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1 Introduction

Immense development of technology has led us to an era where computer
electronics is part of virtually everything. New data from Juniper Research has
revealed that the number of IoT (Internet of Things) connected devices will
number 38.5 billion in 2020, up from 13.4 billion in 2015: a rise of over 285%
(Juniper Research, 2015).

One thing common to all of those devices is that everyone expects them to
work. And not only work but do it in a way that is useful for us. In other words do
their job like they are supposed to. As devices and systems have grown extremely
complex, it is not an easy task to make it happen. For example the IBM z13
microprocessor consists of 7.1 billion transistors (Warnock, J., 2015). The fact
that technology evolves with every passing day makes things even worse because
it is difficult to come up with new and better solutions with the same pace.

The increasing complexity of devices has resulted in emergence of the design
methodologies at higher levels of abstraction such as Register-Transfer Level
(RTL) and Electronic System Level (ESL).

This Thesis focuses on verification and design error correction at high
abstraction levels in order to contend the challenges mentioned above. The
underlying method applied is mutation analysis.

1.1 Verification of computing systems

With the growth of the complexity and extensive usage of computing systems the
importance of verification has risen greatly. Nowadays electronics is applied
everywhere — from pets to space technology. Failures in electronics range from
merely being annoying to the loss of lives in extreme cases. Some examples of
major accidents and incidents are described in the following paragraphs.

For example, from the middle of 1985 to January 1987, lack of verification led
to the death of several people. It was caused by a computer-controlled radiation
therapy machine, called the Therac-25, which massively overdosed at least six
people with radiation. Some patients died and others received serious injuries.
These accidents are known as the worst in the 35-year history of medical
accelerators (Leveson N., 1995).

Widely known example is the bug in Intel Pentium processor that was
discovered in May 1994. It became known as Pentium FDIV bug as the bug
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appeared in floating-point division. At first Intel claimed the bug would affect
only a few users but later studies had worse estimations. Public pressure led Intel
to note that everyone who complains will get a replacement processor. The cost
of replacement was $475 million (Nicely T., 2011).

On the morning of 4 June 1996 the flight of Ariane 5 launcher ended up with
complete disintegration. About 40 seconds after the launch, the launcher veered
off its flight path, broke up and exploded. The use of Ariane 4 software caused the
accident due to the differences in early part trajectory of Ariane 5 compared to
Ariane 4. This was not taken into account during the development of the software.
More particularly, data conversion from 64-bit floating point to 16-bit signed
integer value resulted in an operand error that ended up with the explosion of the
launcher. Fortunately, no one was injured in the accident. Cost of the accident was
at least $370 million (Lions J. L., 1996; Dowson M., 1997).

Sometimes it is very important to verify all corner cases. Although they might
be unlikely to happen, the lack of verification might easily end up in loss of lives.
Such thing happened in Panama between August 2000 and March 2001 with the
loss of at least 17 people. The users of computerized treatment planning system
who found an alternative configuration method to fulfil their needs caused this.
As computer output gave the impression that the calculation results were correct,
no one suspected anything. The result was that patients received a proportionately
higher dose of radiation than prescribed. 28 patients in total were involved before
mistreatment was stopped (Mettler F.A. Jr., Ortiz Lopez P., et.al., 2001).

Toyota has made several recalls due to software bugs. In February 2010,
Toyota called back 397,000 vehicles worldwide to fix an anti-lock brake software
glitch and in 2005, Toyota repaired 75,000 Priuses to fix software glitches that
caused the engine to stall (Manning S., Krisher T., 2010). Last recall was in
February 2014 when 1.9 million third-generation Prius cars were recalled due to
a programming glitch in their hybrid system. The setting of the software could
cause higher thermal stress in certain transistors within the booster converter,
resulting with deformation or damage to the transistors, which could end up with
the hybrid system’s shut down and the vehicle stopping suddenly (Kim C.-R.,
2014).

Finally, there are bugs that have been present for a long time but no one has
noticed them despite the fact that software is open-source. Good examples are
Shellshock and Heartbleed, which were present for almost 20 years in millions of
devices. It is something on a completely different scale. Compared to previous car
industry examples, it is like understanding that tires are fundamentally flawed and
all of them need a fix (CNN Money, 2014).

All these examples have one thing in common. They might have not happened
if more advanced verification methods had been used.
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In 1965 Gordon E. Moore wrote that the complexity for minimum component
cost has increased at a rate of roughly a factor of two per year and there is no
reason to believe it will not remain constant for at least 10 years. Moore revisited
the subject ten years later and redrew his plot of component densities by a gentler
slope, one in which density doubled every 18 months. Shortly after this, his plot
was dubbed Moore’s Law. A simple extrapolation from a simple observation has
remained true throughout the decades (Schaller R. R., 1997).

The vast progress in the semiconductor industry has led to 10 nm technology
node that raises gate density to over 6 million per square millimeter compared to
roughly 190 transistors per mm? inside Intel 4004 microprocessor in 1971 (ITRS,
2013; Computer History Museum, 2015).

The complexity and cost of design and verification of integrated circuits have
rapidly increased to the point where thousands of engineer-years (and a design
team of hundreds) are devoted to a single design, yet processors reach market with
hundreds of bugs. This aspect is leading to decreasing emphasis on heavy
customization and exotic circuit topologies, and increasing use of design
automation tools such as logic synthesis and automatic circuit tuning. The
resulting productivity increases have allowed processor development schedules
and team sizes to flatten out. Improvements in tools for analysis of timing, noise
and power, and for verification of physical and electrical design rules, have also
contributed to a steady increase in design quality (ITRS, 2013).

An important message in the ITRS roadmap (ITRS, 2013) is that design cost
is the greatest threat to continuation of the semiconductor industry’s phenomenal
growth. According to Intel, a 1981 leading edge chip required 100 designer
months, contained 10,000 transistors, which makes 100 transistors per month. A
2002 leading edge chip required already 30,000 designer months and it contains
150,000,000 making it 5000 transistors/month. However, the design costs have
increased from $1M to $300M during the same period. Thus, the chip
development capacity has increased 50 times, and design costs have increased 300
times at the same time. The same trend has continued over the recent years.

This dramatic increase in cost has mainly been due to the fact that traditionally
the IC capacity has grown 58 %/ year, while the designer’s productivity grows
only 21 % annually. The phenomenon is shown in Figure 1.1, and it is known as
the design productivity gap (Keutzer K., Newton R., 2015). It is the productivity
gap that pushes the chip-making companies to exploit more and more engineering
resources in order to reach the limits of what can be achieved in modern
technology resulting in ever-increasing costs. Obviously, this gap could be
contended and costs reduced only if more effective design approaches would be
developed in the future to increase designer’s productivity.
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Figure 1.1. Design productivity gap

1.2 Error localization and correction

Designing a microelectronic chip is a very expensive task and excessive design
costs are the greatest threat to the continuation of the semiconductor industry’s
growth. In order to contain this threat, the increasing gap between the complexity
of new systems and the productivity of system design methods must be mitigated
by developing new and more efficient design methods and tools. Functional
correctness of systems is becoming ever more difficult to attain and it is becoming
the main bottleneck in the systems’ development process. Better verification
techniques must be the focus in research and development if one wants to keep
increasing the scale of electronics design. Detection of mistakes, however, offers
only a partial solution to the correctness issue. Once that has been ascertained, the
difficult task of discovering the sources of mistakes (faults) and subsequently
locating and correcting them remains (Ubar R., Raik J., Vierhaus H. T., 2011).

It is a well-acknowledged fact that verification is forming a major part in the
total product design cycle (Lam W. K., 2005), and this trend is increasing. At the
same time when there have been numerous research works on verification
methods identifying the occurrences of errors, the problem of diagnosing the
causes of errors and correcting them has been largely neglected. Yet a large part
of the verification cycle is consumed inside the design loops between debugging
and correction. It is estimated that fault location and correction constitute roughly
a half of the total time spent on verification and debug (FP6 PROSYD, 2004).
Verification and debug (i.e. assuring the correctness of the design), in turn,
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represent the main reason of the excessive costs accounting for about 70 % of
design expenses (Lam W. K., 2005). Location and correction costs therefore form
about 1/3 of the total design time. Figure 1.2 visualizes the amount of time spent
on specification, design, fault detection, location, and correction in a typical
design process (FP6 PROSYD, 2004; Ubar R., 2011).

Figure 1.2. Time spent on different tasks in a design process

Every design must be verified throughout the whole design process in order to
make sure that that the functionality matches the specification. In case too little
effort is spent on verification, the results may be disastrous as the outcome might
behave completely different from what was expected.

There are several methods for the task. Depending on the abstraction level they
may additionally vary. The current Thesis focuses on using mutation analysis as
one possible solution to the problem. Mutation analysis is addressed on two
abstraction levels — Register-Transfer Level (RTL) and Electronic System Level
(ESL).

In the traditional debug flow (Figure 1.3) a designer gets feedback from
verification tools in form of counter-examples. On one hand, the designer is faced
with too much information contained in the large counter-examples. On the other
hand, there is not enough information in order to unambiguously locate the bug.
As manual bug localization is very time-consuming it should be automated.

Specification
Counter-
Design ' examples,
Designer failed
: assertions,
Verification [«

Error

Figure 1.3. Traditional debug flow
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Automation of the debug process consists of two steps. Once it is clear that the
design and specification are not the same, or in other words, there is an error in
the design, only one step is done. It must be followed by another one, which
usually is error localization. After locating the error, the work is still not finished
because generally it is reasonable to try and fix the error (Figure 1.4). Mutations
can help here as every mutation can be viewed as a possible fix from the design
view. The current Thesis addresses this topic and provides solutions on two
abstraction levels — RTL and ESL.

Specification
Corrected
Design design, repair
Designer log, ...
A
Verification |«
Error N Error
localization correction

Figure 1.4. Automated debug flow

1.3 Main contributions

The main contribution of the Thesis is to propose new tools, case studies and
methods to enable the designer automatically locate hard-to-detect bugs thereby
offering solutions to save time and effort in integrated circuit design.

The contributions of this Thesis are:

e A new tool for mutation testing in hardware description languages
using HLDDs.

e A new method to automatically inject faults into the functionality of
system descriptions that performs mutation analysis at different
abstraction levels.
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e A case study of automatic localization of design errors (bugs) in
processor designs.

e A method for statistical localization and mutation-based correction of
design errors at the source-level of hardware description language
code using HLDDs.

e A method for mutation-based correction of design errors in
algorithmic descriptions of system-level hardware.

1.4 Outline of the Thesis

The presented Thesis is organized into four chapters. The introductory chapter is
followed by background information with overview of functional verification,
mutation analysis, design error correction, high-level decision diagrams and ESL
modelling in SystemC.

The third chapter is divided into two main topics. In the first part mutation
analysis is applied to high-level decision diagrams via an automated tool. The
second part concentrates on mutation analysis at higher abstraction level with
comparison of the two levels. Both methods are supported by experimental results.

The fourth chapter begins with design error correction at lower RTL level with
thorough focus of backtrace, localization and correction. It is followed by an
automated tool for design error correction at higher abstraction level.

Finally conclusions are presented.
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2 Background

This Chapter provides the background for the topics that form the basis of the
developments in the Thesis. The topics include functional verification, mutation
analysis, error localization and correction, high-level decision diagrams and ESL
modeling in SystemC.

2.1 Functional verification

A design process transforms a set of specifications into an implementation of the
specifications. At the specification level, the specifications state the functionality
that the design executes but do not indicate how it executes. An implementation
of the specifications spells out the details of how the functionality is provided.
Both a specification and an implementation are a form of description of
functionality, but they have different levels of concreteness or abstraction. A
description of a higher level of abstraction has fewer details; thus, a specification
has a higher level of abstraction than an implementation. In an abstraction
spectrum of design, a decreasing order of abstraction is seen: functional
specification, algorithmic description, register-transfer level (RTL), gate netlist,
transistor netlist, and layout (Figure 2.1). Along this spectrum a description at any
level can give rise to many forms of a description at a lower level. For instance,
an infinite number of circuits at the gate level implements the same RTL
description. When moving down the ladder, a less abstract description adds more
details while preserving the descriptions at higher levels. The process of turning a
more abstract description into a more concrete description is called refinement.
Therefore, a design process refines a set of specifications and produces various
levels of concrete implementations (Lam W. K., 2005).

Design verification is the reverse process of design. Design verification starts
with an implementation and confirms that the implementation meets its
specifications. Thus, at every step of design, there is a corresponding verification
step. For example, a design step that turns a functional specification into an
algorithmic implementation requires a verification step to ensure that the
algorithm performs the functionality in the specification. Similarly, a physical
design that produces a layout from a gate netlist has to be verified to ensure that
the layout corresponds to the gate netlist. In general, design verification
encompasses many areas, such as functional verification, timing verification,
layout verification, and electrical verification, just to name a few. In this Thesis
only functional verification is considered and referred to as design verification.
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Figure 2.2 shows the relationship between the design process and the verification
process.

On a finer scope, design verification can be further classified into two types.
The first type verifies that two versions of design are functionally equivalent. This
type of verification is called equivalence checking. One common scenario of
equivalence checking is comparing two versions of circuits at the same abstraction
level. For instance, compare the gate netlist of a prescan circuit with its postscan
version to ensure that the two are equivalent under normal operating mode (Lam
W. K., 2005).

Design flow

Higher Functional specification Less

!

Algorithmic description
RTL
Abstraction i Details
Gate netlist

!

Transistor netlist

v i v

Lower Physical layout More

Figure 2.1. A ladder of design abstraction

However, the two versions of the design differ with regard to abstraction level.
For example, one version of the design is at the level of specification and the other
version is at the gate netlist level. When the two versions differ substantially with
regard to the level of abstraction, they may not be functionally equivalent, because
the lower level implementation may contain more details than allowed, but that
are unspecified, at the higher level. For example, an implementation may contain
timing constraints that are not part of the original specification. In this situation,
instead of verifying the functional equivalence of the two versions, it is verified
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whether the implementation satisfies the specifications. Note that equivalence
checking is two-way verification, but this is a one-way verification because a
specification may not satisfy an unspecified feature in the implementation. This
type of verification is known as implementation verification, property checking,
or model checking. Based on the terminology of property checking, the
specifications are properties that the implementation must satisfy. Based on the
terminology of model checking, the implementation or design is a model of the
circuit and the specifications are properties. Hence, model checking means
checking the model against the properties.

There are two types of design errors. The first type of error exists not in the
specifications but in the implementations, and it is introduced during the
implementation process. An example is human error in interpreting design
functionality. To prevent this type of error, one can use a software program to
synthesize an implementation directly from the specifications. Although this
approach eliminates most human errors, errors can still result from bugs in the
software program, or usage errors of the software program may be encountered.
Furthermore, this synthesis approach is rather limited in practice for two reasons.
First, many specifications are in the form of casual conversational language, such
as English, as opposed to a form of precise mathematical language, such as
Verilog or C++. It is known that automatic synthesis from a loose language is
infeasible. Second, even if the specifications are written in a precise mathematical
language, few synthesis software programs can produce implementations that
meet all requirements. Usually, the software program synthesizes from a set of
functional specifications but fails to meet timing requirements (Lam W. K., 2005).

Specifications 4—
l does it meet the spec? T
. . P
Microarchitecture 4 — }ZOPIS?Y
l does it implement the checking
microarchitecture? __~
Design RTL 4¢— Verification
l are they equivalent? )
Gate netlist 4 _Equlval‘ence
checking
i are they equivalent? J
v Layout —

Figure 2.2. Relationship between the design and the verification processes
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A more widely used method to uncover errors of this type is through
redundancy. That is, the same specifications are implemented two or more times
using different approaches, and the results of the approaches are compared. In
theory, the more times and the more different ways the specifications are
implemented, the higher the confidence produced by the verification. In practice,
more than two approaches are rarely used, because more errors can be introduced
in each alternative verification, and costs and time can be insurmountable.

The design process can be regarded as a path that transforms a set of
specifications into an implementation. The basic principle behind verification
consists of two steps. During the first step, there is a transformation from
specifications to an implementation. Let us call this step verification
transformation. During the second step, the result from the verification is
compared with the result from the design to detect any errors. This is illustrated
in Figure 2.3 (A). Oftentimes, the result from a verification transformation takes
place in the head of a verification engineer, and takes the form of the properties
deduced from the specifications. For instance, the expected result for a simulation
input vector is calculated by a verification engineer based on the specifications
and is an alternative implementation (Lam W. K., 2005).
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Figure 2.3. The basic principle of design verification
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Obviously, if verification engineers go through the exact same procedures as
the design engineers, both the design and verification engineers are likely to arrive
at the same conclusions, avoiding and committing the same errors. Therefore, the
more different the design and verification paths, the higher confidence the
verification produces. One way to achieve high confidence is for verification
engineers to transform specifications into an implementation model in a language
different from the design language. This language is called verification language,
as a counterpart to design language. Examples of verification languages include
Vera, and C/C++. A possible verification strategy is to use C/C++ for the
verification model and Verilog/VHSIC Hardware Description Language (VHDL)
for the design model.

During the second step of verification, two forms of implementation are
compared. This is achieved by expressing the two forms of implementation in a
common intermediate form so that equivalency can be checked efficiently.
Sometimes, a comparison mechanism can be sophisticated for example,
comparing two networks with arrival packets that may be out of order. In this case,
a common form is to sort the arrival packets in a predefined way. Another example
of a comparison mechanism is determining the equivalence between a transistor-
level circuit and an RTL implementation. A common intermediate form in this
case is a binary decision diagram (Lam W. K., 2005).

Here it is seen that the classic simulation-based verification paradigm fits the
verification principle. A simulation-based verification paradigm consists of four
components: the circuit, test patterns, reference output, and a comparison
mechanism. The circuit is simulated on the test patterns and the result is compared
with the reference output. The implementation result from the design path is the
circuit, and the implementation results from the verification path are the test
patterns and the reference output. The reason for considering the test patterns and
the reference output as implementation results from the verification path is that,
during the process of determining the reference output from the test patterns, the
verification engineer transforms the test patterns based on the specifications into
the reference output, and this process is an implementation process. Finally, the
comparison mechanism samples the simulation results and determines their
equality with the reference output. The principle behind simulation-based
verification is illustrated in Figure 2.3 (C).

Verification through redundancy is a double-edged sword. On the one hand, it
uncovers inconsistencies between the two approaches. On the other hand, it can
also introduce incompatible differences between the two approaches and often
verification errors. For example, using a C/C++ model to verify against a Verilog
design may force the verification engineer to resolve fundamental differences
between the two languages that otherwise could be avoided. Because the two
languages are different, there are areas where one language models accurately
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whereas the other cannot. A case in point is modeling timing and parallelism in
the C/C++ model, which is deficient. Because design codes are susceptible to
errors, verification code is equally prone to errors. Therefore, verification
engineers have to debug both design errors as well as verification errors. Thus, if
used carelessly, redundancy strategy can end up making engineers debug more
errors than those that exist in the design plus verification errors resulting in large
verification overhead costs.

As discussed earlier, the first type of error is introduced during an
implementation process. The second type of error exists in the specifications. It
can be unspecified functionality, conflicting requirements, and unrealized
features. The only way to detect the type of error is through redundancy, because
specification is already at the top of the abstraction hierarchy and thus there is no
reference model against which to check. Holding a design review meeting and
having a team of engineers go over the design architecture is a form of verification
through redundancy at work. Besides checking with redundancy directly,
examining the requirements in the application environment in which the design
will reside when it has become a product also detects bugs during specification,
because the environment dictates how the design should behave and thus serves
as a complementary form of design specification. Therefore, verifying the design
requirements against the environment is another form of verification through
redundancy. Furthermore, some of these types of errors will eventually be
uncovered as the design takes a more concrete form. For example, at a later stage
of implementation, conflicting requirements will surface as consistencies, and
features will emerge as unrealizable, given the available technologies and
affordable resources (Lam W. K., 2005).

2.2 Mutation analysis

Mutation analysis has a rich and varied history, with major advances in concepts,
theory, technology, and social viewpoints. This history begins with (Lipton R.,
1971) proposing initial concepts of mutation in a class term paper titled “Fault
Diagnosis of Different Computer Programs." It was not until the end of the 1970's,
however, before major work was published on the subject (DeMillo R. A., Lipton
R.J., Sayward F. G., 1978) is generally cited as the seminal reference (Offut A.
J., 2000).

Mutation analysis induces faults into software by creating many versions of
the software, each containing one fault. Test cases are used to execute these faulty
programs with the goal of distinguishing the faulty programs from the original
program. Hence the terminology; faulty programs are mutants of the original, and
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a mutant is killed by distinguishing the output of the mutant from that of the
original program.

Mutants either represent likely faults, a mistake the programmer could have
made, or they explicitly require a typical testing heuristic to be satisfied, such as
execute every branch or cause all expressions to become zero. Mutants are limited
to simple changes on the basis of the coupling effect, which says that complex
faults are coupled to simple faults in such a way that a test data set that detects all
simple faults in a program will detect most complex faults (Offut A. J., 2000).

Mutation analysis provides a test criterion, rather than a test process. A testing
criterion is a rule or collection of rules that imposes requirements on a set of test
cases. Test engineers measure the extent to which a criterion is satisfied in terms
of coverage; a set of test cases achieves 100% coverage if it completely satisfies
the criterion. Coverage is measured in terms of the requirements that are imposed;
partial coverage is defined to be the per cent of requirements that are satisfied.
Test requirements are specific things that must be satisfied or covered; for
example, reaching statements are the requirements for statement coverage and
killing mutants are the requirements for mutation. Thus, a test criterion establishes
firm requirements for how much testing is necessary; a test process gives a
sequence of steps to follow to generate test cases. There may be many processes
used to satisfy a given criterion, and a test process need not have the goal of
satisfying a criterion. In precise terms, mutation analysis is a way to measure the
quality of the test cases and the actual testing of the software is a side effect. In
practical terms however, the software is tested, and tested well, or the test cases
do not kill mutants. This point can best be understood by examining a typical
mutation analysis process.
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Figure 2.4. Traditional mutation process

When a program is submitted to a mutation system, the system first creates
many mutated versions of the program. A mutation operator is a rule that is
applied to a program to create mutants. Typical mutation operators, for example,
replace each operand by every other syntactically legal operand, or modify
expressions by replacing operators and inserting new operators, or delete entire
statements. Figure 2.4 graphically shows a traditional mutation process. The solid
boxes represent steps that are automated by traditional systems such as Mothra
(DeMillo R. A, et.al., 1988), and the dashed boxes represent steps that are done
manually (Offut A. J., 2000).

Next, test cases are supplied to the system to serve as inputs to the program.
Each test case is executed on the original program and the tester verifies that the
output is correct. If incorrect, a bug has been found and the program should be
fixed before that test case is used again. If correct, the test cases are executed on
each mutant program. If the output of a mutant program differs from the original
(correct) output, the mutant is marked as being dead. Dead mutants are not
executed against subsequent test cases.

Once all test cases have been executed, a mutation score is computed. The
mutation score is the ratio of dead mutants over the total number of non-equivalent
mutants. Thus, the tester's goal is to raise the mutation score to 1.00, indicating
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that all mutants have been detected. A test set that kills all the mutants is said to
be adequate relative to the mutants (Offut A. J., 2000).

2.3 Error localization and correction

The dramatic increase in design complexity of modern electronics challenges our
ability to ensure its functional correctness. While improvements in verification
allow engineers to find a larger fraction of design errors more efficiently, little
effort has been devoted to fixing such errors. As a result, debugging remains an
expensive and challenging task. To address this problem, researchers have
proposed techniques that automate the debugging process, by locating the error
source within a design and/or by suggesting possible corrections (Chang K.-H., et
al. 2007).

Design errors are mostly modeled in the implementation, however sometimes
also in the specification. The main applications of design error localization and
correction are: checking the synthesis tools, engineering changes (e.g. incremental
synthesis) or debugging.

Design error localization and correction is applied when the design behavior
does not match the expected behavior. Such mismatch may occur during
simulation of the design, verification with formal tools (property/equivalence
check) or when built-in checkers identify it.

The localization and correction methods can be classified into structure-based
and specification-based ones. According to the fault model they can be divided
into explicit (fault-model based) or implicit (fault-model free) methods. The
advantage of explicit methods lies in the fact that they are easy to be formalized.
However they are limited to enumerated bugs. On the one hand, the number of
bugs to consider is very large; on the other hand, not all the possible bugs are
included in the model. Further, the methods can be divided into single or multiple
error assumption based, and simulation versus symbolic approaches.

Since there is more than one way to synthesize a given function, it is possible
that there is more than one way to model the error, and an incorrect
implementation correction can be made at different locations. See example in
Figure 2.5 (Jutman A., 1999).
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Figure 2.5. Ambiguity of error location

Design error diagnosis for combinational circuits has been thoroughly studied
for two decades. There exist, both, fault model based (Madre J. C., Coudert O.,
Billon J. P., 1989; Abadir M. S., Ferguson J., Kirkland T. E., 1988) and fault-
model-free (Ali M. F., et.al., 2005) approaches. There have been attempts to
generalize the methods above for sequential circuits (Ali M. F., et.al., 2005;
Wahba A., Borrione D., 1995), resulting in scalability problems. Some of the
previous works support design error diagnosis for high-level models like the
Register-Transfer Level (RTL) (Fey G., et.al., 2008; Chang K.-H., et.al., 2007).
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However, these methods rely on reducing the diagnosis to logic-level formal
engines. The current Thesis considers a different approach utilizing a source-level
reasoning engine for the diagnosis process. This results in source-level feedback
to the engineer and is therefore better understandable than logic-level debug
information proposed by previous methods (Ubar R., Raik J., Vierhaus H. T.,
2011).

2.4 High-Level Decision Diagrams

Different kinds of Decision Diagrams (DD) have been applied to design
verification for about two decades. Reduced Ordered Binary Decision Diagrams
(ROBDD) (Bryant R. E., 1986), as canonical forms of Boolean functions, have
their application in equivalence checking and in symbolic model checking. In this
Thesis, a decision diagram representation called High-Level Decision Diagrams
(HLDDs) is used. HLDDs are word-level decision diagrams which can be
considered as a generalization of BDD, where instead of single bits, computer
words are considered. There exist a number of other word-level decision diagrams
such as Multi-Terminal DDs (MTDDs) (Clarke E., et.al., 1993), Kronecker
Multiplicative Binary Moment Diagrams (K¥BMDs) (Drechsler R., Becker B.,
Ruppertz S., 1996) and Assignment Decision Diagrams (ADDs) (Chayakul V.,
Gajski D. D., Ramachandran L., 1993). However, in MTDDs the non-terminal
vertices hold Boolean variables only, whereas in HLDDs the terminal vertices
may be labeled by word-level variables. In K*BMDs, additive and multiplicative
weights label the edges. Such representations are useful for compact canonical
representation of functions on integers (especially wide integers). However, the
main goal of HLDD representations described in this Thesis is not canonicity but
the ease of simulation and diagnosis. The principal difference between HLDDs
and ADDs lies in the fact that ADDs’ edges are not labeled by activating values.
In HLDDs the selection of a vertex activates a path through the diagram, which
derives the needed value assignments for variables.

In this section the HLDD representation is defined, followed by an introduction
of HLDD based simulation and a representation for behavioral register-transfer
level VHDL descriptions.

Consider a digital system (Z, F) as a network of subsystems or components,
where Z is the set of variables (Boolean, Boolean vectors or integers), which
represent connections between components, primary inputs and primary outputs
of the network. Let Z= X U Y, where X is the set of function arguments and Y is
the set of function values where O = X N Y is the set of state variables. D(z) denotes
the finite set of all possible values for z € Z and D(Z’) is the set of all possible
vectors in some variable set Z’ < Z. Obviously, if Z’ = {z, ..., z,} then D(Z’) =
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D(z;) x ... x D(z,). Let F be the set of discrete functions: yi = fi(Xx), where yi € Y,
fr € F, and X < X (k iterates over all elements in F).

Definition 1. High-level decision diagram representing a function f : D(X;) —
D(yx) is a directed acyclic multigraph G = (V, E) with a single root vertex and a
set of terminal vertices where:

- Vs the set of vertices and F is the set of edges.

- Each edge ecE is an ordered pair e=(v,, v2)e V2, where 7 is the set of
all the possible ordered pairs in the set V.

- Each non-terminal vertex is labeled by some input or control variable
x € X. Variable of vertex v by x, shall be denoted.

- Each terminal vertex w is labeled by some function g, : D(X,) —
D(yx), where Xy < Xx.

- Each edge e = (v, u), where v and u are vertices, is labeled by some
constant c. € D(xy).

- Each two edges e; = (v, u;) and e; = (v, u) starting from the same
source vertex are labeled by different constants ce; # Ce2.

If the vertex v is labeled by x, then the number of edges starting from this vertex
is [D(xy)|.

Remark 1. Each BDD is HLDD as well, with two terminal vertices labeled by
constant functions 0 and 1, and D(x) = {0, 1} for every variable x.

In other words, HLDD is a data structure similar to BDD, but with many edges
originating from a particular vertex, and with a number of functions at the end,
instead of constants 0 and 1. One shall denote the set of terminal vertices by V7
and the set of non-terminal vertices by /" and the set of all successors of the vertex
v by I(v). For non-terminal vertices v € V¥ an onto function exists between the
values ¢ € D(x,) of labels x, and the successors v € I(v) of v. By v* the successor
of v for the value x, = ¢ is denoted.

The edge (v, v°), which connects vertices v and 17, is called activated if there
exists an assignment x, = c. Activated edges, which connect v; and v;, form an
activated path I(v;, v;)) C V. An activated path [(vy, v') from the root vertex vy to a
terminal vertex v’ is called the full activated path and v" itself is referred to as the
activated terminal vertex.

Without loss of generality it is assumed further that each variable has at least
two values, i.e. Vz € Z, |[D(z)] > 1. Let D; designate a subset of D(x,) labeling
vertex v, such that assignments from it will activate its successor vertex v;. D(x,)
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is partitioned into non-intersecting sets Dj, ..., D, where m = |[(v)|. More
formally,

D =D(x,)AVi, j,i# j—>D,ND,=@.

i=1

In other words, with every value assignment to variable x, one and only one
successor vertex will be activated. Further, let D, designate a subset of D(X), such
that assignments from it will activate the terminal vertex v'. With every value
assignment to variables X, one and only one terminal vertex will be activated.
Thus, D(X) is partitioned into non-intersecting sets Dy, ..., D,, where ¢ = |V

D, =D(X) AVk Lk #1 — D, "D, =

k=1 %3
Figure 2.6 presents a HLDD G, representing a discrete function y=f{x;,x2,x3,X4).
The diagram contains five vertices vy, ..., v4. The root vertex vy is labeled by

variable x,, which is an integer with a range from 0 to 7. The vertex has three
outgoing edges entering the vertices v;, vs and v,. The vertex v, is labeled by x;3
with a range from O to 3. It has two outgoing edges es and es entering terminal
vertices v, and vz, respectively. The edge ey is activated by x3=2, while the edge es
is activated by x; having a value 0, 1 or 3. The ranges of variables x; and x, labeling
terminal vertices v; and v, respectively, are not evident from the figure.

Vo Vi V2

Gy = W) E7 X)a

V = {vo, V1, V2, V3, Va};
E= {C], €2, €3, €4, 65}, € = (Vo, Vl), €= (Vo, V3),
€3 = (Vo, V4), €4 = (V1, V2), €5 = (V1, V3);

X = {X1 = X3, X2 = Xy0 = Xvd» X3 = Xv1, X4 = Xy2}; €

Di(xv0) = {0}, Da(xv0) = {1, 2, 3}, V4
Ds(x,0) = {4, 5, 6,7}, 4-7 @
Di(xv1) = {2}, Da(xv1) = {0, 1, 3}. €3

Figure 2.6. Graphical representation of a HLDD for a function y=f{x1,x2,x3,x4)

2.4.1 Simulation on HLDDs
HLDD models can be used for representing digital systems. In such models, the

non-terminal vertices correspond to conditions or to control signals, and the
terminal vertices represent arithmetic operations, variables or constants. When
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representing systems by decision diagram models, in general case, a network of
HLDDs rather than a single HLDD is required. During the simulation in HLDD
systems, the values of some variables labeling the vertices of an HLDD are
calculated by other HLDDs of the system.

Simulation on high-level decision diagrams takes place as follows. Consider a
situation, where all the vertex variables are fixed to some value. According to
these values, for each non-terminal vertex a certain output edge will be chosen to
enter into its corresponding successor vertex. As mentioned above, such
connections between vertices are referred to as the activated edges under the given
values. Succeeding each other, activated edges form in turn activated paths. For
each combination of values of all the vertex variables there always exists a
corresponding activated path from the root vertex to some terminal vertex. Let us
call this path the main activated path. The simulated value of the variable
represented by the HLDD will be the value of the variable labeling the terminal
vertex of the main activated path.

In Figure 2.7 simulation on the decision diagram presented in Figure 2.6 is
shown. Assuming that variable x; is equal to 2, a path (marked by bold arrows) is
activated from vertex vy (the root vertex) to a terminal vertex v; labeled by x;. The
value of variable x; is 4, thus, y = x; = 4. Note that this type of simulation is
inherently event-driven since only those vertices have to be simulated (marked by
grey color in Figure 2.7) that are traversed by the activated path.

Vo Vi \%)
X1 4
ON=
X3 = -
V3 X4 = -
1-3 y=4

V4
—
” X2

Figure 2.7. Simulation on a decision diagram

Figure 2.8 Algorithm I presents simulation on HLDD models. The simulation
process starts in the root vertex vy (line 2 of the algorithm). The vertex vcumen: is
iteratively replaced by its successor vertices selected according to the value of
Xvcuwrent (line 4). In order to represent feedback loops in the RTL design, the
algorithm takes the previous time-step value of variable x; labeling a vertex v; if
xx represents a clocked variable in the corresponding HDL (lines 5, 6). Otherwise,
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the present time step value will be used (line 8). veumen Will be replaced by its
successor vertex corresponding to x,., = Value (i.e. Veuren' ) (line 10).

Simulation ends when a terminal vertex is reached and the variable y
corresponding to the simulated HLDD G, is assigned the value X,curen (line 12).

SimulateHLDD(G),)
VCurrent = V0
While vuren & V'
Xk = xvCurrent
If xy is clocked then
Value = previous time-step value of xi
Else
Value = present time-step value of xi
End if
VCurrent = VCurrentValue
End while
ASSIGN Y = X0
End SimulateHLDD
Figure 2.8 Algorithm 1. HLDD simulation
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In the RTL style, the algorithm takes the previous time step value of variable
xx labeling a node veurent if Xk represents a clocked variable in the corresponding
HDL. In the behavioral style, the present value of xix will be used. In the case of
behavioral HDL coding style HLDDs are generated and ranked in a specific order
to ensure causality. For variables xx labeling HLDD nodes the previous time step
value is used if the HLDD calculating xi is ranked after current decision diagram.
Otherwise, the present time step value will be used.

2.4.2 Representing RTL designs by HLDDs

Consider the datapath depicted in Figure 2.9a and its corresponding HLDD
representation shown in Figure 2.9b. Here, R; and R; are registers (R: is also a
primary output), MUX;, MUX; and MUX; are multiplexers, + and * denote
addition and multiplication operations, /N is an input bus, SEL;, SEL;, SEL; and
EN; serve as control signals (multiplexer selects and register enables), and a, b, c,
d and e denote internal buses, respectively. In the HLDD, the control variables
SEL;, SEL,, SEL;and EN; are labeling the internal decision vertices of the HLDD.
The terminal vertices are labeled by word-level variables R; and R (data transfers
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to R;), and by expressions related to the data manipulation operations of the
network.

Consider, simulating HLDD with some values assigned to the variables. Let
the value of SEL; be 0, the value of SEL; be 3 and the value of EN> be 1 in the
current simulation run. A full activated path in the HLDD from EN: to R;*R; is
shown by bold lines and grey vertices, which corresponds to the pattern EN,=1,
SEL3;=3, and SEL,=0. The activated part of the network at this pattern is denoted
by grey boxes.

The main advantage and motivation of using HLDDs compared to the netlists
of primitive functions is the increased efficiency of simulation and diagnostic
modeling because of the direct and compact representation of cause-effect
relationships. For example, instead of simulating the control word SEL;=0,
SEL,=0, SEL3=3, EN> =1 by computing the functions a = R;, b=R;,c=a + R»,
d=b* R, e=d, and R; = e, one only needs to trace the vertices EN>, SEL3; and
SEL; on the HLDD and compute a single operation R, = R; * R,. In case of
detecting an error in R the possible causes can be defined immediately along the
simulated path through EN;, SEL; and SEL; without complex diagnostic analysis
inside the corresponding RTL netlist. The activated path provides the fault
candidates, 1.e. variables that are suspected to contain faults causing the error at
R> during current simulation run. Further reasoning should be based on analyzing
sources of these signals.
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An example of HLDD representation (Figure 2.10b) ofa VHDL code fragment
of the Euclidean algorithm for calculating the Greatest Common Divisor of two
unsigned variables in/ and in2 is presented in Figure 2.10a. The VHDL fragment
contains seven variables: inputs inl, in2 and res (the reset signal), internal
variables (registers) a, b and state (for control state), and output out. The variable
state is of enumeration type, variables inl, in2, a, b and out are integers and
variable res is of bit type.

IF res = 1 THEN state := s0;
ELSE
CASE state IS
WHEN s0 =>
a:=inl;
b =in2;
state :=sl;
WHEN s1 =>
IF a>b THEN state := s2;
ELSE IF a <b THEN state := s3;
ELSE state := s4;
ENDIF;
WHEN s2 =>
a:=a-—b;
state :=sl;
WHEN 53 =>
b :=a-b; -- Bug!!!
state :=sl;
WHEN s4 =>
out :=a;
state := s4;
END CASE;
END IF;

a) b)
Figure 2.10. RTL VHDL and its corresponding HLDD

The algorithm proceeds as follows. When the reset input res becomes one, the
Finite State Machine (FSM) of the control part is initialized to the state s0. In that
state, input in/ is assigned to variable @ and input in2 is assigned to variable b.
The next FSM state is s/, where if a >b one moves to state s2, if a <b one moves
to state s3, and otherwise if a=b one moves to state s4, respectively. In state 52, a-
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b is assigned to a, and in state s3, b-a is assigned to b. This guarantees that a
smaller number is always subtracted from the larger one until ¢ and b become
equal and the FSM ends up in state s4, where the result is written to the output
variable out.

Figure 2.10b presents the HLDD models of four variables state, a, b and out,
i.e. the internal state and output variables of the design. HLDDs for design
variables are generated by traversing the control flow branches of the VHDL code.
Conditional statements (IF, CASE) transform into non-terminal vertices of the
HLDD, control branches map to the HLDD edges and terminal vertices are created
out of the right-hand side parts of value assignments to variables in corresponding
control branches. In the figure, the symbols T and F labeling the HLDD edges
stand for true and false, respectively.

Note that there is a bug in the VHDL description in Figure 2.10a. In the FSM
state s3, a-b and not b-a is assigned to variable b. This bug will be used to illustrate
the HLDD-based fault localization method explained in Section 4.1.4.

2.5 ESL modeling in SystemC

SystemC is the confluence of four streams of ideas: work at Synopsys with
University of California, Irvine, and later with Infeon (formely Siemens HL) also;
Frontier Design; IMEC; and work within the Open SystemC Initiative (OSCI)
Language Working Group (References from System Design with SystemC),
(Grotker T., et.al., 2002).

It is important to recognize that SystemC does not impose a top-down or
bottom-up or even middle-out design flow. In fact, it is recognized that most
design flows are iterative, and that it is rare that all modules within a system are
modeled at the same level of abstraction. Commonly it is heard from designers in
the industry that real designs hardly ever start with a “clean sheet of paper”, so the
need to model testbenches and preexisting hardware and software
implementations at various levels of abstraction, is quite common.

Let’s list a few simple design scenarios where different modeling levels might
be used (Grotker T., et.al., 2002):

e A designer might use a very detailed implementation-level model for
a design under test while using abstract models within the testbench to
generate the design’s stimulus and check the response.

e With a detailed implementation-level model as a starting point, a
designer might create a more abstract model in order to increase
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simulation speed and perhaps to protect intellectual property that
might otherwise be exposed within the more detailed model.

o A designer might refine a module from a high-level functional
specification down to a cycle-accurate RTL model while other
modules in the system remain at higher levels of abstraction.

When considering a particular SystemC model and comparing it to an existing
or proposed real-world implementation, one notes that there are several
independent axes which can be used to gauge the model’s accuracy. These include
(Grotker T., et.al., 2002):

o structural accuracy: The extent to which the model reflects the
structure of the actual implementations.

o timing accuracy: The extent to which the model reflects the timing of
the actual implementation.

e functional accuracy: The extent to which the model reflects the
function of the actual implementation.

e data organization accuracy: The extent to which the model reflects
the actual data organization used within the implementation.

o communication protocol accuracy: The extent to which the model
reflects actual communication protocols used within the target
implementation.

For each of the different modeling accuracy aspects above, it sometimes also
needs to be distinguished whether one is talking about the particular accuracy
aspect only at a module’s boundaries (i.e. at the module’s ports), or whether the
accuracy aspect also extends to all child modules contained within the parent
module.

It must be noted that the modeling aspects listed above apply to software as
well as hardware models. With software models it is important to identify the
model accuracy in terms of structure, timing, function, data organization, and
communication protocols (Grotker T., et.al., 2002).

Now that some of the important aspects which determine model accuracy have
been identified, one can look into some of the terms that describe different
modeling levels.

An executable specification is a model that is a direct translation of a design
specification into SystemC. Executable specifications model the intended
functionality of a design in a manner that is completely independent of any
proposed implementation. If time delays are present in an executable
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specification, they represent timing constraints to be imposed on the
implementation.

An untimed functional model is similar to an executable specification, but no
time delays at all are present in the model. Communication between modules
within an untimed functional model is point-to-point (i.e., no shared
communication links such as buses are modeled). Usually the communication is
modeled using FIFOs with blocking write and read methods so that data items are
reliably delivered between modules.

A timed functional model is similar to an untimed functional model in that
communication between modules is still point-to-point (i.e., still no modeling of
shared communication links) and in that it typically uses FIFOs with blocking read
and write methods. However, in a timed functional model timing delays are added
to processes within the design to reflect the timing constraints of the specification
and processing delays of a particular target implementation.

Note that executable specifications and both untimed and timed functional
models do not have any direct structural correspondence to a target
implementation (Grotker T., et.al., 2002).

In a tramsaction-level model communication between modules is modeled
using function calls. In such models, the communication is typically modeled in a
way that is accurate in terms of functionality and often in terms of timing, but the
communication is not modeled in a way that is structurally accurate.

When the term platform transaction-level model is used one is indicating that
amodel uses both the transaction-level modeling style and that the modules within
such design structurally correspond to blocks within the target implementation.

A behavioral hardware model is a model that is pin-accurate and functionally
accurate at its boundaries, but which is not considered to be clockcycle accurate
at its boundaries.

The internal structure of an RTL model accurately reflects the registers and
combinational logic of a target implementation.

Transaction-Level Modeling (TLM) is the reference modeling style for design
and verification of modern system-on-chips (SoCs) at the electronic system-level.
The main advantage of TLM lies in the great speed-up it provides to the design
process. In fact, it allows designers to write a fully functional system-level
description, which can be simulated at much greater speed than RTL models. This
enables feedback at the early phases of the design process, thus producing a better
starting point for further refining and elaborating.

The Open SystemC Initiative (OSCI, 2009) committee has been developing a
reference standard for TLM in the last years to ensure interoperability between
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suppliers and users. As such, TLM-2.0 has become the final reference standard
for SystemC TLM (OSCI, 2009).

TLM presents a variety of use cases, such as software development, software
performance analysis, architectural analysis and hardware verification. Rather
than creating a specific abstraction level for each use case, the TLM-2.0 standard
describes a number of coding styles that are appropriate for, but not locked to, the
different use cases.

44



3 RTL and ESL mutation analysis methods

Mutation analysis is a known method in software domain. However, similarities
with hardware and software design have brought the idea also to the hardware
domain. This chapter introduces novel solutions using mutation analysis on
Register-Transfer Level (RTL) with High-Level Decision Diagrams (HLDDs)
and compares RTL and Electronic System Level (ESL) mutation analysis.

Subsection 3.1 starts with an overview of state-of-the-art mutation analysis at
the RTL. Thereafter mutation analysis method is presented and implemented on
RTL HLDDs. The method is followed by experimental results.

Subsection 3.2 describes state-of-the-art mutation analysis at the ESL,
followed by the respective method on SystemC Transaction-Level Modeling
(TLM) and experimental results.

3.1 RTL mutation analysis on HLDDs

The subsection presents a new tool for mutation analysis using the system model
of HLDDs. The tool is integrated into the APRICOT verification environment. It
is based on HLDD simulation and graph perturbation. A strategy that relies on a
restricted set of five key mutation operators is developed in order to speed up the
mutation analysis. Experiments on several ITC99 benchmarks and an industrial
example show the feasibility of the mutation analysis approach.

This subsection is based on Paper I:

Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin, Maksim;
Chepurov, Anton; Fummi, Franco; Ubar, Raimund. “Mutation Analysis with
High-Level Decision Diagrams”. Proceedings of the 11th Latin-American Test
Workshop, IEEE Computer Society Press, 2010, pp. 1-6.

3.1.1 State-of-the-art

The observability problem of traditional coverage methods is widely analyzed in
(Tao L., et.al., 2006). In particular the authors present an observability model and
an algorithm to evaluate observability-based statement coverage for hardware
designs. As in (Harris 1. G., 2006), it is clearly stated that hardware designs are
highly concurrent, while code software coverage metrics do not address this
essential characteristic. Hence it is far from sufficient to achieve complete code
coverage during verification (Tasiran S., Keutzer K., 2001).
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Despite of being originally a software testing technique, obvious similarities
with procedural programming languages suggested tailoring some software
analysis techniques to Hardware Description Language (HDL) behavioral
description analysis (Bolchini C., Baresi L., 1997). In particular, an adaptation of
the mutation analysis to test VHDL functional descriptions is proposed in (Hayek
G., Robach C., 1996). A VHDL language functional description can be
assimilated to a software program, so it can be validated against (software) design
faults using the mutation testing techniques. The methodology covers VHDL
concurrent statements as block statement, process statement, and concurrent
signal assignment statement. The VHDL code is translated into Fortran, and
Mothra (DeMillo R. A., et.al, 1988) is applied to generate test sequences. In the
proposed approach, however, concurrent constructs are merely translated to a
sequential language and not targeted explicitly. In addition to academic attempts
to bring mutation testing into hardware domain, a commercial functional
qualification tool (Certitude, 2009) based on mutation analysis is available from
Synopsys.

The adopted HLDD model provides fast simulation. Very efficient HLDD
based simulation algorithms, which outperform commercial event-driven HDL
simulators in 12 - 30 times and cycle-based simulators in 4 to 6 times, have been
proposed (Ubar R., Morawiec A., Raik J., 2000). This is due to the fact that HLDD
simulation essentially combines event-driven (path activation in the HLDD
graphs) and cycle-based (HLDDs are synthesized into cycle-accurate models)
paradigms.

This Thesis presents mutation analysis on the high-level decision diagram
model. It is shown on an industrial example that high quality tests receiving near-
hundred-percent code coverage result only in 21 % mutation coverage. This
indicates a clear advantage of the mutation testing over the coverage approach,
due to considering fault observation.

3.1.2 Mutation analysis method

The method presented in this Thesis is based on strong mutation. The five key
operators proposed in (Offutt A. J., Rothermel G., Zapf C., 1993) have been
implemented according to the do fewer strategy. In experiments, those five
operators have provided almost the same coverage as non-selective mutation, with
cost reductions of at least four times with small programs, and up to 50 times with
larger programs (Offutt A. J., Rothermel G., Zapf C., 1993). The 5 sufficient
operators are ABS, which forces each arithmetic expression to take on the value
0, a positive value, and a negative value, AOR, which replaces each arithmetic
operator with every syntactically legal operator, LCR, which replaces each logical
connector with several kinds of logical connectors, ROR, which replaces
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relational operators with other relational operators, and UOI, which inserts unary
operators in front of expressions.

true

ROR:
inpl >inp2,
inpl =inp2, ...

ABS:

const0,

random positive,
random negative

inp3 & inp4

LCR:
inp3 xorinp4,
inp3 | inp4, ...

AOR:
inp7 —inp8,
inp7 *inp§, ...

inp7 + inp8

Figure 3.1. “Key” mutation operators as HLDD perturbations

The five operators have been implemented with the following constraints and
specifics. UOI currently replaces only unary operators with other unary operators
and ABS is applied to variables only, and not to expressions. Note also that in
HLDD there are no signed/unsigned variables, but signed and unsigned relational
operators exist. Therefore ROR replaces, both, signed and unsigned relational
operators. In AOR mutations are also allowed by division and mod operations and
a check for the case of divide-by-zero has been included. In the future, the goal is
to gradually extend the set of mutation operators and select the most optimal set
for hardware programs. The reduced-5-key-operator strategy represents a do
fewer strategy. The purpose would be to reduce the mutation analysis cost as much
as possible.

Figure 3.1 illustrates the HLDD graph perturbations for implementing the five
key mutation operators on a sample diagram Gy out. In HLDD models, the
perturbation means simply replacement of an operator, variable or constant
labeling the HLDD node by another operator, variable or constant.

Table 3.1 shows the list of replacements for each mutation operator. In every
case the operator is substituted by another operator from the group. This is done
until all operators are covered.
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Table 3.1. Mutation operators

Mutation operator List of replacements

LCR (logical connector replacement)

AND, NAND, OR,
NOR, XOR

AOR (arithmetic operator replacement)

ADDER, SUBTR,
MULT, DIV, MOD

UOI (unary operator insertion) NEG, INV
) SHIFT LEFT,
SOR (shift operator replacement) SHIFT RIGHT

U SHIFT LEFT

ROR (relational operator replacement) | GE. LE. U GT.U LT

EQ, NEQ, GT, LT,

U GE,U LE

Figure 3.2 Algorithm 2 presents the Mutation Analysis (MA) algorithm on
HLDD representations. The MA process starts with HLDD simulation in order to
find the correct output responses to be saved at this point. A mutated operator is
injected to the node m and simulated. As the final step the simulated output
responses are compared to the correct ones to determine whether the mutant has

been killed or not.

[

N R AN O S

—_ —
— O

—_ =
W N

HLDD MA()
SimulateHLDD() /* Figure 2.8 Algorithm 1%/
Save output responses
For each node m
For each mutated operation p where x,= Z(m) # p
Replace x,, by p
SimulateHLDD() /* Figure 2.8 Algorithm 1 */
If output responses differ from the saved ones then
Report mutant killed
Endif
End for
End for
End HLDD MA
Figure 3.2 Algorithm 2. HLDD-based mutation analysis
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3.1.3 Experimental results

In the following there are mutation analysis experiments with the (ITC99, 2009)
circuits, which were introduced in order to measure the quality of test generation
in hardware systems and with an industrial design implementing a cyclic
redundancy check (CRC) from the FP6 VERTIGO project (Vertigo, 2009).

Basic quantitative VHDL characteristics of the ITC99 benchmarks and the
CRC design are listed below in Table 3.2. In the Table, the number of VHDL code
lines, primary input signals, primary output signals, variables/signals
corresponding to registers and the number of VHDL processes are reported,
respectively.

Table 3.2. VHDL code characteristics

Design [ Code lines # | Inputs # | Outputs # | Registers # | Processes #
b01 96 4 2 3 1
b02 61 3 1 2 1
b04 76 6 1 9 1
b06 112 4 4 5 1
b09 81 3 1 5 1
bll 107 4 1 5 1
bl3 273 5 7 24 5
CRC 371 10 3 11 9

Table 3.3 presents the mutation analysis experiments on the full-HLDD
versions of the ITC99 benchmarks. The row ‘# Vectors’ shows the number of
stimuli in the test bench. All the test benches provide 100 % statement coverage,
except for bll (97 %) and bl3 (96.1%), where creation of full tests was not
achieved. All the test sets were generated manually.

Table 3.3. Mutation analysis experiments

b01 | b02 [ b04 | b06 | b09 | b1l | b13
# Vectors 14 10 8 11 23 | 88 | 11
# Mutants inserted | 154 | 78 | 233 | 336 | 213 | 375|972
# Mutants killed 49 9 18 39 17 [ 178 | 77

Mutation
coverage 0321 0.12 | 0.08 | 0.12 | 0.08 | 0.47|0.08
Time, s <0.1/<0.1|<0.1{<0.1|<0.1/0.22/0.21
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The next row shows the number of mutants injected. The row “# Mutants
killed” presents the total number of mutants killed. The row “Mutation coverage”
shows the ratio of killed mutants to the number of mutants injected in the
approach. One of the most interesting observations is the very low mutation
coverage: only 8 per cent for b04, b09 and b13. The explanation lies in rather short
test sets. Nevertheless, this gives an idea how small observation coverage is
guaranteed by 100 % code coverage tests in the worst case.

The last row shows the execution times of the mutation analysis, which were
in the range of tenths of seconds. All the experiments were run on a 1.7 GHz
laptop PC.

Table 3.4 lists the results of mutation analysis experiments with the previously
described ITC99 benchmarks using longer tests, covering also branches. In most
cases mutation coverage has increased, but it still remains low, which clearly
states the need for better test sets. The enormous rise of processing time with b13
can be explained by the fact that test length was increased 100 times.

Table 3.4. Mutation analysis experiments 2

b01 | b02 | b04 | b06 | b09 [ bll | bl3
# Vectors 23 14 11 52 33 132 | 1148
# Mutants inserted | 154 78 233 336 | 213 375 | 972
# Mutants killed 57 9 32 50 35 198 | 281

Mutation
coverage 0.37 | 0.12 | 0.14 | 0.15 | 0.16 | 0.53 | 0.29
Time, s <0.1]<0.1 | <0.1 | <0.1]<0.1] 0.34 |15.36

Results of the mutation analysis experiments on the CRC example are
presented in Table 3.5. The rows in this table have similar semantics to the ones
in Table 3.4. It can be seen that the HLDD-based mutation analysis time is in the
range of seconds. Again, the mutation coverage is very low (only 21 per cent)
compared to the code coverage. While partly explained by the short test set it
confirms the weak observation coverage guaranteed by code coverage tests and
motivates the use of mutation analysis.
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Table 3.5. CRC example

CRC
# Vectors 42
# Mutants inserted | 1247
# Mutants killed 268

Mutation
coverage 0.21
Time, s 3.73

3.2 ESL mutation analysis on System C TLM

Mutation analysis has been borrowed from the software-testing domain as a
technique for evaluating the quality of testbenches in validating digital systems.
This section presents a new method for applying mutation analysis on SystemC
hardware designs at Transaction-Level Modeling (TLM). The method injects
mutants by directly perturbing the SystemC code. Five key categories of mutation
operators are implemented in order to speed up the analysis process. In the section,
a comparison of mutation analysis at two different abstraction levels — TLM and
Register-Transfer Level (RTL), is carried out. The experiments show that
mutation analysis is considerably faster at TLM than it is at RTL while achieving
almost equal mutant coverage. Last but not least, TLM mutation analysis provides
also more readable feedback for the engineer to improve the testbench. The
section presents a novel method for mutation analysis directly working on
uncompiled SystemC TLM code.

This subsection is based on Paper II:

Guarnieri, Valerio; Di Guglielmo, Giuseppe; Bombieri, Nicola; Pravadelli,
Graziano; Fummi, Franco; Hantson, Hanno; Raik, Jaan; Jenihhin, Maksim; Ubar,
Raimund. “On the Reuse of TLM Mutation Analysis at RTL”. Journal of
Electronic Testing-Theory and Applications, 28(4), 2012, pp. 435-448.

3.2.1 State-of-the-art

The initial concept of mutation analysis was first proposed by Richard Lipton (R.
Lipton, 1971). However, major work was not published until the end of 1970s
(Budd T.A., Sayward F.G., 1977), (DeMillo R. A., Lipton R. J., Sayward F. G.,
1978), (Hamlet R. G., 1977).

In general, the results of mutation analysis greatly depend on the categories of
mutation operators used. Previous research has determined many different
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categories to use in specific cases. The mutation testing tool Mothra (Choi B.J.,
et.al., 1989), (Offut, A. J., King, K. N., 1987), developed in the middle of 1980s
to inject and execute mutants on Fortran 77 programs, used three categories of
operators: operand replacement, expression modification and statement
modification. In total there were 22 elements in the categories. However, many of
them were very specific to Fortran language.

Following the approach of Mothra, (Agrawal H., et.al, 1989) focused on
determining a comprehensive number of mutant operator categories for the C
programming language. The operators were divided into four categories:
statement mutations, operator mutations, variable mutations and constant
mutations. In total there were 77 mutant operators, which were again very specific,
taking into account errors that alter the expected statement execution flow. The
increase in the number of operators with respect to Mothra, comes from the greater
complexity and expressiveness of the C language.

(Offutt A. J., Rothermel G., Zapf C., 1993) showed experimentally that a
selected set of five so called key operator categories provide almost the same
coverage as non-selective mutation, with cost reductions of at least four times with
small programs, and up to 50 times with larger programs. The approach presented
in this Thesis is based on these key operator categories.

Mutation analysis has been applied also to Java (Irvine S. A., et.al. 2007) and
SQL (Ma Y. S., Offut A. J., Kwon Y. R., 2005), (Tuya J., Suarez-Cabal M. J., De
La Riva C., 2006). Several approaches (Alexander R. T., et.al., 2002), (Belli F.,
Budnik C.-J., Wong W.-E., 2006), empirical studies (Lyu M.-R., et.al., 2003) and
frameworks (Bradbury J. S., Cordy J. R., Dingel J., 2006) have been presented in
the literature for mutation analysis of such languages.

(Hantson H., et al. 2010) propose a technique to apply mutation analysis to
high-level decision diagrams (HLDD). It produces good results for RTL designs
converted into HLDDs but does not support SystemC and higher abstraction
levels, including TLM.

Only in the recent years mutation analysis has been applied to languages for
system-level design and verification such as SystemC (Bombieri N., Fummi, F.,
Pravadelli G., 2008; Bombieri N., Fummi, F., Pravadelli G., 2009; Bombieri N.,
et.al., 2009; Lisherness P., Cheng K.-T. (Tim), 2010; Sen A., 2009), (Sen A.,
Abadir M. S., 2010). Mutation models for perturbing SystemC TLM descriptions
are proposed in (Bombieri N., Fummi, F., Pravadelli G., 2008; Bombieri N.,
Fummi, F., Pravadelli G., 2009; Sen A., 2009). In particular, these works present
different analysis of the main constructs provided by the SystemC TLM 2.0 library
and a set of mutants to perturb the primitives related to the TLM communication
interfaces.
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(Sen A., 2009) propose a fault model by developing mutation operators for
concurrent SystemC designs. In particular it aims at verifying SystemC
descriptions by facing non-determinism and concurrency problems such as
starvation, interference and deadlock typical of such language.

(Bombieri et al., 2009) introduces the concept of functional qualification for
measuring the quality of functional verification of TLM models. Functional
qualification is based on the theory of mutation analysis but considers a mutation
to have been killed only if a testbench fails. A mutation model of TLM behaviors
is proposed to qualify a verification environment based on both testbenches and
assertions. The presentation describes at first the theoretic aspects of this topic and
shows advantages and limitations of the application of mutation analysis to TLM.

(Sen A., Abadir M. S., 2010) proposes to attack the verification quality
problem for concurrent SystemC programs by developing novel mutation testing
based coverage metrics. The approach involves a comprehensive set of mutation
operators for concurrency constructs in SystemC and defines a novel concurrent
coverage metric considering multiple execution schedules that a concurrent
program can generate.

(Lisherness P., Cheng K.-T. (Tim), 2010) presents SCEMIT, a tool for the
automated injection of errors into C/C++/ SystemC models. A selection of
mutation style errors is supported, and injection is performed though a plugin
interface in the GNU compiler collection (GCC), which minimizes the impact of
the proposed tool on existing simulation flows. The results show the value of high-
level error injection as a coverage measure compared to conventional code
coverage measures.

Different aspects concerning hardware or software implementation are
analyzed in all these works. All these approaches are suited to target basic
constructs, low-level synchronization primitives as well as high-level primitives
typically used for modeling TLM communication protocols.

The reuse of TLM testbenches for RTL fault simulation has been proposed in
(Bombieri N., Fummi F., Pravadelli G., 2006). In this work it is shown that if a
fault is detectable by an RTL test bench then it can be detected also by a TLM test
bench filtered by a transactor. However, the authors do not elaborate about the
differences between injecting mutants before or after TLM-to-RTL synthesis, as
is done in this Thesis.

The novelty of the approach presented in this Thesis lies in the fact that it faces
the reuse of mutation analysis through the different refinement steps of a TLM-
based design flow as done in the following sections. This Thesis extends the work
presented in (Guarnieri V., Hantson H., et. Al., 2011) and presents a
comprehensive work on mutation analysis for system level descriptions (i.e.,
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SystemC TLM) and how such analysis can be reused once such descriptions are
synthesized at RTL.

3.2.2 Mutation analysis method

This section presents mutation analysis method implemented for SystemC
designs. The first step of mutation analysis is to find the optimal categories of
mutation operators. This task is fairly complicated because of the wide range of
possible changes that can be made in the source code. Determining the best
operator categories for a given example usually involves code analysis to find the
potential modification possibilities.

When designing the categories of mutation operators to be used, the following
guidelines have been followed:

e Mutant operators should accurately model the errors that may be
introduced by developers and engineers;

e Fach mutant operator should change only one syntactic entity of a
program;

o Each mutant operator should generate a syntactically correct program
(i.e., the mutants can be compiled and executed);

e The categories should not generate too many mutants in order to have
reasonable execution times, but it should provide the best coverage of
possible design errors;

e The categories should minimize the possibility of generating an
equivalent mutant.

The focus of this method was not to propose new operators or operator
categories. Therefore, a slightly modified set of five key operator categories,
proposed in (Hantson H., et al. 2010), was used. In the experiments, those five
categories have provided almost the same coverage as non-selective mutation,
with cost reductions of at least four times with small programs, and up to 50 times
with larger programs (Offutt A. J., Rothermel G., Zapf C., 1993). The categories
of operators used in the current method are the following: arithmetic operator
replacement (AOR), logical connector replacement (LCR), shift operator
replacement (SOR), relational operator replacement (ROR) and unary operator
injection (UOI).

Table 3.6 shows the list of replacements for each mutation operator category.
In every case the operator is substituted by another operator from the group. This
is done until all operators are covered.
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Table 3.6. Categories of mutation operators

Mutation operator List of replacements

] ) Addition (ADD), subtraction (SUB),
AOR (arithmetic operator replacement) multiplication (MULT), division

(DIV), modulo (MOD)

LCR (logical connector replacement) AND, NAND, OR, NOR, XOR

SOR (shift operator replacement) Shift left (SL), Shift right (SR)

. Equal (EQ), not equal (NEQ), greater
ROR (relational operator replacement) | thap (GT), less than (LT), greater than

or equal (GE), less than or equal (LE)

UOI (unary operator insertion) Negative (NEG), inversion (INV)

The injection process can be carried out in two ways:
e Fault simulation-based;
e Testbench-based.

In the fault simulation-based approach firstly the original, fault-free code is
simulated. After this, all mutants are injected one at a time, simulated and
compared against the result of the original code.

In the testbench-based approach firstly the whole mutant set is added to the
code and a counter is introduced for selecting mutants. Next the original code and
all mutants are simulated, one after another. For every mutant the result is
compared against the result of the original code. Currently the testbench-based
method is used and will be described more thoroughly in the next paragraphs.

Concerning the injection process, the original system description is first
analyzed and injection locations are identified. Then for each location a proper
mutation operator is applied, resulting in different versions of the current
statement being created.

In order to keep the following simulation phase easier and the result of the
injection more manageable, only one injected system description is created.
Instead of creating one separate description for each injected mutant, a system
description is generated that includes all the code produced by the injection phase,
and that allows to selectively activate one mutant at a time through the use of a
fault number variable, properly driven by the testbench during the simulation
phase. Figure 3.3 illustrates the whole injection process.
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Original system if(fh=1)

desctiption ~N
1 > else if (fn == 2)
2 > 2 >

if (fn = 4)

— 4 > ——
D= else if (fn — 5)

1. Identify 2. Apply mutation 3. Injected system
injection location operators accordingly description

Figure 3.3. Mutant injection overview

3.2.3 Experimental results

In order to validate the efficiency, in terms of speed and coverage differences of
the method at different abstraction levels, mutation analysis on a number of
designs was performed, three versions for each of them:

e TLM with mutant injection in the functionality part, which consists of
C++ code (TLM injected);

e RTL version obtained by synthesizing the injected functionality part
(from the previous step) with (Mentor Graphics Catapult C, 2010)
(RTL synthesized from injected);

e RTL version obtained by synthesizing the fault-free functionality part
(from the original design description) with Mentor Graphics Catapult
C, and then injecting mutants directly at this level (RTL directly
injected).

Designs used for the experiments are as follows:

e adpcm: performs adaptive differential pulse code modulation to
compress audio packets;

e div: filter for similarity analysis of image pixels;

e gcd: computes the greatest common divisor for two unsigned integers.
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Experiments were carried out by injecting mutants on each version for each
design and then simulating them to compute mutation coverage. In total nine
experiments were made, and the results are shown in Table 3.7.

Table 3.7. Experimental results

Method TLM injected RTL synthesized RTL directly
from injected TLM injected

Design adpem | div | ged | adpem | div | ged | adpem | div | ged

# of

mutants 66 45 | 21 66 45 21 61 16 18
# of killed

mutants 23 44 19 23 44 19 25 16 17
Mutation

coverage 35% 198%190% | 35% | 98% |90% | 41% | 100% | 94%

# of code
lines 835 | 441 | 284 | 4031 1586 | 919 788 347 | 378

Simulation
time (ms) 5 4 4 1651 84 3312 134 15 271

The results confirmed that mutants injected at TLM were preserved during
synthesis to RTL and the number of mutants remained exactly the same on the
TLM injected and RTL synthesized from injected versions of the designs.

From the perspective of simulation time, the results were completely different.
Simulation times of the RTL synthesized from injected version were drastically
increased, as Figure 3.4 shows. This again confirmed the expectations, as moving
to a more detailed abstraction level should result in longer run-times.

This highlights a benefit from injecting mutants directly to the TLM version,
because a very good simulation speed is achieved without losing accuracy, and
sufficiently accurate feedback is available even in the early phases of the design
process.

On the other hand, injecting mutants directly at RTL (RTL directly injected),
produces slightly better results in terms of mutation coverage, but at the price of
slower simulation times. Figure 3.4 and Figure 3.6 represent simulation times and
mutation coverage, respectively.
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Figure 3.4. Simulation times

It is important though that a major drawback of such an approach is code
readability, as TLM code is much easier for a human being to understand and

modify than the automatically generated RTL code. Examples of TLM and
generated RTL code are shown on Figure 3.5 and Figure 3.7 respectively.

rem=a %b;
while (rem !=0) {
a=b;

b = rem;
rem =a %b;
/

Figure 3.5. SystemC code example at TLM
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Figure 3.6. Mutation coverages

The difference between the two pieces of source code should be striking
immediately. The generated RTL code suffers from the lack of readability
deriving from being automatically generated by a high-level synthesis tool. In this
context, correctness and automatic code translation are the main priorities. In fact,
the most common scenario in high-level synthesis consists of obtaining the
synthesized description and providing it to other tools responsible for the physical
implementation. As such, the generated code is not really meant to be clearly
understandable or to be manually edited by human beings.

It was somewhat surprising that at RTL directly injected the number of possible
mutations decreased compared to TLM injected and RTL synthesized from
injected. This can be explained by the optimizations introduced by Catapult C
during the synthesis process, which often result in using less assignments and
operators than the corresponding description at TLM. Nevertheless, it must be
stressed that this version suffers from the readability problem outlined before.
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if ((mc_bool(rst.read()))) goto gcdAndLcm Main;

// C-Step 1 of Loop ‘gcdAndLcm_while’
gcdAndLecm rem sva =
CONV_STD_LOGIC_VECTOR(CONV_UNSIGNED(UNSIG
NED(gecdAndLem b sva read_dft) %
UNSIGNED(gcdAndLecm_rem_sva), 32), 32);
gcdAndLem rem sva = gcdAndLem rem sva 1;

Figure 3.7. SystemC code example at generated RTL

It is worth noting that these experiments and the subsequent analysis led to an
improvement of the testbenches employed, making them more comprehensive by
considering corner cases which were not taken into account before. In one case a
bug in the design description was also discovered when investigating the reasons
for low mutation coverage. Thus, it can definitely be claimed that mutation
analysis allowed to evaluate the quality of the verification environment and to
verify the correctness of a design through simulation.

3.3 Conclusions

The section presented a new tool for mutation testing in hardware description
languages using the system model of high-level decision diagrams (HLDD). The
tool is integrated into the APRICOT verification environment. It is based on
HLDD simulation and graph perturbation. A strategy that relies on a restricted set
of five key mutation operators is developed in order to speed up the mutation
analysis.

Experiments on several ITC99 benchmarks and an industrial example prove
the feasibility of the approach. The tests showed that the mutation coverage was
always very low compared to the code coverage. While partly explained by the
short test sets applied it confirms the weak observation capabilities guaranteed by
code coverage tests and motivates the use of mutation analysis.

A method to automatically inject faults into the functionality of system
descriptions that works at different abstraction levels (TLM and behavioral RTL)
was presented. The novelty of the method lies in mutation analysis directly
working on uncompiled SystemC TLM code. Five key categories of mutation
operators were used to simulate the faults.

60



Experimental results with different versions of different designs showed that
injecting faults directly to RTL code provides slightly better mutation coverage.
However, this does not mitigate the loss in readability and simulation times when
compared to TLM.
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4 RTL and ESL error correction methods

Verification is increasingly becoming the bottleneck in designing digital systems.
In fact, most of the verification cycle is not spent on detecting the occurrences of
errors but on debugging, consisting of locating and correcting the errors.
However, automated design-error debug, especially at the system-level, has
received far less attention than error detection.

This chapter presents design error localization and correction on High-Level
Decision Diagram (HLDD) Register-Transfer Level (RTL) followed by a case
study of existing ROBSY processor and finally design error correction for simple
C at Electronic System Level (ESL).

Subsection 4.1 presents design error localization and correction on HLDDs at
the RTL. Subsection 4.2 follows with a case study of and industrial
microprocessor ROBSY. In subsection 4.3 a method for design error correction in
C programs is presented.

4.1 Design error localization and correction on HLDDs at
the RTL

The subsection proposes a method for locating design errors at the source-level of
RTL hardware description language code using the design representation of
HLDD models and correcting them by applying mutation operators. The error
localization is based on backtracing the mismatched and matched outputs of the
design under verification on HLDDs. As a result of the localization step, all the
variables in the RTL description receive a suspiciousness score.

Subsequently, a mutation-based correction algorithm is applied providing
automated correction for the design under verification. Experiments on a set of
sequential RTL benchmarks show that the method is capable of locating the design
errors injected with a high accuracy, and a short run time. In fact a majority of the
errors injected in the experiments were identified as top suspects by the current
diagnosis algorithm. Furthermore, it is shown that because of this localization
accuracy the mutation-based correction requires very small number of iterations
and thus a short run-time.

This subsection is based on Paper III:

Raik, Jaan; Repinski, Urmas; TSepurov, Anton; Hantson, Hanno; Ubar,
Raimund; Jenihhin, Maksim. “Automated design error debug using high-level
decision diagrams and mutation operators”. Microprocessors and Microsystems:
Embedded Hardware Design, 37(4), 2013, pp. 1-10.

62



4.1.1 State-of-the-art

Automated debug of design errors consists of two steps: error localization and
error correction. Error localization identifies the portion of the design responsible
for the erroneous behavior, while error correction is responsible for locally
modifying the functionality of the identified portion.

For error localization, simulation-based (Ali M, et. Al., 2005), (Wahba A.,
Borrione D., 1995), (Smith A., Veneris A., Viglas A., 2004), (Fey G., et.al, 2008),
(Chang K.-H., 2007), (Debroy V., Wong W. E., 2010) and formal approaches
(Konighofer R., Bloem R., 2011) are known. It is widely accepted that simulation-
based techniques scale well with the design size, but are not exhaustive while
formal techniques provide a high grade of confidence in the results but are
susceptible to the design complexity.

For error correction, error matching (Madre J. C., Coudert O., Billon J. P.,
1989), (Abadir M. S., Ferguson J., Kirkland T. E., 1988) and re-synthesis (Ali M.
F., et. Al,, 2005) have been investigated in the literature. In particular, re-synthesis
provides a correction that is represented as a partial truth table based on the stimuli
under consideration. This kind of correction is not readable and cannot be easily
understood and verified by the design engineer. Moreover, the resynthesized
erroneous portion of the design is likely to fail when new stimuli will be added to
the suite.

Previous works on error debug for high-level models, such as the Register-
Transfer Level (RTL), are based on the work by (Smith A., Veneris A., Viglas A.,
2004). There is a range of works extending this idea of the SAT-based debug e.g.
(Fey G., et. Al., 2008, Chang K.-H., 2007). However, these methods reduce the
debugging problem to SAT or SAT Modulo Theory (SMT) solvers, which is an
NP-complete problem. Although SAT/SMT engines are being constantly
developed and improved, there is a limit to the circuit size where the approach is
applicable. The current Thesis considers a different approach relying on design
error localization utilizing HLDD backtrace that executes in polynomial time.
This means that much larger designs could be potentially handled by the method.

This Thesis utilizes HLDD backtrace and mutation as a source-level reasoning
engine for automated debug. The engine operates directly on the register-transfer
level. This results in a readable diagnostic feedback and is therefore better
understandable to the engineer than logic-level debug information provided by
previous methods.

Recently, a similar approach has been adopted in software testing. In (Debroy
V., Wong W. E., 2010), Debroy and Wong propose a program slicing based
diagnosis tool Tarantula to calculate the suspiciousness scores for operations and
apply mutation to correct C and Java programs. The current approach for hardware
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debug and the one proposed in (Debroy V., Wong W. E., 2010) for software debug
were developed simultaneously and are independent of each other.

4.1.2 Backtrace

This section presents the algorithm for diagnostic tree generation using backtrace
on HLDD models. Followed by two analysis steps to perform error localization
on the set of diagnostic trees generated.

Firuge 4.1 Algorithm 3 presents the recursive diagnostic tree generation on
HLDDs. The process starts from the primary outputs (Line 2) and from each
clock-cycle (Line 3). Subsequently, the diagnostic tree is recursively generated
using the function RecursiveTreeGeneration.

l: GenerateDiagnosticTree()

2: For each primary output Go in the model

3: For each time-step t

4. 0(Go, t) =D

5: RecursiveTreeGeneration(Go, t, )

6: End for

7: End for

8: End GenerateDiagnosticTree

9:

10: RecursiveTreeGeneration(Gy, t, )

11: SimulateHLDD(Gy) /* Figure 2.8 Algorithm 1 */
12: For each v; at the main activated path

13: If variable xi = x.; at-time step t is not in 0 then
14: Add xr to o

15: If xi is not a primary input then

16: RecursiveTreeGeneration(Gxy, t, 0)

17: End if

18: Endif

19: End for

20: End RecursiveTreeGeneration

Figure 4.1 Algorithm 3. HLDD-based diagnostic tree generation
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Figure 4.1 Algorithm 3 generates a separate diagnostic tree d(Go, t) for each
output diagram Go at each clock-cycle . The resulting diagnostic tree ¢ is a set of
pairs (x;, #) that show at which time-steps # the variable x; was backtraced.

4.1.3 Localization

In the following, two analysis steps that could be implemented for locating the
design error are presented. In order to perform the analysis, let us partition the set
of all diagnostic trees 4 = di(Go, f) into failing diagnostic trees Ar and passing
diagnostic trees Ap. A diagnostic tree is failing if di(Go, ¢) of the simulated value
of output variable o € Y on the faulty design differs from the corresponding value
of the golden device at time-step . Otherwise, J is called a passing diagnostic
tree.

Diagnosis step 1:

For each variable x; count the number cr41.p of failing diagnostic-trees dx € 4r,
where x; is present at least in one of the pairs (x, #) of d. Select the variables x;
receiving a non-zero score craep as the set of suspected faults Xuspecres and sort
the set Xyugpecrea according to the score cranep. The variables with a higher score
are more suspected of causing the error than the ones with a lower score (Raik, J.,
et. al., 2013).

Diagnosis step 2:

Perform step 1. For each variable xgep1 € Xougpecrea count the number of passing
diagnostic-trees d; € Ap cpassep , Where Xgep; 1S present at least in one of the pairs
(x, l) of o1 Compute the score crorar=craep/ (CFAILED+ CpASSED) for variables Xstep2-
Sort the set Xyugpecrea according to the score croraz.

Step 1 is more exact as it can be easily proven that at least one of the variables
x, that is labeling a vertex v along one of the main activated paths in simulated
HLDDs must be also the cause of the error. However, step 2 may be unavoidable
in order to guarantee a good diagnostic resolution, especially if the number of
failing sequences is one or very small. In fact, the experiments presented in this
subsection fully confirm this observation.

The straight-forward implementation of this backtracing algorithm could be
time-consuming because of the square complexity introduced by the need to
backtrace from each subsequent time step back to the initial time step. Therefore,
in current implementation intermediate backtracing results were stored at each
time step in order to gain speed.
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4.1.4 Localization example

Consider the following example of design error localization on the basis of the
erroneous GCD design description presented in Figure 2.10a. Let there be a given
set of input stimuli (e.g. a functional test) and a set of correct output responses for
the stimuli obtained on a golden model. Assume that there is a design error in it
such that at state s3 a faulty operation a—b is assigned to the variable b instead of
the correct operation b—a. In Figure 4.2, two test sequences are presented as tables.
Rows of the table show values of the variables at different time-steps. The first
column ¢ lists the time steps #,...,ts, The next three columns present the values of
input variables res, inl and in2 in the test sequence. Final four columns show the
values of the internal variables state, a, b and the primary output out. These values
have been obtained by simulating the HLDDs in Figure 2.10b using Figure 2.8
Algorithm 1.

Figure 4.2a shows the test sequence for the design when primary inputs in/
and in2 hold values 4 and 2, respectively. This sequence passes the test, giving a
correct response that the greatest common divisor of 4 and 2 is two. In Figure
4.2b, another sequence is presented, which produces an erroneous the test.
Because of the design error, the primary output out receives an erroneous value.

t |res|inl [in2 |state| a | b |out| [t [res[inl|in2 |state| a | b | out
o] 11412 - - - - ol 1 ]2 | 4 - -l -] -
U] 0| -] -1]s0 |4]2] - Ul 0| -] -1]s0 |2 -
0| -] -] sl [4]2] - L 0| -] -] sl |2 -
GO | -] -|s2]2]2]- GO | - | -|s3 |2]|-2] -
bl 0| -] - sl [2]2]- Ul 0| - | -] sl |2]-2] -
5| 0| - | -] s4 |2]2] - ts| 0| - | - | s4 |2]|-2] -
t t 2->

0] - | - s4 |22 2 0| -1 - s4 | 2|-2| -
a) b)

Figure 4.2. Passing a) and failing b) test sequences for the GCD design

In order to locate the design error, a diagnostic tree is generated on the HLDD
model of the GCD design presented in Figure 2.10b. Figure 4.3 presents the
diagnostic tree for the passing test shown in Figure 4.2a while Figure 4.4 presents
the diagnostic tree for the test shown in Figure 4.2b. As it can be seen from the
Figures, the “tree” generated by Figure 3.2 Algorithm 2 does not have a tree-like
structure. It is rather a directed graph, where the vertices represent a subset of the
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time-expansion model of the design. Directed edges show relations between the
variables in the simulation process.

The algorithm starts at the time step when an output response is expected. For
the test sequences in Figure 4.2 it is the time step #5. Then, it continues towards
the first time step and recursively generates the diagnostic tree 0(Gou, t5). For the
sake of compactness of presentation, the reset variable res was omitted from
Figures 4.3 and 4.4. In addition, the operation a=b (in Figure 4.3 is also given in
a minimized form from —(a>b)A—(a<b) obtained by backtracing the HLDD for
the state variable (see Figure 2.10b).

to out

Y

ts /state =54

g

ty a=b state :=sl

t -=“-/b tt)"=2
I A A

¥ v
1) a>b state :=sl
SN s
t; a=inl ¥Yb:=in2 state ;= s0
/ /
v v
ty inl n2

Figure 4.3. Diagnostic tree for the passing test in Figure 4.2a

The diagnostic trees presented in Figures 4.3 and 4.4 can be used for effect-
cause diagnosis of design errors. Reasoning on the diagnostic trees takes place as
follows. The diagnosis tree in Figure 4.3 of the passing test sequence in Figure
4.2a contains vertices that are unlikely to be related to the cause of the error
because the sequence resulted in a matched output. However, the diagnostic tree
in Figure 4.4 was backtraced from the mismatched output out at time-step #.
These two backtraces should give us information about the location of the error.
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Figure 4.4. Diagnostic tree for the failing test in Figure 4.2b

Indeed, the vertex labeled by b:=a—b (marked by grey background in Figure
4.4) is among the faults selected as suspects for causing the design error by the
diagnosis step 2 presented in previous subsection. The four vertices with grey
background are chosen as suspects because only these four vertices are present in
the diagnostic tree of the failing sequence but are missing from the passing
sequence. Thus, in this simple example they receive the highest score. In a real
case there would be many failing and passing test sequences as well as there may
be multiple faults. Furthermore, in most cases it is not possible to partition the test
set into sequences. Figure 3.2 Algorithm 2 takes the latter assumption. Therefore
in experiments reported in current method, backtrace is started at each clock cycle
for each output.

The HLDD-based diagnosis is related to known debugging techniques such as
program slicing (Weiser M., 1981) and critical path tracing (Abramovici M.,
Menon P. R., Miller D. T., 1983). Modeling discrete systems by a system of
HLDDs may be regarded as a form of program slicing, because a separate diagram
is generated for each variable x in the program, reflecting the control flow
branches where assignments are made to x and including the data assigned to x.
Activating paths in HLDD diagrams using Figure 2.8 Algorithm I is equivalent to
critical path tracing. The technique of critical path tracing consists of simulating
the fault-free system (true-value simulation) and using the computed signal values
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for backtracing all sensitized paths from primary outputs towards primary inputs
in order to determine the faults that would affect the primary output. In HLDDs
the same task is solved in a single run as a byproduct of simulation.

4.1.5 Correction

Mutation analysis is a technique that was initially introduced to fulfill the task of
evaluating the ability of testbenches to detect bugs in software programs. In this
subsection applying mutation operators for correcting a faulty circuit is
considered. Subsequent to the fault localization step described in Sections 4.1.3
and 4.1.4 mutation operators are applied to perturb the HLDD model of the RTL
design in order to perform the correction. It is intuitively clear that this kind of
correction may be extremely time-consuming in the worst case. The time required
to correct the circuit is proportional to the product of the number of vertices, the
number of mutants to be injected to each vertex and the number of test patterns in
the test.

The design error localization technique presented in previous sections allows
minimizing the number of vertices where the faults have to be injected. However,
it is crucial to keep the number of mutants as small as possible. In this Thesis, the
five key operators proposed in (Offutt A. J., Rothermel G., Zapf C., 1993) have
been implemented. In experiments, those five operators have provided almost the
same coverage as non-selective mutation, with cost reductions of at least four
times with small programs, and up to 50 times with larger programs (Offutt A. J.,
Rothermel G., Zapf C., 1993). The 5 sufficient operators are ABS, which forces
each arithmetic expression to take on the value 0, a positive value, and a negative
value, AOR, which replaces each arithmetic operator with every syntactically
legal operator, LCR, which replaces each logical connector with several kinds of
logical connectors, ROR, which replaces relational operators with other relational
operators, and UOI, which inserts unary operators in front of expressions.

The five operators have been implemented with the following constraints and
specifics. UOI currently replaces only unary operators with other unary operators
and ABS is applied to variables only, and not to expressions. Note also that in
HLDD there are no signed/unsigned variables, but signed and unsigned relational
operators exist. Therefore ROR replaces, both, signed and unsigned relational
operators. In AOR mutation by division and mod operations is allowed and a
check for the case of divide-by-zero is included. The reduced-5-key-operator
strategy represents a do fewer strategy. The purpose would be to reduce the cost
of the mutation analysis as much as possible.
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4.1.6 Experimental results

Table 4.1 presents the main characteristics of the benchmarks used in the
experiments and their respective test sets. The benchmarks include the Greatest
Common Divisor (gcd) and the Differential Equation (diffeq) examples from the
HLSynth92 and HLSynth95 academic benchmarks suite, respectively. The design
risc is a processor example from a FUTEG research project. In addition, two real-
world designs were included to the experiments. These were a commercial core
for circular redundancy check (crc) from (Vertigo, 2009) and an open-source core
uartl16750 from the OpenCores repository (OpenCores, 2010). The test stimuli for
the academic benchmarks were generated by a hierarchical test pattern generator
Decider (Raik J., Ubar R., 2000) while for crc the provided functional test bench
was applied and uart16750 was tested by 1000 randomly generated test vectors.
The second column reports the system complexity in terms of the number of
HLDD vertices. The third column represents the number of functions in the
design. Finally, the fourth column shows the number of stimuli in the test suite.

Table 4.1. Benchmarks and their test sets

Design # vertices | # functions | # gates |# FFs | # test stimuli
ged 25 4 ~500 48 4000
diffeq 39 9 ~2500 | 80 16855
risc 61 16 ~2000 | 96 4000

cre 232 74 ~10000 | 171 193
uart16750 1747 401 ~100000 | 1403 1000

In Table 4.2, the design error localization experiments are provided. Faults
were injected into the design by randomly mutating a function one-by-one, so that
during each diagnosis run only one function was mutated. The column ‘success
rate’ shows the ratio of the times the actual location of the mutation achieved the
highest rank in relation to all diagnosis runs. The column ‘average resolution, #
suspects’ reports the average number of suspects that received the highest score.
Here, the diagnostic resolution is very good for step 2 and two or more times worse
for step 1. The same trend applies to the worst resolution, which reports the worst
case suspected fault list size over all the faults injected. The final column reports
the run times achieved on a PC, Dual-Core CPU, 2.6GHz, 3.25GB RAM,
Windows XP operating system are provided. This time includes both performing
step 1 and step 2 of the diagnosis algorithm. As it can be seen, the run times are
very different. They do not only depend on the circuit size but also the number of
vectors and the sequential depth of the designs. The run time for step 1 is actually
very much shorter than the time for steps 1 and 2 combined, because in step 1,
only mismatched outputs have to be backtraced. Table 4.2 excludes the error
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localization details for the core uart16750. The time for localization for this core
was in average 90.0 s on the 1000 vector test.

Table 4.2. Design error localization experiments

Design | Success rate, Average Worst Processing
ratio of correct| resolution, resolution, time, s
localizations # suspects # suspects
stepl | step2 | stepl | step2 | stepl | step2
ged 4/4 4/4 2.25 1.00 3 1 18.0
diffeq 9/9 | 9/9 | 333 | 1.88 6 3 700.0
risc 16/16 | 13/16 | 8.18 1.93 11 5 0.3
cre 74/74 | 69/74 | 31.83 | 9.04 50 20 0.5

As shown in the previous table, a majority of the errors injected in the
experiments were identified as top suspects by the diagnosis algorithm. Because
of this localization accuracy the mutation-based correction requires a very small
number of iterations and thus a short run-time. See Table 4.3, which lists the
average time to correct a design by applying mutation. The last column of Table
4.3 shows the average number of substitution functions (mutants) generated until
the design was corrected.

Table 4.3. Mutation based correction experiments

Average correction | Average number
Design time. s of substitutions
gcd 0.0040 2.00
diffeq 0.0410 3.62
risc 0.0276 5.52
cre 0.0422 4.13
uart16750 0.5810 9.11

4.2 Localization case study

As a case study, the approach was evaluated by debugging an industrial processor
developed as a part of the ROBSY (Reconfigurable On Board self test SYstem)
project. This custom processor follows a new test approach (Meza-Escobar J.H.,
et.al., 2012), (Sachsse J., et.al., 2011) to improve the fault coverage and reduce
the test time of Printed Circuit Boards (PCBs) during the manufacturing process,
and it is developed in cooperation with a major vendor of PCB testing equipment.
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The ROBSY processor is classified as a Single Instruction Single Data (SISD)
processor with separated program and data buses (Harvard architecture). The
processor has many of the properties of a Reduced Instruction Set Computer
(RISC), and uses the Wishbone protocol (WB) for the I/O transactions. The
current implementation of the processor core contains 17K lines of VHDL code.
There are 481 direct signal assignment statements, 413 branches and 1573
conditions.

This subsection is based on Paper I'V:

Jenihhin, Maksim; TSepurov, Anton; Tihhomirov, Valentin; Hantson, Hanno;
Raik, Jaan; Ubar, Raimund; Bartsch, Gu'nter, Meza-Escobar, Jorge Hernan;
Wauttke, Heinz-Dietrich. “Automated Design Error Localization in RTL Designs”.
IEEE Design & Test of Computers, 1, 2014, pp.83-92.
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The bug localization method described here in Figure 4.5, has been
implemented on top of an open source HDL-centric framework zamiaCAD
(TSepurov A., et. al.,, 2012), which puts emphasis on scalability and non-
intrusiveness. The front-end of zamiaCAD includes a parser and an elaboration
engine that both support full VHDL 2002 standard specification. On the back-end
side the framework allows design simulation, static analysis and other applications
such as synthesis and design structure visualization. zamiaCAD has an Eclipse
IDE plug-in based agile graphical user interface for advanced design entry and

navigation.
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An object database ZDB (zamiaCAD Data Base), which has been custom-
designed and highly optimized for scalability and performance is used for
zamiaCAD applications. The database is HDL independent and able to
accommodate extremely large designs. Full elaboration in zamiaCAD
semantically resolves the Abstract Syntax Tree (AST) generated by the parser and
results in a set of scalable Instantiation Graph (IG) data structures, stored in ZDB.
Instantiation Graph is a data structure represented by a densely connected graph
of semantically resolved objects representing elements of hardware design.

IG is the basis for zamiaCAD applications. In order to handle designs that do
not fit into memory, ZDB containing the elaborated design is automatically and
efficiently persisted to disk, thus saving processing time. As demonstrated in
(TSepurov A., et. al., 2012) the framework is capable of handling very large
industrial multi-core designs (tens of millions of VHDL code lines, e.g. a SoC
made of more than 3500 Leon3 processor cores).

4.2.1 Statistical bug localization

The statistical bug localization method assumes that design verification has been
performed and an erroneous behavior at observable outputs of the processors has
been detected. The method is based on four main phases: static slicing, dynamic
slicing, statistical suspiciousness ranking of the HDL code items and an optional
cone inspection phase. First, the design is simulated in order to obtain the list of
executed statements and information about passed and failed test cases. A test case
is considered to be passed if the simulated output responses match with expected
ones and it is regarded as failed otherwise. Then, static slicing computation is
performed based on generating reference graphs. Subsequently, dynamic slicing
reduces the debugging analysis to all the code items that actually affect the
design’s faulty behavior for a given test case. Finally, the statistical
suspiciousness ranking assigns a suspiciousness score to each code item based on
its presence in the dynamic slices and on the information of passed/failed test
cases. Intuitively, if a code statement occurs very frequently in executions
revealing the error, it is very likely to contain a bug. The statistical ranking is
performed for the statement items in the HDL code. In order to reveal the bug
locations more accurately, the suspiciousness ranking is performed also
hierarchically for the branches and conditions that the ranked statements may
have. Figure 4.6 presents the statistical bug localization flow.
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Figure 4.6. Statistical bug localization flow

Currently debugging is considered as a process of locating the failure, with the
correction task being left to the designer. After the designer has received the
ranked list of code items the following task is to localize the root cause of the
erroneous behavior. Likely locations for bugs are in those code items having the
highest suspiciousness scores in the list. In a simple case the designer has to
inspect code items at the top of the ranked list, which score is higher than a
preselected threshold value Spesnoi. Ideally, when the automated localization
method is accurate enough, then the artifact with the highest score leads us to the
location of the bug, or alternatively the bug is localized among very few highly
ranked artifacts. In the case study presented here it can be seen that in many cases
the bug was attached to an artifact with the absolutely topmost rank. Thus, in the
majority of situations inspecting the first, or few highest ranked, code artifacts
reveals the bug location. However, there exist cases where the statistical ranking
does not directly pin-point the root location of the error, and the actual location is
not among the highest ranking code items, or too many items share the highest
rank. In those cases the case study showed that it is easy to locate the bug by
activating depth-limited forward and backward cones from the signals included to
the highest ranked items. This type of cone activation is supported by the
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zamiaCAD infrastructure of through-signal assignments search. The study
showed that only low depth cones (up to 1 level) starting from the signals of the
very highest ranked artifact need to be inspected in practice. Figure 4.7 illustrates
the process of code inspection by the designer.

Suspiciousness

score O

Inspect code items 7,
where the score S(i) > Syeshon

Inspect cones of
Rank of length k from signals

>

"code artifacts of n top items

Figure 4.7. Inspection of likely bug locations

4.2.2 Motivational example

Consider the motivational design example shown in Figure 4.8 that presents a
VHDL implementation of a signal chopper design named chopper. The chopper
design has 3 processes calculating 4 outputs representing different chops for the
input signal SRC based on the design configuration by inputs INV and DUP. It is
assumed that the design has 5 individual tests T1-T5 of varied length each keeping
the values of INV and DUV constant while flipping the value of the SRC input
and having appropriate behavior of the clock and reset signals (CLK, CLKN,
RST). The design has a bug on line 28 where instead of correct assignment FO <=
FF; the design has a buggy assignment FO <= not FF;. Test cases T1, T3 and T4
are able to detect the bug and are referred to as failing tests, while test cases T2
and TS5 pass despite the presence of the bug and are referred to as passing tests,
respectively. The faulty behavior of the design caused by the failing tests is
observed at output TAR f (assigned at line 46).
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Executed
statements

Dynamic

A Lo % 'é_b’:w
slices 2 5 03§ VHDL code for the chopper design
hnn (}J’ »o <
1 entity CHOPPER is port (
2 RST, CLK, CLKN: in bit;
3 SOURCE, INV, DUP: in bit;
4 TAR_f, TAR_h, TAR_ff, TAR_fh: out bit);
5 end entity;
6
7 architecture ARCH of CHOPPER is
8 signal F@, F1, FF, H@, H1, SRC: bit;
9 begin
1e
11 process (INV, SOURCE) begin
EEEEHEA|g.5 [T J|12 if INV = '1' then
[ N | A g4 1|12 SRC <= SOURCE;
14 else
mmwmA 857 @ 1|15 SRC ¢= not SOURCE;
16 end if;
17 end process;
18
19 RISING:
2e process (RST, CLK)
21 begin
EEEEEA 5 [T 1|22 if RST = "1' then
EEmEElA .5 [T 1]23 Fe <= '@"';
24 H1 <= 'e"';
EEEEEA (0.5 [T 1|25 elsif CLK'event and CLK = "1' then
EEEENA(|B.5 T |26 if DUP = '1' then
m mEE |i|l.e [Tl 27 FF <= SRC;
B mEwm (i |l.e [ _1m| 28 F@ <= not FF; --Bug! “F@ <= FF”
29 else
n m(a |6 [ 1|38 F@ <= SRC;
31 end if;
32 F1 <= F@;
33 H1 <= He;
34 end if;
35 end process;
36
37 FALLING:
38 process (RST, CLKN) begin
39 if RST = '"1' then
40 He <= '@';
41 elsif CLKN'event and CLKN = "1' then
42 H@ <= SRC;
43 end if;
44 end process;
45
EEEEN|A |B.5 T 1|46 TAR_f <= (not SRC) nor F@; --Buggy out
47 TAR_ff <= (not F@) nor F1;
48 TAR_h <= (not SRC) nor H@;
49 TAR_fh <= (not H@) nor H1;
50
51 end architecture;

Figure 4.8. Bug localization on a motivational example



4.2.3 Static slicing

The presence of concurrent constructs, such as the ones found in HDLs versus
sequential software languages, makes static slice computation considerably more
complicated (Clarke E. M., et. al., 1999). zamiaCAD exploits its elaborated model
referred to as Instantiation Graphs (IGs) (TSepurov A., et. al., 2012) for this
purpose. Given the IG model it is possible to perform a signal references search
through its assignments, both backward to find the dependencies and forward to
find other signals and variables influenced by the signal. The resulting reference
graph has the signals and variables in its nodes and the dependencies are
expressed by directed edges. It may contain cyclic dependencies and may be very
large, especially if the search was initiated from primary inputs/outputs of the
design. It is possible to limit such search by constraining the depth of the graph.
An example dependency graph computed for the chopper design’s output TAR f
is shown in Figure 4.9.

Figure 4.9. Through-signal-assignment search based backward reference graph on
the signal TAR_f in the chopper design

Given the reference graph, the HDL statements representing the signal and
variable dependencies in its edges are collected into a set. The resulting set
represents a static slice on the signal of interest. However the approach for static
slice computation does not consider the order of HDL assignment statements and
can therefore be slightly too optimistic i.e. it can potentially include some
statements that do not represent dependencies influencing the signal of interest
into the static slice. It can be observed only for certain combinations of variable
(versus signal) assignments which are a rare case in practical HDL descriptions.
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The column Static Slice in Figure 4.8 marks VHDL statements of a static slice
on the TAR f output by triangles. Static slicing allows having a design filter”
eliminating from the analysis space the design parts that do not influence the signal
of interest. As a result in the chopper design example the entire process FALLING
and a large part of other statements were excluded from the further analysis.

4.2.4 Suspiciousness ranking based on statement/branch coverage
metrics

The statistical suspiciousness ranking procedure used in this Thesis is based on
design simulation by a diagnostic test. A requirement for the diagnostic test is that
it has to contain a set of independent test cases (e.g. separated by design reset)
where both failing and passing test cases are represented. The quality of the
statistical ranking is highly dependent on the quality of the diagnostic test.
Functional tests for processors are suitable as diagnostic tests because they are
divided into separate test cases for processor instructions, so that each such test
case can be executed independently.

The column Executed Statements in Figure 4.8 marks the VHDL statements
executed during design simulation with each of the 5 tests by circles. A fraction
of the set of executed statements can be excluded from the further analysis by
applying a static slice filter on an output signal where the faulty behavior was
observed. This approach allows obtaining a dynamic slice of the design on this
signal. The column Dynamic Slices in Figure 4.8 marks the VHDL statements
taking part in the dynamic slices of the tests by rectangles. Thus the analysis space
for the current example was reduced by 2.2 times (42 covered statements in
dynamic slices versus 92 statement executions by the diagnostic test).

The statistical suspiciousness score for ranking of the HDL code item i is
calculated as shown in Formula 1:

Failed
N TotalFailed
S@) = Passed 4 Failed M
TotalPassed ' TotalFailed

Where S(i) is the suspiciousness score value of the code item i, Passed and
Failed are counts of passing and failing tests that covered the code item 7 in the
dynamic slice, while TotalPassed and TotalFailed are the total numbers of the
passing and failing tests in the complete diagnostic test, respectively.
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Further zamiaCAD environment visualizes by colors the suspiciousness level
of HDL code items (i.e. statements, branches, conditions) based on their scores
S(i). The score values are interpreted as follows:

e S(i)=1 - the code item i is highly suspicious to contain or to lead to the
bug
e S5(i)=0 - the code item i is above suspicion

o S(i)=Sureshoid - the code item i cannot be emphasized by the analysis

Here 0<Sinresnoia<1 is the suspiciousness threshold specified by the designer and
is by default equal to 0.5. The code items having score values in-between 0 and
Stnreshola and in-between Suyesiors and 1 represent corresponding levels of
suspiciousness. The ranking of code items is performed according to the score
values starting from the highest. Code items without a score are either eliminated
from the analysis by the static slice filter or not covered by the diagnostic test.

An example of applying the suspiciousness ranking to the chopper design is
demonstrated in Figure 4.8. Here the assignment statements at lines 27 and 28
were calculated as the most suspicious (score S=1.0) and are assigned with the
first rank. The statement at line 15 has score S=0.57 and therefore a lower rank.
The assignment statements at lines 13 and 30 have scores 0.4 and 0.0
correspondingly and are therefore considered above suspicion and not assigned
ranks.

4.2.5 Hierarchical analysis based on condition coverage

As it will be demonstrated further, the ROBSY processor case study emphasizes
an important general category of design errors that are difficult to localize. They
are bugs in complex condition expressions of conditional statements. E.g. Bug 1
in this case study is an erroneous comparison of one of the 35 conditions in a
conditional assignment when of the ALU module. Localization of such bugs is
assisted by suspiciousness ranking of conditions.

It is proposed to hierarchically rank conditions of the selected suspicious
branches that belong to suspicious statements. Formula 1 is applied for this
purpose considering for i branches and conditions instead of statements. A
detailed example for hierarchical conditions ranking and its application for bug
localization is demonstrated on example of a real bug (Bug 1) localization in the
ROBSY processor further in the next section.
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4.2.6 ROBSY processor: functional test

To verify the correct functionality of the Instruction Set Architecture (ISA), a
functional test was developed. The functional test consists of a test program
written in assembler, executed in a predefined order to test all the instructions
supported by the processor. The test program is divided into sub-tests, where each
sub-test is in charge of testing a specific instruction and setting register R1 to a
specific value that acts as a sub-test label (error code). During the sub-test
execution, it is evaluated if the values obtained in the registers, flags, etc., are as
expected. Figure 4.10 has an example of a sub-test corresponding to the compare
(CMP) instruction.

; check CMP with flags (register content unsigned)

MOV R1, 01; -- error code 01--

MOV R2, A3;

MOV R2, 05;

Iz fail; if R2 equals 05  (jump zero)

JC fail; if R2 <05 (jump carry)
CMP R2, A3;

INZ fail; if R2 not equal 05 (jump not zero)
IC fail; if R2 <05

MOV R3, A4;

CMP R2, R3;

INC fail; if R2>R3 (jump not carry)

Figure 4.10. ROBSY processor test program

In the case of an unexpected value, the processor goes to the code section
labeled with “fail”. Here the execution is aborted and the error code of the failed
sub-test is written to the WB register. If all sub-tests are successfully executed, a
pass code is written to the WB register, interrupts are activated and the processor
enters into an infinite loop. By looking at the value of this register at the end of
the simulation, it is possible to distinguish if the test execution was successful or
not.
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4.2.7 Set of documented design errors

The ROBSY design team has documented a set of their VHDL coding bugs that
have the following nature:

Bug 1 A wrong register is used as one of the operands in a very long
conditional expression (35 operators) inside a conditional signal
assignment. Possibly, due to a copy-paste error.

Bug 2 An entire conditional sub-expression (3 operators) resides in the
wrong branch of a conditional signal assignment, which contains 9
branches in total.

Bug 3 Both, a missing branch and a missing driver in a short
conditional signal assignment.

Bug 4 A wrong enumeration constant is used in a comparison
operation inside a conditional signal assignment.

Bug 5 A wrong driver is used in a conditional signal assignment. More
specifically, register R is not updated with its newly computed value
typically stored in R _next or R_new signal. Instead, the same register
R is used as a driver, which indicates an obvious copy-paste error.

Bug 6 A missing conditional sub-expression (3 operators out of 6
required ones) in one of the 4 branches of a conditional signal
assignment.

Bug 7 One bit of a register is always and unconditionally set to 0. The
whole code line to blame is unnecessary and hence incorrect.

4.2.8 Experimental results

This section presents experimental results for the design errors localization
approach evaluation on the industrial processor ROBSY. For the purpose of the
current approach the original functional test (i.e. an Assembler program) was split
into 31 independent sub-tests, each targeting a separate instruction. Each of the 7
buggy versions of the processor was simulated with the resulted diagnostic test.
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Stm. | Bran. | Cond. |, . .
# |ccore| score | score |-iM€ Source code lines
alu.vhd

6 (0.51 88

510.55 104

2 (0.67 108

1 (0.80 110

5 10.55 116

5 10.55 127

3 (0.64|0.64 260|svFlag new(®) <= '1' when afClass=cfClass_1

0.64% [261 and ((svOp_mux(cnD_w)=REG_SOURCE_DEST_IN(cnD_w)--add case
262 and svOp_mux(cnD_w)/=svRes(cnD_w)

263 and ((aCmd=cvCmd_ADD_R_R and c_en_ADD_R_R)

264 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD R _IMM)))

0.51%, |265 or (svOp_mux(cnD_w)/=REG_SOURCE_DEST_IN(cnD_w)--sub case
-- Bug: correct compar. between REG_SOURCE_DEST IN and svRes
266 and svOp_mux(cnD_w)/=svRes(cnD_w)

0.69%; |267 and ((aCmd=cvCmd_SUB_R R and c_en_SUB_R_R)

0.75% (268 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)
0.57% [269 or (aCmd=cvCmd_CMP_R R and c_en_CMP_R R)

0.51%; (270 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R IMM)))

271 or (REG_SOURCE_DEST_IN(cnD_w)/=svRes(cnD_w)--shift cases
0.55%, (272 and ((aCmd=cvCmd_SHL_R and c_en_SHL_R)

0.55% (273 or (aCmd=cvCmd_SHR_R and c_en_SHR R))))

5 10.55]0.55 274| else 'O’ when afClass=cfClass_1 --overflow reset
275 and ((aCmd=cvCmd_ADD _R_R and c_en_ADD_R_R)

276 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)

277 or (aCmd=cvCmd_SUB_R_R and c_en_SUB_R_R)

278 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)

279 or (aCmd=cvCmd CMP_R R and c_en_CMP_R R)

280 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)

281 or (aCmd=cvCmd_SHL_R and c_en_SHL_R)

282 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))

NA|0.50 283| else svFlag(@);

data_interface_mod.vhd

2 10.67 155
2 10.67 158
gprs_mod.vhd
4 |e.60] | | 97]
state_machine.vhd
4 10.60 100
4 (0.60 123
4 (0.60 168

Figure 4.11. Details of automated localization

Figure 4.11 demonstrates the hierarchical localization of Bug I. The grey areas
denote that some detailed information was omitted from the figure. First the
dynamic slices (intersection of executed statements with the static slice on an
observable faulty output) were generated for all of the test cases and the statistical
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suspiciousness ranking was performed. This analysis resulted in 14 statement
items (out of the initial total 481 assignment statements) whose suspiciousness
score S was above the default suspiciousness threshold Spreshoir =0.5. The figure
shows in the second column Stm. score the scores for these 14 suspicious
statements, and in the first column their rank based on the score (6 ranks in total).
Most of the statements with high scores were found in the ALU processor module
(file alu.vhd).

The figure demonstrates a part of the actual VHDL code for the conditional
assignment of the overflow flag signal svFlag new(0). Bug I is located in the
condition expression at line 266 (correct comparison had to be made between
signals  svRes(cnD w) and REG SOURCE DEST IN instead of
svOp_mux(cnD_w)). This complex conditional assignment (lines 260-283)
contains 3 individual assignments at lines 260, 274 and 283. The first two
assignments have 3rd and 5th ranks while the last one has the score S = 0.5 and is
filtered out together with other statements with scores 0.5 and less.

The automated localization iteratively advises the designer to consider as bug
location candidates the statements with the highest ranks starting with the one at
line 110 in alu.vhd, followed by statements at line 108 in alu.vhd and lines 155
and 158 in data_interface_mod.vhd (complemented with hierarchical analysis of
the corresponding branches and conditions). Further it will advise the designer the
statement at line 260 in a/u.vhd with the next rank 3 and score value 0.64. The
hierarchical analysis will proceed with score computation of the branches of this
statement (column Bran.score). The suspiciousness scores of separate condition
evaluations to ‘true’ and ‘false’ related to this branch artifact are also calculated.
The ones that have score S > 0.5 are specified in column Cond. score. One of the
highest scores here has the logical and at line 267. One of its operands is actually
the incorrect signal comparison documented as Bug 1.

Table 4.4 demonstrates the statistics of applying the bug localization approach
to all of the 7 bugs. The second column depicts the ratio of failing versus passing
test cases for the bugs. The third column in the table shows how many statements
were proposed as bug location candidates by the statistical ranking step. The
column also demonstrates these numbers in percentage of the total number of the
statements which was 481. The fourth column shows the rank of the statement
actually containing the bug. If ranking alone was not sufficient then the column
shows the rank of the statement from which cone inspection was activated.
Column six shows the direction (i.e backward/forward) and the depth of the cone
if cone inspection was required while column seven shows the number statements
added as bug candidates by this step.
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Table 4.4. Statistics of the bug localization approach

Automated localization
Bug data
& Statistical ranking insf)(e)zlt‘;on 1\:1[:;)1:21
Failed / Time
Bug Passed | Statements ALt C.O e | At (min) | Time
name| Test cand. / % stm. e i (h)
*" 7| rank | depth | cand
cases
}f“g 4/24 | 14/2.9% 3 - - 2 4
2B“g 2/26 | 7/14% 1 ; - 2 2
?“g 2/26 | 20/4% 3 ; - 2 4
Bug o 2
A /27 | 6/12% | () | fw/1 | 21 | ] 4
?“g 2/26 | 11/23% 1 - - 2 2
Bug o 2
p 1/27 8/1.7% (1) bw /1 13 (10) 5
Bug o 2
; 1/27 [ 21/43% | () | fw/1| 10 | 0 1

The diagnostic test was sufficient to automatically localize 4 of the 7 bugs by
the ranking step only. Pessimistic estimation of the candidates’ count with the
shown rank or higher that was necessary to check before the bug discovery is 5,
1, 12, and 4 for Bugs 1, 2, 3 and 5, respectively. Localization of the remaining
three bugs was required cone inspection as an addition step. The cones of a limited
depth were generated by zamiaCAD by the through-signal-assignment reference
search (also used for static slice computation) from the signals involved in the
highly ranked assignment statements. In the current case study Bugs 4, 6 and 7
were present within the cones of depth 1 on the signals from the statements with
the highest rank. These cones have added 21, 13, and 10 additional candidates as
shown in column six.

The last two columns in Table 4.4 compare time required for bug localization
by the automated localization approach and conventional manual debug process.
The time values for the manual process are reported by the ROBSY processor
designers based on their experience with locating these bugs using commercial
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design environments. The time reported for the automated approach consists, first,
of time spent for the statistical ranking step which is mainly spent for simulation
of the 28 test cases and constantly equals to 2 minutes for the case study diagnostic
test. Second, it is estimation of time spent for manual cone inspection (shown in
brackets). The runtime required for the static slices and cones construction in
zamiaCAD takes a fraction of second and can be neglected.

Previous state-of-the-art automated hardware design error localization
approaches are not capable to handle industrial size RTL designs such as ROBSY.
Therefore direct comparison to other than manual approaches was not possible for
this empirical study.

4.3 Design error correction for C

Verification is increasingly becoming the bottleneck in designing digital systems.
In fact, most of the verification cycle is not spent on detecting the occurrences of
errors but on debugging, consisting of locating and correcting the errors.
However, automated design-error debug, especially at the system-level, has
received far less attention than error detection. The current section presents an
automated approach to correcting system-level designs. Dynamic-slicing and
location-ranking based method for accurately pinpointing the error locations
combined with a dedicated set of mutation operators for automatically proposing
corrections to the errors are presented. In order to validate the approach,
experiments on the Siemens benchmark set have been carried out. The
experiments show that the method is capable of correcting three times more errors
compared to the state-of-the-art mutation-based correction methods while
examining fewer mutants.

This subsection is based on Paper V:

Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di
Guglielmo, Giuseppe; Pravadelli, Graziano; Fummi, Franco. “Combining
Dynamic Slicing and Mutation Operators for ESL Correction”. Proceedings of the
17th IEEE European Test Symposium, IEEE Computer Society Press, 2012, pp.
1-6.
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4.3.1 State-of-the-art

In debugging, the error localization is considered the most time expensive activity
and its quality affects the following (manual or automatic) correction phase
(Vessey L., 1985). In manual error localization, engineers run the design with some
input stimuli till they observe a failure; then, they iteratively place breakpoints,
analyze the system status, and backtrack to the error origin using a source-level
debugger, e.g., GNU GDB (Stallman R. M., Pesch R. H., 1991).

On the other hand, automatic error localization is based on different
methodologies. In particular, they may be simulation-based and use coverage
information (Wong W. E., Debroy V., Choi B., 2010), (Wong W. E., Qi Y.,2009),
(Jones J. A., Harrold M. J., 2005), binary search (Cleve H., Zeller A., 2005), and
statistical analysis (Liblit B., et.al., 2005), (Liu G., et.al., 2006). As well, formal
approaches for error localization exist that are very effective but may suffer the
state-explosion of the underlying solver (Staber S., Jobstmann B., Bloem R.,
2005), (Konighofer R., Bloem R., 2011). Of all these solutions, the Tarantula
(Jones J. A., Harrold M. J., 2005) coverage-based approach has been proven
suitable for real-world designs. Present Thesis provides an improvement for error
localization, which significantly reduces the overhead of the error-correction
phase based on ESL-code mutation.

After an error is detected and localized, it should be corrected. Design-error
correction for combinational circuits has been thoroughly studied for decades.
There exist, both, error-matching-based (Madre J. C., Coudert O., Billon J. P.,
1989), (Konighofer R., Bloem R., 2011), (Abadir M. S., Ferguson J., Kirkland T.
E., 1988) and resynthesis (Ali M. F., et.al, 2005) approaches. There have also been
attempts to generalize the above mentioned methods for design-error correction
of sequential circuits (Ali M. F., et.al, 2005), (Wahba A., Borrione D., 1995). In
particular, the SAT-based correction and re-synthesis approach developed by
(Smith A., Veneris A., Viglas A., 2004) has been extended to higher abstraction
levels such as register-transfer level (Chang, K.-H., et al., 2007), (Chang K.-H.,
Markov 1. L.; Bertacco V., 2008). The re-synthesis approach for high-level
design-error correction has two main limitations. The correction is not readable
and thus cannot be checked by the designer. Moreover, the correction is limited
to the set of used stimuli: this is due to the logic optimization freedom created by
the partial truth table of the portion to be corrected.

Finally, in (Konighofer R., Bloem R., 2011) a symbolic-simulation-based
approach is proposed for both error correction and localization in ESL designs
described as C programs. All the reasoning is done with a Satisfiability Modulo
Theory (SMT) solver (De Moura L., Bjorner N., 2009), thus it can be classified
as a formal method. In particular, the approach performs the error correction by
using approximation heuristics and a template-based methodology, which gives
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readable corrections. In the experimental-result section, comparisons of the
approach presented in this Thesis and (Konighofer R., Bloem R., 2011) are
provided, showing better correction capability and preserving correction
readability.

4.3.2 Error correction method

At electronic-system level (ESL), designs are described in an algorithmic way
with a high level of abstraction with respect to the final hardware implementation
(Konighofer R., Bloem R., 2011). In order to formally represent the ESL
algorithmic descriptions the flowgraph model has been chosen as an underlying
model. In such flowgraph, there is a one-to-one correspondence between the
program statements and nodes and edges represent the control flow of the
program. More precisely, the model representation is a special case of flowgraph
known as the hammock graph (KaSjanov V.N., 1975), which was proposed for
program slicing in (Weiser M., 1984).

Definition 2: A hammock graph is a structure H=<N, E, ny, n.>, where N is a
set of nodes, E is a set of edges in NxN, ny is the initial node and n. is the end
node. If (n, m) is in E then n is an immediate predecessor of m and m is an
immediate successor of n. A path from a node n; to a node n; is a list of nodes py,
P1, ..., prsuch that pg = n;, pr = nz,and forall i, 1 <i<k—-1, (p;, pi+1) is in E. There
is a path from #ny to all other nodes in N. From all nodes of &, excluding 7., there
is a path to #e.
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ESL module H-graph Static slicing Executed Dynamic

statements slicing
read(a, b, ¢); [ ) ® —— O
if (¢ > 0) { O e — O
b=0; ()
c=3; O ® _ , 0
a=c+2; o ® —— O
} else {
a=b-c; o
H
out = a; () ® " O

Figure 4.12. The ESL description is modeled as a flowgraph, i.e., hammock graph.
Simulation and slicing are performed on the model representation

Figure 4.12 presents a simple ESL functionality in C language, i.e., column
ESL MODULE, and the corresponding flowgraph H, i.e., column H-GRAPH. In
the following, some definitions are introduced in order to explain the slicing
process on flowgraph structures.

Program slicing (Weiser M., 1984) is a technique for extracting portions of a
program affecting a selected set of variables of interest. By focusing on the
computation of only few variables the slicing process can be used to discard
portions of the program, which cannot influence these variables, thereby reducing
the size of the program. The reduced program is called a slice. Slices reproduce a
projection from the behavior of the initial program. This projection represents the
values of certain variables as seen at certain statements.

Definition 3: A slicing criterion of a program P is a tuple (x,V), where x is a
statement in P and V' is a subset of the variables in P.

Informally, given a slicing criterion C = (x, V), a static program slice S consists
of all statements in program P that may affect the value of v€V for a set of all
possible inputs at the point of interest, i.e., at the statement x. Static slices are
computed by finding consecutive sets of indirectly relevant statements, according
to data and control dependencies. Unfortunately, the size of the slices so defined
may approach that of the original program. Indeed, static slicing preserves the
behavior of the original program for all the possible input values. In this case, the
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usefulness of the slices in debugging tends to diminish as the size of the slices
increases.

In (Korel B., Laski J., 1988) a more accurate slicing technique, i.e., dynamic
slicing was introduced. Dynamic slicing provides more narrow slices, preserving
the behavior of the original program and consisting of only the statements that
influence the value of a variable for a given input.

Figure 4.12 illustrates the concepts of static and dynamic slicing applied to the
flowgraph representation of an ESL functionality. In particular, the Figure reports
an intuitive correlation between static slicing, execution trace, and dynamic
slicing. Let us consider, for example, the slicing criterion C = (ng, {out}). In this
case the 7 is the end node 7. of the hammock graph. The black dots in the column
STATIC SLICING indicate the statements included into the slice in case of static
slicing. These mark the statements that are needed in order to calculate the value
of the variable a at the node ns. It can be seen that the node n, is excluded from
the slice because the statement b=0 is not necessary for calculating the value of
the variable out at the node .

The column DYNAMIC SLICING refines that Alice according to the execution
trace obtained with actual value assignments. Assuming that variables get
assignments a=2, b=4 and ¢=7, the slice shown in the last column of Figure 4.12
is obtained. The else branch of the condition is not activated by these input values
and therefore the respective statement are not included into the slice. The column
EXECUTED STATEMENTS shows all the statements that were executed in
current trace with the given input assignments. As one can see, the statements
occurring in the dynamically-computed slice are a proper subset of the statements
in the statically-computed Alice and execution trace. This narrows the search
space of the following step for ranking the error locations.

In this subsection, a design-error localization approach is considered, where
ESL implementations fail on some of the given test cases. The error localization
relies on error detection results. The mechanisms of the latter are out of scope of
this Thesis and may involve for instance the golden output responses specified by
the test cases, assertions supplied with the test environment or results obtained
from analyzing the specification (e.g. UML, SW program, etc.).

The error localization method is based on calculating the dynamic slices for all
the observable outputs of the system with all the test cases. Depending on whether
an output response obtained by a given slice is correct or not, the slice is marked
as a passed or failed one, respectively. Then, a statistical and coverage-based
approach is implemented assigning score to flowgraph nodes based on the number
of times they were included into failed slices with respect to the number of times
they occur in the previous executions. Finally, the flowgraph nodes are ranked
according to this score, referred to as the suspiciousness score.
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In details, the error ranking and localization takes place as follows. Let 7 be a
test suite consisting of test cases # for verifying the functionality of the ESL
description. Let H be the flowgraph associated with the description. Let y; be the
observable output variables of the design. Finally, let the nodes n; of H be the
respective nodes were value assignments to y; are made. Over each test case #; and,
in turn, over each observable output variable y; a dynamic slice dj is generated
according to the values of current test case #; and a slicing criterion C = (x;j, {yj}),
where x; is the statement at the flowgraph node #;.

If y; resulted in a correct value at test case #, then the dynamic slice dj; is
included into the set of passed slices Dpassep. Otherwise, it is included to the failed
slices, i.e. d;€ Dramep. Each node ny of flowgraph H gets a score according to the
number of times crarep it is included into the set of failed slices Drarep and the
number of times cpassep it is included into the set of passed ones, i.e. Dpassep. This
score of suspiciousness is calculated as shown in Formula 2:

CFAILED

(2)

suspiciousness(ny) =
Cramep + Cpassep

The nodes nx are ranked according to the suspiciousness score with more
probable candidates for error correction having higher score values. This ranking
is used for selecting statements to be corrected by the mutation-based
methodology presented in the following sections.

4.3.3 Mutation-based error correction

Traditionally mutations are performed by perturbing the behavior of the program
in order to see if the test suite is able to detect the difference between the original
program and the mutated versions. The effectiveness of the test suite is then
measured by computing the percentage of detected, or killed, mutations.

In this subsection, mutation operators are applied for correcting erroneous
circuits. The goal is to develop an error-matching based correction approach,
which would be capable of modeling realistic design errors. Moreover, it is crucial
to select a limited number of mutation operators, because the perturbation and
simulation of erroneous design implementations with a large number of error
locations and mutant operators would become prohibitively time-consuming.

Table 4.5 presents the set of ESL-mutation operators that were implemented
in the error-matching based correction method. Since ESL descriptions in C
language are targeted, the focus is on algorithmic aspects of the description and
software-specific constructs and related errors, such as dynamic-memory
allocation, pointer arithmetic, and file /O are not considered. This permits to
reduce the overhead of the code mutation phase and address only system-level
issues.
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Table 4.5. List of mutation operators for correction

Mutation operator C operators/examples
AOR (arithmetic operator replacement) + -*/,%
ROR (relational operator replacement) ==, 1= > < >= <=
LCR (logical connector replacement) &&, ||
félsjgir(l?:;ignment operator T Y
UOR (unary operator replacement) +, -, ~, !
Bitwise operator replacement <> &, 0
Bitwise assignment operator <<=, 5=, &=, |, A=
replacement ’ T

Increment/decrement operator

X++, X, X--, --X
replacement

Number mutation (decimal digit
replacement in integers, floats and 0-9
array indexes)

Constant replacement unary minus /

+C, 0, -C
unary plus / zero

In particular, the mutation operators include replacement of C language
operators, which have been divided into several groups: arithmetic operators,
relational operators, assignment operators, unary operators, etc. In addition,
number mutations are performed by replacing each decimal digit in the numeric
values one-by-one with other decimal values. This includes both, integer and
floating point numbers and it covers also the array indexes. Also, constants are
mutated by inserting unary operators + and — as well as replaced by zero.

Figure 4.13 explains the mutation-based correction process. Subsequent to the
error localization step described in subsection 4.1.3, which ranks the statements
of the program, the suspected error locations are iteratively tried according to their
rank. The operators in the statements are, in turn, iteratively substituted by
mutation operators, i.e., valid operators from the same category. In other words,
replacing arithmetic operators by arithmetic operators, relational operators by
relational ones etc. These iterations stop when the simulation result confirms that
the mutated program provides output responses equal to the golden output
responses, in other words, a correction has been found. Otherwise the process
continues until there exist untried error locations and/or mutant operators, or when
a user-specified time limit is reached.
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Figure 4.13. The mutation-based error correction flow

This mutation-based correction method is an error-matching approach. Error-
matching is known to have the limitation that it is generally not capable of fixing
errors that are not included to the model. On the other hand, the mutation-based
error-matching provides easy-to-read corrections of system-level descriptions.
Moreover, the experiments show that the mutation-based approach can fix some
of the not modeled errors by proposing alternative but equivalent fixes.

4.3.4 Experimental results

Current debugging approach has been implemented as a module of a larger tool,
i.e., FOREnSiC (DIAMOND, 2011), which also features formal and semi-formal
approaches for debugging of ESL design (Konighofer R., Bloem R., 2011). This
framework supports debugging of algorithmic descriptions of hardware in C
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language. In order to evaluate the method, experiments on Siemens benchmark
suite (Siemens, 2010) comparing it to a recently published formal (Kénighofer R.,
Bloem R., 2011) and dynamic (Debroy V, Wong W. E., 2010) technique were
carried out. The front-end of FOREnSiC was applied for generating the flowgraph
models for the C language designs (Raik J., et.al., 2012).

In Table 4.6, the main characteristics of the benchmark circuits are presented.
Column LoC shows the number of lines of code for the corresponding C designs;
column TEST-CASE # shows the number of test cases for the design, which
include both failing test stimuli and passing stimuli; finally, column FAULTY-
VERSION # shows the number of faulty versions of the benchmark programs.
One faulty version from benchmark schedule2 was exploded because the design
error did not result in any test case failure making the correction process
meaningless.

Table 4.6. Characteristics of Siemens benchmarks

Design LoC | Test-case # | Faulty version #
replace 507 5542 32
schedule 397 2650 9
schedule2 299 2710 9
tcas 174 1608 41
tot_info 398 1052 23
print_tokens | 539 4130 7
print_tokens2 | 489 4115 10

In Table 4.7, the results of the design error correction experiments are
presented. Current method is compared to two recently published methods: a
symbolic-simulation-based method (Konighofer R., Bloem R., 2011) and a
mutation-based method (Debroy V, Wong W. E., 2010). For each methodology,
columns # FIXED show the number of corrected faulty model versions and
Columns % FIXED show the percentage of corrected models from the total
number of faulty model versions.
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Table 4.7. Design error repair experiments

Design (Konighofer | (Debroy V,

R.,Bloem R., | Wong W. E.,

2011) 2010) Current method

# % # % # # Mutants

fixed | fixed fixed |fixed |fixed |fixed |examined
replace - - 3 9.4 12 37.5 855.2
schedule - - 0 0.0 2 22.2 188.0
schedule2 - - 1 11.1 3 33.3 460.7
tcas 7 17.1 9 22.0 26 63.4 131.1
tot_info - - 8 34.8 15 65.2 781.3
print_tokens - - 0 0.0 1 14.3 825.0
print_tokens2 | - - 0 0.0 70.0 952.3
Total: N/A 16.0 50.4 599.1

As it can be seen from the table, current approach clearly outperforms
(Konighofer R., Bloem R., 2011), where only 8 faulty versions (out of 41) of tcas
design are analyzed. The approach in (Konighofer R., Bloem R., 2011) is able to
correct 7 out of these 8 faulty versions, whereas the current approach corrects all
8. Furthermore, due to the underlying solver, the formal approach (Kénighofer R.,
Bloem R., 2011) is only able to model the designs which bit-width is reduced from
32 to 8 bits.

With respect to (Debroy V, Wong W. E., 2010), the current method increases
the percentage of successful corrections from 16.0% to 50.3%. Thus, the rate of
corrections is increased by the factor of three.

It is important to stress that the increase in successful fixes does not come at
the expense of more mutants to be considered. The last column of Table 4.7 shows
the localization accuracy in terms of the average number of examined mutants per
design error. In fact, this number is 599.1, which is even slightly fewer than 642
mutants in average obtained in (Debroy V, Wong W. E., 2010).

The significant increase in successful corrections with respect to (Debroy V,
Wong W. E.; 2010) is due to the selection of mutation operators, which are not
limited to control flow errors. The run-time advantages in terms of the number of
mutants examined comes partly from the more accurate diagnosis method based
on dynamic slicing and location ranking.
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4.4 Conclusions

The chapter presented a method for automated debug of multiple simultaneous
design errors for RTL circuits. A critical path tracing based error localization
method was implemented, which performs statistical analysis in order to rank
suspected error locations. Then, an error matching approach to correction was
applied implementing mutation operations. Localization of multiple erroneous
data operations and their mutation-based correction was analyzed in the
experiments. The two metrics of statistical analysis were compared and their
capabilities in localizing multiple errors were shown.

As a result of the experiments it was discovered that the localization of two
simultaneous errors by one of the metrics (metric B) is accurate and comparable
to that of a single error localization. In some cases, the multiple error localization
was even more accurate than in the case of single errors, which can be explained
by the fact that secondary ranking criterion was used to refine the localization.
Average correction times using mutation was just in fractions of seconds.
Therefore statistical error diagnosis combined with mutation based error
correction appears to be a feasible approach to automated debug of multiple design
erTors.

The Thesis presents a method for correcting design errors in algorithmic
descriptions of system-level hardware. The method applies dynamic slicing and
location ranking to accurately pinpoint the error locations and combines it with a
dedicated set of ESL-mutation operators for automatically proposing fixes to the
errors. In order to validate the approach, experiments on the Siemens benchmarks
were carried out. The experiments show that the method is able to correct three
times more errors than previously achievable by mutation-based error correction
while examining fewer mutants. In addition, the method clearly outperforms a
recent formal correction approach.

RTL mutation analysis can be done by injecting mutants directly on the RTL
models (native RTL mutation analysis), or by injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis). It was shown that the second alternative provides
several advantages with respect to the first.

At the cost of a slower synthesis process, the TLM-derived mutation analysis
has faster simulation time. Moreover, it was shown that TLM testbenches can be
efficiently reused in TLM-derived mutation analysis. They achieve the same
mutant coverage at RTL as it is achieved on the TLM design. On the contrary, the
reuse of TLM testbenches in the native RTL mutation analysis provides us with
apparently worse results. However, the decrease observed in native RTL mutant
coverage has to be properly interpreted: it does not mean that the quality of TLM
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testbenches is low. Indeed, it is mainly due to the bit width overestimation
performed by the automatic synthesis process, caused by the lack of bit accuracy
information in the initial TLM description.

Finally, the capability of TLM-derived mutation analysis of preserving the
mapping between TLM and RTL mutants was elaborated. Thus, allowing to
identify possible problems in the synthesis process more easily. Contrary to the
TLM-derived mutation, in the native RTL mutation analysis the link to TLM
functionality is lost, making it almost impossible to establish a relationship
between a mutant directly injected at RTL and the change it causes with respect
to the original TLM functionality.

The chapter presents an approach to automatic localization of design errors
(bugs) in processor designs. The approach is based on two main iterative phases:
dynamic slicing and statistical suspiciousness ranking of the HDL statements in
the design. The dynamic slicing reduces the debugging analysis to all the
statements that actually affect the design’s faulty behavior for a given stimuli.
Then, the suspiciousness ranking assigns a suspiciousness score to each statement
present in the dynamic slice.

The novelty of the approach is that it successfully in a scalable manner applies
static slicing for analysis space reduction to realistic-size industrial designs and
considers different coverage metrics for refining the bug localization. The
approach is fault-model free and supports localization of multiple bugs. The
original functional tests of processor designs can be used as a diagnostic test and
is sufficient for the approach. However, quality diagnostic test can further increase
the localization accuracy.

Last but not least, in this Thesis, a debug method for locating and correcting
design errors at the source-level of hardware description language code using the
design representation of high-level decision diagrams is presented. Experiments
on a set of sequential register-transfer level benchmarks and one real-world design
from the OpenCores repository show that the method is capable of locating the
design errors injected with a high accuracy. Because of this localization accuracy
the mutation-based correction requires a very small number of iterations and thus
short run-times.
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Conclusions

Conclusions

The main contribution of the Thesis is to propose new tools, case studies and
methods to enable the designer automatically locate hard-to-detect bugs and offer
solutions to save time and effort.

The specific contributions of the Thesis are divided into four main topics:
e RTL mutation analysis
e RTL and ESL mutation analysis comparison
e RTL localization and correction
e ESL localization and correction
RTL mutation analysis

The Thesis presented a new tool for mutation testing in hardware description
languages using the system model of high-level decision diagrams (HLDD). The
tool is integrated into the APRICOT verification environment. It is based on
HLDD simulation and graph perturbation. A strategy that relies on a restricted set
of five key mutation operators is developed in order to speed up the mutation
analysis.

RTL and ESL mutation analysis comparison

The Thesis presented a method to automatically inject faults into the functionality
of system descriptions that works at different abstraction levels (TLM and
behavioral RTL). This is the first method for mutation analysis directly working
on uncompiled SystemC TLM code.

RTL mutation analysis can be done by injecting mutants directly on the RTL
models (native RTL mutation analysis), or by injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis). This chapter showed that the second alternative
provides several advantages with respect to the first.

At the cost of a slower synthesis process, the TLM-derived mutation analysis
has faster simulation time. Moreover, it was shown that TLM testbenches can be
efficiently reused in TLM-derived mutation analysis. They achieve the same
mutant coverage at RTL as it is achieved on the TLM design. On the contrary, the
reuse of TLM testbenches in the native RTL mutation analysis provides us with
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apparently worse results. However, the decrease observed in native RTL mutant
coverage has to be properly interpreted: it does not mean that the quality of TLM
testbenches is low. Indeed, it is mainly due to the bit width overestimation
performed by the automatic synthesis process, caused by the lack of bit accuracy
information in the initial TLM description.

Finally, the capability of TLM-derived mutation analysis of preserving the
mapping between TLM and RTL mutants was elaborated. Thus, allowing to
identify possible problems in the synthesis process more easily. Contrary to the
TLM-derived mutation, in the native RTL mutation analysis the link to TLM
functionality is lost, making it almost impossible to establish a relationship
between a mutant directly injected at RTL and the change it causes with respect
to the original TLM functionality.

RTL localization and correction

In this Thesis, a debug method for locating and correcting design errors at the
source-level of hardware description language code using the design
representation of high-level decision diagrams is presented. Experiments on a set
of sequential register-transfer level benchmarks and one real-world design from
the OpenCores repository show that the method is capable of locating the design
errors injected with a high accuracy. Because of this localization accuracy the
mutation-based correction requires a very small number of iterations and thus
short run-times.

The Thesis presents a case study of automatic localization of design errors
(bugs) in processor designs. The approach is based on two main iterative phases:
dynamic slicing and statistical suspiciousness ranking of the HDL statements in
the design. The dynamic slicing reduces the debugging analysis to all the
statements that actually affect the design’s faulty behavior for a given stimuli.
Then, the suspiciousness ranking assigns a suspiciousness score to each statement
present in the dynamic slice.

The novelty of the approach is that it successfully in a scalable manner applies
static slicing for analysis space reduction to realistic-size industrial designs and
considers different coverage metrics for refining the bug localization. The
approach is fault-model free and supports localization of multiple bugs. The
original functional tests of processor designs can be used as a diagnostic test and
it is sufficient for the approach. However, quality diagnostic test can further
increase the localization accuracy.

99



ESL localization and correction

The Thesis presents a method for correcting design errors in algorithmic
descriptions of system-level hardware. The method applies dynamic slicing and
location ranking to accurately pinpoint the error locations and combines it with a
dedicated set of ESL-mutation operators for automatically proposing fixes to the
errors. In order to validate the approach, experiments on the Siemens benchmarks
have been carried out. The experiments show that the method is able to repair
three times more errors than previously achievable by mutation-based repair while
examining fewer mutants. In addition, the method clearly outperforms a recent
formal correction approach.

Future work

Future work includes an experimental study of real defects, a comparison with
HDL mutation analysis and identification of equivalent mutants.

Additional plans include improving the set of mutant operators in order to
cover more design errors, performing additional experiments, implementing a tool
for automatic fault injection and extending the work to the field of design error
correction with mutants.
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Abstract

Modern society is very dependent on electronics. At the same time, devices have
become more and more complex. Point, where verifying device correctness has
become more complicated than designing them, is reached. In verification
locating and fixing the bugs requires more effort than identifying them.
Automating bug localization and correction is the topic that the current Thesis
focuses on. Solutions are divided into two major fields.

First, verification of the designs by applying mutation analysis is addressed at
two abstraction levels: Register-Transfer Level (RTL) and Electronic System
Level (ESL).

On High-Level Decision Diagrams (HLDD) model at the RTL mutation
analysis is applied and a new tool is implemented. The tool is integrated into the
APRICOT verification environment. It is based on HLDD simulation and graph
perturbation. A strategy that relies on a restricted set of five key mutation
operators is developed in order to speed up the mutation analysis.

This is followed by a new method to automatically inject faults into the
functionality of system descriptions that works at different abstraction levels
(TLM and behavioral RTL). The results of injecting mutants directly on the RTL
models (native RTL mutation analysis) and injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis) are compared.

Second, the focus is on design error localization and correction, which is
presented in the two above mentioned abstraction levels.

At RTL a debug method for locating and correcting design errors at the source-
level of hardware description language code using the design representation of
HLDDs is presented and implemented. Additionally a case study of automatic
localization of design errors (bugs) in industrial processor ROBSY is presented.
The approach is based on two main iterative phases: dynamic slicing and statistical
suspiciousness ranking of the HDL statements in the design.

Finally, a method for correcting design errors in algorithmic descriptions of
system-level hardware is presented. In the experiments simple C programs are
used as benchmarks. The method applies dynamic slicing and location ranking to
accurately pinpoint the error locations and combines it with a dedicated set of
ESL-mutation operators for automatically proposing fixes to the errors. In order
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to validate the approach, experiments on the Siemens benchmarks have been
carried out.

The main contribution of the Thesis is to propose new tools, case studies and
methods enabling the integrated circuit designer automatically locate hard-to-
detect bugs and offer solutions to save time and effort.
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Annotatsioon

Tohutult kiire tehnoloogia areng on viinud meid ajastusse, kus arvutid ja
elektroonika on osa peaaegu koigest. Samal ajal on seadmete tehnoloogiline
keerukus jarjest kasvanud. Oleme saavutanud olukorra, kus seadmete Gigsuse
kontroll ehk verifitseerimine nduab rohkem aega ja vaeva kui nende
viljatootamine. Verifitseerimisel on vigade leidmine ning parandamine
aegandudvamad kui nende olemasolu tuvastamine. Automatiseeritult vigade
leidmise ja parandamise teemale kédesolev doktoritod keskendubki. Pakutavad
lahendused jagunevad kaheks.

Esmalt analiiiisitakse verifitseerimist kahel abstraktsiooni tasemel:
registersiirde- (RTL) ja siisteemitasemel (ESL).

Korgtaseme otsustusdiagrammide (HLDD) mudelil RTL tasemel kasutatakse
mutatsioonianaliiiisi ja luuakse uus tarkvaraline to0riist. Tooriist on integreeritud
APRICOT verifitseerimise raamistikku. See pShineb HLDD simulatsioonil ja
muudatustel ~ graafide  struktuuris. = Ldhenemise  vOtmeks on  viis
mutatsioonioperaatorit, mis aitavad mutatsioonianaliiiisi kiirendada.

Jargneb uue meetodi kirjeldus vigade automaatseks sisestamiseks siisteemi
funktsionaalsusesse, mis to0tab erinevatel abstraktsioonitasemetel (TLM ja
kaitumuslik RTL). Vorreldakse mutatsioonide kasutamise tulemusi otse RTL
mudelil ja TLM kirjeldustel, mis siinteesitakse vastavate RTL mudelite pdhjal.

Seejirel keskendutakse vigade lokaliseerimisele ja kdrvaldamisele ning seda
tehakse kahel eelpool nimetatud abstraktsiooni tasemel.

RTL tasemel esitatakse ja realiseeritakse vigade lokaliseerimine ja
parandamine riistvara Kkirjelduskeele ldhtekoodi tasemel kasutades mudelina
HLDDsid. Lisaks viiakse ldbi juhtumiuuring t&0stuslikus mikroprotsessoris
ROBSY kasutades automatiseeritud vigade lokaliseerimist. Lihenemine pShineb
kahel iteratiivsel etapil: diinaamiline viilutamine ja statistilisel analiiiisil pingerea
koostamine voimalikest vigade asukohtadest disainis.

Viimasena esitatakse mutatsioonidel pdhinev disainivigade parendamise
meetod siisteemitaseme riistvara algoritmilistele kirjeldustele. Eksperimentide
hindamisel kasutatakse C keeles kirjutatud programme. Meetod kasutab
diinaamilist viilutamist ja veakandidaatide pingerida leidmaks tdenéolisi vigade
asukohti. Voimalike lahenduste pakkumisel kasutatakse kindlat kogumit
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korgtaseme mutatsiooni operaatoreid. Lahenduse tulemuste hindamiseks
kasutatakse eksperimentide l&biviimisel Siemens vordlusprogramme.

Dissertatsiooni peamiseks panuseks on uute, automatiseeritud téovahendite
loomine, juhtumiuuring ja meetodid voimaldamaks riistvara projekteerijal sddsta
aega raskesti tuvastatavate vigade leidmisel.
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Appendix I

Research paper I

Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin, Maksim;
Chepurov, Anton; Fummi, Franco; Ubar, Raimund. “Mutation Analysis with
High-Level Decision Diagrams”. Proceedings of the 11th Latin-American Test
Workshop, IEEE Computer Society Press, 2010, pp. 1-6.

Contributes to Section 3.1 of this Thesis. The author’s contributions are:
participating in development of the HLDD-based mutation analysis method,
implementing mutation analysis tool to the Apricot framework and presenting the
paper at 11th Latin-American Test Workshop.
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Mutation Analysis with High-Level Decision
Diagrams

Hanno Hantson, Jaan Raik, Maksim Jenihhin, Anton
Chepurov, Raimund Ubar
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Abstract — The paper presents a new tool for mutation analysis
using the system model of high-level decision diagrams (HLDD).
The tool is integrated into the APRICOT verification
environment. It is based on HLDD simulation and graph
perturbation. A strategy that relies on a restricted set of five key
mutation operators is developed in order to speed up the
mutation analysis. Experiments on several ITC99 benchmarks
and an industrial example show the feasibility of the mutation
analysis approach.

Keywords — mutation analysis; decision diagrams;

L INTRODUCTION

Mutation analysis and mutation testing have gained
importance during the last decades as being important
techniques for software testing. Such testing approaches rely
on the creation of several mutated versions of the program to
be tested. Mutation is carried out by introducing syntactically
correct functional changes. The purpose of such mutations
consists of perturbing the behavior of the program to see if the
test suite is able to detect the difference between the original
program and the mutated versions. The effectiveness of the test
suite is then measured by computing the percentage of
detected, or killed, mutations.

In order for a functional verification or testing method to
detect bugs in the program, three conditions have to be
satisfied:

e It must be activated (the corresponding code must be
exercised).

e It must be propagated to an observable point.

e It must be detected, i.e. a value mismatch has to be
observed at an output.

Traditional verification methods suffer from the
observability problem as they focus on the first point only.
Techniques such as code coverage and functional coverage
cannot guarantee that design bugs will be propagated. On the
contrary, mutation testing guarantees observation and is thus
more powerful in terms of bug detection capabilities.

Mutation analysis is divided into weak and strong mutation.
Weak mutation requires that only the first of previously
described conditions is satisfied while strong mutation requires

978-1-4244-7785-2/10/$26.00©2010

Giuseppe di Guglielmo, Franco Fummi

Department of Computer Science
University of Verona
Verona, Italy
{giuseppe.diguglielmo|franco.fummi} @univr.it

that all of them are fulfilled. The method proposed in this paper
is based on - strong mutation.

Mutation analysis was first proposed in 1971, when
Richard Lipton introduced the initial concepts of mutation in
[1]. However, major work was not published until the end of
1970s [2],[3],[4]. PIMS [4], an early mutation testing tool,
pioneered the general process typically used in mutation testing
of creating mutants, accepting test cases from the users, and
then executing the test cases on the mutants to decide how
many mutants were killed. Afterwards, several tools for
mutation testing have been developed, most widely known of
them being probably the Mothra system [5] running on Fortran
programs.

The observability problem of traditional coverage methods
is widely analyzed in [10]. In particular the authors present an
observability model and an algorithm to evaluate observability-
based statement coverage for hardware designs. As in [9], it is
clearly stated that hardware designs are highly concurrent,
while code software coverage metrics do not address this
essential characteristic. Hence it is far from sufficient to
achieve complete code coverage during verification [11].

Despite of being originally a software testing technique,
obvious similarities with procedural programming languages
suggested tailoring some software analysis techniques to
hardware description language (HDL) behavioral description
analysis [6]. In particular, an adaptation of the mutation
analysis to test VHDL functional descriptions is proposed in
[7]. A VHDL language functional description can be
assimilated to a software program, so it can be validated
against (software) design faults using the mutation testing
techniques. The methodology covers VHDL concurrent
statements as block statement, process statement, and
concurrent signal assignment statement. The VHDL code is
translated into Fortran, and Mothra [5] is applied to generate
test sequences. In the proposed approach, however, concurrent
constructs are merely translated to a sequential language and
not targeted explicitly. In addition to academic attempts to
bring mutation testing into hardware domain, a commercial
functional qualification tool Certitude [8] based on mutation
analysis is available from Springsoft.
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Figure 1. Hardware verification framework APRICOT

The adopted HLDD model provides fast simulation. Very
efficient HLDD based simulation algorithms have been
proposed which outperform commercial event-driven HDL
simulators in 12 - 30 times and cycle-based simulators in 4 to 6
times [12]. This is due to the fact that HLDD simulation
essentially combines event-driven (path activation in the
HLDD graphs) and cycle-based (HLDDs are synthesized into
cycle-accurate models) paradigms.

To the best of the authors’ knowledge this is the first
attempt to solve mutation analysis on the high-level decision
diagram model. We show on an industrial example that high-
quality tests receiving near-hundred-percent code coverage
result only in 21 % mutation coverage. This indicates a clear
advantage of the mutation testing over the coverage approach,
due to considering fault observation.

The paper is organized as follows. Section 2 describes the
integrated environment for verification and mutation analysis.
Section 3 defines the High-Level Decision Diagram (HLDD)
model. Section 4 explains simulation on HLDDs. In Section 5,
the HLDD-based mutation testing environment is presented.
Section 6 provides experimental results. Finally, conclusions
and future work are given.

II.  INTEGRATED ENVIRONMENT FOR VERIFICATION AND
MUTATION ANALYSIS

APRICOT is a functional verification framework
developed at Tallinn University of Technology [18]. APRICOT
is an acronym for Assertions checking (monitoring), formal
PRoperty check/ng, verification COverage analysis and 7est

pattern generation. As it follows from its name, the framework
supports a wide range of verification tasks.

The novelty of APRICOT lies in the usage of high-level
decision diagrams for design representation. Development of
the APRICOT framework has been started in order to target
aspects of speed, accuracy, complexity and diagnosability of
hardware functional verification. The novelty of the framework
lies in taking advantages of design under verification
representation by High-Level Decision Diagrams (HLDD)
model [19]. Our previous works [20], [21] have shown that
HLDDs are an efficient model for simulation and convenient
for diagnosis and debug. In this paper we integrate mutation
analysis functionality to the system. The structure of the
framework is shown in Fig. 1.

Data flow of the HLDD-based mutation analysis
environment is presented in Fig. 2. The analysis starts with test
stimuli and the HLDD model generated automatically from the
VHDL language description of the design. (Note, that
automatic HLDD generation from VHDL is a very fast process,
as shown in Section 5). Subsequently, HLDD simulation is
performed according to Algorithm 1. This is followed by
mutation analysis on HLDD models (Algorithm 2). As a result
of the analysis there may remain live mutants. Tests will be
generated for them, either manually or by an automated tool
(the striped boxes in Fig. 2). However, the mutation test
generation is out of the scope of this paper. An automated test
pattern generator working on HLDD models has been
presented in [15]. It is planned to extend it to mutation testing
as one of the next developments in the system.
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III. HIGH-LEVEL DECISION DIAGRAMS

In the following we give a formal definition of High-Level
Decision Diagrams (HLDD). Let us denote a discrete function
y = f(x), where y = (v, ..., y,) and x = (x}, ..., x,,) are vectors
defined on X = X;x... XX, with values y € Y = ¥, x...xY,, and
both, the domain X and the range Y are finite sets of values.
The values of variables may be Boolean, Boolean vectors or
integers.

Definition 1. A HLDD representing a discrete function
y=f(x) is a directed acyclic labeled graph that can be defined as
a quadruple G,=(M,E,ZTI"), where M is a finite set of vertices
(referred to as nodes), E is a finite set of edges, Z is a function,
which defines the variables labeling the nodes, and I’ is a
function on E. The function Z(m;) returns the variable x;, which
is labeling node m;. Each node of a HLDD is labeled by a
variable. In special cases, nodes can be labeled by constants or
algebraic expressions. An edge ecE of a HLDD is an ordered
pair e=(m,m;)eE’, where E’ is the set of all the possible
ordered pairs in set E£. [" is a function on E representing the
activating conditions of the edges for the simulating
procedures. The value of /1(e) is a subset of the domain X} of
the variable x;, where e=(m; m;) and Z(m;)=x;. It is required that
Pm;={ Ie) | e = (m,m))eE} is a partition of the set X;. Fig. 3
presents a HLDD for a discrete function y;,,=f(x;x5x3x,).
HLDD has only one starting node (root node) m,, for which
there are no preceding nodes. The nodes that have no successor
nodes are referred to as terminal nodes M“™ € M.

HLDD models can be used for representing digital systems.
In such models, the non-terminal nodes correspond to
conditions or to control signals, and the terminal nodes
represent data operations, variables or constants. When
representing systems by decision diagram models, in general
case, a network of HLDDs rather than a single HLDD is

required. During the simulation in HLDD systems, the values
of some variables labeling the nodes of a HLDD are calculated
by other HLDDs of the system.

Different from the well-known Reduced Ordered BDD
models which have worst-case exponential space requirements,
HLDD size scales well with respect to the size of the RTL
code. The main difference is that traditionally decision diagram
is generated for a primary output of the system while nodes
represent primary inputs. In HLDDs we generate a separate
diagram for each variable (signal) v of the VHDL description
and nodes represent variables (signals) assigned to v. Note, that
the complexity of HLDDs is just O(n) with respect to the
number of processes in the code. Thus, very large realistic
hardware systems can be represented in practice. An example
of HLDD representation of VHDL is presented in Fig. 4 [13].

IV.  SIMULATION USING HLDDS
Algorithm 1 presents the simulation method for HLDDs.
Algorithm 1. HLDD-based simulation

SimulateHLDD()
For each diagram G in the model
Mcyrrent = Mo
Let Xcument be the variable labeling meyrent
While mcyrene 18 NOt a terminal node
If Xcumrent 18 clocked or its DD is ranked after G then
Value = previous time-step value of Xcyment
Else
Value = present time-step value of Xcyrent
End if
For {r | Value € 1—‘(eaclivc)s Cactive =( MCuyrrents mchl)}
Mcyrrent = MNext
End for
End while
ASSign XG = Xcurrent
End for
End SimulateHLDD

In the RTL style, the algorithm takes the previous time step
value of variable x; labeling a node m; if x; represents a clocked
variable in the corresponding HDL. In the behavioral style, the
present value of x; will be used. In the case of behavioral HDL
coding style HLDDs are generated and ranked in a specific
order to ensure causality. For variables x; labeling HLDD nodes
the previous time step value is used if the HLDD calculating x;
is ranked after current decision diagram. Otherwise, the present
time step value will be used.

Let us explain the HLDD simulation process on the
decision diagram example presented in Fig. 3. Assuming that
variable x, is equal to 3, a path is activated from node m, (the
root node) to a terminal node m, labeled by x;. Let the value of
variable x; be 4, thus, y;,,=x;=4. Note, that this type of
simulation is event-driven since we have to simulate only those
nodes that are traversed by the main activated path.
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Figure 3. A high-level decision diagram representing a function y;,,=f{x,x2,X3,X4)

V.  MUTATION ANALYSIS AS HLDD PERTURBATIONS

The method presented in this paper is based on strong
mutation. Being the first work on HLDD-based mutation
testing the goal of this paper was not to propose new mutation
operators, nor to find the most optimal set of mutation
operators. Instead the five key operators proposed in [14] have
been implemented according to the do fewer strategy. In
experiments, those five operators have provided almost the
same coverage as non-selective mutation, with cost reductions
of at least four times with small programs, and up to 50 times
with larger programs [14]. The 5 sufficient operators are ABS,
which forces each arithmetic expression to take on the value 0,
a positive value, and a negative value, AOR, which replaces
each arithmetic operator with every syntactically legal
operator, LCR, which replaces each logical connector with
several kinds of logical connectors, ROR, which replaces
relational operators with other relational operators, and UOI,
which inserts unary operators in front of expressions.

We have implemented the five operators with the following
constraints and specifics. UOI currently replaces only unary
operators with other unary operators and ABS is applied to
variables only, and not to expressions. Note also that in HLDD
there are no signed/unsigned variables, but signed and
unsigned relational operators exist. Therefore ROR replaces,
both, signed and unsigned relational operators. In AOR we also
allow mutation by division and mod operations and we have
included a check for the case of divide-by-zero. In the future,
our goal is to gradually extend the set of mutation operators
and select the most optimal set for hardware programs. The
reduced-5-key-operator strategy represents a do fewer strategy.
The purpose would be to reduce the mutation analysis cost as
much as possible.

Fig. 5 illustrates the HLDD graph perturbations for
implementing the five key mutation operators on a sample
diagram Gy o In HLDD models, the perturbation means
simply replacement of an operator, variable or constant
labeling the HLDD node by another operator, variable or
constant.

Table 1 shows the list of replacements for each mutation
operator. In every case the operator is substituted by another
operator from the group. This is done until all operators are
covered.

TABLE I. MUTATION OPERATORS

List of replacements
AND, NAND, OR, NOR, XOR
ADDER, SUBTR, MULT,
DIV, MOD
NEG, INV

SHIFT_LEFT,
SHIFT_RIGHT,

U_SHIFT RIGHT

EQ, NEQ, GT, LT, GE, LE,
U GT,U LT, U GE, U LE

Mutation operator

LCR (logical connector replacement)

AOR (arithmetic operator replacement)

UOI (unary operation insertion)

SOR (shift operator replacement)

ROR (relational operation replacement)

IF reset = 1 THEMN state:=s0;
ELSE state
CASE state
WHEN s0:
a=ml; h=m2; ready:=0;
state=zl;
WHEN s1:
IF a=h THEM state=:s2;
ELSE state:=s5; ENDIF;
WHEN s2:

IF a>h THEN state:=s1; ready (1)
ELEE stater=s4, ENDIF, 25

WHEN s3: o
a=a-h; state:=z1; z

WHEN =4 @
h=h-a; state=z1,

WHEN g5 a ] b 3
ready=1,; @ @ @
state=z5; 53 g @

END CARE c 2

ENDIF o o

Figure 4. a) RTL VHDL and b) the corresponding HLDD
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Figure 5. “Key” mutation operators as HLDD perturbations

TABLE II. VHDL CODE CHARACTERISTICS OF THE ITC99 BENCHMARKS
AND THE CRC DESIGN
Design [Code lines #|Inputs #|Outputs #|Registers #|Processes #|
b01 96 4 2 3 1
b02 | 61 3 1 2 1
b04 | 76 6 1 9 1
b06 112 4 4 5 1
b09 | 81 3 1 5 1
bll 107 4 1 5 1
b13 273 5 7 24 5
CRC | 371 10 3 11 9

Algorithm 2 presents the Mutation Analysis (MA)
algorithm on HLDD representations. The MA process starts
with HLDD simulation in order to find the correct output
responses to be saved at this point. We inject a mutated
operator to the node m and simulate. As the final step the
simulated output responses are compared to the correct ones to
determine whether the mutant has been killed or not.

Algorithm 2 HLDD-based mutation analysis

HLDD_MA()
SimulateHLDD() /* Algorithm 1*/
Save output responses
For each node m
For each mutated operation p where x,,=Z(m) # p
Replace x,, by p
SimulateHLDD() /* Algorithm 1*/
If output responses differ from the saved ones then
Report mutant killed
End if
End for
End for
End HLDD MA

TABLE IIL. MUTATION ANALYSIS EXPERIMENTS ON THE HLDDS OF

ITC99 BENCHMARKS

b01 | b02 | b04 | b06 | b09 | b11|b13
# Vectors 14 (10 (8 I |23 |88 |11
# Mutants inserted | 154 |78 233 (336 |213 |375 (972
# Mutants killed {49 |9 18 (39 |17 |178 |77
Mutation coverage|0.32 |0.12 [0.08 [0.12 |0.08 |0.47|0.08
Time, s <0.1<0.1|<0.1{<0.1|<0.1(0.22]0.21

VI. EXPERIMENTAL RESULTS

In the first part there are mutation analysis experiments
with the ITC99 circuits [16], which were introduced in order to
measure the quality of test generation in hardware systems. The
second part presents experiments on an industrial design
implementing a cyclic redundancy check (CRC) from the FP6
VERTIGO project [17].

Basic quantitative VHDL characteristics of the ITC99
benchmarks and the CRC design are listed below in Table 2. In
the Table, the number of VHDL code lines, primary input
signals, primary output signals, variables/signals corresponding
to registers and the number of VHDL processes is reported,
respectively.

Table 3 presents the mutation analysis experiments on the
full-HLDD versions of the ITC99 benchmarks. The row ‘#
Vectors’ shows the number of stimuli in the test bench. All the
test benches provide 100 % statement coverage, except for b11
(97 %) and b13 (96.1%), where we were unable to create full
tests. All the test sets were generated manually.

The next row shows the number of mutants injected by the
proposed approach. The row “# Mutants killed” presents the
total number of mutants killed. The row “Mutation coverage”
shows the ratio of killed mutants to the number of mutants
injected in the approach. One of the most interesting
observations is the very low mutation coverage: only 8 per cent
for b04, b09 and b13. The explanation lies in rather short test
sets. Nevertheless, this gives an idea how small observation
coverage is guaranteed by 100 % code coverage tests in the
worst case.

The last row shows the execution times of the mutation
analysis, which were in the range of tenths of seconds. All the
experiments were run on a 1.7 GHz laptop PC.

Table 4 lists the results of mutation analysis experiments
with previously described ITC99 benchmarks using longer
tests, covering also branches. Mutation coverage has increased
in most cases but remains still low, which clearly states the
need for better test sets. The enormous rise of processing time
with bl3 can be explained by the fact that test length was
increased 100 times.

MUTATION ANALYSIS EXPERIMENTS ON THE HLDDS OF
ITC99 BENCHMARKS

TABLE1V.

b01 | b02 | b04 | b06 | b09 |b11 | b13
# Vectors 23 |14 |11 (52 |33 |132 (1148
# Mutants inserted | 154 |78 233 |336 |213 |375 (972
# Mutants killed |57 |9 32 |50 |35 |198|281
Mutation coverage|0.37 |0.12 [0.14 [0.15 |0.16 |0.53|0.29
Time, s <0.1|<0.1{<0.1{<0.1|<0.1]0.34|15.36

Results of the mutation analysis experiments on the CRC
example are presented in Table 5. The rows in this table have
similar semantics to the ones in Table 3. It can be seen that the
HLDD-based mutation analysis time is in the range of seconds.
Again, the mutation coverage is very low (only 21 per cent)
compared to the code coverage. While partly explained by the



short test set it confirms the weak observation coverage
guaranteed by code coverage tests and motivates the use of
mutation analysis.

TABLE V. HLDD-BASED MUTATION ANALYSIS EXPERIMENT ON THE
CRC EXAMPLE
CRC
# Vectors 42
# Mutants inserted | 1247
# Mutants killed 268
Mutation coverage | 0.21
Time, s 3.73
VII. CONCLUSIONS

The paper presented a new tool for mutation testing in
hardware description languages using the system model of
high-level decision diagrams (HLDD). The tool is integrated
into the APRICOT verification environment. It is based on
HLDD simulation and graph perturbation. A strategy that relies
on a restricted set of five key mutation operators is developed
in order to speed up the mutation analysis.

Experiments on several ITC99 benchmarks and an
industrial example prove the feasibility of the approach. The
tests showed that the mutation coverage was always very low
compared to the code coverage. While partly explained by the
short test sets applied it confirms the weak observation
capabilities guaranteed by code coverage tests and motivates
the use of mutation analysis.

Future work includes experimental study of real defects,
comparison with HDL mutation analysis and identification of
equivalent mutants.
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Abstract Mutation analysis has gained consensus dur-
ing the last decades as being an efficient technique for
measuring the quality of SW testbench. More recently,
it has been efficiently applied for validating testbenches
of embedded system models implemented in hardware
description language (HDL) at different abstraction
levels (i.e., RTL, TLM). This article analyzes how mu-
tation analysis performed at TLM can be reused at

Responsible Editor: L. M. Bolzani P6hls

V. Guarnieri - G. Di Guglielmo - N. Bombieri -

G. Pravadelli - F. Fummi

Dipartimento di Informatica, Universita di Verona,
Strada Le Grazie 15, 37134 Verona, Italy

V. Guarnieri

e-mail: valerio.guarnieri@univr.it

G. Di Guglielmo

e-mail: giuseppe.diguglielmo@univr.it
N. Bombieri

e-mail: nicola.bombieri@univr.it

G. Pravadelli

e-mail: graziano.pravadelli@univr.it

F. Fummi
e-mail: franco.fummi@univr.it

H. Hantson - J. Raik (B<) - M. Jenihhin - R. Ubar
Department of Computer Engineering, Tallinn University
of Technology, Raja 15, 12618 Tallinn, Estonia

e-mail: jaan@ati.ttu.ee

H. Hantson
e-mail: hanno@ati.ttu.ee

M. Jenihhin
e-mail: maksim@ati.ttu.ece

R. Ubar
e-mail: raiub@ati.ttu.ee

RTL and, in particular, how such a reuse can help
designers in (i) optimizing the time spent for simulation
at RTL, and (ii) improving the RTL testbench quality.
Two alternatives of TLM mutation analysis reuse are
presented and investigated for proposing an efficient
methodology of RTL mutation analysis. Through ex-
perimental results, the proposed methodology is com-
pared to the standard RTL mutation analysis to confirm
its efficiency in terms of both simulation time and
reached mutation coverage.

Keywords Mutation analysis - Mutation testing -
SystemC - Transaction-level modeling -
Register-transfer level

1 Introduction

Mutation analysis and mutation testing have definitely
gained consensus during the last decades as being im-
portant techniques for software testing [10, 17, 21, 23].
Such approaches rely on the creation of several versions
of the program to be tested, mutated by introducing syn-
tactic changes. The purpose of such mutations consists
of perturbing the behavior of the program to see if the
test suite is able to detect the difference between the
original program and the mutated versions. Mutation
analysis measures the effectiveness of the test suite
by computing the percentage of detected mutations
(mutation coverage), while mutation testing aims at
increasing the mutation coverage by generating a larger
set of high quality testbenches.

Similar concepts are implemented also in HW test-
ing [1], where high-level fault simulation is applied to
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measure the quality of testbenches, and test pattern
generation is used to improve fault coverage. In this
case, mutations introduced in the HW descriptions are
refered to as faults.

In the recent years, the close integration between
HW and SW parts in modern embedded systems and
the development of high-level languages suited for
modeling both HW and SW (e.g., SystemC and Sys-
temC TLM) have required the definition of mutation
analysis-based strategies that work at system level,
where HW and SW functionalities are not partitioned
yet. In particular, some works have been proposed to
apply mutation analysis to SystemC TLM [6-8, 26, 33,
34], since transactional level modeling (TLM) has be-
come the reference modeling style for system-level de-
sign and verification of modern system-on-chips (SoCs)
[12]. Experimental results have shown that TLM mu-
tation analysis greatly speeds up the design process
by allowing designers to model and verify complex
systems early in the design flow with respect to RTL
approaches.

However, applying mutation analysis only at TLM is
not enough. In fact, once verified, the TLM implemen-
tation must be then refined into a more detailed RTL
implementation, where the verification process must be
repeated before the tape-out. In such a TLM-to-RTL
refinement step, the TLM IP functionality is synthe-
sized into a cycle accurate implementation, while the
TLM interface is replaced by a pin accurate interface
composed of all the data I/O ports with the addition
of some control ports for implementing handshaking
mechanisms specific to the target platform (e.g., bus
compliant protocols, enabling flags, etc.).

In this context, high-level synthesis (HLS) is consid-
ered the reference paradigm for automatically gener-
ating RTL descriptions starting from the system level
(i.e., TLM) models [15] and different HLS tools are
emerging on the market for TLM-to-RTL synthesis
[13, 16].

After the TLM-to-RTL synthesis, mutation analysis
must be applied to the RTL code in order to check:
(i) whether all the high-level functionality originally
checked at TLM are correctly preserved at RTL, (ii)
whether all the architectural details typical of RTL im-
plementations (e.g., pipelined behaviors, clock gating,
clock-based delay, etc.) have been correctly introduced
by the synthesis process. In this way, mutation analysis
gives also useful information to identify any specific
functionality wrongly synthesized at RTL.

Nevertheless, although mutation analysis can be per-
formed by a fast and efficient simulation at TLM, it
sensibly slows down at RTL due to the amount of accu-
racy details of both the RTL description and the RTL

@ Springer

mutation model. In addition, the traditional mutation
analysis directly applied to synthesized RTL would not
always give back useful information to find and classify
design bugs.

In this context, this article aims at investigating the
actual benefits of reusing the TLM mutation analysis
(i.e., TLM testbenches and TLM mutants) for improv-
ing the mutation analysis performed at RTL. As a re-
sults, the article proposes a methodology that, through
the reuse of TLM mutation analysis, aims at better
exploiting the time spent in simulation for RTL mu-
tation analysis and improving the result readability for
enhancing the RTL testbenches.

Starting from a TLM model, we investigate and com-
pare two alternatives (see Fig. 1):

1. going down synthesizing the TLM model to an RTL
implementation, then moving to the right to inject
mutants on the RTL code (we call this path native
RTL mutation analysis), or

2. going right to inject TLM mutants and then synthe-
sizing the mutated TLM model to a mutated RTL
implementation (we call this path TLM-derived
mutation analysis).

Such a comparison and the related experimental
results underline that:

— By applying the TLM-derived mutation analysis,
it can be observed that any functionality verified
at TLM by the TLM testbench can be considered
verified at RTL when the TLM testbench is reused
at RTL. This suggest that there is no need to further
improve the RTL testbench for stressing the IP
functionality.

Mutation

TLM TLM

mut
. TLM-derived
" Muation Analysis

P,

Native RTL
Mutation Analysis

RTL

mut

S RIL
I

mut -

High-level
Synthesis

Fig. 1 High-level synthesis and mutation analysis may be com-
bined in different ways
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— By considering the standard RTL mutation analysis
(i.e., native RTL mutation analysis) and reusing the
TLM testbench:

— the RTL mutation coverage
expected);

— the RTL mutation coverage easily grows up by
enriching the testbench with stimuli randomly
generated;

— the remaining “unkilled” mutants can be clas-
sified in three different categories. This infor-
mation helps designers to improve the RTL
testbench. In particular, the first two categories
are general and apply to every TLM-to-RTL
synthesis process. In contrast, the third cat-
egory helps designers to improve the RTL
testbench by taking into account the micro-
architectural details chosen during the synthesis
process.

is low (as

The article is organized as follows. Section 2 presents
an analysis of related works. Section 3 introduces an
overview of the key concepts needed for understanding
the methodology. Section 4 presents the main method-
ology while Section 5 reports the obtained experimen-
tal results and the analysis of them. Section 6 is devoted
to the concluding remarks.

2 Related Work

The initial concept of mutation analysis was first pro-
posed by Richard Lipton in 1971 [25]. However, major
work was not published until the end of 1970s [10, 17,
21].

In general, the results of mutation analysis greatly
depend on the categories of mutation operators used.
Previous research has determined many different cat-
egories to use in specific cases. The mutation test-
ing tool Mothra [14, 29], developed in the middle of
1980s to inject and execute mutants on Fortran 77
programs, used three categories of operators: operand
replacement, expression modification and statement
modification. In total there were 22 elements in the
categories. However, many of them were very specific
to Fortran language.

Following the approach of Mothra, [2] focused on
determining a comprehensive number of mutant oper-
ator categories for the C programming language. The
operators were divided into four categories: statement
mutations, operator mutations, variable mutations and
constant mutations. In total there were 77 mutant op-
erators, which were again very specific, taking into
account errors that alter the expected statement execu-

tion flow. The increase in the number of operators with
respect to Mothra, comes from the greater complexity
and expressiveness of the C language.

Offutt et al. [30] showed experimentally that a se-
lected set of five so called key operator categories
provide almost the same coverage as non-selective mu-
tation, with cost reductions of at least four times with
small programs, and up to 50 times with larger pro-
grams. The approach proposed in this article is based
on these key operator categories.

Mutation analysis has been applied also to Java [24]
and SQL [28, 35]. Several approaches [3, 4], empirical
studies [27] and frameworks [9] have been presented in
the literature for mutation analysis of such languages.

Hantson et al. [22] propose a technique to ap-
ply mutation analysis to high-level decision diagrams
(HLDD). It produces good results for RTL designs
converted into HLDDs but does not support SystemC
and higher abstraction levels, including TLM.

Only in the recent years mutation analysis has
been applied to languages for system-level design and
verification such as SystemC [6-8, 26, 33, 34]. Bombieri
et al. and Sen [6, 7] propose mutation models for per-
turbing SystemC TLM descriptions. In particular, these
works present different analysis of the main constructs
provided by the SystemC TLM 2.0 library and a set of
mutants to perturb the primitives related to the TLM
communication interfaces.

Sen [33] propose a fault model by developing mu-
tation operators for concurrent SystemC designs. In
particular it aims at verifying SystemC descriptions
by facing non-determinism and concurrency problems
such as starvation, interference and deadlock typical of
such language.

Bombieri et al. [8] introduces the concept of
functional qualification for measuring the quality of
functional verification of TLM models. Functional
qualification is based on the theory of mutation analysis
but considers a mutation to have been killed only if a
testbench fails. A mutation model of TLM behaviors
is proposed to qualify a verification environment based
on both testbenches and assertions. The presentation
describes at first the theoretic aspects of this topic and
shows advantages and limitations of the application of
mutation analysis to TLM.

Sen and Abadir [34] proposes to attack the
verification quality problem for concurrent SystemC
programs by developing novel mutation testing based
coverage metrics. The approach involves a comprehen-
sive set of mutation operators for concurrency con-
structs in SystemC and defines a novel concurrent cov-
erage metric considering multiple execution schedules
that a concurrent program can generate.
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Lisherness and Cheng [26] presents SCEMIT, a tool
for the automated injection of errors into C/C++/ Sys-
temC models. A selection of mutation style errors are
supported, and injection is performed though a plugin
interface in the GNU compiler collection (GCC), which
minimizes the impact of the proposed tool on existing
simulation flows. The results show the value of high-
level error injection as a coverage measure compared
to conventional code coverage measures.

Different aspects concerning hardware or software
implementation are analyzed in all these works. All
these approaches are suited to target basic constructs,
low-level synchronization primitives as well as high-
level primitives typically used for modeling TLM com-
munication protocols.

The reuse of TLM testbenches for RTL fault sim-
ulation has been proposed in [5]. In this work the
authors show that if a fault is detectable by an RTL
test bench then it can be detected also by a TLM test
bench filtered by a transactor. However, the authors do
not elaborate about the differences between injecting
mutants before or after TLM-to-RTL synthesis, as we
do in this article.

To the best of our knowledge, there is no work
in literature that faces the reuse of mutation analy-
sis through the different refinement steps of a TLM-
based design flow as done in the following sections.
This article extends the work presented in [19] and
presents a comprehensive work on mutation analysis
for system level descriptions (i.e., SystemC TLM) and
how such analysis can be reused once such descriptions
are synthesized at RTL.

3 Background

In this Section, we provide background information on
mutation analysis, high-level synthesis and the TLM-2.0
standard.

3.1 Mutation Analysis

Mutation analysis [17] has definitely gained consensus
during the last decades as being an important technique
for software (SW) testing [18]. Such testing approaches
rely on the creation of several versions of the program
to be tested, “mutated” by introducing syntactically-
correct functional changes.

The purpose of such mutations lies in perturbing the
behaviour of the program to see if the test suite is able
to detect the difference between the original program
and the mutated versions. Thus, the effectiveness of the
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test suite is measured by computing the percentage of
detected mutations.

In the traditional mutation analysis the output of
the design-under-test is compared with and without the
mutation [20]. If there is a difference observed in the
output, then the mutant is considered to have been
killed. If no difference is observed, the mutant is said
to be live. This is due to one of three possibilities:

— the testbench is not able to detect a change in the
output, so it needs to be improved and extended to
detect the mutant;

— the mutant operates on dead code, i.e. in code
that is never reached (and thus activated), so any
change introduced will never be executed during
simulation;

— the mutant is functionally equivalent to the original
code, i.e. the mutant does not introduce any change
in the computation.

The first fundamental hypothesis of mutation analy-
sis is that if the system contains non-killed mutants
then the system also could contain real bugs (or coding
mistakes) that cannot be found by the existing tests.
If the testing is improved so as to kill live mutants,
then these same tests can expose the vast majority
of previously unknown bugs in the original program.
According to this first hypothesis, mutation analysis
permits to evaluate the quality of test benches for
functional verification.

The second fundamental hypothesis of mutation
analysis is the “competent-programmer hypothesis”.
The design is considered to be largely correct, i.e.,
the majority of the code is assumed to not contain
bugs. This is important because the mutation analysis
assesses the ability of the verification environment to
measure the quality of the current design implementa-
tion. When mutations are introduced, they take the de-
sign slightly out of specification. This second hypothesis
explains why by detecting artificially-introduced design
errors the test benches are able to exercise most of the
system functionalities.

Similar concepts are applied also for testing of hard-
ware descriptions at RTL, where verification engineers
use high-level fault simulation to measure the quality
of testbenches, improve fault coverage, and, thus, pro-
viding more effective test suites. In this case, mutations
introduced in the HW descriptions are refered to as
faults [1].

Nowadays, (i) the close integration between HW and
SW parts in modern system-on-chips (SoCs), (ii) the
development of languages suited for modeling systems
at a higher level of abstraction (i.e., SystemC TLM),
and (iii) the need of developing verification strategies
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to be applied early in the design flow, require the
definition of mutation-based strategies that work at the
electronic system-level (ESL).

3.2 High-Level Synthesis

High-level synthesis (HLS) is considered the reference
paradigm for the automatic generation of RTL descrip-
tions starting from high-level algorithmic models. An
HLS-based flow typically starts with designers develop-
ing a high-level description which captures the desired
functionality.

This description is written in a high-level language,
such as C/C++, and is untimed, thus not including
any timing notion. At this abstraction level, variables
and data types are not accurate enough for the HW
design domain. As such, conversion of floating-point
and integer data types into bit-accurate data types is re-
quired. This is usually done by analyzing all operations
performed in the starting description.

HLS tools generate a fully timed RTL implementa-
tion of the initial untimed high-level description. De-
signers are given a vast array of architectural choices
pertaining to the RTL domain, such as pipelining, de-
lay/area optimization, and so on. This allows for the
creation of a custom architecture that best suits the
desired functionality. Different RTL implementations
can be explored until a satisfying one is found.

4 Reuse of TLM Mutation Analysis at RTL

In the context of analyzing the effect of reusing
TLM testbenches and mutants at RTL, the following
sections are devoted to present: the TLM to RTL
synthesis process (Section 4.1), the TLM mutation
analysis infrastructure and the related mutation model
(Section 4.2), and, finally, considerations about the
comparison between TLM-derived mutation analysis
and the native RTL mutation analysis showed in Fig. 1
(Section 4.3).

4.1 TLM-to-RTL Synthesis

An HLS tool, i.e, Mentor Graphics CatapultC [13],
is used in the proposed flow to automatically per-
form TML-to-RTL synthesis. CatapultC takes as input
C/C++ code providing a high-level description of the
desired system behavior. In particular, the preliminary
step in the synthesis process consists of isolating a
procedure which wraps up the system functionality.
Procedure parameters are used to provide inputs and
retrieve outputs, and they are translated into corre-

sponding input/output RTL ports during the synthe-
sis process. A basic handshaking protocol is added to
provide a convenient means to achieve communication
with a testbench during the simulation phase. Thanks to
this addition, the reuse of the TLM testbench at RTL is
possible with an almost effortless transition. Otherwise,
a transactor would be required, thus increasing the
complexity of the simulation environment and intro-
ducing other possible sources of errors.

Functionality is synthesized by decomposing TLM
operations into smaller basic operations (i.e., sums and
concatenations) at RTL, which are usually performed
on ranges of bits. Inner signals are introduced to store
intermediate results, which are then combined to pro-
duce the final outputs.

Finally, in the case of TLM-derived mutation analy-
sis, the mutated design must still be synthesizable. This
implies that the chosen mutation operators shall not
introduce non-synthesizable constructs.

4.2 Mutation Analysis Infrastructure

Mutation analysis relies on a set of operators to per-
form syntactic changes to the description. These op-
erators can be conveniently classified into categories,
according to what they alter. Although mutation analy-
sis is a powerful approach for modelling design errors,
it is computationally expensive. In particular, the main
expense of mutation is the high number of variants of
the original design, that must be repeatedly executed.
Thus, in this work, we adopt a simplified subset of
the “sufficient” mutation operators from [31], them-
selves a subset of those proposed in [11]. In particular
the five categories of operators are: arithmetic opera-
tor replacement (AOR), bitwise operator replacement
(BOR), relational operator replacement (ROR), shift
operator replacement (SOR) and unary operator injec-
tion (UOI). Table 1 shows the list of possible replace-
ments for each mutation operator category. Whenever
an operator belonging to a given category is found, it
is replaced with all the others in its respective group.
These categories of mutation operators easily apply
to both TLM and RTL SystemC descriptions. In par-
ticular, these modifications do not create problems to
the HLS tool, since the resulting description is still
synthesizable.

Moreover, mutation coverage subsumes other
structural-coverage metrics. For example, the
branch coverage requires that each branches of a
conditional statement (e.g., IF) are executed. The
relational-operator replacement (ROR), among other
modifications, replaces each decision by TRUE or
FALSE. To kill the TRUE mutant, a test case must
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Table 1 Categories of Mutation operator category

List of replacements

mutation operators

Bitwise operator replacement (BOR)
Relational operator replacement (ROR)

Shift operator replacement (SOR)
Unary operator insertion (UOT)

Arithmetic operator replacement (AOR)

Addition (ADD), subtraction (SUB),
Multiplication (MUL), division (DIV),
modulo (MOD)

AND, OR, XOR

Equal (EQ), not equal (NEQ),
greater than (GT), less than (LT),
greater than or equal (GE),
less than or equal (LE)

Left shift (SL), right shift (RS)

Negation (NEG)

take the FALSE branch, and to kill the FALSE mutant,
a test must take the TRUE branch. Thus the ROR
operator subsumes branch coverage. By extending the
adopted set of mutation operators all the most used
structural-coverage criteria can be subsumed [32].

Figure 2 provides an overview of the adopted
mutant-injection process. Injection is carried out by
first scanning the input description to identify locations
to be injected. Then for each identified injection loca-
tion, mutations are produced by replacing the involved
operator with all the other operators belonging to the
same category, one-by-one.

To facilitate the following simulation phase and re-
duce the compilation time of all the generated mutants,
only one injected system description is created, instead
of creating and compiling a separate one for each in-
jected mutant. The essence of this method lies in the
creation of a specially parameterized program called
meta-mutant: the unique injected description includes
all the code produced by the injection phase, and allows
to selectively activate one mutant at a time through
the use of the mutant_id variable. Such a variable is
properly driven by the testbench during the simulation
phase. As for the choice of mutation operators, the
meta-mutant apply to both RTL and TLM SystemC,

Fig. 2 The mutant-injection
process. For each candidate
location in the original design

and the resulting code is easily synthesized by the HLS
tool.

4.3 Coverage at RTL: A Cautionary Tale

As anticipated in Fig. 1, RTL mutation analysis can be
performed in two alternative ways:

1. TLM-derived mutation analysis, i.e., mutation fol-
lowed by synthesis: the starting TLM description
is first mutated, and then synthesized to produce
a mutated RTL description denoted by RTL;,,, in
Fig. 1.

2. Native RTL mutation analysis, i.e., synthesis fol-
lowed by mutation: the starting TLM description
is first synthesized to produce a mutant-free RTL
description. Then, the obtained RTL is mutated,
obtaining RTL description denoted by RT L,,,, in
Fig. 1.

It is worth noting that, at first, these two scenarios
serve the same purpose, i.e., performing RTL mutation
analysis by reusing TLM testbenches, but the difference
in the abstraction level on which mutants are injected

Design description
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leads to a number of implications and considerations
that will be described in the following.

The first scenario (at the left-hand side of Fig. 3)
features the reuse of the TLM testbench in order to de-
tect possible errors introduced by the synthesis process,
which is bound to be slow given the presence of injected
mutants within the input code. In this case, mutants
being tested are synthesized, and correspond to altered
blocks of functionality passed down to a lower abstrac-
tion level. The generation of stimuli at TLM is fast and
it provides a test bench for verifying the functionality. If
these stimuli were simulated at the RTL then the simu-
lation time would be significantly higher. Thus, the left-
hand of Fig. 3 suggests that functionality verification
should be addressed at TLM.

On the other hand, the second scenario (the right-
hand side of Fig. 3) focuses on the synthesized mutant-
free description, which is perturbed by injecting mu-
tants altering the low-level functionality. Synthesis in
this case is bound to be much faster, but the mutation
process may not be accurate enough to focus on design
errors at the level of RTL architecture. The same stim-
uli permit to kill part of the mutants injected at TLM,
but significantly less with respect to the left-hand sce-
nario in terms of percentage. In order to increase this
percentage, the test bench has to be improved in order
to kill the mutants representing the RTL architectural
constructs. In other words, on the right-hand scenario,
where we inject mutants at RTL, the verification is
focusing on the “chosen architecture”, or better, on the
result of the high-level synthesis.

Moreover, following the native-RTL mutation
analysis (right side of Fig. 3) we can observe that mu-
tant injection at RTL results generally in a larger num-
ber of mutants with respect to TLM injection, because
of an increase in the number of candidate locations in

the RTL description. On the contrary, mutants in the
RTL code generated by synthesizing the TLM mutated
design (left side of Fig. 3) is unchanged with respect
to the number of mutants injected in the original TLM
code. However, the mutation coverage achieved by the
native-RTL mutation analysis tends to be lower with
respect to one achieved by the TLM-derived muta-
tion analysis, when the TLM testbench is reused at
RTL. Typically, verification engineers manually gener-
ate TLM testbenches as test scenarios from the design
specifications and test plans: such testbenches stress the
design by applying valid values from the input domains.

Figure 4 provides a visual explanation of why the
number of mutants injected at RTL increases. Accord-
ing to the complexity of the statement blocks making
up the high-level description of the functionality, the
synthesis process may produce corresponding portions
of RTL code at different levels of abstraction.

The synthesis tool may be able to decompose a given
C++ statement into a proper connection of basic RTL
components such as multiplexers and adders (upper-
left corner of Fig. 4). In this scenario, the corresponding
generated RTL code is expected to be much larger,
given the addition of implementation details and the
mapping to these basic components. As such, the num-
ber of injection locations will greatly increase, thus
leading to the injection of a greater number of mutants
with respect to the TLM description.

On the other hand, there may be cases where only a
partial decomposition may be possible. In these cases,
the generated RTL code will contain a mixture of con-
structs representing basic RTL components and high-
level constructs (e.g. if-then-else statements). The right
corner of Fig. 4 represents this scenario. Even in this
case, the number of injection locations will increase as
a consequence of this mixture.

Fig. 3 TLM testbench reuse 2 Killed — -
scenarios and corresponding == mNotKilled --—r] Design input-domain
mutation coverage. A higher - information
number of mutants occurs TLM e
along the native RTL TLM-derived Native RTL
mutation analysis, i.e., Mutation Analysis i Analysis 1
synthesis followed by [— i R Yo i
mutation. Testbenches are [ Mutation | [ Synthesis | | ILM testbench
generated at transaction level : ! P ! : ' reuse
starting from the design : | Synthesis | P | Mutation | '
specifications and test plan, [ —— T v
which typically report i i —
input-domain information, ~ DTT . DTT o
e.g., valid values for the RTLmut RTLrnut
inputs parameters

Billed =Killed

Y= mNotKilled u Not Killed
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If even a partial decomposition is not feasible or
necessary, the generated RTL code will contain high-
level constructs providing a behavioral description of
the statement (bottom corner of Fig. 4). In this case, it
is perfectly reasonable to expect the number of injec-
tion locations to stay at least the same as in the TLM
description. A minor increase may still be possible due
to transformations introduced at the level of operations
and sub-expressions.

Overall, this justifies the increase in the number of
injected mutants at RTL. Experimental evidence of this
claim is to be found in Section 5.

Concerning the low mutation coverage achieved by
reusing TLM testbeches on the RTL code obtained
according to the left flow of Fig. 4, a possible motivation
lies in the way the TLM testbench is built. A further
reason for having many live mutants is to be found
in the implementation of RTL architectural choices
provided by designers to the HLS tool. In particular,
analysing the live mutants (i.e., mutants that have not
been detected by the testbenches) we observed that
they fall under one of the following categories:

— the mutant depends (directly or indirectly) on a
range of bits of input ports which are never set by
the testbench;

— the mutant operates on a range of bits of an inter-
mediate result which does not propagate to the out-
puts, because of subsequent operations discarding
such range;

— the mutant alters code deriving from RTL architec-
tural choices.

The first category is a consequence of the way a
testbench provides input data. It relies on design input-
domain information which limits the range of values
provided to inputs, in order to simulate feasible use
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cases pertaining to a real application. Hence, it provides
values within this range for all the inputs. However, this
information is not provided to the automatic synthesis
tool in the starting TLM description, since it is hardly
available yet. This is mostly due to the lack of bit-
accuracy information at TLM. As such, the synthesized
RTL description does not reflect such a knowledge.
This results in overestimating the RTL space of com-
putation, thus introducing blocks of code which are
not activated by the inputs provided by the testbench.
Mutants introduced in these blocks are therefore bound
to be never activated and then never killed.

The second category is directly related to the way
automatic synthesis is performed. As previously stated,
any HLS tool adds signals to the design in order to store
and to accumulate intermediate results. Bit ranges of
these signals are then used to compute the final results.
Many times, these signals have a larger bit width than
the final result, to provide better accuracy while per-
forming intermediate computations. As such, a mutant
may operate on a bit range of one of these intermediate
signals, and this range ends up being discarded during
the operations that lead to the final result.

The third category pertains to those code blocks that
are introduced by the HLS tool to properly implement
the desired RTL architectural choices. Changes applied
in this context may not produce a corresponding alter-
ation to the functional behavior. Furthermore, the test-
bench may not have been built to accurately stimulate
such features.

A module performing conversion from a color space
to another one provides an example for the first cat-
egory, as shown in Fig. 5a. A mutant may replace
the addition operator with the subtraction operator
in an expression being assigned to an inner signal.
However, the second operand contains the bit range
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Fig. 5 Examples of live-mutants causes for native RTL mutation
analysis. a The mutant depends on a bit range of the integer input
port which is never assigned by the testbench: by default integers

15 down-to 8 (i.e., [256,32767]) of one of the input
ports. Since the design under verification performs con-
version from a color space to another, the inputs—as
well as the outputs—are limited to a specific range,
namely 7 down-to 0 (i.e, [0,255]). As such, the second
operand in the expression will always evaluate to 0,
thus making it impossible to detect the mutant under
these circumstances. In this case, the problem lies in the
lack of proper bit-accuracy information provided to the
HLS tool. In the TLM version, inputs and outputs were
represented by using the generic int type, even though
a much smaller subset of its possible values were being
used. As such, the HLS tool conservatively synthesizes
by assuming that all the 32 bits of the int type may be
used. This leads to overestimating bit widths for inputs,
outputs and inner signals.

Color-space-conversion module provides an exam-
ple for the second category as well, as shown in Fig. 5b.
A mutant may alter only the least significant bits of
an intermediate signal, in position 7 down-to 0. The
intermediate signal being written is among the first ones
in the code, i.e., its assignment is one of the first op-
erations being performed. As computation progresses,
new intermediate signals are written, taking into ac-
count bit ranges of previously assigned intermediate

[ ]

design outputs hue‘l' 1, 1’ value

saturation

(b

in C/C++ are initialized to 0. b The mutant operates on a bit which
does not propagate to the outputs

signals. By the time output ports are written, the least
significant bits altered by the mutant may end up being
ignored because of subsequent operations performed
to produce the final result. In this case, the mutant
cannot be detected, since the change performed in the
intermediate signal does not propagate to the output.

Given these premises, the lower mutation coverage
achieved at RTL has to be properly interpreted. This
decrease seems to suggest a weakness in the testbench
being employed, but the analysis of the reasons for live
mutants points into a different direction. The automatic
synthesis process overestimates bit widths because of
the lack of bit-accuracy information in the starting TLM
description. This produces code blocks which are not
stimulated by the testbench being used.

Moreover, changes introduced by mutants injected
directly at RTL operate on a too fine granularity to be
mapped back to possible design errors. As previously
stated, C++ statements are decomposed into smaller
and simpler operations at RTL by the synthesis process.
RTL mutants alter only one of these operations at a
time. As such, the change in behavior they introduce
may only affect a small fraction of the original com-
putation, and most likely cannot be traced back to a
corresponding alteration in the starting C++ code. This

;I‘abtl:: ZTE;‘/E’eriTimal results  Degion hsv2rgb  rgb2hsv  rgb2ycber  ycber2rgb  Line  Heron  Dayofweek
el anen #of mutants 87 95 53 03 33 43 3
ysis .
# killed 83 84 49 43 33 48 43
Mut. coverage  98% 88% 92% 100% 100%  100% 100%
# of lines 413 712 272 242 289 255 257
Sim. time (s) 0.004 0.008 0.004 0.004 0.004 0.004 0.008
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Table 3 Experimental results

X Design hsv2rgb  rgb2hsv  rgb2ycber  ycber2rgb  Line Heron Dayofweek
for the TLM-derived <
mutation analysis # o'f mutants 87 95 53 43 33 48 43
# killed 86 83 49 43 33 48 43
Mut. coverage ~ 98% 87% 92% 100% 100%  100% 100%
# of lines 5282 7188 7628 3206 1183 3417 13296
Sim. time (s) 0.784 2.502 0.304 0.088 0.028  0.184 0.116
Synth. time (s)  117.04 553.56 698.18 89.35 19.49 17510 535522

is because no operator having such a slightly deviated
behavior is defined and available at this higher ab-
straction level. Hence, these mutants cannot represent
actual design errors.

For these reasons, live mutants belonging to the first
two categories end up being not relevant to the purpose
of mutation analysis focused on possible design errors.

Mutants belonging to the third category actually go
beyond the scope of this article. Future work will ex-
plore a way to selectively inject mutants on code blocks
generated by the HLS tool to implement architectural
choices, in order to investigate on possible errors in-
troduced in this context. In this way, also low-level
behaviors strictly related to the RTL implementation
can be actually verified.

5 Experimental Confirmation

The confirmation of observations reported in
Section 4.3 has been carried out by performing
mutation analysis on the following seven designs:

—  hsv2rgb: performs color conversion from the HSV
color space to the RGB color space;

— rgb2hsv: performs color conversion from the RGB
color space to the HSV color space;

— rgb2ycbcer: performs color conversion from the
RGB color space to the YCbCr color space;

— ycber2rghb: performs color conversion from the
YCbCr color space to the RGB color space;

— line: computes the standard equation of the line
passing between two points;

— heron: computes the area of a triangle by using
Heron’s formula;

— dayofweek: computes the day of week for a given
date.

For each design, the following three versions were
considered:

— TLM with mutant injection in the functionality
part, which consists of C++ code (TLM mutation
analysis);

— RTL version obtained by synthesizing the injected
functionality part (from the previous step) with
Mentor Graphics Catapult C (TLM-derived muta-
tion analysis).

— RTL version obtained by synthesizing the mutant-
free functionality part (from the original design
description) with Mentor Graphics Catapult C, and
then injecting mutants directly at this level (native
RTL mutation analysis).

Experiments were carried out by injecting mutants
on each version for each design, and then simulating
them to compute mutation coverage.

We have adopted a random approach for test-
bench generation and we use mutation analysis to
judge the adequacy of testbenches. The testbenches
are judged adequate only if at least one of the non-
yet-killed mutants compute outputs different from the
original design. In that sense, adopting manually- or
automatically-generated approach for testbench gen-
eration is only an efficiency matter. In any case, the
mutation-analysis-based approach guarantees that the
final testbench is able to stress most of the system
functionalities.

Results for the TLM mutation analysis are shown
in Table 2. Table 3 lists results for the TLM-derived
mutation analysis, while Table 4 details results for the
native RTL mutation analysis.

Table 4 Experimental results

’ > Design hsv2rgb  rgb2hsv  rgb2ycber  ycber2rgb  Line Heron  Dayofweek
for the native-RTL mutation
analysis # of mutants 220 243 180 168 33 58 112
# killed 101 122 154 118 33 58 108
Mut. coverage ~ 45% 50% 86% 70% 100%  100% 96%
# of lines 3356 6241 5803 4452 518 1014 4092
Sim. time (s) 5.108 7.841 4.512 2.188 0.016  0.060 0.416
Synth. time (s)  13.65 8.72 12.18 8.68 6.77 9.01 10.87

@ Springer



J Electron Test (2012) 28:435-448

445

Table 5 Speed-up of mutation analysis for TLM derived and
native TLM with respect to native RTL

Design TLM derived Native TLM
Dayofweek 13.5 60,290
Heron 0.30 2,246
hsv2rgb 8.87 89,111
Line 0.70 665
rgb2hsv 0.01 183
rgb2ycber 4.70 13,317
ycber2rgb 9.96 32,961

In each Table, rows # of mutants and # killed indicate
the number of injected mutants and the number of
killed mutants, respectively. Row Mut. coverage shows
the mutation coverage, while row # of lines indicates the
number of lines of code in the description. Rows Sim.
time and Synth. time provide simulation and synthesis
time, elapsed in seconds.

Number of injected mutants and mutation coverage
are the same in Tables 2 and 3. This was expected,
since Mentor Graphics Catapult C preserves functional
equivalence in its synthesis process. As such, if the
injected TLM description is provided as input, its RTL
synthesized version will reproduce its complete behav-
ior, thus including all previously injected mutants.

Since mutation analysis based on meta-mutants
introduces a significant number of additional com-
putational paths in control flow, the synthesis time
for the RTL synthesized from injected TLM version
(Table 3) is much higher than the one for the RTL
directly injected version (Table 4). The same applies
to the number of lines of code. In fact, the mutant-
free TLM description in most cases contains a single
control flow, which is much easier to follow during
the synthesis process than having to deal with all the
possible branches in control flow introduced by injected
mutants.

Simulation time in the three versions is a direct
consequence of three factors, abstraction level, num-
ber of injected mutants and mutation coverage. TLM
simulation is much faster than its RTL counterpart.
Table 5 reports the speed-ups of mutation analysis for
TLM derived and native TLM with respect to native
RTL. An increase in the number of injected mutants

corresponds to an increase in simulation time, since
each mutant requires the simulation of at least one test
vector to be killed. Simulation is performed so that
once a difference in the outputs is observed between
the mutant-free version and the mutated version, the
mutant is reported to be killed and the testbench moves
to the activation of the next mutant. As such, live
mutants take up the vast majority of simulation time,
since they require the simulation of all the test vectors
provided by the testbench.

For each design, mutation coverage in the native
RTL mutation analysis is less than or equal to the other
two versions. The decrease in coverage is more sensible
in the first four designs, which perform conversion
between color spaces.

Results suggest that the TLM-derived mutation
analysis flow provides a solid verification of the high-
level functionality. On the other hand, the native RTL
mutation analysis flow is affected by observations made
in Section 4.3, which are confirmed and backed up by
these experimental results.

Experiments point out that the native RTL mutation
analysis flow does not provide useful information about
correctness of the synthesis. This is essentially due to
the automatic synthesis process producing large and un-
readable code. As such, any link to high-level function-
ality is bound to be lost, making it almost impossible
to establish a relationship between a mutant directly
injected at RTL and the change it causes in the high-
level functionality. Therefore, mutation coverage in the
native RTL flow is bound to be not quite as meaningful
as in the TLM-derived flow.

In this context, experiments highlight the need for
a further test generation phase for RTL-native muta-
tion analysis. This is summarized in Table 6. Designs
hsv2rgb, rgb2hsv, rgb2ycbcr, and ycbcr2rghb present low
native-RTL coverage (see Table 4). For them, we per-
formed an additional test campaign at RT-level focus-
ing on the mutations associated with the architectural
choices of the high-level synthesis process. Row # killed
reports the total number of killed mutants and, in
brackets, the extra mutants killed by RT test. Row
Mut. coverage reports the final mutation coverage. Fi-
nally, TGen. time reports the additional test-generation

Table 6 Experimental results for the additional native-RTL mutation analysis which addresses the architectural aspects introduced by

the high-level synthesis process

Design hsv2rgb rgb2hsv rgb2ycber ycber2rgb Line Heron Dayofweek
# of mutants 220 243 180 168 33 58 112

# killed 178 (77) 243 (121) 163 (9) 161 (43) 33(0) 58 (0) 108 (0)
Mut. coverage 81% 100% 91% 96% 100% 100% 96%

TGen. time (s) 1381.22 16.59 434.13 280.17 - - -
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Fig. 6 RTL-native mutation coverage depending on the test
length

time required by the RT-level test phase. As well,
Fig. 6 reports the trends of the RTL-native mutation
coverage during the RTL-test campaign. At RT-level
the generation of test is significantly slower than at
TLM. Although we adopted a random approach for
test generation, the use of mutation analysis to judge
the adequacy of testbenches require significantly time.
Thus, the proposed re-use of TLM testbenches at RT
level confirms its efficiency in terms of both simulation
time and reached mutation coverage.

6 Concluding Remarks

RTL mutation analysis can be done by injecting mu-
tants directly on the RTL models (native RTL mu-
tation analysis), or by injecting mutants on the TLM
descriptions and then synthesizing the corresponding
RTL mutated models (TLM-derived mutation analy-
sis). This paper showed that the second alternative
provides several advantages with respect to the first.

At the cost of a slower synthesis process, the TLM-
derived mutation analysis has faster simulation time.
Moreover, we showed that TLM testbenches can be
efficiently reused in TLM-derived mutation analysis.
They achieve the same mutant coverage at RTL as it is
achieved on the TLM design. On the contrary, the reuse
of TLM testbenches in the native RTL mutation analy-
sis provides us with apparently worse results. However,
the decrease observed in native RTL mutant coverage
has to be properly interpreted: it does not mean that the
quality of TLM testbenches is low. Indeed, it is mainly
due to the bit width overestimation performed by the
automatic synthesis process, caused by the lack of bit-
accuracy information in the initial TLM description, as
detailed in Section 4.3.

Finally, we elaborated about the capability of TLM-
derived mutation analysis of preserving the mapping

@ Springer

between TLM and RTL mutants, thus, allowing to
more easily identify possible problems in the synthesis
process. Contrary to the TLM-derived mutation, in the
native RTL mutation analysis the link to TLM function-
ality is lost, making it almost impossible to establish a
relationship between a mutant directly injected at RTL
and the change it causes with respect to to the original
TLM functionality.
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ABSTRACT

The paper proposes a method for locating design errors at the source-level of Register-Transfer Level
(RTL) hardware description language code using the design representation of High-Level Decision Dia-
gram (HLDD) models and correcting them by applying mutation operators. The error localization is based
on backtracing the mismatched and matched outputs of the design under verification on HLDDs. As a
result of the localization step, all the variables in the RTL description receive a suspiciousness score. Sub-
sequently, a mutation-based correction algorithm is applied providing automated correction for the
design under verification. Experiments on a set of sequential RTL benchmarks show that the method is
capable of locating the design errors injected with a high accuracy and a short run time. In fact a majority
of the errors injected in the experiments were identified as top suspects by the proposed diagnosis algo-
rithm. Furthermore, we show that because of this localization accuracy the mutation-based correction

requires very small number of iterations and thus a short run-time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Designing a microelectronic chip is an expensive task and
excessive design costs are the greatest threat to continuation of
the semiconductor industry’s growth [1]. It is a well acknowledged
fact that verification is forming a major part in the total product
design cycle [2] and this trend is continuing. At the same time
when there have been numerous research works on verification
methods identifying the occurrences of errors, the problem of diag-
nosing the causes of errors and correcting them has received less
attention. Yet a large part of the verification cycle is consumed in-
side the design loops between debugging and correction. It is esti-
mated that fault localization and correction constitute roughly half
of the total time spent on verification [3]. Verification and debug
(i.e. assuring the correctness of the design), in turn, represent the
main reason of the excessive design costs, accounting for about
70% of the total expenses [2].

Automated debug of design errors consists of two steps: error
localization and error correction. Error localization identifies the
portion of the design responsible for the erroneous behavior, while
error correction is responsible for locally modifying the functional-
ity of the identified portion.

For error localization, simulation-based [6-11] and formal ap-
proaches [22] are known. It is widely accepted that simulation-
based techniques scale well with the design size, but are not

* Corresponding author.
E-mail address: jaan@pld.ttu.ee (J. Raik).

0141-9331/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.micpro.2012.11.004

exhaustive while formal techniques provide a high grade of confi-
dence in the results but are susceptible to the design complexity.

For error correction, error matching [4,5] and re-synthesis [6]
have been investigated in the literature. In particular, re-synthesis
provides a correction which is represented as a partial truth table
based on the stimuli under consideration. This kind of correction
is not readable and cannot be easily understood and verified by
the design engineer. Moreover, as we will show in Section 9, the
resynthesized erroneous portion of the design is likely to fail when
new stimuli will be added to the suite.

Previous works on error debug for high-level models such as the
Register-Transfer Level (RTL) are based on the work by Smith et al.
[8]. There is a range of works extending this idea of the SAT-based
debug (e.g. [9,10]). However, these methods reduce the debugging
problem to SAT or SAT Modulo theory (SMT) solvers, which is an
NP-complete problem. Although SAT/SMT engines are being con-
stantly developed and improved, there is a limit to the circuit size
where the approach is applicable. The current paper considers a
different approach relying on design error localization utilizing
HLDD backtrace that executes in polynomial time. This means that
much larger designs could be potentially handled by the proposed
method.

This paper utilizes HLDD backtrace and mutation as a source-le-
vel reasoning engine for automated debug. In our case the engine
operates directly on the register-transfer level. This results in a
readable diagnostic feedback and is therefore better understand-
able to the engineer than logic-level debug information provided
by previous methods.
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Recently, a similar approach has been adopted in software test-
ing. In [11], Debroy and Wong propose a program slicing based
diagnosis tool Tarantula to calculate the suspiciousness scores for
operations and apply mutation to correct C and Java programs.
The current approach for hardware debug and the one proposed
in [11] for software debug were developed simultaneously and
independent of each other.

The rest of the paper is organized as follows. Sections 2-4 pro-
vide the preliminaries of HLDD modeling and simulation. Section 2
defines the HLDD data structure. Section 3 presents simulation on
HLDDs. In Section 4, we explain how digital circuits can be mod-
eled by HLDDs. In Section 5, we present the method for design-er-
ror diagnosis based on HLDD backtrace. Section 6 provides a
motivational example for the proposed error localization method.
Section 7 introduces HLDD-based mutation for correcting design
errors. Section 8 presents the experimental results. Section 9 dis-
cusses the threats to validity and limitations of the approach and
Section 10 concludes the paper.

2. High-level decision diagrams

Different kinds of Decision Diagrams (DD) have been applied
to design verification for about two decades. Reduced Ordered
Binary Decision Diagrams (ROBDD) [12], as canonical forms of
Boolean functions, have their application in equivalence checking
and in symbolic model checking. In this paper, we use a decision
diagram representation called High-Level Decision Diagrams
(HLDDs) that are word-level decision diagrams which can be con-
sidered as a generalization of BDD, where instead of single bits,
computer words are considered. There exist a number of other
word-level decision diagrams such as Multi-Terminal DDs
(MTDDs) [13], Kronecker Multiplicative Binary Moment Diagrams
(K*BMDs) [14] and Assignment Decision Diagrams (ADDs) [15].
However, in MTDDs the non-terminal vertices hold Boolean vari-
ables only, whereas in HLDDs the terminal vertices may be la-
beled by word-level variables. In K*BMDs, additive and
multiplicative weights label the edges. Such representations are
useful for compact canonical representation of functions on inte-
gers (especially wide integers). However, the main goal of HLDD
representations described in this paper is not canonicity but ease
of simulation and diagnosis. The principal difference between
HLDDs and ADDs lies in the fact that ADDs edges are not labeled
by activating values. In HLDDs the selection of a vertex activates a
path through the diagram, which derives the needed value
assignments for variables.

In this Section we first define the HLDD representation, then we
introduce HLDD based simulation and representation for behav-
ioral register-transfer level VHDL descriptions.

Consider a digital system (Z,F) as a network of subsystems or
components, where Z is the set of variables (Boolean, Boolean vec-
tors or integers), which represent connections between compo-
nents, primary inputs and primary outputs of the network. Let
Z=XUY, where X is the set of function arguments and Y is the
set of function values where Q =X NY is the set of state variables.
D(z) denotes the finite set of all possible values for z<Z and
D(Z') is the set of all possible vectors in some variable set Z' C Z.
Obviously, if Z' ={z,,...,z,} then D(Z')=D(z;) x --- x D(z,). Let F
be the set of discrete functions: y = fi(Xy), where y,cY, fx € F,
and X, C X(k iterates over all elements in F).

Definition 1. High-level decision diagram representing a function
fi: D(Xi) — D(yx) is a directed acyclic multigraph G = (V,E) with a
single root vertex and a set of terminal vertices where:

- Vis the set of vertices and E is the set of edges.

- Each edge e < E is an ordered pair e = (2;,,) € V2, where V2
is the set of all the possible ordered pairs in the set V.

- Each non-terminal vertex is labeled by some input or con-
trol variable x € X. We shall denote the variable of vertex v
by x,.

- Each terminal vertex w is labeled by some function g,:
D(Xy) — D(yx), where X,, C Xi.

- Each edge e = (v,u), where vand u are vertices, is labeled by
some constant ¢, € D(x,).

- Each two edges e, = (z,u;) and e; = (7,u;) starting from the
same source vertex are labeled by different constants c.q##
Ce-

- If the vertex v is labeled by x, then the number of edges
starting from this vertex is |[D(x,)|.

Remark 1. Each BDD is HLDD as well, with two terminal vertices
labeled by constant functions 0 and 1, and D(x) ={0,1} for every
variable x.

In other words, HLDD is a data structure similar to BDD, but
with many edges originating from a particular vertex and a
number of functions at the end, instead of constants 0 and 1. We
shall denote the set of terminal vertices by V" and the set of non-
terminal vertices by VN and the set of all successors of the vertex v
by I'(v). For non-terminal vertices v< V" an onto function exists
between the values ce D(x,) of labels x, and the successors
f — € I'(v) of v. By ¢f we denote the successor of v for the value
Xy=C.

The edge (v,¢f), which connects vertices v and ¢f, is called
activated iff there exists an assignment x,=c. Activated edges,
which connect z and , form an activated path I(v,7) C V. An
activated path I(z, #") from the root vertex  to a terminal vertex
o' is called the full activated path and o' itself is referred to as the
activated terminal vertex.

Without loss of generality we assume further that each variable
has at least two values, i.e. Vz€Z, |D(z)| > 1. Let D; designate a
subset of D(x,) labeling vertex , such that assignments from it will
activate its successor vertex . D(x,) is partitioned into non-
intersecting sets Dy, ..., D, where m = |I'(v)|. More formally,

.[nJlD,- =D(x,) AVij, i#j—DinD;=0.
=

In other words, with every value assignment to variable x, one
and only one successor vertex will be activated. Further, let D, des-
ignate a subset of D(X), such that assignments from it will activate
the terminal vertex vf. With every value assignment to variables X,
one and only one terminal vertex will be activated. Thus, D(X) is
partitioned into non-intersecting sets Dy, ..., D, where t = |V7|:

kﬁlnk —D(X)AVKI, ksl—DynD=0.

Fig. 1 presents a HLDD G, representing a discrete function
y = fX1,X2,X3,X4). The diagram contains five vertices y, ..., 74. The
root vertex 7y is labeled by variable x, which is an integer with a
range from O to 7. The vertex has three outgoing edges entering
the vertices vy, v3 and v4. The vertex v, is labeled by x5 with a range
from O to 3. It has two outgoing edges e4 and es entering terminal
vertices v, and us, respectively. The edge e, is activated by x; =2,
while the edge es is activated by x5 having a value 0, 1 or 3. The
ranges of variables x; and x4 labeling terminal vertices v and ,
respectively, are not evident from the figure.

3. Simulation on HLDD models

HLDD models can be used for representing digital systems. In
such models, the non-terminal vertices correspond to conditions
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G, =(V.E.X),

V="{vo, vi, va v3, v4};

E= ey, ey e3 e, €5}, €,=(vy, v1), e2=(vy, v3),
e3=(vo, va), e4=(vy, v2), es=(vy, v3);

X={xp=x, , X0=x, =0, X370, X=X, )

D (x,0)=10}, Dax,0)=11,2,3}, Ds(x,0)={4,5,6,7},

Dy(x,)={2}, Do(x,)={0,1,3}.

Fig. 1. Graphical representation of a HLDD for a function y = f{x1,x2,X3,X4).

or to control signals, and the terminal vertices represent arithmetic
operations, variables or constants. When representing systems by
decision diagram models, in general case, a network of HLDDs
rather than a single HLDD is required. During the simulation in
HLDD systems, the values of some variables labeling the vertices
of an HLDD are calculated by other HLDDs of the system.

Simulation on high-level decision diagrams takes place as fol-
lows. Consider a situation, where all the vertex variables are fixed
to some value. According to these values, for each non-terminal
vertex a certain output edge will be chosen which enters into its
corresponding successor vertex. As mentioned above, such connec-
tions between vertices are referred to as the activated edges under
the given values. Succeeding each other, activated edges form in
turn activated paths. For each combination of values of all the ver-
tex variables there exists always a corresponding activated path
from the root vertex to some terminal vertex. Let us call this path
the main activated path. The simulated value of the variable repre-
sented by the HLDD will be the value of the variable labeling the
terminal vertex of the main activated path.

In Fig. 2 simulation on the decision diagram presented in Fig. 1
is shown. Assuming that variable x; is equal to 2, a path (marked by
bold arrows) is activated from vertex 7o (the root vertex) to a ter-
minal vertex »; labeled by x;. The value of variable x; is 4, thus,
¥y =x; = 4. Note that this type of simulation is inherently event-dri-
ven since we have to simulate those vertices only (marked by gray
color in Fig. 2) that are traversed by the activated path.

Algorithm 1 presents simulation on HLDD models. The simula-
tion process starts in the root vertex v, (line 2 of the algorithm).
The vertex vcymene is iteratively replaced by its successor vertices
selected according to the value of X,cyren: (line 4). In order to rep-
resent feedback loops in the RTL design, the algorithm takes the
previous time-step value of variable x, labeling a vertex ; iff x rep-
resents a clocked variable in the corresponding HDL (lines 5 and 6).
Otherwise, the present time step value will be used (line 8). Simu-
lation ends when a terminal vertex is reached and the variable y
corresponding to the simulated HLDD G, is assigned the value x, ¢,
rent (line 12).

Vo 191 V2 4
e Vil U B
X3=—
0,13 V3 xXp=—
1-3 X1
y=4

U.
47 ( )4

Fig. 2. Simulation on a decision diagram.

Algorithm 1. HLDD simulation

SimulateHLDD (G,)
Ucurrent = Vo
While Ucurrent ¢ VT
Xk = Xvcurrent
If X is clocked then
Value = previous time-step value of x;
Else
Value = present time-step value of x;
End if
Veurent = Veien:
11: End while
12: ASSIgN Y = Xycurrent
13: End SimulateHLDD

LN RWN =2

4. Representing RTL designs by HLDDs

Consider the datapath depicted in Fig. 3a and its correspond-
ing HLDD representation shown in Fig. 3b. Here, Ry and R, are
registers (R, is also a primary output), MUX;, MUX, and MUX3
are multiplexers, + and * denote addition and multiplication oper-
ations, IN is an input bus, SEL,, SEL,, SEL; and EN, serve as control
signals (multiplexer selects and register enables), and a, b, ¢, d
ande denote internal buses, respectively. In the HLDD, the control
variables SEL,, SEL,, SEL; and EN, are labeling the internal deci-
sion vertices of the HLDD. The terminal vertices are labeled by
word-level variables R; and R, (data transfers to R,), and by
expressions related to the data manipulation operations of the
network.

Consider, simulating HLDD with some values assigned to the
variables. Let the value of SEL, be 0, the value of SEL; be 3 and
the value of EN, be 1 in the current simulation run. A full activated
path in the HLDD from EN, to R; x R, is shown by bold lines and
gray vertices, which corresponds to the pattern EN, =1, SEL; = 3,
and SEL, = 0. The activated part of the network at this pattern is de-
noted by gray boxes.

The main advantage and motivation of using HLDDs compared
to the netlists of primitive functions is the increased efficiency of
simulation and diagnostic modeling because of the direct and com-
pact representation of cause-effect relationships. For example, in-
stead of simulating the control word SEL; =0, SEL, =0, SEL; = 3,
EN,=1 by computing the functions a=R;, b=R;, c=a+R,,
d=b xRy, e=d, and R, = e, we only need to trace the vertices EN,,
SEL; and SEL, on the HLDD and compute a single operation
Ry = Ry * R,. In case of detecting an error in Rythe possible causes
can be defined immediately along the simulated path through
EN,, SEL3 and SEL, without complex diagnostic analysis inside the
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SEL:  SEL, SELs EN;

iy

MUX;

C))

Fig. 3. A datapath of a DUV (a) schematic and (b) HLDD-based representations.

IF res = 1 THEN state:=s0;
ELSE
CASE state IS
WHEN s0 =>
a:=inl; b:=in2; state:=s1;
WHEN sl =>
IF a>b THEN state:=s2;
ELSE IF a<b THEN state:=s3;
ELSE state:=s4; ENDIF;
WHEN s2 =>
a:=a-b; state:=s1;
WHEN s3 =>
b:=a-b; state:=s1; -- Bug!!!
WHEN s4 =>
out:=a;
state:=s4;
END CASE;
END IF;

C))

Fig. 4. (a) RTL VHDL and (b) its corresponding HLDD.

corresponding RTL netlist. The activated path provides the fault
candidates, i.e. variables that are suspected to contain faults
causing the error at R, during current simulation run. Further rea-
soning should be based on analyzing sources of these signals.

An example of HLDD representation (Fig. 4b) of a VHDL code
fragment of the Euclidean algorithm for calculating the Greatest
Common Divisor of two unsigned variables in1 and in2 is presented
in Fig. 4a. The VHDL fragment contains seven variables: inputs in1,
in2 and res(the reset signal), internal variables (registers) a, b and
state (for control state), and output out. The variable state is of enu-
meration type, variables inl, in2, a, b and out are integers and var-
iable res is of bit type.

The algorithm proceeds as follows. When the reset input res be-
comes one, the Finite State Machine (FSM) of the control part is ini-
tialized to the state sO. In that state, input inl is assigned to
variable aand input in2 is assigned to variable b. The next FSM state
is s1, where if a > b we move to state s2, if a < b we move to state s3,
and otherwise if a = b we move to state s4, respectively. In state s2,
a — b is assigned to a, and in state s3, b — a is assigned to b. This
guarantees that a smaller number is always subtracted from the
larger one until a and b become equal and the FSM ends up in state
s4, where the result is written to the output variable out.

Note that there is a bug in the VHDL description in Fig. 4a. In
the FSM state s3, a—b and not b —a is assigned to variable b.

Fig. 4b presents the HLDD models of four variables state, a, b
and out, ie. the internal state and output variables of the
design.

HLDDs for design variables are generated by traversing the
control flow branches of the VHDL code. Conditional statements
(IF, CASE) transform into non-terminal vertices of the HLDD, con-
trol branches map to the HLDD edges and terminal vertices are
created out of the right-hand side parts of value assignments to
variables in corresponding control branches. In the figure, the
symbols T and F labeling the HLDD edges stand for true and false,
respectively.

5. HLDD backtrace for design error localization

In this section, we first present the algorithm for diagnostic tree
generation using backtrace on HLDD models. Then, two analysis
steps are introduced to perform error localization on the set of
diagnostic trees generated.

Algorithm 2 presents the recursive diagnostic tree generation
on HLDDs. The process starts from the primary outputs
(Line 2) and from each clock-cycle (Line 3). Subsequently, the
diagnostic tree is recursively generated using the function
RecursiveTreeGeneration.
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Algorithm 2. HLDD-based diagnostic tree generation

1: GenerateDiagnosticTree ()
2: For each primary output Go in the model
3: For each time-step t
4: 8(Go,t)=0
5: RecursiveTreeGeneration (Go,t, )
6: End for
7: End for
End GenerateDiagnosticTree
RecursiveTreeGeneration (Gy,t,d)
8: SimulateHLDD (Gy)//See algorithm 1!
9: For each 7 at the main activated path
10: If variable x, = x,; at-time step t is not in ¢ then
11: Add x; to &
12: If x, is not a primary input then
13: RecursiveTreeGeneration (Gx,t, &)
14: End if
15: End if
16: End for

End RecursiveTreeGeneration

Algorithm 2 generates a separate diagnostic tree 5(Go,t) for each
output diagram Go at each clock-cycle t. The resulting diagnostic
tree ¢ is a set of pairs (x; ;) that show at which time-steps t; the
variable x; was backtraced.

In the following, two analysis steps that could be implemented
for locating the design error are presented. In order to perform the
analysis, let us partition the set of all diagnostic trees 4 = 5y(Go, t)
into failing diagnostic trees Ar and passing diagnostic trees Ap. A
diagnostic tree is failing if 5x(Go, t) of the simulated value of output
variable o € Y on the faulty design differs from the corresponding
value of the golden device at time-step t. Otherwise, Jy is called a
passing diagnostic tree.

5.1. Diagnosis step 1

For each variable x; count the number cgajgp of failing diagnos-
tic-trees &, € A, where x; is present at least in one of the pairs (x,t)
of &. Select the variables x; receiving a non-zero score cay ep as the
set of suspected faults Xsuspectea and sort the set Xsyspectea according
to the score crayep. The variables with a higher score are more sus-
pected of causing the error than the ones with a lower score.

5.2. Diagnosis step 2

Perform step 1. For each variable Xsep1 € Xsuspected COunNt the
number of passing diagnostic-trees 6; € Ap Cpassep, Where Xgepr is
present at least in one of the pairs (x,t) of §. Compute the score
crorar = Craen](CraiLep + Cpassep) for variables Xsepy. Sort the set Xos-
pected according to the score crozar.

Step 1 is more exact as it can be easily proven that at least one
of the variables x, that is labeling a vertex v along one of the main
activated paths in simulated HLDDs must be also the cause of the
error. However, step 2 may be unavoidable in order to guarantee a
good diagnostic resolution, especially if the number of failing se-
quences is one or very small. In fact, the experiments presented
in this paper fully confirm this observation.

The straight-forward implementation of this backtracing algo-
rithm could be time-consuming because of the square complexity
introduced by the need to backtrace from each subsequent time
step back to the initial time step. Therefore, in current implemen-
tation we stored intermediate backtracing results at each time step
in order to gain speed.

6. Error localization example

Consider the following example of design error localization on
the basis of the erroneous GCD design description presented in
Fig. 4a. Let there be a given set of input stimuli (e.g. a functional
test) and a set of correct output responses for the stimuli obtained
on a golden model. Assume that there is a design error in it such
that at state s3 a faulty operation a — b is assigned to the variable
b instead of the correct operation b — a. In Fig. 5, two test se-
quences are presented as tables. Rows of the table show values
of the variables at different time-steps. The first column ¢ lists
the time steps ty, .. ., ts, The next three columns present the values
of input variables res, in1 and in2 in the test sequence. Final four
columns show the values of the internal variables state, a, b and
the primary output out. These values have been obtained by simu-
lating the HLDDs in Fig. 4b using Algorithm 1.

Fig. 5a shows the test sequence for the design when primary in-
puts inl and in2 hold values 4 and 2, respectively. This sequence
passes the test, giving a correct response that the greatest common
divisor of 4 and 2 is two. In Fig. 5b, another sequence is presented,
which produces an erroneous the test. Because of the design error,
the primary output out receives an erroneous value.

In order to locate the design error, a diagnostic tree is generated
on the HLDD model of the GCD design presented in Fig. 4b. Fig. 6
presents the diagnostic tree for the passing test shown in Fig. 5a
while Fig. 7 presents the diagnostic tree for the test shown in
Fig. 5b. As it can be seen from the Figures, the “tree” generated
by Algorithm 2 has not a tree-like structure. It is rather a directed
graph, where the vertices represent a subset of the time-expansion
model of the design. Directed edges show relations between the
variables in the simulation process.

The algorithm starts at the time step when an output response
is expected. For the test sequences in Fig. 5 it is the time step ts.
Then, it continues towards the first time step and recursively gen-
erates the diagnostic tree 6(Goyus, ts). For the sake of compactness of
presentation, we have omitted the reset variable res from Figs. 6
and 7. In addition, the operation a = b (in Fig. 6) is also given in a

(a)

t |res inl in2 | state a b | out t |res inl in2 |[state a b | out
to| 1 4 2 - - - - to| 1 2 4 - - - -
t| 0 - - sO 4 2| - ti| 0 - - sO 2 4 -
| 0 - - sl 4 2| - tb| O - - sl 2 4 -
;] 0 - - 2 2 2 - 3] 0 - - 3 2 -2 -
ty| O - - sl 2 2| - ty| O - - sl 2 -2 -
ts| 0 - - s 2 2| - s 0 - - s 2 -2 -
ts| O - - s4 2 2| 2 te| O - - s4 2 2|2--

(b)

Fig. 5. Passing (a) and failing (b) test sequences for the GCD design.
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t ;b stite::sl
t a:=inl state:=s0

Fig. 7. Diagnostic tree for the failing test in Fig. 5b.

minimized form from —(a > b)e—(a < b) obtained by backtracing the
HLDD for the state variable (see Fig. 4b).

The diagnostic trees presented in Figs. 6 and 7 can be used for
effect-cause diagnosis of design errors. Reasoning on the diagnostic
trees takes place as follows. The diagnosis tree in Fig. 6 of the pass-
ing test sequence in Fig 5a contains vertices which are unlikely to
be related to the cause of the error because the sequence resulted
in a matched output. However, the diagnostic tree in Fig. 7 was
backtraced from the mismatched outputoutat time-step ts. These
two backtraces should give us information about the location of
the error.

Indeed, the vertex labeled by b := a — b (marked by gray back-
ground in Fig. 7) is among the faults selected as suspects for caus-
ing the design error by the diagnosis step 2 presented in previous
subsection. The four vertices with gray background are chosen as
suspects because only these four vertices are present in the diag-
nostic tree of the failing sequence but are missing from the passing
sequence. Thus, in this simple example they receive the highest
score. In the real case there would be many failing and passing test
sequences as well as there may be multiple faults. Furthermore, in
most cases it is not possible to partition the test set into sequences.
Algorithm 2 takes the latter assumption. Therefore in experiments
reported in current method we start backtrace at each clock cycle
for each output.

The HLDD-based diagnosis is related to known debugging tech-
niques such as program slicing [16] and critical path tracing [17].
Modeling discrete systems by a system of HLDDs may be regarded
as a form of program slicing, because a separate diagram is gener-
ated for each variable x in the program, reflecting the control flow
branches where assignments are made to x and including the data

assigned to x. Activating paths in HLDD diagrams using Algorithm
1 is equivalent to critical path tracing. The technique of critical
path tracing consists of simulating the fault-free system (true-va-
lue simulation) and using the computed signal values for back-
tracking all sensitized paths from primary outputs towards
primary inputs in order to determine the faults that would affect
the primary output. In HLDDs the same task is solved in a single
run as a byproduct of simulation.

7. Mutation-based design error correction

Mutation analysis is a technique that was initially introduced to
fulfill the task of evaluating the ability of testbenches to detect
bugs in software programs. In this paper we consider applying
mutation operators for correcting a faulty circuit. Subsequent to
the fault localization step described in Sections 5 and 6 mutation
operators are applied to perturb the HLDD model of the RTL design
in order to perform the correction. It is intuitively clear that this
kind of correction may be extremely time-consuming in the worst
case. The time required to correct the circuit is proportional to the
product of the number of vertices, the number of mutants to be in-
jected to each vertex and the number of test patterns in the test.

The design error localization technique presented in previous
sections allows to minimize the number of vertices where the
faults have to be injected. However, it is crucial to keep the number
of mutants as small as possible. In this work, the five key operators
proposed in [18] have been implemented. In experiments, those
five operators have provided almost the same coverage as non-
selective mutation, with cost reductions of at least four times with
small programs, and up to 50 times with larger programs [18]. The
5 sufficient operators are ABS, which forces each arithmetic
expression to take on the value 0, a positive value, and a negative
value, AOR, which replaces each arithmetic operator with every
syntactically legal operator, LCR, which replaces each logical con-
nector with several kinds of logical connectors, ROR, which re-
places relational operators with other relational operators, and
UOI, which inserts unary operators in front of expressions.

We have implemented the five operators with the following
constraints and specifics. UOI currently replaces only unary opera-
tors with other unary operators and ABS is applied to variables
only, and not to expressions. Note also that in HLDD there are no
signed/unsigned variables, but signed and unsigned relational
operators exist. Therefore ROR replaces, both, signed and unsigned
relational operators. In AOR we also allow mutation by division
and mod operations and we have included a check for the case of
divide-by-zero. The reduced-5-key-operator strategy represents a
do fewer strategy. The purpose would be to reduce the mutation
analysis cost as much as possible.

Fig. 8 illustrates the HLDD graph perturbations for implement-
ing the five key mutation operators on a sample diagram Gy _oy. In
HLDD models, the perturbation means simply replacement of an
operator, variable or constant labeling the HLDD vertex by another
operator, variable or constant.

Table 1 shows the list of replacements for each mutation oper-
ator. In every case the operator is substituted by another operator
from the group. This is done until all operators are covered or the
program is confirmed correct by simulation.

Algorithm 3 presents the mutation-based correction algorithm
on HLDD representations. In this algorithm, first Algorithm 2 is
executed in order to rank the circuit vertices according to the sus-
piciousness score. Then, the vertices are substituted iteratively by
mutants from the same group of functions as the function labeling
the vertex (see the groups of functions in Table 1). This iteration
stops when the simulation result confirms that the correction pro-
vides output responses equal to the golden output responses.
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true

y out - ]
= inp1<inp2

ROR:
inpl>inpd,
inp3=inp4, ...

LCR:
inp3 xor inp4,
inp3 | inp4, ...

ABS:

const0,
random positive,
random negative

AOR:
inp7-inp8,
mp7*mp8, ...

Fig. 8. “Key” mutation operators as HLDD perturbations.

Table 1
The list of key mutation operators.

Mutation operator List of replacements

&, NAND, |, NOR, XOR

LCR (logical connector
replacement)

AOR (arithmetic operator
replacement)

UOI (unary operation insertion)

SOR (shift operator replacement)

+ —, - [, MOD

NEGATE, INVERT

SHIFT LEFT, SHIFT RIGHT, UNSIGNED
SHIFT RIGHT

ROR (relational operation = # <>, >
replacement)

Algorithm 3. Mutation-based correction as an HLDD perturbation

MutationBasedCorrection ()

1: Rank the vertices v € V by executing
GenerateDiagnosticTree ()/* Algorithm 2%/
2: For each vertex v
3: For each substitution p where x, # p in the mutation
operator
4 Substitute x, by p
5: SimulateHLDD ()/* Algorithm 17/
6: If output responses match the golden ones then
7: Return correction “x, to be substituted by p”
8: End if
9: End for
10: End for
11: Return “The design cannot be corrected by mutation”
12: End MutationBasedCorrection

8. Experimental results

Table 2 presents the main characteristics of the benchmarks
used in the experiments and their respective test sets. The bench-
marks include the Greatest Common Divisor (gcd) and the Differ-
ential Equation (diffeq) examples from the HLSynth92 and
HLSynth95 academic benchmarks suite, respectively. The design
risc is a processor example from a FUTEG research project. In addi-
tion, two real-world designs were included to the experiments.
These were a commercial core for circular redundancy check
(crc) from [19] and an opensource core uart16750 from the Open-
Cores repository [21]. The test stimuli for the academic bench-
marks were generated by a hierarchical test pattern generator
Decider [20] while for crc the provided functional test bench was
applied and uart16750 was tested by 1000 randomly generated test

vectors. The second column reports the system complexity in
terms of the number of HLDD vertices. The third column represents
the number of functions in the design. Finally, the fourth column
shows the number of stimuli in the test suite.

In Table 3, the design error localization experiments are pro-
vided. We injected faults into the design by randomly mutating a
function one-by-one, so that during each diagnosis run only one
function was mutated. The column ‘success rate’ shows the ratio
of the times the actual location of the mutation achieved the high-
est rank in relation to all diagnosis runs. The column ‘average res-
olution, # suspects’ reports the average number of suspects that
received the highest score. Here, the diagnostic resolution is very
good for step 2 and two or more times worse for step 1. The same
trend applies to the worst resolution, which reports the worst case
suspected fault list size over all the faults injected. The final col-
umn reports the run times achieved on a PC, Dual-Core CPU,
2.6 GHz, 3.25 GB RAM, Windows XP operating system are pro-
vided. This time includes both performing step 1 and step 2 of
the diagnosis algorithm. As it can be seen, the run times are very
different. They do not only depend on the circuit size but also
the number of vectors and the sequential depth of the designs.
The run time for step 1 is actually very much shorter than the time
for steps 1 and 2 combined, because in step 1, only mismatched
outputs have to be backtraced. Table 3 excludes the error localiza-
tion details for the core uart16750. The time for localization for this
core was in average 90.0 s on the 1000 vector test.

As shown in the previous table, a majority of the errors injected
in the experiments were identified as top suspects by the proposed
diagnosis algorithm. Because of this localization accuracy the
mutation-based correction requires very small number of itera-
tions and thus a short run-time. See Table 4 which lists the average
time to correct a design by applying mutation. The last column of
Table 4 shows the average number of substitution functions (mu-
tants) generated until the design was corrected.

9. Threats to validity and limitations

Similarly to a wide range of design error correction methods
(e.g. [8,10,11]), one of the main limitations of the work proposed
in this paper is the fact that the correction is calculated with

Table 2

Benchmarks and their test sets.
Design # Vertices # Fun. # gates #FFs # Test stimuli
ged 25 4 ~500 48 4000
diffeq 39 9 ~2500 80 16,855
risc 61 16 ~2000 96 4000
crc 232 74 ~10,000 171 193
uart16750 1747 401 ~100,000 1403 1000
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Table 3
Design error localization experiments.

Design Success rate, ratio of correct localizations Average resolution, # suspects Worst resolution, # suspects Processing time, s
Step1 Step2 Step1 Step2 Step1 Step2
ged 4/4 4/4 2.25 1.00 3 1 18.0
diffeq 9/9 9/9 333 1.88 6 3 700.0
risc 16/16 13/16 8.18 1.93 1 5 0.3
cre 74/74 69/74 31.83 9.04 50 20 0.5
Table 4

Mutation based correction experiments.

Design Average correction time, s Average number of substitutions
ged 0.0040 2.0

diffeq 0.0410 3.62

risc 0.0276 225

crc 0.0422 413

uart16750  0.581 9.11

respect to a given set of input stimuli. Therefore, it may happen
that if the test stimuli set is not comprehensive, a correction is cal-
culated that holds for this test set only and will not hold for every
possible input stimulus. There exist also design error correction
methods that are, in theory, able to fix the circuits regardless of in-
put stimuli. However, such approaches have serious size limita-
tions. One of the most recent examples of this category of
correction methods has been presented in [22]. Experiments on
the Siemens benchmark set [23] showed that due to scalability
limitations only very few buggy versions of the benchmarks could
be handled by the method. Furthermore, in order to be feasible at
all the bit-width of the designs had to be reduced from 32 down to
8 bits.

Another major limitation of the correction method is that it is
an error-matching approach. In other words, a design error can
be fixed if there is a fault described in a library that when inserted
converts the design equivalent to the correct design. It is obvious
that real design bugs may often not be represented by simple
mutations. However, recently several studies have been published
that show the applicability of mutation-based correction for realis-
tic debugging cases. Debroy and Wong propose mutation-based
correction for the control flow of software programs and show that
16% of all 132 buggy versions of Siemens benchmarks can be cor-
rected by the approach. In the work by Repinski et al. [24], this
number is increased to more than 50% mainly by additionally
extending the mutation operators to dataflow.

Despite of the fact that mutation is not capable of fixing arbi-
trary design errors, it provides a feedback to the design engineer
that is provided at the source level (i.e. RTL) and is more readable
than the partial truth-tables or synthesized logic-level blocks ob-
tained by resynthesis-based correction (e.g. [10]). This readability
is crucial to keep the designer in the debugging loop. Methods that
provide corrections in an automated way without a clear feedback
to the designer are of limited practical application.

The complexity of the design error localization is polynomial
versus the exponential complexity of the SAT-based methods
[8,10]. Design error correction is polynomial as well, requiring
S°Ioki simulation runs, where m is the rank of the actual fault loca-
tion in the list of circuit nodes ranked according to their localiza-
tion score and k; is the number of substitution mutants in the ith
node within the ranked list, starting from the first node and ending
with the mth node. Experiments show that m is usually a very
small value, which means that the correction process is fast and
scalable.

Finally, the effectiveness and efficiency of the presented error
diagnosis and correction method strongly depends on the quality

of input stimuli. There exist a wide range of Diagnostic Test Pattern
Generation (DTPG) methods [25-29] that produce tests, which are
designed to locate design errors. Most of such methods are target-
ing manufacturing faults. Test stimuli generated by DTPG would
further improve the quality of locating and correcting design
errors.

10. Conclusions

In this paper, a debug method for locating and correcting design
errors at the source-level of hardware description language code
using the design representation of high-level decision diagrams is
proposed. Experiments on a set of sequential register-transfer level
benchmarks and one real-world design from the OpenCores repos-
itory show that the method is capable of locating the design errors
injected with a high accuracy. Because of this localization accuracy
the mutation-based correction requires very small number of iter-
ations and thus short run-times.
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This paper presents a fault model-free approach for automated design error
localization by combining statistical analysis with HDL slicing.
—Nicola Nicolici, McMaster University

H RAPIDLY GROWING SYSTEMS’ complexity has led
to increasing design costs and verification has be-
come one of the most expensive tasks in the design
process. While several approaches and tools focus-
ing on identifying the occurrences of errors exist,
scalable solutions for design error or bug localiza-
tion are missing. On one hand, the designer is faced
with too much information provided by the verifi-
cation tools. On the other hand, there is not enough
information in order to unambiguously locate the
bug. Therefore, manual bug localization activity is
very time consuming and there is a need for auto-
mated approaches.

In this article, we consider the case where a de-
sign described in aHardware Description Language
(HDL) has been identified as erroneous during
functional verification and, thus, design error lo-
calization is required. However, due to the enor-
mous complexity of modern Register-Transfer Level
(RTL) designs, several bugs may escape verification
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and are consequently han-
dled by postsilicon valida-
tion, e.g., [1].

A majority of the works
on automated error locali-
zation are in the software
development domain [2],
[3]. Design error localization approaches for hard-
ware designs are mostly based on formal techni-
ques, such as model-checkers [4] or SAT/SMT
solvers [5], [6], and thus cannot be applied to large
designs. Some works address the scalability issue by
proposing abstraction and refinement techniques
[7]. However, in order to localize bugs in complex
designs, efficient simulation-based approaches
should be developed.

In this article, we present a scalable bug localiza-
tion tool togetherwith a case study of pin-pointing
real-world design bugs within a processor design
project. The tool has been implemented on top of a
highly scalable HDL-centric open source framework
zamiaCAD [8], [9] andthe case study has been
carried out on a real processor design ROBSY [10],
where the design team has documented the set of
discovered bugs. Development of this tool was sup-
ported by EU’s FP7 research initiative DIAMOND [11].

The bug localization method relies on simulation-
based statistical ranking of potential bug locations
that is refined by the dynamic slicing technique
known from software testing. The basis of dynamic
slicing is static slicing, however the presence of
concurrent constructs in HDLs makes static slice
computation considerably more complicated than

2168-2356/14 © 2013 IEEE
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in software [12]. In the proposed approach, we
apply static slice computation based on reference
graph generation using a through-signal-assignment
search from the zamiaCAD semantically elaborated
models of processor designs. This allows applying
static slicing in a practical and scalable manner for
realistic-size industrial designs.

The automated localization method presented in
this article goes beyond the state-of-the-art in de-
bugging by providing the following.

m Support for very large industrial designs due to
the scalability of zamiaCAD elaboration.

m Accurate localization due to combining statistical
analysis with HDL slicing.

m Hierarchical localization in code items. Where
applicable the analysis of code statements is re-

fined by bug location candidates in branches and
conditions.

m Cone inspection supported by the zamiaCAD in-
frastructure of through-signal assignments.

The approach is fault-model free, i.e., there is no
need to explicitly enumerate the bug types. It also
supports localization of multiple bugs. In addition,
the method can be executed on the functional test
set (i.e., regression suite) of the processor and there
is no need for dedicated diagnostic test generation,
however it is required that the test set is divided into
separate test cases.

zamiaCAD framework
The bug localization method, described here in
Figure 1, has been implemented on top of an open
source HDL-centric framework

f VHDL ;

] Front-end

zamiaCAD [8], which puts em-
phasis on scalability and non-
intrusiveness. The frontend of
zamiaCAD includes a parser
and an elaboration engine
that both support full VHDL
2002 standard specification.
On the back-end side the frame-
work allows design simulation,
static analysis and other applica-
tions such as synthesis and
design structure visualization.
zamiaCAD has an Eclipse IDE
plug-in based graphical user
interface for advanced design
entry and navigation.

An object database ZDB
(zamiaCAD Data Base), custom-
designed and highly optimized
for scalability and performance
is used for zamiaCAD applica-
tions. Full elaboration in zamia-
CAD semantically resolves the

Abstract Syntax Tree (AST) gen-
erated by the parser and results

Elaboration
\ IG
Back-end
\ Y A 4
Static Analysis Simulation Other Applications
Automated Debug

in a set of scalable Instantiation
Graph (IG) data structures,
stored in ZDB. Instantiation
Graph is a data structure repre-
sented by a densely connected

Figure 1. zamiaCAD framework.
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Figure 2. Statistical bug localization flow.

of the hardware design. IG is the basis for zamiaCAD
applications. As demonstrated in [9] the framework
is capable of handling very large industrial multi-
core designs consisting of tens of millions of VHDL
code lines.

Statistical bug localization flow

The statistical bug localization method assumes
that design verification has been performed and an
erroneous behavior at observable outputs of the
design has been detected. The method is based on
four main phases: 1) staticslicing, 2) dynamic slic-
ing, 3) statistical suspiciousness ranking of the HDL
code items and, an optional, 4) cone inspection
phase. First, the design is simulated in order to ob-
tain the list of executed statements and information
about passed and failed test cases from the test set. A
test case is considered to be passed if the simulated
output responses match with expected ones and it is
regarded as failed otherwise. Then, static slicing
computation is performed based on generating re-
ference graphs. Subsequently, dynamic slicing re-
duces the debugging analysis to all the code items
that actually affect the design’s faulty behavior for a
given test case. Finally, the statistical suspiciousness
ranking assigns a suspiciousness score to each code
item based on its presence in the dynamic slices and
on the information of passed/failed test cases. Intui-
tively, if a codeitem occurs very frequently in execu-
tions revealing the error, it is very likely to contain a
bug. The ranking is performed for the statement
items in the HDL code. In order to reveal the bug
locations more accurately, the suspiciousness rank-
ing can be performed hierarchically considering
also the branches and conditions that the highly
ranked statements may have (see Details of hierar
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chical localization of one bug for the hierarchical
localization of code items).

In this article, we consider debugging as a pro-
cess of locating the failure, with the correction task
being left to the designer. After the latter has re-
ceived the ranked list of code items the following
task is to localize the root cause of the erroneous
behavior. Likely locations for bugs are in those code
items having the highest suspiciousness scores in
the list. Ina simple case the designer has to inspect
code items at the top of the ranked list, whose score
is higher than a preselected threshold value
Sthreshold- However, there exist cases where the sta-
tistical ranking does not directly pin-point the root
location of the error. In those cases the cone
inspection phase should be applied. Our case study
shows that it is easy to locate the bug by activating
depth-limited forward and backward cones from
the signals included to the highest ranked items.
This type of cone activation is supported by the
zamiaCAD infrastructure of through-signal-
assignments search. The study showed that only
low depth cones (up to 1 level) starting from the
signals of the highest ranked code item need to be
inspected in practice. Figure 2 presents the statistical
bug localization flow.

Motivational example

Consider the motivational design example
shown in Figure 3 that presents a VHDL implemen-
tation of a signal chopper design named chopper
[12]. The chopper design has three processes cal-
culating four outputs representing different chops
for the input signal SRC based on the design
configuration by inputs INV and DUP It is assumed
that the design has five individual tests T1-T5 of
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Executed Dynamic 0o § 24,
statements  slices .2 § 239 VHDL code for the chopper design
B2 R s 2fElf 150 ? @ soc
1 entity CHOPPER is port (
2 RST, CLK, CLKN: in bit;
3 SOURCE, INV, DUP: in bit;
4 TAR_f, TAR_h, TAR_ff, TAR_fh: out bit);
5 end entity;
6
7 architecture ARCH of CHOPPER is
8 signal F@, F1, FF, HO, H1, SRC: bit;
9 begin
10
ik § process (INV, SOURCE) begin
000G OEEENEBNA | 95 T 1|l12 if INV = '1' then
[ ) [ | Aleo.4 W |13 SRC <= SOURCE;
14 else
L HEHE A Q9,57 W |15 SRC <= not SOURCE;
16 end if;
17 end process;
18
19 RISING:
20 process (RST, CLK)
21 begin
eoeoeoOEEEEHNA| Q5[ T 1|22 if RST = '1' then
eoocoomEEENA| g5 [T 1|23 FO <= '0"';
o000 0 24 H1 <= '0"';
eoeoeooomEENENA|Q.5 T 1|25 elsif CLK'event and CLK = ‘1" then
eoocooommEEE|A|O.5 T 1|26 if DUP = '1' then
e e | mHm A|l.0 [ 1| 27 FE <= SRC;
e o0 |E EE (aA|l1.0[ 1|28 FO <= not FF; --Bug! “Fo <= FF”
29 else
° ol m m|lalo [ |30 FO <= SRC;
31 end if;
o000 00 32 F1l <= FO;
o000 00 33 H1 <= HO;
34 end if;
35 end process;
36
37 FALLING:
38 process (RST, CLKN) begin
eo0o0o0 39 if RST = '1' then
e0o000 40 He <= '0';
[ XN NN 41 elsif CLKN'event and CLKN = '1' then
[N N N N ) 42 HO <= SRC;
43 end if;
44 end process;
45
ecoooomEEENEA|O5[ T |46 TAR_f <= (not SRC) nor F@; --Buggy out
'YX XX 47 TAR_ff <= (not F@) nor F1;
XXX XK 48 TAR_h <= (not SRC) nor He;
XXX XK 49 TAR_fh <= (not H@) nor H1;
50
51 end architecture;

Figure 3. Bug localization on a motivational example.
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varied length. The design has a bug on line 28 (i.e,,
“FO < = not FF;"instead of “0 < = FF;”). Test cases
T1, T3, and T4 are failing tests, while test cases T2
and T5 are passing tests, respectively. The faulty
behavior of the design caused by the failing tests is
observed at output TAR_f (assigned at line 46).

Static and dynamic slicing

The proposed bug localization approach uses
dynamic slicing to reduce the analysis space,
where static slicing serves a basis for dynamic
slicing. The presence of concurrent constructs such
as the ones found in HDLs versus sequential soft-
ware languages makes static slice computation
considerably more complicated [12]. zamiaCAD
exploits its analytical model IG for this purpose [8].
Given the IG model, it is possible to perform a
through-signal-assignment search both backward to
find the dependencies and forward to find other
signals and variables influenced by the signal. The
resulting reference graph has the signals and va-
riables at its nodes and the dependencies are ex-
pressed by directed edges. An example reference
graph computed for the chopper design’s output
TAR_f is shown in Figure 4.

Given the reference graph, the HDL statements
representing the signal and variable dependencies
in its edges are collected into a set representing a
static slice on the signal of interest. The column Sta-
tic Slice in Figure 3 marks VHDL statements of a
static slice on the TAR_f output by triangles. As a
result in the chopper design example the entire pro-
cess FALLING and a large part of other statements
were excluded from the further analysis.

A subset of statements executed by simulation of
a test case selected by static slice on a signal of
interest is referred as dynamic slice of the design on
this signal. In our approach we also consider
information if the given test case has failed or
passed for the dynamic slice. The column Executed
Statements in Figure 3 marks the VHDL statements
executed during design simulation by circles. The
VHDL statements taking part in the dynamic slices
are marked in the column Dynamic Slices by
rectangles. Thus due to dynamic slicing the
analysis space for the current example was re-
duced by 2.2x (42 covered statements in dynamic
slices versus 92 statement executions by the diag-
nostic test).
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Figure 4. A reference graph based on backward

through-signal-assignmentsearch on the signal

TAR_f in the chopper design.

Statistical suspiciousness ranking

The list of bug location candidates is obtained by
using statistical suspiciousness ranking on dynamic
slices. Let Passed(i) and Failed(i) be the counts of
passing and failing tests that covered the code item i
in a dynamic slice, while TotalPassed and TotalFailed
are the total numbers ofthe passing and failing tests
in the complete diagnostic test set, respectively. Using
this information, the statistical suspiciousness ranking
assigns a score to each code item i using the fol-
lowing formula (1) (also used in [3]):

Failed (i)

____ TotalFailed )

Jfossed() |, Failed(i) *
TotalPassed ' TotalFailed

S@) =

This score is a ratio between the number of state-
ments executed during runs resulting in erroneous
and correct behaviors. Intuitively, if a statement
occurs very frequently in erroneous executions, it is
very likely to containa bug.

The zamiaCAD environment visualizes by colors
the suspiciousness level of the HDL code items (i.e.,
statements, branches, conditions) based on their
scores S(i).The score values are interpreted as follows:

m S(i) = l—code item 7 is highly suspicious to
contain, or to lead to the bug;

m S(i) = 0—code item / is above suspicion;

m S(i) = S—code item i/ cannot be emphasized by
the analysis.

Here 0 < Sihreshoid < 1 is a suspiciousness thresh-
old specified by the designer and by default equal to
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0.5. The ranking of code items is performed ac-
cording to the score values starting from the highest.
Code items without a score are either eliminated
from the analysis by the static slice filter or not
covered by the diagnostic test.

We apply the described ranking to statements
and when necessary hierarchically to branches and
conditions. The ROBSY processor case study has
emphasized an important general category of
design errors that are difficult to localize. They are
bugs in complex condition expressions of condi-
tional statements. E.g., Bug 1 in this case study is an
erroneous comparison of one of the 35 conditions in
a conditional assignment when of the ALU module.
Localization of such bugs requires suspiciousness
ranking of conditions following the same approach
as described above for statements.

An example of applying the proposed suspicious-
ness ranking to the chopper design is demonstrated
in Figure 3. Here the assignment statements at
lines 27 and 28 are calculated as the most
suspicious (score S = 1.0) and are assigned with
the first rank. The statement at line 15 has score
S = 0.57 and therefore a lower rank. The assignment
statements at lines 13 and 30 have scores 0.4 and
0.0 correspondingly and, therefore, considered
above suspicion and not assigned with suspicious-
ness ranks.

Cone inspection

The proposed approach considers an optional
step of static slice based cone inspection. Generally,
the automated suspiciousness ranking step should
provide a small set of bug location candidates with
actual bug location within this set. In rare cases, e.g.,
for particular locations in the design structure or for
poor test suits, some bugs can stillget a low suspi-
ciousness score and escape from the set of candi-
dates. However, some related correct statements
influenced by propagation of the design error effect
can get high suspiciousness scores. In such cases,
zamiaCAD offers infrastructure to build cones of in-
fluence of a limited depth (restricted static slices)
from the signals involved into highly ranked sus-
pected statements. Similarly to the unrestricted sta-
tic slices exploited for the dynamic slicing step this
procedure relies on through-signal-assignment
search on IG model. This procedure selects a set
of additional candidates that influence a correct but
highly suspected code item.

We show the need for this optional cone inspec-
tion step in A case study, where the small original
functional test used for diagnosis was not sufficient
to localize all bugs by automated suspiciousness
ranking. The study showed that only low depth
cones (up to 1 level) starting from the signals of the
highest ranked code item need to be inspected in
practice. The task of analyzing this set of additional
candidates and correcting the design is left to the
designer.

A case study

As a case study, the proposed method was eval-
uated by debugging an industrial processor devel-
oped as a part of the ROBSY (Reconfigurable On
Board self test SYstem) project. This custom proces-
sor follows a new test approach [10] to improve the
fault coverage and reduce the test time of boards
during the manufacturing process, and it is devel-
oped in cooperation with a major vendor of board
testing equipment. The current implementation of
the processor core contains 17 K lines of VHDL code.
There are 481 direct signal assignment statements,
413 branches, and 1573 conditions, respectively.

In order to verify the correct functionality of the
Instruction Set Architecture (ISA), a functional test
was developed by the ROBSY design team. The
functional test consists of a test program written in
Assembler to test all the instructions supported by
the processor. The test program is divided into test
cases, where each test case is in charge of testing a
specific instruction and setting the result register to a
specific value that acts as a test case label (error
code). During the test case execution, it is evaluated
whether the values obtained in the registers, flags,
etc. are as expected. Dedicated test cases target
other functionality of the design such as interrupts
and registers.

Set of documented design errors

The ROBSY design team has documented a set
of VHDL coding bugs that occurred during the
development:

m Bug 1) A wrong register is used as one of the
conditions in a very long conditional expres-
sion (35 operators) inside a conditional signal
assignment.

m Bug 2) An entire conditional subexpression (three
operators) resides in the wrong branch of a
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Stm. | Bran. | Cond. |, . .
# score| score | score |FiN€ Source code lines
alu.vhd

6 |10.51 88

510.55 104

2 (0.67 108

1 |0.80 110

5 10.55 116

510.55 127

3 10.64|0.64 260|svFlag new(@) <= '1' when afClass=cfClass_1

0.64%; |261 and ((svOp_mux(cnD_w)=REG_SOURCE_DEST_IN(cnD_w)--add case
262 and svOp_mux(cnD_w)/=svRes(cnD_w)

263 and ((aCmd=cvCmd_ADD R R and c_en_ADD_R R)

264 or (aCmd=cvCmd_ADD _R_IMM and c_en ADD_R_IMM)))

0.51% |265 or (svOp_mux(cnD_w)/=REG_SOURCE_DEST_IN(cnD_w)--sub case
-- Bug: correct compar. between REG_SOURCE_DEST_IN and svRes
266 and svOp_mux(cnD_w)/=svRes(cnD_w)

9.69'7 267 and ((aCmd=cvCmd_SUB R_R and c_en_SUB_R _R)

0.55%
0.75% |268 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)
0.57% [269 or (aCmd=cvCmd_CMP_R R and c_en_CMP_R R)

.55
0.51% [270 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)))

271 or (REG_SOURCE_DEST_IN(cnD_w)/=svRes(cnD_w)--shift cases
0.55% (272 and ((aCmd=cvCmd_SHL_R and c_en_SHL_R)

0.55% [273 or (aCmd=cvCmd_SHR R and c_en_SHR R))))

510.55(0.55 274 else '@’ when afClass=cfClass_1 --overflow reset
275 and ((aCmd=cvCmd_ADD R R and c_en_ADD R R)

276 or (aCmd=cvCmd_ADD_R_IMM and c_en_ADD_R_IMM)

277 or (aCmd=cvCmd_SUB R_R and c_en_SUB_R_R)

278 or (aCmd=cvCmd_SUB_R_IMM and c_en_SUB_R_IMM)

279 or (aCmd=cvCmd_CMP_R R and c_en CMP_R R)

280 or (aCmd=cvCmd_CMP_R_IMM and c_en_CMP_R_IMM)

281 or (aCmd=cvCmd_SHL_R and c_en_SHL_R)

282 or (aCmd=cvCmd_SHR_R and c_en_SHR_R))

NA |0.50 283| else svFlag(9);

data_interface_mod.vhd

2 10.67 155
2 10.67 158
gprs_mod.vhd
4 |o.60| | | 97]
state_machine.vhd
4 10.60 100
4 10.60 123
4 10.60 168

Figure 5. Localization of Bug 1 in the ROBSY processor.
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conditional signal assignment, which contains
nine branches in total.

m Bug 3) Both, a missing branch and a missing
driver in a short conditional signal assignment.

m Bug4) A wrong enumeration constant is used in a
comparison operation inside a conditional signal
assignment.

m Bug 5) A wrong driver is used in a conditional
signal assignment. More specifically, register R is
not updated with its newly computed value ty-
pically stored in R_next or R_new signal. Instead,
the register R is used as a driver for itself, which
indicates an obvious copy-paste error.

m Bug 6) A missing conditional subexpression (three
operators out of six required ones) in one of the
four branches of a conditional signal assignment.

m Bug 7) One bit of a register is always and uncon-
ditionally set to “0”. The whole code line to blame
is unnecessary and incorrect.

Details of hierarchical localization of one bug
Figure 5 demonstrates the proposed hierarchical
localization of Bug 1. The gray areas denote informa-
tion omitted from the figure. First dynamic slices
were generated for all of the test cases and then the
statistical suspiciousness ranking was performed.
This analysis resulted in 14 statement candidates in
the design whose suspiciousness score .S was above
the suspiciousness threshold Siyeshoid = 0.5. The
first column in the figure shows ranks of the sus-
pected statements (six ranks in total) and column
Stm.score shows their scores. Most of the statements
with high scores were found in the alu.vhd file.
The figure demonstrates a part of the actual VHDL
code in the file for the conditional assignment of an

overflow flag signal svFlag new(0). Bug 1 is lo-
cated in the condition expression at line 266, where
comparison is made between unintended signals.
The automated localization procedure iteratively
advises the designer to consider as bug location
candidates the statements starting from the highest
rank. As the fifth candidate it will advise the designer
the statement at line 260 in alu.vhd (rankis 3,
score S = (0.64). The hierarchical analysis will pro-
ceed with score computation of the branches of this
statement (see column Bran.score)and suspicious-
ness scores of separate conditions related to these
branch items. The ones that have score S > 0.5 are
shown in column Cond.score. One of the highest
scores in the expression has the logical operator and
at line 267. One of its operands is actually the incor-
rect signal comparison documented as Bug 1.

IN THE CURRENT case study, we have split the origi-
nal functional test (i.e., the Assembler program) into
28 independent test cases, each targeting a separate
instruction. Each of the seven buggy versions of the
processor was simulated with the resulted diagnos-
tic test set.

Table 1 demonstrates the statistics of applying the
proposed bug localization approach to all of the
seven bugs. The second column depicts the ratio of
failing versus passing test cases for these bugs. The
third column in the table shows how many state-
ments were proposed in total as bug location candi-
dates by the statistical ranking step. The column also
demonstrates these numbers in percentage of the
total number of the statements which was 481. The
fourth column shows the rank of the statement ac-
tually containing the bug. If ranking alone was not

T |
Table 1 Bug localization on the ROBSY processor.
Bug data i _The prop_osed automated -Iocallza-tlon Manual
Statistical Ranking Cone inspection Time debug
Bug Failed/Passed Statements Located stm. Cone Added - -
name Test cases cand. / % rank dir. / depth stm. cand. (min)  Time
Bug 1 4/24 14/2.9% 3 - - 2 4 hours
Bug 2 2/26 7/1.4% 1 - - 2 2 hours
Bug 3 2 /26 20 /4% 3 - - 2 4 hours
Bug 4 1/27 6/1.2% (1) fw /1 21 2+(5) 4 hours
Bug 5 2/26 11/2.3% 1 - - 2 2 hours
Bug 6 1/27 8/1.7% @) bw /1 13 2+(10) 5 hours
Bug 7 1/27 21/4.3% @) fw /1 10 2+(1) 1 hours

90

IEEE Design & Test



sufficient then the column shows in brackets the
rank of the statement from which cone inspection
was activated. Column five shows the direction (i.e.,
backward/forward) and the depth of the cone if
cone inspection was required while column six
shows the number of statements added as bug
candidates by this step.

As the table shows the test suite was sufficient to
automatically localize four of the seven bugs by the
automated ranking step only. Pessimistic estimation
of the candidates’ count with the shown rank or
higher that was necessary to check before the bug
discovery is 5, 1, 12, and 4 for Bugs 1, 2, 3 and 5,
respectively. Localization of the remaining three
bugs required cone inspection as an addition step.
The cones of a limited depth were generated by the
through-signal-assignment reference search from
the signals involved in the highly ranked assignment
statements. In the current case study Bugs 4, 6, and 7
were present within the cones of depth 1 on the
signals from the statements with the highest rank.
These cones have added 21, 13, and 10 additional
candidates as shown in column six.

The last two columns in Table 1 compare time
required for bug localization by the proposed auto-
mated localization approach and conventional
manual debug process. The time values for the ma-
nual process are reported by the ROBSY processor
designers based on their experience with locating
these bugs using commercial design environments.
The time reported for the automated approach con-
sists, first, of time spent for the statistical ranking
step, which is mainly design elaboration and simu-
lation of the 28test cases and constantly equals to
2 minutes, and second, of estimation of time spent
for manual cone inspection (shown in brackets).
The runtime required for the static slices and cones
construction in zamiaCAD takes a fraction of second
and can be neglected.

The presented case study showed that statistical
bug localization is efficient and allows pin pointing
causes of errors in large processor designs in a very
accurate manner. The main contribution of this
approach is, first, combining statistical analysis with
HDL slicing, second, performing hierarchical local-
ization in statements, branches and conditions of
the code and, third, developing an efficient cone
inspection technique in concurrent HDL descrip-
tions. The open source zamiaCAD framework ap-
plied as the platform for the bug localization uses a

January/February 2014

highly scalable elaboration engine supporting in-
dustrial scale RTL designs. To probe further it is
possible to repeat the described experiment with
another processor design following a tutorial on the
webpage http://zamiacad.sf.net. |
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Appendix V

Research paper V

Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di Guglielmo,
Giuseppe; Pravadelli, Graziano; Fummi, Franco. “Combining Dynamic Slicing
and Mutation Operators for ESL Correction”. Proceedings of the 17th IEEE
European Test Symposium, IEEE Computer Society Press, 2012, pp. 1-6.

Contributes to Section 4.3 of this Thesis. The author’s contributions are:
developing the mutation-based fault model in cooperation with Giuseppe Di
Guglielmo from the Univesity of Verona during the author’s stay in Verona,
proposing an improved classification of faults.
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Abstract

Verification is increasingly becoming the bottleneck in
designing digital systems. In fact, most of the verification cycle
is not spent on detecting the occurrences of errors but on
debugging, consisting of locating and correcting the errors.
However, automated design-error debug, especially at the
system-level, has received far less attention than error detection.
Current paper presents an automated approach to correcting
system-level designs. We propose dynamic-slicing and location-
ranking-based method for accurately pinpointing the error
locations combined with a dedicated set of mutation operators
for automatically proposing corrections to the errors. In order
to validate the approach, experiments on the Siemens
benchmark set have been carried out. The experiments show
that the proposed method is able to correct three times more
errors compared to the state-of-the-art mutation-based
correction methods while examining fewer mutants.

1 Introduction

Increasing design costs are the main challenge facing the
semiconductor community today. In particular, assuring
the correctness of the electronic design, since the early
stages of the design cycle, contributes to a major part of
the problem [1]. However, localization and correction of
design errors, i.e., debug, has received far less attention
than error detection, both, in terms of research works and
industrial tools introduced [2]. As a consequence, in
industrial practice, debug is still a human-based activity
that affects time-to-market [3].

The debugging approaches proposed in the past for
logic and register-transfer (RT) levels, e.g. [16][17][18],
cannot be applied for designs at electronic-system level
(ESL) or their feedbacks are not sufficiently readable for
this abstraction level. At ESL, designs are described in an
algorithmic way with a high level of abstraction with
respect to the final hardware implementation [1].

In this context, more effective methods for automating
ESL debug are highly requested. Consider the case where
a designer has a bug-affected ESL implementation. That
is, an erroneous behavior of the implementation, with
respect to the expected functionality, has been already
(automatically) detected. Automated debug of errors
consists of two steps: error localization and error
correction. Error localization identifies the portion of the
design responsible for the erroneous behavior, while error
correction is responsible for locally modifying the
functionality of the identified portion.

978-1-4673-0697-3/12/$31.00 ©2012 |IEEE
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Figure 1. The proposed automated debugging approach for
ESL designs relies on dynamic slicing and location ranking
for error localization and code mutation for error correction.

For error localization, simulation-based [4][5][6][7][8]
[20] and formal approaches [9][10] are known. It is
widely accepted that simulation-based techniques scale
well with the design sizes, but are not exhaustive; while,
formal techniques provide a high grade of confidence in
the results, but are susceptible of the design complexity.

For error correction, error matching [12][13] and re-
synthesis [14][15][16][17][18] have been investigated in
literature. In particular, re-synthesis provides a correction
which is represented as a partial truth table based on the
stimuli under consideration. This kind of correction is not
readable and cannot be easily understood and verified by
the design engineer. Moreover, the resynthesized
erroneous portion of the design is likely to fail when new
stimuli will be added to the suite.

Recently, a more effective approach has been
proposed for software debugging, which relies on
simulation-based  localization and  error-matching
correction [19]. The authors apply a diagnosis tool, i.e.,
Tarantula [20], for calculating suspiciousness scores for
design portions and exploit mutation-based techniques to
repair C and Java applications. However, the
methodology is still affected by application size (in terms
of number of mutations per lines of code) and targets
mainly the control flow of software applications.

In this paper, we propose an approach, which, as
opposed to [19], implies a dynamic slicing based
methodology for error localization combined with a
dedicated set of mutation operators for automated
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correction of system-level design errors. Different from
[19] we consider corrections also in the data part of the
design. However, the number of mutations required by the
presented method is still smaller than in [19] due to more
accurate localization achieved by dynamic slicing versus
considering executed sentences applied in the Tarantula
tool [20].

Figure 1 provides an overview of the proposed
approach, which is based on three main iterative phases:
dynamic  slicing, location ranking, and ESL-code
mutation.

The dynamic slicing reduces the debugging analysis to
all the statements that actually affect the (erroneous) value
of an output for a given input. In particular, it provides the
relevant subset of the design statements where the
location-ranking phase has to investigate for the possible
cause of the error. As shown in Figure 1, a design may be
thought of as a collection of “threads”, each computing
the value of an output. The dynamic slicing isolates the
threads computing the erroneous outputs for the given
inputs, i.e., the erroneous slice.

Then, the location ranking assigns a score to each
statement in the erroneous slices. This score is the ratio
between the number of statements executed during runs
resulting in erroneous and correct behaviors. Intuitively, if
a statement occurs very frequently in erroneous
executions, it very likely contains a bug. In Figure I, a
more intense hue is associated with highly scored
statements.

Finally, the ESL-code mutation addresses the
correction of statements highly ranked as sources of the
erroneous behavior. Typically, mutation techniques are
used in testing for modeling realistic faults on correct
design; in the adopted error-correction methodology, the
mutation of a bug-affected design may result in a realistic
correction.

A final observation is necessary on the golden model,
i.e., the reference behavior of the ESL design during the
debug phase. In the adopted simulation-based approach,
the golden model may be indifferently (i) industrial test
cases, i.e., input stimuli and expected results, specified by
module designers, (ii) input stimuli and assertions
supplied with the design or (iii) results obtained by
abstract or different reference, e.g., executable-UML
models and alternative implementations.

The main contributions of the present work are:

e the development of an accurate-localization
methodology of bugs based on location ranking and
dynamic slicing that scale well with design sizes;

e the definition of a dedicated set of mutation operators
to model realistic errors in ESL designs;

e the development of a readable error-matching-based
correction for system-level designs.

As experiments show, our approach provides three
times higher success rate in terms of fixed errors in
comparison to the results published in [10] and [19],
while examining significantly fewer mutants.

The rest of the paper is organized as follows. Section
2 provides an overview of the related works. Section 3
describes the methodology for design-error localization
based on dynamic slicing. Section 4 introduces the
mutation-based-correction methodology for system-level
design errors. Section 5 provides experimental results
validating the ESL-repair approach on the realistic buggy
code versions represented in the Siemens benchmark suite
[10]. Finally, conclusions are drawn in Section 6.

2 Related works

In debugging, the error localization is considered the
most time expensive activity and its quality affects the
following (manual or automatic) correction phase [21]. In
manual error localization, engineers run the design with
some input stimuli till they observe a failure; then, they
iteratively place breakpoints, analyze the system status,
and backtrack to the error origin using a source-level
debugger, e.g., GNU GDB [22].

On the other hand, automatic error localization is
based on different methodologies. In particular, they may
be simulation-based and use coverage information
[6][7][20], binary search [8], and statistical analysis
[4][5]. As well, formal approaches for error localization
exist that are very effective but may suffer the state-
explosion of the underlying solver [9][10]. Of all these
solutions, the Tarantula [20] coverage-based approach has
been proven suitable for real-world designs. In the present
work, we provide an improvement for error localization,
which significantly reduces the overhead of the error-
correction phase based on ESL-code mutation.

After an error is detected and localized, it should be
corrected. Design-error correction for combinational
circuits has been thoroughly studied for decades. There
exist, both, error-matching-based [12][10][13] and re-
synthesis [14] approaches. There have also been attempts
to generalize the above methods for design-error
correction of sequential circuits [14][15]. In particular, the
SAT-based correction and re-synthesis approach
developed by Smith et al. [16] has been extended to
higher abstraction levels such as register-transfer level
[17][18].  The re-synthesis approach for high-level
design-error correction has two main limitations. The
correction is not readable and thus cannot be checked by
the designer. Moreover, the correction is limited to the set
of used stimuli: this is due to the logic optimization
freedom created by the partial truth table of the portion to
be repaired.

Finally, in [10] a symbolic-simulation-based
approach is proposed for both error correction and
localization in ESL designs described as C programs. All
the reasoning is done with a Satisfiability Modulo Theory
(SMT) solver [11], thus it can be classified as a formal
method. In particular, the approach performs the error
correction by using approximation heuristics and a
template-based methodology, which gives readable
corrections. In the experimental-result section, we provide
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Figure 2. The ESL description is modeled as a flowgraph,
i.e., hammock graph. Simulation and slicing are performed
on the model representation.

comparisons of our approach and [10], showing better
correction  capability and  preserving correction
readability.

3 Dynamic Slicing for Error Localization

This section describes the proposed error localization
methodology, which is based on dynamic slicing. In
particular, Section 3.1 describes the adopted model for
ESL descriptions; Section 3.2 summarizes the dynamic
slicing methodology; finally, Section 3.3 describes the
methodology for ranking the error location. The accurate
localization of errors permits to significantly reduce the
overhead of the following mutation-based correction
phase.

3.1 Flowgraph based modeling of the algorithmic level

In this paper, we consider automated debugging of
ESL designs. In order to formally represent the ESL
algorithmic descriptions we have chosen the flowgraph
model as an underlying model. In such flowgraph, there is
a one-to-one correspondence between the program
statements and nodes and edges represent the control flow
of the program. More precisely, the model representation
is a special case of flowgraph known as the hammock
graph [25], which was proposed for program slicing in
[26]. Hammock graph is defined as follows.

Definition 1: A hammock graph is a structure H=<N,
E, ny, n,>, where N is a set of nodes, E is a set of edges in
NXN, ny is the initial node and n, is the end node. If (n, m)
is in £ then n is an immediate predecessor of m and m is
an immediate successor of n. A path from a node n; to a
node n, is a list of nodes py, pi, ..., px such that py = ny, py
=my, and forall i, 1 <i<k- 1, (p;, pix1) is in E. There is a
path from n, to all other nodes in N. From all nodes of N,
excluding n,, there is a path to n,.

Figure 2 presents a simple ESL functionality in C
language, i.e., column ESL MODULE, and the
corresponding flowgraph H, i.e., column H-GRAPH. In the

following, we introduce some definitions in order to
explain the slicing process on flowgraph structures.

3.2 Model slicing

We apply dynamic slicing in order to narrow the
search of the causes of design errors in algorithmic
descriptions. In this Section, we provide a brief
introduction to slicing techniques and explain how we
implement dynamic slicing in design error localization.

Program slicing [26] is a technique for extracting
portions of a program affecting a selected set of variables
of interest. By focusing on the computation of only few
variables the slicing process can be used to discard
portions of the program, which cannot influence these
variables, thereby reducing the size of the program. The
reduced program is called a slice.

Slices reproduce a projection from the behavior of the
initial program. This projection represents the values of
certain variables as seen at certain statements.

Definition 2: A slicing criterion of a program P is a
tuple (x,”), where x is a statement in P and V is a subset
of the variables in P.

Informally, given a slicing criterion C = (x, V), a static
program slice S consists of all statements in program P
that may affect the value of ve V for a set of all possible
inputs at the point of interest, i.e., at the statement x.
Static slices are computed by finding consecutive sets of
indirectly relevant statements, according to data and
control dependencies. Unfortunately, the size of the slices
so defined may approach that of the original program.
Indeed, static slicing preserves the behavior of the
original program for all the possible input values. In this
case, the usefulness of the slices in debugging tends to
diminish as the size of the slices increases.

In [27], Korel and Laski introduced a more accurate
slicing technique, i.e., dynamic slicing. Dynamic slicing
provides more narrow slices, preserving the behavior of
the original program and consisting of only the statements
that influence the value of a variable for a given input.

Figure 2 illustrates the concepts of static and dynamic
slicing applied to the flowgraph representation of a ESL
functionality. In particular, the Figure reports an intuitive
correlation between static slicing, execution trace, and
dynamic slicing. Let us consider, for example, the slicing
criterion C = (ng, {out}). In this case the ns is the end
node n, of the hammock graph. The black dots in the
column STATIC SLICING indicate the statements included
into the slice in case of static slicing. These mark the
statements that are needed in order to calculate the value
of variable a at node ng. As we can see the node n, is
excluded from the slice because the statement 5=0 is not
necessary for calculating the value of variable out at node
Ng.

The column DYNAMIC SLICING refines that slice
according to the execution trace obtained with actual
value assignments. Assuming that variables get



assignments =2, b=4 and ¢=7, we obtain the slice shown
in the last column of Figure 2. The else branch of the
condition is not activated by these input values and
therefore the respective statement are not included into
the slice. The column EXECUTED STATEMENTS shows all
the statements that were executed in current trace with the
given input assignments. As we can see, the statements
occurring in the dynamically-computed slice are a proper
subset of the statements in the statically-computed slice
and execution trace. This narrows the search space of the
following step for ranking the error locations.

3.3 Slicing-based error localization

In current paper, we consider a design-error-
localization approach, where ESL implementations fail on
some of the given test cases. The error localization relies
on error detection results. The mechanisms of the latter
are out of scope of this paper and may involve for
instance the golden output responses specified by the test
cases, assertions supplied with the test environment or
results obtained from a analyzing the specification (e.g.
UML, SW program, etc.).

The error localization proposed in current paper is
based on calculating the dynamic slices for all the
observable outputs of the system with all the test cases.
Depending on whether an output response obtained by a
given slice is correct or not, the slice is marked as a
passed or failed one, respectively. Then, a statistical and
coverage-based approach is implemented assigning score
to flowgraph nodes based on the number of times they
were included into failed slices with respect to the number
of times they occur in the previous executions. Finally,
the flowgraph nodes are ranked according to this score,
referred to as the suspiciousness score.

In details, the error ranking and localization takes
place as follows. Let 7 be a test suite consisting of test
cases f for verifying the functionality of the ESL
description. Let H be the flowgraph associated with the
description. Let y; be the observable output variables of
the design. Finally, let the nodes #; of H be the respective
nodes were value assignments to y; are made. Over each
test case # and, in turn, over each observable output
variable y; we generate a dynamic slice dj according to
the values of current test case ¢ and a slicing criterion C =
(xj, {}), where x; is the statement at the flowgraph node
n;.

' If y; resulted in a correct value at test case #, then the
dynamic slice dj; is included into the set of passed slices
Drassep. Otherwise, it is included to the failed slices, i.e.
dij€ Dpaiep. Each node ny of flowgraph H gets a score
according to the number of times cpaygp it is included
into the set of failed slices Dyanep and the number of
times cpassep it is included into the set of passed ones, i.e.
Dppssep- This score of suspiciousness is calculated as
follows:

Table 1. List of mutation operators for correction

MUTATION OPERATOR C OPERATORS/EXAMPLES
AOR (arithmetic operator replacement) +, -, %/, %
ROR (relational operator replacement) =, 1= > < >= <=
LCR (logical connector replacement) &&, ||
ASOR (assignment operator w0y
replacement) =SS Y% S
UOR (unary operator replacement) + -~ !
Bitwise operator replacement <<, >> &, |,
Bitwise assignment operator <<=, >>=, &=, =, A=

replacement

Increment/decrement operator X+, -, Xeey o
replacement

Number mutation (decimal digit
replacement in integers, floats and 0..9
array indexes)

Constant replacement
unary minus/ unary plus/ zero

+C,0,-C

. CFAILED
suspiciousness(n;) = ————
CraiLEp  CpassED

The nodes n, are ranked according to the
suspiciousness score with more probable candidates for
error correction having higher score values. This ranking
is used for selecting statements to be corrected by the
mutation-based methodology presented in the following
section.

4 Mutation-Based Error Correction

Mutation is a process, where syntactically-correct
functional changes are inserted into the program [28].
Traditionally mutations are performed by perturbing the
behavior of the program in order to see if the test suite is
able to detect the difference between the original program
and the mutated versions. The effectiveness of the test
suite is then measured by computing the percentage of
detected, or killed, mutations.

In this paper, we apply mutation operators for
correcting erroneous circuits. The goal is to develop an
error-matching based correction approach, which would
be capable of modeling realistic design errors. Moreover,
it is crucial to select a limited number of mutation
operators, because the perturbation and simulation of
erroneous design implementations with a large number of
error locations and mutant operators would become
prohibitively time-consuming.

Table 1 presents the set of ESL-mutation operators
which were implemented in the error-matching based
correction method developed in this paper. Since we
target ESL descriptions in C language, we only focus on
algorithmic aspects of the description and do not consider
software-specific constructs and related errors, such as
dynamic-memory allocation, pointer arithmetic, and file



Table 2. Characteristics of the Siemens benchmarks.

DESIGN LoC  TEeST-CASE# FAULTY-VERSION #
replace 507 5542 32
schedule 397 2650 9
schedule2 299 2710 9
tcas 174 1608 41
tot_info 398 1052 23
print_tokens 539 4130 7
print_tokens2 489 4115 10

I/0. This permits to reduce the overhead of the code-
mutation phase and address only system-level issues.

In particular, the mutation operators include
replacement of C language operators, which have been
divided into several groups: arithmetic operators,
relational ~operators, assignment operators, unary
operators, etc. In addition, number mutations are
performed by replacing each decimal digit in the numeric
values one-by-one with other decimal values. This
includes both, integer and floating point numbers and it
covers also the array indexes. Also, constants are mutated
by inserting unary operators + and — as well as replaced
by zero.

Figure 3 explains the mutation-based correction
process. Subsequent to the error location step described in
Section 3, which ranks the statements of the program, the
suspected error locations are iteratively tried according to
their rank. The operators in the statements are, in turn,
iteratively substituted by mutation operators, i.e., valid
operators from the same category. In other words,
replacing arithmetic operators by arithmetic operators,
relational operators by relational ones etc. These iterations
stop when the simulation result confirms that the mutated
program provides output responses equal to the golden
output responses, in other words, a correction has been
found. Otherwise the process continues until there exist
untried error locations and/or mutant operators, or when a
user-specified time limit is reached.

The mutation-based correction method proposed in
this paper is an error-matching approach. Error-matching
is known to have the limitation that it is generally not
capable of fixing errors that are not included to the model.
On the other hand, the mutation-based error-matching
provides easy-to-read corrections of system-level
descriptions. Moreover, our experiments show that the
mutation-based approach can fix some of the not modeled
errors by proposing alternative but equivalent fixes.

5 Experimental Results

The proposed debugging approach has been
implemented as a module of a larger tool, i.e., FOREnSiC
[24], which also features formal and semi-formal
approaches for debugging of ESL design [10]. Our
framework  supports  debugging of algorithmic
descriptions of hardware in C language. In order to
evaluate the proposed method, experiments on Siemens

Flowgraph H

Ranked list of
error locations
Library of
ESL-mutation
Mutated operators
Flowgraph H’
Testcases:
Flowgraph simulation Stimuli &
& comparison expected
responses

YES

Untried
locations /
mutants?

H’ and expected
esponses match?

NO

| Error corrected | | No correction found

Figure 3. The mutation-based error correction flow.

benchmark suite [23] comparing it to a recently published
formal [10] and dynamic [19] technique were carried out.
We applied the front-end of FOREnSiC for generating the
flowgraph models for the C language designs.

In Table 2, the main characteristics of the benchmark
circuits are presented. Column LOC shows the number of
lines of code for the corresponding C designs; column
TEST-CASE # shows the number of test cases for the
design, which include both failing test stimuli and passing
stimuli; finally, column FAULTY-VERSION # shows the
number of faulty versions of the benchmark programs.
We excluded one faulty version from benchmark
schedule2 because the design error did not result in any
test case failure making the correction process
meaningless.

In Table 3, the results of the design error correction
experiments are presented. Current method is compared
to two recently published methods: a symbolic-
simulation-based method [10] and a mutation-based
method [19]. For each methodology, columns # FIXED
show the number of corrected faulty model versions and
Columns % FIXED show the percentage of corrected
models from the total number of faulty model versions.

As it can be seen from the table, the proposed
approach clearly outperforms [10], where only 8 faulty
versions (out of 41) of tcas design are analyzed. The
approach in [10] is able to correct 7 out of these 8 faulty
versions, whereas our approach corrects all 8.
Furthermore, due to the underlying solver, the formal
approach [10] is only able to model the designs whose
bit-width is reduced from 32 to 8 bits.

With respect to [19], current method increases the
percentage of successful corrections from 16.0% to
50.3%. Thus, the rate of corrections is increased by the
factor of three.

It is important to stress that the increase in successful
fixes does not come at the expense of more mutants to be



Table 3. Design error repair experiments.

FMCAD’11  STVV’10
DESIGN [10] [19] CURRENT METHOD
% # % # %  MUTANTS
FIXED FIXED FIXED FIXED FIXED FIXED EXAMINED
replace - - 3 94 12 375 8552
schedule - - 0 0.0 2 222 188.0
schedule2 - - 1 11.1 3 333  460.7
tcas 7 17.1 9 220 26 634 131.1
tot_info - - 8 348 15 65.2 781.3
print_tokens - - 0 0.0 1 143  825.0
print_tokens2 - - 0 0.0 7 700 9523
Total: N/A 16.0 504 599.1
considered. The last column of Table 3 shows the

localization accuracy in terms of the average number of
examined mutants per design error. In fact, this number is
599.1, which is even slightly less than 642 mutants in
average obtained in [19].

The significant increase in successful corrections with
respect to [19] is due to the selection of mutation
operators, which are not limited to control flow errors.
The run-time advantages in terms of the number of
mutants examined comes partly from the more accurate
diagnosis method based on dynamic slicing and location
ranking.

6 Conclusions

The paper presents a method for correcting design
errors in algorithmic descriptions of system-level
hardware. The method applies dynamic slicing and
location ranking to accurately pinpoint the error locations
and combines it with a dedicated set of ESL-mutation
operators for automatically proposing fixes to the errors.
In order to validate the approach, experiments on the
Siemens benchmarks have been carried out.  The
experiments show that the proposed method is able to
repair three times more errors than previously achievable
by mutation-based repair while examining fewer mutants.
In addition, the method clearly outperforms a recent
formal correction approach.
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