
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

IT System Development

Mihhail Skripnik 193956IADB

Semi-automated Budget Management
Application

Bachelor's thesis

Supervisor: Tauseef Ahmed

PhD in Electronics and

Telecommunication

Engineering

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IT Süsteemide Arendus

Mihhail Skripnik 193956IADB

Poolautomaatne eelarvehalduse rakendus

Bakalaureusetöö

Juhendaja: Tauseef Ahmed

Elektroonika ja

Telekommunikatsiooni

tehnika Doktorikraad

Tallinn 2023

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mihhail Skripnik

1

Abstract

In this dissertation, the author develops a mobile application to significantly facilitate

and speed up the process of home accounting. The dissertation aims to provide users

with a cross-platform mobile application following the author's concept outlined in this

thesis. The application should not limit user-configurable functionality, such as

categories, tags, the number of connected banks, and joint budget members. One of the

main features of the final product is the functionality that allows users to receive

banking transactions for further manual categorization automatically.

The volume of the practical part is limited to devices running iOS and Android mobile

operating systems. The main goal of the project is to provide the user with a ready-made

mobile solution for joint budget management, using the client and server parts

developed by the author within the framework of this thesis and corresponding to the

author's vision of the application that is designed to solve the identified problems. The

application's name is a short and memorable abbreviation – MYBE, formed from the

phrase "Manage Your Budgets Easily". The application created as part of the thesis does

not imply any commercial use without significant modifications to comply with all the

requirements and standards for this type of software.

The final application consists of two parts: the server part is responsible for processing,

storing, and interacting with user data, and the client part is responsible for the visual

representation of user data. The server and client parts interact via a secure HTTPS

protocol. All data provided by the user is strictly used within the framework of this

dissertation. At the same time, the processing of user data by third-party services is

carried out only after the user's commitment and is regulated by the relevant supervisory

authorities.

This thesis is written in English and is 45 pages long, including 10 chapters, 26 figures,

and 1 table.

2

Annotatsioon
Poolautomaatne eelarvehalduse rakendus

Selles lõputöös arendab autor mobiilirakendust, mis oluliselt lihtsustab ja kiirendab

koduarvestuse protsessi. Lõputöö eesmärk on pakkuda platvormшst sõltumatut

mobiilirakendust, mis järgib autori poolt välja toodud kontseptsiooni. Rakendus ei piira

kasutaja seadistatavaid funktsioone, nagu kategooriad, sildid, ühendatud pankade arvu

ja ühiseelarve liikmed. Lõpptoote üks peamisi omadusi on funktsionaalsus, mis

võimaldab kasutajatel automaatselt vastu võtta pangatehinguid edasiseks käsitsi

kategoriseerimiseks.

Praktiline osa on piiratud seadmetega, millel on iOS ja Android

mobiiloperatsioonisüsteemid. Projekti põhieesmärk on pakkuda kasutajale mobiilset

valmis lahendust ühise eelarve haldamiseks, kasutades selleks lõputöö raames välja

töötatud kliendi ja serveri osad, mis vastavad autori nägemusele rakendusest, mis on

loodud tuvastatud probleemide lahendamiseks. Rakenduse nimi on lühike ja meeldejääv

lühend - MYBE, mis on moodustatud fraasist "Manage Your Budgets Easily". Lõputöö

osana loodud rakendus ei tähenda ärilist kasutamist ilma oluliste muudatusteta, et täita

seda tüüpi tarkvara kõiki nõudeid ja standardeid.

Lõplik rakendus koosneb kahest osast: serveriosa vastutab kasutajaandmete töötlemise,

salvestamise ja nendega suhtlemise eest ning kliendiosa vastutab kasutajaandmete

visuaalse esituse eest. Serveri ja kliendi osad suhtlevad turvalise HTTPS-protokolli

kaudu. Kõiki kasutaja esitatud andmeid kasutatakse selle lõputöö raames rangelt. Samas

toimub kasutajaandmete töötlemine kolmandate osapoolte teenuste poolt alles pärast

kasutajapoolset nõusolekut ja seda reguleerivad vastavad järelevalveasutused.

See lõputöö on kirjutatud inglise keeles ja on 45 lehekülge pikk, sisaldades 10 peatükki,

26 joonist ja ühte tabelit.

3

List of abbreviations and terms

API Application Programming Interface.

BIC Bank Identifier Code.

CSS Cascading Style Sheets.

ERD Entity Relationship Diagram.

ETS Erlang Term Storage.

FAQ Frequently Asked Questions.

HTTPS HyperText Transfer Protocol Secure (HTTPS) is the secure version of
hypertext transfer protocol, the primary protocol used to send data
between a web browser and a website. HTTPS is encrypted to increase
the security of data transfer. [1]

ID Identifier.

IT Information Technology.

JDBC Java Database Connectivity API.

JSON JavaScript Object Notation. The JSON syntax is derived from

JavaScript object notation syntax, but the JSON format is text only.

Code for reading and generating JSON data can be written in any

programming language.

MVCC Multi-Version Concurrency Control - is an advanced technique for

improving database performance in a multi-user environment.

MVP Minimal Viable Product.

MYBE Manage Your Budgets Easily - the abstract name of the application

created within the framework of this dissertation.

4

OAuth 2.0 It is an authorization protocol that allows one service (application) the

right to access user resources on another service. The protocol

eliminates the need to trust the username and password of the

application and allows the service to issue a limited set of rights [23].

PSD2 The revised Payment Services Directive is a European regulation that

requires banks to develop mechanisms to enable third-party providers to

work securely, reliably, and rapidly with the bank’s services and data on

behalf and with the consent of their customers [27].

REST REpresentational State Transfer - is a set of architectural principles

attuned to the needs of lightweight web services and mobile applications

[14].

RSA Rivest–Shamir–Adleman is a public-key cryptosystem widely used for

secure data transmission.

SQL Structured Query Language.

UI User Interface.

URI A Uniform Resource Identifier is a character sequence that identifies a

logical (abstract) or physical resource. A URI distinguishes one resource

from another.

UTC Coordinated Universal Time (Universal Time Coordinated).

VM Virtual Machine.

5

Table of contents

Author’s declaration of originality 1

Abstract 2

Annotatsioon 3

List of abbreviations and terms 4

Table of contents 6

List of figures 9

List of tables 11

1. Introduction 12
1.1 Problem and aim 12
1.2 Relevance 13
1.3 Methodology 13

2. Analysis of existing applications 15
2.1 Analysis scope 15

2.1.1 Analysis criteria 15
2.2 Analysis 16

2.2.1 Wallet [2] 16
2.2.2 Monefy [3] 18
2.2.3 Bilance [4] 18

2.3 Summary 20

3. Application concept and requirements for MVP 21
3.1 The author's concept of budgeting application 21
3.2 Application MVP requirements 22

3.2.1 Base functionality 22
3.2.2 Automatic synchronization of bank transactions 23
3.2.3 Customizable transaction categories and tags 24
3.2.4 Remote data storage 24
3.2.5 Joint budget managing 25
3.2.6 Multiple currencies support within one budget 25
3.2.7 Other requirements 26

4. Technology stack 27
4.1 Backend technologies 27

4.1.1 Elixir 27
4.1.2 Phoenix Framework 28
4.1.3 PostgreSQL 29

6

4.2 Frontend technologies 29
4.2.1 JavaScript 30
4.2.2 TypeScript 30
4.2.3 React Native framework 30

5. Third-party services 32
5.1 Google Account API 32
5.2 Nordigen API 33
5.3 exchangerate.host API 35
5.4 Google Cloud Storage 35

6. Application backend implementation 36
6.1 Architecture and project structure 36
6.2 Database 38

6.2.1 Data encryption 42
6.3 Peculiarities of the business logic implementation, encountered problems and
their solutions 43

6.3.1 Repetitive code 43
6.3.2 Third-party services error handling 43
6.3.3 Race conditions 43
6.3.4 Nordigen service restrictions 44
6.3.5 Different bank data formats 45
6.3.6 Parallel wallet use by multiple budgets 46
6.3.7 Data caching 47
6.3.8 Testing 47

7 Application frontend implementation 49
7.1 Design 49
7.2 Client-side data caching 50
7.3 Sensitive data storage 50
7.4 Redirections and deep links 51
7.5 Multiple language support 52
7.6 Color themes 52
7.7 Data charts 53

8 Application analysis 55

9 Possible improvements and further development 56

10 Summary 57

References 58

Appendix 1 – Non-exclusive licence for reproduction and publication of a
graduation thesis 65

Appendix 2 - Application database schema 66
7

Appendix 3 - Application overall architecture schema 67

Appendix 4 - API endpoints 68

Appendix 5 - Data encryption & decryption module using AES 72

Appendix 6 - Business logic layer services - generic service 73

Appendix 7 - Business logic layer services - Nordigen service error handler 75

Appendix 8 - Simple cache service using ETS. 76

Appendix 9 - Session service unit tests 77

8

List of figures

Figure 1: Pattern matching in Elixir. 28

Figure 2: MYBE login screen. 33

Figure 3: Sign in with Google screen. 33

Figure 4: Nordigen data processing request. 34

Figure 5: Backend project structure. 37

Figure 6: Querying list of available banks using Ecto.Query module. 38

Figure 7: An example of using the Esto.Сhangeset module. 39

Figure 8: Database “sessions” table. 39

Figure 9: Database “users” table. 40

Figure 10: Database “banks” table. 40

Figure 11: Database “budgets” table. 40

Figure 12: Database “wallets” table. 41

Figure 13: Database “transactions” table. 41

Figure 14: Setting up transaction changeset using built-in Ecto

“optimistic lock” function.

44

Figure 15: A table that stores request limits for banks accessed through
the Nordigen API.

45

Figure 16: A table with the information about data fields that the bank
provides via Nordigen.

46

9

Figure 17: A screen displays the information stored in the table from
Figure 16.

46

Figure 18: MYBE user home screen. 49

Figure 19: MYBE user budget screen. 49

Figure 20: Example of react-native-storage library usage. 50

Figure 21: Example of react-native-sensitive-info library usage. 50

Figure 22: Deeplink configuration for iOS devices. 51

Figure 23: Deeplink configuration for Android devices. 51

Figure 24: react-i18next library usage. 52

Figure 25: Component color scheme definition. 53

Figure 26: Generated pie chart using react-native-pie library. 54

10

List of tables

Table 1: Applications analysis results 1

11

1. Introduction

In today's world, many of us keep track of how and what we spend money on. It is an

integral part of human nature to streamline life: whether it is counting steps on a walk,

counting calories in dinner, or, for example, hours spent at the computer. Accounting for

personal and family finances has actual and practical meaning: it helps to understand

how much we spend and not to be left without funds by the time our bills and loans are

paid.

People started keeping track of the budget a long time ago: at first, it was notebooks,

however, sometime later, they were replaced by Excel and other analogues. Now, we

can find many solutions for doing home accounting, including a wide variety of

functionality differing by the automation level in the market. However, despite this, the

modern market is still not able to offer a solution that would correspond to the author's

vision of the application for tracking personal and/or family budgets.

As part of this dissertation, the author provides the vision of the concept of a budgeting

application by compiling a list of requirements for an MVP, analyzing existing

solutions, and speaking about the technologies chosen for implementing the application,

complex aspects of implementation, and used solutions. The author completes the

dissertation with a brief analysis of the final product and a description of the possible

development of the application in the future.

1.1 Problem and aim

Today's market provides us with many programs designed to simplify home accounting.

Unfortunately, the applications that exist currently, along with their advantages, have

significant drawbacks. Most often, the disadvantages are the lack of automatic

synchronization of user transactions made through electronic payments. Quite often,

there is a lack of functionality that allows the customization of tools used for

distributing the transactions, such as creating and/or changing spending categories and

various tags. Some solutions provide the user with an obsolete and inconvenient

interface, do not provide remote data synchronization, or do not allow joint accounting.

12

One way or another, the market has not yet provided a solution that would eliminate all

of these shortcomings.

This thesis aims to create a prototype of a home accounting application that would have

a simple and intuitive user interface, combine the functionality corresponding to the

author's concept of a home budgeting program, and eliminate the most significant

shortcomings of applications on the market today. One of the most challenging aspects

of this thesis is a large amount of work that needs to be done in a relatively short period.

Another goal of the project is to analyze existing programs and solutions for home

accounting, then, based on the results obtained (and personal experience), formulate the

application concept and implement both the server and client parts following the

requirements.

1.2 Relevance

The primary task of the budget applications is an aggregation of all transactions from

user bank accounts and manually entered income and expenses, as well as providing the

ability to sort those using categories and automatic visual chart generation that allow

users to identify the main categories of expenses and income.

The issue of accounting for family income and expenses became especially acute during

the recent global crises. Accounting for users’ income and expenses allows them save

money significantly and simplifies the planning of future expenses.

Due to the digitalization of Estonian society, electronic payments have almost

completely replaced physical currency. Nowadays, more people use more than one bank

for day-to-day operations. The fact that each bank has own separate application creates

difficulties in keeping records of the family budget. Most people who use two or more

banks do not always know how much available funds they have at any moment, and this

is where budgeting software comes in handy. Unfortunately, many existing applications

have certain shortcomings, intended to be eliminated in the author's application created

in this dissertation.

1.3 Methodology

In the theoretical part of the dissertation, the author analyzes existing applications. The

analysis results and the author's personal experience are used to derive his concept of

the application.
13

The author analyzed both the shortcomings and the advantages of the three existing

solutions on the market and formulated the software requirements for the budget

management application, which becomes the basis of the application's MVP, the

creation of which is covered in more detail in the practical part of the dissertation.

The dissertation describes the key features of the home accounting application. The

main aspects of the author's concept of the application for budgeting are formulated.

The technologies used for the implementation of the practical part are also justified.

Finally, the application is implemented using the requirements in the practical part.

Various difficulties that have arisen in the process of implementing various aspects of

the application are described. The result of the dissertation's practical part is the

application's server and client parts, implemented using the technologies chosen by the

author. A description of the application's server and client workflow and features are

provided, along with the source code of the various components included in the

dissertation appendix.

14

2. Analysis of existing applications

An excellent starting point when creating software is to consider the analysis of

solutions that already exist on the market. There are currently over 30 budget

management applications available on the Google Play Market [39]. The results of the

analysis of existing products are a good foundation for creating an application concept

that would eliminate existing programs' main disadvantages and contain at least some of

their main advantages. For analysis, the author defines the essential aspects for

comparison and summarizes both advantages and disadvantages of each application.

2.1 Analysis scope

A comparison of the functionality of existing budgeting applications is made in two

stages.

The first stage is the identification of key aspects to be assessed and the criteria for their

assessment. As a method of evaluation, the author considers his personal experience in

using these applications, the minimum period of one month in the last calendar year.

The second stage is the assessment of each application from the sample on a scale from

0 to 3, where:

0 (nothing to rate) - this functionality is not provided in the application.

1 (bad) - the functionality is present in a minimal form or does not perform its task

properly.

2 (good) - the functionality performs its task, however, it has some restrictions on its use

(for example, the maximum number of categories or the presence of prerequisites for

fulfillment before use).

3 (excellent) - the functionality is presented in the application without any restrictions.

The results of the comparison are provided in table form.

2.1.1 Analysis criteria

As the main criteria for comparing the functionality, the author considers aspects that

are most in demand for solving everyday budgeting tasks:

1. Automatic synchronization of bank transactions (bank synchronization)

2. Functionality that allows to create and edit user income/spending categories

(customizable categories)

15

3. Possibility to manage the budget together with other users (joint management)

4. Remote data synchronization (cloud synchronization - user can access his data

from different devices without the need for manual data transfer)

5. Automatic transaction amount conversion while using multiple currencies

(exchange rate conversion)

2.2 Analysis

For comparison, the author selected three home budgeting programs, each of which is

available for devices running on Android and iOS operating systems as of October 10,

2022.

2.2.1 Wallet [2]

This application is the leader among existing accounting programs. It provides

connectivity to more than 15,000 banks worldwide and uses neural networks to

categorize user's transactions automatically. The application has a pleasant and

relatively intuitive user interface. It also offers additional useful features, such as

spending planning or setting limits on spending categories. Also, Wallet has a desktop

application.

Evaluation by criteria:

1. Bank synchronization - 2/3 (good)

Although the application automatically synchronizes user transactions through

connected banks, this functionality suffers from 2 minor limitations: automatic

categorization works very mediocrely, forcing the user to check each time which

category a particular transaction are assigned to since the algorithm very often

determines it incorrectly. As a result, this leads to the fact that the user is still

engaged in manual categorization. Sometimes the category is not recognized by

the algorithm at all. The second disadvantage is that the application does not

display booked bank transactions, without highlighting them in any way, as a

result showing the user amount of the available balance that is higher than he

has.

2. Customizable categories - 1/3 (bad)

16

Despite the acceptable number of built-in categories, the application does not

allow users to create their own.

3. Joint management - 3/3 (excellent)

The application provides functionality for joint budget management using a paid

subscription.

4. Cloud synchronization - 3/3 (excellent)

The application synchronizes user data through cloud storage providers.

5. Exchange rate conversion - 2/3 (good)

The application supports the currency conversion function, however, it limits on

the number of currency pairs - a maximum of 3.

Advantages:

● A large number of available banks to connect.

● A modern and clear user interface that supports the dark color UI theme is

available in multiple languages.

● A large number of well-designed charts with visualization of user expenses and

income.

● Many additional functionality - templates for creating transactions manually, the

ability to track debts, set goals, and much more.

● A separate application for desktops with the same functionality.

Disadvantages:

● Almost all of the mentioned functionalities are only available with a paid

subscription.

● Despite the overall good user interface, sometimes it looks overloaded and

difficult to understand.

● Lack of error handling during synchronization with the bank. To eliminate

errors, the user must connect to the bank again. The connection with Estonian

banks is relatively unstable, and sometimes it takes 2 or 3 iterations to achieve

the result.

17

2.2.2 Monefy [3]

The application, which is one of the most popular along with Wallet, offers the user a

much smaller set of functions. Compared to the previous application, Monefy has a

much less thoughtful and intuitive user interface, which may seem outdated.

Evaluation by criteria:

1. Bank synchronization - 0/3 (nothing to rate)

Unfortunately, this application does not support automatic synchronization, and

the users must enter transactions manually.

2. Customizable categories - 3/3 (excellent)

The application allows users to create new and edit existing income and

spending categories. This functionality is available with the paid subscription.

3. Joint management - 0/3 (nothing to rate)

This application does not support joint budget management.

4. Сloud synchronization - 3/3 (excellent)

The application allows users to synchronize their budget using remote storage

and offers several options to choose from.

5. Exchange rate conversion - 3/3 (excellent)

The application automatically converts transactions from other currencies to the

main budget currency without restrictions if the user has a premium plan.

Advantages:

● Multilingual, not limited count of currency pairs, dark theme.

● Low price per subscription due to gift offers at the first launch, about 2.5 EUR

per month at the time of writing the dissertation.

Disadvantages:

● Not always intuitive, obsolete user interface. Too many icons and a lack of text

descriptions significantly affect usability.

● There is almost no visualization of user income and expenses statistics.

● The application is almost impossible to use without a paid subscription.

2.2.3 Bilance [4]

This application appeared on the market relatively recently, it is a young and actively

developing Estonian startup. The main advantage of Bilance is the fully automatic

categorization of user transactions and compatibility with all Estonian banks. Currently,
18

the application is still actively developing and has yet to have time to acquire additional

valuable features.

Evaluation by criteria:

1. Bank synchronization - 3/3 (excellent)

This application automatically syncs and categorizes user transactions from over

2,000 European banks using premium Nordigen API solutions. Compared to

Wallet, categorization is much more stable and categorizing works correctly for

the biggest part of transactions. Moreover, the application accurately tracks the

transactions booked by the bank and correctly displays the balance available to

the user.

2. Customizable categories - 1/3 (bad)

According to the author, one of the main shortcomings of the application is the

inability to create new custom categories, which severely limits flexibility due to

the small number of standard categories. Currently, the application only allows

users to change existing categories, while the changes made will not affect

automatic categorization in any way due to the tight binding of the application's

categories with the categories provided by the Nordigen API.

3. Joint management - 0/3 (nothing to rate)

This application does not support joint budget management.

4. Cloud synchronization - 3/3 (excellent)

The application synchronizes user data using remote storage.

5. Exchange rate conversion - 3/3 (excellent)

The application automatically converts transactions from other currencies to the

main budget currency without restrictions.

Advantages:

● The application supports all banks available in Estonia, during the entire period

of use, the author of the dissertation did not spot any problems during

transaction synchronization or bank connection.

● The low subscription price, as of 10 Oct 2022 equals to 2 EUR per month.

Disadvantages:

● The application supports only English.

● The application cannot be used without a paid subscription.
19

● The user interface is not always intuitive, and the design feels a bit old.

2.3 Summary

The table below shows the final result of the application analysis. It is evident from

Table 1, none of the applications fully meets the evaluation criteria chosen by the

author:

Table 1: Applications analysis results

Applica
tion

Bank
synchron
ization

Customizable
categories

Joint
management

Cloud
synchron
ization

Exchange
rate
conversion

Average
score

Wallet 2/3 1/3 3/3 3/3 2/3 2.2/3

Monefy 0/3 3/3 0/3 3/3 3/3 1.8/3

Bilance 3/3 1/3 0/3 3/3 3/3 2/3

20

3. Application concept and requirements for MVP
Before compiling a list of requirements for an application, the author outlines the

fundamental principles for the proposed product.

3.1 The author's concept of budgeting application

In this chapter, the author briefly formulates his vision of the concept of an application

for managing a personal or family budget:

The application should provide the user with the tools to solve his problems

however, should not make decisions for the user.

An application is a set of tools for solving day-to-day tasks, which should make our life

easier. However, the application should not make decisions for the user. Automatic

categorization may be advisory, however, it should not be used without the user's

consent.

Do not tie user data to his device.

Storing user data on their device may seem like a more secure solution, however, this is

not always true and greatly affects usability if the user wants to access their data from

another device. In addition, it cannot provide a user with joint budget management on

multiple devices. The data should not be stored locally since this will also reduce the

load from the user's device.

Give the user full control over their data.

The user should be able to change and delete all data, one way or another associated

with him at any time and in the shortest possible time, especially when it comes to

sensitive or personal information.

Keep the UI simple, the user's screen should not be overloaded with information.

The ease of use of the application and the time it takes the user to get used to the

interface are directly affected by the amount of information presented on the screen. Too

much information presented at the same time can scare or confuse the user, directly

affecting the application's usability.

21

Do not limit users in the customization of tools.

The ability to customize distribution tools such as budgets, categories and tags

significantly impacts the users and helps them handle their day-to-day routine.

Do not forget about secondary features.

When developing an application, it is challenging to consider all the nuances and lay the

foundation in time for expanding the functionality. However, the foundation for

functionality that would serve as a nice addition to the main tools of the application can

be laid already at the initial stage. According to the author, this includes support of

multiple user interface languages, a dark color theme, and the ability to synchronize

with fiat banks and user wallets on crypto exchanges as cryptocurrency has become

increasingly widespread and popular.

3.2 Application MVP requirements

Based on the data obtained during the analysis and the formulated principles, it is

necessary to draw up the minimum requirements for the project. A clear definition of

the minimum expected functionality gives an understanding of the technologies and

solutions most appropriate and effective in creating the final product.

3.2.1 Base functionality

The practical part of the thesis should provide users with the minimum functionality for

home budget accounting. The functionality is described from the point of view of the

end user and is not divided into server and client parts:

1. Seamless process of account creation and authorization using a Google account.

2. Automatic detection of the user's language, time zone, and currency.

3. Creation, modification, and deletion of entities used to group transactions

(internal usage: budgets).

4. Creation, modification, and deletion of entities used to categorize transactions

(internal usage: categories and tags).

5. Viewing available information and connecting to the budget entities used to

determine whether certain transactions belong to a particular banking institution

or currency (internal usage: wallets).

22

6. Creation, modification, and deletion of entities containing transaction details,

such as amount, currency, type (income, expense, transfer between accounts,

correction), date of the transaction, category, list of tags, whether the transaction

belongs to the budget and wallet, as well as any available transaction details.

7. Ability to analyze income and spending using app-generated pie charts with

selectable display types (sorted by categories, tags, expenses, income, or

wallets).

8. The dependence of the application on a stable Internet connection to avoid

desynchronization and possible problems.

9. Support of Google Android and Apple iOS mobile platforms.

10. Three currencies support (Euro, United States Dollar, and Great Britain Pounds)

for displaying and converting balances and transaction amounts.

The key features of the application (which combine the advantages of existing solutions

on the market) are listed in the following chapters.

3.2.2 Automatic synchronization of bank transactions

In addition to the implementation of the main functionality, the author assumes that the

problem of manual data filling will be solved by automating the process of obtaining

user transactions through a banking data aggregator.

In the expected scenario, the user uses multiple banks (two or more) to make his daily

payments. Accordingly, the user must grant all necessary permissions to the data

aggregator to start using automatic bank data synchronization. While connecting the

user's bank with the application, the user will be redirected to the website of a banking

institution for subsequent authorization and data processing commitment. All redirects

must be done using a secure data transfer protocol - HTTPS.

Automatic synchronization of transactions with the bank is carried out every time the

user enters the application, after an hour of active use of the program, or by manually

pressing the synchronization button.

The maximum number of requests for transaction synchronization can be limited by

both the data aggregator and the banking institution itself. If the limit for data

synchronization is reached, the user will be notified about this by an error pop-up

notification.

The banking institution may also limit the amount of information available about a

banking transaction. The list of mandatory information to provide includes the amount
23

of the transaction, the currency, and the date of the transaction (see chapter 5.2 of the

Nordigen API for more details on the amount of provided data).

The application must support at least five largest banks in Estonia, including Swedbank,

Revolut, SEB, LHV, and Luminor.

3.2.3 Customizable transaction categories and tags

To provide the most flexible personalization, the user should not be limited to a basic set

of categories and tags. Users should be able to create, modify and delete both

pre-generated and personally created categories and tags.

The list of possible changes includes category name, type (income only/expenses

only/all), icon, icon color, and icon background color. A tag can be configured with both

the scope of use (revenues only/expenses only/all) and a list of categories for which this

tag will be available.

Storage and interaction with categories and tags should be carried out at two levels:

● On the user level - a list of user-created categories and tags, the removal of

which will not affect their availability at the budget level. However, any changes

to the category or tag at the user level will be reflected at the budget level.

● On the budget level - a list of categories and tags is used to categorize

transactions within a given budget. Removing a category or tag at the budget

level will not affect it at the user level, however, changes made by the user will

be treated by the system as changes at the user level and will affect their display

at the budget level.

3.2.4 Remote data storage
To store user data, remote data storage is used, which can only be accessed by the

application’s backend server. Remote data storage is a more secure alternative to

client-side data storage considering security requirements since the level of digital

hygiene differs from user to user and cannot guarantee secure storage.

Another advantage of remote storage is the ability for a user to access his data from

several devices. By logging in, the user can access the same content on different

platforms.

24

3.2.5 Joint budget managing
The application should provide functionality for joint budget management. To do this, it

is necessary to implement the functionality for inviting other users within a single

budget, configure their roles, and, if necessary, revoke access granted earlier.

The author assumes that in most cases, users invite an average of one participant to

access a joint budget, however, the maximum number of invitations issued should not

have any restrictions.

Searching for users should be done by entering another user's email address. Next, the

system will try to find a record in the database with the specified email address and

inform the user if such an email is not in the system.

The roles that reflect the level of user access must provide the right to perform a certain

list of operations, presented below:

1. Administrator - has a full set of budget management features: inviting and

deleting users within his budget, changing their roles, connecting and

disconnecting previously created or connected wallets, categories and tags.

Right to create, modify, categorize and delete transactions.

2. Editor - functionality is limited by the ability to categorize transactions and

connect wallets, categories, and tags.

3. Read-only - a user with this role does not have the right to perform any actions

however, it can view the information available within a specific budget without

any restrictions.

3.2.6 Multiple currencies support within one budget
One of the important requirements for most budgeting applications is multicurrency

support and automatic currency conversion. With the current pace of globalization in

our world, more and more people open accounts in different currencies, creating a need

for correctly displaying information in budgeting applications. Although this statement

mainly applies to cryptocurrencies, multicurrency support is becoming an increasingly

popular functionality in the modern world.

The user should be able to set the default currency to display all balances and

transaction amounts within a specific budget. The server part of the application must

correctly and timely update the exchange rates and convert all the necessary balances

and amounts.

25

Currency pair rates should not be received later than one day before the amount is

converted. Within the framework of this dissertation, the author has limited the range of

supported currencies to the three most popular and stable currencies - the Euro, the

United States Dollar, and the Great Britain Pound.

3.2.7 Other requirements

In addition to the listed functionality, the application must meet the following

requirements:

1. Any user, banking, or other sensitive data must be stored in encrypted form, the

encryption key must be changed at least once a month to avoid major data leaks

when third parties hypothetically receive access to the database. Data encryption

is discussed in chapter 6.2.1 Data encryption.

2. The user should be able at any time to delete all data associated with him and his

account as soon as possible.

3. In case of a user access token compromise, the compromised token must be

blacklisted, and the session immediately terminated. The token is considered

compromised if the initiated requests to the server do not match the user's access

rights or action scope, which can be performed through the application. This

concept also includes an attempt to receive data from endpoints that are not

directly used by the application.

4. The client part of the application must provide the ability to change the

application language. Within the framework of this dissertation, it is enough to

implement English language support.

5. The client part of the application should provide the ability to select a color

theme from two options: dark (for use in low-light conditions) and light

(standard). Within the scope of this thesis, only the light theme is implemented,

however, the necessary functionality for further expansion are laid down at the

architectural level.

26

4. Technology stack

The modern IT industry offers developers many different tools and technologies for

solving problems of absolutely any type. In projects like this dissertation, well-chosen

technologies can critically impact performance and scalability. The description of the

stack of selected technologies is divided into two parts due to fundamental conceptual

differences - server (backend) and client (frontend).

4.1 Backend technologies

Back-end development technologies play a paramount role in the development of any

software product. Choosing the right technology for back-end development can make

development both easier and faster. Indeed, well-chosen technologies for writing a

backend can guarantee good scalability and speed.

Within the framework of this thesis, the author, first of all, chooses in favor of the

technologies which he is most proficient with to achieve the greatest productivity. One

of the main favorites for the role of the language for the backend is a fairly new,

however extremely promising functional programming language - Elixir.

4.1.1 Elixir

Elixir is a dynamic functional language that is great for building highly scalable

applications. One of the main advantages that influenced the choice of this language for

writing the application server part is the ability to create distributed and fault-tolerant

systems [5].

Elixir is chosen as the language for writing the backend due to its main features that

allow developers to create reliable and high-performance applications.

Among its positive properties, the author would especially like to highlight the

following advantages, which influenced the final choice of the language:

1. Stability - Elixir is currently one of the most fault-tolerant systems. Thanks to an

internal system of supervisors who, in the event of a crash in one of the isolated

processes, come to the rescue and help describe how to take actions that will

ensure a full recovery. Thanks to the united group of supervisors, which form the

so-called "supervision trees", Elixir allows you to build an uninterrupted and

fault-tolerant architecture, which is extremely important for any product [6].

27

2. Data immutability - the concept of data immutability follows the rule: once data

has been created in a memory location, it cannot be changed and must be

preserved. The only disadvantage of this approach is leveled due to a significant

reduction in the cost of memory in our time [7], which allows you to enjoy a

wide range of advantages - thread safety, a constant state of an object, better

encapsulation, more transparent and readable code [8].

3. Scalability - today, scalability is a critical requirement when building products.

Although scalability is not a design requirement for this dissertation, the author

has strived to create an application that meets this requirement as closely as

possible. With parallel processes, supervised trees, and excellent fault tolerance,

Elixir makes it easier to scale services than in many object-oriented languages

[9]. Also, if we look at the practice of using Elixir by large services (like

Discord [10] or Pinterest [11]) as the main backend language for working with

millions of users, we can conclude that this language, like no other, allows you

to seriously scale the services created on it.

4. Built-in caching solutions - Elixir has four different standard methods for

temporarily storing and accessing data [12], which eliminates the need to add

another dependency to the application (author means third-party data caching

solutions such as Redis), making it more difficult to maintain.

5. Pattern matching - is one of the key features when writing code in Elixir. It is

difficult to fully emphasize the power of this feature. With pattern matching, a

programmer can use different signatures to describe how the code should behave

in different cases. This helps to write code more concisely and cleanly. Figure 1

shows an example of pattern matching in Elixir.

{:status_atom, %YourStruct{param: value}} = your_function(arg)

Figure 1: Pattern matching in Elixir.

4.1.2 Phoenix Framework

According to the survey.stackoverflow.co [13], Phoenix is the most loved web

framework among developers in May 2022. Phoenix is a web development framework

written in Elixir and widely used for REST API implementation. Phoenix combines

high developer productivity with high application performance and has many

28

advantages, including reactiveness, a perfect balance between abstraction and

explicitness, an easy router mechanism, various testing tools, and good documentation

[15]. The reason why the author made his choice in favor of this framework, in addition

to its features, is its great popularity and the large number of training materials

associated with it. Moreover, the author of the dissertation already had some experience

with this framework, which became the decisive argument in favor of this technology.

4.1.3 PostgreSQL

The choice of PostgreSQL for the implementation of the database is facilitated by many

different advantages that make this solution the most promising:

1. PostgreSQL manages concurrent read/write efficiently using multi-version

concurrency control (MVCC). This means that any read-in-progress does not

block writes and vice versa [16].

2. With pgSQL, a developer can group a calculation block and a series of queries

inside the database server, thus significantly saving server resources for

communication between the client and the server [17].

3. It is a cross-platform solution that makes it easy to host and set up a database on

a Linux or Windows server in the future [18].

4. PostgreSQL is an open-source solution that allows it to be used in projects of

any type. Moreover, it provides good scalability for any projects in the future

[18].

5. This solution is an extensible database, which means that in case of a lack of any

functions, the developer can write them himself or install a third-party extension.

This feature also has a positive effect on scalability [19].

Thanks to its strong community support and many advantages, this open-source

relational database is an excellent fit for the project created within this dissertation.

4.2 Frontend technologies

The author primarily considered solutions focused on multi-platform development when

choosing technologies for the client (front-end) part of the application. Even though that

native application development significantly outperforms cross-platform application

development in terms of performance and the ability to use the full functionality of the
29

user device, at the same time, it requires much more development time and reduces code

reusability.

4.2.1 JavaScript

One of the most important advantages of this programming language is a large number

of different cross-platform frameworks for developing mobile applications.

Cross-platform development significantly reduces development time, which, within the

framework of this thesis, is one of the key factors in choosing a technology for the

implementation of the client side.

A large number of well-documented, tested frameworks and various libraries for any

need make this language a favorite tool for mobile front-end development.

4.2.2 TypeScript

TypeScript is a strongly typed, object-oriented, compiled language. TypeScript is both a

language and a set of tools. It is a typed superset of JavaScript compiled into JavaScript.

TypeScript supports JavaScript libraries, and compiled TypeScript can be used by

JavaScript code. TypeScript-generated JavaScript can be reused by all the existing

JavaScript frameworks, tools, and libraries.

4.2.3 React Native framework

React Native is a framework for building native rendering mobile apps using ReactJS, a

JavaScript code library developed and maintained by Meta Platforms (formerly

Facebook) [20].

The key features for which this framework is chosen as the primary tool for

implementing the front-end part of the application include the following:

1. Using JavaScript makes it possible to develop a universal application using this

framework without diving into the ecosystem and language features of each

operating system [21].

2. React Native significantly speeds up the development process. Initially, this

saves developers from recompiling with every change since the application is

immediately reloaded during the development phase [21].

3. A dynamic toolbox with many productivity-enhancing features, such as

integrated components providing built-in solutions for the most common tasks.

30

These features not only greatly increase the speed of product development

however, also provide a pleasant and productive development experience [21].

4. React Native uses the Flow framework by default. This framework promotes

static typing in JavaScript however, has fewer commitments than TypeScript

since it can be used within default .js files. While React Native is built in Flow,

it supports both TypeScript and Flow by default [38].

Summing up, it is worth mentioning that React Native is a powerful tool that allows the

developer to create a mobile application in a short time without the need to dive into the

ecosystem of each platform.

All the existing shortcomings of the cross-platform development approach, such as the

inability to use all available functionality of each platform, lower performance, bigger

size of the final application, debugging difficulties, and other less significant

shortcomings [21] are the cornerstones of the chosen approach however, are not

sufficient within the framework of this dissertation and could not be a reason for

considering other tools and solutions due to the lack of time to solve such a large

amount of tasks.

31

5. Third-party services

Nowadays, various third-party services can greatly simplify and speed up application

development, providing various services ranging from simple authentication to

processing huge amounts of data using machine learning technologies or online

payment solutions. Most modern applications use third-party services in one way or

another because they can significantly reduce both the overhead costs for the

development and maintenance of a particular functionality and provide a much higher

quality of services due to many years of development, a large array of accumulated data,

more advanced architecture, and so on.

However, it is crucial to choose third-party services, especially when it comes to the

user data, because the service provider's reliability can affect the security of client data,

which can cause reputational or other losses in case of third-party service data leakage.

As part of this dissertation, the author intends to use third-party services for user

authentication, application image assets storing, obtaining up-to-date exchange rate

data, and obtaining user banking data.

5.1 Google Account API

The Google Account APIs use the OAuth 2.0 protocol for authentication and

authorization. Google also supports common OAuth 2.0 scenarios for the web server

and client side [22].

For the least resource-intensive solution for user authorization, it is decided to use a

Google Account service that uses the OAuth 2.0 protocol. By providing single sign-on

functionality, the user can use their existing credentials to open or create an account in

the application. This convenient way allows developers to significantly simplify the

implementation of authorization and speed up user registration/login to the application

without having to spend time creating an account with another username and password.

After clicking on the register button (see Figure 2), the user will be redirected to the

Google service authorization page, after which a pop-up window will request

permission to transfer information about the user's Google account to the application

(see Figure 3).

32

Figure 2: MYBE login screen. Figure 3: Sign in with Google screen.

After the user is allowed to share his information with a third-party site, he will be

redirected to a specially created deep link, where the user will be redirected back to the

application.

After going through these quick steps, the user has successfully logged in with Google,

and the application has access to the user's profile information that can be used to create

an account or log in.

5.2 Nordigen API

One of the key services required for the application implementation is the aggregator of

user banking data. In this dissertation, the primary criterion for choosing a data

aggregator is the price of using such a service. Currently, the only free solution is the

Nordigen API, which, despite this, even outperforms its competitors in some aspects -

the paid aggregation platforms Tink [24], Plaid [25], and Truelayer [26].

33

This data aggregator is used within the framework of this dissertation to obtain user

bank accounts (as well as their balances) and transactions through an open API that

operates according to the PSD2 directive. Banking institutions transfer user data for

processing only if this permission is issued by the user on the banking portal page,

where the user will be redirected (see Figure 4) upon initial conclusion of an agreement

to provide data to both the aggregator (represented by Nordigen) and a third party (in

this case, the author's application - MYBE).

Figure 4: Nordigen data processing request.

Within the framework of this dissertation, any information and/or user data can be used

only to provide budgeting services directly related to the user account.

This API, due to the specifics of its application, has many different restrictions,

primarily imposed by the banks themselves, among such restrictions are response

formats that differ from bank to bank, restrictions on the number of synchronizations

per day, and restrictions on the number of calls to the banking institution API. Despite

the technical complexity, all the listed limitations should be considered when writing the

server part of the application.
34

Also, this service tries in every possible way to facilitate the implementation of the

solution for unifying the provided banking data and offers detailed information [28] on

each of the supported banks and the amount of information provided, which

significantly simplifies development. Based on the author's personal experience,

Nordigen provides high-quality and prompt technical support to help with the solution

for both technical and legal issues.

5.3 exchangerate.host API

The last of the third-party services used is exchangerate.host, which provides current

and historical rates for fiat and cryptocurrencies. When choosing a service for receiving

exchange rates, the author also primarily relied on the pricing policy of the service, as a

result of which the choice is made in favor of this solution. Moreover, it is worth noting

that in most cases, all similar services offer approximately the same functionality, which

is why the author considered it irrational to check other paid alternatives.

All API requests are subject to rate limits. Real-time rate limit usage statistics are

described in headers that are included with most API responses once enough calls have

been made to a service endpoint [29].

As part of this dissertation, the application supports three major currencies - Euro, the

United States Dollar, and Great Britain Pound with currency pair rates updated every

hour to keep the displayed balances and amounts up to date.

According to the service website, currency data delivered are sourced from financial

data providers and banks, including the European Central Bank [29].

One of the main advantages of this service is the almost constant uptime [29], a large

range of supported fiat currencies and cryptocurrencies free of charge, and the absence

of strict limits on the number of requests.

5.4 Google Cloud Storage

To store various visual assets, such as logos, icons in vector format, illustrations, and

other design elements used in the client side of the application, it is decided to use

Google Cloud Storage. The author of this thesis already has a paid subscription, which

significantly saved time from looking for free visual assets hosting.

35

6. Application backend implementation

This chapter describes the approaches used to write the application backend, the

structure of the project, encountered and/or potential challenges, as well as their

solutions. The main server-side language of the application is Elixir, with the Phoenix

framework for REST API implementation and the Ecto library for working with the

PostgreSQL 14.5 database.

6.1 Architecture and project structure

The server part is divided into three layers - presentation, business, and data layer. Each

of the layers performs strictly defined functions, described below:

1. Presentation layer - this layer is responsible for translating the data received in

the request into the appropriate format for further processing at the next level.

Since Elixir doesn't have objects, we can conduct the presentation layer

operating with data transfer structs.

2. Business logic layer - this layer contains all the logic of the server application,

represented by various services. It is responsible for interacting with all

third-party services, processing, creating, modifying, caching, and validating

user data.

3. Data layer - this layer is responsible for storing entities in the database. The data

layer works with the transformation of data transfer structs into database entities

and directly with the execution of SQL queries.

The general schematic separation of the server part into three layers is shown in

Appendix 3, which provides a complete architectural diagram of the entire project. The

chosen approach, dividing applications into three layers, is also reflected in the

application structure itself, shown in Figure 5. The file structure has also been greatly

simplified on the schematic image of the project structure to make visualization clearer

and more understandable.

36

Figure 5: Backend project structure.

Package mybe_api contains two directories - controllers and plugs. The folder with

controllers contains all the controllers used in the API, each of which is responsible for

its endpoint namespace (the list of API endpoints is presented in Appendix 4). The

plugs folder contains modules, which are a set of functions that process an incoming

request before passing it directly to the handler controller. An example of use is a

custom token validation.

Package mybe_bll contains four directories with business logic services implementation,

the helpers directory (contains a set of macros to simplify code writing), the

implementations directory (contains a set of author's protocol implementations for

working with some data types and serialization), the structs directory (data transfer

structs), supervisors (containing supervisors for groups of services, united by the

so-called “global” supervisors that create supervision trees) and the tests directory for

testing specific cases or entire services.

Package mybe_db is represented by four directories - encryption (where modules for

data encryption and decryption are stored), migrations (where all migrations performed
37

with the database are stored), models (describe database entities and algorithms for

converting them from/to data transfer structs) and repos, which contain repositories

responsible for executing SQL queries inside the database.

6.2 Database

To work with the database, the author used one of the most popular libraries - Ecto. This

library contains four main modules used for working with the database:

1. Ecto.Repo - repository modules are wrappers around the data store. Interaction

with repositories allows developers to create, update, delete and query entities

stored in the database. To set up work with PostgreSQL, this library requires an

appropriate driver, or, as they are called in Elixir, an adapter. Credentials for

connecting to the database are stored in the project's configuration file.

2. Ecto.Schema - a module that converts entities stored in the database into Elixir

structures.

3. Ecto.Query - written using the Elixir syntax, a simple, understandable, and

extremely powerful module that allows developers to get the information using

repositories. It is also worth mentioning that queries written using this module

are protected from SQL injections by default. Figure 6 shows examples of using

this module in a project.

Figure 6: Querying list of available banks using Ecto.Query module.

4. Ecto.Changeset - so-called changeset allows filtering, casting, validation, and

definition of constraints when manipulating structs. An example of usage within

this application is shown in Figure 7.

38

Figure 7: An example of using the Esto.Сhangeset module.

Working with the database using the Ecto library is greatly simplified, allowing a

developer to write easy-to-read and understandable code without the need to interact

with SQL directly.

In order to ensure the security of user data, all fields containing sensitive data about the

user (transaction balances, account numbers, personal emails, access tokens, etc.) are

encrypted when writing and decrypted when reading from the database. This aspect is

discussed in more detail in the next paragraph.

The application database consists of 26 tables (including eight many-to-many tables),

the most basic ones are listed below:

1. Sessions - used to store user sessions, access tokens, and refresh tokens.

Figure 8: Database “sessions” table.

2. Users - stores information about the user, including first name, last name, full

name, personal email, device language, time zone, and default currency.

39

Figure 9: Database “users” table.

3. Banks - contains information about a banking institution, including the type of

institution (can be used to expand further the functionality for working with

crypto exchanges) used to obtain API data, a link to the logo, and BIC.

Figure 10: Database “banks” table.

4. Budgets - a table for storing user budgets contains the name of the budget and its

currency.

Figure 11: Database “budgets” table.

40

5. Wallets - stores all available and necessary information about the user's bank

account, including the number of booked transactions and their amount, for the

correct display of the available balance in the application.

Figure 12: Database “wallets” table.

6. Transactions - the main and the biggest table contains information about each

entity associated with a real user transaction in his bank. This table contains a lot

of fields with various metadata required to implement the internal logic for

correct interaction with the Nordigen aggregator.

Figure 13: Database “transactions” table.

41

The complete database schema is provided in Appendix 2, the image is made using the

built-in visualization tools of the DataGrip program from JetBrains due to its

compactness compared to the ERD schema.

6.2.1 Data encryption
Since the application deals with user personal and banking data, there are a set of

security requirements that, one way or another, should be considered. The author, not

being an expert in the cybersecurity domain, cannot guarantee full compliance with all

requirements regarding the storage and processing of data, therefore, all found or

potential vulnerabilities should be considered acceptable within the framework of this

dissertation.

Since in our time, there is a whole criminal industry [30] that targets personal client

data, it cannot be guaranteed that unencrypted data is stored safely.

To encrypt user data, two different approaches are used, depending on the type of data

to be encrypted:

1. For sensitive data such as bank account codes, wallet balances, transaction

amounts, access tokens, and usernames, the Advanced Encryption Standard

(AES) is used. This algorithm uses Galois/Counter Mode for symmetric key

cryptographic block ciphers, which is often recommended as a more efficient

encryption algorithm compared to RSA [31, 32]. To implement this encryption

method, the author used a native Rlang cryptographic library with 256-bit keys.

2. For data not intended for direct retrieval (user email, access token, session token,

and refresh token), the author used the Argon2 key derivation hashing function

(this algorithm is the winner of the Password Hashing Competition [33]). This

approach guarantees if third parties access the database, access tokens cannot be

compromised. Hashing function is used from the argon2_elixir library.

In addition to encryption, the author also implemented encryption key rotation. Every

24 hours, the algorithm generates and adds a new key to the secure encryption key store.

This practice significantly limits the amount of data that a potential attacker can decrypt

if the database has been compromised in any way [34].

The implementation of the encryption and decryption algorithm are performed

following the manual “Data encryption in a Phoenix (Elixir) App using Ecto Types”

[35], the final source code is provided in Appendix 5.

42

6.3 Peculiarities of the business logic implementation, encountered

problems and their solutions

During the server part of the business logic implementation, the author faced different

peculiarities of banking data processing, various service restrictions, controversial

points, and other challenges, described in this chapter.

6.3.1 Repetitive code

To reduce the amount of repetitive code, the author has implemented a separate service

for simple operations such as adding, updating, deleting and querying entities. The code

for this service can be found in Appendix 6. Although this solution may complicate the

debugging of errors that occur, nevertheless, since it is used for the simplest operations,

this significantly increases the readability of the code for individual services and

methods that do not contain any complex logic.

6.3.2 Third-party services error handling

The server part of the application for its work actively uses third-party services with

certain limitations. The most suitable example is the Nordigen API, which has more

than eight error variants when requesting user transactions. To solve this problem, the

author has implemented a separate module for each third-party service, which deals

with error processing, logging (if required), taking the necessary measures, and

compiling error messages for the user. The code for one of these services is presented in

Appendix 7.

6.3.3 Race conditions

Since the application, among its advantages, offers user functionality for joint budget

management, it becomes necessary to consider the scenario when the same transaction

is processed (processing means defining its category, adding tags, and so on) by users

almost simultaneously. As a result of this scenario, a so-called “race condition” may

occur due to multi-threaded request processing. Despite the unlikely occurrence of this

scenario, the author wished to consider this and implement the solution.

The least resource-intensive solution is chosen to solve this problem - so-called

"optimistic blocking". This solution is most often used in systems with low data

contention. Since, in theory, a race condition and subsequent undesirable consequences

43

can occur during the distribution of transactions, it is decided to use "optimistic locking"

only for this table.

The principle of operation of this solution is as simple as possible - a counter of

"versions" is stored for each entry. This counter is incremented each time a record is

modified. The library for working with the Ecto database already contains a method for

working with optimistic locking, including a macro function for the database entity

model that points to the "version counter". Ecto will throw an exception and rollback

changes if a record which is previously retrieved is updated and the same record is

modified at the time it is retrieved.

An example of using “optimistic locking” is shown in Figure 14.

Figure 14: Setting up transaction changeset using built-in Ecto “optimistic lock”
function.

6.3.4 Nordigen service restrictions

One of the drawbacks of Nordigen API is the need for more transparent information

about the limits on requesting user information. According to Nordigen's official

website, the service guarantees at least four daily requests for any client data (account

details or list of transactions) [36].

To consider this feature of the service, the author implemented a cache service to store

information about the number of requests for user data for each bank on the current day.

This service is implemented using the built-in caching mechanism - ETS. More details

about this mechanism can be found in chapter 6.3.7 Data caching.

Data on the number of requests is stored in random-access memory in the following

format: user, requisition_id (identifier used by Nordigen for the user-bank connection),

the number of requests, and the time stamp of the last change. Every day at 00:00

UTC+0, the system automatically sets the number of requests to 0 and removes records

that are requested more than a week ago.

44

In addition, the database for each bank (see Figure 15) stores a list of available data and

limit values (determined empirically during Nordigen integration testing). As the result,

the system can track the number of available requests and determine when the user has

reached the limit by notifying him with the appropriate message.

Figure 15: A table that stores request limits for banks accessed through the Nordigen
API.

6.3.5 Different bank data formats

As mentioned earlier in chapter 5.2 Nordigen API, this service cannot guarantee the

provision of the same amount of data for all banks. This leads to a situation where user

account or transaction data can look completely different, as banking institutions

provide a limited amount of data at their discretion. To solve this problem, the

application database stores a table containing information about data scopes which will

be provided by banking institutions (see Figure 16). Also, during the user's first

synchronization with the bank, he will be redirected to a screen with information about

bank data that can be retrieved and displayed by the application (see Figure 17).

45

Figure 16: A table with the information
about data fields that the bank provides

via Nordigen.

Figure 17: A screen displays the
information stored in the table from

Figure 16.

6.3.6 Parallel wallet use by multiple budgets

Another interesting scenario that required a pragmatic solution is the parallel use of the

same bank account in two or more budgets. By default, the system updates all wallets

attached to the budget when the user enters the application if the last update is made

more than an hour ago.

Before the discovery of this scenario, the user, after updating the list of transactions on

budget A, did not receive new transactions for budget B since each transaction is tied to

a specific budget (see Figure 13). This happens although the user worked with the same

wallet on both budgets. As a result, this leads to a bad user experience and the need to

synchronize the transaction list again, increasing the number of requests to Nordigen

and lowering the request quota for a given user.

46

After implementing changes in the transaction synchronization algorithm, this problem

is fixed. Now, after transaction synchronization, all budgets that are tied to the

previously updated wallet will receive new transactions. Although this method

multiplies the number of insert operations into the database (for example, with ten new

transactions and two budgets, 20 entities will be added to the database instead of 10),

this improves user interaction with the application and eliminates the need to make

unnecessary requests, spending the bank request quota.

6.3.7 Data caching

Data caching allows an application to increase performance by using previously stored

data. Using cached data API can serve requests many times faster. There are datasets in

the application database that change infrequently, such as tables with countries and

banks, as well as sets of standard categories, tags (these records have a true "default"

parameter), and exchange rates that are updated once an hour. All this data in the

process of using the application is requested much more often than it is updated, and

therefore it makes sense to cache it to increase the API performance.

As a caching tool, the choice is made in favor of ETS - Erlang Term Storage, a part of

the Erlang VM, the use of which eliminates the need to add extra dependencies.

According to Elvio Viçosa Jr in the article "Caching with Elixir and ETS", the data

structures used to implement the ETS tables are optimized to provide the best possible

access time [37]. One of the simplest, however, efficient examples of using ETS for

cache service implementation can be found in Appendix 8, while the cache service for

the database contains more logic for periodic cache refreshing and various interfaces for

obtaining data, as well as initiating a force cache update.

6.3.8 Testing

To test the server part, due to time constraints, the author used only unit tests for the

most critical methods and modules (Appendix 9 provides unit tests for the session

service). The most outstanding contribution to identifying bugs and errors is made by

direct testing of the application through the front end. During business logic

implementation, the author also initiated a series of requests to the server using

Postman, which also made it possible to test the basic functionality and identify some

errors.

47

Although the testing falls outside the scope of this thesis, the author believes that proper

testing of the server part is a mandatory requirement for further development of the

application and is omitted from the thesis scope only due to lack of time.

48

7 Application frontend implementation

This chapter describes the main challenges during the implementation of the mobile

application front-end. To implement the cross-platform application is used JavaScript

React Native.

7.1 Design

Before designing the front-end application, the author made a few mockups of the main

application sections in Figma, which simplified the implementation of the visual part

since there is no need to think over the product design during code writing. The author

is inspired by Revolut's online bank with its simple and intuitive user interface. Two of

the most frequently used screens are shown in Figures 18 and 19.

Figure 18: MYBE user home screen. Figure 19: MYBE user budget screen.

49

7.2 Client-side data caching

To reduce the number of requests to the server and increase application performance,

some of the least frequently changed data is cached. The user profile, user-created tags,

categories, connected banks, wallets, and lists of countries and banks are cached in the

application's memory to reduce loading time. To implement caching

react-native-storage library is used. This library implements key-value data storage

without any encryption (which would be redundant for such data), which means this

library can be used only for non-sensitive data storing.

Figure 20: Example of react-native-storage library usage.

Using data caching, the loading time of some screens has greatly decreased, as a result,

user info, tags, categories, and wallets screens loading becomes almost instantaneous.

7.3 Sensitive data storage

The application uses the react-native-sensitive-info library to implement secure storage

for sensitive data. This library allows the application to securely store small chunks of

data. Within the framework of this application, this library is used to store an access

token, a refresh token, and a session token for calling the application backend.

Figure 21: Example of react-native-sensitive-info library usage.

On the iOS platform, encrypted values are stored using system-native keychain services.

On the Android platform, values are stored in application-shared memory and encrypted

with the Android Keystore system. The stored value is limited to a maximum size of

50

2048 bytes for each key, however, this amount is more than enough for the stated

purposes.

7.4 Redirections and deep links

Deep links allow to redirect the user from a web page to an application to display a

specific screen with the requested content. In this project, deep links are used when

authenticating a user through Google services (redirecting the user to the main screen)

and connecting user wallets through the Nordigen API (redirecting to the selection of

connected wallets).

The implementation of deep links requires additional configuration to work on both

platforms (Figures 22 and 23).

Figure 22: Deeplink configuration for iOS devices.

Figure 23: Deeplink configuration for Android devices.

As part of this project, the author used custom URI schemes. Using this approach is like

creating a "private" protocol for an application, which is then used for routing within the

application. The schema URI format looks as follows - application://path/to/content.

The advantage of custom URI schemes is that they are easy to configure, while the main

disadvantage is the lack of functionality for handling scenarios where the application is

not installed on the user's device. Since the application is not planned to be exposed

publicly (at least at this stage), the disadvantage of this approach does not affect the

result in any way.

51

7.5 Multiple language support

Although the support of more than one language by the application is not included in

the list of requirements for the project MVP, the author considered that it is necessary to

lay the foundation for further expansion of the product's capabilities and the

implementation of multilingualism.

To solve this problem, the author used the react-i18next library, which provides several

extremely simple and effective components and functions for the implementation of

multilingual interfaces.

The implementation of multilingualism is quite straightforward - each language has its

JSON file with a list of text field keys and their values corresponding to their language.

Each text component uses a translator function, which searches for the key passed as an

argument in the localization file of the currently used language, returning the value for

the text component. Using this transparent and straightforward approach, the translation

of the interface becomes extremely simple, with almost no effect on the amount of code.

Among the useful functions of this library, it is worth noting the ability to set not only a

standard language, however, a fallback language as well, which will be applied if the

selected language pack is not found for some reason.

Figure 24: react-i18next library usage.

Within the framework of this thesis, the author has implemented only an English

language pack.

7.6 Color themes

The implementation of the functionality for changing color themes is also not a

requirement for the MVP of the project, however, according to the author, this

functionality should be included at the initial stage, which will facilitate its

implementation later.

The implementation of color styles from the code's point of view is quite simple - each

UI component has 2 CSS styles (for light and dark themes, respectively), which are

applied following the color scheme used on the user device. The application stores this

information in local storage using the Appearance module and tracking the color

52

scheme change event. When the style is rendered, the component receives the stored

value and selects the appropriate schema for the CSS style (see Figure 25).

Figure 25: Component color scheme definition.

Although for this application with a ready-made codebase, the implementation of a dark

theme requires only a set of styles, the author considered the implementation too

time-consuming and therefore limited himself to using the standard light theme.

7.7 Data charts

Working with data visualization, the author used the react-native-pie library for a

simpler and more intuitive presentation of user statistics. The library usage is extremely

simple - the main component takes several different parameters, such as an array of data

(it is an array of objects with two parameters - filling percentage and fill color), the

chart radius, the size of the inner radius, the background of the chart, and the display

type (there are two views - chart and percentage display). As shown in Figure 26, the

library generates a simple and easy-to-understand graph used for the application's

statistics module.

53

Figure 26: Generated pie chart using react-native-pie library.

54

8 Application analysis

As part of this dissertation, the author created an MVP for an application for accounting

for a personal or household budget. During the implementation and testing of the

mobile application, the author received enough user experience to identify all the main

advantages and disadvantages of the application.

From a user point of view, among the positive sides of the application, the author would

like to note the following:

1. Full compliance with all the requirements described in Chapter 3. Application

concept and requirements for MVP.

2. Ability to manage multiple budgets at the same time using joint bank accounts does

not require synchronizing with the bank more than once.

3. The number of synchronizations of transactions with the bank is dynamic and

depends on bank restrictions, while other applications usually use constant values.

4. Simple and fast registration and authorization processes using Google service.

5. All data is dynamically stored on the application backend side and tied to the user's

Google account.

Among the tangible shortcomings of the application, the author notes the following:

1. Although the mobile part of the application complies with the requirements of the

MVP, the application needs additional testing and technical improvement due to

intermittent errors on the client side.

2. High battery consumption for an unspecified reason.

3. Unstable operation of the application on the version of Android 12 on Xiaomi devices

(this problem is not discovered on Samsung devices).

4. Lack of support for cryptocurrencies and crypto exchanges.

Even though the application created within the framework of this dissertation is still far

from a complete product, the author would like to note that already at this stage, there is

a visible superiority over some existing analogues due to the automatic synchronization

of transactions, joint budget management, remote data storage and the ability to

configure or create new user tags and categories.

55

9 Possible improvements and further development

At this stage, the client part of the application requires great improvements since the

current project structure can be excessively overloaded and contains, in some places, the

re-implementation of existing functionality. Among the factors that negatively affected

the quality of the client side, one of the most important is the lack of experience and

time.

The server part of the application undoubtedly requires writing additional integration

and unit tests that could detect previously undetected or missed errors and bugs. For the

further development of the application, the components responsible for the secure

storage and modification of user data should certainly be reviewed by more experienced

specialists. Legal advice is also needed regarding the requirements for the processing

and storage of user personal and banking data. There is also a need to conduct

additional stress testing to identify performance-reducing factors for further code

optimizations.

It should also be noted that the author abandoned the original idea of positioning this

project as an open-source solution due to the potential danger of providing public access

to the application code that works with extremely sensitive user data (bank accounts and

transactions).

This application could be a significant competitor to existing solutions after eliminating

all existing technical imperfections, meeting all requirements for working with client

banking data, and adding a more extensive choice of available synchronization banks.

56

10 Summary

The main goal of the bachelor's work is to create an application for managing personal

and family budgets based on the analysis of solutions existing on the market, as well as

subsequently derived the author's concept. Analysis of existing applications reveals a

big scope for possible improvements of home budgeting applications. The application

created within the framework of this dissertation allows the user to automatically

receive banking transactions for further categorization. The data aggregated by the

application allows users to view simple and understandable statistics of all user's

income and expenses. Extensive customization options for custom categories and tags

make the generated charts more personalized, increasing the efficiency of budget

analysis. Inviting other users to manage created budgets provides a convenient way to

manage a joint budget. Storing user data on the application's server-side allows the

client to access data from different devices. Cross-platform implementation of the client

application provides support for the biggest part of devices used in the world. Encrypted

storage and periodic change of encryption keys for client data provide a high level of

security.

The implemented functionality meets the requirements stated for the MVP, however, it

is worth considering that the application still requires significant improvement and legal

consultation for mass use. The final application and its concept combine all the

advantages of existing solutions, partially solving their shortcomings. In conclusion, it

can be noted that this project is well suited for further development, as it requires a lot

of different kinds of minor improvements, however, it already has a ready-to-use main

functionality core.

57

References

[1] cloudflare.com, "What is HTTPS?" [Online]

Available: https://www.cloudflare.com/learning/ssl/what-is-https/

Accessed 10 Oct 2022

[2] budgetbakers.com, Wallet app by Budgetbakers. [Online]

Available: https://budgetbakers.com/

Accessed 11 Oct 2022

[3] monefy.me, Monefy app. [Online]

Available: https://monefy.me/

Accessed 11 Oct 2022

[4] bilanceapp.com, Bilance app. [Online]

Available: https://www.bilanceapp.com/

Accessed 11 Oct 2022

[5] G. Dreimanis, "Introduction to Elixir", serokell.io, 15 04 2020. [Online]

Available: https://serokell.io/blog/introduction-to-elixir

Accessed 14 Oct 2022

[6] R. Lazzara, "How to build fault-tolerant software systems", Computer Science

Blog, 13 10 2019. [Online]

Available:

https://blog.mi.hdm-stuttgart.de/index.php/2019/10/13/how-to-build-fault-tolera

nt-software-systems/

Accessed 14 Oct 2022

[7] "Memory prices 1957+". [Online]

Available: https://jcmit.net/memoryprice.htm

Accessed 14 Oct 2022

58

https://www.cloudflare.com/learning/ssl/what-is-https/
https://budgetbakers.com/
https://monefy.me/
https://www.bilanceapp.com/
https://serokell.io/blog/introduction-to-elixir
https://blog.mi.hdm-stuttgart.de/index.php/2019/10/13/how-to-build-fault-tolerant-software-systems/
https://blog.mi.hdm-stuttgart.de/index.php/2019/10/13/how-to-build-fault-tolerant-software-systems/
https://jcmit.net/memoryprice.htm

[8] R. Gin, "5 Benefits of Immutable Objects Worth Considering for Your Next

Project", hackernoon.com, 18 07 2017. [Online]

Available:

https://hackernoon.com/5-benefits-of-immutable-objects-worth-considering-for-

your-next-project-f98e7e85b6ac

Accessed 15 Oct 2022

[9] R. Hryniewicz, "What is App Scaling and why Elixir is Perfect for Scalable

Applications?", curiosum.com, 04 10 2022. [Online]

Available:

https://curiosum.com/blog/what-is-app-scaling-why-elixir-perfect-scalable-app

Accessed 15 Oct 2022

[10] S.Vishnevskiy, "How Discord scaled Elixir to 5,000,000 concurrent users",

discord.com, 06 07 2017. [Online]

Available:

https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-use

rs

Accessed 16 Oct 2022

[11] Pinterest Engineering Blog, "Introducing new open-source tools for the Elixir

community", medium.com, 18 12 2015. [Online]

Available:

https://medium.com/pinterest-engineering/introducing-new-open-source-tools-fo

r-the-elixir-community-2f7bb0bb7d8c

Accessed 16 Oct 2022

[12] "Caching Options in an Elixir Application", prying.io, 01 09 2019. [Online]

Available:

https://prying.io/technical/2019/09/01/caching-options-in-an-elixir-application.h

tml

Accessed 16 Oct 2022

59

https://hackernoon.com/5-benefits-of-immutable-objects-worth-considering-for-your-next-project-f98e7e85b6ac
https://hackernoon.com/5-benefits-of-immutable-objects-worth-considering-for-your-next-project-f98e7e85b6ac
https://curiosum.com/blog/what-is-app-scaling-why-elixir-perfect-scalable-app
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://medium.com/pinterest-engineering/introducing-new-open-source-tools-for-the-elixir-community-2f7bb0bb7d8c
https://medium.com/pinterest-engineering/introducing-new-open-source-tools-for-the-elixir-community-2f7bb0bb7d8c
https://prying.io/technical/2019/09/01/caching-options-in-an-elixir-application.html
https://prying.io/technical/2019/09/01/caching-options-in-an-elixir-application.html

[13] "2022 Developer Survey", survey.stackoverflow.co. [Online]

Available:

https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-

web-frameworks-and-technologies

Accessed 17 Oct 2022

[14] L. Gupta, "What is REST", restfulapi.net, 07 04 2022. [Online]

Available: https://restfulapi.net/

Accessed 17 Oct 2022

[15] "Things Elixir's Phoenix framework does right", scorpio.com, 25 09 2020.

[Online]

Available: https://scorpil.com/post/things-elixirs-phoenix-framework-does-right/

Accessed 17 Oct 2022

[16] PostgreSQL 14 Documentation - MVCC Introduction, postgresql.org. [Online]

Available: https://www.postgresql.org/docs/14/mvcc-intro.html

Accessed 18 Oct 2022

[17] PostgreSQL 14 Documentation - Overview, postgresql.org. [Online]

Available: https://www.postgresql.org/docs/14/plpgsql-overview.html

Accessed 18 Oct 2022

[18] "About", postgresql.org. [Online]

Available: https://www.postgresql.org/about/

Accessed 18 Oct 2022

[19] PostgreSQL 14 Documentation - Extensions, postgresql.org. [Online]

Available: https://www.postgresql.org/docs/14/external-extensions.html

Accessed 18 Oct 2022

[20] "Chapter 1. What Is React Native?", oreilly.com. [Online]

Available:

60

https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-web-frameworks-and-technologies
https://survey.stackoverflow.co/2022/#section-most-loved-dreaded-and-wanted-web-frameworks-and-technologies
https://restfulapi.net/
https://scorpil.com/post/things-elixirs-phoenix-framework-does-right/
https://www.postgresql.org/docs/14/mvcc-intro.html
https://www.postgresql.org/docs/14/plpgsql-overview.html
https://www.postgresql.org/about/
https://www.postgresql.org/docs/14/external-extensions.html

https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch0

1.html

Accessed 19 Oct 2022

[21] K. Shah, "Advantages and Disadvantages of React Native Development in

2022", thirdrockechkno.com, 20 05 2021. [Online]

Available:

https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-develop

ment-in-2021/

Accessed 19 Oct 2022

[22] "Using OAuth 2.0 to Access Google APIs", developers.google.com. [Online]

Available: https://developers.google.com/identity/protocols/oauth2

Accessed 20 Oct 2022

[23] D. Hardt, "The OAuth 2.0 Authorization Framework", rfc-editor.org, 10 2012.

[Online]

Available: https://www.rfc-editor.org/rfc/rfc6749

Accessed 20 Oct 2022

[24] "Free alternative to Tink", nordigen.com. [Online]

Available: https://nordigen.com/en/free-alternative-to-tink/

Accessed 23 Oct 2022

[25] "Free alternative to Plaid", nordigen.com. [Online]

Available: https://nordigen.com/en/free-alternative-to-plaid/

Accessed 23 Oct 2022

[26] "Free alternative to Truelayer", nordigen.com. [Online]

Available: https://nordigen.com/en/free-alternative-to-truelayer/

Accessed 23 Oct 2022

61

https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://www.oreilly.com/library/view/learning-react-native/9781491929049/ch01.html
https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2021/
https://www.thirdrocktechkno.com/blog/pros-and-cons-of-react-native-development-in-2021/
https://developers.google.com/identity/protocols/oauth2
https://www.rfc-editor.org/rfc/rfc6749
https://nordigen.com/en/free-alternative-to-tink/
https://nordigen.com/en/free-alternative-to-plaid/
https://nordigen.com/en/free-alternative-to-truelayer/

[27] "What is PSD2?", openbankproject.com. [Online]

Available: https://www.openbankproject.com/psd2-2/

Accessed 23 Oct 2022

[28] "Nordigen data points". [Online]

Available:

https://docs.google.com/spreadsheets/d/11tAD5cfrlaOZ4HXI6jPpL5hMf8ZuRY

c6TUXTxZE84A8/edit#gid=0

Accessed 23 Oct 2022

[29] "exchangerate.host FAQ". [Online]

Available: https://exchangerate.host/#/#faq

Accessed 24 Oct 2022

[30] D. Endler, "How Much Data Was Leaked To Cybercriminals In 2020 — And

What They're Doing With It", forbes.com, 20 04 2021. [Online]

Available:

https://www.forbes.com/sites/forbestechcouncil/2021/04/20/how-much-data-was

-leaked-to-cybercriminals-in-2020---and-what-theyre-doing-with-it/?sh=1b948c

d51f03

Accessed 26 Oct 2022

[31] M. Green, "A Few Thoughts on Cryptographic Engineering",

cryptographyengineering.com. [Online]

Available: https://blog.cryptographyengineering.com/

Accessed 27 Oct 2022

[32] R. Franklin, "AES vs. RSA Encryption: What Are the Differences?",

precisely.com, 13 03 2021. [Online]

Available:

https://www.precisely.com/blog/data-security/aes-vs-rsa-encryption-differences#

:~:text=Because%20there%20is%20no%20known,only%20small%20amounts%

62

https://www.openbankproject.com/psd2-2/
https://docs.google.com/spreadsheets/d/11tAD5cfrlaOZ4HXI6jPpL5hMf8ZuRYc6TUXTxZE84A8/edit#gid=0
https://docs.google.com/spreadsheets/d/11tAD5cfrlaOZ4HXI6jPpL5hMf8ZuRYc6TUXTxZE84A8/edit#gid=0
https://exchangerate.host/#/#faq
https://www.forbes.com/sites/forbestechcouncil/2021/04/20/how-much-data-was-leaked-to-cybercriminals-in-2020---and-what-theyre-doing-with-it/?sh=1b948cd51f03
https://www.forbes.com/sites/forbestechcouncil/2021/04/20/how-much-data-was-leaked-to-cybercriminals-in-2020---and-what-theyre-doing-with-it/?sh=1b948cd51f03
https://www.forbes.com/sites/forbestechcouncil/2021/04/20/how-much-data-was-leaked-to-cybercriminals-in-2020---and-what-theyre-doing-with-it/?sh=1b948cd51f03
https://blog.cryptographyengineering.com/
https://www.precisely.com/blog/data-security/aes-vs-rsa-encryption-differences#:~:text=Because%20there%20is%20no%20known,only%20small%20amounts%20of%20data
https://www.precisely.com/blog/data-security/aes-vs-rsa-encryption-differences#:~:text=Because%20there%20is%20no%20known,only%20small%20amounts%20of%20data

20of%20data.

Accessed 27 Oct 2022

[33] "Password Hashing Competition". [Online]

Available: https://www.password-hashing.net/

Accessed 27 Oct 2022

[34] "Key rotation", Google Cloud documentation. [Online]

Available: https://cloud.google.com/kms/docs/key-rotation

Accessed 27 Oct 2022

[35] "Phoenix Ecto Encryption Example". [Online]

Available:

https://github.com/dwyl/phoenix-ecto-encryption-example#31-encrypt

Accessed 27 Oct 2022

[36] "Bank API rate limits", Nordigen. [Online]

Available:

https://nordigen.zendesk.com/hc/en-gb/articles/6761006738717-Bank-API-Rate

-Limits

Accessed 28 Oct 2022

[37] E. Viçosa Jr, "Caching with Elixir and ETS", blog.appsignal.com, 12 11 2019.

[Online]

Available:

https://blog.appsignal.com/2019/11/12/caching-with-elixir-and-ets.html

Accessed 28 Oct 2022

[38] React Native official documentation. [Online]

Available: https://reactnative.dev/docs/typescript

Accessed 30 Oct 2022

63

https://www.precisely.com/blog/data-security/aes-vs-rsa-encryption-differences#:~:text=Because%20there%20is%20no%20known,only%20small%20amounts%20of%20data
https://www.password-hashing.net/
https://cloud.google.com/kms/docs/key-rotation
https://github.com/dwyl/phoenix-ecto-encryption-example#31-encrypt
https://nordigen.zendesk.com/hc/en-gb/articles/6761006738717-Bank-API-Rate-Limits
https://nordigen.zendesk.com/hc/en-gb/articles/6761006738717-Bank-API-Rate-Limits
https://blog.appsignal.com/2019/11/12/caching-with-elixir-and-ets.html
https://reactnative.dev/docs/typescript

[39] Google Play Market. [Online]

Available:

https://play.google.com/store/search?q=budget+management&c=apps&hl=ee&g

l=US

Accessed 15 Dec 2022

64

https://play.google.com/store/search?q=budget+management&c=apps&hl=ee&gl=US
https://play.google.com/store/search?q=budget+management&c=apps&hl=ee&gl=US

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Mihhail Skripnik

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis Semi-automated Budget Management Application, supervised by Tauseef

Ahmed

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the

non-exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis that has

been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based on the joint

creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to reproduce and

publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be valid for the period.

65

Appendix 2 - Application database schema

66

Appendix 3 - Application overall architecture schema

67

Appendix 4 - API endpoints

Namespace Endpoint Request
method

Description

/auth /identify POST Used to identify the user, it takes as an

argument the Google authorization code,

which will be “exchanged” for an access

token. Using an access token application

receives information about the user from

Google.

If this user exists in the system, the

application returns a session token, an

access token, and a refresh token. The

application also returns the user's profile if

the user has not been registered before.

/users /info GET Returns the user's profile.

/update PATCH Used to change the user's base currency or

time zone.

/remove DELETE Deletes a user and all associated data.

/sessions /refresh POST It takes a session token and a refresh token

as an argument, returning a new refresh

token and an access token.

/logout DELETE Deletes the current user session.

/budgets /create POST Creates a new budget and automatically

adds standard tags and categories, as well

as the base currency selected when creating

the budget.

/connect POST Used to connect tags, categories, or wallets

68

to the budget. It takes as an argument the

type of the connected entity and its

identifier.

/list GET Returns a list of user budgets with the

user's access level.

/info GET Returns the details of the specified user

budget (connected categories, tags, wallets,

and transactions for the current month).

/update PATCH Used to change the name or base currency

of the budget.

/remove DELETE Deletes the budget and all related data.

/banks /connect POST Used to connect a user bank account

through the Nordigen service.

/list GET Returns a list of all available banks.

/countries /list GET Returns a list of countries with a list of

supported banks for each country.

/wallets /connect POST Connects selected by user wallets after

synchronization via Nordigen.

/list GET Returns a list of connected user wallets.

/remove DELETE Deletes selected user wallets.

/categories /create POST Creates a user category with the selected

parameters (icon, color, title, category

type).

/list GET Returns a list of user categories.

/update PATCH Updates a user category.

69

/remove DELETE Deletes a user category.

/tags /create POST Creates a user tag with the selected options

(tag type, related categories).

/list GET Returns a list of user tags.

/update PATCH Updates a user tag.

/remove DELETE Deletes a user tag.

/transactions /sync POST Returns a list of transactions from the

Nordigen service for the budget specified

in the request (maximum one budget).

/create POST Used to create a transaction manually (for

tracking cash spendings).

/split POST Splits the specified transaction into two

different ones with the specified amount.

/list GET Returns a list of transactions for the

specified budget. It takes a time range as an

argument.

/process PATCH Used to edit or categorize budget

transactions.

/remove DELETE Deletes the specified transaction (works

only for manually created transactions).

/invites /create POST Used to create an invitation for joint budget

management.

/list GET Returns a list of active user invites.

/update PATCH Used to set the status of the specified

invitation (accepted/rejected).

70

/remove DELETE Revokes the specified invitation.

/currencies /list GET Returns a list of available currencies.

/rates GET Returns the exchange rate for the specified

currency pair.

/statistics /calculate GET Returns the sum of all expenses and

income separated according to the specified

filter (category, tag, or wallet) for the

specified period. Example:

{

"from": "12/10/2022",

"to": "25/10/2022",

"category #1": 250.34,

…

}

71

Appendix 5 - Data encryption & decryption module using

AES

72

Appendix 6 - Business logic layer services - generic service

73

74

Appendix 7 - Business logic layer services - Nordigen service

error handler

75

Appendix 8 - Simple cache service using ETS.

76

Appendix 9 - Session service unit tests

77

