
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

IT40LT
Bahdan Yanovich 134456IAPB

Optimisation of Symbolic Automata Based
Regular Expression Library SRM Using SIMD

Intrinsics

Bachelor’s thesis

Supervisor: Juhan-Peep Ernits

PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond
Tarkvarateaduse instituut

IT40LT
Bahdan Yanovich 134456IAPB

Sümbolautomaatidel põhineva
regulaaravaldiste teegi SRM optimeerimine

SIMD käsustiku abil

Bakalaureusetöö

Juhendaja: Juhan-Peep Ernits

PhD

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, the litera-
ture and the work of others have been referenced. This thesis has not been presented for
examination anywhere else.

Author: Bahdan Yanovich

14.06.2021

3

Abstract

To the best of my knowledge, SRM is currently the only regular expression engine based
on Symbolic Automata. It has shown promising results in performance compared to state
of the art regex engines.

The goal of the current thesis is to explore how SIMD intrinsics can be used to speed up
finding matches in SRM from large strings. The expected outcome was 5-10% gain in
performance.

The optimisations were performed in a function that was identified by profiling to be
frequently called.

The experiments were performed on the English text of the Entire Project Gutenberg
Works of Mark Twain, a dataset often used to compare regular expression engines. The
text contains mostly ASCII symbols, but also a few extended ASCII characters. In addi-
tion similar regular expressions were created and run on the entire contents of Wikipedia
written in Estonian that was provided in UTF-8 encoding.

The results of the experiments showed that with some regular expression patterns it was
possible achieve a speed up of 48%. Additionally, the experiments highlighted how Intel
Core I9 10th generation and AMD Threadripper 3960X processors perform differently
while using SIMD instructions.

This thesis is written in English and is 33 pages long, including 5 chapters, 7 figures,
and 4 tables.

4

Annotatsioon

SRM on teadaolevalt ainus sümbolautomaatidele tuginev regulaaravaldiste teek, mis on
näidanud paljulubavaid tulemusi võrdluses alternatiivsete regulaaravaldiste teekidega.

Käesoleva bakalaureusetöö eesmärgiks on uurida, kuidas saab SIMD käsustikke kasutada
SRMis vastete leidmise kiirendamiseks suurtest stringidest. Eesmärgiks seadsime 5-10%-
lise kiiruse võidu.

Optimiseerimised tehti tihti väljakutsutavas funktsioonis, mis identifitseeriti profileerim-
ise teel.

Eksperimentideks kasutati inglise keelset Projekt Gutenbergi raames koondatus Mark
Twaini kogutud teoste teksti, mida kasutatakse tihti ka teiste regulaaravaldiste mootorite
jõudluse uurimisel. Mark Twaini teoste inglise keelne versioon sisaldab enamasti ASCII
sümboleid ja üksikuid laiendatud ASCII sümboleid. Lisaks koostasime sarnased regulaar-
avaldised ka eestikeelse vikipeedia korpusele, mis oli UTF-8 kodeeringus.

Eksperimentide tulemused varieerusid väikesest kiiruse kaotusest kuni 48%-lise kiiruse
võiduni sõltuvalt regulaaravaldise mustrist. Katsed tõid välja ka Intel Core i9 protsessori
ja AMD Threadripper 3960x protsessorite erinevused SIMD käsustike käivitamisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 33 leheküljel, 5 peatükki,
7 joonist, 4 tabelit.

5

List of abbreviations and terms

ASCII American Standard Code for Information Interchange

BST Binary Search Tree

CPU Central Processing Unit

CsA Counting-Set Automata

DFA deterministic finite automata

JIT just-in-time compiler

NFA nondeterministic finite automata

ReDoS Regular expression Denial of Service

SDK Software Development Kit

SIMD Single Instruction Multiple Data

SRM Symbolic Regex Matcher

UTF-8 Universal Coded Character Set (unicode) Transformation Format – 8-bit

6

Contents

1 Introduction 11

2 Optimisation 13

2.1 Symbolic Regex Matcher (SRM) matching algorithm 13

2.2 Profiling . 13

2.3 Challenges and constraints . 15

2.4 Optimisation . 17

3 Benchmarking 21

3.1 Datasets . 21

3.2 Benchmark setup . 22

3.3 Experiment results and discussion . 23

4 Related work 29

5 Summary 30

5.1 Future Work . 30

References 32

Appendix 1 Non-exclusive licence for reproduction and publication of a grad-
uation thesis 34

Appendix 2 Automata Introduction 35

2.1 Classical Automata Theory . 35

2.2 Symbolic Automata . 37

7

2.3 Counting-Set Automata . 38

Appendix 3 Acknowledgements 39

8

List of Figures

1 Profiling results for ”[a-z]shing” regular expression 14

2 Profiling results for ”Tom|Sawyer|Huckleberry|Finn regular expression . . 14

3 Documentation for testC intrinsic . 16

4 State diagram of a finite automaton that accepts strings that represent 3-
digit integers that are greater than or equal to 900 and divisible by 5 . . . 36

5 Regular expression ”9[0-9][05]” represented as a symbolic automaton . . 38

6 Regular expression ”k{5}” represented as a finite automaton 38

7 Regular expression ”k{5}” represented as a counting-set automaton . . . 38

9

List of Tables

1 Benchmark results: Mark Twain dataset on Intel processor 25

2 Benchmark results: Mark Twain dataset on AMD processor 26

3 Benchmark results: Estonian wikipedia dataset on Intel processor 27

4 Benchmark results: Estonian wikipedia dataset on AMD processor 28

10

1 Introduction

Regular expressions are broadly used for solving different problems related to text data
processing: a regular user might need to simply find a word on a web page or in a docu-
ment; developers of any interactive application have to validate user input; data specialists
use them for data scraping and data cleaning. Internally they are typically based on deter-
ministic finite automata (DFA), or nondeterministic finite automata (NFA) or their hybrids
[1]. Applying a regular expression under some circumstances might yield an exponential-
time computation, which can cause problems in the era of big data, when the amount of
data that needs to be interpreted is growing tremendously [2]. Moreover, inappropriate
use of regular expressions or choosing an inefficient regular expression engine can lead
to wasted time and energy or unexpected bottlenecks. Recent research shows that up to
10% of regular expressions are applied to unreliable input, which might lead to so-called
Regular expression Denial of Service (ReDoS) [3] attacks.

When starting to process the input, in the DFA and NFA based approaches the regular ex-
pressions in string format are compiled into some internal automata representation where
each transition is labelled with a single character. While such approach might be acept-
able in the case of American Standard Code for Information Interchange (ASCII) and
extended ASCII character sets1, where the number of different characters are 127 and
255 accordingly, modern character sets such as Universal Coded Character Set (unicode)
Transformation Format – 8-bit (UTF-8) are capable of encoding more than 106 characters
and a blow up may occur when compiling regular expressions. To handle large alphabets,
symbolic automatawere introduced as an extension of classical automata [4], [5]. The first
and, to the best of my knowledge, the only open source symbolic automata based regular
expression engine SRM was introduced by Veanes et al. According to the authors, the
overall algorithm complexity of match generation is linear; it supports bounded quanti-
fiers and Unicode categories; it is safe to use in multi-threaded development environments
[6]. The source code of the library is available at [7] 2.

There are various ways to optimise computations. The typical approach is to parallelise
the computations to utilise multiple cores of processors. The regular expression matching
algorithms are complex and do not lend themselves easily to parallelisation. One of the
ways to optimise single threaded code is to use Single Instruction Multiple Data (SIMD)

1https://en.wikipedia.org/wiki/Extended_ASCII
2SRM is currently in the process of becoming a standard library in future versions of .Net SDKs. [8]

11

https://en.wikipedia.org/wiki/Extended_ASCII

vector instructions. In .NET it is possible to use SIMD instructions via the intrinsics
library System.Runtime.Intrinsics. This mechanism allows to use longer processor
registers for computation to perform multiple operations in one processor cycle. So in
case of applying a command to a vector of 4 numbers, instead of 4 separate cycles (load
a number into the processor’s register, do the operation, save the result) for each of the
numbers, the operation will be applied to all four numbers once on the processor level [9],
[10]. Some research show that using SIMD intrinsics in the context of regular expression
might reduce the running time up to 50% in some specific cases [11].

Thus, the goal of the current thesis is to optimise SRM using SIMD intrinsics to enhance
performance in the context of large inputs.

Research questions:

■ How is it possible to apply SIMD intrinsics to SRM?

■ What is the impact of applying SIMD intrinsics on the performance of SRM?

In order to achieve the goal, the process will be split into three phases:

1. Preparing a data set valid for searching regular expressions in large strings (as one
of the possible big data scenarios) (Section 3.1)

2. Profiling and optimisation of SRM (Section 2)

3. Experiment: benchmarking with other regular expression engines (Section 3.2 - 3.3)

Validation of the potential optimisation will be done during the experiment. To validate
the experiment, the results can be compared to the similar experiments found in the liter-
ature.

Expected outcomes of the thesis are:

■ 5-10% gain in SRM performance

■ benchmark dataset for the regular expression performance evaluation

12

2 Optimisation

When processing regular expressions the algorithm works in multiple stages. In the first
stage the regular expression string is compiled and the resulting internal structure will con-
stitute the inner workings of the matching algorithm. For the purpose of the current thesis
we assume large input strings and thus we consider the regular expression compilation to
take negligible time compared to the time required to perform the matches on the input.
Thus we concentrate our optimisation efforts to the SRM matching algorithm. Profiling
confirms that most of the time is spent in various steps of the SRM matching algorithm.

2.1 SRM matching algorithm

The following SRM matching algorithm as presented in [6]:

1. Initially i = 0 is the start position of the first symbol u0 of u.

2. Let iorig= i. Find the earliestmatch starting from i and q = .∗R: Compute q := ∂ui
q

and i := i+ 1 until q is nullable. Terminate if no such q exists.

3. Find the start position for the above match closest to iorig: Let p = Rr. While
i > iorig let p := ∂uui

p and i := i− 1, if p is nullable let istart := i.

4. Fine the end position for the match: Let q = R and i = istart. Compute q := ∂ui
q

and i := i+ 1 and let iend := i if q is nullable; repeat until q =⊥

5. Return the match from istart to iend.

6. Repeat step 2 from i := iend +1 for the next nonoverlapping start position.

where: u - the input text, R - the original regex, Rr - the reversal of regex R, ∂xR -
Brzozowski x-derivative ofR [12], . - the true predicate, ⊥ - the false predicate.

2.2 Profiling

In order to figure out what part of the library needs to be optimised, first, the library was
profiled using Visual Studio 2019 Preview [13]. The Preview version of Visual Studio
2019 supports .NET 5, which is the current version of the Software Development Kit

13

Figure 1. Profiling results for ”[a-z]shing” regular expression.

Figure 2. Profiling results for ”Tom|Sawyer|Huckleberry|Finn regular expression.

(SDK) at the time of writing the thesis. SIMD intrinsics were introduced into the .NET
SDK starting from .NET Core version 3.0, but as the just-in-time compiler (JIT) of the
runtime is under constant development, using the current version of SDK was consid-
ered appropriate. I used the dataset and regexes from the chosen benchmark (See dataset
subsection). The results of profiling for two different kinds of regular expressions (with-
out sets and with sets) are shown on figures 1 and 2. It corresponds to the step 2 of the
matching algorithm.

As one might notice the most time-consuming (Central Processing Unit (CPU)
consuming) part was SymbolicRegex<S>.IndexOfStartset() method in

14

SymbolicRegexMatcher.cs file. It took 19 − 41% of the runtime. See the origi-
nal method implementation in the listing 1.

int IndexOfStartset(string input , int i)
{

int k = input.Length;
while (i < k)
{

var input_i = input[i];
if (input_i < A_StartSet.precomputed.Length ?

A_StartSet.precomputed[input_i] :
A_StartSet.bst.Find(input_i) == 1)

break;
else

i += 1;
}
if (i == k)

return -1;
else

return i;
}

Listing 1. Original implementation of IndexOfStartset() method.

2.3 Challenges and constraints

While trying to apply SIMD intrinsics on the mentioned method, I faced a few challenges
regarding both SRM and SIMD intrinsics:

a As one might see, the operations in the loop are not identical for each loop iteration
and depend on the input: in some cases precomputed array is used, in other cases
– bst binary search tree.

b SIMD intrinsics are designed to work on primitive data types such as integers and
floating point numbers that are processed as vectors. Unfortunately, there is no di-
rect way to apply any of the instructions to variables of type String. .NET provides
an approach called Span<T> that ”provides a type- and memory-safe representation
of a contiguous region of arbitrary memory”1. Using Span<T> it is possible to ac-

1https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=net-5.0

15

https://docs.microsoft.com/en-us/dotnet/api/system.span-1?view=net-5.0

cess .NET strings as arrays of characters. Due to the fact that strings are immutable
in .NET, it is necessary to use the read only version ReadOnlySpan<T>.

c In order to use SIMD intrinsic instructions, it is necessary to work with arrays of
ushort rather than arrays of char, i.e. it is necessary to cast the span to ushort
array. The number of applicable intrinsic instructions is quite limited. Unlike in-
structions availble for vectors of type sbyte, long, short, int data types, there is
no strict comparison operator (e.g. CompareGreaterThan or CompareLessThan)
for vectors of ushort.

d The output of the intrinsics is usually vectors. It is not convinient when it comes to
using the results in conditionals. It would require extra Equals comparison with a
specific reference value (e.g. 111...111), which be preferable to avoid.

e There are some intrinsics that return boolean values. However, their documen-
tation is not straightforward. .NET documentation provides only with the instrin-
sic instruction. The documentation of the intrinsics shows bitwise pseudocode and
sometimes it is not obvious what problem the intrinsics solve. See an example of
documentation of testC intrinsic on the figure 3.

(a) .NET documentation [14]. (b) Intel documentation [15].

Figure 3. Documentation for testC intrinsic.

f Since the very begininng .NET and the C# have supported unsafe code blocks where
it is possible to write code that bypasses the built in memory management and per-
form operations directly with pointers. But in widely used libraries unsafe code
blocks are preferably avoided due to added risks. Thus the preferred way is to write
C# in the default managed segment where the built in memory manager and garbage
collector are responsible for managing memory resources. It is also sometimes re-
ferred to as safe code.

16

Next subsection covers, step by step, how those challenges were tackled and how I reached
the optimised version of the method.

2.4 Optimisation

First of all, for backward compatibility, it is necessary to ensure that the processor supports
SIMD intrinsics. .NET provides with the corresponding properties. In case the processor
does not support the intrinsics, JIT [16] will not include this branch at all [17].

if (Avx2.IsSupported && Avx.IsSupported)
{

...
}

To represent String object as a contiguous memory, ReadOnlySpan is used. Besides
using only safe code, it allows slicing (method, similar to String.Substring(), but
without allocating memory and it has almost no overhead) [18]–[19].

ReadOnlySpan <char> inputSpan = input;

As we use only safe code, after dividing the input string into Vector256 chunks there will
be a part less than Vector256 size. In that case the initial code will be used as it is.

ReadOnlySpan <Vector256 <ushort >> avx2Span =
MemoryMarshal.Cast<char, Vector256 <ushort >>(inputSpan.Slice(i));

As it is not possible to apply intrinsics for user-defined operations (accessing random
indices of a string (span) and calling Binary Search Tree (BST) methods), the only option
was to try to avoid checking the condition at each iteration. To figure out which branch
of if-else is called more often, the code was run along the regexes and dataset, mentioned
in the Benchmark chapter. It appeared that the most of the cases SRM did not call else
branch with BST.

So the next step was to compare A_StartSet.precomputed.Length with all the char-
acters in the current vector (input_i < A_StartSet.precomputed.Length).

As it was mentioned, strict greater than and less than operations offered by intrinsics
are available only for sbyte, long, short, int data types. A combination of other
intrinsics was used to overcome this constraint. First, the maximum value of two ar-

17

guments is found, and then, it is compared with the argument which is supposed to
be greater. This way, I got the greater or equal operator. To make the comparison
strict, the greater value was decreased by 1. So, essentially I got the following opera-
tion input_i <= A_StartSet.precomputed.Length - 1, which is the equivalent of
the necessary operation over integers.

Vector256 <ushort > comp =
Vector256.Create((ushort)(A_StartSet.precomputed.Length - 1));

Vector256 <ushort >res =
Avx2.CompareEqual(Avx2.Max(v, comp), comp);

Finally, to ensure the condition is met for all the vector elements and the result value is of
the boolean type (so that it could be used in the if condition), I used testC operation. In
fact, it might function as operator that checks whether the first argument’s bits are all ones
when you pass all ones as the second argument.

Vector256 <ushort > e = Vector256.Create((ushort)0xFFFF);
if (Avx.TestC(res, e))
{

...
}

Final version of the code is available on the listing 2.

Additionally, to ensure that code works correctly, I wrote a code snippet which would
count the number of matches of the original version of SRM and the optimised version.

18

Listing 2. Optimised implementation of IndexOfStartset() method.

int IndexOfStartset(string input , int i)
{

int k = input.Length;

if (Avx2.IsSupported && Avx.IsSupported)
{

ReadOnlySpan <char> inputSpan = input;
ReadOnlySpan <Vector256 <ushort >> avx2Span =

MemoryMarshal.Cast<char, Vector256 <ushort >>
(inputSpan.Slice(i));

Vector256 <ushort > comp =
Vector256.Create(

(ushort)(A_StartSet.precomputed.Length - 1));
ushort maxShort = (ushort)0xFFFF;
Vector256 <ushort > e = Vector256.Create(maxShort);
Vector256 <ushort > res = Vector256.Create((ushort)0);
foreach (Vector256 <ushort > v in avx2Span)
{

res = Avx2.CompareEqual(Avx2.Max(v, comp), comp);
if (Avx.TestC(res, e))
{

for (int j = 0; j < Vector256 <ushort >.Count; j++)
{

if (A_StartSet.precomputed[inputSpan[i]])
goto Done;

else i += 1;
}

}
else
{

for (int j = 0; j < Vector256 <ushort >.Count; j++)
{

ushort x = res.GetElement(j);
if (x == maxShort ?

A_StartSet.precomputed[inputSpan[i]] :
A_StartSet.bst.Find(inputSpan[i]) == 1)

goto Done;
else

i += 1;
}

}

19

}
}

while (i < k)
{

var input_i = input[i];
if (input_i < A_StartSet.precomputed.Length ?

A_StartSet.precomputed[input_i] :
A_StartSet.bst.Find(input_i) == 1)

break;
else

i += 1;
}

Done:
if (i == k)

return -1;
else

return i;
}

20

3 Benchmarking

To evaluate the impact of the changes the modified SRM was benchmarked along side
with the original version compiled as .NET standard 2.1 binary (serving as a baseline)
and as a .NET version 5.0 binary. The .NET current default regex library was used as a
reference baseline.

3.1 Datasets

In order to validate the performance of SRM against default .NET regex engine, I used
Mark Twain corpus [20] also used in [6]. The following regular expressions were bench-
marked:

■ Mark

■ Twain

■ (?i)Twain

■ [a-z]shing

■ Huck[a-zA-Z]+|Saw[a-zA-Z]+

■ [a-q][^u-z]{13}x

■ Tom|Sawyer|Huckleberry|Finn

■ (?i)Tom|Sawyer|Huckleberry|Finn

■ .{0,2}Tom|Sawyer|Huckleberry|Finn

■ .{2,4}Tom|Sawyer|Huckleberry|Finn

■ Tom.{10,25}river|river.{10,25}Tom

■ [a-zA-Z]+ing

■ \s[a-zA-Z]{0,12}ing\s

■ ([A-Za-z]awyer|[A-Za-z]inn)\s

■ ["'][^"']{0,30}[?!\.][\"']

■ \p{Sm}

21

However, Mark Twain corpus contains mostly ASCII characters and only a few extended
ASCII characters. As SRM claims to be efficient with UTF-8 inputs and regexes, I com-
piled similar list of regexes for Estonian wikipedia (as of 01.03.2021) [21]:

■ Eesti

■ Rootsi

■ (?i)Eesti

■ [a-züõöä]ee

■ Heli[a-zA-ZüõöäÜÕÖÄ]+|Aja[a-zA-ZüõöäÜÕÖÄ]+

■ [a-q][^u-z]{12}x

■ Toomas|Margus|Rein|Jaan

■ (?i)Toomas|Margus|Rein|Jaan

■ .{0,2}Toomas|Margus|Rein|Jaan

■ .{2,4}Toomas|Margus|Rein|Jaan

■ Eesti.{10,25}jõgi|jõgi.{10,25}Eesti

■ [a-zA-ZüõöäÜÕÖÄ]+tud

■ \s[a-zA-ZüõöäÜÕÖÄ]{0,12}tud\s

■ ([A-Za-z]ina|[A-Za-z]ein)\s

■ ["'][^"']{0,31}[?!\.][\"']

■ \p{Sc}

3.2 Benchmark setup

For benchmarking, I usedBenchmarkDotNet library [22]. It runs the experiment the neces-
sary amount of times and works out the statistics. Additionally, it takes into consideration
the fact that .NET applications run in virtual environment and are optimised at runtime by
JIT. Hence, the experiments, first, are run as a warm-up and only then taken into account.

Experiments were run on two AI-Lab [23] machines with different configurations:

22

■ Intel® Core™ i9-10900X CPU 1 @ 3.70GHz 10-Core/20-thread Processor, 128 GB
of memory, 2 x NVidia 2080Ti GPU with 11 GB of graphics memory

■ AMD Threadripper 3960X 24-Core/48-thread Processor 2, 128 GB of memory,
AMD RX6900XT GPU with 16 GB of graphics memory

The code of the benchmark is available in the project repository [24]. Building and exe-
cution steps are available in README.md file.

3.3 Experiment results and discussion

The results of the benchmarking are shown in tables 1-4. Tables 1 and 2 cover the bench-
marks run on The Entire Project Gutenberg Works of Mark Twain dataset (on Intel and
AMD processors, correspondingly). Tables 3 and 4 cover the benchmarks run on Estonian
wikipedia dataset (on Intel and AMD processors, correspondingly).

Although for some regular expressions the application has become slower (up to 9%), in
some cases the gain in performance has been up to 48%.

SRM outperforms the default .NET regex engine due to Symbolic Automata. I have man-
aged to improve it for the cases when a regex starts with a fixed prefix (no sets) or with a
small set. I have to mention that optimisation was done only for the case when BST was
not called. It means that for the majority of the symbols the values were precomputed.
On the other hand, the precomputed array is limited by ASCII symbols, so the optimisa-
tion might not have effect, for example, for the inputs and regular expressions which use
Cyrillic alphabets. This scenario needs to be benchmarked separately.

Another regex component aspect which needs to be researched separately is the number
of repetitions. In the current datasets, there were only a few such regular expressions and
half of them contained very low number of repetitions.

Regarding using the intrinsics, even though intrinsics have their own limitations and are
not well documented, it is still possible to use them for some cases. The code now has
duplications and it is less readable. However, in my opinion, it is a reasonable trade off
for such a gain in performance.

1https://ark.intel.com/content/www/us/en/ark/products/198019/intel-core-i9-10900x-x-series-
processor-19-25m-cache-3-70-ghz.html

2https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3960x

23

Interestingly, the experiments reveal that AMD Threadripper 39XX and Intel Core i9 10th
generation processors perform quite differently. Although their turbo boost frequencies
are comparable (4.5 GHz) and the experiments were carried out with a single thread run-
ning per processor the effects of the SIMD optimisations increase the performance of
regexes such as ”Tom|Sawyer|Huckleberry|Finn” on AMD, but seem to have no effect on
Intel Core i9. In general it appears that for string processing the Ryzen cores seem to out-
perform Intel Core i9 architecture. It should be noted that the computers used identical 16
GB memory modules with all memory slots populated.

24

Regex .NET SRM SRM (.NET5) SRM (.NET5) Avx2 SRM (.NET5) Avx2 / SRM

(?i)Tom|Sawyer|Huckleberry|Finn 526.586 ms 100.021 ms 99.822 ms 90.848 ms 0.91

(?i)Twain 29.320 ms 54.933 ms 55.061 ms 55.039 ms 1.00

([A-Za-z]awyer|[A-Za-z]inn)\s 1,452.229 ms 145.075 ms 145.181 ms 150.195 ms 1.04

.{0,2}Tom|Sawyer|Huckleberry|Finn 2,747.648 ms 115.292 ms 114.795 ms 123.565 ms 1.07

.{2,4}Tom|Sawyer|Huckleberry|Finn 2,892.666 ms 114.699 ms 121.068 ms 122.862 ms 1.07

Huck[a-zA-Z]+|Saw[a-zA-Z]+ 81.827 ms 24.358 ms 24.591 ms 18.881 ms 0.78

Mark 19.667 ms 3.382 ms 3.591 ms 3.542 ms 1.05

Tom.{10,25}river|river.{10,25}Tom 134.394 ms 54.717 ms 54.513 ms 44.339 ms 0.81

Tom|Sawyer|Huckleberry|Finn 91.790 ms 26.593 ms 26.660 ms 27.346 ms 1.03

Twain 20.275 ms 4.295 ms 4.184 ms 4.338 ms 1.01

[”’][^”’]{0,30}[?!\.][\”’] 138.377 ms 50.076 ms 49.937 ms 40.877 ms 0.82

[a-q][^u-z]{13}x 1,167.907 ms 9,202.485 ms 9,278.862 ms 9,323.441 ms 1.01

[a-zA-Z]+ing 1,088.468 ms 153.892 ms 153.377 ms 158.846 ms 1.03

[a-z]shing 834.930 ms 143.442 ms 143.365 ms 148.494 ms 1.04

\p{Sm} 77.347 ms 35.412 ms 35.407 ms 24.958 ms 0.70

\s[a-zA-Z]{0,12}ing\s 712.263 ms 130.446 ms 130.241 ms 140.467 ms 1.08

Table 1. Benchmark results: Mark Twain dataset on Intel processor.

25

Regex .NET SRM SRM (.NET5) SRM (.NET5) Avx2 SRM (.NET5) Avx2 / SRM

(?i)Tom|Sawyer|Huckleberry|Finn 596.116 ms 85.901 ms 86.079 ms 81.439 ms 0.95

(?i)Twain 30.595 ms 58.554 ms 58.622 ms 58.679 ms 1.00

([A-Za-z]awyer|[A-Za-z]inn)\s 1,727.670 ms 137.339 ms 137.414 ms 138.016 ms 1.00

.{0,2}Tom|Sawyer|Huckleberry|Finn 3,140.863 ms 110.315 ms 109.150 ms 109.824 ms 1.00

.{2,4}Tom|Sawyer|Huckleberry|Finn 3,752.531 ms 113.839 ms 111.692 ms 110.465 ms 0.97

Huck[a-zA-Z]+|Saw[a-zA-Z]+ 62.279 ms 34.419 ms 33.639 ms 22.625 ms 0.66

Mark 18.051 ms 2.974 ms 2.971 ms 2.991 ms 1.01

Tom.{10,25}river|river.{10,25}Tom 117.618 ms 50.134 ms 48.803 ms 35.201 ms 0.70

Tom|Sawyer|Huckleberry|Finn 72.998 ms 36.744 ms 35.518 ms 20.185 ms 0.52

Twain 18.344 ms 4.004 ms 3.473 ms 3.883 ms 0.98

[”’][^”’]{0,30}[?!\.][\”’] 124.251 ms 45.833 ms 46.668 ms 37.129 ms 0.81

[a-q][^u-z]{13}x 1,223.610 ms 7,936.593 ms 8,091.623 ms 8,622.955 ms 1.09

[a-zA-Z]+ing 1,144.840 ms 144.449 ms 147.008 ms 148.725 ms 1.03

[a-z]shing 953.279 ms 135.576 ms 131.955 ms 135.815 ms 1.00

\p{Sm} 57.335 ms 33.899 ms 33.831 ms 22.194 ms 0.65

\s[a-zA-Z]{0,12}ing\s 729.039 ms 121.866 ms 123.747 ms 126.368 ms 1.04

Table 2. Benchmark results: Mark Twain dataset on AMD processor.

26

Regex .NET SRM SRM (.NET5) SRM (.NET5) Avx2 SRM (.NET5) Avx2 / SRM

(?i)Eesti 1,721.966 ms 2,618.421 ms 2,618.510 ms 2,610.830 ms 1.00

(?i)Toomas|Margus|Rein|Jaan 18,423.398 ms 3,407.311 ms 3,501.442 ms 3,251.826 ms 0.95

([A-Za-z]ina|[A-Za-z]ein)\s 57,506.827 ms 5,701.311 ms 5,691.508 ms 5,911.740 ms 1.04

.{0,2}Toomas|Margus|Rein|Jaan 127,574.429 ms 5,109.237 ms 5,108.021 ms 5,475.085 ms 1.07

.{2,4}Toomas|Margus|Rein|Jaan 128,910.704 ms 5,130.630 ms 5,140.269 ms 5,471.042 ms 1.07

Eesti 1,177.946 ms 205.314 ms 205.013 ms 204.422 ms 1.00

Eesti.{10,25}jõgi|jõgi.{10,25}Eesti 4,352.452 ms 1,296.753 ms 1,298.791 ms 1,122.132 ms 0.86

Heli[a-zA-ZüõöäÜÕÖÄ]+|Aja[a-zA-ZüõöäÜÕÖÄ]+ 3,871.276 ms 1,111.153 ms 1,112.767 ms 927.567 ms 0.84

Rootsi 752.357 ms 172.583 ms 171.862 ms 170.157 ms 0.99

Toomas|Margus|Rein|Jaan 4,401.658 ms 1,181.965 ms 1,716.256 ms 1,257.119 ms 1.06

[”’][^”’]{0,31}[?!\.][\”’] 5,946.567 ms 1,928.788 ms 1,930.675 ms 1,540.108 ms 0.80

[a-q][^u-z]{12}x 45,699.453 ms 15,747.063 ms 15,861.119 ms 15,926.193 ms 1.01

[a-zA-ZüõöäÜÕÖÄ]+tud 51,283.276 ms 5,560.944 ms 5,558.053 ms 5,742.833 ms 1.03

[a-züõöä]ee 33,031.723 ms 5,593.717 ms 5,583.875 ms 5,657.266 ms 1.01

\p{Sc} 3,691.848 ms 1,598.289 ms 1,597.292 ms 1,179.714 ms 0.74

\s[a-zA-ZüõöäÜÕÖÄ]{0,12}tud\s 19,163.914 ms 4,248.384 ms 4,267.430 ms 4,369.826 ms 1.03

Table 3. Benchmark results: Estonian wikipedia dataset on Intel processor.

27

Regex .NET SRM SRM (.NET5) SRM (.NET5) Avx2 SRM (.NET5) Avx2 / SRM

(?i)Eesti 1,619.947 ms 2,762.118 ms 2,586.767 ms 2,602.085 ms 0.96

(?i)Toomas|Margus|Rein|Jaan 20,975.642 ms 3,135.517 ms 3,124.506 ms 2,776.571 ms 0.89

([A-Za-z]ina|[A-Za-z]ein)\s 69,774.342 ms 5,196.090 ms 5,186.411 ms 5,270.636 ms 1.01

.{0,2}Toomas|Margus|Rein|Jaan 151,889.328 ms 4,690.700 ms 4,784.250 ms 4.852.462 ms 1.03

.{2,4}Toomas|Margus|Rein|Jaan 181,856.643 ms 4,770.527 ms 4,747.014 ms 4,897.799 ms 1.03

Eesti 907.431 ms 136.907 ms 136.843 ms 136.998 ms 1.00

Eesti.{10,25}jõgi|jõgi.{10,25}Eesti 3,452.557 ms 1,668.475 ms 1,676,121 ms 1,017,001 ms 0.61

Heli[a-zA-ZüõöäÜÕÖÄ]+|Aja[a-zA-ZüõöäÜÕÖÄ]+ 2,993,605 ms 1,562.012 ms 1,543.735 ms 1,068.857 ms 0.68

Rootsi 684.201 ms 117.980 ms 117.134 ms 117.965 ms 1.00

Toomas|Margus|Rein|Jaan 3,665,899 ms 1,580.230 ms 1,591.544 ms 861.836 ms 0.55

[”’][^”’]{0,31}[?!\.][\”’] 4,938.891 ms 1,805.495 ms 1,803.828 ms 1,413.222 ms 0.78

[a-q][^u-z]{12}x 48,691.007 ms 15,344.857 15,079.095 ms 15,030.052 ms 0.98

[a-zA-ZüõöäÜÕÖÄ]+tud 55,795.835 ms 5,244.481 ms 5,287.474 ms 5,297.134 ms 1.01

[a-züõöä]ee 34,791.855 ms 5,242.730 ms 5,208.587 ms 5,026.472 ms 0.96

\p{Sc} 2,762.207 ms 1,511.756 ms 1,529.579 ms 1,105.293 ms 0.73

\s[a-zA-ZüõöäÜÕÖÄ]{0,12}tud\s 20,793.314 ms 4,129.517 ms 4,171.502 ms 3,996.533 ms 0.97

Table 4. Benchmark results: Estonian wikipedia dataset on AMD processor.

28

4 Related work

While using SIMD intrinsics is more general method, regex matching problem can be
approached considering the knowledge in the domain.

Resolving very specific aspects of regular expressions. For example, similarly to Symbolic
Automata and solving sets matching problem, it is possible to speed up matching regular
expressions with bounded repetition, e.g. k{5}, by using Counting-Set Automata (CsA),
introduced in [25]. The idea is briefly explained in the appendix.

Using different string matching algorithms. Fixed parts of regular expressions can be con-
sidered as strings. In this case, different string matching algorithms can be used. Boyer-
Moore preprocesses the pattern and early skips the parts of the input string, which will
not match [26]. [11] claims it is possible to speed up the algorithm with SIMD intrinsics.
Some modern algorithms could be used, too. DFC string matching algorithm, which out-
performs one of the most popular string matching algorithm, Aho-Corasic, twice and also
uses SIMD intrinsics, was introduced in 2016 [27].

Comprehensive approach. Hyperscan, a high-performance regex matching system, par-
tially converts NFA toDFA and decomposes regular expressions as strings and subregexes.
Additionally, it does dominant path and dominant region analysis and uses SIMD intrin-
sics [28].

29

5 Summary

The goal of this thesis was to optimise SRM, a symbolic automata based regular expression
engine, using SIMD intrinsics. SRM is very promising as it outperforms default .NET
regular expressions engine and its performance is getting close to the performance of RE2
[29]. It is also included in future .NET release as a feature [8].

To limit the scope of preparing data sets, I utilised one widely-used data set for ASCII
encodings and compiled my own data set for UTF-8 encoding, based on the Estonian
Wikipedia.

While working on the thesis, I faced some limitations of using SIMD intrinsics and found
solutions for some of them. This knowledge might be useful for those who want to apply
SIMD intrinsics in their software.

Also, I succeeded in finding a way to apply SIMD intrinsics to SRM and increased the
performance by up to 48% for the regular expressions with prefixes. The results were
empirically proved and validated by establishing the experiments.

Therefore, the goal of the thesis was achieved and the real outcomes exceeded the expected
ones for the known scenarios.

5.1 Future Work

This work sets the ground for further work and research:

■ In order to improve the performance of SRM, Counting-Set Automata can be im-
plemented in SRM.

■ To evaluate the performance of SRM for non-latin alphabets, new data sets need to
be compiled.

■ Regarding regex engines’ benchmarking, this work covers only matching regular
expressions in large strings. To observe the behaviour and performance of SRM and
other engines for other scenarios, a new, more comprehensive benchmark should be
created.

■ Modern processors are already provided with 512-bit registers, but .NET SIMD

30

intrinsics currently support only 256-bit vectors. Once 512-bit vectors support is
available, current solution might be improved even more.

31

References
[1] J. E. Friedl,Mastering regular expressions. ” O’Reilly Media, Inc.”, 2006.
[2] R. Chowdhury,M. R. Babu, V.Mishra, andH. Jain, “Regular expressions in big data

analytics,” in 2017 International Conference on Intelligent Computing and Control
(I2C2), IEEE, 2017, pp. 1–10.

[3] J. C. Davis, “On the impact and defeat of regular expression denial of service,”
Ph.D. dissertation, Virginia Tech, 2020.

[4] M. Veanes, “Applications of symbolic finite automata,” in Implementation and Ap-
plication of Automata - 18th International Conference, CIAA 2013, Halifax, NS,
Canada, July 16-19, 2013. Proceedings, S. Konstantinidis, Ed., ser. Lecture Notes
in Computer Science, vol. 7982, Springer, 2013, pp. 16–23. DOI: 10.1007/978-
3-642-39274-0_3. [Online]. Available: https://doi.org/10.1007/978-3-
642-39274-0%5C_3.

[5] H. Tamm and M. Veanes, “Theoretical aspects of symbolic automata,” in Inter-
national Conference on Current Trends in Theory and Practice of Informatics,
Springer, 2018, pp. 428–441.

[6] O. Saarikivi, M. Veanes, T. Wan, and E. Xu, “Symbolic regex matcher,” in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2019, pp. 372–378.

[7] “Github - automatadotnet/srm.” (), [Online]. Available: https://github.com/
AutomataDotNet/srm (visited on 04/10/2021).

[8] “Dotnet/runtimelab · github.” (), [Online]. Available: https://github.com/
dotnet/runtimelab/tree/feature/regexsrm/src/libraries/System.
Text.RegularExpressions/src/System/Text/RegularExpressions/srm
(visited on 06/08/2021).

[9] “Intel intrinsics guide.” (), [Online]. Available: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/ (visited on 05/14/2021).

[10] A. Stojanov, I. Toskov, T. Rompf, and M. Püschel, “Simd intrinsics on managed
language runtimes,” in Proceedings of the 2018 International Symposium on Code
Generation and Optimization, 2018, pp. 2–15.

[11] E. Sitaridi, O. Polychroniou, and K. A. Ross, “Simd-accelerated regular expression
matching,” in Proceedings of the 12th International Workshop on Data Manage-
ment on New Hardware, 2016, pp. 1–7.

[12] J. A. Brzozowski, “Derivatives of regular expressions,” Journal of the ACM
(JACM), vol. 11, no. 4, pp. 481–494, 1964.

[13] “Visual studio preview.” (), [Online]. Available: https : / / visualstudio .
microsoft.com/vs/preview/ (visited on 05/26/2021).

[14] “Avx.testc method (system.runtime.intrinsics.x86) | microsoft docs.” (), [Online].
Available: https://docs.microsoft.com/en- us/dotnet/api/system.
runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_
Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_
System _ UInt16 _ _System _ Runtime _ Intrinsics _ Vector256 _ System _
UInt16__ (visited on 04/27/2021).

[15] “Intel intrinsics guide.” (), [Online]. Available: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/#expand=3296, 766, 766, 5909,
5945,5939,5931,5200,5945,339,766,5909%5C&text=VPTEST%5C&techs=
AVX,AVX2 (visited on 04/27/2021).

32

https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1007/978-3-642-39274-0_3
https://doi.org/10.1007/978-3-642-39274-0%5C_3
https://doi.org/10.1007/978-3-642-39274-0%5C_3
https://github.com/AutomataDotNet/srm
https://github.com/AutomataDotNet/srm
https://github.com/dotnet/runtimelab/tree/feature/regexsrm/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/srm
https://github.com/dotnet/runtimelab/tree/feature/regexsrm/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/srm
https://github.com/dotnet/runtimelab/tree/feature/regexsrm/src/libraries/System.Text.RegularExpressions/src/System/Text/RegularExpressions/srm
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_System_UInt16__System_Runtime_Intrinsics_Vector256_System_UInt16__
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_System_UInt16__System_Runtime_Intrinsics_Vector256_System_UInt16__
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_System_UInt16__System_Runtime_Intrinsics_Vector256_System_UInt16__
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_System_UInt16__System_Runtime_Intrinsics_Vector256_System_UInt16__
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.intrinsics.x86.avx.testc?view=net-5.0#System_Runtime_Intrinsics_X86_Avx_TestC_System_Runtime_Intrinsics_Vector256_System_UInt16__System_Runtime_Intrinsics_Vector256_System_UInt16__
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=3296,766,766,5909,5945,5939,5931,5200,5945,339,766,5909%5C&text=VPTEST%5C&techs=AVX,AVX2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=3296,766,766,5909,5945,5939,5931,5200,5945,339,766,5909%5C&text=VPTEST%5C&techs=AVX,AVX2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=3296,766,766,5909,5945,5939,5931,5200,5945,339,766,5909%5C&text=VPTEST%5C&techs=AVX,AVX2
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=3296,766,766,5909,5945,5939,5931,5200,5945,339,766,5909%5C&text=VPTEST%5C&techs=AVX,AVX2

[16] “Using .net hardware intrinsics api to accelerate machine learning scenarios | .net
blog.” (), [Online]. Available: https://docs.microsoft.com/en-us/dotnet/
standard/managed- execution- process#compiling_msil_to_native_
code (visited on 05/25/2021).

[17] “Using .net hardware intrinsics api to accelerate machine learning scenarios | .net
blog.” (), [Online]. Available: https://devblogs.microsoft.com/dotnet/
using - net - hardware - intrinsics - api - to - accelerate - machine -
learning-scenarios/ (visited on 03/14/2021).

[18] “Span - adam sitnik - .net performance and reliability.” (), [Online]. Available:
https://adamsitnik.com/Span/ (visited on 03/20/2021).

[19] “Readonlyspan<t> struct (system) | microsoft docs.” (), [Online]. Available:
https : / / docs . microsoft . com / en - us / dotnet / api / system .
readonlyspan-1?view=net-5.0 (visited on 05/14/2021).

[20] “Mark twain corpus.” (), [Online]. Available: http://www.gutenberg.org/
files/3200/old/mtent12.zip (visited on 03/17/2021).

[21] “Estonian wikipedia backup as of 01.03.2021.” (), [Online]. Available: https :
//dumps.wikimedia.org/etwiki/20210301/etwiki- 20210301- pages-
articles-multistream.xml.bz2 (visited on 04/29/2021).

[22] “Benchmarkdotnet.” (), [Online]. Available: https://benchmarkdotnet.org/
(visited on 05/23/2021).

[23] “Intro - taltech ai-lab.” (), [Online]. Available: https : / / ai - lab . pages .
taltech.ee/posts/intro/ (visited on 05/02/2021).

[24] “Bahdan.yanovich / regex-experiments gitlab.” (), [Online]. Available: https :
//gitlab.cs.ttu.ee/bahdan.yanovich/regex-experiments (visited on
06/14/2021).

[25] L. Turoňová, L. Holı́k, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar, “Regex
matching with counting-set automata,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–30, 2020.

[26] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications
of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[27] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han, “Dfc: Accelerating string pat-
ternmatching for network applications,” in 13th USENIX Symposium onNetworked
Systems Design and Implementation (NSDI 16), 2016, pp. 551–565.

[28] X.Wang, Y. Hong, H. Chang, K. Park, G. Langdale, J. Hu, and H. Zhu, “Hyperscan:
A fast multi-pattern regex matcher for modern cpus,” in 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19), 2019, pp. 631–648.

[29] “Github - google/re2.” (), [Online]. Available: https://github.com/google/
re2 (visited on 06/03/2021).

[30] M. Sipser, Introduction to the Theory of Computation. Cengage learning, 2012.
[31] P. Hooimeijer and M. Veanes, “An evaluation of automata algorithms for string

analysis,” in InternationalWorkshop on Verification,Model Checking, and Abstract
Interpretation, Springer, 2011, pp. 248–262.

[32] “Introduction to symbolic automata.” (), [Online]. Available: https://compose.
ioc.ee/alice/videos/hendrik20210219.mp4 (visited on 02/19/2021).

33

https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process#compiling_msil_to_native_code
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process#compiling_msil_to_native_code
https://docs.microsoft.com/en-us/dotnet/standard/managed-execution-process#compiling_msil_to_native_code
https://devblogs.microsoft.com/dotnet/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/
https://devblogs.microsoft.com/dotnet/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/
https://devblogs.microsoft.com/dotnet/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios/
https://adamsitnik.com/Span/
https://docs.microsoft.com/en-us/dotnet/api/system.readonlyspan-1?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.readonlyspan-1?view=net-5.0
http://www.gutenberg.org/files/3200/old/mtent12.zip
http://www.gutenberg.org/files/3200/old/mtent12.zip
https://dumps.wikimedia.org/etwiki/20210301/etwiki-20210301-pages-articles-multistream.xml.bz2
https://dumps.wikimedia.org/etwiki/20210301/etwiki-20210301-pages-articles-multistream.xml.bz2
https://dumps.wikimedia.org/etwiki/20210301/etwiki-20210301-pages-articles-multistream.xml.bz2
https://benchmarkdotnet.org/
https://ai-lab.pages.taltech.ee/posts/intro/
https://ai-lab.pages.taltech.ee/posts/intro/
https://gitlab.cs.ttu.ee/bahdan.yanovich/regex-experiments
https://gitlab.cs.ttu.ee/bahdan.yanovich/regex-experiments
https://github.com/google/re2
https://github.com/google/re2
https://compose.ioc.ee/alice/videos/hendrik20210219.mp4
https://compose.ioc.ee/alice/videos/hendrik20210219.mp4

Appendix 1 – Non-exclusive licence for reproduction and
publication of a graduation thesis

I, Bahdan Yanovich,

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for
my thesis ”Optimisation of Symbolic Automata Based Regular Expression Library
SRM Using SIMD Intrinsics” , supervised by Juhan-Peep Ernits
a to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

b to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Tech-
nology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

14.06.2021

34

Appendix 2 – Automata Introduction

2.1 Classical Automata Theory

A finite automatonM is a 5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ → Q is the transition function,
4. q0 ∈ Q is the start state,
5. F ⊂ Q is the set of final states. [30]

Consider the following finite automatonM1:

1. Q = {q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12},
2. Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
3. δ described as

0 1 2 3 4 5 6 7 8 9q0 q1q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11q2 q12 q12q3 q12 q12q4 q12 q12q5 q12 q12q6 q12 q12q7 q12 q12q8 q12 q12q9 q12 q12q10 q12 q12q11 q12 q12q12

4. q0 is the start state, and
5. F = {q12}.

It can be visualised by a state diagram shown on Figure 41. If A is the set of all string
that automaton M accepts, we say that A is the language of automaton M and write
L(M) = A. [30]

This finite automaton accepts the string of a 3-digit integer greater than or equal to 900
and divisible by 5. Another word, A = {w| w is a string that represents a 3-digit integer
greater than or equal to 900 and divisible by 5 } and L(M1) = A.

Let A and B be languages. We define the regular operations union, contatenation, and
star as follows:

■ Union: A ∪ B = {x| x ∈ A or x ∈ B},
■ Concatenation: A ◦B = {xy| x ∈ A and y ∈ B},
■ Union: A∗ = {x1x2 · · · xk| k ≥ 0 and each xi ∈ A}. [30]

1Technically each 0, 5 transition consists of two transitions: 0 and 5.

35

q0 q1

q6

q5

q4

q3

q2

q7

q8

q9

q10

q11

q12
9

0

1

2

3

4

5

6

7

8

9

0, 5

0, 5

0, 5

0, 5

0, 5

0, 5

0, 5

0, 5

0, 5

0, 5

Figure 4. State diagram of a finite automaton that accepts strings that represent 3-digit integers that are
greater than or equal to 900 and divisible by 5.

36

Say that R is a regular expression if R is

1. a for some a in the alphabet Σ,
2. ε (empty symbol),
3. ∅ (empty language),
4. (R1 ∪R2), where R1 and R2 are regular expressions,
5. (R1 ◦R2), where R1 and R2 are regular expressions, or
6. (R∗

1), where R1 is a regular expression. [30]

Regular expressions and finite automata are equivalent as any finite automaton can be
converted to a regular expression that recognises the language it describes, and vice versa.
More details can be found in [30].

Therefore, the automatonM1, also shown as state diagram at figure 4, could be represented
as the regular expression "9[0-9][05]".

As one might have noticed from the example above, automata of quite trivial regular ex-
pressions can grow very quickly. Moreover, DFA and NFA work with finite alphabets.

2.2 Symbolic Automata

As I mentioned above, one of the problems of finite automata is that they work with finite
alphabets. It becomes unreasonably complex with large alphabets (e.g. UTF-8 encoding
in the context of regular expressions). There is another approach of handling transitions
and large or even infinite languages – using effective Boolean algebras as alphabets and
predicates as transitions, so that several transitionsmay be combined into a single symbolic
move [31]. That is the main idea of Symbolic Automata.

Here is the formal definition.

A symbolic finite automaton is a tupleM = (Q,Σ,∆, q0, F), where

1. Q is a finite set of states,
2. Σ is the input alphabet (effective Boolean algebra),
3. ∆ : Q× 2Σ ×Q is the move relation,
4. q0 ∈ Q is the start state,
5. F ⊆ Q is the set of final states. [31]

(p, φ, q) ∈ ∆ is a transition from state p to state q, whereφ is the predicate of the transition.
[32]

Figure 5 shows how the same regex ("9[0-9][05]") can be represented as a symbolic
automaton. As one can notice, the number of states and transitions has been reduced
significantly.

37

q0 q1 q2 q3
x = 9 x ≥ 0 ∧ x ≤ 9 x = 0 ∨ x = 5

Figure 5. Regular expression ”9[0-9][05]” represented as a symbolic automaton.

2.3 Counting-Set Automata

Another potential bottleneck of regexes is bounded repetition, e.g. k{5}. To reduce the
number of repetitive states in an automaton with bounded repetition, Turoňová et al. in-
troduced Counting-Set Automata (CsA), automata with registers that can hold sets of
bounded integers and can be manipulated by a limited set of constant-time operations.
For more details, see [25]. Comparison of the same regex ("k{5}") represented by finite
automaton and counting-set automaton is shown at figures 6 and 7. Again, the number of
states has reduced when using a new approach.

q0 q1 q2 q3 q4 q5
k k k k k

Figure 6. Regular expression ”k{5}” represented as a finite automaton.

k{5}
F: c ≥ 5

c := 0

k ∧ c < 5/c++

Figure 7. Regular expression ”k{5}” represented as a counting-set automaton.

38

Appendix 3 – Acknowledgements

While writing this thesis, I have been lucky to receive a lot of support.

I would like to thank my supervisor, Juhan-Peep Ernits, for showing me the real research.
Your expertise and desire of constant moving forward has been an example for me. I
admire how easily you bring people together and establish collaboration between them. It
has been a pleasure to work with you.

I would also like to thank my colleagues, Marko Kääramees and Ago Luberg, for letting
me in to the university world and kindly reminding me about the graduation.

Additionally, I would like to thank my friends, Valeriia Shpychka, Karina Nikitina and
Seyidahmad Alibayov, for being ready to help any time by words and deeds and being
able to share in my joy.

39

	Introduction
	Optimisation
	SRM matching algorithm
	Profiling
	Challenges and constraints
	Optimisation

	Benchmarking
	Datasets
	Benchmark setup
	Experiment results and discussion

	Related work
	Summary
	Future Work

	References
	Appendix Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix Automata Introduction
	Classical Automata Theory
	Symbolic Automata
	Counting-Set Automata

	Appendix Acknowledgements

