

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 161 1959

А. А. СУМБАК

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ Цилиндрических железобетонных оболочек с учетом жесткостей кручения и горизонтального изгиба бортовых элементов

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА Серия А № 161 1959

А. А. СУМБАК

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ Цилиндрических железобетонных оболочек с учетом жесткостей кручения и горизонтального изгиба бортовых элементов

ВВЕДЕНИЕ

Общепризнанное при расчете цилиндрических оболочек упрощение, т. е. пренебрежение жесткостью кручения и жесткостью горизонтального изгиба бортовых элементов не оправдывается при отдельностоящих оболочках и в краевых панелях многоволновых оболочек, и может дать неправильное представление об усилиях и перемещениях. Вышеизложенное имеет особое значение при предварительно напряженных оболочках, так как в этом случае обычно предотвращено возникновение трещин в бортовых элементах, вследствие чего жесткость бортовых элементов предварительно напряженных оболочек значительно больше по сравнению с оболочками без предварительного напряжения.

В настоящей статье изложен метод расчета, учитывающий жесткость кручения и жесткость горизонтального изгиба бортовых элементов, который может использоваться при расчете предварительно напряженных оболочек, а также при оболочках без предварительного напряжения.

При разработке метода была использована изложенная В. В. Новожиловым [1] методика расчета оболочек без предварительного напряжения, не учитывающая жесткости кручения и жесткости горизонтального изгиба бортовых элементов.

1. ОСНОВЫ РАСЧЕТА

Рассматривается цилиндрическая оболочка с бортовыми элементами и торцевыми диафрагмами (рис. 1). Арматура, расположенная в бортовых элементах, может быть предварительно напряжена или без предварительного напряжения.

Соответственно обозначениям, приведенным на рис. 2, усилия и перемещения оболочки могут быть выражены формулами (1), изложенными В. В. Новожиловым [1].

$$\begin{split} & T_{lm} = -\frac{E\delta\lambda_m^2}{R\,\nu_m^2} \Big[B_{lm} e^{-c_{l,m}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} + \frac{\pi}{4}) - B_{2m} e^{-c_{2,m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + \overline{T}_{l,m}^* , \\ & T_{2m} = -\frac{E\delta\lambda_m^4}{R\,\nu_m^2} \Big[B_{lm} e^{-c_{l,m}\alpha} \sin(d_{l,m}\alpha + \beta_{l,m}) - B_{2,m} e^{-c_{2,m}\alpha} \sin(d_{2,m}\alpha + \beta_{2,m}) \Big] + \overline{T}_{2,m}^* , \\ & S_m = -\frac{E\delta\lambda_m^3}{R\,\nu_m^3} \Big[B_{lm} e^{-c_{lm}\alpha} \sin(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{8}) + B_{2m} e^{-c_{2,m}\alpha} \cos(d_{2,m}\alpha + \beta_{2,m} + \frac{\pi}{8}) \Big] + S_m^* , \\ & Q_{2m} = -\frac{E\delta\nu_m^3}{R\,k_m^3} \Big[B_{lm} e^{-c_{lm}\alpha} \sin(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{8}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{8}) \Big] \right] , \\ & M_{2m} = -\frac{E\delta\nu_m^3}{4R\,b^4} \Big[B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{4}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{8}) \Big] , \\ & M_{2m} = -\frac{E\delta\nu_m^3}{4R\,b^4} \Big[B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{4}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + U_m^* , \\ & M_{2m} = -\frac{E\delta\nu_m^3}{V_m} \Big[B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{4}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + U_m^* , \\ & V_m = -\frac{1}{V_m} \Big[B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} + \frac{\pi}{4}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + V_m^* , \\ & W_m = B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} + \frac{\pi}{8}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + V_m^* , \\ & W_m = B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} + \frac{\pi}{8}) - B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{4}) \Big] + V_m^* , \\ & W_m = B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} + \frac{\pi}{8}) - B_{2m} e^{-c_{2m}\alpha} \sin(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{8}) \Big] + V_m^* , \\ & W_m = B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{8}) + B_{2m} e^{-c_{2m}\alpha} \cos(d_{2m}\alpha + \beta_{2m} - \frac{\pi}{8}) \Big] + V_m^* , \\ & W_m = -\frac{V_m}{R} \Big[B_{lm} e^{-c_{lm}\alpha} \cos(d_{l,m}\alpha + \beta_{l,m} - \frac{\pi}{8}) + B_{2m} e^{-c_{2m}\alpha} \sin(d_{2m}\alpha + \beta_{2m} + \frac{\pi}{8}) \Big] + V_m^* , \end{aligned}$$

где

$$\lambda_{m} = (2m - 1) \frac{\pi R}{L} , \quad (m = 1; 2; 3; ...) ,$$

$$4b^{4} = 12(1 - \mu^{2}) \frac{R^{2}}{\delta^{2}} ,$$

$$\gamma_{m} = \sqrt{\frac{4}{2}} \sqrt{b\lambda_{m}} , \qquad (2)$$

$$C_{1,m} = d_{2,m} = \sqrt{\frac{b\lambda_{m}}{2}} \sqrt{\sqrt{2} + 1} = \gamma_{m} \cos \frac{\pi}{\delta} ,$$

$$C_{2,m} = d_{1,m} = \sqrt{\frac{b\lambda_{m}}{2}} \sqrt{\sqrt{2} - 1} = \gamma_{m} \sin \frac{\pi}{\delta} .$$

B_{1,m}, B_{2,m}, β_{1,m}, β_{2,m} — постоянные, определяемые из двух систем уравнений. Звездочкой обозначены усилия и перемещения начальной задачи (обычно определяемые по безмоментной теории).

Для определения коэффициентов интегрирования и жесткости края оболочек используем таблицы 1 и 2, изложенные В. В. Новожиловым [1].

	$\mathcal{L}_{m} = f$ $V_{m} = 0$ $W_{m} = 0$ $R \Psi_{m} = 0$	$U_{m} = 0$ $V_{m} = 1$ $W_{m} = 0$ $R \Psi_{m} = 0$	$U_{m} = 0$ $V_{m} = 0$ $W_{m} = 1$ $R \Psi_{m} = 0$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R \Psi_m = 1$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R \psi_m = 0$
B _{1,m} cos _{B1,m}	0,00	-0,924Ym	-0,707	- <u>0,924</u> Vm	D _{1,m}
B _{1,m} sin _{B1,m}	$-2,41\frac{v_m^2}{\lambda_m}$	- 4,08 Ym	- 4,12	$-\frac{2,32}{\gamma_m}$	D ₂ ,m
B _{z,m} cos _{βz,m}	0,00	0,924 Ym	1,707	0,924 Vm	D _{3, m}
B _{2,m} sin _{B_{2,m}}	$\frac{\gamma_m^2}{\lambda_m}$	2,23 Vm	1,707	0,383 Ym	D _{4,m}

В таблице 1

 $D_{1,m} = 0,924 \, v_m \, v_m^* + 0,707 \, w_m^* + \frac{0,924}{v_m} R \, \psi_m^*,$ $D_{2,m} = 2,41 \frac{\gamma_m^2}{\lambda_m} U_m^* + 4,08 \gamma_m \gamma_m^* + 4,12 w_m^* + \frac{2.32}{\gamma_m} R \psi_m^*$ (3) $D_{3,m} = -0,924 \, \gamma_m v_m^* - 1,707 \, w_m^* - \frac{0,924}{\gamma_m} R \, \psi_m^*,$ $D_{4,m} = -\frac{y_m^2}{\lambda_m} u_m^* - 2,23 \, y_m v_m^* - 1,707 \, w_m^* - \frac{0,383}{y_m} R \, \psi_m^*.$

Таблица 2

C. C. Starting and the start of				the state of the	and the second
	$U_m = 1$ $V_m = 0$ $W_m = 0$ $R\Psi_m = 0$	$U_m = 0$ $V_m = 1$ $W_m = 0$ $R\Psi_m = 0$	$U_{m} = 0$ $V_{m} = 0$ $W_{m} = 1$ $R \Psi_{m} = 0$	$U_{m} = 0$ $V_{m} = 0$ $W_{m} = 0$ $R\psi_{m} = 1$	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R\psi_m = 0$
$\frac{R}{E\delta}S_m$	$a_{i} \frac{\lambda_{m}^{2}}{v_{m}}$	$a_2 \frac{\lambda_m^3}{\nu_m^2}$	$a_{i} \frac{\lambda_{m}^{3}}{\nu_{m}^{3}}$	$\frac{\lambda_m^3}{\gamma_m^4}$	A ,, m
$\frac{R}{E\delta}T_{2,m}$	$\sigma_2 \frac{\lambda_m^3}{\gamma_m^2}$	$\mathcal{O}_3 \frac{\lambda_m^4}{\gamma_m^3}$	$G_4 - \frac{\lambda_m^4}{\gamma_m^4}$	$a_1 \frac{\lambda_m^4}{\gamma_m^5}$	A 2, m
$\frac{R}{E\delta}Q_{2,m}$	$a, \frac{\lambda_m^3}{\gamma_m^3}$	$\Box_4 - \frac{\lambda_m^4}{\nu_m^4}$	$C_3 \frac{\lambda_m^4}{v_m^5}$	$a_2 \frac{\lambda_m^4}{\gamma_m^6}$	A _{3,m}
$\frac{1}{E\delta}M_{2,m}$	$\frac{\lambda_m^3}{v_m^4}$	$a_1 \frac{\lambda_m^4}{\gamma_m^5}$	$U_2 \frac{\lambda_m^4}{y_m^6}$	$\sigma_{1} \frac{\lambda_{m}^{4}}{y_{m}^{7}}$	A4,m

В таблице 2

$$\begin{aligned} & \mathcal{Q}_{1} = \frac{1}{\sin\frac{\pi}{\delta}} \approx 2,613, \qquad \mathcal{Q}_{3} = \frac{1}{(V\overline{2}-t)\sin\frac{\pi}{\delta}} \approx 6,308, \qquad (4) \\ & \mathcal{Q}_{2} = \frac{V\overline{2}}{V\overline{2}-t} \approx 3,414, \qquad \mathcal{Q}_{4} = \frac{V\overline{2}+t}{V\overline{2}-t} \approx 5,829. \end{aligned}$$

Для учета влияния бортовых элементов составим таблицу 3, в которой учитываются также жесткость кручения, жесткость горизонтального изгиба и предварительное напряжение. Бортовой элемент рассматривается как балка (рис. 3), загруженная усилиями и моментом кручения влияющими на контактной линии, предполагая, что балка из однородного, следующего закону Гука, материала.

Используя уравнение упругой линии, известное из сопротивления материалов,

$$\frac{d^4}{dx^4}(EJ_y) = \frac{d^3}{dx^3}(EJ\varphi) = \frac{d^2}{dx^2}M(x) = \frac{d}{dx}Q(x) = Q(x)$$
(6)

и закон Гука, приведем нагрузки, влияющие на контактной линии, к компонентам (7), приложенным в центре тяжести бортового элемента (рис. 3):

$$\begin{aligned} q_{*,m} &= (-T_{2,m} \sin \varphi_0 + Q_{2,m} \cos \varphi_0 - S_m \frac{\lambda_m}{R} e_r) \sin \lambda_m \xi , \\ q_{h,m} &= (T_{2,m} \cos \varphi_0 + Q_{2,m} \sin \varphi_0 + S_m \frac{\lambda_m}{R} e_h) \sin \lambda_m \xi , \\ M_{t,m} &= [T_{2,m}(e_r \cos \varphi_0 - e_h \sin \varphi_0) + Q_{2,m}(e_r \sin \varphi_0 + e_h \cos \varphi_0) + M_{2,m}] \sin \lambda_m \xi , \\ Z_m &= S_m \frac{R}{\lambda_m} \sin \lambda_m \xi . \end{aligned}$$

$$(7)$$

7

Рис. 3

При выведении формул (7) и также в дальнейшем пренебрегаем, ввиду его незначительности, влиянием компонентов нормального усилия, возникающего кручением.

Используя закон Гука и формулы (6) и (7), определим перемещения контактной линии бортового элемента, вызываемые влияющими нагрузками (рис. 3). Получим:

$$\begin{split} & U_{m} = \frac{R^{3}}{E\lambda_{m}^{3}} \Big[T_{2,m} \Big(\frac{e_{v}}{J_{v}} \sin \varphi_{0} + \frac{e_{h}}{J_{h}} \cos \varphi_{0} \Big) + Q_{2,m} \Big(\frac{e_{h}}{J_{h}} \sin \varphi_{0} - \frac{e_{v}}{J_{v}} \cos \varphi_{0} \Big) + \\ & + S_{m} \frac{\lambda_{m}}{R} \Big(\frac{e_{v}^{2}}{J_{v}} + \frac{e_{h}^{2}}{J_{h}} + \frac{1}{3E} \Big) \Big] , \end{split}$$

$$\begin{aligned} & v_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} \left(e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0} \right)^{2} + \frac{R}{E\lambda_{m}} \left(\frac{1}{J_{h}} \cos^{2}\varphi_{0} + \frac{1}{J_{v}} \sin^{2}\varphi_{0} \right) \Big] + \\ & + Q_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} \left(e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0} \right) (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} - \frac{1}{J_{v}} \right) . \\ & \cdot \sin 2\varphi_{0} \Big] + S_{m} \frac{1}{E} - \Big(\frac{e_{v}}{J_{v}} \sin \varphi_{0} + \frac{e_{h}}{J_{h}} \cos \varphi_{0} + M_{2,m} \frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) (e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} - \frac{1}{J_{v}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) (e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} - \frac{1}{J_{v}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) (e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} - \frac{1}{J_{v}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) (e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} - \frac{1}{J_{v}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \cos \varphi_{0} - e_{h} \sin \varphi_{0}) (e_{v} \sin \varphi_{0} + e_{h} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{h}} \cos^{2} \varphi_{0} + \frac{1}{2E\lambda_{m}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \sin \varphi_{0} - \frac{e_{v}}{J_{v}} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{v}} \cos^{2} \varphi_{0} + \frac{1}{2E\lambda_{m}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_{2,m} \Big[\frac{\lambda_{m}}{RGJ_{t}} (e_{v} \sin \varphi_{0} - \frac{e_{v}}{2V} \cos \varphi_{0}) + \frac{R}{2E\lambda_{m}} \left(\frac{1}{J_{v}} \cos^{2} \varphi_{0} + \frac{1}{2E\lambda_{m}} \right) \Big] , \\ & w_{m} = \frac{R^{3}}{\lambda_{m}^{3}} \Big\{ T_$$

$$\mathcal{R}\boldsymbol{\psi}_{m} = \frac{\mathcal{R}^{2}}{GJ_{t}\lambda_{m}^{2}} \left[\mathcal{T}_{2,m}(\boldsymbol{e}_{v}\cos\boldsymbol{\varphi}_{o} - \boldsymbol{e}_{h}\sin\boldsymbol{\varphi}_{o}) + \boldsymbol{Q}_{2,m}(\boldsymbol{e}_{v}\sin\boldsymbol{\varphi}_{o} + \boldsymbol{e}_{h}\cos\boldsymbol{\varphi}_{o}) + \boldsymbol{M}_{2,m} \right],$$

$$(8)$$

где EJ_v, EJ_h и GJ_t обозначают соответственно жесткости вертикального и горизонтального изгиба и жесткость кручения бортового элемента.

Из формул (8) составим симметричную относительно главной диагонали систему уравнений:

$$\begin{aligned} a_{11}S_m + a_{12}T_{2,m} + a_{13}Q_{2,m} + a_{14}M_{2,m} &= u_m , \\ a_{21}S_m + a_{22}T_{2,m} + a_{23}Q_{2,m} + a_{24}M_{2,m} &= v_m , \\ a_{31}S_m + a_{32}T_{2,m} + a_{33}Q_{2,m} + a_{34}M_{2,m} &= w_m , \end{aligned}$$
(9)
$$\begin{aligned} a_{41}S_m + a_{42}T_{2,m} + a_{43}Q_{2,m} + a_{44}M_{2,m} &= R\psi_m , \end{aligned}$$

019

где

$$\begin{aligned} & \mathcal{Q}_{11} = \frac{R^{2}}{E\lambda_{m}^{2}} \Big(\frac{\mathcal{E}_{v}^{2}}{J_{v}} + \frac{\mathcal{E}_{h}^{2}}{J_{h}} + \frac{\mathcal{E}_{h}^{2}}{5v} \Big), \\ & \mathcal{Q}_{12} = \mathcal{Q}_{21} = \frac{R^{3}}{E\lambda_{m}^{3}} \Big(\frac{\mathcal{E}_{v}}{J_{v}} \sin \varphi_{0} + \frac{\mathcal{E}_{h}}{J_{h}} \cos \varphi_{0} \Big), \\ & \mathcal{Q}_{13} = \mathcal{Q}_{31} = \frac{R^{3}}{E\lambda_{m}^{3}} \Big(\frac{\mathcal{E}_{h}}{J_{h}} \sin \varphi_{0} - \frac{\mathcal{E}_{v}}{J_{v}} \cos \varphi_{0} \Big), \\ & \mathcal{Q}_{14} = \mathcal{Q}_{41} = \mathcal{Q}, \\ & \mathcal{Q}_{22} = \frac{R^{2}}{GJ_{t}} \Big(\mathcal{E}_{v} \cos \varphi_{0} - \mathcal{E}_{h} \sin \varphi_{0} \Big)^{2} + \frac{R^{4}}{E\lambda_{m}^{4}} \Big(\frac{1}{J_{h}} \cos^{2}\varphi_{0} + \frac{1}{J_{v}} \sin^{2}\varphi_{0} \Big), \\ & \mathcal{Q}_{23} = \mathcal{Q}_{32} = \frac{R^{2}}{GJ_{t}\lambda_{m}^{2}} \Big(\mathcal{E}_{v} \sin \varphi_{0} + \mathcal{E}_{h} \cos \varphi_{0} \Big) \Big(\mathcal{E}_{v} \cos \varphi_{0} - \mathcal{E}_{h} \sin \varphi_{0} \Big) + \\ & + \frac{R^{4}}{2E\lambda_{m}^{4}} \Big(\frac{1}{J_{h}} - \frac{1}{J_{v}} \Big) \sin 2\varphi_{0}, \\ & \mathcal{Q}_{24} = \mathcal{Q}_{42} = \frac{R^{2}}{GJ_{t}\lambda_{m}^{2}} \Big(\mathcal{E}_{v} \cos \varphi_{0} - \mathcal{E}_{h} \sin \varphi_{0} \Big)^{2} + \frac{R^{4}}{E\lambda_{m}^{4}} \Big(\frac{1}{J_{v}} \cos^{2}\varphi_{0} - \frac{4}{J_{h}} \sin^{2}\varphi_{0} \Big), \\ & \mathcal{Q}_{33} = \frac{R^{2}}{GJ_{t}\lambda_{m}^{2}} \Big(\mathcal{E}_{v} \sin \varphi_{0} + \mathcal{E}_{h} \cos \varphi_{0} \Big)^{2} + \frac{R^{4}}{E\lambda_{m}^{4}} \Big(\frac{1}{J_{v}} \cos^{2}\varphi_{0} - \frac{4}{J_{h}} \sin^{2}\varphi_{0} \Big), \\ & \mathcal{Q}_{34} = \mathcal{Q}_{43} = \frac{R^{2}}{GJ_{t}\lambda_{m}^{2}} \Big(\mathcal{E}_{v} \sin \varphi_{0} + \mathcal{E}_{h} \cos \varphi_{0} \Big)^{2} + \frac{R^{4}}{E\lambda_{m}^{4}} \Big(\frac{1}{J_{v}} \cos^{2}\varphi_{0} - \frac{4}{J_{h}} \sin^{2}\varphi_{0} \Big), \\ & \mathcal{Q}_{44} = \frac{R^{2}}{GJ_{t}\lambda_{m}^{2}} \Big). \end{aligned}$$

Решая систему уравнений относительно каждого отдельного единичного перемещения (11)

1)	Um =	1;	Vm	= 0;	$W_m = 0$	$P; R \Psi_m =$	0, "	
2)	Um =	0;	Vm	= 1;	$W_m = 0$); $R\psi_m =$	0,	
3)	Um =	0;	Vm :	= 0;	$W_m = 1$; $R\psi_m =$	Ο,	(11)
4)	Um =	0;	Vm :	= 0;	Wm= 0); Rym =	1,	

получим величины четырех первых столбцов таблицы жесткостей бортового элемента (табл. 3)

Таблица З

	$U_m = 1$ $V_m = 0$ $W_m = 0$ $R\Psi_m = 0$	$U_{m} = 0$ $V_{m} = 1$ $W_{m} = 0$ $R\Psi_{m} = 0$	$U_{m} = 0$ $V_{m} = 0$ $W_{m} = 1$ $R\Psi_{m} = 0$	U _m = 0 V _m = 0 W _m = 0 RY _m = 1	$U_m = 0$ $V_m = 0$ $W_m = 0$ $R\psi_m = 0$
$\frac{R}{E\delta}S_m$	f1,m	f2,177	f3,m	f4,177	$F_{i,m} + F'_{i,m}$
$\frac{R}{E\delta}T_{2,m}$	f2,m	f 5,m	f 6,m	fz,m	$F_{2,m} + F_{2,m}$
$\frac{R}{E\delta}Q_{2,m}$	fз,т	fe,m	fs,m	fg,m	$F_{3,m} + F_{3,m}$
$\frac{1}{E\delta}M_{2,m}$	f4m	1 f7,m	f 9,m	f10,177	F4,m+ F4,m

В таблице 3

 $f_{i,m} = \frac{\Omega \lambda_m^2}{P \delta}$, $f_{2,m} = -\frac{\Omega \lambda_m^3}{P^2 \delta} (e_v \sin \varphi_0 + e_h \cos \varphi_0)$ $f_{3,m} = \frac{\Omega \lambda_m^3}{R^2 \delta} (e_v \cos \varphi_0 - e_h \sin \varphi_0)$ $f_{4,m}=0$. $f_{s,m} = \frac{\Omega \lambda_m^4}{R^{3S}} \left[\left(\frac{J_V}{\Omega} + e_V^2 \right) s i n^2 \varphi_0 + \left(\frac{J_h}{\Omega} + e_h^2 \right) cos^2 \varphi_0 + e_V e_h s i n^2 \varphi_0 \right],$ (12) $f_{\delta,m} = -\frac{\Omega \lambda_m^4}{P^3 \delta} \left[\frac{1}{2} \left(\frac{J_v - J_h}{\Omega} + e_v^2 - e_h^2 \right) \sin 2\varphi_0 + e_v e_h \cos 2\varphi_0 \right],$ $f_{7,m} = \frac{\lambda_m^4}{R^4 \delta} (J_v e_h \sin \varphi_0 - J_h e_v \cos \varphi_0),$ $f_{a,m} = \frac{\Omega \lambda_m^a}{R^3 \kappa} \left[\left(\frac{J_h}{S} + e_h^2 \right) \sin^2 \varphi_0 + \left(\frac{J_v}{S} + e_v^2 \right) \cos^2 \varphi_0 - e_v e_h \sin 2 \varphi_0 \right],$ $f_{g,m} = -\frac{\lambda_m^4}{R^4\delta} (J_h e_v \sin \varphi_0 + J_v e_h \cos \varphi_0).$ $f_{10,m} = \frac{\lambda_m^4}{R^5 \kappa} (J_h e_v^2 + J_v e_h^2 + \frac{R^2}{F \sigma^2} G J_t) \,.$ 11

Для учета влияния собственного веса *q*₀ бортового элемента разложим его в ряд Фурье и определим перемещения контактной линии бортового элемента и оболочки:

$$U_{m} = \frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{R^{3}e_{v}}{EJ_{v}\lambda_{m}^{3}} \varphi_{o} ,$$

$$V_{m} = \frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{R^{4}}{EJ_{v}\lambda_{m}^{4}} \varphi_{o} sin \varphi_{o} ,$$

$$W_{m} = -\frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{R^{4}}{EJ_{v}\lambda_{m}^{4}} \varphi_{o} \cos \varphi_{o} ,$$

$$\Psi_{m} = 0 .$$
(13)

При помощи формул (13) и четырех первых столбцов таблицы 3 определим величины $F_{1,m}$, $F_{2,m}$, $F_{3,m}$ и $F_{4,m}$, характеризующие влияние собственного веса бортового элемента при абсолютно жесткой заделже на контактной линии (см. таблицу 3). Получим:

$$\frac{R}{E\delta} S_{im} = 0 = F_{i,m},$$

$$\frac{R}{E\delta} T_{2,m} = -\frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{Rq_o}{E\delta} s_i' n q_o = F_{2,m},$$

$$\frac{R}{E\delta} Q_{2,m} = \frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{Rq_o}{E\delta} cos q_o = F_{3,m},$$

$$\frac{1}{E\delta} M_{2,m} = -\frac{4(-1)^{m+1}}{\pi(2m-1)} \frac{e_h q_o}{E\delta} = F_{4,m}.$$
(14)

Для учета елияния предварительного напряжения рассмотрим бортовой элемент (рис. 4),

Рис. 4

в котором силой N₁, предварительно напряженная арматура расположена по квадратной параболе.

$$y = \frac{4f'x(L-x)}{L^2}.$$
 (15)

Напряженная силой N₁ арматура — прямая. Учитывая вертикальную нагрузку

$$q_{o,v} = \frac{8N_i f}{L^2} , \qquad (16)$$

вызванную предварительно напряженной криволинейной арматурой, можем воздействующую на бортовой элемент нагрузку рассматривать состоящей из трех компонентов N_1 , \overline{N}_1 и q_{0v} (см. рис. 5).

Рис. 5

Аналогично случаю [5], в котором жесткости кручения и горизонтального изгиба бортового элемента не учитываются, получим вызванные предварительным напряжением перемещения контактной линии:

$$\begin{split} \underline{U}_{m} &= -\frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{Re_{\nu}}{EJ_{\nu}\lambda_{m}} \left\{ N_{t} \left[\frac{\vartheta f}{\pi^{2}} - (\sigma_{t} + \frac{e_{\nu}}{\vartheta}) \cos \alpha + \bar{N}_{t} (\bar{\sigma}_{t} - \frac{e_{\nu}}{\vartheta}) \right] \right\}, \\ V_{m} &= -\frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{R^{2}}{EJ_{\nu}\lambda_{m}^{2}} \left[N_{t} \left(\frac{\vartheta f}{\pi^{2}} - \sigma_{t} \cos \alpha \right) + \bar{N}_{t} \bar{\sigma}_{t} \right] \sin \varphi_{\sigma} , \\ W_{m} &= \frac{4(-t)^{m+t}}{\pi(2m-t)} \frac{R^{2}}{EJ_{\nu}\lambda_{m}^{2}} \left[N_{t} \left(\frac{\vartheta f}{\pi^{2}} - \sigma_{t} \cos \alpha \right) + \bar{N}_{t} \bar{\sigma}_{t} \right] \cos \varphi_{\sigma} , \end{split}$$
(17)

 $\Psi_m = 0$.

Далее при помощи формул (17) и первых четырех столбцов таблицы 3 получим величины $F_{1,u}$, $F_{2,m}$, $F_{3,m}$ и $F_{4,m}$ последнего столбца, определяющие влияние предварительного напряжения. Получим:

$$\frac{R}{E\delta}S_{m} = -\frac{4(-t)^{m+t}}{\pi(2m-t)}\frac{4e_{v}^{2}\lambda_{m}}{Eh^{2}\delta} \left(N_{t}\cos\alpha + \bar{N}_{t}\right),$$

$$\frac{R}{E\delta}T_{2,m} = \frac{4(-t)^{m+t}}{\pi(2m-t)}\frac{4e_{v}^{2}\lambda_{m}^{2}}{REh^{2}\delta} \left\{N_{t}\left[\frac{2h^{2}}{\pi^{2}e_{v}^{3}}f^{2} + (1 + \frac{e_{h}}{e_{v}}C^{\dagger}g\varphi - \frac{h^{2}}{4e_{v}^{3}}a_{t})cos\alpha\right] + N_{2}\left(1 + \frac{e_{h}}{e_{v}}c^{\dagger}g\varphi_{0} + \frac{h^{2}}{4e_{v}^{3}}\bar{a}_{t}\right)\right\}\sin\varphi_{0},$$

$$\frac{R}{E\delta}Q_{2,m} = -\frac{4(-t)^{m+t}}{\pi(2m-t)}\frac{4e_{v}^{3}\lambda_{m}^{2}}{REh^{2}\delta} \left\{N_{t}\left[\frac{2h^{2}}{\pi^{2}e_{v}^{3}}f^{2} + (1 - \frac{e_{h}}{e_{v}}tg\varphi_{0} - \frac{h^{2}}{4e_{v}^{3}}a_{t})cos\alpha\right] + N_{2}\left(1 - \frac{e_{h}}{e_{v}}tg\varphi_{0} + \frac{h^{2}}{4e_{v}^{3}}\bar{a}_{t}\right)\right]\cos\varphi_{0},$$

$$\frac{1}{E\delta}M_{2,m} = \frac{4(-t)^{m+t}}{\pi(2m-t)}\frac{e_{h}\lambda_{m}^{2}}{R^{2}E\delta}\left[N_{t}\left(\frac{\partial f}{\pi^{2}} - a_{t}\cos\alpha\right) + \bar{N}_{t}\bar{a}_{t}\right].$$
(18)

Если криволинейная и прямая арматура расположена в нескольких каналах (рис. 6),

Рис. 6

то формулы (18) можно представить в виде:

$$\frac{R}{E\delta}S_{m}^{c} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{4e_{v}^{2}\lambda_{m}}{E\hbar^{2}\delta}\left(\sum_{n=i}^{i}N_{n}\cos\alpha_{n}+\sum_{n=i}^{j}\bar{N}_{n}\right) = F_{i,m}^{\prime}, \qquad (19)$$

$$\frac{R}{E\delta}T_{2,m} = \frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{4e_{v}^{2}\lambda_{m}^{2}}{RE\hbar^{2}\delta}\left(\sum_{n=i}^{i}N_{n}\kappa_{2,n}+\sum_{n=i}^{j}\bar{N}_{n}\bar{\kappa}_{2,n}\right)sin\varphi_{o} = F_{2,m}^{\prime},$$

$$\frac{R}{E\delta}Q_{2,m} = -\frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{4e_v^3\Lambda_m^2}{REh^2\delta} \left(\sum_{n=i}^{i} N_n \kappa_{3,n} + \sum_{n=i}^{j} \overline{N_n} \overline{\kappa_{3,n}}\right) \cos\varphi_o = F_{3,m}^{'},$$

$$\frac{1}{E\delta}M_{2,m} = \frac{4(-i)^{m+i}}{\pi(2m-i)}\frac{e_h\lambda_m^2}{R^2E\delta} \left(\sum_{n=i}^{i} N_n \kappa_{4,n} + \sum_{n=i}^{j} \overline{N_n} \overline{\kappa_{4,n}}\right) = F_{4,m}^{'},$$

где

$$\begin{split} \kappa_{2,n} &= \frac{2h^2}{\pi^2 e_v^3} f_n^2 + \left(1 + \frac{e_h}{e_v} c t g \varphi_0 - \frac{h^2}{4 e_v^3} a_n\right) cos\alpha_n \ , \\ \vec{\kappa}_{2,n} &= 1 + \frac{e_h}{e_v} c t g \varphi_0 + \frac{h^2}{4 e_v^3} \vec{a}_n \ , \\ \kappa_{3,n} &= \frac{2h^2}{\pi^2 e_v^3} f_n^2 + \left(1 - \frac{e_h}{e_v} t g \varphi_0 - \frac{h^2}{4 e_v^3} a_n\right) cos\alpha_n \ , \\ \vec{\kappa}_{3,n} &= 1 - \frac{e_h}{e_v} t g \varphi_0 + \frac{h^2}{4 e_v^3} \vec{a}_n \ , \end{split}$$

$$\end{split}$$

$$\begin{aligned} & (20) \\ \vec{\kappa}_{4,n} &= \frac{8}{\pi} f_n^2 - a_n cos\alpha_n \ , \end{aligned}$$

$\overline{K}_{4,\pi} = \overline{a}_{\pi} \ .$

Примечания:

1) Если усилие N_n предварительно напряженной криволинейной арматуры приложено ниже центра тяжести бортового элемента, то знаки в формулах (20) перед всеми членами, содержащими a_n, изменяются.

2) Если прямая, предварительно напряженная арматура расположена выше центра тяжести бортового элемента, то изменяются знаки в формулах (20) перед всеми членами, содержащими a_n .

Полученная т.:блица жесткостей бортового элемента (табл. 3) применима при расчете оболочек, у которых сечение бортового элемента симметрична относительно двух осей. При несимметричных и симметричных относительно одной оси сечениях бортовых элементов таблица 3 несколько усложняется, так как в этом случае центры тяжести и кручения не совпадают. Таблица 3 применима при расчете предварительно напряженных оболочек, а также при оболочках без предварительного напряжения. Различие лишь в том, что в последнем случае члены $F'_{1,m}, F'_{2,m}, F'_{3,m}$ и $F'_{4,m}$, вызванные предварительным напряжением, отпадают.

Легко убедиться, что предполагая в таблице 3 J_t ; J_h ; N_n ; \overline{N}_n равными нулю, получим таблицу, изложенную В. В. Новожиловым (см. [1] стр. 210).

2. ЧИСЛЕННЫЙ ПРИМЕР

Примером расчета рассмотрим цилиндрическую оболочку, изложенную в [5] с теми же размерами, нагрузками и величинами предварительного напряжения. Расчет произведем с уточненными краевыми условиями на прямолинейных краях оболочки, т. е. учитывая жесткости кручения и горизонтального изгиба бортовых элементов.

Рассматриваемая оболочка характеризуется следующими данными (см. рис. 1, 2, 3, 4):

L = 25,0 м,	$N_1 = 65,0$ T,	$q = 0,325 \text{ T/m}^2$
R = 9,3343 м,.	$\overline{N}_1 = 35,0$ T,	$q_0 = 0,865 \text{ T/m},$
$\delta = 0,07 \text{ m},$	f = 1,70 m,	$J_{\rm v}=0,0972~{ m m}^4,$
$\delta_0 = 0,20$ M,	$a_1 = 16^{\circ}42',$	$J_{\rm t} = 0,00444 {\rm m^4},$
h = 1,80 M,	$a_1 = \overline{a_1} = 0,85$ M,	$J_{\rm h} = 0,00120 {\rm m^4},$
$\Omega = h\delta_0 = 0.36 \text{ M}^2,$	$e_{\rm v} = 0,90$ M,	$E = 300\ 000\ {\rm kg/cm^2},$
oatupa fioniseixequien	$e_{\rm h} = 0,10$ M,	$G = 0,425 E \text{ kg/cm}^2,$
dog nu o kun a land		(21)

Учитывая при расчете три первых члена ряда Фурье, получим из безмоментной теории (см. [5]) усилия и перемещения на контактной линии ($\varphi = \varphi_0$) начальной задачи:

$\frac{R}{E\delta}S_1^* = 56$	54,38 ¹ / <i>E</i> ,	$\frac{R}{E\delta}T_{2,1}^* =$	—394,47 ¹ / <i>E</i> ,	
$\frac{R}{E\delta}S_2^* = -$	-62,65 ¹ /E,	$\frac{R}{E\delta}T_{2,2}^* =$	131,39 ¹ / <i>E</i> ,	ofi. /
$\frac{R}{E\delta}S_3^* = 22$	2,63 ¹ / <i>E</i> ,	$\frac{R}{E\delta}T_{2,3}^* =$	$-79,03^{1}/E$,	
$u_1^* = 48$	$38,81 \ ^{1}/E,$	$w_1^* =$	$-1957,77^{1}/E,$	(22)
$u_2^* = -$	$-6,01^{-1}/E,$	$w_2^* =$	175,53 ¹ /E,	
$u_3^* = 0,$	$79^{1}/E$,	w3* =	$-88,34^{1}/E,$	AROO G
$v_1^* = 13$	$311,90^{-1}/E,$	$\psi_1^* =$	$-35,46^{1}/E,$	
$v_2^* = -$	$-37,04^{1}/E,$	$\psi_2^* =$	11,81 ¹ / <i>E</i> ,	
$v_3^* = 7,$	$83^{1}/E$,	$\psi_{3}^{*} =$	$=-7,10^{1}/E,$	

Заполняя таблицы 1 и 2, получим таблицу 4, определяющую коэффициенты интегрирования $B_{1,m}$, $B_{2,m}$, $\beta_{1,m}$, и $\beta_{2,m}$ и таблицу жесткостей края оболочки (табл. 5).

Таблица 4

	т	$u_{\rm m} = 1$ $v_{\rm m} = 0$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$	$u_{\rm m} = 0$ $v_{\rm m} = 1$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$	$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 1$ $R\psi_{\rm m} = 0$	$u_{m} = 0$ $v_{m} = 0$ $w_{m} = 0$ $R\psi_{m} = 1$	$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 0$ $R\psi_{\rm m} = 0$
CIAN IN P	1	0		0,707	-0,184	5205,84 ¹ /E
$B_{1,m}\cos\beta_{1,m}$	2	0		-0,707	-0,106	-224,58 ¹ /E
avria	3	0	—10,375	-0,707	0,0823	35,93 ¹ /E
	1	-51,795		-4,120	0,462	43585,26 ¹ /E
$B_{1 \text{ m}} \sin \beta_{1,\text{m}}$	2	-51,795	-35,488	-4,120	-0,267	$-741,71^{1}/E$
31/ 6.0	3	51,795	-45,810	-4,120	0,207	
A Long to	1	0	4,639	1,707	0,184	-2683,41 ¹ /E
$B_{2,m}\cos\beta_{2,m}$	2	0	8,037	1,707	0,106	$-13,61^{-1}/E$
- and - series	3	0	10,375	1.707	0,0823	75,06 ¹ /E
- Mananin	1	21,492	11,197	1.707	0,0763	-21830,27 ¹ /E
$B_{2,m}\sin\beta_{2,m}$	2	21,492	19,397	1,707	0,0440	543,16 ¹ /E
Alerticoper	3	21,492	25,038	1,707	0,0341	-59,87 ¹ /E

Для заполнения таблицы жесткостей бортового элемента (табл. 3) предварительно вычисляем при помощи формул (20) следующие постоянные:

$K_{2,1} = 1,700,$	$\overline{K}_{2,1}=2,088,$	
$K_{3,1} = 1,482,$	$\overline{K}_{3,1} = 1,863,$	(23)
$K_{4,1} = 0,564$	$\overline{K}_{4,1}=0,85$	A CONTRACTOR

17

		$u_{\rm m} = 1$	$u_{\rm m} = 0$	$u_{\rm m} = 0$	$u_{\rm m} = 0$	$u_{\rm m} = 0$
	m	$v_{\rm m} = 0$	$v_{\rm m} = 1$	$v_{\rm m} = 0$	$v_{\rm m}=0$	$v_{\rm m} = 0$
	110	$w_{\rm m}=0$	$w_{\rm m}=0$	$w_{\rm m} = 1$	$w_{\rm m}=0$	$w_{\rm m}=0$
* 1.11 8 8 2 1	T	$R\psi_{\rm m}=0$	$R\psi_{\rm m}=0$	$R\psi_{\rm m}=0$	$R\psi_{\rm m} = 1$	$R\psi_{\rm m}=0$
D	1	0,716	0,219	0,0333	0,00254	$-6,89^{1}/E$
$\frac{1}{F\delta}S_{\rm m}$	2	3,720	1,966	0,173	0,00761	1,32 ¹ /E
	3	8,005	5,463	0,372	0,0127	7,25 ¹ /E
D	1	0,219	0,0943	0,0174	0,00155	$-590,72^{1}/E$
$\frac{R}{F\delta}T_{2,m}$	2	1,966	1,470	0,156	0,00805	169,40 ¹ /E
	3	5,463	5,273	0,434	0,0173	
21123 Marca	1	0,0333	0,0174	0,00374	0,000403	$-31.64^{1/E}$
$\frac{R}{E\delta}Q_{2m}$	2	0,173	0,156	0,0194	0,00121	3,28 ¹ /E
L0 2,m	3	0,372	0,434	0,0418	0,00202	0,14 ¹ /E
	1	0.00254	0.00155	0.000403	0.0000615	-2.47 ¹ /E
$\frac{1}{T_{\rm N}}M_{\rm Om}$	2	0,00761	0,00805	0,00121	0,000106	0,12 ¹ /E
E() 2,m	3	0,0127	0,0173	0,00202	0,000137	、 0,04 ¹/E

которые при каждом значении *m* остаются неизменными. В результате получим таблицу жесткостей бортовых элементов (табл. 6).

Таблицей 6 можно пользоваться при расчете предварительно напряженных оболочек, а также оболочек без предварительного напряжения. При расчете предварительно напряженных оболочек учитывается сумма величин двух последних столбцов таблицы 6; при оболочках без предварительного напряжения величины последнего столбца отпадают.

Суммируя соответствующие величины таблиц 5 и 6, получим уравнения перемещения контактной линии для предварительно напряженных оболочек, а также для оболочек без предварительного напряжения. Полученные уравнения изложены в таблице 7, в которой свободные члены в последнем столбце относятся к предварительно напряженной оболочке, а свободные члены в предпоследнем столбце к оболочке без предварительного напряжения.

a = 0 a = 0 a = 0 a = 0	$\frac{N_1 = 65 \text{ T};}{\overline{N}_1 = 35 \text{ T};}$	-2075,08 ¹ /E 2075,08 ¹ /E -2075,08 ¹ /E	282,22 ¹ /E —846,49 ¹ /E 1410,85 ¹ /E	298,03 ¹ / <i>E</i> 893,91 ¹ / <i>E</i> 1489,88 ¹ / <i>E</i>	1,91 ¹ / <i>E</i> -5,72 ¹ / <i>E</i> 9,54 ¹ / <i>E</i>
u_{r} v_{1} w_{1} w_{1}	$q_0 = 0.865 \ r/m$	0 0 0	94,38 ¹ / <i>E</i> 31,46 ¹ / <i>E</i> 18,88 ¹ / <i>E</i>	112,47 ¹ /E -37,49 ¹ /E 22,49 ¹ /E	1,57 1/E 0,52 1/E 0,32 1/E
$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 0$	$R\psi_{\rm m} = 1$	0	0,0000191 0,00155 0,0119	-0,000287 -0,00232 -0,0179	0,000458 0,000466 0,00159
$u_{\rm m} = 0$ $v_{\rm m} = 0$ $w_{\rm m} = 1$	$R\psi_{\rm m}=0$	0,0595 1,607 7,438	0,00641 0,519 4,006	0,00651 0,527 4,069	-0,0000287 -0,00232 -0,0179
$u_{\rm m} = 0$ $v_{\rm m} = 1$ $w_{\rm m} = 0$	$R\psi_{\rm m}=0$	-0,0625 -1,688 -7,813	0,00643 0,521 4,019	0,00641 0,519 4,006	0,0000191 0,00155 0,0119
$u_{\rm m} = 1$ $v_{\rm m} = 0$ $w_{\rm m} = 0$	$R\psi_{\rm m}=0$	0,758 6,822 18,950	-0,0625 -1,688 -7,813	0,0595 1,607 7,438	0
ш	24-	3 5 1	1 2 3	3 2	a 2 -
Albertania Albertania		$rac{R}{E\delta} S_{ m m}$	$rac{R}{E\delta}T_{2,\mathrm{m}}$	$rac{R}{E\delta}Q_{2,\mathrm{m}}$	$\frac{1}{E\delta}M_{2,m}$

m	u _m	$v_{ m m}$	w _m	$R\psi_{m}$	q ₀ ==0,865т/м	q ₀ ==0,865 т/м №1==65т Ѿ1==35т
	1,474	0,156	0,0928	0,00254	6,89 ¹ /E	2081,97 ¹ /E
1	0,156	0,101	0,0110	0,00157	685,10 ¹ /E	402,88 ¹ /E
-1	0,0928	0,0110	0,0102	0,000.374	-80,83 ¹ /E	217,20 ¹ /E
1.4.2	0,00254	0,00157	0,000374	0,000107	4,04 ¹ /E	2,13 ¹ /E
	10 5 10	0.070	1 500	0.00701	1.00.1/15	0070 70 1/2
	10,542	0,278	1,780	0,00761	$-1,32^{-1}/E$	-2073,76 1/E
9	0,278	1,991	0,363	0,00960	$-200,86^{-1}/E$	645,63 ¹ /E
-	1,780	-0,363	0,546	-0,00111	34,21 ¹ /E	$-859,70^{-1}/E$
C HE	0,00761	0,00960	0,00111	0,000572	0,64 ¹ /E	5,08 ¹ /E
10	26 955	-2 350	7 810	0.0127	-7.25 $1/F$	2067 83 1/F
	-2 350	9 202	-3 579	0.0202	$104.01 \ {}^{1/F}$	-1306 84 17F
3	7,810	3,252	4 111	0,0252	22 63 1/F	1467 95 1/F
1	1,010	-0,072	4,111	-0,0139		1407,20 -7L
1	0,0127	0,0292	-0,0159	0,00173	$0,20 \ /L$	-9,20 YE

Решая системы уравнений, приведенные в табл. 7, получим перемещения контактной линии для предварительно напряженной оболочки и для оболочки без предварительного напряжения (соответственно (24) и (25)):

$u_1 = -292,30^{-1}/E$ $v_1 = 3502,59^{-1}/E,$ $w_1 = 24174,54^{-1}/E,$ $R\psi_1 = -109045,46^{-1}/E,$	$u_2 = 184,93 \ ^1/E, \ v_2 = -133,82 \ ^1/E, \ w_2 = -2257,69 \ ^1/E, \ R\psi_2 = 4281,93 \ ^1/E,$	$\begin{array}{l} u_3 = -75,54 \ ^1/E, \\ v_3 = 50,66 \ ^1/E, \\ w_3 = 541,82 \ ^1/E, \\ R\psi_3 = -675,90 \ ^1/E, \end{array}$
		(24)
$u_1 = 345,85 \ ^{1}/E, \\ v_1 = 8875,12 \ ^{1}/E, \\ w_1 = -19441,90 \ ^{1}/E, \\ R\psi_1 = -32718,84 \ ^{1}/E, \end{cases}$	$u_2 = 9.61 \ {}^{1}/E, \\ v_2 = -112.63 \ {}^{1}/E, \\ w_2 = -42.43 \ {}^{1}/E, \\ R\psi_2 = 553.85 \ {}^{1}/E,$	$u_{3} = -2.92 \ {}^{1}/E, \\ v_{3} = 15.61 \ {}^{1}/E, \\ w_{3} = 13.78 \ {}^{1}/E, \\ R\psi_{3} = 43.47 \ {}^{1}/E, \end{cases}$
		(25)

Далее составим при помощи таблицы 4 и перемещений (24) и (25) системы уравнения для определения коэффициентов интегрирования $B_{1,m}$, $B_{2,m}$, $\beta_{1,m}$ и $\beta_{2,m}$.

Например, для расчета первого приближения (m = 1) предварительно напряженной оболочки получим следующие уравнения:

 $\begin{array}{l} \dot{B}_{1,1}\cos\beta_{1,1} = (0 - 16249 - 17091 + 20064 + 5206)^{-1}/\dot{E} = -8070^{-1}/\dot{E}, \\ \dot{B}_{1,1}\sin\beta_{1,1} = (15140 - 71754 - 99599 + 50379 + 43585)^{-1}/\dot{E} = \\ = -62249^{-1}/\dot{E}, \end{array}$

(26)

 $\begin{array}{l} B_{2,1}\cos\ \beta_{2,1} = (0 + 16249 + 41266 - 20064 - 2683)^{-1}/E, = 34768^{-1}/E, \\ B_{2,1}\sin\ \beta_{2,1} = (-6282 + 39218 + 41266 - 8320 - 21830)^{-1}/E = \\ = 44052^{-1}/E. \end{array}$

Аналогично составим системы уравнений для других значений *m*, а также при расчете оболочек без предварительного напряжения. Решая упомянутые системы уравнений, получим коэффициенты для расчета предварительно напряженной оболочки:

$B_{1,1} = -62770 \ ^{1}/E,$	$B_{1,2} = 3267 \ ^{1}/E.$	$B_{1,3} = -989 \ ^{1}/E,$
$B_{2,1} = 56120 \ ^{1}/E,$	$B_{2,2} = -4814 \ ^{1}/E$	$B_{2,3} = 1548 \ ^{1}/E,$
$\beta_{1,1} = 82^{\circ}36',$	$\beta_{1,2} = 52^{\circ}25',$	$\beta_{1,3} = 34^{\circ}18',$
$\beta_{2,1} = 51^{\circ}43',$	$\beta_{2,2} = 21^{\circ}12',$	$\beta_{2,3} = 18^{\circ}18',$
		(27)

и для расчета оболочки без предварительного напряжения:

$B_{1,1} = -63050 \ ^{1}/E,$	$B_{1,2} = 2859 \ ^{1}/E,$	$B_{1,3} = -701 \ {}^{1}/E$
$B_{2,1} = 49310 \ ^{1}/E,$	$B_{2,2} = -1751 \ ^{1}/E,$	$B_{2,3} = 392 \ ^{1}/E,$
$\beta_{1,1} = 75^{\circ}06',$	$\beta_{1,2} = 76^{\circ}50',$	$\beta_{1,3} = 78^{\circ}30',$
$\beta_{2,1} = 91^{\circ}03',$	$\beta_{2,2} = 57^{\circ}51',$	$\beta_{2,3} = 48^{\circ} 18'$
City Contraction		(28)

Далее при помощи формул (1) можем определить необходимые усилия и перемещения для предварительно напряженной оболочки и оболочки без предварительного напряжения.

Расчеты целесообразно произвести в табулированном виде (см. [5]). Некоторые результаты вычислений и их сравнение приведены на рисунках 7—12.

Рис. 9

Рис. 10

ЗАКЛЮЧЕНИЕ.

Из сравнения результатов численного примера данной работы и [5] вытекает, что учет жесткостей кручения и горизонтального изгиба бортовых элементов существенно изменяет усилия и перемещения оболочки, особенно утлы поворота ψ и поперечные моменты M_2 (см. рис. 7, 8 и 11).

Учет жесткостей кручения и горизонтального изгиба бортовых элементов значительно уменьшает углы поворота ψ ; при этом наибольшие изменения возникают на контактной линии. В данном случае углы поворота на контактной линии уменьшаются приблизительно в три раза (сравн. эпюры 1 и 2, а также 3 и 4 на рис. 11). При этом вблизи контактной линии бортового элемента и оболочки возникают отрицательные поперечные изгибающие моменты M_2 , в остальной криволинейной части оболочки M_2 существенно (приблизительно в два раза) уменьшается (сравн. эпюры 1 и 2, а также 3 и 4 на рис. 11).

Если при расчете, не учитывающем жесткостей бортовых элементов, доминируют отрицательные поперечные изгибающие моменты M_2 (основная нагрузка вблизи бортовых элементов), то на контактной линии могут возникнуть и положительные моменты заделки.

Из рис. 11 выясняется, что влияние жесткостей кручения и горизонтального изгиба на углы поворота ψ и на поперечные изгибающие моменты M_2 предварительно напряженной оболочки больше, чем при оболочках без предварительного напряжения.

Необходимо отметить, что в действительности в бетоне бортовых элементов оболочки без предварительного напряжения от усилий T_1 и S возникают трещины, влияние которых в расчете не учитывается. Поэтому влияние жесткостей кручения и горизонтального изгиба бортовых элементов в оболочках без предварительного напряжения в некоторой степени уменьшается.

При предварительно напряженных оболочках отрицательные изгибающие моменты M_2 на коньке оболочки незначительны и не требуют армирования, что значительно упрощает производство работ. Так как бортовые элементы обычно не армированы на кручение, то возникающие в бетоне главные растягивающие напряжения должны быть меньше сопротивления бетона на растяжение R_p . Для определения компонентов главных растягивающих напряжений, вызванных кручением, бортовой элемент рассматривается как балка, контактная линия которой загружена усилиями T_2 , Q_2 и M_2 . Если суммарные главные растягивающие напряжения превышают сопротивление бетона R_p , то возникают трещины и действительные жесткости кручения и горизонтального изгиба значительно меньше определяемых по расчету.

Влияние жесткостей кручения и горизонтального изгиба бортовых элементов на продольные усилия T_1 и сдвигающие усилия S значительно меньше, оказываясь при предварительно напряженных оболочках и при оболочках без предварительного напряжения почти равным. (Сравн. эпюры 1 и 2, а также 3 и 4 на рис. 12)).

Используемый в расчете ряд в данном случае сходится довольно быстро и достаточная точность для практического расчета длинных оболочек и оболечек средней длины достигается уже первым членом ряда. Допущенная при этом незначительная неточность результатов идет в пользу прочности конструкции (см. рис. 7—10).

Из численного примера следует, что учет жесткостей кручения и горизонтального изгиба значительно не увеличивает объема вычислений, так как в некоторой степени

Рис. 12

лишь усложняется заполнение таблицы жесткостей бортового элемента (табл. 3).

Из вышесказанного следует, что при расчете предварительно напряженных отдельностоящих оболочек и также краевых панелей многоволновых оболочек общепризнанный отказ от жесткостей кручения и горизонтального изгиба бортовых элементов не оправдывается, так как полученные в этом случае усилия и перемещения, в зависимости от размеров и формы бортовых элементов, могут не соответствовать действительности.

ЛИТЕРАТУРА

- 1. Новожилов В. В. Теория тонких оболочек. 1951.
- 2. Власов В. З. Общая теория оболочек. 1949.
- 3. Гольденвейзер А. Л. Теория упругих тонких оболочек. 1953.
- 4. Лаул Х. Х. Цилиндрические железобетонные оболочки C предварительно напряженной арматурой. Труды Таллинского Политехнического Института № 45, 1953.
- 5. Сумбак А. А. Расчет предварительно напряженных цилиндрических железобетонных оболочек. Труды Таллинского Политехнического Института № 159, 1959. 6. Rabich, R. Die Statik der Schalenträger. Bauplanung-Bautech-
- nik, Januar 1956.
- 7. Rühle, H. Die Rationalisierung des Entwurfs und der Ausführung von Schalenbauten. Bauplanung- Bautechnik, März 1956.
- 8. Tetzlaff, W. Die praktischen Berechnungsverfahren für tonnenund trogartige Schalen. VEB Verlag Technik, Berlin 1955.
- 9. Schmausser, G. Berechnung zylindrischer Schalendächer unter Längsvorspannung nach der Methode «des stellvertretenden
- Faltwerks». Die Bautechnik, Februar u. Mai 1957. 10. Kirkland, C. W. The Design and Construction of a Large-Span Prestressed Concrete Shell Roof. The Structural Engineer, April 1951.
- 11. Haas, A. M. Ontwerp en berekening van shedschaaldaken in voorgespannenen beton voor 2×40 m overspanning. Ingenieur 1956, Nr. 15.

А. А. Сумбак

РАСЧЕТ ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ ЦИЛИНДРИЧЕ-СКИХ ЖЕЛЕЗОБЕТОННЫХ ОБОЛОЧЕК С УЧЕТОМ ЖЕСТ-КОСТЕЙ КРУЧЕНИЯ И ГОРИЗОНТАЛЬНОГО ИЗГИБА БОРТО-ВЫХ ЭЛЕМЕНТОВ

Таллинский Политехнический Институт

Редактор Х. Лауль Технический редактор А. Тамм Корректор М. Каска

Сдано в набор 30. V 1959. Подписано к печати 6. VII 1959. Бумага 45×84 ¹/₁₆. Печатных листов 1,75. По формату 60×92 печатных листов 1,43. Учетно-издательских листов 0,97. Тираж 500. МВ-05256 Заказ № 3522.

Типография «Коммунист», Таллин, ул. Пикк 2.

