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Abstract

Detection of cognitive decline, including conditions such as mild cognitive impairment
and Alzheimer’s dementia, is crucial for enabling timely intervention and supporting
long-term care planning. Spontaneous speech is a promising medium for scalable, non-
invasive cognitive screening, as impairments in language often emerge in the early stages
of cognitive deterioration.

This thesis investigates the use of machine learning to detect cognitive decline from sponta-
neous speech, with an emphasis on both predictive performance and model interpretability.
Models are trained on acoustic, text-based, and demographic features, combining inter-
pretable features with representations derived from deep learning models. External corpora
are explored alongside the primary dataset, with their use limited to cases where alignment
in distribution and task relevance could be established.

The results demonstrate that deep learning-based acoustic features show a stronger potential
for diagnostic classification tasks, effectively distinguishing between healthy individu-
als, those with mild impairment, and those with dementia. In contrast, interpretable
features—such as fluency metrics, pause patterns, and demographic indicators—proved
more effective for predicting cognitive assessment scores. A novel Joint Interpretability
Index, combined with Pareto front analysis, reveals a clear trade-off: for classification, the
most accurate models tend to be less interpretable, whereas in regression tasks, the most
interpretable model–feature set combinations also achieve the best performance.

The thesis is written in English and is 77 pages long, including 5 chapters, 41 figures, and
23 tables.
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Annotatsioon
Kognitiivse languse tuvastamine spontaansest kõnest: mudelite

jõudluse ja tõlgendatavuse võrdlus

Kognitiivse languse, sealhulgas kerge kognitiivse häire ja Alzheimeri dementsuse, tuvas-
tamine on oluline, et võimaldada õigeaegset sekkumist ja toetada pikaajalise hoolduse
planeerimist. Spontaanne kõne on paljulubav vahend skaleeritavaks ja mitteinvasiivseks
kognitiivseks sõeltestimiseks, kuna keelelised häired ilmnevad sageli kognitiivse halvene-
mise varajases staadiumis.

Käesolev magistritöö uurib masinõppe kasutamist kognitiivse languse tuvastamiseks spon-
taanse kõne põhjal, pöörates rõhku nii ennustustäpsusele kui ka mudelite tõlgendatavusele.
Mudelid treenitakse akustiliste, tekstipõhiste ja demograafiliste tunnuste alusel, ühendades
tõlgendatavad tunnused süvaõppe mudelitest saadud representatsioonidega. Lisaks põhi-
andmestikule uuritakse ka väliseid andmekogumeid, mille kasutamine piirdub juhtudega,
kus on võimalik kindlaks teha jaotuslik vastavus ja ülesande asjakohasus.

Tulemused näitavad, et süvaõppel põhinevatel akustilistel tunnustel on suurem potentsiaal
diagnostilistes klassifitseerimisülesannetes, eristades tõhusalt terveid isikuid, kerge kog-
nitiivse häirega isikuid ja dementsusega patsiente. Seevastu tõlgendatavad tunnused —
nagu soravusmõõdikud, pausimustrid ja demograafilised näitajad — osutusid tõhusamaks
kognitiivsete testide tulemuste ennustamisel. Uus liittõlgendatavuse indeks koos Pareto-
optimaalsuse analüüsiga toob esile selge kompromissi: klassifitseerimise puhul on kõige
täpsemad mudelid tavaliselt vähem tõlgendatavad, samas kui regressiooniülesannetes
saavutavad parima tulemuse need mudeli ja tunnuste kombinatsioonid, mis on ka kõige
paremini tõlgendatavad.

Magistritöö on kirjutatud inglise keeles ja sisaldab teksti 77 leheküljel, 5 peatükki, 41
joonist ja 23 tabelit.
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1. Introduction

Detection of cognitive decline, including mild cognitive impairment (MCI) and Alzheimer’s
dementia (AD), is critical for timely interventions that may slow disease progression and
enhance quality of life. Conventional diagnostic methods, such as the Montreal Cognitive
Assessment (MoCA) [1] and Mini-Mental State Examination (MMSE) [2], though reliable,
are resource-intensive, limiting their scalability for large-scale or continuous monitoring.
This highlights the need for automated, non-invasive tools for cognitive assessment.

Spontaneous speech analysis offers a promising approach to cognitive screening, as lan-
guage deficits are among the earliest signs of cognitive decline. Characteristics like
reduced fluency, lexical retrieval difficulties, and disorganized speech patterns are fre-
quently observed in individuals with cognitive impairments. Machine learning (ML)
models, leveraging both interpretable linguistic and acoustic features as well as latent
representations learned from raw speech, can help detect these subtle changes.

While deep learning methods have demonstrated promising results in detecting cognitive
decline, their lack of interpretability poses challenges for clinical use, where transparency
in decision-making is key. Clinicians require models that not only perform well but are also
interpretable to ensure reliable diagnoses. This research focuses primarily on ML models
trained on combinations of interpretable features and learned features from pretrained deep
learning models, investigating which features are most indicative of cognitive decline and
how their integration impacts the trade-off between accuracy and interpretability.

1.1 Motivation

Alzheimer’s dementia, along with other forms of dementia, is among the leading causes of
death worldwide, accounting for approximately two million deaths annually (Figure 1).
As the global population ages [3], there is a pressing need for scalable diagnostic tools
that are both non-invasive and capable of timely and accurate detection of cognitive
decline. Current neuropsychological assessments require clinical supervision, making
them impractical for continuous or large-scale screening. Spontaneous speech, which
captures natural, unscripted language use, offers a scalable alternative. By leveraging
machine learning techniques, speech data can be analyzed to detect early signs of cognitive
impairment.
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Figure 1. Annual number of deaths by cause. Source: OurWorldInData.org.

Previous studies [4], such as the Alzheimer’s Dementia Recognition through Spontaneous
Speech (ADReSS) challenge [5], have shown that speech analysis can be used to detect
cognitive decline. However, the trade-off between model performance and interpretability
remains unresolved. Advanced deep learning models often achieve higher accuracy but
function as “black boxes,” limiting their clinical utility. This research addresses this
challenge by primarily focusing on traditional machine learning models, which are trained
on a combination of interpretable features and deep learning-derived embeddings. The
study explores how these features can be used in conjunction with traditional models to
detect cognitive decline, with a focus on balancing predictive accuracy and interpretability
to ensure clinical relevance.

1.2 Background

Cognitive decline, encompassing conditions such as mild cognitive impairment and de-
mentia, poses significant challenges for healthcare systems globally. Detection is crucial
for enabling timely interventions that can delay the progression of these conditions and
improve the quality of life for affected individuals. However, conventional diagnostic
methods, such as MoCA and MMSE, are time-intensive and require specialized clinical
expertise, making them unsuitable for large-scale or continuous screening. This limitation
has driven the search for scalable, non-invasive tools that can complement traditional
diagnostic approaches.
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One promising avenue is the analysis of spontaneous speech, which reflects natural,
unscripted language use. Speech is a complex behavior influenced by cognitive and neural
processes, and changes in speech patterns often emerge in the early stages of cognitive
decline. Common markers include reduced fluency, lexical retrieval difficulties, and
incoherent speech organization. These markers align with the semantic, syntactic, acoustic,
and informational impairments observed in conditions like Alzheimer’s dementia and other
dementias. By leveraging speech data, researchers can develop tools capable of detecting
cognitive impairment more efficiently than conventional methods.

ML techniques have been increasingly applied to this domain, offering automated ap-
proaches to extract meaningful insights from speech data. Traditional ML models often
utilize pre-defined linguistic and acoustic features, such as lexical diversity, pause fre-
quency, and speaking rate. These features are interpretable and can be mapped directly
to clinically observable speech patterns, making them useful for understanding a model’s
predictions. However, traditional ML models can also incorporate features derived from
more advanced processing pipelines, including those output by deep learning models. In
such cases, while the model itself may remain interpretable, the features it depends on may
not be easily understood, thus introducing a layer of complexity in feature interpretability.

More complex neural models can bypass manual feature engineering by learning feature
representations directly from raw data. This capability allows these models to capture the
richness and subtlety of spontaneous speech, achieving higher accuracy in complex classi-
fication tasks. However, their complexity poses significant challenges for interpretability,
as the learned features and the model’s decision-making processes often lack transparency.
This distinction highlights the dual challenge of interpretability: understanding both the
features used by a model and the internal workings of the model itself.

Recent efforts, such as the Alzheimer’s Dementia Recognition through Spontaneous Speech
(ADReSS) challenge [5] and its successors, have established benchmarks for evaluating
speech-based cognitive assessment methods. These initiatives have advanced modeling
approaches and led to the development of more robust datasets with reduced biases and
confounding factors, highlighting the increasing potential of speech analysis to complement
traditional diagnostic methods. By automating the prediction of cognitive assessment
scores, there is significant potential to enhance the accuracy, reliability, and scalability
of cognitive decline detection. This study builds on these advancements by evaluating
different model–feature set combinations, with a focus on their clinical applicability and
potential to improve speech-based diagnostic tools.
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1.3 Related Work

Recent advances in speech processing have emphasized the potential of spontaneous
speech as a non-invasive diagnostic tool for Alzheimer’s dementia detection. Research in
this area focuses on data collection, feature extraction, and classification methods, with
growing interest in leveraging linguistic and acoustic markers of cognitive decline. Several
comprehensive reviews offer an overview of this area, identifying key challenges, trends,
and gaps. Voleti et al. [6] create a taxonomy for speech and language features indicative
of cognitive and thought disorders including a variety of neurological impairments and
psychiatric conditions. The work of de la Fuente Garcia et al. [4] targets cognitive decline
specifically in the context of Alzheimer’s disease, while Qi et al. [7] provide a more
up-to-date analysis of the state-of the-art in AD detection.

Speech-based cognitive impairment research typically uses two main feature types: text-
based and acoustic. Text-based features, such as type-token ratio and idea density, measure
lexical and syntactical complexity, while indices like the Yngve and Frazier scores assess
working memory. Acoustic features focus on prosodic elements like pause patterns and
spectral features such as Mel-Frequency Cepstral Coefficients (MFCCs). In AD, these
features reveal changes in speech due to cognitive and physiological impacts, such as
imprecise articulation, altered vocal quality, and slower speech with more pauses. For
Alzheimer’s dementia detection, relevant acoustic features span frame-level descriptors
(e.g., MFCCs, F0), deep learned embeddings (e.g., VGGish, Wav2vec 2.0), and higher-
level prosodic measures. AD causes reduced fluency, word retrieval issues, and changes
in sentence structure, which affect speech rhythm and acoustic energy distribution. Other
indicators include dysfluency, linguistic features like vocabulary richness, and emotional
and meta-features like age and gender. Combining handcrafted features with deep learning
models is becoming more common for accurate AD detection.

As noted in [4] the vast majority of studies in AD detection utilize binary classification
models to differentiate speech from Alzheimer’s patients and healthy controls using
acoustic and linguistic features. Only a limited number explore distinctions between MCI
and HC/AD [8] or tackle three-way classifications (e.g., HC, MCI, AD). Most early studies
utilise the Pitt Corpus collected by the University of Pittsburgh and distributed through
DementiaBank [9]. Recently it has been shown that models trained on silent portions of
this dataset can achieve almost perfect classification due to the presence of the Clever Hans
effect [10], indicating the untrustworthiness of the results in these early works. Denoised
and normalized versions of this corpus used in AD detection challenges (Interspeech 2020
and 2021) [5, 11] showed a 20 percent reduction in detection accuracy.
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Several studies have explored the effectiveness of traditional machine learning models for
this binary classification task. Wang et al. [12] found that the Support Vector Machine
(SVM) classifier, when combined with BERT and Roberta features, achieved the best
performance across five models, including LDA, Gaussian Process, Multilayer Perceptron
(MLP), and Extreme Gradient Boost (XGB). Shah et al. [13] demonstrated that an ensemble
of acoustic-based and language-based models outperformed individual models, with SVM,
Logistic Regression (LR), and majority vote classifiers achieving strong results. Weiner
et al. [14] used LDA for classification and achieved a high accuracy of 85.7 percent.
Hernández-Domínguez et al. [15] found that SVM and Random Forest (RF) classifiers
were effective for distinguishing between HC and MCI, offering valuable insights into
early MCI diagnosis. Additionally, Edwards et al. [16] explored multiscale features at the
word and phoneme levels, achieving a maximum classification accuracy of 79.2 percent
using five models, including LDA, KNN, DT, RF, and SVM.

Deep learning models have shown significant promise in the classification of cognitive
impairments such as AD. Warnita et al. [17] utilized a gated Convolutional Neural Network
(CNN) to detect AD from speech data, achieving an accuracy of 73.6 percent. Other studies,
like Koo et al. [18], explored improved convolutional Recurrent Neural Networks (RNNs),
while Pan et al. [19] employed a bidirectional hierarchical RNN with an attention layer
for AD detection. Ablimit et al. [20] combined CNN, bidirectional GRUs, self-attention,
and Fully Connected Neural Networks for model fusion. Yang et al. [21] also applied
a convolutional layer followed by LSTM layers for AD detection. Transformer-based
models like BERT have also been effectively fine-tuned for AD detection, as seen in
the work by Balagopalan et al. [22], where BERT was applied to speech samples. In
addition, hybrid models combining deep learning techniques, such as CNN and RNN,
along with speech features like MFCC, F0 envelope, jitter, and shimmer, have been used for
dementia detection, with GCNN models reaching accuracies up to 73.6 percent [23]. The
scarcity of publicly available data currently prevents large models from showing significant
improvements over feature extraction and classification pipelines.

Only a limited number of studies address multi-class classification for distinguishing
between HC, MCI, and AD. Mirzaei et al. [24] achieved 62 percent accuracy using a
balanced French dataset of 48 participants, analyzing temporal and acoustic voice features
(e.g., jitter, harmonics-to-noise ratio) from read speech with KNN, SVM, and Decision
Tree (DT) classifiers. Similarly, Egas López et al. [25] achieved 56 percent accuracy
with i-vectors extracted from MFCCs using an SVM classifier on a balanced Hungarian
dataset of 75 participants. Gosztolya et al. [26] reported 66.7 percent accuracy using
late fusion of acoustic and linguistic features from spontaneous speech, again with an
SVM classifier, on a balanced dataset. In contrast, Kato et al. [27] achieved a higher
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accuracy of 85.4 percent using an imbalanced Japanese dataset of 48 participants. Their
study incorporated speech-prosody and cerebral blood flow activation during cognitive
tests with a Bayesian approach. While these studies employ cross-validation techniques,
they lack performance evaluation on a held-out test set, and none provide details on dataset
accessibility. Furthermore, the datasets used in these studies are notably small, limiting
the generalizability of the findings and emphasizing the need for larger, publicly available
datasets for robust multi-class classification.

Studies on MMSE score prediction are relatively rare. One such study [11], using data
from HC and AD individuals, employed an SVM regressor with eGeMAPS [28] acoustic
features (e.g., F0 semitone, loudness, MFCCs, jitter, shimmer), second-order features
from the active data representation method, and linguistic features from CHAT-compatible
transcripts, achieving an RMSE of 5.29. Using a multilingual dataset that included MCI
and HC subjects, [8] achieved an RMSE of 2.89 with a Multilayer Perceptron (MLP) model,
leveraging linguistic features such as number of tokens, number of types, type-to-token
ratio, density, verb ratio, and pronoun ratio extracted from ASR transcriptions.

Martin et al. [29] conducted a review on the state-of-the-art in interpretable machine
learning for dementia diagnosis. Their work considers mainly imaging-based machine
learning methods, with model interpretability as a specific inclusion criterion. They dis-
cussed the challenges in building robust, generalizable models and the growing importance
of explainability in clinical applications. They highlight the promising classification per-
formance of current models but also note the variability in validation procedures and the
reliance on popular datasets and emphasize the need for clinician involvement in validating
explanation methods and the critical analysis of interpretability techniques to ensure their
applicability in clinical practice. While imaging-based approaches are noninvasive, they
require specialized equipment and are more resource-intensive, making data collection
more challenging than for speech-based methods.

Tan et al. [30] developed a machine learning model for early cognitive impairment
diagnosis in a multi-ethnic Asian population, integrating socio-demographics, vascular risk
factors, and neuroimaging markers. They applied SHapley Additive exPlanation (SHAP)
[31] to identify key predictors, including age, ethnicity, education level, and neuroimaging
markers, demonstrating the value of SHAP for model interpretability and reliable dementia
diagnosis.

Iqbal et al. [32] applied Explainable AI techniques to speech-based Alzheimer’s dementia
screening, using linguistic features from speech transcripts of the Cookie Theft Picture Task.
By employing Local Interpretable Model-agnostic Explanations (LIME) and SHAP, the
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study identified key features influencing the model’s decision-making. The model achieved
80 percent accuracy while providing transparent, interpretable results, which are important
for clinical decision-making in AD diagnosis. However, the study’s reliance solely on
linguistic features limits its performance, and integrating acoustic and demographic data
could improve both accuracy and clinical applicability.

Most research in AD detection has primarily focused on classification, particularly distin-
guishing between late-stage AD and healthy controls, with relatively little attention given
to the detection of MCI and the prediction of the MMSE score, which are crucial for initial
screening and early intervention. Although multi-modal approaches that combine acoustic,
text-based, and demographic features show promise, relatively few studies explore these
methods. The field also faces challenges in determining the true state of the art due to
biased datasets, inconsistencies in data preparation and reporting, limited data availability,
and variability in validation techniques, with cross-validation commonly used but held-out
test sets less frequently applied. Additionally, while there has been significant work on the
interpretability of imaging-based models and some exploration of linguistic features, there
is a notable lack of studies on the interpretability of speech-based models for cognitive
decline detection, which is important for their acceptance and effective use in clinical
practice.

1.4 Research Objectives

The primary goal of this research is to evaluate and compare the performance and inter-
pretability of different machine learning models for detecting cognitive decline through
spontaneous speech. The study focuses on traditional machine learning models, which
are primarily used to classify cognitive status and predict cognitive assessment scores.
These models leverage both interpretable linguistic and acoustic features as well as deep
learning-derived features, such as embeddings from fine-tuned deep learning models and
features extracted from transcripts using large language models for classification and
regression tasks.

Key research questions include:

1. How do machine learning models, using different combinations of both interpretable
features and learned features from pretrained deep learning models, compare in classifying
individuals as healthy, MCI, or dementia and predicting cognitive assessment scores?

2. Which acoustic, text-based, and demographic features—either automatically extracted
or produced through deep learning—are most indicative of cognitive decline, and how do
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they contribute to model decisions for both classification and regression tasks?

3. What is the trade-off between model performance and interpretability for the diagnosis
and cognitive assessment score prediction tasks?

1.5 Structure of the Thesis

This thesis is structured as follows:

Chapter 1: Introduction. This chapter introduces the research topic, discussing the im-
portance of cognitive decline detection and the potential of using spontaneous speech as
a diagnostic tool. It presents the motivation for the study, highlights gaps in the existing
literature, and defines the research objectives. Additionally, a brief overview of the related
work is provided, outlining the current state of research in cognitive decline detection using
speech. The chapter concludes with an outline of the structure of the thesis.

Chapter 2: Methodology. In this chapter, the methodology used to address the research
objectives is outlined in detail. The data sources and preprocessing steps are described,
along with the feature engineering process and the machine learning models used for
detecting cognitive decline. The tasks and evaluation metrics employed to assess model
performance are also discussed. Finally, the method for quantifying the interpretability of
models, features, and their combinations is introduced.

Chapter 3: Results. This chapter presents the experimental results, beginning with an
exploratory data analysis and followed by an evaluation of the models’ performance on the
cognitive decline detection tasks. A thorough analysis of the top performing features is
provided, along with insights from the interpretability techniques applied.

Chapter 4: Discussion. This chapter summarizes the key findings of the research, outlines
the limitations identified in the study, and discusses potential areas for future research.

Chapter 5: Summary. This chapter offers a concise summary of the thesis, revisiting the
research objectives, methodology, and key findings, along with the main contributions of
the work.

References. A comprehensive list of all sources cited throughout the thesis.

Appendices. The appendices include supplementary materials that support the findings of
the study.
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2. Methodology

This chapter outlines the methodology used to address the research objectives in detail.
The data sources and preprocessing steps are described, along with the feature engineering
process and the machine learning models used for detecting cognitive decline. The tasks
and evaluation metrics employed to assess model performance are also discussed, followed
by an explanation of the interpretability techniques used to quantify the interpretability of
models, features, and their combinations.

The study employs a multi-step approach for detecting cognitive decline through sponta-
neous speech using machine learning models. The methodology involves a exploratory
data analysis (EDA), feature engineering, a classification task, a regression task, and a
focus on model interpretability, using a dataset from the Prediction and Recognition of
Cognitive declinE through Spontaneous Speech (PROCESS) Signal Processing Grand
Challenge, part of ICASSP 2025 [33].

Computations for this thesis were carried out using the high-performance computing
infrastructure provided by TalTech [34]. The analysis and modeling were implemented
primarily in Python, using libraries such as Scikit-learn [35], Pandas [36], NumPy [37],
SHAP [38], XGBoost [39], and Plotly [40].

2.1 Data Sources and Preprocessing

The main dataset contains spontaneous speech recordings from individuals categorized
as healthy, having mild cognitive impairment, or dementia. In addition to the main
dataset, data from previous speech-based cognitive decline challenges (e.g., ADReSS [5],
ADReSS-o [11], ADReSS-M [41], and TAUKADIAL [8]) is incorporated for augmentation.
Compatibility between these external datasets and the PROCESS dataset is evaluated
through statistical analyses, ensuring they augment the training data without introducing
bias or inconsistency.

2.1.1 Main Dataset: PROCESS

The primary dataset used in this study is the PROCESS Signal Processing Grand Challenge
dataset, which consists of speech recordings from individuals categorized as HC, MCI, or
AD. The dataset includes recordings from three structured speech tasks:
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■ Semantic fluency task (SFT): Participants name as many animals as possible within
one minute.

■ Phonemic fluency task (PFT): Participants list words beginning with the letter P in
one minute, excluding proper nouns.

■ Cookie Theft picture description task (CTD): Participants describe a standardized
picture (see Figure 2) from the Boston Diagnostic Aphasia Examination [42].

.

Figure 2. Cookie Theft picture from the Boston Diagnostic Aphasia Examination.

The dataset includes 157 participants, distributed as 82 HC, 59 MCI, and 16 AD, and
contains manually transcribed speech samples. The dataset supports two tasks: classifi-
cation of cognitive status (HC, MCI, AD) and regression predicting Mini-Mental State
Examination (MMSE) scores. Performance evaluation is based on the macro-F1 score for
classification and root mean squared error (RMSE) for regression.

2.1.2 External Datasets for Augmentation

To enhance model robustness and generalizability, additional datasets from previous speech-
based cognitive decline challenges are incorporated. These datasets have been selected
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with the assumption of compatibility with PROCESS, and statistical analyses are conducted
to assess whether they introduce any bias or inconsistency.

ADReSS Dataset

The Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS) dataset
contains 156 recordings (78 AD, 78 non-AD) of participants describing the Cookie Theft
picture. The dataset is gender- and age-balanced to minimize bias. The dataset includes
manual transcripts annotated using the CHAT coding system and has undergone prepro-
cessing steps such as noise removal and volume normalization.

ADReSS-o Dataset

The ADReSS-o dataset expands on ADReSS by including two distinct datasets:

1. Speech recordings from an AD cohort performing a semantic fluency task, used for
predicting cognitive decline over two years.

2. Cookie Theft picture descriptions from both cognitively normal individuals and AD
patients.

The dataset comprises 237 recordings split into training and test sets with a 70/30 ratio.
Gender and age balancing was ensured through a propensity score matching approach.

ADReSS-M Dataset

The ADReSS-M dataset includes spontaneous speech descriptions of the Cookie Theft
picture in English for training and a different picture in Greek for testing. The dataset is
designed to study cross-linguistic cognitive assessment. The English training dataset is
balanced for age and gender using propensity score matching. The Greek test set includes a
task evaluating verbal fluency and mood using a standardized picture description protocol.

TAUKADIAL Dataset

The TAUKADIAL dataset contains English and Chinese speech samples from participants
describing various pictures. The English dataset includes descriptions of the Cookie Theft,
Cat Rescue, and Coming and Going images, while the Chinese dataset features three
culturally relevant pictures. Participants were classified as MCI or normal cognition, and
the dataset includes 507 total recordings (261 Chinese, 246 English), with an approximate
3:1 training-to-test ratio. Standardized propensity score matching was applied to ensure
balanced age and gender distributions.
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2.2 Feature Extraction

Three main types of features are extracted for the purposes of the classification and
regression tasks: acoustic, text-based, and demographic features. Each of these have some
variants that are interpretable and others which are derived from deep-learning models. An
overview of the feature extraction pipeline is provided in Figure 3. Loudness normalization
was performed on all audio files before any transcription, feature extraction, or downstream
processing.

PFT, SFT, CTD

Whisper large-v1
+ initial prompt Text-Based Features

Wav2Vec2-BERT

Acoustic Features

Geneva Minimalistic Acoustic Parameter Set (ege)

Wav2Vec2
(Audeering)

Emotional attributes: (arousal, dominance, valence) (mean emo)

AD Embeddings (xvec)

Demographic Features

Mean predicted age (mean age)
Mean predicted gender (mean gender)
real age

gpt-4o-mini
+ CoT

Transcript lengths (lengths)
Phonemic fluency features (pft)
Semantic fluency features (sft)
Pause features (ctdp)
Macro Descriptors: (coherence, lexical diversity, sentence length, 
word-finding difficulties, diagnosis prediction, confidence) (ctd)

(PROCESS)

(ADReSS, ADReSSo, TAUKADIAL)
CTD CSV

openSMILE

Figure 3. Feature extraction pipeline.

2.2.1 Acoustic Features

eGeMAPSv02 Low-Level Descriptors (ege): The extended Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPSv02) is a widely used feature set for speech analysis, designed
to capture key acoustic markers related to prosody, voice quality, and articulation. These
features are defined as low-level descriptors and include several spectral, temporal, and
energy-related measures. In this work, we extract eGeMAPSv02 features at 100ms in-
tervals using openSMILE [43] and compute their mean and standard deviation over the
entire recording. This approach captures both the central tendency and variability of each
feature, effectively integrating temporal dynamics into the analysis. In the openSMILE
implementation, depending on the feature, smoothing is applied either across all frames
(_sma3) or only across non-zero frames (_sma3nz), with the latter helping to avoid distor-
tions caused by unvoiced segments or missing values. The extracted low-level descriptors
from eGeMAPSv02 can be categorized into the following groups:
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1. Energy / Amplitude Features: these features reflect vocal intensity and voice quality,
which can be indicative of vocal strength and control.

■ Loudness (Loudness_sma3): perceived intensity of the speech signal.
■ Harmonics-to-Noise Ratio (HNRdBACF_sma3nz): ratio of harmonic energy to

noise energy, indicating voice clarity.
■ Shimmer (shimmerLocaldB_sma3nz): cycle-to-cycle variation in amplitude,

linked to voice stability.

2. Frequency Features: these features capture pitch characteristics and formant structure,
which can be affected by neurological and cognitive decline.

■ Fundamental Frequency (F0) (F0semitoneFrom27.5Hz_sma3nz): per-
ceived pitch of speech, extracted in semitone scale.

■ Jitter (jitterLocal_sma3nz): short-term irregularity in pitch, associated with
unstable phonation.

■ Formants (F1, F2, F3) & Bandwidths (F1frequency_sma3nz, F1bandwidth_-
sma3nz, F2frequency_sma3nz, F2bandwidth_sma3nz, F3frequency_-
sma3nz, F3bandwidth_sma3nz): resonant frequencies of the vocal tract,
influencing articulation and vowel clarity.

3. Spectral Balance Features: These features describe the distribution of spectral energy
and its evolution over time, relevant to articulation and phonation control.

■ Alpha Ratio (alphaRatio_sma3): ratio of energy above and below 1 kHz,
related to spectral tilt.

■ Hammarberg Index (hammarbergIndex_sma3): ratio of strongest peak below
and above 2 kHz, linked to spectral dominance.

■ Spectral Slope (0–500 Hz, 500–1500 Hz) (slope0-500_sma3, slope500-1500_-
sma3): rate of energy decay in different frequency bands.

■ Mel-Frequency Cepstral Coefficients (MFCC 1–4) (mfcc1_sma3, mfcc2_-
sma3, mfcc3_sma3, mfcc4_sma3): represent spectral shape and filterbank
energies.

■ H1-H2 & H1-A3 (logRelF0-H1-H2, logRelF0-H1-A3): harmonic energy
differences, indicating voice quality and phonation type.

■ Spectral Flux (spectralFlux_sma3): measure of spectral change over time,
indicative of speech dynamics.
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Emotional Attributes (mean_emo): Emotional attributes capture key aspects of an
individual’s emotional state, which can be crucial for understanding psychological or
affective changes in speech. For this work, arousal, dominance, and valence are extracted
using a pre-trained wav2vec2 model, specifically fine-tuned on emotional speech data
for dimensional emotion recognition. This model1 [44], allows for the extraction of the
following emotional dimensions:

■ Arousal (mean_emo_arousal): this dimension represents the level of excitement
or intensity in speech, ranging from calm to agitated. Higher values indicate more
intense emotional states, while lower values reflect calmer emotional expressions.

■ Dominance (mean_emo_dominance): this dimension reflects the control or
power conveyed in speech, ranging from submissive to dominant. Higher values
suggest greater perceived dominance, while lower values indicate more submissive
tones.

■ Valence (mean_emo_valence): this dimension represents the emotional valence,
or the positivity/negativity of the speech. Higher values indicate positive emotions
(e.g., happiness), while lower values are associated with negative emotions (e.g.,
sadness or anger).

These emotional attributes provide important insights into the affective state of the speaker,
which could be indicative of psychological or cognitive states relevant to the study of
cognitive decline.

AD Embeddings (xvec): For detecting cognitive decline directly from speech, we use a
multilingual wav2Vec2-BERT model2, which has been fine-tuned for Alzheimer’s dementia
prediction. This model was trained by aggregating the outputs of the wav2Vec2-BERT
model with a statistics pooling layer, followed by a fully connected layer with ReLU
activation and BatchNorm, ultimately producing a final output layer with three classes:
HC, MCI, and AD. The model was trained using cross-entropy loss on randomly selected
5- to 8-second chunks of speech from AD-labeled utterances derived from the ADReSS,
ADReSSo, and TAUKADIAL datasets. LoRA was employed to fine-tune the pre-trained
model, with a configuration (rank = 32, α = 32 and dropout = 0.05)

To extract high-level features, the trained AD classification model was repurposed as an
embedding extractor. Specifically, 512-dimensional utterance embeddings were obtained
from the output of the first dense layer (after the pooling layer), using the first 30 seconds

1https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
2https://huggingface.co/facebook/w2v-bert-2.0
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of each speech recording. These embeddings were used as input features for downstream
tasks, with the aim of capturing speech patterns indicative of cognitive impairment. While
not guaranteed to isolate disease-specific markers, such embeddings can encode complex,
high-dimensional characteristics that may be missed by traditional acoustic features.

2.2.2 Text-based Features

Each recording was transcribed using the Whisper model (large-v1) [45], which provided
word-level timestamps. The model was prompted with an initial instruction to better handle
disfluent speech, and during decoding, the beam size was set to 5. The time-stamped
transcripts were converted into a format matching the hand-annotated transcripts of the
original PROCESS training dataset, where pause durations were given in parentheses.

Transcript Lengths (lengths): The transcript length refers to the total number of words
spoken during the recording. This feature provides an indication of the verbosity of a
speaker’s response and is used as a simple measure of linguistic productivity.

Phonemic Fluency Features (pft): Phonemic fluency refers to the ability to generate
words beginning with a specific letter or sound within a fixed period of time. In this study,
phonemic fluency is assessed by counting the number of words starting with the letter P as
well as other letters, along with several pause-related metrics. Specifically, we extract the
following phonemic fluency features:

■ PFT count (p_words_pft): the number of words starting with the letter P.
■ Other letters count (non_p_words_pft): the number of words starting with

letters other than P.
■ Pause count (count_pauses_pft): the number of pauses during the phonemic

fluency task.
■ Pause average length (avg_pause_pft): the average length of pauses during

the task.
■ Pause longest (longest_pause_pft): the longest pause during the task.
■ Pause total duration (total_pause_pft): the total duration of all pauses during

the task.

These features allow us to analyze the speaker’s ability to quickly produce words, while
also identifying speech disruptions, which can be indicative of cognitive decline.

Semantic Fluency Features (sft): Semantic fluency refers to the ability to generate
words from a specific category, such as animals, in a fixed amount of time. It is a key
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measure for assessing cognitive function, as it reflects the ability to retrieve and produce
semantically related concepts. In this study, we assess semantic fluency by extracting the
following features:

■ SFT count (animals_sft): the number of animals named during the task.
■ Repetitions count (repeats_sft): the number of repeated words during the

task.
■ Pause count (count_pauses_sft): the number of pauses during the semantic

fluency task.
■ Pause average length (avg_pause_sft): the average length of pauses during

the task.
■ Pause longest (longest_pause_sft): the longest pause during the task.
■ Pause total duration (total_pause_sft): the total duration of all pauses during

the task.

These features are indicative of a speaker’s ability to quickly retrieve words within a
category.

CTD Pause Features (ctdp): Pause features measure the frequency and duration of
pauses in speech, which can be indicative of cognitive load or difficulties in speech
planning and execution. These features may provide insight into the speaker’s cognitive
processing, particularly in the context of Alzheimer’s dementia and other forms of cognitive
decline. The pause-related features extracted include:

■ Number of pauses (count_pauses_ctd): the total count of pauses occurring
in the speech.

■ Average pause length (avg_pause_ctd): the mean length of all pauses.
■ Longest pause (longest_pause_ctd): the longest single pause.
■ Total pause duration (total_pause_ctd): the cumulative duration of all pauses

in the speech.

These pause features help in understanding the pauses in relation to speech fluency and
may highlight difficulties in speech production related to cognitive decline.

Macro-descriptors (ctd): Macro-descriptors are high-level features extracted from the
speech transcripts that may offer insights into the overall quality of speech production.
These features are designed to capture speech characteristics related to cognitive and
linguistic function. The macro-descriptors include:
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■ Coherence (coherence_pft): measures the logical flow and connectivity of
speech.

■ Lexical diversity (lexical_diversity_ctd): assesses the variety of different
words used in the speech, often linked to cognitive flexibility.

■ Sentence length (sentence_length_ctd): the average number of words per
sentence, reflecting sentence complexity and structure.

■ Word-finding difficulties (word_finding_difficulties_ctd) : the fre-
quency of hesitations, pauses or dysfluencies due to difficulty in retrieving words.

■ Alzheimer’s prediction (alz_prediction_ctd): a feature derived from the
previous scores that estimates the likelihood of Alzheimer’s disease based on lan-
guage use.

■ Confidence in prediction (confidence_ctd): the model’s confidence in its
Alzheimer’s disease prediction based on the speech transcript.

These features were extracted using chain-of-thought (CoT) prompting with OpenAI
GPT-4o-mini-2024-07-18, following the methodology described in [46].

2.2.3 Demographic Features

Demographic features are derived from the metadata csv files accompanying the datasets,
where available. Potential issues with missing values are addressed during the exploratory
data analysis phase (Section 3.1). These features can provide additional context for the
analysis of speech patterns, as they are known to influence various speech characteristics.

Age of the speaker (real_age): The age of the speaker is an important demographic
feature that may influence speech patterns, such as speech rate, pitch, and articulation.
Age-related changes in cognitive abilities, such as those seen in aging, are often reflected
in speech production. In this study, age is used as a continuous variable.

Gender of the speaker: The gender of the speaker is another key demographic feature.
Gender differences in speech characteristics, such as fundamental frequency, articulation
rate, and voice quality, have been well-documented. In this analysis, gender is treated as a
categorical variable with two possible values: male or female.
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2.3 Machine Learning Models

In this study, two types of machine learning models are employed: traditional machine
learning models for classification and regression tasks3 and deep learning models for
feature extraction. The extracted deep learning features are integrated with interpretable
features using early fusion.

2.3.1 Classification Models

Traditional machine learning models with text-based, acoustic, and demographic features
are used to classify cognitive status and predict cognitive assessment scores. The following
classification models are used in this study:

■ Random Forest (RF): An ensemble method that combines multiple decision trees
to improve classification accuracy and reduce overfitting.

■ Logistic Regression (LR): A linear model used for binary and multiclass classifi-
cation tasks. Logistic Regression is known for its simplicity, interpretability, and
efficiency in handling linear decision boundaries.

■ Decision Tree (DT): A tree-based model that splits data into subgroups based on
feature values. While easy to interpret, Decision Trees are prone to overfitting
without proper tuning.

■ XGBoost (XGB): A highly optimized implementation of gradient boosting, typically
using decision trees as weak learners. XGBoost is known for its ability to handle
large and complex datasets while providing strong predictive performance.

■ Support Vector Machine (SVM): A supervised model that finds the optimal hy-
perplane to separate data into distinct classes. SVM is particularly effective for
high-dimensional data and can handle non-linear decision boundaries using kernel
tricks.

■ Naive Bayes (NB): A probabilistic classifier based on Bayes’ theorem, assuming
independence between features. While simple, Naive Bayes works well for text
classification tasks and in scenarios with less complex relationships between features.

■ Gradient Boosting (GB): A boosting technique where each model corrects the errors
of the previous one. Gradient Boosting is an effective method for classification tasks,
especially when dealing with complex and noisy data.

■ K-Nearest Neighbors (KNN): A non-parametric classifier that assigns labels based
on the majority class among the k-nearest neighbors in the feature space. KNN is
intuitive and simple but can become computationally expensive with large datasets.

3Many models have both classifier and regressor variants (e.g., XGBoost). Only the base abbreviation (e.g.,
XGB) is listed; regressor variants use an appended “R” (e.g., XGBR) and appear as needed.
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■ Multilayer Perceptron (MLP) Neural Network: A feedforward artificial neu-
ral network composed of multiple layers. MLP is capable of learning non-linear
relationships in the data and is useful for capturing complex patterns in feature
spaces.

■ Voting Classifier (VC): A model that combines multiple classifiers (e.g., RF, SVM,
and LR) to make final predictions based on their weighted outputs. Voting Classi-
fiers are designed to improve model robustness and classification accuracy through
ensemble learning.

2.3.2 Regression Models

In addition to classification, several traditional machine learning models are applied to
regression tasks, predicting continuous cognitive assessment scores. The models used for
regression are similar to those in classification, with the following specific models:

■ Random Forest Regressor (RFR): An ensemble of decision trees that predict a
continuous value by averaging the outputs of multiple trees.

■ Linear Regression (LIR): A simple model that fits a linear relationship between
features and the predicted target variable. Linear regression is easy to interpret and
serves as a baseline for more complex models.

■ Ridge Regression (RR): A regularized version of linear regression that introduces an
L2 penalty term (the square of the magnitude of the coefficients) to control for multi-
collinearity and prevent overfitting. Ridge Regression helps improve generalizability
in the presence of highly correlated features.

■ Lasso Regression (Lasso): Similar to Ridge, Lasso Regression applies a penalty
term, but it uses L1 regularization, which can shrink coefficients to zero and effec-
tively perform feature selection.

■ XGBRegressor (XGBR): The regression variant of XGBoost, which implements
gradient boosting for continuous target variables. XGBRegressor is designed to
provide high performance, especially on large datasets.

■ Decision Tree Regressor (DTR): A non-linear model that splits data based on
feature values to predict a continuous target. While interpretable, prone to overfitting
without tuning.

■ Support Vector Regressor (SVR): A variant of SVM used for regression tasks,
SVR attempts to find a function that approximates the data within a specified error
margin, while maximizing the margin for prediction.

■ K-Nearest Neighbors Regressor (KNNR): A non-parametric model that predicts
the target value based on the average value of its k-nearest neighbors. KNNR is
intuitive and simple but can be computationally expensive when dealing with large
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datasets.
■ Multilayer Perceptron Regressor (MLPR): A neural network used for regression

tasks, capable of learning non-linear relationships between input features and the
target variable. MLPR can capture complex patterns in data but requires careful
tuning to avoid overfitting.

■ Gradient Boosting Regressor (GBR): A regression model that uses boosting to
correct the errors of previous models in the sequence. GBR is widely used for
regression tasks and performs well on noisy data.

2.3.3 Feature Extraction Models

In addition to traditional machine learning models, pretrained deep learning models are
used to extract learned features from raw speech and transcripts. These features are used
in conjunction with traditional models for both classification and regression tasks. The
following pretrained deep learning models are employed:

■ Wav2Vec2-BERT: a transformer-based model that learns speech representations
directly from raw audio. This model is fine-tuned on the dataset to extract high-
level features (AD embeddings) from speech data, which are then integrated into
traditional machine learning models for classification and regression tasks.

■ Large Language Models (LLMs): pretrained language models are used to generate
macro-descriptors from the transcribed speech, extracting high-level linguistic fea-
tures that can reflect cognitive and linguistic function. These features capture aspects
of speech such as coherence, lexical diversity, and word-finding difficulties, and they
complement traditional, interpretable features in classification and regression tasks.

By combining the strengths of traditional machine learning models with deep learning-
derived features, this research aims to leverage both the interpretability of traditional
models and the performance of deep learning models in detecting cognitive decline and
predicting cognitive assessment scores.

2.4 Tasks and Evaluation Metrics

In this study, subjects are classified into three categories: HC, MCI, or AD. To evaluate
the classification performance, the macro-F1 score are used as the primary metric. The
macro-F1 score is calculated by taking the F1 score of each class and averaging them. This
metric is particularly useful for dealing with class imbalances, as it gives equal weight to
each class, regardless of its frequency. The formula for the macro-F1 score is:
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F1macro =
1

C

C∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

(2.1)

where C is the number of classes (in this case, 3), and Precisioni and Recalli are the
precision and recall for class i, respectively.

For the regression task, where the goal is to predict cognitive assessment scores (e.g.,
MMSE), the root mean squared error (RMSE) are used as the primary evaluation met-
ric. RMSE is a common metric for regression tasks, as it penalizes large errors more
significantly than smaller ones. It is calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

(ytrue,i − ypred,i)2 (2.2)

where N is the number of samples, ytrue,i is the true value, and ypred,i is the predicted value
for the i-th sample.

2.5 Feature Set Combinations and Model Training

In this study, several feature sets are used for training machine learning models, including
acoustic, text-based, and demographic features. These feature sets are combined in all
possible combinations to assess their impact on model performance. Each feature set may
contain one or more individual features, and the number of combinations depends on the
total number of feature sets used.

2.5.1 Feature Set Combinations

Let F1, F2, . . . , Fn represent the different feature sets, where n is the total number of
feature sets. The total number of possible feature set combinations is given by:

Combinations = 2n − 1 (2.3)

The subtraction of 1 accounts for the case where no features are selected. Each combination
is then used to train all models in the set of traditional machine learning models.
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2.5.2 Model Training Process

The models are trained using the following process:

1. Feature Set Combinations: All possible combinations of the feature sets are used
for training. Each combination of feature sets is passed to the models for training,
ensuring that every possible combination is tested.

2. Cross-Validation: For each feature set combination, the model is trained using
5-fold stratified cross-validation. Stratification ensures that each fold contains a
representative proportion of each class. The cross-validation process is repeated for
9 different stratification seeds, ensuring robust evaluation and better generalization
of the model given a relatively small dataset.

3. Model Evaluation: During each fold, the model is evaluated based on the macro-F1
score for classification tasks and RMSE for regression tasks. These metrics provide
insight into the model’s performance, accounting for class imbalance (in the case of
classification) and prediction error (in the case of regression).

4. Final Evaluation: After training, the final model is evaluated on a held-out test set
to assess its unbiased performance and to determine how well the model generalizes
to new, unseen data.

2.6 Interpretability Techniques

An important aspect of this research involves comparing the interpretability of the various
model–feature set combinations. While model-agnostic post hoc methods like SHAP [31]
can quantify the contributions of individual features to model decisions both locally and
globally, and inherently interpretable models like decision trees provide direct insight
into decision-making, a suitable composite interpretability score will also be sought.
This score will accommodate the differing features used by various models, with the
goal of determining Pareto optimality in the trade-off between model performance and
interpretability.

31



2.6.1 Joint Interpretability Index (JII)

The Joint Interpretability Index considers aspects of feature sets, machine learning models,
and their interactions to assign a combined interpretability score to different model–feature
set combinations.

JII = wMI · MI + wFI · FI + wMFI · MFI (2.4)

The score is composed of three main parts: Model Interpretability (MI), Feature Set Inter-
pretability (FI), and model–feature Set Interpretability (MFI). The weights wMI, wFI, wMFI

are normalized and sum to 1, ensuring that each component contributes proportionally to
the final Joint Interpretability Index (JII).

Model Interpretability (MI): a weighted numerical score based on qualitative algo-
rithm properties (additivity, sparsity, linearity, smoothness, monotonicity, transparency),
weighted by wi, where the weights sum to 1. Each property is initially scored from 0
to 2, where 0 indicates that the model does not exhibit the property, 1 indicates that the
model may exhibit it under certain conditions (e.g., specific hyperparameter values), and 2
indicates that the model exhibits the property with the hyperparameters used in training.
The final score is normalized to fall within the range [0, 1].

MI =
1

2

n∑
i=1

wi · pi (2.5)

where:

■ pi is the score for interpretability property i (from 0 to 2),
■ wi is the weight assigned to the interpretability property i.

Feature Set Interpretability (FI): a weighted numerical score composed of three main
subcomponents. The weights wFIC, wFU, wFL sum to 1.

FI = wFIC · FIC + wFU · FU + wFL · FL (2.6)

■ Feature Set Correlation (FIC) measures feature redundancy, weighted by wFIC.
This score has two weighted subcomponents: Mean Absolute Correlation (MAC)
and Mean Distance Correlation (MDC).
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MAC captures linear associations between features and is computed as the mean of
the absolute values of the off-diagonal entries of the Pearson correlation matrix:

MAC =
1

d(d− 1)

d∑
i=1

d∑
j=1
j ̸=i

|ρi,j| (2.7)

where d is the number of features and ρi,j is the Pearson correlation coefficient
between feature i and feature j.

MDC captures both linear and nonlinear associations and is computed using distance
correlation:

MDC =
1

d(d− 1)

d∑
i=1

d∑
j=1
j ̸=i

dCor(Xi, Xj) (2.8)

where dCor(Xi, Xj) denotes the distance correlation between feature vectors Xi and
Xj .
The final FIC score is then computed as a weighted average of the two subtracted
from 1:

FIC = 1− (wMAC · MAC + (1− wMAC) · MDC) (2.9)

where wMAC ∈ [0, 1] controls the relative importance of MAC vs. MDC in the final
redundancy score.

■ Feature Set Understandability (FU): based on domain knowledge, weighted by
wFU. Each feature is assigned a qualitative interpretability score qi ∈ [0, 1]. The FU
score is the average over all features in the feature set:

FU =
1

d

d∑
i=1

qi (2.10)

where:
– d: number of features in the selected feature set
– qi: qualitative interpretability score of feature i, inherited from its feature group

■ Feature Set Length (FL): penalizes longer feature sets, as they are generally
considered less interpretable. To avoid undefined logarithms and control the scaling
behavior of the penalty, a value of 1 is added to both the feature set length and the
maximum dimensionality before applying the logarithm. The logarithm is used to
introduce a diminishing returns effect, where the penalty for adding more features
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to the set becomes less severe as the set grows larger. This reflects the intuition
that adding features to an already complex set has a less significant impact on
interpretability compared to adding features to a simpler set.

FL = 1−
log

(
f

s
+ 1

)
log

(
dmax

s
+ 1

) (2.11)

where:
– f is the feature set length,
– s is the scaling factor,
– dmax is the maximum dimensionality for a feature set combination.

model–feature Set Interpretability (MFI): based on the entropy of normalized feature
importance magnitudes derived from SHAP values, reflecting the distribution of global
feature importance.

The model–feature Set Interpretability (MFI) score is calculated as:

MFI = 1− H(X)

Hmax
(2.12)

where:

■ H(X) = −
∑n

i=1 pi log2(pi) is the entropy of the normalized SHAP values, quanti-
fying the spread of feature importance across the feature set.

■ Hmax = log2(n) is the maximum possible entropy for n features, representing a
uniform distribution of importance.

■ pi is the normalized SHAP importance of the i-th feature, representing its global
importance relative to other features. It is calculated as follows:

– For classification models, the absolute SHAP value for each feature is calcu-
lated by summing the absolute values of its SHAP values across all classes.
This absolute SHAP value is then normalized so that the sum of all feature
importances is 1.

– For regression models, the absolute SHAP value for each feature is calculated
by summing the absolute values of its SHAP values. This absolute SHAP
value is then normalized similarly to ensure the sum of feature importances is 1.
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Lower entropy indicates that a smaller number of features are primarily driving the model’s
predictions, leading to higher interpretability. MFI is normalized to be between 0 and 1,
where 1 represents maximum interpretability (all importance is concentrated on a single
feature).

2.6.2 Rationale Behind JII Components

The Joint Interpretability Index (JII) is designed to quantify the interpretability of machine
learning models based on both their internal characteristics and the features they utilize.
Each component of the JII targets different aspects of interpretability, and their combined
score reflects an overall assessment of the model’s interpretability. Below is the rationale
for each of these components:

■ Model Interpretability (MI): the interpretability of a model refers to how easily
a human can understand the relationship between its inputs and outputs. Certain
structural and behavioral properties influence this interpretability by making the
model’s behavior more transparent and predictable. These key properties include:

– Additivity: the model’s prediction is formed by summing distinct contribu-
tions from individual features or feature groups. This structure enables clear
attribution of how each input affects the output.

– Sparsity: only a small number of input features meaningfully influence the
model’s predictions. Sparse models are easier to interpret because they focus
attention on a limited set of relevant variables.

– Linearity: the effect of each input feature on the prediction is proportional
and consistent. Linear relationships are inherently simple, making it easier to
reason about how changes in inputs affect outputs.

– Monotonicity: a feature’s influence on the prediction moves consistently in
one direction—either always increasing or always decreasing the output. This
aligns with domain expectations and makes model behavior more intuitive.

– Smoothness: the model responds gradually to small changes in input. This
prevents abrupt or unpredictable shifts in predictions, increasing trust and
making the model’s behavior feel more stable and continuous.

– Transparency: the internal structure of the model—such as coefficients in linear
regression or decision paths in a tree—is directly accessible and understandable.
Transparent models allow users to trace and verify predictions without complex
post-hoc analysis.

Models exhibiting these properties are typically considered as more interpretable
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because their decision-making processes can be more easily understood, explained,
and trusted. The inclusion of the properties in this component is inspired by [47, 48].

■ Feature Set Interpretability (FI): the interpretability of a feature set is determined
by its redundancy, understandability, and size. A feature set that is less redundant
and more understandable is easier to interpret.

– Redundancy arises when features are highly correlated. High correlations
between features make it difficult to disentangle their individual contributions
to the model, reducing interpretability. Therefore, feature sets with lower
correlations between features are favored.

– Understandability refers to the alignment of features with domain knowledge.
Features that are easily understood in the context of the problem at hand
improve interpretability.

– Feature set size also plays a role: smaller feature sets are generally easier to
interpret because they provide a simpler and more concise representation of
the data.

Therefore, feature sets that are compact, less redundant, and easier to interpret based
on domain knowledge are scored higher.

■ Model–Feature Set Interpretability (MFI): the interaction between a model and
its feature set contributes significantly to overall interpretability. The MFI score
is based on the entropy of the SHAP feature importances, which quantifies how
concentrated or distributed the feature contributions are.

– When feature importances are concentrated (i.e., a few features dominate), the
model is easier to interpret because it is clear which features drive the model’s
predictions.

– When feature importances are uniformly distributed, the model becomes more
complex to understand since no single feature stands out as influential, making
the decision process harder to explain.

Models with a small number of highly influential features are considered more
interpretable than those where feature importances are spread across many features,
contributing to the final MFI score.

By integrating these components, the Joint Interpretability Index provides a comprehensive
and structured metric for evaluating model interpretability, which is used for identifying
model–feature set combinations that lie on the Pareto front balancing predictive accuracy
and interpretability across both tasks. The weights of the individual components can be
adjusted to reflect the preferences of different stakeholders, making the JII adaptable to
various interpretability needs.
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2.7 Validation

Model performance is compared to the baseline results from the PROCESS challenge.
Cross-validation techniques are employed on the PROCESS dataset, with final evaluations
conducted on a held-out test set. Features derived from deep learning models are expected
to offer higher accuracy than traditional hand-crafted features, their interpretability is
carefully assessed to ensure transparency in their predictions, which is essential for clinical
applications.
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3. Results

This chapter presents the results of the experiments conducted, starting with EDA and
moving on to the performance of the models on the cognitive decline detection tasks,
followed by an analysis of the features that contributed most to the model’s predictions
along with insights from the interpretability techniques applied.

3.1 Data Diagnostics and Methodological Adjustments

An exploratory data analysis was undertaken to assess dataset characteristics, identify
inconsistencies, and uncover potential biases. Based on these findings, methodological
adjustments are proposed to enhance data integrity and model reliability.

3.1.1 PROCESS dataset

The primary dataset in its original form was composed of 157 folders, titled after the unique
IDs of each of the subjects. Each folder includes three recordings per subject for each
speech elicitation task, these are the CTD, SFT, and PFT tasks as described in Section 2.1.1.
The total duration of the combined 471 recordings is 8 hours 25 minutes and 42 seconds,
with a mean duration of 1 minute and 4 seconds per recording. Table 1 presents the results
of statistical analysis of the audio file durations (in seconds) categorized by their suffix. As
seen, CTD.wav files have the highest mean duration, while PFT.wav and SFT.wav have
more consistent durations with lower standard deviation.

Table 1. Statistics of audio file durations by category.

Count Mean Std Dev Min Max
CTD.wav 157.0 72.9276 39.0753 8.56 190.448
PFT.wav 157.0 59.9724 3.6360 41.67 71.830
SFT.wav 157.0 60.3613 3.0952 45.83 70.880

Each folder also includes three manually transcribed text files corresponding to each of
the recordings per subject. The transcripts include the duration of pauses in seconds in
parentheses.

In addition to the audio and text files, the dataset includes a CSV file including demographic
information about each speaker. The CSV file includes 157 rows and 6 columns. The
columns are:
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■ Record-ID: The unique ID of the speaker.
■ TrainOrDev: Subset the recording belongs to (train/dev).
■ Class: The diagnostic label of the speaker (HC/MCI/AD).
■ Gender: The gender of the speaker (male/female/other).
■ Age: The age of the speaker.
■ Converted-MMSE: The MMSE score of the speaker.

An overview of the diagnostic class and gender distribution in the dataset is provided in
Table 2. There are no missing values.

Table 2. PROCESS train/dev distribution by class and gender.

AD HC MCI female male other Count
TrainOrDev

train 12 61 44 63 53 1 117
dev 4 21 15 18 22 0 40

total 16 82 59 81 75 1 157

In the Age and Converted-MMSE columns, a high number of values are missing, approxi-
mately 56% and 20% respectively, see Table 3. The missing age values have been replaced
by the mean age of the rest of the dataset, which is 66 years.

Table 3. Summary statistics for age and converted-MMSE.

Age Converted-MMSE
count 126.00 69.00
mean 65.72 27.36
std 13.74 2.47
min 23.00 19.00
25% 61.00 27.00
50% 69.00 28.00
75% 73.75 29.00
max 94.00 30.00
missing 31.00 88.00
missing percent 19.75% 56.05%

There is noticeable overlap between the missing values in the age and MMSE columns,
with 33% of all missing MMSE values also missing the age value, see Figure 4). Among
the subjects who are missing both age and MMSE scores, 7 are MCIs and 22 are HCs.
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Figure 4. Age distribution: MMSE present vs MMSE missing.

Also of interest is the relationship between age and the dignostic class, see Figure 5.
Included here are only data points where the age value is present. In general, subjects in
the Dementia class tend to be older, and multiple outliers can be seen among the healthy
controls.
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Figure 5. Age distribution by diagnostic class.
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Looking at MMSE distribution vs. diagnostic class shows that MCI and Dementia are
difficult to differentiate based only on the MMSE score, see Figure 6.
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Figure 6. MMSE distribution by diagnostic class.

56% of missing MMSE values poses problems with an already small dataset. The 20%
of missing ages are predominantly among the HC group, which is on average younger
(61 years). Listening to samples from the HC group with missing age values suggests
that they are on average younger than the group mean. This necessitated an alternative
approach to filling the missing values, an extra feature called mean_age was added,
which was predicted using a publicly available wav2vec-based model1 [49]. To counter the
possibility that the test set might not include gender data, a feature named mean_gender
was produced using the same model. The model used to derive this feature is so consistent,
it was able to identify two cases of mislabeled gender in the ground-truth data.

3.1.2 External data

The external datasets were all structured in a unique way, different from the PROCESS
dataset. They include a variety of folders and files with metadata, which needed to be
carefully combined to fully understand the contents of each dataset.

The ADReSS dataset includes separate folders for training and test sets. These folders
hold three subfolders, one for transcriptions, one for full-wave enhanced audio, and one for
1https://huggingface.co/audeering/wav2vec2-large-robust-24-ft-age-gender
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normalised audio chunks. In addition, there are two text files specifying the age, gender,
and MMSE score for each subject.

The ADReSS-o dataset includes folders for two different tasks, progression and diagnosis.
Each includes folders for the respective training and test sets. These folders hold two
subfolders, one titled segmentation, which holds CSV files with speaker segmentation
data for each recording, in subfolders for AD and HC patients, and another with subfolders
for AD and HC that hold the audio files. In addition, there is a CSV file specifying the
MMSE score and diagnostic label for each speaker. Age and gender information was
present in separate CSV files and had to be combined with the previous ones.

The ADReSS-M dataset includes various folders and CSV files with ground-truth data.
The train folder includes the training audio data. The test-gr folder holds the test set
audio data, which is spoken in Greek language. There are also two folders, with combined
16 Greek samples. Uniquely, included in the metadata CSV for this challenge is the years
of education for each speaker, in addition to gender and age.

The TAUKADIAL dataset includes two folders separating the training and test audio data.
There are three different recordings for each speaker, all of which are related to picture
description tasks, and the language of the audio is either English or Chinese. The metadata
CSV file for the training and test sets includes information for the age, gender, MMSE
score, and the diagnostic label of each speaker.

All datasets included the CTD recordings. Some of the external datasets were composed of
a mixture of English and Chinese or Greek recordings. Various recordings were of different
picture description task, and while some semantic fluency tasks, namely in ADReSS-o, did
exist, these were not used for augmentation. From the 1356 full-length recordings an initial
subset of 869 recordings were retained. Among these are 778 with an MMSE score, In
addition to the 88 datapoints with missing MMSE scores in the PROCESS dataset, another
3 had missing MMSE score in the ADReSS, ADReSS-o, and ADReSS-M datasets, with
just a combined 778 values with MMSE scores, however these missing values affect only
the MMSE prediction task and not classification. An overview of the datasets considered
for augmentation are presented in Table 4.
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Table 4. Diagnosis and gender distribution by dataset.

HC MCI AD female male other Count

PROCESS 82 59 16 81 75 1 157
ADReSS 78 - 78 86 70 - 156
ADReSS-o 115 - 122 154 83 - 237
ADReSS-M 115 - 122 154 83 - 237
TAUKADIAL 31 51 - 55 27 - 82

Looking at the age distribution by diagnostic class (Figure 7), it can be seen that for the
healthy control group, the mean age is relatively homogeneous across all datasets, with
PROCESS having many outliers on the younger side, and TAUKADIAL on the older side.
These are also the only two datasets which contain MCI data, and in TAUKADIAL, the
age is on average around 6 years higher. Also, the minimum age for the HC and MCI
classes is noticeably lower in the PROCESS dataset compared to others.
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Figure 7. Age distribution by diagnostic class, combined dataset.

For additional information about the age statistics across the different diagnostic classes in
each dataset see Table 5.
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Table 5. Age statistics by dataset and diagnostic class.

Dataset class mean std min max

PROCESS AD 71.8 7.6 61 87
HC 62.9 13.6 23 86
MCI 68.2 10.3 37 94

ADReSS AD 66.6 6.8 50 79
HC 66.3 6.6 50 78

ADReSS-o AD 69.4 6.9 53 80
HC 66.1 6.3 54 80

ADReSS-M AD 69.4 6.9 53 80
HC 66.1 6.3 54 80

TAUKADIAL HC 68.5 5.8 61 84
MCI 73.5 7.6 61 91

Figure 8 presents an overview of the class-wise distribution of MMSE scores across the
datasets. For TAUKADIAL and PROCESS datasets, the MMSE scores for HC class are
on average higher. For the MCI class, PROCESS data includes subjects with slightly lower
MMSE compared to TAUKADIAL. The most pronounced difference is among the AD
class, where PROCESS has noticeably higher MMSE scores compared to others.
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Figure 8. MMSE distribution by diagnostic class, combined dataset.

Gender proportions for each dataset are presented in Figure 9. In general, there are more
female subjects, but in PROCESS the distribution is more balanced.
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Figure 9. Gender proportions across datasets.
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Figure 10. P-value matrix, Kolmogorov–Smirnov two-sample test.

Kolmogorov-Smirnov two sample test was used to determine if the distributions of class-
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wise age and MMSE scores were similar across the datasets. Figure 10 presents the
outcome, with black squares indicate a p-value with p < 0.05, meaning the difference is
significant.

Many of the above figures strongly indicate that the ADReSS-o dataset and the English
training set of ADReSS-M dataset are identical. The audio in ADReSS-M was of lower
quality mp3 format, therefore it was dropped completely, and the recordings from ADReSS-
o were kept. In addition, there was suspicion that a portion of the ADReSS dataset also
overlapped with ADReSS-o. To investigate this, first, the durations and file sizes in both
datasets were compared. Upon a match, the two files were listened to, and in case they were
duplicates, the ADReSS version was removed from the dataset. This approach identified
some additional 40 duplicates. However, this approach could not remove all the duplicates,
as the quality of the recordings varied between the two datasets and at times slightly
different duration versions of otherwise identical recordings were present.

To counter this, the next step in the exploratory data analysis was to extract text embeddings
from all CTD recordings and use t-distributed Stochastic Neighbor Embedding (t-SNE) to
visualize them in a lower dimensional space. One interesting finding revealed in Figure 11
was a group of outliers composed of MCIs to the far left of the plot.
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Figure 11. T-SNE of transcript embeddings by class (before).
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The same data was visualized colored by dataset Figure 12. It appeared that the MCI
group was in the TAUKADIAL dataset. Closer inspection revealed that the cluster of
outliers were not embeddings of the transcripts of a CTD recording, but rather a different
picture description task — a case of data discrepancy and mislabelling in the TAUKADIAL
dataset. However, this figure revelead more problems, as it can be seen that in terms of
t-SNE component 1, the majority of datapoints in the PROCESS dataset appear on the
far right of the plot. With ADReSS and ADReSS-o on the left with some TAUKADIAL
datapoints.
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Figure 12. T-SNE of transcript embeddings by dataset (before).

An interactive version of the plot revealed the main factor that t-SNE component 1 seemed
to encode: the presence of instructor’s speech in the transcripts. In the TAUKADIAL and
PROCESS datasets, and with minor exceptions, only the patient is speaking. While this
may help distinguish datasets based on text embeddings, it introduces serious bias, as the
majority of AD cases are in the ADReSS and ADReSS-o datasets. To combat this, speaker
segmentation and diarization was undertaken with the aim to keep only the dominant
speaker — the patient. While this approach worked relatively well for TAUKADIAL and
PROCESS datasets, the extremely low quality of audio in the other two datasets resulted in
only 10% of the diarization output to be accurate (it mostly still contained both speakers).
As a result, the full combined dataset was recut manually. In addition, the interactive
visualization revealed many additional overlapping datapoints, revealing further duplicates.

47



These were removed by comparing the similarity of a dimensionally reduced versions of
text embeddings and eGeMAPS feature vectors for each pair of data points. The twofold
approach was prompted by the fact that the output from the transcription model alone
could not guarantee perfect matches. Figure 13 shows the text embeddings after removal
of duplicates and keeping only patient speech. It can be seen that the magnitude of the
t-SNE components has reduced a lot, and that the data are much more heterogeneously
distributed.
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Figure 13. T-SNE of transcript embeddings by class (after).

Figure 14 shows the text embeddings by dataset. While some separation can be noticed, a
clear decision boundary does not exist. In summary, while the text embeddings seem to
distinguish somewhat between the different datasets, they do not show much usefulness in
clearly separating HC, MCI, and AD individuals.

48



10 5 0 5 10
t-SNE Component 1

15

10

5

0

5

10

t-S
NE

 C
om

po
ne

nt
 2

Dataset
ADReSS
ADReSSo
Process
TAUKADIAL

Figure 14. T-SNE of transcript embeddings by dataset (after).

The resulting combined dataset of total size 451 subjects, with the duplicates removed, is
described in Table 6.

Table 6. Diagnosis and gender distribution by dataset (after).

HC MCI AD female male other Count

PROCESS 82 55 16 79 73 1 153
ADReSS 17 - 21 21 17 - 38
ADReSS-o 92 - 101 128 65 - 193
TAUKADIAL 31 36 - 47 20 - 67

Figures 15 and 16 present the class-wise age and MMSE distributions of the final combined
dataset.
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Figure 15. Age distribution by diagnostic class, combined dataset (after).
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Figure 16. MMSE distribution by diagnostic class, combined dataset (after).

Additional statistical tests were applied to determine whether data from different challenges
could be used for augmentation comparing the distributions of MMSE scores across
datasets for each diagnostic class (HC, MCI, AD).

First the Kruskal-Wallis (KW) test was applied to assess whether there were significant
differences in MMSE distributions across multiple challenges. If the KW test indicated a
significant difference (p < 0.05), Mann-Whitney U (MW) tests were performed for pairwise
comparisons to identify which datasets differed. See Table 7.
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Table 7. Statistical test results for class-wise MMSE distributions across challenges.

Class Test Comparison p-value

HC

KW PROCESS vs ADReSS, ADReSSo, TAUKADIAL 0.9148
MW PROCESS vs ADReSS 0.7254
MW PROCESS vs ADReSSo 0.9102
MW PROCESS vs TAUKADIAL 0.5194
MW ADReSS vs ADReSSo 0.7444
MW ADReSS vs TAUKADIAL 0.9061

MCI
KW PROCESS vs TAUKADIAL 0.0433
MW PROCESS vs TAUKADIAL 0.0439

AD

KW PROCESS vs ADReSS, ADReSSo 0.0006
MW PROCESS vs ADReSS 0.0028
MW PROCESS vs ADReSSo 0.0001
MW ADReSS vs ADReSSo 0.9566

The results suggest that HC distributions do not differ significantly across datasets, meaning
HC samples from other challenges could be considered for augmentation. However, MCI
and AD distributions showed significant differences, particularly for AD in PROCESS
vs. ADReSS/ADReSS-o, indicating that augmentation from these datasets may introduce
inconsistencies. Given that HC is already the majority class in PROCESS, augmenting it
further would not be beneficial, while augmentation for MCI and AD remains uncertain
due to statistical differences. Using only the PROCESS dataset would yield 153× 3 = 459

recordings — exceeding the combined dataset (451 CTD recordings) while still providing
task variability and consistent audio quality. For this reason, the majority of the work
henceforth was conducted using only the PROCESS dataset. The external data was used
only for fine-tuning acoustic models for AD embedding extraction.

3.2 Model Performance

In total, 2,047 different feature set combinations were used to train the 10 different
classifiers and regressors listed in Table 8. For both tasks two different Random Forest
models were used, one using 16 trees and the other 100 trees. Model performance
evaluation was performed on the development set, as well as using 5-fold stratified cross-
validation across 9 different seeds. While this resulted in a large volume of results (four
different result sets, each with size 22,517), the final evaluation was performed on a held-
out test set, and as per the PROCESS challenge rules, only 6 submissions in total could be
made (3 for the classification task and 3 for the regression task).
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Table 8. Classification and regression models for diagnosis and MMSE prediction.

Diagnosis Models MMSE Prediction Models
Random Forest (RF) Random Forest Regressor (RFR)
Logistic Regression (LR) Lasso Regression (Lasso)
Decision Tree (DT) Decision Tree Regressor (DTR)
XGBoost (XGB) XGBoost Regressor (XGBR)
Support Vector Machine (SVM) Support Vector Regressor (SVR)
Naive Bayes (NB) Linear Regression (LIR)
Gradient Boosting (GB) Gradient Boosting Regressor (GBR)
K-Nearest Neighbors (KNN) K-Nearest Neighbors Regressor (KNNR)
Multilayer Perceptron Neural Network (MLP) Multilayer Perceptron Regressor (MLPR)
Voting Classifier (VC) Ridge Regression (RR)

3.2.1 Development Set Results

The baseline results for the development set provided by the PROCESS challenge orga-
nizers2 are presented in Table 9 and Table 10. Table 9 shows classification performance
for the Cookie Theft, semantic/phonemic fluency (VF), and their combination (CTD+VF)
using accuracy, macro-precision, macro-recall, and macro-F1 score.

Table 9. Baseline results for the diagnosis task (dev).

Model Prompt Acc. Prec. Rec. F1

SVM (eGeMAPS)
CTD 0.525 0.399 0.390 0.393
VF 0.375 0.333 0.337 0.324

CT+VF 0.525 0.368 0.397 0.379

RF (eGeMAPS)
CTD 0.450 0.296 0.330 0.312
VF 0.450 0.292 0.324 0.307

CTD+VF 0.425 0.271 0.302 0.285

RoBERTa-Classifier
CTD 0.550 0.381 0.368 0.326
VF 0.525 0.343 0.346 0.292

CTD+VF 0.500 0.302 0.337 0.301

The highest macro-F1 score of 0.393 was achieved using eGeMAPS features extracted
from the Cookie Theft Picture description recording with a SVM classifier. Table 10
presents the MMSE score prediction regression results for the same tasks.

2https://processchallenge.github.io/dataset/
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Table 10. Baseline results for the MMSE prediction task (dev).

Model CTD VF CTD+VF

SVR (eGeMAPS) 3.06 4.19 7.81
RFR (eGeMAPS) 2.82 3.22 3.11
RoBERTa-Regression 2.75 2.75 2.74

The lowest RMSE, 2.74, was achived using the RoBERTa-Regression model using tran-
scripts from the Cookie Theft Picture description and verbal fluency recordings.

In the diagnosis task, 52% or 11,750 model–feature set combinations beat the baselines. In
the MMSE prediction task, this percentage was 68%, and the number of model–feature set
combinations that beat the organizers’ baseline was 15,351. The best feature combination
for each algorithm is presented in Table 11.

Table 11. Best model–feature set combination pairs for diagnosis (dev).

Algorithm Combination F1 Score
GB mean_gender, real_age, xvec 0.670
MLP lengths, mean_age, pft, ctd, ctdp, xvec 0.659
RF 16 mean_age, mean_emo, pft, ctd, ege, xvec 0.590
LR mean_emo, sft, xvec 0.560
DT mean_gender, mean_emo, ctd, ege, ctdp 0.558
RF 100 lengths, mean_gender, ctd 0.556
NB lengths, mean_gender, mean_emo, sft, ctdp 0.550
XGB mean_age, sft, ctd, real_age, ctdp, xvec 0.549
KNN lengths, mean_age, mean_emo, pft 0.539
VC mean_emo, ege, real_age, ctdp, xvec 0.520
SVM lengths, mean_gender, pft, sft, ctd, real_age 0.505
(Baseline) SVM eGeMAPS (CTD) 0.393

The Gradient Boosting classifier and Multi-Layer Perceptron achieve the highest macro-F1
scores—0.670 and 0.659, respectively—significantly outperforming the baseline results.
Interestingly, the Support Vector Machine, which is frequently reported in the literature as a
strong performer, ranks lowest among the evaluated algorithms here. Table 12 summarizes
the top-performing model–feature set combinations for the MMSE prediction task.

53



Table 12. Best model–feature set combination pairs for MMSE (dev).

Algorithm Combination RMSE
DTR pft, sft, ege 1.66
XGBR sft, ege, real_age, ctdp 1.80
GBR lengths, mean_gender, mean_emo, real_age, ctdp 1.82

RFR 16
lengths, mean_gender, mean_age, mean_emo, ctd,
ege, ctdp, xvec 1.87

RR lengths, sft, ege, real_age 1.96
Lasso mean_gender, mean_emo, pft, sft, real_age, xvec 2.00
RFR 100 mean_gender, mean_age, sft, real_age, ctdp, xvec 2.01
SVR mean_gender, mean_emo, sft, real_age, ctdp 2.02
KNN pft, ctd, real_age, ctdp 2.03
LIR mean_emo, real_age 2.28
MLP ctdp 2.44
(Baseline) RoBERTa CTD + PFT + SFT transcripts 2.74

The Decision Tree Regressor achieves the lowest RMSE of 1.66, surpassing the baseline
by a noticeable margin. The XGBoost, Gradient Boosting, and Random Forest regressors
also show strong performances. For both the diagnosis and MMSE prediction tasks, at
least one feature set combination outperformed the baseline results for each algorithm.

3.2.2 Cross-validation Results

The PROCESS challenge organizers did not provide results for cross-validation; instead,
the best performance on the development set is used for comparison, which may favor their
results, as cross-validation scores typically tend to be lower. The top feature combination
for each algorithm in the diagnosis task is presented in Table 13.

Table 13. Best model–feature set combination pairs for diagnosis (CV).

Algorithm Combination Mean F1 Score
MLP mean_emo, ctdp, xvec 0.511 ± 0.090
SVM mean_emo, pft, ege, xvec 0.481 ± 0.087

XGB
mean_gender, mean_age, mean_emo, pft, sft,
real_age, xvec 0.470 ± 0.076

NB mean_age, mean_emo, ctd, ege, real_age 0.462 ± 0.089
LR mean_gender, ege, real_age, xvec 0.460 ± 0.081
VC mean_gender, real_age, xvec 0.450 ± 0.071
RF 16 mean_gender, mean_age, ege, xvec 0.448 ± 0.079
RF 100 mean_gender, mean_age, sft, ctd, ege 0.447 ± 0.090
KNN lengths, mean_gender, mean_emo, pft, ege, real_age 0.445 ± 0.070
GB mean_gender, pft, sft, ctd, ege, real_age, ctdp, xvec 0.445 ± 0.073
DT lengths, mean_gender, pft, sft, ctd, ctdp, xvec 0.421 ± 0.089
(Baseline) SVM eGeMAPS (CTD) 0.393
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The macro-F1 scores are on average noticeably lower compared to development set
performance. The top 22 models are all MLP and Support Vector Machine has now also
emerged as a top-performer. The best feature combination for each algorithm for the
MMSE prediction task is presented in Table 14.

Table 14. Best model–feature set combination pairs for MMSE (CV).

Algorithm Combination Mean RMSE
Lasso Regression pft, sft, real_age 2.076 ± 0.327
SVR pft, ctd, real_age, ctdp 2.088 ± 0.366
KNN mean_age, pft, sft, ctd, real_age, ctdp 2.138 ± 0.455
RFR 100 lengths, mean_gender, pft, real_age 2.148 ± 0.434
RFR 16 lengths, pft, real_age 2.165 ± 0.464
RR pft, real_age, ctdp 2.169 ± 0.334
GBR lengths, mean_gender, pft, real_age 2.189 ± 0.478
LIR sft, real_age 2.225 ± 0.278
MLP mean_gender 2.324 ± 0.562
XGBR lengths, mean_gender, real_age, ctdp 2.447 ± 0.470
DTR mean_gender 2.494 ± 0.554
(Baseline) RoBERTa CTD + PFT + SFT transcripts 2.74

Lasso and SVR achieve the best mean RMSE scores, 2.076 and 2.088, respectively, while
the DTR experiences the most significant drop in ranking compared to its performance
on the development set. Figures 17 and 18 present the percentages of model–feature set
combinations per algorithm which beat the baselines.
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Figure 17. Percentage of model–feature set combinations beating baselines (diagnosis).
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Figure 18. Percentage of model–feature set combinations beating baselines (MMSE).

Figure 19 provides an overview of the distribution of algorithms in the top-N best models
by performance for the diagnosis task. The top 10 models are dominated by MLP. The
proportion of MLP decreases, reaching near parity with SVM at rank 100, with a few
instances of XGBoost. Starting from rank 1000, Naive Bayes is increasingly represented,
followed by other models eventually.
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Figure 19. Algorithm distribution trends in top-N diagnosis models.
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Figure 20 shows the algorithm trends for the MMSE prediction task, with the top 500 being
dominated by Lasso and to a lesser extent SVR. As also seen in Figure 18, both variants of
Random Forest Regressor very often beat baselines with different feature combinations,
but fail to achieve the lowest RMSE scores.
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Figure 20. Algorithm distribution trends in top-N MMSE models.

To summarize the cross-validation and development set performance across all model–
feature set combinations, Tables 15 and 16 provide an aggregated overview of the most
prominent algorithms for the classification and MMSE regression tasks, respectively. The
tables report, for each algorithm, the proportion of models that beat the baseline (“Dev
Baseline” and “CV Baseline”), the percentage contribution of the algorithm to all baseline-
surpassing results (“Dev Contrib.” and “CV Contrib.”), the highest ranking achieved both
when evaluating on the development set as well as in cross-validation setting (“Dev Rank.”
and “CV Rank.”) and the best observed macro-F1/RMSE scores in each setting. These
results are discussed in detail in Section 4.1.
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Table 15. Summary of classification performance across models.

Algorithm
Dev

Baseline
(%)

CV
Baseline

(%)

Dev
Contrib.

(%)

CV
Contrib.

(%)

Dev
Rank

CV
Rank

Dev
Best
F1

CV
Best
F1

MLP 58.4 61.4 10.2 9.2 3 1 0.659 0.511
SVM 22.4 55.3 3.9 8.3 1620 22 0.505 0.481
XGB 52.1 63.3 9.1 9.5 165 99 0.549 0.470
NB 54.8 78.9 9.5 11.9 163 304 0.550 0.462
LR 45.8 57.2 8.0 8.6 127 436 0.560 0.460
VC 54.1 60.9 9.4 9.2 929 1189 0.520 0.450
RF 16 54.8 69.5 9.5 10.4 39 1379 0.590 0.448
RF 100 61.1 76.2 10.6 11.4 148 1572 0.556 0.447
KNN 58.1 45.9 10.1 6.9 359 1874 0.539 0.445
GB 56.8 68.8 9.9 10.3 1 1899 0.670 0.445
DT 55.6 27.8 9.7 4.2 139 7954 0.558 0.421

Table 16. Summary of MMSE regression performance across models.

Algorithm
Dev

Baseline
(%)

CV
Baseline

(%)

Dev
Contrib.

(%)

CV
Contrib.

(%)

Dev
Rank

CV
Rank

Dev
Best

RMSE

CV
Best

RMSE

Lasso 93.6 79.2 12.5 12.9 159 1 1.998 2.076
SVR 72.6 38.3 9.7 6.3 234 3 2.018 2.088
KNNR 96.0 100.0 12.8 16.3 314 43 2.034 2.138
RF 100 98.5 99.8 13.1 16.3 206 62 2.013 2.148
RF 16 97.4 99.7 13.0 16.2 23 104 1.866 2.165
RR 71.2 32.3 9.5 5.3 96 116 1.962 2.169
GBR 90.1 93.6 12.0 15.3 14 166 1.824 2.189
LIR 54.5 17.1 7.3 2.8 4349 291 2.283 2.225
MLP 0.2 0.4 0.0 0.1 9022 3132 2.438 2.324
XGBR 53.2 52.7 7.1 8.6 6 6658 1.801 2.447
DTR 22.5 0.1 3.0 0.0 1 7650 1.658 2.494

3.2.3 Test Set Results

The baseline results for the test set provided by the PROCESS challenge organizers
[50] are presented in Table 17 and Table 18. These results were calculated without any
hyperparameter optimization. Table 9 shows classification performance for the Cookie
Theft, semantic/phonemic fluency (VF), and their combination (CTD+VF) using accuracy,
macro-precision, macro-recall, and macro-F1 score.
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Table 17. Baseline results for the diagnosis task (test).

Model Prompt Acc. Prec. Rec. F1

SVM (eGeMAPS)
CTD 0.575 0.535 0.612 0.550
VF 0.450 0.388 0.391 0.383

CTD+VF 0.500 0.417 0.423 0.417

RF (eGeMAPS)
CTD 0.600 0.717 0.499 0.533
VF 0.525 0.331 0.359 0.339

CTD+VF 0.525 0.661 0.439 0.474

RoBERTa-Classifier
CTD 0.525 0.361 0.397 0.368
VF 0.550 0.356 0.381 0.356

CTD+VF 0.525 0.322 0.359 0.329

In the classification task, the best baseline F1-score of 0.550 was achieved using an SVM
classifier with eGeMAPS features extracted from the CTD task audio. This represents
a substantial improvement over the development set score of 0.393, which may suggest
distributional differences between the datasets or reflect the capacity of eGeMAPS features
to benefit from a larger amount of data. Alternatively, the improvement could stem from
correctly predicting instances of a minority class, which can significantly impact the F1-
score in the presence of class imbalance. Table 18 presents the corresponding regression
results for the same tasks.

Table 18. Baseline results for the MMSE prediction task (test).

Model CT VF CT+VF

SVR (eGeMAPS) 4.40 7.93 6.68
RFR (eGeMAPS) 3.31 3.31 3.17
RoBERTa-Regression 2.99 2.98 2.98

In the MMSE prediction task, the lowest RMSE of 2.98 was achieved by the RoBERTa-
Regression model using transcripts from the Cookie Theft picture description and verbal
fluency recordings. This performance is slightly worse than the development set result
of 2.74. Table 19 and Table 20 present our test set results for the diagnosis and MMSE
prediction tasks respectively.
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Table 19. Classification model performance (test).

Algorithm Combination F1

XGB lengths, mean_age, pft, ctd, ctdp 0.609

MLP
lengths, mean_gender, mean_age, mean_emo, pft, sft, ctd,
ege, ctdp, xvec 0.576

RF 16 mean_gender, mean_age, mean_emo, ege, real_age, xvec 0.457
(Baseline) SVM eGeMAPS (CTD) 0.550

In the classification task, the XGBoost model, using features such as transcript lengths,
mean predicted age, phonemic fluency, macro-descriptors, and CTD pause features,
achieved the highest macro-F1 score of 0.61. The RF 16 and MLP models, which incor-
porated a broader set of features including emotional attributes, macro-descriptors, and
speaker embeddings, achieved macro-F1 scores of 0.46 and 0.58 on the test set, respectively.
It is worth noting that the selection of the MLP model was based on its strong performance
in cross-validation, whereas this was not the case for XGB and RF 16. Interestingly,
models that performed best during cross-validation tended to produce an unusually low
number of predictions for the minority class when evaluated on the test set. To address
this issue, the best-performing regressors were used to predict MMSE scores, which were
then converted into pseudo-labels. Two classification models were selected based on their
macro-F1 scores in predicting these labels.

Table 20. Regression model performance (test).

Algorithm Combination RMSE

Lasso pft, sft, real_age 2.54
KNNR lengths, mean_gender, mean_age, sft 2.88
SVR pft, sft, mean_age 2.97
(Baseline) RoBERTa CTD + PFT + SFT transcripts 2.98

For the regression task, Lasso model, using phonemic fluency, semantic fluency, and real
age, achieved the best performance with an RMSE of 2.54 on the test set. SVR and KNNR,
using different combinations of text-based and demographic features, also performed well
with RMSE values of 2.97 and 2.88 on the test set. Notably, acoustic features, such as
speaker embeddings and emotional attributes, performed better for classification, while
text-based features, such as fluency measures, were more effective for regression.

Our team achieved 3rd place overall in the PROCESS challenge, with a 2nd-place finish in
the regression task and a 5th-place finish in the classification task, out of 36 participating
teams worldwide, demonstrating competitive performance in this domain.
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3.3 Feature Analysis

To better understand which features were most common among the feature set combinations
that outperformed the challenge baselines, a more fine-grained analysis was conducted.
Figures 21 and 22 present the various feature sets, ordered by their frequency of occurrence
in diagnosis and MMSE prediction models that exceeded the development set baselines.
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Figure 21. Occurrence frequency of feature sets beating baselines (diagnosis).
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Figure 22. Occurrence frequency of feature sets beating baselines (MMSE).

In general, for the diagnosis models, the most frequently used feature set is the xvec
AD embeddings, followed by ege — both acoustic features. For the MMSE prediction
models, fluency features and demographic features are the most frequently used features.
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While this information is useful, it does not directly explain whether the frequently used
feature sets were also the ones which achieved the highest performance. Figures 23 and 24
present a better overview of the frequency of occurrence of feature sets in top-N models.
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Figure 23. Top feature set frequencies in diagnosis models.

For the diagnosis task, xvec dominates the top feature sets throughout.
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Figure 24. Top feature set frequencies in MMSE models.
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Interestingly, for the MMSE prediction task, acoustic feature sets drop out relatively early,
with ege not appearing even once in the top 690 results, and xvec not reaching the top
320. Further analysis was conducted to understand the trends of feature sets occurrences.
For this, the features were categorized in two ways. First, based on whether the feature
sets were acoustic, text-based or demographic. Secondly, based on the extraction type of
the features, e.g., latent features represent embedding vectors derived from deep learning
models, such a xvec, semantic features represent features which are also derived from
deep learning models but that have a meaning attached, e.g., mean_emo, mean_age,
mean_gender, and ctd, and concrete features, which are extracted programmatically
and are fully interpretable.

In addition to presenting the raw proportions of each feature type, the weighted proportions
are also presented since the number of feature sets belonging to the different categories are
not equal. Figure 25 and Figure 26 present the raw feature category proportions for both
the diagnosis and MMSE prediction tasks.
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Figure 25. Raw proportions of feature types across Top-N models (data type).

Based on their frequency of occurrence, models for the MMSE prediction task rely more
heavily on text-based and demographic features, whereas classifiers for the diagnosis task
tend to place greater emphasis on acoustic features.
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Figure 26. Raw proportions of feature types across top-N models (extraction type).

When grouping features by their extraction type, we observe that regression models
increasingly favor concrete features among the top-performing configurations, whereas
classifiers show a growing reliance on latent features.

Figure 27 and Figure 28 present the weighted feature category proportions for both tasks.
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Figure 27. Weighted proportions of feature types across top-N models (data type).
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Figure 28. Weighted proportions of feature types across top-N models (extraction type).

It can be noted, that for the diagnosis task the acoustic features are consistently the most
frequently occurring, followed by demographic and text-based features last. In MMSE
prediction this trend is reversed, with demographic and text-based features performing
better, and acoustic features less so. For the diagnosis task, latent features clearly dominate
among the top-performing features. In contrast, for MMSE prediction, concrete features
perform best, followed by semantic features, while latent features appear to be less useful.

Figures 29 and 30 present the raw proportions of feature types for both methods of
categorization for each task separately.
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Figure 29. Diagnosis: Raw proportions of feature types across top-N models.
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Figure 30. MMSE: Raw proportions of feature types across top-N models.
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Finally, Figures 31 and 32 present the weighted proportions of feature types for both
methods of categorization for each task separately, providing clearest insights.
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Figure 31. Diagnosis: Weighted proportions of feature types across top-N models.

2.0
76

2.0
88

2.0
88
2.0

89
2.0

93
2.1

06
2.1

21
2.1

42
2.1

64
2.2

14
2.2

55
2.2

78
2.3

07
2.3

71
2.6

01
2.8

50
17

32
61

.66
7

Mean RMSE at N-th Model

1 2 3 4 5 10 25 50 100 250 500 1K 2K 5K 10K 15K 22K
Top-N Models (log scale)

0

20

40

60

80

100

W
ei

gh
te

d 
Pr

op
or

tio
n 

of
 Fe

at
ur

e 
Ca

te
go

ry
 (%

) acoustic (Feature Type)
demographic (Feature Type)
text-based (Feature Type)
concrete (Extraction Type)
latent (Extraction Type)
semantic (Extraction Type)

Figure 32. MMSE: Weighted proportions of feature types across top-N models.

Latent acoustic features dominate the diagnostic task, while text based and demographic
features are more important for MMSE prediction, and these features tend to be concrete.
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3.4 Interpretability Insights

This subsection provides interpretability insights through the analysis of decision tree splits,
global SHAP feature importances, Lasso coefficients, and Pareto fronts that highlight the
trade-off between model performance and the Joint Interpretability Index.

3.4.1 MMSE Predictions via Decision Tree Logic

To enhance interpretability and clinical relevance, the structure of a regression decision tree
trained to predict MMSE scores from acoustic, demographic, and linguistic features derived
from speech, was analyzed. The tree achieved a RMSE of 1.658 on the development set.
The DTR splits are provided in Appendix 2. Below, a high-level interpretation of the model
logic is provided, highlighting potential relationships between the features and predicted
cognitive status.

Primary Split: Semantic Fluency as a Cognitive Indicator

The first and most influential decision node is based on animals_sft, the number of
animals named in 60 seconds. A threshold of 12.5 words serves as the primary split:

■ Low fluency (≤ 12.5): Suggests cognitive impairment (Mild Cognitive Impairment
or Dementia).

■ Higher fluency (> 12.5): More likely to indicate preserved cognitive function, often
corresponding to Healthy Controls (HC) or high-functioning MCI.

This split aligns with clinical observations that semantic fluency may be among the
earliest and most sensitive indicators of cognitive decline, particularly in Alzheimer’s-type
dementia.

Low Fluency Branch: Characterizing Impairment Severity

Among low-fluency participants, the model refines its prediction using prosodic and
spectral features:

■ spectralFlux_sma3_mean captures the variability in the spectral content of
speech. Lower values (i.e., more monotonous or flat speech) are common in cognitive
decline.

■ When spectral flux is low (≤ 0.13), the model further splits on:
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– mfcc3_sma3_mean:

* ≤ 6.65: Predicts MMSE = 22, typically labeled as MCI.

* > 6.65: Combines with shimmer-based thresholds to predict MMSE =
19–20, usually more consistent with Dementia.

– p_words_pft and F2bandwidth_sma3nz_mean help identify slightly
less impaired participants (MMSE = 25–26).

■ When spectral flux is higher (> 0.13), the model incorporates formant frequencies
and temporal dynamics to distinguish MCI (MMSE = 24–26).

High Fluency Branch: Differentiating Healthy Controls

For participants who named more than 12.5 animals, the model uses subtle acoustic
markers to distinguish between Healthy Controls and MCI:

■ Features such as mfcc2_sma3_mean, count_pauses_sft, formant ampli-
tudes, and shimmerLocaldB_sma3nz_std provide further stratification.

■ MMSE predictions in this branch range from 27 to 30:
– MMSE = 30: Assigned to fluent, prosodically rich speakers with low MFCC2

and stable formant dynamics — typically Healthy Controls.
– MMSE = 27–28: Reflects mild prosodic or articulatory irregularities, consistent

with high-functioning MCI.
■ Pause features (count_pauses_sft) also offer discriminative value:

– Lower pause counts correlate with preserved executive control.
– Higher pause counts or irregular patterns may indicate cognitive slowing or

disorganization.

This decision tree regressor highlights that acoustic features related to voice stability, artic-
ulation, and prosody can serve as effective proxies for cognitive function. The hierarchical
structure of the model captures both broad and nuanced clinical distinctions. Semantic
fluency acts as an early and sensitive screening tool. Voice-based markers help distinguish
between MCI and Dementia, as well as between MCI and healthy aging.

3.4.2 SHAP Feature Importances

Below the SHAP feature importances are given for the best model in cross-validation
setting scoring 0.51 macro-F1 (Figure 33 and 34). That is, MLP Neural Network with
mean_emo, ctdp, xvec. The model relies mainly on latent acoustic features, but also
uses some text-based features such as CTD pause features and other semantic acoustic
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features like the audio based emotional attributes. For comparison, MLP Neural Network,
using only xvec achieved 0.41 macro-F1 in cross-validation.

Figure 33. SHAP summary plot for best diagnosis model (CV).

Figure 34 presents the most impactful features per class. In this visualization, blue bars
indicate that a given feature contributes positively toward membership in the class, while
red bars indicate that higher values of the feature are associated with not belonging to
the class. Several features appear to clearly discriminate between HC and MCI (ad_29,
ad_271, ad_371), AD and MCI (ad_506), and AD and HC (ad_439, ad_480);
interpreting these features in terms of their clinical relevance remains challenging.
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Figure 34. SHAP class-wise feature importances for best diagnosis model (CV).

70



Figure 35 presents the SHAP summary plot for the top 15 features used by the best-
performing test set classifier, XGBoost, trained on the lengths, mean_age, pft, ctd
and ctdp feature sets. In this case it is easier to understand which individual features are
most impactful.

Figure 35. SHAP summary plot for best diagnosis model (test).

Figure 36 gives a class-wise overview of the top features. It can be seen that higher values
of P-words and length of SFT decrease the model’s confidence that the subject has AD.
Surprisingly, here, a higher mean age is also associated with a reduced likelihood of having
AD. More intuitively, reduced coherence and increased word finding difficulties hint at
possible AD. The biggest indicators of a person belonging to the HC class are the lengths
of SFT and CTD transcripts. Interestingly, the more frequent pauses during the CTD
task seem to be associated with this class, perhaps signaling reflection, but pause duration
in CTD and PFT are negatively associated with this class. For MCI, the main features
reducing the likelihood of belonging to this class are lengths of all three tasks as well as
mean predicted age.
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Figure 36. SHAP class-wise feature importances for best diagnosis model (test).

In Figure 37, which presents the SHAP summary plot for the best MMSE prediction
model, Lasso, we can see that the number of animals named during the semantic fluency
task consistently assign higher MMSE to higher word count. The same is true for words
starting with the letter P in the phonemic fluency task. Lower values of real age are
associated with higher MMSE scores. Higher pause count in the semantic fluency task
and number of words not starting with the letter P are associated with reduction in MMSE
score. Interestingly, longest pause in the phonemic fluency task and average pause in the
semantic fluency task are associated with slightly higher MMSE scores. Table 21 also
provides the coefficients of the Lasso model.

Figure 37. SHAP summary plot for best MMSE model (CV and test).
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Table 21. Lasso regression coefficients grouped by sign.

Positive Coefficients Negative Coefficients

Feature Coef. Feature Coef.

animals_sft 0.791 count_pauses_pft -0.000
p_words_pft 0.692 total_pause_sft -0.000
longest_pause_pft 0.125 repeats_sft -0.008
avg_pause_sft 0.056 non_p_words_pft -0.278
avg_pause_pft 0.000 count_pauses_sft -0.377
longest_pause_sft 0.000 real_age -0.660
total_pause_pft 0.000

The Lasso regression model identifies key features that predict cognitive assessment scores
(MMSE) based on phonemic and semantic fluency tasks, as well as participants’ real age.

■ Positive Predictors:
– Semantic fluency: The number of animals named (animals_sft) is the

strongest predictor, with more animals named correlating with higher MMSE
scores.

– Phonemic fluency: The number of words starting with the letter P (p_-
words_pft) also shows a positive relationship with cognitive scores.

■ Pause-related Features:
– Pause length: Both in phonemic and semantic fluency tasks, pause length

shows weak positive associations with MMSE, potentially indicating more
deliberate speech in cognitively healthy individuals.

– Number of pauses: The number of pauses during the semantic fluency task
(count_pauses_sft) is negatively correlated with MMSE, suggesting that
frequent pauses may indicate cognitive decline.

■ Negative Predictors:
– Non-P words in phonemic fluency: The number of non-P words (non_p_-
words_pft) and repeated words in semantic fluency (repeats_sft) have
small negative effects, which could indicate cognitive inefficiency or difficulty
in task execution.

■ Real Age: As expected, age (real_age) is negatively correlated with MMSE,
reflecting the typical cognitive decline with age.

These results demonstrate the importance of both speech fluency and demographic factors
in predicting cognitive health, with semantic fluency being the most predictive feature.
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3.4.3 Pareto Fronts
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Figure 38. Pareto front: Mean F1 score vs JII.

To investigate the relationship between model interpretability and predictive performance
for the diagnosis task (Figure 38), Joint Interpretability Index (JII) scores were computed
for each model–feature set combination using equal weights assigned to each of the three
main components, with their respective subcomponents also uniformly weighted. Symbolic
regression was then applied to approximate the mean macro-F1 score as a function of
the JII for models on the Pareto front. The PySR library [51], which performs symbolic
regression using evolutionary algorithms, was used to derive an interpretable closed-form
expression capturing this relationship.

The input to the model consisted of JII values, while the output was the corresponding
cross-validated mean macro-F1 scores. The symbolic regression was configured with
a maximum of 1500 iterations, utilizing a set of binary operators {+,−,×,÷, pow}
and unary operators {exp, log,

√
·, abs}. Operator complexities were specified to guide

the search toward simpler expressions, and constraints were applied to ensure numerical
stability (e.g., exponent ranges for pow). Model selection was based on a trade-off between
simplicity and predictive accuracy, using PySR’s "best" model selection strategy.

The resulting symbolic expression (3.1) provides an approximation of the relationship
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between F1 score and JII, effectively capturing the trade-off behavior observed along the
Pareto front.

F1 =

∣∣∣∣(0.4479027− 0.2806071

JII

)
(JII − 0.16601114)

∣∣∣∣+ 0.41417393 (3.1)

Figure 39 illustrates the relationship between the JII scores and the corresponding mean
macro-F1 scores for a set of models on the Pareto front. The figure shows two curves: one
connecting the true F1 scores obtained through cross-validation, and another representing
the predicted F1 scores derived from the symbolic regression model given in (3.1). The
symbolic model closely approximates the true performance values, with a RMSE of 0.0045.
This demonstrates the model’s ability to capture the underlying structure of the trade-off
between interpretability (as measured by JII) and predictive performance.
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Figure 39. PySR model approximation of Pareto front (diagnosis).

Table 22 presents the mean F1 Score and corresponding JII values for each algorithm
combination represented on the Pareto front.
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Pareto optimal models, mean macro-F1 vs JII (CV)

Table 22. Pareto optimal models, mean macro-F1 vs. JII (CV).

Algorithm Combination Mean F1 JII

MLP mean_emo, ctdp, xvec 0.511 ± 0.090 0.119
MLP sft, real_age, xvec 0.501 ± 0.084 0.119
MLP mean_gender, mean_age, ctd, ege, ctdp, xvec 0.490 ± 0.101 0.123

MLP
lengths, mean_gender, mean_age, mean_emo,
pft, sft, ctd, ege, real_age, xvec 0.488 ± 0.114 0.125

SVM mean_emo, pft, ege, xvec 0.481 ± 0.087 0.297
SVM mean_age, mean_emo, pft, ege, xvec 0.481 ± 0.085 0.297
SVM lengths, mean_age, pft, ege, xvec 0.479 ± 0.092 0.297
SVM lengths, mean_gender, mean_age, pft, ege, xvec 0.478 ± 0.088 0.297
MLP mean_age, sft 0.477 ± 0.100 0.321
NB mean_age, mean_emo, ctd, ege, real_age 0.462 ± 0.089 0.486
NB mean_gender, mean_age, mean_emo, sft, ege, real_age 0.460 ± 0.084 0.495
NB mean_age, mean_emo, sft, ege, real_age 0.459 ± 0.083 0.496
NB mean_gender, mean_age, sft, ege, real_age, ctdp 0.454 ± 0.085 0.500
NB lengths, mean_age, sft, ege, real_age, ctdp 0.450 ± 0.074 0.501
NB mean_age, mean_emo, pft, sft, ege, real_age, ctdp 0.450 ± 0.077 0.502
NB mean_age, pft, sft, ege, real_age, ctdp 0.446 ± 0.076 0.504
NB lengths, mean_age, pft, sft, ege, real_age, ctdp 0.438 ± 0.074 0.504
LR mean_gender, sft, ctdp 0.423 ± 0.047 0.603
LR sft, ctdp 0.420 ± 0.043 0.612
LR sft 0.417 ± 0.038 0.635

MMSE Prediction

Figures 40 and 41 illustrate the relationship between the Joint Interpretability Index and
the mean RMSE for MMSE prediction across algorithm configurations on the Pareto
front. Two curves are shown: one representing the true RMSE values obtained via cross-
validation, and another depicting the RMSE values predicted by the symbolic regression
model defined in (3.2). The model provides a highly accurate approximation of the
observed data, with a RMSE of 0.0036.

RMSE = −2JII + 6.24188− 0.000495741

JII − 0.69288
− 1.92156

JII
(3.2)

76



0.2 0.4 0.6 0.8 1.0
JII (Joint Interpretability Index)

2.1

2.2

2.3

2.4

2.5

2.6

2.7
M

ea
n 

RM
SE

Pareto Front
Decision Tree
Gradient Boosting
KNN
Lasso Regression
Linear Regression
MLP Neural Network
Random Forest 100
Random Forest 16
Ridge Regression
SVR
XGBoost

Figure 40. Pareto front: Mean RMSE vs JII.

The trade-off is much more pronounced in the diagnosis task, whereas for MMSE predic-
tion, the best-performing models are also among the most interpretable.
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Figure 41. PySR model approximation of Pareto front (MMSE).
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Table 23 presents the mean RMSE and corresponding JII values for each model–feature
set combination represented on the Pareto front.

Table 23. Pareto optimal models, mean RMSE vs. JII (CV).

Algorithm Combination Mean RMSE JII

Lasso pft, sft, real_age 2.076 ± 0.327 0.708
Lasso mean_age, pft, sft, real_age 2.088 ± 0.331 0.710
Lasso lengths, pft, sft, real_age 2.111 ± 0.359 0.720
Lasso lengths, mean_age, pft, sft, real_age 2.125 ± 0.366 0.721
Lasso sft, real_age 2.137 ± 0.317 0.729
Lasso mean_age, sft, real_age 2.147 ± 0.322 0.737
Lasso sft, real_age, ctdp 2.148 ± 0.307 0.739
Lasso mean_age, sft, real_age, ctdp 2.158 ± 0.314 0.741
Ridge real_age 2.318 ± 0.449 0.947
Lasso real_age 2.319 ± 0.454 0.980
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4. Discussion

The primary goal of this research was to evaluate and compare the performance and
interpretability of different machine learning models for detecting cognitive decline through
spontaneous speech. The study focussed on traditional machine learning models, which
were used to classify cognitive status and predict cognitive assessment scores. This
chapter first summarizes the key findings, describes limitations noted, and proposes future
directions.

4.1 Key Findings and Insights

This section summarizes the main findings of the thesis, framed in relation to the three
research questions introduced in Chapter 1. Each research question is addressed in light of
the experimental results and analyses presented in Chapter 3.

RQ1: How do machine learning models, using different combinations of both in-
terpretable features and learned features from pretrained deep learning models,
compare in classifying individuals as healthy, MCI, or dementia and predicting
cognitive assessment scores?

Diagnosis Classification Results: 11 classification algorithms were evaluated across 2,047
different feature set combinations, yielding a total of 22,517 model–feature combinations
for both the development and cross-validation settings. The PROCESS challenge baseline
for classification achieved a macro-F1 score of 0.393; any result above this was considered a
meaningful improvement. 11,750 combinations (52%) outperformed the official PROCESS
challenge baseline on the development set, and 13,619 (60%) outperformed the baseline
under cross-validation. These results, summarized in Table 15 of Section 3.2.2, highlight
how the top-performing algorithms compared in terms of both their frequency of strong
performance and their best F1 scores.

The results show that MLP was consistently among the strongest performers, achieving the
best overall cross-validation macro-F1 score of 0.511, and ranking first in the CV results.
Gradient Boosting yielded the best single development set performance (0.670), though
this did not translate into a similarly strong rank in the CV setting. In fact, despite nearly
70% of feature combinations combined with this model beating the baseline, the best CV
score was only 0.445.
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Interestingly, simpler models such as Naive Bayes and Logistic Regression also demon-
strated robust performance, contributing significantly to the pool of results that beat the
baseline. This suggests that when paired with the right feature sets these models can be
surprisingly competitive.

The overall trend indicates that both neural and ensemble-based models (e.g., MLP, Ran-
dom Forest, Gradient Boosting, XGBoost) frequently performed well across a wide range
of feature configurations. However, despite beating the baselines with majority of fea-
ture set combinations, the cross-validation performance of the ensemble models were
only mediocre, and their advantage in performance often comes at the cost of reduced
interpretability, an issue explored in more detail later in this chapter.

In contrast, the consistency of models like SVM and Logistic Regression across both dev
and CV settings suggests that some degree of robustness can be achieved even with simpler
classifiers. This finding is especially relevant for clinical settings, where interpretability
and stability across datasets may be more valuable than marginal gains in performance.

MMSE Regression Results: For the regression task of predicting Mini-Mental State
Examination scores, 11 regression algorithms were evaluated using the same 2,047 feature
set combinations, resulting in 22,517 evaluations for both the development and cross-
validation settings. The PROCESS challenge baseline for MMSE prediction achieved a
root mean squared error of 2.74, and any model achieving a lower RMSE was considered to
outperform the baseline. 15,351 combinations (68%) outperformed the official PROCESS
challenge baseline on the development set, and 12,554 (56%) outperformed the baseline
under cross-validation. Table 16 summarizes the top-performing algorithms on this task.

In contrast to classification, interpretable models such as Lasso Regression and Ridge
Regression performed exceptionally well. Lasso Regression achieved the best overall
performance in cross-validation with an RMSE of 2.076, and also ranked first overall.
Ridge Regression was similarly competitive, particularly on the development set. Notably,
models like K-Nearest Neighbors and Random Forests also performed consistently well
across both data splits, beating baselines with nearly 100% of feature set combinations.

One notable trend is the alignment between performance and interpretability: the most suc-
cessful models in regression were often also the simpler and more transparent algorithms.
For instance, Lasso and Ridge Regression, known for their explainability and feature
sparsity, outperformed more complex models such as neural networks and XGBoost in
cross-validation settings, with MLP beating baselines with only 0.4% of all feature-set
combinations.
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Interestingly, although Decision Trees achieved the single lowest RMSE (1.658) on the
development set, this result did not generalize well to cross-validation, where its perfor-
mance degraded substantially (2.494 RMSE). This suggests that some of the most striking
individual results may not reflect reliable or generalizable performance.

In contrast to the classification task, the regression results point to a more favorable
relationship between model transparency and accuracy. Interpretable models were not
only competitive, but often superior, highlighting the potential for clinically meaningful
cognitive score prediction that does not rely on opaque or black-box architectures.

These findings support a more optimistic outlook for deploying interpretable regression
models in remote cognitive health screening, particularly when used to estimate test scores
like MMSE from spontaneous speech features.

RQ2: Which acoustic, text-based, and demographic features—either automatically
extracted or produced through deep learning—are most indicative of cognitive decline,
and how do they contribute to model decisions for both classification and regression
tasks?

To determine which features are most indicative of cognitive decline, a detailed analysis was
performed across both classification (diagnosis) and regression (MMSE score prediction)
tasks. The features considered fell into three broad categories—acoustic, text-based,
and demographic—and were further subdivided based on their method of derivation:
latent features (e.g., deep learning embeddings such as xvec), semantic features (semi-
interpretable outputs from deep models, such as mean_emo or ctdp), and concrete
features (directly interpretable, rule-based descriptors such as word counts, pauses, or
demographic attributes).

In the classification task focused on diagnosing cognitive impairment, latent acoustic
features were the most frequently employed and the most impactful. Notably, the xvec
embeddings derived from deep neural models were not only widely used but also dominated
the top-performing feature combinations. These embeddings may encapsulate complex
acoustic information, capturing subtle voice characteristics associated with cognitive
decline. The effectiveness of these features is evidenced by the performance of neural
network models such as MLPs, which relied heavily on xvec, as well as supplementary
semantic features like audio-based emotion representations and fluency-related pause
features.

In contrast, for the regression task aimed at predicting MMSE scores, the feature land-
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scape shifted markedly. Here, concrete and semantic features outperformed latent ones.
Semantic and phonemic fluency tasks emerged as the most powerful indicators of cognitive
performance. Among these, the number of animals named in a 60-second semantic fluency
task (animals_sft) proved to be the single strongest predictor of MMSE, aligning
with clinical observations that reduced semantic fluency often appears early in cognitive
impairment. The number of words beginning with the letter P in the phonemic fluency task
(p_words_pft) also showed a strong positive correlation with MMSE scores.

Additional predictive power came from acoustic features that reflected voice quality
and articulation, such as spectral flux, MFCC coefficients, and shimmer. These were
particularly effective in distinguishing between levels of impairment, especially when
combined with temporal and prosodic dynamics. For instance, more monotonous or
spectrally flat speech (low spectral flux) was commonly associated with more severe
cognitive decline. These features contributed to models’ ability to differentiate between
dementia, MCI, and healthy aging. Interestingly, the xvec was less performant in the
regression task. However, given that these embeddings were trained for the classification
task, and considering the distributional difference of MMSE scores across datasets (see
Figure 16), the prediction of MMSE scores based on embeddings indicative of diagnostic
labels may be too inaccurate to achieve good RMSE.

Demographic variables, particularly real age, also played a consistent role in the regression
models. As expected, increased age correlated negatively with MMSE scores. However,
some classification models yielded counterintuitive findings—such as higher predicted age
being associated with a reduced likelihood of Alzheimer’s dementia—suggesting possible
confounds or data distribution imbalances that warrant further investigation.

Overall, the analyses indicate that feature importance is task-specific. Latent acoustic
features such as xvec are highly effective for classification-based diagnosis, likely due
to their ability to capture complex speech patterns in an abstract form. Conversely, in the
MMSE regression task, interpretable features derived from fluency tasks and prosodic
characteristics not only perform better but also align more naturally with clinical reasoning.
This duality highlights the importance of adapting feature selection strategies to the goals
of the predictive model—whether it aims for high sensitivity in diagnosis or detailed,
interpretable assessment of cognitive scores.

RQ3: What is the trade-off between model performance and interpretability for the
diagnosis and cognitive assessment score prediction tasks?

The trade-off between model performance and interpretability was a central theme in
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evaluating approaches to both diagnosis and cognitive assessment score prediction tasks.
This tension is particularly salient in health-related applications, where high predictive
accuracy must often be balanced against the need for transparent, clinically meaningful
explanations.

In the diagnosis task, the most accurate models—especially those relying on latent acous-
tic embeddings such as xvec—generally exhibited low interpretability. These features,
derived from deep learning models, may capture rich paralinguistic information but of-
fer limited transparency regarding the specific speech characteristics that drive model
decisions. For instance, a Multilayer Perceptron using xvec embeddings achieved a
respectable macro-F1 score of 0.41 in cross-validation. When additional semantic and
pause-based features (e.g., mean_emo, ctdp) were incorporated, this score improved to
0.51, but the underlying feature representations and interactions remained largely opaque.
SHAP analyses of these models revealed class-specific patterns of influence, but the inter-
pretability of these patterns remained challenging due to the abstract nature of the latent
features.

In contrast, for MMSE score prediction, interpretability and predictive utility appeared
more aligned. Concrete features such as word counts from structured fluency tasks,
prosodic attributes (e.g., pause durations), and demographic variables not only improved
model transparency but also contributed substantially to predictive performance. For
example, the Decision Tree Regressor, which uses interpretable thresholds based on
features like animals_sft (semantic fluency), spectralFlux_sma3_mean, and
mfcc3_sma3_mean, achieved a RMSE of 1.658 on the development set. This model
structure allows clinicians to trace individual predictions back to clinically interpretable
splits, such as the number of animals named or changes in vocal spectral dynamics.

Further insights were provided by Lasso Regression and SHAP analyses. These revealed
that higher scores in semantic and phonemic fluency tasks (e.g., animals_sft, p_-
words_pft) and lower real age were positively associated with MMSE, while increased
pause counts and use of incorrect or repeated words were negatively associated. Impor-
tantly, these relationships are both statistically significant and clinically plausible, further
reinforcing the value of interpretable models in regression tasks.

A formal Pareto front analysis using the Joint Interpretability Index reinforced these
findings. For classification, models achieving the highest accuracy were typically the
least interpretable, illustrating a clear trade-off. However, in the regression setting, the
most interpretable model–feature set combinations were also among the best-performing,
suggesting a more harmonious relationship between interpretability and utility when
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predicting continuous cognitive scores.

While the macro-F1 score of 51% in cross-validation may appear modest, it was achieved
under rigorous and systematic evaluation. This value is arguably a more robust indicator of
model generalizability than single-split evaluations. Model performance was higher on the
development set (67%) and test set (61%). The performance of the challenge organizers’
top model improved from 39% on the development set to 55% on the test set. These trends
suggest potential distributional differences between splits. As such, the cross-validation
result may serve as a conservative estimate of real-world performance. Moreover, the
achievable upper bound for classification accuracy in this domain remains unknown. It is
plausible that spontaneous speech alone may not encode sufficient signal to support very
high performance, and that the 51% result already approaches a meaningful limit under
current conditions.

In conclusion, while classification models benefit from complex, latent representations that
maximize predictive accuracy, they sacrifice interpretability—a critical concern in clinical
decision-making. By contrast, regression models aimed at predicting MMSE scores can
leverage interpretable features without compromising performance, offering a promising
direction for developing transparent and clinically relevant tools for cognitive monitoring.

4.2 Limitations

Several limitations should be acknowledged in interpreting the results of this study. First, a
lack of transparency in the data collection process for the PROCESS dataset introduces
uncertainty regarding the temporal relationship between the speech recordings and cog-
nitive assessments. Despite direct inquiries to the dataset authors, it remained unclear
whether the MMSE scores and clinical diagnoses were determined before or after the
speech recordings. If participants’ diagnoses were known beforehand, it is possible that
the recording sessions were not diagnostic-naive, weakening the causal link between
speech behavior and assessment outcomes. A more robust experimental design would
have involved collecting speech first and then administering cognitive assessments, thereby
validating the use of speech as a predictive input.

Second, although external datasets were considered for augmentation and comparison,
their integration was limited due to distributional mismatches with the PROCESS dataset.
These discrepancies—in recording conditions, elicitation tasks, and speaker demograph-
ics—undermined their usefulness for direct model training or evaluation. The inclusion of
even well-curated external data requires careful alignment, and in this study, their role was
necessarily constrained to feature-specific augmentation.
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Third, the observed differences between development and test set performance raise
concerns about dataset shift and representativeness. The limited number of allowed test
submissions and lack of access to test set labels prevented in-depth evaluation, making it
impossible to fully analyze or explain these differences.

Finally, it is important to note that the theoretical performance ceiling of speech-based
cognitive assessment is unknown. While a macro-F1 of 51% in CV may not suffice for
clinical application, it is not clear how much of the cognitive signal is encoded in speech
alone. Future work may reveal that such results already approximate the upper limit of
what is possible using unimodal speech data.

4.3 Future Work

Several future research directions arise from the limitations and findings of this thesis.
First, clearer documentation of dataset collection protocols is essential. In particular, the
relationship between speech recordings and cognitive assessments remains ambiguous
across current datasets. Future work should prioritize more consistent and purpose-driven
data collection designs, where speech is gathered as a direct input to cognitive scoring
rather than as an auxiliary measure after scrores and diagnoses are already established.

More general and adaptable modeling strategies could also be explored. Task-agnostic
and language-agnostic approaches may help build models that generalize better across
different populations, cognitive tasks, and data sources. This direction naturally connects
with the integration of additional non-invasive behavioral modalities—such as handwriting,
gaze tracking, or digital interaction patterns—which may encode complementary cognitive
signals and contribute to more robust and comprehensive screening systems.

Interpretability remains an important consideration, particularly in clinical contexts where
it can support trust and decision-making. The success of transparent models in MMSE
prediction suggests that future work could aim for outputs that are more aligned with
clinical reasoning, ideally developed in collaboration with healthcare professionals. At
the same time, the potential and limitations of speech-based cognitive assessment remain
uncertain. Rather than relying on standard tests like the MMSE—which draw on a
variety of cognitive skills—future research could explore the creation of new, speech-
based assessment tasks designed specifically for remote data collection and well-suited to
automated analysis.

Together, these directions support a research agenda focused not only on improving
performance, but also on enhancing generalizability, interpretability, and clinical relevance.
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5. Summary

This thesis explored the use of machine learning to detect cognitive decline from spon-
taneous speech, focusing on model performance and interpretability. The motivation
stemmed from the growing need for scalable, non-invasive tools to aid in detecting condi-
tions like mild cognitive impairment and Alzheimer’s dementia—where timely diagnosis is
critical for improving patient outcomes. Speech, as a reflection of early signs of cognitive
deterioration, serves as a promising modality for such assessments.

The research combined traditional interpretable features—such as fluency and pause
metrics—with deep learning-derived acoustic and textual representations. These were used
to train machine learning models for two tasks: classifying cognitive status and predicting
Mini-Mental State Examination scores. A novel Joint Interpretability Index was introduced
to assess the trade-offs between model performance and interpretability, aiming to identify
models suitable not just for high accuracy but also for potential clinical deployment.

A comprehensive experimental framework was applied using the PROCESS dataset, sup-
plemented with external corpora for selective augmentation. Extensive cross-validation
was performed to evaluate model robustness across a wide range of feature set combi-
nations and model types. The results showed that acoustic features derived from deep
learning models provided the greatest benefit for classification, distinguishing between
healthy individuals, mild cognitive impairment, and dementia. In contrast, interpretable
features—such as semantic fluency, pause frequency, and demographic variables—were
more effective in the regression task of predicting Mini-Mental State Examination scores.

Pareto front analysis using the Joint Interpretability Index revealed distinct trends across
tasks. In classification, higher accuracy typically required more complex and less inter-
pretable models and feature sets. However, for regression, the best-performing models
were also among the most interpretable, suggesting that clinical utility may be more feasi-
ble in score prediction tasks. These findings emphasize the importance of considering not
only accuracy but also transparency when designing models for sensitive applications like
cognitive health screening.

Overall, this study contributes a structured approach to evaluating the dual objectives of
performance and interpretability in speech-based cognitive decline detection and provides
a foundation for future development of clinically viable remote screening tools.
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Appendix 2 - Decision Tree Splits
D e c i s i o n Tree R g r e s s o r wi th s f t p f t ege .

RMSE on deve lopment s e t : 1 . 6 5 8 .

| − − − a n i m a l s _ s f t <= 12 .50

| | − − − s p e c t r a l F l u x _ s m a 3 _ m e a n <= 0 . 1 3

| | | − − − p _ w o r d s _ p f t <= 12 .50

| | | | − − − mfcc3_sma3_mean <= 6 . 6 5

| | | | | − − − v a l u e : [ 2 2 . 0 0 ]

| | | | − − − mfcc3_sma3_mean > 6 . 6 5

| | | | | − − − shimmerLocaldB_sma3nz_s td <= 0 . 7 2

| | | | | | − − − v a l u e : [ 1 9 . 0 0 ]

| | | | | − − − shimmerLocaldB_sma3nz_s td > 0 . 7 2

| | | | | | − − − v a l u e : [ 2 0 . 0 0 ]

| | | − − − p _ w o r d s _ p f t > 12 .50

| | | | − − − F2bandwidth_sma3nz_mean <= 1097 .53

| | | | | − − − v a l u e : [ 2 6 . 0 0 ]

| | | | − − − F2bandwidth_sma3nz_mean > 1097 .53

| | | | | − − − v a l u e : [ 2 5 . 0 0 ]

| | − − − s p e c t r a l F l u x _ s m a 3 _ m e a n > 0 . 1 3

| | | − − − a l p h a R a t i o _ s m a 3 _ s t d <= 14 .77

| | | | − − − F1frequency_sma3nz_mean <= 717 .60

| | | | | − − − s lope500 −1500 _sma3_mean <= −0.01

| | | | | | − − − v a l u e : [ 2 4 . 0 0 ]

| | | | | − − − s lope500 −1500 _sma3_mean > −0.01

| | | | | | − − − v a l u e : [ 2 5 . 0 0 ]

| | | | − − − F1frequency_sma3nz_mean > 717 .60

| | | | | − − − v a l u e : [ 2 6 . 0 0 ]

| | | − − − a l p h a R a t i o _ s m a 3 _ s t d > 14 .77

| | | | − − − t o t a l _ p a u s e _ s f t <= 21 .00

| | | | | − − − F2bandwid th_sma3nz_s td <= 448 .71

| | | | | | − − − v a l u e : [ 2 8 . 0 0 ]

| | | | | − − − F2bandwid th_sma3nz_s td > 448 .71

| | | | | | − − − v a l u e : [ 2 7 . 0 0 ]

| | | | − − − t o t a l _ p a u s e _ s f t > 21 .00

| | | | | − − − v a l u e : [ 2 9 . 0 0 ]

| − − − a n i m a l s _ s f t > 12 .50

| | − − − s p e c t r a l F l u x _ s m a 3 _ m e a n <= 0 . 1 0

| | | − − − F2ampl i tudeLogRelF0_sma3nz_s td <= 82 .31

| | | | − − − v a l u e : [ 2 6 . 0 0 ]
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| | | − − − F2ampl i tudeLogRelF0_sma3nz_s td > 82 .31

| | | | − − − v a l u e : [ 2 3 . 0 0 ]

| | − − − s p e c t r a l F l u x _ s m a 3 _ m e a n > 0 . 1 0

| | | − − − c o u n t _ p a u s e s _ s f t <= 3 . 5 0

| | | | − − − mfcc2_sma3_mean <= −0.26

| | | | | − − − F1ampl i tudeLogRelF0_sma3nz_s td <= 99 .39

| | | | | | − − − v a l u e : [ 3 0 . 0 0 ]

| | | | | − − − F1ampl i tudeLogRelF0_sma3nz_s td > 99 .39

| | | | | | − − − v a l u e : [ 2 9 . 0 0 ]

| | | | − − − mfcc2_sma3_mean > −0.26

| | | | | − − − a n i m a l s _ s f t <= 19 .00

| | | | | | − − − F1bandwidth_sma3nz_mean <= 1290 .57

| | | | | | | − − − v a l u e : [ 2 7 . 0 0 ]

| | | | | | − − − F1bandwidth_sma3nz_mean > 1290 .57

| | | | | | | − − − hammarbergIndex_sma3_mean <= 24 .41

| | | | | | | | − − − v a l u e : [ 2 8 . 0 0 ]

| | | | | | | − − − hammarbergIndex_sma3_mean > 24 .41

| | | | | | | | − − − v a l u e : [ 2 9 . 0 0 ]

| | | | | − − − a n i m a l s _ s f t > 19 .00

| | | | | | − − − F2ampl i tudeLogRelF0_sma3nz_s td <= 94 .84

| | | | | | | − − − shimmerLocaldB_sma3nz_s td <= 0 . 7 8

| | | | | | | | − − − mfcc1_sma3_mean <= 15 .35

| | | | | | | | | − − − v a l u e : [ 2 9 . 0 0 ]

| | | | | | | | − − − mfcc1_sma3_mean > 15 .35

| | | | | | | | | − − − v a l u e : [ 2 8 . 0 0 ]

| | | | | | | − − − shimmerLocaldB_sma3nz_s td > 0 . 7 8

| | | | | | | | − − − v a l u e : [ 2 9 . 0 0 ]

| | | | | | − − − F2ampl i tudeLogRelF0_sma3nz_s td > 94 .84

| | | | | | | − − − mfcc4_sma3_std <= 15 .84

| | | | | | | | − − − v a l u e : [ 2 7 . 0 0 ]

| | | | | | | − − − mfcc4_sma3_std > 15 .84

| | | | | | | | − − − v a l u e : [ 2 8 . 0 0 ]

| | | − − − c o u n t _ p a u s e s _ s f t > 3 . 5 0

| | | | − − − F3ampli tudeLogRelF0_sma3nz_mean <= −136.52

| | | | | − − − v a l u e : [ 2 5 . 0 0 ]

| | | | − − − F3ampli tudeLogRelF0_sma3nz_mean > −136.52

| | | | | − − − c o u n t _ p a u s e s _ s f t <= 8 . 5 0

| | | | | | − − − v a l u e : [ 2 8 . 0 0 ]

| | | | | − − − c o u n t _ p a u s e s _ s f t > 8 . 5 0

| | | | | | − − − v a l u e : [ 2 7 . 0 0 ]
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