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1. INTRODUCTION

According to Rangel-Buitrago et al. (2020), there is an increase of people worldwide
living in the coastal zone (about 10% of the world’s population), which is linked to a risk
of floods induced by storm surge, storm waves, tsunamis, and freak waves (Bevacqua
et al., 2019, Marcos et al., 2019). Therefore, it is important to study the characteristics of
inundation in coastal zones. In order to reduce the coastal risks and loss of lives arising
from extreme waves, the development of the early warning systems is needed
(LaBrecque et al., 2019, Thandlam and Rutgersson, 2019). Furthermore, studying irregular
wind waves and its influence on beaches is also important for the assessment of coastal
structures beachfront properties because these frequent motions deliver much of the
energy responsible for dune and beach erosions (Stockdon et al., 2006, Suanez et al.,
2011, Anthony, 2012).

Ocean waves of periods ranging from 5 min to 12 hr (tsunami, seiches, and storm
surges, tides) are considered long waves (Stocker, 1957, Kinsman, 1965, Mei, 1983).
Physically, long waves are characterized by kh < 1, where h is the water depth and k is
the wave number (Sawaragi 1995, Holthuijsen, 2007). In the coastal area, the nearshore
zone is divided into three zones; breaker zone, surf zone, and swash zone (Davis, 1985).
The swash is generally defined as the time-varying location of the connection between
the ocean and the beach ranging between the limit of rundown and the limit of runup.
The wave runup is defined as a vertical elevation above the mean sea level. The process
of wave runup on a beach is considered a very complex phenomenon because it
depends on several physical factors, such as the incident wave conditions (e.g. wave
periods, wave steepness, and wave heights) (Dean et al., 2005), and the nature of
the beach (e.g. reflectivity, beach slope, and roughness) (Waal and Meer, 1993).
The momentum flux drives the water wave climbing the beach until it reaches the
“maximum runup”’, converting its kinetic energy into potential energy (Lin et al., 1999).
This maximum point of wave runup represents one of the most important parameters
needed to estimate the tsunami flooding. The breaking criterion of a wave climbing the
beach can be classified into three types of wave breaking, spilling, plunging, and surging
(Galvin, 1968, Battjes, 1975). These types can be classified based on Iribarren number, Ir,
which is defined by tana/,/H/L, where tan a is a beach slope, H is a wave height, and L
is a wavelength in deep waters. The spilling occurs if Ir < 0.5, where the plunging occurs
if 0.5 < Ir < 3.3 and surging or collapsing if Ir > 3.3.

The tsunami waves may approach the beach having different shapes such as single
waves of elevation or depression, N-waves, semi-periodic waves, and wave trains
(Shuto, 1985). Usually, when a tsunami wave approaches the coast its exact shape is
unknown (Didenkulova et al., 2008). In general, the most commonly used formulas in
models or experiments to estimate the tsunami runup characteristics have a soliton
wave shape. The solitary waves can be easily generated experimentally in laboratories,
which makes them very popular for studies. Therefore, the tsunami runup height of
incident solitary waves has been studied intensively during the last decades using
different methods.

Carrier and Greenspan (1958) have found analytically a general solution for a long
wave runup on a constant plane beach using nonlinear shallow water theory, NLSW, and
a specialsolution for a regular wave runup. Later on, many other authors investigated
the runup height of several other wave shapes with a special emphasis on solitary waves
with respect to different inclined planes, initial incident wave conditions, and wave



breaking criteria using analytical, numerical, and experimental methods. For instance,
Gjevik and Pedersen (1981), Pedersen and Gjevik (1983) studied the runup height of
solitary waves with respect to different inclined planes. Synolakis (1987, 1988) studied
the runup of breaking and non-breaking solitary waves on plane beaches using analytical
solutions and experiments. Liu et al. (1990) summarized the twenty-six papers in the
International Workshop on Long-Wave Runup. They mainly focused on tsunami runup
and flooding, covered all the methodological studies to estimate runup phenomena.
Grilli et al. (1994) investigated the shoaling of solitary waves using a fully nonlinear
hydrodynamic model and the laboratory experiments for gentle and steep beach slopes,
during the shoaling. The wave breaking during the shoaling reduced the wave reflection
(Lin et al., 1994). Experimentally, the rapid decay of solitary waves has been observed
after breaking and that is due to the transfer of the potential energy into the kinetic one
(Grilli et al., 1997). In the last ten years, analytical and numerical methods have been
developed with respect to the solitary wave breaking process in order to get more
accurate predictions of wave runup, see for example (Yingli et al., 2002, Xiao et al., 2010,
Young et al., 2010, Dutykh et al., 2011, Qu, 2019). However, several studies reported
that the solitons are unsuitable to describe a real tsunami, suggested to use waves of
longer duration than solitons, and downscaled records of real tsunami (Madsen and
Fuhrman, 2008, Goseberg et al., 2013, Schimmels et al., 2016). The statistical data for
tsunami waves in the Pacific Ocean showed that most of them (about 75%) are
non-breaking waves (Mazova et al., 1983). However, large or long propagating tsunamis
are breaking and often form a steep wave front when approaching the coast. During the
large tsunami events, such as the 2004 Indian Ocean and 2011 Tohoku tsunamis, the
nonlinear steepening of the tsunami wave front near the coast has been reported and
observed by photos and videos. Analytically, Didenkulova et al. (2007) and Didenkulova
(2009) studied the wave front steepness and its influences on wave runup height for
regular waves. The wave front steepening of single waves during their propagations was
also observed experimentally (Sriram et al., 2016). However, its influence on runup
height on the beach has not been investigated. Therefore, in the paper I, we studied this
influence of tsunami wave front steepness on runup height using numerical and
analytical methods. In summary, the maximum tsunami runup height on a beach
depends on the wave front steepness at the toe of the bottom slope. The corresponding
new formula of the maximum runup height as a function of wave front steepness, wave
period, and distance to the slope is suggested. Sometimes, in order to save time for
tsunami forecast, especially for long distance wave propagation, the tsunami runup
height is estimated by using analytical or empirical formulas (Glimsdal et al., 2019,
Lgvholt et al., 2012). Thus, we proposed using the formula suggested in the paper I.
The face front steepness of the approaching tsunami wave can be estimated from the
data of the simulated (computed) or real tide-gauge stations and then be used to
estimate tsunami maximum runup height on a beach.

It has been observed that the tsunami waves generated by the earthquake of
December 26, 2004 have a complicated temporal and spatial structure, where the waves
had multiple amplitude and frequency components (Merrifield et al., 2005, Horrillo
et al., 2006, Narayana et al., 2007, Rossetto et al., 2007). Horrillo et al. (2006) studied
dispersive effects during 2004 Indian Ocean tsunami propagation by comparing the
nonlinear shallow water model with the fully nonlinear Navier-Stokes equations (FNS)
and dispersive model based on Boussinesg-type. They concluded that nonlinear shallow
water models offered the more suitable framework for hazard assessments, bringing



together a very low computational cost. Although the NLSW model tended to
overestimate the maximum wave runup, the over-prediction was considered to be
within a reasonable range for a safety buffer. The nondispersive model usually described
leading waves very well, whereas the trailing wave trains are more sensitive to wave
dispersion (Lgvholt et al., 2012). Therefore, in terms of tsunami early warning system,
the nonlinear shallow water theory is generally considered more appropriate than the
dispersive Boussinesg-type model (Glimsdal et al., 2013). However, the studies
mentioned above were based on numerical results and were missing the mechanism of
fidelity control. Therefore, in the papers Il and Ill we take the advantages of available
experimental data (collected from the Large Wave Flume, Hannover, Germany) of
different wave types characterized by kh = 0.2 and compared their wave runup heights
with the corresponding data from the dispersive model of Boussinesq type based on the
modified Peregrine system (mPer) and nondispersive nonlinear shallow water model
(NLSW). In the paper I, we studied the wave runup height on the almost frictionless
bottom, provided that the bottom slope was covered by a smooth plastic. In the paper
Ill, the bottom roughness corresponds to the rough asphalt pavement. Concluded that,
in the given range of kh, for large-amplitude waves the dispersive effects are important,
therefore, dispersive models should be applied, while for small-amplitude waves NLSW
gives reasonable results and can still be used.

Individual waves in the irregular wave record are defined between two zero-downward
crossings or zero-upward crossings (where, zero is the mean sea level). Irregular waves
are characterized by the significant wave height, Hs, which is introduced as an averaged
of the third of the highest waves (Hs), however, Hs is often defined as four times the
standard deviation of the surface elevation. This issue has been discussed in detail in
(Holthuijsen, 2007), showing that the second definition (4v/o, where ¢ is a standard
deviation of the surface elevation) can be approximated to Hs. However, in our studies
we used the first “classical” definition of significant wave height (Hs).

Theoretically, if the incident wave fields are distributed according to the narrowband
Gaussian distribution, their heights are distributed by the Rayleigh distribution; see for
example (Massel, 1996). Some authors confirmed this result in field measurements;
see for example (Marshall, 1975, Forristall, 1978), on the other hand, many researchers
pointed out that the experimental wave height distribution deviates from the Rayleigh
distribution (Battjes, 1972, Goda, 1975, Rattanapitikon and Shibayama, 2007). During
extreme wind conditions, the distribution of wave heights in shallow water significantly
deviated from Rayleigh distribution, therefore, a composite Rayleigh-Weibull distribution
can be used (Battjes and Groenendijk, 2000, Pullen et al., 2007, Mai et al., 2010).
However, (You and Nielsen, 2013, Neelamani et al., 2007) reported that the wave height
could be distributed according to a Weibull distribution. In the recent study, Teutsch et
al. (2020) investigated random waves data collected from the southern North Sea
covering the period 2011-2016 using radar measurements and wave buoy, found that
the distribution of wave heights on average followed the Forristall distribution.

The most hazardous and risky waves born in the irregular wave field are the so-called
freak waves. Their height is twice larger than the significant wave height (H/Hs> 2). They
are extremely dangerous due to their height and sudden appearance; therefore, they
are also called killer waves or monster waves, as they caused disappearing and damage
of ships and human loss in deep and coastal waters. Many authors suggested
explanations for the cause of the freak waves, e.g. Dean (1990), proposed the cause is
due to the nonlinear superposition of waves. Kharif and Pelinovsky, (2006) in their
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review paper listed several mechanisms of freak wave formation: the dispersion
enhancement of transient wave packets, wave-bottom interaction, geometrical
focusing, wave-current interaction, and modulational instability and soliton collisions.
Didenkulova and Anderson (2010) analysed the data collected from the coastal zones of
the Baltic Sea, 2.7 m depth, during June—July 2008, suggesting the dispersive focusing
can be a mechanism of the generation of freak waves. Fedele et al. (2019) analysed
different field measurements in various European locations, concluded that the rogue
waves happen rarely on weakly nonlinear random seas. Didenkulova and Rodin (2012)
studied freak waves in Tallinn Bay in the Baltic Sea based on the one-month wave
measurements at 2.7 m water depth in the nearshore region and found that the
Rayleigh distribution slightly overestimates the number of freak waves. Although the
freak waves have been intensively studied in the last 25 years, still their phenomenon is
not fully understood, especially what regards freak waves on a beach (freak runups).
The collected databases are not enough for their statistical analysis.

Theoretically, there are many factors that affect the statistical distribution of wave
runups, such as wave nonlinearity, the seafloor irregularity, and wave breaking
(Stocker, 1957, Mei, 1983, Massel, 1996). The statistics of extreme runup events have
been studied using different methods: experimental methods, numerical models, and
field measurements. The statistical properties of long waves on a beach of constant
slope have been investigated by (Didenkulova et al., 2011) using an analytical solution of
NLSW for the infinite sloping beach. They found that the runup heights are distributed
according to the Rayleigh distribution if the incident waves are represented by a normal
distribution. Gurbatov and Pelinovsky (2019) studied the statistical runup of irregular
narrow-band incident waves on a constant beach slope under the assumption of
non-breaking waves, and found that for the runup distribution of even non-breaking
waves, the Gaussian distribution is inappropriate. Denissenko et al. (2011) studied the
runup of long irregular waves on a plane beach experimentally in order to reproduce the
theoretical studies of (Didenkulova et al., 2011); however, their experimental record was
not long enough for extreme wave analysis, and the initial wave field deviated from the
Gaussian distribution. The higher statistical moments (skewness and kurtosis) of runup
remained similar to those of incident waves. Later, Denissenko et al. (2013) conducted
a series of experiments for wave fields with different bandwidth. Their results show that
the bandwidths have a weak influence on runup height distribution, so still can be
represented according to the Rayleigh distribution, which agrees with the theoretical
results by Didenkulova et al. (2008). However, these experiments did not have long
enough time-series to investigate the statistics of extreme runup heights especially in
terms of freak runups. This gap could potentially be covered by field measurements on
natural beaches. The statistical runup height of wide spectrum incident waves has been
studied on sandy beaches in New South Wales (Nielsen and Hanslow, 1991); they found
that runup heights are distributed according to the Rayleigh distribution. Unfortunately,
the field measurements often have unknown initial wave conditions. Therefore, as it was
mentioned above, the short time-series experiments and unknown initial wave
conditions in the field measurements are considered as limiting factors to study the
statistical distribution of extreme wave runup events. In the paper IV, we take an
advantage of numerical computations by generating long-term numerical experiments
using intensive numerical simulations with fixed initial wave fields in different
bandwidths and nonlinearities.
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The main objectives of the thesis

This thesis aims at understanding the effects of wave nonlinearity, dispersion, and wave
breaking on the runup height on a plane beach. The particular objectives are
summarized as follows.

e Studying nonlinear deformation and runup of single tsunami waves analytically
and numerically.

e Investigating the dispersive effects of long periodic waves and their impact on
runup height numerically and experimentally using the data of flume
experiment.

e Studying extreme runup statistics of breaking irregular waves of different
heights and bandwidths on a plane beach.

The methodology has been described in section 2. Several different methods have
been used in the thesis. The semi-analytical approach (section 2.1) is based on the
asymptotic solution of the nonlinear shallow water theory (NLSW), which has been used
in the paper I to investigate the steepening wave front of a single tsunami wave and its
influence on runup height. The nondispersive NLSW numerical model (section 2.2.1) has
been used in all the papers. The dispersive numerical model mPer, based on the
modified Peregrine equations (section 2.2.2) has been used in the papers Il and Il
In the papers |, Il, and Ill the data of flume experiments obtained from the Hannover
Large Wave Flume (GWK) (sections 2.3) are used.

12



Abbreviations

NLSW Non-Linear Shallow Water System
mPer Modified Peregrine System
GWK The Large Wave Flume (GroRer WellenKanal)
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2. METHODOLOGY
2.1 Analytical methods

A general solution of nonlinear shallow water equations on a plane beach has been
found by Carrier and Greenspan (1958), using the hodograph transformation.
Subsequently, many authors using this solution studied different types of waves, see for
example (Pedersen and Gjevik, 1983, Synolakis, 1987, Synolakis et al., 1988, Mazova
et al., 1991, Pelinovsky and Mazova, 1992, Tadepalli and Synolakis, 1994, Brocchini and
Gentile, 2001, Carrier et al., 2003, Kanoglu, 2004, Tinti and Tonini, 2005, Kanoglu and
Synolakis 2006, Madsen and Fuhrman, 2008, Didenkulova et al., 2007, Didenkulova,
2009, Madsen and Schaffer, 2010). In the paper |, the analytical solution of nonlinear
shallow water equations has been used in order to study the steepening of wave
front of single tsunami waves of positive polarity and its influences on runup height.
The one-dimensional equations of NLSW can be written as:

—+u—+g—=0, (1)
ot ox X

a—n+i[(h(x) +mu] =0. (2)
ot Ox

where n(x, t) is the vertical displacement of the water surface with respect to the still
water level, u(x, t) —fluid particles horizontal velocity, h(x) — unperturbed water depth,
g is the gravitational acceleration, x is the coordinate directed onshore, and t is time.
Egs. (1) and (2) have been solved independently for the two bathymetries: a bathymetry
of constant depth, h(x) = ho with length Xo and a constant beach slope, where the water
depth h(x) = - x tana, (Fig. 1). The exact solutions of Egs. (1) and (2) can be found for a
few specific cases, e.g. (i) a basin of constrant depth and (ii) a plane beach.

During its propagation in the basin of constant depth, ho, the wave transforms as a
Riemann wave (Zahibo et al., 2008):

x+X0+L} 3)

n(x.t)=mn, [f—m )
V(x,t)z?u/g[ho +77(x,t)] —2./gh,, (4)

where no(x = - L - Xo, t) is the water displacement at the left boundary. After the
propagation over the section of constant depth, ho, the incident wave has the following

shape:
X,
77X0(t):770|:t_V(x0t):|' on(t):3\/g|:ho+77xo(t):|_2 ghy (5)

Following the method developed in (Didenkulova et al., 2008), we let this nonlinearly
deformed wave described by Eq. (5) run up on a plane beach, characterized by the water
depth h(x) = — x tana. This approach does not take into account the merging point of the
two bathymetries and, therefore, does not account for reflection from the toe of the
slope and wave interaction with the reflected wave. The long single pulses of positive
polarity have been considered in this study:
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t
= 2| = 6
1, (t) = Asech (Tj (6)

The maximum runup height, Rmax of such wave Eq. (6) can be found from (Didenkulova
et al., 2008, Sriram et al., 2016):

2 1/4
%:2.8312\/cota( I [Zh‘) j J ) (7)

ghy \ 3T

If the initial wave is a soliton, then Eq. (7) coincides with the famous Synolakis’s formula
(Synolakis, 1987).

Y

n(x,t)

Figure 1: Sketch of the physical and computational domains

2.2 Numerical models

The analytical solutions (Section 2.1) described above are not practical when the general
wave types and variable depth conditions are considered. Developing numerical models
that suitable to describe the tsunami propagation and its runup on a plane beach is an
important task for coastal engineers and scientists. The most commonly used is NLSW
model, which is preferred for the long wave runup calculation compared to dispersive
models based on Boussinesg-type approximations. The instabilities of numerical
schemes in the dispersive models make the computations more sensitive to numerical
parameters (Bellotti and Brocchini, 2001). Moreover, the dispersive term in the
Boussinesq system tend to zero at the shoreline, and therefore there the dispersive
equations simplify to NLSW (Madsen et al., 1997). Nevertheless, the dispersive model is
needed for calculating long wave runup if the shape of incident tsunami waves
represents trailing waves, where the dispersive effects become more important,
considering that the maximum wave is often not the first one (Candella et al., 2008,
Rabinovich and Thomson, 2007). The numerical models have been validated against
experimental data of wave propagation and runup in the Large Wave Flume (GWK) in
Hanover, Germany. Finite volume method has been used, which is useful for problems
where quantities should be preserved, e.g. mass or momentum. We applied the
non-oscillatory UNO2 scheme, which is intended to constrain the number of local
extrema in the numerical solution at each time step (Harten and Osher, 1987).
The integration of the solution forward in time has been carried out by the Bogacki-
Shampine time stepping method (Bogacki and Shampine, 1989). The nested
Runge—Kutta methods of order 3 and 2, (Dutykh et al., 2011), is implemented in the
MATLAB environment using the ode23 command, (Shampine and Mark Reichelt, 1997).
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The time step is chosen to satisfy the Courant—Friedrichs—Lewy (CFL) condition for all
considered significant wave heights. In the papers | and IV, an embedded second order
method is used to estimate the local error and if necessary adapt the local time-step
size, whereas in the papers Il and Ill the characteristic time steps in the performed
calculations are presented in Table 1. The Rankine—Hugoniot jump conditions have been
used to approximate the wave breaking, see (Dutykh et al., 2011).

Boundary conditions

On the left extremity (x = a) of the computational domain, the Dirichlet boundary
condition on the total water depth component H(a, t) = ho + no(t) of the solution (H, Hu)
is imposed. The boundary conditions are implemented in the finite volume scheme
according to the method described in (Ghidaglia and Pascal, 2005), for more details on
the application to the nonlinear shallow water equations, see (Dutykh, et al., 2011).
In the papers | (for model validation), Il and Ill on the left boundary (x = a) we used the
most “clean” experimental recording of the wave gauge at the point closest to the wave
maker, which was at a distance a = 50 m from the wave maker. In the paper IV,
the function of free surface elevation, no, is drawn from a narrow- or wideband Gaussian
signal (Eq. 8) depending on the experiment. The obtained data turn out to be enough to
find a well-posed initial boundary-value problem provided that the flow is subcritical at
the point x = g, i.e., u(a, t) < pgH(a, t), which is always the case for Riemann waves, see
(Petcu and Temam, 2013), for the rigorous mathematical justification of this fact in case
of transparent boundary conditions. The considered boundary condition (wave field
offshore) is described according to the Gaussian distribution:

LA
f(é)= e/, (8)
o271
where u is a mean value of the distribution and o is a standard deviation.
The Kolmogorov-Smirnov test has been applied to ensure all the individual time-series
distributed according to the Gaussian distribution (Dodge, 2008). The spectrum of the
generated waves is:

S 7(/’/;‘9—1%
S(f)=—=e V', )

L7 Af TS,

where Af is the frequency band, f is the wave frequency, fo = 0.1 Hz is the central
frequency, and So is the constant, which is calculated in order to achieve the desired Hs.
In this work, the case with Af/fo = 0.1 is referred to as the narrow-band spectrum, while
the case with Af/fo= 0.4 is referred to as the wide-band spectrum.

Bathymetry description of the numerical experiments
The bathymetry described below has been used in all our papers. The corresponding
bathymetry (Fig. 2) set-up as the flat part of the flume matches the beach of constant

slope:
hy, X e [a,b]
h(x)= ) (10)
h—(x—b)tana  xe[a,b]

where, ho is the constant water depth, kept at 3.5 m for all simulations, the left and right
boundaries of the numerical flume are [a, c], the point where the slope starts is [b], and
tan a = 1:6 is the tangent of the bottom slope. The length of the section of constant

16



depth is b = 251.5 m, and the right limit of the numerical flume is taken as ¢ =291.5 m.
However, in the paper |, the length of the section of constant depth has not been fixed,
where we used different lengths (between 600 m and 0 m) in order to investigate the
wave steepening .

The roughness of the beach is important for investigating the maximum runup height.
In the papers Il and Ill, the Manning friction law, Sy is used, where S; = gcfulu|/H®/®,
S¢ is the friction term, c} is the roughness coefficient (Dutykh et al., 2011). In the paper
Ill, the corresponding roughness coefficient was taken equal to 0.016, which
corresponds to the rough asphalt pavement, while in the paper Il we used roughness
coefficient equal to 0.009, which corresponds to the smooth plastic
(https://www.engineeringtoolbox.com/mannings-rough- ness-d_799.html). The effect of
friction during long wave runup on the coast was considered in (Apotsos et al, 2011).

Table 1. A characteristic of numerical time step in the performed calculations.

Wave type mPer, At NLSW, At
solitary wave 0.015 0.016

sine wave 0.012 0.013
bi-harmonic 0.012 0.013

ship wake 0.009 0.012

The number of points of the spatial grid in the papers |, Il and Il is constant and equal
to 4000 for all experiments, so the spatial resolution was 6.3 cm. In the paper IV, the
number of spatial grid points along the distance between [a] and [c] is fixed and equal to
1000 for all experiments. Each spatial grid step has a length equal to 25 cm, which
corresponds to 4 cm vertical resolution for runup height. However, this also suggests
that we have a low resolution and not so reliable statistics, especially for small
amplitude waves Hs = 0.1 m. In a similar manner to the significant wave height, Hs, the
significant runup height, Rs, is introduced as an average of one third of the largest runup
heights in the time-series. The smallest significant runup height is Rs = 0.23 m, therefore,
even in this case the resolution is considerable.

2.2.1 Nonlinear shallow water system
We solve the nonlinear shallow water equations Egs. (11) and (12), written in a
conservative form for total water depth:

H,+(Hu)_ =0, (11)

(Hu), +(Hu2+§H2] = gHh.. (12)
where H = h + n is the total water depth, n(x, t) is the water elevation with respect to the
still water level, u(xt) is the depth-averaged flow velocity, h(x) is an unperturbed water
depth described by Eq. (10), g is the gravitational acceleration, x is the coordinate
directed onshore, and t is time. The numerical scheme dissipations are included, which
are necessary for the stability of the scheme and should not influence much the runup
characteristics. Namely, we employ the natural numerical method, which was developed
especially for conservation laws—the finite-volume schemes.
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2.2.2 Dispersive modified Peregrine system
The Boussinesq equations for long dispersive wave propagation, derived by Peregrine
(1967), are:

7, +((h+n)u) =0, (13)

2
u, +uu_+gmn, —%(hu)m +h—

(1) =0. (14)

which can be applied under gently varying depth conditions. Duran et al. (2018)
modified the classical Peregrine system in order to recover the conservative form of the
equations. Thus, Eqg. (13) of the mass conservation in new variables becomes:

H,+Q, =0, (15)

where Q = Hu is the horizontal momentum. From Eq. (15), the momentum conservation
equation becomes:
1 0 g

1, 1 1, ,
I+-H. -—HH -—H —-——HH QO +|=—+=H" | =gHh_. (16
[ 3 X 6 xx]Q[ 3 Qxxt 3 xth ( H 2 ]x g x ( )

Egs. (15) and (16) are called the modified Peregrine equations and are studied in detail
in Duran et al. (2018).

2.3. GWK experiment

The Large Wave Flume (GroRer Wellen Kanal, GWK) at Forschungszentrum Kiste (FZK) in
Hannover, Germany, was actually built for different purposes and has always been used
for large-scale experiments on the wind wave (comparably short period) impact on
coastal and offshore structures and wave interaction with sediments (Schimmels et al.,
2016).

The experiments were carried out in 2012-2013 using a piston type wave maker for
wave generation. The wave maker was equipped with a mechanism of active absorption
of the reflected wave (Schmidt-Koppenhagen et al., 1997), which used signals from
two wave gauges as input parameters: one in the immediate vicinity and the other
3.6 meters from the wave maker. The experimental set-up consisted of a 251 m long
section of constant depth of 3.5 m and a plane beach with a slope angle 1:6.
Experiments performed in 2012 and used in the paper Ill had GWK natural asphalt bed
and slope, while experiments performed in 2013 used in the paper Il, had the slope
covered by a smooth plastic to minimize bottom friction. The bottom friction on the
asphalt beach strongly affected the measurement of wave rundown. When the water
run down from the edge, a layer of water remained on the slope, which touched the
capacitive sensor wire and prevented the correct recording of the wave rundown. There
were from 16 (experiments in 2013) to 18 (experiments in 2012) wave gauges recording
wave propagation along the flume. The 16 wave gauges used in 2013 were mounted
along the flume to measure the incident wave field at different distances from the wave
maker. The positions of the wave gauges along the flume are 50 m, 51.9 m, 55.2 m,
60 m, 120 m, 140 m, 160 m, 180 m, 190 m, 200 m, 210 m, 220 m, 225 m, 230 m, 235 m,
and 245.33 m, see Fig. 1. The positions of the 18 wave gauges are 50 m, 51.9 m, 55.2 m,
60 m, 140 m, 150 m, 160 m, 161.9 m, 165.2 m, 170 m, 180 m, 190 m, 200 m, 210 m,
220 m, 230 m, 240 m, and 250 m. The signal from wave gauges was recorded with
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a sampling frequency of 200 Hz. The wave runup was measured by a capacitance probe,
which was supplemented by two regular video cameras. The error in measuring the
runup by a capacitive sensor is determined by the variation of the water edge across the
slope. According to visual observations, the variation is about + 3% at the level of the
runup magnitude. The capacitance probe consisted of the two isolated copper wires
suspended at a distance 10 cm from each other and 1 cm above the slope. A 100 kHz
sinusoidal signal was applied to one of the wires. The signal from another wire was fed
to the lock-in amplifier and the signal amplitude was recorded with the sampling
frequency of 200 Hz (Denissenko et al., 2011). For more details about the experiments,
see Denissenko et al. (2013). In the papers Il and Illl, we used different types of wave
shapes, its properties in the experimental set-up are shown in Table 2. In order to
exclude the influence of even a small part of the wave reflected from the wave maker,
only the first four waveswere used for calculations (before the wave reflected from the
wave maker would approach the coast). The complete list of the studied waves included
solitary-like waves, sine and bi-harmonic waves, as well as ship wakes modulated in
frequency and amplitude, resembling characteristic wave records from high-speed
vessels, (Torsvik et al., 2009, Torsvik et al., 2015). In such generated ship wakes, the
wave period linearly decreased from 20 to 10 s.

E Wave gauges capacitive censor

e
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Figure 2: Scheme of a laboratory experiment in the GWK.
Table 2: Wave types properties
Run number Wave type W. height, m W. period Roughness bottom

1002 sine wave 0.2 20 Asphalt
1003 sine wave 0.3 20 Asphalt
1004 sine wave 0.25 20 Asphalt
1006 sine wave 0.15 20 Asphalt
1007 sine wave 0.4 20 Asphalt
1008 sine wave 0.6 20 Asphalt
1069 sine wave 0.45 20 Asphalt
1014 bi-harmonic 0.27 20,10 Asphalt
1015 bi-harmonic 0.27 20, 10 Asphalt
1017 bi-harmonic 0.27 20, 10 Asphalt
1018 bi-harmonic 0.27 20, 10 Asphalt
1019 bi-harmonic 0.4 20,10 Asphalt
1020 bi-harmonic 0.42 20,10 Asphalt
1021 bi-harmonic 0.4 20,10 Asphalt
1024 bi-harmonic 0.62 20, 10 Asphalt
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1025
1027
1047
1051
1052
1053
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2074
2075
2076
2077

bi-harmonic
bi-harmonic
ship wake
ship wake
ship wake
ship wake
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
sine wave
solitary
solitary
solitary
solitary

0.5
0.4
0.1
0.2
0.3
0.4
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.24
0.2
0.15
0.1

20, 10
20, 10
20->10
20->10
2010
2010
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Asphalt
Asphalt
Asphalt
Asphalt
Asphalt
Asphalt
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
Plastic
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3. RESULTS AND DISCUSSION

3.1 Nonlinear deformation and runup of single tsunami waves

In this section, we investigated the effect of wave front steepening on the maximum
runup height of single tsunami waves of positive polarity analytically and numerically
(NLSW). We used the bathymetry described in Fig. 1. The results below correspond to
paper I.

The nonlinear steepening of the periodic sine waves and its influences on runup
height has been studied in (Didenkulova et al., 2007, Didenkulova et al., 2009). Found
that the extreme runup height is increased proportional to the square root of the wave
front steepness. In this section, we study the effects of the single wave front steepness
on its runup height on a beach using analytical and numerical methods given in Section
2. The corresponding bathymetry used in analytical and numerical calculations is
normalized on the water depth in the section of constant depth ho and is shown in Fig. 1.
The input wave parameters such as effective wavelength, A/Xo, where A = T\/ﬁo, and
wave amplitude, A/ho are changed. The beach slope is taken as tan a =1:20 for all
simulations. In analytical solutions, we underline that the criterion of no wave breaking
should be satisfied. Therefore, all the calculations in analytical and numerical solutions
below are chosen for non-breaking waves. The numerical and analytical solutions have
been validated against GWK experimental data, where the comparison of the runup
height on a beach slope of the long single wave with an initial amplitude, A = 0.1 m and
wave period, T = 20 s is shown in Fig. 3. It can be seen that the runup height in
experiment is slightly smaller, which may be caused by the bottom friction. Both
numerical and analytical models have a good agreement with the experiment. However,
the numerical prediction of the runup height is slightly higher than the analytical one,
which can be explained by the effects of wave interaction with the toe of the
underwater beach slope, which is taken into account only in the numerical model.

0.3

t, min

Figure 3. Runup height on a beach of the long solitary-like wave with an initial amplitude,
A =0.1m and wave period, T = 20 s. The experimental record is shown by the black solid line,
analytical solution is shown by the blue dashed line, and numerical solution is shown by the red
dotted line.

Fig. 4 shows the maximum runup height, RmaxA, as a function of distance to the
slope, Xo/A, for different amplitudes of the initial wave, A‘ho. The distance of the wave
propagation Xo/A changes from 0.8 to 9.4, kho = 0.38. The numerical solution is shown
with symbols (triangles, squares, and circles), while the analytical solution is shown with
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lines. For smaller values of Xo/A < 6, the analytical predictions provide relatively smaller
runup values compared with numerical predictions, while for higher values of Xo/A > 6,
the differences are significantly reduced, whereas the analytical solution gives higher
predictions of maximum runup height. As stated above, we consider that this can be a
result of the interplay of two effects: the analytical prediction did not take into account
the interaction with the underwater bottom slope, and the numerical scheme
dissipation (“numerical error”), which affects the numerical results. Fig. 5 demonstrates
the dependence of maximum runup height, RmaxA, on kho, taking the initial wave
amplitude A/ho = 0.03. It can be seen that the discrepancy between numerical and
analytical predictions decreases with an increase in kho. This effect can be explained by
the wave interaction with the slope, which is not accounted in our analytical approach.
As one can see in Fig. 6, this difference for a gentler beach slope tan a = 1:50 is reduced,
therefore, this result supports the conclusions drawn above.

101
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Figure 4: Maximum runup height, Rmax/A, as a function of distance to the slope, Xo/A for different
amplitudes of the initial wave, A/ho. Analytical solution is shown with lines and the numerical
solution is shown with symbols (triangles, squares and circles) with matching colours, kho = 0.38.
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Figure 5: Maximum runup height, Rmax/A, vs the initial wave amplitude, A/ho, for different
distances to the slope, Xo/A. The numerical solution (NLSW) is shown with symbols (diamonds,
triangles, squares and circles), the analytical solution is shown with lines with matching colours.
The thick black line corresponds to Eq. (7), kho = 0.38.
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Figure 6: Maximum runup height, Rma/A vs A/Xo (blue axes), and kho (black axes). Numerical

solutions for tan a = 1:20 and tan a = 1:50 are shown with circles and crosses respectively, while
analytical solutions for tan o = 1:20 and tan a = 1:50 are shown with dotted and dashed lines

respectively, A/ho = 0.03.

Fig. 7 enhances the conclusions mentioned above. Moreover, the dissimilarity between
analytical and numerical results increases with an increase in the wave period. With
respect to small wave periods, the numerical solution may coincide with the analytical
one or even become smaller as in kho= 0.38 for Xo/A > 8. Noticeable, both analytical and
numerical results in Figs. 5 and 8 demonstrate an increase in maximum runup height
with an increase in the distance Xo/A. This result confirmes the conclusions of
Didenkulova et al. (2007) and Didenkulova (2009) for sinusoidal waves. The definition of
the maximum wave front steepness s is the maximum of the time derivative of water
displacement, d(n/A)/d(t/T), and is calculated in relation with an initial wave front
steepness, so, where

max (dn(x,t)/dt max (dn(x =a,t)/dt
s(x) = ( n( )/ )’ 5, = ( 7( )/ ) (17)
AlT AlT
We should separate the incident wave and the wave reflected from the bottom slope,
in order to calculate the incident wave front steepness at the beginning of the bottom
slope from the results of numerical simulations. At the same time, the wave steepening

along the basin of constant depth is described analytically, as demonstrated in Fig. 8.
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Figure 7. Maximum runup height, Rms/A as a function of the distance to the slope, Xo/A for
different kho. Analytical solution is shown with lines and the numerical solution is shown with
symbols (triangles, squares and circles) with matching colors; A/ho = 0.03.
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Figure 8: Wave evolution at different locations x/A = 0, 0.85, 1.71, 2.56, 3.41, 4.27 and 5.12 along
the section of constant depth for a basin with Xo/A = 5.12 and tan a = 1:20. Numerical results are
shown with solid lines, while the analytical predictions are given by the black dotted lines.
The parameters of the wave: A/ho = 0.03, kho = 0.19.

It can be seen in Fig. 8 that the wave transformation is well described by the analytical
solution, which has a good agreement with numerical simulations. Therefore, below we
refer to the wave front steepness defined analytically; keeping in mind that it coincides
well with the numerical predictions. In Fig. 9, we approach the main result of this
section. The red solid line gives the analytical prediction. It is universal for single waves
of positive polarity for different amplitudes Aho and kho and can be approximated well
by the power fit (coefficient of determination R? = 0.99):

Rmax /RO _ (S/SO )0.42 (18)

where RmavA is the maximum runup height in the conjoined basin (with a section of
constant depth); Ro/A is the corresponding maximum runup height on a plane beach
(without a section of constant depth).

1.81

1 1 1 1 1
1 1.5 2 2.5 3

s/so

Figure 9. The maximum runup height in the conjoined basin, Rma/A normalized by the maximum
runup height on a plane beach, Ro/A versus the wave front steepness, s/so for A/ho = 0.057,
kho = 0.38 (brown points), A/ho = 0.086, kho = 0.38 (red plus signs), A/ho = 0.057, kho = 0.29 (blue
points), A/ho = 0.086, kho = 0.29 (turquoise plus signs), A/ho = 0.057, kho = 0.22 (violet points),
A/ho = 0.086, kho = 0.22 (pink plus signs), A/ho = 0.057, kho= 0.19 (dark green points), A/ho = 0.086,
kho = 0.19 (light green plus signs). The asymptotic analytical predictions are given by the red solid
line, while all the markers correspond to the results of numerical simulations. The power fit of the
analytical results Eq. (18) is shown by the dashed line.
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Figure 10: The normalized maximum runup height Rmax/Ro (L/A)* calculated numerically versus the
wave front steepness, s/so for the same values of A/ho and kho as in Figure 9. Red solid line
corresponds to the “analytically estimated” Eq. (18), while black solid line corresponds to Eq. (19).

The results of numerical simulations are shown in Fig. 9 with different markers
corresponding to different incident wave conditions. It can be seen that numerical data
for initial waves with the same period but different amplitudes follow the same curve.
The runup is higher for waves with smaller kho. In our opinion, this dependence on kho is
a result of merging a plane beach with a flat bottom. This effect can be parameterized
with the factor (L/A)¥*. The result of this parameterization is shown in Fig. 10. Here we
can see that for smaller face front wave steepness, s/s0< 1.5, the runup height is parallel
to the analytically estimated curve described by Eq. (19), while for larger face front wave
steepness, s50 >1.5, the dependence on s%o is weaker. This dependence for all
numerical runup height data, presented in Fig. 10, can be approximated by the power fit
(coefficient of determination R% =0.85):

Ry /Ry =1.17(2/L)" (s/5,)" (19)

3.2 Effects of dispersion on long wave runup

In this section, which is based on papers Il and Ill, we study the applicability of the
dispersive and nondispersive models to describe the propagation and runup of long
periodic waves along a composite bottom topography: a flat bottom of constant depth is
merged with a plane beach. Numerical calculations are carried out in the framework of
NLSW and mPer models, and are compared with laboratory experiments for various
types of waves: solitary-like waves, sine waves, bi-harmonic waves and “ship” wave
packets, highly modulated in frequency and amplitude.

Typical estimates of the power spectral density for the three types of waves are
presented in Fig. 11. The figure shows that for sine and bi-harmonic waves, the main
period is the same and equal to 20 s, while for ship wakes the period of 20 s corresponds
to the beginning of a wide peak. The length of such waves in the channel of h=3.5m
depth is 117 m, and the parameter kh = 0.2, where k is the wave number. The numerical
results of the runup height of periodic waves are compared with the available
measurements. In particular, the calculated and measured maximum runup heights of
the first four waves for each wave type are compared. The numbers 1, 2, 3 and 4 on the
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graph represent the maximum runups of the first, second, third and fourth waves,
respectively.

It can be seen that in the calculations made using the dispersive theory, mPer (right
column in Fig. 12), the deviations from the experiment are smaller. It is also seen that
with an increase in the wave amplitude, the difference between the calculations and the
experiment decreases and, ultimately, leads to an underestimation of the runup height.
This effect is associated with the wave breaking. With respect to the regular type of
waves (sine waves), the rough asphalt reduces the values of the runup height to =~ 20%
compare to the plastic (frictionless) bottom, see Table 2 and Table 3. Table 2 shows the
wave characteristics while Table 3 shows the maximum runup heights of the first four
waves for different wave shapes, (1) solitary, (2-a) sine wave on a plastic bottom, (2-b)
sine wave on an asphalt bottom, (3) bi-harmonic waves, and (4) ship wakes. Fig. 13
shows the oscillations of the water surface for a sine wave with a height of 0.2 m. It can
be seen that both NLSW and mPer describe the experimental data quite well. Fig. 14a
shows a smooth runup of a sine wave with a small height of 0.2 m, while in Fig. 14b, we
see the runup of a more nonlinear wave of 0.4 m high. It can be seen in Fig. 14a, that
both models describe the runup of weakly nonlinear wave rather well. For runup of a
more non-linear wave (Fig. 14b), mPer turns out to be a more adequate model. As noted
before, when the wave run down the slope during experiments, a layer of water
remained on the slope, so that the sensor poorly registered the descending sections of
the signal. This is especially pronounced in recordings of large-amplitude waves, for
which nonlinear effects are the most noticeable at the stage of wave rundown
(Didenkulova et al, 2006, Didenkulova et al, 2014). Despite the fact that at a qualitative
level, both models reproduce the experiment well, see Fig. 13 and Fig. 14, there are
quantitative differences, which are especially noticeable for the large values of the
maximum runup (Fig. 12). It is shown also in Fig. 12 that the dispersive theory is
characterized by a smaller deviation from the experimental data and, in general,
more reliably describes sine waves. It is also seen that both theories tend to underestimate
the runup of large-amplitude waves, which is a consequence of the wave breaking
(see Fig. 12).

10° B Sine waves

T =5y iy

Biharmonic waves

ine

10 Ship waves

Estimation of power spectral density

/Fkh =02

Frequency, Hz

Figure 11. Estimation of the power spectral density of the studied types of waves.
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Figure 12. The deviations from the experiment of maximum runup heights calculated using NLSW
(left column) and mPer (right column) for different types of waves. The numbers 1, 2, 3 and 4
correspond to the maximum runup height of the first, second, third and fourth waves.

Table 3. Maximum runup heights of the first four waves of a solitary (1), sine (2), bi-harmonic (3)
and ship wake (4)

Exp. NO. Experiment NLSW mPer

1th| 2th| 3th| Ath 1th | 2th | 3th | 4th 1th | 2th | 3th | 4th

2074 0.8 0 0 0 | 0.98 0 0 0| 0.84 0 0 0
2075 | 0.61 0 0 0| 071 0 0 0 | 0.65 0 0 0
2076 | 0.44 0 0 0 0.5 0 0 0| 048 0 0 0
2077 | 0.29 0 0 0 0.3 0 0 0 | 0.29 0 0 0

2012 | 0.17 0.23 023 023 | 022 029 027 028 | 018 0.24 0.22 0.24
2013 | 0.26 037 038 037 | 032 046 047 044 | 025 036 038 0.36
2014 | 037 056 056 056 | 044 065 064 059 | 034 051 049 051
2015 | 048 075 0.77 0.77 | 057 0.81 081 0.77 | 045 0.65 0.66 0.67
2016 | 0.62 1 101 103|073 097 096 094 | 058 0.81 0.8 0.83
2017 | 0.77 114 113 114 | 083 1.08 1.1 103 | 067 097 099 0.8
2018 | 095 135 135 136 | 095 1.22 1.2 115 0.8 118 116 1.16
2019 | 1.08 163 166 166 | 1.05 1.32 1.3 126 | 093 138 135 135
2020 | 1.15 187 189 192 | 112 139 141 135 1.02 153 155 1.53
2021 | 1.28 211 207 213 | 119 146 147 143 | 115 1.7 172 173
2022 | 143 238 236 238 | 1.27 154 155 149 | 1.28 19 192 191
1002 | 0.17 044 042 043 | 021 047 046 046 | 0.21 0.5 047 047
(2-b) 1003 03 079 076 077 | 034 076 074 076 | 033 085 082 0.83
1004 | 0.22 0.6 057 059 | 0.24 06 065 059 | 022 0.64 0.67 0.66
1006 | 0.13 0.28 0.26 0.27 | 0.16 0.28 03 031 016 031 032 0.32
1007 | 0.44 1.2 117 117 | 043 092 091 094 | 043 1.1 1.07 1.1
1008 | 0.68 1.88 1.9 19| 068 125 126 126 | 069 184 185 186
1069 | 026 059 099 128031 061 092 104|031 064 106 135

(2-a)
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1014 | 0.82 074 069 064 | 078 081 082 075|085 082 081 072
1015 | 0.64 0.65 071 075 | 068 064 065 069|071 072 076 081
1017 | 065 07 075 078 | 061 065 071 075|074 076 081 0.83
1018 | 0.75 0.65 062 061 | 076 076 075 068 | 081 074 072 071
1019 | 1.16 124 129 132 | 094 099 0.99 1| 117 126 129 132
(3) 1020| 11 115 119 123 | 103 103 099 097 | 1.18 124 125 128
1021 | 1.28 124 12 118 | 1.04 111 111 104 | 126 126 122 1.19
1024 | 1.2 116 112 112 | 1.07 111 111 108 | 1.26 122 121 118
1025 | 1.35 135 131 13| 1.01 1.07 108 111 | 132 131 131 131

1027 | 116 123 122 125 1 1 097 097 ] 119 122 125 126
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Figure 13. Wave gauge records of the water surface for a sine wave with a height of 0.2 m. A solid
line represents the experimental record, NLSW calculations are shown by a dash-dotted line, and
mPer calculations are shown by a dashed line.
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Figure 14. Runup height time-series of the sine waves with a height of (a) 0.2 m and (b) 0.4 m.
A solid black line represents the experimental record, NLSW calculations are shown by a blue
dash-dotted line, and mPer calculations are shown by a red dashed line. The scale at the x-axis
corresponds to the travel time from the coast to the wave maker and back.
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Fig. 15 shows that rundown of low-amplitude bi-harmonic waves is described even
worse by the experiment than the case of sine waves. This is probably due to the
presence of short wave components in the spectrum. For the considered range of wave
heights, mPer seem to be more reliable model than NLSW (Fig. 15). At low wave
amplitudes, it slightly overestimates the runup height (4-17%), while giving a smaller
scatter than NLSW, which both overestimates (up to 20%) and underestimates (up to
10%) the runup height values. At higher amplitudes, it slightly underestimates (no more
than 3%) the runup height, providing a minimum scatter in comparison with NLSW,
which underestimates the values of runup heights up to 25%. Finally, let us consider the
“ship wakes”, the wave packets modulated in frequency and amplitude. The period of
these waves decreases linearly from 20 to 10 s, see Fig. 11. The runup of these waves for
experimental tests with heights 0.12 m and 0.42 m is shown in Fig. 16 and Table 3. It can
be seen that both models well describe the waves of low amplitude (Fig. 16a). However,
NLSW clearly fails describing high amplitude waves (Fig. 16b), underestimating the
expected runup height by more than 40%. This is associated with the effects of wave
breaking. The mPer model gives a smaller error in the description of ship wakes.
Moreover, for mPer the underestimation of the runup height for the highest waves does
not exceed 7%. As for the sine waves, the described tendency is observed for the
majority of waves in the group (Fig. 12). If we compare directly between the predictions
of two numerical models, it can be seen that, NLSW gives a larger error than mPer

(Fig. 12). However, for ship wakes, the error of NLSW can be both positive (overestimation)
and negative (underestimation).

(a):' ' ' ' :'

40 60 80 100 120 140
t, sec

Figure 15. Runup height time-series of the bi-harmonic waves with a height of (a) 0.27 m and (b) 0.4
m. A black solid line represents the experimental record, mPer calculations are shown by a red
dashed line and NLSW calculations are shown by a blue dash-dotted line. The scale at the x-axis
corresponds to the travel time from the coast to the wave maker and back.
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Figure 16. Runup height time-series of ship wakes modulated in frequency and amplitude with a
maximum height of a) 0.12 m and b) 0.42 m. A solid black line represents the experimental record,
NLSW calculations are shown by a blue dash-dotted line, and mPer calculations are shown by a red
dashed line. The scale at the x-axis corresponds to the travel time from the coast to the wave
maker and back.

3.3 Runup of irregular waves

The runup of initial Gaussian narrow-banded and wide-banded wave fields and its
statistical characteristics are studied using direct numerical simulations, based on NLSW.
We use the same bathymetry of the GWK experiment described in section (2.3), which
consists of the section of a constant depth, which is matched with the beach of constant
slope, see Fig. 2. The results below correspond to paper IV.

In order to study the influence of wave nonlinearity during irregular wave
propagation and runup on the coast, time-series with five different significant wave
heights are considered (Hs /ho = 0.03, 0.06, 0.09, 0.11, and 0.14) for both narrow-band
(Af/fo = 0.1) and wide-band (Af/fo = 0.4) signals. The physical time for each Hs is
1000 hr(360,000 wave periods), 5000 hr for each bandwidth, and 10,000 hr in total.
The computations of the numerical model were carried out in MATLAB, using a cluster
containing 28 cores. The parameter kho = 0.38 is at the border of validity of the shallow
water theory, taking into account the horizontal extent of the wave tank. The wave
parameters are selected to see the effects of wave breaking on the statistics of their
runups. The types of wave breaking are classified based on the Iribarren number:

a
H/L

Ir = (20)

where L is the characteristic wavelength offshore, H is the wave height. It is spilling for
Ir £0.5, plunging for 0.5 < Ir < 3.3, and surging when Ir 2 3.3. In our dataset, only the last
two types of wave breaking, surging (including collapsing) and plunging, are observed.
For the case of weak-nonlinearity (Hs /ho = 0.03), less than 1% of waves experience
plunging breaking, while most of the waves are surging. With an increase in nonlinearity,
the percentage of plunging waves increases, for Hs /ho = 0.06, 32—-35% of the waves are
plunging, for Hs /ho = 0.09, 61-65% of the waves are plunging, for Hs /ho = 0.11, 71-76%
of the waves are plunging, and for the most nonlinear case, Hs /ho = 0.14, 85-88% of the
waves are plunging.

The probability density functions (PDF) of narrow-band and wide-band incident wave
fields for different nonlinearities, Hs /ho are shown in Fig. 17. The data of the narrow-band
spectra, Af/fo = 0.1 are shown by triangles (different colours correspond to different
nonlinearities). The corresponding Gaussian distribution (4 = 0, 0 = 0.25) is shown by the
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black solid line. The data of the wide-band spectra, Af/fo = 0.4 are shown by pluses, and
the corresponding Gaussian distribution (4 =0, o = 0.27) is shown by the red solid line.
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Figure 17. Probability density functions of normalized narrow-band and wide-band wave fields
offshore for different nonlinearities, Hy/ho in linear (a) and logarithmic (b) scales. Solid lines
correspond to Gaussian distributions fitted to the corresponding datasets, shown with a black
colour for wide-band data and with red colour for narrow band data.

To describe the statistics of wave heights in Fig. 18, the Rayleigh distribution, which is
well used for this type of problem (Massel, 1996), is applied:
éz —£21(24%)
—e , €20
f(&)=427
0, £<0

(21)

where £ is a data vector of wave heights, and A is the scale parameter. However, a better
fit for the wave heights has been found according to a Weibull distribution:

ﬁ é a —(&14)
19 = z(ﬁ,j ere 20 22)
0, £<0

where A is the scale parameter and k is the shape parameter. Fig. 18 demonstrates the
wave height distributions of both narrow-band and wide-band wave fields. As expected,
the narrow-band data are well described by a Rayleigh distribution (A = 0.5), however, a
Weibull distribution (A = 0.74, k = 2.27) provides a slightly better fit than a Rayleigh
distribution, which can be explained by the effects of wave breaking, which deviate the
distribution from Rayleigh to Weibull. This result is confirmed by some field
measurements (e.g. You and Nielsen, 2013, Neelamani et al., 2007). For the wide-band
conditions, the wave heights have a tendency to be distributed according to a Weibull
distribution (A =0.71, k = 2.06).

Also, it can be seen in Fig. 18, the probability of the freak wave (H/Hs = 2) occurrence
in the initial wave field is higher for narrow-band signals than for wide-band ones.

The calculated significant runup heights (defined as a mean of one third of the largest
runup heights), Rs for narrow-band and wide-band signals are shown in Fig. 19. It is
interesting to see that Rs for wide-banded waves is always higher than for narrow-banded
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waves and increases with an increase in Hs, which can be explained by the higher
variability in wave periods for wide-banded waves as well as the more intense wave
breaking in case of narrowband conditions, where the Rs/ho decreases with an increase
in nonlinearity Hs/ho.

Fig. 20 illustrates the probability distribution functions of runup oscillations, r/Rs for
initial Gaussian narrow-banded and wide-banded wave signals. It can be seen from
Fig. 20a that runup oscillations of narrow-banded waves are deviated from the normal
distribution and are slightly shifted to the right towards larger positive values with an
increase in nonlinearity. This effect was partially observed experimentally (Denissenko
et al, 2011, Denissenko et al, 2013) and theoretically (Didenkulova, 2011, Gurbatov and
Pelinovsky, 2019) for an infinite plane beach. However, the tails of these distributions
show a relatively weak probability of extreme floods for narrow-banded waves, and are
much thinner than of Gaussian distribution.
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Figure 18. Probability density functions of normalized trough-to-crest wave heights of the initial
narrow-band (a) and (c), and wide-band (b) and (d) wave fields for different nonlinearities, Hy/ho in
linear (top) and logarithmic (bottom) scales. The red solid line corresponds to the Rayleigh
distribution; the black solid line corresponds to the Weibull distribution fitted to the corresponding
dataset.
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Figure 19. Significant runup heights, Rs for wide-band (red circles) and narrow-band (black crosses)
signals for different nonlinearities.

It can be seen that in the case of initial wide-band signal, the distributions of runup
oscillations are also shifted to the right with an increase in nonlinearity, however, this
shift is much larger compared to that of the narrow-band signal. Moreover, the tails of
these distributions are much thicker than those of narrow-band ones. However, the
distribution of runup oscillations is rather close to the normal distribution in case of the
initial wide-band signal. It can also be seen that for both wide-banded and narrow-banded
waves, the probability of large waves decreases with an increase in wave nonlinearity,
which can be explained by wave breaking.

Fig. 21 depicts the statistical moments of narrow-banded and wide-banded waves
offshore, normalized by Hs, and the corresponding runup oscillations on a beach,
normalized by Rs. The statistical moments, mean,< & >, variance, o, skewness, Sk, and
(normalized) kurtosis, Kurt are calculated as:

<§>Z%i§"’Gz(é)zii(é—<§>)z (23)
b e cesy S T
Sk(éﬁ)_;na3(§)(é <§>) ,Kurt(g)_;n04(§)(§l <§>) 3 (24)

where £ is a data vector, and n is its length.

Notably, the statistical moments (mean, skewness and kurtosis) of both narrow-banded
and wide-banded initial wave fields are zero, providing the required Gaussian statistics.
With respect to runup oscillations, it can be seen that for both narrow- and wide-banded
waves, the mean of runup oscillations increases with the nonlinearity, which reflects the
known effect of wave set-up on a beach. For relatively weak wave nonlinearities
(Hs/ho = 0.03, 0.06, and 0.09), the set-up for narrow-banded waves is larger than for
wide-banded ones, while for slightly strong wave nonlinearities (Hs/ho = 0.11, and 0.14),
it is the opposite due to the wave breaking. For narrow-banded waves, the variance
changes non-monotonically with an increase in nonlinearity, while for wide-banded
waves the variance decreases. The higher moments (skewness and kurtosis) of runup
oscillations for waves with a narrow-band spectrum are negative and decrease with an
increase in wave nonlinearity, while for waves with a wide-band spectrum they are
sign-variable.
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Figure 20. Probability density functions of runup oscillations, normalized by a significant runup
height, R, for different nonlinearities for narrow-banded (a) and (c), and wide-banded (b) and (d)
waves in linear (top) and logarithmic (bottom) scales. Solid lines correspond to Gaussian
distributions, fitted to the corresponding datasets, using the matching colours.
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Figure 21. Statistical moments of runup oscillations (normalized by Rs) of narrow-banded (red
circles) and wide-banded (black circles) waves on a beach, r, versus nonlinearity, Hs/ho. Statistical
moments of narrow-band and wide-band wave fields offshore (normalized by Hs) are shown by red

crosses and black squares, respectively.
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The distribution of extreme wave runup heights, Rextrm = R/Rs > -th, where th is some
threshold value, in some way behaves similarly to a conditional Weibull law whose
density is given by Eq. (25):

f (Rextrm) = i i extrm
0, R <th

extrm

k-1
R bl
k extrm e*(Re.wrm//?')l ch//“’ , R Z th
(25)

A conditional Weibull distribution (Eq. 25) is characterized by three parameters: the
shape k, the scale A and the threshold th. Given the data, (R extrm) = 1...n, th is fixed and k
and A are computed by maximum likelihood estimator. From Eq. (26), we obtaine the

scale parameter, A:
1

A= (li(Ri"ext,m —th* )Jk . (26)

ni=l1

where n is the number of extreme wave runups. In order to obtain the shape parameter,
k, we should solve Eq. (27):

1 .
;(ln —th* )+ (Inth)th* + M (I, —th*) -V, =0, (27)
1a la 1 .
Where Mn = _Z ln Ri extrm In = _ZRI extrm Vn = _z (ln Ri &xtrm)Ri extrm
ni=l1 ni=1 ni=1

On gentle beaches, such freak runups (R/Rs = 2) are manifested as unexpected floods
and may result in human injuries and fatalities (Nikolkina and Didenkulova, 2012, Garcia
et al, 2017, Didenkulova, 2020). Fig. 22 shows the probability distribution functions of
extreme runup heights (R = 0.7 Rs), in different wave nonlinearities and bandwidths
(narrow-band and wide-band).

It can be seen that the tails of distributions, corresponding to freak runup events
(R/Rs 2 2) for narrow-banded waves decay much faster than the ones offshore
(H/Hs 2 2). This means, the probability of occurrence of freak runups for narrow-banded
waves is much less than the probability of freak wave occurrence in the sea coastal zone.
Therefore, we believe that the gentle beach works as some kind of “filter” for
narrow-banded freak events. This is also manifested in the numbers of actual freak
events, given in Table 4. It can be seen that for narrow-banded non-breaking waves of
the smallest significant wave height (Hs /ho = 0.03), the number of freak events on a
beach was reduced twice compared to the original number of freak waves offshore,
while for waves with the larger significant waves heights, which were affected by the
wave breaking, there were no freak runups at all, see Table 4.

However, for wide-banded waves, the probability of freak events on a beach is more
or less the same as in the sea coastal zone and may even be higher (Fig. 22 b). With an
increase in nonlinearity (and consequently, wave breaking), the number of freak runups
on a beach decreases. However, for waves of moderate nonlinearities, the number of
freak runups is still larger than the number of freak waves offshore, which may be
explained by a wide range of wave periods associated with the wide-banded waves.
The runup height of regular waves is proportional to 1/7%, hence, as smaller period,
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as larger the runup and this dependence is quadratic and more powerful than linear
dependence on the initial wave amplitude. Therefore, it is possible, the freak runups in
wide-banded wave fields are mostly governed by wave periods. However, the number of
freak runups on a beach suddenly drops down (Table 4)for the waves strongly affected
by the wave breaking (Hs/ho=0.11 and 0.14). The probability of extreme runups
decreases with an increase in wave nonlinearity for wide-banded waves and changes
non-monotonically with nonlinearity for narrow-banded waves. It is interesting to see
that the tails of distributions in Fig. 22 acan be separated in two groups for “relatively
large Hs/ho” and “relatively small Hs/ho”, where the small group is always higher than
the large group, this separation into groups can be explained by the wave breaking.
The extreme runup heights, (R/Rs 2 0.7) are distributed according to a conditional Weibull
distribution (Eg. (25)), which gives acceptable results especially for narrow-banded waves,
therefore, can be used for the estimation of extreme inundations (freak runups) on a
beach. Furthermore, in future applications, the statistical analysis provided hereby might
also be advantageous for other applications, such as, wave impacts on structures placed
in shallow water conditions (Fazeres-Ferradosa et al., 2018, Vanem et al., 2019).
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Figure 22. Probability density functions of large runup heights (R > 0.7 Rs) for (a) narrow-banded
(triangles) and (b) wide-banded (pluses) waves. Lines correspond to conditional Weibull
distributions (Eq. 25), fitted to the narrow-band (solid lines) and wide-band (dashed lines) datasets,
using the matching colours.

Table 4. The number of freak events in the sea coastal zone and on a beach for different
wave regimes.

Af/fo=0.1 Af/fo=0.4
H/ho Number of  Freak Waves Freak Number of  Freak Waves Freak
Waves Offshore Runups Waves Offshore Runups

0.03 362255 125 61 389232 51 118
0.06 362380 117 0 389385 45 76
0.09 362096 89 0 389444 49 62
0.11 362319 88 0 389263 53

0.14 362302 102 0 389728 34
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Table 5. Parameters of a conditional Weibull distribution fitted to the corresponding datasets

in Fig. 22.
Af/fo=0.1 Af/fo=0.4
Hy/ho k A k A
0.03 2.747 0.886 0.76 0.116
0.06 3.6 0.92 1.43 0.48
0.09 4.06 0.89 2.58 0.86
0.11 3.08 0.777 2.6 0.772
0.14 3.08 0.72 2.718 0.762
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4. CONCLUSION

We studied the runup of nonlinear waves of different shapes (single tsunami waves,
sinusoidal, bi-harmonic and ship wakes on a plane beach, taking into account wave
nonlinearities, effects of dispersion and wave breaking. For all experiments, the
bathymetry consisted of two sections: a flat bottom bathymetry with a constant depth
merged with a constant beach slope. We used different methods: semi-analytical
method, based on the solutions of the nonlinear shallow water theory, as well as
nondispersive and dispersive numerical models, based on the nonlinear shallow water
equations and modified Peregrine equations respectively. Both analytical and numerical
results were compared with the experimental data obtained from Large Wave Flume
(GWK), Hanover, Germany, between 2012 and 2013.

We studied the nonlinear deformation and runup of long single tsunami waves of
positive polarity with kh changing from 0.18 to 0.38. Found that, the maximum tsunami
runup height on a beach depends on the wave front steepness at the toe of the bottom
slope. The corresponding formula, which could be used in tsunami early warning
systemes, is proposed.

The runup of periodic waves (regular, bi-harmonic and ship wakes) characterized by
kh =0.2 has been studied using dispersive and non-dispersive models and compared
with experimental data from GWK. Concluded that, the dispersive effects in the given
range of kh are principal for estimation of the runup height if the incident waves have
large amplitudes, while for weakly nonlinear waves the nondispersive nonlinear shallow
water theory is still good enough to estimate wave runup.

We studied the statistics of extreme wave runups using the numerical model based
on the nonlinear shallow water theory with respect to different scenario of wave
breaking, wave nonlinearity and bandwidth of the incident wave field. Found, that in the
given range of kh = 0.38, wide-banded wave fields lead to a higher probability of freak
runups on a beach compared to the probability of freak wave occurrence in the initial
wave field. On the contrary, for narrow-banded wave signals, the slopping beach filters
extreme runups, substantially reducing the probability of their occurrence. It is also
suggested that the conditional Weibull distribution can be used for the description of
extreme runup heights and for the assessment of extreme inundations.

Future work:

We aim to extend our investigations of the statistical analysis of freak wave’s runup and
the influences of dispersion effects on the extreme runup height on a plane beach using
both dispersive and nondispersive models. We also would like to continue with the
experiments on tsunami waves propagating over complex bathymetries (convex-plane
beaches and plane-plane beaches). This work has already started and we foresee some
interesting results there. We saw in GWK experiments with asphalt and plastic beach
covers, that the beach roughness substantially reduces tsunami runup. Therefore, we
would like to investigate the influence of beach roughness and bottom boundary layers
on the runup height using available experimental data and to compare these results with
dispersive and non-dispersive models. Numerically, we would like to examine different
friction laws (Manning, Darcy, and Chézy laws).
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Abstract

Runup of nonlinear waves of different shapes on a plane
beach including effects of dispersion and wave breaking

The runup of nonlinear waves of different shapes (single tsunami waves, regular,
bi-harmonic and ship wakes) on a plane beach has been investigated in terms of
dispersion, nonlinearity and wave breaking. We used a flat bottom bathymetry with a
constant depth connected with a constant beach slope. We used different methods:
(i) semi-analytical solution of the non-dispersive nonlinear shallow water theory,
(ii) the corresponding numerical model, and (iii) dispersive numerical model based on
the modified Peregrine equations. Both analytical and numerical results were compared
with the experimental data obtained from Large Wave Flume (GWK), Hanover,
Germany, in 2012-2013.

A single tsunami wave has been investigated for the nonlinear effects on the runup
height analytically and numerically using the nonlinear shallow water theory. Found
that, the maximum tsunami runup height on a beach depends on the wave front
steepness at the toe of the bottom slope. The corresponding new formula of maximum
runup height as a function of wave front steepening, wave period and distance to the
slope is suggested.

The periodic waves characterized by kh = 0.2 have been studied using dispersive and
nondispersive models and compared with experimental data. Concluded that, in the
given range of kh, for large-amplitude waves the dispersive effects are important and
dispersive models should be applied, while for small-amplitude waves the nondispersive
nonlinear shallow water theory gives reasonable results and can still be used.

We studied the runup statistics of irregular waves with kh = 0.38 using the numerical
model based on the nonlinear shallow water theory. The runup statistics is discussed
with regard to different scenarios of wave breaking, wave nonlinearity and the
bandwidth of the incident wave field. Found, that in the given range of kh = 0.38,
wide-banded wave fields lead to a higher probability of freak runups on a beach
compare to the probability of freak wave occurrence in the initial wave field. In contrary,
for narrow-banded wave signals, the beach slope filters extreme runups, substantially
reducing the probability of their occurrence. It is also suggested that the conditional
Weibull distribution can be used for the description of extreme runup heights and
the assessment of extreme inundations.
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Lihikokkuvote

Laine dispersiooni ja murdumise moju mittelineaarsete
lainete uhtekorgusele erineva kujuga laugetel randadel

Uuriti erineva kujuga mittelineaarsete lainete (Uksikud tsunami-, regulaarsed,
bi-harmoonilised ja laevalained) uhtek&rgusi laugetel randadel erineva dispersiooni,
mittelineaarsuse ja lainete murdumise korral. Kasutati kolme erinevat meetodit:
(i) mittedispersiivse ja mittelineaarse madala vee teooria vorrandite poolanaliitiline
lahendus, (ii) vastav numbriline mudel ja (iii) Peregrine'i vdrranditega tdiendatud
dispersiivne numbriline mudel. Uhtekdrguse simulatsioonide jaoks kasutati lameda
pbhjaga ja Uhtlase sligavusega batlimeetriat, mis oli Ghendatud konstantse kaldega
rannandlvaga. Too analiitilisi ja numbrilisi tulemusi vorreldi katseandmetega, mis
koguti Saksamaal Hannoveris asuvas lainebasseinis (Large Wave Flume (GWK)) aastatel
2012-2013.

Uksiku tsunamilaine mustri pdhjal uuriti analiiiitiliselt ja numbriliselt mittelineaarseid
efekte laine uhtekdOrgusele. Leiti, et tsunaamilaine maksimaalne uhtekdrgus lauges
rannas soltub laine esiosa (frondi) jarskusest. Antud t66s esitatakse uus maksimaalse
uhtekdrguse leidmise vérrand, mis soltub laine jarskusest, perioodist ja kaugusest
rannandlva alguseni.

Perioodilisi laineid reziimil kh = 0.2 uuriti dispersiivsete ja mittedisperssete mudelite
abil ning saadud tulemusi vorreldi katseandmetega. Leiti, et teatud kh vahemikus on
suure amplituudiga lainete korral dispersiivsed mdjud olulised ja tuleks rakendada
dispersiivseid mudeleid. Samas vdikese amplituudiga lainete korral annavad
mittedispersiivsed mittelineaarsde madala vee vorrandid aktsepteeritavaid tulemusi.
Uuriti ebaregulaarsete lainete uhtek&rguse statistikat reziimil kh = 0.38, kasutades
mittelineaarse madala vee teoorial p&hinevat numbrilist mudelit. UhtekGrguse
statistikat vaadeldi lainete murdumise, lainete mittelineaarsuse ja olemasoleva
lainevélja erineva stsenaariumi osas. Laia spektriga laineviljadel (Af/fo = 0.4) on suurem
tdendosus kaasa tuua suuri uhtekdrgusi rannal vorreldes avamere lainevaljaga. Erinevalt
laia spektriga lainevidljadest, on rannandlva profiili mdéju kitsa spektriga lainetele
(Af/fo = 0.1) suur ja vdhendab seeldbi hiidlainete esinemise tdendosust. Lisaks leiti, et
tingimuslik Weibulli sagedusjaotus on kasutatav ekstreemsete lainete uhtek&rguse ja
rannalejooksu kauguse iseloomustamiseks.

a7






Appendix

Publication |

Abdalazeez, A., Didenkulova, I., Dutykh, D. 2019. Nonlinear deformation and runup of
single tsunami waves of positive polarity: numerical simulations and analytical
predictions. Natural Hazards and Earth System Sciences, 19, 2905-2913.10.5194/nhess-
19-2905-2019.

49






Nat. Hazards Earth Syst. Sci., 19, 2905-2913, 2019
https://doi.org/10.5194/nhess-19-2905-2019

© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Nonlinear deformation and run-up of single tsunami waves of
positive polarity: numerical simulations and analytical predictions

Ahmed A. Abdalazeez!, Ira Didenkulova'-2, and Denys Dutykh?

IDepartment of Marine Systems, Tallinn University of Technology, Akadeemia tee 15A, Tallinn 12618, Estonia
Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, Nizhny Novgorod 603950, Russia
3Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, Chambéry, 73000, France

Correspondence: Ahmed A. Abdalazeez (ahabda@ttu.ee)

Received: 7 June 2019 — Discussion started: 20 June 2019

Revised: 15 October 2019 — Accepted: 8 November 2019 — Published: 20 December 2019

Abstract. The estimate of an individual wave run-up is es-
pecially important for tsunami warning and risk assessment,
as it allows for evaluating the inundation area. Here, as a
model of tsunamis, we use the long single wave of posi-
tive polarity. The period of such a wave is rather long, which
makes it different from the famous Korteweg—de Vries soli-
ton. This wave nonlinearly deforms during its propagation in
the ocean, which results in a steep wave front formation. Sit-
uations in which waves approach the coast with a steep front
are often observed during large tsunamis, e.g. the 2004 In-
dian Ocean and 2011 Tohoku tsunamis. Here we study the
nonlinear deformation and run-up of long single waves of
positive polarity in the conjoined water basin, which consists
of the constant depth section and a plane beach. The work is
performed numerically and analytically in the framework of
the nonlinear shallow-water theory. Analytically, wave prop-
agation along the constant depth section and its run up on
a beach are considered independently without taking into
account wave interaction with the toe of the bottom slope.
The propagation along the bottom of constant depth is de-
scribed by the Riemann wave, while the wave run-up on a
plane beach is calculated using rigorous analytical solutions
of the nonlinear shallow-water theory following the Carrier—
Greenspan approach. Numerically, we use the finite-volume
method with the second-order UNO2 reconstruction in space
and the third-order Runge—Kutta scheme with locally adap-
tive time steps. During wave propagation along the constant
depth section, the wave becomes asymmetric with a steep
wave front. It is shown that the maximum run-up height de-
pends on the front steepness of the incoming wave approach-
ing the toe of the bottom slope. The corresponding formula

for maximum run-up height, which takes into account the
wave front steepness, is proposed.

1 Introduction

Evaluation of wave run-up characteristics is one of the most
important tasks in coastal oceanography, especially when
estimating tsunami hazard. This knowledge is required for
planning coastal structures and protection works as well as
for short-term tsunami forecasts and tsunami warning. Its im-
portance is also confirmed by a number of scientific papers
(see recent works, e.g. Tang et al., 2017; Touhami and Khel-
laf, 2017; Zainali et al., 2017; Raz et al., 2018; Yao et al.,
2018).

The general solution of the nonlinear shallow-water
equations on a plane beach was found by Carrier and
Greenspan (1958) using the hodograph transformation. Later
on, many other authors found specific solutions for different
types of waves climbing the beach (see, for instance, Ped-
ersen and Gjevik, 1983; Synolakis, 1987; Synolakis et al.,
1988; Mazova et al., 1991; Pelinovsky and Mazova, 1992;
Tadepalli and Synolakis, 1994; Brocchini and Gentile, 2001;
Carrier et al., 2003; Kanoglu, 2004; Tinti and Tonini, 2005;
Kanoglu and Synolakis 2006; Madsen and Fuhrman, 2008;
Didenkulova et al., 2007; Didenkulova, 2009; Madsen and
Schiiffer, 2010).

Many of these analytical formulas have been validated ex-
perimentally in laboratory tanks (Synolakis, 1987; Li and
Raichlen, 2002; Lin et al., 1999; Didenkulova et al., 2013).
For most of them, the solitary waves have been used. The

Published by Copernicus Publications on behalf of the European Geosciences Union.
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soliton is rather easy to generate in the flume; therefore, lab-
oratory studies of run-up of solitons are the most popular.
However, (Madsen et al., 2008) pointed out that the soli-
tons are inappropriate for describing the real tsunami and
proposed to use waves of longer duration than solitons and
downscaled records of real tsunami. Schimmels et al. (2016)
and Sriram et al. (2016) generated such long waves in the
Large Wave Flume of Hanover (GWK FZK) using the pis-
ton type of wave maker, while McGovern et al. (2018) did it
using the pneumatic wave generator.

It should be mentioned that the shape of tsunami varies a
lot depending on its origin and the propagation path. One of
the best examples of tsunami wave shape variability is given
in Shuto (1985) for the 1983 Sea of Japan tsunami, where
the same tsunami event resulted in very different tsunami
approaches in different locations along the Japanese coast.
These wave shapes included the following: single positive
pulses, undergoing both surging and spilling breaking sce-
narios; breaking bores; periodic wave trains, surging as well
as breaking; and a sequence of two or three waves and un-
dular bores. This is why there is no “typical tsunami wave
shape”, and therefore in the papers on wave run-up cited
above, many different wave shapes, such as single pulses, N
waves, and periodic symmetric and asymmetric wave trains,
are considered. In this paper, we focus on the nonlinear defor-
mation and run-up of long single pulses of positive polarity
on a plane beach.

A similar study was performed for periodic sine waves
(Didenkulova et al., 2007; Didenkulova, 2009). It was shown
that the run-up height increases with an increase in the wave
asymmetry (wave front steepness), which is a result of non-
linear wave deformation during its propagation in a basin
of constant depth. It was found analytically that the run-up
height of this nonlinearly deformed sine wave is proportional
to the square root of the wave front steepness. Later on, this
result was also confirmed experimentally (Didenkulova et al.,
2013).

It should be noted that these analytical findings also match
tsunami observations. Steep tsunami waves are often wit-
nessed and reported during large tsunami events, such as
2004 Indian Ocean and 2011 Tohoku tsunamis. Sometimes
the wave, which approaches the coast, represents a “wall of
water” or a bore, which is demonstrated by numerous photos
and videos of these events.

The nonlinear steepening of the long single waves of pos-
itive polarity has also been observed experimentally in Sri-
ram et al. (2016), but its effect on wave run-up has not been
studied yet. In this paper, we study this effect both analyti-
cally and numerically. Analytically, we apply the methodol-
ogy developed in Didenkulova (2009) and Didenkulova et al.
(2014), where we consider the processes of wave propagation
in the basin of constant depth and the following wave run-up
on a plane beach independently, not taking into account the
point of merging of these two bathymetries. Numerically, we
solve the nonlinear shallow-water equations.
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The paper is organized as follows. In Sect. 2, we give the
main formulas and briefly describe the analytical solution.
The numerical model is described and validated in Sect. 3.
The nonlinear deformation and run-up of the long single
wave of positive polarity are described in Sect. 4. The main
results are summarized in Sect. 5.

2 Analytical solution

We solve the nonlinear shallow-water equations for the
bathymetry shown in Fig. 1:

on

E‘f‘ a-ﬁ-gax—O, (1)
ML )+ mul=0 @
ar oy LU=

Here n(x, 1) is the vertical displacement of the water sur-
face with respect to the still water level, u(x, ¢) is the depth-
averaged water flow, /1 (x) is the unperturbed water depth, g is
the gravitational acceleration, x is the coordinate directed on-
shore and ¢ is time. The system of Egs. (1) and (2) is solved
independently for the two bathymetries shown in Fig. 1: a
basin of constant depth /¢ and length X and a plane beach,
where the water depth /(x) = —x tan «.

Equations (1) and (2) can be solved exactly for a few
specific cases. In the case of constant depth, the solution is
described by the Riemann wave (Stoker, 1957). Its adapta-
tion for the boundary problem can be found in Zahibo et
al. (2008). In the case of a plane beach, the corresponding
solution was found by Carrier and Greenspan (1958). Both
solutions are well-known and widely used, and we do not
reproduce them here but just provide some key formulas.

As already mentioned, during its propagation along the
basin of constant depth /4, the wave transforms as a Riemann
wave (Zahibo et al., 2008):

x+Xo+ L
, 1) = t——, 3
n(x, 1) 770[ VD ] 3)
V(x,1) =3y glho+n(x,0)]—2/gho, 4)
where no(x = —L — Xy, 1) is the water displacement at the

left boundary. After the propagation over the section of con-
stant depth £, the incident wave has the following shape:

i V t
V(x,t)]’ x0 (1)

=3/ glho+nxo ()] —2/gho. (®)

Following  the methodology developed in  Di-
denkulova (2008), we let this nonlinearly deformed wave
described by Eq. (5) run up on a plane beach, characterized
by the water depth /(x) = — x tan «. This approach does not
take into account the merging point of the two bathymetries
and, therefore, does not account for reflection from the toe
of the slope and wave interaction with the reflected wave.

nxo (1) =no [f -
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Figure 1. Bathymetry sketch. The wavy curve at the toe of the slope
regards analytical solution, which does not take into account merg-
ing between the constant depth and sloping beach sections.

To do this, we represent the input wave nyo as a Fourier
integral:

+00
/ B (w)exp (iwt) dow. (6)

—00

nxo =

Its complex spectrum B(w) can be found in an explicit form
in terms of the inverse Fourier transform:

+o0
1
B(a))zﬂ / nxo (1) exp (—iwt)dt. (N

—00

Equation (7) can be rewritten in terms of the water displace-
ment, produced by the wave maker at the left boundary (Za-
hibo et al., 2008):

1 +Ood X L
B(w) = — ﬂexp —iw Z+ﬂ ,
2riw dz V (n0)
-0
x+Xo+ L
dz,z=t— ———. 8
of V (10) ®

In this study we consider long single pulses of positive po-
larity:

0 (t) = Asech? (%) , ©)

where A is the input wave height and 7 is the effective wave
period at the location with the water depth /¢. The wave de-
scribed by Eq. (9) has an arbitrary height and period and,
therefore, does not satisfy properties of the soliton but just
has a sech? shape. Substituting Eq. (9) into Eq. (8), we can
calculate the complex spectrum B(w).

Wave run-up oscillations at the coast r(7) and the velocity
of the moving shoreline u#(¢) can be found from Didenkulova
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et al. (2008):

uz
r(t)=R<t+gtana>*E, (10)
(i)
u(@®)=U 1+ : (1)
gltana

+o00
R(t)=/2nt (L) / ViolH ()

T
exp{i (w (t—t(L))+ Zs1gn (a)))}da), (12)
U((t)= I dr 13
(t)_tancxg’ (13)

where T = 2L/+/ghy is the travel time to the coast.

We also compare this solution with the run-up of a sin-
gle wave of positive polarity described by Eq. (9) (without
nonlinear deformation). The maximum run-up height Ry,x
of such a wave (Eq. 9) can be found from Didenkulova et al.
(2008) and Sriram et al. (2016):

1/4
Rumax 1 < 2hO >2
=2.8312+/cota| — [ — . (14)
A (gho 3T

If the initial wave is a soliton, Eq. (14) coincides with the
famous Synolakis formula (Synolakis, 1987).

3 Numerical model

Numerically, we solve the nonlinear shallow-water equations
Egs. (1) and (2), written in a conservative form for a total wa-
ter depth. We include the effect of the varying bathymetry (in
space) and neglect all friction effects. However, the resulting
numerical model will be taken into account for some dissi-
pation thanks to the numerical scheme dissipation, which is
necessary for the stability of the scheme and should not in-
fluence many run-up characteristics. Namely, we employ the
natural numerical method, which was developed especially
for conservation laws — the finite-volume schemes.

The numerical scheme is based on the second order in
space UNO?2 reconstruction, which is briefly described in
Dutykh et al. (2011b). In time we employ the third-order
Runge—Kutta scheme with locally adaptive time steps in or-
der to satisfy the Courant—Friedrichs—Lewy stability condi-
tion along with the local error estimator to bound the error
term to the prescribed tolerance parameter. The numerical
technique to simulate the wave run-up was described previ-
ously in Dutykh et al. (2011a). The bathymetry source term
is discretized using the hydrostatic reconstruction technique,
which implies the well-balanced property of the numerical
scheme (Gosse, 2013).

The numerical scheme is validated against experimental
data of wave propagation and run-up in the Large Wave
Flume (GWK) in Hanover, Germany. The experiments were
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Figure 2. Water elevations along the 251 m long constant depth
section of the Large Wave Flume (GWK), where hg =3.5m, A =
0.1m, T =20s and tan @ = 1 : 6. Results of numerical simulations
are shown by the red line, and experimental data are shown by the
blue line.

set with a flat bottom, with a constant depth of /g = 3.5m,
length of [a, b] = 251 m and a plane beach with a slope of tan
o =1:6 (see Fig. 1). The flume had 16 wave gauges along
the constant depth section and a run-up gauge on the slope.
The incident wave had an amplitude of A = 0.1 m and period
of T =20s. The detailed description of the experiments can
be found in Didenkulova et al. (2013). The results of numer-
ical simulations are in good agreement with the laboratory
experiments along the constant depth section (see Fig. 2) as
well as on the beach (Fig. 3). The comparison of the run-
up height is calculated numerically and analytically using
the approach described in Sect. 2 and with the experimental
record shown in Fig. 3. It can be seen that the experimen-
tally recorded wave is slightly smaller, which may be caused
by the bottom friction, especially on the slope. Both numer-
ical and analytical models describe the first wave of posi-
tive polarity rather well. The numerical prediction of run-up
height is slightly higher than the analytical one. This addi-
tional increase in the run-up height in the numerical model
may be explained by the nonlinear interaction with the re-
flected wave, which is not taken into account in the analytical
model. The wave of negative polarity is much more sensitive
to all the effects mentioned above than the wave of positive
polarity and, therefore, looks different for all three lines in
Fig. 3. By introducing additional dissipation in the numeri-
cal model, one can easily reach perfect agreement between
the numerical simulations and experimental data. However,
we do not do so, since below we focus on the analysis of an-
alytical results and for clarity would like to avoid additional
parameters in the numerical model. Also, we focus on the
maximum run-up height and, therefore, expect small differ-
ences between the results of analytical and numerical mod-
els. The data used for all figures of this paper are available at
https://doi.org/10.13140/rg.2.2.27658.41922 (Abdalazeez et
al., 2019).
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Figure 3. Run-up height of the long single wave with A =0.1m
and T =20s on a beach slope, where tan o = 1 : 6. The numerical
solution is shown by the red dotted line, the analytical solution is
shown by the blue dashed line and the experimental record is shown
by the black solid line.

4 Results of numerical and analytical calculations

It is reported in Didenkulova et al. (2007) and Didenkulova
(2009), for a periodic sine wave, that the extreme run-up
height increases proportionally with the square root of the
wave front steepness. In this section, we study the nonlinear
deformation and steepening of waves described by Eq. (9)
and their effect on the extreme wave run-up height. The cor-
responding bathymetry used in analytical and numerical cal-
culations is normalized on the water depth in the section of
constant depth /¢ and is shown in Fig. 1. The input wave pa-
rameters such as wave amplitude, A/hg, and effective wave
length, A/Xo, where A = T'\/ghg, are changed. The beach
slope is taken as tan « = 1 : 20 for all simulations.

We underline that in order to have analytical solution, the
criterion of no wave breaking should be satisfied. Therefore,
all analytical and numerical calculations below are chosen
for non-breaking waves.

Figure 4 shows the dimensionless maximum run-up
height, Rmax/A, as a function of the initial wave amplitude,
A/hg. The incident wave propagates over different distances
to the bottom slope, Xo/A =1.7, 3.4, 5.1 and 6.8, where
kho = 0.38. The analytical solution described in Sect. 2 is
shown with lines, and the numerical solution described in
Sect. 3 is shown with symbols (diamonds, triangles, squares
and circles). It can be seen that in most cases and espe-
cially for small values of Xo/A = 1.7 and 3.4, numerical
simulations give larger run-up heights than analytical predic-
tions. These differences can be explained by the effects of
wave interaction with the toe of the underwater beach slope,
which are not taken into account in the analytical solution.
For larger distances X(o/A = 6.8, both analytical and numer-
ical solutions give similar results, supported by the numer-
ical scheme dissipation described in Sect. 3, which can be
considered a “numerical error”. It should be mentioned that
we use a physical dissipation rate of zero for these simula-
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Figure 4. Maximum run-up height, Rmax /A, as a function of initial
wave amplitude, A/hg, for different distances to the slope, Xo/A.
Analytical solution described in Sect. 2 is shown by lines, and nu-
merical solution described in Sect. 3 is shown by symbols (dia-
monds, triangles, squares and circles) with matching colours. The
thick black line corresponds to Eq. (14) for wave run-up on a beach
without constant depth section, where khg = 0.38.
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Figure 5. Maximum run-up height, Rmax/A, as a function of dis-
tance to the slope, X(/A, for different amplitudes of the initial
wave, A/hq. Analytical solution described in Sect. 2 is shown by
lines, and numerical solution described in Sect. 3 is shown by sym-
bols (triangles, squares and circles) with matching colours, where
kho =0.38.

tions; however, a small dissipation for stability of the numer-
ical scheme is still needed, and this may become noticeable
at large distances. For the sech?-shaped wave (A /hg = 0.03,
A/ Xo = 0.12) propagation, the reduction of initial wave am-
plitude constitutes ~ 2 %.

It is worth mentioning that for small initial wave ampli-
tudes, all run-up heights are close to each other and are close
to the thick black line, which corresponds to Eq. (14) for
wave run-up on a beach without constant depth section. This
means that the effects we are talking about are important only
for nonlinear waves and irrelevant for weakly nonlinear or al-
most linear waves.
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Figure 6. Maximum run-up height, Rmax/A, as a function of khg
for different distances to the slope, X(/A. Analytical solution de-
scribed in Sect. 2 is shown by lines, and numerical solution de-
scribed in Sect. 3 is shown by symbols (diamonds, triangles, squares
and circles) with matching colours. The thick black line corresponds
to Eq. (14) for wave run-up on a beach without constant depth sec-
tion (A/hg = 0.03).

The same effects can be seen in Fig. 5, which shows the
maximum run-up height, Rnax/A, as a function of distance
to the slope, X¢/A, for different amplitudes of the initial
wave, A/hg. The distance Xo/% changes from 0.8 to 9.4,
where kho=0.38. The analytical solution is shown with
lines, while the numerical solution is shown with symbols
(triangles, squares and circles). It can be seen in Fig. 5 that
for smaller values of Xo/X <6, numerical predictions pro-
vide relatively larger run-up values compared with analytical
predictions, while for higher values of Xo/A > 6, the differ-
ences are significantly reduced. A relevant change of this be-
haviour is given for A/hg = 0.06. We can observe that nu-
merical predictions for this amplitude become smaller than
analytical predictions for Xo/A > 8. As stated above, we be-
lieve that this can be a result of interplay of two effects: inter-
action with the underwater bottom slope, which is not taken
into account in the analytical prediction, and the numerical
scheme dissipation (“numerical error”), which affects the nu-
merical results.

The dependence of maximum run-up height, Rpyax/A, on
khg is shown in Fig. 6 for A/ho = 0.03. It can be seen that
the difference between numerical and analytical results de-
creases with an increase in khg. We relate this effect with
the wave interaction with the slope, which is not properly ac-
counted in our analytical approach. As one can see in Fig. 7,
this difference for a milder beach slope tan o =1 : 50 is re-
duced.

The next figure, Fig. 8, supports all the conclusions drawn
above. It also shows that the difference between analytical
and numerical results increases with an increase in the wave
period. As pointed out before for small wave periods, the nu-
merical solution may coincide with the analytical one or even
become smaller as in kg = 0.38 for Xo/A>8.

Nat. Hazards Earth Syst. Sci., 19, 2905-2913, 2019
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Figure 7. Maximum run-up height, Rmax/A, as a function of ini-
tial effective wave length, A/ X (blue axes) and khq (black axes).
Analytical solutions for tan « = 1 : 20 and tan & = 1 : 50 are shown
by dotted and dashed lines, respectively, while numerical simula-
tions for tan o = 1: 20 and tan o = 1 : 50 are shown by circles and
crosses, respectively (A/hg = 0.03).

It is important that both analytical and numerical results
in Figs. 5 and 8 demonstrate an increase in maximum run-
up height with an increase in the distance X¢/A. This re-
sult is in agreement with the conclusions of Didenkulova
et al. (2007) and Didenkulova (2009) for sinusoidal waves.
In order to be consistent with the results of Didenkulova et
al. (2007) and Didenkulova (2009), we connect the distance
Xo/X with the incident wave front steepness in the begin-
ning of the bottom slope. The wave front steepness s is de-
fined as the maximum of the time derivative of water dis-
placement, d(n/A)/d(¢/T), and is studied in relation with
the initial wave front steepness, s, where

max (dn(x,t)/dr) max (dn(x =a,t)/dr)

sW=————— s0=— (7 (15)

A/T AJT

In order to calculate the incident wave front steepness in the
beginning of the bottom slope from results of numerical sim-
ulations, we should separate the incident wave and the wave
reflected from the bottom slope. At the same time, the wave
steepening along the basin of constant depth is very well de-
scribed analytically, as demonstrated in Fig. 9.

It can be seen that the wave transformation described by
the analytical model is in a good agreement with numerical
simulations. Therefore, below we make reference to the an-
alytically defined wave front steepness, keeping in mind that
it coincides well with the numerical one. Having said this,
we approach the main result of this paper, which is shown in
Fig. 10. The red solid line gives the analytical prediction. It
is universal for single waves of positive polarity for different
amplitudes A/hg and kh( and can be approximated well by
the power fit (coefficient of determination R? = 0.99):

Rumax/Ro = (s/50)**, (16)
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Figure 8. Maximum run-up height, Rmax/A, as a function of the
distance to the slope, X(/A , for different values of kh(. Analytical
solution described in Sect. 2 is shown by lines, and numerical so-
lution described in Sect. 3 is shown by symbols (triangles, squares
and circles) with matching colours (A /hg = 0.03).
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Figure 9. Wave evolution at different locations, x /A = 0, 0.85, 1.71,
2.56,3.41, 4.27 and 5.12, along the section of constant depth for a
basin with X/A =5.12 and tan o = 1 : 20. Numerical results are
shown by solid lines, while the analytical predictions are given by
the black dotted lines. The parameters of the wave are A /hg = 0.03
and khg = 0.19.

where Rpyax/A is the maximum run-up height in the con-
joined basin (with a section of constant depth); Rp/A is
the corresponding maximum run-up height on a plane beach
(without a section of constant depth).

The fit is shown in Fig. 10 by the black dashed line. For
comparison, the dependence of the maximum run-up height
on the wave front steepness obtained using the same method
for a sine wave is stronger than for a single wave of positive
polarity (Didenkulova et al., 2007) and is proportional to the
square root of the wave front steepness. This is logical, as
the sinusoidal wave has a sign-variable form and, therefore,
excites a higher run-up. For possible mechanisms, see the
discussion on N waves in Tadepalli and Synolakis (1994).
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Figure 10. The ratio of maximum run-up height in the conjoined
basin, Rmax/A, and the maximum run-up height on a plane beach,
Rg/A, versus the wave front steepness, s/sg, for A/hg=0.057,
kho = 0.38 (brown points); A/hg=0.086, khy=0.38 (red plus
signs); A/hg=0.057, khg =0.29 (blue points); A/hy=0.086,
khy = 0.29 (turquoise plus signs); A/hg = 0.057, khg =0.22 (vi-
olet points); A/hg = 0.086, khy = 0.22 (pink plus signs); A/hg =
0.057, khoy = 0.19 (dark-green points); and A/hg = 0.086, khg =
0.19 (light-green plus signs). All markers correspond to the results
of numerical simulations, while the asymptotic analytical predic-
tions are given by the red solid line. Black dashed line corresponds
to the power fit of the analytical results of Eq. (16).

The results of numerical simulations are shown in Fig. 10
with different markers. It can be seen that numerical data
for the same period but different amplitudes follow the same
curve. The run-up is higher for waves with smaller khg. In
our opinion, this dependence on khg is a result of merg-
ing a plane beach with a flat bottom. This effect can be pa-
rameterized with the factor (L/A)!'/4. The result of this pa-
rameterization is shown in Fig. 11. Here we can see that
for smaller face front wave steepness, s/sg < 1.5, the run-
up height is proportional to the analytically estimated curve
shown by Eq. (16), while for larger face front wave steep-
ness, s/so > 1.5, the dependence on s/sq is weaker. This de-
pendence for all numerical run-up height data, presented in
Fig. 11, can be approximated by the power fit (coefficient of
determination R? = 0.85):

Rmax/Ro = 1.17(0 /L) /(s /50)"/*. (17)

5 Conclusions and discussion

In this paper, we study the nonlinear deformation and run-
up of tsunami waves, represented by single waves of positive
polarity. We consider the conjoined water basin, which con-
sists of a section of constant depth and a plane beach. While
propagating in such basin, the wave shape changes forming
a steep front. Tsunamis often approach the coast with a steep
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Figure 11. The normalized maximum run-up height, Rmax/Ro
(L /A)l/ 4, calculated numerically versus the wave front steepness,
s/s0, for the same values of A/h( and kh( as in Fig. 10. Red solid
line is proportional to the “analytically estimated” Eq. (16), while
black solid line corresponds to Eq. (17).

wave front, as was observed during large tsunami events, e.g.
the 2004 Indian Ocean Tsunami and 2011 Tohoku tsunami.

The study is performed both analytically and numerically
in the framework of the nonlinear shallow-water theory. The
analytical solution considers nonlinear wave steepening in
the constant depth section and wave run-up on a plane beach
independently and, therefore, does not take into account
wave interaction with the toe of the bottom slope. The prop-
agation along the bottom of constant depth is described by
a Riemann wave, while the wave run-up on a plane beach
is calculated using rigorous analytical solutions of the non-
linear shallow-water theory following the Carrier—Greenspan
approach. The numerical scheme does not have this limita-
tion. It employs the finite-volume method and is based on the
second-order UNO2 reconstruction in space and the third-
order Runge—Kutta scheme with locally adaptive time steps.
The model is validated against experimental data.

The main conclusions of the paper are the following.

— It is found analytically that the maximum tsunami run-
up height on a beach depends on the wave front steep-
ness at the toe of the bottom slope. This dependence
is general for single waves of different amplitudes and
periods and can be approximated by the power fit:
Rmax/Ro = (3/50)0'42~

— This dependence is slightly weaker than the correspond-
ing dependence for a sine wave, proportional to the
square root of the wave front steepness (Didenkulova
et al., 2007). The stronger dependence of a sine wave
run-up on the wave front steepness is consistent with
the philosophy of N waves (Tadepalli and Synolakis,
1994).

— Numerical simulations in general support this analyt-
ical finding. For smaller face front wave steepness
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(s/so < 1.5), numerical curves of the maximum tsunami
run-up height are parallel to the analytical ones, while
for larger face front wave steepness (s/so> 1.5), this
dependence is milder. The latter may be a result of nu-
merical dissipation (error), which is larger for a longer
wave propagation and, consequently, larger wave steep-
ness. The suggested formula, which gives the best fit
with the data of numerical simulations in general, is
Rmnax/Ro = 1.17(0/L)"/*(s/50)"/*.

— These results can also be used in tsunami forecasts.
Sometimes, in order to save time for tsunami fore-
casts, especially for long distance wave propagation, the
tsunami run-up height is not simulated directly but es-
timated using analytical or empirical formulas (Glims-
dal et al., 2019; Lgvholt et al., 2012). In these cases we
recommend using formulas which take into account the
face front wave steepness. The face front steepness of
the approaching tsunami wave can be estimated from
the data of the virtual (computed) or real tide-gauge sta-
tions and then be used to estimate the tsunami maximum
run-up height on a beach.

The nonlinear shallow-water equations, which are used in
this study and commonly utilized for tsunami modelling,
are also known to neglect dispersive effects. In this con-
text, it is important to mention the recent work of Larsen
and Fuhrman (2019). They used Reynolds-averaged Navier—
Stokes (RANS) equations and k—» model for turbulence clo-
sure to simulate the propagation and run-up of positive sin-
gle waves, including full resolution of dispersive short waves
(and their breaking) that can develop near a positive tsunami
front. They similarly showed that this effect depends on the
propagation distance prior to the slope if a simple toe with
a slope type of bathymetry is utilized. This work shows that
these short waves have little effect on the overall run-up and
hence give additional credence to the use of shallow-water
equations. These results largely confirm what was previously
hypothesized by Madsen et al. (2008), namely that these
short waves would have little effect on the overall run-up and
inundation of tsunamis (though they found that they could
significantly increase the maximum flow velocities).
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Chapter 3 Fo¥
Dispersive and Nondispersive Nonlinear o
Long Wave Transformations: Numerical

and Experimental Results

Tomas Torsvik, Ahmed Abdalazeez, Denys Dutykh, Petr Denissenko,
and Ira Didenkulova

Abstract The description of gravity waves propagating on the water surface is
considered from a historical point of view, with specific emphasis on the development
of a theoretical framework and equations of motion for long waves in shallow
water. This provides the foundation for a subsequent discussion about tsunami
wave propagation and runup on a sloping beach, and in particular the role of wave
dispersion for this problem. Wave tank experiments show that wave dispersion can
play a significant role for the propagation and wave transformation of wave signals
that include some higher frequency components. However, the maximum runup
height is less sensitive to dispersive effects, suggesting that runup height can be
adequately calculated by use of nondispersive model equations.
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3.1 Introduction

Surface gravity waves propagating on the air—sea interface are categorised as long
waves when their wave length A is large compared with the average water depth / in
a water basin. Waves of this type include very large scale phenomena such as tides
and seiches, and local phenomena such as nonbreaking shoaling waves at the coast.
In recent years much attention has been connected with the study of tsunamis, with
respect to their propagation over vast distances in the open ocean, their transformation
in coastal waters and their resulting inundation of coastal areas.

A range of different model equations have been discussed in connection with
long wave propagation, including nonlinear shallow water (NLSW) equations and
Boussinesq-type equations, which differ in their ability to represent nonlinear and
dispersive effects. While elaborate model equations may provide more accurate
representation of the wave propagation and transformation, they are generally more
computationally demanding to integrate over time. In practical cases where a
prediction of the wave behaviour is needed quickly, such as for a tsunami warning
system, it has therefore been common practice to rely on simple NLSW equations
rather than Boussinesq-type equations. Questions regarding the tradeoff between
accuracy of prediction and efficiency of computation for shallow water model
equations remain an active area of research to this day.

In this chapter we consider the problem of shallow water waves in a historical
context, introducing some basic concepts of wave propagation. Thereafter we discuss
the importance of these factors in the context of tsunami wave propagation and runup
on a sloping beach. Finally we consider some examples of different wave types, and
assess the suitability of NLSW equations and a Boussinesq-type equation for each
of these.

3.2 Historical Background

The description of surface gravity wave propagation at the air—sea interface is one
of the truly classical subjects in fluid mechanics, and developed in multiple stages
with early contributions from some of the most prominent figures in science history
such as Newton, Euler, Laplace, Lagrange, Poisson, Cauchy and Airy (see (Darrigol,
2003; Craik, 2004, 2005) for historical references).

For instance, in 1786 Lagrange demonstrated that small amplitude waves would
propagate in shallow water with a velocity of ¢ = /gh, where g represents the
acceleration of gravity and & represents the water depth. Laplace (1776) was the first
to pose the general initial value problem for water wave motion, i.e., given a localised
initial disturbance of the sea surface, what is the subsequent motion? He was also the
first to derive the full linear dispersion relation for water waves. A complete linear
wave theory, which included wave dispersion, was later published by Airy (1845).
Despite the long and extensive history of investigations into this problem, the study
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of dispersive surface gravity waves continues to be an active field of research to this
day.

3.2.1 Airy Wave Theory

In the following discussion we will restrict our attention to wave propagation in one
horizontal dimension x on a surface that can be displaced in the vertical z direction
(see Fig.3.1). It is fairly simple to extend the theory to two horizontal dimensions,
but we will not consider any examples where this is necessary, e.g. crossing wave
patterns. A more thorough description of these equations can be found in standard
fluid mechanics textbooks, e.g., (Kundu, 1990).

A simple model equation for the propagation of surface gravity waves can be
derived under the assumption of irrotational fluid motion, ignoring viscous effects,
in which case the flow velocity components can be expressed in terms of a velocity
potential ¢, defined by

u=— and w=—, 3.1)
ax 0z

for horizontal and vertical velocity components u and w, respectively. We do not
consider effects due to surface tension, which is an important effect for short and
steep waves but do not contribute significantly to long crested waves. Lastly, we
assume that the water depth does not change very abruptly, i.e., that the water depth
is fairly constant over the wave length.

The basic equation of motion is derived from the continuity equation

Ju Jw
— +— =0, 3.2
0x + 0z (3-2)
which is transformed to the Laplace equation
2¢p 9%
— 4+ — =0, 3.3
ax2 972 (3-3)

with substitution of the velocity potential. The sea bed is traditionally considered to
be rigid and nonpermeable, which implies that flow is only permitted along the bed
profile. Under this assumption the boundary condition at the sea bed requires a zero

Fig. 3.1 Reference 'z n(x,t)
coordinate system for surface X oy
gravity waves.

h  H=h+n

L L
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normal velocity to the bed surface itself, which for a flat sea bed simplifies to

_ 9

= =0. 34
), (3.4)

w

At the sea surface the fluid parcels are not restricted by any rigid boundary, and in
fact the location of this free surface boundary is a variable, we wish to determine
by solving the equations of motion. If the wave field is sufficiently smooth we can
assume that this boundary is well represented by a material surface, i.e., that fluid
parcels at the boundary never leave the surface. Under this assumption the kinematic
boundary condition prescribed at z = 1 becomes

_ 0@

an an
+ T 9z

3.5
ot ox (3-5)

z=n z=n

Provided the nonlinear term in (3.5) is sufficiently small, this expression can be
replaced by the linear equation

an _ 3¢

= 3.6
ot 0z (3.6)

=n

Finally, the dynamic boundary condition prescribes that the pressure is continuous
across the free surface boundary, which is expressed by the linear form of the
Bernoulli equation

P
LA —0, 3.7
at+p+8z (3.7

where P is pressure and p is density. Assuming that the ambient pressure is zero at
the free surface, i.e., P = 0 at z = 1, this condition simplifies to

%—i-gn:O at z=r. (3.8)
ot
The complete boundary value problem is defined by (3.3), (3.4), (3.6), and (3.8).

In order to solve the equations we need to assume an initial wave form. By
Fourier analysis it is possible to decompose any continuous disturbance into a sum
of sinusoidal components, hence we will assume an initial condition specified by
one such component with wave number k£ and angular frequency w

n(x,t) = acos(kx — wt). (3.9)

The wave number and angular frequency represents the number of wave cycles (in
radians) per unit length and unit time, respectively, and are defined in terms of the
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wave length A and wave period T as

2 2
k:—n and w:—n.
A T

Solving the Laplace equation (3.3) with kinematic boundary ¢ ditions (3.4) and
(3.6) with this initial condition results in a velocity potential

__awcoshk(z+h)

= in(kx — .1
p bkl sin(kx — wt), (3.10)

and the original velocity components become

coshk(z + h)

u :CZG)W COS(kX —(,l)t), (311)
sinhk(z +h) .
W Sln(kx - (,()t) . (312)

By combining this solution with the dynamic boundary condition (3.8) we find the
dispersion relation between k and w as

o = +/gktanhkh, (3.13)

and the corresponding phase velocity

cp = % - /%tanhkk. (3.14)

The dispersion relation Eq. (3.13) links the wave number k with the angular
frequency w, and represents a necessary condition for consistency of linear wave
solutions for the equations of motion. This implies that sinusoidal wave solutions Eq.
(3.9) can exist if and only if the wave length and period are strictly linked with each
other according to (3.13). Equation (3.14) demonstrates that the speed of propagation
for linear waves depends on the wave number (equivalently, wave length), hence an
initial disturbance that contains wave components with various wave numbers will
tend to separate into clusters of individual components as the waves propagate away
from the source.

For waves in a dispersive medium, the energy of wave components does not
propagate with the phase velocity ¢, (3.14), but with the group velocity c; = dw/dk.
With dispersion relation (3.13), the group velocity becomes

o= de vy, 2k (3.15)
§7 dk T 2 sinh 2kh
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3.2.1.1 Deep and Shallow Water Approximations

As seen in (3.14), the phase velocity for wave components with different wave
numbers depends on the hyperbolic tangent function. It is instructive to consider
the behaviour of this equation in the deep and shallow water conditions, which
is determined by the value of ki (i.e., water depth relative to wave length). A
commonly used classification is to consider kh > 7 as deep water, kh < /10 as
shallow water, and 7 /10 < kh < 7 as intermediate water depth. This classification
should be considered a “rule-of-thumb” rather than a strict rule, as the dispersion
relation varies continuously over the range of kh.

For the deep water approximation, the hyperbolic functions in (3.14) and (3.15)
can be approximated as

2
lim tanhkh =1 and lim —_ _
kh— o0 kh—o0 sinh 2kh

’

in which case the phase and group speed in deep water become

cp = \/% and ¢, = %” (3.16)

respectively. This implies that short waves in deep water propagate slower than longer
waves, and the wave energy propagates slower than the wave phase. Note that (3.16)
is derived under the assumption that gravity is the only relevant restoring force,
which is not always correct. For instance, at very short wave lengths (cm scale at
the air—water interface) surface tension becomes the dominant restoring force, which
allows shorter wave components to propagate faster than longer wave components.
The velocity components simplify to

u = awe® cos(kx — wt), (3.17)
w = awe** sin(kx — wr), (3.18)

which are circular orbits with a radius of a at the surface. It should be noted that
the linear wave theory assumes that effects due to the finite wave amplitude are
negligible. In reality waves have a finite amplitude, which induces a slow drift in
the direction of wave propagation, and therefore the orbits of fluid parcels are not
perfect circles but display a coil-like behaviour. This effect is called Stokes drift.

In shallow water the hyperbolic functions in (3.14) can be replaced by ki because

tanhkh = kh + O [(kh)z] as kh— 0.
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and the hyperbolic function in (3.15) can be approximated as

. 2kh
Iim ——— =1,
kh—0 sinh 2kh

hence the simplified expressions for the phase speed and group speed become

cp=+/gh and cg=cp, (3.19)

respectively. In this case the phase velocity is not dependent on the wave number &,
hence waves in the shallow water limit are nondispersive. This is also reflected in
the group velocity, which becomes identical to the phase velocity in shallow water.
In the special case of unidirectional flow, the shallow water wave field therefore
becomes stationary in the coordinate system that follows the phase speed c;,. The
velocity components for shallow water waves (of small but finite depth) are

=92 costkx — wi) (3.20)
u = - cos(kx — o), )
Z .
w = aw (1 + E) sin(kx — of) . 3.21)

These are elliptic orbits where the vertical component is much smaller than the
horizontal.

3.2.2 Nonlinear Long Waves

The wave theory developed by Airy is a linear system, requiring both the underlying
equations of motion and boundary conditions to be linear, and therefore any wave
solution to this system must conform to the superposition principle. This means
that the net response to the system of two or more stimuli can be established by
determining the response of each stimulus separately, and subsequently adding these
together. Equivalently, any linear combination or scaling of valid solutions will
produce a new valid solution to the problem.

In particular, this means that the wave amplitude, which can be altered by a scalar
multiplication, must be an independent variable that cannot have any functional
dependence on other wave properties. This property is specific for linear systems,
whereas for nonlinear systems the wave amplitude will normally be linked with other
wave properties. In fact, waves of this type had already been described at the time
when Airy published his account.

A few years prior to the publication of Airy’s wave theory, the naval engineer
John Scott Russell had published accounts of observations and experiments devoted
to surface gravity waves (Russell, 1844). Russell seem to have devoted most of
his efforts to explain wave generation and propagation in channels, which was of
practical importance for inland waterway transport at that time.
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A particularly famous account describes his first observation of a large, solitary,
progressive wave, which was generated by a boat in a channel and propagated
upstream of the boat. Russell was able to follow this wave on horseback for more
than a mile, and while it retained its original shape it then gradually subsided.

In a series of subsequent experiments he determined that the wave progressed
upstream with a velocity ¢ = +/g(h + 1), and that the wave making resistance
against the boat motion was at a maximum when the boat was traveling at this speed.
He also proposed that tidal motion could be explained as solitary waves of very large
extent, and suggested a mechanism whereby the tidal motion could generate tidal
bores in rivers and channels.

Airy devoted some attention to Russell’s experiments, but he dismissed Russell’s
treatment of solitary waves. According to Airy’s wave theory, maintaining such a
singular disturbance in the absence of any additional force would require the surface
slope of the disturbance to be constant, but since the slope should vanish at infinity
such a disturbance could not exist.

The existence and importance of solitary waves remained a contested issue for
several decades after the initial treatments by Russell and Airy. For example, the
prominent scientist Georges Gabriel Stokes first dismissed the possibility of such
waves and their relevance to tidal motion in his 1846 hydrodynamic researches
review (Stokes, 1846), but later became supportive of the idea after researching
finite oscillatory waves.

In 1870 Adhémar Jean Claude Barré de Saint-Venant published an account of tidal
bores in rivers (named mascaret in French), and the following year (de Saint-Venant,
1871) he presented a set of equations that described the phenomenon

A N I(Au)
ot ax

0, (3.22)

ou au an P,
— — —_— =, 3.23
at +u8x+g3x A p ( )

where A(x,t) is the channel cross section area, u(x,t) is the depth averaged
horizontal velocity component, Py, (x, t) is the length of wetted channel perimeter
at the cross section, t(x, ) is the wall shear stress, and p is the water density.

The set of Egs. (3.22) and (3.23) represent conservation of mass and balance of
momentum, respectively, and is possibly the first version of NLSW equations to be
presented in a publication. Due to the friction force induced by the shear stress at
channel walls, the momentum of an initial disturbance will not be conserved in the
model system. The shallow water equations (3.22, 3.23) can describe the propagation
of a solitary wave, but the wave will transform over time, with a steepening of the
wave front and a decrease in the slope behind the crest

While this behaviour nicely described the transformation of a regular tidal wave
to a tidal bore in a channel, it did not provide an adequate framework for describing
the solitary waves of constant shape observed by Russell. Although similar shallow
water equations had been presented prior to Saint-Venant’s treatment of mascarets
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(Fenton, 2010), the one-dimensional (1D) version of the shallow water equations
are often referred to as Saint-Venant equations in honour of his contribution to
understand shallow water hydrodynamics.

The same year as Saint-Venant presented the NLSW equations for description of
mascarets, one of his disciples, Joseph Boussinesq, presented the first approximate
solution of a solitary wave propagating without deformation (Boussinesq, 1871),
which finally provided a firm theoretical support for the existence of Russell’s wave.
The following year (Boussinesq, 1872) he presented a derivation of equations which
permitted his wave solution

9 d(Hu h3 33u
_77+(b)_ b

== , 3.24

ot ox 6 9x3 ( )
dup dup an  h?® Buy

an _ n- , 3.25

or Ty T8 T 2 araxz (3.25)

where H = h + n (Fig. 3.1) and uy is the horizontal velocity at the sea bed z = —h.
This is the original version of what is now called Boussinesq equations. In the absence
of higher order derivatives (right-hand side of (3.24), (3.25)) the Boussinesq system
becomes equivalent to the Saint-Venant equations (3.22), (3.23) without a friction
term.

Boussinesq derived his equations from the Euler equations by eliminating the
explicit dependence on the vertical coordinate z in these equations, while retaining
nonlinear terms of highest order. This procedure, which is now commonly used when
deriving shallow water equations, does not a priori stipulate the vertical reference
level to be used for the horizontal velocity component or which higher order terms
to retain in the derivation.

Numerous variations of Boussinesq-type systems can therefore be derived by
selecting different reference variables and forms of nonlinear terms, resulting
in equations with slightly different dispersive and nonlinear properties, as well
as numerical stability properties. A particularly useful variation was derived by
Peregrine (1967)

an  9(Hu)
8t_+ ax

0, (3.26)

or My T8y T 2 o%ear T 6 axdar
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which can be applied under gently varying depth conditions.

While the achievement of Boussinesq is widely recognised, his results were
not immediately seized upon by his contemporaries. Five years after Boussinesq
presented his solitary wave solution, Lord Rayleigh independently derived a long
wave equation for the solitary wave of constant shape (Rayleigh, 1876). When
Korteweg and de Vries later derived their famous Korteweg—de Vries (KdV) equation,
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they reference to Rayleigh’s work but were apparently un ware of the e rlier
contribution by Boussinesq (Korteweg and de Vries, 1895).

3.2.3 Model Equations for Long Wave Runup on a Beach

In the classical formulations of long wave equations it is usually assumed that the
waves propagate in a water basin with small and gentle changes in water depth.
However, we would like to apply these model equations to study wave runup on a
beach, and this requires some modifications to the standard equation formulations.
In the following we consider a depth profile

heo) {ho, if x € [a. b] 328)

ho — (x —b)tana, ifx € [b, ] '

with waves approaching the beach from the offshore point a (Fig. 3.1). The modified
NLSW equations are defined as

OH  9(Hu)
o —0. (3.29)
ot 0x

0(Hu) 8( > &, oh
2 (H —H): gt 3.30

TR A 0% (3.30)

where u(x,t) is the depth averaged flow velocity. For comparison, we use a
Boussinesqg-type equation based on Peregrine’s formulation, which we call the
modified Peregrine equations.
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38x8x8t+8x<H+2 > 87 0% (3-32)
where O = Hu represents the horizontal momentum. The modified Peregrine

equations have been studied in detail in (Durdn et al., 2018).
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3.2.4 Numerical Method

In the following discussion we will apply numerical methods for integration of the
Boussinesq equations over time. For simple channel geometries it is possible to
derive exact solitary wave and periodic wave solutions to the Boussinesq equations
(Clarkson, 1990; Chen, 1998; Yan and Zhang, 1999). Furthermore, the runup
properties of such general wave solutions can be investigated by analytical methods
for some regular beach profiles (Pelinovsky and Mazova, 1992; Didenkulova et al.,
2007; Didenkulova and Pelinovsky, 201 1). However, such analytical methods are not
practical when considering general wave types and variable depth conditions.

The numerical model we use is based on a finite volume method for both the
modified NLSW and modified Peregrine equations (Dutykh et al., 2011; Durdn
et al., 2018). This involves discretisation of the governing equations, and obtaining
solutions on a finite mesh covering the model domain. In the finite volume method,
the divergence theorem is applied to convert divergence terms in the differential
equations to surface integrals, which are evaluated as fluxes at the cell surfaces in the
mesh. Finite volume methods are particularly useful for problems where quantities
should be preserved, e.g., mass or momentum, since whatever quantity flows out of
one grid cell surface will be identical to the inflow into the neighbouring grid cell.

The simplest approximation to a solution in the finite volume formulation is
obtained by considering all variables as constant within each grid cell, whereby
a piecewise constant solution can be obtained. However, using this approach, the
spatial discretisation error will be determined by the grid size. In order to obtain
more accurate results, a common method is to replace the piecewise constant data
with a piecewise polynomial representation of the solution. In our simulations we
have applied the nonoscillatory UNO2 scheme, which is designed to constrain the
number of local extrema in the numerical solution at each time step (Harten and
Osher, 1987).

Integration of the solution forward in time is achieved by the Bogacki—Shampine
time stepping method (Bogacki and Shampine, 1989). This is a version of a Runge—
Kutta method, and is a third order method with four stages. An embedded second
order method is used to estimate the local error and if necessary adapt the timestep
size.

3.3 Tsunami Propagation and Runup

Developing model equations that adequately describe the propagation and runup
of tsunamis is a challenging task. Suggested model formulations range from simple
nonlinear shallow water (NLSW) theory to the very elaborate fully nonlinear Navier—
Stokes theory, with Boussinesq theory occupying an intermediate place in between.
NLSW has often been favoured for long wave runup calculations over dispersive wave
models represented by Boussinesq-type approximations. Wave runup calculated
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using dispersive model formulations is prone to numerical instabilities, which make
computations more sensitive to numerical parameters (Bellotti and Brocchini, 2001).
Furthermore, the Boussinesq terms in the dispersive model tend to zero at the
shoreline, so that dispersive equations simplify to NLSW in this region (Madsen
et al., 1997).

High accuracy can be achieved by applying the fully nonlinear Navier—Stokes
equations, but this approach requires large computational resources and a lengthy
integration time, making it unsuitable for operational forecasting in oceanwide or
even regional scale applications. Horrillo et al. (2006) studied dispersive effects
during the 2004 Indian Ocean tsunami propagation by comparing NLSW with the
fully nonlinear Navier—Stokes equations. They concluded that NLSW offered the
more suitable framework for hazard assessments, providing an adequate assessment
at a very low computational cost. Although the NLSW model tended to overpredict
the maximum wave runup, the overprediction was considered to be within a
reasonable range for a safety buffer, and hence did not degrade the overall assessment.

For tsunami warning purposes it is of critical importance to determine the time
of arrival of the leading wave to different coastal sections. These leading waves are
usually well described by NLSW, whereas the trailing wave train may contain shorter
wave components that are more sensitive to wave dispersion (Lgvholt et al., 2012).
For this reason, the NLSW is often considered to be more appropriate than more
elaborate Boussinesq-type methods for warning purposes (Glimsdal et al., 2013).
Note that biggest wave is often not the first one, at least for tsunamis propagating
over a long distance, see, for example, (Candella et al., 2008).

3.3.1 Wave Tank Experiment

Wave tank experiments were carried out at the Large Wave Flume (GWK) located in
Hannover, Germany, which is the world’s largest publicly available research facility
of its kind. It has a length of about 310 m usable for experiments, a width of 5 m,
and a maximum depth of 7 m. Access to this facility was granted by the Integrating
Activity HYDRALAB IV program, and experiments were carried out over two
periods; 10-16 Oct. 2012 and 29 July—9 August 2013. The basic experiment setup
consisted of a wave generator at one end of the flume, a 251 m channel of constant
depth, and a ramp of 1:6 slope at the opposite end of the flume representing the
beach.

The water depth in the channel was kept at a constant 7o = 3.5 m for all the
experiments. Wave gauges were placed at 16-18 locations along the channel to
measure the waves propagating in the channel and up the slope. The wave runup was
measured by a capacitance probe and also recorded by two regular video cameras.
A series of experiment runs were performed with different initial wave signals, and
with varying roughness of the ramp slope surface. Details of the experiments are
described in Didenkulova et al. (2013).
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3.4 Measured and Modelled Wave Propagation and Runup

In order to illustrate the wave transformation and runup properties for different
wave signals, we consider the four experimental test cases listed in Table 3.1. These
consist of a regular sine wave, a biharmonic wave signal, a wave train that resembles
a ship wake signal, and a single positive pulse. The wave maker produced waves of
period T = 20 s, which remained constant for the sine and biharmonic signals, but
gradually reduced to T = 10 s for the wake-like train. The initial wave amplitude was
different for each experiment, with the largest initial wave amplitude A = 0.20 m
for the sine wave (Fig.3.2). However, the biharmonic wave signal contained two
wave components with amplitude A = 0.12 m that could interfere constructively to
produce instances of larger amplitude wave peaks than the sine wave (Fig. 3.3).

The wake-like train did not contain waves of equal amplitude. Instead, initially
long, low amplitude waves were followed by progressively shorter and larger-
amplitude waves (Fig. 3.4). The single positive pulses were generated with A = 0.15
m, but were not initiated as stable solitary wave shapes and hence reduced in
amplitude to approximately A = 0.10 m atan early stage during the wave propagation
(Fig.3.5). Each figure shows a comparison between the experimental record and two
model results; the dispersive modified Peregrine model (hereafter mPer) and the
NLSW model solutions.

Figure 3.2 shows the sine wave propagation and runup. In this case mPer is
fairly close to the measured waves throughout the propagation phase and for the
runup, although there is a tendency for mPer to underestimate the runup height. It
is noticeable that NLSW has a lower wave height near the wave maker than the
measured wave, but increase in amplitude relative to the reference solution, and in
the final stage produce significantly larger runup values than the measured values. It
is clear that the dispersive properties of mPer in this case balance the nonlinear effect
to produce a relatively stable wave train, while this feature is missing for NLSW and
therefore results in excessive nonlinear steepening and amplification.

Note that the capacitance runup gauge does not record the wave form correctly in
the receding phase. The reason is that the wires are submerged in the thin near surface
layer of water when the bulk of the wave is gone. Therefore, only the rising front
phase of the experimentally measured runup should be used for comparison with the
simulations and the rundown values indicated by the gauge should be ignored.

Table 3.1 Parameters for four experiment runs of different wave
types, and the measured runup for each case.

Type of waves Wave Initial wave Experimental
period (s)  amplitude (m) runup (m)
Sine wave 20 0.20 0.571
Biharmonic wave 20 0.12 0.794
Wake-like train 20— 10 ~0.10 0.517

Positive pulse 20 0.15 0.438
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(a) Water surface elevation at different wave gauges (x = 60 m, 160 m, 220 m, and 235 m from the
wave maker).
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(b) Runup height.

Fig. 3.2 Wave propagation and runup for a sine wave with A = 0.2 m and 7 = 20 s on a beach
slope tan « = 1:6, mPer is shown with the red dashed line, NLSW solution is shown with blue dash
dots line and the experimental record is shown with the black dotted line.

Figure 3.3 shows the biharmonic wave propagation and runup. In this case we
again see a reasonably good agreement in wave structure between mPer and the
measurements, but there is a clear tendency that mPer underestimates the wave
amplitude both in the propagation phase and the runup phase. The NLSW solution
looks fairly reasonable in the early stages, but significant discrepancies appear at
x = 180 m and x = 230 m in the later stages of the wave train. The biharmonic
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Fig. 3.3 Wave propagation and runup for a biharmonic wave with A = 0.12 m and 7 = 20 s on
a beach slope tan« = 1:6, mPer is shown with the red dashed line, NLSW solution is shown with
Blue dash dots line and the experimental record is shown with the black dots line.

signal is particularly sensitive to the phase speed as wave components may interfere
both constructively and destructively at different stages, hence the inclusion of wave
dispersion plays a significant role in this case.

Figure 3.4 shows a wave train with a wake-like structure, with a distinct envelope
shape created by an initial long, low amplitude wave followed by shorter, higher
amplitude waves. The initial phase of the wave train is captured well by both mPer
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Fig. 3.4 Wave propagation and runup for a wake-like wave train with A =0.1 mand 7 € [10, 20] s
on a beach slope tana = 1:6, mPer is shown with the red dashed line, NLSW is shown with blue
dash dots line and the experimental record is shown with the black dotted line.

and NLSW, although both models struggle to reproduce the later stages of the wave
train. Both models also reproduce the runup phase fairly well, although NLSW
develops a slight phase shift relative to the reference solution, and both models
severely overestimates the runup for the trailing waves.

Figure 3.5 shows the wave propagation and runup for single positive pulse waves.
The model results for mPer and NLSW are remarkably similar for the propagation
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Fig. 3.5 Wave propagation and runup for a single positive pulse (solitary wave) with A = 0.15 m
and T € [10, 20] s on a beach slope tan @ = 1:6, mPer is shown with the red dashed line, NLSW is
shown with blue dash dots line and the experimental record is shown with the black dotted line.

phase in this case, although both models tend to overestimate the wave amplitude
slightly. This discrepancy can likely be explained by inaccuracies in the initial
conditions for the wave, as it deviates slightly from a stable solitary wave form.
The runup results are likewise very similar between mPer, NLSW and the reference
solution, but again we see the tendency that mPer underestimates the runup height,

57
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whereas NLSW overestimates the runup height and has a slight phase shift indicating
that the propagation speed is slightly elevated relative to the reference solution.

3.5 Concluding Remarks

The presented results demonstrate some of the capabilities of the NLSW and modified
Peregrine equation systems for representation of long wave transformations. Both
models compare well with the long single wave of positive polarity. For sine waves,
biharmonic signals and dispersive wake-like signals the wave dispersion clearly plays
a more prominent role, in which case NLSW does not adequately represent the high
frequency components.

Despite the differences in wave transformation and propagation, the differences
in maximum wave runup are quite modest, suggesting that the dispersive wave
properties does not influence the resulting runup to a significant extent. This suggests
that NLSW could be a suitable framework for prediction of tsunami events in the
future, despite the known shortcomings of the model equations for dispersive waves.

Research into surface gravity wave phenomena has a long and fascinating
history. Modern day researchers benefit greatly by working within a framework
where theories for, e.g., Fourier analysis, ordinary and partial differential equations,
potential theory, and perturbative methods, are well established. The emergence
of computational resources has created new approaches for research into complex
physical phenomena by use of numerical modeling tools.

Despite these differences between modern day research and the situation faced
by researchers in the eighteenth and nineteenth centuries, some properties of the
research activities are remarkably similar. A constant feature of scientific research
is the need to conduct accurate experiments and develop more adequate model
equations to describe the natural phenomena we observe. However, there is also
a debate concerning the value of accuracy and practicality in describing these
phenomena. While Airy and Stokes were debating the existence and basic properties
of solitary waves of permanent shape in channels on theoretical grounds, Russell
was constructing boats that were capable of high speed travel in channels, helped in
part by this very wave phenomenon.

To some extent, a similar debate is on-going today within the tsunami research
community, where on one side there is a need to develop models that represent
fundamental properties of tsunami waves as accurately as possible in order to study
the wave transformation and runup processes in detail, and on the other side there is
a need to develop tools for operational forecasting of tsunami wave events that are
adequate and practical for warning purposes.
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Abstract—The applicability of dispersive and nondispersive wave models for describing long-wave propaga-
tion and run-up on a beach in the case of composite bottom topography is investigated: a plane beach trans-
forms into a zone of constant depth. Numerical simulations are performed in the framework of two models:
(1) nonlinear shallow-water theory and (2) the dispersive model in the Boussinesq approximation based on
modified Peregrine equations. Simulations are compared with the data of a laboratory experiment for differ-
ent types of waves: regular waves, biharmonic signals, and “vessel-like” wave trains strongly modulated by
frequency and amplitude. Conclusions about the applicability of the corresponding theories for describing
considered types of waves are drawn based on this comparison.

Keywords: waves on the surface, run-up of long waves on a coast, frequency dispersion, nonlinear shallow-
water theory, dispersive theory, modified Peregrine equations
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1. INTRODUCTION

In the modern literature, the nonlinear theory of
shallow water is more often used to describe the run-up
of long waves on a beach than dispersion models, in
particular, equations of the Boussinesq type. There are
several reasons for this. First, when approaching the
coast, the dispersion term in the Boussinesq equations
becomes insignificant when compared to the nonlinear
term [1]. Second, the calculations of the wave run-up
using dispersion codes are less stable when compared to
the calculations performed using the nonlinear theory
of shallow water [2]. Third, the nonlinear theory of
shallow water is considered a more adequate model in
the problems of tsunami risk assessment, since the time
of simulations is shorter and is not related to an under-
estimation of the run-up height [3]. The nonlinear the-
ory of shallow water is preferable for the operational
forecast of tsunamis based on the same grounds [4].

‘We also note that the first (leading) tsunami wave is
often described reasonably well by both models, while
dispersion effects are important for describing the fol-
lowing waves [5]. It is noteworthy that the first tsu-
nami wave is far from always the largest, which is often
observed during transoceanic tsunamis propagating
over long distances [6]. The dispersion effects can also

manifest themselves in a “delay” in the propagation
time of tsunami waves [7].

Most of the abovementioned studies were based
only on numerical calculations without reference
measurements to verify the results of the model simu-
lations. In this paper, we compare the coastal run-up
heights calculated using two models with the experi-
mental coastal data of various types of waves: single
waves, regular and biharmonic waves, and frequency
modulated wave packets. The nonlinear theory of
shallow water and a Boussinesq type model based on
modified Peregrine equations are used as models.

2. DATA OF LABORATORY EXPERIMENTS

The laboratory experiment was carried out in the
Large Wave Flume (Grofier Wellenkanal) in Hanover,
Germany in 2012—2013 [8, 9]. In the experiment, the
standard channel geometry was used, which consists of
a flat bottom section of 251 m in length, ending with a
flat slope with the tangent of the coastal slope equal to
1 : 6 (Fig. 1). During the experiments, the water depth
was set at 3.5 m. Water elevation was measured along
the flume by 18 string wave gauges. Displacement of
the moving shoreline was measured by a capacitive
sensor and two high-resolution cameras. The error in

494



COMPARISON OF DISPERSIVE

AND NONDISPERSIVE MODELS 495

Capacity sensor

i
o o &
§ ] 25l m ] ad

Pointﬁa Pointg Pointg

Fig. 1. Scheme of the laboratory e;

measuring the run-up by a capacitive sensor is deter-
mined by the variation of the water edge across the
slope. According to visual observations, the variation is
at the level of 3% of the run-up magnitude.

The slope of the flume had a rough asphalt coating
which strongly affected the measurement of the roll-
back of waves. When the water moved down from the
edge, a layer of water remained on the slope, which
touched the capacitive sensor wire and prevented the
correct recording of the wave rollback.

The waves were generated using a blade wave gener-
ator, which was previously used to generate long waves of
the tsunami type [10]. The wave generator was equipped
with a mechanism for the active absorption of the
reflected wave [11] using signals from two wave record-
ers as input parameters: one in the immediate vicinity
and the other at a distance of 3.6 m from the blade.
However, in order to exclude the influence of even a
small part of the wave reflected from the wave generator,
only the first four waves were used for calculations, the
reflection of which has not yet been manifested.

The complete list of the studied waves included
regular and biharmonic waves, as well as wave packets
modulated in frequency and amplitude resembling
characteristic wave records from high-speed vessels
[12, 13]. In such generated wave packets, the wave
period linearly decreased from 20 to 10 s.

Typical estimates of the spectral power density for
the three types of waves under consideration are pre-
sented in Fig. 2. The figure shows that the main period
is the same for regular and biharmonic waves. It is equal
to 20 s, while for ship waves the period of 20 s corre-
sponds to the beginning of a wide peak. The length of
such waves in the channel with a depth of # = 3.5 m in
the approximation of linear gravitational waves is 117 m
(parameter k2 = 0.2), where k is the wave number,
which corresponds to shallow-water conditions.

The run-up height was used as the main parameter
for comparing the calculations with the experiment.

3. NUMERICAL MODELS

Two models were used in numerical simulations:
the nonlinear theory of shallow water and dispersion

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

xperiment in the Large Wave Flume.

equations of the Boussinesq type, based on modified
Peregrine equations [14]. Both models took into
account bottom friction according to the Manning
formula [15]. The corresponding roughness coeffi-
cient was taken equal to 0.016 s/m'/3, which corre-
sponds to rough asphalt coating [16]. The effect of
friction when long waves run up the beach was consid-
ered in [17].

The bathymetry used in the numerical simulations
repeated the geometry of the Large Wave Flume:

hos x € [a,b]
x —b)tano, x e [b,c]’

= 1
h(x) {ho_( )

where 4, = 3.5 m is the constant depth of the tank and
a is the beach slope angle (tg oo = 1 : 6). We assume
that x = 0 is the location of wave generator as the refer-
ence point for measuring all distances. Segment [a, c|
corresponds to the left and right boundary of the
numerical tank; point » = 251 m corresponds to the
beginning of the coastal slope (see Fig. 1).

We used the “purest” experimental record of the
wave recorder at the point closest to the wave producer
as the boundary condition on the left side (x = a). This
was a wave record at a distance of @ = 50 m from the
wave generator.

No conditions were imposed on the flow velocity. As
proven in [ 18], the formulation of the problem with one
boundary condition at each boundary in the subcritical
mode is correct (the horizontal velocity of the fluid par-
ticles averaged over depth is smaller than the propaga-
tion velocity of long waves; i.e., the Froude number is
less than unity). This choice of boundary conditions
ensures the transparency of how they were specified.

The number of points of the spatial grid was constant
and equal to 4000 in all experiments; hence, the spa-
tial resolution was 6.3 cm. Time stepping was based
on the embedded Runge-Kutta methods of orders 3
and 2 [19], implemented in MATLAB using the
ode23 command [20]. Thus, in each calculation, an
adjustment circuit with the specified error level equal
to 10~* was used to select a time step. The characteris-
Vol. 56
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Fig. 2. Estimates of the spectral power density of the studied types of waves.

tic time step used in both models (nonlinear theory of
shallow water and modified Peregrine equations) for
various types of experiments is presented in Table 1.

The finite volume method was used in both mod-
els. The numerical scheme is based on the local sec-
ond-order polynomial reconstruction (see [21]).

4. PROPAGATION AND RUN-UP OF WAVES

The two models described above (the nonlinear
theory of shallow water and the modified Peregrine
equations) were used to simulate the experiment car-
ried out in the Large Wave Flume described in Sec-
tion 2. All types of waves indicated above were simu-

Table 1. Characteristic time step of simulations; types of waves: (1) regular wave, (2) biharmonic wave, and (3) frequency

modulated wave packet

Wave type Modified Peregrine equations, At, s Nonlinear shallow water theory, Az, s
1 0.012 0.013
2 0.012 0.013
3 0.009 0.012

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS  Vol. 56 No.5 2020
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Fig. 3. Comparison of the run-up heights calculated using the nonlinear theory of shallow water (left column) and modified Per-
egrine equation (right column) for different types of waves. Numerals 1, 2, 3, and 4 correspond to the run-up height of the first,

second, third, and fourth waves.

lated. Numerical simulations at the corresponding
points were compared with the available measure-
ments of water surface oscillations along the channel
and on the shore. In particular, the simulated and
measured maximum run-up heights of the first four
waves for each type of wave were compared.

The deviation from the experimentally measured
value was calculated for each model and for each type
of wave normalized by the value of the experimental
run-up (Fig. 3). The numerals on the graph represent
the maximum run-up of the first, second, third, and

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

fourth waves. It can be seen that, in the simulations
using dispersion theory, the scatter between the calcu-
lation and the experiment is smaller and, in general,
the dispersion theory more reliably describes the
experimental data. It is also seen that, as the wave
amplitude increases, the difference between the simu-
lation and the experiment decreases and eventually
leads to an underestimation of the run-up height. This
effect is associated with the wave breaking.

Let us consider different types of waves separately.

Vol.56  No.5 2020
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Fig. 4. Oscillations of the water surface caused by a regular wave with a height of 0.2 m. The experimental record is shown with a
solid line, calculations based on the nonlinear theory of shallow water are shown with a dashed-and-dotted line, and the calcu-
lations using the modified Peregrine equations are shown with a dashed line. The horizontal segment corresponds to the arrival

time of the wave reflected from the wave generator.
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Fig. 5. Run-up of regular waves with a height of 0.2 m (a) and 0.4 m (b). The experimental record is shown with a solid line, the
calculations based on the nonlinear theory of shallow water are shown with a dashed-and-dotted line, and the calculations using
the modified Peregrine equations are shown with a dashed line. The horizontal segment corresponds to the arrival time of the

wave reflected from the wave generator.

4.1. Regular Waves

Figure 4 shows the fluctuations of the water surface
caused by a regular wave with a height of 0.2 m. It can
be seen that both the nonlinear theory of shallow water
and the dispersion theory describe the experimental
data quite well.

Figure 5a shows a smooth run-up of a regular wave
with a small height of 0.2 m, while in Fig. 5b, we see

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

the run-up of a more nonlinear wave 0.4 m high. It can
be seen that the run-up of a weakly nonlinear wave
(Fig. 5a) is approximately equally described by both
models, but the dispersion theory is a better model to
describe the run-up of a more nonlinear wave (Fig. 5b).
As noted above, when the wave rolls back in the exper-
iment, a layer of water remains on the slope and
touches the wire of the capacitive sensor, so that the
sensor poorly records the signal of the rolling back
Vol. 56
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Fig. 6. Run-up of biharmonic waves with a height of 0.27 m (a) and 0.4 m (b). The experimental record is shown with a solid line,
the calculations based on the nonlinear theory of shallow water are shown with a dashed-and-dotted line, and the calculations
using the modified Peregrine equations are shown with a dashed line. The horizontal segment corresponds to the arrival time of

the wave reflected from the wave generator.

wave. This is especially pronounced in the records of
large-amplitude waves, in which nonlinear effects are
most pronounced at the stage of wave rollback [22, 23].

Despite the fact that both models reproduce the
experiment well at a qualitative level (see Figs. 4, 5),
there is a quantitative difference, which is especially
noticeable for the values of maximum run-up (Fig. 3).
Figure 3 shows that the dispersion theory is character-
ized by a smaller deviation from the experimental data
and, as a whole, more reliably describes regular waves.
It is also seen that both theories tend to underestimate
the run-up of large-amplitude waves, which is a con-
sequence of the wave breaking (see Fig. 3).

4.2. Biharmonic Waves

Figure 6 shows that the descending branch (roll-
back) of low-amplitude biharmonic waves is described
even worse by the experiment than the case of regular
waves. This is probably due to the presence of a short-
wave component in the spectrum.

The dispersion model proved to be more reliable
for the considered model of wave heights (Fig. 6). At
low wave amplitudes, it slightly overestimated the run-
up height (4—17%), revealing a smaller scatter than the
nonlinear theory of shallow water, which overesti-
mated (up to 20%) and underestimated (up to 10%)
the values of the run-up height. At higher amplitudes,
it could slightly underestimate (no more than 3%) the
height of the run-up, providing minimal scatter com-
pared to the nonlinear theory of shallow water, which
underestimates the values of the run-up to 25%.

4.3. Frequency Modulated Wave Packets

Let us now consider the most unusual type of waves
in this collection: wave packets modulated by fre-
quency and amplitude. The period of such waves

IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS

decreased linearly from 20 to 10 s. The run-up of these
waves in experimental tests with maximum heights of
0.12 and 0.42 m is shown in Fig. 7. It can be seen that
both models give approximately the same description
of waves of lower amplitude (Fig. 7a), while the shal-
low-water theory is clearly worse in describing waves
of higher amplitude (Fig. 7b), decreasing the expected
run-up height by more than 40%. This underestima-
tion of the run-up for higher waves is due to wave
breaking effects. The dispersion theory based on the
modified Peregrine equations leads to a smaller error
when describing the frequency modulated wave packet.
Moreover, the underestimation of the run-up height for
the highest waves does not exceed 7%. As in the case of
regular waves, the described tendency is observed for
most waves in the group (Fig. 3). If we compare the
simulations of two numerical models, we see that, as in
the previous case, the error of simulations based on the
shallow water theory is larger than the error of simula-
tions based on the dispersion theory (Fig. 3). However,
in this case, the error in the simulations based on the
shallow-water theory can be both positive (overestima-
tion) and negative (underestimation).

5. CONCLUSIONS

In this paper, we compared the capabilities of two
models: the nonlinear shallow-water theory and the
dispersion theory in the Boussinesq approximation
represented by modified Peregrine equations to
describe the propagation and run-up of long waves on
the beach slope. The basis for comparison was the
experimental data from the Large Wave Flume
(Hanover, Germany) in 2012—2013. During the exper-
iment, various types of waves were tested, including
single waves of positive polarity, regular waves, and
biharmonic waves, as well as wave packets modulated
by frequency and amplitude characteristic of the waves
from high-speed vessels. All considered waves had the
Vol. 56
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2.0
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Fig. 7. Roll-up of wave packets modulated in frequency and amplitude, with a maximum height of (a) 0.12 m and (b) 0.42 m. The
experimental record is represented by a solid line, the calculations in the framework of the nonlinear theory of shallow water are
represented by a dashed-and-dotted line, and the calculations in the framework of modified equations Peregrina are represented
by a dashed line. The horizontal segment corresponds to the arrival time of the wave reflected from the wave producer.

same period (characteristic duration) of the main sig-
nal (equal to 20 s and corresponding to shallow-water
conditions).

It was shown that both models describe almost lin-
ear waves of very small amplitude well, while for more
nonlinear waves of larger amplitude the dispersion
theory has proven to be a more adequate model and is
preferable. We emphasize that these conclusions are
valid for the considered types of waves in the given
range of kh.
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Abstract: The runup of initial Gaussian narrow-banded and wide-banded wave fields and its statistical
characteristics are investigated using direct numerical simulations, based on the nonlinear shallow
water equations. The bathymetry consists of the section of a constant depth, which is matched with
the beach of constant slope. To address different levels of nonlinearity, time series with five different
significant wave heights are considered. The selected wave parameters allow for also seeing the
effects of wave breaking on wave statistics. The total physical time of each simulated time-series
is 1000 h (~360,000 wave periods). The statistics of calculated wave runup heights are discussed
with respect to the wave nonlinearity, wave breaking and the bandwidth of the incoming wave field.
The conditional Weibull distribution is suggested as a model for the description of extreme runup
heights and the assessment of extreme inundations.

Keywords: wave statistics; wave runup; numerical modelling; nonlinear shallow water theory;
wave breaking; freak runups

1. Introduction

Estimating extreme runup events in coastal zones is an important task. Flood prediction received
a lot of attention in recent decades in order to reduce hazard risks in coastal zones [1-4]. The statistical
distribution of wave runup characteristics is influenced by many factors, such as topography and
coastline, nonlinearity and wave breaking [5-7].

Also, some individual waves at the coast may be unexpected, extreme and hazardous. This regards
sneaker waves or freak wave runups [8-10]. Such extreme events at the coast often lead to human
injuries and fatalities, when people are washed off to the sea from a gentle beach or from coastal rocks
or sea walls, and damage to coastal structures. During the period of 20112018, there were cases when
freak wave runups (unrelated to tsunamis) washed cars and motorcycles into the sea and damaged
houses and buildings in the coastal zone [10]. These events are described by the tails of the statistical
runup height distribution, and their analysis requires extremely large datasets.

Previous studies have employed different methods to study the statistics of long wave runup,
including numerical models, experiments, and field measurements.

Theoretically, [11] studied the statistical characteristics of long waves on a beach of constant slope
using an analytical solution of the nonlinear shallow water theory. The study revealed that the runup
height was distributed according to the Rayleigh distribution, if the incident wave elevation was
described as having a normal distribution and a narrow-band spectrum. In terms of the statistical
moments of the moving shoreline on a beach of constant slope, this study asserts that the kurtosis is
positive for weak amplitude waves and negative for strongly nonlinear waves, whereas the skewness is

Water 2020, 12, 1573; d0i:10.3390/w12061573 www.mdpi.com/journal/water
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always positive. Later, [12] showed that for the description of even non-breaking waves, the Gaussian
distribution is inappropriate. Both theoretical studies had a number of assumptions, which were put
into question the applicability of these results.

Experimentally, [13] tried to reproduce the theoretical results of [11] in the wave flume at Warwick
University. However, they could not generate a “pure” Gaussian wave field. Moreover, the generated
waves were affected by capillary effects. Thus, the only result that [13] could reproduce regarded
an increase in the mean sea-level elevation with an increase in wave nonlinearity attributed to the
known phenomenon of wave set-up. They also found that the values of the statistical moments of
wave runup (skewness and kurtosis) were similar to those of the incident wave field [14] studied
statistics of narrow-band and wide-band wave runups in the large wave flume of the University of
Hannover, Germany. They found that wave fields with a narrow-band spectrum were associated
with a higher loss in the wave energy compared to the waves with a wide-band spectrum. However,
their experimental records were not long enough to discuss freak runups.

Using field measurements, [15] studied runup heights measured on a wide spectrum of sandy
beaches in New South Wales; they found that runup was distributed according to the Rayleigh
distribution. Meanwhile, [16,17] studied wave runup on Canadian and Australian coasts and
demonstrated that wave runup deviates from the Gaussian distribution. Although some of these
conclusions were similar to those of [11-13], it was not possible to put direct correspondence between
these works due to a number of reasons. First, the field measurement studies lacked information about
an incident wave field. Second, they had a different bathymetry and coastal topography, deviating
from the ideal plane beach. Third, the data included an error associated with measurement techniques.

However, the main issue which complicates the comparison of theoretical [11,12] and
experimental [13,14] results is the insufficient lengths of the experimental time-series, which do not
support analysis of extreme runup statistics. Potentially, this issue can be overcome nowadays with the
use of IP high-resolution cameras permanently installed on a beach and associated techniques [18-24];
however, we have not seen such works yet.

In this paper, we cover the existing gap in long-term experimental records by using digital
data obtained with intensive numerical computations. This approach has clear advantages. It gives
control on the initial wave field offshore and allows for checking the applicability of the approximated
analytical results by [11,12] to a more realistic bathymetry: a plane beach merged with a flat bottom.

The paper is organized as follows. In Section 2, the numerical model, based on nonlinear shallow
water equations, is described. The statistical moments and the distribution functions of random wave
and runup fields, as well as distribution functions of wave and runup heights, are described in detail
in Section 3. Then, the main results are summarized in Section 4.

2. Numerical Model

In this section, the 1D nonlinear shallow water model, which represents the mass and momentum
conservation, is briefly described:

Di + (Du), = 0 )
d a A/
S (Du)+ g(Du +£p ) — g% @

where D = h + n is the total water depth, n(x, t) is the water elevation, with respect to the still water
level, x is the coordinate directed onshore, and t is time, ii(x) is the unperturbed water depth, u(x, t) is
the depth-averaged water flow velocity, and g is the gravitational acceleration. The dimensionless
formulation can be obtained by choosing a typical water depth /) as the length scale (in this problem,
the depth of the constant section can be taken as hg, \/% as the velocity scale and hp/ \/(% . as the
time scale. The dimensionless equations take the form of Equations (1) and (2) with i =1and g = 1.
All computations reported in this study were performed in the dimensionless formulation.

The modelling is performed in the framework of Equations (1) and (2), which are solved using
amodern shock-capturing finite volume method. Although the shallow water model does not pursue the
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wave breaking and undular bore formation in a general sense (including the water surface overturning),
it allows shock-wave formation and propagation with the speed given by Rankine-Hugoniot jump
conditions, which, to some extent, approximates wave breaking. The numerical scheme is second
order accurate, thanks to the spatial reconstruction (UNO2). For details, see [25].

In this simulation, the corresponding bathymetry (Figure 1) set-up is used: the flat part of the
flume matches the beach of constant slope:

— hOI xe [al b}
"= {ho —(x—b)tana, xe€ b, N

where I is the constant water depth, kept at 3.5 m for all simulations, [a, c] are the left and right
boundaries of the numerical flume, [b] is the point where the slope starts, and tan & = 1:6 is the tangent
of the bottom slope. For simplicity, the left boundary is taken as (@ = 0). The length of the section
of constant depth is b = 251.5 m, and the right limit of the numerical flume is taken as ¢ = 291.5 m.
The number of spatial grid points along the distance between [a] and [c] is fixed and equal to 1000
for all experiments. The time step is chosen to satisfy the Courant-Friedrichs-Lewy condition for all
considered significant wave heights. The spatial grid step is, therefore, 25 cm, which corresponds to
4 cm vertical resolution for runup height. This was done in order to limit simulation time, when running
10,000 h of physical time of wave propagation. However, this also implies that we have a low resolution
and not so reliable statistics, especially for small amplitude waves Hs = 0.1 m. In a similar manner
to the significant wave height, Hs, the significant runup height, R;, is introduced as an average of
one third of the largest runup heights in the time-series. The significant runup height for this small
amplitude case is Rs = 0.23 m, so even in this case, the resolution is low, but considerable.

& X —_—

Figure 1. Bathymetry sketch of numerical experiment.

Of course, the number of extreme runups in this resolution is also somehow underrepresented;
however, all qualitative and comparative conclusions of this study still hold on.

Boundary Condition

On the left extremity x = a of the computational domain, the Dirichlet boundary condition on the
total water depth component D(a, t) = hiy + 1o(t) of the solution (D, Du) is imposed. Namely, the free
surface elevation function, 1, is drawn from a narrow- or wide-band Gaussian signal depending on the
experiment. These data turn out to be enough to obtain a well-posed initial boundary-value problem
provided that the flow is subcritical at the point x = 4, i.e., |u(a, t)l < 4/gD(a, t), which is always the
case for Riemann waves (see [26] for the rigorous mathematical justification of this fact in case of

transparent boundary conditions). The boundary conditions are implemented in the finite volume
scheme according to the method described in [27] (see also [28] for more details on the application to
the nonlinear shallow water equations).
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The considered boundary condition (wave field offshore) is distributed by the Gaussian

distribution:
: L by’
f(&) = e"2\3 4)

_o 27

where ¢ is a standard deviation, and y is a mean value of the distribution. To ensure this, all individual
time-series have been verified by the Kolmogorov-Smirnov test [29].
The spectrum of the generated waves is:

S U fy=1?

S(f) = ——===¢ /0 ©®)

\21Af/ fo

where f is the wave frequency, Af is the frequency band, f( = 0.1 Hz is the central frequency, and Sy is
the constant, which is calculated in order to achieve the desired H;.

In this work, the case with Afffy = 0.1 is referred to as the narrow-band spectrum, while the
case with Afffy = 0.4 is referred to as the wide-band spectrum. In order to study the influence of
wave nonlinearity during wave propagation to the coast, waves of different significant wave heights,
which are calculated as the average of one third of the largest wave heights in the time-series (H; = 0.1,
0.2,0.3,0.4, and 0.5 m), are considered. The calculated time-series for each H; is 1000 h (360,000 wave
periods). Parallel computations facilitated the calculation of the statistics of wave runup characteristics
for 5000 h, for each bandwidth, and 10,000 h in total. The numerical computations were carried out in
MATLAB and run on a cluster containing 28 cores.

The parameter of the nonlinearity for generated waves was estimated as Hy/hp and changed from
0.03 to 0.14. The characteristic parameter klip = 0.38 is at the border of validity of the shallow water
theory, taking into account the horizontal extent of the wave tank. The phase velocity relative error
committed by non-dispersive theory for khy = 0.38 is only 2.3%. Thus, at the end of the numerical wave
tank, the difference between wave crest positions (between dispersive and non-dispersive models) is
less than 10%. Since the focus of this paper is on wave runup, the choice of this theory is justifiable.
The choice of wave parameters allows us to see the effects of wave breaking on the statistics of their
runups. The type of wave breaking is defined by the Iribarren number [5]:

a

VH/L

where H is the wave height and L is the characteristic wavelength offshore. It is surging or collapsing
for Ir > 3.3, plunging for 0.5 < Ir < 3.3, and spilling for Ir < 0.5. In our dataset, only the first two types
of wave breaking, surging or collapsing and plunging, are observed. For Hy/hy = 0.03, less than 1%

Ir =

(6)

of waves experience plunging breaking, while most of the waves are surging. With an increase in
Hg/hy, the percentage of plunging waves increases. For Hg/hy = 0.06, 32-35% of the waves are plunging,
for Hy/hg = 0.09, 61-65% of the waves are plunging, for Hy/hg = 0.11, 71-76% of the waves are plunging,
and for the most nonlinear case, Hy/liy = 0.14, 85-88% of the waves are plunging.

3. Data Analysis and Results

Figure 2 shows probability density functions (PDF) of narrow-band and wide-band wave fields for
different nonlinearities, Hs/lp. The data of the narrow-band spectra, Afffy = 0.1 are shown by triangles
(different colors correspond to different nonlinearities), while the corresponding Gaussian distribution
(u =0, 0 =0.25) is shown by the black solid line. The data of the wide-band spectra, Afffy = 0.4 are
shown by pluses, and the corresponding Gaussian distribution (1 = 0, ¢ = 0.27) is shown by the red
solid line. It can be seen that the generated waves are well described by the Gaussian distribution,
which has zero mean, skewness and kurtosis for all nonlinearities, Hg/h.
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Figure 2. Probability density functions of normalized narrow-band and wide-band wave fields offshore
for different nonlinearities, Hy/lg in linear (a) and logarithmic (b) scales. Solid lines correspond to
Gaussian distributions fitted to the corresponding datasets, shown with a red color for wide-band data
and with black color for narrow band data.

To describe the wave statistics in Figure 2, the Rayleigh distribution, which is well used for this
type of problem [5], is applied:
£ /20 £
e ;7 G =
&= @)
£©) { I
where £ is a data vector and A is the scale parameter. For a better fit, a two-parameter Weibull
distribution is also considered:

k(%)kile—(é//\)k, £>0

_Jx
f) { 0, <0 @

where A is the scale parameter and k is the shape parameter.

The wave height distributions of both narrow-band and wide-band wave fields are shown in
Figure 3. As expected, the narrow-band data are well described by a Rayleigh distribution (A = 0.5),
although a Weibull distribution gives a slightly better fit (1 = 0.74, k = 2.27). The data of wide-band
spectra tend to be distributed according to a Weibull distribution (A = 0.71, k = 2.06).

The waves which are two times higher than the significant wave height (H/H; > 2) are the so-called
freak waves. It can be seen from Figure 3 that the probability of the freak wave occurrence in the initial
wave field is higher for narrow-band signals than for wide-band ones.

The calculated significant runup heights R for narrow-band and wide-band signals are shown in
Figure 4. Itis interesting to see that R; for wide-banded waves is always higher than for narrow-banded
waves, which can be explained by the higher variability in wave periods for wide-banded waves. Also,
Figure 4 indirectly shows us how many of our waves are breaking. The wave runup height, at which
the first wave breaking occurs in the wave trough, can be estimated as R¢;/lp = g( aT/2m)%hy = 0.2
(see [30] for details). This means that our case of “small” nonlinearity Hy/ho = 0.03 is affected very little
by wave breaking (<1% according to Iribarren criterion). The case of Hy/hy = 0.06 is affected by wave
breaking only for extreme runups (32-35% according to Iribarren criterion). In the case of Hs/hy = 0.09,
more than a half of waves are breaking (61-65% according to Iribarren criterion). However, in the cases
of Hy/hy = 0.11 and Hg/hy = 0.14, the majority of waves are breaking.
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Figure 3. Probability density functions of normalized trough-to-crest wave heights of the initial

narrow-band (a) and (c), and wide-band (b) and (d) wave fields for different nonlinearities, Hy/liy in

linear (top) and logarithmic (bottom) scales. The red solid line corresponds to the Rayleigh distribution;

the black solid line corresponds to the Weibull distribution fitted to the corresponding dataset.
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Figure 4. Significant runup height, Rs for wide-band (red circles) and narrow-band (black crosses)

signals for different nonlinearities.
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Figure 5 shows the probability distribution functions of runup oscillations, 7/Rs for initial Gaussian
narrow-banded and wide-banded wave signals. It can be seen from Figure 5a that runup oscillations
of narrow-banded waves are no longer distributed by a normal distribution and are slightly shifted
to the right towards larger positive values with an increase in nonlinearity. This effect was partially
observed both theoretically for an infinite plane beach [11,12] and experimentally [13,14]. What is
interesting and peculiar is a strong deformation of the distribution itself. In addition, the tails of these
distributions are much thinner than of Gauss, and reflect a relatively weak probability of extreme
floods for narrow-banded waves.

1r Af/fo=0.1 15 Af/fo =04
(a
0.9r v H./hg=0.03 (b) + H,/hg=0.03
v H/hy=0.06 + H,/hy=0.06
0.8r v H/hy=0.09 + H,/hg=10.09
v Hy/hy=011 + H,/hg=0.11
0.7 v H/hg=0.14 + H,/hg=0.14
1k
061
E 0.5
[ E
0.4 Fa
0.3 0.5
0.2f
0.1
02 1 0 1 2 3 0
/R, -2 -1 0 1 2 3

/Ry

Figure 5. Probability density functions of runup oscillations, normalized by a significant runup height,
R;, for different nonlinearities for narrow-banded (a) and (c), and wide-banded (b) and (d) waves in
linear (top) and logarithmic (bottom) scales. Solid lines correspond to Gaussian distributions, fitted to
the corresponding datasets, using the matching colors.

The distributions of runup oscillations of the initial wide-band signal are also shifted to the right
towards higher runups with an increase in nonlinearity, but this shift is much larger compared to that
of the narrow-band signal. Moreover, the tails of these distributions are much thicker than those for
narrow-band data, and are rather close to the normal distribution, which corresponds to a relatively
large probability of extreme floods for wide-banded waves.

It can also be seen that for both narrow-banded and wide-banded waves, the probability of large
waves decreases with an increase in wave nonlinearity, which can be explained by wave breaking.
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These effects can also be seen in Figure 6, which shows the statistical moments of narrow-banded
and wide-banded waves offshore, normalized by Hs, and the corresponding runup oscillations on
a beach, normalized by Rs. The statistical moments, mean, variance, skewness, and (normalized)
kurtosis are calculated as:

<e>= 1Y 5,02 = Y (E-< 5P ©)
i=1 i=1
- n ; B 3 - n ; B 4 ~
Sk(&) = ; =ty (&- < &>)° Kurt(&) = ; = (&-<&E>)t-3 (10)

where ¢ is a data vector, and # is its length.
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Figure 6. Statistical moments of runup oscillations (normalized by R;) of narrow-banded (red circles)
and wide-banded (black circles) waves on a beach, r, versus nonlinearity, Hs/hg. Statistical moments of
narrow-band and wide-band wave fields offshore (normalized by H;) are shown by red crosses and
black squares, respectively.

Notably, the mean, skewness and kurtosis of both narrow-banded and wide-banded wave fields
are zero, providing the desired Gaussian statistics. Regarding runup oscillations, one can see that
for both narrow- and wide-banded waves, the mean of runup oscillations rises with the nonlinearity,
which reflects the known effect of wave set-up on a beach. For small-amplitude waves, the set-up for
narrow-banded waves is larger than for wide-banded ones, while for large amplitude waves, affected
by wave breaking, it is the opposite. For wide-banded waves, the variance decreases with an increase
in nonlinearity, while for narrow-banded waves it changes non-monotonically. The higher moments,
skewness and kurtosis of runup oscillations for waves with a narrow-band spectrum are negative,
while for waves with wide-band spectrum they are sign-variable. Also for the narrow-banded waves,
the skewness decreases with an increase in wave nonlinearity, while kurtosis changes non-monotonically
with an increase in wave nonlinearity. Moreover, for wide-banded waves, both skewness and kurtosis
change non-monotonically with an increase in nonlinearity. This somehow only partially corresponds
to the theoretical findings in [11], where the kurtosis was positive for weak amplitude waves and
negative for strongly nonlinear waves, while the skewness was always positive. However, in the
experimental study of [13], the skewness was both positive and negative. It is also important to say
that for all four moments, one can see different dynamics for small-amplitude non-breaking or almost
non-breaking waves and large-amplitude waves, strongly affected by wave breaking.

Runup oscillations deviate from the Gaussian distribution even for weak-amplitude waves (see
Figure 6). With an increase in nonlinearity, all statistical moments of runup oscillations change. It can
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be seen that statistical moments of narrow-banded irregular waves (except kurtosis) change with Hg

monotonically, while for the wide-banded waves, they vary non-monotonically (except mean values).
The large (extreme) wave runup heights, Rexty = R/Rs > s, where s is some threshold value,

somehow behave similarly to a conditional Weibull law whose density is given by Equation (11):

K(%)k_le—([{mrm//\)kJr(S/A)k, Retyy > s

f(Rextrm) = { A

(11)
0, Rextrm <s

A conditional Weibull law is characterized by three parameters: the shape k, the scale A and the
threshold s. Given the data, (R;joym) =1 ... 1, s is fixed and k and A are computed by maximum
likelihood estimator. The scale parameter, A can be obtained from Equation (12):

A= (lz (R{’(extrm _Sk)) (12)

where 7 is the number of extreme wave runups. In order to obtain the shape parameter, k, one should
solve Equation (13):

1
AU $) + (Ins)s* + My (I, =) =V, = 0 (13)
1
M, = Ezln Ri extrm (14)
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Similarly to freak waves, the waves on a beach whose runup height is two times larger than the
significant runup height (R/Rs > 2) are called freak runups. On gentle beaches, such freak runups are
manifested as sudden floods and may result in human injuries and fatalities [8-10].

Figure 7 shows probability distribution functions of large runup heights (R > 0.7Rs),
for narrow-band and wide-band spectra, for different nonlinearities. It can be seen in Figure 7
that the tails of distributions for runup heights corresponding to freak events for narrow-banded
waves decay much faster than those for wave heights offshore (except waves of weak amplitude with
Hg/hg = 0.03), which means that for narrow-banded waves, the probability of freak runup occurrence
on a beach is less than the probability of freak wave occurrence in the sea coastal zone, and a gentle
beach works as some kind of “filter” for narrow-banded freak events. This is also manifested in the
numbers of actual freak events, given in Table 1. It can be seen that for non-breaking waves of the
smallest amplitude Hg/ly = 0.03, the number of freak events on a beach was reduced twice compared to
the original number of freak waves offshore, while for waves of larger amplitude, which were affected
by the wave breaking, there were no freak runups at all.

In contrast, for wide-banded waves, the probability of freak events on a beach is more or less the
same as in the sea coastal zone and may even be higher (Figure 7). The number of freak runups for
small non-breaking wide-banded waves increased twice compared to the original number of freak
waves offshore (see Table 1). With an increase in wave amplitude (and consequently, wave breaking),
the number of freak runups on a beach decreases; however, for waves of moderate amplitude,
the number of freak runups is still larger than the number of freak waves offshore, while for waves
strongly affected by the wave breaking (Hs/hg = 0.11 and 0.14), the number of freak runups on a beach
suddenly drops down (see Table 1).
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Probability of extreme wave runups on a beach is noticeably higher for waves with wide-band
spectra than for waves with narrow-band spectra (see Figure 7), although the probability of extreme
wave heights in the wave field offshore is significantly higher for narrow-banded waves than for
wide-banded ones (see Figure 3, Table 1).
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Figure 7. Probability density functions of large runup heights (R > 0.7R;) for (a) narrow-banded
(triangles) and (b) wide-banded (pluses) waves. Lines correspond to conditional Weibull distributions
(Equation (11)), fitted to the narrow-band (solid lines) and wide-band (dashed lines) datasets, using the
matching colors.

Table 1. The number of freak events in the sea coastal zone and on a beach for different wave regimes.

Afffo=0.1 Afffo = 0.4
Ho/h Number of  Freak Waves Freak Number of  Freak Waves Freak
s/T0 Waves Offshore Runups Waves Offshore Runups

0.03 362255 125 61 389232 51 118
0.06 362380 117 0 389385 45 76
0.09 362096 89 0 389444 49 62
0.11 362319 88 0 389263 53

0.14 362302 102 0 389728 34 1

The probability of extreme runup formation changes with the wave nonlinearity. It decreases
with an increase in wave nonlinearity for wide-banded waves and changes non-monotonically with
nonlinearity for narrow-banded waves. It is also interesting to see that the tails of distributions
in Figure 7 are somehow gathered into clusters and can be separated in two groups for “relatively
large Hy” and “relatively small Hy”, where the “small Hy” group is always higher than the “large Hy”
group. The latter holds for both narrow-banded and wide-banded waves and can be explained by the
wave breaking.

The corresponding data of wave runup heights are also approximated by a conditional Weibull
distribution (Equation (11)), which gives reasonable results and can be used to evaluate the probability
of freak runups. Here, the threshold s is selected as 0.7 and the calculated parameters k and A are given
in Table 2.
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Table 2. Parameters of conditional Weibull distribution fitted to the corresponding datasets in Figure 7.

Aﬂf() =0.1 Aﬂfo =04
Hi/ho k A k A
0.03 2.747 0.886 0.76 0.116
0.06 3.6 0.92 1.43 0.48
0.09 4.06 0.89 2.58 0.86
0.11 3.08 0.777 2.6 0.772
0.14 3.08 0.72 2.718 0.762

4. Conclusions

In this paper, irregular wave runups on a plane beach are studied by means of direct numerical
simulations. The numerical model is based on the nonlinear shallow water equations and is of the
second order of accuracy. The corresponding bathymetry consists of a section of constant depth,
which is matched with the beach of a constant slope. The irregular waves are represented by the
Gaussian wave field with spectra of two different bandwidths, which are referred to as narrow-banded
and wide-banded waves. To address different levels of wave nonlinearity, time-series with five different
significant wave heights are considered. The selected wave regimes represent (i) non-breaking waves,
(ii) waves slightly affected by wave breaking, (iii) moderate wave breaking and (iv) significant wave
breaking, when the majority of waves are breaking. Each of these time-series has a duration of 1000 h
(360,000 wave periods).

The heights of narrow-banded waves are well described by Rayleigh distribution, while heights
of wide-banded waves are described by Weibull distribution, irrespective of the wave nonlinearity.
However, for wide-banded waves, the tails of these distributions show larger variability than for
narrow-banded ones.

As expected, the runup oscillations are not Gaussian, which confirms that results of many previous
studies, both theoretical [11,12] and experimental [13,16,17]. For both narrow-band and wide-band
cases, one can observe the effect of wave set-up (increase in the mean value of runup oscillations),
which increases with an increase in wave nonlinearity. However, for wide-banded waves, this increase
is significantly stronger than for narrow-banded ones.

Regarding extreme, so-called “freak events”, their statistics in the initial narrow-banded wave
signal offshore are more representative than on the beach (“freak runups”), even for non-breaking
waves. Therefore, for narrow-banded waves, gentle beaches reduce the number of freak events as
compared to the sea coastal zone, and work as a ‘low-pass filter” for extreme wave heights. This may
explain why freak events on a beach are so unexpected [8-10]. However, for wide-banded waves,
such an effect has not been observed and the probability of freak events on a beach was similar to or
even larger than the one in the sea coastal zone.

The number of freak events in wide-band and narrow-band cases varies, such that increase in
the bandwidth leads to a substantial increase in the number of freak events. This can be explained by
higher variability in wave periods for wide-banded waves, and wave runup height is rather sensitive to
these variations. In addition, the number of freak waves decreases with an increase in wave amplitude
and consequently, wave breaking. The largest number of freak waves was observed for non-breaking
wide-banded waves, which almost doubled the number of freak waves in the boundary condition
wave record.

Finally, to describe statistics of extreme wave runup heights on a gentle beach, a conditional
Weibull distribution is suggested. It gives reasonable results and may be used for the assessment
of extreme inundations on a beach (freak runups). In addition, in future applications, the statistical
analysis hereby provided might also be useful in the study of the wave run-up phenomenon in other
applications, e.g., in structures placed in shallow water conditions [31,32].

The limitation imposed by the resolution of the numerical simulations should also be taken into
account. Although the number of freak waves on the beach may be somehow reduced by a coarse
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model resolution, the qualitative and comparative conclusion of this study should not be affected.
This point will be improved in our future studies.
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