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Abstract

The migration patterns of fish are critical ecological phenomena, integral to managing and
conserving aquatic resources. Accurately monitoring these patterns requires robust and
precise classification systems. This study introduces an advanced computer-vision based
approach to identify and classify fish migration behaviors focused on fish swarm activities
from underwater video footage. Employing a novel data pipeline architecture known as
’Medallion,’ this research streamlines the preprocessing and formatting of diverse video
data sourced from the German Federal Institute of Hydrology. The approach involves
deploying different preprocessing techniques tailored to specific behavior types: metadata
matching for swarm class videos and a single fish model for isolating individual fish
recordings.

Spatial feature extraction from detected fish bounding boxes, produced by a previously
trained and validated Fish No-Fish model (YOLOv5), provides critical inputs for a Gradient
Boosting Classifier tasked with behavior classification. Validation results show the model
achieving an overall F1-score of 87%, with individual scores of 97% for fish swarm, 82%
for single fish, and 80% for fish behavior, across a balanced dataset of 1851 videos. The
test phase results further underscore the model’s efficacy, especially in identifying the fish
swarm behavior class with a precision of 97% and a recall of 93%.

The findings suggest that the integrated use of advanced machine learning techniques can
significantly enhance the accuracy and efficiency of fish behavior analysis in ecological
research and fisheries management. This study not only advances our understanding of fish
behaviors in natural settings but also sets a new benchmark for technological applications
in environmental conservation.

Keywords: Fish Behaviour Analysis, Video Classification, Machine Learning, Data Quality

The thesis is written in English and is 62 pages long, including 6 chapters, 28 figures, and
9 tables.
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Annotatsioon
Pikslitest mustriteni: Kalaparvede automatiseeritud klassifitseerimine

veealustes videotes

Kalade rändemustrid on kriitilised ökoloogilised nähtused, mis on veeressursside majan-
damise ja säilitamise lahutamatu osa. Nende mustrite täpne jälgimine nõuab tugevaid ja
täpseid klassifitseerimissüsteeme. See uuring tutvustab täiustatud arvutuslikku lähenemisvi-
isi kalade rändekäitumise tuvastamiseks ja klassifitseerimiseks veealuste videomaterjalide
põhjal. Kasutades uudset andmejuhtmete arhitektuuri, mida tuntakse nimega "Medal-
lion", lihtsustab see uurimus Saksamaa Föderaalsest Hüdroloogiainstituudist pärinevate
erinevate videoandmete eeltöötlust ja vormindamist. See lähenemisviis hõlmab erinevate
eeltöötlustehnikate kasutuselevõttu, mis on kohandatud konkreetsetele käitumistüüpidele:
metaandmete sobitamine sülemiklassi videote jaoks ja üks kalamudel üksikute kalade
salvestiste eraldamiseks.

Fish No-Fish mudeli (YOLOv5) abil loodud ruumiliste featuuride eraldamine tuvastatud
kalade piirdekastidest annab kriitilisi sisendeid gradiendi võimendamise klassifikaatorile,
mille ülesandeks on käitumise klassifitseerimine. Valideerimistulemused näitavad, et mudel
saavutas 1851 videost koosnevas tasakaalustatud andmekogus üldiseks F1-skooriks 87%,
kusjuures individuaalsed skoorid on kalaparve puhul 97%, üksikute kalade puhul 82% ja
kalade käitumise puhul 80%. Katsefaasi tulemused rõhutavad veelgi mudeli tõhusust, eriti
kalaparve mustrite tuvastamisel 97% täpsusega ja 93% tagasikutsumisega.

Tulemused viitavad sellele, et täiustatud masinõppetehnikate integreeritud kasutamine
võib oluliselt suurendada kalade käitumise analüüsi täpsust ja tõhusust ökoloogilistes
uuringutes ja kalanduse majandamises. See uuring mitte ainult ei edenda meie arusaamist
kalade käitumisest looduslikes tingimustes, vaid seab ka uue võrdlusaluse keskkonnakaitse
tehnoloogilistele rakendustele.

Märksõnad: kalade käitumise analüüs, video klassifikatsioon, masinõpe, andmete kvaliteet

Lõputöö on kirjutatud ingilise keeles keeles ning sisaldab teksti 62 leheküljel, 6 peatükki,
28 joonist, 9 tabelit.
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List of Abbreviations and Terms

AB Activity Bursts
AC Average Confidence
AFC Average Frame Coverage
BfG German Federal Institute of Hydrology
CNN Convolutional Neural Network
CLAHE Contrast Limited Adaptive Histogram Equalization
CV Centroid Variance
GBC Gradient Boosting Classifiers
HPD High-Performance Desktops
iFO infrared Fish Observation
mAP Mean Average Precision
MDS Minimum Detection Size
MFC Maximum Frame Coverage
PDD Peak Detection Density
R-CNN Region-Based Convolutional Neural Network
SFM Single-Fish Model
SiamRPN Siamese region proposal network
TDF Total Detections per Frame
YOLO You Only Look Once
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1. Introduction

Fish migration is a critical ecological phenomenon affecting environmental conservation
and fisheries management [1, 2]. Accurately monitoring fish migration patterns and be-
haviours through video surveillance allows researchers and policymakers to make informed
decisions that enhance conservation efforts and optimize fisheries management [3]. The
traditional reliance on human manual observation for classifying and analyzing fish in
video data poses significant challenges, including substantial labor costs and potential
biases in data interpretation [4]. However, with developement of technology, the automated
monitoring in ecosystem aims to decrease the reliance on manual observation, thus increas-
ing the efficiency, accuracy, and scalability of data processing [5]. By employing advanced
machine learning techniques to automate the detection and classification of fish behaviour,
such as swarm activities, researchers can achieve a more consistent and objective analysis
of underwater video data. This reduction in human labor not only cuts costs but also
leverages computational precision to handle vast datasets that would be unmanageable
manually [6].

Therefore, the development of an automated classification system for underwater fish
videos not only supports significant ecological and economic outcomes but also represents
a critical step forward in the application of artificial intelligence in environmental science.
The combination of environmental management strategies with advanced technological
approaches ensures the sustainability and effective stewardship of underwater resources.

Early efforts in underwater fish monitoring utilized basic video recording equipment and
required manual review by experts, which was highly labor-intensive and prone to human
error. With advancements in image processing and computer vision, automated systems
began to gain popularity. Strachan [7] was among the first to apply computer vision
techniques to identify marine species based on color and shape descriptors, paving the way
for further technological advancements in underwater fish monitoring.

The development of automated fish counters introduced systems that used controlled
illumination and stereo cameras to enhance the identification accuracy in constrained
environments [8]. However, these systems struggled in natural, uncontrolled settings due
to variable environmental conditions.

The progression in underwater video analysis for fish detection, particularly regarding the
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integration of environmental adaptability, marks a significant evolution in the technologies
employed. Fabic et. al [9] utilized shape analysis and blob counting techniques to identify
and count fish. Their approach also involved some degrees of environmental normalization
to mitigate issues such as shadows and reflections. However, these techniques required
predefined settings and parameters that were not dynamically adjustable, limiting their
effectiveness across different or changing underwater environments.

As first demonstrated by the ground-breaking work of Szegedy et al. [10], the introduction
of deep learning has signaled a significant advancement in object detection, enabling the
precise localization of objects across various classes. This technology has facilitated rapid
advancements in underwater fish detection, employing deep learning techniques for various
ecological monitoring and research purposes. Following these foundational developments,
Zhao et al. [11] reviewed the effectiveness of deep learning in object detection, further
establishing the robust capabilities of these models in complex scenarios, including under-
water environments. Li et al. [12] leveraged a Fast Region-based Convolutional Neural
Network (R-CNN) network to develop an automatic fish identification system. Their
model, tested with the ImageCLEF dataset from the Fish4Knowledge project, achieved a
mean Average Precision (mAP) of 81.4%, showcasing an 80 times faster detection rate
compared to earlier R-CNN models. This progression was furthered by subsequent studies
by the same team, which used this dataset to train on Faster R-CNN, achieving an mAP
of 82.7%, and later developed a more efficient, lightweight neural network that improved
detection capabilities [13, 14].

However, challenges persist, particularly concerning the quality and suitability of
datasets for training these advanced models. Many publicly available datasets, such
as Fish4Knowledge, do not capture the variability and complexity typical of underwater
environments, often due to issues like low resolution and lack of environmental context
[15, 16]. This limitation is evident in other popular datasets like those developed by Cutter
et al. [17] and Anantharajah et al. [18], which suffer from similar issues of cropping and
small sample sizes.

In response to the evolving needs of ecological monitoring, newer underwater monitoring
systems have incorporated advanced technologies that improve the accuracy and efficiency
of data collection in complex aquatic environments. The FishCam underwater observation
system offers a versatile, open-source solution specifically designed for extended deploy-
ments in aquatic environments [19]. This system employs customizable configurations
to adapt to various research needs, further enhancing the capabilities for detailed and
prolonged ecological studies. These systems not only overcome some of the shortcomings
of earlier technologies but also enhance the capability for long-term ecological monitoring,
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providing crucial data that supports sustainable management and conservation efforts.
Adding to these advancement, the infrared Fish Observation (iFO) system [20], utilizes
low-cost, open-source infrared video systems to monitor aquatic life behaviour without
the disruptive impact of traditional lighting, essential for accurate nighttime observations.
Similarly, the Riverwatcher system (used in this work) [21], leverages infrared scanning
technology to passively and non-invasively monitor fish migrations in rivers and fishways.
These systems not only overcome some of the shortcomings of earlier technologies but
also enhance the capability for long-term ecological monitoring, providing crucial data
that supports sustainable management and conservation efforts.

These advancements represent a significant step forward in the deployment of environmen-
tal near real-time monitoring technologies, shifting from reliance on imperfect datasets to
real-time quality dataset, adaptable solutions that can handle the inherent challenges of
aquatic environments.

Recognizing dataset limitations and improved near real-time aquatic observation systems,
recent efforts by Cai et al. [22] and Wang et al. [23] have focused on developing tailored
datasets and employing state-of-the-art models that better reflect the real-world conditions
of underwater habitats. These models have shown promising results, though the challenge
of applying them across different underwater settings remains, due to variations in water
clarity, illumination, and environmental complexity.

While advances in computer vision and machine learning have significantly enhanced
the capabilities of automated fish counters, most applications continue to rely on High-
Performance Desktops (HPD) due to their computational power. This dependence presents
a significant barrier for real-time, field-deployable systems, as the complexity of these
methods often precludes their use on low-cost, low-power embedded hardware, which
are crucial for widespread and ubiquitous monitoring in diverse environmental conditions.
The challenges associated with implementing such technology in the field, due to limited
computational resources and the technical difficulties of deployment, highlight a significant
gap in the current research landscape [24, 25].

Addressing these limitations, the integration of high-performance computing and embedded
systems into fish detection technologies has been crucial. Jürgen Soom’s recent work [26]
represents a significant leap in addressing the variability of natural underwater environment
by introducing an environmentally adaptive multi-stage classification process where the
methodology allows for real-time, robust classification under different conditions such
as turbidity and variable lighting [27, 28]. These studies demonstrate the evolution
from high-cost, high-maintenance setups to more sustainable, low-power systems that
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can perform complex analyses. This innovative approach not only facilitates the robust
classification of videos with and without fish but also categorizes commonly occurring
environmental conditions that impact visibility and detection accuracy, such as turbidity
and light overexposure. The dual capability allows for enhanced adaptability and reliability
of fish monitoring systems in variable freshwater environments. Comparatively, frame
differencing emerged as the more effective technique in his study, achieving a mean
accuracy of 88.4%, versus the 82.1% accuracy obtained through scanlines. These methods
offer substantial improvements over traditional systems [24], even more optimized systems,
such as an embedded fish counter on a Raspberry Pi with controlled environments, have
reached accuracies up to 98%. This contrast illustrates the complexities of applying these
technologies in wild, unstructured environments where the performance often degrades,
with F1-scores potentially dropping below 50% [29].

In exploring the realm of fish behaviour analysis, according to the research carried out
by Hu Jun et al. [30], innovative methods are developed to monitor fish behaviour
effectively within aquaculture environments. Utilizing a low-cost underwater imaging
system paired with an enhanced version of the You Only Look Once (YOLO) V3-Lite
deep learning model, the research captures and analyzes various fish behaviours based
on visual cues in the images, such as movement patterns during hypoxia, changes in
posture or activity during feeding, and normal swimming behaviours and enables rapid
processing, allowing behaviours to be detected and analyzed in real time, which is vital for
timely adjustments in aquaculture management. Preprocessing techniques like contrast
enhancement and noise reduction refine the visual data, facilitating precise behaviour
classification through real-time image processing. He Want et al. [31] further advanced
fish behaviour monitoring by identifying abnormal behaviours in fish within recirculating
aquaculture systems, tackling the difficulties posed by small target sizes and occlusions
due to high-density fish populations. By refining the YOLOV5 model for greater accuracy
and combining it with the robust Siamese region proposal network ++(SiamRPN++)
for tracking, their integrated system offers substantial improvements in both speed and
detection accuracy. These advancements not only enhance real-time monitoring capabilities
but also bolster proactive health management strategies, potentially leading to significant
economic benefits by minimizing the risks of fish mortality in aquaculture practices.
Further extending these capabilities, in the study of Iqbal et al. [32] research provides a
significant tool for optimizing feeding strategies, thereby reducing waste and contributing
to more sustainable fish farming practices by enabling precise and timely feeding decisions.
A custom convolutional neural network (CNN) classifies fish behaviour into normal and
starvation states with a demonstrated accuracy of 98%. This model, tested on a dataset of
2000 images from video footage of black scraper fish, incorporates three fully connected
layers and max-pooling to enhance its predictive capabilities, highlighting the model’s
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success in using visual data to discern behavioural patterns that indicate starvation.

Building on the motivation rooted in technological advancements for ecological monitoring,
the role of institutions like the German Federal Institute of Hydrology (Bundesanstalt
für Gewässerkunde – BfG) becomes indispensable. BfG not only spearheads research
on hydrological, ecological, and geoscientific issues but also emphasizes the sustainable
management of water resources and the protection of freshwater ecosystems. Their
extensive research activities provide crucial data that supports a wide array of ecological
assessments and advancements.

In this research endeavor, BfG’s initiatives align closely with our objectives, particularly
their innovative use of technology in environmental monitoring. As we delve deeper into
the specifics of fish behaviour analysis through video classification, the foundation laid
by BfG’s diverse hydrological research will be crucial. This backdrop is not just about
leveraging a dataset but understanding how such data are gathered and utilized to drive
significant environmental outcomes. By situating our study within the framework of BfG’s
broader research activities, we underscore the synergy between academic research and
practical, real-world application in ecological management.

Recognizing previously referred challenges and lack of research study on fish behavioural
analysis, this research aims to harness the power of cutting-edge machine learning technolo-
gies to revolutionize the way we understand and interact with marine life. The objectives
of this study are designed to address specific gaps in current monitoring techniques by in-
troducing an automated, robust, and scalable system for classifying fish swarm behaviours
from underwater video data. This system promises not only to improve the precision of
ecological assessments but also to enhance the efficacy of conservation efforts and fisheries
management. With these goals in mind, the following objectives have been set to guide the
research:

Primary Objective:

■ To develop and validate an automated classification system capable of accurately
identifying fish swarm behaviours from underwater video footage.

Secondary Objectives:

■ To implement and assess the efficacy of advanced machine learning techniques,
specifically Gradient Boosting Classifiers, in distinguishing between swarm and
non-swarm activities in underwater environments.

■ To leverage a robust feature extraction methodology that utilizes spatial features

13



derived from video frame analysis, ensuring detailed and accurate input data for
model training.

■ To conduct rigorous model evaluation through methods such as k-fold cross-
validation and train-test splits to optimize and verify the model’s performance across
various metrics including accuracy, precision, recall, and F1 scores.

■ To refine the model’s predictive capabilities through systematic hyperparameter
tuning using GridSearchCV, focusing on parameters like the number of estimators,
learning rate, and tree depth to achieve the best classification results.

This study consists of five chapters. Chapter 2 presents the background, detailing the fish
migration behaviours. Chapter 3 provides the brief information about the data sources,
methodologies, and theoretical frameworks employed, including Medallion architecture
for data preprocessing. Chapter 4 discusses the results, showcasing the dataset preparation
results, the performance of the Fish-No Fish (FNF) model and the Gradient Boosting
Classifier in classifying fish swarm behaviours. Chapter 5 provides a thorough conclusion
to the investigation, summarizing the findings, and outlining potential future research
directions.
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2. Background

2.1 Migration Behaviour Classes

In the forthcoming subsections, we delve into the nuanced definitions that categorize each
class of fish migration behaviour captured in video, the process of data preparation, and
the array of challenges encountered while curating the final dataset. The study of fish
migration classes through video analysis has delineated three primary behaviours (Fig 1)
that offer insights into the piscine lifecycle within their underwater domain, which are:

■ Fish Migration Behaviour - this category is used for videos featuring single fish,
each showcasing one of six distinct migration behaviours through the underwater
counter, defined as the sub-classes UP-IN, DOWN-IN, UP, DOWN, IN-DOWN,
IN-UP.

■ Fish - a category reserved for videos depicting single fish instances in which a fish
appears in the video, but fails to exhibit any of the six migration behaviours. This
class is representative for fish which remain in the counter for the duration of the
video and do not migrate into or out of the camera (dweller). In addition, this class
is also used for fish which partially enter the top, bottom, left or right side of the
camera but do not swim into it fully, thus not migrating into, through or out of the
camera (drop-out).

■ Fish Swarm - this grouping comprises footage of multiple fish seen simultaneously
in the video, with a threshold set to five fish per frame as the working definition of a
fish swarm.

Figure 1. Hierarchical Classification of Fish Behaviours.
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2.1.1 Fish Migration Behaviour

Fish migration behaviour videos are sub-classified into six different types based on the fish
behaviour during the duration of a single video:

1. UP-IN - this behaviour has three sub-fish behaviours which provide the full defini-
tion:

■ Fish enters the view from the downstream end and does not migrate out of view
(Fig 2a).

■ Fish swims upstream (enters the view from the downstream end) but does not
migrate out of view or swims downwards to the bottom camera field (Fig 2b).

■ Fish swims upstream (enters the view from the downstream end), does not
migrate out of view or swims upwards to the top camera field (Fig 2c).

(a) Fish entering the view (b) Fish swims upstream (c) Fish swims to the top field

Figure 2. Different types of UP-IN behaviour.

2. DOWN-IN - This behaviour has three sub-fish behaviours, which provide the full
definition:

■ Fish enters the view from the upstream end, does not migrate out of view
(Fig 3a).

■ Fish swims downstream (enters the view from the upstream end), does not
migrate out of view or swims upwards to the upper camera field (Fig 3b).

■ Fish swims downstream (enters the view from the upstream end), does not
migrate out of view or swims downwards to the bottom camera field (Fig 3c).

3. UP - this behaviour occurs when fish leaves the image and has the following defini-
tion:

■ Fish enters the view from the downstream end, migrates out of view upstream
(Fig 4).
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(a) Fish entering from upstream (b) Fish swims downstream (c) Fish swims to bottom field

Figure 3. Different types of DOWN-IN behaviour.

Figure 4. UP behaviour - Fish entering from downstream end.

4. DOWN - This behaviour occurs when the fish leaves the image and has the following
definition:

■ Fish enters from the upstream edge and leaves through the downstream edge
(Fig 5).

Figure 5. DOWN behaviour - Fish entering from the upstream end.

5. IN-DOWN - this behaviour occurs when the fish leaves the image and has the
following definition:

■ Fish is in view at the beginning of the video and migrates out of view down-
stream (Fig 6a).

■ Fish enters from the top and migrates out of view downstream (Fig 6b).
■ Fish enters from the bottom and migrates out of view downstream (Fig 6c).

6. IN-UP - this behaviour occurs when the fish leaves the image and has the following
definition:
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(a) Fish in the view at start (b) Fish enters from top (c) Fish enters from bottom

Figure 6. Different types of IN-DOWN behaviour.

■ Fish is in view at the beginning of the video and migrates out of view upstream
(Fig 7a).

■ Fish enters from the top and migrates out of view upstream (Fig 7b).
■ Fish enters from the bottom and migrates out of view upstream (Fig 7c).

(a) Fish in the view at start (b) Fish enters from top (c) Fish enters from bottom

Figure 7. Different types of IN-UP behaviour.

2.1.2 Fish

Fish videos are mainly categorized into two different types based on the fish behaviour
during the lifecycle of the video, the behaviour types include:

1. DWELLER - this behaviour occurs when the fish is in view at the beginning (Fig. 8a)
and at the end of the video (Fig. 8b). It shows all kinds of movements or position
changes won’t be a limitation for this type of behaviour.

2. DROP-OUT - This behaviour occurs when the fish is entered the view from upstream
(Fig. 9a), downstream (Fig. 9b) or top (Fig. 9c) and leaves the video from upstream,
downstream or top, respectively.
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(a) Fish in the view at start (b) Fish in the view at end

Figure 8. Example of DWELLER behaviour.

(a) Fish entering the view from
upstream

(b) Fish entering the view from
downstream

(c) Fish entering the view from
top

Figure 9. Different types of DROP-OUT behaviour.

2.1.3 Fish Swarm

Fish Swarm videos are classified when five or more fish pass through a video frame in
groups (Fig. 10).

Figure 10. Fish swimming direction shown for emphasis. Swarm videos can include
fish swimming upstream or downstream and frequently include fish swimming in both
directions.
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3. Methods

3.1 Data Pipeline: Medallion Architecture

The dataset at the core of this research represents a comprehensive collection of underwater
video footage, specifically tailored to study and analyze fish migration patterns. This is a
private dataset, and the right to use it was kindly given by The German Federal Institute
of Hydrology (BfG) as this study is part of a collaboration project between a research
group at TalTech and the BfG. The dataset for this study was prepared to facilitate the
binary classification of underwater videos into three primary categories: FISH SWARM
and NON FISH SWARM (FISH OR FISH BEHAVIOUR). The research provide an
account of the methodological approach undertaken to curate a diverse dataset, aiming for
an equitable distribution across individual fish, fish swarm, and varied fish behavioural
videos. These have been methodically gathered from three different river locations in
Germany to feed into the data classification framework. The dataset amalgamation involved
selecting video footage from trio of sites, each chosen to reflect the heterogeneity of aquatic
settings, thereby ensuring an all-encompassing dataset that captures an array of complex
environmental conditions under which fish operate.

The Medallion architecture is a multifaceted framework utilized to transform and transition
raw video data into an analytically viable and structured format. At its core, it integrates
data warehousing methodologies with the robustness required for big data processing,
particularly in the domain of ecological video data analysis [33, 34]. This architecture is
integral for datasets that demand a sequence of refined transformations, each building upon
the last to gradually enhance data quality and relevance to the research questions at hand
[35]. The architecture’s first layer is the acquisition of raw video data (see Fig[11), which
is mainly split into three sublayers, which are:

1. 2019 Fish Swarm data pipeline (highlighted with a red dashed line).
2. 2020 Fish Swarm data pipeline (highlighted with a red dashed line).
3. 2020/2021 Fish & Fish Behaviour data pipeline (highlighted with a blue dashed

line).

20



Figure 11. Data Processing Flow in Medallion Architecture.

3.1.1 Fish Swarm

For the Koblenz site’s 2019 dataset, the acquisition is a gathering of extensive and unpro-
cessed video files, collected over varied times and under diverse environmental conditions,
representing a snapshot of underwater life in motion. These videos, each a temporal win-
dow into underwater ecosystems, are stored in their native high-fidelity format, capturing
details that range from subtle fish behaviours to complex swarm dynamics.

The data, once collected, is replicated from its primary location, the Isis server, to the
working environment, Optimus. This initial replication is a careful mirroring process
that ensures data integrity and fidelity, providing a solid foundation for the forthcoming
analytical operations.

Upon replication, we encounter the necessity for preprocessing - a bridge between raw
data and analytical readiness. For the 2019 dataset, this involves two primary elements:

■ Metadata - for the videos is initially scattered across several Excel files, each
corresponding to a particular month of data collection. The files are named system-
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atically (e.g., March2019_lower.xlsx, April2019_lower.xlsx) in Fig[12], with each
containing vital descriptors such as date, time, species, size, and other observational
details.

Figure 12. A sample of Fish Swarm 2019 June Raw Metadata Format.

The metadata’s granularity is crucial for subsequent matching processes with the
video files.

■ Video Files - The video files are organized within the 2019avi directory (Fig[13]),
sorted into daily subfolders denoted by date labels. The diversity within these files is
vast, documenting various species, behaviours, and swarm events.
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Figure 13. A sample of 2019 Koblenz dataset folder structure.

Following initial data structuring, the next significant endeavor is the consolidation of
metadata. This step is crucial in transitioning from a dispersed to a centralized metadata
framework. Here, individual Excel files are programmatically ingested into a singular data
frame, with an emphasis on maintaining data coherence by selectively importing relevant
columns.

Data Transformation and Preparation - the initial step within this phase involves the
standardization of temporal data, necessitated by the disparate formats of date and time
across the observational records. The standardization process harmonizes these records
by merging the separate columns for date and time (’Date’ and ’Time’) into a singular
datetime column (’Timestamp’). To enhance the matching process with the video files, the
timestamps are further processed through a rounding operation. This operation modifies the
precise seconds recorded in the timestamps down to the nearest minute, thus synchronizing
with the video filenames that denote recording times by minute intervals (Table [1]).

The transformation from specific date and time columns to a unified datetime representation
enables the system to treat time as a continuum, rather than as disjointed units. This
continuity is crucial for any temporal analyses that follow, where events are contextualized
within the flow of time rather than as isolated points.

Filtering and Isolation of Significant Events - Subsequent to the temporal standardization
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Table 1. Transformation of Dataset Columns.

Original Columns Original Values Transformed Values
Date 25-03-19 25-03-19
Time 01:04:15 01:04:15
Species Roach Roach
Count 7 7
Timestamp deafult_unknown 2019-03-25 01:04:15
Timestamp_rounded deafult_unknown 2019-03-25 01:04:00

is the application of a set of filters—defined by ecological behavioural standards—to the
data. These filters aim to isolate significant swarm events based on specific criteria that
have been established through prior ecological research (Table[2]). In the context of fish
swarm analysis, the main indicators for significant events include:

1. A threshold for the minimum number of fish records—events with counts equal to
or greater than five fish are considered potential swarm activities.

2. A temporal proximity constraint—only those events for which the time span (the
difference between the earliest and latest timestamps) does not exceed a three-minute
threshold are retained. This constraint is predicated on the established behavioural
patterns of fish swarms that tend to display significant activity within such a temporal
window.

Table 2. Dataset Reduction after Fish Swarm Indicator Application.

Filter Criteria Entries Be-
fore

Entries After

Count >= 5 and
Max Timestamp - Min Timestamp < 3 mins

1865 306

Green highlighted records in Fig[12] are the example of possible fish swarm occurance
since number of records are bigger than five fishes, time interval is between given threshold
interval and should be classified as ’FISH_SWARM’.

This phase results in a dataset pruned and shaped by the precise requirements of the
research study. The standardization of time and the strategic filtering of events serve as
preludes to the subsequent phase of video matching. Through these processes, the data is
transformed from its raw state into a format ready for the rigorous matching algorithm that
follows, setting the stage for accurate and efficient swarm identification.

Swarm Identification and Video Matching - this stage introduces a rigorous matching
algorithm that utilizes the final predicted fish swarm event timestamps and compares them
against the video filenames. Each video file is named following a convention that includes
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the date and time of recording, down to the second. The algorithm iterates through the
list of video filenames within the directory for the given date and extracts the timestamps
embedded in these filenames. Videos with the smallest temporal discrepancy to the event
timestamp are selected, ensuring a close correspondence between observed behaviour
and recorded video. Due to variations in the exact seconds at which videos start and the
moments when fish behaviours are noted, an exact match between observation timestamps
and video file names is improbable. The process that simplifies the matching protocol
by reducing the resolution of the timestamp to a level that corresponds with the labeling
of the video files. This time rounding respects the periodicity of the recordings and the
observed events, ensuring that the subsequent comparison operates on a uniform timescale
(Table[3]).

Table 3. Alignment of fish swarm event timestamps with corresponding video filenames,
demonstrating the efficacy of the temporal matching algorithm.

Timestamp
Rounded

Species Count Video Path Closest Video
Datetime

Time
Diff
(min)

2019-03-25
01:04:00

Roach 7 [20190325/010354856.avi,
20190325/010928869.avi]

2019-03-25
01:03:54

0.10

2019-03-25
04:07:00

Roach 5 [20190325/040640194.avi,
20190325/041207014.avi]

2019-03-25
04:06:40

0.33

2019-03-25
04:20:00

Roach 7 [20190325/041954734.avi,
20190325/042529308.avi]

2019-03-25
04:19:54

0.10

2019-03-26
21:30:00

Roach 5 20190326/213031267.avi 2019-03-26
21:30:31

0.52

2019-03-28
00:32:00

Roach 5 20190328/003205234.avi 2019-03-28
00:32:05

0.08

Outcome of the Matching Process - the outcome of the Swarm Identification and Video
Matching stage is a dataset where each entry signifies a potential swarm event, now linked
with the most temporally proximate video file (Fig[14]). This dataset is now augmented,
pairing observational data with a visual record that precisely represents the behaviour of
interest at or near the time it was noted. This matching process is essential in studies where
behaviour must be corroborated visually. It allows for subsequent qualitative analyses of
the fish swarm behaviours and supports quantitative assessments such as the frequency,
duration, and composition of swarms.
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Figure 14. Data processing flow of 2019 FISH SWARM/Koblenz dataset.

Manual Validation Process - following the temporal matching and algorithmic selection
of video files, each candidate video identified as potentially depicting a swarm event
underwent a manual review. The manual validation process serves multiple purposes:

1. Confirmation of Swarm behaviour - each video is evaluated to determine whether
it truly captures the dynamism and characteristics of a swarm, as opposed to isolated
or unrelated fish movements.

2. Integrity Assurance - the manual review acts as a quality control measure, safe-
guarding against false positives that may have arisen during the algorithmic filtering
and matching process.

3. Refinement of Algorithmic Accuracy - the insights gained from manual validation
feed back into the system, honing the precision of the algorithms used for initial
swarm event prediction.

The data processing for the 2020 fish swarms dataset, as depicted in the attached archi-
tectural flow diagram (Fig[15), exemplifies a streamlined and refined approach, primarily
because the dataset had already undergone a level of pre-validation by human raters. Unlike
the 2019 dataset, which required extensive preprocessing, the 2020 dataset was poised for
a more direct application in the analytical model.
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Figure 15. Data processing flow of 2020 FISH SWARM/Koblenz dataset.

Initial Data Replication - the process commences with the replication of the 2020 dataset
into the "Optimus/Work Env" environment. This replication is a crucial step as it ensures
that the processing and analysis are conducted within a controlled and resource-optimized
setting. Replication also serves to safeguard the original data integrity while enabling
multiple iterations of data handling without the risk of data corruption or loss.

Metadata Generation and Validation - once the dataset is securely integrated into the
working environment, the next phase is metadata generation. For the 2020 dataset, the
absence of accompanying metadata implies a need to generate descriptive information that
provides context to the video content. This metadata typically includes timestamps, fish
video class parameters that are essential for accurate data classification and retrieval.

The metadata generation and file conversion process is conducted using python scripts
designed to parse video filenames and internal timestamps, generating structured metadata
that aligns with the data model used in the analytical processes.

3.1.2 Fish & Fish Behaviour

The processing of Fish and Fish behaviour videos from 2020–2021, collected from Site-1
and Site-3, constitutes a significant phase in the data preprocessing architecture (Fig[ 16).
This phase begins with the critical step of replicating the collected video data onto the
’Optimus’ server. This server acts as the central working and development environment,
ensuring that the data remains accessible and secure for processing. The replication process
is meticulous, involving the transfer and verification of data integrity to ensure that no
video data is corrupted or lost during the transition.
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Figure 16. Data processing flow of 2020/2021 FISH and FISH BEHAVIOUR dataset.

After successful replication, the next step involves the classification of these videos into
single and multiple fish categories using the established Single-Fish Model (SFM). This
model, integral to the preprocessing of the video data, operates with a 79% accuracy rate.
While this level of accuracy provides a substantial reduction in dataset complexity by
filtering out videos unlikely to contain single fish, it is insufficient for complete automation
of the process. Consequently, videos classified as containing single fish undergo a rigorous
manual validation process to ensure the precision of the model’s predictions.

Manual validation is a labor-intensive and critical component of the dataset preparation,
involving several detailed steps:

1. Individual Video Review: Each video predicted as containing a single fish is meticu-
lously watched by trained researchers. This step is crucial to confirm the presence
of single fish and to assess the video’s suitability for further analysis based on
predefined research criteria.

2. Metadata Preparation: For each video undergoing manual validation, researchers
prepare a comprehensive metadata file. This file captures essential details such as the
video’s unique identifier, recording site, and its classification as either a Fish or Fish
behaviour type video. It also includes binary indicators for single fish presence (is_-
single), validation status (verified), and timestamps (start_1, end_1, start_2, end_2)
that specify intervals of observed single fish activity.

3. Video Cropping: Utilizing the intervals specified in the metadata, an automated
Python script crops the videos to focus exclusively on the segments of interest. This
step is designed to isolate and enhance the study’s focus on single fish behaviours,
minimizing distractions from non-relevant content.

4. Second Manual Validation: After cropping, videos are subjected to another round
of manual validation. This step is critical to ensuring that the video segments have
been correctly identified and extracted according to the specified intervals. It also
reassesses the categorization of each video, confirming its classification as a single
fish video.

5. Final Dataset Compilation: Post-validation, the refined dataset of fish and fish
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behaviour videos from Sites 1 and 3 is amalgamated with a similarly validated
dataset of fish swarms from Koblenz. This final stage involves integrating various
datasets to create a unified repository ready for complex analytical tasks.

The manual validation process demands substantial human effort and expertise, reflecting
the project’s commitment to data accuracy and reliability. Each video is scrutinized to
ensure that the dataset upholds the high standards required for valid scientific inquiry.
The detailed metadata, combined with precise video cropping and rigorous re-validation,
underscores the meticulous nature of this research phase. It took around a week for a group
of three people to validate the fish and fish behaviour videos, and the validation of cropped
videos with given time intervals took another 4-5 days. This ensures that subsequent
analyses on fish behaviour and dynamics are based on the most reliable and precise data
available.

3.2 Fish - No Fish (FNF) Model

The Fish - No Fish (FNF) model employed in this research is based on the YOLOv5s
architecture, as provided by Ultralytics [36]. This robust framework performs binary
classification (fish or no fish) on underwater video footage, distinguishing sequences that
contain fish from those that do not. The FNF model serves as a crucial first step for
automated fish counting systems, which are increasingly used to monitor fish populations
in diverse underwater environments.

The YOLOv5s model, known for its speed and efficiency, is well-suited for real-time
applications. The architecture comprises three main components: the backbone, the
neck, and the head. The backbone utilizes a modified CSPDarknet53 to extract essential
features from the input image through convolutional layers and Cross Stage Partial (CSP)
connections, which improve gradient flow and reduce model size. The neck includes
Spatial Pyramid Pooling (SPP) and Path Aggregation Network (PANet) modules that
generate feature pyramids, enhancing the model’s ability to detect objects at multiple
scales. Finally, the head consists of YOLO layers that apply anchor boxes to the features
and predict bounding boxes, objectness scores, and class probabilities for each detected
object, covering different scales to accurately detect small, medium, and large objects.

The FNF model was trained using a dataset of approximately 77,000 manually annotated
frames, ensuring high-quality training data. The model operates with an inference size of
640x640 pixels and a minimum confidence threshold of 0.5, configurable within the FNF
script. This means that the model only detects bounding boxes with a confidence level
above the threshold, ensuring reliable detection results.
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Path from Dataset to Bounding Box Information - once the dataset is prepared and vali-
dated, incorporating meticulously matched video footage with corresponding metadata, the
FNF model comes into play. It processes each video frame, applying binary classification
to determine the presence of fish. Upon detecting fish, the model then employs bounding
box (bbox) regression techniques to outline each individual fish within the frame (Fig[ 17).
These bbox coordinates are instrumental in creating a feature space for further analysis.
They enable precise tracking of fish movements and behaviours, providing rich data that
feeds into machine learning algorithms for swarm behaviour detection.

The progression from raw video to bbox information involves the following steps:

■ Preprocessing of Videos: Videos are preprocessed based on environmental condi-
tions, enhancing image quality for more reliable fish detection.

■ Application of the FNF Model: The FNF model processes the preprocessed frames,
classifying them as containing a fish or not.

■ Bounding Box Extraction: For frames classified with fish presence, the model applies
bbox extraction to delineate each fish, generating spatial coordinates of the detected
fish in the frame.

■ Feature Space Construction: The bbox information, along with other derived at-
tributes such as fish size and movement vectors, is used to construct a feature space.
This feature space is then leveraged for detailed analysis and modeling of fish
swarming behaviour (Section 3.3.2).
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Figure 17. Bbox information retrieval process from each frame of the underwater fish
video passing through FNF model.

3.3 Gradient Boosting Classifier

3.3.1 Model Overview

The choice of the Gradient Boosting Classifier (GBC) for this study was underpinned by a
detailed comparative analysis of its performance against other well-regarded classifiers in
tasks akin to fish swarm detection. The rationale for opting for GBC over other classifiers,
such as Decision Tree, Random Forest, and Extra Trees, revolves around several key factors
that align with the specific demands of the dataset and the objectives of this research.

The decision to utilize GBC was primarily influenced by its superior accuracy noted in
previous studies, where it achieved up to 88.9% accuracy (Table[ 2]). This is notably
high, especially considering that this performance was attained without the application of
data scaling techniques, which are often necessary to enhance the performance of other
classifiers. GBC’s ability to handle raw, untransformed data effectively is particularly
valuable in ecological datasets where preprocessing can sometimes distort critical natural
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variances.

Table 4. A result of Classifiers’ performance across different scalers.

Classifier Decision
Tree

Random
Forest

Extra Tree Gradient
Boost

No scaler 86% 88% 87.1% 88.9%
No scaler simple 85% 84% 82.5% 85.9%
Standart scaler 86.1% 87.7% 87.1% 88.9%
Standard scaler simple 88% 84.8% 85.4% 88%
Robust scaler 86% 88.3% 87.1% 88.9%
Robust scaler simple 88% 85.1% 85.4% 88%

This advanced machine learning algorithm is known for its predictive accuracy, particularly
in complex datasets where relationships between variables are non-linear. GBC operates by
building an ensemble of weak prediction models, typically decision trees, that collectively
form a robust predictive model. In the referenced study, the classifier was tested across
various configurations and preprocessing scales, consistently maintaining high performance.
This ability to handle diverse and relatively small datasets, such as those encountered in
fish swarm detection where the behaviour of swarms versus solitary fish presents unique
challenges, made it a compelling choice for our current research.

Rationale for Classifier Selection In the referenced study, the robustness of GBC was
evident as it consistently outperformed other models across different feature sets and
scaler conditions. Notably, the simple model configurations (using a single depth or
estimator parameter) also yielded high accuracy, which underscores the efficiency of GBC
in leveraging complex heuristical features for classification tasks. These features included:

1. Number of object detections throughout the video at varying confidence thresholds.
2. Maximum number of detections in a single frame, also at varying confidence levels.
3. Number of tracks and the average and maximum confidence per track.
4. Maximum area and density of bounding boxes within the video frames.

Given the similarity in the type of data and the nature of the classification problem in
our current study, these results significantly influenced the decision to employ GBC for
detecting fish swarms. The classifier’s ability to perform well with a relatively small
dataset (only 379 swarm and 379 non-swarm videos) and its resilience against overtraining
are particularly advantageous for our research context, where video data are complex and
labeling is labor-intensive.

The Gradient Boosting Algorithm (GBA) was utilized as the primary method for predic-
tive modeling in this study provided by the python scikit-learn library. This method is
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particularly adept at navigating complex data landscapes where traditional linear models
falter due to non-linear relationships and interactions among variables [37]. The specific
architecture and configuration used in this research include the following components and
hyperparameters:

1. Base Estimators:
■ Decision Trees: The primary building blocks of the GBC are decision trees,

specifically regression trees for classification tasks. Each tree is a weak learner
that focuses on correcting the errors made by the previous trees in the ensemble.

2. Ensemble Method:
■ Additive Model: The GBC builds an additive model in a stage-wise fashion.

This means that the model is built sequentially by adding one tree at a time,
and each new tree corrects the errors of the combined ensemble of all previous
trees.

3. Loss Function:
■ Deviance (Logarithmic Loss): For classification tasks, the default loss function

is deviance, also known as logistic loss or binomial deviance. This loss function
measures the difference between the predicted probability and the actual class
label, providing a measure of model accuracy that the algorithm seeks to
minimize.

4. Boosting Process:
■ Gradient Descent: The GBC uses gradient descent to minimize the loss function.

In each iteration, the algorithm computes the gradient of the loss function with
respect to the predictions and fits a new tree to the negative gradient (residuals).
This tree is then added to the ensemble with a weight determined by the learning
rate.

■ n_estimators: Specifies the number of boosting stages or trees in the ensemble.
Each boosting stage attempts to correct the errors of the previous ensemble.

■ Learning Rate: The learning rate parameter shrinks the contribution of each
tree to the final model, controlling the step size in the gradient descent process.
Lower learning rates lead to more robust models but require more trees to
achieve the same performance.

5. Regularization Techniques:
■ Maximum Depth of Trees (max_depth): Limits the depth of each tree to prevent

overfitting by controlling the model’s complexity.
6. Randomization:

■ Controls the randomness of the estimator. It affects the sampling of the training
data and the shuffling of the data to ensure reproducibility.
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In this study, GBC is used to classify video data into fish swarm and non-swarm activities
based on a feature vector derived from the FNF model’s bounding boxes (Fig[ 18). These
features capture various aspects of video frames, such as detection counts, confidence
levels, bounding box density, and more, reflecting the dynamic and varied nature of
aquatic environments (see Section 3.3.2). The classifier is trained using a balanced dataset
comprising equal numbers of swarm and non-swarm videos to ensure unbiased learning
and generalizability.

Figure 18. Design Architecture for Fish Behaviour Video Classification, final validated
dataset of underwater fish videos in Gold layer are passed through the FNF model and
retrieved bbox information of each fish detected frame, feature vectors are built on top of
the bbox information and provided as an input for Fish Swarm model.

At each stage of the algorithm, the loss function, which measures the difference between
the actual and predicted values, is calculated. The gradient of this loss function with respect
to the predictions is then computed. This gradient information guides how the model’s
predictions should be adjusted to minimize the loss.

A new weak learner is introduced at each iteration to predict the residuals or errors of the
ensemble thus far. These learners are typically shallow decision trees. By focusing on
correcting the mistakes of previous learners, the algorithm iteratively improves the model’s
accuracy.
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The output of each weak learner is scaled by a factor known as the learning rate before it
is added to the ensemble. The learning rate, a value between 0 and 1, controls the speed
at which the algorithm learns, acting as a form of regularization to prevent overfitting by
making the model more robust to noise in the training data.

To ensure robust evaluation and to mitigate any potential biases in the model, 10-fold
cross-validation is employed. This method partitions the data into ten subsets, facilitating
the iterative training and validation of the model across all data subsets. This approach not
only aids in assessing model performance across diverse data samples but also enhances the
reliability and validity of the classifier by providing a comprehensive view of its predictive
capabilities under different conditions.

3.3.2 Feature Space

The designed feature space for the fish swarm detection model is a multifaceted construct,
aiming to capture the intricacies of underwater activity and fish behaviour. Here the
features are listed and explained:

■ Total Detections per Frame - TDF represents the count of bounding boxes detected
in each frame, providing an immediate sense of activity within the video. High
detection counts can indicate dense fish populations or swarming behaviour, espe-
cially in frames where multiple entities are detected simultaneously. This metric is
essential for initial filtering of active versus inactive video segments and for setting
the context for more detailed analysis in subsequent frames.

■ Average Confidence - AC derived from the detection confidence scores of the
bounding boxes, the average confidence metric reflects the model’s certainty in
its detections. Higher confidence scores are generally correlated with clearer and
more distinguishable features within the bounding boxes, which are crucial for
reliable classification in challenging underwater environments. This feature helps
in weighting detections by reliability, prioritizing high-confidence detections in the
classification process.

■ Minimum Detection Size - MDS captures the smallest bounding box area detected
in a video, providing insights into the minimum visible size of detected objects. In
the context of fish detection, smaller sizes might indicate distant or smaller fish,
which are important for assessing the range of fish sizes within a swarm. This metric
is vital for differentiating between environmental debris and small fish, a common
challenge in underwater video analysis.

■ Peak Detection Density - PDD measures the highest number of detections within a
single frame or a sequence of frames. It is indicative of peak activity periods, such
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as when a swarm might be passing through the frame. High peak densities can be a
strong indicator of swarming behaviour, making this feature particularly critical for
distinguishing fish swarms from solitary or sparsely distributed fish.

■ Average Frame Coverage - AFC calculates the mean proportion of the frame area
covered by detections, offering a sense of how much of the video frame is occupied
by detected objects over time. It is useful for understanding the spatial distribution
of fish within the frame, with higher coverage typically associated with denser
aggregations of fish, potentially indicating swarming behaviour.

■ Maximum Frame Coverage - Similar to average frame coverage, MFC provides
a snapshot of the maximum extent to which detections fill the frame. This feature
can be crucial in identifying frames where the activity reaches its peak, possibly
highlighting key moments of interaction or significant movement within the fish
population.

■ Centroid Variance (X and Y) - CV represents the variance in the x and y coordinates
of the centroids of detections, offer insights into the dispersion and movement pat-
terns of the detected objects across frames. High variance might suggest widespread
activity across the video frame, while low variance could indicate stable, centralized
swarming activity. These features help in understanding the dynamics of movement
within detected groups, crucial for distinguishing between random movement and
coordinated swarming.

■ Activity Bursts - AB quantifies the number of frames with detection counts signif-
icantly above the defined threshold value which is set as five (Section 2.1.3), that
may indicate sudden spikes in activity. This feature is developed in this study as a
critical marker of fish swarm behavioural patterns that exhibit reactive or interactive
dynamics within groups.

Each of these features plays a specific role in the model’s ability to effectively classify
underwater footage into fish swarm and non-fish swarm scenarios. By capturing a range
of spatial and temporal characteristics from the video, these features allow the Gradient
Boosting Classifier to make informed predictions based on comprehensive and robust data
inputs, tailored to the unique challenges of underwater video analysis.

3.3.3 Evaluation

To effectively gauge the performance of the Gradient Boosting Classifier (GBC) used for de-
tecting fish swarms in underwater video footage, we employ several key statistical metrics:
accuracy, precision, recall (sensitivity), and the F1 score. These metrics provide insights
into the accuracy and efficiency of the classifier relative to a manually annotated ground
truth. Videos classified as FISH_SWARM or non-swarms (FISH or FISH_BEHAVIOUR)
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were compared to human labels which served as the ground truth. If a video was classified
as FISH_SWARM and the ground truth was also FISH_SWARM, this was considered as
a True Positive (TP). If the classified video and the ground truth were both classified as
NON_SWARM (FISH or FISH_BEHAVIOUR), the automated classification represent a
True Negative (TN). If a video was classified as FISH_SWARM while the ground truth
was non-swarms (FISH or FISH_BEHAVIOUR), this was counted as a False Positive (FP).
Lastly, if the video classified as non-swarms (FISH or FISH_BEHAVIOUR) which should
have been classified as FISH_SWARM, then it was assigned as False Negatives (FN).

These classifications form the foundation for our evaluation metrics, which are calculated
as follows:

Accuracy - this metric evaluates the overall effectiveness of the classifier by measuring the
proportion of total correct predictions (both true positives and true negatives) made out
of all predictions. Accuracy is particularly useful for providing a quick snapshot of the
model’s performance across all classes, both positive and negative. It is calculated with the
formula:

Accuracy =
True Positive + True Negative

Total Observations

Precision - measures the accuracy of the fish swarm detections by the model, indicating
the proportion of correct positive identifications out of all positive identifications made by
the model. It is calculated using the formula:

Precision =
True Positive

True Positive + False Positive

Recall (Sensitivity) - Assesses the model’s ability to identify all relevant instances of fish
swarms from the dataset. This metric is crucial for understanding how effectively the
model can detect swarms without missing any. The recall is computed as:

Recall =
True Positive

True Positive + False Negative

F1 Score - The harmonic mean of precision and recall, the F1 score provides a balanced
measure that considers both the precision and the recall of the classifier. This is particularly
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important in scenarios where an equal weight is needed for both false positives and false
negatives. It is defined as:

F1-Score = 2× Precision × Recall
Precision + Recall

These metrics are derived from a 10-fold cross-validation method, which is employed to
rigorously evaluate the GBC. Cross-validation ensures that every data point gets to be
tested, which is crucial in small or imbalanced datasets like ours. This method also helps
in mitigating overfitting and provides a more generalized performance indicator across
different subsets of data.
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4. Results

4.1 Dataset Preparation

In the 2019 fish swarm dataset from Koblenz, a comprehensive preprocessing initiative
was undertaken on a corpus of 14,523 videos, which included various classifications such
as fish, fish swarm, and fish behaviour. The initial dataset provided below analysis for the
richness of the 2019 dataset:

Overall Fish Counts by Species:

■ Small Cyprinids: 7,591 occurrences
■ Perch: 4,579 occurrences
■ Bleak: 4,180 occurrences
■ Roach: 3,472 occurrences

These species dominate the observations, indicating their prevalence and possibly gregari-
ous nature in the observed environment (see Fig[ 19]).

Figure 19. Overall Fish Counts by Species.

Total fish counts by time of day: the hourly distribution of fish counts shows peaks at (see
Fig[ 19]):
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■ 4 AM: 1,414 counts
■ 11 AM: 1,515 counts
■ 5 PM: 1,889 counts
■ 6 PM: 1,878 counts

Figure 20. Total fish counts by time of day.

Upon applying the Fish Swarm Generator Logic to this raw data, a subset of 306 videos was
initially identified as depicting fish swarm activities. Through rigorous manual validation
processes, this number was refined to 297 videos, affirming the high precision of the
classification logic with a 97% accuracy rate.

In subsequent analyses for 2020, the fish swarm video dataset expanded to include 745
new entries, culminating in a total of 1,042 videos when combined with the validated 2019
entries. This dataset was enriched with comprehensive metadata, enhancing its utility for
further ecological and behavioural studies.

Parallel efforts focused on classifying fish and fish behaviour videos from site-1 and
site-3, initially yielding 1,507 videos. Intensive manual validation, including detailed
video segmentation, meticulously reduced this figure to 1,153 videos. This reduction was
primarily distributed as 174 videos from site-1 and 140 from site-3 for fish type videos,
alongside 220 and 619 videos for fish behaviour from sites 1 and 3, respectively (Table[ 5]).

Table 5. Total Number of Videos before Augmentation.

site-1 site-3 site-4 Total
FISH 174 140 0 314
FISH BEHAVIOUR 220 619 0 839
FISH SWARM 0 0 1042 1042
Total 394 759 1042 2195
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The skewed distribution towards fish and fish swarm/behaviour videos highlighted a
significant imbalance within the dataset. To rectify this disparity and ensure a balanced
representation across categories, augmentation techniques were employed for fish class
videos.

The augmentation involved adjusting the brightness and contrast of the video frames to
simulate varying environmental conditions that could affect visibility underwater. The
script adjusts the brightness of each frame towards a target average level, carefully con-
trolling the scaling to prevent excessive image degradation. For instance, the brightness
adjustment factor is limited between 0.5 and 2 times the original brightness to maintain
natural visual quality. Additionally, a slight contrast enhancement is applied based on the
brightness adjustment, enhancing the visibility and differentiation of features within each
frame (Fig.21).

(a) (b)

(c) (d)

Figure 21. Comparison of Original and Augmented Fish Class Videos from Multiple Sites.
Panels (a, c) show videos augmented with horizontal flips and adjustments to brightness
and contrast (b, d).

These adjustments were applied systematically across videos in the ’Fish’ category to
generate augmented versions. Each video was processed to flip the frames horizontally,
simulating different orientations of fish movement, and adjusting brightness to a stan-
dardized target, fostering a more comprehensive range of visual data. This process was
managed through a Python script utilizing the imageio library for reading and writing video
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frames, ensuring each frame was modified consistently and stored in a new augmented
video file. The final number of videos for each class after augmentation is described in
Table[ 6]).

Table 6. Total Number of Videos after Augmentation.

site-1 site-3 site-4 Total
FISH 348 280 0 628
FISH BEHAVIOUR 220 619 0 839
FISH SWARM 0 0 1042 1042
Total 568 899 1042 2509

4.2 FNF Model

The Fish-No Fish model serves a pivotal role in the preprocessing of video data for this
study. The model’s primary function is to differentiate video frames containing fish from
those without, providing essential bounding box (bbox) information for each detected
fish. This classification is critical for filtering out non-relevant video footage, thereby
focusing resources on frames that potentially contribute to understanding fish behaviour
and swarming patterns.

Throughout the evaluation, the FNF model was applied to a substantial number of videos
across various categories, where it efficiently identified frames with fish presence. This
process not only ensures that the subsequent analysis focuses on relevant data but also
enhances the efficiency of the computational pipeline by reducing the volume of data to be
processed.

Key outcomes from the model’s application are summarized as follows:

1. Total Videos Processed: The model reviewed a comprehensive set of 2509 videos
from different behavioural categories.

2. Effective Detections: The FNF model successfully detected fish presence in 2108
videos, representing a significant portion of the total videos analyzed. These de-
tections were instrumental for the next stages of feature vector creation and further
analysis.

The videos processed through the FNF model that resulted in effective detections were
further categorized into distinct classes based on the labels from the augmented datasets:

1. Fish Swarm Videos: Detected in 662 videos.
2. Fish Videos: Detected in 628 videos, including augmented versions aimed at balanc-
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ing dataset representation.
3. Fish behaviour Videos: Detected in 818 videos.

These detections formed the basis for constructing a detailed feature vector dataset. Each
detected frame provided bounding box coordinates which encapsulate the location and size
of each fish within the frame. These metrics are crucial for the subsequent analytical steps
that involve more refined behavioural analysis, including swarming behaviour.

A comprehensive correlation analysis is conducted to understand the relationships be-
tween the various features used in fish swarm detection model. Given the complexity of
behaviours and environmental variables captured in the dataset, identifying these relation-
ships aids in refining the feature engineering and selection processes.

A balanced dataset is utilized, consisting of three distinct classes: FISH, FISH_BE-
HAVIOUR, and FISH_SWARM. The dataset was balanced using resampling techniques
to ensure equal representation of each class, thus preventing any class imbalance from
skewing our analysis.

4.3 Feature Space

In our comprehensive analysis of the correlations between various features and the class
label in whole dataset encompassing characteristics of fish, fish behaviour, and fish swarms,
several significant relationships were revealed that are pivotal for enhancing our understand-
ing of the data and refining our predictive models (see Fig[ 22]). Notably, total_detections
and activity_bursts demonstrated a remarkably strong correlation (0.86), underscoring a
potential intrinsic link between the frequency of detections and the occurrences of burst
activities in underwater environments. This relationship suggests that regions with frequent
fish detections are also areas of high activity, possibly indicative of swarm behaviours.

Further examination revealed a substantial positive correlation (0.56) between peak_-
detection_density and the class label, highlighting its utility in distinguishing between
different classes effectively, particularly in identifying swarm behaviours versus solitary or
less dense fish activities. This feature, when combined with centroid_variance_x which
also showed a notable correlation with the class label (0.65), could provide robust indicators
for classifying fish behaviours based on movement patterns and spatial distribution within
the observed frame.

The correlation between average_frame_coverage and max_frame_coverage (0.74) was
also significant, indicating that frames with higher average coverage tend to reach their
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Figure 22. Feature Space correlation including Class label.

maximum coverage limits, which could be reflective of environmental or situational
constraints affecting the fish populations. Intriguingly, the negative correlation between
min_detection_size and the class label (-0.26) suggests that smaller detections are less
likely to correlate with specific behaviours categorized under the current class labels.

The correlation analysis of the FISH_SWARM dataset reveals several key insights about
the relationships between different features, which can help understand the behaviours and
characteristics of fish swarms (see Fig[ 23]).

Key Insights from the Correlation Metrics:

1. Strong Positive Correlation Between Total Detections and Activity Bursts (0.841)
- This strong correlation indicates that as the number of total detections increases,
so does the number of activity bursts. This relationship suggests that higher fish
activity, possibly an important factor in understanding swarm dynamics.

2. Moderate Positive Correlation Between Peak Detection Density and Activity Bursts
(0.575) - The correlation between peak detection density and activity bursts suggests
that more densely packed swarms are associated with higher levels of activity bursts.
This might indicate that denser aggregations of fish are more active
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Figure 23. Feature Space correlation for FISH_SWARM Class.

3. Negative Correlations Involving Min Detection Size - Min detection size shows
negative correlations with average confidence (-0.257), indicating that smaller objects
tend to be detected with less confidence. This could suggest difficulties in accurately
detecting smaller fish or smaller groups within a swarm, potentially due to resolution
limitations or the behaviour of smaller fish.

4. High Correlation Between Average and Max Frame Coverage (0.691) - The strong
positive correlation between average frame coverage and max frame coverage sug-
gests consistency in how much of the frame is covered by detections. High frame
coverage could indicate large swarm sizes or high density, which are crucial for
understanding the extent and nature of fish swarms.

5. Negative Correlation Between Centroid Variance and Activity Bursts (-0.184) - The
slight negative correlation between centroid variance and activity bursts could imply
that more consistent positioning (lower variance in centroid positions) correlates
with fewer bursts of activity, potentially indicating more stable or less agitated swarm
states.

Observations indicate that increased detections and peak densities are significantly as-
sociated with more frequent activity bursts, underlining the potential of these metrics
as indicators of swarm activity and density. Particularly, the strong positive correlation
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between total detections and activity bursts suggests a direct relationship between the
observed number of fish and their collective behaviours. Conversely, smaller detected
sizes correspond with lower confidence levels, highlighting a possible area for technical
improvement in detection algorithms.

Moreover, the correlation between average and maximum frame coverage provides insights
into the spatial dynamics of swarms, with implications for understanding how environmen-
tal or interspecific interactions influence swarm formation and behaviour. Interestingly,
the negative correlation between centroid variance and activity bursts could indicate a
behavioural adaptation where swarms maintain a cohesive formation in less active states,
possibly as a defensive mechanism against predators.

The correlation analysis for the FISH_BEHAVIOUR dataset (see Fig[ 24]), particularly
emphasizing the dynamics of non-swarm activities, unveils several interesting patterns and
relationships among the features. Given that the primary research interest does not focus
on non-swarm activities, the insights derived here can still provide valuable context and
serve as a baseline for understanding the more complex behaviours associated with fish
swarms.

Figure 24. Feature Space correlation for FISH_BEHAVIOUR Class.

Key Insights from Correlation Metrics:
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1. Moderate Positive Correlation Between Total Detections and Coverage Metrics -
The correlations between total_detections and both average_frame_coverage (0.314)
and max_frame_coverage (0.356) suggest that as the number of detections increases,
there is a corresponding increase in the area of the frame that is covered. This could
indicate that more active or numerous fish within the field of view contribute to
higher coverage metrics.

2. Significant Positive Correlation Between Coverage Metrics - A very high correlation
between average_frame_coverage and max_frame_coverage (0.944) indicates that
these two metrics are almost redundant. This suggests that frames with higher
average coverage tend to reach their maximum coverage consistently, potentially
reflecting a uniform behaviour pattern across observations.

3. Negative Correlation Between Confidence and Detection Size with Certain Metrics:
■ The negative correlation between average_confidence and centroid_variance_y

(-0.220) might suggest that lower confidence in detections is associated with
greater variance in the y-coordinate of centroids, possibly indicating erratic
behaviour or detection errors in less confident observations.

■ Similarly, the negative correlation between peak_detection_density and av-
erage_confidence (-0.157) could imply that denser groups are detected with
slightly less confidence, possibly due to overlapping fishes or complex group
dynamics.

4. Weak or Insignificant Correlations Involving Centroid Variances - Both centroid_-
variance_x and centroid_variance_y show minimal correlation with most other
features, indicating that the variance in fish positions does not strongly influence
other measured behaviours in non-swarm activities.

5. Non-Existent Correlations for Activity Bursts: - the NaN values for activity_bursts
across all features highlight an absence of burst activities within the dataset, which
aligns with the expectation that such behaviours are more typical of swarm classes
rather than isolated or non-swarm behaviours.

The correlation analysis for the dataset classified under the FISH category (see Fig[ 25]),
which represents non-swarm activities same as FISH_BEHAVIOUR, highlights several key
interdependencies between the measured features. These findings can serve as a contrast
to swarm behaviour, enhancing the understanding of varying behavioural dynamics across
different underwater contexts.

Key Insights from Correlation Metrics:

■ Positive Correlations Involving Detection Metrics and Coverage - Total Detections
and Coverage Metrics: There is a moderate correlation between total_detections
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Figure 25. Feature Space correlation for FISH Class.

and both average_frame_coverage (0.290) and max_frame_coverage (0.325). This
suggests that an increase in detections typically corresponds to a higher coverage of
the observation area, likely indicating that more fish within the field of view increase
the spatial extent of coverage.

■ Average and Max Frame Coverage - The very high correlation between average_-
frame_coverage and max_frame_coverage (0.965) indicates these two metrics are
closely linked, with frames that have high average coverage generally reaching near
their maximum potential coverage.

■ Correlations Involving Min Detection Size - Min Detection Size and Coverage
Metrics: The positive correlations of min_detection_size with average_frame_-
coverage (0.533) and max_frame_coverage (0.461) imply that larger minimum
detection sizes tend to be associated with greater frame coverage. This could reflect
larger fish or more visually distinct fish being easier to detect and covering more
area within the frame.

■ Centroid Variance Correlations - Centroid Variance and Coverage: The positive
correlations between centroid_variance_y with both average_frame_coverage (0.241)
and max_frame_coverage (0.245) suggest that variations in the vertical distribution
of fish within the frame slightly influence the coverage metrics. This might indicate
vertical movements or depth variations among the fish being tracked.
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■ Lack of Activity Bursts - The NaN values for activity_bursts across all features
highlight an absence of this particular type of dynamic behaviour in the dataset
for the FISH class. This absence is in line with expectations as burst activities are
typically associated with swarm dynamics rather than solitary fish behaviours.

4.4 Model Evaluation

The model’s performance was rigorously evaluated using a combination of parameter
tuning via GridSearchCV and cross-validation. a systematic approach was taken to select
the most effective parameters for the GBC. This involved testing a range of values for key
hyperparameters to determine the best combination for maximizing the accuracy of the
model. Here’s a detailed look at the parameters that were tested, the rationale for their
selection, and the final parameters that were chosen as the best.

4.4.1 Hyperparameter Selection

To test the model with different hyperparameters, GridSearchCV is used from scikit-
learn. Grid Search employs an exhaustive search strategy, systematically exploring various
combinations of specified hyperparameters and their default values. This approach involves
tuning parameters, such as learning rate, max depth, number of estimators, through a cross-
validated model, which assesses performance across different parameter settings.

Table 7. A greed of hyperparameters used in cross-validation.

learning_rate 0.05 0.1 0.15
max_depth 3 4 5
n_estimators 50 75 100

After running the GridSearchCV, which performed cross-validation across different combi-
nations of these parameters, the best-performing set of parameters were found to be:

■ Learning Rate: 0.1
■ Max Depth: 4
■ Number of Estimators: 75

4.4.2 Dataset

The evaluation employed a balanced dataset to ensure unbiased performance assessment
across all classes. Each class—FISH, FISH_BEHAVIOUR, and FISH_SWARM—was
represented with 617 instances, totaling 1851 data points. This balanced approach is
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crucial for avoiding model bias towards the more frequently represented classes.

4.4.3 Validation Results

The model’s generalization capability was validated using a 10-fold StratifiedKFold tech-
nique. This method ensures each fold is representative of the overall dataset, maintaining
the same proportion of each class across folds, thus providing a reliable estimate of the
model’s performance on unseen data.

Performance Metrics:

■ Precision: The model achieved average precision of 0.87, with class-specific pre-
cision scores of 0.82 for FISH, 0.83 for FISH_BEHAVIOUR, and 0.98 for FISH_-
SWARM (see Table[ 8]).

■ Recall: The average recall also stood at 0.87, with FISH achieving a recall of 0.87,
FISH_BEHAVIOUR 0.80, and FISH_SWARM 0.94.

■ F1 Score: The overall F1 score was 0.87, reflecting a balanced harmonic mean of
precision and recall, with individual class scores closely mirroring the precision and
recall results.

Table 8. Performance Metrics of Each Class after Cross-Validation.

precision recall f1-score support
FISH 0.80 0.85 0.82 617
FISH BEHAVIOUR 0.81 0.79 0.80 617
FISH SWARM 0.98 0.95 0.97 617

Accuracy 0.86 1851
Macro Avg 0.87 0.86 0.86 1851
Weighted Avg 0.87 0.86 0.86 1851

Confusion Matrix Analysis:

■ 523 true positives for FISH with 94 instances misclassified as FISH_BEHAVIOUR
and 0 as FISH_SWARM (Fig. [ 25]).

■ 490 true positives for FISH_BEHAVIOUR, with misclassifications primarily as
FISH (118 instances) and 9 as FISH_SWARM.

■ 586 true positives for FISH_SWARM, underscoring the model’s effectiveness in
identifying swarm behaviours with only minor confusions with FISH_BEHAVIOUR
(21 instances) and FISH (10 instances).
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Figure 26. Confusion Matrics generated during the cross-validation phase of the designed
Fish Swarm Model.

4.4.4 Training

Following the selection of hyperparameters through GridSearchCV, the model was trained
using the optimal settings derived: an n_estimators value of 75, a learning rate of 0.1, and
a max_depth of 4. The training and test datasets were split 80-20%. This configuration
was aimed at achieving the best compromise between model complexity and performance
while preventing overfitting.

The training process was monitored to evaluate how the model’s performance evolved
across iterations:

■ Loss Reduction: During the training phase, the loss steadily decreased, indicating
the model was effectively learning from the training data. The initial loss started
at 0.9696 and was reduced to 0.1222 by the 75th iteration, reflecting consistent
improvement in the model’s ability to fit the data accurately.

The plotted deviance (Fig. 27) shows that the training and test sets start with a similar
deviance close to 1. As the number of boosting iterations increases, the training deviance
decreases rapidly, indicating that the model is learning and fitting the training data well. In
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contrast, the test deviance decreases more slowly and eventually stabilizes. This widening
gap between the training and test set deviance over iterations indicates that while the model
continues to improve its performance on the training data, its performance on the unseen
test data does not improve correspondingly after a certain point. Beyond approximately
50–70 iterations, the test deviance begins to stabilize, suggesting the model has reached its
optimal capacity for learning from the data, and that further iterations are not providing
significant gains. Therefore, training was stopped after 75 iterations to balance the model’s
performance and prevent overfitting.

Figure 27. Training and Test Set Deviance Over Iterations for Gradient Boosting Model.

In Fig. 28, the key outcomes from the plots demonstrate the performance and behavior of
the GBC over 75 boosting iterations. The recall plot shows a rapid increase in the early
iterations, stabilizing around 0.525 after approximately 10-15 iterations, indicating that
the model quickly learns to identify true positives effectively. Similarly, the accuracy plot
exhibits a significant improvement in the initial iterations, plateauing around the same
point, which reflects the model’s ability to correctly classify both positive and negative
instances. The precision plot, which measures the accuracy of positive predictions, initially
rises sharply and then slightly decreases before stabilizing around 0.4, highlighting a brief
period of increased false positives as the model aggressively improves recall. The F1-score,
a harmonic mean of precision and recall, follows a pattern similar to recall and accuracy,
with a rapid increase and subsequent stabilization around 0.425, demonstrating a balanced
performance between precision and recall. The consistent stabilization of these metrics
after 10-15 iterations suggests that the model reaches an optimal performance level early
in the boosting process, with subsequent iterations providing minimal additional benefit.
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Figure 28. Performance Metrics Over Boosting Iterations.

Accuracy and Other Metrics:

■ The model achieved an accuracy of 84.05% on the test data, which is a robust
indicator of its general performance across all classes (Table[ 9]).

■ Precision was measured at 84.14%, recall at 83.84%, and the F1 Score at 83.96%.
These metrics attest to the model’s balanced capacity for precision and recall, ensur-
ing that it neither excessively misclassifies nor fails to detect relevant instances.

■ The detailed breakdown by class showed that the model performed exceptionally
well for the FISH_SWARM class, with a precision of 97% and a recall of 93%,
highlighting its effectiveness in identifying more distinct swarm patterns.

Table 9. Performance Metrics of Each Class on Test-Dataset after Training.

precision recall f1-score support
FISH 0.81 0.82 0.82 137
FISH BEHAVIOUR 0.74 0.76 0.75 110
FISH SWARM 0.97 0.93 0.95 123

Accuracy 0.84 370
Macro Avg 0.84 0.84 0.84 370
Weighted Avg 0.84 0.84 0.84 370
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5. Conclusion and future work

The study aimed at classifying underwater fish videos, focusing particularly on determining
the presence of fish swarms. The primary objective of this study was to develop and validate
an automated classification system capable of accurately identifying fish swarm behaviors
from underwater video footage. This was successfully achieved through the implementation
of a robust Fish Swarm model, underpinned by the Fish No-Fish (FNF) framework. The
model demonstrated a significant capability in preprocessing video data, isolating frames
containing fish and enabling efficient binary classification. The FNF model processed a
substantial volume of video data, detecting fish in 2,108 out of 2,509 videos. This efficiency
streamlined the data processing pipeline, focusing on pertinent video content and discarding
irrelevant footage. This facilitated the development of a rich feature vector dataset, each
vector encapsulating bounding box information essential for nuanced behavioral analysis,
especially of swarming behaviors. The correlation analysis across the dataset revealed
noticeable insights highlighting a strong correlation (0.86) between total detections and
activity bursts, suggesting a link between frequent fish detections and heightened swarm
activity, a notable positive correlation (0.56) between peak detection density and the
class label, reinforcing the utility of this metric in differentiating swarm from non-swarm
activities, and various other correlations such as between average and maximum frame
coverage (0.74) indicate environmental or situational impacts on fish populations, while
a negative correlation (-0.26) between minimum detection size and class label points to
the challenges in correlating smaller detections with specific behaviors. Further insights
from the FISH_SWARM dataset include the correlation (0.841) between total detections
and activity bursts, emphasizing the relationship between higher fish activity and swarm
dynamics, negative correlations involving minimum detection size, suggesting difficulties
in accurately detecting smaller or less cohesive groups within swarms.

For the secondary objectives, advanced machine learning techniques, specifically Gradient
Boosting Classifiers (GBC), were utilized to distinguish between swarm and non-swarm
activities in underwater environments. The model’s efficacy was demonstrated through
feature extraction methodologies, leveraging spatial features derived from video frame
analysis to ensure detailed and accurate input data for model training. The feature vectors
encapsulated bounding box information essential for nuanced behavioral analysis, partic-
ularly swarming behaviors. To enhance the model’s predictive capabilities, systematic
hyperparameter tuning using GridSearchCV was employed. This process focused on
optimizing parameters such as the number of estimators, learning rate, and tree depth. The
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final model configuration, with a learning rate of 0.1, a max depth of 4, and 75 estimators,
provided the best classification results.

The model underwent evaluation through methods such as k-fold cross-validation and train-
test splits to optimize and verify performance across various metrics, including accuracy,
precision, recall, and F1 scores. Before the validation phase, each class—FISH, FISH_-
BEHAVIOUR, and FISH_SWARM—was represented with 617 instances, contributing to a
total of 1851 data points, ensuring an unbiased assessment across all classes. This balanced
approach is crucial for avoiding model bias towards more frequently represented classes.
During the validation phase, the classifier exhibited robust performance, particularly in
detecting fish swarm behaviors, achieving an overall F1-score of 87%. Notably, the F1-
score for FISH_SWARM behaviors reached 97%, while for FISH and FISH_BEHAVIOUR
classes, it was slightly lower at 82% and 80% respectively. These results underscore
the model’s proficiency in swarm detection but also highlight areas for improvement in
classifying individual fish and fish behaviors.

These results underscore the need for further refinement of the model to improve its sensi-
tivity and specificity across different classes of NON-SWARMS. The planned enhancement
of the methodology for classifying non-swarm fish videos (fish and fish behavior classes)
is designed to refine the detection and analysis of individual fish movements and behav-
iors. This new approach involves segmenting each video frame into three distinct parts:
left, middle, and right. By structuring the analysis in this way, the model aims to more
accurately capture and interpret the movements and positions of fish within their observed
environment.

Suggestions for Future Work:

■ Frame Segmentation: Each frame of the video will be divided into three sections.
This segmentation allows for a focused analysis on different parts of the frame,
potentially capturing variations in fish behavior that are specific to their position in
the frame.

■ Iterative Testing for Optimal Thresholds: To determine the most effective boundaries
for each section, multiple iterations of testing with the dataset will be conducted. This
process involves adjusting the boundaries and evaluating the model’s performance
to find the settings that yield the highest accuracy in behavior classification.

■ Behavior Tracking Through Frame Analysis: By analyzing the behavior of fish from
the first detected frame to the last, including key frames such as the first and last
where fish are detected and multiple frames in the middle of the video, the model can
more comprehensively understand the behavioral patterns. This approach leverages
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temporal information that could indicate specific behaviors like entering or exiting
the frame, sustained presence in a particular section, or quick transitory movements.

■ Enhanced Feature Extraction: Utilizing the segmented frame approach, additional
features related to the position, movement, and possibly even the orientation of the
fish can be extracted. These features will be critical in differentiating between mere
presence and significant behavioral actions such as aggressive interactions, feeding,
or escaping.

The next phase of the project will be focusing on the spatial dynamics within segmented
frames, implementing this enhanced methodology, conducting extensive tests to validate
its effectiveness, and refining the algorithms based on the outcomes of these tests, and
achieving higher precision in distinguishing between FISH and FISH_BEHAVIOUR
classes. Continuous improvement through iterative testing and feedback will be crucial
to developing a robust model that accurately reflects the complexities of fish behavior in
various video contexts.

It might be interesting to see the recent developments in computer vision such as Attention
Mechanisms [38] and Vision Transformers [39]. By incorporating ViTs into the classifica-
tion pipeline for fish and fish behavior could offer a promising avenue to enhance model
performance. Vision Transformers excel in managing spatial and temporal complexities
within video data due to their robust attention mechanisms. This feature could refine
the detection of subtle fish behaviors across segmented video frames, improving both
accuracy and robustness against environmental conditions such as lighting changes and
water turbidity. Additionally, extending ViTs to handle sequential video data, such as
with adaptations like Video Vision Transformers [40] or TimeSformers [41], could capture
dynamic behavioral changes over time more effectively. However, the implementation of
ViTs will require assembling extensive datasets and may involve substantial computational
resources. Future initiatives might focus on these aspects, leveraging advanced hardware
or cloud computing solutions to facilitate efficient training and integration into existing
systems. This approach will not only advance the technical monitoring capabilities of
underwater environments but also deepen our understanding of fish behavior for better
conservation and management practices.
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