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PREFACE 
 

The research done in this dissertation was to explore the solution for the industrial 

manipulator trajectory optimization problem by applying a nonlinear model predictive control 

model. A digital model of the ABB Yumi robot was used in MATLAB to move along with a 

working environment trajectory with two fixed obstacles to reach the target. Firstly, 

interpolation polynomials were used to generate the first segment of the trajectory, point-to-

point planning, and motion tracking applied in Simulink under torque control. Then, a pick 

and place task was executed with a nonlinear model predictive controller under constraints 

to compare with the previous method about the optimization results for the trajectory. 

 

The author wishes to express her sincere appreciation to supervisors Saleh Ragheb Saleh 

Alsaleh and Aleksei Tepljakov for their generous help and superb support in carrying out my 

studies and the thesis.    

 

 

Keywords: Digital robot, Trajectory optimization, Nonlinear Model Predictive Control, Collision 

avoidance 
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1. INTRODUCTION 
 

The market for robotic manipulators is growing tremendously due to their high-quality 

performance and productivity in industrial applications [1]. Most operations in industries such 

as object pick and place, painting, sketching, welding, all mentioned above, are highly 

dependent on various manipulators. The manipulator should move along through one or a 

set of intermediate waypoints without stopping, building the path over time, so-called 

trajectory planning. Trajectory planning has been widely discussed in the academic field from 

several aspects. The problem of trajectory optimization is a common requirement to adapt 

the manufacturing process and improve the productivity of the robotic system. To obtain an 

optimal trajectory, understanding the factors that affect manufacturing efficiency while 

planning the revolution is crucial. One standard scheme of trajectory planning can be 

summarized into three steps [1]–[3]: 

 

1. Identification of specific manipulator and determination of the relationship between each 

joint parameter of the robotic system in space. 

2. Waypoints selection by applying forward and inverse kinematics. 

3. Design Dynamics formulation to Control the motion of the manipulator. 

 

Another approach is to investigate optimization methods to motion planning, which can 

involve certain constraints to optimize the trajectory of the manipulator by calculating the 

motion under general conditions [4]. The advantage of this class of methods is that the 

optimization process focuses not only on time required for the trajectory but also on other 

objectives such as collision avoidance, torque minimization, and energy reduction [5]–[8]. 

 

This thesis aims to explore a solution for the trajectory optimization problem of the industrial 

manipulator by applying a nonlinear model predictive controller. The prosed methods are 

validated on a digital twin of the ABB Yumi robot created in the MATLAB environment. A rigid 

body tree representing rigid body connectivity with joints is used to build the manipulator 

model in MATLAB. This model later executes the pick-pack motion as required using our 

proposed method, where constraints and adjustments are implemented as multiple pairs of 

functions. 

 

 

 

1.1 Motivation 

 
Robotic manipulators or industrial robots are widely used in modern industries. For example, 

there can be infinite trajectories to move an object from one point to another point. From the 
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industry perspective, it is crucial to generalize all the expectations for each specific execution, 

such as collision avoidance, human safety, torques on each joint of the robot are satisfied. 

However, from a theoretical point of view, more researches have been carried out based on 

the pre-programming solutions of manipulators. More analytical studies are required to 

provide a solution from another perspective.  

 

On the other hand, modeling and simulation are widely used to represent a physical or logical 

system to gather data and make an informed decision based on the data. If we can 

decompose the constraints into functions and ranges, algorithms may help improve efficiency 

or even predict potential risks. 

 

All questions mentioned above encourage the author to continue research on this thesis work.  

 

Because of all the research mentioned above, the current problems in the field are shown as 

below: 

• Physical robots are pre-programmed to accomplish industrial tasks, which is less 

flexible when a change is needed [9]. 

• Testing and adapting the physical robot requires continuous and accurate data 

resources, which is difficult to obtain in the actual manufacturing procedure [10].  

• The existing research on trajectory optimization mainly focuses on algorithms 

developing. Thus, only the simplified model of the manipulator model is used 

and lacks flexibility for converting to operations. 

• As a result of preliminary research, the data in trajectory optimization is almost 

confined, disintegrated, and dormant.  

• Keeping control of an integrated robot while planning the trajectory or various 

constraints needs to be considered problematic. 

• Existing trajectory optimization methods are not fully developed on physical 

robots due to high cost and sophisticated technical limitations. 

• Less academic research about the possibility of integrated robot maintenance 

and more people focused on safety analysis.   

 

Thesis structure 
 
Chapter 1 is the introduction 

 

Chapter 2 of this document is dedicated to Literature Review. 
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Chapter 3 will talk about the thesis's methodology, the solution of the questions, hardware, 

and software selection will be implemented in this chapter. 

 

Chapter 4 will be depicting the results from the program. 

 

Chapter 5 will be dedicated to Conclusion and the Future Scope of the work. 
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2. LITERATURE REVIEW 

 

2.1 Existing Pattern  
 

There is a difference between a path and a trajectory. A path is a spatial concept that 

describes how we travel from point A to point B in the world. And a trajectory is a path with 

a timetable. It tells us how fast we can travel along the path and when we should arrive at 

each stop. An elemental character of a trajectory is smooth motion with time. Furthermore, 

the process to include other constraints and minimize (or maximizes) some performance 

measure is trajectory optimization. 

 

Many researchers have explored many optimization schemes from various perspectives from 

the different objectives of the optimization parameters. Common optimization parameters 

include time [11] and energy [12][13]. There are a few studies that focus on other aspects, 

such as collision avoidance [14], limitation on the acceleration difference of the trajectory 

[15], improvement of stiffness performance [16].  Although the optimization objectives are 

various, the pattern that needs to be investigated is similar, and the basic design can be 

summarized in the following table. 

 

We can find that the trajectory optimization scheme can be formally divided into numerical 

and analytical through the above table.  The numerical method can visualize each parameter 

and is flexible to adjust according to different operation requirements. However, using 

algorithms to calculate each time step's optimal position can save time compared with 

kinematics calculation for the entire trajectory. 
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Table 1 An overview of existing research methods 

Application Optimizati
on Method 

Manipulator 
Modelling 

Modelling Motion Dynamic Ref 

Time-optimal  PSO CRO-S80 (6 
DoF) 

D-H 
parameter 

FK & IK 4-3-4 Spline 
interpolation 

[17] 

Trajectory 

planning 

PSO Specific robot 

3DoF 

Not separate motion planning, trajectory 

is calculated by algorithms and cost 
functions 

[4] 

Trajectory 
planning and 
tracking 

NLMPC Aerial robot Vector 
representatio
n 

First-order semi-implicit 
method discrete time 
continuous dynamic 

[18] 

[19] 

Desired 
trajectory 

tracking 

NLMPC Aerial 
manipulator 

(3DX-X8 
coaxial 
multirotor 
with a 3DoF 

serial arm) 

Multirotor-
arm system 

considered 
has n DoFs, 
vector 
representatio

n 

Two 
sinusoid 

trajectori
es 

Cost and 
constraints 

functions are 
used to track 
the end 
effector 

[20] 

Time-optimal Higher order 
IK 

6-DoF 
industrial 
robot 

Vector 
representatio
n 

FK & IK  [21] 

Online 
synchronizatio
n and time-
optimal 

A quadratic 
program is 
used to 
solve path 
optimization 
problem 

6-DoF 
industrial 
robot 
(experiment 
on physical 
robots) 

 Third 
order 
splines 
are used 
to do 
geometri

c path 

planning 

Comau Racer3 
robot with 
R1C controller 

[22] 

Dimensions 
direction and 
magnitudes for 
velocity and 

force control 

Algorithms 
for solving 
velocity and 
force control 

6-DoF 
industrial 
robot (ABB 
IRB 120 robot 

arm) 

Vector 
representatio
n using body 
twist 

 IRC5 
controller 

[23] 

 

 

Moreover, some theoretical methods and new technology from other researches show 

potentials for trajectory optimization. One approach is dedicated to planning the trajectory 

for a 6DoF robotic manipulator to perform image-based visual servoing (IBVS) [17] tasks. 

Instead of a spatial construct motion, the concept of trajectory planning aims to reach the 

target feature by applying a combination of the known feature motions. Another perspective 

is to investigate machine learning, i.e. the widespread use of algorithms [18]. The study 

shows the evolutionary algorithms can be classified into ES, GA, and estimation of distribution 

algorithms. Following with three objective functions to minimize the joint errors and energy 

consumption, minimize the end-effector’s tracking error, maximize the workspace, 

respectively. Those functions are tested on a 3DoF manipulator in two case studies, and the 

result shows with various constraints, algorithms can improve the performance according to 

the motion sequentially.  

 

In the following section, the process of trajectory planning, which is preliminary, will be 

discussed separately. 
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2.2 Modeling and Motion  

 

2.2.1 Configuration and DoF 

 
The position and orientation that can demonstrate the manipulator in the specific geometric 

frame are called configurations. For the industrial manipulator, the Cartesian coordinate 

system configuration also indicates their joint rotation angles [19]. Trajectory planning is 

performed in the space compiled by every configuration of the manipulator. Degree of 

Freedom (DoF), refers to the number of joints in an arm manipulator. Each joint has one 

degree of freedom. When the robot has more joints than it needs, the extra degree is 

redundant; when the joint axis alignment occurs, the manipulator has lost one degree of 

freedom. 

 
 

2.2.2 Spatial Representation and Transformation 

 
A typical reason for a trajectory is to shift the end-effector of a manipulator from A to B over 

a specific time frame in robotics. How to generate trajectory in the space will be answered in 

this section. If a manipulator is a snake moving toward the food on the grass, all the joints 

on the snake moving together and the distance between the snake and food is known, only 

a single generalized coordinate is needed to describe their location. More generalized 

coordinates are required to describe the rotations and motions completely for a robotics 

manipulator with a fixed base, rotational joints, and prismatic links. Many types of research 

mentioned above have shown that the initial and endpoint is the beginning of trajectory 

planning. The number of degrees of freedom (DoF) of the manipulator is known as the 

number of no holonomic constraints on the manipulator. A point in its configuration space 

can represent any position and orientation of the manipulator. Any point in the configuration 

space can be generalized to a point in the task space but the inverse is depending on the 

task space, as its name. 

 

In terms of configuration space, those axes of motion correspond to the manipulator’s 

degrees of freedom [20]. The manipulator configuration can be represented as a vector q ∈

 𝑅𝑁  where N is the number of degrees of freedom. In that case, the concept behind motion 

from point A to point B is the motion from an initial configuration vector to a final configuration 

vector. 
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2.2.3 Kinematics 

 
Forward kinematics is generating the motion form manipulator configuration to its end-

effector pose. And the inverse which the target posed of the end-effector is given, 

determination of the manipulator is known as inverse kinematics. When we describe the 

posture of a manipulator end-effector, a sequence of relative poses is required. The most 

common approach to describe a serial-link manipulator is Denavit-Hartenberg notation. (DH 

parameter) The relationship between two nearby joint axes is defined as the notation of a 

link, the standard D-H link parameters are shown in Figure 2.1 as below. Six parameters 

represent translation and rotation. One consequence of the kinematics solution for trajectory 

plan is the complexity of algebraic solution subjects to the number of joints, and more 

analytical solution should be considered. 

 

Another consequence is when the joint limits appear, or singularities which means not all 

poses within the manipulator’s workspace can be achieved. No solution can be generated by 

kinematics in that case. One standard method to overcome is adding constraints on the 

manipulator. 

 Figure2.1 The standard Denavit and Hartenberg link parameters [20] 

    

 

2.3 Trajectory generation and Dynamics 
 

As mentioned before, trajectory planning is the motion of a manipulator end-effector from 

point A to point B over time. It is essential to analyze the action from a practical perspective, 

the end-effector is moved by forces and torques applied to the joints. When the manipulator’s 

end-effector moves with a velocity, exerting appropriate dynamic equations that describe the 

manipulator state by understanding the joint torque. Compute the required joint forces 
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according to the target trajectory and the rigid-body dynamic forces is the question before 

choosing the control system for manipulator motion.    

 

A common approach to controlling the manipulator at the academic level is to list the 

functions for compiling the trajectory from the initial pose to the end pose, for example a 

series formula of 4-3-4 trajectory polynomial [21], S-curve interpolation algorithms [22],  

and 5-3-5 spline trajectory [23]. As mentioned above, polynomial splines are used widely in 

trajectory generation, and higher order polynomials can generate the trajectories smoother. 

 

 

2.4 Optimization  

 

2.4.1 Time-optimal 

 
Time optimization is the most frequently discussed topic in the trajectory optimization 

process. It is a critical weight for improving the productivity of robotics systems. According 

to its name, time optimization can be interpreted as moving the end-effector of the 

manipulator from the initial point (or pose) to the endpoint (or pose) in the minimum time 

period. As robotics manipulators in manufacturing industries increase, research on time 

optimization is also growing in diversity. One of the common approaches is to formulate a 

trajectory generation problem as a motion function. With system dynamic and other bounds 

constraints, minimizing time over the motion along the path is time optimization [24][25]. 

Algorithms have also provided a research direction on this topic. It is well known that cubic 

polynomial interpolation and b-spline interpolation are simple to compute and can easily 

transition with boundary conditions satisfied. However, computing the additional constraints 

functions, which is the traditional optimal method, will increase the difficulty of trajectory 

generation. Also, higher-order polynomials are needed to generate smoother trajectories 

[26][23]. One research proposes a method that optimizes the running time on each joint 

uses genetic algorithms after generating the trajectory by cubic polynomial interpolation. In 

that case, the period with the shortest time during the trajectory is obtained as objective. 

The objective function is under all the kinematics constraints, such as velocity limits, 

acceleration and jerk on each joint’s limit [26]. Another algorithm is introduced for solving 

trajectory problems of industrial manipulators, called trajectory-planning beetle swarm 

optimization. In the research, the optimization process is presented as a group of beetles in 

the working space, the position of each beetle stands a solution of the problem. Trajectory 

planning is introduced as a fourth-order polynomial time function, a time minimum model is 

indicated with few pairs cost functions, obstacle avoidance and other mechanical limits are 

dedicated as a set of constraints, the fitness of each beetle is updated at each time step. 

There is an obvious result on execution time compared to the new algorithm with genetic 

algorithm ad particle swarm optimization algorithm [19]. 
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2.4.2 Energy consumption  
 

Energy consumption can directly reflect the energy efficiency. Reduce the energy 

consumption can be achieved from researching on different perspectives, for example, 

decrease weight, regenerative braking, and optimize the energy management system [27]. 

Shorten the operation time is one strategy to provide an optimization on existing hardware 

solutions [13]. Solving a trajectory planning problem by calculating the input torques required 

to move a manipulator along a path in a range of execution time. And the optimization 

function is subject to a set of dynamic constraints and const functions. Several researches 

show the similar pattern in which defined power consumption function and minimize the cost 

at each operation [28]. In this section, dynamic programming is also applied to solve the 

energy consumption problem by controlling the dynamic system within a state space.  

 

 

2.4.3 Singularity 

 
Singularity is a problem when the rotational axis of the end term in the sequence becomes 

parallel to the rotation axis of the base term. When the manipulator approaches a particular 

configuration in which trigger singularity in one direction, a certain degree of freedom will be 

lost so that there is no achievable solution for the manipulator to move into that direction. 

Therefore, it is possible that the solution is not physically achievable due to the limits of joint 

angles and potential collision within the manipulator itself. In that case, an end pose may not 

be achievable for the end-effector due to singularity since the effective degrees of freedom 

is reduced. Especially the inverse kinematics problem solution of a redundant manipulator 

can be infinite since it is widely recognized that requiring a six or more than six DoF 

manipulators to follow the generated trajectory in industries. One approach is dedicated a 

set of constraints solutions along with the end-effector task [29]. 

 
 

2.4.4 Collision avoidance 

 
There are various perspectives on collision avoidance, such as preventing collision with 

itself, avoiding collision between a manipulator and the workspace, and avoiding collision 

between manipulator and human co-worker. The last of which is often applied to 

collaborative manipulators, where a manipulator and human share workspace and 

collaborate on industrial operations [30], [31]. To further refine the problem, collision 

avoidance can be divided into collision detection and motion plan when a possible collision 

is detected. One approach is to compile repulsion vectors and a function of the error 
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between end-effector position and the goal position with a mathematical representation of 

manipulator kinematics, the manipulator is controlled on the joint velocity level. When the 

minimum distance between end-effector of the manipulator and human or obstacle is 

reached, the end-effector velocity decrease [32]. In addition, for complex industrial 

collaborative operation, the collision avoidance solver is frequently generated in a state 

architecture [33]. Combined the signal flow with all functionalities affecting the response 

time of the system is another potential for the topic, since for most robotics systems do not 

provide the movement equation of each component that is involved in the integrated 

system [34]. 

 

Due to the current problems mentioned above, few key points we will focus on during the 

thesis development: 

 

• Joint space or Cartesian space: path planning to move the end-effector 

smoothly via points in joint space or cartesian space. Computation is simple in 

joint space but highly depends on operations; Cartesian space generation is 

complex to compute but singularities with working environment could cause joint 

rates. 

 

• Robot type: the collaborative robot will be used because it is widely used in the 

real industrial process. Demand for collaborative robot is increasing with the 

automation industries.  

 

• Safety considers: for human-being, it is possible to be attacked by the cobot 

during the collaboration. We choose Yumi robot because it can provide more 

safety than other cobots, such as Universal robot arms. On the other hand, safety 

functions are designed by default in Yumi promise the robot will keep safe in 

industrial scenarios. 

 
 

• Data visualization: All the sensors are integrated so that the performance data 

will be applicable in software provided by ABB. Thus, it will be a challenge to 

analyze the data or implement it at a numeric level. 

 

In this paper, a digital model of Yumi is used in MATLAB. A simple pick and pack 

trajectory designed by kinematics calculation and nonlinear model predictive controller 

is used to optimal the trajectory.  
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3 METHODOLOGY 
 

The thesis aims to explore a solution for trajectory optimization problem of industrial 

manipulator. A method for this problem is presented in this section. This method was chosen 

because the optimization problem in trajectory planning is non-linear problem, therefore the 

data that can be mixed by numerical and non-numerical data, it is complex to understand 

the concepts, summarize a general solution for similar academic problems, and gather in-

dept insights into the trajectory optimization problem. Therefore, the data should be analyzed 

as a whole system.  

 

The following content will be divided into three parts to implement the method. First section 

introduces the overview process and control parameters of the manipulator trajectory 

planning problems. Second section describe the meaning and structure of the cost function 

about NLMPC. Third section gives the generated nonlinear model predictive controller under 

constraints about NLMPC. 

 

3.1 Overview 
 

The topic of manipulator trajectory planning is a landmark problem in contemporary industrial 

manufacturing. Cartesian space and joint space are the two spatial types of trajectory 

planning coordinate systems, but the smoothness of the trajectory is always a critical test in 

the planning phase. In this section, the overview of a trajectory preparation process was 

obtained.   

 

A nonlinear model predictive controller is used in MATLAB to speed up trajectory planning 

process and generate a collision-free trajectory for industrial manipulator from an initial point 

to a desired point. First, for a specific problem, some required input variables are needed as 

control parameters. Then, the function starts its iterations, and the cost function is used at 

each time step to obtain the collision-free trajectory under defined constraints. In this paper, 

a pick and pack operation is executed by a collaborative robot. The position of initial and 

desired end-effector poses are given, two approaches are obtained to find the trajectories. 

The traditional polynomial function is used to interpolate the motion behavior of the robot 

model. Two set of waypoints of the path are generated in task-space and joint space 

respectively. And for the situation with obstacle, we use nonlinear model predictive controller 

to obtain a collision-free, closed-loop trajectory generation. As shown in Figure 3.1.1, the 

flow chart shows how the robot execute the operation in this work. 
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3.2 Motion Planning 
 

As we mentioned in Chapter 2, In terms of configuration space, the axes of motion for a robot 

correspond to its degree of freedom. The robot’s configuration is presented as a vector, and 

the configuration to represent a pose with orientation of a robot in a 3-dimensional 

environment is a vector q = (x, y, z, 𝜃𝑟 , 𝜃𝑝, 𝜃𝑦) which x, y, z represent the position and 𝜃𝑟 , 𝜃𝑝, 𝜃𝑦 

represent the orientation, respectively. In all these cases, when a trajectory is required from 

point A to B, which means a smooth motion is required from an initial configuration vector to 

a desired configuration vector.  

 

For generating the trajectory in task space environment, initial position of the end-effector 

and final position of the task are provided in the robot’s base frame under configuration 

space. Then the trajectories times is defined based on moving distance of the end-effector 

and desired tool speed. It is similar with industrial robot programming, several waypoints are 

needed to allow the robot move smoothly along the path.  

 

For joint space trajectory generation, an inverse kinematics is used to obtain the initial and 

desired joint configurations. However, the inverse kinematics does not have one unique 

solution for the end-effector position. Therefore, for revolute joints with infinite range, the 

solution may be overmuch which means a trajectory with furthest distance can be included. 

To avoid that situation, those joints are wrapped to the interval [−π, π]. According to the 

number of constraints, different order polynomial function can be selected.  Cubic splines are 

widely used to interpolate the trajectory for both position and rotation, but less satisfying in 

boundary conditions; Quartic spline can associate a better performance with fourth order 

polynomials, but more coefficients are needed to determine. Considered the complex of the 

execution, a smooth trajectory is generated by a third-order polynomial through multiple 

waypoints and presented using B-spline through control points.  

 

If we keep using only the numerical method to generate the path via several points, then the 

trajectory has to be divided into multi segments. The robot is required begins at rest at point 

A and ends at 𝐵𝑖 (𝑖 𝑖𝑠 𝑡ℎ𝑒 − 𝑡ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦), but travels through (or close to) 

the middle configuration without stopping. To attain continuous velocity, the ability of the 

robot to reach each middle configuration will be sacrificed. And the problem is over 

constrained. As the consequence, quantic polynomials are needed to generate the trajectory 

which can meet those boundary conditions on position, velocity and acceleration at initial and 

end points at each segment.  

 

On the other hand, each axis (or DoF) of the robot has to move different distance on each 

motion segment, and it is possible that when it is moving with its maximum speed in a 

minimum time before it can achieve its desired position. In that case, the configuration at 
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each segment is needed to define before the robot motion, the distance that each axis needs 

to move for the segments and the maximum reachable velocity on that axis are important to 

plan the trajectory on each segment. Furthermore, the computing of quantic polynomials at 

each time step is complex, the complexity of the computation will directly affect the time 

consumption. Due to the above considerations, the concept of nonlinear model predictive 

controller will be introduced in the next section to reach the collision avoidance feature for 

this work. 

 

 

3.3 Nonlinear Model Predictive Control 
 

In this section, the concept of trajectory optimization is introduced by applying nonlinear 

model predictive controller. The basic scheme of a NLMPC control loop is present in FIGURE 

3.3.1. As seen below, it is important to evaluate the system states based on thee output 

measurements. The basic NLMPC structure shows that an optimal signal is computed under 

a minimum given cost function, execute the previous part of the optimal input until new 

estimates are ready, new estimates is executed in the system, and repeat the process. One 

of the advantages of NLMPC is high stability. The control problem addressed in this paper is 

formulated as a continuous-time close-loop optimal problem with finite horizon, constrained 

by the continuous-time nonlinear model.   

 

 

 Figure 3.3.1 Basic NLMPC Control Loop [35] 

 

From the previous section, one of the challenges is to improve the trajectory in joint space 

when it starts moving from initial position. A nonlinear model predictive controller is used to 

compute the optimal control by applying a nonlinear prediction model, a nonlinear cost 

function, and nonlinear constraints.  
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The trajectory planning problem is a nonlinear, time-varying dynamic problem. To control 

the position output of the end-effector, a closed-loop can be used to minimize the position 

error and provide the reliable input for next iteration. The optimization process involves the 

desired of the control trajectory execute from the initial state to the final state in minimum 

time T without any collision. First, the input of the model is defined as joint accelerations  

u =  q̈  where the joint positions are denoted by q and their velocities are denoted by q̇, then 

the sates of the model are x = [q, q̇ ]. The dynamics of the model is given by 

 

�̇� =  [
0 IN

 0 0
] ∙ x + [

0
IN

] ∙ u    (3.3.1) 

 
Where I denotes the N × N identity matrix 

N is the number of DoF of the robot 

The output of the model is defined as 

 

𝑦 = [IN 0] ∙ 𝑥     (3.3.2） 

 
Therefore, the nonlinear model predictive controller (NLMPC) has 2N states, N outputs, and 

N inputs. 

 

The cost function for the NLMPC is a custom nonlinear cost function, which is defined similarly 

to a quadratic tracking cost with a terminal cost to improve the stability of the NLMPC system. 

 

𝐽 =  ∫ Pdes − p(q(t))̇ Qr (Pdes − p(q(t))) + u̇(t)Quu(t)dt + Pdes − p(q(T))̇ Qt (Pdes − p(q(T))) +  q̇ (T)Qvq̇(T)
T

0
 

           (3.3.31） 

 
Where the matrices 𝑄𝑟 - the running weight on desired end-effector pose, 

𝑄𝑢 - the terminal cost weight on desired end-effector pose, 

𝑄𝑡 – input cost weight on joint accelerations, 

𝑄𝑣 – terminal joint velocity cost weight on joint velocities, 

𝑃𝑑𝑒𝑠 - the desired end-effector pose 

 

 P(q(t)) is the difference transform between the joint positions q(t) and end-effector. 

 

Another feature of NLMPC is constraints predefined, isolating those limits is important since 

they can lead to undesired consequences. In this paper, the constraint is to keep a safe 

distance between joints of robot and obstacles, so called collision. To avoid collision when 

executing the trajectory, one inequality function is introduced in the controller with the cost 

function. The controller is need to satisfy the inequality constraints as bellow 
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ddiff ≥  d safe       (3.3.4） 

 
Where, 𝑑𝑑𝑖𝑓𝑓 - the distance between the robot body to the obstacle. 

 

In this inequality constraint function, the base and end-effector of the robot bodies are not 

included. The obstacle should be marked if it is more than one in the task. 

 

The Jacobians functions are provided for the state function, output, custom cost and 

inequality constraints for the predictive model to improve the efficiency of the simulation. As 

we mentioned above, constraints in NLMPC is an important factor to the final optimization. 

Constraints are typically classified as hard or soft depending on the actual control system. 

Hard constraints, such as actuator saturation constraints are not to be violated, whereas soft 

constraints, such as additional constraints for energy efficiency, are nor strictly required to 

be met in this case. As a result, one way to guarantee the feasibility of iterative optimization 

of NLMPC is to involve soft constraint relaxation factors to improve the feasibility of NLMPC. 

That topic is not the major focus for this thesis, but it is necessary to mention for the future 

scope.  
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4. SIMULATION STUDIES 
 
In this chapter, the proposed method is demonstrated with simulation. The robot is used in 

this paper is ABB Yumi dual arms robot. The simulation is programmed in MATLAB and the 

digital model of Yumi is considered.  

 

4.1 Digital model selection 
 

The selection of the robot is a crucial section for this work. Arm-type robot or manipulator is 

typically used in manufacture on a fixed base, in those cases a local work cell is sufficient to 

allow robot perform high repetitive executions. And parts are posed in an order that provide 

the maximum speed and precision for the robot. No human interaction is included in the 

workspace due to the hazardous and safety consideration that high-speed robots can meet 

in daily task executions. However, a new trend in industries that involving human interaction 

with robot to finish the task is significant in most of industries, so that collaborative robots 

market (or cobot) is growing in the past decades [10]. This work is presented with a digital 

model of ABB Yumi IRB14000. There are many cobots in the market, and Yumi is the world’ 

first fully collaborative robot and Its high flexibility in automated manufacturing is well known. 

In this work, a digital model of Yumi is programmed in MATLAB due to the practical 

consideration. More focused on the procedure of creating the trajectory and optimization, no 

physical robot was involved in this work. Therefore, a simple explanation about the model is 

given in the following section. 

 

Yumi collaborative robot has 7 axes on each arm can execute flexible motion and work side-

by-side on the same tasks with humans. On the other hand, Yumi has a lightweight base and 

dual arms covered with a floating plastic casing in soft padding, which promises the safety 

for human workers. The front and top view of the Yumi robot are shown as below in Figure 

4.1.1. 
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 Figure 4.1.1 Working range of the Yumi Robot [37] 

 

As can be seen from Figure 4.1.1, the reachable range of each arm can be observed, 

approximate motion range on each arm is 681 mm, 1018 mm, 664 mm along X, Y, Z axis 

respectively. For programming the robot, a handheld operator panel is used to program robot 

in real time. Figure 4.1.2 shows the ABB FlexPendant which uses to program, modify 

programs. 

 

 

           Figure 4.1.2 ABB FlexPendant [36] 

 

 

4.2 Experiment setup 

 
In this section, the simulation environment was introduced. In this paper a digital twin of 

ABB Yumi collaborative robot with 7 DOF at each arm is used. The configuration of a 7-joint 

robot would be its joint angles q = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7). The digital model of ABB Yumi with a 

single arm in MATLAB is shown in Figure 4.2.1. 
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        Figure 4.2.1 ABB Yumi with single arm in home configuration 

 

To get the simulation environment closer to the actual production process, more obstacles 

and workspace are added into the visualization in Figure 4.2.2. As mentioned in previous 

chapter, the trajectory can be generated in either joint-space or Cartesian space. The 

trajectories both in joint and task space are shown in Figure 4.2.2. It is obvious to see from 

the Figure 4.2.2 that the robot shows the smooth performance from the peak to the desired 

position in joint space, but the motion from initial position to the middle way of the desired 

position has visible error. The motion in task space is smooth and regular in each time step 

at the beginning, however, the end-effector shows a linear trajectory when is approaching to 

the desired position. In this case, only following a trajectory that is generated by traditional 

polynomial is not enough either in practical production request or academic research.  
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      Figure 4.2.2 Trajectories in task space and joint space 

 

From the previous chapter, it can be seen that the polynomial interpolation as a numerical 

analysis can roughly reach the desired position. To get closer to the operation in real for the 

simulation, an obstacle is added to the operation environment as shown below in Figure 

4.2.3. 

 

So far, the environment of the simulation is constructed separately by including the 

workstation which is a brown rectangular, two grey rectangular stand placing belts as target 

places, three parts are needed to be moved placed in front of the robot and two spheres 

represent two fixed obstacles. These objects are made by combing collision primitives and 

placed in the appropriate locations. The environment is used for collision checking in the 

trajectory optimization procedure. When the environment and robot model are ready, the 

initial and final pose of the end effector were defined according to the home configuration 

and location of the parts, respectively. All of the above mentioned can be seen in the following 

Figure. 
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        Figure 4.2.3 Initial position of the robot model 

 

The initial configuration of the model shows above can be written as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑏𝑜𝑡𝐽𝐶𝑜𝑛𝑓𝑖𝑔 =

[0 0 0 0 0 0 0 0 0], the configuration consists 9 position instead of 7, that is because the end-

effector of the robot has two grippers. The relationship between 7 axes on a single arm of 

ABB Yumi are shown as below in Table 4.2 

 

         Table 4.2 Yumi movement parameters [36] 

Axis  Motion Type Motion Range 

Axis 1 Rotation -168.5° to +168.5° 

Axis 2 Bend -143.5° to +43.5° 

Axis 7 Rotation -168.5° to +168.5° 

Axis 3 Bend -123.5° to +80° 

Axis 4 Rotation -290° to +290° 

Axis 5 Bend -88° to +138° 

Axis 6 Rotation -229° to +229° 

 

The workflow in this thesis is shown as below in Figure 4.2.4. When the digital twin of the 

robot model is imported to MATLAB, the configuration of the robot will be initialized to home 

configuration and start executing the task. When the detected part number is greater than 

four or equal to four which means all the defined parts are picked and placed, the task ends.  
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Figure 4.2.4 Flowchart of applied methodology 

 

In this thesis, a logic control toolbox was used to execute pick and place process. The logic 

diagram is shown as below in Figure 4.2.5. First, a command is used to compute the task-

space grasping pose that is needed for the end effector to pick up the part. The pose of this 

grasping motion is determined by the pose of the part to be picked up, in this thesis the 

target parts are known. However, the method for reaching the grasp pose can be replaced 

by more advanced methods, such as machine vision based on object poses. The 

intermediate step is approaching and moving towards the parts. Secondly, a simulated 

gripper is use to pick up parts. The picked part is added as a collision to the robot rigid 
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body tree so that the obstacle avoidance status can execute to avoid the collision of the 

picked part. When the gripper is deactivated, the part is removed from the collision meshes 

of the rigid body tree. Then the model travel to a retracted position and departs from the 

other parts and part picked successfully information display on the command window.  

 

Placing the part is using the similar logic with the picking process. The placing positions are 

defined as almost same with the belt location. When a part is placed, the placing pose is 

updated so that the next part can be placed elsewhere. The message of part has been 

placed then show on the command window. 

 

 

Figure 4.2.5 Logic control of the pick and place process 

 

The difficulty of trajectory planning is computing high order interpolation polynomial 

functions. It is common to divide the whole trajectory into multi-segments so that lower order 

polynomial is enough to reach the desired position. However, less flexibility and more 

preparation are tricky to deal with. In this thesis, NLMPC is used to move the robot to move 

between various specified poses without collision. In this thesis, all the obstacles are fixed, 

which means no moving collision is defined to avoid. Each iteration calculates the position, 

velocity, and acceleration of the robot to avoid collision as they travel towards the desired 

position. The obstacles are given as spheres to make sure the accurate approximation of the 

constraint Jacobian in the definition of the nonlinear model predictive control functions. The 

Jacobian is used to for creating a linear approximation of the known distance and the closet 

points concept. The joint space motion model is used as a helper function in this work to 

simulate the motion of the robot under computed torque control while tracking the reference 
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trajectory with the object. The visualization then is updated to show the current status. 

 

 
      Figure 4.2.6 End-effector move to approaching position. 

 

As shown above in Figure 4.2.6, for each time step, the NLMPC calculate the control 

process and execute the motion with the visible trajectory mark. In the thesis, three parts 

are required to pick and place on two belts separately. From the Figure which is shown 

below in Figure 4.27 it is obvious that the gripper was separate from the robot, it is 

relevant to mention that one thing when testing the method for trajectory optimization with 

a digital model is to check the self-collision, and the mechanism features about the robot 

are needed to define as hard constraints.  
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         Figure 4.2.7 End-effector move to placing position 

 

When three parts are placed on the desired position on the belts, respectively. The state 

flow that is used to track the robot trajectory then detects all the parts are placed, the 

intermediate step is to move the robot arm to home configuration. The task is executed 

successfully. The final pose of the robot is shown as below in Figure 4.2.8. As can be seen, 

two parts are placed on the right belt and one part is placed on the left belt. And robot is 

moving from the away position to home position. 

 

 

 
    Figure 4.2.8 Final position of the robot model 
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The state flow is used in MATLAB to support the task execution by applying command 

functions. When the common finished execution, the state flow send a trigger event to start 

the flow chart and the next step will be proceed to continue the task execution. When the 

execution is finished, the notification is showed on the command window, the message is 

shown as below in Figure 4.2.9. 

 

 
    Figure 4.2.9 Display message on the command window in MATLAB 

 

The common approach among the existing methods to track and analyze the robot motion 

using MATLAB script and Simulink to simulate the task. For example, the first segment of 

the trajectory which was introduced in the Chapter 3. The position tracking during the 

trajectory execution is shown as below in Figure 4.2.10. In this example, a PD controller is 

used to control the velocity torque. Desired configuration, desired joint velocity, and 

desired joint acceleration are inputs of the controller, output of the controller is applied 

torque on each joint. As can be seen, qdOut (18) and qdOut (17) are represented left and 

right finger of the gripper, respectively. The gripper is controlled by the command logic on 

the gripper of the robot. 
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       Figure 4.2.10 Position change of robot motion with PID controller 

 

From qdOut (10) to qdOut (16) provide how the joints move during the task execution. 

Whereas the motion state of the robot is switched based on reading the configuration 

sequence from the trajectory scheduler. Therefore, the trigger to move the robot and open 

the gripper is to read the specific value from configuration sequence matrix. In that case, 

the configuration sequence should be predefined precisely for the complete trajectory. As 

an example, the trigger to start motion state can be shown as below in Figure 4.2.11. To 

check if the gripper joints have reached their target, the difference between the current 

gripper pose and the gripper target pose is calculated. If the difference is smaller than a 

defined threshold, then the robot has reached the target position.   
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       Figure 4.2.11 Motion State of the robot without NLMPC 

 

Another part of the tracking process is to check if the arm states match the target waypoints. 

And waypoints are predefined so that a requirement of applying this method is to define the 

waypoints manually. This is increasing the complexity of designing the robot trajectory, the 

dimension of the configuration sequence is required to create from position in 3D environment 

and convert to matrix expression.  

 

On the contrary, using NLMPC to generate the collision-free trajectory between an initial 

configuration given by home configuration on each joint and a final target orientation in task-

space under the constraints. The function used in this thesis simulates the dynamic tracking 

process of the robot to those reference trajectories as modelled based on the digital model 

of the robot in closed-loop control, and visualization then is updated with rigid body three. 

 

The NLMPC function is defined, the inputs of the model are the joint accelerations u =  �̈�. The 
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prediction model of a NLMPC contains a state function to predict how the system state develop 

over time and an output function which is used to calculate the output of the system with 

regard to state and input variables. In this thesis, a continuous-time prediction state function 

is used, because a nonlinear MPC controller is a discrete-time controller, in this case the state 

function is a continuous-time, the controller inherently discretizes the model using the 

trapezoidal rule. This method is capable of handling moderately stiff models, and the 

prediction accuracy is predicated based on the controller sample time. For example, a long 

sample time could result in an inaccurate prediction. The NLMPC function in this thesis is used 

in MATLAB shown as below in Figure 4.2.12. The Jacobian function on output can be seen on 

the Figure 4.2.12 as well, it is common approach to define an analytical Jacobian for the state 

function to improve computational efficiency. If the Jacobian is missing or not clarified, the 

controller will compute one based on numerical perturbation in MATLAB. The output function 

of the NLMPC is relevant to the states and inputs at the present control interval to the outputs.  

 

 

  Figure 4.2.12 NLMPC function and Jacobian output model  

 

The NLMPC allow for the use of generic custom cost functions. One typical method to optimize 

the control actions is to minimize the cost function across the prediction horizon. Because the 

cost function value must be a scalar, the cost function is required to compute at each 

prediction horizon step and the results are added together. The cost function and its Jacobian 

function is shown as below in Figure 4.2.13(a-b). The Jacobian function is used to improve 

the computational efficiency of the cost function.  
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Figure 4.2.13(a) Cost function of NLMPC  

 

Eventually, the visualization shows the robot in the working environment when it moves parts 

to the desired positions successfully. And the robot avoids two fixed obstacles in the working 

area, three parts are placed either on the left belt or right belt depends on the type of the 

parts. The robot carries on working until all of the parts have been placed. 
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Figure 4.2.13(b) Jacobian function on cost function of NLMPC 

 

 

4.3 Experiment discussion 

 

In this experiment, parameters can be divided into two groups. One is the predefined 

parameter specific for the task, on the other hand, few parameters are used to control the 

optimization result. In this section, the result of this experiment is discussed.  

 

In the experiment, the safety distance is defined as a safety distance away from the 

obstacles. This value is applied in the inequality constraint function of the NLMPC. When the 

safety distance is specified as 0.005, three parts can be picked and placed successfully. 

However, when the safety distance is increasing, to compare with the previous result, the 

value of safety distance was changed to 0.02. The result was shown in Figure 4.3.1 as below. 

Safety distance is used in one constraint function in NLMPC, which means the controller 
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optimizes its control moves to content all of constraints. When the safety distance is 0.02, a 

step that the robot model failed to compute a feasible trajectory appeared. In this 

experiment, when a failed step occurs, the robot model continues to calculate another 

trajectory to achieve the task. To test if the safety distance can affect the continuous 

execution of desired task. Safety distance was increased to 0.2, the result is shown in Figure 

4.3.2 as below. 

 

 

Figure 4.3.1 Trajectory generation with 0.02 safety distance 

 

Since the safety distance was defined as each joint away from obstacles. In this experiment, 

two spheres are used to represent obstacles. When the safety distance is greater than a 

desired task configuration can be reached. Therefore, the tsk execution will be interrupted.  
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        Figure 4.3.2 Trajectory generation with 0.02 safety distance 

 

On the other hand, if the safety distance is too small, the value of safety distance was 0.00005 

as shown in Figure 4.3.3 as below. One segment of the whole trajectory was printed on the 

Figure. As can be seen, the distance before robot model and blue obstacle was very close. 

There is no sensor applied for the robot model in the experiment simulation. Therefore, the 

position and relationship between joints and obstacles couldn’t reflect the practical situation. 

The potential collision can cause inaccurate data for analyzing and the simulation data then 

lose its reference value. 
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         Figure 4.3.3 Trajectory generation with 0.00005 safety distance 

 

Another important factor in this experiment is the weight on cost function. As mentioned in 

Chapter 3, to assess the value of these output metrics, the cost weights are introduced in 

NLMPC. For this experiment, the running cost weight and terminal cost weight on desired 

end-effector pose were set as [10 10 10 0 0 0] and [10 10 10 1 1 1]. The robot model can 

move along with the generated trajectory with these cost weights smoothly. Later, the cost 

weights were adjusted to [10 10 10 0 0 0] and [10 10 10 0 0 0], the weights on orientation 

of the end-effector were set to zero. And the result can be seen in Figure 4.3.4 as below. It 

took more time for robot to pick the target part. Since there was no weight on orientation of 

the end-effector, so the gripper could not reach the desired position without rotation on end-

effector. Furthermore, when the gripper picked the part with long time step, the trajectory 

from initial position to desired position was closer to the obstacle than previous one. 
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  Figure 4.3.4 Trajectory generation with zero weight on orientation  

 

On the other hand, it is a complex process to develop the cost function of NLMPC, which to 

determine the parameter of NLMPC by minimizing the cost function. Therefore, formulation 

of the cost function and customization of the cost function have introduced a broader range 

of NLMPC tuning techniques. Selection of the cost weight for NLMPC is a crucial factor, as can 

be seen from Figure 4.3.4 and Figure 4.3.5, when the cost weight was zero on orientation of 

end-effector, the robot spent more time to approach the target position. Accurately adjusting 

these weights to reduce the overall cost function while maintaining stable controller output 

is a difficult and continuing research challenge.  
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Figure 4.3.5 Trajectory generation with zero weight on orientation (potential collision) 

 

The Figure 4.3.6 shown as below is another situation, the running cost weight on the end-

effector was set to [5 5 5 0 0 0], and the terminal cost weight on the end-effector was set to 

[5 5 5 1 1 1]. Compare with the value was used in this experiment, the weights on the 

orientation on the end-effector remains the same, however, the weights on the position of 

end-effector was decreased. It is observed clearly from the Figure 4.3.6 that the joints of the 

robot were almost aligned along to Y axis, in that case it is possible to cause singularity 

problem during the process. The selection of the cost weight to solve the optimization of cost 

function is to determine the efficiency of the NLMPC.  
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     Figure 4.3.6 Trajectory generation with zero weight on orientation (potential collision) 
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5. CONCLUSION  
 

A trajectory optimization method using nonlinear model predictive control on interpolation 

polynomial was proposed in this thesis work. A digital model of ABB Yumi robot was applied. 

In this case, a single arm of the model was required to reach multi-segment trajectories. A 

nonlinear model predictive controller was designed to achieve the desired position without 

collision. 

 

The initial idea is to explore a solution due to the high complexity of industrial manipulator 

trajectory planning. Most of the trajectory planning is programmed in specific software offline 

or programming the manipulator trajectory in real-time with a customized panel. However, 

the modern manufacturing process requires various types of the manipulator are sharing the 

workspace, so high flexibility in which adjustment on trajectory planning of manipulator is 

needed. The digital models of industrial manipulators were used in the research to test 

existing methodologies. On the other hand, the current studies are major focused on 

improving polynomials functions or machine learning to calculate the optimal trajectory based 

on the desired final position. The author of this thesis tried to explore where a digital 

manipulator model could be easily programmed, adjusted, and valid by combining numerical 

and analytical solutions in the process.  

 

The digital model of ABB Yumi robot and MATLAB was used for this work. The structure of 

the program was divided into two parts, the motion planning process and the control scheme. 

The program was tested, and it is essential to mention that NLMPC is helpful for any trajectory 

planning in which collision avoidance is involved. Force control and velocity control were 

written in NLMPC, even if the improvement is not significant from the trajectory, but the flat 

changes on velocity and acceleration of the model were shown from the program. 

 

This thesis aims to explore a method that can quickly generate the trajectory from the initial 

position to the final position directly, or few intermediate waypoints are acceptable. One pick 

and place task was executed with an ABB Yumi digital model in MATLAB, NLMPC generated 

the trajectory under few constraints. Eventually, the program shows a reliable trajectory 

without collision with the obstacles, and less industrial robot programming skill is needed for 

adjusting the schedule. 
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6. DISCUSSION 
 

6.1 Limitation  
 

There are few limitations that the author encountered during this work are briefly discussed 

as below: 

 

• The initial configuration of the robot is predefined manually, the situation that joints 

of the robot have self-collision before moving to the desired point. However, this 

problem doesn’t exist in a physical robot. Therefore, it is vital to have a calibration 

process to check if the digital model is under collision. 

 

• The process is only presented with a single arm because it is impossible to program 

the motion for two arms simultaneously. This issue will not make affection on single-

arm cobots. 

 

• Computation for trajectory planning is heavy, NLMPC shows a significant improvement 

in the execution speed. However, The NLMPC is integrated as a whole function 

Constraints or boundary conditions are compiled together, which means more 

adjustment is needed when changing the model. 

 

• The NLMPC can provide a collision-free trajectory for the robot. However, the edge of 

the robot arm was very close to obstacles without detection from the NLMPC. More 

relaxation factor can be added on the soft constraints to generate the trajectory with 

high safety. 

 

• The method is not implemented on the physical robot. More considerations are 

required to demonstrate the process in the real robot, such as connectivity between 

MATLAB and other software or robot controller. 

 
• There are difficulties of nonlinear predictive control. The first is the nonlinear 

modeling. Constructing a high-quality object model for nonlinear prediction is 

obligated for optimizing predictive control performance because the controller is a 

designer based on the intial state of the model, and modeling errors affect controller 

performance. Due to the uncertainty and large-scale existence of objects in industrial 

production, building nonlinear modeling particularly is required for each task. On the 

other hand, nonlinear predictive controllers involve a nonlinear program at each time 

step, which is computationally demanding and an inadequate, ineffective tool. 

Investigating generally applicable and efficient optimization algorithms is a 

challenging topic. 
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6.2 Future improvements 

 

The idea of this thesis is to explore a solution of trajectory optimization for industrial robots. 

Several further improvements from the author are described in this section. 

 

• During the research process during this thesis work, the mechanical limitation of the 

physical robot is the primary consideration that the proposed method is not 

implemented on the physical robot. The digital model is helpful when analyzing the 

methodology. However, it is still a challenge about how to apply the theory in the 

practical manufacturing process.  

 

• Adding stability constraints (e.g., terminal constraints or inequality constraints, 

shrinkage constraints) to the optimization problem theoretically solves the MPC 

stability problem. Researchers could investigate a more satisfactory approach in terms 

of engineering applications to improve the performance of NLMPC. 

 

• Introducing new technology such as Virtual Reality (VR) into the simulation will be 

another potential to provide a reliable validation for the proposed method. The 

advantage of VR is that the cobot can interact with a human in a virtual environment 

with minor limitations. 

 

• In academic experiments, less data or complex data is the major challenge to evaluate 

the outcome. It is valuable to extract data from practical operations and further 

analyze using big data techniques. 

 

• The state of the system is not always fully measurable in engineering applications. 

Therefore, when studying the trajectory optimization problem and NLMPC, it could be 

more efficient to investigate output feedback predictive control, particularly for 

multivariable nonlinear systems. 
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SUMMARY 

 
This thesis aims to explore a method for the trajectory optimization problem of the industrial 

manipulator using a nonlinear model predictive controller. The nonlinear model predictive 

controller was used to generate a collision-free trajectory in the simulation environment with 

obstacles. 

 

The first step in putting the theoretical idea into practice was to investigate on current 

technologies. The author formed a scheme of solving trajectory optimization problems based 

on the existing studies. It was carried out from the previous researches that interpolation 

polynomials are essential to calculate the path from the initial position to the final pose. 

Controllers can be used to track the dynamic motion of the robot. But there were no such 

complex industrial robot models widely used in the modern industrial manufacturing process. 

Moreover, the existing methods were developed based on the numerical concept. More 

analytical technologies are the potential to solve the trajectory optimization problem that is 

lacking information. 

 

A digital twin of the ABB Yumi robot with a single arm was used to travel from an initial 

position and pick a target part with the robot. Finally, the robot placed the picked part to the 

desired position, the trajectory was generated by using a NLMPC to satisfy all the constraints.  

 

As the result, the robot provided a collision-free trajectory without computing the multi-

segments of the trajectory. Eventually the proposed method helps to provide a reliable 

trajectory with minimum industrial programming technical knowledge. 
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KOKKUVÕTE  

 
Selle lõputöö eesmärk on uurida meetodit tööstusmanipulaatori trajektoori optimeerimise 

probleemiks, kasutades mittelineaarset mudeli ennustavat kontrollerit. Mittelineaarset 

mudelit ennustavat kontrollerit kasutati takistustega simulatsioonikeskkonnas 

kokkupõrgeteta trajektoori genereerimiseks. 

 

Esimene samm teoreetilise idee elluviimisel oli uurida praeguseid tehnoloogiaid. Autor 

moodustas olemasolevate uuringute põhjal skeemi trajektoori optimeerimise probleemide 

lahendamiseks. Varasemate uuringute põhjal tehti interpoleerimispolünoomid, et arvutada 

tee algpositsioonist lõpliku poosi. Kontrollerit saab kasutada roboti dünaamilise liikumise 

jälgimiseks. Kuid selliseid keerukaid tööstusrobotite mudeleid, mida tänapäevases 

tööstusprotsessis laialdaselt kasutataks, ei olnud. Veelgi enam, olemasolevad meetodid 

töötati välja arvulise kontseptsiooni põhjal. Analüütilisemad tehnoloogiad võimaldavad 

lahendada trajektoori optimeerimise probleemi, millel puudub teave. 

 

Algasendist liikumiseks ja robotiga sihtosa valimiseks kasutati ühe käega ABB Yumi roboti 

digitaalset kaksikut. Lõpuks paigutas robot valitud osa soovitud asendisse, trajektoor 

genereeriti NLMPC abil kõigi piirangute rahuldamiseks. 

 

Selle tulemusel pakkus robot kokkupõrgeteta trajektoori ilma trajektoori mitme segmendi 

arvutamiseta. Lõpuks aitab kavandatud meetod pakkuda usaldusväärset trajektoori 

minimaalsete tööstusliku programmeerimise tehniliste teadmistega.  



50  

LIST OF REFERENCES 
 

[1] P. Saraf and R. N. Ponnalagu, “Modeling and Simulation of a Point to Point Spherical 

Articulated Manipulator Using Optimal Control,” 2021 Int. Conf. Autom. Robot. Appl. 

ICARA 2021, pp. 152–156, 2021, doi: 10.1109/ICARA51699.2021.9376496. 

[2] W. Xu, J. Zhang, B. Liang, and B. Li, “Singularity analysis and avoidance for robot 

manipulators with nonspherical wrists,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 

277–290, 2016, doi: 10.1109/TIE.2015.2464176. 

[3] W. Rackl, R. Lampariello, and G. Hirzinger, “Robot excitation trajectories for dynamic 

parameter estimation using optimized B-splines,” Proc. - IEEE Int. Conf. Robot. 

Autom., pp. 2042–2047, 2012, doi: 10.1109/ICRA.2012.6225279. 

[4] J. J. Kim and J. J. Lee, “Trajectory optimization with particle swarm optimization for 

manipulator motion planning,” IEEE Trans. Ind. Informatics, vol. 11, no. 3, pp. 620–

631, 2015, doi: 10.1109/TII.2015.2416435. 

[5] C. C. Tsai, C. C. Hung, and C. F. Chang, “Trajectory planning and control of a 7-DOF 

robotic manipulator,” 2014 Int. Conf. Adv. Robot. Intell. Syst. ARIS 2014, pp. 78–84, 

2014, doi: 10.1109/ARIS.2014.6871496. 

[6] C. Schuetz, J. Baur, J. Pfaff, T. Buschmann, and H. Ulbrich, “Evaluation of a direct 

optimization method for trajectory planning of a 9-DOF redundant fruit-picking 

manipulator,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-June, no. June, pp. 

2660–2666, 2015, doi: 10.1109/ICRA.2015.7139558. 

[7] T. Bo Jorgensen, K. Debrabant, and N. Kruger, “Robust optimization of robotic pick 

and place operations for deformable objects through simulation,” Proc. - IEEE Int. 

Conf. Robot. Autom., vol. 2016-June, pp. 3863–3870, 2016, doi: 

10.1109/ICRA.2016.7487574. 

[8] D. Pavlichenko and S. Behnke, “Efficient stochastic multicriteria arm trajectory 

optimization,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-Septe, pp. 4018–4025, 

2017, doi: 10.1109/IROS.2017.8206256. 

[9] Y. Chen, Y. Ding, J. Jin, and D. Ceglarek, “Integration of process-oriented tolerancing 

and maintenance planning in design of multistation manufacturing processes,” IEEE 

Trans. Autom. Sci. Eng., vol. 3, no. 4, pp. 440–453, 2006, doi: 

10.1109/TASE.2006.872105. 

[10] D. Kragic, J. Gustafson, H. Karaoguz, P. Jensfelt, and R. Krug, “Interactive, 

collaborative robots: Challenges and opportunities,” IJCAI Int. Jt. Conf. Artif. Intell., 

vol. 2018-July, pp. 18–25, 2018, doi: 10.24963/ijcai.2018/3. 

[11] T. Kunz and M. Stilman, “Time-optimal trajectory generation for path following with 

bounded acceleration and velocity,” Robot. Sci. Syst., vol. 8, pp. 209–216, 2013, doi: 

10.15607/rss.2012.viii.027. 

[12] X. Chen et al., “An energy optimization based planning approach for moving bottle 

grasping task using a seven-DoF robotic arm,” 2017 IEEE Int. Conf. Mechatronics 

Autom. ICMA 2017, pp. 833–839, 2017, doi: 10.1109/ICMA.2017.8015924. 

[13] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz, “High-level scheduling of 

energy optimal trajectories,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 1, pp. 57–64, 

2013, doi: 10.1109/TASE.2012.2198816. 

[14] G. Kahn et al., “Active exploration using trajectory optimization for robotic grasping 

in the presence of occlusions,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 2015-June, 

no. June, pp. 4783–4790, 2015, doi: 10.1109/ICRA.2015.7139864. 

[15] J. Jeevamalar and S. Ramabalan, “Optimal trajectory planning for autonomous robots 

- A review,” IEEE-International Conf. Adv. Eng. Sci. Manag. ICAESM-2012, pp. 269–

275, 2012. 

[16] M. Li, H. Wu, and H. Handroos, “Stiffness-maximum trajectory planning of a hybrid 

kinematic-redundant robot machine,” IECON Proc. (Industrial Electron. Conf., pp. 

283–288, 2011, doi: 10.1109/IECON.2011.6119325. 

[17] M. Keshmiri and W. F. Xie, “Image-based visual servoing using an optimized 

trajectory planning technique,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 

359–370, 2017, doi: 10.1109/TMECH.2016.2602325. 

[18] S. Ivvan Valdez, S. Botello-Aceves, H. M. Becerra, and E. E. Hernandez, “Comparison 

between a Concurrent and a Sequential Optimization Methodology for Serial 



51  

Manipulators Using Metaheuristics,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 

3155–3165, 2018, doi: 10.1109/TII.2018.2795103. 

[19] L. Wang, Q. Wu, F. Lin, S. Li, and D. Chen, “A new trajectory-planning beetle swarm 

optimization algorithm for trajectory planning of robot manipulators,” IEEE Access, 

vol. 7, pp. 154331–154345, 2019, doi: 10.1109/ACCESS.2019.2949271. 

[20] P. Corke, Robotics, Vision and Control, vol. 118. Cham: Springer International 

Publishing, 2017. 

[21] M. Gao, P. Ding, and Y. Yang, “Time-optimal trajectory planning of industrial robots 

based on particle swarm optimization,” Proc. - 5th Int. Conf. Instrum. Meas. Comput. 

Commun. Control. IMCCC 2015, pp. 1934–1939, 2016, doi: 

10.1109/IMCCC.2015.410. 

[22] I. Mobasher, Y. Farzaneh, B. Lotfi, and J. Enferadi, “A Trajectory Planning for a 3-RRR 

manipulator to remove Backlash in Actuating Joints,” 5th RSI Int. Conf. Robot. 

Mechatronics, IcRoM 2017, no. IcRoM, pp. 540–545, 2018, doi: 

10.1109/ICRoM.2017.8466235. 

[23] C. D. Porawagama and S. R. Munasinghe, “Reduced jerk joint space trajectory 

planning method using 5-3-5 spline for robot manipulators,” 2014 7th Int. Conf. Inf. 

Autom. Sustain. "Sharpening Futur. with Sustain. Technol. ICIAfS 2014, pp. 1–6, 

2014, doi: 10.1109/ICIAFS.2014.7069580. 

[24] R. Verschueren, N. Van Duijkeren, J. Swevers, and M. Diehl, “Time-optimal motion 

planning for n-DOF robot manipulators using a path-parametric system 

reformulation,” Proc. Am. Control Conf., vol. 2016-July, pp. 2092–2097, 2016, doi: 

10.1109/ACC.2016.7525227. 

[25] D. Urxw et al., “LQGXVWULDO URERW XQGHU NLQHPDWLF DQG G \ QDPLF.” 

[26] G. Li and Y. Wang, “Industrial Robot Optimal Time Trajectory Planning Based on 

Genetic Algorithm,” Proc. 2019 IEEE Int. Conf. Mechatronics Autom. ICMA 2019, pp. 

136–140, 2019, doi: 10.1109/ICMA.2019.8816319. 

[27] R. Saidur, “A review on electrical motors energy use and energy savings,” Renewable 

and Sustainable Energy Reviews, vol. 14, no. 3. Pergamon, pp. 877–898, Apr. 01, 

2010, doi: 10.1016/j.rser.2009.10.018. 

[28] O. Wigström and B. Lennartson, “Energy optimization of trajectories for high level 

scheduling,” IEEE Int. Conf. Autom. Sci. Eng., pp. 654–659, 2011, doi: 

10.1109/CASE.2011.6042472. 

[29] M. Alberich-Carramiñana, M. Garolera, F. Thomas, and C. Torras, “Partially flagged 

parallel manipulators: Singularity charting and avoidance,” IEEE Trans. Robot., vol. 

25, no. 4, pp. 771–784, 2009, doi: 10.1109/TRO.2009.2018970. 

[30] M. Li, J. Mou, L. Chen, Y. Huang, and P. Chen, “Comparison between the collision 

avoidance decision-making in theoretical research and navigation practices,” Ocean 

Eng., vol. 228, p. 108881, May 2021, doi: 10.1016/j.oceaneng.2021.108881. 

[31] W. Zhang, J. Yuan, Q. Li, and Z. Tang, “An automatic collision avoidance approach 

for remote control of redundant manipulator,” Proc. 2008 IEEE Int. Conf. Inf. Autom. 

ICIA 2008, no. 051111015, pp. 809–814, 2008, doi: 10.1109/ICINFA.2008.4608109. 

[32] M. Safeea, P. Neto, and R. Bearee, “On-line collision avoidance for collaborative robot 

manipulators by adjusting off-line generated paths: An industrial use case,” Rob. 

Auton. Syst., vol. 119, pp. 278–288, Sep. 2019, doi: 10.1016/j.robot.2019.07.013. 

[33] P. Ennen, D. Ewert, D. Schilberg, and S. Jeschke, “Efficient collision avoidance for 

industrial manipulators with overlapping workspaces,” in Procedia CIRP, Jan. 2014, 

vol. 20, no. C, pp. 62–66, doi: 10.1016/j.procir.2014.05.032. 

[34] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards optimally 

decentralized multi-robot collision avoidance via deep reinforcement learning,” arXiv, 

pp. 6252–6259, 2017. 

[35] S. Equilibria, 21st Benelux Meeting on Systems and Control Book of Abstracts, no. 

March. 2002. 

[36]    ABB Robotics, "ABB FlexPendant plastic software," ABB, [Online]. 

https://new.abb.com/products/robotics/application-software/plastic 

[37]    ABB Robotics, Product specification IRB14000, Västerås: ABB, 2018. 

[38]    Plan and Execute Collision-Free Trajectories Using KINOVA Gen3 Manipulator.      

Available: https://www.mathworks.com/help/robotics/ug/plan-and-execute-collision-

free-trajectory-kinova-gen3.html 



52  

[39]     Pick-and-Place Workflow Using Stateflow for MATLAB. Available: 

https://www.mathworks.com/help/robotics/ug/pick-and-place-workflow-using-

stateflow.html 

[40]    Specify Constraints for Nonlinear MPC. Available: 

https://www.mathworks.com/help/mpc/ug/specify-constraints-for-nonlinear-

mpc.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53  

APPENDICES 
Appendix 1 – Programming code for MATLAB modified from 

MathWork[38][39][40] 

 

Plan and Execute a pick-place task using digital twin of ABB Yumi robot 

 

Load the ABB Yumi rigid body tree (RBT) model with one arm 

  
%% Plan and Execute Task- and Joint-Space Trajectories Using ABB Yumi 
Manipulator with a single arm 
% Load the KINOVA Gen3 rigid body tree (RBT) robotL model. 
clc 
clear 
robot = loadrobot('abbYumi','DataFormat','row','Gravity',[0 0 -9.81]); 
robotL=robot.copy 
robotL.removeBody('yumi_link_1_r') 
robotL.getBody('gripper_l_base') 
 
%Add the picked part to rigidbodytree for the logic chart to check if the part 
is picked 
 
 body1 = rigidBody('pickedPart'); 
 jnt1 = rigidBodyJoint('pickedPart','revolute'); 
 basename = robotL.BaseName; 
addBody(robotL,body1,'gripper_l_finger_r'); 
 
%Set the initial robot configuration to homeCofiguration 
 
currentRobotJConfig = homeConfiguration(robotL); 
 
%Build the coordinator, which deals with the robot dynamic Control 
 
coordinator = exampleHelperCoordinatorPickPlace(robotL,currentRobotJConfig, 
"gripper_l_base"); 
  
%Define the home configuration of the robot in this task, two placing põses are 
defined for placing diferent types of objects 
 
edit exampleHelperFlowChartPickPlace.sfx 
coordinator.HomeRobotTaskConfig = trvec2tform([0.4, 0, 0.6])*axang2tform([0 1 0 
pi]); 
coordinator.PlacingPose{1} = trvec2tform([0.23 0.62 0.33])*axang2tform([0 1 0 
pi]); 
coordinator.PlacingPose{2} = trvec2tform([0.23 -0.62 0.33])*axang2tform([0 1 0 
pi]); 
 

coordinator.FlowChart = exampleHelperFlowChartPickPlace('coordinator', 
coordinator);  
 
%A dialoog is used to start the pick-place task execution. The simulation 
started by clicking on Yes 
 
answer = questdlg('Do you want to start the pick-and-place job now?', ... 
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         'Start job','Yes','No', 'No'); 
 

switch answer 
    case 'Yes' 
%        Trigger event to start Pick and Place in the Stateflow Chart 
        coordinator.FlowChart.startPickPlace;         
    case 'No' 
%         iviz = interactiveRigidBodyTree(robotL); 
%         ax = gca; 
%         exampleCommandBuildWorld(ax); 
%         currentrobotLJConfig = homeConfiguration(robotL); %Original 
        End Pick and Place 
        coordinator.FlowChart.endPickPlace;         
        delete(coordinator.FlowChart); 
        delete(coordinator); 
end 
 

Logic flow to Control and track the pick - place workflow execution 
 

properties          
        FlowChart 
        Robot 
        World = {}; 
        Parts = {}; 
        Obstacles = {}; 
        DetectedParts = {}; 
        RobotEndEffector 
        CurrentRobotJConfig 
        CurrentRobotTaskConfig 
        NextPart = 0; 
        PartOnRobot = 0; 
        HomeRobotTaskConfig  
        PlacingPose 
        GraspPose 
        Figure 
        TimeStep 
        MotionModel 
        NumJoints 
        NumDetectionRuns = 0; 
        PathHandle 
    end 

     
methods 
        function obj = exampleHelperCoordinatorPickPlace(robot, 

currentRobotJConfig, robotEndEffector) 
            obj.Robot = robot;             
            obj.CurrentRobotJConfig = currentRobotJConfig; 
            obj.RobotEndEffector = robotEndEffector; 
            obj.CurrentRobotTaskConfig = getTransform(obj.Robot, 

obj.CurrentRobotJConfig, obj.RobotEndEffector); 
            obj.TimeStep = 0.1; % Visualization time step 
            obj.MotionModel = jointSpaceMotionModel('RigidBodyTree', 

obj.Robot); 
            obj.NumJoints = numel(obj.CurrentRobotJConfig); 

                     
            % Initialize visualization 
            obj.Figure = 

interactiveRigidBodyTree(obj.Robot,'ShowMarker',false, 'Frames', 'off');  
            obj.Figure.Configuration = obj.CurrentRobotJConfig; 
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            obj.Figure.ShowMarker = false; 
            hold on 
            axis([-1 1 -1 1 -0.1 1.5]); 
            view(58,25);             
        end 

         

     
       function visualizeWorld(obj) 
           try 
            bench = obj.World{1}; 
            belt1 = obj.World{2}; 
            belt2 = obj.World{3}; 

  
            % Render world 
            [~, p1] = show(bench); 
            [~, p2] = show(belt1); 
            [~, p3] = show(belt2); 

  
            p1.FaceColor = [1 0.5 0]; 
            p1.FaceAlpha = 1.0; 
            p1.LineStyle = 'none'; 

  
            p2.FaceColor = [128,128,128]/255; 
            p2.FaceAlpha = 1.0; 
            p2.LineStyle = 'none'; 

  
            p3.FaceColor = [128,128,128]/255; 
            p3.FaceAlpha = 1.0;   
            p3.LineStyle = 'none'; 

             
            % Visualize obstacles 
            for i=1:numel(obj.Obstacles) 
                [~, obs] = show(obj.Obstacles{i}); 
                obs.LineStyle = 'none'; 
                obs.FaceColor = 'b'; 
            end 

  
            drawnow; 
           catch 
           end 
       end 

  

  
        function visualizeParts(obj) 
            for i = 1:length(obj.Parts) 
                tempPose = [0,0,0]; % to set transformation reference 
                correctPose = obj.Parts{i}.mesh.Pose; 
                obj.Parts{i}.mesh.Pose = trvec2tform(tempPose); 
                [~, obj.Parts{i}.plot] = show(obj.Parts{i}.mesh); 
                obj.Parts{i}.plot.LineStyle = 'none';  
                obj.Parts{i}.plotHandle = hgtransform; 
                obj.Parts{i}.plot.Parent = obj.Parts{i}.plotHandle; 
                obj.Parts{i}.mesh.Pose = correctPose; 
                obj.Parts{i}.plotHandle.Matrix = obj.Parts{i}.mesh.Pose; 
                obj.Parts{i}.plot.FaceColor = obj.Parts{i}.color;  
            end 
            drawnow; 
        end 

         

  
        function visualizeRobot(obj, robotStates, trajTimes) 
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            % Visualize robot motion            
            for k = 1:length(trajTimes) 
                configNow = robotStates(k,1:obj.NumJoints); 
                obj.Figure.Configuration = configNow; 
                obj.Figure.ShowMarker = false; 
                % Update current robot configuration 
                obj.CurrentRobotJConfig = configNow; 
                obj.CurrentRobotTaskConfig = getTransform(obj.Robot, 

obj.CurrentRobotJConfig, obj.RobotEndEffector); 
                % Visualize parts 
                if obj.PartOnRobot~=0 
                    obj.Parts{obj.PartOnRobot}.mesh.Pose = 

obj.CurrentRobotTaskConfig * trvec2tform([0 0 0.04]); 
                    obj.Parts{obj.PartOnRobot}.plotHandle.Matrix = 

obj.Parts{obj.PartOnRobot}.mesh.Pose; 
                end 
                drawnow; 
                pause(0.05); 
            end 
        end 

         
        function visualizePath(obj, positions) 
            poses = zeros(size(positions,2),3); 
            for i=1:size(positions,2)                
                poseNow = getTransform(obj.Robot, positions(:,i)', 

obj.RobotEndEffector); 
                poses(i,:) = [poseNow(1,4), poseNow(2,4), poseNow(3,4)]; 
            end 
            obj.PathHandle = plot3(poses(:,1), poses(:,2), poses(:,3),'r-

','LineWidth',5);             
            drawnow; 
        end 

         
        % Display current job state 
        function displayState(obj, message) 
            disp(message); 
        end 

         
        % Delete function 
        function delete(obj) 
            delete(obj.FlowChart) 
        end 

             
    end 

   
end 

 

Collision – free trajectory generation between an initial configuration and a 

target position by using a nonlinear model predictive controller 
 
% Plan collision-free trajectories using nonlinear model predictive control  
curFormat = robot.DataFormat; 
robot.DataFormat = 'column'; 

  
% Disable display messages 
mpcverbosity off; 

 
% Get number of joints 
numJoints = numel(robot.homeConfiguration); 

  
% Get number of obstacles 
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numObstacles = numel(obstacles); 

  
% Get number of collision bodies 
if ~isempty(obstacles) && avoidCollisions 
    [~, separationDist, ~] = checkCollision(robot, homeConfiguration(robot), 

obstacles, 'IgnoreSelfCollision', 'On', 'Exhaustive', 'on'); 
    tempDistances = separationDist(1:robot.NumBodies,1:numObstacles); 
    bodyIndices = 

find((isinf(tempDistances(:,1))|isnan(tempDistances(:,1)))==0); 
    numBodies = numel(bodyIndices); 
else 
    numBodies = robot.NumBodies; 
end 

         

% Current robot joint configuration 
currentRobotJConfig = wrapToPi(jointInit'); 

  
% Final (desired) end-effector pose 
anglesFinal = rotm2eul(taskFinal(1:3,1:3),'XYZ'); 
poseFinal = [taskFinal(1:3,4);anglesFinal']; % 6x1 vector for final pose: [x, 

y, z, phi, theta, psi] 

  
% Initialize safety distance away from the obstacles 
safetyDistance = 0.005;  

  
% World of obstacles 
world = obstacles; 

 
%% Set up the Nonlinear Model Predictive Controller (NLMPC) 
% Cost weights 
Qr = diag([1 1 1 0 0 0]); % running cost weight on desired end-effector pose 

[x, y, z, phi, theta, psi] 
Qt = diag([10 10 10 1 1 1]); % terminal cost weight on desired end-effector 

pose [x, y, z, phi, theta, psi] 
Qu = diag([1 1 1 1 1 1 1 1 1])/10; % input cost weight on joint accelerations 

qDdot 
Qv = diag([1 1 1 1 1 1 1 1 1])/10; 

  
% Model joints as double integrators 
nx = numJoints * 2; % [q,qDot] 
ny = numJoints; % [q] 
nu = numJoints; % [qDdot] 

  
% Initialize nlmpc object 
nlobj = nlmpc(nx,ny,nu); 

  
% Solver time step 
Ts = mpcTimeStep; % seconds 
nlobj.Ts = Ts;  

  
% Configure NLMPC solver functions 
nlobj.Model.StateFcn = @(x,u) nlmpcModel(x,u);   

  
nlobj.Model.OutputFcn = @(x,u) x(1:numJoints); 

  
nlobj.Optimization.CustomCostFcn = @(X,U,e,data) 

nlmpcCostFunction(X,U,e,data, poseFinal, robot, endEffector, Qr, Qt, Qu, Qv);  

  
if ~isempty(world) && avoidCollisions 
    nlobj.Optimization.CustomIneqConFcn = @(X,U,e,data) 

myIneqConFunction(X,U,e,data, safetyDistance, world, robot); 
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end 

  
nlobj.Jacobian.OutputFcn = @(x,u) nlmpcJacobianOutputModel(x,u); 

  
nlobj.Jacobian.StateFcn = @(x,u) nlmpcJacobianModel(x,u); 

  
nlobj.Jacobian.CustomCostFcn = @(X,U,e,data) nlmpcJacobianCost(X,U,e,data, 

poseFinal, robot, endEffector, Qr, Qt, Qu, Qv); 

  
if ~isempty(world) && avoidCollisions 
    nlobj.Jacobian.CustomIneqConFcn = @(X,U,e,data) 

nlmpcJacobianConstraint(X,U,e,data, world, robot); 
end 

  
nlobj.Optimization.SolverOptions.FunctionTolerance = 0.01; 

  
nlobj.Optimization.SolverOptions.StepTolerance = 0.01; 

  
nlobj.Optimization.SolverOptions.MaxIter = 5; 

  
nlobj.Optimization.UseSuboptimalSolution = true; 

  
nlobj.Optimization.ReplaceStandardCost = true; 

  
% nlobj.Optimization.SolverOptions.Display = 'iter-detailed'; 

  
nlobj.Optimization.SolverOptions.ConstraintTolerance = 0.01; 

  
% Set constraint on States and MV. 
stateMinValues = {-174.53;-2.2000;-174.53;-2.5656;-174.53;-2.0500;-174.53;-

2.5656;-174.53;... 
    -0.8727;-0.8727;-0.8727;-0.8727;-0.8727;-0.8727;-0.8727;-0.8727;-0.8727}; 
stateMaxValues = 

{174.53;2.2000;174.53;2.5656;174.53;2.0500;174.53;2.5656;174.53;... 
    0.8727;0.8727;0.8727;0.8727;0.8727;0.8727;0.8727;0.8727;0.8727}; 

  
nlobj.States = struct('Min',stateMinValues,... 
    'Max',stateMaxValues); 
nlobj.MV = struct('Min',{-1;-1;-1;-1;-1;-10;-10;-10;-

10},'Max',{1;1;1;1;1;10;10;10;10}); 

  
% Time horizon in seconds 
p = 5;  
nlobj.PredictionHorizon = p; % prediction horizon 
nlobj.ControlHorizon = 1; % control horizon 

  
%% Generate Reference Trajectories using Closed-loop trajectory optimization 

  
% Initial conditions 
x0 = [currentRobotJConfig', zeros(1,numJoints)]; 
u0 = zeros(1,numJoints); 
options = nlmpcmoveopt; 
maxIters = 50; 
success = 1; 

  
% Initialize arrays to store the results 
positions = zeros(numJoints,maxIters+1); 
positions(:,1) = x0(1:numJoints)'; 
velocities = zeros(numJoints,maxIters+1); 
velocities(:,1) = x0(numJoints+1:end)'; 
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accelerations = zeros(numJoints,maxIters+1); 
accelerations(:,1) = u0'; 
timestamp = zeros(1,maxIters+1); 

  

  
% Run nlmpc iteratively over the specified time horizon until goal is 
% achieved or up to maxIters. 
mv = u0; 
time = 0; 
numInfeas = 0; 
% Uncomment below to display all successful outputs 
% disp('Calculating collision-free trajectory...') 
for timestep=1:maxIters 
    % Optimize next trajectory point 
    [mv,options,info] = nlmpcmove(nlobj,x0,mv,[],[], options); 

     
    if info.ExitFlag < 0 
        numInfeas = numInfeas + 1; 
        disp('Failed to compute a feasible trajectory in this step...') 
    end 

     
    if numInfeas>2 
        warning('Many infeasible solutions in a row. Aborting...') 
        success = 0; 
        break; 
    end 

     
    % Update initial state and time for next iteration 
    x0 = info.Xopt(2,:); 
    time = time + nlobj.Ts; 

     
    % Store trajectory points 
    positions(:,timestep+1) = x0(1:numJoints)'; 
    velocities(:,timestep+1) = x0(numJoints+1:end)'; 
    accelerations(:,timestep+1) = info.MVopt(2,:)'; 
    timestamp(timestep+1) = time; 

     
    % Check if goal is achieved  
    jointTempFinal = info.Xopt(2,1:numJoints); 
    taskTempFinal = getTransform(robot, jointTempFinal', endEffector); 
    anglesTempFinal = rotm2eul(taskTempFinal(1:3,1:3), 'XYZ'); 
    poseTempFinal =  [taskTempFinal(1:3,4);anglesTempFinal']; 
    diffTerminal = abs([poseFinal(1:3)-poseTempFinal(1:3); 

angdiff(poseTempFinal(4:6),poseFinal(4:6))]); 
    if all(diffTerminal<tolerance)        
        break; % goal achieved 
    end 
end 

  
robot.DataFormat = curFormat; 

  
%% Output the reference trajectories 
tFinal = timestep+1; 
positions = positions(:,1:tFinal); 
velocities = velocities(:,1:tFinal); 
accelerations = accelerations(:,1:tFinal); 
timestamp = timestamp(:,1:tFinal); 
return; 

  
%% Helper nlmpc functions 
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function dxdt = nlmpcModel(x,u) 
    dxdt = zeros(size(x)); 
    dxdt(1:numJoints) = x(numJoints+1:end); 
    dxdt(numJoints+1:end) = u; 
end 

  
function [A, B] = nlmpcJacobianModel(x,u) 
    A = zeros(numJoints*2, numJoints * 2);     
    A(1:numJoints, numJoints+1:end) = eye(numJoints); 
    B = zeros(numJoints*2,numJoints); 
    B(numJoints+1:end,:)=eye(numJoints);  
end 

  
function [C, D] = nlmpcJacobianOutputModel(x,u) 
    C = zeros(numJoints, numJoints * 2); 
    C(1:numJoints, 1:numJoints) = eye(numJoints); 
    D = zeros(numJoints, numJoints); 
end 

  
function cost =  nlmpcCostFunction(X,U,e,data, poseFinal, robotL, 

endEffector, Qr, Qt, Qu, Qv)   
    % Running Cost 
    costRunning = 0; 
    for i= 2:p+1 
        jointTemp = X(i,1:numJoints); 
        taskTemp = getTransform(robotL, jointTemp', endEffector); 
        anglesTemp = rotm2eul(taskTemp(1:3,1:3), 'XYZ'); 
        poseTemp =  [taskTemp(1:3,4);anglesTemp']; 
        diffRunning = [poseFinal(1:3)-poseTemp(1:3); 

angdiff(poseTemp(4:6),poseFinal(4:6))]; 
        costRunningTemp = diffRunning' * Qr * diffRunning; 
        costRunning = costRunning + costRunningTemp + U(i,:)*Qu*U(i,:)'; 
    end 

     
    % Terminal cost 
    costTerminal = diffRunning'* Qt * diffRunning + 

X(p+1,numJoints+1:end)*Qv*X(p+1,numJoints+1:end)'; 

  
    % Total Cost 
    cost = costRunning + costTerminal; 
end 

  
function [G,Gmv,Ge] = nlmpcJacobianCost(X,U,e,data, poseFinal, robot, 

endEffector, Qr, Qt, Qu, Qv) 
    % Initialize Jacobians 
    G = zeros(p,numJoints*2); 
    Gmv = zeros(p,numJoints); 
    Ge = 0; 

     
    % Update G 
    for i=1:p 
        jointTemp = X(i+1,1:numJoints); 
        taskTemp = getTransform(robot, jointTemp', endEffector); 
        anglesTemp = rotm2eul(taskTemp(1:3,1:3), 'XYZ'); 
        poseTemp =  [taskTemp(1:3,4);anglesTemp']; 
        diffRunning = [poseFinal(1:3)-poseTemp(1:3); 

angdiff(poseTemp(4:6),poseFinal(4:6))];  

         
        % From geometric to analytical robot Jacobian 
        rx = anglesTemp(1); 
        py = anglesTemp(2); 
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        B = [ 1 0 sin(py); 0 cos(rx) -cos(py)*sin(rx); 0 sin(rx) 

cos(py)*cos(rx) ];  

         
        % Robot Jacobian 
        robotJacobianTemp = geometricJacobian(robot,jointTemp',endEffector); 
        robotJacobian = robotJacobianTemp; 
        robotJacobian(1:3,:) = robotJacobianTemp(4:6,:); 
        robotJacobian(4:6,:) = B\robotJacobianTemp(1:3,:); 

         
        % Running cost Jacobian 
        G(i,1:numJoints) = (-2 * diffRunning' * Qr * robotJacobian);  
        Gmv(i,:) = 2 * U(i+1,:) * Qu; 
    end 

  

    % Terminal cost Jacobian 
    G(p,1:numJoints) = G(p,1:numJoints) + (-2 * diffRunning' * Qt * 

robotJacobian); 
    G(p,numJoints+1:end) = 2 * X(p+1,numJoints+1:end) * Qv; 

  
end 

  
function cineq = myIneqConFunction(X,U,e,data, safetyDistance, world, robot) 
  % Copyright 2019 The MathWorks, Inc. 
    allDistances = zeros(p*numBodies*numObstacles,1); 
    for i =1:p 
        collisionConfig = X(i+1,1:numJoints); 
        [~, separationDist, ~] = checkCollision(robot, collisionConfig', 

world, 'IgnoreSelfCollision', 'On', 'Exhaustive', 'on'); 
        tempDistances = separationDist(1:robot.NumBodies,1:numObstacles); 
        tempDistances(all(isinf(tempDistances)|isnan(tempDistances),2),:) = 

[]; % remove inf and nans 
        tempDistances(isinf(tempDistances)|isnan(tempDistances)) = 0; 
        allDistances((1+(i-

1)*numBodies*numObstacles):numBodies*numObstacles*i,1) = 

reshape(tempDistances', [numBodies*numObstacles,1]);    
    end 
    cineq = -allDistances + safetyDistance; 
end 

  

  
function [G,Gmv,Ge] = nlmpcJacobianConstraint(X,U,e,data, world, robot) 

  
    % Initialize Jacobians 
    G = zeros(p, numJoints*2, p*numBodies*numObstacles); 
    Gmv = zeros(p, numJoints, p*numBodies*numObstacles); 
    Ge = zeros(p*numBodies*numObstacles,1); 

     
    iter = 1; 
    for i=1:p 
        collisionConfig = X(i+1,1:numJoints); 
        [~, ~, allWntPts] = checkCollision(robot, collisionConfig', world, 

'IgnoreSelfCollision', 'On', 'Exhaustive', 'on');  
         for j=1:numBodies 
            for k=1:numObstacles 
                bodyNow = bodyIndices(j); 
                wtnPts = allWntPts(1+(bodyNow-1)*3:3+(bodyNow-1)*3, 1+(k-

1)*2:2+(k-1)*2); 
                if isempty(wtnPts(isinf(wtnPts)|isnan(wtnPts))) 
                    if any((wtnPts(:,1)-wtnPts(:,2))~=0)  
                        normal = (wtnPts(:,1)-wtnPts(:,2))/norm(wtnPts(:,1)-

wtnPts(:,2)); 
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                    else 
                        normal = [0;0;0]; 
                    end 
                    bodyJacobian = geometricJacobian(robot,collisionConfig', 

robot.BodyNames{bodyNow}); 
                    G(i, 1:numJoints,  iter)= -normal' * bodyJacobian(4:6,:); 
                else 
                    G(i, 1:numJoints,  iter) = zeros(1, numJoints); 
                end 
                iter = iter + 1;                  
            end            
         end         
    end 

  
end 
end 

 

Move the robot from current position to a desired pose 

 
% Parts will be picked according to order in coordinator.DetectedParts list 
        coordinator.NextPart = coordinator.NextPart + 1;  
        if coordinator.NextPart<=length(coordinator.Parts)                
            % Objects are placed on either belt1 or belt2 according to 
            % their type 
            if coordinator.DetectedParts{coordinator.NextPart}.type == 1 
                coordinator.DetectedParts{coordinator.NextPart}.placingBelt = 

1;                     
            else 
                coordinator.DetectedParts{coordinator.NextPart}.placingBelt = 

2; 
            end 
            % Trigger Stateflow chart Event 
            coordinator.FlowChart.partsDetected; 
            return; 
        end 

  
        % Trigger Stateflow chart Event 
        coordinator.FlowChart.noPartsDetected; 

 

 

 

The logic of pick and place for the robot model  
 
% Parts will be picked according to order in coordinator.DetectedParts list 
        coordinator.NextPart = coordinator.NextPart + 1;  
        if coordinator.NextPart<=length(coordinator.Parts)                
            % Objects are placed on either belt1 or belt2 according to 
            % their type 
            if coordinator.DetectedParts{coordinator.NextPart}.type == 1 
                coordinator.DetectedParts{coordinator.NextPart}.placingBelt = 

1;                     
            else 
                coordinator.DetectedParts{coordinator.NextPart}.placingBelt = 

2; 
            end 
            % Trigger Stateflow chart Event 
            coordinator.FlowChart.partsDetected; 
            return; 
        end 

  
        % Trigger Stateflow chart Event 
        coordinator.FlowChart.noPartsDetected; 
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Move the robot to a target position 

 
%mpcTimeStep = 0.6; Set time step to different value  
 mpcTimeStep = 0.2; 
        [positions, velocities, accelerations, timestamp, success] = 

exampleHelperPlanExecuteTrajectoryPickPlace(coordinator.Robot, mpcTimeStep,  

coordinator.Obstacles, coordinator.RobotEndEffector, 

coordinator.CurrentRobotJConfig, taskConfig, tolerance, avoidCollisions); 
        if success==0 
            error('Cannot compute motion to reach desired task configuration. 

Aborting...') 
        end 

         
        %% Execute the trajectory using low-fidelity simulation 
        targetStates = [positions;velocities;accelerations]';  
        targetTime = timestamp; 
        initState = [positions(:,1);velocities(:,1)]'; 
        trajTimes = targetTime(1):coordinator.TimeStep:targetTime(end); 

  
        [~,robotStates] = ode15s(@(t,state) 

exampleHelperTimeBasedStateInputsPickPlace(coordinator.MotionModel, 

targetTime, targetStates, t, state), trajTimes, initState); 

  
        %% Visualize trajectory 
        % Uncomment below to display all successful outputs 
        % disp('Executing collision-free trajectory...') 
        visualizePath(coordinator,positions); 
        visualizeRobot(coordinator, robotStates, trajTimes); 

         
        % Deleta path on plot 
        coordinator.PathHandle.Visible = 'off'; 

  
        % Update current robot configuration 
        coordinator.CurrentRobotJConfig = positions(:,end)'; 
        coordinator.CurrentRobotTaskConfig = getTransform(coordinator.Robot, 

coordinator.CurrentRobotJConfig, coordinator.RobotEndEffector);  

  
        % Trigger Stateflow chart Event 
        coordinator.FlowChart.taskConfigReached;  
end 

 
 

Build the simulation environment 
 
% Construct the Workstation (only for visualization) 
    bench = collisionBox(0.5, 0.7, 0.05); 
    belt1 = collisionBox(1.3, 0.4, 0.05); 
    belt2 = collisionBox(1.3, 0.4, 0.05); 

  
    TBench = trvec2tform([0.4 0 0.2]); 
    TBelt1 = trvec2tform([0 -0.6 0.2]); 
    TBelt2 = trvec2tform([0 0.6 0.2]); 

  
    bench.Pose = TBench; 
    belt1.Pose = TBelt1; 
    belt2.Pose = TBelt2; 

     
    coordinator.World = {bench, belt1, belt2}; 
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    obs1 = collisionSphere(0.13); 
    Tobs1 = trvec2tform([0.4 0.38 0.4]); 
    obs1.Pose = Tobs1; 

     
    obs2 = collisionSphere(0.13); 
    Tobs2 = trvec2tform([0.4 -0.38 0.4]); 
    obs2.Pose = Tobs2; 

  
    coordinator.Obstacles = {obs1, obs2};     

  
    % Add the parts, which are only used for visualization and 
    % simulation. A separate tool ensures that when a part is 
    % gripped, it is included in the collision detection stage of 
    % the trajectory optimization workflow. 
    box2 = collisionBox(0.06, 0.06, 0.1); 
    box3 = collisionBox(0.06, 0.06, 0.1); 
    box1 = collisionBox(0.06, 0.06, 0.1); 

  
    % Move the parts into position 
    TBox2 = trvec2tform([0.5 -0.15 0.26]); 
    TBox3 = trvec2tform([0.52 0 0.26]); 
    TBox1 = trvec2tform([0.4 -0.1 0.26]); 

  
    box2.Pose = TBox2; 
    box3.Pose = TBox3; 
    box1.Pose = TBox1; 

  
    % Set the part mesh and color 
    part1.mesh = box2; 
    part2.mesh = box3; 
    part3.mesh = box1; 

  
    part1.color = 'y'; 
    part2.color = 'y'; 
    part3.color = 'g'; 

  
    part1.centerPoint = tform2trvec(part1.mesh.Pose); 
    part2.centerPoint = tform2trvec(part2.mesh.Pose); 
    part3.centerPoint = tform2trvec(part3.mesh.Pose); 

  
    part1.plot = []; 
    part2.plot = []; 
    part3.plot = []; 

  
    coordinator.Parts = {part1, part2, part3}; 

  
    % Visualize world and parts 
    visualizeWorld(coordinator) 
    visualizeParts(coordinator) 

  
   % Trigger Stateflow chart Event 
   coordinator.FlowChart.worldBuilt; 
end 

 


