-

sition of an existence of a set L, we come to the inequality A » < f(L).
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By the construction, the sequence O and together with the sequence E
(both of them), which is generated at last crossing though the a.2 of the
algorithm has utilized all elements in W . Consequently, we can consider

a set of elements K in the sequence E, which start from the first con-
fronted element ¢ € L, where L < K . On the basis justified above, we
have nK(ﬁ) =A » and, recalling the main property of the credential

system p.2 (the removal of elements), we conclude moreover that
n, (0)<A » - We reached to a contradiction and by that we have proved

the property 2° of the definition 1 for the sequence O . On that account,
the construction of defining sequences is possible by the pointed above
algorithm.

We emphasize the necessity of concretizing the notion of credential
system with the respect to a subset of a given finite set for solving some of
the pattern recognition problems, what should be the subject for further
investigation.

In conclusion, we will point out, that the construction of defining se-
quences has been realized in practice on a computer for one problem in
graph theory, related to an extraction of “almost totally connected” sub-
graphs in a given graph. The number of edges in such graphs has been
around 10",
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NB! In his work “Cores of Convex Games” Shapley investigated a class of

N -person’s games with special convex (supermodular) property, International
Journal of Game Theory, Vol. 1, 1971, pp. 11-26. When writing current paper, in
that time in the past, the author was not familiar with this work and could not
predict the close connection between the basic monotonicity property pp.1-2, see
above, and that of supermodular characteristics functions in convex games induce
the same property upon marginal utilities. We are going to explain the connection.
We will consequently do it in Shapley’s own words to make the idea crystal clear.

The core of a 11 -person game is the set of feasible outcomes that cannot be im-
proved upon by any coalition of players. A convex game is one that is based on a
convex set function; intuitively this means that the incentives for joining a coali-
tion increase as the coalition grows, so that one might expect a "snowballing" or
"band-wagon" effect when the game is played cooperatively... In Shapley’s paper
a coalition game is a function V mapping a Ring of subsets from some set called a

grand coalition N to the real numbers, satisfying V(@) =0. he Sfunction V
is supperadditive if

V(S)+ V(T) £ v(SUT),ic,all S,Te N, wih SNT = .1t
is convex if V(S) + V(T) < V(S o T) + V(S M T) for all
S,T elN ,p-12.

In the standard form in game theory, the elements of N are "players", the subsets
of N are "coalitions"; V(S) is called the "characteristic function", which gives
each coalition the best payoff that it can get without the help of other players.

Supper-additivity arises naturally in this interpretation, but convexity is another

matter. For example, in voting situation S and T, butnot SNT, might be
winning coalitions, causing "convexity" to fail. To see what convexity does entail,
consider the function M :

m(S,T) =v(SUT)—-v(S)—-v(T),

as defining the "incentive to merge" between disjoint coalitions S and T . Then
it is a simple exercise to verify that convexity is equivalent to the assertion that

m(S, T) is no decreasing in each variable — whence the "snowballing" or "band
wagon" effect mentioned in the introduction.

Another condition that is equivalent to convexity (provided N s finite) is to
require that

v(SU{ip) = v(S) < W(Tu{i})—v(T)
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for all individuals 1 € N and all S c T - N \ { 1} This expresses a sort
of increasing marginal utility for coalition membership, and is analogous to

"increasing the returns to scale associated with convex production functions in
economics.", p.13

We return now back from the "expedition" into Shapley’s work and make some
comments. The latter condition, which is equivalent to convexity, is an exact, we
repeat it once again, an exact utilization of our basic monotonicity property pp.1-2.
Set functions of this type are also known in the literature as "suppermodular". As it
turns out now the author knew such functions. To the knowledge of the author
Cherenin was first who introduced functions of this type already in 1948. Nem-
hauser et al, also used V(S) + V(T) > V(S ) T) + V(S M T) but an
inverse property introduced in 1978 for computational optimization problems in
"An Analysis of Approximation for Maximizing Submodular Set Functions",
Mathematical Programming 14, 1978, 265-294. Shapley also notes the latter in-
verse property in connection with rank function of a matroid known as "submodu-
lar" or "lower semi-modular." Besides, in Nemhauser et al paper, the reader may
find the proof of the conditions

v(S)+v(T)<v(SUT)+Vv(SNT) and
v(SU{ip) = v(S) < V(T U {i}) — V(T) equivalency.

However, the connection between the convex games and the monotonicity
property pp.1-2 is invisible. Only recently Genkin and Muchnik pointed
out (not in the connection with game theoretical models, but actually in
connection with the problems of object classification, see “Submodular Set
Functions and Monotone Systems in Aggregation Problems LII,” Trans-
lated from Automat. Telemekhanika No.5, pp.135-148, © 1987 0005-
1179/87/4805-0679, Plenum Publishing Corporation), that the functions

family 7, (o) = v(H) —v(H\ { OL}) represent a derivatives of sup-
per-modular set functions in the form just exhibited in Shapley’s work.

SUMMARIZING

In convex games, following the theory developed in this work from 1971, one can
always find a coalition, where it members will be awarded individually at least by
some maximum payoff of guaranteed marginal utility, see the Theorem. We call
this coalition the largest kernel (nuclei) or the definable set. A good example and
its like, is the Example 1. Here, in economic terms, the marginal utility highlights

the number of direct dealers with the player 1€S (number of direct contacts,
buyers, sellers, direct suppliers, etc.). On the contrary, the Example 2 is not its like
and goes beyond the Shapley’s Convex Game idea.
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TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED
PROCEEDINGS OF TALLINN TECHNICHAL UNIVERSITY
OYEPKH I10 OBPOBOTKE NHO®OPMALIMH U1
OYHKLIMOHAJIILHOMY AHAJIN3Y
SERIA A No. 313 1971
pp. 37— 44 UDC 51:65.012.122

O IIpuHuune MakcuMymMma Jijisi HEKOTOPBIX
OyHKIM MHOXKECTB

Pestome. B cratbe paccMaTpuBaeTcst 3aqaua HAXO0KICHUS SKCTPEMATIBHBIX TOYEK
(GyHKIMHY, 33laHHOM HAa BCEX IIOJMHOXECTBaX KOHEYHOrO0 MHOXecTBa. Merton
noctpoeHust GyHkimu (1) IPUBOAMT K BBIIEICHHIO IKCTPEMAaJbHBIX MHOXKECTB.
OcHOBHasi 0COOCHHOCTh METO/Ia IIOCTPOCHHSI OCHOBAaHA Ha MPEIIIOJIOKEHHUH, YTO

UL Kakaoro sneMmeHTa Ol cymiecTByeT Habop dymcen {TCH (OL)}, rue H -
ITOJMHOYKECTBO KOHEYHOr0 MHOXKecTBa 1 Ol € H.

1. BBEJEHUE

B Hamem wucciiemoBaHWMHM MBI paccMaTpWUBaeM 3ajady HaXOXKACHUS
rJ100aIbHOrO 3KCTpeMyMa (pyHKLIUH, 3aJaHHOH Ha BCEX IOAMHOXKECTBAX
JTAHHOTO KOHEYHOro MHOXecTBa. OMNHUCAHHBIA aJTOPUTM IOCTPOCHUS
TPUMEHSUICS JJIsl PEIIeHNs] HEKOTOPBIX 33/1a4 KJIAaCCU(HKALUN OOBEKTOB C
MOMOIIBI0 METOJla ONHOPOIHBIX Iierieii MapkoBa. B obmem Buae
npexaiaraeMas KOHCTPYKLHUS IIO3BOJIET peLIaTh HEKOTOpble 3alayd Ha
rpadax, HampuMmep, BBIICIATH B HEKOTOPOM CMBICIE «CBSI3HBIEY
NoJMHOXecTBa BepwH Tpada. Teoperuueckas OCHOBa KOHCTPYKLHUH
¢dopmynmupyercs B TEpMHHAX  CICIHMANBHBIX  OpaBuil  oTOOpa
TTOCTIEIOBATEIBHOCTEH TIOJMHOXKECTB JaHHOTO KOHEYHOTO MHOXKECTBA H
HEKOTOPBIX MOCJIEA0BATEILHOCTEN €0 3JIEMEHTOB, PE3YJIbTATOM KOTOPBIX
ABJISIETCS U3BJICUEHUE DKCTPEMAIIbHBIX TTOJIMHOKECTB.

3aa4un MoJJOOHOTO THIA UMEIOT WIIH HOCSIT KOMOMHATOPHBIN XapakTep
¥ OTHOCSATCSI CKOpee BCEro K 3ajavyaM JAUCKPETHOro MpOrpaMMUPOBAHUSL.
OmnpeneneHHbId KIacC MONOOHBIX 3a/Jad HAa KOHEYHBIX MHOXKECTBaX
ycrentHo pemaetcss B paborax Yepenuna (1962), UYepenmna wu
Xauaryposa (1965). B pamkax 3Tux paboT paccMaTpuBaIuCh (YHKIIUH,
YIOBIIETBOPSIOIIUE  YCIOBUIO, KOTOPOE MOXHO  C(HOPMYyITHUpPOBATH
crenyomuM  obpasom. Ecim O, wm  ®, ABIAKOTCA  ABYMs

NpEeACTABUTEIIAMU TIOAMHOXECTB JaHHOI'O KOHEYHOI'O MHOKECTBA, TO
f(o,) +f(0,) <f(o, Vo, +f(0,No,).

ITo yClOBHE B HEKOTOPOI CTENEHH OTPaKaeT BBIMYKIOCTh GyHkimu f .
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I'maBHBIM  CcBOWCTBOM WM TpeOOBaHHEM MPEIBSBISEMBIM K
paccMarpuBaeMOMy B PYKONHMCH  Kiacca  (YHKUMH  sIBISETCS
MPEANONIOKEHNE O CYIISCTBOBAHMHM HEKOTOPBIX YHCENl WIH BECOB
(credentials, ed.), BBIABISIOMIMX JJSI KaXJOrO 3JIEMEHTa KOHEYHOI'O
MHOJKECTBA CTEIEHb €ro BXOXIEHUSA B MOAMHOKecTBO. CTeneHn
BXOXKJEHUS JOJKHA YJIOBJIETBOPATH YCIOBUAM III.1-2 (CM. HUXKE).

OTHOCHUTENIPHO HACTOSAIIETO WCCIENAOBAHHUS CTOUT Takke OO0paTuTh
BHUMaHHEe Ha pabory Mupkuna (1970). B nmanHoii paborte 3amaua
ONTUMAILHON  KJIACCH(HUKALUK CBOJUTCS K TOHCKY CHCHUATBHOM
«PacKpacKm» Ha HEyNnopsoYeHHOM rpade. OnTuManbHas KiacCupUKaius
TaM XapaKTepU3yeTCs HEKOTOPhIM MaKCUMAJIbHBIM 3HAYCHUEM (YHKIIUH,
COOTBETCTBYIOIIAM IO CBOEMY BHJy orpeeieHuto (1), 0qHAKO mpu 3TOM
Mbl uHTeprpetupyeMm (1) B mHOM cwmbicie. Mbl He paccMaTrpuBaeM B
HaIlleM omnpeseiicHur (GYHKIUU pa30UeHUE 3aJJaHHOTO0 MHOXECTBA Ha JIBa
HelepeceKkaroIuxcs MOJMHOXKECTBA, YTO OBUIO OCHOBHOW 3ajayeit
MupxkuHa (cf., Vohandu & Frey, 1966, ed.).

2. TIPHHIMII MAKCHMYMA

ITycts {H} MHOXKECTBO IIOAMHOXECTB HEKOTOPOr0 KOHEYHOTO
mHOkecTBa W . TIpeamonoxkuM, 9To MBI BBOJMM (YHKIIHIO Ty s
kaxzoro u3 snemenros H C W' na coBokynmrocTi moamuoxecTB {H}
B KauecTBe aprymeHToB. Hwke mox Habopom {TCH} MBI [OJIpa3yMeBaeM
CHUCTEMY BECOB Ha MHOMECTBE IIOJMHOKECTB {{ Ty }} OcHoBHOE

TIPEATOJIOKEHUE OTHOCUTEIIBHO BECOBBIX CUCTEM CIIEAYIOIIEE:

n.1 Becom RH(OL) snementa OL € H sBnserca neitcraurenshoe
4HUCIIO;

n.2 Mexay pasiIuuHBIMU CHCTEMaMH BECOB {{ Ty }} JUISL PasHBIX
HIOIMHOYKECTB {H} Habopa {TCH}, CYLIECTBYIOT CJIEAYIOIIHE

3aBHCUMOCTH. JJIsI KaXJA0ro »JjJeMeHra O € H u KaXXJ10T0
BeH\ {OL} cpasemso: Ty, (B) < (o).

JpyruMu crnoBamH, COTJIaCHO MYHKTY 2, TpeOOBaHHE COCTOMUT B TOM,
4TOOBI y/laleHHe MPOM3BOIBHOTO deMeHTa Ol u3 MHOkectBa H

MIPUBOJIIIIO OBl K HOBOW CHCTEME BECOB { Tie }, a BITMSIHUE Y/IAJICHHOTO

sjeMeHTa Ol Ha Beca B OCTAaBIICHCS YacTH H \ {OL} ObLIO OBI TONBKO B
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HalpaBJIeHUM yMeHbIIeHUs. [IogcHMM 3TH 1Ba yCIIOBHs HAa NpUMEpAx W3
Teopuu rpadoB, XOTS €CTh U MPUMEPHl U3 APYTHX oOlIacTel MO3HAHUS,
OZHAKO MEHee YyIOOHBIE Ui KpaTKoro oobcyxkiaeHua. Paccmorpum
HEOPHEHTUPOBaHHbIE Ipadbl, T.€. rpadbl cO CBOICTBOM, KOT/]a OTHOLIEHHE
BEPIIMHBI X K Y BiedeT 00paTHOE OTHOIIEHUE BEPIIMHBI Y K X .

Ipumep 1.

Oycte W — MHOkecTBO BepmmH Tpada G. Mu omnpenesaeM

CHCTEMY BECOB { Ty } Ha KaX10M noaMHoxkectBe H Bepmmu xak HaGop

qucen { Ty (OL)}, rjae 4yuciao Tly (OL) paBHO KOJMYECTBY BEPIIVH, B H

CBSI3aHHBIX C BepmuHOW OL. MctmHHOCTH Tm. 1 U 2 Jierko mpoBepsieTcs,
€CJIU TOJIKO BCLIOMHHTB, YTO BMECTE C YJIaJIEHUEM BEPIIUHBI Ol JOJIKHBI
OBITh OJIHOBPEMEHHO YaJICHbI BCE CBSI3aHHBIE C Hell pedpa.

IIpumep 2.

Mycts W 310 MHOMKecTBO pebep B rpade G mm MHOXKecTBO map

BepmuH, cBasanHbx rpadom (. Ompenenum BecoByio cucTemy { i 1—1}

Ha npou3BoIsHOM onmHokectBe H pebep B rpade G kax HaGop umcen

{TEH(OL)}, me o €H u Ty (OL) — KOJIMYECTBO TPCYrOJbHHUKOB B
MHOKECTBE pedep H, comepxamux pebpo OL. YUmcmo Ty (OL) paBHO

YMCTy TeX BEPIINH, HA KOTOPHIX HAaXOMUTCsA MHOxkecTBo H, Takoe, uTo
ecnmi X BepUIMHA yKasbpiBaromas Ha pebpo u pebpo OL = [b,e], TO

0TCIONA CTIEYET UTO [b,X] eHu [e, X] eH.

B mpumepax Mbl HCHONB30BajM TOT (hakT, 4To rpad sBIsgETCS
TOIOJIOTUYECKUM OOBEKTOM C OJHOI CTOPOHBI U OMHAPHBIM OTHOIIEHHEM
¢ Jnpyroii cTopoHbl. Temeppr paccCMOTPUM CIEAYIOIIYI0 (YHKIHEO
MHO>KECTBa

f(Hy=min__, n,(a), (1)

rne HC W . Huxe Mpl npemmaraem npuemun, chpaBeiuBbIi uis
noamuoxkectBa H, Ha KOTOpoM mocTHraeTcsi rioGaibHBIA MaKCHMYM
¢yakmun  THma  (1). Cdopmynupyem STOT NPHUHIMO B TEPMHUHAX
HEKOTOPBIX ~TOCITeNOBAaTENbHOCTEl deMeHTOB MHOxkectBa W 1
TI0CIIEI0BATEIBHOCTEH MOJIMHOXKECTB TOTO XKe MHOKECTBa W .
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ITycts o= { Qs Oyyenns OLk_1} — MOCJICI0BATEIIbHOCTh JJIEMEHTOB

siowecrea W k =|W

. HpI/I IIOMOIIIM ITOCJICA0OBATCIBHOCTH a

3amana mocyenoBarenbHOCTh MHOKecTB H(OU) = { H,,H, ,...,Hk_1},

rae HOIW u Hi+1 ZHi\{Oti}.

Onpenenenne 1. HasoBem mocnenoBaTensHOCT, Ol  DIEMEHTOB U3
MHOKecTBa W ompesensomneii, ecliu B TI0C/IeI0BaTeILHOCTH MHOXKECTB

H(a) cymectsyer moanocnenosarensnocts [ = {FO,FI ,...,Fp}

TaKas, 4To:
1°. Bec T, (O(].) MIPOU3BOJILHOTO 3JIEMEHTA, MPUHAIEKAIIETO Fj, HO
1

HC MpUHAIJICKAIICTO FJ.H , CTpOro MEHBIIC f(GJ+1 ) 5

2° B Fp HE CYIIECTBYET TAKOTO CTPOTOTO MOAMHONecTBa L., 4ro

£(G,) < F(L).

Onpenenenne 2. Hasosem mommuokectBo H  mmoxecra W
OTIPENIEIMMBIM, €CIIH CYIIECTBYET OMNPEICISIONIas MOCIe0BaTEIbHOCTh

Ol Takas, 4To H= Fp.

Huxe Mbl BHOBBL BOCIIOJIB3YEMCH Ha60pOM {TCH} B BHUJEC CHCTCMbI
BE€COB IT10 OTHOIICHUIO K MHOXECTBY H .

Teopema. Ha onpenemumom muoxectse H dynkius f(H) JIOCTUTAEeT

CBOCTO r100aIbHOTO MakcumMyma. OHpCZ[eJ'II/IMOE MHO>XECTBO
eIMHCTBeHHO. Bce MHOXECTBA, B KOTOPBIX JOCTUTHYT III00aIBHBIH
MaKCUMYM, JICKAT B OIPEACTIACMOM MHOXKECTBE.

Jokazateancro. Ilycts H onpenenmmoe mMuoxectBO. Ipemonoxum,
uto cymectByeT Takoe L C W, uro f(H) < f(L). [Ipennonoxum,
aro L\H#J; s MIPOTHUBHOM CJIydae HaM OCTAaeTCs TOJBKO J10Ka3aTh

CAHMHCTBCHHOCTD H, YTO MblI H CACJIaCM HHXKC. HYCTI:- Ht €CTh

HauMMCHBIICC U3 MHOXCCTB Hi (1 = 0,1,..., k - 1) , BKIIIOYAIOIuX B celst
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MHO>KECTBO L \ H . I3 sToro (I)aKTa MOXHO 3aKJIFOYUTh, YTO CYIIECCTBYET

takoit onement/ € L, uto /€H, , no { &H, . Bonee Toro, B

COYCTaHu C ITOCICOAHUM L \ H * @ HalpamuBaeTCsA BbIBOJ t< p .

HepasencrBo t < P pacronaraer K CyIIeCTBOBAaHHIO XOTs ObI OJHOTO

TAKOIro IIOAMHOXKECTBA B IIOCICAOBATCIIPHOCTH MHOXKCCTB r , 4TO

m,, (0) <f(I7) )

u j2t+1. Tak kak / & Ht+1 u Fj C Ht+l BEPHBI, TO CIELYET, YTO

l¢ Fj. Taxum 0O6pa3om, HEpaBEeHCTBO
f(I;) <f(T,) 3

CIIPaBEAJIUBO KaK CIEJCTBHUE M. 2° ompeAesonle ocaeI10BaTeIbHOCTH.

Teneps mycThb /el uBeca sy (f) MUHHUMAJIbHBI B CHCTEME BECOB

N0 OTHOWEHHMIO K MHOxkecTBy L.. Hepasenctsa (2) u (3) HO3BOIAIOT
clenarth BBIBOJ, 4TO TT (V)< T, (/). Boume Mb1 BHIGpaTH Ht npu

yCJI0BHUH, YTO L c Ht' HpI/I 9TOM, BCIIOMHHAas1 OCHOBHOC CBOWCTBO m.2

cHCTeMbl BecoB (yAaJeHHE OSIIEMEHTOB), HETPYAHO YCTaHOBHUTH, YTO

[Ty (E) < TEH‘ (f) , T. €. B CHCTCMEC BECOB 110 OTHOIICHUIO K MHOXECTBY

CYIIIECTBYET BEC, CTPOI0 MEHBIIMH, YeM MHUHHMMAIbHBIH. MBI TPUIIIH K
MPOTHUBOPEUYUIO W TEM CaMbIM JO0Ka3ajH, YTO JOCTUTHYT TJIOOaTbHBIA
makcumyM. Jlanee, Bce Takume MHoxectBa H, ormmumeie or L, e
TaKKe JOCTHUTaeTCs TIIOOANbHBIA MaKCUMyM, IEHCTBUTEIBHO MOTYT
Haxomuthcs BHyTpn H . OcTaeTcs 10Ka3aTh JIMING €IMHCTBEHHOCTH
ompenenuMoro MHoxkectBa H. B CBA3M ¢ JOKAa3aHHEIM BBINIE MOXKHO
TIPENOIO0XKHUTh, YTO HEKOE ONPEACINMOE MHOMXECTBO H' naxomures
saytpu H, oxmaxo, mpomomkas nuHuMIO paccyskaeHWH, aHATOTHUHYIO

o !
MPEIOAKEHHON HAaMU BBILIE JIJIsI L, saxmouaem, ato Hc H' . =
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Caencreue. Ilycts {R} — CHCTE€Ma MHOXECTB, B KOTOPOH (yHKIHSA

tuna (1) mocturaer cBoero rI00aNBPHOTO MakcuMmyma. Torma, ecim

H, e{R} uH, e{R} ,70 H,UH, e{R}.

JlokazatenbctBo. Crnemyss myHKTy 2° (OCHOBHOE  CBOICTBO)
f(H,)<f(H,UH,), a xpome toro w3 f(H, UH,)<f(H,),
cnenosaremsno H, UH, € {R} n

Huxe MBI NpuUBOOUMM — KOHKPETHBIH — alrOPUTM  HOCTPOEHHUS
ONPENEISIIOMIMNX MOCIEA0BATENBHOCTEN 3JIEMEHTOB MHOKECTBA W . nsa
JOCTYITHOCTH alTOPUTM MPEACTABICH B BUJE OJIOK-CXEMBI, TIOXOXKEH B
KaKOH-TO CTENeHN Ha KOMIIBIOTEPHYIO IPOTPaMMYy.

3. AJITOPUTM
al. Hycts muoxectBo R = W u nocnenosarenmsoctn OU u B
BHayaje WyCTHl, a HWHIEKC 1=0. 3necs OLZ{OLI,OLZ,...,OLi,...},

B = {Bsz 9""Bi9"‘}'

a2. Haiigure snemeHnT M C HaAaMMCHBIIMM BE€COM IIO OTHOIICHHIO K

muoxectBy R, 3amomumnaem smavenne A = T (].J,) Y TI0JIaraeM Imocie
3TOTO a:a,ﬁ,u, a 3aTeM |3 =0.

a3. HckirouaeM 3JIEMEHT W u3 MHOXEeCTBa Ru YYUTBIBAEM BIIUSTHUE
YAQJICHHOTO DJIEMEHTa Ha OCTaBIIMECS DJJIGMEHTHl |l € R , T.€.

BBIYMCIISIEM BCE BEJICYNHEI ﬁR\H (B) JJIST BCEX B eR \ {M}

a4. B cmydae, ecnmum cpeau OCTalbHBIX (OCTAaBIIUXCS) DIIEMEHTOB
HaWIyTCa Takue 7Y , 9T

T (V) <A 4)

TO o6pa3yeM IIOCJICAOBATCIBHOCTD YKa3aHHBIX OJICMCHTOB

Y= { 'Y1,'Y2,...,YS} Y HIOJIOXKHUM B = E,?
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a5. Tlomoxum muoxectBo R =R\ {},l} u onement W=P. . u.

i+1
BO3BpamacMcs K IIYHKTY 33 B cliy4da€, €CJIkd 3JIEMEHT Bi+1 OINpECACICH IJIA

noCjICaA0BAaTCIbHOCTH 3JICMCHTOB B , YBEJIMYHBass B 3TOT MOMEHT UHACKC

1 Ha SMHULLY.

a6. B cliydyae€, Korjaa IoCJI€d0BaTCIIbHOCTD o usyepmnaajia BCE
MHOKECTBO W , IIOCTPOCHUE 3AKOHYCHO. B IIPOTUBHOM  ClIy4ae

BEPHHUTECH K ITyHKTY a.2, Tojiarasi cCHaJajia uHaeke 1 = 0.

JlokaxkeM, 4YTO TOJBKO YTO TIOCTPOCHHAs IO NPEATI0KEHHOMY
QITOPUTMY  TIOCIEOBAaTeNbHOCTE Ol ABJISETCS  ONpeAeNAIoLIeH.

PaCCMOTpHM OCJICAOBATCIIBHOCTD H((X,) U BBIACIMM B KadC€CTBC

TOCIeI0BaTebHOCTH | Te MHOKECTBA, KOTOpbIE HAUMHAIOTCS C
JJIEMEHTa, HAlICHHOr0 B MOMEHT Iepexoja ajJropuTMa uepe3 wiar a2.
dakT mepeceyeHus a2 ajIropuTrMa TapaHTUPYyeT, 4To ycioBue (4) He

BBIMOJIHAJIOCH 1O TOI'0, KaK MPOU30LLI0 NEPECECUYCHUEC, U DJICMCHT Bi+1 HC
HaXoauTCA B IIOCJIICAOBATCIBPHOCTH HA JAHHOM 3TaIie B . CkazaHHOE BBIIIIE

TapaHTHPYET TakKe BBIOJHEHUE YCIOBUS 1° [UIS  OmNpeaessiFoIux
nocienoBarenpHocTel. [Ipeamonoxum, 4to ycinoBue 2° B onpeeneHun |
HE BBIMTOJIHEHO, T.€. B IOCIEIHEM MHOYKECTBE Fp I1OCJIEI0BATENLHOCTH

[ cymectyer Ttakoe mommmoxectso L., uro f(Fp)<f(L).

PaccmorpuM mocnenoBaTeabHOCTD B , KOTOpas TEHEpUpyeTCs IIpHU
HOCJIEIHEM IIepexofe uepe3 a2 BbILEONMCAHHOIO aJIrOpuTMa, U IyCTh

7\'p CHUMBOJIU3UPYET HanOOoJIbIIee 3HAYCHHE Cpe€an BCEX TaKHX 7L

HpI/IXOIII/ITCH 3aKIIIOYATh YTO M3 TIPCANOJIOKEHUS O CYHECTBOBAHUU
MHOKECTBA L , 1 3aM¢€4das 4To }\'p = f(rp) MNpUXoauM K HEPABCHCTBY

A » <f(L). Ho moctpoennio mocnenoBatenshocTs OL M BMecTe ¢

HOCJIEI0BATEILHOCTBIO B (obe oHHM), KOTOpas TIeHepupyercs IIpu

TIOCJICIHEM TIepexoJie Yepe3 a2 alropuTMa, UCIOIb30BAIN BCE DJICMEHTHI
W . CnenoBarensHo, MBI MOKEM paccMaTpHBaTh MHOKECTBO 3JIEMEHTOB
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K B IIOCJICOOBATCIBHOCTHU B , KOTOPBIC HAYUHAKOTCA C TMECPBOIo
MIPOTUBOCTOALICTO DJICMCHTA gEL, rae LCK Ha ocHoBanumn

00OCHOBAHHOI'O BHIIIE HMEEM ﬂK(f) =7\,p, U, BCIIOMHUHAsT OCHOBHOE

CBOWCTBO Y4YETHOM cHCTeMbl 1.2 (yIaJeHHE 3JIEMEHTOB), 3aKIII0YaeM,
KpoMe TOro, 4to 7T, (f) < Kp. Mbl TPHUIUTA K TPOTHBOPEUHIO M TEM

CaMbIM JI0OKa3ajii CBOMCTBO 2° ompeaeneHus | A mocienoBaTenbHOCTH
O. B cBI3M C OTHM BO3MOXHO MOCTPOCHHUE  OIPEIEIISIONINX

MI0CJIeI0BATEIBHOCTEHN 110 YKa3aHHOMY BBIILIE allTOPUTMY.

HOI[‘{epKHeM HCO6XOL{I/IMOCTL KOHKPETHU3allMU TIOHATUSA CHCTEMBI
BE€COB TPUMEHHUTECIIBHO K TIOJAMHOXXECTBY 3aJaHHOI0O KOHECYHOI'O
MHOXECTBaA IJI pCIICHUSI HEKOTOPBIX 3aJla4 pacCliO3HaBaHUA O6paSOB, 4qTo
JOOJDKHO CTaTh IPEAMETOM JaJIbHEHIIIETO UCCIIeIOBAHUS.

B 3aKJIHYCHUC OTMCTHUM, qTO TIIOCTPOCHUEC OIPECACITIAOIIUX
MOCJICJIOBATEIFHOCTEN peaan30BaHO Ha mpakTuke Ha OBM mns omHOM
3amaud  Teopuu  rpad)oB, CBA3AHHOW C  BBIJCIICHHEM  IOYTH
MOJIHOCBSI3HBIX» moarpadoB B 3aganHoM rpade. KomudectBo pebep B
Takux rpadax cocrasiser okono 10%,
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Data Structure Opening Method:
Methodological Guide *

Abstract. This methodological study deals with hidden or rather unknown method
of information processing, although this method has been actively used both in the
past and in the last decades. The method has positively proven itself when opening
a data structure in order to draw the necessary conclusions on issues related to
people and economic activity, production processes, biology, demography, etc.
Keywords: data matrix; layering algorithm; graph; tournament

1. INTRODUCTION

If someone decides to collect data, the following questions must first
be answered.

What information is needed?

Why is this information needed?

To what extent are the reasons for gathering information?
How can decisions be made based on the information gathered
and thus influence the investigation process?

If answers are available, then the set of collected "objects ”, those data,
is also defined. For example, information may concern people living in a
city, families in a given country, electronic equipment, factories made up
of basic production units (objects in the terminology of the guide) etc.

Population information can be composed of a series of indicators that
describe the population as a whole, such as the scales against which in-
come is measured. In productive area, indicators determine the technical
environment in which, e.g. equipment was manufactured and operated.
Naturally, estimates based on the information collected differ from actual
estimates. Thus, the researcher may draw incorrect conclusions if the error
of the estimate is too large. This guide looks at one possible way to avoid
the errors associated with the so-called stratification concept.

Let's give an example of the importance of this concept in information
processing: in USA a presidential elections were held in 1932. Literary
Digest sent postcards to voters with questions to predict Roosevelt's elec-
tion to the presidency. Some 10 million postcards had been sent out. The
results showed that the forecast made on the basis of the information col-
lected was accurate within 1%. However, the prediction made using ex-
actly the same technique in 1936, contained an error of almost 20%.

The original version in Estonian (Mullat, 1977), Protocol No. 9, approved by
the TPI Council (Tallinn Polytechnic Institute) on March 15, 1977. TPI cur-
rently stands for Tallinn University of Technology — TalTech.
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There is a general perception that the "postcard method" introduced a
disproportion among voters who return postcards. It turned out that people
with higher education and better conditions tended to return more post-
cards. People with a higher standard of living tended to prefer Roosevelt's
competitor during the readiness period, and the forecast of results shifted
away from the real thing.

This example shows that when the population is stratified (for exam-
ple, only voters with higher education and better conditions are observed),
a big mistake cannot be avoided. That is, in order to avoid such an error,
the researcher must know in advance the subgroups of the population
(classification), but usually the identification of subgroups is a complex
and voluminous effort, which in turn is associated with the collection of
information.

The guide looks at population stratification (classification) methods
that currently exist in three types:

a) Methods that take into account the researcher's subjective opinion
of the population. This means that classification with exact proper-
ties are known or simply assumed,;

b) Methods to be used in the absence of any data or hypotheses about
existing strategies and their attributes;

¢) Methods, which are intended only to visualize a sample of the
population in order for the researcher to be able to make a decision
on the available strata.

Among methods a), b) and c), only the so-called monotonic layering
(Mullat, 1971-1995) or known since then as the “monotonic linkage
method” (Kempner et al, 1997) is considered. The last chapters are de-
voted to the theoretical study of these monotone systems and methods of
monotone layering, in particular, on graphs. We do not discuss issues
related to the use of standard statistical methods and algorithms. The addi-
tional tools and technologies needed for the monotone layering of data, the
accompanying terminology and strict nomenclature are explained in the
course of the narrative and defined where necessary.

The article consists of an introduction and a section that discusses the
main concepts, a total of 8 sections. Section 3 discusses the different types
of metric distances between objects to measure the difference between
objects in classification problems. Section 4 describes the method itself at
an informal level. Section 5 provides a more accurate construction at a
precise mathematical level. In Sections 6-7, we consider the application of
the method to the study of graphs, in particular, to determine the groups of
strong players in tournaments as opposed to weak players. Concluding
remarks are provided in Section 8.
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2. KEY DEFINITIONS

First, we introduce the reader to the terminology and basic concepts
used. The basic concept of data processing is a data matrix. The data X is
a N XM matrix (1 row and M columns), each row of which is called
an object; one column of the matrix is called an attribute. This means that
the data matrix is

X, ,X X

L121,29° 2 m

X = 219 X0090 5 X5 1

nJ’Xn,Z"‘ n,m

and X, . is the value of the ] -th attribute of the 1-th object. It is natural

that the question immediately arises as to what the numerical values of the
attribute in the data matrix reflect? There must be brands that the attributes
may differ substantially. For example, the air temperature may be a char-
acteristic when electric lamps are lit; the shoe number of the person; gen-
der (male or female), etc. As the processing is formally based on mathe-
matical apparatus, three types of attributes are distinguished in order to be
able to interpret the final results and use them according to the purpose:

a) Attributes on a continuous scale (Interval scale), such as body cre-
dential, height, temperature (quantitative);

b) Attributes on a discrete ordinal scale, such as the grades a student
receives in some subjects: unsatisfactory, satisfactory, good, and
very good. At this point, the values of the attribute are considered
ordered (in Points or ranked);

¢) Attributes with discrete values that are not ranked (nominal scale or
even qualitative attributes), For example, eye color, gender (male
or female).

Quantitative attributes. The quantitative expression of an attribute is
usually referred to as the value of the attribute can be compared. Questions
about how many times the value of one attribute is greater than another
can be answered. At first glance, the question does not seem to be very
complicated, although a deeper examination in turn raises the question:
"What is natural to compare?" Let's look at some more examples before
answering this question.
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Let us choose the cars that are described by the price tag. Undoubtedly,
the attribute "price" is quantitative, the @ car with the price of 10.000€,

is twice as expensive as the b car with the price of 5.000€. The character-
istic "price" or "value" expressed by the function f(a) can also be ex-

pressed by the function K - f(a)) (K is a positive number). Every other

type of conversion changes the price ratio of cars. The allowed transforma-
tions of the attribute “price” are multiplication by the constant K. This
property of the price makes it possible to determine how many times

f(a) is greater than f(b) — the ratio K'f(a%_f(b) does not

depend on K of the choice, and if K is fixed, we can thus say how much
is f(a) greater than f(b). This class of transformations allows for the
universal presentation of concepts related to quantitative as well as other
types of attributes. However, the determination of a unit of measurement
requires only quantitative attributes

Definition. The permissible transformation of the value of an attribute
f(a) in the set of attributes A is called the function @(X) if the func-

tion @(f(a)) (a € qu) shows the same attribute. If the values of the

characteristic f are given together with the number of allowed conver-
sions F, then we say that the measurements of the characteristic were
performed on the F -type scale.

In the example of passenger cars FO {K - X ‘ K> 0} and on the scale
F

o it is usually said that the measurements are made on a ratio scale. An
interval scale is a scale where the number of transformations allowed is
FX = {K~X + O‘ K> 0}; the specific scale Fx is determined by the
quantities K and O, which give the unit of measurement and the starting

point of the scale.

In most cases, the measurement results are presented in the form of a
matrix, if after each allowed transformation the measurement results do
not change. However, it should be noted that the results of matrix meas-
urements do not allow them to be immediately used in arithmetic calcula-

tions. For example, the relationship f(a)+ f(b) > f(c) does not make
sense in the scale with origin 0 > 0, since K- [f(a) + f(b)]+ 2.0 is
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greater than K - f(C)+ O only for some K and O values. Indeed, abso-
lute zero is the natural and unambiguous presence of the zero point O that
cannot be changed: °0-Kelvin is absolute zero on the scale, which charac-
terizes the absence of the measured feature. However, °0-Celsius or
°0-Fahrenheit are not. Two arbitrary physical phenomena are taken here:

melting of ice, or an equal mixture of water, ice and salt at -21.1°C. Com-
paring the mean values of the interval scale is another matter.

Expression
1 n 1 m
—-> f(a))>—=> f(b)) (1
n o m j-
remains unchanged after using the allowed conversion. Namely

-il{-f(ai)+o>iil(-f(bj)+o
i=1 m 5

iff

Zf(a )+—>—Zf(b )+

U

and the latter is equivalent to inequality (1).

It makes sense to compare the absolute differences in the values of the
attributes, namely

@)= f(b) _|(x-f(a)+0)-(i-f(b) +0)
f(c)—f(d)| |(x-f(c)+0)—(x-f(d)+0)

Now we ask the question what determines the number of allowed

transformations f(X)? Usually the choice is related to other attributes

with the possibility of forecasting. Formally expressed laws of science
allow all these forecasting transformations not to change the law. For

example, Clipperon's law P % = const connects the scales of tem-

perature T , volume V and pressure P of a given gas, allows transfor-
mation, leaving the law unchanged. Also in economics, in functional mod-
els, the price is determined fixed to within a multiplier.

Unknown patterns of relationships, characteristic of sociological or
psychological research, allow transformations between objects in the form
of empirical relationships, for example, by stratification methods. In these
studies, however, interval or ratio scales are unacceptable.
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Point or ordinal scales. Pupil assessment aims to test the degree of skill
acquisition and achievement of primary education goals on a point scale:
Fail (IN — Insuficiente); Pass (SU — Suficiente), Good (BI — Bien), Very
Good (NT — Notable), Excellent (SB — Sobresaliente). Point scale grada-
tions are limited by equal intervals of discrete numerical values. Expert
judgments are often recorded as a sequence of natural numbers arranged
symmetrically to the O point (O, + 1,...) :

A distinction should be made between two types of point estimates. In
the first case, the assessments reflect some well-known standards. The
more opportunities you have to describe and characterize standards, the
more accurately you can, for example, determine the deviation from the
standard. Thus, the teacher depending on his work experience and personal
experience forms the pedagogical level of high school students’ perform-
ance. On the other hand, refining a benchmark helps predict attribute val-
ues; for example, a student who is very good at geometry usually also
scores higher in algebra.

The second type of points occurs when there are no well-known stan-
dards or even the existence of an objective criterion is questionable, which
may be reflected in subjective judgments, for example, the taste of culi-
nary products. This type is also called an ordinal or ordered scale. The set
of allowed transformations F consists of all monotonically increasing
functions. The ordered values of the attributes are compared only on the
basis of the relation "higher-lower”. It is meaningless to compare the
differences between the wvalues of the attribute. For example, if

f(a)=10,f(b)=2.f(c)=1,f(a)—f(b) =8,f(b)—f(c)=1,
f(a)—f(b)=8>f(b)—f(c)=1, Then, using the monotonic trans-
formation @, where @(1) =1, @(2) =20, @(10) =30 gives a con-
tradiction 10 = ¢(f(2)) — o(f(b)) > o(f (b)) — o(f(c)) =19.

It is, nonetheless, realistic to fix the values of original attributes using
non-numerical terms. Eligible elements for each ordered set, such as al-
phabet, etc.

(c) The nominal scale. The scales of the above attributes — quantita-
tive, point and ordinal scales — have general attributes. All scales define

the binary relation B on the set of objects X . The relation is defined by
the following rule: (a,b) € B then and only then when f(a) > f(b).

Quantitative and point measurements are informatively more voluminous
than ordinary measurements,
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In practice, we can often only be interested in the information con-
tained in the binary relation B. The researcher's conclusions about the
functioning of the socio-economic system are usually qualitative (for ex-
ample, stratification or ranking of objects in a sample).

It is natural to ask the question: is qualitative information not enough
to draw conclusions? Qualitative information is easier to measure and

more reliable. We do not have the means to accurately measure f(a) and

f(b), while we can be sure that f(a) > f(b).

On the other hand, the complex examination of data requires the trans-
formation of the measurement results of individual assessments and objec-

tive indicators into a common type of data: quantitative or qualitative.

By limiting the number of transformations F allowed, complex data
analysis is usually performed by quantifying all measurements. By limit-
ing the number of transformations allowed sophisticated data analysis is
usually performed by quantifying all measurements. Qualitative measure-
ments can "suffer" in this way. When examining qualitative data, it is also
possible to do the opposite: to transform quantitative measurements into
qualitative ones. It is possible that even then the data will "suffer". How-
ever, if the results using quantitative methods are consistent with the re-
sults of qualitative data processing methods, the investigator is more likely
to be sure of the conclusions reached,

Let the equivalence relation J be given for the cross product of ob-
jects X x X . We assign to each object X € X the number of the 1-th
class of X, which contains the object X . Let's say that the measurements
are made on a nominal scale, if the value of the attribute is the number of
the 1-th equivalent relation. Number of conversions allowed by Fn are

unique functions. Thus the pair (a,b) € J then and only then when
attributes values f(a)=1f(b). Measurement on a nominal scale is the

"weakest" measurement step, as it is only determined whether the equation

f(a)=1(b) truly applies.



222 Chapter Two

3. METHODS FOR MEASURING DIFFERENCES BETWEEN OBJECTS

All of the methods that we will discuss in Sections 4-7 relate to some
degree to the concept of distance or metric. This means that the task of
stratification can be performed accurately only if the distance between
objects is determined. Choosing a distance means also comparing dis-
tances that measure the similarity of two objects. The higher this number,
the more the objects themselves differ, and vice versa.

The distance P(X,y) between objects X and V is called a function
that satisfies three conditions:

(a)  foreach X object p(X,X) =0;
(b)  for each pair (X,y) of objects p(X,y) = p(Y,X);
(c)  there is a relationship for each of the three objects (X,y,Z)

that p(X,y) +p(y,2) 2 p(y,z) .

The following is a list of metrics or distances used. The notations are

as follows: We denote the 1-th, 1= 1,1, object of the data matrix X as

X, = <Xi’],Xi’2,...,Xi’m>, where X, ., j=1,m, is the J-th attribute

Ly’

of the object 1. The distance between two objects X, and X, herein as

said is nominated as P(X,,X,).

Here are some of the most commonly used metrics.

Cubic distance:

X

kj )

p(X,,X,) =max ‘X 0
j=l,m

where ‘ . ‘ indicates an absolute value.

Octahedral distance:
m
p(x,,X,)= Z‘Xk-j - Xf,j"
j=1

Euclidean distance,

p(x,,Xx,)= i(xk.j _X,«,j)2

j=1
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These three metrics are mostly useful for an interval scale. The follow-
ing distance is useful when attributes are measured in points or on an ordi-

m
nal scale: p(Xk,X[)ZZ‘Xk_j “‘/Zn}f}x kJ,X“)
j=l

There are distances that are valid when the attributes are binary. Binary
is a sign of "marital" status, e.g. if there can be only two answers — "mar-
ried-yes" or "married-no". These distances are valid even if the scale is
nominal.

Hamming distance.

The notation is borrowed from set theory because objects can be inter-
preted as subsets of attributes. A value of 1 can be viewed as an indicator

X of whether the original attribute J belongs or does not belong to

subset X, . The object X, is thus a Boolean vector X, = <Xi,1 yeees Xi’m>,

WhereX 1sthe "1"-one or "0"- zerotype] I,m.
The absolute distance p(Xk,X(.) is defined as follows:

p(x,,X,)=m —‘Xk M X[‘ , which equals the number of missing

matches in the objects X, , X, . In this case, is the number of

attributes matches in the data matrix, which takes into account 1-s in both
objects X,, X,, indicating the same attributes. The relative distance

looks like p(Xk,Xé)Zl—‘Xkﬁxé‘/‘Xkaé‘,Where X, UX, is

a set of only those attributes that are present in both X, , X, objects, but

do not necessarily indicate the same attributes.

The list of distances between objects can be continued, since the possi-
bilities for determining the distances are not limited. It should only be
noted that the choice of distances is a process that is difficult to formalize
and is usually performed by a researcher based on his/her own experience.
Measuring the differences or distances between attributes further compli-
cates matters and differs from the above list. Inter-trait, or correlation
coefficient between features/attributes is the most commonly used measure
that shows the relative linearity of the change in a second identifier when
the first identifier changes. The correlation coefficient C between attrib-

utes O, B can be determined using the following expression:
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n

n n
in,a "Xip _(Z;,Xi,a 'Zl‘,xi,p)/n
i= i=

i=1

B n n 2 n n 2
IS DI NUS) SO S
i=l1 i=1 i=1 i=1

n.n

In the case of the attributes "no", "yes", it is useful to apply a binary
(Pirson’s (p) correlation T between objects K, ¢ in the form of:

Q,B

X, OX |- Xk X =[x, X KK NX,
rK,(/, = p— — 5
Jl ] x|
where X is a complement of X ; ‘XK‘- Xr|+| X« -‘X[‘ > (. Before se-

lecting the distance/correlation between objects, one must perform a Class
F independence check of the permitted transformations.

4. DATA LAYERING ALGORITHM

The reader is probably aware that many models of automatic stratifica-
tion or objective classification are given and described in the literature. We
also know that quite a lot of algorithms of this type have been developed,
but due to the lack of access to such knowledge, we independently devel-
oped and studied here only one, possibly new for many, method. This
method is primarily intended for sociological data, but it can also be used

to process the general data matrix X .

Let the information gathered be presented in a form that can depict a
large graph. For example, some cities are divided into many quarters. The
researcher collects information from the city's residents on movements
from one quarter to another. Thus, quarters occur on top of a graph (graph)
on the vertices of a graph. The arcs of Graph indicate where the local
movements of the population are directed in the city. The task is to find
out the movements global trends. So the task is basically in that not to
stratify city quarters, but stratify possible directions of movement.

Let's match the number to each arrow (arc) in the graph indicating how
many transit paths of length 2 the arrow around gives. Graphically, this
means that the number of triangles attached to the arc of the graph has
been enumerated, (Fig. 1).
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Length 2
Trarisit road

Arc

%

Figure 1

When this is done, the stratification of the arrows (arcs) is completed

using the following algorithm. This algorithm was developed by Mullat
(1971-1977). Everywhere, if necessary, we will call this algorithm using
the abbreviation KSF — "Kernel Searching Routine".

1.

a)

b)

Zero step
Find the arc with the least number of triangles on the graph and set it to
the value of the parameter U at the level U . The arc is removed from

the graph. It may be that the removal operation at this point affects
some other arcs in the graph and the number of triangles viewed on
them changes, so that some other arcs with credentials become less

than or equal to U, . These arcs are also removed. This removal of arc
or set of arcs shall be repeated until there are no more arcs whose cre-
dentials satisfy the condition: less than or equal to U, ,

Recursive k-th step

From the graph that developed in the previous K —1 steps when used,
a new minimum credential arc, such as an arc with a minimum number
of triangles but higher than previous U, , is found. The parameter U

level u,, u, , <u, of the credential of this arc remembers the level.

The arc or arcs found is or are removed from the graph.

It may be that the removal operation in current step K affects some
more arcs and that their credentials become less or equal to U, . We
repeat this "peeling" until there is no more arcs with credentials less or
equal to U, . All arcs are on some P -th step removed/reset from the

graph. This terminates the algorithm.
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As a result of the algorithm, all arcs of the graph are distributed into
groups or layers, each of which is linked with the corresponding size

(threshold) U, , k= (Tp) . Observing these groups from the last, P -th

group, the researcher can draw conclusions about the global or major
movement directions on the graph.

Example Let this graph be in Fig. 2,

Figure 2.

This figure shows the transit number of routes defined above by Fig. 1
around with the arc in Fig. 2. According to the algorithm the performance
of the zero step is the shape of the graph as shown in the Fig. 3.

So, above in Fig. 2 it is determined
that the given graph has three dif-
ferent O-arcs. If it were a traffic
intensity graph, then there should

be two different U, U, values, or
two different traffic layers: 0 and 1,
in fact, meaning that the main

traffic is possible only for the traf-
Figure 3 fic shown in Fig. 3.

Another way to use the layering algorithm is more complex. An analo-
gous algorithm can also be applied to the % processing (layering) of the
data matrix. Only a few new concepts should be defined.

Based on data matrix X , we can create two frequency tables: the rows
table and columns table, which will indicate the possible values of the
attributes in a nominal scale. The maximum possible number atr of differ-
ent attributes in the data matrix determines the nominal scale width or
expansion.



Methodological Guide 227

By scanning the cells and at the same time summing the 1-s in the ad-
ditional tables the two frequency tables ¢ and % are progressively filled

out. First, let's look at the corresponding cell of the K -th object and its £ -
th attribute in X . The X, of this cell determines in which additional

column X _, to the right of X, and in which additional row X, , atthe
bottom, in relation to X, the 1-s in cells of I, . and 1-s in cells of
kaM are summed up correspondingly. Namely, in relation to X, here

X, is the column No to the right, but also the row No at the bottom, in

additional tables # and ¢. We assume that table X (see example below)
is filled with integer attributes or labels 1,2,1,3,... When filling out fre-
quency tables, we initially look at the first object, then the next, and so on.

Table1|1 2 '3 4 '5 6 7 8|1 2 3
“1 111 2112 0|5 2 0{7
2 1113113 3|50 3|8
3 3221302 2|14 2[7|&1
4 1112113 3|51 2|8
‘5 111011 2 1|6 1 0|7
1 4 4 41 4 4 0 1
c= 2 011200 31
3 100110 2 2
5 5 5 4 5 4 5 4

In more compact form, the data cell (i, ) attribute determines the

column No-X, , of frequency CXkM« location in the table ¢ =‘CM

b

t =1,atr, while the cell (i,f) also determines the frequency T,

k,xy

location but in the row No-X, , of table # = HI’K’t si.e. the cell (K,7) of

the data matrix X, points at frequencies: | and C, ,. Consider
2Rk, k., o*

atr atr

the following credentials: TT_, = I, x, TC 07T ZI'Kt + th /s
’ o o1 =

where atr already has been determined as the nominal scale expansion or
width.
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Zero step. For all credentials TT_, the minimum must be found and

remembered using the auxiliary variable U . In the data matrix X the
entry, where the minimum was found, — the K -th row and { -th column
cell of the data table X is reset to zero or marked as processed. Thus, it

usually happens that the corresponding cells to K -th row and £ -th col-
umn in additional frequencies tables ¢ and # change.

Recursive step. Thus, the reset operation may affect some of the other

credentials 7T _, of the data matrix X cells, so that the credentials corre-

sponding to those cells become less than or equal to the minor value U, .

Repeat the current step or steps for matrix X cells with this credential
level U, until no entries (cells) are found in the matrix X that satisfy the

reset (zeroing) condition at the K -th step.

It is analogous to the zero step in the graph alignment algorithm. Ex-
amples of 5 X 8 matrix see the Table 1 above. The credential matrix cor-
responding to the data matrix is as follows:

Table2('1 "2 '3 4 'S5 6 7 '8
1 |21 21 21 18 21 20 20 16
20122 22 22 19 22 21 21 17
‘3 |18 18 18 15 18 17 17 13
‘4 122 22 22 19 22 21 21 17
‘S 122 22 22 19 22 21 21 17

After the algorithm has been implemented against Table 2, it performs a
transformation of the latter to Table. 3 (the reset cells are marked with the
number 99):

Table 3| '1°2°3'4’'5°6°7°8

1 1818189918189999
2 1818189918189999
3 .9999999999999999
‘4 1818189918189999
'S 1818189918189999

If the result needs to be interpreted essentially, the algorithm offers the
researcher, after further investigation, the following interpretation: An area
exists inside the data table X or block filled with 3-s labels, which con-
sists of rows 1,2,4,5 and columns1,2,3,5,6.
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A similar algorithm can be used for the following two cases. Let's
choose the credentials 7T as a cell value of the data matrix X in the K -th
row and / -th column, which will be

atr atr
T, = Zt-r}c’t +Zt~cw .
t=1 t=1
These types T, of indicators in mechanics are called moments. The

credential consists of row moment and column moment sum. We can act
exactly according to the algorithm presented earlier.

Another example. The entropy of an object K can be calculated by

formula:
1 atr atr
H(K) == atr Zrk,t ) logatr(rk,t Zrk,t ) > as
t=1 t=1
z rK,t
t=1

well as similar formula H(/) for an attribute /.

The quantities H(k) and H(¥) are the contributions of the K -th

n m

object and £ -th attribute to the total entropies z H(x) or Z H(?) of
k=1 /=1

the data matrix X, which according to Shannon can be expressed as the

sum of the entropies of individual objects or attributes respectively.
The maximum entropy in the frequency table is reached when the dis-

tribution of distribution in the data matrix X becomes uniform. To clarify
the last statement, we draw a graph of the function:

atr
atr
- logatr(rl(,t Zrl(,tj : _logatr (rl( t ZrK tj
=1 A=

A

Probability—

-1 atr

rK,t z rK,t
1
t=1
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The maximum entropy of the data matrix in the row direction is com-
puted when the probabilities on the x-axis allocate a uniform frequency

distribution, resulting in  H (k)~1. Indeed, the value

max

atr

atr
— logatr(l‘mt er,tj is at its maximum when I_, er,t ~ %tr'
t=l1 t=1

Incase I, , = O then this zero value is not taken into account. Based on

the maximum entropy, we get the actual information about the object K
equal to 1 —H() . Thus, the complete information contained in the data

matrix X is calculated by the formula: N — Z H(x). The above layer-

k=1
ing algorithm can now be used.

For the credential of an individual object, we choose the entropy value
H(K) Thus, the set of objects X,,X,,...,X  is to be stratified. It is
only necessary to keep in mind that after removing an object from the data
matrix, changes occur in the frequency table (frequency bands). The
changes consist in the fact that when using the values of the £ -th attribute

X, of the K-th object, in the corresponding cells Lex, and Cy it of

the frequency tables # and ¢, one is subtracted from the frequencies:
=1 —1and Co,0=C ,—1.

L k’xK,[ XK,ﬁﬂ/'

We will consider the properties of the stratification algorithm using the
mentioned monotone systems in the next section, where the positive @

and negative effects of elements are used. In graphs, the negative © effect
on the arc was its removal. For data matrix, this is the reset of the £ -th

attribute of the K -th object or a series of © effects until the object will be

completely removed by the entropy level U, assessment.

5. MONOTONE SYSTEMS

We will continue our story about monotone systems now at a more
precise level. A monotonous system manifests itself in the relationship
between elements in the fact that if an element of the system is "positively
influenced", then this effect is also positively reflected on its interrelated
elements. It's the same with negative effects.
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The monotonicity property as a central property allows us to formulate
the concept of the system kernel or core in a general form. By the core, we
mean a subset of the elements of "strongly attracting" or "strongly push-
ing" each other the elements of the system.

Consider any system W consisting of a finite set of elements, i.e.,

‘W‘ = 1N |. Quantities or credentials that indicate the level of "importance"

of the element 0L € W for the functioning of the system as a whole char-
acterize the states of the elements of a system W .

It proves necessary to reflect the internal dependence of the elements
of the system at the level of importance of the elements. In view of the fact
that the elements of the system are interconnected, it is possible to take
into account the effect of element OU on other elements related to the

change in the properties of element B . We assume that the level of impor-
tance of the element QL itself also changes due to its effect. If elements O
and B are in no way related in the system, it is natural to assume that the

change caused by element O. to the importance of element B is zero.

In the system W, we consider as an effect on the element OLof two
types of effects: @ and © type effects (©- and ©-effects). In the first case,
the properties of element Ol are considered to improve as its importance
to the system increases; in the second case, the properties of element Ol

deteriorate as its level of importance in relation to the system decreases.

Now we can also provide a definition of a monotonic system. A mono-
tonic system is a system in which the positive effect of & on any system
element OU causes the positive effect of @ on all other elements of the

system and the effect of the © type causes the effect of © type respec-
tively.

System monotonicity conditions. The observed important concept —
the effect on the element O of the system W and the accompanying
effect on the other elements of the system — allows the set W to deter-
mine an infinite number of functions, since we have at least one actual
function of the importance of the elements W of the system:
T: W — R, where ‘R is a set of real numbers.
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If element O is affected, then it can be said that the function 7T is re-

flected in the function TE; for the effect of @ and in the function TC; for

the effect of © respectively. As a result of the effects @ and © on the
element implementation, the credentials of the system elements are redis-

tributed from the function 7T to the functions n;n; or the initial set of

values {TE‘ n(d e W)} is transferred to a new set {TC‘ n; (o€ W)}

- . . + _
and {ﬂ‘ T, (b€ W)} respectively. The functions 7T, T, T, are

a
defined on the whole set W and thus are also defined TE; () and

T, (o) . 1t is clear that if there is given a sequence a,, a,,0,...from
the W set of elements (all repetitions and combinations of elements are

allowed), and e.g. the a binary sequence ®, ©, ©,... then can be easily

determined the combined effect in the form of a functional product of
+ - +

W, T T

o Q2 a3
The presented construction allows writing the monotonicity property of
the systems as two main inequalities:

., (B) = n(B) = =, (B)

for each element pair oL,[3 € W , including pairs (ot,ot) and (3,[3).

Identification of the system kernel. To determine the kernel of the
system, consider the two subsets of W, namely H and H, so that
HUH=Wad HNH=J.

If only elements O, Q,,..., € H are positively affected then it de-

termines for the set W a certain function TC;] -TE;2 -..., which can be

considered determined only for the subset H. If we choose one of all

possible sequences of a set H, namely <OL1,OL2,...,OLH> where Q;

. 7" is denoted unambi-

does not repeat, then the function n; T -
H

oy 900

guously on the set H function and call it a standard function. The func-
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tion thus introduced is called the credential function on the set H and the
individual value of the function on the element QU is the credential. These

credentials {TE+H(OL)‘ o e H} we denote by IT"H and call this set of

credentials specified for a given set H |, i.e., for the set of credentials with
respect to the set H .

Suppose that the set of credentials sets {H+H ‘ Hc W} for all pos-

sible subsystems 2% of system W — the number of all possible subsys-
tems is Z‘W‘ .

Instead of the plus effects of the standard function, we can look at the
analogous © effects function TC;l -ﬂ;Z -,...,Tl',;H . Similarly to the func-

H

tion TC+H(OL), we also determine, the set of credentials
{TC*H(OL)‘ a e H} and also the collections of sets of credentials
{HfH ‘ Hc W} In addition, to obtain a process of type © effects —

an analogous process 11 H is performed. All elements of the set H are

affected in sequence according to the ordered list <OL1 5Oy ey OLH> .

On the subsets or arrays {H+H‘ Hc W} and {HfH‘ Hc W}

of credentials given on the sets H < W , the following two functions can
be defined for each subset H :

F.(H)= migl n'H(a),
F (H)= max n H(a).

By the kernels of W we call the global minimum of the function
F, (H) and the global maximum of the function F_(H) . The subsystem

H® that reaches the global minimum of the F+ function is called the

system @-kernel, and the subsystem H® that reaches the global maxi-

mum of the F function is called the ©-kernel, respectively.
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Definition. The defining set considered in monotone systems theory is

the last set in the layer algorithm with level u, (see the section 3 above),

where the sequence Ol = <OL] ,OLZ,...,OLH> of system elements by
which such a defining set is found is called the defining sequence.

Theorem 1. The defining set H® is the set where the F  function
reaches the global maximum. There is only one defining set H® set. All
other subsets if they exist where F_ reach the global maximum are within
the defining set H®.

Theorem 2. For the definite set of H®, the function F+ reaches a
global minimum. There is only one defining set H®. All sets that reach

the global minimum are enclosed in the defining set H®.

The existence of defining sets H® and H® is ensured by a special
constructive routine. The defining sets are kernels of Monotone Systems,

because on these sets the functions F and F+ reach the global maximum

(minimum) accordingly. Theorems 1 and 2 guarantee that all kernels are
located in one "large" kernel — the defining set.

6. MONOTONE SYSTEMS SUBSYSTEMS ON GRAPHS

Let us have a "big" graph G and a "small" graph g . It is necessary to
select a part of the "big" graph G (a set of arcs or edges) so that this set is
the most "saturated" with "small" graphs g . For example, we can assume

that one part of the graph is more saturated than the other if the first con-
tains more small graphs g than the second.

With some complexity, saturation can also be approached as follows.

Consider the arcs, edges or vertices of G that belong to the part we are
interested in. We now count in integers: how many there are small graphs
g, separately those g graphs that are located "near" each vertex, arc or

edge. By this integers is meant the number of graphs g that contain a
given vertex, arc or edge, and are thus expressed as an integer. By doing
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this, we get exactly such an integer or credential that characterizes the part
of G we are interested in. Each such integer reflects a certain "local"
saturation of the graph G with the graphs g .

Based on the obtained integers, several variants open to determine the
saturation of the G part of the graph. The mean, variance, etc., of these
numbers can be calculated. We consider the simplest credential magni-
tude, namely the entity of small graphs g, which are located in a separate

part of a large graph G, i.e., the smallest value of the local parts. Figura-
tively speaking, this number of sub-graphs is in the most "empty" location

of the graph GG, which we should further on remove by © type actions.

Below we give an exact representation of the problem of determining
the most saturated parts of the graph (G with small graphs. We set the
problem as follows: From all possible parts (or a large number of parts) of
a graph G we find the one with the maximum value of the smallest num-
ber of local sets of small graphs g .

It is natural that in this method many small graphs £ can be placed in
a part in the usual way, because the number of small sub-graphs € on

each vertex or arc is not less than on the vertex or arc on which it is mini-
mal. At the same time, however, this minimum number in the extreme part
is quite large, because we specifically chose the part where the local num-
ber of graphs condition reaching the global maximum of the minimum
would be satisfied,

Similarly, we can set the task of finding the part of the graph G that is
least saturated with small graphs £ . The number of sub-graphs g at the

vertex or arc where this number is maximal characterizes then each part of
the graph. Instead of looking for the part of the graph where the minimum
local number of graphs is the maximum, we look for the part where the
maximum local number is the minimum. In this case, the number g of the

sub-graphs of each vertex or arc is not greater than the "maximum" vertex
or arc, and the latter has a default due to the global minimum condition.

The extreme parts of a graph are usually uniformly saturated or unsatu-
rated with small graphs. In a saturated extreme part, no single vertex or arc
can usually have very few graphs g, because without the arc of this vertex

the part of the graph is probably more saturated at the top or arc with sub-
graphs £ in the more complex sense mentioned above.
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7. GENERAL MODEL OF KERNEL EXTRACTION ON GRAPHS

If a graph G is given, then with V(G) or by V we denote the set
of vertices of the graph. We denote the set of arcs of an oriented graph G
by U(G) or U and the set of edges of an unoriented graph by E(G)
or E.

In graph theory, the concept of a sub-graph of a given graph G is
used. A graph G' is a sub-graph of the graph [V(G),U(G)] if
V(G') © V(G) and U(G") is the set of arcs of all and only those
that bind the pair from V(G') . Similarly, we can define a sub-graph of

an undirected graph if the term edge is used instead of the arc.

Sometimes the term part G of a graph is also used. The graph G is
called the part of the graph G[V,U] it V(G")c V(G") and
U(G") c U(G"). In terms of the oriented graph, some arcs of the

graph G are simply missing. Similarly, an undirected sub-graph is deter-

mined.

The design of concepts described in the previous two sections of this
guide must begin with the identification of the elements of the system
W . Two structural units can be separated from graphs — a vertex and an
arc. Let us consider first the case where the vertex of the graph G is cho-
sen as an element of the system. We now determine the effects of the ®-
and ©-effects on the vertices, i.e., on the elements of the system W. De-

termining the effects of @ and © requires the addition of a special signifi-
cance function TU to the vertices of the graph G . The action has already

been mentioned in the previous two sections of the guide, that the creden-
tials in the system must increase as a result of the © effect and decrease as
a result of the © effects.

We need to define saturation indicators, or whatever we call them, cre-
dentials for the elements O of each subset of H from W . To get this,

we need to set up an initial set of credentials for W, as well as a frame-

work how to express @ and © effects.
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An initial set of credentials {TC(OL)‘ (OAS W} can be specified, for

example, as follows. Let € be a small graph given a large graph G.we

count the number of different sub-graphs of graph G that are isomorphic
to graph £ and whose vertices include vertex OL. We set the just obtained

number to the initial credential level 7T(Qt). To underline the introduced
dependence of the level 7T(CL) on the small graph g, we use the expres-
sion — the credential of the vertex 0L of the graph G with respect to g.
Next, we consider two operations for obtaining new graphs from G,
namely the ® and © operations.

Let a graph G be given and an empty graph A (a graph that has no
arcs but has ‘V(G)‘ vertices). We assume that V(A) is an exact copy

of V(G). And when we talk about the vertex 0L, we mean the vertex of

a graph G, which appears in two forms — like the vertex of a graph G
and like the vertex of a graph A .

A ©-type operation of a graph (G with a vertex QU is to carry out re-
moving all the arcs or edges leading to that vertex. On an empty graph A ,
however, the ®-type operation is a recovery operation for all edges lead-
ing to that vertex OL. It appears that if a ®-type operation is applied to a
vertex, the credentials of all other vertices (relative to the small graph g)
either decrease or, in some cases, remain the same. When performing a ©-

type operation, a natural question arises: what should be considered the
credential of the vertex after restoring the vertex?

The solution to this question lies in the following construction. Let us
count the credentials of the vertices of the graph A (with respect to the
small graph ) and add the credentials of the vertices of the graph G.
We consider the obtained amounts as the total credentials of the vertices.
In this case, the opposite effect can be observed: as a result of the ©-type

operation, the total credentials increase or, like the ©-type credentials,
remain at the same level. Generally speaking, the initial credential set

{n((x) ‘ ae W} (the credential set before any ®-type operation) of the

vertices of graph (G can be considered as a general credential set to be
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built since any part of graph G is initially empty. At this stage, minimiz-
ing the maximum credentials means some options for the vertices of graph
G to be isolated. In this approach, the monotonicity condition is satisfied.

When constructing sets of credentials in system W , it must be dem-
onstrated how the initial set of credentials {71:(0()‘ e W} found is

redistributed due to @ and © operations.

Let be given a certain sequence of vertices Ol = <OLI,(12,...>, which

forms a set of H < W . We express the effect of @ on the vertices of G
according to their occurrence in the sequence. As a result, a sub-graph of
G is formed on the graph V(A) . At the vertex of each resulting sub-

graph we can count the number of isomorphic sub-graphs with a small
graph @, so we get the credentials of a set of H (the complement of H

to W) elements. Consistent with the above theory, we can state that the

set H determines a new significance function in the form,

Tom - ()

o O%)

obtained from the initial credential collection {n((x) ‘ o e W}

Thus, if a sequence of vertices Ol = <OLI,OLZ,...> is given that pro-
motes the set H , then the set H forms a set of credentials determined by

(2) or (3). We denote this set by IT'H , and we call the set of credentials
by the set of vertices induced on H . The sets of induced credentials form

the set {H+H ‘ Hc W} Sometimes it is appropriate to use the expres-

sion of @-collection of sets with respect to the small graph g .

The collection or array {HfH ‘ Hc W} of sets of credentials is de-
termined analogously. The collection I1 "H of the credentials is deter-
mined by the function

T T ... (3)

o o
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given in part G of the graph, which remains after the application of the
©-activities to the sequence of vertices forming Ol = <(11,OL2,...>. It
only needs to be emphasized that each subset H C W' of the set of cre-

dentials is in fact the set of the remaining part, but not the total, i.e., not

the part given by the set of graph A , which actually is an empty graph.

Next, let's take the arc as the system element. The system is defined as
the set of interconnected arcs U(G) of the graph G, determining the &

and © effects again requires setting the values of the initial function 7T .

Let be given a small graph of €. We count the number of different
sub-graphs of the graph G that are isomorphic to the graph g and whose

arcs or edges include this arc or edge. The resulting integer is taken as the

significance level of the arc Ot of the graph G . This is called the creden-
tial of the arc O with respect to the graph .

Similarly to those described at the vertices of (3, the concepts of &

and © activities are also determined by the arcs or edges of the graph G .
Arcs or edges are now removed or restored instead of vertices.

Let's look at the © operation first. It is obvious that as a result of re-
moving the arc (edge), the initial set of credentials with respect to the
small graph € may decrease or remain the same. A decrease in impor-
tance of credentials indicates that the © operation is equivalent to defining

© activity for system elements.
Let <OL1 , O, ,> be a sequence of different arcs on G, including arcs

forming H < U(G) . We perform 6-actions sequentially on the arcs of

the graph G according to the given sequence. As a result, we get a certain
part of the graph G, the elements of which are arcs (edges) belonging to
the set H < U(G). For each arc o0 € H, count the number of isomor-
phic graphs with the graph @, which is considered to be the credential or

significance of the element O with respect to the set H .
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According to the notations used, the method for determining the given
credentials creates a function on the elements of the set H of arcs. Simi-
larly to the case where the number of sets of credentials was assigned to
the vertices of a given graph, arcs (edges) are created that belong to the set

of credentials {TE_H(OL)‘ ae H}, which we denote again [1 " H. We

proceed in a similar way to find the set of credentials
{H_H‘ Hc U(G)}. On an empty graph A, defining the ®-activity

on the basis of the @-operation requires a more detailed analysis.

Let again the sequence of arcs OL = <OL1,OL2,...> in the given graph

G (said arcs form the set H), we perform @-operations on the set H
arcs sequentially. As a result, the set of vertices V(A) forms a part of a

graph G whose list of arcs is equal to H . For the vertex model, we cal-
culated the total credential of each vertex oL € V(G3) . In this case, too,

we try to do the same and find the total credential of the arcs forming H .

The arcs belonging to the set H are not present in the graph g and
the question is how to count the number of sub-graphs isomorphic to the
graph g and containing the arc QL (which is not present in the graph A ).
Proceed as follows: we read that this arc O is fictitious only at the mo-
ment of counting the sub-graphs. In this case, the set of arcs H forms

certain integers that depend on both the graph and the part of the graph
formed on the empty graph g .

In the method described above, the function n; -71',; -... 1s deter-

mined from the quantity H, which creates a set of @-credentials
{n*H(a)‘ o e H}

In this case, even in the case of a ®@-operation, the set of credentials of
the @-activities can be determined with respect to a small graph. The use
of the term "®-activity" is perfectly legal here, as the total credentials of

those elements that are not yet subject to @-activity may increase or re-
main the same.
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Ilustrative Examples on Directed Graphs. A graph G of partial or-
dering is defined as a binary relation G with the following properties:

a) Reflexivity, i.e., if QL € V(G) , then o0GGOL . The graph G has
a loop at the vertex QL.
b)  Transitivity, if there exists an arc (OL,B) and (B,y), then the

graph G has an arc (Ot,y), or from 0 G and B Gy it fol-

lows that L G 7 .

A complete order is defined as a graph of partial ordering in which any
pair of vertices O and [} is connected by an arc.

It is possible to formulate the following problem: in a given directed
graph it is required to find the (in certain sense) most “saturated” regions
that are “close” to a graph of partial ordering or to graphs of complete
ordering. This problem will be solved by a method of organization (on a
graph) of a monotonic system with subsequent determination of kernels.

Figure 4

In accordance with the scheme of organization of a monotonic system
on graphs described in the previous section, it is necessary to assign a
small graph €. Suppose that this graph consists of three vertices X,Y,Z,

and it is such that U(F) = { (X, y), (y,Z), (X, Z) } The graph has a
total of three arcs (a transitive triple).
Now let us consider the assignment of collection of credentials arrays

at the vertices of a graph shown in Fig. 4. The loops on this graph have
been omitted.
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According to the scheme of assignment of collections of credential ar-
rays at the vertices of a graph, it is required to determine an initial array of

credentials { ﬂ(OL) }, where o0 =1,2,3,...,7. According to the method
of calculation of the values 7T(QL) with respect to the graph @ (a transi-
tive triple), we obtain (1)=3, w(2)=2, n(3)=2, m(4)=7,
n(5)=4, n(6)=3, n(7)=3. As an example, let us determine a
credential array on a subset of vertices H = {1,2,3,4,5}. By succes-
sively performing © actions on the set H= { 6,7 }, we obtain on the set
H a new credential array m(l)=3, m(2)=2, mn3)=2,
n(4)=4 , n(4)=4, n(5)=1.

The values of the function ng TE;r can be obtained in a similar way, but

for this purpose it is necessary to use the assignment of collections of total
@ arrays with respect to a transitive triple. According to Fig. 5, the values

of this function in their order at the vertices { 1,2,3,4,5 } are as follows:
n)=3,, 1(2)=2, 1(3)=2, n(4)=8, n(5)=4.1n exactly
the same way we can determine on any subset H of vertices
V= { 1,2,3,4,5,6,7 } a proper credential array of @ or [ actions with
respect to a transitive triple.

® o

Figure 5

Now let us consider a construction that is assigned not on vertices, but on
the arcs of the graph presented on Fig. 4. In this case the set of elements of

the system W will be U(G):{a,b,c,...,n,rn } As the small
graph g we shall take the same graph as above, with a set

U(@) =1 (x,y)(y.2).(x,2) }.
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By analogy with the foregoing, we realize the construction in the same

succession. We determine an initial credential array {TE(OL)‘ aeU }
on the arcs of the graph G in accordance with the general scheme.

We find that
n(a)=1nb)=1n(c)=1,n(d)=1,n(e)=2,n(f) =3,
n(g) =2, n(h)=2,n(k) =2, n(n) =2,
n(m)=1mn(v)=3,n(p)=2

As an example, let us now perform (@ and © actions on the arcs
f,k and m,ie., onthe set H = { f,k,m } On the set H we hence
obtain

n(a)=1,m(b)=0,n(c)=1,n(d) =1, n(e) =2,
n(g)=0,n(h) =0, n(n) =0, n(v) =2, n(p) =2.

In accordance with the adopted system of notations this array of num-

bers will be denoted by I1 "H . For obtaining a IT'H array, we must
calculate the total credentials. The dashed lines in Fig. 6 represent the arcs
of graph A that experience the effect of [I actions performed on the arcs

f,k and m.
According to Fig. 6, the total credential array will be as follows:

n(a)=1,n(b)=1,n(c)=1,n(d) =1, n(e) =2,
n(g) =3, n(h)=2,n(n) =3, n(v) =2, n(p) = 2.

Figure 6
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Thus on any subset H of arcs of the graph shown in Fig. 4 we can

construct the credential arrays I1 H and TT"H .
Next we describe the procedures of construction of determining se-

quences of @ or © actions, at first for vertices, and then for arcs of the
graph shown in Fig. 4. The construction is carried out for the purpose of
illustrating the concepts of @ or kernels of the monotonic system and also
for ascertaining the effect of the duality theorem formulated by Mullat
(1976-1977).

Let us consider an example in which © credential arrays are assigned
at vertices with respect to a transitive triple. According to the scheme

prescribed in Mullat's routine of construction of a determining & and ©

sequence of vertices of a graph on the basis of @ and © actions. For the
graph shown in Fig. 4, the Kernel-Searching Routine consists of two steps:

the zero-th and the step one. It yields two subsets I}, ,I, < V(G),
where
I, =V(G)={1.23,..7}. T ={456,7},
and the thresholds U, = 2, u, = 3.

The determining sequence of vertices constructed with the aid of © ac-
tions is as follows: OL_ = <3,2,1,4,5,6,7>. Thus on the basis of: a)
according to Theorems 1,3 (Mullat, 1971) and b) according to Theorem 1
(Mullat, 1976) about KSR, it can be argued that the set { 4.5,6,7 } is the
definable set of vertices of the graph shown in Fig. 4, and, therefore, this

set is also the largest kernel K ©.

Now let apply the KSR for constructing a @-determining sequence. We
find that a+ = { 4,5,6,7,1,2,3 } The routine terminates at the third

step, and it consists of four steps, namely the zero-th, the first, the second
and the third. According to the construction of @ sequences prescribed in

the KSR, we produce the sets IT: FJ={4,5,6,7,1,2,3},
I ={567123}, I7={67123}, IT={23} and a

sequence of thresholds U, = 7, u, = 4, u, = 3, u, = 2. As in the
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case of a @ sequence, we conclude on the basis of Theorems 2 and 3 of a)
Mullat, and of Theorem 1 of b) Mullat, that {2,3 } is the largest K ©
kernel of the system of vertices of the graph in Fig.1.

A careful analysis of Fig.1 shows that the K ® kernel is in fact com-

pletely ordered set, i.c., <4,5,6,7>. On the other hand the K © indicates

from the point of view of the “structure” of a graph that the region, in
which the vertices are least ordered, it is ordered itself as well. This is in
agreement with the our formulation of the problem of finding kernels as
representatives of “saturated” or “unsaturated” regions (parts of a graph)
with small graphs &

Now let us use the KSR for constructing determining sequences of arcs
of the graph in Fig.1. The graph has a total of 13 arcs. After applying the

KSR, we obtain on the basis of © actions the following sequence:
o :<a,b,c,d,v,e,p,f,k,n,m,h,g>.

The routine terminates at first step and it consists of two steps, namely
the zero-th step and the first step. At the zero-th step we have
I'; = U(G), and at the first step we have I'; = { f,k,n,m,h,g },
with the thresholds U, =1 and u, = 2 respectively. Summing up, we
can assert on the basis of the results of a), b) Mullat, that this is a definable
set and at the same time the largest K © kernel in the system of arcs.

From the point of view of the graph structure, the application of the

KSR to arcs in the construction of a © determining sequence does not
yield anything new compared to the application of the KSR to vertices.

We obtain the same complete order <4,5,6,7> represented in the form of

a string of arcs, and it also corroborates our assertions concerning the

saturation of a K © kernel by transitive triples. On the other hand the use

of KSR for constructing @ determining sequence of arcs yields a K ®
kernel

I = {k, m,n,g,h,e,p,b,a,c,d}

whose meaning with regard to “non-saturation” with transitive triples
cannot be determined.
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Below we shall illustrate the peculiar features of using the duality theo-

rem from b) Mullat (1976) for finding K ® and K © kernels of a mono-
tonic system specified by vertices or arcs of a directed graph.

At first let us consider the monotonic system of vertices of the graph in

Fig.1. The sequence of sets <1“j*> specified by the KSR on the basis of ®

actions uniquely determines the sets \% \ lT = { 4 },
V\F; = { 4.5 }, \Y \ F; = { 1,4,5,6,7 } Above we have found
that F, (I ;) =u, = 3. From the construction of a determining se-
quence O._ of vertices of a graph we know that Ff{ 4,5,6,7 }= 3.
Hence by virtue of Corollary 1 of Theorem 1 of b) Mullat, we can assert

already after the second step of construction of an O . sequence that the

set { 1,4,5,6,7 } contains the largest K © kernel. Thus we have shown

that the sufficient conditions of the duality theorem of b) Mullat, are satis-
fied in the example of the graph represented in Fig. 1.

Now let us consider the set V\I| = { 1,2,3 } As was shown
above, inside this set there exists a set F; = { 2,3 } such that

F, (F;) =2, F (F1_) =3 on the other hand. By virtue of Corollary 4

of the duality theorem we can assert that set { 1,2,3 } contains the largest
K © kernel of the system of vertices of the graph (Fig.1); this likewise

confirms that existence of the conditions governing the theorem.

At last let us consider a collection of credential arrays on the arcs of
the graph. The determining O, . sequence of arcs specifies a set
F1+ = {k,m,n,g,h,e,p,b,a,c,d } It is easy to see that inside the
set U\ 1_? there does not exist a set H as required by the conditions of

Corollaries 1 and 2 of the duality theorem in Mullat (1976). This shows
that in comparison to arrays on vertices, credential arrays on arcs do not
satisfy the duality theorem.
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Monotonic systems on special classes of graphs. In contrast to the
previous section, we do not carry out here a detailed construction of col-

lections of credential arrays and determining sequences and kernels on any
illustrative example. Here we shall show how to select a small graph g

and @ and © actions so as to match the selection of these elements with
the desired “saturation” of the investigated graph. The desired saturation
of a graph can be understood as the saturation desirable for the investigator
who usually has a working hypothesis with respect to the graph structure.
In view of this, we shall consider the following classes of graphs: tourna-
ments, a-cyclic (directed) graphs, and (directed or undirected) trees.

Let us recall the definitions of these classes of graphs. A tournament is
a directed graph in which each pair of vertices (X, y) is connected by an

arc, cf. Harari (1969). A none-cyclic graph is a graph without cycles (in
case of an undirected graph), and a graph without circuits (in case of a
directed graph). None-cyclic undirected graphs are trees, and we shall
consider the most general class of trees, as well as the class of directed
trees.

In tournaments it is appropriate to consider regions of vertices that are
“saturated” with cyclic triples. A cyclic triple is a graph g such that

V@) ={xy.z | U@={(x,y)(y,2)(x,2)} 1t can be as-

sumed that a tournament in which there exists such a region represents a
structure of the participants of the tournament. This structure is non-
uniform; i.e., there exists a central region (set) of participants who can win
against the other players, but they are in neutral position with respect to
one another.

For solving the above problem, we propose the following exact formu-
lation in the language of monotonic systems. In Section 2 we have consid-
ered credential arrays on vertices and arcs of a graph. Now let us consider
the above models on vertices or arcs in a certain order. In both models we
take a cyclic triple as the small graph g with respect to which the T

function is calculated. Suppose that the methods of assignment of collec-
tions of credential arrays on vertices are the same as in Section 2. It is
possible to modify this scheme by taking as a ©-action on the vertex O
the removal of all arcs of a tournament that originates at Ol, whereas
@®-action is the restoration of all the arcs in the graph A that originate at
QL . In Section 2 we performed the opposite operation, i.e., the removal of
incoming arcs and the restoration of these same incoming arcs.
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The assignment of credential arrays on arcs of a tournament graph
must be carried out in accordance with a scheme similar to that described
in Section 2. Within the framework of the theory it is apparently impossi-
ble to decide whether the scheme of determination of kernels on arcs of a
tournament is preferable to the scheme using vertices; therefore, it is nec-
essary to carry out computer experiments. There exists only one heuristic
consideration. If in a tournament there can exist several central regions
saturated with cyclic triples, it will be preferable to use the scheme of
determination of kernels on the arcs of tournament, since these regions can
be found. The model based on vertices makes it possible to find a kernel
that consists also of regions, but it does not permit finding an individual
region. We do not possess a string of arcs representing these regions.

None-cyclic directed graphs are a convenient language for describing
operation systems (Kendal, 1940). An operation system can be regarded as
a system of modules and interpreted as a library of programs. Each work-
ing program is a path in a none-cyclic graph, or, in other words, the set of
modules of a library needed at a given instant. The modules are called one
after another if not all of them can be stored in the main memory. In case
of a library of a large size, there naturally arises the question of fixing the
modules on information carriers. Prior to solving this problem, it is appro-
priate to ascertain the “structure” of a none-cyclic graph of a library of
modules.

Figure 7 Figure 8

For ascertaining the structure of a graph and for just-mentioned task of
fixing the modules, we have to find the principal (nodal) vertices or arcs.
The nodes are the “bottlenecks” of graphs or, in other words, the modules
that occur in many working programs.
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We shall now formally describe this problem with the aid of a model
of organization of a monotonic system on a graph. As a small graph we
shall take directed graph in Fig.7. The structure of this graph is in accor-
dance with the above definition of bottlenecks of the none-cyclic graph
under consideration. It is possible to construct a monotonic system also on
the arcs of a none-cyclic graph of a library of modules. With the respect to

the graph on Fig.7, the collection of credential arrays and @ and © actions,
in accordance with the general scheme of Section 2, must be defined. After
this it is necessary to use the routine of finding vertex kernels or arc ker-
nels, which in conjunction must indicate the bottlenecks in accordance
with the above definition. As in case of tournaments, which a monotonic
system is preferable of arcs or vertices requires experimental checking.

In comparison to the two previous examples, the last example does not
have the aim of associating the application or description of any actual
problem with tees. Our aim is to try and find in a tree a region, which in
some sense is more similar to “cluster” than any other part of the tree.

At first let us consider undirected trees. We shall use a model of or-
ganization of a monotonic system on the branches of a tree. As a small
graph g€ we shall take the graph shown on Fig. 8. As in the case of as-

signment of collections of @ and © credential arrays on arcs, we assign

the corresponding @ and © arrays with respect to the graph shown
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in Fig.9. The © arrays appear as a result of © actions (removal of edges),
whereas the @ arrays result from @ actions (restoration of edges on empty
graph A by calculating the total credentials of the tree G and its copy on

A . As an example we presented the @ and © kernels in Fig.9 of this
tree. Together with each edge we indicated the number of sub-graphs g
that contain this edge and which are isomorphic to the graph shown in the
Fig.8.

Now let us consider directed trees. If it is of interest to separate “clus-
ters” in a directed tree, we shall proceed as follows. Let us consider the

following small graphs: g,, €, and g, (see Fig. 10).

Figure 10

The credential function 7T on a directed tree can be calculated sepa-
rately with respect to each small graph g, , g, and g, then the values of
all these three functions can be added up (a linear combination), thus
yielding the overall function with respect to the graphs g,, g, and g,.1In

the same way we can assign a monotonic system on arcs of a tree if ©
action signifies the removal of an arc of a tree, @ action the restoration of
an arc on a copy of given tree on A . Thus we can pose on directed trees a
similar problem of finding cluster kernels. Let us note that we use in the
last example with trees a more general model of assignment of collections
of credential functions with respect to a series of small graphs. The model
in Section 2 has been presented for one graph g . A collection of creden-

tial arrays with respect to a series of graphs has also the property of
monotonicity, and apparently such a model is more interesting in solving
problems of determination of “saturated” parts of graphs.
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Let us consider how the @, @ and © activities of a small graph can

be selected to coordinate the selection of these elements with the desired
"saturation" of the graph under study. The desired saturation of a graph
can be understood as desirable from the researcher's point of view, be-
cause the researcher has a certain working hypothesis about the structure
of the graph.

For the small graph g for which the functions 7T were calculated, we

choose a cyclic triangle. We use the method described in the previous
subsections to create a set of credentials. The removal of all the arcs in the

tournament <X wins y> from the vertex X is the © action on the vertex

x and the ®-action on the graph A is the restoration of all pairs where X
wins ¥ . The set of credentials on the graph tournament arcs must be cre-

ated analogously to the previous sections.

The question of which is more preferable, whether the scheme is done
on the arcs of the tournament (a game between two participants) or on the
vertices of a graph, cannot be solved within the theory. It can only be said
that if there are several central regions in the tournament that are saturated
with cyclic triplets, the scheme of separating the kernel by arcs will be
better, because these regions can be separated. A model that uses vertices
separates the kernel that consists of these regions, but does not allow a
single region to be found. We don't have a list of arcs that represent these
areas.

Non-cyclic oriented graphs are a suitable tool for describing operating
systems. The operating system can be thought of as a system of modules
and interpreted as a library of programs. Each work program is a set of
modules activated from a library, or in other words, in a non-cyclic graph
of the path form. The modules call each other in sequence if they are not
all in RAM or for some other reasons.

If the library is large, the natural idea is to place the modules on data
carriers. Before solving this task, it is reasonable to explain the structure of
the non-cyclic graph of the library of modules. The latter can be
understood as the separation of the main sub-vertices or arrows. Vertices
are very important places in the graph, in this case they are modules that
are available in many work programs.

This task can be formally described in a graph by a monotonic system
organization model. The question of the preference of monotonic systems
formed by arrows or vertices again requires experimental control. Looking
at the trees, we try to separate them from an area that is in some way more
like a "bush" than the rest of the tree.
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8. DISCUSSIONS AND SUMMARY

Usually, information is collected in to draw the necessary conclusions
on issues related to human collectives, economic activity, production
processes, demography, etc. If you are more interested in the verbal his-
tory itself, then the numerical experiments in Tables 1-3 can still be inter-
esting of themselves. Indeed, with the help of these tables, the main fea-
ture of the analysis method is manifested, namely, the independence from
any prior knowledge or specific information that is necessary for data
analysis. This is especially true of the usual practice of personal and ex-
pensive interviews in sociological research. In this regard, the algorithm
described in the manual for decomposing the data matrix into layers can be
called "blind eye of statistical evaluation or scoring", which is what we
need (Vohandu, 1979, 1989). This methodological guide looked at this
information processing method that often has been used.

Although the main component of this methodological guide was pre-
pared and presented for publication many years ago, as it seems to us
everything that is given here is still relevant. It’s not a secret that with the
development of information technologies, methods for analyzing data
extracted from our environment not only become more complicated, but
also their volume has grown to enormous sizes when you have to deal with
databases whose size reaches many gigabytes in the amount of collected
information. One thing is that all the information in such well-known
applications as Facebook and the like are always reflected in some graphs
of mutual relations between the participants, whether it is Linkedin or
Twitter, etc. Many do not even suspect that our technology for analyzing
relationships reflected in these applications are fully adapted to the analy-
sis of such information. The problem here is that such information must be
collected and presented either in tabular form or in the form of graphs.
Graphs, however, must again be presented in tabular form, which, as we
have already indicated, is the main form of data to be analyzed.

The algorithm for decomposing data into layers given in this tutorial
turned out to be effective in many specific problems as we can apply here
in the form of data viewing technology. Moreover, as already indicated
throughout the book, the entire analysis process begins with the construc-
tion of the so-called defining sequence, whether it be elements of graphs
or data tables, when it is required to find a local maximum at which the
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global maximum is reached when moving along the defining sequence
from weak elements in the direction of strong ones. It turns out that a more
effective method of searching for the core or kernel of a monotonic system
is to move from top to bottom, from strong to weak elements. Such a
search for the kernel is much more economical than the one that was pro-
posed at that time in the original of this methodological manual.

On the other hand, the model of a monotonic system turned out to be a
more complex than the author had assumed, who initiated the theoretical
and practical use of monotonic systems. The fact is that on graphs when
arcs of a graph or edges are taken as elements of the system, it is required

to formulate very precisely what are @ and © actions. If the © action is

to remove or @ is add both arcs and edges of the graph together with arcs
and edges adjacent to an arc or edge, then monotone systems of a special
type arise when the layering algorithm does not always lead to an optimal
layer in the global sense. This white area has not yet been sufficiently
studied, and here it is quite possible to discover some new features of
monotonic systems of the indicated unusual type. We have already indi-
cated this feature earlier in the article on how to organize a party in order
to make the optimal combination of participants.
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Abstract. The note addresses a data cleaning principle. The principle im-
plementation procedure presented here includes a recommendation that
might be well suited for explicating and illustrating the results yielded by
survey data analysis.

Keywords: data cleaning; dirty data; customer satisfaction

1. INTRODUCTION

Every day, in an endless stream, we are presented with various polls,
studies, statistics, opinions, measurements, research results, etc. Enter-
prises, media experts, universities and other interested organizations try to
present reality in a certain way or explain how it all works using informa-
tion in the form of data collected during the interview. While we take this
influx of data for granted, very few of us question whether this way of
having reality served on a platter is actually helpful. Most people merely
accept what the various analysts have presented and treat it as factual
information. Thus, if more people in a survey have answered that they
prefer rye bread to the white variety, does the same assertion apply to the
world population? Should we infer from this finding that people in general
eat more rye bread instead of white? Certainly not, reality is complex and
consists of numerous choices, possibilities, behavioral patterns, prefer-
ences, etc. As a result, a typical survey based on which such ‘facts’ are
reported can never cover all relevant data pertaining to any given subject
and would without doubt lead to completely nonsensical conclusions.
More accurate approximations of reality require a comprehensive statisti-
cal investigation. Therefore, as a rule, when aiming to interpret data gath-
ered based on a sample drawn from a population of interest, one should
seek input from a researcher or some other qualified person, so that the
results can be interpreted and analyzed. Additionally, it is essential to take
into consideration the researcher’s knowledge and expertise on the subject,
as well as carefully assess whether the questions discussed pertain to the
aim of the survey. It is equally important to evaluate the respondents’
credibility and ability to answer the questions posed, as this is one of the
means to ensure the instrument reliability.

Presented at the 19th Nordic Conference on Mathematical Statistics, June 9-13,

2002, Stockholm, Sweden and at the “Symposium i Advent Statistik,” January
23-26, 2006, Kgbenhavn. Linkage term was used by Ylia Kempner (2008).
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2. RELIABILITY

Reliability, as a generic concept, is difficult to define. In most cases, it
is interpreted in a specific context. Nevertheless, it can be shows that
adopting the “maximum principle” will not only help the researcher in
his/her analytical endeavors, but will also “clean up” the investigation,
filtering out the more “unreliable” answers and thus remove some “inter-
ference” or “outliers” — i.e., answers that are overly dissimilar from the
rest or are incongruent with the most conceivable result. However, it must
be emphasized that the method of analysis is still central to the success of
the outcome. In other words, in spite of the aforementioned argument, the
final estimation should still be based on the subjective perception of real-
ity. After all, the primary difference between this method and the conven-
tional statistical analysis employed to interpret survey results is that the
former identifies both unreliable respondents and their unreliable answers.
Consequently, we hereby obtain a much more comprehensive picture of
reality simply by examining patterns that conform to the answers provided
by the remaining group members. In order to describe the method, an
example of a survey in progress, not having a serious purpose or value,
will be used. It should be noted that what follows is significantly simpli-
fied, as the main objective is to outline the foundations of the method.

Food is a subject of public interest and related data is thus frequently
under the analyst’s scrutiny. Hence, in our hypothetical or frivolous exam-
ple, the objective is to map people’s taste preferences. To do so, the survey
respondents are presented with five menus listed below and are asked to
state their daily consumption of each of the given food groups.

The options they are given are as follows:

1. Dairy produce: cheese and milk
Cereals: bread, potatoes, rise and pasta
Vegetables: vegetables, fruit, etc.

Fish: shrimp, frozen/fresh fish

wok we

Meat products: various meats, sandwich spreads and sausages
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The results pertaining to seven study participants are presented in Ta-
ble 1, which will suffice for the upcoming food preferences investigation.

Table 1.

Dairy Cereal Vegetables  Fish Meat Total
Respond. no. 1 X X 2
Respond. no. 2 X X X X 4
Respond. no. 3 X X 2
Respond. no. 4 X X X X 4
Respond. no. 5 X X 2
Respond. no. 6 X X X X X 5
Respond. no. 7 X X 2
Total 3 5 5 5 3 21

Considering the total score given at the bottom of the table, people’s
food choices seem healthy and nutritional. Moreover, it can be discerned
that “cereals,” vegetables” and “fish” are most frequently consumed food
groups, as five of seven respondents stated that they consume these food-
stuffs daily. Can we conclude that, in general, people’s lifestyle is healthy?
Moreover, does this mean that 71% of population eats cereals, fish and
vegetables every day? This conclusion could be clearly misleading. In
addition, even conclusions pertaining to this small group require close
examination of the individual respondents’ answers, because some of them
differ from those of the other respondents in certain ways. For example,
respondents 1, 3, 5 and 7 have chosen only two food groups from the
given list. Respondents no. 1 and 7 stated that they consume only “cereals”
and “vegetable” products on a daily basis, while no. 3 and 5 eat only
”vegetables” and “fish” every day. Assuming that this is an exhaustive list
(again, note the simplifications in this example), it seems highly unlikely
that someone would not eat any products from other food groups. This is a
crucial point to consider, as we must believe that the answers respondents
provide and factual in order to include them in the analysis. Thus, re-
sponses like those noted above are clearly unreliable reflections of reality.
Let us therefore experimentally discard the unreliable respondents together
with their answers to see whether we obtain a more credible result, which
is a more accurate representation of reality.

3. AGREEMENT LEVEL — TUNING PARAMETER

Just as it is unusual to rely on only two food groups for sustenance, it is
unlikely that an individual would eat, for example, only bread from the
cereal menu, or solely shrimp from the fish menu. Thus, in “fine-tuning”
the experiment, the aim is to identify all the respondents that have chosen
only these two menus. The objective is, as was already emphasized above,
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to obtain a clearer picture of reality. Table 2 below represents the results of
this data “cleaning,” based on the chosen “agreement level” or “tuning
parameter”. In this case, the agreement level is set to 4, i.e., none of the
totals in the last column is less than 4.

Table 2.

Dairy Cereal  Vegetables Fish Meat Total

Respond. no. 2 X X X X 4
Respond. no. 4 X X X X 4
Respond. no. 6 X X X X X 5
Total 3 3 1 3 3 13

This seems to be a very useful instrument for the experiment. How-
ever, the tuning parameter will only be relevant when its value exceeds
one. If, for example, we try to set the agreement level (tuning) to 1 in
Table 1, this would render ALL respondents reliable, even though menus
“Dairy” and “Meat” are associated with the lowest frequency number,
namely three. What can we conclude from the outcome of adopting tuning
parameter = 1? The conclusion is exactly the same as that yielded by the
original analysis — “people’s lifestyle is healthy.” In contrast, setting the
tuning parameter to 2, 3 or a higher value allows us to explore patterns in
answers that would not be otherwise apparent. Table 2 shows the distribu-
tion of respondents based on the tuning parameter = 4.

Why should we use this particular value as a tuning parameter? Yes,
indeed, in the following analysis we intend to adopt the maximum princi-
ple as a method for selecting reliable respondents. This will be done
through “agreement level”, see “fotals” of columns, pertaining to a single
respondent. The value of the tuning parameter is not fixed, and can be
changed depending on the purpose of analysis, and is typically set at the
level that reveals the most adequate picture of reality. Roughly speaking,
we can compare the situation to rotating a tuner on TV or Radio, when we
attempt to receive a clear picture/sound by trying to select the right fre-
quency. The tuner value here is 4, and we assume that the selected respon-
dents are now reliable.

4. MAXIMUM PRINCIPLE

Finding the correct tuner position is not sufficient, as will be shown in
the discussion that follows. For example, only one of the remaining, sup-
posedly reliable, respondents chose the “vegetable” menu. This would
imply that only 33% of the sample is consuming vegetables daily. While
this is likely for such a small group of respondents, it is important to reit-
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erate that this example is a simplification of an actual, much larger survey,
where such results would indeed be odd. Thus, the fine-tuning must pro-
ceed further, this time addressing the menu content. Fist, we can remove
“vegetables” from the available options and see what effect this would
have on the analysis.

The next step in our analysis is called “maximum principle” (Mullat,
1971a) and will be illustrated using an old merchant marketing example. If
a merchant wants to make a compromise between the highest possible
demand on some assortment of his/her commodities and to shorten the list
of assortments as well, he would intuitively do so by removing from the
assortment the commodity for which the demand is the lowest, assuming
that it is identified from the purchasing patterns of reliable customers only.
In the example considered in this study, the “vegetables” menu has the
lowest demand. Moreover, its removal from the available options results in
equal frequencies associated with the remaining menus. In general, re-
moval of available options must be done with care, as it should not result
in a simultaneous removal of reliable respondents. In some cases, how-
ever, it might be necessary to add further reliable respondents to the sam-
ple, complying with our tuning parameter once again, etc.

In general, the maximum principle can be formulated as follows:
among all the reliable respondents, first remove options with the lowest
agreement level, those with the lowest frequency (in our example, the
menu “vegetables” in Table 2). As a result, the number of choices is re-
duced, but the remaining answers with the lowest frequency have a higher
contingency compared to those that have been removed. In short, the aim
is to remove available options in such a manner that ensures that those
remaining have high representation and there are more matches in their
answers. In other words, in the menu, where the matching is low, the low
match becomes relatively high due to the removal, which would not be the
case if the removed menus will still occupy a place in the table. In other
words, the goal is not only to separate a group of menus from those that
have higher matching responses, but also to find a group of respondents
for whom the menu with the lowest level of matching is on a relative high
level. This is the key for understanding the maximum principle. The re-
spondents included in the analysis must be reliable, but the answers pro-
ducing such reliability must also be more or less identical.

In accordance with this argument, the menu “vegetables” is removed,
since the responses associated with it are not aligned with the general
answer pattern based on the maximum principle. Note that here, the re-
moval is not based on any qualitative tests, but is rather guided purely by a
pattern disclosed by matching the answers!
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Table 3.

Dairy Grain Fish  Meat Total
Respond. no.2 X X X X 4
Respond.no. 4 X X X X 4
Respond.no. 6 X X X X 4
Total 3 3 3 3 12

5. CONCLUSION

What can be concluded from the simplified survey scenario discussed
above? Put it simply: it is evident that the final outcome is completely
different from the results yielded by the initial analysis. According to
Table 1, in general, people’s food preferences are healthy and in accor-
dance with current recommendations. On the other hand, Table 3 indicates
that food habits are, in fact, less healthy. Implementing our analysis prin-
ciple has reduced the panel of reliable respondents, and this has changed
the outcome of our analysis.

Of course, it is natural to ask whether the proposed principle is more
credible than other methods of analysis. It is true that a subjective consid-
eration and personal choice have played in instrumental role in the analyti-
cal framework adopted to produce the final results. Some may argue that
this approach is flawed, as analyst/researcher intuition was the only basis
for tuning the parameters, i.e., adjusting the “agreement level.” This per-
sonal consideration cannot be excluded because the method described here
will sometimes coincide with what we might otherwise call common
sense, where the most frequent answers reflect the actual reality. This
should be the case when dealing with simple surveys in which the respon-
dents are asked questions such as “Will you vote for so and so the coming
election?” The value of this approach is really evident when surveys in-
cluding hundreds or thousands of respondents and many hundreds of ques-
tions are conducted. They will inevitably generate diverse responses form-
ing patterns that “common sense” will be impossible to wield, since un-
aided human intellect is incapable of grasping such complicated patterns.
This is where our method can make a substantial difference, because it is a
way of locating erroneous or misleading patterns, based on a comprehen-
sive comparison within the full data set. This, however, does not under-
mine the analysts’ role, as these experts will be responsible for making the
relevant judgments/decisions as to why certain data is removed from the
set. The goal is to identify and remove all “unreliable” respondents with
the help of the “tuning parameter.” The aim of this “cleansing procedure”
is to retain only the most usable answers, in accordance with our maxi-
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mum principle. Thus, the method presented here should be treated as an
instrument, which has to be used correctly by the analyst to tune into the
clearest picture of reality. The aim is to reduce the interference effect pro-
duced by unreliable respondents.

APPENDIX
A.1 Practical recommendations

The preliminary explanation above is a general introduction to our
maximum principle, the background of which is found in a much more
complex methodology and theory." First, it is beneficial to demonstrate
how the results can be used and presented for the analyst, making the use
of the notion of positive/negative profile.

When designing a questionnaire, it is widely accepted that the available
responses associated with the individual questions should be presented in
the “same direction,” i.e., from positive to negative values/opinions or vice
versa. Using a more rigorous terminology, such ordering would be denoted
numerically and represented on a nominal/ordinal scale. This nomencla-
ture is used primarily because, when implementing our method in the form
of computer software, the analyst must separate the answers by grouping

them together into positive/negative scale ends — the (+ / —) pools. The

next step will be to create profile groups within each (+) or (—) pool

range. A profile group of answers is created following their subject-
oriented field of interest. For example, one might be interested in partici-
pants’ lifestyle, nutritional practices, exercising, etc. Thus, these profiles,

distinguished by their placement in (+ / —) pools, are also either positive
or negative.

Once the analyst has created the (+ / —)proﬁles, an automated proc-

ess utilizing our maximum principle, which further organizes the data into
what we call a series of profile components, conducts the subsequent
analysis. Each profile component is a table, as above, located within par-
ticular profile limits. Clearly, a component is differentiated from the pro-
file by the fact that, while a profile is a list of subject-specific questions

and the corresponding options/answers composed by the analyst, the

1 Some theoretical aspects may be found in Appendix A.2
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component is a table formed using the maximum principle. Therefore, the
list of answers constituting a component (and the resulting set of table
columns) is smaller, as only specific answers/columns from the full profile
are included. Thus, once again the components will be separated into

(+ / —) components Kf , K;‘r ,.., just as the profiles were separated into
(+ / —) profiles. The Kf , K;‘r ,... separation provides not only concep-

tual advantages, but also allows for more transparent illustration of the

survey findings.

Analysis findings increase in value if they are presented in the format
that can be easily comprehended. The simplest tool available for graphical
presentation is a pie chart. Here, the pie can be divided into positive
K:, K;,..., and negative K;, K;, components, represented in
green and red color, respectively. However, to depict these components
accurately, it is necessary to calculate some statistical parameters before-
hand. For example, one can merge the (+ / —) components into single

(-l- / —) table and calculate the (-l- / —) probabilities.” Hereby, statistical
parameters based on the (+ / —) probabilities may be evaluated and illus-
trated by a pie chart divided into green and red area, effectively represent-
ing the (+ / —) elements.® There are many techniques and graphical tools

at the analyst’s disposal, and a creative analyst may proceed in this direc-
tion indefinitely. Still, it is plausible to wonder if the creation of the
(+ / —) components is worthwhile. In other words, what is the advantage
of using the “maximum principle” when interpreting the survey findings?
The answer, see above, is that the blurred nature of the data may hinder
clear interpretation of the reality underlying the data.

Certainly, some estimates only.

Please, find below a typical pie chart pertinent to what we just discussed. The
positive and negative profiles relate to 21 questions highlighting people’s be-
haviour, responses, opinions, etc., regarding their daily work and habits. An-
swers to these questions can be presented using an ordinal scale 1, 2, ..., 5,
where 1, 2, 3 are at the negative, and 3, 4, 5 at the positive end of the scale.
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A.2 Some theoretical aspects

Suppose that respondents N = {1,...,i,...n} participate in the survey.
Let X, X € 2N , denote those who expressed their preferences towards
certain questions M = {1,..., j,..., m} We lose no generality in treating

the list M as at a profile, whether negative or positive. Let a Boolean

table W = Ha ij Hnm reflect the survey results related to respondents’ pref-
erences, whereby a; i= 1 if respondent 1 prefers the answer j,
a;, = 0 otherwise. In addition, all lists 2" of answers y € 2" within
the profile M have been examined. Let an index 5:(,1. =0,
1e X,j ey if Zjeyai’j <k, otherwise 8:} = 1, e.g.,

ey Qi >k, where K is our tuning parameter. We can calculate an
indicator Fk (H) , using sub-table H formed by crossing entries of the

rows X and columns Yy in the original table W . The number of

. k . s .
1-entries 81 ita = 1 in each column within the range Yy determines

i,j
the indicator F, (H) by further selection of a column with the minimum

number F (H) from the list y .

Identification of the component K seems to be a tautological issue, in
the sense that following our maximum principle we have to solve the indi-

cator maximization problem K = argmax F, (H) . The task thus

(xy)
becomes an NP-hard problem, the solution of which includes operations

that grow exponentially in number. Fortunately, we claim that our K*
components might be found by polynomial O(m ‘n- 10g2 n) algo-

rithm, as shown in the cited literature. Finally, we can restructure the en-
. . + . .
tire procedure by extracting a component K1 first, before removing it
from the original table W and repeating the extraction procedure on the
remaining content, thus obtaining components K;‘r, K;ﬁ ... etc. From now

on, statistical parameters and other table characteristics, which empower
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(—l— /—) share, arise from components K;,K,,... and KT,K;,...

only, and are available to the analyst for illustration purposes, as depicted
in the example below.

A.3 Illustration

In the example, we use a sampling highlighting 383 people’s attitudes
towards 21 phenomenal questions. Each question requires a response on
an ordinal scale, with 1< 2,...,< 5, where 1<2 <3 are positive val-
ues at the left end, and 3 <4 <5 are negative values at the right end.’
Hence, our sampling, depicted as a Boolean table, has 383 x105 dimen-
sions. As the tuning parameter K = O was chosen, we also extracted a set
of three positive K: , K; , K; and negative K ,K,,K; components.

The actual values in the title and those shares illustrate our positive (green)
and negative (red) (+/~) components.

Some typical sampling questions are given below:

1. Is your behavior slow/quick? — eating, talking, gesticulating,...

1.1 Absolutely slow
1.2 Somewhat slow
1.3 Sometimes slow and sometimes quick
1.4 Somewhat quick
1.5 Absolutely quick
2. Are you a person who prefers deadlines/postpones duties?
2.1 Absolutely always prefer deadlines
2.2 Often prefer deadlines
2.3. Sometimes prefer deadlines or sometimes postpone
my duties
2.4, Often postpone my duties
2.5. Absolutely always postpone my duties

* Sampling owner (Scanlife Vitality ApS in Denmark) kindly provided us
with a permission to use the data for analysis purposes. We are certainly
very grateful for such help.
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Negative/Positive Scale of the Questionnaire
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The figure shows more clearly the methodology of the posi-
tive/negative analysis of surveys data tables to identify hidden preferences
of respondents. Whatever the analyst is doing to build a negative ordering
of the left half of the questionnaire, our negative defining sequence is then
compared with similar sequence of the right half of the questionnaire. As a
result, two credential scales have been formed, which can then be visual-
ized graphically in two-dimensional coordinate system on the plane.

At first glance that being said, our story may seem perhaps frivolous,
but we say that it is much easier to suggest something new if the essence
of the matter is presented in the form of an allegory, which can be inter-
preted in such a way as to reveal the hidden meaning of reality.
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A Fast Algorithm for Finding Matching
Responses in Survey Data Table

Abstract. The paper addresses an algorithm to perform an analysis on
survey data tables with some unreliable entries. The algorithm has almost
linear complexity depending on the number of elements in the table. The
proposed technique is based on a monotonicity property. An implementa-
tion procedure of the algorithm contains a recommendation that might be
realistic for clarifying the analysis results.

Keywords: survey; boolean; data table; matrix.

1. INTRODUCTION

Situations in which customer responses being studied are measured by
means of survey data arise in the market investigations. They present
problems for producing long-term forecasts because the traditional meth-
ods based on counting the matching responses in the survey with a large
customer population are hampered by unreliable human nature in the an-
swering and recording process. Analysis institutes are making consider-
able and expensive efforts to overcome this uncertainty by using different
questioning techniques, including private interviews, special arrange-
ments, logical tests, “random” data collection, questionnaire scheme pre-
paratory spot tests, etc. However, percentages of responses representing
the statistical parameters rely on misleading human nature and not on a
normal distribution. It appears thereby impossible to exploit the most
simple null hypothesis technique because the distributions of similar an-
swers are unknown. The solution developed in this paper to overcome the
hesitation effect of the respondent, and sometimes unwillingness, rests on
the idea of searching so-called “agreement lists” of different questions. In
the agreement list, a significant number of respondents do not hesitate in
choosing the identical answer options, thereby expressing their willing-
ness to answer. These respondents and the agreement lists are classified
into some two-dimensional lists — "highly reliable blocks".

For survey analysts with different levels of research experience, or for
the people mostly interested in receiving results by their methods, or
merely for those who are familiar with only one, "the best survey analysis
technique", our approach has some advantages. Indeed, in the survey, data
are collected in such a way that can be regarded as respondents answering
a series of questions. A specific answer is an option such as displeased,
satisfied, well contented, etc. Suppose that all respondents participating in
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the survey have been interviewed using the same questionnaire scheme.
The resulting survey data can then be arranged in a table X = (Xi q> ,

where X, q is a Boolean vector of options available, while the respondent

1 is answering the question q . In this respect, the primary table X is a

collection of Boolean columns where each column in the collection is
filled with Boolean elements from only one particular answer option. Our
algorithm will always try to detect some highly reliable blocks in the Ta-
ble X bringing together similar columns, where only some trustworthy
respondents are answering identically. Detecting these blocks, we can
separate the survey data. Then, we can reconstruct the data back from

those blocks into the primary survey data table X' = <X: q> format,

where some "non-matching/ doubtful" answers are removed. Such a
"data-switch" is not intended to replace the researchers’ own methods, but
may be complementary used as a "preliminary data filter” - separator. The
analysts’ conclusions will be more accurate after the data-switch has been
done because each filtered data item is a representative for some "well
known sub-tables".

Our algorithm in an ordinary form dates back to Mullat (1971). At first
glance, the ordinary form seems similar to the greedy heuristic (Edmonds
1971), but this is not the case. The starting point for the ordinary version
of the algorithm is the entire table from which the elements are removed.
Instead, the greedy heuristic starts with the empty set, and the elements are
added until some criterion for stopping is fulfilled. However, the algo-
rithm developed in the present paper is quite different. The key to our
paper is that the properties of the algorithm remain unchanged under the
current construction. For matching responses in the Boolean table, it has a
lower complexity.

The monotone property of the proposed technique - “monotone sys-
tems idea” - is a common basis for all theoretical results. It is exactly the
same property (iii) of submodular functions brought up by Nemhauser et
al (1978, p.269). Nevertheless, the similarity does not itself diminish the
fact that we are studying an independent object, while the property (iii) of
submodular set functions is necessary, but not sufficient.

From the very start, the theoretical apparatus called the "monotone sys-
tem" has been devoted to the problem of finding some parts in a graph that
are more "saturated" than any other part with "small" graphs of the same
type (see Mullat, 1976). Later, a Markov chain replaced the graph presen-
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tation form where the rows-columns may be split implementing the pro-
posed technique into some sequence of submatrices (see Mullat, 1979).
There are numerous applications exploiting the monotone systems ideas;
see Ojaveer et al (1975). Many authors have developed a thorough theo-
retical basis extending the original conception of the algorithm; see Libkin
et al (1990) and Genkin and Muchnik (1993).

The rest of the paper is organized as follows. In Section 2, a reliability
criterion will be defined for blocks in the Boolean table B . This criterion
guarantees that the shape of the top set of our theoretical construction is a
sub-matrix - a block; see the Proposition 1. However, the point of the
whole monotone system idea is not limited by our specific criterion as
described in Section 2. This idea addresses the question: How to synthe-
size an analysis model for data matrix using quite simple rules? In order to
obtain a new analysis model, the researcher has only to find a family of
TC -functions suitable for the particular data. The shape of top sets for each
particular choice of the family of Tt -functions might be different; see the
note prior to our formal construction. For practical reasons, especially in
order to help the process of interpretation of the analysis results, in Sec-
tion 3 there are some recommendations on how to use the algorithm on the

somewhat extended Boolean tables B* . Section 4 is devoted to an expo-
sition of the algorithm and its formal mathematical properties, which are
not yet utilized widely by other authors.

2. RELIABILITY CRITERION

In this Section we deal with the criterion of reliability for blocks in the
Boolean tables originating from the survey data. In our case we analyze

the Boolean table B = <‘bi j> representing all  respondents
(1,...,i,...,n>, but including only some columns <1,,J,m> from
the primary survey data table X = <X ; q> ; see above. The resulting data

of each table B can be arranged in a n X M matrix. Those Boolean
tables are then subjected to our algorithm separately, for which reason
there is no difference between any sub-table in the primary survey data
and a Boolean table. A typical example is respondent satisfaction with

services offered, where bi i =1 if respondent 1 is satisfied with a par-

ticular service ] level, and b ij = 0 if he is unsatisfied. Thus, we analyze

any Boolean table of the survey data independently.
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Let us find a column J with the most significant frequency F of
1 -elements among all columns and throughout all rows in table B. Such
rows arrange a g = 1 one-column sub-table pointing out only those re-
spondents who prefer one specific most significant column J. We will
treat, however, a more general criterion. We suggest looking at some sig-

nificant number of respondents where at least ' of them are granting at
least g Boolean 1-elements in each single row within the range of a

particular number of columns. Those columns arrange what we call an
agreement list, g = 2.3,...; g is an agreement level.

The problem of how to find such a significant number of respondents,
where the F criterion reaches its global maximum, is solved in Section 4.
An optimum table S*, which represents the outcome of the search among
all “subsets” H in the Boolean table B, is the solution; see Theorem .
The main result of the Theorem I ensures that there are at least F positive
responses in each column in table S". No superior sub-table can be found

where the number of positive responses in each column is greater F .
Beyond that, the agreement level is at least equal to g = 2,3,... in each

row belonging to the best sub-table S*; g is the number of positive re-
sponses within the agreement list represented by columns in sub-table S
In case of an agreement level € =1, our algorithm in Section 4 will find
out only one column J with the most significant positive frequency F

among all columns in table B and throughout all respondents, see above.
Needless to say that it is worthless to apply our algorithm in that particular
case =1, but the problem becomes fundamental as soon as

g=23,....
Let us look at the problem more closely. The typical attitude of the
respondents towards the entire list of options — columns in table B —

can be easily "accumulated” by the total number of respondent 1 positive

hits selected:
= > b,.

j=1,...m
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Similarly, each column - option can be measured by means of the en-
tire Boolean table B as

It might appear that it should be sufficient to choose the whole table

B to solve our problem provided that I, > g,i =1,n. Nevertheless, let
us look throughout the whole table and find the worse case where the

number C i ,j =1,m reaches its minimum F . Strictly speaking, it does

not mean that the whole table B is the best solution just because some
"poor" columns (options with rare responses - hits) may be removed in
order to raise the worst-case criterion F on the remaining columns. On
the other hand, it is obvious that while removing "poor" columns, we are

going to decrease some I, numbers, and now it is not clear whether in

each row there are at least g = 2,3,... positive responses. Trying to pro-
ceed further and removing those "poor" rows, we must take into account
that some of C; numbers decrease and, consequently, the F criterion

decreases as well. This leads to the problem of how to find the optimum

£
sub-table S, where in the worst-case F criterion reaches its global
maximum? The solution is in Section 4.

Finally, we argue that the intuitively well-adapted model of 100%
matching 1 -blocks is ruled out by any approach trying to qualify the real
structure of the survey data. It is well known that the survey data matrices
arising from questionnaires are fairly empty. Those matrices contain
plenty of small 100% matching 1-blocks, whose individual selection
makes no sense. We believe that the local worst-case criterion F top set,
found by the algorithm, is a reasonable compromise. Instead of 100%
matching | -blocks, we detect somewhat blocks less than 100% filled with
I -elements, but larger in size.

3. RECOMMENDATIONS

We consider the interpretation of the survey analysis results as an
essential part of the research. This Section is designed to give guidance on
how to make the interpretation process easier. In each survey data it is
possible to conditionally select two different types of questions: (1) The
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answer option is a fact, event, happening, issue, etc.; (2) The answer is an
opinion, namely displeased, satisfied, well contented etc.; see above. It
does not appear from the answer to options of type 1, which of them is
positive or negative, whereas type 2 allows us to separate them. The goal
behind this splitting of type 2 opinions is to extract from the primary sur-

vey data table two Boolean sub-tables: table B*, which includes type 1
options mixed with the positive options from type 2 questions, and table

B~ where type 1 options are mixed together with the negative type 2
options - opinions. It should be noticed that doing it this way, we are re-
placing the analysis of primary survey data by two Boolean tables where

each option is represented by one column. Tables B* and B~ are then
subjected to the algorithm separately.

To initiate our procedure, we construct a sub-table KT implementing
the algorithm on table B”. Then, we replace sub-table KT in B by

zeros, constructing a restriction of table B*. Next, we implement the
algorithm on this restriction and find a sub-table K; , after which the

process of restrictions and sub-tables sought by the algorithm may be
continued. For practical purposes we suggest stopping the extraction with

three sub-tables: KT , K; and K; . We can use the same procedure on

the table B, extracting sub-tables K, K, and K.

The number of options-columns in the survey Boolean tables B* is
quite significant. Even a simple questionnaire scheme might have hun-
dreds of options - the total number of options in all questions. It is diffi-
cult, perhaps almost impossible, within a short time to observe those op-

tions among thousands of respondents. Unlike Boolean tables B*, the

sub-tables Kf ».3 have reasonable dimensions. This leads to the following

interpretation opportunity: the positive options in K1+2 5 tables indicate
some most successful phenomena in the research while the negative op-

tions in K1—,2,3 point in the opposite direction. Moreover, the positive and

negative sub-tables K1i2 5 enable the researcher in a short time to “catch”

the “sense” in relations between the survey options of type 1 and posi-



Matching Responces 273

tive/negative options of the type 2. For instance, to observe all Pearson’s

. 2 .
correlations a calculator has to perform O(n -m ) operations depend-
ing on the N X M table dimension, N -rows and M -columns. The rea-

sonable dimensions of the sub-tables Kfz 53 can reduce the amount of

calculations drastically. Those sub-tables - blocks K1i,2,3 , which we rec-

ommend to select in the next Section as index-function F(H) top sets

found via the algorithm, are not embedded and may not have intersections;
see the Proposition 1. Concerning the interpretation, it is hoped that this
simple approach can be of some use to researchers in elaborating their
reports with regard to the analysis of results.

4. DEFINITIONS AND FORMAL MATHEMATICAL PROPERTIES

In this Section, our basic approach is formalized to deal with the
analysis of the Boolean N Xm table B, n -rows and m -columns.
Henceforth, the table B will be the Boolean table B* - sce above - rep-
resenting certain options-columns in the survey data table. Let us consider
the problem of how to find a sub-table consisting of a subset Sma of the

rows and columns in the original table B with the properties: (1) that
L= Zbij 2 g and (2) the minimum over J of C, = Zbij is as large
i i

as possible, precisely — the global maximum. The following algorithm
solves the problem.

Algorithm.
Step 1. Set up the initial values.
1i. Set minimum and maximum bounds a, b on threshold
u for C; values.
Step A. To find that the next step B produces a non-empty
sub-table.
la. Using step B, test U as (a+Db)/2.

If it succeeds, replace @ by U . If it fails replace b
by u.
2a. Go to 1a.
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Step B. To test whether the minimum over j can be at least U .
1b. Delete all rows whose sums I; < g .
This step B fails if all must be deleted; return to step A.
2b. Delete all columns whose sums € i <u.
This step B fails if all must be deleted, return to step A.
3b. Perform step T if none deleted in 1b and 2b;
otherwise go to 1b.
Step T. Test that the global maximum is found.
1t. Among numbers C f find the minimum.

With this new value as U test performing step B.
If it succeeds, return to step A, otherwise final stop.

Step B performed through the step T tests correctly whether a sub-
matrix of B can have the rows sums at least g and the column sums at

least U . Removing row 1, we need to perform no more than M opera-

tions to recalculate C i values; removing column ], we need no more than

N -operations. We can proceed through 1b no more than N -times and
through 2b, m -times. Thus, the total number of operations in step B is

O(nm) . The step A tests the step B no more than l0g,n times. Thus,

the total complexity of the algorithm is 0(10 g,nx nm) operations.

Note. It is important to keep in mind that the algorithm itself is a par-
ticular case of our theoretical construction. As one can see, we are deleting
rows and columns including their elements all together, thereby ensuring
that the outcome from the algorithm is a sub-matrix. But, in order to ex-
pose the properties of the algorithm, we look at the Boolean elements
separately. However, in our particular case of 7T -functions it makes no
difference. The difference will be evident if we utilize some other family

of Tt -functions, for instance T =C i max(ri,c j). We may detect top

binary relations, which we call kernels, different from submatrices. It may
happen that some kernel includes two blocks - one quite long in the verti-
cal direction and the other - in the horizontal. All elements in the empty
area between these blocks in some cases cannot be added to the kernel. In
general, we cannot guarantee either the above low complexity of the algo-
rithm for all families of 7T -functions, but the complexity still remains in
reasonable limits.
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We now consider the properties of the algorithm in a rigorous mathe-
matical form. Below we use the notation H < B . The notation H con-
tained in B will be understood in an ordinary set-theoretical vocabulary,
where the Boolean table B is a set of its Boolean 1-eclements. All
0 -elements will be dismissed from the consideration. Thus, H, as a

binary relation, is also a subset of a binary relation B . However, we shall
soon see that the top binary relations - kernels from the theoretical point of
view are also sub-matrices for our specific choice of Tt -functions. Below,

we refer to an element we assume that it is a Boolean 1 -element.

For an element 0L € B in the row i and column j we use the simi-
larity index TT=C i if . >2g and T= 0 if I, < g, counting only on

Boolean elements belonging to H. The value of 7 depends on each
subset H < B and we may thereby write 70 = 7(ct, H) : the set H is
called the TU-function parameter. The 7T -function values are the real
numbers - the similarity indices. In Section 2 we have already introduced

these indices on the entire table B . Similarity indices, as one can see,
may only concurrently increase with the “expansion” and decrease with

the “shrinking” of the parameter H . This leads us to the fundamental
definition.

Definition 1. Basic monotone property. By a monotone system will be
understood a family {TE(OL, H):Hc B} of T -functions, such that the
set H is to be considered as a parameter with the following monotone
property: for any two subsets L. © G representing two particular values
of the parameter H the inequality T(ot, L) < (a, G) holds for all
elements O € B.

We note that this definition indicates exactly that the fulfilment of the
inequality is required for all elements Ot € B . However, in order to prove
the Theorems 1,2 and the Proposition 1, it is sufficient to demand the
inequality fulfillment only for elements OL € L.’ even the numbers 7
themselves may not be defined for 0 & L. On the other hand, the fulfill-
ment of the inequality is necessary to prove the argument of the Theo-
rem 3 and the Proposition 2. It is obvious that similarity indices 7T=C i

comply with the monotone system requirements.
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Definition 2. Let V(H) for a non-empty subset H C B by means
of a given arbitrary  threshold  U° be  the  subset
V(H) = {OL e B:n(a,H) > uo}. The non-empty H -set indicated
by S° is called a stable point with reference to the threshold U° if
S°=V(S°) and there exists an element & €S°, where

T(E,S°) = u°. See Mullat (1981, p.991) for a similar concept.

Definition 3. By monotone system kernel will be understood a stable

set S with the maximum possible threshold value | = u .

We will prove later that the very last pass through the step T detects

the largest kernel Fp =S’ Below we are using the set function notation
F(X)=min__n(a, X).
Definition 4. An ordered sequence QO.;,Ql,...,0 4 of distinct ele-

ments in the table B, which exhausts the whole table, d = Zi,jbi o is

called a defining sequence if there exists a sequence of sets
FO ) F1 DuvaD Fp such that:

A. Let the set Hk = {ak,akn,...,aM}. The value TC(OLk,Hk)
of an arbitrary element O, € Fj, but o, & Fj+1 is strictly less than

F(T,,), j=0,L...p—1.

B. In the set Fp there does not exist a proper subset L, which satis-
fies the strict inequality F(l"p) <F(L).

Definition 5. 4 subset D of the set B is called definable if there ex-
ists a defining sequence Oly,0ly,...,0l 4 such that Fp =D".

Theorem 1. For the subset S of B to be the largest kernel of the
monotone system - to contain all other kernels - it is necessary and suffi-

cient that this set is definable: S =D". The definable set D" is unique.

We note that the Theorem 3 will establish the existence of the largest
kernel later.
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Proof.
Necessity. If the set S’ is the largest kernel, let's look at the following
sequence B = FO oI | = S" of only two sets. Suppose we have found

elements O, Q,...0, in B\'S such that for each 1 =1,k the value

TE(OLi,B\{OLO,...,OLi_1 }) is less than u°® = u .. and Oy,0,...0L,

X

does not exhaust B \ N Then, in (B \ S*)\ {OLO,...,OLk} some O, ,
exists such that 7t(al,,,, (B \SH\ oy, 0ty })< u’. Otherwise, the
set (B \ S )\ {OLO,..., ock} is a larger kernel than with the same value
u'. Thus, the induction is complete.

This gives the ordering with the property (a). If the property (b) failed,

then U would not be a maximum, contradicting the definition of the

kernel. This proves the necessity.

Sufficiency. Note that every time the algorithm — see above — goes
through step T, some stable point, a set S° is put in the form of a set

Fj =S5° , J = 0,1,...,p —1, where u; = minaeson(a,S") . Obvi-
ously, these stable “layering" points (stable sets) form an embedded chain
of sets B=F0 :)D :>...:>1“p =D". Let the set L < B be the
largest core. Suppose that this L is a proper subset of D’ , then by prop-
erty (b) F(D*) > F(L) and hence D" is also a kernel. The set L as

the largest kernel cannot be a proper subset of D" and therefore must be
equal to D".

Suppose now that L is not the subset of D" Let HS be the smallest
set HkZ{ock,ockH,...,(xdj, which includes L. The value
TE(OL o H s) by our basic monotone property must be grater than, or at
least equal to u*, since O, is an element of HS and it is also an element

of the kernel L and L c H . - By property (a) this value is strictly less
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than F(Fj+1) for some j=0,1,...,p—1. But that contradicts the

maximality of U . This proves the sufficiency. Moreover, it proves that

any largest kernel equals D’ so that it is the unique largest kernel. This
concludes the proof. ®

Proposition 1. The largest kernel is a sub-matrix of the table B .

Proof. Let S~ be the largest kernel. If we add to S any element lying
in a row and a column where S has existing elements, then the threshold
value U cannot decrease. So by maximality of the set S’ this element
must already be in S'. m

Now, we need to focus on the individual properties of the sets
Fo > F1 D...D Fp , which have a close relation to the case U <u_ -

- a subject for a separate inquiry. Let us look at the step T of the algorithm
originating the series of mapping initiating from the whole table B in
form of V(B), V(V(B),... with some particular threshold Uu. We

denote V(V(B)) by V? (B), etc.

Definition 6. The chain of sets B, V(B), V? (B),... with some par-

ticular threshold u is called the central series of monotone system; see
Mullat (1981) for exactly the same notion.

Theorem 2. Each set FO ) E D..D l"p in the defining sequence

Ay, Olyyens Oy is the central series  convergence  point
. k . .

hmkzme (B) as well as the stable point for some particular thresh-

olds values F(W) = u, <u, <..<u, = F(S*) Each Fj is the

largest stable point - including all others for threshold values

u>u, =FTI)).

It is not our intention to prove the statement of Theorem 2 since this
proof is similar to that of Theorem 1. Theorem 1 is a particular case for

Theorem 2 statement regarding threshold value U =u b
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Next, let us look at the formal properties of all kernels and not only the
largest one found by the algorithm. It can easily be proved that with re-

spect to the threshold U =U > the subsystem of all kernels classifies a

structure, which is known as an upper semilattice in lattice theory.

Theorem 3. The set of all kernels - stable points - for U . is a full

X

semilattice.

Proof. Let €2 be a set of kernels and let K1 €2 and K2 e,
Since the inequalities (oL, K,) 2 u, m(a,K,) > u are true for all
K1 and K2 elements on each K1 R K2 separately, they are also true for
the union set K1 ) K2 due to the basic monotone property. Moreover,
since U =1U_ ~ we can always find an element Ee K, UK, where

(&, K, UK,) =u. Otherwise, the set K, UK, is some H -set

for some u' greater than U, Now, let us look at the sequence of sets

Vk(K1 UK,), k=23,..., which certainly converges to some non

empty set - stable point K . If there exists any other kernel
K'> K1 ) Kz’ it is obvious, that applying the basic monotone prop-

erty we getthat K' D K. m

With reference to the highest-ranking possible threshold value

u, =u the statement of Theorem 3 guarantees the existence of the

max °

largest stable point and the largest kernel S (compare this with equiva-
lent statement of Theorem 1).

Proposition 2. Kernels of the monotone system are submatrices of the
table B.

Proof. The proof is similar to proposition 1. However, we intend to
repeat it. In the monotone system all elements outside a particular kernel
lying in a row and a column where the kernel has existing elements belong
to the kernel. Otherwise, the kernel is not a stable point because these

elements may be added to it without decreasing the threshold value U .
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Note that Propositions 1,2 are valid for our specific choice of similar-
ity indices 7T=C,. The point of interest might be to verify what

TC -function properties guarantee that the shape of the kernels still is a sub-
matrix. The defining sequence of table B elements constructed by the
algorithm represents only some part U, <U, <u, <...<U_ of the

threshold values existing for central series in the monotone system. On the
other hand, the original algorithm, Mullat (1971), similar to the inverse
Greedy Heuristic, produces the entire set of all possible threshold values
u for all possible central series, what is sometimes unnecessary from a
practical point of view. Therefore, the original algorithm always has the
higher complexity.

ACKNOWLEDGMENTS

The author is grateful to an anonymous referee for useful comments,
style corrections and especially for the suggestion regarding the induction
mechanism in the proof of the necessity of the main theorem argument.

REFERENCES

Edmonds J. (1971) Matroids and the Greedy Algorithm, Math. Progr.,
No. 1 pp. 127-136.

Genkin, A.V. and .B. Muchnik. (1993) Fixed Points Approach to
Clustering, Journal of Classification 10, pp. 219-240.

Libkin, L.O., Muchnik, I.B. and L.V. Shvartser. (1990) Quasilinear
monotone systems, Automation and Remote Control 50 1249-1259,

Mullat, J.E. a) (1971) On the Maximum Principle for Some Set Functions, Tallinn
Techn. Univ. Proceedings., Ser. A, No. 313, pp. 37-44; b) (1976, 1977) Ex-
tremal Subsystems of Monotonic Systems, LILIII, Automation and Remote
Control 37, pp. 758-766, 37, pp. 1286-1294, 38, pp. 89-96;
¢) (1979) Application of Monotonic system to study of the structure of Markov
chains, Tallinn Technical University Proceedings, No. 464, 71;

(d) (1981) Counter monotonic Systems in the Analysis of the Structure of Mul-
tivariate Distributions, Automation and Remote Control 42, pp. 986-993.

Nembhauser, G.L., Walsey, L.A. and M.L. Fisher. (1978) An Analysis of
Approximations for Maximizing Submodular Set Functions, Mathematical
Programming 14, pp. 265-294.

Ojaveer, E., Mullat, J. E. and L.K. Vohandu. (1975) A Study of Infraspecific
Groups of the Baltic East Coast Autumn Herring by two new Methods Based
on Cluster Analysis, Estonian Contributions to the International Biological
Program 6, Tartu, pp. 28-50.



281

QKCTPEMAJIbHBIE NOACUCTEMblI MOHOTOHHbIX CUCTEM. |
WU. 3. MYINAT
(TannuH)

PaccmatpuBaercs o01mas TeopeTHIecKas MOJieNb, IIPeIHa3HAUYCHHAs 1711 HAUalbHOTO 3Tana aHalIKu3a
CHCTEM B3aMMOCBSA3AHHBIX JJIEMEHTOB. B pamMkaX MojeNM M UCXOAS U3 CHEMHUAIbHO IOCTYIMPOBAHHOTO
CBOMCTBA MOHOTOHHOCTH CHMCTEM TapaHTMPYETCS CYIIECTBOBAHME OCOOBIX MON-CUCTEM — AEp.
YcTaHaBnIUBaeTCs PsAJ  DKCTPEMANbHBIX CBOMCTB M CTPYKTYpa sJ€p B MOHOTOHHBIX CHCTEMaXx.
Jleranusupyercs A3bIK ONHCAHHA MOHOTOHHBIX CHCTEM B3aMMOCBS3aHHBIX DJIEMEHTOB Ha 00meM
TEOPETUKO-MHO)KECTBEHHOM YPOBHE, M HAa €ro OCHOBE BbIPAOATHIBAETCS KOHCTPYKTHBHAs CHCTEMaA
MOHSATHH B CITydae CHCTEM C KOHEUHBIM UMCIIOM dJIeMEHTOB. M3yuaercs psijl CBOHCTB 0COOBIX KOHEUHBIX
TOCNIEI0BATENBHOCTEH SIEMEHTOB CHCTEMBI, C TOMOIIBIO KOTOPBIX OCYIIECTBHUMO BBIACNEHHE sfep B
MOHOTOHHBIX CHCTEMaX.

1. BBenenue

Ilpn u3ydeHHMH TNOBEAEHMS CIIOXKHOM CHCTEMBI 4YacTO IPUXOJUTCS CTal-
KHMBAaTbCsl C 3ajadeld aHaiM3a KOHKPETHBIX YHCIOBBIX JAAHHBIX O (YHKIMO-
HHUPOBaHUH cHCTeMBI. Ha ocHOBE MOTOOHBIX JTAHHBIX HHOT/A TPEOYeTCs BEIICHHUTD,
CYIIECTBYIOT JIH B CHCTEME OCOOBIC 3JIEMEHTHl WM IOACHCTEMBI 3JIEMEHTOB,
pearupyomuX OJHOTHIIHO Ha KaKHe-TH00 «BO3AEHCTBUAY, a TAKXKE «OTHOIICHUSY
MEX/ly OAHOTHIHBIMH INOA-cHcTeMaMHu. CBEIEHHS O CYIIECTBOBAHMH YKa3aHHBIX
0COOEHHOCTEH MU O «CTPYKTYpe» U3yuaeMOU CUCTEMbl HEOOXOIUMBI, HAIIPUMED,
JI0 TIPOBEIEHUS OOMIMPHBIX WM JOPOTOCTOAIINX CTATUCTHYECKUX UCCIECIOBAHMMI.

B cBf3M ¢ MIMPOKUM NPUMEHEHHEM BBIYMCIMTEIBHON TEXHUKH B HACTOSIIEE
BpeMs Ha HAYaJbHOM 3Talle BBIABICHUS CTPYKTYPBI CHCTEMBI HAMEYAETCS OIXOJ,
OCHOBAaHHbIH Ha pa3IMYHOrO poja 3Bpuctuueckux wmoxensx [1—4]. Ilpu
HNOCTPOCHHH MOJIENIed MHOTHE aBTOPBI UCXOIAT M3 COAEPKATEIbHBIX TTOCTAHOBOK
3a71a4, a TaKkxke U3 GOPMBI IPEACTABICHHS HCXOHON nHpopMarmi [5, 6].

EcrectBenHnoit ¢opmoii npencraBineHus MHGOpMALMK Ul Leldeld H3ydeHHs
CIIOXKHBIX cHCTeM siBisiercst ¢opma rpada [7]. PacnpocTpaHeHHBIM HOCUTENEM
UH(OPMALUK CITyKUT TaKXKe MaTpulla, HalpuMep MaTpula JaHHbIX [8]. Marpuisl
1 rpadpl JerKo JOMYCKalOT BhIJEIEHHE JIBYX MUHHUMAIIbHBIX CTPYKTYPHBIX €IMHHI
CHCTEMBI: «3IIEMCHTOBY M «CBSi3eil» MEKIy dIeMeHTaMu . B jaHHOH paGote
MOHATHUS «CBSA3bY» U «3JIEMEHT» TPAKTYIOTCS JIOCTATOYHO IIMPOKOo. Tak, mHpriaa
JKEJTaTeIbHO PAcCMaTPUBATh CBS3M B BHJE JIEMEHTOB CHCTEMBI; B 3TOM CIIydae
MOXHO OOHAapyXUTb OoJiee «TOHKHE» 3aBUCHMOCTH B HCXOJHOH cucTeMe.
IpencraBnenue CUCTEMBI B BUJE €AUHOIO OOBEKTa — JIIEMEHTHI U CBSI3H MEXIY
JJIeMEHTaMHi — TI03BOJICT TPHIATh OoJjiee YETKHUH CMBICI 3a/laue BbISBICHUS
CTPYKTYpBI cucTeMbl. CTPyKTypa CHCTEMbl — 3TO TaKasi OpTaHU3aIMs JIEMEHTOB
CHCTEMBI B IIOJCUCTEMBI, KOTOpas CKIAIbIBAETCSA B BHUAE MHOXKECTBAOTHOIIEHMI
Mexny mnoxcucteMaMu. CTpPYKTYpoW CHUCTEMbl, HampuMep, MOXeT ObITh
€CTECTBCHHO CJIOXKUBIIMICS cII0C00 00bEAUHEHNS MOACUCTEM B EAUHYIO CUCTEMY,
KOTODBI OIpe/eNIAeTCs] HAa OCHOBE «CHJBHBIX» M «CIAOBIX» CBA3EH MeExay
aneMeHTaMu cucteMbl. [10100HBIH NOAXO0/ K aHAJIM3y CHCTEM ONMCaH, HalpUMeD,
B [9], rme paccmarpuBaeTcs BONpPOC arperupoBaHHs CHCTEM B3aHMMOCBSI3aHHBIX
3JIEMEHTOB. ATPErnpOBaHHE OKA3bIBACTCS yJOOHBIM MAKPOSI3BIKOM JJIsl BCKPBITHS
CTPYKTYPBI CUCTEMBL.

*
B JaTeparype HOHOﬁHBIC CHUCTEMBI Ha3bIBAOTCI CUCTEMaMH B3aMMOCBA3aHHBIX 3JICMCHTOB.
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Extremal Subsystems of Monotonic Systems, I’

Abstract. A general theoretical method is described which is intended for the initial
analysis of systems of interrelated elements. Within the framework of the model, a
specially postulated monotonicity property for systems guarantees the existence of
a special kind of subsystems called kernels. A number of extremal properties and
the structure of the kernels are found. The language of description of monotonic
systems of interrelated elements is described in general set-theoretic terms and
leads to a constructive system of notions in the case of systems with finite number
of elements. A series of properties of special finite sequences of elements are
studied whereby kernels in monotonic systems are classified.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

For the study of a complex system, it is often necessary to encounter
the problem of analyzing concrete numerical data about the system func-
tioning. Sometimes based on similar data it is required to show whether in
the system there exist special elements or subsystems, reacting in one way
to some “actions” as well as “relations” between one-type subsystems.
Information on the existence of the indicated peculiarities or on the “struc-
ture” of the system under study is necessary, for example, before carrying
out extensive or expensive statistical investigation.

Concerning wide application of computational techniques, at the pre-
sent time, to initial detection of the structure of a system an approach
based on various kind of heuristic models is planned (Braverman et al,
1974; McCormik, 1972; Deutch, 1971; Zahn, 1971). For constructing
models, many authors start with intuitive formulations of the problem and
also with the form of presentation of the initial data (Vohandu, 1964;
Terent’ev, 1959).

A natural form of presentation the data for the purpose of studying
complex systems is that of a graph (Muchnik, 1974). A matrix, for exam-
ple, a data matrix (Hartigan, 1972) also serves as a widely spread carrier of
information. Matrices and graphs easily admit isolation of two minimal
structural units of the system: “elements” and “connections” between
elements." In this paper the notions “connections” and “elements” are
interrelated in a sufficiently broad fashion. Thus, sometimes it is desirable
to consider connections in the form of elements of a system; in this case, it
is possible to find more “subtle” relations in the original system.

Analogous systems are called systems of interrelated elements in the literature.
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Representation of the system in the form of a unique object — ele-
ments and connections between elements — makes it possible to give a
more precise meaning to the problem of revealing the structure of the
system. The structure of a system is the organization of system elements
into subsystems, which are composed as a set of relationships between
subsystems. The structure can, for example, be a natural way of combining
subsystems into a single system, which is determined on the basis of
"strong" and "weak" links between the elements of the system. A similar
approach to systems analysis is described (for example, Braverman et al,
1971), where the issue of assembling systems from interconnected ele-
ments is considered. Assembly turns out to be a convenient macro lan-
guage for expressing the structure of a system.

In the theory of systems, usually direct connections between elements
are considered. Situation, however, sometimes requires considering indi-
rect connections as well. This requirement is distinguished thus: that indi-
rect connections are dynamic relations in the sense that “degree” of de-
pendence is determined by a subsystem, in which this or that connection is
considered. Below we describe and study a certain subclass of similar
“dynamic” systems called monotonic systems.

The monotonicity property for systems allows us to formulate in a gen-
eral form the concept of a kernel of a system as a subsystem, which in the
originally indicated sense reflects the structure of the whole system in the
large. A kernel represents a subsystem whose elements are “sensitive” in
the highest degree to one of two types of actions (positive or negative),
since “sensibility” to actions is determined by the intrinsic structure of the
system. The definition of positive and negative actions reduces to the
existence of two types of kernels — positive and negative kernels.

Existence of kernels (special subsystems) is guaranteed by the mathe-
matical model described in this paper and the problem of “isolating” ker-
nels is typical problem in the description of a “large” system in the lan-
guage of a “small” system — kernel. In this sense, figuratively speaking, a
kernel of a system is a subsystem whose removal inflicts “cardinal”
changes the properties of that system: The system "gives up" the existing
structure.

For exposition of the material terminology and symbolism, the theory
of sets is used which requires no special knowledge. One should turn at-
tention to the special notation introduced, since the apparatus developed in
this paper is new.
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2. EXAMPLES OF MONOTONIC SYSTEMS >

1. In the N -dimensional vector space let there be given N vectors.
For each pair of vectors X and Y one can define in many ways a distance

P(X,y) between these vectors (i.e., to scale the space). Let us assume

that the set of given vectors forms an unknown system W .

For every vector in an arbitrary subsystem of W we calculate the sum
of distances to all vectors situated inside the selected subsystem. Thus,
with the respect to each subsystem of W and each vector situated inside
that subsystem, a characteristic sum of distances is defined, which can be
different for different subsystems.

It is not difficult to establish the following property of the set of sums
of distances. Because of removing a vector from the subsystem the sums
computed for the remaining vectors decrease while because of adding a
vector to the subsystem they increase. A similar property of sums for
every subsystem of system W is called in this paper the monotonicity

property and a system W having such a property is called a monotonic
system.

2. For studying schools, directions in various branches of science, the
so-called graphs of cited publications (Nalimov and Mul’chenko, 1969)
are used. These are directed a-cyclic graphs, since each author can cite
only those authors whose papers are already published. It is entirely rea-
sonable to assume that the set of publications W forms a certain system,
where the system elements (published papers) exchange with each other
information by special way, namely, by the help of citation. If we consider
a subset from an available survey of the set of publications W , then the
number of bibliographical tittles can characterize each publication, taken
only over the subset — subsystem — considered. It is clear that “removal”
of publication from the subsystem only decreases the quantitative evalua-

Kempner, Y., Mirkin, B., and Muchnik, I. B., "Monotone linkage clustering and
quasi-concave set functions," Applied Mathematics Letters, 1997, 4, 19; B.
Mirkin and I. Muchnik, “Layered Clusters of Tightness Set Functions,” Applied
Mathematics Letters, 2002, v. 15, issue no. 2, pp. 147-151.; see also, A. V.
Genkin (Moscow), I. B. Muchnik (Boston), “Fixed Approach to Clustering,
Journal of Classification,” Springer, 1993, 10, pp. 219-240,; and latest connec-
tion, Kempner, Y., Levit V. E., “Correspondence between two antimatroid al-
gorithmic characterizations,” Dept. of Computer Science, Holon Academic In-
stitute of Technology, July, 2003, Israel,.
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tion thus introduced for the degree of exchange of information in the sub-
system while the “addition” of a publication in the subsystem only in-
creases that evaluation for all publications in the subsystem. Thus, we
have here a monotonic citation system given in the form of a graph.

In connection with the above example, it is interesting to note
(Trybulets, 1970), where the author involuntarily considers an example of
a monotonic system in the form of a directed graph.

3. Let us assume that there is a set W of telephone exchanges or
points of connection that are joined by lines of two-sided connections.
Under the absence of any connection between points in a system with
communications, it is possible to organize a transit connection. If a func-
tioning of a similar system is observed for a long time, then the “quality”
of connection” between each pair of points can be expressed, independ-
ently of whether there exists a two-sided connection or not, by the average
number of “denials” in establishing a connection between them in a stan-
dard unit of time. Generally speaking, if it is desired to characterize each
point of the system W in the sense of “unreliability” of establishing
connections with other points, then this second characteristic can be taken
to be the average number of denials in establishing connection with at least
one point of the system in a unit time. It is clear that these same numerical
qualities (quality of connection, unreliability characteristic) can be defined
only inside every subsystem of the system with communications W .

The proposed model has the following obvious properties. A gap in
any line of two-sided connection increases the average number of denials
among all other points of connection; introduction of any new line, in
contrast decreases the average number of denials. This is related with the
fact that load on the realization of a transit connection in a telephone
communication network increases (decreases). In the case of curtailment
of activity at any point of connection inside the given subsystem the unre-
liability of all points of subsystem increases while in case of addition of a
point of connection to the subsystem the unreliability decreases.

Thus, there is a complete similarity with the examples of monotonic
systems considered above and one can state that the model described for
telephone communications is a monotonic system.
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In the present paper a monotonic system is defined, to be a system over
whose elements one can perform “positive” and “negative” actions. In
addition, positive actions increase certain quantitative indicators of the
functioning of a system while the negative actions decrease those indica-
tors. In the second example considered above the positive action is the
addition of an element to a subsystem while the negative action is remov-
ing an element from the subsystem; in the third example the converse
holds.

In the second and third examples above, the kernel must have an intui-
tive meaning. Thus, in the citation graphs, a negative kernel must turn out
to be the set of publications citing each other in a considerable degree (by
authors representing a single scientific school) while a positive kernel
must consist of publications citing each other to a lesser degree (represent-
ing different schools).

In telephone communications networks the intuitive sense of a kernel
must manifest itself in the following. If we take as elements of a commu-
nication network the lines of connection, then a negative kernel is a collec-
tion of lines that give on the average a “mutually agreed upon” large num-
ber of denials while a positive kernel has the opposite sense — a collection
of lines that give on the average less denials. In case the system elements
are taken to be the connection points of a telephone communication net-
work, a negative kernel is a set of mutually unreliable points while a posi-
tive kernel is a set of more reliable points.

The intuitive meaning given to kernels of citation graphs and commu-
nication network is not based on a sufficient number of experimental facts.
The indicated properties are noted in analogy with available intuitive in-
terpretation of kernels obtained for solutions of automatic-classification
problems (Mullat, 1975).

3. DESCRIPTION OF A MONOTONIC SYSTEM

One considers some system W consisting of a finite number of ele-

ments, * i.e., ‘W‘ = N, where each element O of the system W plays

a well-defined role. It is supposed that the states of elements oL of W
are described by definite numerical quantities characterizing the “signifi-
cance” level of elements OL for the operation of the system as a whole and
that from each element of the system one can construct some discrete
actions.

> 1f W s a finite set, then ‘W‘ denotes the number of its elements.
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We reflect the intrinsic dependence of system elements on the signifi-
cance levels of individual elements. The intrinsic dependence of elements
can be regarded in a natural way as the change, introducible in the signifi-

cance levels of elements B , rendered by a discrete action produced upon

element QL.

We assume that the significance level of the same element varies as a
result of this action. If the elements in a system are not related with each
other in any way, then it is natural to suppose that the change introduced

by element & on significance B (or the influence of OL on B) equals

Zero.

We isolate a class of systems, for which global variations in the sig-
nificance levels introduced by discrete actions on the system elements
bears a monotonic character.

Definition. By a monotonic system, we understand a system, for which
an action realized on an arbitrary element QU involves either only decrease
or only increase in the significance levels of all other elements.

In accordance with this definition of a monotonic system two types of
actions are distinguished: type @ and type ©. An action of type @ involves
increase in the significance levels while © involves decrease.

The formal concept of a discrete action on an element QL of the system

W  and the change in significance levels of elements arising in connec-

tion with it allows us to define on the set of remaining elements of W an
uncountable set of functions whenever we have at least one real signifi-
cance function T: W — D (D being the set of real numbers).

Indeed, if an action is rendered on element O, the starting from the

proposed scheme one can say that function T is mapped into n; or T,

according as a the action @ or ©. Significance of system elements is redis-
tributed as action on element OL changes from function T to TCZt (71',;)

or, otherwise, the initial collection of significance levels

{TC(@) ‘ o€ W} changes into a new collection {Tc: (6)‘ 0e W} ¢

Functions 7T, TE; and TE; are defined on the whole set W and, conse-

quently, TC; (8) and TC; (6) are defined.
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Clearly, if we are given some sequence OL;,Ql,,0l;,... of elements of

W  (arbitrary repetitions and combinations of elements being permitted)
and the binary sequence +,—,+,..., then by the usual means one can de-

fine the functional product of functions TE; ,n;2 ,Tc;3 in the form

T om

oy "0, tTag "

The construction presented allows us to write the property of mono-
tonic systems in the form of the following basic inequalities:

n,(0) 2 () > m,(0) (1)
for every pair of elements 0L, 0 € W , including the pairs oL, 0L or 0,0 .

Let there be given a partition of set W into two subsets, i..,
HUH=W and HNH=O. If we subject the elements
o,,0,,0,,.. € H to positive actions only, then by the same token on

set W there is defined some function TE;TC(;QTC;3 ..., which can be re-

garded as defined only on the subset H of W .°

If from all possible sequences of elements of set H we select a se-

quence <OL1 N0 PO (x‘ﬁ‘ > , ¢ where O, are not repeated, then on the set

H the function Tl:;nzz ... is induced ambivalently.

We denote this function T H and call it a standard function. We shall
also refer to the function thus introduced as a credential function and to its

value on an element as an O credential.

In accordance with this terminology the set {TEJrH(OL)‘ o e H},

which is denoted by IT'H is called a credential collection given on the
set H or a credential collection relative to set H . Let us assume that we

We are not interested in significance levels obtained as a result of operations on
elements of H onto the same set H .

Here symbols <,> are used to stress the ordered character of a sequence of H .
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are given a set of credential collections {H+H ‘ Hc W} on the set of
all possible subsystems P(W) of system W . The number of all possi-
ble subsystems is ‘P(W)‘ = 2‘W‘ .

Instead of considering a standard function for positive actions
TE; TCZtz ... one can consider a similar function for negative actions T H .
Thus, by exact analogy one defines single credential collection
ITTH= {chH(OL)‘ ae H} and the aggregate of credential collec-

tions { TT'H| He W},

Let us briefly summarize the above construction. Starting with some
real function 7T defined on a finite set W and using the notion of posi-
tive and negative actions on elements of system W , one can construct

two types of aggregate collections IT'H and IT H defined on each of
the H of subsets of W . Each function from the aggregate (credential
collection) is constructed by means of the complement to H, equaling

\\Y% \ H, and a sequence <OL1 N ,...,OLH> of distinct elements of the

set H . For this actions of types @ and © are applied to all elements of set

H in correspondence with the ordered sequence <OL1 , QL ,...,Ot‘f > in
H

order to obtain IT"H and TT H respectively.

Credential collections/arrays concept of I1"H and TT H needs re-
finement. The definition given above does not taken into account the char-
acter of dependence of function TH on the sequence of actions realized

on the elements of set H .’ Generally speaking, credential collection

H+H(H_H) is not defined uniquely, since it can happen that for differ-

ent orderings of set H we obtain different function TH .

7

“_

In the sequel, if sign “~” or “+” is omitted from our notation, then it is
understood to be either “—" or “+”



290 Chapter Two

In order that credential collection IT"H (IT'H) be uniquely de-

fined by subset H of the set W it is necessary to introduce the notion of
commutability of actions.

Definition. An action of type @ or © is called commutative for system

W if for every pair of elements OL, B € W we have

In this case it is easy to show that the values of function 7TH on the
set H do not depend on any order defined for the elements of the set H
by sequence <OL1 ,Oly ,> The proof can be conducted by induction and

is omitted.

Thus, for commutative actions the function 70" H (7 H) is uniquely
determined by a subset of W .

In concluding this section, we make one important remark of an intui-
tive character. As is obvious from the above-mentioned definition of ag-
gregates of credentials collection of type @ and ©, the initial credential
collection serves as the basic constructive element in their construction.
The initial credential collection is a significance function defined on the
set of system elements before the actions are derived from the elements. In
other words, it is the initial state of the system fixed by credential collec-
tion IT W . It is natural to consider only those aggregates of credential
collections that are constructed from an initial @ collection, which is the
same as the initial © collection. The dependence indicated between © and
© credential collections is used considerably for the proof of the duality

theorem in the second part of this paper.
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4. EXTREMAL THEOREMS.
STRUCTURE OF EXTREMAL SETS ®

Let us consider the question of selecting a subset from system W
whose elements have significance levels that are stipulated only by the
internal “organization” of the subsystem and are numerically large or,
conversely, numerically small. Since this problem consists of selecting
from the whole set of subsystems P(W') a subsystem having desired

properties, therefore it is necessary to define more precisely how to prefer
one subsystem over another.

Let there be given aggregates of credential collections
{H+H‘ Hc W} and {HfH‘ Hc W} On each subset there are

defined the following two functions:
F,(H) = max t"H(a),
neH

F (H)= 1}1161Hn n H(a).

Definition of Kernels. By kernels of set W we call the points of

global minimum of function F+ and of global maximum of function F .

A subsystem, on which F+ reaches a global minimum is called a &
kernel of the system W , while a subsystem on which F  reaches a

global maximum, is called © kernel. Thus, in every monotonic system the

problem of determining @ and © kernels is raised.

With the purpose of intuitive interpretation as well as with the purpose
of explaining the usefulness of the notion of kernels introduced above we
turn once again to the examples of citation graphs and telephone

commutation networks.

See also, Muchnik, 1., and Shvartser, L., 1990, "Maximization of generalized
characteristics of functions of monotone systems," Automation and Remote

Control, 51, 1562-1572,.
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The definition of the kernel can be formulated using the levels of sig-

nificance of the elements of the system, that is: the @ kernel is a subsys-
tem of a monotonic system, for which the maximum level among the lev-
els of significance is determined only by the internal organization of the

system is the minimum, and the © kernel is the subsystem for which the
minimum level among the same significance levels is the maximum.

The definition of a kernel accords with the intuitive interpretation of a
kernel in citation graphs and telephone commutation networks. Thus, in
citation graphs a @ kernel is a subset (subsystem) of publications, in which
the longest list of bibliographical titles is at the same time very short;
though not inside the subset, but among all possible subsets of the selected
set of publications (among the very long lists). If in our subset of publica-
tions a very short list of bibliographical titles is at the same time very long
among the very short ones relative to all the subsets, then it is a © kernel

of the citation graph. It is clear that a © kernel publications cite one an-
other often enough, since for each publication the list of bibliographical
titles is at any rate not less than a very short one while a very short list is
nevertheless long enough. In a @ kernel the same reason explains why in
this subset one must find representatives of various scientific schools.

In telephone commutation networks, one can consider two types of
system elements — lines of connections and points of connections. In a
system consisting of lines, a © kernel turns out to be a subset of lines, for
which the lines with the least number of denials in that subset are at the
same time the lines with the greatest number of denials among all possible
sets of lines. This means that at least the number of denials stipulates only
by the internal organization of a sub-network of lines of a © kernel is not
less than the number of denials for lines with the smallest number of deni-
als and, besides, this number is large enough. Hence one can expect that
the number of denials for lines of a © kernel is sufficiently large. Similarly
one should expect a small number of denials for lines of a © kernel. For-
mulation for ® and © kernels for points of connection is exactly the same
as for the lines and is omitted here.

Before stating the theorems, we need to introduce some new defini-
tions and notations.
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Let o0 = <OLO , Oy, A k_1> be an ordered sequence of distinct ele-

ments of set W , which exhausts the whole of this set, i.c., k= ‘W‘ .

From sequence O we construct an ordered sequence of subsets of W in
the form A _— <H0,H1,...,Hk_1> with the help of the following re-

currentrule Hy =W, H. , =H, \{Oci}; 1=0,1,.,k-2"°

Definition. Sequence O of elements of W is called a defining se-
quence relative to the aggregate of credentials collections

{H_H‘ Hc W} if there exists in sequence A 5 » @ subsequence of

sets [ = <1“0* 1 R FI;> , such that:
a) credential T H i(Ot i) of an arbitrary element Ql; in sequence
U, belonging to set l"j* but not belonging to set 1"};1 is

strictly less than values of F_ (Fj 1)

b) in set Fp_ there does not exist a proper subset L, which satis-

fies the strict inequality F (I')) <F_(L).

A sequence O with properties a) and b) is denoted by QL_. One simi-

larly defines a sequence OL, .

c) arbitrary element O, in sequence O, belonging to set F; but
not belonging to set 1—;1 is strictly greater than values of F+ (Fj +1) ;

d) inset Fq+ there does not exist a proper subset L, which satisfies

the strict inequality F, (l“q) >F, (L).

Sign \ denotes the subtraction operation for sets.

19 Here and everywhere, for simplification of expression, where it is re-
quired, the sign “~” or “+” is not used twice in notations. We should

have written F_ (1_;1) or FJr (FJL).
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Definition. Subset Hi of set W is called definable if there exists a

defining sequence O, such that Hj = FJ )

Definition. Subset Hi of set W is called definable if there exists a

defining sequence OL_ such that Hi = Fp_ .
Below we formulate, but do not prove, a theorem concerning proper-
ties of points of global maximum of function F . The proof is adduced in

Appendix 1. A similar theorem holds for function F+ . In Appendix 1 the
parallel proof for function F+ is not reproduced. The corresponding pas-

sage from the proof for F  to that of F+ can be effected by simple inter-

change of verbal relations “greater than” and “less than”, inequality signs
“>” and “<”, “>”, “<” as well as by interchange of signs “+” and “-”. The

passage from definable set Hj to Hi and from definition of sequence

o, and O_, is affected by what has just been said.

Theorem 1. On a definable set Hi function F reaches a global
maximum. There is a unique definable set Hi All sets, on which a global
maximum is reached, lie inside the definable set Hi .

Theorem 2. On a definable set H: function F+ reaches a global
minimum. There is a unique definable set Hi . All sets, on which a global

minimum is reached, lie inside the definable set Hi .
In the proof of Theorem 1 (Appendix 1) it is supposed that definable

set H  exists. It is natural that this assumption, in turn, needs proof. The

. * o, . . 11
existence of H _ is secured by a special constructive procedure.

The proof of Theorem 2 is completely analogous to the proof of Theo-
rem 1 and is not adduced in Appendix 1.

""" This procedure will be presented in the second part of the article, since here

only the extremal properties of kernels and the structure of the set of kernels are
established.
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We present a theorem, which reflects a more refined structure of ker-
nels of W as elements of the set P(W) of all possible subsets (subsys-

tems) of set W .
Theorem 3. The system of all sets in P(W), on which function F_

(F+) reaches maximum (minimum), is closed with the respect to the

binary operation of taking union of sets.
The proof of this theorem is given in Appendix 2 and only for the func-

tion F_ . The assertion of the theorem for F+ is established similarly.

Thus, it is established that the set of all @ kernels (© kernels) forms a
closed system of sets with respect to the binary operation of taking the
unions. The union of all kernels is itself a large kernel and, by the state-
ments of Theorems 1 and 2, is a definable set.

APPENDIX 1

Proof of Theorem 1. We suppose that a definable set Hi exists.

(Conducting the proof by contradiction) let us assume that there exists
aset L € W, which satisfies the inequality

F (H)<F(L). (A1)

Thus two sets Hi and L are considered. One of the following state-
ments holds:

1) Either L/H™ # &, which signifies the existence of elements in
L, not belonging to Hi ;

2)or LC Hi

We first consider 2). By a property of definable set Hi there exists a
defining sequence O of elements of set W with the property b) (cf. the

definition of O_) such that the strict inequality F_ (H*) <F (L) does

not hold and, consequently, only the equality holds in (A.1). In this case,
the first and the third statements of the theorem are proved. It remains only

to prove the uniqueness of Hi , whish is done after considering 1).
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Thus, let L/ Hi # (J and let us consider set H . — the smallest of
those Hi (i =0,....k— 1) from the defining sequence OU_ that in-
clude the set L/ Hi Then the fact that H . 1s the smallest of the indi-

cated sets implies the following: there exists element A € L, such that

AeH . buurieH,,.

Below, we denote by 1(€2) the smallest of the indices of elements of
defining sequence OL_ that belong to the set Q2 C W .

Let FI: be the last in the sequence of sets <Fj7>, whose existence is

guaranteed by the sequence OU_. For indices t and i(l“p‘ ) we have the

inequality t < i(l"p‘) .

The last inequality means that in sequence of sets <FJ > there exists at

least one set FS_ , which satisfies
iI,)=t+1. (A2)

Without decreasing generality, one can assume that 1_: is the largest
among such sets.

It has been established above that A € Ht, but A ¢ H .. Inequality

t+1°

(A2) shows that I < H
I oH

s t+1

1> since the opposite assumption
leads to the conclusion that i(l“s‘) >t+1 and, conse-
quently 1_: is not the largest of the sets, for which (A.2) holds.

Thus, it is established that 1_:_1 ) Ht . Indeed, if 1_:_1 - Ht, then
for indices 1(I",_;) and ¢ we have 1(I'_,) > t.

Hence 1(I'_ ) +12t+1 and the inequality 1(I", ) 21(T", ) +1
implies i(l“s‘) >t+1. The last inequality once again contradicts the

choice of set FS_ as the largest set, which satisfies inequality (A.2).
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Thus, A & F;, but A € FS:1, since A € Ht, Ht C Fs:1. On the
basis of property a) of the defining sequence OL_, we can conclude that
n H ) <F (I)), (A3)
where 0 <s < p.

Let us consider an arbitrary set ij (j=0,1,...,p—1) and an ele-
ment T € ij , which has the smallest index in the sequence O._. In other
words, set IT starts from the element 7 in sequence O._. In this case,

set Fj_ is a certain set Hi in the sequence of imbedded sets <H1> The

definition of F_(H) and the property a) of defining sequence Ol_ im-
plies that
F@)<nT(v)<F(T,).
Hence

F (@) <EI)<..<FE())
and as a corollary we have for J = 0,1,...,p

FT)<F(@)=FH), (A4)

*

since pr =H .

Let L€ L and let credential T L(LL) be minimal in the collection

of credentials relative to set L . On the basis of inequalities (A.1), (A.3),
and (A.4) we deduce that

n H,(A) <n L(uw)=F (L).
Above, H, was chosen so that L & H, . Recalling the fundamental

monotonicity property (1) for collection of credentials (the influence of
elements on each other), it easy to establish that

n L(A) <n"H,(A). (A.6)
Inequalities (A.5) and (A.6) imply the inequality
n L(A) < L(p),

i.e., there exists in the collection of credentials relative to set L a creden-
tial, which is strictly less than the minimal credential.
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A contradiction is obtained and it is proved that set L. can only be a

subset of Hi and that all sets, distinct from Hi, on which the global
maximum is also reached, lie inside Hi .

It remains to prove that if a definable set H  exists, then it is unique.
Indeed, in consequence of what has been proved above we can only sup-

pose that some definable set HI_, distinct from Hi, is included in Hi .
It is now enough to adduce arguments for definable set FH " similar to
those adduced above for L, considering it as definable set H'_; this im-

plies that Hi - Hf The theorem is proved.

APPENDIX 2

Proof of Theorem 3. Let {2 be the system of set in P(W), on
which function F  reaches a global maximum, and let K1 € () and

K, eQ.

Since on K1 and K2 the function F reaches a global maximum,

therefore we might establish the inequalities
F (K, UK, <F (K, FX,uUK,)<F (K,). @7
We consider element P € K, UK, on which the value of function
F onset K, UK, ,isreached, i.c.,
n K, UK,(u)= min n°K, UK, (a).
aeK UK,

If pe K1 , then by rendering © actions on all those elements of set

K1 ) Kz , that do not belong to K1 , we deduce from the fundamental

monotonicity property of collections of credentials (1) the validity of the
inequality

T K () <t K UK, ().
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Since the definition of F_ implies that F (K,) < K, (1) and by
the choice of element L we have T K, UK, (n) =F (K, UK,),

therefore we deduce the inequality
F (K,)<F (K, UK,).
Now from the inequality (A.7) it follows that
F (K,)=F (K, UK)).

If, however, it is supposed that iU € K, then © actions are rendered

on elements of K1 ) K2 , not belonging to K2 ; in an analogous way we

obtain the equality
F (K, =F (K, UK,),

which was to be proved.
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The name “Monotonic System” at that moment in the past was the best match
for our scheme. However, this name “Monotone System” was already occupied in
“Reliability Theory” unknown to the author. Below we reproduce a fragment of a
“monotone system” concept different from ours in lines of Sheldon M. Ross “In-
troduction to Probability Models”, Fourth Ed., Academic Press, Inc., pp. 406-407.

Example 2
(A four-

Component $ C

Structure): 8

Consider a system consisting of four components, and suppose that the system
functions if and only if components 1 and 2 both function and at least one of
components 3 and 4 function. Its structure function is given by

d(x) =X, - X, -max (X3,X4).

Pictorially, the system is shown in Figure. A useful identity, easily checked, is
that for binary variables, (a binary variable is one which assumes either the value

0 orl)Xi,iZI,...,l’l,

max (X1,...,Xn)=1—H(1—Xi).When n =2, this yields
i=1

max (x,,x,)=1-(1-x,)-(1-x,) =X, + X, = X, - X,.

Hence, the structure function in the above example may be written as

¢(X):X1'X2'(X3+X4_X3'X4)

It is natural to assume that replacing a failed component by a functioning one
never lead to a deterioration of the system. In other words, it is natural to assume

that the structure function (I)(X) is an increasing function of X, that is, if
X, < \IE 1= 1,..., n, then (I)(X) < ¢(Y) . Such an assumption shall be

made in this chapter and the system will be called monotone.



301

OKCTPEMAJBbHbLIE NTOACUCTEMblI MOHOTOHHbIX CUCTEM. Il
U. 3. MYNNAT
(Tannun)

IIpennaraeTCAKOHCTPYKTHBHAANIPOLETYPATIOCTPOCHHS O0COOBIX ONpENEIAIONINX T10C/IEI0BATEIbHO-
CTel 71eMEHTOB MOHOTOHHBIX CHMCTEM, PaccMOTpeHHBIX B [1]. M3ydaroTcss B3amMHble CBOHCTBA JBYX

onpeJieNsIomuX nocuegoparensHocreii OL— ¥ Ol , ¥ HOJTYYEHHBIH pe3ynbTar (popMy-ITupyeTcs B BHJIE
TeopeMsl JBoiicTBeHHOCTH. Ha OCHOBe TeopeMbl JBOMCTBEHHOCTH OMMCAH CIIOCOO CyXeHHs obiacTu
TIOMCKA PKCTPEMANBHBIX TOJACHCTEM — SIIEP MOHOTOHHOH CHCTEMBl M HPUBEIEHA COOTBETCTBYIOMIAST
cXeMa MoMCKa.

1. Beenenue

B [1] pa3paboTan OCHOBHOW ammapaT BBIAEIEHHS B MOHOTOHHBIX
CHCTeMaxX OCOOBIX TMOJICHCTEM — siep, O0NaJarouIuX SKCTPEMaTbHBIMH
cBoiictBamMi. OCHOBHBIM TIOHSTHEM Pa3BUTOTO ammapara SBISIETCS OTpe-
JIeTMMOe MHOXeCTBO [2]. B mpuHATO#! TepMUHOIOTUH OMpeNeIMMOe MHO-
JKECTBO OKa3bIBAETCSI HAMOOJNBIINM SJPOM MOHOTOHHOW CHCTEMBI B3aHMO-
CBSI3aHHBIX 3JeMeHTOB. [loHsATHE ompenenmumoro MHoOXectBa B [1] BBO-
JUJIOCH C TIOMOIIBIO TPENNONOKEHUAO CYIIECTBOBAHUM OCOOBIX IOJIIO-
CJIEI0BATENILHOCTEH 3JIEMEHTOB M3y4aeMOM CUCTEMbI, Ha3BaHHBIX OIpejie-

SIOIUMHE ( OL- u O+ ) -TTIOCIIEIOBATEIBHOCTSIMH.

B nanHO# paboTe BOIIPOC CyLIECTBOBAHHS ONPENENAIOIUX 10CIEO0-
aTENBHOCTEH perraeTcss KOHCTPYKTHBHO B BUJIE MIPOLIEAYP — aJITOPUTMOB.
OcCHOBHBIE CBOICTBa OMpEAEISIONIEH MOCIe0BATEIIEHOCTH, TIOCTPOSHHON
0 IIpaBUJIaM MPOLEAYPHl U UCUEPIIBIBAIOIIEH BCce MHOYKE-CTBO 3JIEMEHTOB
cucteMsl W, rapantupyeTcs TEOpeMOH.

PaccmaTpuBasi Takxe BOIPOC O TOM, KaKasi CYIIECTBYET CBS3b MEXIY

ONPCACIIAIONIMMU  TIOCJIIEAOBATCIIBHOCTAMU O- U O+ . MoxHO npea-
MOJIOKUTh, YTO €CJIN TIOCTPOCHA OIpEACIAroIIas IMOCICA0BATCIbHOCTD

Ol-, TO CTOUT B3ATH 3Ty NMOCICAOBATECIILHOCTL B OGpaTHOM TIOpAOKE, KakK

MOJIYUHUTCS U+ IMMOCICAOBATCIIBHOCTD. B 06HI€M CJIydac 9TO HC TaK. Tewm He
MeHee HuMeeT MecTo Oojiee ciaboe YTBEPXKACHUEC. Ha ocHoBe orpe-

€JeHHbIX B [1] MOHATHI NTUCKPETHBIX AEUCTBUU TUMA @ U © U Ha 3Je-
eHTBI cucTeMbl W JaHHOe yTBEpKACHUE (OPMYIHPYETCs 3/eCh B BUJIC
TEOpeMBbl JBOWCTBEHHOCTH. B cilydae BBINOJHEHHS YCIIOBHHA €OPEMBI
JIBOMCTBEHHOCTH H3JIOKEHHBIE AITOPUTMBI TOCTPOCHUS OMPEACIISIOIINX
MOCJICIOBATENBHOCTEH UCTIONIB3YIOTCS JIUIsl 3HAUUTEIILHOTO CYXKeHHs 001a-

TH TIOMCKa @ U © snep cucteMbl W. ANTOpUTM CyKeHUsI 00JIacTH MOUCKa
U3JI0KEH TAKKE B BHJIE IPOLEAYPHI — KOHCTPYKTHUBHO.
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Extremal Subsystems of Monotonic Systems, II

Abstract. A constructive routine is considered for obtaining singular-determining
sequence of elements of monotonic systems studied by Mullat (1976). The rela-

tionship between two determining sequences O and OU , is also examined, and

the obtained result is formulated as a duality theorem. This theorem is used for
describing a routine of restricting the domain of search for extremal subsystems (or
kernels of a monotonic system); the corresponding search scheme is also pre-
sented.

Keywords: monotonic; system; matrix; graph; cluster

1. INTRODUCTION

In Mullat (1976) we have developed the basic method of selection
(from monotonic systems) of singular subsystem, i.e., the kernels possess-
ing extremal properties. The main concept of this method is that of a de-
finable set Mullat (1971). In the terminology adopted by us, a definable set
is the largest kernel of a monotonic system of interrelated elements. In
1971 we introduced the concept of a definable set with the aid of the sys-

tem under consideration called determining O (6 +) sequences.

In this paper the problem of existing of determining sequences is
solved constructively in the form of routines (algorithms). The principal
properties of determining sequences sequence constructed according to the
rules of a routine and that exhausts the entire set of elements of the system

W  are specified by a theorem.

We shall also examine the relationship between two determining se-
quences O and OL, . It can be assumed that after constructing a deter-

mining sequence OL_, we could take this sequence in inverse order, thus

obtaining an Ol . sequence. But in the general case this is not so. Never-
theless we can make a weaker assertion. On the basis of the concepts (de-

fined in Mullat (1976) of discrete operations of type @ and © on the ele-
ments of a system W , this assertion will be formulated below as a duality
theorem. Under the conditions of the duality theorem, the algorithms of
construction of determining sequences described here will be used foe
considerably restricting the domain of search for @ and © kernels of the

system W . The algorithm of restriction of the domain of search is pre-
sented in the form of a constructive routine.
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2. ROUTINE OF FINDING THE KERNELS

Below we describe a routine of construction of an ordered sequence
O of all the elements of W . In abbreviated form, this routine is called
KSR (kernel-searching routine).

This routine consists of rules of generation and scanning of an ordered

series of ordered sets <BJ> (sequences); here ] varies from zero to a

value P, which is automatically determined by the rules of the routine,

whereas the elements of each sequence Bj are selected from the set W .
This series <BJ> constructed by this rule forms a numerical sequence

of thresholds <u j> and a sequence of sets <Fj> . On the other hand the

sequence of thresholds governs the transactions from BH to Bj in the

chain <Ej> , and the sequence <Fj> terminates with a set, which is defin-

able.
In the description of a rule we use the operation of extending a se-

quence Bj by adjoining to it another sequence Y . This operation is sym-

bolically expressed by B “«— <E,7> .

This rule of construction of the sequence O of all elements of the set
W  can be described stages: by step Z and R.

Z. Inthe set W we find an element |1, such that
T W(u,) =min, ,n W(3)=F (W) we are constructing a
determining sequence OL_. The construction of Ol . 1s entirely similar

and therefore not presented here. We shall only indicate where it is
necessary to invert the sign of inequalities, and where the search for an
element with the minimal credential must be replaced by search for an

element with maximal credential, so as to be able to construct O .-

' Let us recall that in a) the brackets <,> denoted an ordered set; in the case

under consideration they denote an ordered set of ordered sets B i
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Thus the construction here of O, , the element LL, is obtained from
the condition " W (L,) = max,_,m W(d) =F, (W). we
shall write Uy, = T W(L,), & = <u0> and the set [, = W . We
select a subset of elements Y from W such that

T W \ o(y) £ u,. The construction of O, requires the selection

of such ¥ that T W\ ot(y) 2 u,,u, =" W(L,).
After that we order the elements in a certain manner (which can be ar-
bitrary selected). The thus-obtained ordered set is denoted by ¥ . Let

us write B, =7 .
R. We construct a recursive routine for extending the sequences O and

Bo . Here we denote by Bo (1) the 1-th element of the sequence Bo .

We specify one after another the elements of the sequence Bo . At each
instant of specification we extend the sequence O by the elements
from [30 of the sequence fixed at this instant. In accordance with the

symbolic notation of the operation of extension of a sequence O , we
perform at each instant t of specification the operation

o <a, B, (t)> . Suppose that all the elements of Bo up to
Bo (i—1) inclusive have been fixed. Then the sequence O will have

the form <u0 , Bo 1), Bo (2),..., Bo (i- 1)> , which corresponds to

the symbolic notation of the operation of extension of the sequences
o < <a, B, M,B,(2),....8,(— 1)> in the case that QU inside

the brackets consists of one element L. Let us consider an element
BO (1—1) of the sequence Bo . At the instant of specification of the
element Bo (1—1) we decide during the above-mentioned operation
of extension of QU also about any further extension or about stopping

the extension of the sequence Bo . We must check the following two

conditions:



a)

b)
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In the set W \ 0, there exist elements such that
W\ a(y) < u, In constructing O, , this condition is re-

placed by T W\ a(y) > u,;

the element Bo (1) is defined for the sequence Eo . By assumption
an element [3,(1) to be defined for a sequence Eo if the sequence

Bo has an element with an ordinal number i . Otherwise the ele-

ment Bo (1) is not defined. There can be four cases of fulfillment

or no fulfillment of these conditions. In two cases, when the first
condition is satisfied, irrespective of whether or not the second

condition holds, the sequence Bo will be extended. This means that
the set of elements ¥ in W \ @ specified by the first condition is

ordered in the form of sequence Y . The sequence Bo is extended

in accordance with the formula Bo <«— <Bo ,7> . In case when the

first condition is not satisfied, whereas the second condition is sat-
isfied, we shall fix the element Bo (1) and at the same time extend

the sequence Ol , i.e., Ol ¢— <G,Bo (1)> , and proceed to new re-
cursion stage. In case neither the first nor the second condition
holds, the sequence Bo will not be extended nor the last fixed ele-

ment in the sequence Bo will be the element Bo (i - 1) . Suppose

that we have fixed all the elements of the sequence BJ . By that
time we have constructed a sequence O . Let us consider the set
w \ o and the credential system [1™W \ O . We shall find an
elementin [1"W \ O on which the minimum is reached in the

credential system [T~ W \ O . The obtained element is denoted by

K, 4. We obtain o, the element [ i+1 from the condition:

WA\ Q(Y,,,) =max; T W\a@d)=F(W\a).
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Thus, T~ W\ a(y,,)=F W \ @). Let us write
u,,=n W\a(W,,,),and for theset I', , = W\ @; then
we supplement the sequence QU by the element L i

L1 1€,

o <« <a, K > . In the same way as during the zero step, we se-
lect a subset of elements Y from W \ @ such that
T W\a(y) < U, . Here we select for 0L, a set of elements

Y such that "W\ a(y) = U;, . The selected set can be or-

dered in any manner. The ordered set is denoted by 7Y . The set

Bj+1 is assumed to be equal to Y .

By analogy with previous b) the recursion step will be described as
a recursion routine. At this stage we also use the rule of extension

of the sequences O and BJ . 1- Suppose that we have fixed all ele-
ments of BJ L4 up to B i (1—1) inclusive. Then the sequence O
will have the form O = <a, Ko Bj (1),...,Bj (i- 1)> , where

O denotes the sequence O obtained at the instant of fixing all the

elements of B ;> or, to rephrase, the sequence Ol prior to the

(J + 1) -th step. The last equation corresponds to the symbolic op-
eration of extension of the sequence

o= <a’ His Bj (1)9"-9 Bj (i — 1)> in the case that O inside
the brackets denotes the sequence <a, [VFR 1> Let us consider an

element [3 i+ (1—1) of the sequence BJ .1~ At the instant of fixing

the element [3 i+l (1—1) we decide about a further extension or
about stopping the extension of the sequence Bj .1 For this pur-

pose we consider the credential system I1™W \ a and we check
two conditions:
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1) The set W\ O contains elements Y such that

T W\a(y) < U, For constructing 0L, we must take

elements Y such that T°W \ ot(y) > U

2) the element [3 i1 (1) is defined for the sequence Bj -

By analogy with the step Z, we find that the sequence BJ 1 18 ex-

tended in two cases in which the first condition is satisfied irrespec-
tive of whether or not the second condition holds. The set of ele-

ments Y in W\a specified by the first condition is ordered in

the form of a sequence 'Y The sequence Bj .1 1s extended in ac-

cordance with the formula

1 <Bj+1,7>. In the case that the

first condition does not hold, whereas the second condition is satis-
fied, the element [3 i1 (1) will be fixed and at the same time we ex-

tend the sequence QL , i.e., OL €— <a,[3j+1 (1)> , and after that we

proceed again in accordance with the rules of Stage 2 of the recur-

sion routine of extension of the sequence Bj . 1- In the case that nei-

ther the first, nor the second condition holds, the sequence i1

will not be extended, and the last fixed element of the sequence
Bj+1 will be the element Bj+1(i—1). At some step P the se-

quence O will exhaust the entire set of elements W .
Theorem 1. A sequence Ol constructed on the basis of a collection of
credential system { ITTH ‘ Hc W} is a determining sequence O ,
whereas a sequence O constructed on the basis of {H+H ‘ Hc W} is

a determining sequence O, .

The first part of the theorem (for O._) is proved in Appendix 1. The

second part (for O . ) can be proved in the same way.
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NBI. Let us note that a sequence O constructed by KSR rules has some-
what stronger properties than required in obtaining a determining se-
quence. More precisely, there does not exist a proper subset L for

j=0,1,...,p—1 such that Fj >L> FjH and Fﬁ(l“j) <F (L).
This is not required for obtaining a determining sequence OL_ (O, ). The
corresponding proof is not given here.

NB2. Let us note another circumstance. With the aid of the kernel-
searching routine it is possible to effectively find (without scanning) the
largest kernel, i.e., a definable set. It is not possible to find an individual
kernel strictly included in a definable set (if the latter exists) by construct-
ing a determining sequence.

3. DUALITY THEOREM

Let us establish a relationship between the determining sequences OL_

and O, ofasystem W .
Theorem 2. Let O and O, be determining sequences of the set \W%
with respect to the collection of credential system {HfH‘ Hc W},

{H+H‘ Hc W} respectively. Let <Fj‘> be the subsequence of the

sequence A 5 (J =0,,..., p) needed in the determination of O._, and

let <Fj+> be the corresponding subsequence of the sequence Aa
(j=0.,...,9).

Hence if foran M and a N we have

F.(I))=F.(T,). (1)
then - c WAL, T7 cW\T .1
F(I)<F(T),)?% )

then T c W\T", T c W\T..

2 Inthe following, the + and — sign will not be used twice in notation. This

rule applies also to Appendices 1 and 2
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This theorem is important from two points of view. Firstly, under the
conditions (1) and (2) there exists a relationship between an OL_ sequence

and O, . This relationship consists in the fact that elements of O, which
are at the “beginning” and form either the set W \ F; .1 or the set
\\% \ 1—: will include all the elements of the set 1—; that are at the “end”
of OU_. The same applies also to sets W\ I, oc W \ I'_ which are

at the beginning of OL_, since they include in a similar way the set F: .In

other words, the theorem states that the sequence O, does not differ “very
much” (under certain conditions) from the sequence, which is the inverse
to O .

Let us note that the conditions (1) and (2) are sufficient conditions, and
it can happen that actual monotonic systems satisfying these conditions do
not exist. Nevertheless, in the third part of this article, we shall describe

actual examples of such systems.

4. KERNEL SEARCH ROUTINE BASED ON DUALITY THEOREM

We just noted that a determining sequence O, differs “slightly” from
the inverse sequence of OL_. For elucidating the possibility of a search for

kernels on the basis of the duality theorem, let us rephrase the latter. This
assertion can be formulated as follows: at the beginning of the sequence
o . Wwe often encounter elements of the sequence O, which are at the

end of the latter.
Such an interpretation of the duality theorem yields an efficient routine
of dual search for ® and © kernels of the system W . This is due to the

fact if the elements are often encountered, there exists a higher possibility
of finding a @ kernel at the beginning of the sequence Ol . as compared to

finding it at the end of OL_; the same applies also to a © kernel in the

sequence OL_.
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The routine under construction is based on Corollaries I-IV of the dual-
ity theorem presented in Appendix II, where we also prove this theorem.

The routine of dual search for kernels described below is an application
of two constructive routines, i.e., a KSR for constructing O . and a KSR

for constructing OU_. The routine is stepwise, with two constructing stages
realized at each step, i.e., a stage in which the KSR is used for constructing
[ . with & operations, and a stage in which the same routine is used for

constructing O,_ with the aid of © operations on the elements of the sys-

tem.

Z. At first we store two numbers: u0+ =F, (W) and u, = 0. After
that we perform precisely Stage 1 and 2 of the zero step of the KSR
used for constructing the determining sequence OL, . This signifies that

the set W contains an element 1, such that
T"W(Y,) = max,_, " W(8) = F, (W). The threshold u, is

equal to TE+W(]JO) , etc. By using the constructions of the zero step
of KSR at the previous stage of the dual routine under construction, we
obtained a set 17 < W . Then we examine the set W'\ F1+ and the

credential system [T"W \ I;". On the set W \ T} with the creden-
tial system Imw \ F1+ we perform a complete kernel-searching rou-

tine for the purpose of constructing a determining sequence of ® op-

erations only for the set W \ lT . As a result, we obtain in the set
\\% \ I—T a subset K' on which the function F  reaches a global
maximum among all the subsets of the set W\ IT .

R. By applying the previous (J - 1) steps to the _] -th step, we obtained a
sequence of sets FJ R F1+ yeees F; , and according to the construction of

a determining sequence we have 1“0* ) IT D...D r; and
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FJ = W . At first we store two numbers: u; =F, (r;) and

u; =F (Hj ). By analogy, we perform the same construction con-
sisting of two stages of a KSR recursion step for constructing Ol . with
the aid of @ operations. At a given instant of such dual construction we
obtained a set FJL C Fj+. Then we consider the set W \ FJL and
the credential system I1™W \ FJL . In the same way as at the zero
step, we perform on the set W \ FJL a complete kernel-searching

routine with the purpose of constructing a sequence O_ only on the

set W \ FJL . As a result we obtain in the set W \ ITH a subset
+1 . . .
H”" on which the function F_ reaches a global maximum among all

'
subsets of the set W \ Fj 1

Rule of Termination of Construction Routine. Before starting the construc-

tion of the j-th step of the routine under construction, we check the condi-
tion

u; <u;. 3)
If (3) is satisfied as a strict inequality, the construction will terminate be-
fore the ]-thstep. If (3) is an equality, the construction will terminate

after the j-th step.

5. DEFINABLE SETS OF DUAL KERNEL-SEARCH ROUTINE

At the end of the construction process, the above routine yields a set

H' oraset H*'. 1t can be asserted that one of the sets is definable set or
the largest kernel of the system W with respect to a collection of creden-

tial system {H_H‘ Hc W}
The assertion is based on the following. Firstly, by applying the KSR
we obtained the second stage of the j-th step of a dual routine the maxi-

mal set H'"’ among all the subsets of the set W \ T’ ;1 on which the
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function F reaches a global maximum in the system of sets of all the
subsets of the set W \ Fj:1. Secondly, by virtue of Corollary 1 of the
Theorem 2 (the duality theorem), it follows that, prior to the _] -th step and

provided that (3) is a strict inequality, the largest kernel (a definable set)
will be contained in the set W'\ F; , or it follows from the Corollary 2 of
the Theorem 2, if (3) is a equality, that the largest kernel is included in the
set W\T''

1

Thus by comparing these two remarks we can see that either H' or
H’"" is a definable set.
By virtue of Corollaries 3 and 4 of the duality theorem, it is possible to

find by similar dual routine also the largest kernel K ©- definable set.
This assertion can be proved in the same way as the assertion about H’

1 . . .
and H’"'; therefore this proof is not given here.

APPENDIX 1

Proof of Theorem 1. We shell prove that a sequence & constructed
by the KSR rules is a determining sequence for a collection of credential

systems

{MH|Hc W},

First of all let us recall the definition of a determining sequence of
elements of the system W . We shall use the notation

A, =(H,H,,...H_), whee H;=W, H_, =H\aq,
(i =0,1,..k— 2). A sequence of elements of a set W is said to be

determining with respect to a coalition of credential system
{H_H‘ Hc W} if the sequence Aa has a subsequence of sets

I, = <F0,1“1,...,Fp>, such that
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a) The credential T H. (0L;) of any element O, of the sequence
O that belongs to the set Fj, but does not belong to the set
I

[P is strictly smaller than the credential of an element with

minimal credential with respect to the set I ie.,

1
7-[:_Hi((li) < F_(Fj+1) D J = 0,1,...,p —13,

b) the set Fp does not have a proper subset L such that the strict
inequality F_ (Fp) < F_ (L) is satisfied (the “~” symbol has

been omitted; see previous footnote).

We shall consider a sequence of sets A 5 and take the subsequence
I'. in the form of the sets Fj (j=0,1,...,p) constructed by the KSR
rules. We have to prove that sets Fj have the required properties of a
determining sequence. Assuming the contrary carries out the proof.

Let us assume that Mullat property (1971) of a determining sequence is
not satisfied. This means that for any set Fj there exists in the sequence of

elements
B =(B,(0,8,(2),-)

an element [3 j(I’) such that

©H, B,@o)=2FT,)=u,, (A1)

Here V is the index number of the element LL; selected in Stage 1 of

the recursion step of the constructive routine of determination of O ; in
the vocabulary of notation used in Mullat (1976) we have V = i(Fj) .

3 In the definition of OU . sequence it is required that the following strict inequal-

ity be satisfied: 7T H, (at;) > F ([,;), j=0,1,...,q -1
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According to the method of construction, the sequence BJ consists of
sequences Y formed at the second stage of the j—th step of the construc-
tive routine. Let M be a set in a sequence of sets A 5 such that the first
element O vy of the set M in the constructed sequence O is used at

the second stage of the j-th step for constructing the sequence Y to

which the element [3 j(1‘) belongs. This definition of M shows that
H,, cM.

v+r —

From the construction of the second stage of the j-th step and the

principal property of monotonicity of © operations in the system we ob-

tain the inequalities

TC—HVH (Bj(r)) < n_M(Bj(r)) < n_rj (HJ) =, (A.2)

By virtue of the above method of selection of the set I".,, from the se-

j+1

quence of sets <Fj> and of the properties of a fixed sequence B , We

j
obtain at the ] -th step

u,=nl(n, )<l (1,)=u,, (A.3)

where ] = O,l,...,p —1.
According to the rule of constructing of the sequence O, the function
F  reaches its value on the elements L jand [, . The elements L1, and

M belong to the sets Fj and Fj .1 respectively; therefore the inequali-

ties (A.1) — (A.3) are contradictory.

Thus our assumption is not true and Mullat Property of the determining

sequence OU constructed by KSR rules has been proved.
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Let as assume that Property b) does not hold, i.e., the last Fp of the

sequence <Fj> contains a proper subset L such that
F([)<F.(L). (A.4)

Let the element A € L, and suppose that it is the element with mini-
mal ordinal number in O belonging to L ; moreover, let t denotes this
number, ie., t = i(L) , o, = A . From the definition of # it follows that

LcH,.

Our analysis carried out above for the set H __ we repeat below for

r
the set Ht . By analogy with the definition of the set M we define a set
M' with the aid of the element A and the sequence O .

The set M' is equated with the set of the sequence of sets A 5 that
begins with an element used in the formation of a set Y at the p-th step

of the constructive routine such that A € ¥ .
By analogy with derivative of (A.2) we obtain

THMR) <aM@Q)2rnT,(n,)=u,. (A.5)

Since F (L)< m L(A), it follows from (A.4) and (A.5) that
n H,(A) <m L(A).
We noted above that L < H .» by virtue of the monotonicity of ©
operations, it hence follows that
A L)< H ().

The last two inequalities are contradictory, and hence Property b) of
the determining sequence is satisfied.

Thus we have proved that the sequence O constructed by the KSR
rules is a determining sequence with respect to a collection of credential

systems {HfH‘ Hc W}, and hence it can be denoted by O,
whereas the sequence <Fj> obtained by a constructive routine can be

denoted by rai )
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APPENDIX 2
Proof of Duality Theorem. Below we shall show that
L cWA\IL it F(I'7)=F (T,) (we omit a twice notation of +

and — symbols; a promised above the + and — sign will not be used twice in
notation. This rule have been applied also to Appendices 1 and 2.

Let us assume that there exists an element &€l and that

el

m+12

ie., Fr; W \ F; .1- Hence follows that we have defined a
credential TCFJ +1 (&) . According to the definition of the function F. we
have the inequality Tl (§) < F([",).

For a determining sequence E+ and for any j= 0,1,...,q —1 we
have inequalities F(F;H) < F(l—:) .

Let us consider an element g € Fn+ with the smallest index number in

o . - It follows from the definition of o . that
nl " (g)>F(T,). (A.7)

The choice of element g is convenient because it permits the use of
Mullat Property of a determining sequence (see Appendix 1), i.e., in this

case the set [ is in the form of H, =T". Since F(I',") > nt[" (g),
we have proved (A.6).

Since e I , it follows that we have defined a credential TtI"_ €).
We have the following chain of inequalities:

F(T,) < 7T, (8) < v W(E) = " W(&) < T} (&)

Let us recall that for any element O of the system W under consid-
eration, we have in a) the relation T~ W(J) = TE+W(8) . The first ine-
quality follows from the definition of the function F , and the second
inequality from the monotonicity of © operations. The equality follows
from the definition of the functions 7T and T, whereas the last inequal-

ity follows from the monotonicity of © operations.
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By virtue of (A.6) and of the conditions of the theorem, we have also

the following chain of inequalities:
nl4(8) <F(T.,) <FI)) =F(T,).

By supplementing this chain by the previous chain of inequalities, we
hence obtain TCF;H &)< Tcl—;r (). Since Fn+ g C 1—: , it follows from

the monotonicity of & operations that RF: o &)< Ttr:+1(a) . The logi-
cal step used for obtaining the last inequality is valid, and therefore the

assumption that 1—; W \ F; .1 1S untrue.

In the same way we can prove the inclusion 1—: W \ 1—; - For
this purpose it suffices to change the signs of the inequalities and (when-

ever necessary) to replace the set Flj .1 by Fn_ +1>and Fr; by F; .

If condition (2) of the theorem holds, it is not necessary to use (A.6). In
this case the proof will be similar, being based on the following chain of
inequalities (The proof is based on assuming the contrary, so that

I W \ F: , i.e., there exists, as it were, an element & €I
and E€ )

AT (£) < (L) < F(T;) <

<l () <m W(E) <nl; (&)

The first inequality follows from the definition of F (1"; ), the second
follows from Condition (2) of the theorem, and the third from the defini-
tion of F(FI;) . The last two relations express the properties of monotonic

systems. Hence in this case we have under Condition (2) also
L, (€) <ml[(&).

This completes the proof of the theorem. ® Now follows several corol-

laries of Theorem 2.
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Corollary 1. If for n = O,q the determining sequence is O . there
exists a subset H < W'\ l"n* such that F_(H) > F(F;) . Thus kernel
K @ will belong to the set W\ F; . Indeed, since a definable set is also
kernel, it follows that F (H) < F(Fp‘) , m= 0,1,...,p , and hence (in
any case) if M =P, and N is selected on the basis of the condition of the
corollary, then F(F:) < F(Fp_) . By virtue of the theorem, we therefore

obtain the assertion of the corollary.

Corollary 2. If for n = 0,1,...,q —1 of a determining sequence o,

there exists a subset H C W\T" such that F (H)=F(I,"), then
the kernel K ® will belong to the set W\ 1—: -

The proof follows directly from Corollary 1, by virtue of (A.6).

Corollary 3. If for m =0,1,...,p of a determining sequence Ol
there exists a subset H € W \ " such that F, (H) < F(I")) then the

kernel K © will belong to the set W \ 1—; . The proof of Corollary 3 is
entirely similar to that of Corollary 1. It is only necessary to change the

signs of the inequalities and replace the set Fn* by Fn_1~

Corollary 4. If for m =0,1,...,p —1 of a determining sequence Ol_
there exists a subset H < W \ T such that F (H)=F(I,), then
the kernel K © will belong to the set W'\ |
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KOHTPMOHOTOHHbLIE CUCTEMbI B AHAJTU3E CTPYKTYPbI

MHOIOMEPHbIX PACMPEOENEHUN
. 3. MYNNAT
(TannuH)

CraButcs 3a7a4a BBIICJICHUS CTYLICHUH B MHOTOMEPHOM IIPOCTPAHCTBE W3MEPCHUI Ha
OCHOBE BEKTOPHOTO KpHTEpus KadecTa. /s ITONCKa PEIeHHi UCHOMb3yeTCs CrenranbHas
napaMeTpusaius GYHKIUH, TpH KOTOPOI ¢ yBEIHYCHHEM 3HAYCHHUH MapaMeTpOB 3HAUCHUE
(byHKIWMIT BO BCell 0071aCTH ONPEENCHNS YMEHBIIACTCS.

1. BBenenue

AHamm3 CTPYKTypBl pacrlpeieieHus IUIOTHOCTH HW3MEpeHHd B
N-MEPHOM IIPOCTPAaHCTBE — TPAJULMOHHAS TEMaTHKa HCCIECIOBAHHN B
TaKUX MPHUKIAIHBIX 001acTAX, KaK MJIAHUPOBAaHUE dKcIiepuMeHTa [ 1], aHa-
U3 u300paxeHui [2], aHamU3 TPUHATHS pemeHui [3], pacrno3HaBaHue
oOpa3oB [4] u T. 1.

Ha conepxaTenbHOM YypOBHE CTPYKTypa paclpeaeneHus OOBIYHO
MPENCTABISIETCS COBOKYNHOCTBIO CIYIIEHUH, KOTOpbIE WMHOTAAa HAa3bl-
BaIOTCS TaKke MoAaMu [5]. AHanmu3 moio0HON CTPYKTYpPHI, €CIIU HE SBHO,
TO KOCBEHHO, IIOYTH BCErJa CBOAWTCA K BapHAllMOHHON 3amade
ONTHMHU3AIIMA — MAaKCUMH3AI[MH KaKOTO0-JIMOO CKaJSIpHOTO KpUTEPHS
Ka4yecTBa, OIICHUBAIOIIETO BhIIEIIEMbIE CTYIIEHUSI. BMECTO CKalsIpHOTO B
JaHHON paboTe UCIOJIB3YeTCsl BEKTOPHbIM KPUTEPUil, a B OCHOBY IOHATHS
ONTUMAJILHOCTH TOJO0XEHO TaK Ha3blBAEMOE PaBHOBECHOE COCTOSHUE B
cmbicne Hoama [6].

[IpaBomMepHOCTH MOAXOMIA C MO3UIIMK COCTOSIHUSI PAaBHOBECHS K aHa-
JU3Y CTPYKTYpPBI pacIpeeNeHus INIOTHOCTH H3MEPEHUH B N-MEPHOM IIPO-
CTPaHCTBE OOBICHAETCS TEM, UTO 37IECh II0 CYILECTBY MPOMCXOAUT 3aMeHa
OJIHOW MHOTOMEPHOM MHOTMMHU «IOYTH OJHOMEPHBIMI» 3aJlayaMd B
MPOEKIMSIX Ha OCH KoopAuHaT. Ha Kaxmoil ocu cryiieHue BBIAEISETCS
TaK, YTO OCH «YBSI3BIBAIOTCS» MEXKIY CO0OH CTPOTO OmpenesieHHbIM 00pa-
30M: CTYLLIEHUE Ha JTAaHHOW OCH Helb35 «CIBUHYTH B CTOPOHY» 0€3 Kakoro-
au00 yXy[IleHWs CryLIeHHs Ha JAPYTHX OCfAX B CMBICIE paccMarpu-
BAaeMOTr'0 KPUTEPHsI IIPU YCIOBUH, YTO ATU JIPyrUe yxKe (PUKCHUPOBAHBI.

[IpenmymiecTBO MpeI0KEHHOTO TMOAX0/1a HE HUCUEPIBIBACTCS YKa3aH-
HOH «TEXHHYECKOW MOAPOOHOCTHIO» 3aMEHBl OJHOTO MHOIOMEPHOTO
MIPOCTPAHCTBA OAHOMEPHBIMHU NMPOEKIUAMHU. J[€J0 B TOM, YTO COCTOSTHHE
paBHOBECHS, BBIAEISEMOE IPU IOMOILIM MCIOJIB3yEMOI0 BEKTOPHOTO
KpUTEpHs, MapaMeTpU3UPYyeTCsl TaK Ha3bIBAEMBIMHU IIOPOTaMM, KOTOpHIE
3a1al0T YPOBHU IUIOTHOCTH crymeHuil. 1o kpaliHell Mepe B HEKOTOPBIX
YACTHBIX CIy4asgX COCTOSIHHE PpaBHOBECHUS KaK pEIICHUE CUCTEMBI
ypaBHEHUI MOXKHO aHAIUTHYECKU BBIPA3UTh B (popMe (QYHKIHMI TOPOroB U
TEM CaMbIM MOJHOCTbIO 00O03pETh BBIENSEMbIE CIYIIEHUS B CIEKTpe
BO3MOYKHBIX YPOBHEN TNIOTHOCTH.
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Counter Monotonic Systems in the Analysis of
the Structure of multivariate Distributions

Abstract. The problem of distinguishing condensations in multivariate space
of measurements based on a qualitative vector criterion is presented. We find
solutions by a special parameterization of functions, the values of which decrease
in all regions of the definition in inverse proportion to the values of the parameters.
Keywords: monotonic; distributions; equilibrium; cluster

1. INTRODUCTION

The analysis of the structure of the probability density function of
measurements in an N -dimensional space is a traditional topic of investi-
gation in such applied fields as experimental design (Finney, 1964), image
analysis (Rosenfeld, 1969), the analysis of decision making (Fishburn,
1970), pattern recognition (Aizerman et al, 1970), etc...

At a conceptual level, a distribution structure is usually represented by
a set of data clusters, sometimes called modes (Zagoruiko and
Zaslavskaya, 1968). The analysis of such a structure is indirectly, if not
explicitly, usually reduced to the problem of variational optimization. That
is, maximizing some scalar performance metrics that characterize the
identified clusters. Instead of a scalar performance index, in this article we
use a vector index and base the concept of optimality on the so-called
Nash equilibrium state (Owen, 1968).

Approaching the analysis of the structure of a measurement density
function in N -dimensional space, our standpoint is the equilibrium state
concept. It is justified by the fact that, essentially, what happens, is the
replacement here of a single multidimensional problem by many ‘“almost
one-dimensional” problems in projections onto the coordinate axes. On
each axis a cluster is delineated in such a way as to “bind” the axes to-
gether in a rigorously defined way. So, exposed to such a “bind” the clus-
ter on a given axis cannot be “nudged” without in some measure deterio-
rating itself on the other axes in the sense of investigated performance
index, subject to the condition that these others are fixed.

The superiority of the proposed approach is not restricted to the indi-
cated “technical detail” of replacing one multidimensional space by one-
dimensional projections. Indeed, an equilibrium state identified by means
of the given vector index is parameterized by so-called thresholds, which
satisfy the density levels of the clusters. In certain special cases, at any
rate, an equilibrium state as the solution of a system of equations can be
expressed analytically in the form of threshold functions, whereupon the
identified clusters can be fully scanned in the spectrum of possible density
levels.
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The proposed theory for the identification of clusters of the probability
density of measurements in N -dimensional space is set forth in two parts.
In the first part (sec.2) the theory is not taken beyond the scope of custom-
ary multivariate functions and it concludes with a system equations,
namely the system whose solution in the form of threshold functions
makes it possible to scan the identified clusters. In the second part (Sec.3)
the theory now rests on a more abundant class of measurable functions
specified by the class of sets represented on the coordinate axes by at most
countable set of unions or intersections of segments. Overall the construc-
tion described in this part is so-called counter-monotonic system; actually,
the first part on multi-parameter counter-monotonic systems is also dis-
cussed in these terms (special case).

The fundamental result of the second part does not differ, in any way,
from the form of the system of equations in the first part; the essential
difference is in the space of admissible solutions. Whereas in the system of
equations of the first part the solution is a numerical vector, in the second
part it is a set of measurable sets containing the sought-after measurable
density clusters. As the solution of the system of equations, the set of
measurable sets serves as a fixed point of special kind mapping of subsets
of multidimensional space. This particular feature is utilized in an iterative
solving procedure.

2. COUNTER-MONOTONIC SYSTEMS OVER
A FAMILY OF PARAMETERS

Here a monotonic system represents first a one-parameter and then a
multi-parameter family of functions defined on real axis. This type of
representation is a special case of a more general monotonic system de-
scribed in the next section.

We consider a one-parameter family of functions TE(X; h) defined on
the real axis, where h is a parameter. For definiteness, we assume that an
individual copy T of the indicated family is a function integrable with

respect to x and differentiable with respect to h . The family of functions
TC is said to be counter-monotonic if it obeys the following condition: for

any pair of quantities £ and g such that ! < g the inequality
TC(X;E) > TC(X;g) holds for any X .
The specification of a multi-parameter family of functions T is re-
ducible to the following scheme. We replace the one function T by a

vector function TT = <7I1 Y P >, each j—th component of which is
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a copy of the function depending now on N parameters h1 ,hz,...,hn,

ie., T, = th(X;h1,h2,...,hn). We wrote down the counter-
monotonicity condition for any pair of vectors £ = <f 1 W ) 4 n> and
g= <g1,g2,...,gn> such that £, < g, , k=(1,2,...,n) in the form
of N inequalities T0;(X;0, 04,000 ) 2 T,(X;8,85,--8,) . We

also note that this condition rigorously associates with family of vector
functions a component-wise partial ordering of vector parameters.

We give special attention to the case of a so-called de-coupled multi-
parameter family of functions 7¢. The family 7¢ arrange de-coupled func-

tions if the J-th component of the vector function T does not depend on
the _] -th component of the vector of parameters h,ie,onh i Therefore,
the function 70 of a de-coupled multi-parameter family is written in the
form 7, (%, 1,000, 0,0y hy) (=1, m).

We now return to the original problem of analyzing a multi-modal em-
pirical distribution in multidimensional space. We first investigate the case
of one axis probability distribution of only one random variable (univariate
distribution).

Let p(X) be the probability density function of points in the x-axis.
For the counter-monotonic family 70 we can choose, for example, the

. h . .
functions 7(X;h)=p(X)". It is easy verified that the counter-

monotonicity condition is satisfied.
We consider the following variational problem. With respect to an ex-

ternally specified threshold U° (0<u® <1) let it be necessary to
maximize the functional

IT(h)= T[n(x;h) —u’]-dx.

It is clear that for small h the quantity TT(h) will be small because

of the narrow interval of integration, while for the large h it will be small
by the counter-monotonicity condition. Consequently, the value of

max, [T(h) will necessarily be attained for certain finite nonzero h°.
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It is easy to see that if p(X) is a unique function of the density of
modes with zero mathematical expectation, then maximizing the func-
tional H(h) implies identifying the interval on the axis corresponding to

the density p(X) concentration. But if p(X) has a more complex form,
then the maximum IT(h) determines the interval in which the "essential
part" in a certain sense of the density function P(X) is concentrated.

Directly from the form of the function I1(h) we derive necessary
condition for the local maximum (the zero equation of the derivative with
respect to h : %H(h) = 0: or, in expanded form, the equation

+h
n(—h;h) + n(h;h) + I%ﬁ(x;y) |y:h dx =2u°. (1)
~h

The root of the given equation will necessarily contain one at which
I1(h) attains a global maximum. We have thus done with the problem:

we found the central cluster points of the density function on one axis in
terms of a counter-monotonic family of functions.

To find the central clusters of a multivariate distribution in 7 -
dimensional space we invoke the notion of a multi-parameter counter-
monotonic family of functions 7. Let the family of functions 7T in vector

form be written, say, in the form nj(X;h1,...,hn) = pj(X)h, where
h= 2221 hk , and P, (X) is a projection of the multivariate distribu-

tion on the axis ]-th axis. In the stated sense the goodness of the deline-
ated central cluster is evaluated by the multivariate (vector) performance
index Il = <H1,...,Hn>,where
hy
I;(h,,h,....h ) = [[m,(xh,,..h)—u]-dx @

_hj
and U j is the component of the corresponding externally specified multi-

dimensional threshold vector u: U = <u1,u2,...,un>. As in the one-

dimensional case, of course, it is meaningful to use the given functional
only distributions P (x) with zero expectation.
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Once the goodness of a delineated cluster has been evaluated by the
vector index, it must be decided, based on standard (Becker and
McClintock, 1967) vector optimization principles, what is an acceptable
cluster. In this connection it is desirable to indicate simultaneously a pro-
cedure for finding an extremal point in the space of parameters. It turns out
that for so-called Nash-optimal Equilibrium State there is a simple tech-
nique for finding solutions at least in de-coupled family of counter-
monotonic functions 7TT.

En equilibrium situation (Nash point) in the parameter space
h= <h hn> with indices I1 ; s defined as a point

h’ <h h h;> such that for every J the inequality
M,(h;,....h" b0 b)) < TT (R, h b))

holds for any value of h i In other words, if there are no sensible bases in

the sense of index Hj on the one (j—th) axis, then the equilibrium situa-

tion is shifted with respect to the parameter h i subject to the condition
that the quantities hlt , k# J , are fixed on all other axes.
Clearly, a necessary condition at a Nash point in the parameter space
(as in the one-dimensional case) is that the partial derivatives tend to zero,
* *
i.e., the N equalities a/ahjl‘[j(h] ,...,hn) =0 must hold. The suffi-

cient condition comprises the n inequalities

&% /&Il (h},....h}) < 0.

An essential issue here, however, is the fact that the necessary condi-
tion (equalities) acquires a simpler form for de-coupled family of counter-
monotonic functions than in the general case. Thus, by the decoupling of

the family 70 the partial derivative OI1 i / ch i is identically zero, and the
system of equations, see (1) by analogy, with respect to the sought-after

point h” is reducible to the form

ch(_hj;h1 h_]1’hJ+1’ h )+

3)
+m;(h;h,..,h _,h ,..h)=2u,

1
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Now the sufficient condition is satisfied automatically for any solution

h of Egs. (3).
In conclusion we write out the system of equations for two special
cases of a de-coupled family of counter-monotonic functions 7.

o-h;
. Let t(x;hy,...,h Lh o h )y =p(X)" 7, where

o= h1 + h2 +...+ hn . The system of equations (3) is reduci-
ble to the form pj(—hj)d_hj —|—pj(hj)c_hj =2u;, j=1n.
2. Letthe role of TCJ.(X;h1,...,h. h .,hn) be taken by the

IR T ERE
hy by by h, .
p,(X) N (x) P (x) "..p,(x)™ function.
The system of equations (3) for finding a solution, i.e., an equilibrium

situation (Nash point) h’ , 1S written
p(=h))/p,(=h )" +p(h))/p,(h)" =2u, (j=Ln).
where p(X) = p, (X)h1 p, (X)hz P, (X)h“ is the product of univariate

density functions.

We conclude this section with an important observation affecting the
vector of thresholds U =<u,,U,,...,U >. By straightforward reason-

ing we infer that each component h j of the equilibrium situation h ™ is a

function of thresholds and h” can be represented by a vector function of
thresholds in the form hj = hj(u“uz,...,un). If the solution of the

system of equations (3) can be expressed analytically, then prolific possi-
bilities are afforded for scanning the equilibrium situations in the parame-
ter space and, accordingly, selecting an “acceptable” cluster in the spec-
trum of existing densities of measurements in a multidimensional space of
thresholds. A similar approach can be used when solutions of Egs. (3) are
sought by numerical methods.

3. COUNTER-MONOTONIC SYSTEMS
OVER A FAMILY OF SEGMENTS

A multi-parameter family of counter-monotonic functions used for the
analysis of multivariate distributions, unfortunately, has one substantial
drawback. Generally speaking, there is no way to guarantee the identifica-
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tion of homogeneous distribution clusters in projection onto the J -th axis,
because the segment [—h j,h j] can contain several distinct modes. On

the other hand, it is sometimes desirable to identify modes by merely indi-
cating a family of segments containing each mode separately. The con-
struction proposed below enlarges the possibilities for the solution of such
a problem by augmenting the counter-monotonic systems of the proceed-
ing section in natural way.

Thus, on real axis we consider subsets represented by at most count-
able set of operations of union, intersection, and difference of segments.
The class of all such subsets is denoted by B, and each representative
subset by H € B (which we call a B set) is distinguished from like sets
by length L (by measure zero). A set L is congruent with G (G = L)

if the measure of the symmetric difference GAL is equal to zero

(MGAL =0); a set L is contained in G (L < G) with respect to

measure [ if UG \ L = 0. A measure on the real axis, being an additive
function of sets (the length), is determined by taking to the limit the length
of the sets in the set of unions, intersections, and differences of segments
forming the B set. Then set-theoretic operations over B sets will be

understood to mean up to measure zero. By convention, all B sets of
measure zero are indistinguishable.

We associate with every B set H a nonnegative function 71:(X; H) ,

which is Borel measurable (or simply measurable) and whose domain of
definition is on the real axis.! In other words, in contrast with the one-
parameter family of counter-monotonic functions of the preceding section,

the parameter h is now generalized, namely, it is extended to the B set
H . As before, we say that a family of measurable functions 7T is counter-
monotonic if it obeys the following condition: for any pair of sets L and
G such that L < G the inequality

n(x;L) > n(x;G)

1 A function TE(X; H) is Borel measurable if for any numerical threshold u’
the set of all x of the real scale for which TE(X; H) > U’ is measurable:
{x:m(x;H)>u} is B set.
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holds for any X .

The scheme of specification of a multi-parameter family of functions is
analogous to the previous situation. In place of a scalar function 7 we

now specify a vector function 7T = <Tl',1 5Ty ey T, >, each j—th compo-
nent of which is a copy of a function depending at the outset on N pa-

rameters <H1,H2,...,Hn>, ie., TEJ.ZTCJ.(X;H“HZ,...,HH)

(B sets). Again, the counter-monotonicity condition is reducible to the
statement that for any pair of vectors (ordered sets of B sets) of the form

L:<L1,...,Ln> and G:<G1,...,Gn> such that LkgGk

(k = 1,2,...,1’1) , the following N inequalities are satisfied:
T, (x;L,,...,.L,) 2 7,(x,G,,...,G).

These inequalities associate a partial ordering of sets of B sets with a
family of vector functions 7T in a rigorously defined way.

In the case of a de-coupled family of counter-monotonic functions,
where the j—th component of a copy of the vector function 7T does not

depend on the parameter H joor B set on the j—th axis of definition of

the function T i this component 7T i of the vector function TU is written
n, =n,(x;H,H,,...,H)).

Following again the order of discussion of Sec.2, we now consider the
original problem of analyzing the structure of a multi-modal empirical
distribution in a multidimensional space. We first investigate the case of a
one-dimensional (univariate) distribution.

Let p(X) be the density function of points on the x-axis. In the role of
the counter-monotonic family of functions 7T, we adopt functions of the

form 1(x;H) = p(X)F(H), where F(H) = _[H p(x)dx is the prob-

ability of a random variable occurring in a B set under the probability

2 Here X isa point on the J -th axis. This is tacitly understood everywhere.
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density function P(X). It is clear that the counter-monotonicity condition
is satisfied.

We consider the following variational problem. Given the externally

specified threshold U° (0 <u® <1), maximize the functional
II(H) = I[n(x;H) —u’]du.
H

The integral here is understood in the Lebegue sense with respect to
measure L, where LL, as mentioned before, is the length of the B set on
the X axis.

Clearly, the quantity IT(H) as a function of the length [L (measure
of set H) increases first and then, as },LH —» 00, reverts to zero by the
counter-monotonicity condition on the family of functions 7. Therefore,
the value of max,, IT(H) will necessary is attained on a certain B set
of finite measure [l (see the analogous assertion in Sec.2).

It is impossible in the same simple way to deduce directly from the
form of the functional [T(H) any maximum condition comparable with
the like condition of the preceding section (Eq.1). To do so would require
elaborating the notation of a “virtual translation” froma B set H to a set

~

H similar to it in some sense, in such a way as to establish the necessary
maximum condition. These circumstances exclude the case of a univariate
distribution from further consideration. Nonetheless, as will be shown

presently, for multivariate distribution there are means for findinga B set
that will maximize the function IT(H) at least in the case of a
de-coupled family of counter-monotonic functions.

As in the preceding section, we evaluate the goodness of an identified
central cluster by the multivariate (vector) performance index

=(I1,I1,,...T1, ):
Hj(H1,H2,...,Hn) = j[n(x;H1,...,Hn) —uj]du ,

H;
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where U i is the coordinate of the corresponding multidimensional vector

of thresholds U, specified externally: U = <u1 ,u, ,...,un> .

At this point we call attention to the fact that, in contrast with the
analogous multivariate index of Sec.2, the given functional now has sig-
nificance for an arbitrary distribution, rather than only for the centered
condition of “zero-valued-ness” of the expectation. We again look for the
required cluster in multidimensional space as an equilibrium situation

according to the vector index Il = <H1,H2,...,Hn>. We regard a

cluster as a set of B sets H = <HT,H;,,H;> such that the follow-

ing inequalities holds for every j:

*

IT;(H,.....H; ., H;, H
<TI(H,,....H),..,H)

* *

H)<

[ISERRED)

(j=Ln).

In a de-coupled family of counter-monotonic functions it is feasible, as
in the multi-parameter case, see Eq. (3), to find an equilibrium situation.
Equilibrium situations are sought to be a special technique of mappings of

B sets onto real axes.

We define the following type of mappings of B sets onto real axes:
Vi(H)) ={x:m,(x;H;) >u,},

where U i is the threshold involved in the expression for the functional

II i (J =1, n) . Thus defined, N such mappings are uniquely expressible

in the vector form

V(H) = {x:n(x;H) > u}.

Here H=H, xH, x...xH_ denotes the direct product of sets
H i We define a fixed point of the mapping V(H) asaset H for
which the equality H" = V(H") holds.
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Theorem 1. For a de-coupled family of counter-monotonic functions
T, a fixed point of the mapping V(H) generates an equilibrium situa-

tion according to the vector index 11 = <H1 ,H2 ,...,Hn > .

The proof of the theorem is simple. Thus, because T i is independent
of the  parameter H., the form of the function

]
m,(x;Hy,.., H  H

i1 j+1,...,Hj;) does not depend on Hj. Also, the

set H = H: X H; X...X HZ in projection onto the ] -th axis intersects
the set Hj consisting exclusively of all points
x for which 7t,(x; H;)>u;: H; ={x:m,(x;H;) >u }. Itis im-
mediately apparent that any Hj distinct from Hj the value of the func-
tional Hj(H:,...,H Hj,H
(k #]j) cannot be anything but smaller than the quantity
I,(H;,....H, ,H},H ..., H.).

E

12

kS

* *
j+1,...,Hn) for immovable sets Hk

*

12

[
It is important, therefore, to find the fixed points of the constructed
mapping of B sets.

4. METHODS OF FINDING EQUILIBRIUM STATE FOR DE-COUPLED
FAMILIES OF COUNTER-MONOTONIC FUNCTIONS

The ensuing discussion rests heavily on the counter-monotonicity
property of a function 7. To facilitate comprehension of the formulations

and propositions we use the language of diagrams reflecting the structure
of the relations involved in the constructed mappings of B sets, in particu-
lar the symbol —> denoting the relation “set X1 is nested in set Xz

X, cX,): X, > X,.

All diagrams of the relations between B sets are based on the follow-
ing proposition: the relation X, — X, (as a consequence of the counter-

monotonicity condition on 7T ) implies that V(X1) < V(Xz) .
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Now let the mapping V be applied to the original space W of axes
on which the functions T, (j=1,n) are defined. After the image

V(W) has been obtained, we again apply the mapping V with the B

- . . . . 2
set V(W) as its inverse image, i.e., we consider the image V° (W),
and so on. In this way we construct a chain of B sets W, V(W),
2 . . .
V*(W),..., which we call the central series of the counter-monotonic

system.

The following diagram of nestling of B sets of the central series is in-

ferred directly from the above stated proposition:

! 1 T
W« V(W)= VE(W) « V3 (W) =5 VI (W) « V(W)
0 UK L1

It is evident from the diagram that there exist in the central series two
monotonic chains of B sets: one shrinking and one growing. The mono-
tonically shrinking chain of B sets comprises the sequence

VZ(W) « V! (W) <« ... with even powers of the mapping V. The
monotonically growing chain is the sequence

V(W) - VS(W) - Vs(W) —> ... with odd powers of V .

It is well known (Shilov and Gurevich, 1967) that monotonically decreas-
ing (increasing) chains in the class of B sets always converge in the limit

of sets of the same class. For example, the limit of the sets V°* (W) with
even powers is the intersection L = ﬂf=1 % (W), and the limit of sets
v (W) with odd powers is the union G = UfﬂVZkf1 (W).

Theorem 2. For the central series of a counter-monotonic system the
nesting L C G of the limiting B set L of even powers of the mapping
V(X) in the limiting B set G of odd powers of the same mapping is
always true.
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The theorem follows at once from the diagram of nestlings of the cen-

tral series.

We now resume our at the moment interrupted discussion of the prob-
lem of finding a fixed point of a mapping of B sets, such point generating
an equilibrium situation according to the vector index Il (Theorem 1). In
counter-monotonic systems, as a rule, the strict nesting L < G of limit-
ing B sets holds in the statement of Theorem 2. The equality L =G
would imply convergence of the central series in the limit to a single set,
namely a fixed pint. In view of the exceptional status of the equality
L =G, we give a “more refined” procedure, which automatically in the

number of cases of practical importance yields the desired result, a solution

of the equation X = V(X).

Procedure for Solving the Equation X = V(X). A chain of B
sets H0 ,H1 ,-.., 18 generated recursively according to the following rule.
Let the set Hk (where Ho is any B set of finite measure) be already
generated in the chain. We use the mapping V(X)) to transform the fol-

lowing B sets:

VIVIH)UVH)},  VIVH)NH,].
V{V(H,)UH,}. V{VAH)NV(H,)}.

We denote these sets by sz , Gk , Lk , Gi accordingly. By the counter-
monotonicity of the family of functions 7Tt it turns out that sz is a subset
of Gk and that Lk is a subset of Gi. Picking any Ak based on the
condition sz c Ak - Gk, and then Bk from the analogous condition

L, cB, c Glz( , we put the set H, , following H, in the constructed
series of B sets equal to Ak UBk: Hk = Ak UBk. The sets Ak
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and Bk can be chosen, for example, according to mapping rules in the

class of B sets, namely,

A, = {x:pn(xL) + (sG] > ul,
B, = {x: 4[n(x;L,) +n(x;G)] > u}.

The conditions imposed on A . and Bk are satisfied in this case.

Theorem 3. For the series of sets V(Hk) to contain the limiting set

V(H*) as Kk — o0, which would be a solution of the equation
X = V(X) , the following two conditions are sufficient:

o lim,_ pG\I2 =0,

b lim,_ pGi\L, =0.

k—w

The plan of the proof is quickly grasped in the following nesting dia-
grams, which are consequences of the counter-monotonicity property of
the functions T, i.e.,

. VH)<« L —>G, <« V(H,).

I V(H,) <« L, >G: <« V*H,).

Diagrams I and II imply the validity of the two chains:

H  V*H)\VH,) c V'H)\G, cI2\G,,
2 VH )\WV!H,) < VH)\G: cL,\G:.

The first chain implies that for the limiting set H™ of the series
H,,H,,..., the -equality MVZ(Hk)\V(H*) =0 holds, ie.,

V(H*) c V? (H*), the second chain implies the opposite relation:
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Vz(H*) C V(H*) Consequently, V(H*) is the solution of the
equation X = V(X): V(H*) = V(V(H*)). Of course, the condi-

tions of the theorem are sufficient for the existence of a solution of the
equation X = V(X), and their absence does not in any way negate

some other solving technique, provided that solutions exist in general. The
possibility that solution H" of the equation X = V(X)) do not exist

should certainly not be dismissed.
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Application of Monotone Systems to the
Study of the Structure of Markov Chains

Abstract. The method of analysis of "Markov chain" is described. The method is
based on the transformation of the Markov chain into a monotonic system and on
the separation of kernels from the transformed chain.

Keywords: Markov chain; communication line; network; transition matrix; kernel

1. INTRODUCTION

In the work presented here, the theory of monotonic systems developed
in an earlier publication (Mullat, a) 1976) is applied to the Markov chains.
In the study of Markov chains the interest stems from the fact that it is
convenient to interpret a special class of absorbing chains as monotonic
systems. On the other hand, it also provides a meaningful way of illustrat-
ing the main properties of monotonic systems, as shown here using an
example based on communication networks.' In order to disclose on con-
ceptual level the technology developed for extracting the extreme subsys-
tems in Markov chains discussed in the current paper, we employ the
communication network as an example of monotonic system, albeit in a
slightly modified form relative to that originally proposed in the context of
telephone network. This will enable us to elucidate the manner in which a
Markov chain may be associated with the monotonic system and what
principal operations may be performed on it towards utilization of mono-
tonic systems theoretical apparatus described in the Mullat original work.

In the earlier paper on which this Mullat work is based, an example of
a communication network has been considered, whereby a set W com-
prising of communication lines/channels between some nodes — commu-
nicating units — was introduced.” Here, we will assume that each line has
certain built-in redundancy mechanisms, such as the main and the reserved
channels.” Thus, if a direct line is not available between nodes, analo-

1 Translated from Russian, Mullat, ¢) 1979. In the original paper, the term used
was “telephone switch net,” which was not adopted here, as it is outdated. Still,
the concept underpinning the work remains highly relevant, as forms of
“switches” are still used in redirecting TCP/IP packages, in a manner comparable
to the telephone net.

Switch is a device of such type and can learn where to address the communica-
tion packages.

In practice, network redundancy may be guaranteed by some additional chan-
nels/lines activated only in urgent situations when the net usage exceeds some
predefined threshold.



336 Chapter Two

gously to what was described in Mullat’s work 1976, the traffic might be
organized through pass-around channels. In addition to this mechanism, in
the present case, the possibility of employing pass-around communication
is not excluded even if a direct channel is available.

In the example presented in the original paper (Mullat, 1976), an aver-
age number of “denials” before establishing the contact characterizing
each pair of nodes was utilized. The number of denials usually character-
izes the communication lines in the communication network.* In the model
described below, and for the purpose of current investigation, it is more
convenient to use a value inverse to the number of denials, as this will
characterize the communication line throughput.

Let us assume that each communication line (comprising of both the

main and the reserved channels) is characterized by the throughput C; j or,
in other words, by the maximum allowed bandwidth usage, expressed in
kilobytes for example. The value C, i thus denotes the throughput of main

and reserved channels. We then explicate the communication center S by
the maximum permissible usage

n
c, = Zcijj .
i1

The traffic redirected through the node S along the main communica-

tion channel, as well as the reserved channel, between nodes S and ]

specifies thereupon a share of maximum permitted usage C, . In an actual

communication network, the usage share must be lower than the maximum

C..
allowed share p; = o - Moreover, the usage share p_; of the
N

communication channel can be interpreted as a probability of establishing
contact between the nodes S and j. Assuming that the main and the re-
served channels are treated as equitable, the quantity must satisfy an ine-
quality

2:3p, <1 M
j=l

for all S without exception,

4 .
Network protocol analyzers can collect such types of statistical data.
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Let a communication network, characterized by the aforementioned
pass-around traffic feasibility, function during a long period of time by
originating its main channels. We can characterize the traffic along each

main channel (more precisely, the nodes 1 and j) by the average number

of hits ﬁi i that occur in the process of establishing either direct or indi-
rect (pass-around) contact. It is apparent that ﬁij is slightly greater than

the corresponding P, i
If a malfunction occurs somewhere along the channel, the change’ in
the communication network will be reflected in a decrease in P, ;- Insuch

a scenario, activating a reserved channel can accommodate higher network
usage. It is obvious that, in this case, all ﬁi i values will increase accord-

ingly. Organized in this manner, the communication network represents a
monotonic system.

However, a problem arises with respect to identifying the type of
change malfunctioning/activating of a main/reserved channel that would

influence the ﬁi i values. In order to find an appropriate solution, it is

necessary to explain the problem in Markov chains nomenclature.
Consider a set W of communication channels described by a square
n
Pi;

ory of Markov chains (Chung 1960). Such matrices may be associated
with a set of returning states for some absorbing Markov chain. In the

matrix

, when no channels exist, P, i 0. According to the the-

n

nomenclature pertaining to chains of this type, the value ﬁi j can be inter-

preted as an average number of hits from node 1 into node J along the

Markov chain. Similarly, a malfunction in the main channel, resulting in
the activation of the reserved channels, can be described through recalcu-

lating the average hit values P, j- The above can be denoted as an action

of type ©, whereas in the nomenclature of monotonic systems, an action

of type @ pertains to activating the reserved channel due to the malfunc-
tioning in the main channel.

5 For example, the OSPF (Open Short Path First) protocol will automatically
redirect the traffic.
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From the above discussion, it is evident that adopting this special class
of absorbing Markov chains allows approaching the problem from the
perspective of how to differentiate the Extremal Subsystem of Monotonic
System — the kernels. Along with the KSR — Kernel Search Routine
elaborated for this purpose in (Mullat, 1976), this approach can actually

accomplish the kernel search task.

In Section II below, the problem of kernel extraction on Markov chains
is described in more detail. In Section III, we show that the results of per-
forming the ® and © actions upon Markov chain entries in a transition
matrix lead to Sherman-Morrison (Dinkelbach, 1969) expressions for

recalculating the numbers of average hits (see Appendix).

2. THE PROBLEM OF KERNEL EXTRACTION
ON MARKOV CHAINS

Consider a stationary Markov chain with a finite number of states
and discrete time. We denote the set of states by V . Stationary Markov
chain can be characterized by the property that the pass probability from
the state 1 to the state j at a certain point in time t+ 1 does not de-
pend upon the state S (S = 1,2,...,11) the considered chain arrived in
1 in the preceding moment t. We denote by p(i, j, k)
(p(i,j, )= p;. j) the conditional probability of this pass from 1 to j
within K units of time.

Below, we consider only a special class of Markov chains that, for
arbitrary states 1 and J within some subset in V, is constrained by

limp(i,j,k) =0.

According to the theory of Markov chains, this limit equals zero
when the state J is returning, implying that there must be some reversi-
ble states in such Markov chains. Without diminishing the generality of
this consideration, we will further examine chains with only one reversi-
ble state, which must simultaneously be an absorbing state.
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The absorbing chains utilized below satisfy the following properties:

1. There exist only one absorbing state 0 € V
All remaining states are returning, and the probability of a pass
between the states in one step corresponds to an entry in the

n
square matrix Hp il -
> lin

3. The probability of a pass into an absorbing state 0 from some re-
turning state I in one step, in accordance with 1 and 2, is equal to

n
pio=1- Zpi,e :
0=
The monotonic system mandates a definition of some positive and

negative (@, ©) actions upon system elements. For this purpose, we
make use of the average number of hits P, ; from the state 1 into the

state ] along the chain (Chung 1960). It is known that the value of P, i

is specified by the series
Pi; = 2.p(.J3K). )
k=

The sufficient condition for series (2) to converge is established if the

is less than one. We con-

n
sum of entries in each row of the matrix Hp ij
>in

sider that elements elsewhere in the chains fulfill the conditions 1-3.

Let W be the set of all nonzero entries in the matrix Hpi JH On the

transition W set of the Markov chain described above, we define the
following actions.

Definition. The action type © on the element of the system W (non-
zero element of the matrix Hpi i H ) denotes a decrease in its value by some

Ap of its probability to pass in one step.

By analogy, we define the action @. In this case, the probability of a
pass in one step, which corresponds to the entry value P, i is increased by

Ap. In case of some nonzero increment in the matrix Hpi JH element
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(based on straightforward probability considerations), all average numbers
of hits P, ; must also increase accordingly. On the other hand, a Ap

decrement would result in a decrease in the corresponding ﬁi i values. In

sum, introduced actions upon system W elements fully meet the mono-
tonic condition (Mullat, 1976), and system W transforms into a mono-
tonic system.

At this juncture, it is important to emphasize that the Ap changes in
values of probabilities in one step within W are not specified in the defi-
nition of ® and © actions upon the entries in the matrix 51 i Relatively

rich possibilities exist for the change definition. For example, it can denote
an increase (decrease) in each probability on a certain constant, or the
same change, but this time depending upon the probability value itself, etc.

When providing the definitions of & and © actions on an absorbing
Markov chain, it is desirable to utilize authentic considerations. Below,
using an example of communication network, we describe one of such
considerations.

Let W be the set of all possible transitions in one step among all re-
turning states of an absorbing chain. These transitions in the set W retain

the correspondence with nonzero elements of the matrix Hpi i H .Let T be

a certain subset of the set W, relating to the nonzero elements noted
above. Denote by p(T, 1, j, k) the probability that the chain passes from
the state 1 into the state j within K time units, constrained by the condi-
tion that, during this period, all passes in one step upon the set T have
been changed by either @ or © actions. This condition corresponds to the
assertion that the passes along the set W \ T = T proceed in accordance
with the “old” probabilities, while those along T are in governed by the

“new” Probabilities. We do not exclude the case when no @ or © actions
have been implicated — the set T = . In this case, we simply omit the
T symbol notation in the corresponding probabilities.’

6 we suppose that actions do not violate the convergence of probability series, see
condition (1).
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The average number of hits from 1 into j, subject to the constraint

that some passes in the set T have been changed by actions, is specified
by a series

ﬁ(Ta ia J) = Z_1p(Ta ia ja m) . (3)

Let us now focus on the collections of credentials specified by a mono-
tonic system W . We define a collection IT"H on the subset H € W
as a collection of real numbers {ﬁ(H,i,j) (i,j) € H} in case that the

positive @  actions occur on H=W\H, while
ITH= {ﬁ(ﬁ, 1,]) KI,J) € H} collection corresponds to the case of the

negative © actions taking place.

In the original paper (Mullat, 1976), we have proved that, in a mono-

tonic system, two kinds of subsystems always exist — the ® and © ker-
nels. The definitions introduced above, pertaining to the average number

of hits ﬁ(ﬁ, 1, ]), allow us to formulate the notion of ® and © kernels in
the Markov chain.

Definition. By the Extremal Subsystem of passes on absorbing

Markov chain — the ® and © kernels — we call a system H® C W, on
which the functional

max p(H.1,j) )

reaches its global minimum on 2" , whereby © kernels will be a subsys-

tem H®C W where the functional
min p(IL i, ) ©
(1,_])51-1

reaches its global maximum as well.
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We will now turn the focus toward the notions of ® and © kernels in-
troduced above, using an example on communication network described
earlier.

The probabilities of hits P, ; (without any passes, i.e., in a single step)

between nodes 1 and ] (i,j = l,n) allow us to construct for the com-

munication network an absorbing chain satisfying the conditions 1-3
above. In fact, as we already noted, only one condition is mandatory to
satisfy the inequality (1), which is a natural condition for any communica-
tion network. Conditions 2 and 3, on the other hand, can be guaranteed by

the Markov chain design. In this case, numbers P, j may be interpreted as
probabilities of a pass in one step, whereby ﬁi i denotes an average num-

ber of hits from 1 into J , Whether directly, or via an indirect pass-around
along other lines in the chain.

The search for the ® and & kernels on an actual Markov chain, recon-
structed from a communication network, mandates a precise definition of

@ and © actions. In the beginning of the discussion, we observed that ©

action might represent a malfunctioning in the main channel, whereas @
action might pertain to the activation of a reserved channel. On the
Markov chain, the malfunctioning is denoted as null, reducing the corre-
sponding probability, while the activating of a reserved channel is re-
flected in the doubling of its initial probability value.” The condition (1)

guarantees that, in any circumstance that would necessitate such © and ©
actions, the convergence of series (2) and (3) will not be violated.

We suggest a suitable interpretation of @ and © kernels in Markov
chain below, starting from the Markov chain characteristics, introduced
here in terms of communication network.

In Extreme Subsystem H ©, none of the communication lines/channels

are subject to changes, whereas in all lines outside H ©, they’re reserved
channels have been activated. The extreme value of the functional (4)

shows that the average number of hits within channels belonging to H ©,

7 We stress once again that ® and © actions are subjective evaluations of an actual
situation.



Markov Chains 343

including the indirect pass-around hits (by definition, an indirect hit re-
quires at least two steps to reach the destination), is relatively low. This

assertion implies that the lines within the H © kernel are “immune” with
respect to package delivery malfunctions, i.e., most of the transported

packages pass along direct lines. The set of lines in H ® kernel is charac-

terized by a reverse property. Thus, the main channels in H © kernel are
the most “appropriate” for organizing “high-quality” indirect communica-
tions, but are also a sensible choice for mitigating the malfunctions that
may result in a “snowballing” or “bandwagon” effects. Conversely, along

H @, the indirect communication is typically hampered for some reason.

3. MONOTONE SYSTEM CREDENTIAL
FUNCTIONS ON MARKOV CHAINS

In Section II, we defined some @ and © actions upon the transition
matrix entries in one step corresponding to returning states. In this section,
we will develop an apparatus that allows us to incorporate the changes
induced by these two types of actions into the average numbers of hits

from one returning state 1 into the other state j. We describe here and

deduce some tangible credential functions intended for use alongside our
formal monotonic system description, following the conventions presented
in the previous work (Mullat, 1976). Let us first recollect the notion of
credential function before providing an account of the main section con-
tents.

Suppose that, in the system W , which in the case of Markov chain is

n
characterized as a collection of entries in matrix Hp i
>in

corresponding to

passes among returning states, a subset H has been extracted. As a result,
the set H consists of one-step transitions. Owing to the successive actions

of type ©, by accounting for all individual sequential steps in the process
(see Section IT) taken upon the elements in H (a complementary of H to
W), it is possible to establish the average number of hits within the tran-
sition set H — the credential system I1 H . By analogy, on the set H ,

a succession of @ actions establishes the credential system IT'H . The
average number of hits in the nomenclature given in Section Il may be
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represented as ﬁ(ﬁ, 1,J) — i.., the limit values for series (2) on non-

zero elements for the transition matrix P corresponding to the en-
tries/lines within the set H. Further, we will refer to the numbers

P(H, 1, j) as the credential functions.

Let us now establish the general form of the credential functions on
Markov chains as a matrix series. This can explain the mechanism of ac-
tions the defined in Section II, performed upon the elements of a mono-
tonic system — the Markov chain.

The credential function on Markov chain may be found using the series
(2), where the single element (i, J) in the series presents the probability of
the chain pass from 1 into j, constrained by the condition that actions

have been performed upon the set H.

The general matrix form of such transition probabilities described in
Section II is given below: O

I o...0
Pio
P , where (6)
pn,e
0 - absorbing state of the chain;
P;o — the probability of a pass from the 1°s returning state into the
absorbing state 0 ;
P - the transition matrix of probabilities between the returning
states within one step, where the matrix dimension is

nxn.

Using Chapman-Kolmogorov equations (Chung 1960), the element
p(T, 1, j, m) in series (3) may be found as the M -s power of the matrix

(6), whereby it occupies an entry in the matrix P"



Markov Chains 345

In summary, the collection of series (3) may be written as the follow-
ing matrix series

P =I+P +P2+.. .} 7

P

T
upon all nonzero elements within the set. Recall that, in the definition of a

monotonic system, the credential function on the set H € W takes ad-

— the matrix, where type © and © actions have been performed

vantage of a complementary set H to the set H only. The set H is
actually the set of performed actions. Given that the elements of the set

— -
W  are also presented as matrix entries Pﬁ = HI — Pﬁ” , the matrix is
the credential functions collection on the Markov chain, identical to the
matrix limit of (7).
In the nomenclature of fundamental matrices, the actions upon the
monotonic system elements are transformations, taking place in succes-

. . _1 . _1
sion, from the matrix HI — PTH to the matrix HI — PT H . Calculus of

va
such a transformation is, however, a very “hard operation.” In order to
organize the search of @ and © kernels on the basis of constructive proce-
dures (KSR) described previously (Mullat, 1976), the utilization of matrix
form is inappropriate. To extract the extreme subsystems on Markov
chains successfully and take full advantage of the developed theory of
monotonic systems, a more effective technology is needed, which leads us
to Sherman-Morrison relationships (Dinkelbach, 1969).

The solution that can account for the changes emerging as a result of

the ® and © actions upon the transition matrix elements within one step in
the fundamental matrix of Markov chain may be archived in the following
manner. Suppose that, instead of the old probability P denoting a pass in

between the returning states 1 and j, an updated (new) probability

8 we suppose that p(T, i, _],O) =9 ij which is what the unity matrix in

Section | highlights. In the nomenclature of the Markov chains (Kemeny et al,

1976) theory, matrices of type PT are referred to as the fundamental matrices.
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P, =P, + Ap is utilized, where the action (i Ap) results in either an
increment or a decrement. In case of (+ Ap), the @ action has occurred,
whereas (— Ap) implies the © action. The change induced by one of
these actions may be treated as two successive effects. First, the probabil-
ity P, is replaced by 0 and the replacement is recalculated. Second, the
transition probability is subsequently reestablished with the new value P

and the change in the fundamental matrix is recalculated immediately after
the first recalculation.
The relationships accounting for the changes in the fundamental matrix

PT as a result of the element OU having a null value and affecting the
matrix PT , as well as the relationships accounting for the changes in PT ,
also in the reverse case of @ actions, may be found in Appendix 1.

In sum, for the search of extreme subsystems following the theory of
constructing the defining sequences on system W elements with the aid
of KSR routines introduced in the previous work (Mullat, 1976), it is nec-
essary to obtain some well-organized and distinct recurrent expressions,

which can account for the changes in the matrix P whereby it is trans-

formed to the matrix P, . The formulas for specified Ap, which allow

Tua

us to transform from P, in order to find the matrix P. are given in

Tua

Appendix II on the basis of the expressions I 1.3 and I 1.4.

With the aid of these recurrent expressions, in Appendix 11, it is possi-
ble to obtain on each set H < W' the collection of credentials IT'H or
IT"H by performing the successive implementation of expressions IT 2.5
to all elements upon the set H. These expressions mirror the transforma-
tion of system element credentials 70 into 7T, in view of the theoretical
apparatus of monotonic systems (Mullat, 1976). Indeed, we construct the
collection [T"H in the case of Ap > 0, whereas the collection [T"H
is constructed if Ap < 0.
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4. ON HOMOGENEOUS MARKOV CHAINS

In this section, we consider homogeneous Markov chains with a finite
number N of states and a discrete time. A chain is called homogeneous if

and only if the transition probabilities P; j are independent of time t .

Our goal is to establish the relations between the elements of funda-
mental matrix denoting an absorbing chain (Chung, 1960), p. 66), see the
definition below on the condition that certain transitions per time unit have
been declared as prohibited. These relations are used in adjusting the cor-
responding elements without imposing this restriction. It should be noted
that similar relations are encountered in compositions pertaining to the
first and the last occurrence of some Markov chain states (see (Chung,
1960), p. 75). However, in spite of this obvious resemblance, such rela-
tions have not yet been considered in the literature.

Given without proof, the relations given in the form of theorems I-IV
allow making a case for implementation of a general principle of maxi-
mum for some functions, defined on finite sets (Mullat, 1971). The foun-
dation for the construction scheme (1971), in particular, is contingent upon
requirements applied to the functions in the form of inequalities given as a
result of this research.

In developing an efficient algorithm at the computer center of the Tal-
linn University of Technology, the theorems I-IV served as a foundation
for finding solutions for some notable pattern recognition classification
problems. Application of the algorithm improved the solution quality and
speed with which problems were solved computationally, in comparison
with those achieved by currently used algorithms.

Usually, homogenous chain can be represented as a directed graph
whose vertices correspond to the state of the chain, whereby the arcs de-
note possible unit transitions from one state to another at any point in time.

In addition, when the transition probability P, i is zero, the arc U = (i,j

is not depicted on the graph. On the other hand, any graph I" can be rep-
resented in the form of a homogeneous chain attributing the arcs of the
chain by satisfying the relation of the conditional probabilities. These

chains are referred to as chains associated with the graph 1" .
Let U(G) be the set of arcs of the graph G, and V(G) the set of
vertices. Adding to the set of vertices V((3) a vertex 0, which is in turn

connected to any vertex in V() by an arc leading into O, can hence

reproduce a graph [’



348 Chapter Two

Consider the following homogeneous Markov chain associated with
the graph G:
1) There exists a unique absorbing state 0 ¢ V(G) ;
2) The probability of transition from 1 to j, i,j S V(G),
Pi; =D;, if the arc (1,7) € U(G), and pi;= 0 other-
wise;
3) The probability of transition from the state 1€ V(G) to

the absorbing state 0 is given by P 0= 1- Z;p i

It can easily be verified that all states of the chain, identified by the
vertices of the graph 3, are irrevocable, whereby the designated Markov

chain belongs to a class of absorbing chains (see (Chung, 1960), p. 55).
Here, some of the tuning indicators V; refer to the parameters of the
Markov chain associated with the graph G . Further, we assume that for
any V, = Z?pi’j < 1. For all vertices of the graph G, it can be demon-
strated that for any graph G, one can find a tuning parameter V for
which a given constraint 0 < vV < % is satisfied. Indeed, let K repre-

sent the largest number of nonzero elements in the rows of the fundamen-
tal matrix corresponding to the vertices of the graph G .

Moreover, let H denote an arbitrary subset of arcs of the graph G,
ie., HCU(G). Here, p(H,i,j, k) designates the probability of
transition from the state 1 to the state ] in K units of time, on the condi-

tion that the transitions along the arcs of the subset H are prohibited
during this period. Owing to this restriction, the subset H denotes a pro-
hibited set of arcs, all of which are thus prohibited as well.

Let p(H,i, _],0) =90 i (where Si’ j Tepresents the Kronecker’s sym-
bol) and

p(H,i,j) =¥ p(H,i,j,n).
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Due to the existence of a Markov chain associated with the graph I’
of an absorbing state 0, the entire set V(G) is irrevocable, see Chung,

1960, p. 45, and the series (1) converges.
We use the Greek letters OL,B,... to denote prohibited arcs of the

graph G, whereby o" refers to the vertex (state) from which the arc

emerges, and Ol is the vertex toward which the arc is pointing.

Theorem I. We denote by H + o a set-theoretic operation. H U ot .
p(H + a1, j) = p(H,1, j) -

p(H,l,oc )-p(H, 0, j) -
1+p p(Hoc ,a’)

This expression might be interpreted as a consequence of malfunctions in
the communication line O .

Theorem II. This can be interpreted as an increase in traffic efficiency
after repairs on the line.

p(H,i,j) = p(H + a,i, j) +
p(H+oc1(x )- p(H+oc0c ,])
1- p,- p(Hoc ,o)

+

Corollary.

From the form of the dependence in the formulations of Theorems I-II
it immediately follows that the following inequalities are valid for the case
of directed and undirected graphs, respectively

p(H+0,i, j) <p(H,i,j),i,j=1,n

These inequalities guarantee the fulfillment of the monotonicity condition
for the realization of a monotonic system on homogeneous Markov chains.
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APPENDIX I

Consider the value ﬁ(T,i, _]) produced by the series (3). Each com-

ponent of this series may be treated as the measure of all passes in M
time steps (time units) commencing in 1 and terminating in J This as-

semblage of transitions is a union of two nonintersecting collections. The
first set pertains to the passes from 1 to ] with a mandatory transition, at

least once, along O € W . On the other hand, the second relates to the set

of passes from 1 to J avoiding this transition Ot . Each passage from the

first set consists of two passes: a pass avoiding Ol being in t steps long,
and a pass in M —t—1 steps (time units), passing along O . In other
words, the passages in t steps avoid the pass along O, whereas passages

in m—t—1 steps make use of this pass O .

We introduce the following notation: ﬁ(TO,i,j, k) represents the

average number of hits from 1 into ] with the transition matrix P,

where the nonzero element O is null, and p(TO,i,j,k) denotes the
probability of transition without making use of QL. Implementation of the

introduced notification results in:
p(T,i,j,m) = p(T®,i, j,m) +
P, Sp(T i) p(Tuot, fm =t =1)
p(T,i,j,m) = p(T°,i, j,m) +
P Sp(T i oy, -p(T, ot fm =t =1)

where O, — the state from which a one-step pass begins, ending in O _;
p, - the pass along QU in one step, corresponding to the element QU of

the matrix PT .
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The first component in II 1.1 and II 1.2 introduces the value of
p(T,i, j, m), denoting the measure of transitions avoiding the pass

along O . In addition, the components included in the summation repre-
sent the probability that the states O, (for the relationship II 1.1) and O,

(for the relationship II 1.2) have been reached by the first and the last pass
along O in the moments t and t + 1, respectively.

Let us calculate the P(T, 1, j) values using the relationship IT 1.1. We

conclude, after performing the summation of each of the equations II 1.1
from 1 to M and thereafter changing the order of sums in the double

summation, that
M [ M 0 .+ -
;p(T,l,J,m) = Z1p(T i, j,m)
M1 - M-t . ’
| S ZOP(T ’l’abﬂt)' gp(TaaeaJas_D

M-1
Dividing both parts of the latter equation yields z p(T0 ), oy, t) .
t=0

Thus, based on the theorem of Norlund averages (Chung 1960) consid-
ering the sequence a, = p(TO 1, oy, t) and

M-t
‘bmft = Zp(T,OLe,j,S —1), while increasing M —> 0 for the se-
s=1

quences @, and bn , it can be concluded that the following relations are

valid:
p(T.i,j) =p(T",i,j) +p, -p(T".i,a,) - P(T, . j). 113

Analogous relationship can be deduced by exploiting the composition
IT 1.2, namely:

ﬁ(Tsi: J) = ﬁ(TO,l,J) + P, 'ﬁ(T,i,OLb) 'ﬁ(TO,OLe,j). Irra
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APPENDIX II
We introduce the following notifications. Let ﬁ(TO,i,j) represent

the matrix P, element, and P(T,,1,]) denote the matrix P, ele-

ment. Let us also rewrite II 1.3 and II 1.4 with respect to these notifica-
tions, which results in:

ﬁ(Tn’iaj) :ﬁ(TOsisj)-i_pn -ﬁ(TO,i,ab)-ﬁ(Tn,oce,j); 2.1
ﬁ(To:i:j) = ﬁ(To,l,_]) +P, 'ﬁ(TO,i,OLb) 'ﬁ(TO’aeﬂj)' 2.2

From the relationships II 2.1 and 1I 2.2, it follows that the new value

for the average hits from 1 into _] is equal to

— .. — e — 0 - — .

p(Tn ala.]) = p(To ala.]) +P, - p(T ,l,OCb) ’ p(Tn,OLe 9]) - 123
— . — 0 . : '

=P, p(T,.1,0,) - P(T", 0, )

Substituting in 11 2.1 the state 1 = Ol . » We obtain

p(T,,0., ) = (T e, j)/(1=p, - (T, 0t 00,)).

and from II 2.2, with the same 1 = O o> We get

ﬁ(TO,OLC,j) zﬁ(To’ae’j)/(1+po 'ﬁ(To’a’e’ab))'

Replacing the latter expression into the preceding one, and taking into
account that

P(T,a,,0,) = (T, 0., 0,)/(1+p, - P(T,, ., 0t,)),

we finally arrive at
p(T,,0,,j)=p(T,,a,,j)/(1-Ap-p(T,, 0, x,)). 112.4

The expression II 2.1 is valid if we replace Tn by To and p, by p,,
and if in the expression II 2.2 we make a reverse replacement. Substituting
j= O, in the expression II 2.2, first regrouping it by this reverse re-

placement, results in

5(T07a’e>j) = ﬁ(To’ae’j)/(1 + po .ﬁ(To’O(‘e’a‘b))'
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Finally, we deduce the expression that can account for the changes in
the fundamental matrix ﬁT by simplifying the last two equalities and the
expression II 2.4, after collecting sub-expressions and making rearrange-
ments to transform ﬁT into the matrix ?TU .. - Adopting the standard no-

menclature given in Section III, the ultimate form of the expression is
given as follows:

BT Ui ) = p(Ti, )+ ap- DR  PLGe) )
1-Ap-p(T,a,,,)
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A Study of Infraspecific Groups
of the Baltic East Coast Autumn Herring by
new Method based on Cluster Analysis

Positions of the au-
tumn herring sub-
groups differentiated
27 by the method de-
scribed.

16

=<rs

Figure 1

E. Ojaveer, Estonian Laboratory of Marine Ichthyology (1975)

“In the Baltic Sea the autumn spawning herring forms a smaller num-
ber of groups than the spring herring does. This is probably connected
with the different location of their spawning grounds. Spawning grounds
of the spring herring are concentrated in favorable sites near the coast (in
gulf, estuaries, etc.) while between such spawning centers gaps occur
usually. Contrary to it, in most parts of the Baltic spawning places of the
autumn herring form a continuous chain situated in the open sea. There-
fore, differences in environment conditions between the autumn spawning
grounds of neighboring areas are small and in large districts the charac-
ters of the autumn herring do not reveal essential differences. For in-
stance, there is no significant difference between the autumns herrings
caught on various grounds off the Polish coasts. The autumn herring of
the Swedish Baltic coasts can be divided into four groups (that of the Gulf
of Bothnia, that of the Bothnia Sea, the herring of the Swedish east coast
and that of the Swedish south coast), between which a gradual transition
occurs.
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Appendix 1, J. Mullat (1975), Tallinn Technical University

While cluster is a concept in common usage, there is currently no con-
sensus on its exact definition. There are many intuitive, often contradict-
ing, ideas on the meaning of cluster. Consequently, it is difficult to de-
velop exact mathematical formulation of the cluster separation task. Yet,
several authors are of view that clustering techniques are already well
established, suggesting that the focus should be on increasing the accuracy
of data analysis. The available examples of data clustering tend to be
rather badly structured, whereas application of the formal techniques on
such data fails to yield results when the classification is known a priori.
These issues are indicative of the fundamental deficiencies inherent in
many numerical taxonomy techniques.

Following the standard nomenclature, a vector of measurements can

describe every object <X1,X2,...,Xk>. Thus, for every pair of objects

E . and E ja distance di i between those objects can be defined as

dij:\/(x”—xj1)2+(xi2—xj2)2+...+(xik—xjk)2 (1)

However, it should be noted that all measurements are usually standard-
ized beforehand.

Applying Eq. (1) on N objects yields a full matrix of distances

0d, d, .. d,

d,, 0 d,, .. d
D= 23 2k )

d,d,. . . d.,

Authors of many empirical studies employ methods utilizing the full
matrix of distances as a means of identifying clusters on the set

{E»...E; B, )
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In this section, we describe a new and highly effective clustering
method, underpinned by some ideas offered by the graph theory. As the
first step in our novel approach, we emphasize that, for elucidating the
structure of the system of objects, knowledge of all elements of the matrix
of distances given above is rarely needed. We further posit that, for every

object, it is sufficient to consider no more than M of its nearest
neighbors.

To explicate this strategy, let us consider a system of 9 objects (Fig. 2)
with their interconnections — edges. The matrix of nearest neighbors for
such a graph is given by:

5()  6(1) 32 0
41 32 73) 0
AN sy 1@ 20
2 31y s 703)
1) 3 4 6(1)
(51 73 0

=

comsomoocoo
SN

copgoocococoo

MND={ 23) 43) 53) 6(3) 83) 93)
73)  93) 0 0
73)  83) 0 0

Figure 2

It can be easily verified that each row 1 of that matrix contains a list of
objects j directly connected with a given object Ei , with the distances

di i given in parentheses. Based on this argument, henceforth, we will

denote the matrix of nearest neighbor distances by MND.
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In most cases, having data pertaining to about 8-10 nearest neighbors is
sufficient. This is highly important for computation, where the goal is to
minimize the required memory space. By applying this method on, e.g.,
the case of 1,000 objects, only 10,000 memory locations would be needed,
which is a significant saving relative to the 500,000 required when the full
matrix is processed.

We will use the MND defined above as a starting point to create some
useful mathematical constructs.

Let W be the list of edges (pairs of objects) in the MND. For every
edge € = [a, b], a subset W;l of the list W can be defined as follows.

Definition 1. Subset W,f of W represents a proximity space of edge
[a,b] if
a) for every pair of objects X and Y, which are connected with at least
one edge in W,", there exists a path joining X and Y, and

b) every edge that is a member of that path belongs to the subset Wlf .

According to the graph theory postulates, proximity space is a sub-
graph connected with the edge |a, b].

Example. Let us consider the edge [4,5] shown in Fig. 1. According
to the aforementioned rules, its proximity space, denoted as W54 , is the
sub-graph W2 ={[3,4],[3,51[4,7][5,7][2.4]. [1,5].[5.6]. [4.5] }.

Definition 2. The system of proximity spaces is referred to, as the
proximity structure if for each edge W = [a,b] there exists a nonempty

proximity space W]: in the system.
Sometimes it is useful to exclude the edge [a, b] from the proximity
space W; . In line with the Venn diagram annotation, this exclusion is

denoted as vaa \ [a,b], whereby the resulting subset can be referred to
as a reduced proximity space.

In the preceding discussion, for every edge [a,b], only the value of
the distance d[a,b] between [a,b] was taken into account. In what
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follows, it is useful to introduce a new notation. For example, it is benefi-
cial to assign a real number (credential 7t ), which is different from the
distance, to every edge on the graph. For example, let us define the creden-
tial of every edge in the diagram shown in Fig. 1 as

alx,y]=dlx, y]+1[x,y].
For example, n[4,7] =3+2, ﬂ[7,8] =341 on the edge [X,y],
where d[X, y] is the Euclidean distance (1) between X,¥y and l‘[X, y];

I‘[X, y] is the number of triangles that can be built around [X, y] .

Let us further assume that a proximity structure £ of a graph W is
known and that f(X) is a real function.

Definition 3. The function f; (T) defined for all credentials of the
edges in W; is called the influence function of the proximity structure
L if the following holds fab (TC[X, y]) < n[x, y] for each
[X,y]e VV;1 \[a,b], where TC[X,y] is the credential of the edge
[x.y].

In other words, for every edge [X, y], we can find a new credential in

the reduced proximity space Ws \ [a,b]

n'[x,y]=£ (nx,y)).

To demonstrate the benefit of introducing the influence function, let us
again consider the diagram depicted in Fig. 1. Graphically, the influence
function represents the value of the number of triangles after the elimina-

tion of the edge [a,b] € Wlf from the list W; . Using the set W54 as

an example, this corresponds to
)=(dy, +1,)=(1+0)=1:

f54 (ﬂ[3,4]) = f54 ((d34 T, )
£ (nf3,4) = £ ((d +15)= (1+0))=(dy, +1,)=(1+0)=1:
)):(d34 +1‘34)=(3+0)=3.

(1+
(1
£ (n[3,4) = £1((d,, +1,,)=(+
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53) 6(2) 33 0 0 0
43) 33) 74 0 0 0
43) 53) 13) 23) 0 0
23) 33) 53) 5) 0 0
MNW= 13) 33) 43) 6(3) 735) 0
12) 53) 74 0 0 0
24) 4(5) 5(5) 6(4) 8(4) 9(4)
74) 94 0 0 0 0
74) 84 0 0 0 0

It is evident that knowledge of the influence function of an edge allows
us to easily find the set of new credentials for an entire subset H € W .

Let us consider the set H =W \ H and arrange its edges in some order

<€1 €, ,> . Applying the steps shown above, we can find the proximity

spaces of the edges in <e1 N ,> and apply Eq. (3) recursively.

Using the information delineated thus far, we can now introduce our
algorithm, the aim of which is to identify the data structure.

At this point, we can assume that steps pertaining to the selection of
the proximity structure and the influence function have been completed.
Thus, we can proceed through the algorithm as follows:

Al. Find the edge with the minimum credential and store its value.

A2. Eliminate the edge from the list of all edges and compute the
credentials for proximity spaces of the minimal edge using the
recursive procedure (3).

A3. Traverse through the list of edges and identify the first edge
with the credential less or equal to the stored credential. Return
to A2 to eliminate that edge. If no such edge exists, proceed to
A4,

A4.  Check whether there are any further edges in W . If yes, return

to Al, otherwise terminate the calculations.

Performance of the algorithm will be demonstrated by applying the
aforementioned steps to the graph shown in Fig. 1.

First, the credentials for all edges should be defined using the follow-
ing expression:

nlx,y]=d[x,y]+x,y].
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To do so, we must compute the matrix of credentials using the matrix
of distances (2).

We will demonstrate all steps of the algorithm described above.

Al. Minimal edge is [1,6] and the associated credential is
ﬂ[1,6]=2.T0 store its value, let U = 2.

A2. We eliminate the edge [1,6] from the list W and therefore have
to change the credentials of ' [6,7] =4

W\ [L6]: n'[1,3]=3; n'[1,5]=2: n'[5,6]=2.

A3. Proceeding through the list, we encounter the edge [1,5] as the
first edge with the credential less or equal to U . Now, we return to

step A2. After 9 steps with U = 2, we have the following se-
quence of edges:

([1,6],[1,5].[1.3],[3,5].[3, 4], [2,4],[2.3] [4,5].[5. 6] ).
Now, we consider the case U = 3, and after applying the preceding
steps, we obtain < [2, 7] R [4, 7] R [5, 7] R [6, 7] > Finally, using U = 4
vields ( [7,8],[7,9].,[8,9]).
It can be easily verified that those ordered lists of edges provide accu-
rate representation of our graph’s structure.

For graphical output, we can utilize the ordered edges to construct a
connected tree (a tree is a graph without circles).

For the example given above, we can construct the tree using the or-
dered lists of edges, while excluding all edges [a,b] if both their end

points, @ and b, are already members of the list. This approach results in

([.6].11.5].[1.3]. 3. 4].[2.4]. [2.7]. 7.8} [7.9])

based on which the tree in Fig. 3 can be constructed.
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Figure 3

Using this simplified diagram, relative position of any object in the
tree can be established by considering the number S(X,Yy) of steps
needed to reach the point y from the point X on the tree (e.g.,
S(1,2) =3, S(1,8) =35). Hence, for every object X, we can identify
another object from which the maximum number of steps is required to
reach x. For example, to identify the object at the top of the tree, we will

take the object for which that maximum is minimum. Using real data, and
applying these rules, we obtain the tree shown in Fig. 1.
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POSTSCRIPT, ACKNOWLEDGEMENT
AND PROSPECTS

Incidentally, the phenomena occurring in nature and in everyday life
were referred to in this book as Monotonic systems, without the knowl-
edge that this term has already been used in a different context. This coin-
cidence, however, does not prevent us from discussing the contribution of
our efforts presented here.

In the discussions, we investigated Greedy type algorithms, which al-
lowed us to arrive at some ordering, as they facilitated arranging what we
called the defining sequence. According to the prerequisites of the defin-
ing sequence, the credentials increase or decrease according to the partial
order of some sub-lists of elements belonging to the main ordering such
as: price credentials for wines, nodes on graphs, records of overview ta-
bles, radiotrancievers in cellular networks, routes along communications
lines, agents in retail network, transfer payments, tax relief, etc. The list of
indicators suitable for presentation in our defining sequence was indeed
unlimited. Our aim, when using a defining sequence to arrange the order
of elements, was two-fold. First, the credentials increase to some peak
point, after which their value decreases to zero. Alternatively, the work-
around scheme could be applied when the picture is reversed. We could

easily perform some actions ® and © with elements in the sub-lists among
all possible sub-lists — Totality of sets, where the General Ordering was a

representative of the Totality. Actions @ improved phenomena, and ©
actions were believed to have adverse effects on the same phenomena.

The sub-lists in our Totality, which remained intact after ©, © actions,
were investigated. We also introduced a notion of stable/steady sets, or

fixed points, which cannot be improved by @ or worsened by © actions
when applied upon subsets. In other words, we established that a fixed
point couldn’t be destabilized by some predefined mappings. However, the
ultimate aim was to find an optimal solution using the Greedy type algo-
rithms in the form of defining sequence of ordering. We have proved that
the defining sequence guaranteed the optimal ordering, as well as ensured
discovery of optimal stable subsets — the kernels. In general, as a side
effect, any defining sequence formation complied with the Fibonacci rule.
Other researchers have also investigated the Monotone System ap-
proach, the root of which is important to discuss. Some different types of
more light Monotone Systems were established, allowing more effective
implementation of Greedy type algorithms due to their simplified architec-
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ture. Such a convenient architecture of Monotone Systems was found
when the standard order of credentials in the direction of increase or de-
crease on the Grand Ordering of elements did not change while the defin-
ing sequence was under formation. As was shown, any subset of creden-
tials in such a Totality of subsets remained in harmony with the initial
Grand ordering of credentials. In particular, the Totality of wine menu
credentials of wine prices satisfies the harmony or light property.

Light Monotone Systems provided the opportunity to present the
Grand Ordering in either increased or decreased order using standard or-
dering procedures — any procedure is adequate for this purpose. As a
result, formation of the defining sequence would require operations the
extent of which is proportional to the logarithmic scale of complexity, in
contrast to the hard general scheme. It is important to note here some pos-
tulates related to the theory of bounded rationality, Arrow, Rubinstein,
Sen, Uzawa,..., both for general systems and for light monotone systems,
i.e., the postulate of independence from rejected alternatives, as well as the
postulate of succession, for example in a Singles Party game. The latter in
the language of a barmaid reads: "Old love does not rust."

It is important to remind once again that light monotonic systems sup-
posedly allow algorithms like Greedy to find an optimal solution with
much less computational effort than those required to solve complex
NP-problems. Indeed, the optimality that is claimed to be guaranteed for a

function F(X) =min__ m(a,X) , as noted by other researchers, '
the F(X) must obey the quasi-convex property as a whole when the
function F(X) is optimized among subsets X < W in Grand Ordering
W . Quasi-convexity on W means that for any pair [X, Y] of subsets
X andY the inequality F(X U Y) > min[F(X), F(Y)] must hold.

Exactly this inequality is guaranteed, allegedly, that the NP hard problem
could be substituted by polynomial complexity procedures, allowing the
Greedy type algorithms to perform in reasonable time.

a) Yulia Kempner, Vadim E. Levit and Ilya Muchnik. (2008) Quasi-
Concave Functions and Greedy Algorithms, Advances in Greedy Algo-
rithms, Book edited by: Witold Bednorz, ISBN 978-953-7619-27-5, p. 586,
November I-Tech, Vienna, Austria; b) Yulia Kempner and Ilya Muchnik.
(2008) Quasi-concave functions on meet-semilattices, Discrete Applied
Mathematics 156, pp. 492-499.
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We found, however, through relatively simple examples, such as our
single game scheme, that quasi-convex property was not always satisfied
for some Monotone Systems. This means that Monotone Systems in gen-
eral are richer or more complex objects than was postulated in the begin-
ning. Disappointingly, the techniques based on the defining sequence of
ordering will fail for such systems, as they cannot be applied to search for
optimal solution when the goal is to find kernels. However, it is possible to
find the optimal solution by other means. Branch and Bound algorithms
may be suitable for this purpose. Despite the need for applying the twisted
rules of Branch and Bound algorithms, the complexity of which is much
higher than Greedy type used in case of quasi-convex set functions, the
Branch and Bound algorithms work effectively, when investigating the
conflict situations. They are particularly useful for describing, e.g., the
phenomenon of bilateral agreements, where the data set is usually of rea-
sonable size.

Acknowledgement. In conclusion, it would be, perhaps, interesting for
the reader to learn about the history of the Monotone Systems as it appears
to the author of these lines. Indeed, the author had the opportunity to at-
tend the Institute for Management Problems in Moscow, a laboratory un-
der the guidance of late prof. Aizerman. Since the mid-50s of the last cen-
tury, methods for automatic classification of objects have been investi-
gated in the laboratory. One of the working hypotheses on the basis of
which these methods were supposed to work was that objects in a multi-
dimensional space related to similar phenomena, such as analysis of data,
visual objects, sequences of letters and words, etc., are usually located
closer to each other than the objects responsible for different phenomena.
Most of the statistical data are always represented in this way and, thus,
the hypothesis of the so-called compactness of similar objects was ex-
pressed which should be distant to dissimilar objects.

Based on the compactness hypothesis, it was possible to develop nu-
merous classification algorithms (Braverman et al, 1975 2. Mirkin et al *,
the list goes on). It is important here that all these methods were based on
the fact that it was necessary to classify the objects in such a way that

2 Braverman E.M.,, Litvakov B.M., Muchnik LB. and S.G. Novikov. (1975)
Stratified sampling in the organization of empirical data collection, Autom.
Remote Control, 36:10, pp. 1629-1641

Mirkin B.G. and L.B. Cherny. (1970) On a distance measure between partitions
of a finite set, Automation and remote Control, 31, 5, pp. 786-792.

3
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within classes the objects would be located close to each other in the sense
of some metric, and objects from different classes would be far from each
other in the same sense the metric itself. In connection to this task, it is
noticeable to note the work of Professor in biometric of Leningrad State
University P.V. Terentyev, who developed the method of correlation
Pleiades, which allowed him to successfully solve the problem of choosing
from among a mass of signs the most stable, “independent” ones. Teren-
tyev 1959 * applied his own method of his Pleiades in order to build a
classification of biological objects, which, as it seems, has in his time
served and as well as now still going serving on as the basis of a whole
group of methods of the so-called nearest neighbor linkage.

One of the simplest cases here is the problem of classifying objects
into two classes. Indeed, Véhandu and Frey 1966 ° published a similar
method in the Biological Series of the Estonian Academy of Sciences in
order to enlighten biologists in the new achievements of statistics.

The fact is that being a post graduate student of Tallinn University of
Technology in 1969-1971, whose supervisor was L.K. Vohandu (LV), and
thanks to LV, he was familiar with similar methods what was the topic of
communication especially fruitfully with the late Prof. E.M. Braverman
from the Institute of Control Problems in Moscow. As far as the author
remembers, when presenting his views on the problem of classification in
terms of monotone systems, Braverman noted that this was something
new. Indeed, in contrast to the nearest-neighbor method, a formal mathe-
matical construction of a purely combinatorial nature was proposed at the
same time with the possibility of constructing algorithms for the effective
search for so called kernels of Monotonic Systems. The author interpreted
in his own words and invented a general and new procedure of data analy-
sis thanks to a “blind glance” or specific data scoring ideology of LV.
Within the framework of this ideology, the author developed a theory that
is now known in the literature as "Monotonic Linkage Functions" (Maxi-
mum Margin Separations in Finite Closure Systems, Florian Seiffarth et
al, 2021) °, although this model was origin ally named by the author as
"Monotone / Monotonic System".

Tepentses I1.B. (1959) Meron Koppensuonnsix [Tnesn, Bectauk JIIT'YNe9.
Frey T. and L. Vohandu. (1966) Uus Meetod Klassifikatsiooniiihikute Piistitam-
iseks, Eesti NSV Teaduste Akadeemia Toimetised, XV Kdide, Bioloogiline
Seeris, Nr.4. U3Bectust Akagemun Hayk Octonckoit CCP, Tom XV, Cepust
Buonornueckas, Ned6.

5 Available online, https://link.springer.com/chapter/10.1007/978-3-030-67658-2_1
(Accessed 23.12.2021).
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As a result, the essence of this method was an article published by the
author in 1971 in the Proceedings of Tallinn Technical University, where
the method was presented formally in the language of set theory and the
Totality of partially ordered subsets in standard language used in mathe-
matics. Since then the theory was further developed and published in Rus-
sian periodical of “Apromarmka m Tememexanmka” in 1976, where the
author proposed to call the scheme by a monotone system In English the
Plenum Publishing Corporation originally distributed the idea in “Automa-
tion and Remote Control” publications. We hope that these lines will
probably explain to those who doubt what exactly is called the Monotone
System.

Prospects. We also hope that the Monotone Systems scheme will be
subject to more extensive research, as this will contribute to the theoretical
understanding, as well as assist in developing more affective algorithms
aimed at finding the best solutions. The most promising avenue to pursue
going forward, in our view, is the approach of steady states, or stable sets,
which have been demonstrated in the collection of papers presented here.
In order to discover some important phenomena hiding in plain sight, we
have offered various perspectives on different subjects, in atomic or con-
tinuous form. Our motive was to demonstrate the opportunities for those
enthusiasts that wish to open their minds and devote their time to promo-
tion and advancement of science.
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Glossary of Citations XXXIII



The concept or category of
monotone (monotonic) system,
independent and distinct from
all that is usually referred to
in the relevant literature as dy-
namic systems, is applied to
computer science and commu-
nications, social sciences, so-
cial and network economics. It
will appeal to specialists in
specific areas of game theory
and data analysis.
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