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Abstract

The Internet of Things is a vast and rapidly growing technology that has evolved into

such a large scale project as Smart Cities. Internet of Things nodes introduce security

vulnerabilities due to data collection and transmission. Furthermore, they have many

constraints and limitations relating to computational and power resources, which could

be crucial for data security [1]. 

The aim of this thesis is to evaluate the importance of applying security measures and to

identify the most efficient encryption algorithms in terms of security and performance

for low-powered devices. 

The goal of this study is to set security implemented for all communicating devices,

whereas  environments  with  limited  resources  require  a  specific  approach  for

implementing enhanced security measures.

Encryption application is considered to be an effective defensive measure against cyber

threats,  which  provides  data  security.  Performance  analysis  of  various  encryption

algorithms, carried out on several constraint environments, can give the concept of the

most appropriate options for the analogue devices.

Carried  out  research  in  this  paper  gives  a  comparative  analysis  of  the  encryption

algorithms  performance  conducted  in  the  constraint  computational  resource

environments. The results of this study provides an evaluation of the most appropriate

algorithms in  terms of performance.

This thesis is written in English and is 51 pages long, including 6 chapters, 23 figures

and 8 tables. 
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1 Introduction

The Internet of Things, also known as IoT, is gradually becoming a part of the everyday

life of people. Every year, more and more new items at home become “smart”, giving

their owners enhanced control over their environment. In connection with the growing

popularity  of  the  IoT,  both  the  demand  for  ready-made  devices  and  materials  for

creating custom ones. And as is known, demand creates supply.

The Arduino microcontroller based development kit that appeared on the market was

highly  appreciated  by users,  which  gave  a  push  to  development  in  the  direction  of

single-board computer development, also known as SBC. Companies such as the non-

profit  BeagleBoard.org  and  Raspberry  Pi,  Asus,  Nvidia  and many others  have  also

joined the technology race, gradually evolving their product into increasingly powerful

and functional single-board computers. Over the time, it has become impossible not to

notice their  advantages  and the opportunities   they provided,  and thanks to an easy

access to information,  it  became incredibly simple to start  using a SBC for projects

without special skills. With the improvement of SBCs and their popularity, their scope

has also expanded. From simple controllers of light, music, cameras, users began to use

computers for more educational and entertainment purposes, such as a weather station,

game console, a statistics monitoring mirror. From a simple device quickly, SBC grew

into an efficient device with the ability to execute complex tasks. Now SBC are also

used as web servers, databases, network file system clients, firewalls, Virtual Private

Networks, network attached storages and much more [2]. While the term „Thing” in the

IoT refers to a device having following properties: 

 Unique identity 

 Capable to connect with other devices

 Self powered with long lasting battery

 Capable to perform control commands [3]

Currently there are a massive amount of online courses, including provided by the  well-

known CISCO company, on how to create an IoT device using a SBC [4][5].
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Now communication between devices goes beyond one home and develops into a larger

network with interconnected devices.  Moreover,  smart  cities  have already become a

reality.  Entire  urban zones  of  connected  devices  have  been created  that  collect  and

transmit various data. Now it is not the transfer of data from one to another instead

about the huge flows of information associated with the whole society. And here the

question of data protection arises sharply, how to allow technologies to progress while

maintaining the confidentiality,  availability  and integrity  of all  valuable information.

These three principles are the basis of information security, the practical application of

which is the basis of this study [6][7].  While the aim of this research is to apply in a

resource  constraint  environment  one  of  the  information  security  measures  –

cryptography. SBCs are used as an example of the constraint environment on which

basis a comparative analysis of different cryptography algorithms is made. The provided

results create an overview of their overall performance in the constraint environment

and in the comparison to other tested algorithms. Used lightweight  algorithms show

their performance differences compared to standard algorithms. The test outcome gives

an understanding of  whether those algorithms can be used in such environments, are

they effective and suitable, and what matters they arise. 
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2 IoT and Security

This chapter  describes why security measures should be also implemented within the

IoT devices, what threats and vulnerabilities IoT are subject to, and why cryptography is

an important security measure that can be implemented for risk mitigation.

The IoT would not be integrated into the everyday life of people if its capabilities and

advantages were not appreciated. According to statistics, by 2030, the number of IoT

devices  around the world will  grow by 15.4 billion,  which is more than double the

current number of devices. They are used in all types of industries, but as of 2020, 60

percent of all connected devices are in the consumer market [8].

On the other hand, the desire to make all devices “smart” creates additional access spots

for  hackers  and  new  tasks  for  cyber  security  professionals.  If  solutions  to  reduce

security risks will not be provided, then, the surface of risk will substantially extend and

grow in the same progression as the number of devices. 

In addition to the risks of information loss, which can lead to financial losses, many IoT

devices are safety-related.  Connected to medical  sensors, fire alarm and surveillance

systems, door locks, the compromise of such devices may lead to physical harm and

property and even death. That is why the use of protective measures is very necessary

for the IoT devices.

However, IoT devices have limited functionality and limited resources, such as storage,

processing capacity,  and limited power consumption,  and therefore are generally not

designed  with  any  security  mechanisms.  Also,  their  low  cost  affects  the  increased

demand, so manufacturers may also compromise on security measures in order not to

lose their bulk of buyers [9][10]. These factors make IoT devices an easy target for

intruders,  although  both  humans  and  natural  forces  can  be  the  source  of  threats.

Unfortunately, natural disasters cannot be prevented, so the usage of a disaster recovery

is the best approach to protecting a system. While human-related threats require a more

thorough approach. Even if all risks cannot be ruled out, it is necessary to eliminate the

vulnerabilities with the most likelihood and impact.
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2.1 Threats and Vulnerabilities

IoT is a combination of opportunities and risks that new technologies bring. Unlike the

already  standardized  processes  and security  measures  for  traditional  computers,  IoT

devices  have  bounded  security  functions,  while  they  are  directly  connected  to  the

Internet,  and  are  a  part  of  a  system that  does  not  have  proper  security  procedures

implemented.  Therefore,  major  IoT  security  risks  are  connected  to  their  main

differences from traditional technologies, such as:

 Interaction of active analogue and physical elements are the main characteristics

of the IoT devices. Since resources are often obtained from the physical world,

the edge nodes are accessible for a physical contact, therefore have additional

risks [11].

 Massive scale points increase the likelihood of attacks. Despite the fact that the

computing power of such devices is rather small in comparison with computer

ones,  being  combined  into  a  system  of  such  a  scale,  they  become  a  truly

threatening force.

 A wide variety  of  network  types.  Protocols  such as  Constrained Application

Protocol,  6TiSCH,  ZigBee,  Building  Automation  and  Control  Network have

been created and optimized for a limited environment. However, optimization is

also followed by related reliability and transmission issues.

 Resources such as battery, memory and performance are limited. This leads to

the use of simpler codes and protocols, which will affect the ability to enforce

protective measures. [1]

 The  necessary  policies  and  frameworks  are  still  under  development  as  IoT

technology began to gain popularity not so long ago, unlike standard computers.

[12]

The potential risks can also be considered depending on which architecture layer they

affect. Despite the fact that there is no general agreement on the IoT architectural layer,

the researchers observe the need for a four-layer architecture [13]. With certainty three
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main architectural  layers,  such as  Physical,  Network and Application  layers,  can be

distinguished.

1. The physical layer includes objects that collect information and control the data

of executive devices that transmit information about their work.

2. The network layer transfers information obtained using physical objects to appli-

cations.

3. The application layer provides the services to the applications which are  using

IoT technology [14] [15].

Table 1 shows the basic three-layer architecture of IoT and the parameters that need a

special attention in ensuring security. The table also includes threats that are common to

each of the architectural layers [16][17][18]. Despite the fact that there are no uniform

protection measures to cover all vulnerabilities, cryptography plays a significant role in

the protection of IoT technologies.

Table 1: IoT Architecture Layers, Security Parameters and Major Threats.

Architecture Layer Security Parameters Security Threats

Physical Layer • Device immunity

• Authentication

• Access Control

• Integrity

• Unauthorised access

• Denial of Service

• Channel blocking

• Sybil attack

• Replay attack

• Tunnel attack

• Synchronization 

attack

• Data tampering

• Electromagnetic 

leakage and 

interference

Network Layer • Confidentiality

• Integrity

• Distributed Denial of 

Service
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Architecture Layer Security Parameters Security Threats

• Authentication

• Access Control

• Routing attack

• Sinkhole attack

• Wormhole attack

• Blackhole 

• Spoofing attack

• Routing loop attack

• False routing 

information

• Trapdoor

• Tunnel attack

• Spoofing attack

• Hello flooding attack

• Eavesdropping

Application Layer • Access Control

• User Privacy

• User-Anonymity

• Accountability

• Non-Repudiation

• Authentication

• Privacy data leaking

• Unauthorised access

• Malicious code

• Forged control 

commands

• Loophole

• Viruses and Trojan 

horses

• SQL injection attack

Considering the gathered information,  the IoT needs strong security measures to get

protected from such a large scale and variation of threats. One of the measures can be

the implementation of cryptography.

2.2 Cryptography and IoT

Cryptography is an essential aspect that is used as a defense mechanism in traditional

computer  technology and is  playing an increasing  role  in  IoT technology.  Since,  in
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addition to providing services and applications, the IoT should also provide a level of

trust in the technology, the ability to protect its data. The use of reliable and updated

encryption methods can increase security and trust respectively[19].

The advantage of cryptography as a protective  measure for IoT is  that  the goals of

cryptography match the security parameters of IoT devices that should be taken into

account.  Moreover,  those parameters  are  introduced in all  three  main  layers  of  IoT

architecture, that are mentioned in the Table 1, such as:

 Confidentiality refers to providing an access to information only to those who

are authorized to do so.

 Integrity ensures data has not been manipulated by unauthorized parties.

 Authentication  can  be  divided  into  entity  authentication,  which  refers  to

verifying the identity of the sender, and data authentication that identifies the

data has not been tempered during a transmission over a channel.

 Non-repudiation prevents the sender from denying the events committed by the

sender.

These security practices are achieved using various encryption techniques, which are

divided into two main types, symmetric encryptions and asymmetric encryptions. Some

researchers append the third "hashing" type.

Symmetric encryption uses a shared key to encrypt and decrypt information transmitted

between a sender and a receiver. This technique is also categorized into two encryption

schemes  as  block  and  stream  ciphers.  The  block  cipher  performs  an  encryption

operation by splitting a plaintext  into blocks, converting each bit  of the plaintext  in

parallel.  The  most  commonly  used  symmetric  algorithms  are  Advanced  Encryption

Standard, Blowfish, Triple Data Encryption Standard, CAST-128 and Rivest Cipher 4.

Asymmetric  encryption  uses  different,  pairwise  keys  for  encryption  and decryption.

Rivest-Shamir-Adleman and Elgamal are well-known asymmetric algorithms.
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Hashing is a one-way encryption technique, as a ciphertext cannot be converted back to

plaintext.  This method ensures data integrity and authenticity.  Often mentioned such

hash functions are Message-Digest 5, SHA256 and their modified versions [20][21].

Despite the fact  that some traditional  ciphers,  such as AES, Camellia,  CLEFIA and

International  Data  Encryption  Algorithm,  are  approved  by  the  International

Organization for Standardization for use in environments with limited resources [22].

However, the prevailing number of cryptographic algorithms are not suitable for IoT

devices as most of the encryption algorithms require a significant amount of memory,

battery  and  processing  power.  These  resources  are  consumed  by  mathematical

calculations,  data  aggregation,  output  redirection  and  other  processes  [23][24][25].

Therefore,  with  the  development  of  IoT  technologies,  the  need  for  lightweight

algorithms has increased. This is evidenced by the fact that NIST initiated the project on

the standardization of lightweight cryptographic algorithms and that the International

Organization for Standardization has already adopted the international standards for it

[26].

To  adjust  encryption  algorithms  for  resource  constraint  environments,  lightweight

algorithms  use smaller  circuitry,  Read Only  Memory and Random Access  Memory

sizes, processing speed, power that is used by power harvesting devices, and a power

consumption for battery-powered devices such as a camera or sensor. Examples of such

algorithms are SPECK, SIMON, PRESENT, TWINE [26].
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3 Research Technical Background

This chapter  includes consideration and analysis  of the used devices and encryption

algorithms in the course of this study. While a technical analysis of algorithms gives a

general understanding of their aspects, methods of use and hints for consideration of

these algorithms within other environments. In the research used SBCs are taken as an

example of the resource constraint environment. Gather data will provide an overview

to how encryption algorithms perform in specific conditions and requirements. 

3.1 Tested Devices

In  the  research  two  models  of  the  SBCs  are  used:  Raspberry  Pi  3  model  B  and

Raspberry  Pi  Zero  W.  These  devices  of  the  British  company  named  Raspberry  Pi

Foundation. The products of this company are widely known due to the ratio of quality

and price [27]. The Raspberry Pi has the advantages of PC-like computers, great for

interacting with additional and auxiliary devices. The ability to connect via Bluetooth or

Wi-Fi allows the use of remote control, which makes the product concept well suited for

an  IoT device [28]. The Raspberry Pi Zero W extends the Pi Zero family and has

optional 802.11 b/g/n wireless Local Area Network, Bluetooth 4/1 and Bluetooth Low

Energy. While the Raspberry Pi 3 model B is the predecessor to the latest  release -

Raspberry Pi 4.

Table 2 shows the main parameters of the tested SBCs, which are related to the results

of the comparative analysis in the practical part [29][30][31].

Table 2: SBC Technical Specifications.

Parameter Raspberry Pi 3 B Raspberry Pi Zero W

Processor Core 4 1

CPU 1.2 GHz 1 GHz

RAM 1 GB 512 MB

Wireless LAN BCM43438 802.11 b/g/n

Power Supply 5.1V 2.5A 5.1V 2.5A
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The Raspberry Pi supports multiple operating systems such as Ubuntu, Manjaro ARM

Linux,  RISC  OS  Pi,  LibreELEC,  which  stands  for  Libre  Embedded  Linux

Entertainment Center. The Raspberry Pi Foundation has also developed its own Debian-

based  operating  system  called  the  Raspberry  Pi  OS,  which  is  also  available  for

installation in light and full versions [32].

3.2 Encryption Algorithms 

The encryption algorithms used in the research are selected based on their prevalence

and approval by authorities. An attempt to cover a wider range of encryption techniques

is also pursued.

1. Advanced Encryption  Standard,  or  simply  AES.  AES has  such variations  as

AES128,  AES192,  AES256  that  are  widespread  symmetric  block  cipher

algorithms. AES is a part of Transport Layer Security and Secure Sockets Layer

standards  to  ensure  secure  communication  between  hosts  on  the  Web,  and

approved  by  NIST,  which  stands  for  National  Institute  of  Standards  and

Technology. The latest Central Processing Unit hardware has AES integrated for

better processing speed of the algorithm. 

AES uses  128, 160, 192, 224 or 256 bits symmetric keys. It combines plaintext

with a provided key, then calculates the ciphertext using a previous result, nonce

or initialization vector and the mode. AES algorithms are also using block cipher

modes  of  operation,  such  as  Cipher  Block  Chaining,  Cipher  Feedback,

Electronic Code Block and others. Those modes have different parameters and

are meant to improve efficiency and provide a stronger security. For example, a

Counter Mode and random initial vector are recommended to avoid a dictionary

attack [33][34]. For the research purpose, intermediate key sizes of 128, 192,

256 bytes and CFB mode, approved by NIST, are chosen.

2. Secure Hash Algorithm 256, or shortly SHA256, is a hash algorithm that is used

in  the  latest  SSL  TLSv1.2  protocol  [35].  This  algorithm  is  derived  from  a

simpler cipher called Message-Digest 4. SHA256 was proposed and approved

by  NIST  for  use  by  federal  departments  and  agencies.  The  message  digest
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formed  by  this  algorithm  can  be  used  in  software,  firmware,  hardware  for

determination of a message's integrity [36].

SHA256 breaks a padded message into 512 bits block size that is expressed as a

sequence of sixteen 32-bit words and sets initialization values. Then, it uses a

message schedule of sixty-four 32-bit words, eight working variables of 32 bits

each and a hash value of eight 32-bit words to create a 256-bit message digest

[37].

3. SHA3-256 is the SHA-3 family cryptographic hash function recommended by

NIST. It is considered to be more secure as it has improved security features

such as resistance to collision, preimage and second preimage attacks. SHA3-

256 uses 1088 bits block size compared to 512 bits blocks of SHA256 [38]. This

algorithm  is  also  taken  for  the  comparative  purpose  between  SHA256  and

SHA3-256.

4. SHAKE256 is an extendable-output function of the SHA-3 family approved by

NIST.  Its  main  difference  from SHA3 functions  is  that  the  output  message

length  can vary depending on the requirements.  The index 256 indicates  the

supported security level, not the digest length as for other hash functions [39].

5. Poly1305-AES is a one-time message authenticator. Originally, Poly1305 was

designed in combination with the AES algorithm for nonce encryption. Yet in

time, it became more widely spread in combination with ChaCha20. However,

Poly1305-AES has  advantages  such  as  consistent  high  speed,  even  for  long

messages, performance is not influenced by the overflown keys cache and low

re-computational cost for modification of long messages [40]. 

Poly1305 encrypts the plaintext using a shared by sender and receiver 16-byte

AES key, 16-byte additional key and a unique 16-byte nonce that is processed

by AES. The message is broken on 16-byte chunks and padded by appending an

extra byte to each produced chunk [41].

6. ChaCha20 is  a  symmetric  stream cipher,  an improved version  of  Salsa20 as

follows the same basic design but with a higher transmission level per round of
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total 20 rounds [42]. ChaCha20 encrypts a plaintext using a keystream produced

from a block function applied to the 32-byte key, 12-byte nonce, block counter

and  plaintext  blocks  XORed,  that  stands  for  Exclusive  Or,  with  the  block

function output. The result of the algorithm is a truncated 16-byte digest of the

message [43]. 

7. ChaCha20-Poly1305 is an authentication encryption with associated data. This

encryption  method is  a  result  of  the  ChaCha20 stream cipher  and Poly1305

authenticator combination. ChaCha20-Poly1305 is used for high performance in

software  implementation  and  to  reduce  information  leakage  through  side-

channels. This encryption type is supported by SSL TLSv1.2, TLSv1.3 and for

Datagram Transport Layer Security protocols [44]. 

ChaCha20-Poly1305 uses Poly1305 to generate from a 32-byte key a one-time

key and a 96-bit nonce. While ChaCha20 encrypts the plaintext with generated

by Poly1305 key and nonce. As the last step, Poly1305 function uses a key to

construct  a  ciphertext  of  the  same length  as  the  plaintext  and  a  128-bit  tag

produced by Poly1305 function. It is important not to use the same nonce and

the key as it creates identical one-time keys and the key stream that leads to a

security vulnerability [45].

8. Speck is a light-weight block cipher introduced by the U.S. National Security

Agency  in  2015.  It  is  designed  to  satisfy  IoT needs  of  a  light  and  flexible

encryption  algorithm.  Speck’s block and key sizes  can be changed based on

requirements, from a 32-bit block with a 64-bit key to a 128-bit block with a

256-bit  key.  The simplicity  for the algorithm is kept by using a short  list  of

operations performed by the cipher, such as modular addition, bitwise XOR, left

and right circular shift [46].

9. Simon is another light-weight block cipher proposed by the U.S. NSA together

with Speck. Simon has similar parameters as Speck does, but a different set of

operations: bitwise XOR, bitwise AND, and left circular shift. This difference

gives  Simon  a  slight  advantage  in  using  a  cipher  for  hardware  systems.

Additionally, Simon requires more rounds than Speck as it has a weaker non-

linear function [42].
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In 2014 both Speck and Simon algorithms were proposed by the U.S. National

Body  for  inclusion  in  the  International  Organization  for  Standardization  /

International  Electrotechnical  Commission  lightweight  cryptography  standard

but did not reach required votes [47]. However, in November of 2018, the ISO

published new standards for the use of the block ciphers Speck and Simon. The

new standards  were  adopted  for  practical  applications  in  the  air-interface  of

RFID,  which  stands  for  radio  frequency  identification  technology.  This

technology has important government and military applications in supply chain

management and asset tracking. Speck and Simon algorithms play an important

role providing a security to the resource constraint in circuity and power RFID

tags that share data vulnerable to exposure or manipulation [48].

The cryptographic algorithms described above are used for a comparison analysis in

Chapter  4.2  of  the  research  part.  Table  3  shows  the  parameters  overview  of  the

encryption algorithms used in this research [33-46][42].
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Table 3: Algorithms Overview.

Encryption

Algorithm

Key Size

(byte)

Initialization

vector (byte)

Nonce Size

(byte)

Block Size

(byte)

Rounds 

AES128 16 16 - 16 10

AES192 24 16 - 16 12

AES256 32 16 - 16 14

SHA256 - - - 64 64

SHA3-256 - - - 136 24

SHAKE256 - - - 136 24

Poly1305-

AES

16 - 16 16 -

ChaCha20 32 - 12 64 20

ChaCha20-

Poly1305

32 - 12 - -

Speck 16 - - 16 32

Simon 16 - - 16 68

AES256,  ChaCha20 and ChaCha20-Poly1305 have  the  largest  key size equal  to  32

bytes, while SHA3-256 and SHAKE256 have the largest block size equal to 136 bytes.

In the results overview of Chapter 5 can be seen how cryptographic algorithms with

specified  parameters  that  are  used  in  this  research,  perform  in  the  constraint

computational resource environment.
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4 Research

This chapter includes a description of the practical activities, essential information about

the details of the research and step-by-step actions. Also, included an overview of the

gathered data after the execution of the encryption algorithms listed in the Chapter 3.2,

within the SBC environment.

4.1 Preparation Steps

1. The  hardware  used  for  this  research:  monitor,  wireless  keyboard,  wireless

mouse,  Raspberry  Pi  3  Model  B and  Raspberry  Pi  Zero  W,  32  GB Secure

Digital card, charger 5V 2A, digital multimeter, Universal Serial Bus flash drive

for simpler algorithm transferring. For Raspberry Pi Zero W additional hardware

items:  High-Definition  Multimedia  Interface  cable,  mini  HDMI  to  HDMI

adapter and micro USB to USB type A adapter. 

2. In this study, the Raspberry Pi OS 32-bit operating system is used since it is the

most optimized for the SBCs under study [32]. The operating system is installed

on a 32GB SD card using the Raspberry Pi Imager v1.6.1 application [49].

3. Created  text  files  with the extension “.txt”  for encryption.  The file  sizes  are

chosen as follows: 1 byte, 1 kilobyte (1024 bytes), 1 megabyte (1048576 bytes).

Intermediate sizes of 100 byte and 0.5 megabyte (524288 bytes) have also been

added.

4. Thonny, a built-in Python development environment is used for code execution.

4.2 Execution Steps

Before running the algorithms,  required to  install  the Python third-party package of

cryptographic  primitives  called  „pycryptodome”. Speck  and  Simon  encryption

algorithms  are  not  included  in  the  library  and  for  this  reason  need  to  be  installed

separately.  The RFC7539 module, where RFC stands for Request For Comments,  is

required for the ChaCha20-Poly1305 algorithm. Figure 1 provides commands that are

used for the module installation [50][51].

22



To measure the speed results of the algorithm's execution, the “time” module is used.

“time()” function returns the current time. It is used in such a way to capture time from

the  beginning  and  the  end  of  the  encryption  process,  to  receive  a  final  result  by

subtracting the gathered time amount. Figure 2 shows an example of using the “time()”

function [52].

All  encryption  algorithms  open  a  prepared  file  of  a  certain  size,  encrypt  the  data

gathered from it and write a ciphertext to a new file. Figure 3 gives an example of how

the files are handled [53]. This approach is used to be able to easily provide large size

files  for  the  encryption,  whereas  the  output  file  is  used  for  memory  usage

measurements.
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filename = "/home/pi/Desktop/1024bytes.txt"
with open(filename, "rb") as f:
    plaintext = f.read()
    f.close()

# encryption code here

with open("/home/pi/Desktop/aes128_encrypted.txt", 
"wb") as file:
    file.write(ciphertext)
    file.close()

Figure 3. Example of file input and output  application.

import time
start_time = time.time()

# encryption code here

end_time = time.time()
execution_time = (end_time – start_time)

Figure 2: Example of the time module application.

pip3 install pycryptodome
pip3 install simonspeckciphers
pip3 install rfc7539

Figure 1: Package installation.



Encryption key is compiled using an “os.urandom()” method presented in Figure 4 [54].

The key length is specified in bytes.

The encryption algorithms used for comparative analysis are Python-based since it is an

officially recommended and most widely used programming language within Raspberry

Pi SBCs [55]. The complete code of the cryptographic algorithms is provided in the

Appendix 1 in the Figure 5-15.
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from os import urandom
key = urandom(24)

Figure 4. Random key compilation.



4.3 Gathered Data

Encryption algorithms are executed three times each to capture the average execution

time for every device. The gathered results from the execution and measurements are

provided in the Tables 4 – 8 and parameters as follows:

 File size: Plaintext file size presented in bytes.

 Memory  usage:  Ciphertext  file  size  in  bytes  that  depends  on  the  algorithm

output size.

 Execution time: Time of the encryption algorithm execution in seconds.

 Throughput: A plaintext file size divided by the encryption time measured in

bytes per second.

 Power  consumption  increase:  The  power  consumed  during  a  quiescent  state

subtracted from the power consumed during an execution of the algorithm. The

increase  in  the  power  consumption  of  the  device  during  the  active  phase  is

indicated in percentage.
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Table 4: Data for 1 byte file.

Algorithm
File
size 

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 1 1 0.00352 0.02261 284 44 84 36

AES192 1 1 0.00360 0.02218 278 45 87 36

AES256 1 1 0.00350 0.02244 286 45 81 36

SHA256 1 64 0.00004 0.00016 25,000 6,250 77 29

SHA3-256 1 32 0.00029 0.00132 3,448 758 84 36

SHAKE256 1 26 0.00094 0.00227 1,064 440 81 36

Poly1305-
AES

1 16 0.00086 0.00467 1,163 214 84 36

ChaCha20 1 9 0.00053 0.00225 1,887 397 81 36

ChaCha20-
Poly1305

1 1 0.00017 0.00066 5,882 1,515 77 29

Speck 1 36 0.00068 0.00288 1,470 347 77 29

Simon 1 38 0.00129 0.00560 775 179 81 29
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Table 5: Data for 100 bytes file.

Algorithm
File
size 

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 100 100 0.00374 0.02511 26,738 3,982 81 36

AES192 100 100 0.00369 0.02449 27,100 4,083 77 29

AES256 100 100 0.00377 0.02476 26,525 4,039 77 43

SHA256 100 64 0.00004 0.00018
2,500,00

0
555,555 77 29

SHA3-256 100 32 0.00038 0.00128 263,138 78,125 84 36

SHAKE256 100 26 0.00031 0.00130 322,581 76,923 77 36

Poly1305-
AES

100 16 0.00086 0.00559 116,279 17,889 77 36

ChaCha20 100 108 0.00060 0.00229 166,667 43,668 81 29

ChaCha20-
Poly1305

100 100 0.00018 0.00071 555,555 140,845 81 21

Speck 100 39 0.00070 0.00400 142,857 25,000 81 29

Simon 100 39 0.00131 0.00580 76,336 17,241 81 29

27



Table 6: Data for 1024 bytes file.

Algorithm
File
size 

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 1024 1024 0.00349 0.02307 293,410 44,387 87 43

AES192 1024 1024 0.00343 0.02278 298,542 44,952 84 36

AES256 1024 1024 0.00347 0.02316 295,101 44,214 77 43

SHA256 1024 64
0.00005

4
0.00020

18,962,9
63

5,120,00
0

77 36

SHA3-256 1024 32 0.00040 0.00153
2,560,00

0
669,281 84 29

SHAKE256 1024 26 0.00041 0.00149
24,975,6

0
687,248 84 29

Poly1305-
AES

1024 16 0.00089 0.00544
1,150,56

2
188,235 81 36

ChaCha20 1024 1032 0.00063 0.00243
1,625,39

7
421,399 84 21

ChaCha20-
Poly1305

1024 1024 0.00023 0.00089
4,452,17

4
1,150,56

2
90 39

Speck 1024 39 0.00072 0.00351
1,422,22

2
291,738 84 29

Simon 1024 39 0.00129 0.00505 793,798 202,772 81 29
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Table 7: Data for 524288 bytes file.

Algorithm
File
size 

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128 524288 524288 0.06029 0.15926
8,696,10

2
3,292,02

6
81 43

AES192 524288 524288 0.06877 0.18278
7,623,78

9
2,868,41

0
77 43

AES256 524288 524288 0.07619 0.19360
6,881,32

3
2,708,09

9
84 36

SHA256 524288 64 0.00653 0.02387
80,289,1

27
21,964,3

07
81 36

SHA3-256 524288 32 0.04879 0.10784
10,745,8

08
4,861,72

1
77 36

SHAKE25
6

524288 26 0.04819 0.10938
10,879,6

01
4,793,27

1
77 29

Poly1305-
AES

524288 16 0.01057 0.02645
49,601,5

14
19,821,8

52
77 29

ChaCha20 524288 524296 0.01710 0.04304
30,660,1

17
12,181,4

13
81 36

ChaCha20-
Poly1305

524288 524288 0.02817 0.08132
18,611,5

72
6,447,22

1
84 36

Speck 524288 39 0.01034 0.03136
50,704,8

35
16,718,3

67
77 36

Simon 524288 37 0.01073 0.03547
48,861,8

82
14,781,1

67
42 43
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Table 8: Data for 1048576 bytes file.

Algorithm
File
size 

(byte)

Memory
usage

(byte)

Execution time

(sec)

Throughput

(bytes/sec)

Power
consumption

increase

(%)

3 B Zero W 3 B Zero W 3 B Zero W

AES128
10485

76
1048576 0.11682 0.29897

8,975,99
7

3,507,29
5

87 43

AES192
10485

76
1048576 0.13226 0.33979

7,928,14
1

3,085,95
3

87 43

AES256
10485

76
1048576 0.14863 0.36398

7,054,94
2

2,880,86
2

81 36

SHA256
10485

76
64 0.01260 0.04819

83,220,3
17

2,175,92
03

87 36

SHA3-256
10485

76
32 0.09432 0.21298

11,117,2
18

4,923,35
4

87 36

SHAKE256
10485

76
26 0.09465

0.21591
6

11,078,4
57

4,856,40
7

81 36

Poly1305-
AES

10485
76

16 0.02014 0.04972
52,064,3

49
21,089,6

22
84 29

ChaCha20
10485

76
1048584 0.03299 0.08541

31,784,6
62

12,276,9
70

84 36

ChaCha20-
Poly1305

10485
76

1048576 0.05555 0.15778
18,876,2

56
6,645,81

0
84 36

Speck
10485

76
39 0.01970 0.06182

53,227,2
08

16,961,7
60

81 29

Simon
10485

76
39 0.01733 0.06212

60,506,4
05

16,879,8
45

39 36

Code  execution  has  passed  without  problems.  The  gathered  data  is  analyszed  and

processed in the Chapter 5.
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5  Analysis of Results

In this Chapter is all the collected data in a Chapter 4.3 is converted into the line and

column charts  and presented for a visual demonstration.  Charts are also used for an

easier comparative analysis and a general overview on the cryptographic algorithm’s

performance.

One  of  the  main  indicators  of  the  research  performed  is  the  throughput  of  the

algorithms. Separate line charts for each file size are created and include data for two

testing devices. Figure 5 shows that Raspberry Pi 3 B has a higher throughput of all the

cryptographic algorithms in comparison with Raspberry Pi Zero W device. That result is

expected as Zero W has lower overall performance due to technical specifications. From

the chart it can be seen that SHA256 algorithm stands out as has the best throughput

among other hash algorithms and cryptographic ciphers. However, ChaCha20-Poly1305

also showed good results and reached a throughput of 5,882 bytes per second. For both

devices the lowest results have shown all AES encryption algorithms that have gained a

throughput of 284 to 286 bytes per second for the 3B model, and between 44 and 45

bytes per second for Zero W.
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Figure 5: Throughput of 1 byte file.



Chart lines of the Figure 6 and Figure 7 depict results for the encrypted 100 and 1024

bytes  files  that  have  similar test  outcomes  compared to  each  other.  However,  the

throughput during encryption significantly grown grew 2,500,000 bytes per second for 3

B model and 100 bytes file to 18,962,963 bytes per second for the same device but 1024

bytes file. This pattern also noticed in other algorithms. Also can be noted that SHAKE

256 showed better outcomes for both devices, while Poly1305-AES performed slightly

slower for the Zero W model than in the previous tests.
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Figure 6: Throughput of 100 bytes file.



Results for the test execution  described in the Figure 8 and Figure 9 showed related

throughput results on both devices.  Comparing to the previous test of the 1024 bytes

size file, an overall throughput of all cryptographic algorithms increased not less than by

4 times. Other changes among algorithms performance also happened due to processing

of the large size files. Better results are gained by Poly1305-AES, ChaCha20, Speck

and Simon. In Raspberry Pi 3B Simon improved results by 60 times and reached the

throughput of 48,861,882 bytes per second. 

Less noticeable but bigger changes have happened to algorithms executed in the Zero W

model. Can be viewed that AES algorithms had a significant raise by 61 to 74 times

compared to the Figure 7. Also Speck achieved 16,718,367 bytes per second compared

to previous 291,738, which is on 5630% more. Yet, the most remarkable difference is

performed by Poly1305. It gained a throughput of 19,821,852 bytes per second that is

104 times more than before.
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Figure 7: Throughput of 1024 bytes file.
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Figure 8: Throughput of 524288 bytes file.



From the test results, it can be seen that the algorithm’s throughput increased in parallel

with the file size. Also there are no cardinal changes in connection to the device model

as  lower  performance  for  the  Zero  W  model  is  uniform  across  all  cryptographic

algorithms.  The  hash  function  SHA256  kept  showing  the  best  results  in  every

throughput test. AES128, AES192 and AES256 showed similar and comparatively low

results along the way. In the test with 1,048,576 bytes file for Raspberry Pi 3 model B,

AES128 block cipher reached 8,975,997 bytes per second, while Simon, the lightweight

block cipher, gathered 60,506,405 bytes per second. That demonstrates the difference

between standard and a lightweight cryptography.
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Figure 9: Throughput of 1048576 bytes file.



During  power  consumption  measurements  indicated  that  SBCs  consumed  a  similar

amount of the power within the Raspberry Pi 3 B model, as Figure 10 depicts. If correl-

ated results between 1 and 1,048,576 bytes file tests, there is no significant raise of the

power consumption. An average difference in the power consumption raise is just 3%.

The biggest increase in the power consumption is produced by ChaCha20-Poly1305 for

1024 bytes file size. At the time of the encryption process, it consumed on 90% more

than in a quiescent state, while an average consumption by other algorithms  increased

by 82%. The only remarkable outcome is produced by the lightweight  Simon block

cipher. During the encryption operation of the heavy files, Simon has shown a power in-

crease only by 39-42%, that is a twice lower intake compared to other algorithms.

Encryption  in  the  Zero  W  model  provided  more  heterogeneous  results.  Figure  11

demonstrates that almost half of the algorithms had exactly 36% higher consumption
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Figure 10: Power consumption increase for Raspberry Pi 3 B.

Figure 11: Power consumption increase for Raspberry Pi Zero W.



than before encryption,  while  other  varies  between 21% and 43%. As for  example,

AES128 and AES192  required  43% more  power  during  an  execution  of  the  heavy

algorithms.  ChaCha20 and ChaCha20-Poly1305 showed better  outcomes for smaller

plaintexts and the increase is on 21%. In overall power consumption increase for Zero

W is twice lower than for 3 B model. 

Figure 12 displays a memory usage by the algorithms. It can be viewed that AES128,

AES192, AES256, ChaCha20 and ChaCha20-Poly1305 have output file sizes identical

or around to the input size. Lightweight block ciphers Simon and Speck have a small

memory usage that is kept between 36 and 39 bytes independently of the input text size.

This should be considered as an advantage for the encryption of heavy files within the

resource constraint environment. During the result analysis is taken into account that

hash algorithms only produce a tag instead of encrypting the whole text, for this reason

the output requires less memory. Moreover, SHAKE256’s output message length can be

changed depending on the requirements as it is an extendable-output function.
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To summarize all gathered data such short overviews are made:

AES128,  AES192,  AES256:  In  comparison  to  the  lightweight  block  algorithms,

demonstrated  significantly  lower  throughput.  The AES algorithms are  on  average  5

times  slower  than lightweight  algorithms.  Though,  the  power  consumption  during

encryption of small files is similar to other algorithms but twice higher  compared to

Simon for encrypting large plaintexts. Memory usage is not adapted to the needs of the

resource constraint environment, as it outputs same size ciphertexts.

SHA256:  Showed  the  best  results  of  the  throughput  measurements  among  all

algorithms. There are no deviations from the average power consumption compared to

others. Among hash functions SHA256 required the biggest memory space, about twice

more than the rest of the hash functions.

SHA3-256  and  SHAKE256:  Demonstrated  analogous  test  results.  Throughput  is

noticeably  smaller  than SHA256 had,  while  power  consumption  results  are  slightly

better for the large size files.

Poly1305-AES:  Performed  well  for  the  encryption  of  the  large  plaintexts,  had  an

average power consumption and a fixed output smaller than SHA family have.
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Figure 12: Memory usage by cryptographic algorithms.



ChaCha20: For a stream cipher, ChaCha20 showed good throughput and average power

consumption results. Produced ciphertext file sizes are  slightly bigger than the input,

therefore not adapted for the use in a constraint environment.

ChaCha20-Poly1305: Showed better  throughput and power  consumption results  than

ChaCha20 and Poly1305 for the small sized plaintexts. As ChaCha20 it produces large

ciphertexts.

Speck and Simon: Speck demonstrated improved performance except the cases when an

extra large plaintext is provided, in that case Simon is more effective. Same situation is

noticed during the power consumption tests, while memory usage is almost identical.

The  executed  results  and  analysis  provided  an  overview  of  the  tested  algorithms

performance  to  consider  their  strong and weak sides  for  the  implementation  in  the

resource constraint environments.
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6 Conclusion

The IoT is a spreaded and vulnerable technology. Due to its nature, it requires special

and timely measures to provide protection since the rapid distribution of this technology

and the lack of sufficient protection can lead to serious problems in the future. Whereas

cryptography can provide confidentiality, integrity, authentication and non-repudiation

to IoT devices. The purpose of this research is to analyze the cryptographic algorithms

executed  in  the  constraint  environment  in  order  to  compare  their  performance  and

understand which of the algorithms are best suited for use in a given environment and

whether the standard algorithms are suitable for the non-standard environment.

Executed  tests  showed  that  Poly1305-AES,  ChaCha20  and  their  combination

ChaCha20-Poly1305 are compatible with the constraint environment, yet in cases where

memory usage is a critical parameter, ChaCha20 and ChaCha20-Poly1305 might not be

the most suitable choice. While SHA2 and SHA3 approved family functions of the are

suitable for the implementation in the constraint environment, though SHA256 still can

be considered as a preferable choice. Also, the standard AES algorithms are suitable for

use  in  a  limited  environment,  but  are  far  inferior  to  specially  designed  lightweight

algorithms  for  this  purpose.  However,  since  the  standardization  process  of  the

lightweight encryption algorithms is not yet complete, the choice arises to use proven

and  reliable  algorithms  or  more  suitable  for  specific  tasks.  These  facts  lead  to  the

conclusion that standardization of algorithms is necessary and requires special attention.
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Appendix 1 – Cryptographic Algorithm’s Code
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from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(16)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 13. AES128 [56].

from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(24)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 14. AES192 [56].

from Crypto.Cipher import AES
from Crypto import Random
from os import urandom

key = urandom(32)
iv = Random.new().read(AES.block_size)
cipher = AES.new(key, AES.MODE_CFB, iv)
ciphertext = iv + cipher.encrypt(plaintext)

Figure 15. AES256 [56].

import hashlib

hash = hashlib.sha256(plaintext).hexdigest()
byte_hash = hash.encode('utf-8')

Figure 16. SHA256 [57].
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from Crypto.Hash import SHA3_256

hash = SHA3_256.new()
hash.update(plaintext)

Figure 17. SHA3-256 [58].

from Crypto.Hash import SHAKE256

shake = SHAKE256.new()
shake.update(plaintext)

Figure 18. SHAKE256 [59].

from Crypto.Hash import Poly1305
from Crypto.Cipher import AES
from os import urandom

key = urandom(16)
binary_tag = Poly1305.new(key=key, cipher=AES, 
data=plaintext).digest()

Figure 19. Poly1305-AES [60].

from base64 import b64encode
from Crypto.Cipher import ChaCha20
from os import urandom

key = urandom(32)
cipher = ChaCha20.new(key=key)
ciphertext = cipher.encrypt(plaintext)
nonce = b64encode(cipher.nonce).decode('utf-8')
result = b64encode(ciphertext).decode('utf-8')

Figure 20. ChaCha20 [61].



49

from rfc7539 import aead
from os import urandom

key = urandom(32)
nonce = b'thisisanonce'
additional_data = b'Some additional data'
ciphertext, mac = aead.encrypt_and_tag(key, nonce, 
plaintext, additional_data)

Figure 21. ChaCha20-Poly1305 [62].

import speck
import binascii
import sys

def get_binary(word):
    return int(binascii.hexlify(word), 16)

k = '0x1b1a1918131211100b0a090803020100'

if len(sys.argv) > 1:
    message = str(sys.argv[1])
    m = get_binary(plaintext)

if len(sys.argv) > 2:
    k = str(sys.argv[2])

key = int(k, 16)
key_size = (len(k) - 2) * 4

if key_size == 64: bsize = 32
if key_size == 72: bsize = 48
if key_size == 96: bsize = 48
if key_size == 128: bsize = 128

cipher = speck.SpeckCipher(key, key_size=key_size, 
block_size=bsize)
ciphertext = 
cipher.encrypt(int.from_bytes(plaintext, 
byteorder='big'))

Figure 22. Speck [63].
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from simon import SimonCipher

int_message = int.from_bytes(plaintext, "big")
simon = 
SimonCipher(0xABBAABBAABBAABBAABBAABBAABBAABBA, 
key_size=128, block_size=128)
ciphertext = simon.encrypt(int_plaintext)

Figure 23. Simon [64].
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