
Mutation-Based Verification and
Error Correction in High-Level Designs

HANNO HANTSON

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C106

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

Dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and System Engineering on October 14, 2015.

Supervisor: Prof. Jaan Raik

Department of Computer Engineering
Tallinn University of Technology, Estonia

Opponents: Dr. Maria K. Michael

Department of Electrical and Computer Engineering
University of Cyprus, Cyprus

Prof. Heinrich Theodor Vierhaus
Department of Computer Engineering
Brandenburg University of Technology, Cottbus, Germany

Defence of the thesis: November 12, 2015

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Hanno Hantson/

Copyright: Hanno Hantson, 2015
ISSN 1406-4731
ISBN 978-9949-23-853-8 (publication)
ISBN 978-9949-23-854-5 (PDF)

INFORMAATIKA JA S TEHNIKA C106ÜSTEEMI

Mutatsioonidel põhinev verifitseerimine ja
vigade parandamine kõrgtaseme skeemides

HANNO HANTSON

To my wife Kätlin,

daughter Sandra and son Hugo

7

Table of Contents

List of Publications ... 9
List of Abbreviations .. 12
List of Figures ... 14
1 Introduction .. 15

1.1 Verification of computing systems ... 15
1.2 Error localization and correction .. 18
1.3 Main contributions ... 20
1.4 Outline of the Thesis .. 21

2 Background ... 22
2.1 Functional verification ... 22
2.2 Mutation analysis ... 28
2.3 Error localization and correction .. 31
2.4 High-Level Decision Diagrams .. 33

2.4.1 Simulation on HLDDs .. 35
2.4.2 Representing RTL designs by HLDDs 37

2.5 ESL modeling in SystemC ... 41
3 RTL and ESL mutation analysis methods ... 45

3.1 RTL mutation analysis on HLDDs ... 45
3.1.1 State-of-the-art .. 45
3.1.2 Mutation analysis method... 46
3.1.3 Experimental results ... 49

3.2 ESL mutation analysis on System C TLM ... 51
3.2.1 State-of-the-art .. 51
3.2.2 Mutation analysis method... 54
3.2.3 Experimental results ... 56

3.3 Conclusions .. 60
4 RTL and ESL error correction methods .. 62

4.1 Design error localization and correction on HLDDs at the RTL........ 62
4.1.1 State-of-the-art .. 63
4.1.2 Backtrace .. 64
4.1.3 Localization .. 65
4.1.4 Localization example ... 66

8

4.1.5 Correction ... 69
4.1.6 Experimental results ... 70

4.2 Localization case study .. 71
4.2.1 Statistical bug localization .. 74
4.2.2 Motivational example ... 76
4.2.3 Static slicing ... 78
4.2.4 Suspiciousness ranking based on statement/branch coverage
metrics .. 79
4.2.5 Hierarchical analysis based on condition coverage 80
4.2.6 ROBSY processor: functional test .. 81
4.2.7 Set of documented design errors .. 82
4.2.8 Experimental results ... 82

4.3 Design error correction for C ... 86
4.3.1 State-of-the-art .. 87
4.3.2 Error correction method ... 88
4.3.3 Mutation-based error correction ... 91
4.3.4 Experimental results ... 93

4.4 Conclusions .. 96
Conclusions ... 98
References ... 101
Abstract ... 110
Annotatsioon ... 112
Acknowledgements ... 114
Curriculum Vitae ... 115
Elulookirjeldus ... 117
Appendix I ... 119
Appendix II ... 127
Appendix III .. 143
Appendix IV .. 155
Appendix V ... 167

9

List of Publications

Publications included in the Appendices with author’s contributions

I. Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin,
Maksim; Chepurov, Anton; Fummi, Franco; Ubar, Raimund.
“Mutation Analysis with High-Level Decision Diagrams”.
Proceedings of the 11th Latin-American Test Workshop, IEEE
Computer Society Press, 2010, pp. 1–6.

Contributes to Section 3.1 of this Thesis. The author’s contributions are:
participating in development of the HLDD-based mutation analysis method,
implementing mutation analysis tool to the Apricot framework and presenting the
paper at 11th Latin-American Test Workshop.

II. Guarnieri, Valerio; Di Guglielmo, Giuseppe; Bombieri, Nicola;
Pravadelli, Graziano; Fummi, Franco; Hantson, Hanno; Raik, Jaan;
Jenihhin, Maksim; Ubar, Raimund. “On the Reuse of TLM Mutation
Analysis at RTL”. Journal of Electronic Testing-Theory and
Applications, 28(4), 2012, pp. 435–448.

Contributes to Section 3.2 of this Thesis. The author’s contributions are:
participating in development of the RTL-TLM-based mutation analysis method,
performing experiments using Mentor Graphics CatapultC software and
presenting the paper at 12th Latin-American Test Workshop. Paper II was an
extended version of the latter.

III. Raik, Jaan; Repinski, Urmas; Tšepurov, Anton; Hantson, Hanno;
Ubar, Raimund; Jenihhin, Maksim. “Automated design error debug
using high-level decision diagrams and mutation operators”.
Microprocessors and Microsystems: Embedded Hardware Design,
37(4), 2013, pp. 1–10.

Contributes to Section 4.1 of this Thesis. This paper was based on author’s work
on mutation analysis developed in Paper I.

10

IV. Jenihhin, Maksim; Tšepurov, Anton; Tihhomirov, Valentin; Hantson,
Hanno; Raik, Jaan; Ubar, Raimund; Bartsch, Gu¨nter; Meza-Escobar,
Jorge Hernan; Wuttke, Heinz-Dietrich. “Automated Design Error
Localization in RTL Designs”. IEEE Design & Test of Computers, 1,
2014, pp.83–92.

Contributes to Section 4.2 of this Thesis. The author’s contributions are:
performing experiments using Apricot software and presenting the paper at 13th
Latin-American Test Workshop (Best Paper Award). Paper IV was an extended
version of the latter.

V. Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di
Guglielmo, Giuseppe; Pravadelli, Graziano; Fummi, Franco.
“Combining Dynamic Slicing and Mutation Operators for ESL
Correction”. Proceedings of the 17th IEEE European Test
Symposium, IEEE Computer Society Press, 2012, pp. 1–6.

Contributes to Section 4.3 of this Thesis. The author’s contributions are:
developing the mutation-based fault model in cooperation with Giuseppe Di
Guglielmo from the Univesity of Verona during the author’s stay in Verona,
proposing an improved classification of faults.

Full list of author’s publications

Journals

1. IV. Jenihhin, Maksim; Tšepurov, Anton; Tihhomirov, Valentin;
Hantson, Hanno; Raik, Jaan; Ubar, Raimund; Bartsch, Gu¨nter; Meza-
Escobar, Jorge Hernan; Wuttke, Heinz-Dietrich. “Automated Design
Error Localization in RTL Designs”. IEEE Design & Test of Computers,
1, 2014, pp.83–92.

2. III. Raik, Jaan; Repinski, Urmas; Tšepurov, Anton; Hantson, Hanno;
Ubar, Raimund; Jenihhin, Maksim. “Automated design error debug using
high-level decision diagrams and mutation operators”. Microprocessors
and Microsystems: Embedded Hardware Design, 37(4), 2013, pp. 1–10.

3. II. Guarnieri, Valerio; Di Guglielmo, Giuseppe; Bombieri, Nicola;
Pravadelli, Graziano; Fummi, Franco; Hantson, Hanno; Raik, Jaan;
Jenihhin, Maksim; Ubar, Raimund. “On the Reuse of TLM Mutation
Analysis at RTL”. Journal of Electronic Testing-Theory and
Applications, 28(4), 2012, pp. 435–448.

11

Conferences

4. Hantson, Hanno; Repinski, Urmas; Raik, Jaan; Jenihhin, Maksim; Ubar,
Raimund. “Diagnosis and Correction of Multiple Design Errors Using
Critical Path Tracing and Mutation Analysis”. Proceedings of the 13th
IEEE Latin-American Test Workshop. IEEE Computer Society Press,
2012, pp. 27–32, Best Paper Award.

5. Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di
Guglielmo, Giuseppe; Pravadelli, Graziano; Fummi, Franco. “Combining
Dynamic Slicing and Mutation Operators for ESL Correction”.
Proceedings of the 17th IEEE European Test Symposium, IEEE
Computer Society Press, 2012, pp. 1–6.

6. Guarnieri, Valerio; Hantson, Hanno; Raik, Jaan; Jenihhin, Maksim;
Bombieri, Nicola; Pravadelli, Graziano; Fummi, Franco; Ubar, Raimund.
“Mutation Analysis for SystemC Designs at TLM”. Proceedings of the
12th IEEE Latin-American Test Workshop Proceedings (1 - 6), IEEE
Computer Society Press, 2011, pp. 1–6.

7. Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin, Maksim;
Chepurov, Anton; Fummi, Franco; Ubar, Raimund. “Mutation Analysis
with High-Level Decision Diagrams”. Proceedings of the 11th Latin-
American Test Workshop, IEEE Computer Society Press, 2010, pp. 1–6.

12

List of Abbreviations

ADD Assignment Decision Diagram

ALU Arithmetic-Logic Unit

AST Abstract Syntax Tree

BDD Binary Decision Diagram

CRC Cyclic Redundancy Check

DD Decision Diagram

DFT Design For Testability

DUV Design Under Verification

FIFO First In, First Out

FSM Finite State Machine

GCC GNU Compiler Collection

GCD Greatest Common Divisor

GNU GNU Is Not Unix (Operating System)

HDL Hardware Description Language

IC Integrated Circuit

IG Instantiation Graph

IoT Internet of Things

ISA Instruction Set Architecture

ITRS International Technology Roadmap for Semiconductors

ESL Electronic System Level

HLDD High-Level Decision Diagram

K*BMD Kronecker Multiplicative Binary Moment Diagram

LoC Lines of Code

MTDD Multi-Terminal Decision Diagram

13

OSCI Open SystemC Initiative

PCB Printed Circuit Board

RISC Reduced Instruction Set Computer

ROBDD Reduced Ordered Binary Decision Diagram

ROBSY Reconfigurable On Board self test SYstem

RTL Register-Transfer Level

SAT SATisfiability

SISD Single Instruction Single Data

SMT SAT Modulo Theory

SoC System-on-Chip

TLM Transaction Level Modeling

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WB Wishbone protocol

ZDB zamiaCAD Data Base

14

List of Figures

Figure 1.1. Design productivity gap ... 18
Figure 1.2. Time spent on different tasks in a design process 19
Figure 1.3. Traditional debug flow ... 19
Figure 1.4. Automated debug flow ... 20
Figure 2.1. A ladder of design abstraction ... 23
Figure 2.2. Relationship between the design and the verification processes 24
Figure 2.3. The basic principle of design verification .. 26
Figure 2.4. Traditional mutation process .. 30
Figure 2.5. Ambiguity of error location ... 32
Figure 2.6. Graphical representation of a HLDD for a function y=f(x1,x2,x3,x4) 35
Figure 2.7. Simulation on a decision diagram .. 36
Figure 2.8 Algorithm 1. HLDD simulation .. 37
Figure 2.9. A datapath of a DUV ... 39
Figure 2.10. RTL VHDL and its corresponding HLDD 40
Figure 3.1. “Key” mutation operators as HLDD perturbations 47
Figure 3.2 Algorithm 2. HLDD-based mutation analysis 48
Figure 3.3. Mutant injection overview ... 56
Figure 3.4. Simulation times .. 58
Figure 3.5. SystemC code example at TLM ... 58
Figure 3.6. Mutation coverages .. 59
Figure 3.7. SystemC code example at generated RTL 60
Figure 4.1 Algorithm 3. HLDD-based diagnostic tree generation 64
Figure 4.2. Passing a) and failing b) test sequences for the GCD design 66
Figure 4.3. Diagnostic tree for the passing test in Figure 4.2a 67
Figure 4.4. Diagnostic tree for the failing test in Figure 4.2b 68
Figure 4.5. zamiaCAD framework ... 73
Figure 4.6. Statistical bug localization flow ... 75
Figure 4.7. Inspection of likely bug locations .. 76
Figure 4.8. Bug localization on a motivational example 77
Figure 4.9. Through-signal-assignment search based backward reference graph
on the signal TAR_f in the chopper design .. 78
Figure 4.10. ROBSY processor test program ... 81
Figure 4.11. Details of automated localization ... 83
Figure 4.12. The ESL description is modeled as a flowgraph, i.e., hammock
graph. Simulation and slicing are performed on the model representation 89
Figure 4.13. The mutation-based error correction flow 93

15

1 Introduction

Immense development of technology has led us to an era where computer
electronics is part of virtually everything. New data from Juniper Research has
revealed that the number of IoT (Internet of Things) connected devices will
number 38.5 billion in 2020, up from 13.4 billion in 2015: a rise of over 285%
(Juniper Research, 2015).

One thing common to all of those devices is that everyone expects them to
work. And not only work but do it in a way that is useful for us. In other words do
their job like they are supposed to. As devices and systems have grown extremely
complex, it is not an easy task to make it happen. For example the IBM z13
microprocessor consists of 7.1 billion transistors (Warnock, J., 2015). The fact
that technology evolves with every passing day makes things even worse because
it is difficult to come up with new and better solutions with the same pace.

The increasing complexity of devices has resulted in emergence of the design
methodologies at higher levels of abstraction such as Register-Transfer Level
(RTL) and Electronic System Level (ESL).

This Thesis focuses on verification and design error correction at high
abstraction levels in order to contend the challenges mentioned above. The
underlying method applied is mutation analysis.

1.1 Verification of computing systems

With the growth of the complexity and extensive usage of computing systems the
importance of verification has risen greatly. Nowadays electronics is applied
everywhere – from pets to space technology. Failures in electronics range from
merely being annoying to the loss of lives in extreme cases. Some examples of
major accidents and incidents are described in the following paragraphs.

For example, from the middle of 1985 to January 1987, lack of verification led
to the death of several people. It was caused by a computer-controlled radiation
therapy machine, called the Therac-25, which massively overdosed at least six
people with radiation. Some patients died and others received serious injuries.
These accidents are known as the worst in the 35-year history of medical
accelerators (Leveson N., 1995).

Widely known example is the bug in Intel Pentium processor that was
discovered in May 1994. It became known as Pentium FDIV bug as the bug

16

appeared in floating-point division. At first Intel claimed the bug would affect
only a few users but later studies had worse estimations. Public pressure led Intel
to note that everyone who complains will get a replacement processor. The cost
of replacement was $475 million (Nicely T., 2011).

On the morning of 4 June 1996 the flight of Ariane 5 launcher ended up with
complete disintegration. About 40 seconds after the launch, the launcher veered
off its flight path, broke up and exploded. The use of Ariane 4 software caused the
accident due to the differences in early part trajectory of Ariane 5 compared to
Ariane 4. This was not taken into account during the development of the software.
More particularly, data conversion from 64-bit floating point to 16-bit signed
integer value resulted in an operand error that ended up with the explosion of the
launcher. Fortunately, no one was injured in the accident. Cost of the accident was
at least $370 million (Lions J. L., 1996; Dowson M., 1997).

Sometimes it is very important to verify all corner cases. Although they might
be unlikely to happen, the lack of verification might easily end up in loss of lives.
Such thing happened in Panama between August 2000 and March 2001 with the
loss of at least 17 people. The users of computerized treatment planning system
who found an alternative configuration method to fulfil their needs caused this.
As computer output gave the impression that the calculation results were correct,
no one suspected anything. The result was that patients received a proportionately
higher dose of radiation than prescribed. 28 patients in total were involved before
mistreatment was stopped (Mettler F.A. Jr., Ortiz López P., et.al., 2001).

Toyota has made several recalls due to software bugs. In February 2010,
Toyota called back 397,000 vehicles worldwide to fix an anti-lock brake software
glitch and in 2005, Toyota repaired 75,000 Priuses to fix software glitches that
caused the engine to stall (Manning S., Krisher T., 2010). Last recall was in
February 2014 when 1.9 million third-generation Prius cars were recalled due to
a programming glitch in their hybrid system. The setting of the software could
cause higher thermal stress in certain transistors within the booster converter,
resulting with deformation or damage to the transistors, which could end up with
the hybrid system’s shut down and the vehicle stopping suddenly (Kim C.-R.,
2014).

Finally, there are bugs that have been present for a long time but no one has
noticed them despite the fact that software is open-source. Good examples are
Shellshock and Heartbleed, which were present for almost 20 years in millions of
devices. It is something on a completely different scale. Compared to previous car
industry examples, it is like understanding that tires are fundamentally flawed and
all of them need a fix (CNN Money, 2014).

All these examples have one thing in common. They might have not happened
if more advanced verification methods had been used.

17

In 1965 Gordon E. Moore wrote that the complexity for minimum component
cost has increased at a rate of roughly a factor of two per year and there is no
reason to believe it will not remain constant for at least 10 years. Moore revisited
the subject ten years later and redrew his plot of component densities by a gentler
slope, one in which density doubled every 18 months. Shortly after this, his plot
was dubbed Moore’s Law. A simple extrapolation from a simple observation has
remained true throughout the decades (Schaller R. R., 1997).

The vast progress in the semiconductor industry has led to 10 nm technology
node that raises gate density to over 6 million per square millimeter compared to
roughly 190 transistors per mm2 inside Intel 4004 microprocessor in 1971 (ITRS,
2013; Computer History Museum, 2015).

The complexity and cost of design and verification of integrated circuits have
rapidly increased to the point where thousands of engineer-years (and a design
team of hundreds) are devoted to a single design, yet processors reach market with
hundreds of bugs. This aspect is leading to decreasing emphasis on heavy
customization and exotic circuit topologies, and increasing use of design
automation tools such as logic synthesis and automatic circuit tuning. The
resulting productivity increases have allowed processor development schedules
and team sizes to flatten out. Improvements in tools for analysis of timing, noise
and power, and for verification of physical and electrical design rules, have also
contributed to a steady increase in design quality (ITRS, 2013).

An important message in the ITRS roadmap (ITRS, 2013) is that design cost
is the greatest threat to continuation of the semiconductor industry’s phenomenal
growth. According to Intel, a 1981 leading edge chip required 100 designer
months, contained 10,000 transistors, which makes 100 transistors per month. A
2002 leading edge chip required already 30,000 designer months and it contains
150,000,000 making it 5000 transistors/month. However, the design costs have
increased from $1M to $300M during the same period. Thus, the chip
development capacity has increased 50 times, and design costs have increased 300
times at the same time. The same trend has continued over the recent years.

This dramatic increase in cost has mainly been due to the fact that traditionally
the IC capacity has grown 58 %/ year, while the designer’s productivity grows
only 21 % annually. The phenomenon is shown in Figure 1.1, and it is known as
the design productivity gap (Keutzer K., Newton R., 2015). It is the productivity
gap that pushes the chip-making companies to exploit more and more engineering
resources in order to reach the limits of what can be achieved in modern
technology resulting in ever-increasing costs. Obviously, this gap could be
contended and costs reduced only if more effective design approaches would be
developed in the future to increase designer’s productivity.

18

Figure 1.1. Design productivity gap

1.2 Error localization and correction

Designing a microelectronic chip is a very expensive task and excessive design
costs are the greatest threat to the continuation of the semiconductor industry’s
growth. In order to contain this threat, the increasing gap between the complexity
of new systems and the productivity of system design methods must be mitigated
by developing new and more efficient design methods and tools. Functional
correctness of systems is becoming ever more difficult to attain and it is becoming
the main bottleneck in the systems’ development process. Better verification
techniques must be the focus in research and development if one wants to keep
increasing the scale of electronics design. Detection of mistakes, however, offers
only a partial solution to the correctness issue. Once that has been ascertained, the
difficult task of discovering the sources of mistakes (faults) and subsequently
locating and correcting them remains (Ubar R., Raik J., Vierhaus H. T., 2011).

It is a well-acknowledged fact that verification is forming a major part in the
total product design cycle (Lam W. K., 2005), and this trend is increasing. At the
same time when there have been numerous research works on verification
methods identifying the occurrences of errors, the problem of diagnosing the
causes of errors and correcting them has been largely neglected. Yet a large part
of the verification cycle is consumed inside the design loops between debugging
and correction. It is estimated that fault location and correction constitute roughly
a half of the total time spent on verification and debug (FP6 PROSYD, 2004).
Verification and debug (i.e. assuring the correctness of the design), in turn,

19

represent the main reason of the excessive costs accounting for about 70 % of
design expenses (Lam W. K., 2005). Location and correction costs therefore form
about 1/3 of the total design time. Figure 1.2 visualizes the amount of time spent
on specification, design, fault detection, location, and correction in a typical
design process (FP6 PROSYD, 2004; Ubar R., 2011).

Specify Design Detect Locate Correct
Figure 1.2. Time spent on different tasks in a design process

Every design must be verified throughout the whole design process in order to

make sure that that the functionality matches the specification. In case too little
effort is spent on verification, the results may be disastrous as the outcome might
behave completely different from what was expected.

There are several methods for the task. Depending on the abstraction level they
may additionally vary. The current Thesis focuses on using mutation analysis as
one possible solution to the problem. Mutation analysis is addressed on two
abstraction levels – Register-Transfer Level (RTL) and Electronic System Level
(ESL).

In the traditional debug flow (Figure 1.3) a designer gets feedback from
verification tools in form of counter-examples. On one hand, the designer is faced
with too much information contained in the large counter-examples. On the other
hand, there is not enough information in order to unambiguously locate the bug.
As manual bug localization is very time-consuming it should be automated.

Designer

Specification

Verification

Design
Counter-
examples,

failed
assertions,

...

Error

Figure 1.3. Traditional debug flow

20

Automation of the debug process consists of two steps. Once it is clear that the
design and specification are not the same, or in other words, there is an error in
the design, only one step is done. It must be followed by another one, which
usually is error localization. After locating the error, the work is still not finished
because generally it is reasonable to try and fix the error (Figure 1.4). Mutations
can help here as every mutation can be viewed as a possible fix from the design
view. The current Thesis addresses this topic and provides solutions on two
abstraction levels – RTL and ESL.

Designer

Specification

Verification

Design

Corrected
design, repair

log, ...

Error Error
localization

Error
correction

Figure 1.4. Automated debug flow

1.3 Main contributions

The main contribution of the Thesis is to propose new tools, case studies and
methods to enable the designer automatically locate hard-to-detect bugs thereby
offering solutions to save time and effort in integrated circuit design.

The contributions of this Thesis are:

 A new tool for mutation testing in hardware description languages
using HLDDs.

 A new method to automatically inject faults into the functionality of
system descriptions that performs mutation analysis at different
abstraction levels.

21

 A case study of automatic localization of design errors (bugs) in
processor designs.

 A method for statistical localization and mutation-based correction of
design errors at the source-level of hardware description language
code using HLDDs.

 A method for mutation-based correction of design errors in
algorithmic descriptions of system-level hardware.

1.4 Outline of the Thesis

The presented Thesis is organized into four chapters. The introductory chapter is
followed by background information with overview of functional verification,
mutation analysis, design error correction, high-level decision diagrams and ESL
modelling in SystemC.

The third chapter is divided into two main topics. In the first part mutation
analysis is applied to high-level decision diagrams via an automated tool. The
second part concentrates on mutation analysis at higher abstraction level with
comparison of the two levels. Both methods are supported by experimental results.

The fourth chapter begins with design error correction at lower RTL level with
thorough focus of backtrace, localization and correction. It is followed by an
automated tool for design error correction at higher abstraction level.

Finally conclusions are presented.

22

2 Background

This Chapter provides the background for the topics that form the basis of the
developments in the Thesis. The topics include functional verification, mutation
analysis, error localization and correction, high-level decision diagrams and ESL
modeling in SystemC.

2.1 Functional verification

A design process transforms a set of specifications into an implementation of the
specifications. At the specification level, the specifications state the functionality
that the design executes but do not indicate how it executes. An implementation
of the specifications spells out the details of how the functionality is provided.
Both a specification and an implementation are a form of description of
functionality, but they have different levels of concreteness or abstraction. A
description of a higher level of abstraction has fewer details; thus, a specification
has a higher level of abstraction than an implementation. In an abstraction
spectrum of design, a decreasing order of abstraction is seen: functional
specification, algorithmic description, register-transfer level (RTL), gate netlist,
transistor netlist, and layout (Figure 2.1). Along this spectrum a description at any
level can give rise to many forms of a description at a lower level. For instance,
an infinite number of circuits at the gate level implements the same RTL
description. When moving down the ladder, a less abstract description adds more
details while preserving the descriptions at higher levels. The process of turning a
more abstract description into a more concrete description is called refinement.
Therefore, a design process refines a set of specifications and produces various
levels of concrete implementations (Lam W. K., 2005).

Design verification is the reverse process of design. Design verification starts
with an implementation and confirms that the implementation meets its
specifications. Thus, at every step of design, there is a corresponding verification
step. For example, a design step that turns a functional specification into an
algorithmic implementation requires a verification step to ensure that the
algorithm performs the functionality in the specification. Similarly, a physical
design that produces a layout from a gate netlist has to be verified to ensure that
the layout corresponds to the gate netlist. In general, design verification
encompasses many areas, such as functional verification, timing verification,
layout verification, and electrical verification, just to name a few. In this Thesis
only functional verification is considered and referred to as design verification.

23

Figure 2.2 shows the relationship between the design process and the verification
process.

On a finer scope, design verification can be further classified into two types.
The first type verifies that two versions of design are functionally equivalent. This
type of verification is called equivalence checking. One common scenario of
equivalence checking is comparing two versions of circuits at the same abstraction
level. For instance, compare the gate netlist of a prescan circuit with its postscan
version to ensure that the two are equivalent under normal operating mode (Lam
W. K., 2005).

Abstraction

Higher

Lower

Details

Less

More

Functional specification

Design flow

Algorithmic description

RTL

Gate netlist

Transistor netlist

Physical layout

Figure 2.1. A ladder of design abstraction

However, the two versions of the design differ with regard to abstraction level.
For example, one version of the design is at the level of specification and the other
version is at the gate netlist level. When the two versions differ substantially with
regard to the level of abstraction, they may not be functionally equivalent, because
the lower level implementation may contain more details than allowed, but that
are unspecified, at the higher level. For example, an implementation may contain
timing constraints that are not part of the original specification. In this situation,
instead of verifying the functional equivalence of the two versions, it is verified

24

whether the implementation satisfies the specifications. Note that equivalence
checking is two-way verification, but this is a one-way verification because a
specification may not satisfy an unspecified feature in the implementation. This
type of verification is known as implementation verification, property checking,
or model checking. Based on the terminology of property checking, the
specifications are properties that the implementation must satisfy. Based on the
terminology of model checking, the implementation or design is a model of the
circuit and the specifications are properties. Hence, model checking means
checking the model against the properties.

There are two types of design errors. The first type of error exists not in the
specifications but in the implementations, and it is introduced during the
implementation process. An example is human error in interpreting design
functionality. To prevent this type of error, one can use a software program to
synthesize an implementation directly from the specifications. Although this
approach eliminates most human errors, errors can still result from bugs in the
software program, or usage errors of the software program may be encountered.
Furthermore, this synthesis approach is rather limited in practice for two reasons.
First, many specifications are in the form of casual conversational language, such
as English, as opposed to a form of precise mathematical language, such as
Verilog or C++. It is known that automatic synthesis from a loose language is
infeasible. Second, even if the specifications are written in a precise mathematical
language, few synthesis software programs can produce implementations that
meet all requirements. Usually, the software program synthesizes from a set of
functional specifications but fails to meet timing requirements (Lam W. K., 2005).

Design

Specifications

Microarchitecture

RTL

Gate netlist

Layout

Verification

Property
checking

Equivalence
checking

are they equivalent?

are they equivalent?

does it implement the
microarchitecture?

does it meet the specs?

Figure 2.2. Relationship between the design and the verification processes

25

A more widely used method to uncover errors of this type is through
redundancy. That is, the same specifications are implemented two or more times
using different approaches, and the results of the approaches are compared. In
theory, the more times and the more different ways the specifications are
implemented, the higher the confidence produced by the verification. In practice,
more than two approaches are rarely used, because more errors can be introduced
in each alternative verification, and costs and time can be insurmountable.

The design process can be regarded as a path that transforms a set of
specifications into an implementation. The basic principle behind verification
consists of two steps. During the first step, there is a transformation from
specifications to an implementation. Let us call this step verification
transformation. During the second step, the result from the verification is
compared with the result from the design to detect any errors. This is illustrated
in Figure 2.3 (A). Oftentimes, the result from a verification transformation takes
place in the head of a verification engineer, and takes the form of the properties
deduced from the specifications. For instance, the expected result for a simulation
input vector is calculated by a verification engineer based on the specifications
and is an alternative implementation (Lam W. K., 2005).

26

Specification

Design

Alternative design

Equivalent? Equivalence checking

Verification path

Design path

A

Specification

Design

A specification expression

Property checking

“Alternative design“

Satisfy?

B

Specification

Design

Reference output

Simulation

“Alternative design“

C

Input

Input

Equivalent?

Figure 2.3. The basic principle of design verification

27

Obviously, if verification engineers go through the exact same procedures as
the design engineers, both the design and verification engineers are likely to arrive
at the same conclusions, avoiding and committing the same errors. Therefore, the
more different the design and verification paths, the higher confidence the
verification produces. One way to achieve high confidence is for verification
engineers to transform specifications into an implementation model in a language
different from the design language. This language is called verification language,
as a counterpart to design language. Examples of verification languages include
Vera, and C/C++. A possible verification strategy is to use C/C++ for the
verification model and Verilog/VHSIC Hardware Description Language (VHDL)
for the design model.

During the second step of verification, two forms of implementation are
compared. This is achieved by expressing the two forms of implementation in a
common intermediate form so that equivalency can be checked efficiently.
Sometimes, a comparison mechanism can be sophisticated for example,
comparing two networks with arrival packets that may be out of order. In this case,
a common form is to sort the arrival packets in a predefined way. Another example
of a comparison mechanism is determining the equivalence between a transistor-
level circuit and an RTL implementation. A common intermediate form in this
case is a binary decision diagram (Lam W. K., 2005).

Here it is seen that the classic simulation-based verification paradigm fits the
verification principle. A simulation-based verification paradigm consists of four
components: the circuit, test patterns, reference output, and a comparison
mechanism. The circuit is simulated on the test patterns and the result is compared
with the reference output. The implementation result from the design path is the
circuit, and the implementation results from the verification path are the test
patterns and the reference output. The reason for considering the test patterns and
the reference output as implementation results from the verification path is that,
during the process of determining the reference output from the test patterns, the
verification engineer transforms the test patterns based on the specifications into
the reference output, and this process is an implementation process. Finally, the
comparison mechanism samples the simulation results and determines their
equality with the reference output. The principle behind simulation-based
verification is illustrated in Figure 2.3 (C).

Verification through redundancy is a double-edged sword. On the one hand, it
uncovers inconsistencies between the two approaches. On the other hand, it can
also introduce incompatible differences between the two approaches and often
verification errors. For example, using a C/C++ model to verify against a Verilog
design may force the verification engineer to resolve fundamental differences
between the two languages that otherwise could be avoided. Because the two
languages are different, there are areas where one language models accurately

28

whereas the other cannot. A case in point is modeling timing and parallelism in
the C/C++ model, which is deficient. Because design codes are susceptible to
errors, verification code is equally prone to errors. Therefore, verification
engineers have to debug both design errors as well as verification errors. Thus, if
used carelessly, redundancy strategy can end up making engineers debug more
errors than those that exist in the design plus verification errors resulting in large
verification overhead costs.

As discussed earlier, the first type of error is introduced during an
implementation process. The second type of error exists in the specifications. It
can be unspecified functionality, conflicting requirements, and unrealized
features. The only way to detect the type of error is through redundancy, because
specification is already at the top of the abstraction hierarchy and thus there is no
reference model against which to check. Holding a design review meeting and
having a team of engineers go over the design architecture is a form of verification
through redundancy at work. Besides checking with redundancy directly,
examining the requirements in the application environment in which the design
will reside when it has become a product also detects bugs during specification,
because the environment dictates how the design should behave and thus serves
as a complementary form of design specification. Therefore, verifying the design
requirements against the environment is another form of verification through
redundancy. Furthermore, some of these types of errors will eventually be
uncovered as the design takes a more concrete form. For example, at a later stage
of implementation, conflicting requirements will surface as consistencies, and
features will emerge as unrealizable, given the available technologies and
affordable resources (Lam W. K., 2005).

2.2 Mutation analysis

Mutation analysis has a rich and varied history, with major advances in concepts,
theory, technology, and social viewpoints. This history begins with (Lipton R.,
1971) proposing initial concepts of mutation in a class term paper titled “Fault
Diagnosis of Different Computer Programs." It was not until the end of the 1970's,
however, before major work was published on the subject (DeMillo R. A., Lipton
R. J., Sayward F. G., 1978) is generally cited as the seminal reference (Offut A.
J., 2000).

Mutation analysis induces faults into software by creating many versions of
the software, each containing one fault. Test cases are used to execute these faulty
programs with the goal of distinguishing the faulty programs from the original
program. Hence the terminology; faulty programs are mutants of the original, and

29

a mutant is killed by distinguishing the output of the mutant from that of the
original program.

Mutants either represent likely faults, a mistake the programmer could have
made, or they explicitly require a typical testing heuristic to be satisfied, such as
execute every branch or cause all expressions to become zero. Mutants are limited
to simple changes on the basis of the coupling effect, which says that complex
faults are coupled to simple faults in such a way that a test data set that detects all
simple faults in a program will detect most complex faults (Offut A. J., 2000).

Mutation analysis provides a test criterion, rather than a test process. A testing
criterion is a rule or collection of rules that imposes requirements on a set of test
cases. Test engineers measure the extent to which a criterion is satisfied in terms
of coverage; a set of test cases achieves 100% coverage if it completely satisfies
the criterion. Coverage is measured in terms of the requirements that are imposed;
partial coverage is defined to be the per cent of requirements that are satisfied.
Test requirements are specific things that must be satisfied or covered; for
example, reaching statements are the requirements for statement coverage and
killing mutants are the requirements for mutation. Thus, a test criterion establishes
firm requirements for how much testing is necessary; a test process gives a
sequence of steps to follow to generate test cases. There may be many processes
used to satisfy a given criterion, and a test process need not have the goal of
satisfying a criterion. In precise terms, mutation analysis is a way to measure the
quality of the test cases and the actual testing of the software is a side effect. In
practical terms however, the software is tested, and tested well, or the test cases
do not kill mutants. This point can best be understood by examining a typical
mutation analysis process.

30

Input test
program

All mutants
dead?

Create
mutants

Input
test cases

T

Program

Quit

Run T
on P

Fix
P

P (T)
correct?

F

Run test
cases on
each live
mutant

Analyze
and mark
equivalent
mutants

FT

Tests

Figure 2.4. Traditional mutation process

When a program is submitted to a mutation system, the system first creates
many mutated versions of the program. A mutation operator is a rule that is
applied to a program to create mutants. Typical mutation operators, for example,
replace each operand by every other syntactically legal operand, or modify
expressions by replacing operators and inserting new operators, or delete entire
statements. Figure 2.4 graphically shows a traditional mutation process. The solid
boxes represent steps that are automated by traditional systems such as Mothra
(DeMillo R. A., et.al., 1988), and the dashed boxes represent steps that are done
manually (Offut A. J., 2000).

Next, test cases are supplied to the system to serve as inputs to the program.
Each test case is executed on the original program and the tester verifies that the
output is correct. If incorrect, a bug has been found and the program should be
fixed before that test case is used again. If correct, the test cases are executed on
each mutant program. If the output of a mutant program differs from the original
(correct) output, the mutant is marked as being dead. Dead mutants are not
executed against subsequent test cases.

Once all test cases have been executed, a mutation score is computed. The
mutation score is the ratio of dead mutants over the total number of non-equivalent
mutants. Thus, the tester's goal is to raise the mutation score to 1.00, indicating

31

that all mutants have been detected. A test set that kills all the mutants is said to
be adequate relative to the mutants (Offut A. J., 2000).

2.3 Error localization and correction

The dramatic increase in design complexity of modern electronics challenges our
ability to ensure its functional correctness. While improvements in verification
allow engineers to find a larger fraction of design errors more efficiently, little
effort has been devoted to fixing such errors. As a result, debugging remains an
expensive and challenging task. To address this problem, researchers have
proposed techniques that automate the debugging process, by locating the error
source within a design and/or by suggesting possible corrections (Chang K.-H., et
al. 2007).

Design errors are mostly modeled in the implementation, however sometimes
also in the specification. The main applications of design error localization and
correction are: checking the synthesis tools, engineering changes (e.g. incremental
synthesis) or debugging.

Design error localization and correction is applied when the design behavior
does not match the expected behavior. Such mismatch may occur during
simulation of the design, verification with formal tools (property/equivalence
check) or when built-in checkers identify it.

The localization and correction methods can be classified into structure-based
and specification-based ones. According to the fault model they can be divided
into explicit (fault-model based) or implicit (fault-model free) methods. The
advantage of explicit methods lies in the fact that they are easy to be formalized.
However they are limited to enumerated bugs. On the one hand, the number of
bugs to consider is very large; on the other hand, not all the possible bugs are
included in the model. Further, the methods can be divided into single or multiple
error assumption based, and simulation versus symbolic approaches.

Since there is more than one way to synthesize a given function, it is possible
that there is more than one way to model the error, and an incorrect
implementation correction can be made at different locations. See example in
Figure 2.5 (Jutman A., 1999).

32

a) Correct circuit

b) Wrong implementation

c) Possible correction

ሺܽ ∨ ܾሻ ∨ ሺܿ & ݀)

1

d

c

b

a
g1

g2

ሺܽ ∨ ܾሻ & ܿ & ݀

&

d

c

b

a

g2
g1

ܽ ∨ ܾ ∨ ሺܿ & ݀ሻ

1&

d

c

b

a

g2
g1

1&

g3

1

Figure 2.5. Ambiguity of error location

Design error diagnosis for combinational circuits has been thoroughly studied

for two decades. There exist, both, fault model based (Madre J. C., Coudert O.,
Billon J. P., 1989; Abadir M. S., Ferguson J., Kirkland T. E., 1988) and fault-
model-free (Ali M. F., et.al., 2005) approaches. There have been attempts to
generalize the methods above for sequential circuits (Ali M. F., et.al., 2005;
Wahba A., Borrione D., 1995), resulting in scalability problems. Some of the
previous works support design error diagnosis for high-level models like the
Register-Transfer Level (RTL) (Fey G., et.al., 2008; Chang K.-H., et.al., 2007).

33

However, these methods rely on reducing the diagnosis to logic-level formal
engines. The current Thesis considers a different approach utilizing a source-level
reasoning engine for the diagnosis process. This results in source-level feedback
to the engineer and is therefore better understandable than logic-level debug
information proposed by previous methods (Ubar R., Raik J., Vierhaus H. T.,
2011).

2.4 High-Level Decision Diagrams

Different kinds of Decision Diagrams (DD) have been applied to design
verification for about two decades. Reduced Ordered Binary Decision Diagrams
(ROBDD) (Bryant R. E., 1986), as canonical forms of Boolean functions, have
their application in equivalence checking and in symbolic model checking. In this
Thesis, a decision diagram representation called High-Level Decision Diagrams
(HLDDs) is used. HLDDs are word-level decision diagrams which can be
considered as a generalization of BDD, where instead of single bits, computer
words are considered. There exist a number of other word-level decision diagrams
such as Multi-Terminal DDs (MTDDs) (Clarke E., et.al., 1993), Kronecker
Multiplicative Binary Moment Diagrams (K*BMDs) (Drechsler R., Becker B.,
Ruppertz S., 1996) and Assignment Decision Diagrams (ADDs) (Chayakul V.,
Gajski D. D., Ramachandran L., 1993). However, in MTDDs the non-terminal
vertices hold Boolean variables only, whereas in HLDDs the terminal vertices
may be labeled by word-level variables. In K*BMDs, additive and multiplicative
weights label the edges. Such representations are useful for compact canonical
representation of functions on integers (especially wide integers). However, the
main goal of HLDD representations described in this Thesis is not canonicity but
the ease of simulation and diagnosis. The principal difference between HLDDs
and ADDs lies in the fact that ADDs’ edges are not labeled by activating values.
In HLDDs the selection of a vertex activates a path through the diagram, which
derives the needed value assignments for variables.

In this section the HLDD representation is defined, followed by an introduction
of HLDD based simulation and a representation for behavioral register-transfer
level VHDL descriptions.

Consider a digital system (Z, F) as a network of subsystems or components,
where Z is the set of variables (Boolean, Boolean vectors or integers), which
represent connections between components, primary inputs and primary outputs
of the network. Let Z = X U Y, where X is the set of function arguments and Y is
the set of function values where Q = X ∩ Y is the set of state variables. D(z) denotes
the finite set of all possible values for z Z and D(Z’) is the set of all possible
vectors in some variable set Z’ Z. Obviously, if Z’ = {z1, …, zn} then D(Z’) =

34

D(z1) … D(zn). Let F be the set of discrete functions: yk = fk(Xk), where yk Y,
fk F, and Xk X (k iterates over all elements in F).

Definition 1. High-level decision diagram representing a function fk : D(Xk) →
D(yk) is a directed acyclic multigraph G = (V, E) with a single root vertex and a
set of terminal vertices where:

- V is the set of vertices and E is the set of edges.

- Each edge eE is an ordered pair e=(v1, v2)V2, where V2 is the set of
all the possible ordered pairs in the set V.

- Each non-terminal vertex is labeled by some input or control variable
x X. Variable of vertex v by xv shall be denoted.

- Each terminal vertex w is labeled by some function gw : D(Xw) →
D(yk), where Xw Xk.

- Each edge e = (v, u), where v and u are vertices, is labeled by some
constant ce D(xv).

- Each two edges e1 = (v, u1) and e2 = (v, u2) starting from the same
source vertex are labeled by different constants ce1 ce2.

If the vertex v is labeled by xv then the number of edges starting from this vertex
is |D(xv)|.

Remark 1. Each BDD is HLDD as well, with two terminal vertices labeled by
constant functions 0 and 1, and D(x) = {0, 1} for every variable x.

In other words, HLDD is a data structure similar to BDD, but with many edges
originating from a particular vertex, and with a number of functions at the end,
instead of constants 0 and 1. One shall denote the set of terminal vertices by VT
and the set of non-terminal vertices by VN and the set of all successors of the vertex
v by Γ(v). For non-terminal vertices v VN an onto function exists between the
values c D(xv) of labels xv and the successors vc Γ(v) of v. By vc the successor
of v for the value xv = c is denoted.

The edge (v, vc), which connects vertices v and vc, is called activated if there
exists an assignment xv = c. Activated edges, which connect vi and vj, form an
activated path l(vi, vj) V. An activated path l(v0, vT) from the root vertex v0 to a
terminal vertex vT is called the full activated path and vT itself is referred to as the
activated terminal vertex.

Without loss of generality it is assumed further that each variable has at least
two values, i.e. z Z, |D(z)| > 1. Let Di designate a subset of D(xv) labeling
vertex v, such that assignments from it will activate its successor vertex vi. D(xv)

35

is partitioned into non-intersecting sets D1, …, Dm, where m = |Γ(v)|. More
formally,

jivi

m

i

DDjijixDD ,,)(
1
 .

In other words, with every value assignment to variable xv one and only one
successor vertex will be activated. Further, let Dk designate a subset of D(X), such
that assignments from it will activate the terminal vertex vk

T. With every value
assignment to variables X, one and only one terminal vertex will be activated.
Thus, D(X) is partitioned into non-intersecting sets D1, …, Dt, where t = |VT|:

lkk

t

k

DDlklkXDD ,,)(
1

.

Figure 2.6 presents a HLDD Gy representing a discrete function y=f(x1,x2,x3,x4).
The diagram contains five vertices v0, …, v4. The root vertex v0 is labeled by
variable x2, which is an integer with a range from 0 to 7. The vertex has three
outgoing edges entering the vertices v1, v3 and v4. The vertex v1 is labeled by x3
with a range from 0 to 3. It has two outgoing edges e4 and e5 entering terminal
vertices v2 and v3, respectively. The edge e4 is activated by x3=2, while the edge e5
is activated by x3 having a value 0, 1 or 3. The ranges of variables x1 and x4 labeling
terminal vertices v3 and v2, respectively, are not evident from the figure.

x2 x3 x4

x1

x2

y
v0 v1 v2

v3

v4

0

e1 e4

2

e5

e2

e3

4-7

1-3
0, 1, 3

Gy = (V, E, X);
V = {v0, v1, v2, v3, v4};
E = {e1, e2, e3, e4, e5}, e1 = (v0, v1), e2 = (v0, v3),
e3 = (v0, v4), e4 = (v1, v2), e5 = (v1, v3);
X = {x1 = xv3, x2 = xv0 = xv4, x3 = xv1, x4 = xv2};
D1(xv0) = {0}, D2(xv0) = {1, 2, 3},
D3(xv0) = {4, 5, 6, 7},
D1(xv1) = {2}, D2(xv1) = {0, 1, 3}.

Figure 2.6. Graphical representation of a HLDD for a function y=f(x1,x2,x3,x4)

2.4.1 Simulation on HLDDs

HLDD models can be used for representing digital systems. In such models, the
non-terminal vertices correspond to conditions or to control signals, and the
terminal vertices represent arithmetic operations, variables or constants. When

36

representing systems by decision diagram models, in general case, a network of
HLDDs rather than a single HLDD is required. During the simulation in HLDD
systems, the values of some variables labeling the vertices of an HLDD are
calculated by other HLDDs of the system.

Simulation on high-level decision diagrams takes place as follows. Consider a
situation, where all the vertex variables are fixed to some value. According to
these values, for each non-terminal vertex a certain output edge will be chosen to
enter into its corresponding successor vertex. As mentioned above, such
connections between vertices are referred to as the activated edges under the given
values. Succeeding each other, activated edges form in turn activated paths. For
each combination of values of all the vertex variables there always exists a
corresponding activated path from the root vertex to some terminal vertex. Let us
call this path the main activated path. The simulated value of the variable
represented by the HLDD will be the value of the variable labeling the terminal
vertex of the main activated path.

In Figure 2.7 simulation on the decision diagram presented in Figure 2.6 is
shown. Assuming that variable x2 is equal to 2, a path (marked by bold arrows) is
activated from vertex v0 (the root vertex) to a terminal vertex v3 labeled by x1. The
value of variable x1 is 4, thus, y = x1 = 4. Note that this type of simulation is
inherently event-driven since only those vertices have to be simulated (marked by
grey color in Figure 2.7) that are traversed by the activated path.

x2 x3 x4

x1

x2

y
v0 v1 v2

v3

v4

0 2

4-7

1-3
0, 1, 3

x1 = 4
x2 = 2
x3 = -
x4 = -

y = 4

Figure 2.7. Simulation on a decision diagram

Figure 2.8 Algorithm 1 presents simulation on HLDD models. The simulation
process starts in the root vertex v0 (line 2 of the algorithm). The vertex vCurrent is
iteratively replaced by its successor vertices selected according to the value of
xvCurrent (line 4). In order to represent feedback loops in the RTL design, the
algorithm takes the previous time-step value of variable xk labeling a vertex vi if
xk represents a clocked variable in the corresponding HDL (lines 5, 6). Otherwise,

37

the present time step value will be used (line 8). vCurrent will be replaced by its
successor vertex corresponding to xvCurrent

 = Value (i.e. vCurrent
Value) (line 10).

Simulation ends when a terminal vertex is reached and the variable y
corresponding to the simulated HLDD Gy is assigned the value xvCurrent (line 12).

1: SimulateHLDD(Gy)

2: vCurrent = v0

3: While vCurrent VT

4: xk = xvCurrent

5: If xk is clocked then

6: Value = previous time-step value of xk

7: Else

8: Value = present time-step value of xk

9: End if

10: vCurrent = vCurrent
Value

11: End while

12: Assign y = xvCurrent

13: End SimulateHLDD
Figure 2.8 Algorithm 1. HLDD simulation

In the RTL style, the algorithm takes the previous time step value of variable
xk labeling a node vCurrent if xk represents a clocked variable in the corresponding
HDL. In the behavioral style, the present value of xk will be used. In the case of
behavioral HDL coding style HLDDs are generated and ranked in a specific order
to ensure causality. For variables xk labeling HLDD nodes the previous time step
value is used if the HLDD calculating xk is ranked after current decision diagram.
Otherwise, the present time step value will be used.

2.4.2 Representing RTL designs by HLDDs

Consider the datapath depicted in Figure 2.9a and its corresponding HLDD
representation shown in Figure 2.9b. Here, R1 and R2 are registers (R2 is also a
primary output), MUX1, MUX2 and MUX3 are multiplexers, + and * denote
addition and multiplication operations, IN is an input bus, SEL1, SEL2, SEL3 and
EN2 serve as control signals (multiplexer selects and register enables), and a, b, c,
d and e denote internal buses, respectively. In the HLDD, the control variables
SEL1, SEL2, SEL3 and EN2 are labeling the internal decision vertices of the HLDD.
The terminal vertices are labeled by word-level variables R1 and R2 (data transfers

38

to R2), and by expressions related to the data manipulation operations of the
network.

Consider, simulating HLDD with some values assigned to the variables. Let
the value of SEL2 be 0, the value of SEL3 be 3 and the value of EN2 be 1 in the
current simulation run. A full activated path in the HLDD from EN2 to R1*R2 is
shown by bold lines and grey vertices, which corresponds to the pattern EN2=1,
SEL3=3, and SEL2=0. The activated part of the network at this pattern is denoted
by grey boxes.

The main advantage and motivation of using HLDDs compared to the netlists
of primitive functions is the increased efficiency of simulation and diagnostic
modeling because of the direct and compact representation of cause-effect
relationships. For example, instead of simulating the control word SEL1=0,
SEL2=0, SEL3=3, EN2 = 1 by computing the functions a = R1, b = R1, c = a + R2,
d = b * R2, e = d, and R2 = e, one only needs to trace the vertices EN2, SEL3 and
SEL2 on the HLDD and compute a single operation R2 = R1 * R2. In case of
detecting an error in R2 the possible causes can be defined immediately along the
simulated path through EN2, SEL3 and SEL2 without complex diagnostic analysis
inside the corresponding RTL netlist. The activated path provides the fault
candidates, i.e. variables that are suspected to contain faults causing the error at
R2 during current simulation run. Further reasoning should be based on analyzing
sources of these signals.

39

SEL1

aR1

> +

*

SEL2

IN

SEL3 EN2

c

e

b

R2

d

M
U

X
1

M
U

X
2

M
U

X
3

>

=0
=1

=0
=1

=0
=1
=2
=3

EN2

SEL2

R2

SEL3 SEL1

R2 0

R1 + R2

IN + R2

IN

R1

1 0 0

1

1

2

3
R1 * R2

IN * R2

0

1

a)

b)
Figure 2.9. A datapath of a DUV

40

An example of HLDD representation (Figure 2.10b) of a VHDL code fragment
of the Euclidean algorithm for calculating the Greatest Common Divisor of two
unsigned variables in1 and in2 is presented in Figure 2.10a. The VHDL fragment
contains seven variables: inputs in1, in2 and res (the reset signal), internal
variables (registers) a, b and state (for control state), and output out. The variable
state is of enumeration type, variables in1, in2, a, b and out are integers and
variable res is of bit type.

b)

IF res = 1 THEN state := s0;

ELSE

 CASE state IS

 WHEN s0 =>

 a := in1;

 b := in2;

 state := s1;

 WHEN s1 =>

 IF a > b THEN state := s2;

 ELSE IF a < b THEN state := s3;

 ELSE state := s4;

 ENDIF;

 WHEN s2 =>

 a := a – b;

 state := s1;

 WHEN s3 =>

 b := a – b; -- Bug!!!

 state := s1;

 WHEN s4 =>

 out := a;

 state := s4;

 END CASE;

END IF;

a)

a < b s4
F

s3s2

a > b

s1s0

stateres
Fs10

1

s4

s4

s0, s2, s3

state

T T

in1state
s0a

a - b

a

s1, s3, s4

s2

in2state
s0b

a - b

b

s1, s2, s4

s3

astate
s4out

out

s0, s1, s2, s3

Figure 2.10. RTL VHDL and its corresponding HLDD

The algorithm proceeds as follows. When the reset input res becomes one, the
Finite State Machine (FSM) of the control part is initialized to the state s0. In that
state, input in1 is assigned to variable a and input in2 is assigned to variable b.
The next FSM state is s1, where if a >b one moves to state s2, if a <b one moves
to state s3, and otherwise if a=b one moves to state s4, respectively. In state s2, a-

41

b is assigned to a, and in state s3, b-a is assigned to b. This guarantees that a
smaller number is always subtracted from the larger one until a and b become
equal and the FSM ends up in state s4, where the result is written to the output
variable out.

Figure 2.10b presents the HLDD models of four variables state, a, b and out,
i.e. the internal state and output variables of the design. HLDDs for design
variables are generated by traversing the control flow branches of the VHDL code.
Conditional statements (IF, CASE) transform into non-terminal vertices of the
HLDD, control branches map to the HLDD edges and terminal vertices are created
out of the right-hand side parts of value assignments to variables in corresponding
control branches. In the figure, the symbols T and F labeling the HLDD edges
stand for true and false, respectively.

Note that there is a bug in the VHDL description in Figure 2.10a. In the FSM
state s3, a-b and not b-a is assigned to variable b. This bug will be used to illustrate
the HLDD-based fault localization method explained in Section 4.1.4.

2.5 ESL modeling in SystemC

SystemC is the confluence of four streams of ideas: work at Synopsys with
University of California, Irvine, and later with Infeon (formely Siemens HL) also;
Frontier Design; IMEC; and work within the Open SystemC Initiative (OSCI)
Language Working Group (References from System Design with SystemC),
(Grötker T., et.al., 2002).

It is important to recognize that SystemC does not impose a top-down or
bottom-up or even middle-out design flow. In fact, it is recognized that most
design flows are iterative, and that it is rare that all modules within a system are
modeled at the same level of abstraction. Commonly it is heard from designers in
the industry that real designs hardly ever start with a “clean sheet of paper”, so the
need to model testbenches and preexisting hardware and software
implementations at various levels of abstraction, is quite common.

Let’s list a few simple design scenarios where different modeling levels might
be used (Grötker T., et.al., 2002):

 A designer might use a very detailed implementation-level model for
a design under test while using abstract models within the testbench to
generate the design’s stimulus and check the response.

 With a detailed implementation-level model as a starting point, a
designer might create a more abstract model in order to increase

42

simulation speed and perhaps to protect intellectual property that
might otherwise be exposed within the more detailed model.

 A designer might refine a module from a high-level functional
specification down to a cycle-accurate RTL model while other
modules in the system remain at higher levels of abstraction.

When considering a particular SystemC model and comparing it to an existing
or proposed real-world implementation, one notes that there are several
independent axes which can be used to gauge the model’s accuracy. These include
(Grötker T., et.al., 2002):

 structural accuracy: The extent to which the model reflects the
structure of the actual implementations.

 timing accuracy: The extent to which the model reflects the timing of
the actual implementation.

 functional accuracy: The extent to which the model reflects the
function of the actual implementation.

 data organization accuracy: The extent to which the model reflects
the actual data organization used within the implementation.

 communication protocol accuracy: The extent to which the model
reflects actual communication protocols used within the target
implementation.

For each of the different modeling accuracy aspects above, it sometimes also
needs to be distinguished whether one is talking about the particular accuracy
aspect only at a module’s boundaries (i.e. at the module’s ports), or whether the
accuracy aspect also extends to all child modules contained within the parent
module.

It must be noted that the modeling aspects listed above apply to software as
well as hardware models. With software models it is important to identify the
model accuracy in terms of structure, timing, function, data organization, and
communication protocols (Grötker T., et.al., 2002).

Now that some of the important aspects which determine model accuracy have
been identified, one can look into some of the terms that describe different
modeling levels.

An executable specification is a model that is a direct translation of a design
specification into SystemC. Executable specifications model the intended
functionality of a design in a manner that is completely independent of any
proposed implementation. If time delays are present in an executable

43

specification, they represent timing constraints to be imposed on the
implementation.

An untimed functional model is similar to an executable specification, but no
time delays at all are present in the model. Communication between modules
within an untimed functional model is point-to-point (i.e., no shared
communication links such as buses are modeled). Usually the communication is
modeled using FIFOs with blocking write and read methods so that data items are
reliably delivered between modules.

A timed functional model is similar to an untimed functional model in that
communication between modules is still point-to-point (i.e., still no modeling of
shared communication links) and in that it typically uses FIFOs with blocking read
and write methods. However, in a timed functional model timing delays are added
to processes within the design to reflect the timing constraints of the specification
and processing delays of a particular target implementation.

Note that executable specifications and both untimed and timed functional
models do not have any direct structural correspondence to a target
implementation (Grötker T., et.al., 2002).

In a transaction-level model communication between modules is modeled
using function calls. In such models, the communication is typically modeled in a
way that is accurate in terms of functionality and often in terms of timing, but the
communication is not modeled in a way that is structurally accurate.

When the term platform transaction-level model is used one is indicating that
a model uses both the transaction-level modeling style and that the modules within
such design structurally correspond to blocks within the target implementation.

A behavioral hardware model is a model that is pin-accurate and functionally
accurate at its boundaries, but which is not considered to be clockcycle accurate
at its boundaries.

The internal structure of an RTL model accurately reflects the registers and
combinational logic of a target implementation.

Transaction-Level Modeling (TLM) is the reference modeling style for design
and verification of modern system-on-chips (SoCs) at the electronic system-level.
The main advantage of TLM lies in the great speed-up it provides to the design
process. In fact, it allows designers to write a fully functional system-level
description, which can be simulated at much greater speed than RTL models. This
enables feedback at the early phases of the design process, thus producing a better
starting point for further refining and elaborating.

The Open SystemC Initiative (OSCI, 2009) committee has been developing a
reference standard for TLM in the last years to ensure interoperability between

44

suppliers and users. As such, TLM-2.0 has become the final reference standard
for SystemC TLM (OSCI, 2009).

TLM presents a variety of use cases, such as software development, software
performance analysis, architectural analysis and hardware verification. Rather
than creating a specific abstraction level for each use case, the TLM-2.0 standard
describes a number of coding styles that are appropriate for, but not locked to, the
different use cases.

45

3 RTL and ESL mutation analysis methods

Mutation analysis is a known method in software domain. However, similarities
with hardware and software design have brought the idea also to the hardware
domain. This chapter introduces novel solutions using mutation analysis on
Register-Transfer Level (RTL) with High-Level Decision Diagrams (HLDDs)
and compares RTL and Electronic System Level (ESL) mutation analysis.

Subsection 3.1 starts with an overview of state-of-the-art mutation analysis at
the RTL. Thereafter mutation analysis method is presented and implemented on
RTL HLDDs. The method is followed by experimental results.

Subsection 3.2 describes state-of-the-art mutation analysis at the ESL,
followed by the respective method on SystemC Transaction-Level Modeling
(TLM) and experimental results.

3.1 RTL mutation analysis on HLDDs

The subsection presents a new tool for mutation analysis using the system model
of HLDDs. The tool is integrated into the APRICOT verification environment. It
is based on HLDD simulation and graph perturbation. A strategy that relies on a
restricted set of five key mutation operators is developed in order to speed up the
mutation analysis. Experiments on several ITC99 benchmarks and an industrial
example show the feasibility of the mutation analysis approach.

This subsection is based on Paper I:

Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin, Maksim;
Chepurov, Anton; Fummi, Franco; Ubar, Raimund. “Mutation Analysis with
High-Level Decision Diagrams”. Proceedings of the 11th Latin-American Test
Workshop, IEEE Computer Society Press, 2010, pp. 1–6.

3.1.1 State-of-the-art

The observability problem of traditional coverage methods is widely analyzed in
(Tao L., et.al., 2006). In particular the authors present an observability model and
an algorithm to evaluate observability-based statement coverage for hardware
designs. As in (Harris I. G., 2006), it is clearly stated that hardware designs are
highly concurrent, while code software coverage metrics do not address this
essential characteristic. Hence it is far from sufficient to achieve complete code
coverage during verification (Tasiran S., Keutzer K., 2001).

46

Despite of being originally a software testing technique, obvious similarities
with procedural programming languages suggested tailoring some software
analysis techniques to Hardware Description Language (HDL) behavioral
description analysis (Bolchini C., Baresi L., 1997). In particular, an adaptation of
the mutation analysis to test VHDL functional descriptions is proposed in (Hayek
G., Robach C., 1996). A VHDL language functional description can be
assimilated to a software program, so it can be validated against (software) design
faults using the mutation testing techniques. The methodology covers VHDL
concurrent statements as block statement, process statement, and concurrent
signal assignment statement. The VHDL code is translated into Fortran, and
Mothra (DeMillo R. A., et.al, 1988) is applied to generate test sequences. In the
proposed approach, however, concurrent constructs are merely translated to a
sequential language and not targeted explicitly. In addition to academic attempts
to bring mutation testing into hardware domain, a commercial functional
qualification tool (Certitude, 2009) based on mutation analysis is available from
Synopsys.

The adopted HLDD model provides fast simulation. Very efficient HLDD
based simulation algorithms, which outperform commercial event-driven HDL
simulators in 12 - 30 times and cycle-based simulators in 4 to 6 times, have been
proposed (Ubar R., Morawiec A., Raik J., 2000). This is due to the fact that HLDD
simulation essentially combines event-driven (path activation in the HLDD
graphs) and cycle-based (HLDDs are synthesized into cycle-accurate models)
paradigms.

This Thesis presents mutation analysis on the high-level decision diagram
model. It is shown on an industrial example that high quality tests receiving near-
hundred-percent code coverage result only in 21 % mutation coverage. This
indicates a clear advantage of the mutation testing over the coverage approach,
due to considering fault observation.

3.1.2 Mutation analysis method

The method presented in this Thesis is based on strong mutation. The five key
operators proposed in (Offutt A. J., Rothermel G., Zapf C., 1993) have been
implemented according to the do fewer strategy. In experiments, those five
operators have provided almost the same coverage as non-selective mutation, with
cost reductions of at least four times with small programs, and up to 50 times with
larger programs (Offutt A. J., Rothermel G., Zapf C., 1993). The 5 sufficient
operators are ABS, which forces each arithmetic expression to take on the value
0, a positive value, and a negative value, AOR, which replaces each arithmetic
operator with every syntactically legal operator, LCR, which replaces each logical
connector with several kinds of logical connectors, ROR, which replaces

47

relational operators with other relational operators, and UOI, which inserts unary
operators in front of expressions.

inp1 < inp2

inp3 & inp4

inp7 + inp8

inp5

inp6

y_out

false

true

true

false

____ UOI:
‐inp5, ...

ABS:
const0,
random positive,
random negative

AOR:
inp7 – inp8,
inp7 * inp8, ...

LCR:
inp3 xor inp4,
inp3 | inp4, ...

ROR:
inp1 > inp2,
inp1 = inp2, ...

Figure 3.1. “Key” mutation operators as HLDD perturbations

The five operators have been implemented with the following constraints and
specifics. UOI currently replaces only unary operators with other unary operators
and ABS is applied to variables only, and not to expressions. Note also that in
HLDD there are no signed/unsigned variables, but signed and unsigned relational
operators exist. Therefore ROR replaces, both, signed and unsigned relational
operators. In AOR mutations are also allowed by division and mod operations and
a check for the case of divide-by-zero has been included. In the future, the goal is
to gradually extend the set of mutation operators and select the most optimal set
for hardware programs. The reduced-5-key-operator strategy represents a do
fewer strategy. The purpose would be to reduce the mutation analysis cost as much
as possible.

Figure 3.1 illustrates the HLDD graph perturbations for implementing the five
key mutation operators on a sample diagram Gy_out. In HLDD models, the
perturbation means simply replacement of an operator, variable or constant
labeling the HLDD node by another operator, variable or constant.

Table 3.1 shows the list of replacements for each mutation operator. In every
case the operator is substituted by another operator from the group. This is done
until all operators are covered.

48

Table 3.1. Mutation operators

Mutation operator List of replacements

LCR (logical connector replacement) AND, NAND, OR,
NOR, XOR

AOR (arithmetic operator replacement) ADDER, SUBTR,
MULT, DIV, MOD

UOI (unary operator insertion) NEG, INV

SOR (shift operator replacement)
SHIFT_LEFT,
SHIFT_RIGHT,
U_SHIFT_LEFT

ROR (relational operator replacement)
EQ, NEQ, GT, LT,
GE, LE, U_GT, U_LT,
U_GE, U_LE

Figure 3.2 Algorithm 2 presents the Mutation Analysis (MA) algorithm on

HLDD representations. The MA process starts with HLDD simulation in order to
find the correct output responses to be saved at this point. A mutated operator is
injected to the node m and simulated. As the final step the simulated output
responses are compared to the correct ones to determine whether the mutant has
been killed or not.

1: HLDD_MA()

2: SimulateHLDD() /* Figure 2.8 Algorithm 1*/

3: Save output responses

4: For each node m

5: For each mutated operation p where xm= Z(m) ≠ p

6: Replace xm by p

7: SimulateHLDD() /* Figure 2.8 Algorithm 1 */

8: If output responses differ from the saved ones then

9: Report mutant killed

10: End if

11: End for

12: End for

13: End HLDD_MA
Figure 3.2 Algorithm 2. HLDD-based mutation analysis

49

3.1.3 Experimental results

In the following there are mutation analysis experiments with the (ITC99, 2009)
circuits, which were introduced in order to measure the quality of test generation
in hardware systems and with an industrial design implementing a cyclic
redundancy check (CRC) from the FP6 VERTIGO project (Vertigo, 2009).

Basic quantitative VHDL characteristics of the ITC99 benchmarks and the
CRC design are listed below in Table 3.2. In the Table, the number of VHDL code
lines, primary input signals, primary output signals, variables/signals
corresponding to registers and the number of VHDL processes are reported,
respectively.

Table 3.2. VHDL code characteristics

Design Code lines # Inputs # Outputs # Registers # Processes #
b01 96 4 2 3 1
b02 61 3 1 2 1
b04 76 6 1 9 1
b06 112 4 4 5 1
b09 81 3 1 5 1

b11 107 4 1 5 1

b13 273 5 7 24 5

CRC 371 10 3 11 9

Table 3.3 presents the mutation analysis experiments on the full-HLDD
versions of the ITC99 benchmarks. The row ‘# Vectors’ shows the number of
stimuli in the test bench. All the test benches provide 100 % statement coverage,
except for b11 (97 %) and b13 (96.1%), where creation of full tests was not
achieved. All the test sets were generated manually.

Table 3.3. Mutation analysis experiments

 b01 b02 b04 b06 b09 b11 b13
Vectors 14 10 8 11 23 88 11
Mutants inserted 154 78 233 336 213 375 972
Mutants killed 49 9 18 39 17 178 77
Mutation
coverage 0.32 0.12 0.08 0.12 0.08 0.47 0.08
Time, s < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.22 0.21

50

The next row shows the number of mutants injected. The row “# Mutants
killed” presents the total number of mutants killed. The row “Mutation coverage”
shows the ratio of killed mutants to the number of mutants injected in the
approach. One of the most interesting observations is the very low mutation
coverage: only 8 per cent for b04, b09 and b13. The explanation lies in rather short
test sets. Nevertheless, this gives an idea how small observation coverage is
guaranteed by 100 % code coverage tests in the worst case.

The last row shows the execution times of the mutation analysis, which were
in the range of tenths of seconds. All the experiments were run on a 1.7 GHz
laptop PC.

Table 3.4 lists the results of mutation analysis experiments with the previously
described ITC99 benchmarks using longer tests, covering also branches. In most
cases mutation coverage has increased, but it still remains low, which clearly
states the need for better test sets. The enormous rise of processing time with b13
can be explained by the fact that test length was increased 100 times.

Table 3.4. Mutation analysis experiments 2

 b01 b02 b04 b06 b09 b11 b13
Vectors 23 14 11 52 33 132 1148
Mutants inserted 154 78 233 336 213 375 972
Mutants killed 57 9 32 50 35 198 281
Mutation
coverage 0.37 0.12 0.14 0.15 0.16 0.53 0.29
Time, s < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.34 15.36

Results of the mutation analysis experiments on the CRC example are

presented in Table 3.5. The rows in this table have similar semantics to the ones
in Table 3.4. It can be seen that the HLDD-based mutation analysis time is in the
range of seconds. Again, the mutation coverage is very low (only 21 per cent)
compared to the code coverage. While partly explained by the short test set it
confirms the weak observation coverage guaranteed by code coverage tests and
motivates the use of mutation analysis.

51

Table 3.5. CRC example

 CRC
Vectors 42
Mutants inserted 1247
Mutants killed 268
Mutation
coverage 0.21
Time, s 3.73

3.2 ESL mutation analysis on System C TLM

Mutation analysis has been borrowed from the software-testing domain as a
technique for evaluating the quality of testbenches in validating digital systems.
This section presents a new method for applying mutation analysis on SystemC
hardware designs at Transaction-Level Modeling (TLM). The method injects
mutants by directly perturbing the SystemC code. Five key categories of mutation
operators are implemented in order to speed up the analysis process. In the section,
a comparison of mutation analysis at two different abstraction levels – TLM and
Register-Transfer Level (RTL), is carried out. The experiments show that
mutation analysis is considerably faster at TLM than it is at RTL while achieving
almost equal mutant coverage. Last but not least, TLM mutation analysis provides
also more readable feedback for the engineer to improve the testbench. The
section presents a novel method for mutation analysis directly working on
uncompiled SystemC TLM code.

This subsection is based on Paper II:

Guarnieri, Valerio; Di Guglielmo, Giuseppe; Bombieri, Nicola; Pravadelli,
Graziano; Fummi, Franco; Hantson, Hanno; Raik, Jaan; Jenihhin, Maksim; Ubar,
Raimund. “On the Reuse of TLM Mutation Analysis at RTL”. Journal of
Electronic Testing-Theory and Applications, 28(4), 2012, pp. 435–448.

3.2.1 State-of-the-art

The initial concept of mutation analysis was first proposed by Richard Lipton (R.
Lipton, 1971). However, major work was not published until the end of 1970s
(Budd T.A., Sayward F.G., 1977), (DeMillo R. A., Lipton R. J., Sayward F. G.,
1978), (Hamlet R. G., 1977).

In general, the results of mutation analysis greatly depend on the categories of
mutation operators used. Previous research has determined many different

52

categories to use in specific cases. The mutation testing tool Mothra (Choi B.J.,
et.al., 1989), (Offut, A. J., King, K. N., 1987), developed in the middle of 1980s
to inject and execute mutants on Fortran 77 programs, used three categories of
operators: operand replacement, expression modification and statement
modification. In total there were 22 elements in the categories. However, many of
them were very specific to Fortran language.

Following the approach of Mothra, (Agrawal H., et.al, 1989) focused on
determining a comprehensive number of mutant operator categories for the C
programming language. The operators were divided into four categories:
statement mutations, operator mutations, variable mutations and constant
mutations. In total there were 77 mutant operators, which were again very specific,
taking into account errors that alter the expected statement execution flow. The
increase in the number of operators with respect to Mothra, comes from the greater
complexity and expressiveness of the C language.

(Offutt A. J., Rothermel G., Zapf C., 1993) showed experimentally that a
selected set of five so called key operator categories provide almost the same
coverage as non-selective mutation, with cost reductions of at least four times with
small programs, and up to 50 times with larger programs. The approach presented
in this Thesis is based on these key operator categories.

Mutation analysis has been applied also to Java (Irvine S. A., et.al. 2007) and
SQL (Ma Y. S., Offut A. J., Kwon Y. R., 2005), (Tuya J., Suarez-Cabal M. J., De
La Riva C., 2006). Several approaches (Alexander R. T., et.al., 2002), (Belli F.,
Budnik C.-J., Wong W.-E., 2006), empirical studies (Lyu M.-R., et.al., 2003) and
frameworks (Bradbury J. S., Cordy J. R., Dingel J., 2006) have been presented in
the literature for mutation analysis of such languages.

(Hantson H., et al. 2010) propose a technique to apply mutation analysis to
high-level decision diagrams (HLDD). It produces good results for RTL designs
converted into HLDDs but does not support SystemC and higher abstraction
levels, including TLM.

Only in the recent years mutation analysis has been applied to languages for
system-level design and verification such as SystemC (Bombieri N., Fummi, F.,
Pravadelli G., 2008; Bombieri N., Fummi, F., Pravadelli G., 2009; Bombieri N.,
et.al., 2009; Lisherness P., Cheng K.-T. (Tim), 2010; Sen A., 2009), (Sen A.,
Abadir M. S., 2010). Mutation models for perturbing SystemC TLM descriptions
are proposed in (Bombieri N., Fummi, F., Pravadelli G., 2008; Bombieri N.,
Fummi, F., Pravadelli G., 2009; Sen A., 2009). In particular, these works present
different analysis of the main constructs provided by the SystemC TLM 2.0 library
and a set of mutants to perturb the primitives related to the TLM communication
interfaces.

53

(Sen A., 2009) propose a fault model by developing mutation operators for
concurrent SystemC designs. In particular it aims at verifying SystemC
descriptions by facing non-determinism and concurrency problems such as
starvation, interference and deadlock typical of such language.

(Bombieri et al., 2009) introduces the concept of functional qualification for
measuring the quality of functional verification of TLM models. Functional
qualification is based on the theory of mutation analysis but considers a mutation
to have been killed only if a testbench fails. A mutation model of TLM behaviors
is proposed to qualify a verification environment based on both testbenches and
assertions. The presentation describes at first the theoretic aspects of this topic and
shows advantages and limitations of the application of mutation analysis to TLM.

(Sen A., Abadir M. S., 2010) proposes to attack the verification quality
problem for concurrent SystemC programs by developing novel mutation testing
based coverage metrics. The approach involves a comprehensive set of mutation
operators for concurrency constructs in SystemC and defines a novel concurrent
coverage metric considering multiple execution schedules that a concurrent
program can generate.

(Lisherness P., Cheng K.-T. (Tim), 2010) presents SCEMIT, a tool for the
automated injection of errors into C/C++/ SystemC models. A selection of
mutation style errors is supported, and injection is performed though a plugin
interface in the GNU compiler collection (GCC), which minimizes the impact of
the proposed tool on existing simulation flows. The results show the value of high-
level error injection as a coverage measure compared to conventional code
coverage measures.

Different aspects concerning hardware or software implementation are
analyzed in all these works. All these approaches are suited to target basic
constructs, low-level synchronization primitives as well as high-level primitives
typically used for modeling TLM communication protocols.

The reuse of TLM testbenches for RTL fault simulation has been proposed in
(Bombieri N., Fummi F., Pravadelli G., 2006). In this work it is shown that if a
fault is detectable by an RTL test bench then it can be detected also by a TLM test
bench filtered by a transactor. However, the authors do not elaborate about the
differences between injecting mutants before or after TLM-to-RTL synthesis, as
is done in this Thesis.

The novelty of the approach presented in this Thesis lies in the fact that it faces
the reuse of mutation analysis through the different refinement steps of a TLM-
based design flow as done in the following sections. This Thesis extends the work
presented in (Guarnieri V., Hantson H., et. Al., 2011) and presents a
comprehensive work on mutation analysis for system level descriptions (i.e.,

54

SystemC TLM) and how such analysis can be reused once such descriptions are
synthesized at RTL.

3.2.2 Mutation analysis method

This section presents mutation analysis method implemented for SystemC
designs. The first step of mutation analysis is to find the optimal categories of
mutation operators. This task is fairly complicated because of the wide range of
possible changes that can be made in the source code. Determining the best
operator categories for a given example usually involves code analysis to find the
potential modification possibilities.

When designing the categories of mutation operators to be used, the following
guidelines have been followed:

 Mutant operators should accurately model the errors that may be
introduced by developers and engineers;

 Each mutant operator should change only one syntactic entity of a
program;

 Each mutant operator should generate a syntactically correct program
(i.e., the mutants can be compiled and executed);

 The categories should not generate too many mutants in order to have
reasonable execution times, but it should provide the best coverage of
possible design errors;

 The categories should minimize the possibility of generating an
equivalent mutant.

The focus of this method was not to propose new operators or operator
categories. Therefore, a slightly modified set of five key operator categories,
proposed in (Hantson H., et al. 2010), was used. In the experiments, those five
categories have provided almost the same coverage as non-selective mutation,
with cost reductions of at least four times with small programs, and up to 50 times
with larger programs (Offutt A. J., Rothermel G., Zapf C., 1993). The categories
of operators used in the current method are the following: arithmetic operator
replacement (AOR), logical connector replacement (LCR), shift operator
replacement (SOR), relational operator replacement (ROR) and unary operator
injection (UOI).

Table 3.6 shows the list of replacements for each mutation operator category.
In every case the operator is substituted by another operator from the group. This
is done until all operators are covered.

55

Table 3.6. Categories of mutation operators

Mutation operator List of replacements

AOR (arithmetic operator replacement)
Addition (ADD), subtraction (SUB),
multiplication (MULT), division
(DIV), modulo (MOD)

LCR (logical connector replacement) AND, NAND, OR, NOR, XOR
SOR (shift operator replacement) Shift left (SL), Shift right (SR)

ROR (relational operator replacement)
Equal (EQ), not equal (NEQ), greater
than (GT), less than (LT), greater than
or equal (GE), less than or equal (LE)

UOI (unary operator insertion) Negative (NEG), inversion (INV)

The injection process can be carried out in two ways:

 Fault simulation-based;

 Testbench-based.

In the fault simulation-based approach firstly the original, fault-free code is
simulated. After this, all mutants are injected one at a time, simulated and
compared against the result of the original code.

In the testbench-based approach firstly the whole mutant set is added to the
code and a counter is introduced for selecting mutants. Next the original code and
all mutants are simulated, one after another. For every mutant the result is
compared against the result of the original code. Currently the testbench-based
method is used and will be described more thoroughly in the next paragraphs.

Concerning the injection process, the original system description is first
analyzed and injection locations are identified. Then for each location a proper
mutation operator is applied, resulting in different versions of the current
statement being created.

In order to keep the following simulation phase easier and the result of the
injection more manageable, only one injected system description is created.
Instead of creating one separate description for each injected mutant, a system
description is generated that includes all the code produced by the injection phase,
and that allows to selectively activate one mutant at a time through the use of a
fault_number variable, properly driven by the testbench during the simulation
phase. Figure 3.3 illustrates the whole injection process.

56

Original system
desctiption

1. Identify
injection location

2. Apply mutation
operators accordingly

3. Injected system
description

1

2

if (fn == 1)

else if (fn == 2)

...

4

5

if (fn == 4)

else if (fn == 5)

...

1
2
3

4
5
6

Figure 3.3. Mutant injection overview

3.2.3 Experimental results

In order to validate the efficiency, in terms of speed and coverage differences of
the method at different abstraction levels, mutation analysis on a number of
designs was performed, three versions for each of them:

 TLM with mutant injection in the functionality part, which consists of
C++ code (TLM injected);

 RTL version obtained by synthesizing the injected functionality part
(from the previous step) with (Mentor Graphics Catapult C, 2010)
(RTL synthesized from injected);

 RTL version obtained by synthesizing the fault-free functionality part
(from the original design description) with Mentor Graphics Catapult
C, and then injecting mutants directly at this level (RTL directly
injected).

Designs used for the experiments are as follows:

 adpcm: performs adaptive differential pulse code modulation to
compress audio packets;

 div: filter for similarity analysis of image pixels;

 gcd: computes the greatest common divisor for two unsigned integers.

57

Experiments were carried out by injecting mutants on each version for each
design and then simulating them to compute mutation coverage. In total nine
experiments were made, and the results are shown in Table 3.7.

Table 3.7. Experimental results

Method TLM injected RTL synthesized
from injected TLM

RTL directly
injected

Design adpcm div gcd adpcm div gcd adpcm div gcd
of
mutants 66 45 21 66 45 21 61 16 18
of killed
mutants 23 44 19 23 44 19 25 16 17
Mutation
coverage 35% 98% 90% 35% 98% 90% 41% 100% 94%
of code
lines 835 441 284 4031 1586 919 788 347 378
Simulation
time (ms) 5 4 4 1651 84 3312 134 15 271

The results confirmed that mutants injected at TLM were preserved during

synthesis to RTL and the number of mutants remained exactly the same on the
TLM injected and RTL synthesized from injected versions of the designs.

From the perspective of simulation time, the results were completely different.
Simulation times of the RTL synthesized from injected version were drastically
increased, as Figure 3.4 shows. This again confirmed the expectations, as moving
to a more detailed abstraction level should result in longer run-times.

This highlights a benefit from injecting mutants directly to the TLM version,
because a very good simulation speed is achieved without losing accuracy, and
sufficiently accurate feedback is available even in the early phases of the design
process.

On the other hand, injecting mutants directly at RTL (RTL directly injected),
produces slightly better results in terms of mutation coverage, but at the price of
slower simulation times. Figure 3.4 and Figure 3.6 represent simulation times and
mutation coverage, respectively.

58

Figure 3.4. Simulation times

It is important though that a major drawback of such an approach is code
readability, as TLM code is much easier for a human being to understand and
modify than the automatically generated RTL code. Examples of TLM and
generated RTL code are shown on Figure 3.5 and Figure 3.7 respectively.

 rem = a % b;

 while (rem != 0) {

 a = b;

 b = rem;

 rem = a % b;

 }

Figure 3.5. SystemC code example at TLM

0

500

1000

1500

2000

2500

3000

3500

adpcm div
gcd

Simulation times (ms)

TLM injected

RTL synthesized from injected TLM

RTL directly injected

59

Figure 3.6. Mutation coverages

The difference between the two pieces of source code should be striking
immediately. The generated RTL code suffers from the lack of readability
deriving from being automatically generated by a high-level synthesis tool. In this
context, correctness and automatic code translation are the main priorities. In fact,
the most common scenario in high-level synthesis consists of obtaining the
synthesized description and providing it to other tools responsible for the physical
implementation. As such, the generated code is not really meant to be clearly
understandable or to be manually edited by human beings.

It was somewhat surprising that at RTL directly injected the number of possible
mutations decreased compared to TLM injected and RTL synthesized from
injected. This can be explained by the optimizations introduced by Catapult C
during the synthesis process, which often result in using less assignments and
operators than the corresponding description at TLM. Nevertheless, it must be
stressed that this version suffers from the readability problem outlined before.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

adpcm div gcd

Mutation coverages

TLM injected

RTL synthesized from injected TLM

RTL directly injected

60

 if ((mc_bool(rst.read()))) goto gcdAndLcm_Main;

 // C-Step 1 of Loop ‘gcdAndLcm_while’

 gcdAndLcm_rem_sva =

 CONV_STD_LOGIC_VECTOR(CONV_UNSIGNED(UNSIG

 NED(gcdAndLcm_b_sva_read_dft) %

 UNSIGNED(gcdAndLcm_rem_sva), 32), 32);

 gcdAndLcm_rem_sva = gcdAndLcm_rem_sva_1;

Figure 3.7. SystemC code example at generated RTL

It is worth noting that these experiments and the subsequent analysis led to an
improvement of the testbenches employed, making them more comprehensive by
considering corner cases which were not taken into account before. In one case a
bug in the design description was also discovered when investigating the reasons
for low mutation coverage. Thus, it can definitely be claimed that mutation
analysis allowed to evaluate the quality of the verification environment and to
verify the correctness of a design through simulation.

3.3 Conclusions

The section presented a new tool for mutation testing in hardware description
languages using the system model of high-level decision diagrams (HLDD). The
tool is integrated into the APRICOT verification environment. It is based on
HLDD simulation and graph perturbation. A strategy that relies on a restricted set
of five key mutation operators is developed in order to speed up the mutation
analysis.

Experiments on several ITC99 benchmarks and an industrial example prove
the feasibility of the approach. The tests showed that the mutation coverage was
always very low compared to the code coverage. While partly explained by the
short test sets applied it confirms the weak observation capabilities guaranteed by
code coverage tests and motivates the use of mutation analysis.

A method to automatically inject faults into the functionality of system
descriptions that works at different abstraction levels (TLM and behavioral RTL)
was presented. The novelty of the method lies in mutation analysis directly
working on uncompiled SystemC TLM code. Five key categories of mutation
operators were used to simulate the faults.

61

Experimental results with different versions of different designs showed that
injecting faults directly to RTL code provides slightly better mutation coverage.
However, this does not mitigate the loss in readability and simulation times when
compared to TLM.

62

4 RTL and ESL error correction methods

Verification is increasingly becoming the bottleneck in designing digital systems.
In fact, most of the verification cycle is not spent on detecting the occurrences of
errors but on debugging, consisting of locating and correcting the errors.
However, automated design-error debug, especially at the system-level, has
received far less attention than error detection.

This chapter presents design error localization and correction on High-Level
Decision Diagram (HLDD) Register-Transfer Level (RTL) followed by a case
study of existing ROBSY processor and finally design error correction for simple
C at Electronic System Level (ESL).

Subsection 4.1 presents design error localization and correction on HLDDs at
the RTL. Subsection 4.2 follows with a case study of and industrial
microprocessor ROBSY. In subsection 4.3 a method for design error correction in
C programs is presented.

4.1 Design error localization and correction on HLDDs at
the RTL

The subsection proposes a method for locating design errors at the source-level of
RTL hardware description language code using the design representation of
HLDD models and correcting them by applying mutation operators. The error
localization is based on backtracing the mismatched and matched outputs of the
design under verification on HLDDs. As a result of the localization step, all the
variables in the RTL description receive a suspiciousness score.

Subsequently, a mutation-based correction algorithm is applied providing
automated correction for the design under verification. Experiments on a set of
sequential RTL benchmarks show that the method is capable of locating the design
errors injected with a high accuracy, and a short run time. In fact a majority of the
errors injected in the experiments were identified as top suspects by the current
diagnosis algorithm. Furthermore, it is shown that because of this localization
accuracy the mutation-based correction requires very small number of iterations
and thus a short run-time.

This subsection is based on Paper III:

Raik, Jaan; Repinski, Urmas; Tšepurov, Anton; Hantson, Hanno; Ubar,
Raimund; Jenihhin, Maksim. “Automated design error debug using high-level
decision diagrams and mutation operators”. Microprocessors and Microsystems:
Embedded Hardware Design, 37(4), 2013, pp. 1–10.

63

4.1.1 State-of-the-art

Automated debug of design errors consists of two steps: error localization and
error correction. Error localization identifies the portion of the design responsible
for the erroneous behavior, while error correction is responsible for locally
modifying the functionality of the identified portion.

For error localization, simulation-based (Ali M, et. Al., 2005), (Wahba A.,
Borrione D., 1995), (Smith A., Veneris A., Viglas A., 2004), (Fey G., et.al, 2008),
(Chang K.-H., 2007), (Debroy V., Wong W. E., 2010) and formal approaches
(Könighofer R., Bloem R., 2011) are known. It is widely accepted that simulation-
based techniques scale well with the design size, but are not exhaustive while
formal techniques provide a high grade of confidence in the results but are
susceptible to the design complexity.

For error correction, error matching (Madre J. C., Coudert O., Billon J. P.,
1989), (Abadir M. S., Ferguson J., Kirkland T. E., 1988) and re-synthesis (Ali M.
F., et. Al., 2005) have been investigated in the literature. In particular, re-synthesis
provides a correction that is represented as a partial truth table based on the stimuli
under consideration. This kind of correction is not readable and cannot be easily
understood and verified by the design engineer. Moreover, the resynthesized
erroneous portion of the design is likely to fail when new stimuli will be added to
the suite.

Previous works on error debug for high-level models, such as the Register-
Transfer Level (RTL), are based on the work by (Smith A., Veneris A., Viglas A.,
2004). There is a range of works extending this idea of the SAT-based debug e.g.
(Fey G., et. Al., 2008, Chang K.-H., 2007). However, these methods reduce the
debugging problem to SAT or SAT Modulo Theory (SMT) solvers, which is an
NP-complete problem. Although SAT/SMT engines are being constantly
developed and improved, there is a limit to the circuit size where the approach is
applicable. The current Thesis considers a different approach relying on design
error localization utilizing HLDD backtrace that executes in polynomial time.
This means that much larger designs could be potentially handled by the method.

This Thesis utilizes HLDD backtrace and mutation as a source-level reasoning
engine for automated debug. The engine operates directly on the register-transfer
level. This results in a readable diagnostic feedback and is therefore better
understandable to the engineer than logic-level debug information provided by
previous methods.

Recently, a similar approach has been adopted in software testing. In (Debroy
V., Wong W. E., 2010), Debroy and Wong propose a program slicing based
diagnosis tool Tarantula to calculate the suspiciousness scores for operations and
apply mutation to correct C and Java programs. The current approach for hardware

64

debug and the one proposed in (Debroy V., Wong W. E., 2010) for software debug
were developed simultaneously and are independent of each other.

4.1.2 Backtrace

This section presents the algorithm for diagnostic tree generation using backtrace
on HLDD models. Followed by two analysis steps to perform error localization
on the set of diagnostic trees generated.

Firuge 4.1 Algorithm 3 presents the recursive diagnostic tree generation on
HLDDs. The process starts from the primary outputs (Line 2) and from each
clock-cycle (Line 3). Subsequently, the diagnostic tree is recursively generated
using the function RecursiveTreeGeneration.

1: GenerateDiagnosticTree()

2: For each primary output GO in the model

3: For each time-step t

4: δ(GO, t) =

5: RecursiveTreeGeneration(GO, t, δ)

6: End for

7: End for

8: End GenerateDiagnosticTree

9:

10: RecursiveTreeGeneration(Gy, t, δ)

11: SimulateHLDD(Gy) /* Figure 2.8 Algorithm 1 */

12: For each vi at the main activated path

13: If variable xk = xvi at-time step t is not in δ then

14: Add xk to δ

15: If xk is not a primary input then

16: RecursiveTreeGeneration(Gxk, t, δ)

17: End if

18: End if

19: End for

20: End RecursiveTreeGeneration
Figure 4.1 Algorithm 3. HLDD-based diagnostic tree generation

65

Figure 4.1 Algorithm 3 generates a separate diagnostic tree δ(GO, t) for each
output diagram GO at each clock-cycle t. The resulting diagnostic tree δ is a set of
pairs (xi, tj) that show at which time-steps tj the variable xi was backtraced.

4.1.3 Localization

In the following, two analysis steps that could be implemented for locating the
design error are presented. In order to perform the analysis, let us partition the set
of all diagnostic trees = δk(GO, t) into failing diagnostic trees F and passing
diagnostic trees P. A diagnostic tree is failing if δk(GO, t) of the simulated value
of output variable o Y on the faulty design differs from the corresponding value
of the golden device at time-step t. Otherwise, δk is called a passing diagnostic
tree.

Diagnosis step 1:

For each variable xi count the number cFAILED of failing diagnostic-trees δk F,
where xi is present at least in one of the pairs (x, t) of δk. Select the variables xi
receiving a non-zero score cFAILED as the set of suspected faults Xsuspected and sort
the set Xsuspected according to the score cFAILED. The variables with a higher score
are more suspected of causing the error than the ones with a lower score (Raik, J.,
et. al., 2013).

Diagnosis step 2:

Perform step 1. For each variable xstep1 Xsuspected count the number of passing
diagnostic-trees δl P cPASSED , where xstep1 is present at least in one of the pairs
(x, t) of δl. Compute the score cTOTAL=cFAILED / (cFAILED+ cPASSED) for variables xstep2.
Sort the set Xsuspected according to the score cTOTAL.

Step 1 is more exact as it can be easily proven that at least one of the variables
xv that is labeling a vertex v along one of the main activated paths in simulated
HLDDs must be also the cause of the error. However, step 2 may be unavoidable
in order to guarantee a good diagnostic resolution, especially if the number of
failing sequences is one or very small. In fact, the experiments presented in this
subsection fully confirm this observation.

The straight-forward implementation of this backtracing algorithm could be
time-consuming because of the square complexity introduced by the need to
backtrace from each subsequent time step back to the initial time step. Therefore,
in current implementation intermediate backtracing results were stored at each
time step in order to gain speed.

66

4.1.4 Localization example

Consider the following example of design error localization on the basis of the
erroneous GCD design description presented in Figure 2.10a. Let there be a given
set of input stimuli (e.g. a functional test) and a set of correct output responses for
the stimuli obtained on a golden model. Assume that there is a design error in it
such that at state s3 a faulty operation ab is assigned to the variable b instead of
the correct operation ba. In Figure 4.2, two test sequences are presented as tables.
Rows of the table show values of the variables at different time-steps. The first
column t lists the time steps t0,...,t6, The next three columns present the values of
input variables res, in1 and in2 in the test sequence. Final four columns show the
values of the internal variables state, a, b and the primary output out. These values
have been obtained by simulating the HLDDs in Figure 2.10b using Figure 2.8
Algorithm 1.

Figure 4.2a shows the test sequence for the design when primary inputs in1
and in2 hold values 4 and 2, respectively. This sequence passes the test, giving a
correct response that the greatest common divisor of 4 and 2 is two. In Figure
4.2b, another sequence is presented, which produces an erroneous the test.
Because of the design error, the primary output out receives an erroneous value.

t res in1 in2 state a b out t res in1 in2 state a b out

t0 1 4 2 - - - - t0 1 2 4 - - - -
t1 0 - - s0 4 2 - t1 0 - - s0 2 4 -
t2 0 - - s1 4 2 - t2 0 - - s1 2 4 -
t3 0 - - s2 2 2 - t3 0 - - s3 2 -2 -
t4 0 - - s1 2 2 - t4 0 - - s1 2 -2 -
t5 0 - - s4 2 2 ‐ t5 0 - - s4 2 ‐2 ‐

t6
0 - - s4 2 2 2

t6
0 - - s4 2 ‐2

2 ‐>
‐

a) b)

Figure 4.2. Passing a) and failing b) test sequences for the GCD design

In order to locate the design error, a diagnostic tree is generated on the HLDD
model of the GCD design presented in Figure 2.10b. Figure 4.3 presents the
diagnostic tree for the passing test shown in Figure 4.2a while Figure 4.4 presents
the diagnostic tree for the test shown in Figure 4.2b. As it can be seen from the
Figures, the “tree” generated by Figure 3.2 Algorithm 2 does not have a tree-like
structure. It is rather a directed graph, where the vertices represent a subset of the

67

time-expansion model of the design. Directed edges show relations between the
variables in the simulation process.

The algorithm starts at the time step when an output response is expected. For
the test sequences in Figure 4.2 it is the time step t6. Then, it continues towards
the first time step and recursively generates the diagnostic tree δ(Gout, t6). For the
sake of compactness of presentation, the reset variable res was omitted from
Figures 4.3 and 4.4. In addition, the operation a=b (in Figure 4.3 is also given in
a minimized form from ¬(a>b)˄¬(a<b) obtained by backtracing the HLDD for
the state variable (see Figure 2.10b).

--

--

--

--

--

--

t6

t5

t4

t3

t2

t1

t0 in1 in2

a := in1 b := in2 state := s0

state := s1

state := s2

state := s1

state := s4

out

a = b

a := a - b

a > b

Figure 4.3. Diagnostic tree for the passing test in Figure 4.2a

The diagnostic trees presented in Figures 4.3 and 4.4 can be used for effect-
cause diagnosis of design errors. Reasoning on the diagnostic trees takes place as
follows. The diagnosis tree in Figure 4.3 of the passing test sequence in Figure
4.2a contains vertices that are unlikely to be related to the cause of the error
because the sequence resulted in a matched output. However, the diagnostic tree
in Figure 4.4 was backtraced from the mismatched output out at time-step t6.
These two backtraces should give us information about the location of the error.

68

--

--

--

--

--

--

t6

t5

t4

t3

t2

t1

t0 in1 in2

a := in1 b := in2 state := s0

state := s1

state := s3

state := s1

state := s4

out

a > b

b := a-b

a < b

Figure 4.4. Diagnostic tree for the failing test in Figure 4.2b

Indeed, the vertex labeled by b:=a−b (marked by grey background in Figure
4.4) is among the faults selected as suspects for causing the design error by the
diagnosis step 2 presented in previous subsection. The four vertices with grey
background are chosen as suspects because only these four vertices are present in
the diagnostic tree of the failing sequence but are missing from the passing
sequence. Thus, in this simple example they receive the highest score. In a real
case there would be many failing and passing test sequences as well as there may
be multiple faults. Furthermore, in most cases it is not possible to partition the test
set into sequences. Figure 3.2 Algorithm 2 takes the latter assumption. Therefore
in experiments reported in current method, backtrace is started at each clock cycle
for each output.

The HLDD-based diagnosis is related to known debugging techniques such as
program slicing (Weiser M., 1981) and critical path tracing (Abramovici M.,
Menon P. R., Miller D. T., 1983). Modeling discrete systems by a system of
HLDDs may be regarded as a form of program slicing, because a separate diagram
is generated for each variable x in the program, reflecting the control flow
branches where assignments are made to x and including the data assigned to x.
Activating paths in HLDD diagrams using Figure 2.8 Algorithm 1 is equivalent to
critical path tracing. The technique of critical path tracing consists of simulating
the fault-free system (true-value simulation) and using the computed signal values

69

for backtracing all sensitized paths from primary outputs towards primary inputs
in order to determine the faults that would affect the primary output. In HLDDs
the same task is solved in a single run as a byproduct of simulation.

4.1.5 Correction

Mutation analysis is a technique that was initially introduced to fulfill the task of
evaluating the ability of testbenches to detect bugs in software programs. In this
subsection applying mutation operators for correcting a faulty circuit is
considered. Subsequent to the fault localization step described in Sections 4.1.3
and 4.1.4 mutation operators are applied to perturb the HLDD model of the RTL
design in order to perform the correction. It is intuitively clear that this kind of
correction may be extremely time-consuming in the worst case. The time required
to correct the circuit is proportional to the product of the number of vertices, the
number of mutants to be injected to each vertex and the number of test patterns in
the test.

The design error localization technique presented in previous sections allows
minimizing the number of vertices where the faults have to be injected. However,
it is crucial to keep the number of mutants as small as possible. In this Thesis, the
five key operators proposed in (Offutt A. J., Rothermel G., Zapf C., 1993) have
been implemented. In experiments, those five operators have provided almost the
same coverage as non-selective mutation, with cost reductions of at least four
times with small programs, and up to 50 times with larger programs (Offutt A. J.,
Rothermel G., Zapf C., 1993). The 5 sufficient operators are ABS, which forces
each arithmetic expression to take on the value 0, a positive value, and a negative
value, AOR, which replaces each arithmetic operator with every syntactically
legal operator, LCR, which replaces each logical connector with several kinds of
logical connectors, ROR, which replaces relational operators with other relational
operators, and UOI, which inserts unary operators in front of expressions.

The five operators have been implemented with the following constraints and
specifics. UOI currently replaces only unary operators with other unary operators
and ABS is applied to variables only, and not to expressions. Note also that in
HLDD there are no signed/unsigned variables, but signed and unsigned relational
operators exist. Therefore ROR replaces, both, signed and unsigned relational
operators. In AOR mutation by division and mod operations is allowed and a
check for the case of divide-by-zero is included. The reduced-5-key-operator
strategy represents a do fewer strategy. The purpose would be to reduce the cost
of the mutation analysis as much as possible.

70

4.1.6 Experimental results

Table 4.1 presents the main characteristics of the benchmarks used in the
experiments and their respective test sets. The benchmarks include the Greatest
Common Divisor (gcd) and the Differential Equation (diffeq) examples from the
HLSynth92 and HLSynth95 academic benchmarks suite, respectively. The design
risc is a processor example from a FUTEG research project. In addition, two real-
world designs were included to the experiments. These were a commercial core
for circular redundancy check (crc) from (Vertigo, 2009) and an open-source core
uart16750 from the OpenCores repository (OpenCores, 2010). The test stimuli for
the academic benchmarks were generated by a hierarchical test pattern generator
Decider (Raik J., Ubar R., 2000) while for crc the provided functional test bench
was applied and uart16750 was tested by 1000 randomly generated test vectors.
The second column reports the system complexity in terms of the number of
HLDD vertices. The third column represents the number of functions in the
design. Finally, the fourth column shows the number of stimuli in the test suite.

Table 4.1. Benchmarks and their test sets

Design # vertices # functions # gates # FFs # test stimuli
gcd 25 4 ~500 48 4000
diffeq 39 9 ~2500 80 16855
risc 61 16 ~2000 96 4000
crc 232 74 ~10000 171 193
uart16750 1747 401 ~100000 1403 1000

In Table 4.2, the design error localization experiments are provided. Faults
were injected into the design by randomly mutating a function one-by-one, so that
during each diagnosis run only one function was mutated. The column ‘success
rate’ shows the ratio of the times the actual location of the mutation achieved the
highest rank in relation to all diagnosis runs. The column ‘average resolution, #
suspects’ reports the average number of suspects that received the highest score.
Here, the diagnostic resolution is very good for step 2 and two or more times worse
for step 1. The same trend applies to the worst resolution, which reports the worst
case suspected fault list size over all the faults injected. The final column reports
the run times achieved on a PC, Dual-Core CPU, 2.6GHz, 3.25GB RAM,
Windows XP operating system are provided. This time includes both performing
step 1 and step 2 of the diagnosis algorithm. As it can be seen, the run times are
very different. They do not only depend on the circuit size but also the number of
vectors and the sequential depth of the designs. The run time for step 1 is actually
very much shorter than the time for steps 1 and 2 combined, because in step 1,
only mismatched outputs have to be backtraced. Table 4.2 excludes the error

71

localization details for the core uart16750. The time for localization for this core
was in average 90.0 s on the 1000 vector test.

Table 4.2. Design error localization experiments

Design Success rate,
ratio of correct

localizations

Average
resolution,
suspects

Worst
resolution,
suspects

Processing
time, s

 step1 step2 step1 step2 step1 step2
gcd 4/4 4/4 2.25 1.00 3 1 18.0
diffeq 9/9 9/9 3.33 1.88 6 3 700.0
risc 16/16 13/16 8.18 1.93 11 5 0.3
crc 74/74 69/74 31.83 9.04 50 20 0.5

As shown in the previous table, a majority of the errors injected in the
experiments were identified as top suspects by the diagnosis algorithm. Because
of this localization accuracy the mutation-based correction requires a very small
number of iterations and thus a short run-time. See Table 4.3, which lists the
average time to correct a design by applying mutation. The last column of Table
4.3 shows the average number of substitution functions (mutants) generated until
the design was corrected.

Table 4.3. Mutation based correction experiments

Design
Average correction

time. s
Average number
of substitutions

gcd 0.0040 2.00
diffeq 0.0410 3.62
risc 0.0276 5.52
crc 0.0422 4.13
uart16750 0.5810 9.11

4.2 Localization case study

As a case study, the approach was evaluated by debugging an industrial processor
developed as a part of the ROBSY (Reconfigurable On Board self test SYstem)
project. This custom processor follows a new test approach (Meza-Escobar J.H.,
et.al., 2012), (Sachsse J., et.al., 2011) to improve the fault coverage and reduce
the test time of Printed Circuit Boards (PCBs) during the manufacturing process,
and it is developed in cooperation with a major vendor of PCB testing equipment.

72

The ROBSY processor is classified as a Single Instruction Single Data (SISD)
processor with separated program and data buses (Harvard architecture). The
processor has many of the properties of a Reduced Instruction Set Computer
(RISC), and uses the Wishbone protocol (WB) for the I/O transactions. The
current implementation of the processor core contains 17K lines of VHDL code.
There are 481 direct signal assignment statements, 413 branches and 1573
conditions.

This subsection is based on Paper IV:

Jenihhin, Maksim; Tšepurov, Anton; Tihhomirov, Valentin; Hantson, Hanno;
Raik, Jaan; Ubar, Raimund; Bartsch, Gu¨nter; Meza-Escobar, Jorge Hernan;
Wuttke, Heinz-Dietrich. “Automated Design Error Localization in RTL Designs”.
IEEE Design & Test of Computers, 1, 2014, pp.83–92.

73

Front-end

VHDL

Parsing

AST

Elaboration

IG

ZDB

Back-end

SimulationStatic analysis Other applications

Automated debug

Figure 4.5. zamiaCAD framework

The bug localization method described here in Figure 4.5, has been

implemented on top of an open source HDL-centric framework zamiaCAD
(Tšepurov A., et. al., 2012), which puts emphasis on scalability and non-
intrusiveness. The front-end of zamiaCAD includes a parser and an elaboration
engine that both support full VHDL 2002 standard specification. On the back-end
side the framework allows design simulation, static analysis and other applications
such as synthesis and design structure visualization. zamiaCAD has an Eclipse
IDE plug-in based agile graphical user interface for advanced design entry and
navigation.

74

An object database ZDB (zamiaCAD Data Base), which has been custom-
designed and highly optimized for scalability and performance is used for
zamiaCAD applications. The database is HDL independent and able to
accommodate extremely large designs. Full elaboration in zamiaCAD
semantically resolves the Abstract Syntax Tree (AST) generated by the parser and
results in a set of scalable Instantiation Graph (IG) data structures, stored in ZDB.
Instantiation Graph is a data structure represented by a densely connected graph
of semantically resolved objects representing elements of hardware design.

IG is the basis for zamiaCAD applications. In order to handle designs that do
not fit into memory, ZDB containing the elaborated design is automatically and
efficiently persisted to disk, thus saving processing time. As demonstrated in
(Tšepurov A., et. al., 2012) the framework is capable of handling very large
industrial multi-core designs (tens of millions of VHDL code lines, e.g. a SoC
made of more than 3500 Leon3 processor cores).

4.2.1 Statistical bug localization

The statistical bug localization method assumes that design verification has been
performed and an erroneous behavior at observable outputs of the processors has
been detected. The method is based on four main phases: static slicing, dynamic
slicing, statistical suspiciousness ranking of the HDL code items and an optional
cone inspection phase. First, the design is simulated in order to obtain the list of
executed statements and information about passed and failed test cases. A test case
is considered to be passed if the simulated output responses match with expected
ones and it is regarded as failed otherwise. Then, static slicing computation is
performed based on generating reference graphs. Subsequently, dynamic slicing
reduces the debugging analysis to all the code items that actually affect the
design’s faulty behavior for a given test case. Finally, the statistical
suspiciousness ranking assigns a suspiciousness score to each code item based on
its presence in the dynamic slices and on the information of passed/failed test
cases. Intuitively, if a code statement occurs very frequently in executions
revealing the error, it is very likely to contain a bug. The statistical ranking is
performed for the statement items in the HDL code. In order to reveal the bug
locations more accurately, the suspiciousness ranking is performed also
hierarchically for the branches and conditions that the ranked statements may
have. Figure 4.6 presents the statistical bug localization flow.

75

Simulation

Design

Test cases

Static slicing Static

Executed
statement

Pass / fail data

Dynamic slices

Ranked list of
code items

Dynamic slicing

Statistical
ranking

Cone inspection
(optional)

Bug location

Correction

Figure 4.6. Statistical bug localization flow

Currently debugging is considered as a process of locating the failure, with the

correction task being left to the designer. After the designer has received the
ranked list of code items the following task is to localize the root cause of the
erroneous behavior. Likely locations for bugs are in those code items having the
highest suspiciousness scores in the list. In a simple case the designer has to
inspect code items at the top of the ranked list, which score is higher than a
preselected threshold value Sthreshold. Ideally, when the automated localization
method is accurate enough, then the artifact with the highest score leads us to the
location of the bug, or alternatively the bug is localized among very few highly
ranked artifacts. In the case study presented here it can be seen that in many cases
the bug was attached to an artifact with the absolutely topmost rank. Thus, in the
majority of situations inspecting the first, or few highest ranked, code artifacts
reveals the bug location. However, there exist cases where the statistical ranking
does not directly pin-point the root location of the error, and the actual location is
not among the highest ranking code items, or too many items share the highest
rank. In those cases the case study showed that it is easy to locate the bug by
activating depth-limited forward and backward cones from the signals included to
the highest ranked items. This type of cone activation is supported by the

76

zamiaCAD infrastructure of through-signal assignments search. The study
showed that only low depth cones (up to 1 level) starting from the signals of the
very highest ranked artifact need to be inspected in practice. Figure 4.7 illustrates
the process of code inspection by the designer.

Suspiciousness

score

Likely bug locations

Rank of
code artifacts

Inspect code items i,
where the score S(i) > Sthreshold

Bug localized?

Inspect cones of
length k from signals

of n top items

Done!

Yes No

Figure 4.7. Inspection of likely bug locations

4.2.2 Motivational example

Consider the motivational design example shown in Figure 4.8 that presents a
VHDL implementation of a signal chopper design named chopper. The chopper
design has 3 processes calculating 4 outputs representing different chops for the
input signal SRC based on the design configuration by inputs INV and DUP. It is
assumed that the design has 5 individual tests T1-T5 of varied length each keeping
the values of INV and DUV constant while flipping the value of the SRC input
and having appropriate behavior of the clock and reset signals (CLK, CLKN,
RST). The design has a bug on line 28 where instead of correct assignment F0 <=
FF; the design has a buggy assignment F0 <= not FF;. Test cases T1, T3 and T4
are able to detect the bug and are referred to as failing tests, while test cases T2
and T5 pass despite the presence of the bug and are referred to as passing tests,
respectively. The faulty behavior of the design caused by the failing tests is
observed at output TAR_f (assigned at line 46).

77

Figure 4.8. Bug localization on a motivational example

78

4.2.3 Static slicing

The presence of concurrent constructs, such as the ones found in HDLs versus
sequential software languages, makes static slice computation considerably more
complicated (Clarke E. M., et. al., 1999). zamiaCAD exploits its elaborated model
referred to as Instantiation Graphs (IGs) (Tšepurov A., et. al., 2012) for this
purpose. Given the IG model it is possible to perform a signal references search
through its assignments, both backward to find the dependencies and forward to
find other signals and variables influenced by the signal. The resulting reference
graph has the signals and variables in its nodes and the dependencies are
expressed by directed edges. It may contain cyclic dependencies and may be very
large, especially if the search was initiated from primary inputs/outputs of the
design. It is possible to limit such search by constraining the depth of the graph.
An example dependency graph computed for the chopper design’s output TAR_f
is shown in Figure 4.9.

SOURCE

SRC

INV

RST CLK DUP

FF

F0

TAR_f

Figure 4.9. Through-signal-assignment search based backward reference graph on
the signal TAR_f in the chopper design

Given the reference graph, the HDL statements representing the signal and

variable dependencies in its edges are collected into a set. The resulting set
represents a static slice on the signal of interest. However the approach for static
slice computation does not consider the order of HDL assignment statements and
can therefore be slightly too optimistic i.e. it can potentially include some
statements that do not represent dependencies influencing the signal of interest
into the static slice. It can be observed only for certain combinations of variable
(versus signal) assignments which are a rare case in practical HDL descriptions.

79

The column Static Slice in Figure 4.8 marks VHDL statements of a static slice
on the TAR_f output by triangles. Static slicing allows having a design ”filter”
eliminating from the analysis space the design parts that do not influence the signal
of interest. As a result in the chopper design example the entire process FALLING
and a large part of other statements were excluded from the further analysis.

4.2.4 Suspiciousness ranking based on statement/branch coverage
metrics

The statistical suspiciousness ranking procedure used in this Thesis is based on
design simulation by a diagnostic test. A requirement for the diagnostic test is that
it has to contain a set of independent test cases (e.g. separated by design reset)
where both failing and passing test cases are represented. The quality of the
statistical ranking is highly dependent on the quality of the diagnostic test.
Functional tests for processors are suitable as diagnostic tests because they are
divided into separate test cases for processor instructions, so that each such test
case can be executed independently.

The column Executed Statements in Figure 4.8 marks the VHDL statements
executed during design simulation with each of the 5 tests by circles. A fraction
of the set of executed statements can be excluded from the further analysis by
applying a static slice filter on an output signal where the faulty behavior was
observed. This approach allows obtaining a dynamic slice of the design on this
signal. The column Dynamic Slices in Figure 4.8 marks the VHDL statements
taking part in the dynamic slices of the tests by rectangles. Thus the analysis space
for the current example was reduced by 2.2 times (42 covered statements in
dynamic slices versus 92 statement executions by the diagnostic test).

The statistical suspiciousness score for ranking of the HDL code item i is
calculated as shown in Formula 1:

ܵሺ݅ሻ ൌ 	

݈݀݁݅ܽܨ
݈݀݁݅ܽܨ݈ܽݐܶ

݀݁ݏݏܽܲ
݀݁ݏݏ݈ܽܲܽݐܶ

݈݀݁݅ܽܨ
݈݀݁݅ܽܨ݈ܽݐܶ

	ሺ1ሻ

Where S(i) is the suspiciousness score value of the code item i, Passed and
Failed are counts of passing and failing tests that covered the code item i in the
dynamic slice, while TotalPassed and TotalFailed are the total numbers of the
passing and failing tests in the complete diagnostic test, respectively.

80

Further zamiaCAD environment visualizes by colors the suspiciousness level
of HDL code items (i.e. statements, branches, conditions) based on their scores
S(i). The score values are interpreted as follows:

 S(i)=1 - the code item i is highly suspicious to contain or to lead to the

bug

 S(i)=0 - the code item i is above suspicion

 S(i)=Sthreshold - the code item i cannot be emphasized by the analysis

Here 0<Sthreshold<1 is the suspiciousness threshold specified by the designer and
is by default equal to 0.5. The code items having score values in-between 0 and
Sthreshold and in-between Sthreshold and 1 represent corresponding levels of
suspiciousness. The ranking of code items is performed according to the score
values starting from the highest. Code items without a score are either eliminated
from the analysis by the static slice filter or not covered by the diagnostic test.

An example of applying the suspiciousness ranking to the chopper design is
demonstrated in Figure 4.8. Here the assignment statements at lines 27 and 28
were calculated as the most suspicious (score S=1.0) and are assigned with the
first rank. The statement at line 15 has score S=0.57 and therefore a lower rank.
The assignment statements at lines 13 and 30 have scores 0.4 and 0.0
correspondingly and are therefore considered above suspicion and not assigned
ranks.

4.2.5 Hierarchical analysis based on condition coverage

As it will be demonstrated further, the ROBSY processor case study emphasizes
an important general category of design errors that are difficult to localize. They
are bugs in complex condition expressions of conditional statements. E.g. Bug 1
in this case study is an erroneous comparison of one of the 35 conditions in a
conditional assignment when of the ALU module. Localization of such bugs is
assisted by suspiciousness ranking of conditions.

It is proposed to hierarchically rank conditions of the selected suspicious
branches that belong to suspicious statements. Formula 1 is applied for this
purpose considering for i branches and conditions instead of statements. A
detailed example for hierarchical conditions ranking and its application for bug
localization is demonstrated on example of a real bug (Bug 1) localization in the
ROBSY processor further in the next section.

81

4.2.6 ROBSY processor: functional test

To verify the correct functionality of the Instruction Set Architecture (ISA), a
functional test was developed. The functional test consists of a test program
written in assembler, executed in a predefined order to test all the instructions
supported by the processor. The test program is divided into sub-tests, where each
sub-test is in charge of testing a specific instruction and setting register R1 to a
specific value that acts as a sub-test label (error code). During the sub-test
execution, it is evaluated if the values obtained in the registers, flags, etc., are as
expected. Figure 4.10 has an example of a sub-test corresponding to the compare
(CMP) instruction.

 ; check CMP with flags (register content unsigned)

 MOV R1, 01; -- error code 01--

 MOV R2, A3;

 MOV R2, 05;

 JZ fail; if R2 equals 05 (jump zero)

 JC fail; if R2 < 05 (jump carry)

 CMP R2, A3;

 JNZ fail; if R2 not equal 05 (jump not zero)

 JC fail; if R2 < 05

 MOV R3, A4;

 CMP R2, R3;

 JNC fail; if R2 > R3 (jump not carry)

Figure 4.10. ROBSY processor test program

In the case of an unexpected value, the processor goes to the code section
labeled with “fail”. Here the execution is aborted and the error code of the failed
sub-test is written to the WB register. If all sub-tests are successfully executed, a
pass code is written to the WB register, interrupts are activated and the processor
enters into an infinite loop. By looking at the value of this register at the end of
the simulation, it is possible to distinguish if the test execution was successful or
not.

82

4.2.7 Set of documented design errors

The ROBSY design team has documented a set of their VHDL coding bugs that
have the following nature:

 Bug 1 A wrong register is used as one of the operands in a very long
conditional expression (35 operators) inside a conditional signal
assignment. Possibly, due to a copy-paste error.

 Bug 2 An entire conditional sub-expression (3 operators) resides in the
wrong branch of a conditional signal assignment, which contains 9
branches in total.

 Bug 3 Both, a missing branch and a missing driver in a short
conditional signal assignment.

 Bug 4 A wrong enumeration constant is used in a comparison
operation inside a conditional signal assignment.

 Bug 5 A wrong driver is used in a conditional signal assignment. More
specifically, register R is not updated with its newly computed value
typically stored in R_next or R_new signal. Instead, the same register
R is used as a driver, which indicates an obvious copy-paste error.

 Bug 6 A missing conditional sub-expression (3 operators out of 6
required ones) in one of the 4 branches of a conditional signal
assignment.

 Bug 7 One bit of a register is always and unconditionally set to 0. The
whole code line to blame is unnecessary and hence incorrect.

4.2.8 Experimental results

This section presents experimental results for the design errors localization
approach evaluation on the industrial processor ROBSY. For the purpose of the
current approach the original functional test (i.e. an Assembler program) was split
into 31 independent sub-tests, each targeting a separate instruction. Each of the 7
buggy versions of the processor was simulated with the resulted diagnostic test.

83

Figure 4.11. Details of automated localization

Figure 4.11 demonstrates the hierarchical localization of Bug 1. The grey areas
denote that some detailed information was omitted from the figure. First the
dynamic slices (intersection of executed statements with the static slice on an
observable faulty output) were generated for all of the test cases and the statistical

84

suspiciousness ranking was performed. This analysis resulted in 14 statement
items (out of the initial total 481 assignment statements) whose suspiciousness
score S was above the default suspiciousness threshold Sthreshold =0.5. The figure
shows in the second column Stm. score the scores for these 14 suspicious
statements, and in the first column their rank based on the score (6 ranks in total).
Most of the statements with high scores were found in the ALU processor module
(file alu.vhd).

The figure demonstrates a part of the actual VHDL code for the conditional
assignment of the overflow flag signal svFlag_new(0). Bug 1 is located in the
condition expression at line 266 (correct comparison had to be made between
signals svRes(cnD_w) and REG_SOURCE_DEST_IN instead of
svOp_mux(cnD_w)). This complex conditional assignment (lines 260-283)
contains 3 individual assignments at lines 260, 274 and 283. The first two
assignments have 3rd and 5th ranks while the last one has the score S = 0.5 and is
filtered out together with other statements with scores 0.5 and less.

The automated localization iteratively advises the designer to consider as bug
location candidates the statements with the highest ranks starting with the one at
line 110 in alu.vhd, followed by statements at line 108 in alu.vhd and lines 155
and 158 in data_interface_mod.vhd (complemented with hierarchical analysis of
the corresponding branches and conditions). Further it will advise the designer the
statement at line 260 in alu.vhd with the next rank 3 and score value 0.64. The
hierarchical analysis will proceed with score computation of the branches of this
statement (column Bran.score). The suspiciousness scores of separate condition
evaluations to ‘true’ and ‘false’ related to this branch artifact are also calculated.
The ones that have score S > 0.5 are specified in column Cond. score. One of the
highest scores here has the logical and at line 267. One of its operands is actually
the incorrect signal comparison documented as Bug 1.

Table 4.4 demonstrates the statistics of applying the bug localization approach
to all of the 7 bugs. The second column depicts the ratio of failing versus passing
test cases for the bugs. The third column in the table shows how many statements
were proposed as bug location candidates by the statistical ranking step. The
column also demonstrates these numbers in percentage of the total number of the
statements which was 481. The fourth column shows the rank of the statement
actually containing the bug. If ranking alone was not sufficient then the column
shows the rank of the statement from which cone inspection was activated.
Column six shows the direction (i.e backward/forward) and the depth of the cone
if cone inspection was required while column seven shows the number statements
added as bug candidates by this step.

85

Table 4.4. Statistics of the bug localization approach

Bug data
Automated localization

Manual
debug

Statistical ranking
Cone

inspection
Time
(min) Bug

name

Failed /
Passed

Test
cases

Statements
cand. / %

Located
stm.
rank

Cone
dir. /
depth

Added
stm.
cand

Time
(h)

Bug
1

4 / 24 14 / 2.9 % 3 - - 2 4

Bug
2

2 / 26 7 / 1.4 % 1 - - 2 2

Bug
3

2 / 26 20 / 4 % 3 - - 2 4

Bug
4

1 / 27 6 / 1.2 % (1) fw / 1 21
2

+(5)
4

Bug
5

2 / 26 11 / 2.3 % 1 - - 2 2

Bug
6

1 / 27 8 / 1.7 % (1) bw / 1 13
2

+(10)
5

Bug
7

1 / 27 21 / 4.3 % (1) fw / 1 10
2

+(1)
1

The diagnostic test was sufficient to automatically localize 4 of the 7 bugs by
the ranking step only. Pessimistic estimation of the candidates’ count with the
shown rank or higher that was necessary to check before the bug discovery is 5,
1, 12, and 4 for Bugs 1, 2, 3 and 5, respectively. Localization of the remaining
three bugs was required cone inspection as an addition step. The cones of a limited
depth were generated by zamiaCAD by the through-signal-assignment reference
search (also used for static slice computation) from the signals involved in the
highly ranked assignment statements. In the current case study Bugs 4, 6 and 7
were present within the cones of depth 1 on the signals from the statements with
the highest rank. These cones have added 21, 13, and 10 additional candidates as
shown in column six.

The last two columns in Table 4.4 compare time required for bug localization
by the automated localization approach and conventional manual debug process.
The time values for the manual process are reported by the ROBSY processor
designers based on their experience with locating these bugs using commercial

86

design environments. The time reported for the automated approach consists, first,
of time spent for the statistical ranking step which is mainly spent for simulation
of the 28 test cases and constantly equals to 2 minutes for the case study diagnostic
test. Second, it is estimation of time spent for manual cone inspection (shown in
brackets). The runtime required for the static slices and cones construction in
zamiaCAD takes a fraction of second and can be neglected.

Previous state-of-the-art automated hardware design error localization
approaches are not capable to handle industrial size RTL designs such as ROBSY.
Therefore direct comparison to other than manual approaches was not possible for
this empirical study.

4.3 Design error correction for C

Verification is increasingly becoming the bottleneck in designing digital systems.
In fact, most of the verification cycle is not spent on detecting the occurrences of
errors but on debugging, consisting of locating and correcting the errors.
However, automated design-error debug, especially at the system-level, has
received far less attention than error detection. The current section presents an
automated approach to correcting system-level designs. Dynamic-slicing and
location-ranking based method for accurately pinpointing the error locations
combined with a dedicated set of mutation operators for automatically proposing
corrections to the errors are presented. In order to validate the approach,
experiments on the Siemens benchmark set have been carried out. The
experiments show that the method is capable of correcting three times more errors
compared to the state-of-the-art mutation-based correction methods while
examining fewer mutants.

This subsection is based on Paper V:

Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di
Guglielmo, Giuseppe; Pravadelli, Graziano; Fummi, Franco. “Combining
Dynamic Slicing and Mutation Operators for ESL Correction”. Proceedings of the
17th IEEE European Test Symposium, IEEE Computer Society Press, 2012, pp.
1–6.

87

4.3.1 State-of-the-art

In debugging, the error localization is considered the most time expensive activity
and its quality affects the following (manual or automatic) correction phase
(Vessey I., 1985). In manual error localization, engineers run the design with some
input stimuli till they observe a failure; then, they iteratively place breakpoints,
analyze the system status, and backtrack to the error origin using a source-level
debugger, e.g., GNU GDB (Stallman R. M., Pesch R. H., 1991).

On the other hand, automatic error localization is based on different
methodologies. In particular, they may be simulation-based and use coverage
information (Wong W. E., Debroy V., Choi B., 2010), (Wong W. E., Qi Y.,2009),
(Jones J. A., Harrold M. J., 2005), binary search (Cleve H., Zeller A., 2005), and
statistical analysis (Liblit B., et.al., 2005), (Liu G., et.al., 2006). As well, formal
approaches for error localization exist that are very effective but may suffer the
state-explosion of the underlying solver (Staber S., Jobstmann B., Bloem R.,
2005), (Könighofer R., Bloem R., 2011). Of all these solutions, the Tarantula
(Jones J. A., Harrold M. J., 2005) coverage-based approach has been proven
suitable for real-world designs. Present Thesis provides an improvement for error
localization, which significantly reduces the overhead of the error-correction
phase based on ESL-code mutation.

After an error is detected and localized, it should be corrected. Design-error
correction for combinational circuits has been thoroughly studied for decades.
There exist, both, error-matching-based (Madre J. C., Coudert O., Billon J. P.,
1989), (Könighofer R., Bloem R., 2011), (Abadir M. S., Ferguson J., Kirkland T.
E., 1988) and resynthesis (Ali M. F., et.al, 2005) approaches. There have also been
attempts to generalize the above mentioned methods for design-error correction
of sequential circuits (Ali M. F., et.al, 2005), (Wahba A., Borrione D., 1995). In
particular, the SAT-based correction and re-synthesis approach developed by
(Smith A., Veneris A., Viglas A., 2004) has been extended to higher abstraction
levels such as register-transfer level (Chang, K.-H., et al., 2007), (Chang K.-H.,
Markov I. L.; Bertacco V., 2008). The re-synthesis approach for high-level
design-error correction has two main limitations. The correction is not readable
and thus cannot be checked by the designer. Moreover, the correction is limited
to the set of used stimuli: this is due to the logic optimization freedom created by
the partial truth table of the portion to be corrected.

Finally, in (Könighofer R., Bloem R., 2011) a symbolic-simulation-based
approach is proposed for both error correction and localization in ESL designs
described as C programs. All the reasoning is done with a Satisfiability Modulo
Theory (SMT) solver (De Moura L., Bjorner N., 2009), thus it can be classified
as a formal method. In particular, the approach performs the error correction by
using approximation heuristics and a template-based methodology, which gives

88

readable corrections. In the experimental-result section, comparisons of the
approach presented in this Thesis and (Könighofer R., Bloem R., 2011) are
provided, showing better correction capability and preserving correction
readability.

4.3.2 Error correction method

At electronic-system level (ESL), designs are described in an algorithmic way
with a high level of abstraction with respect to the final hardware implementation
(Könighofer R., Bloem R., 2011). In order to formally represent the ESL
algorithmic descriptions the flowgraph model has been chosen as an underlying
model. In such flowgraph, there is a one-to-one correspondence between the
program statements and nodes and edges represent the control flow of the
program. More precisely, the model representation is a special case of flowgraph
known as the hammock graph (Kašjanov V.N., 1975), which was proposed for
program slicing in (Weiser M., 1984).

Definition 2: A hammock graph is a structure H=<N, E, n0, ne>, where N is a
set of nodes, E is a set of edges in N×N, n0 is the initial node and ne is the end
node. If (n, m) is in E then n is an immediate predecessor of m and m is an
immediate successor of n. A path from a node n1 to a node n2 is a list of nodes p0,
p1, ..., pk such that p0 = n1, pk = n2, and for all i, 1 ≤ i ≤ k – 1, (pi, pi+1) is in E. There
is a path from n0 to all other nodes in N. From all nodes of N, excluding ne, there
is a path to ne.

89

Figure 4.12. The ESL description is modeled as a flowgraph, i.e., hammock graph.

Simulation and slicing are performed on the model representation

Figure 4.12 presents a simple ESL functionality in C language, i.e., column
ESL MODULE, and the corresponding flowgraph H, i.e., column H-GRAPH. In
the following, some definitions are introduced in order to explain the slicing
process on flowgraph structures.

Program slicing (Weiser M., 1984) is a technique for extracting portions of a
program affecting a selected set of variables of interest. By focusing on the
computation of only few variables the slicing process can be used to discard
portions of the program, which cannot influence these variables, thereby reducing
the size of the program. The reduced program is called a slice. Slices reproduce a
projection from the behavior of the initial program. This projection represents the
values of certain variables as seen at certain statements.

Definition 3: A slicing criterion of a program P is a tuple (x,V), where x is a
statement in P and V is a subset of the variables in P.

Informally, given a slicing criterion C = (x, V), a static program slice S consists
of all statements in program P that may affect the value of v∈V for a set of all
possible inputs at the point of interest, i.e., at the statement x. Static slices are
computed by finding consecutive sets of indirectly relevant statements, according
to data and control dependencies. Unfortunately, the size of the slices so defined
may approach that of the original program. Indeed, static slicing preserves the
behavior of the original program for all the possible input values. In this case, the

ESL module H-graph Static slicing
Executed

statements
Dynamic

slicing

read(a, b, c);

if (c > 0) {

 b = 0;

 c = 3;

 a = c + 2;

} else {

 a = b – c;

}

out = a;

n0

n1

n2

n3

n4

n5

n6

90

usefulness of the slices in debugging tends to diminish as the size of the slices
increases.

In (Korel B., Laski J., 1988) a more accurate slicing technique, i.e., dynamic
slicing was introduced. Dynamic slicing provides more narrow slices, preserving
the behavior of the original program and consisting of only the statements that
influence the value of a variable for a given input.

Figure 4.12 illustrates the concepts of static and dynamic slicing applied to the
flowgraph representation of an ESL functionality. In particular, the Figure reports
an intuitive correlation between static slicing, execution trace, and dynamic
slicing. Let us consider, for example, the slicing criterion C = (n6, {out}). In this
case the n6 is the end node ne of the hammock graph. The black dots in the column
STATIC SLICING indicate the statements included into the slice in case of static
slicing. These mark the statements that are needed in order to calculate the value
of the variable a at the node n6. It can be seen that the node n2 is excluded from
the slice because the statement b=0 is not necessary for calculating the value of
the variable out at the node n6.

The column DYNAMIC SLICING refines that Alice according to the execution
trace obtained with actual value assignments. Assuming that variables get
assignments a=2, b=4 and c=7, the slice shown in the last column of Figure 4.12
is obtained. The else branch of the condition is not activated by these input values
and therefore the respective statement are not included into the slice. The column
EXECUTED STATEMENTS shows all the statements that were executed in
current trace with the given input assignments. As one can see, the statements
occurring in the dynamically-computed slice are a proper subset of the statements
in the statically-computed Alice and execution trace. This narrows the search
space of the following step for ranking the error locations.

In this subsection, a design-error localization approach is considered, where
ESL implementations fail on some of the given test cases. The error localization
relies on error detection results. The mechanisms of the latter are out of scope of
this Thesis and may involve for instance the golden output responses specified by
the test cases, assertions supplied with the test environment or results obtained
from analyzing the specification (e.g. UML, SW program, etc.).

The error localization method is based on calculating the dynamic slices for all
the observable outputs of the system with all the test cases. Depending on whether
an output response obtained by a given slice is correct or not, the slice is marked
as a passed or failed one, respectively. Then, a statistical and coverage-based
approach is implemented assigning score to flowgraph nodes based on the number
of times they were included into failed slices with respect to the number of times
they occur in the previous executions. Finally, the flowgraph nodes are ranked
according to this score, referred to as the suspiciousness score.

91

In details, the error ranking and localization takes place as follows. Let T be a
test suite consisting of test cases ti for verifying the functionality of the ESL
description. Let H be the flowgraph associated with the description. Let yj be the
observable output variables of the design. Finally, let the nodes nj of H be the
respective nodes were value assignments to yj are made. Over each test case ti and,
in turn, over each observable output variable yj a dynamic slice dij is generated
according to the values of current test case ti and a slicing criterion C = (xj, {yj}),
where xj is the statement at the flowgraph node nj.

If yj resulted in a correct value at test case ti, then the dynamic slice dij is
included into the set of passed slices DPASSED. Otherwise, it is included to the failed
slices, i.e. dij∈ DFAILED. Each node nk of flowgraph H gets a score according to the
number of times cFAILED it is included into the set of failed slices DFAILED and the
number of times cPASSED it is included into the set of passed ones, i.e. DPASSED. This
score of suspiciousness is calculated as shown in Formula 2:

ሺ݊ሻݏݏ݁݊ݏݑ݅ܿ݅ݏݑݏ ൌ
ிூாܥ

ிூாܥ ௌௌாܥ
	ሺ2ሻ

The nodes nk are ranked according to the suspiciousness score with more
probable candidates for error correction having higher score values. This ranking
is used for selecting statements to be corrected by the mutation-based
methodology presented in the following sections.

4.3.3 Mutation-based error correction

Traditionally mutations are performed by perturbing the behavior of the program
in order to see if the test suite is able to detect the difference between the original
program and the mutated versions. The effectiveness of the test suite is then
measured by computing the percentage of detected, or killed, mutations.

In this subsection, mutation operators are applied for correcting erroneous
circuits. The goal is to develop an error-matching based correction approach,
which would be capable of modeling realistic design errors. Moreover, it is crucial
to select a limited number of mutation operators, because the perturbation and
simulation of erroneous design implementations with a large number of error
locations and mutant operators would become prohibitively time-consuming.

Table 4.5 presents the set of ESL-mutation operators that were implemented
in the error-matching based correction method. Since ESL descriptions in C
language are targeted, the focus is on algorithmic aspects of the description and
software-specific constructs and related errors, such as dynamic-memory
allocation, pointer arithmetic, and file I/O are not considered. This permits to
reduce the overhead of the code mutation phase and address only system-level
issues.

92

Table 4.5. List of mutation operators for correction

Mutation operator C operators/examples
AOR (arithmetic operator replacement) +, - *, /, %

ROR (relational operator replacement) ==, !=, >, <, >=, <=

LCR (logical connector replacement) &&, ||
ASOR (assignment operator
replacement)

+=, -=, *=, /=, %=, =

UOR (unary operator replacement) +, -, ~, !

Bitwise operator replacement <<, >>, &, |, ^
Bitwise assignment operator
replacement

<<=, >>=, &=, |=, ^=

Increment/decrement operator
replacement

x++, ++x, x--, --x

Number mutation (decimal digit
replacement in integers, floats and
array indexes)

0-9

Constant replacement unary minus /
unary plus / zero

+C, 0, -C

In particular, the mutation operators include replacement of C language
operators, which have been divided into several groups: arithmetic operators,
relational operators, assignment operators, unary operators, etc. In addition,
number mutations are performed by replacing each decimal digit in the numeric
values one-by-one with other decimal values. This includes both, integer and
floating point numbers and it covers also the array indexes. Also, constants are
mutated by inserting unary operators + and – as well as replaced by zero.

Figure 4.13 explains the mutation-based correction process. Subsequent to the
error localization step described in subsection 4.1.3, which ranks the statements
of the program, the suspected error locations are iteratively tried according to their
rank. The operators in the statements are, in turn, iteratively substituted by
mutation operators, i.e., valid operators from the same category. In other words,
replacing arithmetic operators by arithmetic operators, relational operators by
relational ones etc. These iterations stop when the simulation result confirms that
the mutated program provides output responses equal to the golden output
responses, in other words, a correction has been found. Otherwise the process
continues until there exist untried error locations and/or mutant operators, or when
a user-specified time limit is reached.

93

Flowgraph H

Mutated
flowgraph H

Mutant insertion

Flowgraph simulation
& comparison

Ranked list of error
locations

Library of ESL-
mutation operatos

Testcases: stimuli &
expected responses

H’ and expected
responses match?

Untired locations
or mutants

No correction foundError corrected

YES

NO

YES NO

Figure 4.13. The mutation-based error correction flow

This mutation-based correction method is an error-matching approach. Error-

matching is known to have the limitation that it is generally not capable of fixing
errors that are not included to the model. On the other hand, the mutation-based
error-matching provides easy-to-read corrections of system-level descriptions.
Moreover, the experiments show that the mutation-based approach can fix some
of the not modeled errors by proposing alternative but equivalent fixes.

4.3.4 Experimental results

Current debugging approach has been implemented as a module of a larger tool,
i.e., FoREnSiC (DIAMOND, 2011), which also features formal and semi-formal
approaches for debugging of ESL design (Könighofer R., Bloem R., 2011). This
framework supports debugging of algorithmic descriptions of hardware in C

94

language. In order to evaluate the method, experiments on Siemens benchmark
suite (Siemens, 2010) comparing it to a recently published formal (Könighofer R.,
Bloem R., 2011) and dynamic (Debroy V, Wong W. E., 2010) technique were
carried out. The front-end of FoREnSiC was applied for generating the flowgraph
models for the C language designs (Raik J., et.al., 2012).

In Table 4.6, the main characteristics of the benchmark circuits are presented.
Column LoC shows the number of lines of code for the corresponding C designs;
column TEST-CASE # shows the number of test cases for the design, which
include both failing test stimuli and passing stimuli; finally, column FAULTY-
VERSION # shows the number of faulty versions of the benchmark programs.
One faulty version from benchmark schedule2 was exploded because the design
error did not result in any test case failure making the correction process
meaningless.

Table 4.6. Characteristics of Siemens benchmarks

Design LoC Test-case # Faulty version #
replace 507 5542 32
schedule 397 2650 9
schedule2 299 2710 9
tcas 174 1608 41
tot_info 398 1052 23
print_tokens 539 4130 7
print_tokens2 489 4115 10

In Table 4.7, the results of the design error correction experiments are
presented. Current method is compared to two recently published methods: a
symbolic-simulation-based method (Könighofer R., Bloem R., 2011) and a
mutation-based method (Debroy V, Wong W. E., 2010). For each methodology,
columns # FIXED show the number of corrected faulty model versions and
Columns % FIXED show the percentage of corrected models from the total
number of faulty model versions.

95

Table 4.7. Design error repair experiments

Design (Könighofer
R., Bloem R.,
2011)

(Debroy V,
Wong W. E.,
2010) Current method

fixed

%
fixed

fixed

%
fixed

fixed

fixed

Mutants
examined

replace - - 3 9.4 12 37.5 855.2
schedule - - 0 0.0 2 22.2 188.0
schedule2 - - 1 11.1 3 33.3 460.7
tcas 7 17.1 9 22.0 26 63.4 131.1
tot_info - - 8 34.8 15 65.2 781.3
print_tokens - - 0 0.0 1 14.3 825.0
print_tokens2 - - 0 0.0 7 70.0 952.3

Total: N/A 16.0 50.4 599.1

As it can be seen from the table, current approach clearly outperforms
(Könighofer R., Bloem R., 2011), where only 8 faulty versions (out of 41) of tcas
design are analyzed. The approach in (Könighofer R., Bloem R., 2011) is able to
correct 7 out of these 8 faulty versions, whereas the current approach corrects all
8. Furthermore, due to the underlying solver, the formal approach (Könighofer R.,
Bloem R., 2011) is only able to model the designs which bit-width is reduced from
32 to 8 bits.

With respect to (Debroy V, Wong W. E., 2010), the current method increases
the percentage of successful corrections from 16.0% to 50.3%. Thus, the rate of
corrections is increased by the factor of three.

It is important to stress that the increase in successful fixes does not come at
the expense of more mutants to be considered. The last column of Table 4.7 shows
the localization accuracy in terms of the average number of examined mutants per
design error. In fact, this number is 599.1, which is even slightly fewer than 642
mutants in average obtained in (Debroy V, Wong W. E., 2010).

The significant increase in successful corrections with respect to (Debroy V,
Wong W. E., 2010) is due to the selection of mutation operators, which are not
limited to control flow errors. The run-time advantages in terms of the number of
mutants examined comes partly from the more accurate diagnosis method based
on dynamic slicing and location ranking.

96

4.4 Conclusions

The chapter presented a method for automated debug of multiple simultaneous
design errors for RTL circuits. A critical path tracing based error localization
method was implemented, which performs statistical analysis in order to rank
suspected error locations. Then, an error matching approach to correction was
applied implementing mutation operations. Localization of multiple erroneous
data operations and their mutation-based correction was analyzed in the
experiments. The two metrics of statistical analysis were compared and their
capabilities in localizing multiple errors were shown.

As a result of the experiments it was discovered that the localization of two
simultaneous errors by one of the metrics (metric B) is accurate and comparable
to that of a single error localization. In some cases, the multiple error localization
was even more accurate than in the case of single errors, which can be explained
by the fact that secondary ranking criterion was used to refine the localization.
Average correction times using mutation was just in fractions of seconds.
Therefore statistical error diagnosis combined with mutation based error
correction appears to be a feasible approach to automated debug of multiple design
errors.

The Thesis presents a method for correcting design errors in algorithmic
descriptions of system-level hardware. The method applies dynamic slicing and
location ranking to accurately pinpoint the error locations and combines it with a
dedicated set of ESL-mutation operators for automatically proposing fixes to the
errors. In order to validate the approach, experiments on the Siemens benchmarks
were carried out. The experiments show that the method is able to correct three
times more errors than previously achievable by mutation-based error correction
while examining fewer mutants. In addition, the method clearly outperforms a
recent formal correction approach.

RTL mutation analysis can be done by injecting mutants directly on the RTL
models (native RTL mutation analysis), or by injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis). It was shown that the second alternative provides
several advantages with respect to the first.

At the cost of a slower synthesis process, the TLM-derived mutation analysis
has faster simulation time. Moreover, it was shown that TLM testbenches can be
efficiently reused in TLM-derived mutation analysis. They achieve the same
mutant coverage at RTL as it is achieved on the TLM design. On the contrary, the
reuse of TLM testbenches in the native RTL mutation analysis provides us with
apparently worse results. However, the decrease observed in native RTL mutant
coverage has to be properly interpreted: it does not mean that the quality of TLM

97

testbenches is low. Indeed, it is mainly due to the bit width overestimation
performed by the automatic synthesis process, caused by the lack of bit accuracy
information in the initial TLM description.

Finally, the capability of TLM-derived mutation analysis of preserving the
mapping between TLM and RTL mutants was elaborated. Thus, allowing to
identify possible problems in the synthesis process more easily. Contrary to the
TLM-derived mutation, in the native RTL mutation analysis the link to TLM
functionality is lost, making it almost impossible to establish a relationship
between a mutant directly injected at RTL and the change it causes with respect
to the original TLM functionality.

The chapter presents an approach to automatic localization of design errors
(bugs) in processor designs. The approach is based on two main iterative phases:
dynamic slicing and statistical suspiciousness ranking of the HDL statements in
the design. The dynamic slicing reduces the debugging analysis to all the
statements that actually affect the design’s faulty behavior for a given stimuli.
Then, the suspiciousness ranking assigns a suspiciousness score to each statement
present in the dynamic slice.

The novelty of the approach is that it successfully in a scalable manner applies
static slicing for analysis space reduction to realistic-size industrial designs and
considers different coverage metrics for refining the bug localization. The
approach is fault-model free and supports localization of multiple bugs. The
original functional tests of processor designs can be used as a diagnostic test and
is sufficient for the approach. However, quality diagnostic test can further increase
the localization accuracy.

Last but not least, in this Thesis, a debug method for locating and correcting
design errors at the source-level of hardware description language code using the
design representation of high-level decision diagrams is presented. Experiments
on a set of sequential register-transfer level benchmarks and one real-world design
from the OpenCores repository show that the method is capable of locating the
design errors injected with a high accuracy. Because of this localization accuracy
the mutation-based correction requires a very small number of iterations and thus
short run-times.

98

Conclusions

Conclusions

The main contribution of the Thesis is to propose new tools, case studies and
methods to enable the designer automatically locate hard-to-detect bugs and offer
solutions to save time and effort.

The specific contributions of the Thesis are divided into four main topics:

 RTL mutation analysis

 RTL and ESL mutation analysis comparison

 RTL localization and correction

 ESL localization and correction

RTL mutation analysis

The Thesis presented a new tool for mutation testing in hardware description
languages using the system model of high-level decision diagrams (HLDD). The
tool is integrated into the APRICOT verification environment. It is based on
HLDD simulation and graph perturbation. A strategy that relies on a restricted set
of five key mutation operators is developed in order to speed up the mutation
analysis.

RTL and ESL mutation analysis comparison

The Thesis presented a method to automatically inject faults into the functionality
of system descriptions that works at different abstraction levels (TLM and
behavioral RTL). This is the first method for mutation analysis directly working
on uncompiled SystemC TLM code.

RTL mutation analysis can be done by injecting mutants directly on the RTL
models (native RTL mutation analysis), or by injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis). This chapter showed that the second alternative
provides several advantages with respect to the first.

At the cost of a slower synthesis process, the TLM-derived mutation analysis
has faster simulation time. Moreover, it was shown that TLM testbenches can be
efficiently reused in TLM-derived mutation analysis. They achieve the same
mutant coverage at RTL as it is achieved on the TLM design. On the contrary, the
reuse of TLM testbenches in the native RTL mutation analysis provides us with

99

apparently worse results. However, the decrease observed in native RTL mutant
coverage has to be properly interpreted: it does not mean that the quality of TLM
testbenches is low. Indeed, it is mainly due to the bit width overestimation
performed by the automatic synthesis process, caused by the lack of bit accuracy
information in the initial TLM description.

Finally, the capability of TLM-derived mutation analysis of preserving the
mapping between TLM and RTL mutants was elaborated. Thus, allowing to
identify possible problems in the synthesis process more easily. Contrary to the
TLM-derived mutation, in the native RTL mutation analysis the link to TLM
functionality is lost, making it almost impossible to establish a relationship
between a mutant directly injected at RTL and the change it causes with respect
to the original TLM functionality.

RTL localization and correction

In this Thesis, a debug method for locating and correcting design errors at the
source-level of hardware description language code using the design
representation of high-level decision diagrams is presented. Experiments on a set
of sequential register-transfer level benchmarks and one real-world design from
the OpenCores repository show that the method is capable of locating the design
errors injected with a high accuracy. Because of this localization accuracy the
mutation-based correction requires a very small number of iterations and thus
short run-times.

The Thesis presents a case study of automatic localization of design errors
(bugs) in processor designs. The approach is based on two main iterative phases:
dynamic slicing and statistical suspiciousness ranking of the HDL statements in
the design. The dynamic slicing reduces the debugging analysis to all the
statements that actually affect the design’s faulty behavior for a given stimuli.
Then, the suspiciousness ranking assigns a suspiciousness score to each statement
present in the dynamic slice.

The novelty of the approach is that it successfully in a scalable manner applies
static slicing for analysis space reduction to realistic-size industrial designs and
considers different coverage metrics for refining the bug localization. The
approach is fault-model free and supports localization of multiple bugs. The
original functional tests of processor designs can be used as a diagnostic test and
it is sufficient for the approach. However, quality diagnostic test can further
increase the localization accuracy.

100

ESL localization and correction

The Thesis presents a method for correcting design errors in algorithmic
descriptions of system-level hardware. The method applies dynamic slicing and
location ranking to accurately pinpoint the error locations and combines it with a
dedicated set of ESL-mutation operators for automatically proposing fixes to the
errors. In order to validate the approach, experiments on the Siemens benchmarks
have been carried out. The experiments show that the method is able to repair
three times more errors than previously achievable by mutation-based repair while
examining fewer mutants. In addition, the method clearly outperforms a recent
formal correction approach.

Future work

Future work includes an experimental study of real defects, a comparison with
HDL mutation analysis and identification of equivalent mutants.

Additional plans include improving the set of mutant operators in order to
cover more design errors, performing additional experiments, implementing a tool
for automatic fault injection and extending the work to the field of design error
correction with mutants.

101

References

Abadir M. S., Ferguson J., Kirkland T. E. "Logic design verification via test
generation". IEEE Transactions on Computer-Aided Design, Vol. 7, No. 1,
1988.

Abramovici M., Menon P. R., Miller D. T. “Critical path tracing - an alternative
to fault simulation”. Proceedings of the 20th Design Automation Conference,
1983, pp. 214–220.

Agrawal H., DeMillo R. A., Hathaway B., Hsu W., Hsu W., Krauser E. W.,
Martin R. J., Mathur A. P., Spafford E. “Design of mutant operators for the C
programming language”. Purdue University, West Lafayette, Indiana, Technical
report SERC-TR-41-P, 1989.

Alexander R.T., Bieman J. M., Ghosh S., Bixia J. “Mutation of Java objects”.
Proc. of IEEE ISSRE, 2002, pp. 341–351.

Ali M. F., Safarpour, S., Veneris, A., Abadir, M. S., Drechsler, R. “Post-
verification debugging of hierarchical designs”. Proceedings of ICCAD
Conference, 2005, pp. 871–876.

Belli F., Budnik C.-J., Wong W.-E. “Basic operations for generating behavioral
mutants”. Proc. of IEEE ISSRE, 2006, pp. 10–18.

Bolchini C., Baresi L. "Software Methodologies in VHDL Code Analysis".
Journal of Systems Architecture: the EUROMICRO Journal, Elsevier, Volume
44 , Issue 1, October 1997,pp. 3–21.

Bombieri N., Fummi F., Pravadelli G. “On the evaluation of transactor-based
verification for reusing TLM assertions and testbenches at RTL”. Proc. of
ACM/IEEE conference on design, automation and test in Europe (DATE), 2006,
pp. 1007–1012.

Bombieri N., Fummi F., Pravadelli G . “A mutation model for the SystemC
TLM 2.0 communication interfaces”. Proc. of ACM/IEEE conference on design,
automation and test in Europe (DATE), 2008, pp. 396–401.

102

Bombieri N., Fummi F., Pravadelli G. “On the mutation analysis of SystemC
TLM-2.0 standard”. Proceedings of IEEE international workshop on
microprocessor test and verification (MTV), 2009, pp. 32–37.

Bombieri N., Fummi F., Pravadelli G., Hampton M., Letombe F. “Functional
qualification of TLM verification”. Proc. of theACM/IEEE conference on
design, automation and test in Europe (DATE), 2009, pp. 190–195.

Bradbury J. S., Cordy J. R., Dingel J. “Mutation operators for concurrent Java
(J2SE 5.0)”. Proc. of IEEE ISSRE workshops, 2006, pp. 11–20.

Bryant R. E. “Graph-Based Algorithms for Boolean Function Manipulation”.
IEEE Trans. on Computers, Vol. C-35, No. 8, 1986, pp. 677–691.

Budd T.A., Sayward F.G. “Users guide to the Pilot mutation system”. Yale
University, New Haven, Connecticut, Technical report 114, 1977.

Certitude. [Online]
http://www.springsoft.com/products/functionalqualification/certitude, 2009.

Chang K.-H., Wagner I., Bertacco V., Markov I. "Automatic Error Diagnosis
and Correction for RTL Designs". Proceedings of the High-Level Design and
Validation Workshop (HLDVT), 2007.

Chang K.-H., Markov I. L.; Bertacco V. "Fixing Design Errors With
Counterexamples and Resynthesis". IEEE Trans. on CAD of ICs and Systems,
vol.27, no.1, January 2008, pp.184–188.

Chayakul V., Gajski D. D., Ramachandran L. “High-Level Transformations for
Minimizing Syntactic Variances”. Proc. of ACM/IEEE DAC, June 1993, pp.
413–418.

Choi B.J., DeMillo R.A., Krauser E.W., Martin R.J., Mathur A.P., Offutt A.J.,
Pan H., Spafford E.H. “The Mothra tool set”. Proceedings of the 22nd annual
Hawaii international conference on system sciences (HICSS), 1989, pp 275–284.

Clarke E., Fujita M., McGeer P., McMillan K.L., Yang J., Zhao X. „Multi
terminal BDDs: an efficient data structure for matrix representation“. Proc. of
Int’l Workshop on Logic Synth., 1993, pp. P6a: 1–15.

Clarke E. M., Fujita M., Rajan S. P., Reps T., Shankar S., Teitelbaum T.
“Program slicing for VHDL”. In Charme99, Bad Herrenalb, Germany,
September 1999.

103

Cleve H., Zeller A. “Locating causes of program failures”. Proc. of Int. Conf. on
Software Engineering, 2005, pp. 342–351.

CNN Money. [Online]
http://money.cnn.com/2014/09/30/technology/security/internet-bug/index.html,
2014.

Computer History Museum. [Online]
http://www.computerhistory.org/revolution/digital-logic/12/285, 2015.

Debroy V, Wong W. E. "Using Mutation to Automatically Suggest Fixes for
Faulty Programs". Proceedings of the Third International Conference on
Software Testing, Verification and Validation, 2010, pp. 65–74.

DeMillo R. A., Guindi D. S., McCracken W. M., Offutt A. J., King K. N. "An
extended overview of the Mothra software testing environment". Second
Workshop on Software Testing, Verification, and Analysis, July 1988, pp. 142–
151.

DeMillo R. A., Lipton R. J., Sayward F. G. “Hints on test data selection: Help
for the practicing programmer". IEEE Computer, vol. 11, April 1978, pp. 34–41.

De Moura L., Bjorner N. “Satisfiability modulo theories: An appetizer”. Formal
Methods: Foundations and Applications, 2009, pp. 23–36.

DIAMOND project website. [Online] http://www.fp7-diamond.eu/, 2011.

Dowson M. "The Ariane 5 Software Failure". Software Engineering Notes 22
(2): 84, March 1997.

Drechsler R., Becker B., Ruppertz S. „K*BMDs: a new data structure for
verification“. Proc. of European Design & Test Conf., 1996, pp. 2–8.

Fey G., Staber S., Bloem R., Drechsler R. “Automatic Fault Localization for
Property Checking”. IEEE Transactions on CAD of Integrated Circuits and
Systems, 27(6), 2008, pp. 1138–1149.

FP6 PROSYD (Property-Based System Design), FP6 funded STREP. [Online]
http://www.prosyd.org/, 2004.

Grötker T., Martin G., Liao S., Swan S. “System Design with SystemC”. Kluwer
Academic Publishers, 2002.

104

Guarnieri V., Bombieri N., Pravadelli G., Fummi F., Hantson H., Raik J.,
Jenihhin M., Ubar R. “Mutation analysis for SystemC designs at TLM”. Proc. of
IEEE Latin-American Test Workshop (LATW), 2011, pp. 27–30.

Hantson H., Raik J., Jenihhin M., Chepurov A., Ubar R., di Guglielmo G.,
Fummi F. “Mutation analysis with high-level decision diagrams”. IEEE Latin-
American Test workshop (LATW), 2010, pp. 1–6.

Hamlet R. G. “Testing programs with the aid of a compiler”. IEEE Treans Softw
Eng 3(4), 1977, pp.279–290.

Harris I. G. "A Coverage Metric for the Validation of Interacting Processes".
Proceedings of the conference on Design, Automation and Test in Europe
(DATE), 2006, pp. 1019–1024.

Hayek, G. Robach C. "From Specification Validation to Hardware Testing: A
Unified Method". Proceedings of the IEEE International Test Conference, 1996,
pp. 885–893.

Irvine SA et al. “Jumble Java byte code to measure the effectiveness of unit
tests”. Mutation testing workshop, 2007, pp. 169–175.

International Test Conference 1999 (ITC99) benchmarks. [Online]
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html, 2009.

International Technology Roadmap for Semiconductors (ITRS). [Online]
http://www.itrs.net/reports.html, 2013.

Jones J. A., Harrold M. J. “Empirical evaluation of the Tarantula automatic
fault-localization technique”. Proc. of Int. Conf. on Automated Software
Engineering, 2005, pp. 273–283.

Juniper Research. “‘Internet of Things’ Connected Devices to Almost Triple to
Over 38 Billion Units by 2020”. [Online]
http://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-
triple-to-38-bn-by-2020, 2015.

Jutman A. “Design error diagnosis in digital circuits”. Master thesis, Tallinn
University of Technology, 1999.

Kašjanov V. N. “Distinguishing Hammocks in a Directed Graph”. Soviet Math.
Doklady, vol. 16, no. 5, 1975, pp. 448–450.

105

Keutzer K., Newton R. Sematech. [Online]
http://public.sematech.org/Pages/home.aspx, 2015.

Kim C.-R. “Toyota to recall 1.9 million Prius cars for software defect in hybrid
system”. Reuters. [Online] http://www.reuters.com/article/2014/02/12/us-toyota-
recall-idUSBREA1B1B920140212, 2014.

Korel B., Laski J. “Dynamic program slicing”. Information Processing Letters,
vol. 29, no. 3, 1988, pp. 155–163.

Könighofer R., Bloem R. "Automated Error Localization and Correction for
Imperative Programs". Proceedings of 11th International Conference of Formal
Methods in Computer Aided Design (FMCAD), 2011, pp. 91–100.

Lam W. K. “Hardware Design Verification: Simulation and Formal Method-
Based Approaches”. Prentice Hall PTR, 2005.

Leveson, N. “Therac-25 Accidents: An Updated Version of the Original
Accident Investigation Paper”. Software, System Safety, and Computers,
Addison Wesley. [Online]
http://www.cs.washington.edu/research/projects/safety/www/therac-25.html,
1995

Liblit B., Naik M., Zheng A. X., Aiken A., Jordan M. I. “Scalable statistical bug
isolation”. ACM SIGPLAN Notices, vol. 40, no. 6, 2005, pp. 15–26.

Lions J. L. “Ariane 5, Flight 501 Failure”. Inquiry Board report. [Online]
https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html, 1996.

Lipton R. “Fault diagnosis of computer programs”. Carnegie Mellon University,
Student report, 1971.

Lisherness P., Cheng K.-T. (Tim). “SCEMIT: a SystemC error and mutation
injection tool”. Proc. of ACM/IEEE design automation conference (DAC), 2010,
pp. 228–233.

Liu G., Fei L., Yan X., Han J., Midkiff S. P. “Statistical debugging: A
hypothesis testing-based approach”. IEEE Trans. on Software Engineering, vol.
32, no. 10, 2006, pp. 831–848.

106

Lyu M.-R., Zubin H., Sze S. K. S., Xia C. “An empirical study on testing and
fault tolerance for software reliability engineering”. Proc. of IEEE ISSRE, 2003,
pp. 119–130.

Ma Y.-S,, Offutt A. J., Kwon Y. R. “MuJava: an automated class mutation
system: research articles”. Software Test Verif Reliab 15, 2005, pp. 97–133.

Madre J. C., Coudert O., Billon J. P. "Automating the Diagnosis and the
Rectification of Design Errors with PRIAM". Proceedings of ICCAD
Conference, 1989, pp. 30–33.

Manning S., Krisher T. “Toyota woes mount as gov't examines Prius brakes”.
Associated Press Writers. [Online]
http://web.archive.org/web/20100206043650/http://news.yahoo.com/s/ap/20100
204/ap_on_bi_ge/toyota_recall, 2010.

Mentor Graphics. “Catapult C Synthesis - Full-Chip High-Level Synthesis”.
[Online] http://www.mentor.com/esl/catapult/, 2010.

Mettler F.A. Jr., Ortiz López P., et al. “Investigation of an accidental exposure of
radiotherapy patients in Panama”. Report of a Team of Experts, International
Atomic Energy Agency. [Online] http://www-
pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf, 2001.

Meza-Escobar J.H., Sachsse J., Ostendorff S., Wuttke H. D. “Automatic
generation of an FPGA based embedded test system for printed circuit board
testing” Proc. LATW2012, 2012, pp. 75–80.

Nicely T. “Pentium FDIV flaw FAQ”. [Online]
http://www.trnicely.net/pentbug/pentbug.html, 2011

Offut A. J., Untch R. H. “Mutation 2000: Uniting the Orthogonal”. „Mutation
testing for the new century”. Kluwer Academic Publishers Norwell, 2001, pp.
34–44.

Offutt A. J., Rothermel G., Zapf C. "An experimental evaluation of selective
mutation". Proceedings of the IEEE Fifteenth International Conference on
Software Engineering, May 1993, pp. 100–107.

Offutt A. J., King K. N. “A Fortran 77 interpreter for mutation analysis”. Papers
of the symposium on interpreters and interpretive techniques. SIGPLAN, 1987,
pp. 177–188.

107

OpenCores design repository. [Online] http://www.opencores.org/, 2012.

Open SystemC Initiative (OSCI). [Online] http://www.systemc.org, 2009.

Open SystemC Initiative Transaction-Level Modeling (OSCI TLM-2.0)
Language Reference Manual. [Online] http://www.systemc.org, 2009.

Raik J., Repinski U., Hantson H., Jenihhin M., Di Guglielmo G., Pravadelli G.,
Fummi F. “Combining Dynamic Slicing and Mutation Operators for ESL
Correction”. 17th IEEE European Test Symposium, IEEE Computer Society
Press, 2012, pp. 1–6.

Raik, J.; Repinski, U.; Tšepurov, A.; Hantson, H.; Ubar, R.; Jenihhin, M.
“Automated design error debug using high-level decision diagrams and mutation
operators”. Microprocessors and Microsystems: Embedded Hardware Design,
37(4), 2013, pp. 1–10.

Raik J., Ubar R. “Fast Test Pattern Generation for Sequential Circuits Using
Decision Diagram Representations”. JETTA, Kluwer Academic Publishers. Vol.
16, No. 3, June 2000, pp. 213–226.

Sachsse J., Ostendorff S., Wuttke H. D., Meza-Escobar J. H. “Architecture of an
adaptive Test System built on FPGA” Proc. Architecture of Computing Systems
(ARCS), vol. LNCS 6566, 2011, pp. 86–97.

Schaller, R. R. “Moore's law: past, present and future” IEEE Spectrum, Volume
34, Issue 6, 1997, pp. 52–59.

Sen A. “Mutation operators for concurrent SystemC designs”. Proc. of IEEE
international workshop on microprocessor test and verification (MTV), 2009,
pp. 27–31.

Sen A., Abadir M. S. “Coverage metrics for verification of concurrent SystemC
designs using mutation testing”. Proc. of IEEE international high-level design,
validation and test workshop, 2010, pp. 75–81.

Siemens benchmark suite. [Online]
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/, 2010.

Smith A., Veneris A., Viglas A. “Design Diagnosis Using Boolean
Satisfiability”. Proc. Asia and South Pacific Design Automation Conference
(ASPDAC), 2004, pp. 218–223.

108

Staber S., Jobstmann B., Bloem R. “Finding and fixing faults”. Proc. of
Conference on Correct Hardware Design and Verification Methods, 2005, pp.
35–49.

Stallman R. M., Pesch R. H. “Using GDB: A guide to the GNU source-level
debugger”. Free Software Foundation, 1991.

Tasiran S., Keutzer K. "Coverage Metrics for Functional Validation of Hardware
Designs". IEEE Design & Test, Volume 18, Issue 4, July 2001, pp. 36–45.

Tao L., Jian-Ping F., Xiao-Wei L., Ling-Yi L. "Observability Statement
Coverage Based on Dynamic Factored Use-Definition Chains for Functional
Verification". Journal of Electronic Testing: Theory and Applications, Springer,
Volume 22, Issue 3, 2006, pp. 273–285.

Tšepurov A., Bartsch G., Dorsch R., Jenihhin M., Raik J., Tihhomirov V. “A
Scalable Model Based RTL Framework zamiaCAD for Static Analysis”.
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), October 2012.

Tuya J., Suarez-Cabal M. J., De La Riva C. “SQLMutation: a tool to generate
mutants of SQL database queries”. Mutation testing workshop, 2006, pp. 39–43.

Ubar R., Morawiec A., Raik J. “Back-Tracing and Event-Driven Techniques in
High-Level Simulation with Decision Diagrams”. Proc. of the IEEE
ISCAS'2000 Conference, Vol. 1, 2000, pp. 208–211.

Ubar R, Raik J, Vierhaus H. T. “Design and Test Technology for Dependable
Systems-on-Chip”. Hershey - New York, Information Science Reference, IGI
Global, 2011.

Vessey I. “Expertise in debugging computer programs”. International Journal of
Man-Machine Studies: A Process Analysis, vol. 23, no. 5, 1985, pp. 459–494.

Vertigo project. [Online] http://www.vertigo-project.eu, 2009.

Wahba A., Borrione D. “Design error diagnosis in sequential circuits”. Lecture
Notes In Computer Science, Springer, Vol. 987, 1995, pp. 171–188.

Warnock, J., et al. “4.1 22nm Next-generation IBM System z microprocessor”.
IEEE International Solid- State Circuits Conference (ISSCC), 2015.

109

Weiser M. "Program slicing". Proceedings of the 5th International Conference
on Software Engineering, IEEE Computer Society Press, 1981, pp. 439–449.

Weiser M. “Program slicing” IEEE Transactions on Software Engineering, vol.
10, no. 4, 1984, pp. 352–357.

Wong W. E., Debroy V., Choi B. “A family of code coverage-based heuristics
for effective fault localization”. Journal of Systems and Software, vol.83, no.2,
2010, pp. 188–208.

Wong W. E., Qi Y. “BP neural network-based effective fault localization”.
International Journal of Software Engineering and Knowledge Engineering, vol.
19, no. 4, 2009, pp. 573–597.

110

Abstract

Modern society is very dependent on electronics. At the same time, devices have
become more and more complex. Point, where verifying device correctness has
become more complicated than designing them, is reached. In verification
locating and fixing the bugs requires more effort than identifying them.
Automating bug localization and correction is the topic that the current Thesis
focuses on. Solutions are divided into two major fields.

First, verification of the designs by applying mutation analysis is addressed at
two abstraction levels: Register-Transfer Level (RTL) and Electronic System
Level (ESL).

On High-Level Decision Diagrams (HLDD) model at the RTL mutation
analysis is applied and a new tool is implemented. The tool is integrated into the
APRICOT verification environment. It is based on HLDD simulation and graph
perturbation. A strategy that relies on a restricted set of five key mutation
operators is developed in order to speed up the mutation analysis.

This is followed by a new method to automatically inject faults into the
functionality of system descriptions that works at different abstraction levels
(TLM and behavioral RTL). The results of injecting mutants directly on the RTL
models (native RTL mutation analysis) and injecting mutants on the TLM
descriptions and then synthesizing the corresponding RTL mutated models (TLM-
derived mutation analysis) are compared.

Second, the focus is on design error localization and correction, which is
presented in the two above mentioned abstraction levels.

At RTL a debug method for locating and correcting design errors at the source-
level of hardware description language code using the design representation of
HLDDs is presented and implemented. Additionally a case study of automatic
localization of design errors (bugs) in industrial processor ROBSY is presented.
The approach is based on two main iterative phases: dynamic slicing and statistical
suspiciousness ranking of the HDL statements in the design.

Finally, a method for correcting design errors in algorithmic descriptions of
system-level hardware is presented. In the experiments simple C programs are
used as benchmarks. The method applies dynamic slicing and location ranking to
accurately pinpoint the error locations and combines it with a dedicated set of
ESL-mutation operators for automatically proposing fixes to the errors. In order

111

to validate the approach, experiments on the Siemens benchmarks have been
carried out.

The main contribution of the Thesis is to propose new tools, case studies and
methods enabling the integrated circuit designer automatically locate hard-to-
detect bugs and offer solutions to save time and effort.

112

Annotatsioon

Tohutult kiire tehnoloogia areng on viinud meid ajastusse, kus arvutid ja
elektroonika on osa peaaegu kõigest. Samal ajal on seadmete tehnoloogiline
keerukus järjest kasvanud. Oleme saavutanud olukorra, kus seadmete õigsuse
kontroll ehk verifitseerimine nõuab rohkem aega ja vaeva kui nende
väljatöötamine. Verifitseerimisel on vigade leidmine ning parandamine
aeganõudvamad kui nende olemasolu tuvastamine. Automatiseeritult vigade
leidmise ja parandamise teemale käesolev doktoritöö keskendubki. Pakutavad
lahendused jagunevad kaheks.

Esmalt analüüsitakse verifitseerimist kahel abstraktsiooni tasemel:
registersiirde- (RTL) ja süsteemitasemel (ESL).

Kõrgtaseme otsustusdiagrammide (HLDD) mudelil RTL tasemel kasutatakse
mutatsioonianalüüsi ja luuakse uus tarkvaraline tööriist. Tööriist on integreeritud
APRICOT verifitseerimise raamistikku. See põhineb HLDD simulatsioonil ja
muudatustel graafide struktuuris. Lähenemise võtmeks on viis
mutatsioonioperaatorit, mis aitavad mutatsioonianalüüsi kiirendada.

Järgneb uue meetodi kirjeldus vigade automaatseks sisestamiseks süsteemi
funktsionaalsusesse, mis töötab erinevatel abstraktsioonitasemetel (TLM ja
käitumuslik RTL). Võrreldakse mutatsioonide kasutamise tulemusi otse RTL
mudelil ja TLM kirjeldustel, mis sünteesitakse vastavate RTL mudelite põhjal.

Seejärel keskendutakse vigade lokaliseerimisele ja kõrvaldamisele ning seda
tehakse kahel eelpool nimetatud abstraktsiooni tasemel.

RTL tasemel esitatakse ja realiseeritakse vigade lokaliseerimine ja
parandamine riistvara kirjelduskeele lähtekoodi tasemel kasutades mudelina
HLDDsid. Lisaks viiakse läbi juhtumiuuring tööstuslikus mikroprotsessoris
ROBSY kasutades automatiseeritud vigade lokaliseerimist. Lähenemine põhineb
kahel iteratiivsel etapil: dünaamiline viilutamine ja statistilisel analüüsil pingerea
koostamine võimalikest vigade asukohtadest disainis.

Viimasena esitatakse mutatsioonidel põhinev disainivigade parendamise
meetod süsteemitaseme riistvara algoritmilistele kirjeldustele. Eksperimentide
hindamisel kasutatakse C keeles kirjutatud programme. Meetod kasutab
dünaamilist viilutamist ja veakandidaatide pingerida leidmaks tõenäolisi vigade
asukohti. Võimalike lahenduste pakkumisel kasutatakse kindlat kogumit

113

kõrgtaseme mutatsiooni operaatoreid. Lahenduse tulemuste hindamiseks
kasutatakse eksperimentide läbiviimisel Siemens võrdlusprogramme.

Dissertatsiooni peamiseks panuseks on uute, automatiseeritud töövahendite
loomine, juhtumiuuring ja meetodid võimaldamaks riistvara projekteerijal säästa
aega raskesti tuvastatavate vigade leidmisel.

114

Acknowledgements

I would like to express my extreme gratitude to my supervisor, Professor Jaan
Raik, who has been with me all those years regardless of the situation.

Additionally I would like to acknowledge everyone from Tallinn University of
Technology and from the University of Verona who have participated in our joint
projects. In particular FP6 Vertigo, FP7 REGPOT Credes, FP7 Diamond and
Estonian ICT Doctoral School.

Finally I would like to appreciate my family and friends who have supported
and encouraged me throughout my studies.

Thank you all!

Hanno Hantson

Tallinn, September 2015

115

Curriculum Vitae

Personal data

 Name: Hanno Hantson

Date and place of birth: 13.04.1982, Estonia

 Nationality: Estonian

Contact information

 Address: Raja 15, 12618, Tallinn

 Telephone: +372 620 2257

 E-mail address: hannoh@gmail.com

Education

2006 – Ph.D. student in Department of Computer Engineering,
Tallinn University of Technology (TUT)

 2004 – 2006 M.Sc. in Computer Engineering, TUT

2000 – 2004 Diploma in Computer Engineering, TUT

Career

2010 – Estonian Academy of Security Sciences, ICT manager

2009 – 2010 IT and Development Centre of the Ministry of the
Interior, system administrator

2007 – 2009 Estonian Academy of Security Sciences, system
administrator

2005 – 2007 ELIKO Ltd, engineer

2001 – 2005 Girf Ltd, programmer

Scientific activities

2010 – 2012 Member of IEEE Computer Society

116

Defended theses

Hanno Hantson (2006). Comparison of DFT tools. Master of Science
degree. Tallinn University of Technology, Department of Computer
Engineering. Supervisor: Jaan Raik.

Main areas of scientific work/current research topics

Mutation analysis, design error localization and correction.

117

Elulookirjeldus

Isikuandmed

 Ees- ja perekonnanimi: Hanno Hantson

 Sünniaeg ja -koht: 13.04.1982, Eesti

 Kodakondsus: eestlane

Kontaktandmed

 Aadress: Raja 15, 12618, Tallinn

 Telefon: +372 620 2257

 E-posti aadress: hannoh@gmail.com

Hariduskäik

2006 – doktorant, Arvutitehnika instituut, Tallinna
Tehnikaülikool (TTÜ)

2004 – 2006 tehnikateaduste magister, arvuti- ja süsteemitehnika
eriala, TTÜ

 2000 – 2004 diplom, arvutisüsteemide eriala, TTÜ

Teenistuskäik

2010 – Sisekaitseakadeemia, IKT juht

2009 – 2010 Siseministeeriumi infotehnoloogia- ja arenduskeskus,
süsteemiadministraator

2007 – 2009 Sisekaitseakadeemia, süsteemiadministraator

2005 – 2007 ELIKO OÜ, arendusinsener

2001 – 2005 Girf OÜ, programmeerija

Teadustegevus

2010 – 2012 IEEE Computer Society. Liige

118

Kaitstud lõputööd

Hanno Hantson (2006). Testitava projekteerimise vahendite võrdlev
analüüs. Teadusmagistri kraad. Tallinna Tehnikaülikool, Arvutitehnika
instituut. Juhendaja: Jaan Raik.

Teadustöö põhisuunad

Mutatsioonianalüüs, projekteerimisvigade lokaliseerimine ja
parandamine.

119

Appendix I

Research paper I

Hantson, Hanno; Raik, Jaan; di Guglielmo, Giuseppe; Jenihhin, Maksim;
Chepurov, Anton; Fummi, Franco; Ubar, Raimund. “Mutation Analysis with
High-Level Decision Diagrams”. Proceedings of the 11th Latin-American Test
Workshop, IEEE Computer Society Press, 2010, pp. 1–6.

Contributes to Section 3.1 of this Thesis. The author’s contributions are:
participating in development of the HLDD-based mutation analysis method,
implementing mutation analysis tool to the Apricot framework and presenting the
paper at 11th Latin-American Test Workshop.

�

�

���������	��
������������������
���	����������������������� !���������������"����������#�����������$�

���� �����������"�$�����
����$�

�����#�������%�����&'���&������()���*���*��� +�����������+��
��
����,������,�����������������"����������-������� �����������"�.������.�������/��
��%��������*�����
��
��&"�����*"����()�����*���01234563�7�89:�;<;:=�;=:>:?@>�<�?:A�@BBC�DB=�EF@<@GB?�<?<CH>G>�F>G?I�@9:�>H>@:E�EBJ:C�BD�9GI9KC:L:C�J:MG>GB?�JG<I=<E>�NOPQQRS�89:�@BBC�G>�G?@:I=<@:J�G?@B�@9:�TUVWXY8�L:=GDGM<@GB?�:?LG=B?E:?@S�W@�G>�Z<>:J�B?�OPQQ�>GEFC<@GB?�<?J�I=<;9�;:=@F=Z<@GB?S�T�>@=<@:IH�@9<@�=:CG:>�B?�<�=:>@=GM@:J�>:@�BD�DGL:�[:H�EF@<@GB?�B;:=<@B=>�G>�J:L:CB;:J�G?�B=J:=�@B�>;::J�F;�@9:�EF@<@GB?�<?<CH>G>S�\];:=GE:?@>�B?�>:L:=<C�W8X̂ �̂Z:?M9E<=[>�<?J�<?�G?JF>@=G<C�:]<E;C:�>9BA�@9:�D:<>GZGCG@H�BD�@9:�EF@<@GB?�<?<CH>G>�<;;=B<M9S�_̀abc4d2�e�fg353hci�5i5ja2h2k�d̀6h2hci�dh5l45f2k�/*� �/m$�n� �$/nm�������������
��
���������������!���������������������o����"�����"������������*�-�������������������������
�������������������"�������
�pqrsrtu�����������"����������������!��������*�������������������������!������������������������

����������"��������
��������*�$������������"��������������������������"�������!��������!���������"���������������������"��������������������!
������������������""�������!�����������������
���������������������������������*�$����""������������"���������������������������������!����������������������������"��������������vwxxtu�����������*��/��������"�����"��������
�����"������������������������������������!���!�������"���y�z� /�������!������������{����������������������������!���|�������}*�z� /�������!��������������������!�����!
�������*�z� /�������!�������������*�*�����
�������������������!���!�������������������*�$���������
�����"������������������""���"���������!�����!�
�������!
�����������"������������"�������������
�*�$�����o������������������������������"��������
���������������������������������������!�����

�!������������*�n���!�������������������������������"�
�����������"�!�����������������!�
�����*��������������
��*�~tsv�pqrsrw�����o�������������
������"������"���������
��������!����������������������"������
���r�����pqrsrw�����o������

������

��"����������"�
"�

��*�$������������������������������������!�������������������������*�������������
��������"���
�����������"����������������*������������'����������������!
����������
����������"������������������*��/�-������������
����������������������
����������������������
���������������

����������������������������"��"�������������������������|��

��*�	"���������������
����
��"�������������������������!��������
��������������
��������"������!��������!�!
�����������������������������������,���������������*�$����!�����!�
�������!
����"�����������
������������������������
�����
������������*�/���������
���������������������������!�����!�
��������
���������
��������������
������!�����!�
����!������������������������"������������������*�	�����������������
���
��������������������������������������
����������������
���������"��
���������������*�������������"���"������""����������������������
�����������������������������"������������*����������"�!������������

������"�������������������o�����!����������
���������������������
�������������
����������������������
�������������"��������
�����������o���������������������������
��������{���}�!��������
����������������
��������*�/���������
�������������������"�����������������
�������������.����"��������
��������������������������������*�	�.����
��������"��������
�����������������!��������
������������"������������������������!����
���������������{��"����}��������"��
������������������������������������o���*�$����������
�����������.�����������������������������!
��
���������������������*�$���.�����������������
����������,�����������������������������
�����������������������o������*�/���
�������
������������o������
�
��������������������������|�
����
�*�/�����������������������������������!��
�"��������
�o��
�"�����������
���������������!��������������������
������������
�!
��"����-�������"�*��������������������������*��������

127

Appendix II

Research paper II

Guarnieri, Valerio; Di Guglielmo, Giuseppe; Bombieri, Nicola; Pravadelli,
Graziano; Fummi, Franco; Hantson, Hanno; Raik, Jaan; Jenihhin, Maksim; Ubar,
Raimund. “On the Reuse of TLM Mutation Analysis at RTL”. Journal of
Electronic Testing-Theory and Applications, 28(4), 2012, pp. 435–448.

Contributes to Section 3.2 of this Thesis. The author’s contributions are:
participating in development of the RTL-TLM-based mutation analysis method,
performing experiments using Mentor Graphics CatapultC software and
presenting the paper at 12th Latin-American Test Workshop. Paper II was an
extended version of the latter.

��������	
�� !"#$#%&#'()*++%!,!-' . ,/0&-&,!$)*1,/#2-'3%,2 -#2-43-%7#6-3%7/-#/8'49-:'/,;'8<-#2-432,=-, '>2,?,@#//-4A2, :'A%88-4B, 'B, !&' 4C,, $,-D4+,D&-8C# -""- 4$,-8% @E<,2F���GH�I�JKLK������J���M��I��JM�G����NKO�G�P�I�	�G	���QRS��TUM�G	L��U�G�	��VWK�G	���Q�IGRXYYZ��.<&!2,:!QK�R�G�	R	R�S�G�PR�LRG	�I��	��	�K�IK��G	L�P��R��I��RI��R�O�G	LR	�[[G�G�	����P	G\K�[��]�R�K�G	L�P�\KR�G�S�[Û ����O�	�P�Q�������	��SXG�PR�O��	�[[G�G�	��SRMM�G�I[��HR�GIR�G	L����O�	�P���[�]O�II�I�S���]]�I���G]M��]�	��IG	PR�I_R��I����GM�G�	�R	LKRL��̀�Y�R�IG[[���	�RO���R��G�	��H����G���XF
YX
YQ��
PG�R��G���R	R�Sa��P�_]K��R�G�	R	R�S�G�M��[��]�IR�
YQ �R	O���K��IR�F��M�	�GO���IG����Y�Q�W��aR	GNbP��c�dKR�	G��Ged��GdKL�G��]�ef�W�]OG��Ged�N�RHRI���Geg�gK]]G�GMR��G]�	��IG�	[��]R�G�RXh	GH���G�iIGc���	RXU��RIRY�d�RaG���X�����c���	RX��R�Sc�dKR�	G��G��]RG��HR���G��LKR�	G��GjK	GH��G�d��GdKL�G��]���]RG��LGK��MM��IGLKL�G��]�jK	GH��G�f�W�]OG��G��]RG��	G���R�O�]OG��GjK	GH��G�d�N�RHRI���G��]RG��L�RaGR	��M�RHRI���GjK	GH��G�g�gK]]G��]RG��[�R	���[K]]GjK	GH��G��̀̀ R	���	e��FRGk�l�eQ���	GPPG	eF�hOR���MR��]�	��[Z�]MK����	LG	���G	LX
R��G		h	GH���G�S�[
��P	���LSXFRmR��X����
R��G		X����	GR��]RG��mRR	jR�G���K����̀̀ R	���	��]RG��PR		�jR�G���K���Q���	GPPG	��]RG��]Rk�G]jR�G���K���F�hOR���]RG���RGKOjR�G���K���

F
YR	IXG	MR��G�K�R�XP�_�K�PR��K���R	P��MI��GL	���G	�G��M�G]GaG	L�P��G]��M�	�[���G]K�R�G�	R�F
YXR	I�GG�G]M��HG	L�P�F
Y����O�	�P\KR�G�S�
_�R����	R�GH���[
YQ]K�R�G�	R	R�S�G���K��R��M����	��IR	IG	H���GLR��I[��M��M��G	LR	�[[G�G�	�]��P�I���LS�[F
Y]K�R�G�	R	R�S�G��
P��KLP�n�M��G]�	�R����K���X�P�M��M���I]��P�I���LSG���]�MR��I���P���R	IR�IF
Y]K�R�G�	R	R�S�G�����	[G�]G���[[G�G�	�SG	���]��[O��P�G]K�R�G�	�G]�R	I��R�P�I]K�R�G�	��H��RL��o#0p'2@&QK�R�G�	R	R�S�G�4QK�R�G�	����G	L4US���]Z4
�R	�R��G�	���H��]�I��G	L4F�LG�������R	�[����H��qr !2'@%:!-' QK�R�G�	R	R�S�G�R	I]K�R�G�	����G	LPRH�I�[G	G���SLRG	�I��	��	�K�IK�G	L�P��R��I��RI��R�O�G	LG]�M���R	����P	G\K��[����[�_R������G	Ls��X��X�X�t�UK�PRMM��R�P�����S�	�P����R�G�	�[��H��R�H���G�	��[�P�M��L�R]��O������IXuvwxwyzOSG	���IK�G	L�S	��R��G��PR	L���
P�MK�M����[�K�P]K�R�G�	���	�G����[M���K�OG	L�P�O�PRHG���[�P�M��L�R]�����G[�P������KG��G�RO����I������P�IG[[���	��O��_��	�P���GLG	R�M��L�R]R	I�P�]K�R��IH���G�	��QK�R�G�	R	R�S�G�]�R�K����P��[[���GH�	����[�P������KG��OS��]MK�G	L�P�M����	�RL��[I������I]K�R�G�	��]K�R�G�	��H��RL��X_PG��]K�R�G�	����G	LRG]�R�G	���R�G	L�P�]K�R�G�	��H��RL�OSL�	��R�G	LR�R�L������[PGLP\KR�G�S����O�	�P���UG]G�R���	��M��R��G]M��]�	��IR���G	`̂ �����G	Ls�tX_P���PGLP���H��[RK���G]K�R�G�	G�RMM�G�I��

143

Appendix III

Research paper III

Raik, Jaan; Repinski, Urmas; Tšepurov, Anton; Hantson, Hanno; Ubar, Raimund;
Jenihhin, Maksim. “Automated design error debug using high-level decision
diagrams and mutation operators”. Microprocessors and Microsystems:
Embedded Hardware Design, 37(4), 2013, pp. 1–10.

Contributes to Section 4.1 of this Thesis. This paper was based on author’s work
on mutation analysis developed in Paper I.

�����������	
����������	
���
�����������
	
���
����	��������
��������	������
������	���
�	�
�����������������������	�����
�����������	
����
��
��� !""#"!$%&'!()*+�%,-"* *.)/0%1�&(2%"(*+3*214(%&5".!"%%&!"./67�8%%2!�(%%9:�/9;<9=�� !""/5'(*"!�>?@ABCD AEFG6&(!, %-!'(*&)H���
��������
��IJ������KLMKN%)O*&8'HJ�	
����	J���������
��������	�
�����������
	
���
����	
>PQ@?>B@R����������	�	�������S������
����	
����	�����	�����������S���
	���R��	S�T����U�RTV���W����	�
��
���������������	
�������	
�����	�����
���S�
���T����J��
	
��J
�����U�TJJV�����	��������
�������X����X
�������
��������	YR���������
Z��
��
	��	�����������
������
	�����������������������	�S�����	
��������
[���
�����TJJ	Y�	��	����S��������
Z��
��	������������
����	
�����RT��	�
��
�����
���	�	�
�
��	��			���Y\���	�]�����X�������
�����	�������
������
���
	����
�����
�
����������������
��S������	
��������
[���
��Ŷ_��
����	���	���S	�]����
���RT��������		��W�������������
	��������S�����
�������	
����	
�̀�����W
����
��������X����	������
��Ya�S������̀�
�X�S�����	
�̀�����
�����_��
����	W��
����
[���	���	�	����	�X�������	���
����	
	�����
���Yb��������W�	��W���������	��S��
	�����
Z��
��������X��������
�����	�������
���]�
�	��X	����������S
����
��	������	�	�������
��YcKLMK �̂	��
�dYeY���
���	�	����YfghijklmnojpliJ�	
��
����
���������
���
�
	���_���	
����	�����_��		
����	
����	�	����������	������������
����
���S���	��
��������
���	�Xq	��W��rMsYa�
	�W��������W������S���������
[���
��
	S��
�����̀����
�����������������	
���X���rKs�����
	����
	����
��
��Y�����	����
��W���������������������	�	����W��	����
[���
��������	
����
SX
�������������	�S��	�����������S�
�����	
��������	�	�S��	��������
��������	���
�����		������
��Yt�����������S�����
[���
���X���
	���	����
��	
�������	
������	���W���������
����������
��Ya�
	�	�
����������S���������
Z��
����������
�����	�
���������X���S�S���������
��	��������
[���
��rusYe�
[���
����������U
Y�Y�		�
������������		�S�����	
��V�
��������	��������
���	���S����_��		
����	
����	�	��������
��S������ILv�S���������_���	�	rKsY���������������S��	
����	���	
	�	�S�W�	���	w�������
Z��
������������
��Ŷ������
Z��
��
����
[�	������
���S�����	
���	���	
���S����������	�����
��W�
���������
��
	�	���	
���S�������X���
SX
�����S����
�����
�X�S���
����
[�����
��Yb��������
Z��
���	
�����
�����	��rxyMMs���S�������������	rKKs�����W�Ya�
	W
���X������������	
�����
�����	�������
]��		����W���W
�������	
��	
Z����������

�_���	�
��W�
��S���������
]��	���
����
�������S���[������
�����	���	�����	�	����
����������	
��������_
�XYb��������
����������
��rz�{s�����	X����	
	rxs��������
���	�
�����
�����
������Ya����
�������	X����	
	���
��	������
��W�
��
	���	������	����
�������������	�������	�
���
�������	
����
��YR�
	�
���S�����
��
	�����������������������	
�X����	���������
[���X�����	
�����
���Y��������	W�W
��	��W
�\���
��|�����	X����	
Z��������	���
���S�����	
��
	�
���X��S�
�W�����W	�
���
W
��������������	�
��Y}��
��	W��	���������S��
�������������		����	������
	���R��	S�T����U�RTV����	�������W���X\�
������Yr~sYR���
	������SW��	�_����
����
	
����S���\�R���	�������U�Y�Yr|�MLsVY��W�������	�������	��������������
����������\�R�\�R����������XU\�RV	����	�W�
��
	���}���������������Y��������\�R�\�R���
��	����
������	�����X������������
�����������
	��
�
�������
��
�	
Z�W�������������
	����
�����YR��������������	
��	��
SS�������������X
������	
���������
Z��
����
�
Z
���TJJ�������������_�����	
����X���
���
��YR�
	����	��������������	
��	�������������
���X��������X�������	��������YR�
	������
�
Z�	�TJJ����������������
���	�	�������������	��
�����
��S���������������Ya�����	�������
��������	�
����X�������
	������	S������YR�
	�	���	
����������
����	�
�S����������
	����S�����������	�����������������
����������
������������
�S����
�����
����X���
��	������	YLMzM�|uuM���	��S��������cKLMK �̂	��
�dYeY���
���	�	����Y����w���_Y��
Y���MLYMLMx�̀Y�
���YKLMKYMMYLLz����	����
�������Y5�2�! �88&%''H̀�������Y���Y��U�Y��
�VY

�
������		�	����
��	X	���	uIUKLMuV{L{y{Mu��
������		�	����
��	X	���	��

155

Appendix IV

Research paper IV

Jenihhin, Maksim; Tšepurov, Anton; Tihhomirov, Valentin; Hantson, Hanno;
Raik, Jaan; Ubar, Raimund; Bartsch, Günter; Meza-Escobar, Jorge Hernan;
Wuttke, Heinz-Dietrich. “Automated Design Error Localization in RTL Designs”.
IEEE Design & Test of Computers, 1, 2014, pp.83–92.

Contributes to Section 4.2 of this Thesis. The author’s contributions are:
performing experiments using Apricot software and presenting the paper at 13th
Latin-American Test Workshop (Best Paper Award). Paper IV was an extended
version of the latter.

���������	�
����������������������	�
��
�������������� !�"#�$�%�&'(#) *�+��"��$���#��(#)��,����-��������.�/��
��0�1���2����0
3456789:;4<=7>;?:?@AB?CDEFGHIJKLMNOPHIQLEKRDSIOPKRTQIPKTRDEPLPORQUISKVKDOLKERNOPWIXDEFIERIEVLNIFEPLIJGIRPKUILOPYPKRLNIQIPKTRGSEDIPPZ[NKHIPIUISOHOGGSEODNIPORQLEEHPVED\PXKRTERKQIRLKVMKRTLNIEDD\SSIRDIPEVISSESPIJKPL]PDOHOWHIPEH\LKERPVESQIPKTRISSESESW\THEDOHK̂OXLKEROSIFKPPKRTZ_RERINORQ]LNIQIPKTRISKPVODIQK̀LNLEEF\DNKRVESFOLKERGSEUKQIQWMLNIUISKVKXDOLKERLEEHPZ_RLNIELNISNORQ]LNISIKPRELIRE\TNKRVESFOLKERKRESQISLE\ROFWKT\E\PHMHEDOLILNIW\TZaNISIVESI]FOR\OHW\THEDOHK̂OLKERODLKUKLMKPUISMLKFIDERP\FKRTORQLNISIKPORIIQVESO\LEXFOLIQOGGSEODNIPZbRLNKPOSLKDHI]̀ IDERPKQISLNIDOPÌ NISIOQIXPKTRQIPDSKWIQKROcOSQ̀ OSIdIPDSKGLKEReORT\OTIfcdegNOPWIIRKQIRLKVKIQOPISSERIE\PQ\SKRTV\RDLKEROHUISKVKDOLKERORQ]LN\P]QIPKTRISSESHEXDOHK̂OLKERKPSIh\KSIQZcÈ IUIS]Q\ILELNIIRESXFE\PDEFGHIJKLMEVFEQISRiITKPLISXaSORPVISeIUIHfiaegQIPKTRP]PIUISOHW\TPFOMIPDOGIUISKVKDOLKER

ORQOSIDERPIh\IRLHMNORXQHIQWMGEPLXPKHKDERUOHKQOXLKER]IZTZ]jklZmFOnESKLMEVLNI ÈSYPERO\LEFOLIQISSESHEDOHKXÔLKEROSIKRLNIPEVL̀OSIQIUIHEGFIRLQEFOKRjol]jplZdIPKTRISSESHEDOHK̂OLKEROGGSEODNIPVESNOSQXÒSIQIPKTRPOSIFEPLHMWOPIQERVESFOHLIDNRKXh\IP]P\DNOPFEQIHXDNIDYISPjqlESrmasrtaXPEHUISPjul]jvl]ORQLN\PDORRELWIOGGHKIQLEHOSTIQIPKTRPZrEFÌ ESYPOQQSIPPLNIPDOHOWKHKLMKPP\IWMGSEGEPKRTOWPLSODLKERORQSIVKRIFIRLLIDNRKh\IPjwlZcÈ IUIS]KRESQISLEHEDOHK̂IW\TPKRDEFGHIJQIPKTRP]IVVKDKIRLPKF\HOLKERXWOPIQOGGSEODNIPPNE\HQWIQIUIHEGIQZbRLNKPOSLKDHI]̀IGSIPIRLOPDOHOWHIW\THEDOHK̂OXLKERLEEHLETILNIS̀KLNODOPIPL\QMEVGKRXGEKRLKRTSIOHX̀ESHQQIPKTRW\TP K̀LNKROGSEDIPPESQIPKTRGSEnIDLZaNILEEHNOPWIIRKFGHIFIRLIQERLEGEVONKTNHMPDOHOWHIcdeXDIRLSKDEGIRPE\SDIVSOFÌESYÔFKOxmdjyl]jzlORQLNIDOPIPL\QMNOPWIIRDOSSKIQE\LEROSIOHGSEDIPPESQIPKTRi_{r|jk}l]ǸISILNIQIPKTRLIOFNOPQED\FIRLIQLNIPILEVQKPDEUISIQW\TPZdIUIHEGFIRLEVLNKPLEEH̀ OPP\GXGESLIQWM~��P��wSIPIOSDNKRKLKOLKUIdbmt_�djkklZaNIW\THEDOHK̂OLKERFILNEQSIHKIPERPKF\HOLKERXWOPIQPLOLKPLKDOHSORYKRTEVGELIRLKOHW\THEDOLKERPLNOLKPSIVKRIQWMLNIQMROFKDPHKDKRTLIDNRKh\IYRÈ RVSEFPEVL̀OSILIPLKRTZaNIWOPKPEVQMROFKDPHKDKRTKPPLOLKDPHKDKRT]NÈ IUISLNIGSIPIRDIEVDERD\SSIRLDERPLS\DLPKRcdePFOYIPPLOLKDPHKDIDEFG\LOLKERDERPKQISOWHMFESIDEFGHKDOLIQLNOR

���������������2�
��������
��
�1����������1����������21�������������
�������������������0�������
����
��������0
�
���2�	�
��
�������������� !�"#�$�%�&'(#) *�+��"��$���#��(#) ����-��� ����#���"�#� ��,-���'�, ¡�(�����.�/��
��0�1���2����0¢'£�"�(¤�("�¥������¦�	 �#(§���(�����̈�©�¥#¡�(��,����̈ª«��"(�¥�¬'""�������.�/��
��0�1���2����0

®̄°±²®³́°µ̄¶·®̧ ³̄¹ººº»¼½¾¼¿ÀÁÂÃÄ¿¾¼¿ÀÅÆÇÈ ÉÊËÌÍÎÏÐÑÒÓÍÔÕÑÒ¹ºººÉºÖ×Ø¹ºººÉ×ÙÙØ¹ºººÙÙÉÙØÚÛÓÜÜÜÉ ÝÞßàáàâãäåæçèéâêëèìâàíàèîïðñïïðòóôßõöñ÷ðïøñ÷÷ùïú÷ðßãâèûíüýæäàéãâàûìþ÷��ýìè÷ðïø�ëãâèûíéýîîèìâ�èî�àûìþ÷ð�èæîýãî�÷ðïúñ

167

Appendix V

Research paper V

Raik, Jaan; Repinski, Urmas; Hantson, Hanno; Jenihhin, Maksim; Di Guglielmo,
Giuseppe; Pravadelli, Graziano; Fummi, Franco. “Combining Dynamic Slicing
and Mutation Operators for ESL Correction”. Proceedings of the 17th IEEE
European Test Symposium, IEEE Computer Society Press, 2012, pp. 1–6.

Contributes to Section 4.3 of this Thesis. The author’s contributions are:
developing the mutation-based fault model in cooperation with Giuseppe Di
Guglielmo from the Univesity of Verona during the author’s stay in Verona,
proposing an improved classification of faults.

����������	
�� !"#$�%#&�'�$$(�'�$)�($&�*�%�#��+!$#,,#$&�+��$� �#%&� �#�-$.��/���0!"��)�!$)�(1�2(�"-)!��3$4#$!!�#$4&�5�66#$$��$#7!��#)8�(1�5!9,$(6(48&�3�)($#��:-����;,�$$(;��%�#�;<��$;��#-/=>"6.?))-?!!� @#-�!""!�0#�@-46#!6�(&�@��A#�$(�B��7�.!66#&�C��$9(�C-��#��0!"��)�!$)�(1�2(�"-)!��D9#!$9!&���$#7!��#)8�(1�E!�($�&�F)�68�3��#6G�:$��!?�-�$��!=>-$#7�?#)��� H��������IJKLMLNOPLQR�LS�LRNKJOSLRTUV�WJNQXLRT�PYJ�WQPPUJRJNZ�LR�[JSLTRLRT�[LTLPOU�SVSPJXS\�]R�MONP̂�XQSP�QM�PYJ�_JKLMLNOPLQR�NVNUJ�LS�RQP�S̀JRP�QR�[JPJNPLRT�PYJ�QNNaKKJRNJS�QM�JKKQKS�WaP�QR�[JWaTTLRT̂�NQRSLSPLRT�QM�UQNOPLRT�OR[�NQKKJNPLRT�PYJ�JKKQKS\�bQcJ_JK̂�OaPQXOPJ[�[JSLTRdJKKQK�[JWaT̂�JS̀JNLOUUV�OP�PYJ�SVSPJXdUJ_JÛ�YOS�KJNJL_J[�MOK�UJSS�OPPJRPLQR�PYOR�JKKQK�[JPJNPLQR\�eaKKJRP�̀ÒJK�̀KJSJRPS�OR�OaPQXOPJ[�Ò K̀QONY�PQ�NQKKJNPLRT�SVSPJXdUJ_JU�[JSLTRS\�fJ�̀KQ̀QSJ�[VROXLNdSULNLRT�OR[�UQNOPLQRdKORZLRTdWOSJ[�XJPYQ[�MQK�ONNaKOPJUV�̀LR̀QLRPLRT�PYJ�JKKQK�UQNOPLQRS�NQXWLRJ[�cLPY�O�[J[LNOPJ[�SJP�QM�XaPOPLQR�Q̀JKOPQKS�MQK�OaPQXOPLNOUUV�̀KQ̀QSLRT�NQKKJNPLQRS�PQ�PYJ�JKKQKS\�]R�QK[JK�PQ�_OUL[OPJ�PYJ�Ò K̀QONŶ�Jg̀JKLXJRPS�QR�PYJ�hLJXJRS�WJRNYXOKZ�SJP�YO_J�WJJR�NOKKLJ[�QaP\�iYJ�Jg̀JKLXJRPS�SYQc�PYOP�PYJ�̀KQ̀QSJ[�XJPYQ[�LS�OWUJ�PQ�NQKKJNP�PYKJJ�PLXJS�XQKJ�JKKQKS�NQX̀OKJ[�PQ�PYJ�SPOPJdQMdPYJdOKP�XaPOPLQRdWOSJ[�NQKKJNPLQR�XJPYQ[S�cYLUJ�JgOXLRLRT�MJcJK�XaPORPS\�j�k������������F$9�!��#$4�.!�#4$�9(�)����!�),!���#$�9,�66!$4!�1�9#$4�),!��!�#9($.-9)(��9(��-$#)8�)(.�8?�F$�"��)#9-6��&����-�#$4�),!�9(��!9)$!���(1�),!�!6!9)�($#9�.!�#4$&��#$9!�),!�!��68��)�4!��(1�),!�.!�#4$�9896!&�9($)�#/-)!��)(�����<(��"��)�(1�),!�"�(/6!��lmn?�'(o!7!�&�UQNOULpOPLQR��$.�NQKKJNPLQR�(1�.!�#4$�!��(��&�#?!?&�[JWaT&�,����!9!#7!.�1���6!����))!$)#($�),�$�JKKQK�[JPJNPLQR&�/(),&�#$�)!����(1��!�!��9,�o(�%���$.�#$.-�)�#�6�)((6��#$)�(.-9!.�lqn?�r����9($�!s-!$9!&�#$�#$.-�)�#�6�"��9)#9!&�.!/-4�#���)#66���,-��$t/��!.��9)#7#)8�),�)��11!9)��)#�!t)(t���%!)�lun?�5,!�.!/-44#$4��""�(�9,!��"�("(�!.�#$�),!�"��)�1(��6(4#9��$.��!4#�)!�t)��$�1!��v 5w�6!7!6�&�!?4?�lmxnlmynlmzn&�9�$$()�/!��""6#!.�1(��.!�#4$���)�!6!9)�($#9t�8�)!��6!7!6�v3D{w�(��),!#��1!!./�9%����!�$()��-11#9#!$)68��!�.�/6!�1(��),#���/�)��9)#($�6!7!6?�r)�3D{&�.!�#4$����!�.!�9�#/!.�#$��$��64(�#),�#9�o�8�o#),���,#4,�6!7!6�(1��/�)��9)#($�o#),��!�"!9)�)(�),!�1#$�6�,��.o��!�#�"6!�!$)�)#($�lmn?�F$�),#��9($)!|)&��(�!�!11!9)#7!��!),(.��1(���-)(��)#$4�3D{�.!/-4���!�,#4,68��!s-!�)!.?�2($�#.!��),!�9��!�o,!�!���.!�#4$!��,�����/-4t�11!9)!.�3D{�#�"6!�!$)�)#($?�5,�)�#�&��$�!��($!(-��/!,�7#(��(1�),!�#�"6!�!$)�)#($&�o#),��!�"!9)�)(�),!�!|"!9)!.�1-$9)#($�6#)8&�,���/!!$��6�!�.8�v�-)(��)#9�668w�.!)!9)!.?�r-)(��)!.�.!/-4�(1�!��(���9($�#�)��(1�)o(��)!"�G�!��(��6(9�6#A�)#($��$.�!��(��9(��!9)#($?�3��(��6(9�6#A�)#($�#.!$)#1#!��),!�"(�)#($�(1�),!�.!�#4$��!�"($�#/6!�1(��),!�!��($!(-��/!,�7#(�&�o,#6!�!��(��9(��!9)#($�#���!�"($�#/6!�1(��6(9�668��(.#18#$4�),!�1-$9)#($�6#)8�(1�),!�#.!$)#1#!.�"(�)#($?�

C(��!��(��6(9�6#A�)#($&��#�-6�)#($t/��!.�l}nl~nlxnlynlzn�lq�n��$.�1(���6��""�(�9,!��l�nlm�n���!�%$(o$?�F)�#��o#.!68��99!")!.�),�)��#�-6�)#($t/��!.�)!9,$#s-!���9�6!�o!66�o#),�),!�.!�#4$��#A!�&�/-)���!�$()�!|,�-�)#7!��o,#6!&�1(���6�)!9,$#s-!��"�(7#.!���,#4,�4��.!�(1�9($1#.!$9!�#$�),!��!�-6)�&�/-)���!��-�9!")#/6!�(1�),!�.!�#4$�9(�"6!|#)8?�C(��!��(��9(��!9)#($&�!��(����)9,#$4�lmqnlmun��$.��!t�8$),!�#��lm}nlm~nlmxnlmynlmzn�,�7!�/!!$�#$7!�)#4�)!.�#$�6#)!��)-�!?�F$�"��)#9-6��&��!t�8$),!�#��"�(7#.!����9(��!9)#($�o,#9,�#���!"�!�!$)!.������"��)#�6�)�-),�)�/6!�/��!.�($�),!��)#�-6#�-$.!��9($�#.!��)#($?�5,#��%#$.�(1�9(��!9)#($�#��$()��!�.�/6!��$.�9�$$()�/!�!��#68�-$.!��)((.��$.�7!�#1#!.�/8�),!�.!�#4$�!$4#$!!�?�*(�!(7!�&�),!��!�8$),!�#A!.�!��($!(-��"(�)#($�(1�),!�.!�#4$�#��6#%!68�)(�1�#6�o,!$�$!o��)#�-6#�o#66�/!��..!.�)(�),!��-#)!?� !9!$)68&����(�!�!11!9)#7!��""�(�9,�,���/!!$�"�("(�!.�1(���(1)o��!�.!/-44#$4&�o,#9,��!6#!��($��#�-6�)#($t/��!.� 6(9�6#A�)#($� �$.� !��(�t��)9,#$4�9(��!9)#($�lm�n?�5,!��-),(����""68���.#�4$(�#��)((6&�#?!?&�5���$)-6��lq�n&�1(��9�69-6�)#$4��-�"#9#(-�$!����9(�!��1(��.!�#4$�"(�)#($���$.�!|"6(#)��-)�)#($t/��!.�)!9,$#s-!��)(��!"�#��2��$.�+�7���""6#9�)#($�?�'(o!7!�&�),!��!),(.(6(48�#���)#66��11!9)!.�/8��""6#9�)#($��#A!�v#$�)!����(1�$-�/!��(1��-)�)#($��"!��6#$!��(1�9(.!w��$.�)��4!)����#$68�),!�9($)�(6�16(o�(1��(1)o��!��""6#9�)#($�?�F$�),#��"�"!�&�o!�"�("(�!��$��""�(�9,&�o,#9,&����(""(�!.�)(�lm�n&�#�"6#!����.8$��#9��6#9#$4�/��!.��!),(.(6(48�1(��!��(��6(9�6#A�)#($�9(�/#$!.�o#),���.!.#9�)!.��!)�(1��-)�)#($�("!��)(���1(���-)(��)!.�

C#4-�!�m?�5,!�"�("(�!.��-)(��)!.�.!/-44#$4��""�(�9,�1(��3D{�.!�#4$���!6#!��($�.8$��#9��6#9#$4��$.�6(9�)#($���$%#$4�1(��!��(��6(9�6#A�)#($��$.�9(.!��-)�)#($�1(��!��(��9(��!9)#($?�
vmw�08$��#9��6#9#$4v6(9�6#A�)#($w vuw�3D{t9(.!��-)�)#(v9(��!9)#($w

��{(9�)#($���$%#$4v6(9�6#A�)#($wvqw �

������� ¡�¢£££�£¤¥¦§̈©ª�«̈¬ �®̄ §¦¬°¤̄ �±£«²��

³�́µ�µ¶·�̧µ�·³�µ̧¹��¹º̧�»���¼�����¢£££�

�

175

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

176

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

177

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands Environments.
2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

178

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

179

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

180

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and
Visual Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic
Surgery and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

