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1 Abstract 

The aim of this thesis is to apply and evaluate the usability of Provably Correct Testing 

(PCT) workflow on the basis of TUT Mektory nanosatellite software testing case study. 

TUT Mektory Nanosatellite is a project being developed by students and professors with 

contributions from various industries and universities internationally. 

To ensure the stability and reliability of the nanosatellite and the software 

associated with it, there have to be proper tests conducted on it before and after satellite 

launch. Testing can be conducted by different tools and methods, however, in this 

thesis, we will use Uppaal tool family and test execution environment DTron. Uppaal is 

an integrated tool used for modelling, verification, and testing of real-time systems. The 

usability analysis of the PCT process and tools incorporates estimates of time and 

computational resources spent on implementing the phases of the PCT workflow. In the 

course of process implementation, the abstract tests written using Uppaal modeling 

language and test interfaces have been implemented in Selenium which is used as an 

adaptor to execute the tests against the System Under Test (TUT Mektory nanosatellite 

software). 

The results are validated and based on practical measurements of software quality metrics 

applied in the Mektory nanosatellite software development process. The correctness of 

test development steps is proven by Uppaal model checker against verification conditions 

extracted from the satellite design requirements. 

This thesis is written in English and is 68 pages long, including 7 chapters, 30 figures, 

and 7 tables. 
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2 Annotatsioon 

 

Käesoleva magistritöö eesmärgiks on rakendada ja hinnata tõestatavalt korrektse 

testimise (PCT) töövoo kasutatavust TTÜ Mektory nanosatelliidi tarkvara testimise 

juhtumianalüüsi põhjal. TTÜ Mektory Nanosatelliit on projekt, mida arendavad 

üliõpilased ja professorid koostöös erinevate tööstusharude ja ülikoolidega. 

Et tagada nanosatelliidi ja selle tarkvara stabiilsus ja usaldusväärsus, tuleb seda 

põhjalikult testida enne ja pärast satelliidi orbiidile viimist. Testimine võib toimuda 

erinevate tööriistade ja meetoditega. Käesolevas väitekirjas kasutame Uppaali tööriistade 

perekonda ja testide täitmiskeskkonda DTron. Uppaal on integreeritud tööriist, mida 

kasutatakse reaalaja süsteemide modelleerimiseks, kontrollimiseks ja testimiseks. PCT 

protsessi ja tööriistade kasutatavusanalüüs sisaldab PCT töövoo etappide rakendamiseks 

kuluva aja ja arvutusressursside hinnanguid. Protsessi rakendamisel teisendatakse 

Uppaali modelleerimiskeeles esitatud testimudelite abstraktsed sisend- ja 

väljundsümbolid testi adapterite abil testitava tarkvara konkreetseteks sisenditeks ja 

konkreetsed tarkvara väljundid tagasi mudelil interpreteeritavateks sümbolväljunditeks.  

Töös demonstreeritakse, et mudeli ja mudelkontrolli päringu kitsenduste abil esitatud testi 

eesmärgid võimaldavad genereerida täidetavaid testijadasid, mis on kas testijooksu aja 

või testijada pikkuse mõttes optimaalsed. 

 

Tulemused on valideeritud ja põhinevad Mektory nanosatelliidi tarkvara arendamise 

protsessis rakendatud tarkvara kvaliteedi mõõdikute praktilistel mõõtmistel. 

Katsetamisetappide õigsust tõendab Uppaali abil teostatud korrektsusomaduste 

verifitseerimine, mis näitab, et satelliidi juhtimistarkvara disain vastavab disaini projetis 

esitatud nõuetele. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 68 leheküljel, 7 peatükki, 30 

joonist, 7 tabelit. 
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1 Introduction 

TUT Mektory nanosatellite software project [1] is being developed by students and 

professors with contributions from various industries and universities internationally. The 

goal of the nanosatellite project is to help students acquire practical experience in space 

technology and get hands-on experience in utilizing their engineering skills. The 

construction of the satellite is from 2016 to 2018, and it has been planned to be launched 

in the year 2018. The main goal of the satellite is to establish an Earth station and to 

operate the satellite for various reasons with one of them being to keep track of 

environmental changes. This encourages not only the youth but everyone to have an 

interest in knowing and building newer technologies. 

To assure the quality of any software, application or system, there must be proper tests 

conducted on it to proclaim its functional correctness, reliability and effectivity. Thus, to 

ensure that the TUT Mektory satellite is reliable and satisfies performance requirements, 

there are various tests conducted on the satellite and on the software with which it is 

associated.  

The ground station software that interacts with the satellite is one of the main applications 

to be tested but other software components involved in full solution influence the overall 

features as well. Therefore, integration testing should address the issues of collaboration 

between all the components that contribute to the mission success.  
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1.1 Motivation 

The first question that comes to one’s mind is that, “What steps are required to ensure 

that a satellite is correctly built and is ready to be launched?”. The answer to this is that 

the satellite should be thoroughly tested for all critical aspects of its design. Before a 

satellite is launched, there must be corrective tests conducted on the satellite device and 

on all the software that controls it.  

 

There are many ways in which the system can be tested, one of them addressing the testing 

productivity and automation issues the best is Model-based testing (MBT). Model-based 

testing can be defined as the automation of the design of black-box testing [2]. The main 

difference between manual black box testing and model-based testing is that in the former 

case the test scripts are written manually based on the requirements specified, whereas, 

in latter case we create a model of the expected System Under Test (SUT) behavior, thus 

capturing the requirements the test case is meant for. After this, the model-based testing 

tools are used to generate tests from that model automatically [2]. 

 

Uppaal Tron [3] is a tool which is developed for testing functional, performance and 

timing correctness. For the distributed systems, the tool called DTron [4] which stands 

for "Distributed Testing Realtime systems ONline," is used and it is based on the Uppaal 

model checker and the Uppaal Tron tool.  

 

The problem in testing is that it is hard to determine which tool is the best for given test 

purpose, and whether the results developed from the testing tool can be proved to be 

correct. In this thesis, the validation will be based on practical measurements of software 

quality metrics applied in the Mektory nanosatellite software development process. 

Uppaal tool family [5] is an integrated environment which enables users to validate, 

verify, and model real-time systems. The correctness of test development steps will be 

proved by Uppaal model checker. 

 

The idea of this thesis has merged from the real engineering problem. The TUT Mektory 

nanosatellite is being actively developed, and it has been finalized to launch it in the year 

2018. So, this work is based on genuine need and interest as a pilot project to be scaled 

up in later collaborative projects with ESA.  
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1.2 Background 

There are different types of test automation tools such as Torx, Watir, and others which 

are in use in software testing practice. Majority of available tools support functional 

testing. So, instead of using many narrowly specialized tools, Uppaal Tron differs from 

those being a model-based testing tool and is developed for testing functional, 

performance and timing correctness all combined. Uppaal tool being an integrated 

environment enables users to validate, verify, and model real-time systems. 

Selenium is also one great framework to write test cases and to implement them. 

Automation testing improves the quality of testing and reduces manual effort [14], and 

Selenium is an open source tool which is very popular for testing web applications [14]. 

Selenium along with TestNG framework overcomes many limitations of the JUnit 

framework [15]. TestNG framework covers all unit, functional and integration testing 

[15].  

In model-based testing, the model formally captures requirements of the System Under 

Test. This model can be used to generate test cases. The author’s choice is Uppaal Timed 

Automata (Uppaal TA) because the timed behavior of the state transition can be expressed 

and Uppaal tool family being an integrated environment enables users to validate, verify, 

and model real-time systems. 

1.3 Problem Statement 

Satellites are used for many different purposes. Some common ones are Earth observation 

satellites for military usage, weather monitoring satellites, communication satellites, 

navigation satellites, etc.  

Over the last few years, there have been several satellites that have been launched 

successfully. However, there have been many reported cases of failed launches of 

satellites, space shuttles, and rockets from across the globe. These failures cause a 

significant impact on the time and money invested in the making of the satellites. Usually, 

the expenses are in millions and even billions of dollars. Therefore, there must be proper 

maintenance and regular quality check-ups done to ensure good performance and stability 

before and after the launch of the satellite. 
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To ensure good performance and stability of the nanosatellite, there have to be proper 

tests conducted on it and on the system, which operates the satellite through the Earth 

station.  

The system can be tested by different tools and with different software testing approaches. 

Model-Based Testing (MBT) approach is an approach which improves the test coverage 

as it addresses the project resources and time thus resulting in good test quality [6]. The 

reason for using MBT is that it has many benefits over the classical testing approaches 

and these benefits are specified below [7]. 

The scope of this thesis will include usage of following MBT tools and related to them 

test automation approaches: 

• Uppaal and Uppaal Tron – For modeling, verification and online testing of 

real-time systems [8] [9]. 

• DTron – For testing in the distributed systems such as the ground system 

which operated the nanosatellite [4]. 

• Selenium – It will be used as an adaptor to implement the tests with the help 

of Java as a programming language [10].  

• Uppaal model checker – Proving the correctness of the test developed [7]. 

 

The configuration of MBT tools and their interconnections are depicted in Figure 1 

[11]: 

 

Figure 1: Online Model-based Testing workbench Uppaal Tron [11] 
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According to Figure 1, the Model will be developed from the requirements specification 

of SUT and constrained by the test purpose given in test specification. The tests are 

generated either online by Tron tool during test execution or offline from the witness 

traces provided by the Uppaal model checker. The properties the model checker is 

verifying originate from the test purpose specification and are specified as TCTL 

formulas. Since Uppaal supports not full TCTL, some of the properties need to be 

specified as SUT model constraints. The technical details of test case model construction 

will be explained in Section 4 (Application of Methodology and Tool Chain). After test 

model and test purpose are specified their correctness and tests feasibility are verified 

using Uppaal model checker. Generated test are executed in Uppaal Tron or its extension 

for distributed systems DTron. Additionally, Selenium can be used as an adaptor to 

communicate between model executing environment and the Satellite web interface. 

Adaptor transforms the symbolic test inputs/outputs specified in the model to executable 

by SUT inputs and outputs.  

The test development workflow comprises steps such as SUT modeling, test purpose 

specification, test generation, deployment, and execution. The thesis has to apply all these 

steps to satellite ground station software: 

• The first task is to formalize the SUT software specification using Uppaal TA. 

• The second task is extracting and formalizing the correctness criteria for the 

outcome of each testing process step. This involves both general correctness 

properties outlined in [16] as well as application specific properties unique to 

given software.  

• The third task is to prove the correctness of the steps by model checking using 

Uppaal model checker or Divine tool.  

• The fourth task is to validate the approach by comparing the performance of the 

used MBT process and the number of detected faults with those reported by 

control group that does manual testing. 
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1.4 Related Work 

In the past few years, there has been some research work done in the field of provably 

correct test development for various systems. One of the research work is closely related 

to the current thesis, but it is based on Provably correct test development for timed systems 

[12]. In the paper, there is a study done on the various ways by which the correctness of 

test derivation steps can be ensured and how the test results can be made trustable by the 

testing process [12]. 

The paper also focusses on model-based testing of software systems with timed 

constraints [12]. Model-based testing process is considered consisting of following steps: 

• The first step is to model the System Under Test (SUT) which is also referred as 

Implementation-Under-Test (IUT). 

• The second step is where the test purpose gets specified. 

• The third step is where the tests get generated. 

• The final step is where the generated tests get executed against the System Under 

Test(SUT). 

In paper [12], the authors use Uppaal Timed Automata (Uppaal TA) as a formalism to 

model the SUT behavior. The use of Uppaal TA is because of the need to test the SUT 

with timing constraints so that the propagation delays between the tester and the SUT is 

taken into account.  

Another paper [13] is based on the model-based test suite generation offline using the 

Uppaal Model checker for the Function Block Diagrams. The main idea of the paper is 

threefold [13]: 

• The authors propose a transformation of Function Block Diagram (FBD) into 

timed automata models. 

• The generation of tests is using Uppaal Model Checker. 

• The applicability of the author's method is illustrated on the railway industry for 

management of trains and control software. 
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Remote testing explained in the paper [28] gives a vivid overview of MBT and 

conformance testing. In conformance testing, the SUT is considered as a black box where 

only the input and output are controllable and observable respectively [28]. When testing, 

test cases are executed against the SUT and a decision is made on the test case which is 

either a pass or fail or inconclusive. This decision shows the input-output conformance 

relation (IOCO) between the test specification and the SUT. Uppaal Timed Automata 

(Uppaal TA) is then used for modeling the SUT behavior and DTron so as to have 

distributed execution.  

A somewhat similar approach has been used in the paper [29] where the authors applied 

model-based testing to improve the state of art of integration testing. The paper provides 

an automated approach for generating the model for a robot case. Uppaal Tron is used as 

the test engine and DTron as the adaptor generating framework [29].  

A detailed explanation of Provably Correct Test Development Workflow and the use of 

Uppaal Tron and DTron is elaborated in the paper [30]. The author’s research is based on 

an extensive study and survey of model-based testing emphasizing on models which are 

verified, and to enable provably correct on-line testing which was applied to the case 

study on a street light control software testing. 

However, in this thesis, stress is put on the correctness of the test development steps and 

on the specifics of the SUT - Mektory nanosatellite communication protocol. The author 

will focus on the correctness proving using Uppaal model checker [8] and on offline test 

generation using verification traces. 

1.5 Research Questions 

TUT Mektory Nanosatellite being one of the current projects at the University requires 

trustable testing results to ensure its successful launch and good performance even after 

its launch. 

With the above-mentioned motivation, the main RQ for this thesis is, “How can the tests 

and testing results be proved to be correct?” The nanosatellite not only requires tests to 

be conducted on it, but one also has to ensure that the tests conducted are correct and 

validated by some rigorous method. 
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Model-based testing will help to achieve the goals of the thesis in formally verifiable way. 

This leads to the following concrete research questions: 

RQ1: “If testing is based on Model-Based Testing then what are the correctness criteria 

which can be applied to test cases?”. Our hypothesis is that in addition to generic 

correctness criteria such as deadlock freedom, input enabledness, connectedness, 

coverage correctness, etc. there are SUT and test case specific correctness criteria that 

need to be taken into account when concrete test sequences are generated.  

RQ2: “How can the test purpose be specified in case of Model-Based testing?” – Our 

hypothesis is that the Uppaal TA modeling language is expressive enough for stating the 

test purposes and test model constraints formally. Due to the formal semantics the Uppaal 

model checker can be applied for verifying the correctness criteria of created test models. 

RQ3: “What is the relevance of Model-based testing for the TUT Mektory nanosatellite?” 

– The relevance of Model-Based testing for TUT Mektory nanosatellite will be explained 

with analysis of timing constraints and time taken to verify test purposes, thus explaining 

why Model-Based testing is the best choice.  
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2 Preliminaries 

A short introduction and explanation of the tools and testing methods used in this thesis 

will be given in this section. 

2.1 Model-Based Testing 

Model-based testing can be defined as the automation of the design of black-box testing 

[2]. The main difference between manual black box testing and model-based testing is 

that in the former case the test scripts are written manually based on the requirements 

specified, whereas, in latter case we create a model of the expected System Under Test 

(SUT) behavior, thus capturing the requirements the test case is meant for. After this, the 

model-based testing tools are used to generate tests from that model automatically [2]. 

Model-based testing has four main approaches [2]: 

● The test input data is generated from a domain model 

● The test cases are generated from an environment model 

● The test cases with oracles are generated from a behavior model 

● The test scripts are generated from abstract tests 

 

The first approach is where the domain of the input values is the model, and the test 

generation is a selection of the subset of those values to obtain the test input data [2].  

The second approach is based on environment model, and it describes the environment 

of the System Under Test. Usually, in this approach, it is not possible to determine the 

output values because this approach does not model the behavior of the SUT. Therefore, 

it is difficult to determine if the test failed or passed. 

The third approach is the generation of test cases with oracles. Oracles here determine the 

expected results of the SUT or some automated check on the results to see if it is correct. 
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This approach is rather difficult because the output values generated are checked for their 

correctness. In this approach, the test generator should know about the behavior of the 

SUT so that it can check or predict the output values [2]. The greatest advantage of this 

approach is that it is the only approach out of the four which focusses on the whole design 

problem from selecting the input values to generating sequences of operation calls to 

generating the executable test cases. 

The fourth approach is different as it assumes that an abstract description of the test case 

is given. This abstract description can be in the form of a UML sequence diagram or a 

high-level procedural call. The main focus of this approach is to transform the abstract 

test case into an executable low-level test script. 

Model-based testing is more like automation of black-box test design. The model should 

be abstract, concise and expressive enough to represent behaviours of the SUT: concise 

so that it is easy to validate and is not too long to write and precise enough to explain the 

behavior that is to be tested [2]. The test cases can usually be automatically generated 

from the model with the help of a model-based testing tool. 

2.2 Provably Correct Test Development Workflow 

Provably Correct Test Development (PCTD) method solves the issues of trustability and 

provides great conclusiveness for automatically generated tests and procedures. This 

improves the productivity and quality of entire software development process. In many 

commercial testing tools, it is left to the user responsibility to ensure that the test results 

achieved through automation are trustable. That leaves it open if the testing results are 

conclusive unless there are some exhaustive checks for its correctness. PCTD helps to 

solve this issue with ease [12]. 

Provably Correct Test Development method involves Model-Based Testing, with the 

focus of two main study subjects: Test Automation and Test Correctness. The following 

are the three main steps involved in Model-Based Testing [12]: 

• Modeling a System Under Test 

• Specifying the test purpose 
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• Generating the test 

• Executing against the system under test 

The Figure 2 shows a tool supported workflow suggested in [26] on how a model-based 

test is developed and proved to be correct. 

 

Figure 2: Provably Correct MBT Workflow [26] 

 

2.3 Uppaal Timed Automata 

Uppaal is a tool which is used for modelling, simulation and verification of real-timed 

systems [3]. Uppaal modelling language is based on extension of timed automata 

introduced by Alur and Dill. Original timed-automata have only clock variables and there 

are finite number of control states or so-called locations [3]. 

In Uppaal, the model is a network of several timed automata composed in parallel [3]. In 

addition to clocks the model is elaborated with data variables that are part of the state. 

These variables of Boolean and integer type are like the ones in programming languages 

which can be used for calculations and different operations. The state of a system is 
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defined by the clock constraints, values of the variables and the control locations of all 

the automata. Every automaton may fire a transition which leads to a new state. 

One timed automaton modeling example of a simple lamp is shown below: 

 

Figure 3: A timed automaton modeling a simple lamp [27] 

 

We see from the Figure 3 that there are two automata of different roles. One for the User 

and the other is the Lamp itself. There are three states of the lamp: off, low and bright. 

The change of states takes place with the way the user presses the lamp button. If the user 

presses the button for the first time and once then the lamp is turned on. If he presses it 

again, then the lamp is turned off. But, if the user presses the button twice and fast, then 

the lamp is turned on and becomes bright. The clock ‘y’ of the map is used to detect if the 

user was fast and pressed the button two times within 5 seconds (y<5) or slow (y>=5) 

[27]. 

In more technical terms, Uppaal Timed Automata can be defined as a closed network of 

timed automata which can be called as processes [17]. Locations are the nodes in the 

automata graph and edges are the directed vertices between the locations [18]. Automaton 

state consists of the current control location and the valuation of all clock and data 

variables. Channels are the synchronization links between the processes. Channels having 

unique id-s, e.g. ‘ch’ relate a pair of transitions in parallel processes [18]. Here, the 

synchronized edges are labeled with symbols for input and output actions denoted by 

‘ch?’ and ‘ch!’. 

Mathematically, let us assume that ∑ is a finite alphabet of actions (a, b, c, …), and C is 

a finite set of real-valued variables (x, y, z) denoting clocks [18]. A conjunctive formula 
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of atomic constraints of the form x ~ n for c ∈ C, ~ ∈ {≥, ≤, =, >, <} and n ∈ N+. We use 

G(C) to denote the set of clock guards. A timed automaton ‘A’ can be defined as a tuple 

(L, l0, E, Inv) in which L is the finite set of locations, l0 ∈ L, and is the initial location, E 

is the set of edges where E ∈ L ×G(C) × Σ × 2C × L, and Inv is where L → I(C) assigning 

the invariants to locations where we restrict the constraints in the form of x ≤ n or x < n, 

n ∈ N+. 

2.4 TCTL Query language 

The query language used in Uppaal model checker is TCTL (Timed Computation Tree 

Logic). It consists of path formula and state formulas [3]. State formulas express the 

properties of individual states whereas path formulas express the paths properties of the 

model. 

State formula. An example of a state formula is an expression ‘i == 7’, which implies 

that the expression is true in the state where ‘i’ is equal to 7. In Uppaal, if there is a 

deadlock (no outgoing transitions from the state itself or any of its successors [3], then 

the syntax for it is the keyword ‘deadlock’ itself. 

Path formula. The path formulas are further classified into three types: 

• Reachability – Reachability property asks whether a given state formula, ‘φ’, is 

satisfied by any reachable state. In other words, starting at the initial state is there 

any existing path such that φ is satisfied along the path. The syntax used in Uppaal 

is E <> φ. One such example is when a communication protocol is modeled, and 

it consists of a sender and a receiver. So, in this protocol, it becomes essential to 

know if the sender is able to send messages and if the receiver actually receives 

the message or not [3]. 

• Safety – Safety property is where something bad is never going to happen or more 

of like being on a safe side. For example, in any game, there arise many situations 

where a player is in a situation where there are chances of winning the game and 

that the player will not lose the game. Assuming ‘φ’ to be the state formula, 

assuming φ is true in all reachable states having the path formula A [] φ, such that 
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E [] φ states that there must be a minimal path in which φ is always true. So, the 

syntax in Uppaal is A [] φ and E [] φ [3]. 

• Liveness – Liveness is the property where something will happen. For example, 

when an air-conditioning is turned on by pressing the ‘On’ button, then it gets 

turned on. In Uppaal, Liveness is expressed as A<> φ, which means that φ is 

ultimately satisfied [3]. 

Some examples can be seen from the following Figure 4: 

 

 

Figure 4: Examples of the query in Uppaal [26] 
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2.5 Toolchain for the Provably Correct Test Development 

In this section we give an overview of main tools used in our PCTD process. 

Modeling with Uppaal 

Uppaal Tool has two main GUI components: Menu bar options and tabs (editor, 

simulator, and verifier) [19]. 

 

Figure 5: Uppaal Tool Overview 

 

Figure 5 shows the Editor window which is the first tool in the process. When Uppaal 

starts, an initial location is already pre-created for us. The initial location is distinguished 

from other locations by two circles in it. To add another location ‘Add Location’ is clicked 

from the menu bar and then the location next to the initial location is used to place it. 

Similarly, ‘Add Edge’ button is used to connect the two locations and then ‘Selection 

Tool’ can be used to select the model element for its further specification. This way, we 

have the first automation ready. 

The menu bar has essential features related to the modeling. ‘Help’ menu describes most 

of the functionalities of the menu bar and explains the syntax and the GUI in details. 
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Figure 6: Uppaal ‘Help’ menu 

 

Once the editing of the model has been done, one can click on the Simulator tab to get 

started with the simulator.  

 

Figure 7: Simulator in Uppaal 

 

The left panel in the Simulator tab is where most of the controls are. We can choose the 

transitions (Enabled Transitions) which would work on an existing trace (Simulation 

Trace). In the middle column (Drag out) the valuation of variables is shown, the process 
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model itself is located on the right-top, and the right-bottom shows the message sequence 

chart of the processes [19]. 

To simulate it we click on one of the Enabled Transitions and click on Next. The process 

at the right progresses one step and we see that the right-bottom view also has a change. 

This way, we have simulated the process and can proceed to the next step of Verification. 

The Overview is where we can write the query and check for it satisfaction by clicking 

on the ‘Check’ button on the right. In figure 8, the query is ‘E<>Process.end’ means that 

we would like to know if it is possible to reach the end location in the process named 

Process we have created above. And after checking, we see that the property is satisfied. 

 

Figure 8: Verifier in Uppaal 
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a. Test Purpose Description language - TDL 

Every organization with complex test cases needs convenient and compact notations for 

the test specifications. The Test description languages (TDLs) consists of two 

components: System Under Test (SUT) modeling language TDLSUT and the test purpose 

specification language TDLTP [20]. TDLSUT captures the important features for SUT 

development. It is relatively independent of test cases. SUT specification language in this 

thesis approach is Uppal TA. The model elements referred in the model are called test 

coverage items and they form the set of ground level terms referred in more abstract test 

purpose definition language TDLTP.  TDLTP expressions define the test scenario, it is more 

abstract than TDLSUT, and its expressions must be interpretable on the test model. 

Syntax of TDLTP 

A Boolean variable called Trap labels a test coverage item of the test model  [20]. The 

traps are auxiliary Boolean variables’ assignments that are added to the test model edges 

for tracking the test progress and for estimating the model coverage by test a run. The 

trap can also be thought of as a milestone indicating the progress of SUT model 

exploration. By default, the trap variable is set to false. It is set to true when the edge 

labeled within the trap is visited during test execution. An elementary trap is where the 

update function is unconditional, meaning, tr: = true. The general assumption is that the 

update functions are not recursive, the arguments are defined whenever the edge labeled 

with the trap is executed, and the trap names are unique. For brevity we call the set of 

traps with same name prefix a trap set. For enhancing the specification of trap set 

properties we represent a trap set also as a Boolean array each element of which is an 

individual trap.  

Let, Edge(MSUT) → Set of edges of SUT model MSUT [20], 

e → Edge(tr), function mapping tr to an edge e  Edge(MSUT) which is labeled with tr 

and Ctr, the updated constraint of tr. 

So, for the test case TC, we say a set { (e, Ctr) | e  Edge(MSUT) } to trap the set TSTC and 

assume that the edges e are decorated with updates tr  Ctr for all tr  TS. 
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Given a trap set TS we distinguish two types of constraints - universal and existential - 

and denote them as ∀TS and ∃TS respectively. ∀TS means that all traps and ∃TS mean 

that at least one trap of the set TS must be set true for a test run to be PASSED. For 

shorthand, we use symbol ALL to denote a trap set including all elementary traps tr of 

MSUT such that Edge(ALL) = Edge(MSUT). Non-atomic TDLTP expressions SE are 

defined as follows [20]: 

- Universal and existential trap sets TS:  

SE ::= ∀TS | ∃TS 

- The complement of TS:  

SE ::= !TS, !TS including elementary traps tr such that Edge(tr) ∈ Edge(ALL) and 

Edge(tr) ∉ Edge(TS). 

- Logic connectives:  

SE ::= not SE | SE1 & SE2 | SE1 or SE2 | SE1 => SE2 

- "Next" operator ";":  

SE ::= TS1 ; TS2 specifies a set of pairs of MSUT edges (e1, e2), s.t. e1 ∈ Edge(TS1), 

e2 ∈ Edge(TS2) and pre(e2)=post(e1). pre(e) denotes a pre-state of the edge e where e is 

enabled, and post(e) is post-state after executing e). If only one of the sets (either TS1 or 

TS2) is specified "_" is used instead of other, meaning "any". 

- "Leads to" operator:  

SE ::= SE1 ~> SE2 

- Time-constrained "leads to" operator: 

ˇ SE ::= SE1 ~>[ ® DL] SE2, where ® ∈ { <, =, >, ≥, ≤} and DL is a deadline of event 

SE2 w.r.t. event SE1. DL ∈ N+ and DL < TestTimeOut, where TestTimeOut is upper time 

bound to the test run if specified. We call DL an absolute deadline if the SE1 is specified 

with wildcard symbol "_", i.e., the deadline is w.r.t. the start moment of the test run [20]. 
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- Parameterized iteration: SE ::= #SE ® n where #SE denote the number of occurrences 

of SE, ® ∈ { <, =, >, ≥, ≤} and n ∈ N+. 

 

b. Test Execution – TRON/DTRON 

The functionality of Uppaal is extended with test execution tool TRON and its extension 

for distributed systems DTRON [22]. This section will give a brief explanation of the 

DTRON architecture and its functionality. 

• DTRON architecture 

DTRON has been built over Uppaal model checker and Uppaal TRON. It has three 

important components: 

- Adaptors/Reporters: 

- Adaptors help in communication with instances of TRON tool. The symbolic 

input of the test model is converted by Adaptors to concrete executable test 

input which is then communicated over Spread toolkit and sent to SUT [22].  

Uppaal TRON has an API in C and Java for this interaction. The API has two 

classes: Reporter and Adaptor 

 

Figure 9: Adaptor class & Reporter class [22] 
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Reporter 

Reporter handles the connection between the model and the Uppaal TRON 

runtime. There is a ‘handshake’ phase established at ‘void 

configure(Reporter) which is invoked by Uppaal TRON thus allowing access 

to the Reporter object for session configuration of [22]: 

1. Time Unit – Determining the time for the unit of the model check (in 

microseconds). 

2. Timeout – Time limit to the model execution. 

3. Input/output channels – The channels are declared between the SUT 

and the Uppaal model. By naming convention, the input channels must 

have prefix ‘i_’ and output channels prefix ‘o_’. 

Adaptor 

The main drawback of Uppaal TRON is that it does not support distributed testing. 

It can communicate with a single port at a time. DTron is the extension of TRON 

that enables test interaction over multiple ports simultaneously. An important 

component in DTron is Spread Toolkit. 

- Spread Toolkit takes care of message serialization. Spread toolkit is used to 

interface the runtime with different platforms, Google Protocols, and 

languages. Mainly for message interchange Spread Toolkit is used by DTron 

[22]. The pattern for the messages is like publish-subscribe. Subscriptions are 

done by local testers that get messages and get notified whenever new 

messages are available by the callback. 

Spread provides many services such as point to point communication and 

group communication. It ensures that there will be no faults during the 

message exchange in local and wide area networks. Spread guarantees  six 

levels of messages, namely: unreliable, reliable messages, FIFO – by the 

sender, casual, agreed and safe (total order) [22]. In DTRON, the messages 
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are flagged as safe which specifies that the SUT semantics is not broken and 

that they are produced in the same order to all the recipients [22].  

- DTRON API: It has a direct connection with SUT ports, so DTron API acts 

as a local test adaptor. The API can also be used to write Adaptors which 

would interact with the SUT. The DTron API domain model can be seen in 

the following figure: 

 

Figure 10: DTron API domain model [22] 

 

The class DTron handles the connection to the Spread broker and allocates or 

releases resources. In this way, this is also the main entry point for the API. 

The DTron connection is used to assign DtronListener [22]. And, as we can 

see in the domain model, the listeners are based on the IDtronChannel which 

holds details about the model channels. 

- Distributed Execution: When SUT has distributed architecture, it has usually 

multiple ports at different geographic locations for interaction between the 

tester and the SUT. The following diagram shows the conceptual view of 

distributed runtime deployment configuration of DTRON. 



32 

 

 

Figure 11: Distributed testing data-flow in DTron [22] 

 

Figure 11 shows a conceptual view of the distributed runtime configuration of 

DTron. As we can see from the figure above, in the bottom, there is a set of 

distributed SUT components and each SUT component has a port for stimuli and 

observations [22]. Each port is connected to a DTron instance which can be an 

Adaptor, a Model or a combination of both. The DTron instance communicates 

over Spread which can be clustered. The flow of the tests is such that the local 

testers are integrated into the DTron instances which in turn is connected to the 

SUT ports via Adaptors and then subscribed to the Spread broker it is linked to. 

DTron automatically generates the adaptor which gets linked to Spread multicast 

network. The low-level data (in byte form) which are transmitted in the Spread 

Network get serialized / de-serialized with the help of Google Protocol Buffers. 
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3 Case Study 

This section has a short description of the satellite and its architecture which is the 

building block of this thesis. The satellite’s architecture is also explained along with the 

component which has been chosen as the System Under Test.  

3.1     Description of Satellite 

The TUT nanosatellite is a student satellite comprising of various components. It is a 

project funded by the Tallinn University of Technology and various industries. The 

development and making of the satellite have been done since 2016, and most likely the 

satellite is proposed to be launched in the year 2018. 

The main goals and objective of the nanosatellite are: 

- Hands-on practical experience for students who can implement their 

knowledge and skills related to satellites and space. 

- To build a satellite which can be operated from the Earth station and can be 

used for various productive reasons. 
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3.2     Satellite Architecture 

The generic architecture of the TUT nanosatellite can be seen from the following Figure 

12. 

 

Figure 12: TUT Mektory Nanosatellite System [23] 

 

The satellite system has both ground and space components that interact with each other 

to establish a well-defined communication and functional integrity for all phases of the 

mission. 
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The satellite system can be broadly divided into two main segments: Ground Segment 

and Space Segment.  

 

Figure 13: TTU Mektory Nanosatellite System Segments 

 

The Ground Segment is further divided into Ground station, Mission Control System and 

the foreign amateur UHF (Ultra High Frequency) receivers. The Space Segment consists 

of the Nanosatellite itself. 
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3.3     System Under Test 

In this thesis, the communication protocol between the ground station and the satellite is 

studied and tested. The following figure shows the communication protocol between the 

satellite and the ground station. A number of AX.25 protocol compatible frames is sent 

from the ground station to the satellite, and the satellite responds with a number of 

AX.25 frames within a time slot. The TUT nanosatellite supports AX.25 UI frames 

(Unnumbered Information). 

 

Figure 14: TTU Mektory Nanosatellite Communication Protocol [23] 

 

AX.25 is a data link layer protocol which is designed for use by the amateur radio 

operators (use of radio frequency spectrum for the purpose of exchanging messages via 

wireless or other means) [25].  
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4 Application of the Methodology and Tool Chain 

The main implementation of the Satellite Communication Protocol and the modeling of 

the System Under Test is elaborated in this section. Tools like Dtron and Uppaal will be 

used to create the model and then validate it along with the generation of tests. 

4.1     Class Diagram of the System Under Test 

The System Under Test is first represented using a Class Diagram where the Adaptor has 

been introduced as a channel which will allow the test cases to run over the satellite 

software and the result obtained will be finally verified to be correct. 

The main components of the class diagram are based on the nanosatellite TM/TC Protocol 

Description [23].  

 

Figure 15: Class Diagram of Satellite Communication Protocol [24] 
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In Figure 15, the system consists of five components: GUI, Node, Test Interface, Frame 

Manager and Packet Manager. The Adaptor is used to connect to the System so that test 

cases can be run against the system. Each component of the Satellite is used to send and 

receive some Data. 

The communication is initiated by GUI component. The GUI component can be 

considered as an environment component to SUT which generates messages to the 

satellite and processes acknowledgements from it. The messages are kept in the buffer 

until the positive acknowledgement has been received about its delivery [23]. The data is 

sent from the GUI to the Node. The communication is managed by the Node. The count 

of the data which is divided into L3 data frames is sent to the Packet Manager. Then, the 

frames are packed into the Info Object and Operation Data field and they are then sent to 

the Frame Manager [23]. This Frame Manager is responsible for packing the Info Object 

into an AX.25 frame. Since the Packet Manager has already received the count of the 

packets, so it collects the frames and assembles them in a packet called the burst which 

is finally sent to the satellite. When the satellite sends data, then it is received in an 

inverted process, and the data gets represented in the GUI. As the Node manages the 

communication, it then accumulates all the L3 data acknowledgment frames containing 

information about the frames that were not received by the satellite so that it can be used 

to resend it [23].  

There are three types of communication situations that can occur [23]. These are 

explained below: 

• Success – This is the ideal situation where the data that is sent to the satellite is 

received successfully.  

• Semi-Success – There is a failure in proper communication due to some frames 

being lost or timeout. In this situation, after the reception, the L3 acknowledgment 

frame is sent which involves missing frame numbers. This leads to a failure 

compensation in communication. 

• Timeout – A timeout can occur anytime due to some technical error thus leading 

to some frames being lost. Whenever there is a timeout, then the sender requests 
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for the frame numbers that were not received in the next communication window. 

It then resends the frames based on the L3 acknowledgment frame received. 

4.2     Satellite Communication Architecture 

 

Figure 16: Satellite Communication Protocol Architecture 

 

The satellite communication architecture can be considered like the diagram specified in 

Figure 16 where the two Nodes represent the Sender (Node 1) and the Receiver (Node 2). 
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The above diagram conforms to standard OSI model (Open Systems Interconnection 

Model which is used telecommunication). 

Initially, the Sender (Node 1) initiates sending the data in the form of data from the GUI. 

This data travels from the GUI and follows the OSI layer protocol traveling from the 

Application layer to the Physical layer where the Adaptor helps to transmit data from the 

Sender to Receiver. Once the receiver receives the data in the physical layer, then the 

same workflow continues but in the reversed order until it reaches the satellite. 

 

4.3     SUT Modelling using Uppaal 

The modeling of the SUT is done with the help of Uppaal modeling tool. At first, a simple 

diagram is made to illustrate the SUT and the communication protocol. This diagram is 

shown in Figure 17. Here the test interface is denoted by dotted line. There are four test 

interface ports: 

 

Figure 17: Satellite Communication Protocol 
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From Figure 17, we see that GUI initiates the communication and this data is sent from 

the GUI to the Satellite via the SUT which has interfaces that help to transmit data. Once 

the satellite receives the request data, it sends back the response data which is then 

received by the GUI. 

With the above idea we model the interaction observable on test interfaces as shown in 

Figure 18: 

 

Figure 18: Nanosatellite Model using Uppaal Tool 

 

In the above model, we have created following Uppaal TA templates: 

- GUI: The GUI generates data frames that have type identifier “j” and that has assigned 

a random value in the range defined by type name ‘Frame’. The data/request is first 

communicated to the control system process template ‘Command_side’ by the GUI, 

and once the satellite has received the request, the satellite responds and sends the 

response data back to the GUI via control system process template ‘Response_side’. 

For sending the channel i_GC is used and for receiving channel o_CG is used. 

- Command_side: The template Command_side forwards the data (the value of variable 

i_GC_data received via i_GC) to the process template ‘Satellite_receive’, via channel 

o_CS that has data variable o_CS_data attached to it. 
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- Response_side: The response side is where the response from the satellite is received 

and transmitted then to the GUI. The transmission of response data is from the SUT 

to the GUI (represented as o_CG) after the SUT has received the response from the 

satellite (channel i_SC). 

- Satellite_receive: The template Satellite_receive stores the received data in the FIFO 

buffer (array 'buffer’ of size N) since the stream of incoming data via channel o_CS 

may not always be synchronised with the stream of responses (sent via channel i_SC). 

These streams are processed with different processes (in the model the template 

Satellite_receive and Satellite _send) that have their own pointers to the data item 

currently processed in the buffer. Explicit setting of the buffer size N is necessary to 

verify possible buffer overflow situations in case of transmission errors or asymmetric 

processing speeds between receiving commands and sending responses. 

- Satellite_send: The template Satellite_send picks the oldest data item in the FIFO 

buffer, generates and sends response data back to SUT via channel i_SC. 

- Environment: The template ‘Environment’ is to model the stream of transmission 

errors. That is to introduce real-world scenario considering the fact that the data may 

not be successfully transmitted or received due to various factors such as a timeout or 

technical issues anytime during transmission. The average error rate is modelled using 

stochastic extension of Uppaal TA, this is using probabilistic transitions denoted by 

dotted lines and numeric values of probabilities (current example specifies the error 

rate 1 percent of all transmitted frames). 

- Global_time: To set some limit to the state space generated for verifying safety 

properties we have introduced the process template ‘Global_time’. The clock 

invariant introduced in the template defines the upper time bound until which the 

behaviours of the model are observed. Without this time bound both the simulation 

and model checking would go infinitely.  
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4.3.1 Correctness of the Model 

After the modeling is done using the Uppaal tool, we will verify the correctness of the 

model by checking for various properties [26]. 

- Connected: The model is said to be connected if there exists an executable 

path from one location to any other location and the query to check it is ->  

‘A[] not deadlock.’ 

From our model, we observe that Uppaal tool states that the ‘Property is not 

satisfied.’ This is because we introduced Global Time which introduces a 

deadlock otherwise the execution will go on for infinity. 

- Input Enabledness: Any test input during test execution should not cause 

blocking. This property holds true in the model. 

- Strong Responsiveness: - No livelock (a loop that includes only  -transitions) 

is reachable in the test model, i.e., the quiescent state is always reachable after 

  m steps for some finite m [26]. To ensure this property is satisfied two steps 

need to be completed: 

o Step 1: Define auxiliary initial location l0’ and edges (l0, li), i = 1, n, 

where (n – number of locations in the SUT model). 

o Step 2: Model check the query  

MSUT || MEnv, l0’ ⊨A<> ∃(i:int [1,n])quiescent(....li), 

Where MEnv denotes the model components of SUT environment. The predicate quiescent 

is implemented by introducing a Boolean array the elements of which are updated to true 

when input labelled edges are executed.  
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4.3.2  Test Purpose Specification 

Test Purpose Specification states what is the goal of given test case and how to estimate 

the coverage achieved by the test run. It may refer to test coverage items or the scenario 

of choosing test stimuli [26]. In this thesis the test purpose is specified in English 

language, at first. Then it is formalized by mapping the informal description to the 

combination of test model structural constraints and the constraints expressed in model 

checking query. Both are usually needed for efficient test sequence generation and to 

prevent the state space explosion when running the generative model checking query. 

The model can be updated by its refinement in a way that instead of all legal behaviours 

only those of interest will be preserved. Another option is to restrict the model of 

environment so that the test stimuli of interest are enabled. The changes are made in the 

Environment model. Once the changes are implemented, the formal model checking 

query is composed and executed. If the model is restrictive enough the query may have 

relatively simple form, e.g. E<> target_state, where target_state denotes the final state 

the searched test sequence has to reach. 

There are four test purpose specifications implemented for the case study with two being 

Successful cases and the other two being the Unsuccessful cases where the messages are 

not delivered or received correctly. 

The test purpose specifications are explained further as follows. 

For test purpose specification we apply the approach where Environment template is 

refined with constraints so that test input sequences of interest are only generated. The 

SUT model itself (Command_send and Command_received) is left unchanged. 

1) Test Purpose 1: Cover the situation where the data/frames are successfully received 

by the Satellite 

This test purpose is where we consider the situation where the data/frames that are sent 

by the GUI are successfully received by the Satellite. 
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The model is updated in the following templates to address this test purpose: 

- GUI: A new location is introduced to capture the situation where a single data 

item is sent by GUI and after that it makes transition to this terminal location. 

- Satellite_receive: We distinguish between the normal and the corrupted data 

by introducing a new location called Abnormal. So, whenever the data 

received by the satellite is corrupted, we can easily distinguish it by seeing 

that the Cyclic Redundancy Check is set to 1 (CRC[iw]=1). 

 

Figure 19: Test Purpose 1 Model 

 

Query:  E<> Satellite_receive.Normal && buffer[0]==i_GC_data 

The above query implies that there exists a model run such that satellite receives the data 

sent from the GUI successfully (Satellite_receive.Normal) and that the message buffer in 

satellite involves this data (buffer[0]==i_GC_data). When we run the query in the 

Verifier of Uppaal, we see that the property gets satisfied. 

 

Figure 20: Test Purpose 1 Verification 



46 

 

Witness Trace: 

The witness trace generated by model checker gives a clear idea of which transitions were 

taken in which order for the query to be satisfied on the model. It helps to analyze the 

time stamps for the inputs and the values of the variables communicated between SUT 

and Environment model. 

 

Figure 21: Test Purpose 1 Witness Trace (Step by Step) 

 

2) Test Purpose 2: Test if the satellite sends the response and it gets received by the 

GUI successfully 

Here we consider the situation where the data/frames that are sent by the GUI is 

successfully received by the Satellite, and the response from the Satellite is also received 

successfully by the GUI. 
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The model is updated in the following templates to address this test purpose: 

GUI: There is a new Buffer (GUI_buffer) introduced which stores the information that 

the message or data that had been sent by the GUI has been successfully received by the 

Satellite the response to the same data from the Satellite has been received by the GUI. 

Therefore, there is a message counter which keeps count of the messages that have been 

sent by the GUI. Since it is assumed that at most five messages can be sent before getting 

the first acknowledged it is modulo five counter. 

 

Figure 22: Test Purpose 2 Model 

 

Query:  E<> forall (j:history) (GUI_buffer[j]==0) && Global_time.cl==50 

The above query implies that for all the messages sent, the responses have been received 

by the GUI. It is due to GUI model property that sent messages buffer element is reset to 

0 when the acknowledgment about its successful transmission has been received. So, once 

the responses to the messages have been received, the GUI_buffer is set to zero and the 

maximum time interval for all the responses to come is 50 clock time intervals. 

 

Figure 23: Test Purpose 2 Verification 
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Witness Trace: 

 

Figure 24: Test Purpose 2 Witness Trace (Step by Step) 

 

In the above witness trace, we can see the entire transition for five messages which are 

being sent and then responses being received by the GUI during the global clock 50 time 

units. 

 

3) Test Purpose 3: Data/Frames getting lost during transmission due to technical issues 

or timeout 

This test purpose is where the data/frames being sent by the GUI is being lost during its 

transmission to the Satellite. This loss of data is due to technical issues or a timeout.  

To address this test purpose the model is modified as follows: 

- GUI: We introduce a Boolean variable ‘nack’ which is the acknowledgment 

of incorrectly received frame/data sent from the satellite. There are also two 

new locations introduced called ‘Ack’ (The location which is reached when 

there is no corrupted data acknowledgment) and ‘Nack’ (The location which 

is reached when there is corrupted data acknowledgment). Additionally, 
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variable ‘T’ is for the Trap which is used to represent that there is a corruption 

of data. So, when we get a negative acknowledgment from the satellite 

meaning that there is either a timeout, or some technical issues occurred while 

the data was being transmitted from GUI to Satellite, the variable ‘T’ is set to 

1. 

- Environment: We increase the possibility of the occurrence of an error, and 

the ratio is set to 1:1 to address the test purpose. 

 

Figure 25: Test Purpose 3 Model 

 

Query:  E<> T[0]==1  

The above query specifies that there is one corrupted response/ acknowledgment for 10 

messages (arbitrary value) sent by the GUI and the frames/data being sent is lost due to 

the error (in the above case it is a timeout). 

 

Figure 26: Test Purpose 3 Verification 
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Witness Trace: 

 

Figure 27: Test Purpose 3 Witness Trace (Step by Step) 

 

In the above trace, we see the transmission of ten messages which are being sent and then 

responses being received by the GUI for a global time clock of 50 time units. After the 

timeout where the Global Time clock exceeds 50, then an error is introduced from the 

Environment which leads to the frames getting lost and a negative acknowledgment from 

the Satellite. 

 

4) Test Purpose 4: Satellite sending a late response to a particular request making it 

hard to know what the actual request was 

This test purpose identifies if the response from the Satellite for the first request is delayed 

and the second or other responses are sent to the GUI before it. This makes the user on 

the GUI end difficult to understand which response relates to which request made by the 

GUI. 
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The model is updated in the following templates to address this test purpose: 

- Satellite_send: We introduce a time delay in one of the Acknowledgement 

responses from the Satellite. This is done by making the read pointer (‘ir’) 

read the second value and skip the first (‘ir1=ir+2’).  

- GUI: Clock is set to zero (‘cl=0’). When a response is received by the GUI, 

the clock is reset also meaning that the incoming responses do not take time. 

- Global_time: The global time is increased from 50 to 100. 

 

Figure 28: Test Purpose 4 Model 

 

Query:  E<> T[0]==1,  E<> T[2] 

There are two queries written for this test purpose. The first one specifies that trap will be 

covered indicating that the issue exists and is reachable in the model, and the second 

response was sent before the first one. The second query verifies that it is inevitable that 

there was a late response to a particular request. 
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Figure 29: Test Purpose 4 Verification 

Witness Trace: 

 
Figure 30: Test Purpose 4 Witness Trace (Step by Step) 

 

 

In the above witness trace, we see that a situation is reachable where the Satellite sends a 

delayed response to a request and to capture it; we increased the Global Time from 50 to 

100. Thus, we can see what happens when a delayed response is sent by the satellite.  

In addition to proving the existence of witness traces to satisfy the test purposes Uppaal 

model checker allows to optimize them as well. There are two options for trace generation 

either shortest or fastest trace. First means that the number of transitions in the trace is 

minimal and the second that the trace is executed in shortest time. 
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5 Analysis and Validation of Results 

To evaluate the feasibility of the approach an analysis has been done on time taken to 

model the SUT and on the time taken for specification and execution of every test 

purpose. It is estimated that the modeling is done under expert supervision which 

otherwise would have taken much longer time. 

5.1  Time Taken to Model the SUT 

The modeling of the communication protocol took plenty of time which involved 

discussions with developers, and others who are involved in the project currently to know 

better about the Satellite and its functionalities. 

 

Table 1: Time Taken for Modelling SUT 

Meetings Time Taken (in hours) 

Project Introduction (Code) 3 

Discussion and understanding about the 

communication protocol 

4 

Modeling using Uppaal 4 
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5.2  Time Taken to Update Model for Test Purpose Specification 

The following table shows how much time it took to update the model to get the test 

purpose addressed and verified. 

Table 2: Time Taken for Test Purpose Specification and Verification 

Serial No. Test Purpose Time Taken (in hours) 

1 Cover the situation where the data/frames are 

successfully received by the Satellite 

0.75 

2 Test if the satellite sends the response and it 

gets received by the GUI successfully 

1 

3 Data/Frames getting lost during transmission 

due to technical issues or timeout 

1.5 

4 Satellite sending a late response to a 

particular request making it hard to know 

what the actual request was 

1 
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5.3  Timed Trace Analysis 

The model checking witness trace for every test purpose specification is analyzed below: 

Timed Trace for Test Purpose Specification 1: Cover the situation where the 

data/frames are successfully received by the Satellite 

Table 3: Timed Trace for Test Purpose Specification 1 

Source -> Destination Message 

Type (I/O) 

Data (data 

values) 

Relative time stamps 

(in model time units) 

GUI -> Command_side i_GC 0 [7,8] 

Command_side -> 

Satellite_receive 

o_CS 0 [7,8] 

Satellite_send -> 

Response_side 

i_SC 0 [11,15] 

Total test execution 

time 

  [25, 31] 

 

 

Timed Trace for Test Purpose Specification 2: Test if the satellite sends the response 

and it gets received by the GUI successfully  

Table 4: Timed Trace for Test Purpose Specification 2 

Source -> Destination Message 

Type (I/O) 

Data (data 

values) 

Relative time stamps 

(in model time units) 

GUI -> Command_side i_GC 0 [7,8] 

Command_side -> 

Satellite_receive 

o_CS 0 [7,12] 
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Satellite_send -> 

Response_side 

i_SC 0 [9,12] 

Response_side -> GUI o_CG 0 [9,12] 

GUI -> Command_side i_GC 6 [14,16] 

Command_side -> 

Satellite_receive 

o_CS 6 [14,16] 

Satellite_send -> 

Response_side 

i_SC 0 [16,16] 

Response_side -> GUI o_CG 0 [16,16] 

GUI -> Command_side i_GC 7 [21,22] 

Command_side -> 

Satellite_receive 

o_CS 7 [22,26] 

GUI -> Command_side i_GC 5 [28,29] 

Satellite_send -> 

Response_side 

i_SC 0 [28,30] 

Response_side -> GUI o_CG 0 [28,30] 

Command_side -> 

Satellite_receive 

o_CS 5 [32,37] 

GUI -> Command_side i_GC 0 [35,37] 

Command_side -> 

Satellite_receive 

o_CS 0 [35,37] 

Satellite_send -> 

Response_side 

i_SC 0 [35,37] 
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Response_side -> GUI o_CG 0 [35,37] 

Satellite_send -> 

Response_side 

i_SC 0 [43,44] 

Response_side -> GUI o_CG 0 [43,44] 

Total test execution 

time 

  [442,518] 

 

 

Timed Trace for Test Purpose Specification 3: Data/Frames getting lost during 

transmission due to technical issues or timeout 

Table 5: Timed Trace for Test Purpose Specification 3 

Source -> Destination Message 

Type (I/O) 

Data (data 

values) 

Relative time stamps 

(in model time units) 

GUI -> Command_side i_GC 0 [7,8] 

Command_side -> 

Satellite_receive 

o_CS 0 [7,12] 

Satellite_send -> 

Response_side 

i_SC 1 [12,16] 

Response_side -> GUI o_CG 1 [12,16] 

GUI -> Command_side i_GC 1 [14,16] 

Command_side -> 

Satellite_receive 

o_CS 1 [14,20] 

GUI -> Command_side i_GC 2 [21,23] 
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Satellite_send -> 

Response_side 

i_SC 2 [22,27] 

Response_side -> GUI o_CG 2 [22,27] 

Command_side -> 

Satellite_receive 

o_CS 2 [25,31] 

GUI -> Command_side i_GC 3 [28,31] 

Command_side -> 

Satellite_receive 

o_CS 3 [28,31] 

Satellite_send -> 

Response_side 

i_SC 3 [28,31] 

Response_side -> GUI o_CG 3 [28,31] 

GUI -> Command_side i_GC 4 [35,38] 

Satellite_send -> 

Response_side 

i_SC 4 [35,38] 

Response_side -> GUI o_CG 4 [35,38] 

Command_side -> 

Satellite_receive 

o_CS 4 [35,42] 

Satellite_send -> 

Response_side 

i_SC 5 [43,49] 

Response_side -> GUI o_CG 5 [43,49] 

Total test execution 

time 

  [466,574] 
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Timed Trace for Test Purpose Specification 4: Satellite sending a late response to a 

particular request making it hard to know what the actual request was 

Table 6: Timed Trace for Test Purpose Specification 4 

Source -> Destination Message 

Type (I/O) 

Data (data 

values) 

Relative time stamps 

(in model time units) 

GUI -> Command_side i_GC 0 [3,4] 

Command_side -> 

Satellite_receive 

o_CS 0 [3,5] 

GUI -> Command_side i_GC 1 [6,8] 

Command_side -> 

Satellite_receive 

o_CS 1 [10,10] 

Satellite_send -> 

Response_side 

i_SC 0 [10,10] 

Response_side -> GUI o_CG 1 [10,10] 

GUI -> Command_side i_GC 2 [13,13] 

Command_side -> 

Satellite_receive 

o_CS 2 [13,15] 

Satellite_send -> 

Response_side 

i_SC 1 [15,15] 

Response_side -> GUI o_CG 2 [15,15] 

GUI -> Command_side i_GC 3 [18,19] 

Command_side -> 

Satellite_receive 

o_CS 3 [18,20] 
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Satellite_send -> 

Response_side 

i_SC 2 [20,20] 

Response_side -> GUI o_CG 4 [20,20] 

GUI -> Command_side i_GC 4 [23,24] 

Command_side -> 

Satellite_receive 

o_CS 4 [23,25] 

Satellite_send -> 

Response_side 

i_SC 4 [25,25] 

Response_side -> GUI o_CG 3 [25,25] 

GUI -> Command_side i_GC 5 [28,29] 

Command_side -> 

Satellite_receive 

o_CS 5 [29,33] 

GUI -> Command_side i_GC 6 [31,33] 

Satellite_send -> 

Response_side 

i_SC 3 [33,35] 

Response_side -> GUI o_CG 5 [33,35] 

Command_side -> 

Satellite_receive 

o_CS 6 [33,37] 

GUI -> Command_side i_GC 7 [36,39] 

Command_side -> 

Satellite_receive 

o_CS 7 [36,40] 

Satellite_send -> 

Response_side 

i_SC 5 [37,40] 
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Response_side -> GUI o_CG 6 [37,40] 

GUI -> Command_side i_GC 8 [40,43] 

Satellite_send -> 

Response_side 

i_SC 6 [41,45] 

Response_side -> GUI o_CG 7 [41,45] 

Command_side -> 

Satellite_receive 

o_CS 8 [41,47] 

GUI -> Command_side i_GC 9 [44,49] 

Command_side -> 

Satellite_receive 

o_CS 9 [50,50] 

Satellite_send -> 

Response_side 

i_SC 7 [50,50] 

Response_side -> GUI o_CG 8 [50,50] 

Total test execution 

time 

  [960,1023] 
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5.4  Test Generation Time and Memory Usage Analysis 

This section shows the time taken and the memory used to verify query written for each 

Test Purpose specified.  

Table 7: Time and Memory Usage Analysis 

Serial 

No. 

Test Purpose Time Used 

(verification/kernel/elapsed 

time) 

Memory usage 

(resident/virtual 

memory) 

1 Cover the situation where 

the data/frames are 

successfully received by 

the Satellite 

0s / 0s / 0.001s 7,172KB / 

26,452KB 

2 Test if the satellite sends 

the response and it gets 

received by the GUI 

successfully 

6.344s / 0.14s / 6.515s 31,020KB / 

64,296KB 

3 Data/Frames getting lost 

during transmission due 

to technical issues or 

timeout 

0.125s / 0.015s / 0.129s 7,744KB / 

27,332KB 

4 Satellite sending a late 

response to a particular 

request making it hard to 

know what the actual 

request was 

0s / 0s / 0.006s 7,184KB / 

26,488KB 
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5.5  Summary of Analysis and Validation of Results 

 

From the above analysis, we see how long it takes to model the SUT and to verify the test 

purpose specifications. We also understand how we can update the model to address the 

test purposes specified. Alongside, the witness trace shows clearly which transition takes 

place at what time and how long it takes for a message to be delivered to the Satellite. 

As an important conclusion we can claim that MBT can be compared with short test script 

writing time wise where SUT modelling and formalization of test purpose take the most 

of the test development time. This in turn confirms that MBT is more effective in 

regression testing where the test cases can be easily introduced incrementally by 

comprehensible model modifications. Generation of test sequences is fully automatic, and 

its time is negligible compared to requirements capture and formalization. 

We also see the time and memory consumption for each test purpose. These observations 

and data can be further studied and analyzed.
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6 Conclusion and Future Work 

The main purpose of this thesis was to develop systematically the test cases for the TUT 

Mektory Nanosatellite and prove them to be correct. The model-based approach involves 

modeling the System Under Test in its early development phases by capturing some of 

the requirements whenever they are available for testing. 

The author diligently followed the Provably Correct Test Development Workflow and 

started step by step with first modelling the SUT which most certainly helped to envision 

the satellite communication protocol precisely, followed by specifying the test purpose 

which had four different scenarios of satellite communication, then generating the test 

based on the test purpose and finally executing it against the System Under Test. The 

results obtained from the tests gives a clear idea about the time taken to model the SUT, 

the time and memory used to execute the test purpose specifications, and the timed trace 

giving an overview about the timing constraints and the timelines.  

In future, the author believes that the MBT process implemented based on the Uppaal 

tool family can be used successfully for further mission critical systems where time 

constraints and high degree of parallelism with extensive set of interaction between 

parallel components are the subjects of testing. 
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