
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Yulia Derbeneva 184925IVSB

Comparative Analysis of Encryption Algorithms
for Resource Constraint Environment

Bachelor's thesis

Supervisor: Tauseef Ahmed

Ph. D

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Yulia Derbeneva 184925IVSB

Krüpteerimisalgoritmide võrdlev analüüs piiratud
ressurssidega keskkonna jaoks

Bakalaureusetöö

Juhendaja: Tauseef Ahmed

Ph. D

Tallinn 2021

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Yulia Derbeneva

17.05.2021

3

Abstract

The Internet of Things is a vast and rapidly growing technology that has evolved into

such a large scale project as Smart Cities. Internet of Things nodes introduce security

vulnerabilities due to data collection and transmission. Furthermore, they have many

constraints and limitations relating to computational and power resources, which could

be crucial for data security [1].

The aim of this thesis is to evaluate the importance of applying security measures and to

identify the most efficient encryption algorithms in terms of security and performance

for low-powered devices.

The goal of this study is to set security implemented for all communicating devices,

whereas environments with limited resources require a specific approach for

implementing enhanced security measures.

Encryption application is considered to be an effective defensive measure against cyber

threats, which provides data security. Performance analysis of various encryption

algorithms, carried out on several constraint environments, can give the concept of the

most appropriate options for the analogue devices.

Carried out research in this paper gives a comparative analysis of the encryption

algorithms performance conducted in the constraint computational resource

environments. The results of this study provides an evaluation of the most appropriate

algorithms in terms of performance.

This thesis is written in English and is 51 pages long, including 6 chapters, 23 figures

and 8 tables.

4

List of abbreviations and terms

IoT Internet of Things

SBC Single Board Computer

VPN Virtual Private Network

CoAP Constrained Application Protocol

BACnet Building Automation and Control Network

DOS Denial of Service

DDOS Distributed Denial of Service

SQL Structured Query Language

AES Advanced Encryption Standard

DES Data Encryption Algorithm

RC4 Rivest Cipher 4

RSA Rivest-Shamir-Adleman

MD5 Message-Digest 5

SHA Secure Hash Algorithm

IDEA International Data Encryption Algorithm

NIST National Institute of Standards and Technology

NSA National Security Agency

ISO International Organization for Standardization

IEC International Electrotechnical Commission

RFID Radio Frequency Identification

ROM Read Only Memory

RAM Random Access Memory

PC Personal Computer

LAN Local Area Network

BLE Bluetooth Low Energy

CPU Central Processing Unit

LibreELEC Libre Embedded Linux Entertainment Center

OS Operating System

TLS Transport Layer Security

SSL Secure Sockets Layer

CBC Cipher Block Chaining

CFB Cipher Feedback

ECB Electronic Code Book

5

CTR Counter Mode

MD4 Message-Digest 4

XOR Exclusive Or

DTLS Datagram Transport Layer Security

SD Secure Digital

USB Universal Serial Bus

HDMI High-Definition Multimedia Interface

RFC Request For Comments

6

Table of Contents

 1 Introduction...8

 2 IoT and Security..10

 2.1 Threats and Vulnerabilities...11

 2.2 Cryptography and IoT...13

 3 Research Technical Background...16

 3.1 Tested Devices..16

 3.2 Encryption Algorithms...17

 4 Research...22

 4.1 Preparation Steps..22

 4.2 Execution Steps...22

 4.3 Gathered Data...25

 5 Analysis of Results..31

 6 Conclusion...40

 References..41

 Appendix 1 – Cryptographic Algorithm’s Code..47

 Appendix 2 – Non-exclusive licence for reproduction and publication of a graduation

thesis..51

7

1 Introduction

The Internet of Things, also known as IoT, is gradually becoming a part of the everyday

life of people. Every year, more and more new items at home become “smart”, giving

their owners enhanced control over their environment. In connection with the growing

popularity of the IoT, both the demand for ready-made devices and materials for

creating custom ones. And as is known, demand creates supply.

The Arduino microcontroller based development kit that appeared on the market was

highly appreciated by users, which gave a push to development in the direction of

single-board computer development, also known as SBC. Companies such as the non-

profit BeagleBoard.org and Raspberry Pi, Asus, Nvidia and many others have also

joined the technology race, gradually evolving their product into increasingly powerful

and functional single-board computers. Over the time, it has become impossible not to

notice their advantages and the opportunities they provided, and thanks to an easy

access to information, it became incredibly simple to start using a SBC for projects

without special skills. With the improvement of SBCs and their popularity, their scope

has also expanded. From simple controllers of light, music, cameras, users began to use

computers for more educational and entertainment purposes, such as a weather station,

game console, a statistics monitoring mirror. From a simple device quickly, SBC grew

into an efficient device with the ability to execute complex tasks. Now SBC are also

used as web servers, databases, network file system clients, firewalls, Virtual Private

Networks, network attached storages and much more [2]. While the term „Thing” in the

IoT refers to a device having following properties:

 Unique identity

 Capable to connect with other devices

 Self powered with long lasting battery

 Capable to perform control commands [3]

Currently there are a massive amount of online courses, including provided by the well-

known CISCO company, on how to create an IoT device using a SBC [4][5].

8

Now communication between devices goes beyond one home and develops into a larger

network with interconnected devices. Moreover, smart cities have already become a

reality. Entire urban zones of connected devices have been created that collect and

transmit various data. Now it is not the transfer of data from one to another instead

about the huge flows of information associated with the whole society. And here the

question of data protection arises sharply, how to allow technologies to progress while

maintaining the confidentiality, availability and integrity of all valuable information.

These three principles are the basis of information security, the practical application of

which is the basis of this study [6][7]. While the aim of this research is to apply in a

resource constraint environment one of the information security measures –

cryptography. SBCs are used as an example of the constraint environment on which

basis a comparative analysis of different cryptography algorithms is made. The provided

results create an overview of their overall performance in the constraint environment

and in the comparison to other tested algorithms. Used lightweight algorithms show

their performance differences compared to standard algorithms. The test outcome gives

an understanding of whether those algorithms can be used in such environments, are

they effective and suitable, and what matters they arise.

9

2 IoT and Security

This chapter describes why security measures should be also implemented within the

IoT devices, what threats and vulnerabilities IoT are subject to, and why cryptography is

an important security measure that can be implemented for risk mitigation.

The IoT would not be integrated into the everyday life of people if its capabilities and

advantages were not appreciated. According to statistics, by 2030, the number of IoT

devices around the world will grow by 15.4 billion, which is more than double the

current number of devices. They are used in all types of industries, but as of 2020, 60

percent of all connected devices are in the consumer market [8].

On the other hand, the desire to make all devices “smart” creates additional access spots

for hackers and new tasks for cyber security professionals. If solutions to reduce

security risks will not be provided, then, the surface of risk will substantially extend and

grow in the same progression as the number of devices.

In addition to the risks of information loss, which can lead to financial losses, many IoT

devices are safety-related. Connected to medical sensors, fire alarm and surveillance

systems, door locks, the compromise of such devices may lead to physical harm and

property and even death. That is why the use of protective measures is very necessary

for the IoT devices.

However, IoT devices have limited functionality and limited resources, such as storage,

processing capacity, and limited power consumption, and therefore are generally not

designed with any security mechanisms. Also, their low cost affects the increased

demand, so manufacturers may also compromise on security measures in order not to

lose their bulk of buyers [9][10]. These factors make IoT devices an easy target for

intruders, although both humans and natural forces can be the source of threats.

Unfortunately, natural disasters cannot be prevented, so the usage of a disaster recovery

is the best approach to protecting a system. While human-related threats require a more

thorough approach. Even if all risks cannot be ruled out, it is necessary to eliminate the

vulnerabilities with the most likelihood and impact.

10

2.1 Threats and Vulnerabilities

IoT is a combination of opportunities and risks that new technologies bring. Unlike the

already standardized processes and security measures for traditional computers, IoT

devices have bounded security functions, while they are directly connected to the

Internet, and are a part of a system that does not have proper security procedures

implemented. Therefore, major IoT security risks are connected to their main

differences from traditional technologies, such as:

 Interaction of active analogue and physical elements are the main characteristics

of the IoT devices. Since resources are often obtained from the physical world,

the edge nodes are accessible for a physical contact, therefore have additional

risks [11].

 Massive scale points increase the likelihood of attacks. Despite the fact that the

computing power of such devices is rather small in comparison with computer

ones, being combined into a system of such a scale, they become a truly

threatening force.

 A wide variety of network types. Protocols such as Constrained Application

Protocol, 6TiSCH, ZigBee, Building Automation and Control Network have

been created and optimized for a limited environment. However, optimization is

also followed by related reliability and transmission issues.

 Resources such as battery, memory and performance are limited. This leads to

the use of simpler codes and protocols, which will affect the ability to enforce

protective measures. [1]

 The necessary policies and frameworks are still under development as IoT

technology began to gain popularity not so long ago, unlike standard computers.

[12]

The potential risks can also be considered depending on which architecture layer they

affect. Despite the fact that there is no general agreement on the IoT architectural layer,

the researchers observe the need for a four-layer architecture [13]. With certainty three

11

main architectural layers, such as Physical, Network and Application layers, can be

distinguished.

1. The physical layer includes objects that collect information and control the data

of executive devices that transmit information about their work.

2. The network layer transfers information obtained using physical objects to appli-

cations.

3. The application layer provides the services to the applications which are using

IoT technology [14] [15].

Table 1 shows the basic three-layer architecture of IoT and the parameters that need a

special attention in ensuring security. The table also includes threats that are common to

each of the architectural layers [16][17][18]. Despite the fact that there are no uniform

protection measures to cover all vulnerabilities, cryptography plays a significant role in

the protection of IoT technologies.

Table 1: IoT Architecture Layers, Security Parameters and Major Threats.

Architecture Layer Security Parameters Security Threats

Physical Layer • Device immunity

• Authentication

• Access Control

• Integrity

• Unauthorised access

• Denial of Service

• Channel blocking

• Sybil attack

• Replay attack

• Tunnel attack

• Synchronization

attack

• Data tampering

• Electromagnetic

leakage and

interference

Network Layer • Confidentiality

• Integrity

• Distributed Denial of

Service

12

Architecture Layer Security Parameters Security Threats

• Authentication

• Access Control

• Routing attack

• Sinkhole attack

• Wormhole attack

• Blackhole

• Spoofing attack

• Routing loop attack

• False routing

information

• Trapdoor

• Tunnel attack

• Spoofing attack

• Hello flooding attack

• Eavesdropping

Application Layer • Access Control

• User Privacy

• User-Anonymity

• Accountability

• Non-Repudiation

• Authentication

• Privacy data leaking

• Unauthorised access

• Malicious code

• Forged control

commands

• Loophole

• Viruses and Trojan

horses

• SQL injection attack

Considering the gathered information, the IoT needs strong security measures to get

protected from such a large scale and variation of threats. One of the measures can be

the implementation of cryptography.

2.2 Cryptography and IoT

Cryptography is an essential aspect that is used as a defense mechanism in traditional

computer technology and is playing an increasing role in IoT technology. Since, in

13

addition to providing services and applications, the IoT should also provide a level of

trust in the technology, the ability to protect its data. The use of reliable and updated

encryption methods can increase security and trust respectively[19].

The advantage of cryptography as a protective measure for IoT is that the goals of

cryptography match the security parameters of IoT devices that should be taken into

account. Moreover, those parameters are introduced in all three main layers of IoT

architecture, that are mentioned in the Table 1, such as:

 Confidentiality refers to providing an access to information only to those who

are authorized to do so.

 Integrity ensures data has not been manipulated by unauthorized parties.

 Authentication can be divided into entity authentication, which refers to

verifying the identity of the sender, and data authentication that identifies the

data has not been tempered during a transmission over a channel.

 Non-repudiation prevents the sender from denying the events committed by the

sender.

These security practices are achieved using various encryption techniques, which are

divided into two main types, symmetric encryptions and asymmetric encryptions. Some

researchers append the third "hashing" type.

Symmetric encryption uses a shared key to encrypt and decrypt information transmitted

between a sender and a receiver. This technique is also categorized into two encryption

schemes as block and stream ciphers. The block cipher performs an encryption

operation by splitting a plaintext into blocks, converting each bit of the plaintext in

parallel. The most commonly used symmetric algorithms are Advanced Encryption

Standard, Blowfish, Triple Data Encryption Standard, CAST-128 and Rivest Cipher 4.

Asymmetric encryption uses different, pairwise keys for encryption and decryption.

Rivest-Shamir-Adleman and Elgamal are well-known asymmetric algorithms.

14

Hashing is a one-way encryption technique, as a ciphertext cannot be converted back to

plaintext. This method ensures data integrity and authenticity. Often mentioned such

hash functions are Message-Digest 5, SHA256 and their modified versions [20][21].

Despite the fact that some traditional ciphers, such as AES, Camellia, CLEFIA and

International Data Encryption Algorithm, are approved by the International

Organization for Standardization for use in environments with limited resources [22].

However, the prevailing number of cryptographic algorithms are not suitable for IoT

devices as most of the encryption algorithms require a significant amount of memory,

battery and processing power. These resources are consumed by mathematical

calculations, data aggregation, output redirection and other processes [23][24][25].

Therefore, with the development of IoT technologies, the need for lightweight

algorithms has increased. This is evidenced by the fact that NIST initiated the project on

the standardization of lightweight cryptographic algorithms and that the International

Organization for Standardization has already adopted the international standards for it

[26].

To adjust encryption algorithms for resource constraint environments, lightweight

algorithms use smaller circuitry, Read Only Memory and Random Access Memory

sizes, processing speed, power that is used by power harvesting devices, and a power

consumption for battery-powered devices such as a camera or sensor. Examples of such

algorithms are SPECK, SIMON, PRESENT, TWINE [26].

15

3 Research Technical Background

This chapter includes consideration and analysis of the used devices and encryption

algorithms in the course of this study. While a technical analysis of algorithms gives a

general understanding of their aspects, methods of use and hints for consideration of

these algorithms within other environments. In the research used SBCs are taken as an

example of the resource constraint environment. Gather data will provide an overview

to how encryption algorithms perform in specific conditions and requirements.

3.1 Tested Devices

In the research two models of the SBCs are used: Raspberry Pi 3 model B and

Raspberry Pi Zero W. These devices of the British company named Raspberry Pi

Foundation. The products of this company are widely known due to the ratio of quality

and price [27]. The Raspberry Pi has the advantages of PC-like computers, great for

interacting with additional and auxiliary devices. The ability to connect via Bluetooth or

Wi-Fi allows the use of remote control, which makes the product concept well suited for

an IoT device [28]. The Raspberry Pi Zero W extends the Pi Zero family and has

optional 802.11 b/g/n wireless Local Area Network, Bluetooth 4/1 and Bluetooth Low

Energy. While the Raspberry Pi 3 model B is the predecessor to the latest release -

Raspberry Pi 4.

Table 2 shows the main parameters of the tested SBCs, which are related to the results

of the comparative analysis in the practical part [29][30][31].

Table 2: SBC Technical Specifications.

Parameter Raspberry Pi 3 B Raspberry Pi Zero W

Processor Core 4 1

CPU 1.2 GHz 1 GHz

RAM 1 GB 512 MB

Wireless LAN BCM43438 802.11 b/g/n

Power Supply 5.1V 2.5A 5.1V 2.5A

16

The Raspberry Pi supports multiple operating systems such as Ubuntu, Manjaro ARM

Linux, RISC OS Pi, LibreELEC, which stands for Libre Embedded Linux

Entertainment Center. The Raspberry Pi Foundation has also developed its own Debian-

based operating system called the Raspberry Pi OS, which is also available for

installation in light and full versions [32].

3.2 Encryption Algorithms

The encryption algorithms used in the research are selected based on their prevalence

and approval by authorities. An attempt to cover a wider range of encryption techniques

is also pursued.

1. Advanced Encryption Standard, or simply AES. AES has such variations as

AES128, AES192, AES256 that are widespread symmetric block cipher

algorithms. AES is a part of Transport Layer Security and Secure Sockets Layer

standards to ensure secure communication between hosts on the Web, and

approved by NIST, which stands for National Institute of Standards and

Technology. The latest Central Processing Unit hardware has AES integrated for

better processing speed of the algorithm.

AES uses 128, 160, 192, 224 or 256 bits symmetric keys. It combines plaintext

with a provided key, then calculates the ciphertext using a previous result, nonce

or initialization vector and the mode. AES algorithms are also using block cipher

modes of operation, such as Cipher Block Chaining, Cipher Feedback,

Electronic Code Block and others. Those modes have different parameters and

are meant to improve efficiency and provide a stronger security. For example, a

Counter Mode and random initial vector are recommended to avoid a dictionary

attack [33][34]. For the research purpose, intermediate key sizes of 128, 192,

256 bytes and CFB mode, approved by NIST, are chosen.

2. Secure Hash Algorithm 256, or shortly SHA256, is a hash algorithm that is used

in the latest SSL TLSv1.2 protocol [35]. This algorithm is derived from a

simpler cipher called Message-Digest 4. SHA256 was proposed and approved

by NIST for use by federal departments and agencies. The message digest

17

formed by this algorithm can be used in software, firmware, hardware for

determination of a message's integrity [36].

SHA256 breaks a padded message into 512 bits block size that is expressed as a

sequence of sixteen 32-bit words and sets initialization values. Then, it uses a

message schedule of sixty-four 32-bit words, eight working variables of 32 bits

each and a hash value of eight 32-bit words to create a 256-bit message digest

[37].

3. SHA3-256 is the SHA-3 family cryptographic hash function recommended by

NIST. It is considered to be more secure as it has improved security features

such as resistance to collision, preimage and second preimage attacks. SHA3-

256 uses 1088 bits block size compared to 512 bits blocks of SHA256 [38]. This

algorithm is also taken for the comparative purpose between SHA256 and

SHA3-256.

4. SHAKE256 is an extendable-output function of the SHA-3 family approved by

NIST. Its main difference from SHA3 functions is that the output message

length can vary depending on the requirements. The index 256 indicates the

supported security level, not the digest length as for other hash functions [39].

5. Poly1305-AES is a one-time message authenticator. Originally, Poly1305 was

designed in combination with the AES algorithm for nonce encryption. Yet in

time, it became more widely spread in combination with ChaCha20. However,

Poly1305-AES has advantages such as consistent high speed, even for long

messages, performance is not influenced by the overflown keys cache and low

re-computational cost for modification of long messages [40].

Poly1305 encrypts the plaintext using a shared by sender and receiver 16-byte

AES key, 16-byte additional key and a unique 16-byte nonce that is processed

by AES. The message is broken on 16-byte chunks and padded by appending an

extra byte to each produced chunk [41].

6. ChaCha20 is a symmetric stream cipher, an improved version of Salsa20 as

follows the same basic design but with a higher transmission level per round of

18

total 20 rounds [42]. ChaCha20 encrypts a plaintext using a keystream produced

from a block function applied to the 32-byte key, 12-byte nonce, block counter

and plaintext blocks XORed, that stands for Exclusive Or, with the block

function output. The result of the algorithm is a truncated 16-byte digest of the

message [43].

7. ChaCha20-Poly1305 is an authentication encryption with associated data. This

encryption method is a result of the ChaCha20 stream cipher and Poly1305

authenticator combination. ChaCha20-Poly1305 is used for high performance in

software implementation and to reduce information leakage through side-

channels. This encryption type is supported by SSL TLSv1.2, TLSv1.3 and for

Datagram Transport Layer Security protocols [44].

ChaCha20-Poly1305 uses Poly1305 to generate from a 32-byte key a one-time

key and a 96-bit nonce. While ChaCha20 encrypts the plaintext with generated

by Poly1305 key and nonce. As the last step, Poly1305 function uses a key to

construct a ciphertext of the same length as the plaintext and a 128-bit tag

produced by Poly1305 function. It is important not to use the same nonce and

the key as it creates identical one-time keys and the key stream that leads to a

security vulnerability [45].

8. Speck is a light-weight block cipher introduced by the U.S. National Security

Agency in 2015. It is designed to satisfy IoT needs of a light and flexible

encryption algorithm. Speck’s block and key sizes can be changed based on

requirements, from a 32-bit block with a 64-bit key to a 128-bit block with a

256-bit key. The simplicity for the algorithm is kept by using a short list of

operations performed by the cipher, such as modular addition, bitwise XOR, left

and right circular shift [46].

9. Simon is another light-weight block cipher proposed by the U.S. NSA together

with Speck. Simon has similar parameters as Speck does, but a different set of

operations: bitwise XOR, bitwise AND, and left circular shift. This difference

gives Simon a slight advantage in using a cipher for hardware systems.

Additionally, Simon requires more rounds than Speck as it has a weaker non-

linear function [42].

19

In 2014 both Speck and Simon algorithms were proposed by the U.S. National

Body for inclusion in the International Organization for Standardization /

International Electrotechnical Commission lightweight cryptography standard

but did not reach required votes [47]. However, in November of 2018, the ISO

published new standards for the use of the block ciphers Speck and Simon. The

new standards were adopted for practical applications in the air-interface of

RFID, which stands for radio frequency identification technology. This

technology has important government and military applications in supply chain

management and asset tracking. Speck and Simon algorithms play an important

role providing a security to the resource constraint in circuity and power RFID

tags that share data vulnerable to exposure or manipulation [48].

The cryptographic algorithms described above are used for a comparison analysis in

Chapter 4.2 of the research part. Table 3 shows the parameters overview of the

encryption algorithms used in this research [33-46][42].

20

Table 3: Algorithms Overview.

Encryption

Algorithm

Key Size

(byte)

Initialization

vector (byte)

Nonce Size

(byte)

Block Size

(byte)

Rounds

AES128 16 16 - 16 10

AES192 24 16 - 16 12

AES256 32 16 - 16 14

SHA256 - - - 64 64

SHA3-256 - - - 136 24

SHAKE256 - - - 136 24

Poly1305-

AES

16 - 16 16 -

ChaCha20 32 - 12 64 20

ChaCha20-

Poly1305

32 - 12 - -

Speck 16 - - 16 32

Simon 16 - - 16 68

AES256, ChaCha20 and ChaCha20-Poly1305 have the largest key size equal to 32

bytes, while SHA3-256 and SHAKE256 have the largest block size equal to 136 bytes.

In the results overview of Chapter 5 can be seen how cryptographic algorithms with

specified parameters that are used in this research, perform in the constraint

computational resource environment.

21

4 Research

This chapter includes a description of the practical activities, essential information about

the details of the research and step-by-step actions. Also, included an overview of the

gathered data after the execution of the encryption algorithms listed in the Chapter 3.2,

within the SBC environment.

4.1 Preparation Steps

1. The hardware used for this research: monitor, wireless keyboard, wireless

mouse, Raspberry Pi 3 Model B and Raspberry Pi Zero W, 32 GB Secure

Digital card, charger 5V 2A, digital multimeter, Universal Serial Bus flash drive

for simpler algorithm transferring. For Raspberry Pi Zero W additional hardware

items: High-Definition Multimedia Interface cable, mini HDMI to HDMI

adapter and micro USB to USB type A adapter.

2. In this study, the Raspberry Pi OS 32-bit operating system is used since it is the

most optimized for the SBCs under study [32]. The operating system is installed

on a 32GB SD card using the Raspberry Pi Imager v1.6.1 application [49].

3. Created text files with the extension “.txt” for encryption. The file sizes are

chosen as follows: 1 byte, 1 kilobyte (1024 bytes), 1 megabyte (1048576 bytes).

Intermediate sizes of 100 byte and 0.5 megabyte (524288 bytes) have also been

added.

4. Thonny, a built-in Python development environment is used for code execution.

4.2 Execution Steps

Before running the algorithms, required to install the Python third-party package of

cryptographic primitives called „pycryptodome”. Speck and Simon encryption

algorithms are not included in the library and for this reason need to be installed

separately. The RFC7539 module, where RFC stands for Request For Comments, is

required for the ChaCha20-Poly1305 algorithm. Figure 1 provides commands that are

used for the module installation [50][51].

22

To measure the speed results of the algorithm's execution, the “time” module is used.

“time()” function returns the current time. It is used in such a way to capture time from

the beginning and the end of the encryption process, to receive a final result by

subtracting the gathered time amount. Figure 2 shows an example of using the “time()”

function [52].

All encryption algorithms open a prepared file of a certain size, encrypt the data

gathered from it and write a ciphertext to a new file. Figure 3 gives an example of how

the files are handled [53]. This approach is used to be able to easily provide large size

files for the encryption, whereas the output file is used for memory usage

measurements.

23

filename = "/home/pi/Desktop/1024bytes.txt"
with open(filename, "rb") as f:
 plaintext = f.read()
 f.close()

encryption code here

with open("/home/pi/Desktop/aes128_encrypted.txt",
"wb") as file:
 file.write(ciphertext)
 file.close()

Figure 3. Example of file input and output application.

import time
start_time = time.time()

encryption code here

end_time = time.time()
execution_time = (end_time – start_time)

Figure 2: Example of the time module application.

pip3 install pycryptodome
pip3 install simonspeckciphers
pip3 install rfc7539

Figure 1: Package installation.

Encryption key is compiled using an “os.urandom()” method presented in Figure 4 [54].

The key length is specified in bytes.

The encryption algorithms used for comparative analysis are Python-based since it is an

officially recommended and most widely used programming language within Raspberry

Pi SBCs [55]. The complete code of the cryptographic algorithms is provided in the

Appendix 1 in the Figure 5-15.

24

from os import urandom
key = urandom(24)

Figure 4. Random key compilation.

4.3 Gathered Data

Encryption algorithms are executed three times each to capture the average execution

time for every device. The gathered results from the execution and measurements are

provided in the Tables 4 – 8 and parameters as follows:

 File size: Plaintext file size presented in bytes.

 Memory usage: Ciphertext file size in bytes that depends on the algorithm

output size.

 Execution time: Time of the encryption algorithm execution in seconds.

 Throughput: A plaintext file size divided by the encryption time measured in

bytes per second.

 Power consumption increase: The power consumed during a quiescent state

subtracted from the power consumed during an execution of the algorithm. The

increase in the power consumption of the device during the active phase is

indicated in percentage.

25

Table 4: Data for 1 byte file.

Algorithm
File
size

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 1 1 0.00352 0.02261 284 44 84 36

AES192 1 1 0.00360 0.02218 278 45 87 36

AES256 1 1 0.00350 0.02244 286 45 81 36

SHA256 1 64 0.00004 0.00016 25,000 6,250 77 29

SHA3-256 1 32 0.00029 0.00132 3,448 758 84 36

SHAKE256 1 26 0.00094 0.00227 1,064 440 81 36

Poly1305-
AES

1 16 0.00086 0.00467 1,163 214 84 36

ChaCha20 1 9 0.00053 0.00225 1,887 397 81 36

ChaCha20-
Poly1305

1 1 0.00017 0.00066 5,882 1,515 77 29

Speck 1 36 0.00068 0.00288 1,470 347 77 29

Simon 1 38 0.00129 0.00560 775 179 81 29

26

Table 5: Data for 100 bytes file.

Algorithm
File
size

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 100 100 0.00374 0.02511 26,738 3,982 81 36

AES192 100 100 0.00369 0.02449 27,100 4,083 77 29

AES256 100 100 0.00377 0.02476 26,525 4,039 77 43

SHA256 100 64 0.00004 0.00018
2,500,00

0
555,555 77 29

SHA3-256 100 32 0.00038 0.00128 263,138 78,125 84 36

SHAKE256 100 26 0.00031 0.00130 322,581 76,923 77 36

Poly1305-
AES

100 16 0.00086 0.00559 116,279 17,889 77 36

ChaCha20 100 108 0.00060 0.00229 166,667 43,668 81 29

ChaCha20-
Poly1305

100 100 0.00018 0.00071 555,555 140,845 81 21

Speck 100 39 0.00070 0.00400 142,857 25,000 81 29

Simon 100 39 0.00131 0.00580 76,336 17,241 81 29

27

Table 6: Data for 1024 bytes file.

Algorithm
File
size

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 1024 1024 0.00349 0.02307 293,410 44,387 87 43

AES192 1024 1024 0.00343 0.02278 298,542 44,952 84 36

AES256 1024 1024 0.00347 0.02316 295,101 44,214 77 43

SHA256 1024 64
0.00005

4
0.00020

18,962,9
63

5,120,00
0

77 36

SHA3-256 1024 32 0.00040 0.00153
2,560,00

0
669,281 84 29

SHAKE256 1024 26 0.00041 0.00149
24,975,6

0
687,248 84 29

Poly1305-
AES

1024 16 0.00089 0.00544
1,150,56

2
188,235 81 36

ChaCha20 1024 1032 0.00063 0.00243
1,625,39

7
421,399 84 21

ChaCha20-
Poly1305

1024 1024 0.00023 0.00089
4,452,17

4
1,150,56

2
90 39

Speck 1024 39 0.00072 0.00351
1,422,22

2
291,738 84 29

Simon 1024 39 0.00129 0.00505 793,798 202,772 81 29

28

Table 7: Data for 524288 bytes file.

Algorithm
File
size

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 524288 524288 0.06029 0.15926
8,696,10

2
3,292,02

6
81 43

AES192 524288 524288 0.06877 0.18278
7,623,78

9
2,868,41

0
77 43

AES256 524288 524288 0.07619 0.19360
6,881,32

3
2,708,09

9
84 36

SHA256 524288 64 0.00653 0.02387
80,289,1

27
21,964,3

07
81 36

SHA3-256 524288 32 0.04879 0.10784
10,745,8

08
4,861,72

1
77 36

SHAKE25
6

524288 26 0.04819 0.10938
10,879,6

01
4,793,27

1
77 29

Poly1305-
AES

524288 16 0.01057 0.02645
49,601,5

14
19,821,8

52
77 29

ChaCha20 524288 524296 0.01710 0.04304
30,660,1

17
12,181,4

13
81 36

ChaCha20-
Poly1305

524288 524288 0.02817 0.08132
18,611,5

72
6,447,22

1
84 36

Speck 524288 39 0.01034 0.03136
50,704,8

35
16,718,3

67
77 36

Simon 524288 37 0.01073 0.03547
48,861,8

82
14,781,1

67
42 43

29

Table 8: Data for 1048576 bytes file.

Algorithm
File
size

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128
10485

76
1048576 0.11682 0.29897

8,975,99
7

3,507,29
5

87 43

AES192
10485

76
1048576 0.13226 0.33979

7,928,14
1

3,085,95
3

87 43

AES256
10485

76
1048576 0.14863 0.36398

7,054,94
2

2,880,86
2

81 36

SHA256
10485

76
64 0.01260 0.04819

83,220,3
17

2,175,92
03

87 36

SHA3-256
10485

76
32 0.09432 0.21298

11,117,2
18

4,923,35
4

87 36

SHAKE256
10485

76
26 0.09465

0.21591
6

11,078,4
57

4,856,40
7

81 36

Poly1305-
AES

10485
76

16 0.02014 0.04972
52,064,3

49
21,089,6

22
84 29

ChaCha20
10485

76
1048584 0.03299 0.08541

31,784,6
62

12,276,9
70

84 36

ChaCha20-
Poly1305

10485
76

1048576 0.05555 0.15778
18,876,2

56
6,645,81

0
84 36

Speck
10485

76
39 0.01970 0.06182

53,227,2
08

16,961,7
60

81 29

Simon
10485

76
39 0.01733 0.06212

60,506,4
05

16,879,8
45

39 36

Code execution has passed without problems. The gathered data is analyszed and

processed in the Chapter 5.

30

5 Analysis of Results

In this Chapter is all the collected data in a Chapter 4.3 is converted into the line and

column charts and presented for a visual demonstration. Charts are also used for an

easier comparative analysis and a general overview on the cryptographic algorithm’s

performance.

One of the main indicators of the research performed is the throughput of the

algorithms. Separate line charts for each file size are created and include data for two

testing devices. Figure 5 shows that Raspberry Pi 3 B has a higher throughput of all the

cryptographic algorithms in comparison with Raspberry Pi Zero W device. That result is

expected as Zero W has lower overall performance due to technical specifications. From

the chart it can be seen that SHA256 algorithm stands out as has the best throughput

among other hash algorithms and cryptographic ciphers. However, ChaCha20-Poly1305

also showed good results and reached a throughput of 5,882 bytes per second. For both

devices the lowest results have shown all AES encryption algorithms that have gained a

throughput of 284 to 286 bytes per second for the 3B model, and between 44 and 45

bytes per second for Zero W.

31

Figure 5: Throughput of 1 byte file.

Chart lines of the Figure 6 and Figure 7 depict results for the encrypted 100 and 1024

bytes files that have similar test outcomes compared to each other. However, the

throughput during encryption significantly grown grew 2,500,000 bytes per second for 3

B model and 100 bytes file to 18,962,963 bytes per second for the same device but 1024

bytes file. This pattern also noticed in other algorithms. Also can be noted that SHAKE

256 showed better outcomes for both devices, while Poly1305-AES performed slightly

slower for the Zero W model than in the previous tests.

32

Figure 6: Throughput of 100 bytes file.

Results for the test execution described in the Figure 8 and Figure 9 showed related

throughput results on both devices. Comparing to the previous test of the 1024 bytes

size file, an overall throughput of all cryptographic algorithms increased not less than by

4 times. Other changes among algorithms performance also happened due to processing

of the large size files. Better results are gained by Poly1305-AES, ChaCha20, Speck

and Simon. In Raspberry Pi 3B Simon improved results by 60 times and reached the

throughput of 48,861,882 bytes per second.

Less noticeable but bigger changes have happened to algorithms executed in the Zero W

model. Can be viewed that AES algorithms had a significant raise by 61 to 74 times

compared to the Figure 7. Also Speck achieved 16,718,367 bytes per second compared

to previous 291,738, which is on 5630% more. Yet, the most remarkable difference is

performed by Poly1305. It gained a throughput of 19,821,852 bytes per second that is

104 times more than before.

33

Figure 7: Throughput of 1024 bytes file.

34

Figure 8: Throughput of 524288 bytes file.

From the test results, it can be seen that the algorithm’s throughput increased in parallel

with the file size. Also there are no cardinal changes in connection to the device model

as lower performance for the Zero W model is uniform across all cryptographic

algorithms. The hash function SHA256 kept showing the best results in every

throughput test. AES128, AES192 and AES256 showed similar and comparatively low

results along the way. In the test with 1,048,576 bytes file for Raspberry Pi 3 model B,

AES128 block cipher reached 8,975,997 bytes per second, while Simon, the lightweight

block cipher, gathered 60,506,405 bytes per second. That demonstrates the difference

between standard and a lightweight cryptography.

35

Figure 9: Throughput of 1048576 bytes file.

During power consumption measurements indicated that SBCs consumed a similar

amount of the power within the Raspberry Pi 3 B model, as Figure 10 depicts. If correl-

ated results between 1 and 1,048,576 bytes file tests, there is no significant raise of the

power consumption. An average difference in the power consumption raise is just 3%.

The biggest increase in the power consumption is produced by ChaCha20-Poly1305 for

1024 bytes file size. At the time of the encryption process, it consumed on 90% more

than in a quiescent state, while an average consumption by other algorithms increased

by 82%. The only remarkable outcome is produced by the lightweight Simon block

cipher. During the encryption operation of the heavy files, Simon has shown a power in-

crease only by 39-42%, that is a twice lower intake compared to other algorithms.

Encryption in the Zero W model provided more heterogeneous results. Figure 11

demonstrates that almost half of the algorithms had exactly 36% higher consumption

36

Figure 10: Power consumption increase for Raspberry Pi 3 B.

Figure 11: Power consumption increase for Raspberry Pi Zero W.

than before encryption, while other varies between 21% and 43%. As for example,

AES128 and AES192 required 43% more power during an execution of the heavy

algorithms. ChaCha20 and ChaCha20-Poly1305 showed better outcomes for smaller

plaintexts and the increase is on 21%. In overall power consumption increase for Zero

W is twice lower than for 3 B model.

Figure 12 displays a memory usage by the algorithms. It can be viewed that AES128,

AES192, AES256, ChaCha20 and ChaCha20-Poly1305 have output file sizes identical

or around to the input size. Lightweight block ciphers Simon and Speck have a small

memory usage that is kept between 36 and 39 bytes independently of the input text size.

This should be considered as an advantage for the encryption of heavy files within the

resource constraint environment. During the result analysis is taken into account that

hash algorithms only produce a tag instead of encrypting the whole text, for this reason

the output requires less memory. Moreover, SHAKE256’s output message length can be

changed depending on the requirements as it is an extendable-output function.

37

To summarize all gathered data such short overviews are made:

AES128, AES192, AES256: In comparison to the lightweight block algorithms,

demonstrated significantly lower throughput. The AES algorithms are on average 5

times slower than lightweight algorithms. Though, the power consumption during

encryption of small files is similar to other algorithms but twice higher compared to

Simon for encrypting large plaintexts. Memory usage is not adapted to the needs of the

resource constraint environment, as it outputs same size ciphertexts.

SHA256: Showed the best results of the throughput measurements among all

algorithms. There are no deviations from the average power consumption compared to

others. Among hash functions SHA256 required the biggest memory space, about twice

more than the rest of the hash functions.

SHA3-256 and SHAKE256: Demonstrated analogous test results. Throughput is

noticeably smaller than SHA256 had, while power consumption results are slightly

better for the large size files.

Poly1305-AES: Performed well for the encryption of the large plaintexts, had an

average power consumption and a fixed output smaller than SHA family have.

38

Figure 12: Memory usage by cryptographic algorithms.

ChaCha20: For a stream cipher, ChaCha20 showed good throughput and average power

consumption results. Produced ciphertext file sizes are slightly bigger than the input,

therefore not adapted for the use in a constraint environment.

ChaCha20-Poly1305: Showed better throughput and power consumption results than

ChaCha20 and Poly1305 for the small sized plaintexts. As ChaCha20 it produces large

ciphertexts.

Speck and Simon: Speck demonstrated improved performance except the cases when an

extra large plaintext is provided, in that case Simon is more effective. Same situation is

noticed during the power consumption tests, while memory usage is almost identical.

The executed results and analysis provided an overview of the tested algorithms

performance to consider their strong and weak sides for the implementation in the

resource constraint environments.

39

6 Conclusion

The IoT is a spreaded and vulnerable technology. Due to its nature, it requires special

and timely measures to provide protection since the rapid distribution of this technology

and the lack of sufficient protection can lead to serious problems in the future. Whereas

cryptography can provide confidentiality, integrity, authentication and non-repudiation

to IoT devices. The purpose of this research is to analyze the cryptographic algorithms

executed in the constraint environment in order to compare their performance and

understand which of the algorithms are best suited for use in a given environment and

whether the standard algorithms are suitable for the non-standard environment.

Executed tests showed that Poly1305-AES, ChaCha20 and their combination

ChaCha20-Poly1305 are compatible with the constraint environment, yet in cases where

memory usage is a critical parameter, ChaCha20 and ChaCha20-Poly1305 might not be

the most suitable choice. While SHA2 and SHA3 approved family functions of the are

suitable for the implementation in the constraint environment, though SHA256 still can

be considered as a preferable choice. Also, the standard AES algorithms are suitable for

use in a limited environment, but are far inferior to specially designed lightweight

algorithms for this purpose. However, since the standardization process of the

lightweight encryption algorithms is not yet complete, the choice arises to use proven

and reliable algorithms or more suitable for specific tasks. These facts lead to the

conclusion that standardization of algorithms is necessary and requires special attention.

40

References

[1] Sebastien Ziegler, Internet of Things Security and Data Protection, 2019, pp 3-4.

[2] PiMyLifeUp, 20+ Raspberry Pi IoT Projects, www.pimylifeup.com/category/projects/iot/

[3] Chintan Patel & Nishant Doshi, Internet of Things Security: Challenges, Advances, and

Analytics, September 2018, pp. 2.

[4] Udemy Online Courses, www.udemy.com/course/learn-hands-on-iot-with-raspberry-pi-

and-slack/

[5] CISCO Networking Academy, www.netacad.com/courses/cybersecurity/iot-security

[6] Umit Isikdag, Enhanced Building Information Models: Using IoT Services and

Integration Patterns, May 2015, pp. 44-49.

[7] Brian Russell & Drew Van Duren, Practical Internet of Things Security, June 2016, pp. 1-

2.

[8] Statista, www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[9] Tesjasvi Alladi & Vinay Chamola & Biplab Sikdar & Kim-Kwang Raymond Choo,

Consumer IoT: Security Vulnerabilities Case Studies and Solutions, October 2019, pp. 1.

[10] L. Mary Shamala & Dr. G. Zayaraz & Dr. K. Vivekanandan, Dr. V. Vijayalakshmi,

Lightweight Cryptography Algorithms for Internet of Things enabled Networks: An

Overview, 2021, pp 1.

[11] Brian Russell & Drew Van Duren, Practical Internet of Things Security, June 2016, pp. 5,

15.

[12] Chintan Patel & Nishant Doshi, Internet of Things Security: Challenges, Advances, and

Analytics, September 2018, pp. 27.

[13] Muhammad Burhan & Rana Asif Rehman & Bilal Khan & Byung-Seo Kim, IoT

Elements, Layered Architectures and Security Issues: A Comprehensive Survey, August

2018, pp. 6-8.

[14] Chintan Patel & Nishant Doshi, Internet of Things Security: Challenges, Advances, and

Analytics, September 2018, pp. 46.

[15] Otmane El Mouaatamid & Mohammed Lahmer & Mostafa Belkasmi, Internet of Things:

Layered classification of attacks and possible Countermeasures, September 2016, pp. 29.

[16] Chintan Patel & Nishant Doshi, Internet of Things Security: Challenges, Advances, and

Analytics, September 2018, pp. 44-45.

[17] Sebastien Ziegler, Internet of Things Security and Data Protection, 2019, pp 25-30.

[18] Brian Russell & Drew Van Duren, Practical Internet of Things Security, June 2016, pp.

132-133.

41

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://www.netacad.com/courses/cybersecurity/iot-security
http://www.udemy.com/course/learn-hands-on-iot-with-raspberry-pi-and-slack/
http://www.udemy.com/course/learn-hands-on-iot-with-raspberry-pi-and-slack/
http://www.pimylifeup.com/category/projects/iot/
http://www.pimylifeup.com/category/projects/iot/

[19] Md. Enamul Haque & Sm Zobaed & Muhammad Usama Islam & Faaiza Mohammad

Areef, Performance Analysis of Cryptographic Algorithms Selecting Better Utilization on

Resource Constraint Devices, December 2018, pp. 2-3.

[20] Alfred J. Menezes & Paul C. van Oorschot & Scott A. Vanstone, Handbook of Applied

Cryptography, August 2001, pp. 4-6.

[21] Charalampos Manifavas & George Hatzivasilis & Konstantinos Fysarakis &

Konstantinos Rantos. Lightweight Cryptography foe Embedded Systems – A

Comparative Analysis, pp. 4.

[22] Diaa Salama Abd Elminaam & Hatem Mohamed Abdual Kader & Mohiy Mohamed

Hadhoud, Evaluating The Performance of Symmetric Encryption Algorithms, May 2010,

pp. 213.

[23] Charalampos Manifavas & George Hatzivasilis & Konstantinos Fysarakis &

Konstantinos Rantos. Lightweight Cryptography foe Embedded Systems – A

Comparative Analysis, pp. 2.

[24] Chintan Patel & Nishant Doshi, Internet of Things Security: Challenges, Advances, and

Analytics, September 2018, pp. 44.

[25] NIST, Computer Security Resource Center, www.csrc.nist.gov/projects/lightweight-

cryptography

[26] Okamura Toshihiko, Lightweight Cryptography Applicable to Various IoT Devices,

October 2017, pp. 68-69.

[27] Umit Isikdag, Enhanced Building Information Models: Using IoT Services and

Integration Patterns, May 2015, pp. 48.

[28] Marjana Maksimovic & Vladimir Vujovic & Nikola Davidovic & Vladimir Milosevic &

Branko Perisic, Raspberry Pi as Internet of Things hardware Performances and

Constraints, June 2014, pp. 6.

[29] Raspberry Pi, Buy a Raspberry Pi 3 Model B, www.raspberrypi.org/products/raspberry-

pi-3-model-b/

[30] Raspberry Pi, Buy a Raspberry Pi Zero W, www.raspberrypi.org/products/raspberry-pi-

zero-w/

[31] Raspberry Pi Documentation, Power Supply,

www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md

[32] Raspberry Pi, Operating system images, www.raspberrypi.org/software/operating-

systems/

[33] International Engineering Task Force, ChaCha20 and Poly1305 for IETF Protocols, May

2015, pp. 19-25.

42

http://www.csrc.nist.gov/projects/lightweight-cryptography
http://www.csrc.nist.gov/projects/lightweight-cryptography
http://www.csrc.nist.gov/projects/lightweight-cryptography

[34] Dobre Blazhevski & Adrijan Bozhinovski & Biljana Stojchevska & Veno Pachovski,

Modes of Operation of the AES Algorithm, 2013, pp.

[35] IBM Documentation, Transport Layer Security – TLSv1.2,

www.ibm.com/docs/en/zvse/6.2?topic=openssl-transport-layer-security-tlsv12

[36] Nigel Smart, Cryptography: An Introduction (3rd Edition), April 2013, pp. 156.

[37] Federal Information Processing Standards Publication, Secure Hash Standard, August

2015, pp. iv-21.

[38] NIST, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions,

August 2015, pp. 1-2, 22.

[39] International Engineering Task Force, ChaCha20 and Poly1305 for IETF Protocols, May

2015, pp. 13.

[40] Daniel J. Bernstein, The Poly1305-AES message-authentication code, March 2015, pp. 1-

4.

[41] Daniel J. Bernstein, ChaCha, a variant of Salsa20, January 2008, pp. 1.

[42] National Security Agency, Simon and Speck: Block Ciphers for the Internet of Things,

July 2015, pp. 1-5.

[43] Gordon Procter, A security Analysis of the Composition of ChaCha20 and Poly1305, pp.

2.

[44] International Engineering Task Force, ChaCha20-Poly1305 Cipher Suites for Transport

Layer Security, June 2016, pp. 3.

[45] International Engineering Task Force, ChaCha20 and Poly1305 for IETF Protocols, May

2015, pp. 19-25.

[46] National Security Agency, Simon and Speck: Block Ciphers for the Internet of Things,

July 2015, pp. 1-3.

[47] Simon and Speck Information Paper,

www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfo-ISO-SC27-WG2.pdf

[48] Simon and Speck New Publication Update, www.nsacyber.github.io/simon-speck/papers/

SimonandSpeckInfoPaperFINAL.pdf

[49] Raspberry Pi OS, www.raspberrypi.org/software/

[50] Pycryptodome 3.9.9 documentation,

www.pycryptodome.org/en/latest/src/introduction.html

[51] PyPi, RFC7539, www.pypi.org/project/rfc7539/

[52] The Python Standard Library, www.docs.python.org/3/library/time.html

[53] Source code: www.geeksforgeeks.org/how-to-open-and-close-a-file-in-python/

43

http://www.pycryptodome.org/en/latest/src/introduction.html
http://www.raspberrypi.org/software/
http://www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfoPaperFINAL.pdf
http://www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfoPaperFINAL.pdf
http://www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfoPaperFINAL.pdf
http://www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfo-ISO-SC27-WG2.pdf
http://www.nsacyber.github.io/simon-speck/papers/SimonandSpeckInfo-ISO-SC27-WG2.pdf

[54] The Python Standard Library, www.docs.python.org/3/library/os.html?

highlight=urandom#os.urandom

[55] Lucy Hattersley, Get Started with Raspberry Pi, Novermber 2019, pp. 20.

[56] Source code: www.dlitz.net/software/pycrypto/api/current/Crypto.Cipher.AES-

module.html

[57] Source code: www.pythonpool.com/python-sha256/

[58] Source code: www.pycryptodome.readthedocs.io/en/latest/src/hash/sha3_256.html?

highlight=sha3-256

[59] Source code: www.pycryptodome.readthedocs.io/en/latest/src/hash/shake256.html?

highlight=shake128

[60] Source code www.pycryptodome.readthedocs.io/en/latest/src/hash/poly1305.html?

highlight=poly1305

[61] Source code: www.pycryptodome.readthedocs.io/en/latest/src/cipher/chacha20.html?

highlight=chacha20

[62] Source code: www.github.com/AntonKueltz/rfc7539

[63] Source code: www.asecuritysite.com/encryption/speck

[64] Source code: www.pypi.org/project/simonspeckciphers/

44

http://www.pypi.org/project/simonspeckciphers/

List of Figures

Package installation...23

Example of the time module application...23

Example of file input and output application..23

Random key compilation...24

Throughput of 1 byte file...31

Throughput of 100 bytes file...32

Throughput of 1024 bytes file...33

Throughput of 524288 bytes file...34

Throughput of 1048576 bytes file...35

Power consumption increase for Raspberry Pi 3 B...36

Power consumption increase for Raspberry Pi Zero W..36

Memory usage by cryptographic algorithms...38

AES128 [56]..47

AES192 [56]..47

AES256 [56]..47

SHA256 [57]..47

SHA3-256 [58]..48

SHAKE256 [59]..48

Poly1305-AES [60]...48

ChaCha20 [61]...48

ChaCha20-Poly1305 [62]..49

Speck [63]..49

Simon [64]...50

45

List of Tables

Table 1: IoT Architecture Layers, Security Parameters and Major Threats....................12

Table 2: SBC Technical Specifications...16

Table 3: Algorithms Overview..21

Table 4: Data for 1 byte file...26

Table 5: Data for 100 bytes file...27

Table 6: Data for 1024 bytes file...28

Table 7: Data for 524288 bytes file...29

Table 8: Data for 1048576 bytes file...30

46

Appendix 1 – Cryptographic Algorithm’s Code

47

from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(16)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 13. AES128 [56].

from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(24)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 14. AES192 [56].

from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(32)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 15. AES256 [56].

import hashlib

hash = hashlib.sha256(plaintext).hexdigest()
byte_hash = hash.encode('utf-8')

Figure 16. SHA256 [57].

48

from Crypto.Hash import SHA3_256

hash = SHA3_256.new()
hash.update(plaintext)

Figure 17. SHA3-256 [58].

from Crypto.Hash import SHAKE256

shake = SHAKE256.new()
shake.update(plaintext)

Figure 18. SHAKE256 [59].

from Crypto.Hash import Poly1305
from Crypto.Cipher import AES
from os import urandom

key = urandom(16)
binary_tag = Poly1305.new(key=key, cipher=AES,
data=plaintext).digest()

Figure 19. Poly1305-AES [60].

from base64 import b64encode
from Crypto.Cipher import ChaCha20
from os import urandom

key = urandom(32)
cipher = ChaCha20.new(key=key)
ciphertext = cipher.encrypt(plaintext)
nonce = b64encode(cipher.nonce).decode('utf-8')
result = b64encode(ciphertext).decode('utf-8')

Figure 20. ChaCha20 [61].

49

from rfc7539 import aead
from os import urandom

key = urandom(32)
nonce = b'thisisanonce'
additional_data = b'Some additional data'
ciphertext, mac = aead.encrypt_and_tag(key, nonce,
plaintext, additional_data)

Figure 21. ChaCha20-Poly1305 [62].

import speck
import binascii
import sys

def get_binary(word):
 return int(binascii.hexlify(word), 16)

k = '0x1b1a1918131211100b0a090803020100'

if len(sys.argv) > 1:
 message = str(sys.argv[1])
 m = get_binary(plaintext)

if len(sys.argv) > 2:
 k = str(sys.argv[2])

key = int(k, 16)
key_size = (len(k) - 2) * 4

if key_size == 64: bsize = 32
if key_size == 72: bsize = 48
if key_size == 96: bsize = 48
if key_size == 128: bsize = 128

cipher = speck.SpeckCipher(key, key_size=key_size,
block_size=bsize)
ciphertext =
cipher.encrypt(int.from_bytes(plaintext,
byteorder='big'))

Figure 22. Speck [63].

50

from simon import SimonCipher

int_message = int.from_bytes(plaintext, "big")
simon =
SimonCipher(0xABBAABBAABBAABBAABBAABBAABBAABBA,
key_size=128, block_size=128)
ciphertext = simon.encrypt(int_plaintext)

Figure 23. Simon [64].

Appendix 2 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Yulia Derbeneva

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Comparative analysis of encryption algorithms for resource constraint envir-
onment”, supervised by Tauseef Ahmed

1.1 to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Techno-

logy until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-ex-

clusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' in-

tellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

17.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean,
except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s)
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

51

	1 Introduction 8
	2 IoT and Security 10
	2.1 Threats and Vulnerabilities 11
	2.2 Cryptography and IoT 13

	3 Research Technical Background 16
	3.1 Tested Devices 16
	3.2 Encryption Algorithms 17

	4 Research 22
	4.1 Preparation Steps 22
	4.2 Execution Steps 22
	4.3 Gathered Data 25

	5 Analysis of Results 31
	6 Conclusion 40
	References 41
	Appendix 1 – Cryptographic Algorithm’s Code 47
	Appendix 2 – Non-exclusive licence for reproduction and publication of a graduation thesis 51
	1 Introduction
	2 IoT and Security
	2.1 Threats and Vulnerabilities
	2.2 Cryptography and IoT

	3 Research Technical Background
	3.1 Tested Devices
	3.2 Encryption Algorithms

	4 Research
	4.1 Preparation Steps
	4.2 Execution Steps
	4.3 Gathered Data

	5 Analysis of Results
	6 Conclusion
	References
	Appendix 1 – Cryptographic Algorithm’s Code
	Appendix 2 – Non-exclusive licence for reproduction and publication of a graduation thesis

