EVALUATION METHOD FOR SMART HOME AND
SMART GRID AUTHENTICATION PROTOCOLS

Master’s thesis

Student: Marvin Uku

182509IVCM

Supervisor: Olaf Manuel Maennel, Ph.D
E-mail: marvin.uku@ttu.ee

Study programme: Cyber Security

Tallinn 2020

Table of Contents

Author’s declaration of originality 7
Abstract 8
Annotatsioon 9
List of Abbreviations and Terms 10
List of Figures 14
List of Tables 15
1 Introduction 16
2 Problem Statement 18
3 Background 20
3.1 Smart Home 20
3.2 Smart Grid 20

4 Literature Review 22
4.1 Literature Review Method 22
4.2 Wireless 23
4.2.1 Infrared 24

4.2.1.1 TIrDA protocol 24

4.2.2 Cellular 25

4221 GSM 25

4222 UMTS 26

4223 LTE 27

4.2.3 Radio Frequency Lo 28

4.2.3.1 Dash7?, 28

4.2.3.2 Bluetooth 29

4.2.3.3 EnOcean Serial Protocol 3 29

4.23.4 ANTH . . . 30

4.2.3.5 ZigBee SEP Protocol 31

4.2.3.6 Thread 32

4.2.3.7 7Z-Wave 33

4238 Wi-Fi 33

4.2.3.9 Ultra-Wide Band 38

42310 WIMAX 39

4.2.3.11 6LOWPAN 41

4.3 Wired 41
4.3.1 Ethernet 41
4.3.1.1 Ghn. 42

4.3.1.2 LonTalk Protocol 43

4.3.2 Powerline Communication 43
4.3.2.1 Universal Powerline Bus 44

4.4 Hybrid 45
4.4.1 Extensible Authentication Protocol 45
4.42 KNX Protocol 47
4.4.3 X10 48
4.4.4 Insteon 48
4.4.5 Wireless HART Protocol 49
Methodology 51
5.1 Requirements 51
5.2 ProVerif 53
5.3 BANlogic 55
5.4 Evaluation 59
Protocol Evaluation 61
6.1 Authentication Protocol Evaluation 1 62
6.2 Authentication Protocol Evaluation 2 64
6.3 Authentication Protocol Evaluation 3 66
6.4 Authentication Protocol Evaluation4 68
6.5 Authentication Protocol Evaluation 5 70
6.6 Authentication Protocol Evaluation 6 72
6.7 Authentication Protocol Evaluation 7 74
6.8 Authentication Protocol Evaluation 8 76
6.9 Authentication Protocol Evaluation9 78
6.10 Scoring Result 80

7 Conclusion 81

8 Future Uses 82
Appendices 83
Appendix 1 - Bluetooth Authentication 83
ProVerif Verification 85

ProVerif Result 89

Appendix 2 - EnOcean Authentication 92
Mutual Authentication ProVerif Verification 98

Mutual Authentication ProVerif Result 104

Unilateral Authentication ProVerif Verification. 108

Unilateral Authentication ProVerif Result 112

Appendix 3 - G.hn Authentication 114
ProVerif Verification 115

ProVerif Result 118

Appendix 4 - KNX Authentication 120
ProVerif Verification 121

ProVerif Result 124

Appendix 5 - WIMAX Authentication 127
PKMv1 . . . 127

PKMv2 . . . 127

WiMAX PKMv1 ProVerif Verification 130

WiIiMAX PKMvl ProVerif Result 133

WiMAX PKMv2 ProVerif Verification 138

WiMAX PKMv2 ProVerif Result 141

Appendix 6 - Z-Wave Authentication 143
ProVerif Verification 147

ProVerif Result 154

Appendix 7 - Thread Authentication 159
Thread Joiner-Commissioner ProVerif Verification 162

Thread Joiner-Commissioner ProVerif Result 165

Appendix 8 - TLS Authentication 168
ProVerif Verification 171

ProVerif Result 175

Appendix 9 - PEAP-MSCHAPv2 Authentication 178

ProVerif Verification 179

ProVerif Result 186
Appendix 10 - DTLS Authentication 192
ProVerif Verification L. 193
ProVerif Result 197
Appendix 11 - PSK and EAP-PSK Authentication 200
ProVerif Verification L. 201
ProVerif Result 204
Appendix 12 - EAP-TLS Authentication 207
ProVerif Verification 208
ProVerif Result 213
Appendix 13 - EAP-TTLS Authentication 218
ProVerif Verification 219
ProVerif Result 224
Appendix 14 - GSM Authentication 228
ProVerif Verification 230
ProVerif Resulto 233
Appendix 15 - UMTS and LTE Authentication 240
ProVerif Verification 243
ProVerif Result 246
Appendix 16 - LonTalk Authentication 248
ProVerif Verification 0L 249
ProVerif Result 251
Appendix 17 - UWB Authentication 262
ProVerif Verification 263
ProVerif Result 267
Appendix 18 - CMAC Authentication 274
Appendix 19 - CCM Authentication 275
Appendix 20 — BAN logic Verification forDiffie-Hellman Key Exchange 276
Appendix 21 — BAN logic Verification WiMAX PKMv1 Key Exchange 279
Appendix 22 — BAN logic Verification WiMAX PKMv2 Key Exchange 281
Appendix 23 — BAN logic Verification for GSM Key Exchange 283
Appendix 24 — BAN logic Verification for EAP-AKA Key Exchange [1] 285
Appendix 25 — BAN logic Verification for ZigBee Key Exchange 288
Appendix 26 — BAN logic Verification for PSK Key Exchange 290

Appendix 27 — BAN logic Verification for CCM and CMAC Key Exchange . .
Appendix 28 — Used Terms for Literature Review

References

291

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and this thesis has not been
presented for examination or submitted for defence anywhere else. All used materials,
references to the literature and work of others have been cited.

Author: Marvin Uku

05.11.2020

Abstract

Authentication is an essential part of accessing network resources and therefore necessary
in every network. It is the verification of identity which is attached to some kind of an
identifier, which is presented to an authority or other participant in the communication to
access needed service or resource. In this work smart grid and smart home authentication
protocols evaluation method is proposed. Evaluation is done according to 5 categories
- security, efficiency, audit, administration and transport. These categories contain 27
criterion in total, three of them contain formal verification of a security protocol using
BAN logic and ProVerif cryptographic protocol verifier. All of the mentioned categories
have different weights in the evaluation method, each of the criterion results and boolean
result, TRUE or FALSE. Final score is calculated according to these criterion total sum
divided with the total sum of the weights, giving the result from 0 to 1, one being the
best and zero worst choice for smart home and smart grid network.

6LOWPAN is found to be most secure according to this method, following WPA3. In
this work depreciation of X10 and IrDA is proposed according to the results gained from
this method.

The thesis is in English and contains 323 pages of text, 8 chapters, 17 figures, 12 tables.

Annotatsioon

Autentimine on iiks pohilistest osadest vorguressursi ligipadsu protsessi juures ja seega
oluline osa igas vorgus. See on identiteedi verifitseermine mingi kindla tunnuse abil, mille
ettenditamist on vaja, et padseda ligi mingile teenusele voi ressursile vorgus. Selles t66s
pakutakse vilja hindamismeetod nutivorgu ja targakodu autentimisprotokollidele. Selle
meetodi abil hinnatakse protokolli viie kategooria abil - turvalisus, tohusus, auditeermine,
administreerimine ja transport. Need kategooriad jagunevad omakorda 27-ks erinevaks
kriteeriumiks, millest kolm on turvaprotokolli ametlik verifitseerimine kasutades BAN
loogikat ja ProVerifi kriiptograafilist protokolli kinnitajat. Koik eelnevalt nimetatud
kategooriad omavad erinevaid kaalusid. Iga kriteerium on hinnatud toevaartusega, kas
oige voi vale. Lopptulemus saadakse, kui nende kriteeriumite summa jagada kaalude
kogu summaga, mis annab vaartuseks hinde nullist theni, milles iiks on parim ja null
koige halvem valik nutivorgu ja targakodu vorgus autentimiseks.

Selle meetodi tulemusena on koige turvalisem 6LOWPAN protokoll, sellele jargneb
WPAS3-1 baseeruvad ithendused. Selles t66s soovitatakse samuti kaaluda X10 kui ka IrDA
protokollide kasutamist. Kui nende kasutamist jatkata, siis need protokollid vajavad
suurt arendamist. Loputoo on kirjutatud eesti keeles ning sisaldab teksti 323 lehekiiljel,
8 peatiikki, 17 Figuret, 12 tabelit.

List of Abbreviations and Terms

BAN logic - Burrows—Abadi-Needham logic
MAC - Medium Access Control

IP - Internet Protocol Address

IMSI - International Mobile Subscriber Identity
SIM - Subscriber Identification Module

PIN - Personal Identification Number

NAS - Network Access Server

PAP - Password Authentication Protocol

CHAP - Challenge Handshake Authentication Protocol
EAP - Extensible Authentication Protocol

[0oT - Internet of Things

ISP - Internet Service Provider

Kerberos - Network authentication protocol

IR - Infrared

IrDA - Infrared Data Association

IrDA SIR - IrDA Serial Infrared

IrPHY - IR Physical Layer

IrLAP - IrDA Link Access Protocol

IrLMP - IrDA Link Management Protocol
LM-MUX - Link Management Multiplexer

LSAP - Link Service Access Point

RF - Radio Frequency

TDMA - Time-Division Multiple Access

FDMA - Frequency-Division Multiple Access
CDMA - Code-Division Multiple Access

OFDMA - Orthogonal Frequency-Division Multiple Access
AKA - Authentication and Key Agreement

ETSI - European Telecommunications Standards Institute
GSM - Global System for Mobile Communication
SMS - Short Messaging Service

HSCSD - High-Speed Circuit-Switched Data
GPRS - General Packet Radio Service

SGSN - Service GPRS support node

10

GGSN - Gateway GPRS support node

EDGE - Enhanced Data Rates for GSM Evolution

CDPD - Cellular Digital Packet Data

UMTS - Universal Mobile Telecommunications System

3GPP - 3rd Generation Partnership Project

FDD - Frequency Division Duplex

TDD - Time Division Duplex

UTRA - UMTS Terrestrial Radio Access

W-CDMA - Wideband-Code Division Multiple Access

EPS-APA - Evolved Packet System Authentication and Key Agreement
ISIM - TP Multimedia Services Identity Module

LTE - Long Term Eveolution

RFID - Radio-Frequency Identification

CCM - Cipher Block Chaining

AES - Advanced Encryption Standard

CBC-MAC - Cipher Block Chaining Message Authentication Code
CTR - Counter

WPAN - Wireless Personal Area Network

AD hoc network - A network that is composed of individual devices communicating with
each other directly

Piconet - An ad hoc network that links a wireless user group of devices using Bluetooth
technology protocols

Scatternet - A type of ad hoc computer network consisting of two or more piconets
FSK - Frequency-shift keying

EHW - Energy Harvested Wireless protocol

OSI - Open Systems Interconnection model

RLC - Rolling Code

SLF - Security Level Format

CMAC - Cipher-based Message Authentication Code

AMI - Advanced Metering Infrastructure

NIST - National Institute for Standards and Technology

SEP - Smart Energy Profile

PHY - Physical Layer

CSMA-CA - Carrier-Sense Multiple Access with Collision Avoidance
ACK - Acknowledgement

11

ECDH - Elliptic Curve Diffie-Hellman

CRC - Cyclic Redundancy Check

PSK - Pre-Shared Key

MIMO - Multiple Input, Multiple Output

WEP - Wired Equivalent Privacy

WPA - WiFi Protected Access

TKIP - Temporal Key Integrity Protocol

CCMP - Counter Cipher Mode with Block Chaining Message Authentication Code
Protocol

TLS - Transport Layer Security

TTLS - Tunneled Transport Layer Security

PAP - Password Authentication Protocol

PEAP - Protected Extensible Authentication Protocol
AP - Access Point

STA - Station

AKM - Authentication and Key Management

FQDN - Fully Qualified Domain Name

UWB - Ultra-Wide Band

BSK - Binary Shift Keying

WiMAX - Worldwide Interoperability for Microwave Access
ISO - International Organization for Standardization
SS - Subscriber Station

BS - Base Station

SA - Security Association

TEK - Temporary/Transmission Encryption Key
HMAC - Hash function-based Message Authentication Code
DES - Data Encryption Standard

RSA - Rivest, Shamir, Adleman algorithm

PKM - Privacy Key Management

SDSL - Symmetric Digital Subscriber Lines

ADSL - Aymmetric Digital Subscriber Lines

LLC - Logical Link Control

PLC - Powerline Communication

UPB - Universal Powerline Bus

PPP - Point-to-Point Protocol

12

CENELEC - European Committee of Electrotechnical Standardisation
FHSS - Frequency Hopping Spread Spectrum
CCA - Clear Channel Assessment

MAU - Multiattribute Utility

VAES - Variable AES

KEK - Key Encryption Key

PAK - Primary Authorization Key

DTLS - Datagram Transport Layer Security
LAN - Local Area Network

WLAN - Wireless Local Area Network

DSK - Device-Specific Key

J-PAKE - Password Authenticated Key Exchange by Juggling
CoAP - Constrained Application Protocol
SSL - Secure Socket Layer

CA - Certificate Authority

MS - Microsoft

PPTP - Point-to-Point Tunneling Protocol
TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UEA - UMTS Encryption Algorithm

UIA - UMTS Integrity Algorithm

EIA - EPS Integrity Algorithms

EEA - EPS Encryption Algorithms

PTK - Pair-wise Temporal Key

GTK - Group Temporal Key

MKID - Master Key Identifier

MIC - Message Integrity Code

13

List of Figures

© 00 1 O Ut = W N =

e e e e e e T
N O Ot =W N = O

EAP message flow for authentication [2] 46
Bluetooth authentication dialogue [3] 84
EnOcean Teach-In Process [4] 93
EnOcean mutual authentication [4] 95
EnOcean Unilateral authentication [4] 96
WiMax PKMv1 message flow for authentication [5] 128
WiMax PKMv2 message flow for authentication [5] 129
Z-Wave Authentication Sequence [6] 145
Z-Wave S2 Bootstrapping [6] Lo 146
Thread Joiner—Joiner Router/Commissioner Sequence [7] 161
TLS Key Exchange Sequence [8] 170
DTLS Key Exchange Sequence [9] 192
GSM message flow for authentication [10] 229
UMTS and LTE Authentication [10] 242
LonTalk Authentication [10] 249
CMAC message calculation [4] 274
CBC-MAC message calculation [11] 275

14

List of Tables

© 00 1 O Ut = W N =

— = =
N = O

IEEE 802.11 Wi-Fi protocol summary [12] 34
Authentication Protocol Evaluation 1 63
Authentication Protocol Evaluation 2 65
Authentication Protocol Evaluation 3 67
Authentication Protocol Evaluation4 69
Authentication Protocol Evaluation 5 71
Authentication Protocol Evaluation 6 73
Authentication Protocol Evaluation 7 75
Authentication Protocol Evaluation 8 7
Authentication Protocol Evaluation 9 79
Authentication Protocol Scoring Results 80
Searched Terms 305

15

1 Introduction

Authentication is the verification of the identity or a subject performing an action. The
identity can be personal, logical, like a user ID and password, bound to an infrastructure
like an IP-Address, or bound to a device, like a Medium Access Control (MAC) address
or the International Mobile Subscriber Identity stored in the SIM (Subscriber Identifi-
cation Module) Card. The subject of authentication can be a service user or a service
provider. [13]

Authentication mechanisms can be classified as follows: [13]

1. Knowledge-based authentication founds on the knowledge of shared secrets, such

as PINs (Personal Identification Number) and passwords.

2. Cryptography-based authentication includes digital signatures, challenge-response
mechanisms, and message authentication codes. The user owns a private key as a

characteristics.

3. Authentication based on biometrics uses inherent informations on subjects like

fingerprint, voice, and eye characteristic.

4. Authentication based on secure tokens binds the subject to some kind of ownership,
e.g. the ownership of a smart card. It is combined mostly with cryptographic

mechanisms to transfer the information on the token to the authenticator.

5. Digitized signatures, including digital images of handwritten signatures and sig-
nature dynamics (i.e., measurements of the direction, pressure, speed, and other

attributes of a handwritten signature) are not widely used so far.

Authentication protocols are used in establishing a data-link layer connection, mostly a
dial-up connection between an end-user’s host and the Network Access Server (NAS),
but also for switched lines. In general, they allow a peer to transmit authentication
information to the authenticator until the authenticator acknowledges the peer. In PAP
(Password Authentication Protocol) the authentication is based on a pair of user name
and password. CHAP (Challenge Handshake Authentication Protocol) [14] supports a
challenge response mechanism, which is controlled by the authenticator. In a challenge
response mechanism the password does not have to be transmitted over the link. EAP

(Extensible Authentication Protocol) [15] supports authentication based on different

16

mechanisms, identity and challenge-based, but also using One Time Passwords or Generic
Token Cards. These protocols are often integrated in the protocols at the transport level,
which implement authentication-based authorization. [13]

The goal of this study is to develop a method to evaluate authentication protocols for
smart home and smart grid networks, with the scope of all prominent protocols. The
outcome should be applicable method to evaluate authentication methods for existing
and in-development smart home and smart grid protocols. As mentioned earlier this
method could lead the developers to the path of unified protocol, which would assist in
communicating with different service providers and facilities nearby, when needed in the
future.

This work will show different shortcomings and advantages of these protocols and meth-
ods of authentication, as well as help smart home and smart grid developers to choose
which protocol to implement for authentication and communication for smart home
and smart grid networks. This research will also point out some main threat vectors
for authentication in these networks from the security specialist’s point of view. It
might point out some key aspects in this field for developers, which needs to be taken
into consideration. Main contribution of this research is working applicable evaluation
method for protocol authentication methods. Another contribution is the evaluation of

the protocols used in this work.

17

2 Problem Statement

Internet of Things devices are being developed so fast, that for example smartphones
are more powerful than computers first used to authenticate themselves in network for
resource access. loT device authentication is still relevant security topic. The growth of
using IoT devices is expected to reach 100 billion in 2020. [16] With the rapid increase
of devices and users, authentication becomes more relevant than ever before. Each
device and user need unique identity which can be verified, for devices IP or MAC
address, for users username and password, token or something that would verify their
identity. With these in place, administrators and service provides, can ensure secure
communication as well as prevent devices from harmful actions. Authentication protocols
are the foundation of security in distributed systems, and therefore it is essential that
these protocols function correctly [17].

Node authentication is necessary to prevent illegal access to system. Authentication
mechanisms provide integrity and confidentiality as well, there for authentication is
necessary and must-have in used system. It is as essential as having a key to open a door
to one’s home. Without authentication, door is without a key and anyone could access it.
Smart home is a building automation, which involves the control and automation of all
its embedded technology. Smart home has appliances, lighting, heating, air conditioning,
TVs, computers, entertainment systems, big home appliances such as washers/dryers and
refrigerators/freezers, security and camera systems capable of communicating with each
other and being controlled remotely by smartphone, computer or really any Internet of
Things device. [18] According to the research [19] done by Juniper Research, there will
be 1.3 billion automation and/or monitoring smart homes by 2024.

Smart grid is an electrical grid whose operation has been transformed from a twentieth
century analog technology base to the pervasive use of Digital Technology for commu-
nications, monitoring (e.g., sensing), computation, and control. [20] Smart grid can be
also controlled remotely. With the development of smart grid networks, there are more
industrial uses for these connections and even for smart cities soon. It is expected to have
90 million units of smart grid meter installations only in the Unites States of America by
the end of this year [21].

Regarding to the use of these devices and networks, the need for security grows as well.
In the field of smart home and grid, network devices accessing network resources [22]
are not authenticated for each access of needed network resource at all or it is done in

the way, which is not considered secure nowadays [23]. For example not using relevant

18

cryptographical standards or protocols which are being used, do not support these
standards. In the past when smart homes were first developed, IoT devices were not
powerful enough to implement relevant cryptography. Now this should be in the past
and now IoT device’s processors have enough computing power to encrypt and decrypt
fast enough to hold encrypted communication and key exchanges during communication.
If there is no method to evaluate smart home and smart grid protocols, there cannot
be unified smart home or smart grid protocol for different Internet Service Providers
and electricity companies to use for interoperable communication. To evaluate protocols
and deciding the best and secure protocol to use in the network, there has to be deep
and detailed analysis of existing protocols or standard, according to which protocol will
be developed. There are comparisons between different smart home and smart grid
protocols, but not detailed enough. These comparisons have not been fully analysed.
For example [24], [25], [20], [26], [27], [28], [29] which have compared different protocols’
metrics, but not full examination.

Deeper analysis and comparison of smart home and smart grid protocols is needed. Every
category which is compared, comes with pros and cons, not just in plain text. There are
reasons for these implementations and these reasons should be analysed. Some tradeoffs
can be eliminated with other comparison and evaluation categories. For example from
which network layer protocol uses to send data or access resource or even according to
which standard cryptography is implemented and how it is done.

From comparison evaluation method should be developed to understand which protocols
to prefer in smart home and smart grid environments. This method considers all needed
features and characteristics of applied protocols. It should be applicable to any smart
home and smart grid network protocol. This evaluation method could point developers
in the way of unified protocol. This protocol could be used by Internet Service Provider
and electricity company in the region, so that nearby facilities and establishments could

function with same manufacturer’s devices and service provider.

19

3 Background

3.1 Smart Home

A smart home is a convenient home setup where appliances and devices can be automati-
cally controlled remotely from any internet-connected IoT device. Smart homes offer a
more convenient and better quality of life by introducing automated appliance control
and helpful services. Smart homes optimize user comfort by using context awareness and
predefined constraints based on the conditions of the home environment. A user can
control home appliances and devices remotely, which enables him or her to execute tasks
before arriving home.For example, most common appliances in smart home are Smart TV,
wireless speakers, lighting devices, doors, cameras, thermostats and even refrigerators.
Earliest smart home devices date back as far as 1998. Ambient intelligence systems,
which monitor smart homes, sometimes optimize the household’s electricity usage. Smart
homes enhance traditional security and safety mechanisms by using intelligent monitoring
and access control. [30] From smart home technology, the possibility of smart cities
can grow, which means that the network will grow exponentially, where the devices
are connected. When all this might be more convenient, but this means that security

problems is much bigger problem in this field than ever before.

3.2 Smart Grid

To tackle the challenges of the existing power grid, the new concept of smart grid has
risen. The smart grid can be considered as a modern electric power grid infrastructure
for enhanced efficiency and reliability through automated control, high-power converters,
modern communications infrastructure, sensing and metering technologies, and mod-
ern energy management techniques based on the optimization of demand, energy and
network availability. [31] The new smart grid needs much more complex and different
infrastructure than current one. A communications system is the key component of the
smart grid infrastructure. It is critical for electric utilities to define the communications
requirements and find the best infrastructure to handle the output data and deliver a
reliable, secure and cost-effective service throughout the total system. Different com-

munications technologies, wired, wireless and both, can be used for data transmission

20

between smart meters and electric utilities. In some instances, wireless communications
have some advantages over wired technologies, such as low-cost infrastructure and ease
of connection to difficult or unreachable areas. On the other hand, wired connections
have no interference problems. [32]

The challenge is that the smart grid systems are lacking globally accepted standards and
this situation prevents the integration of advanced applications, smart meters, smart
devices, and renewable energy sources and limits the interoperability between them [33].
Both smart home and smart grid networks are are connected to internet and allow remote
control of the connected devices, with the difference that a smart grid sends electricity

as well with the same connection.

21

4 Literature Review

There are a lot of metrics comparisons between different protocols used by smart home
and smart grid, for example [28], [26], [25], [24], [34], [27], [20], but there are no com-
parisons between all the authentication protocols used for smart grid and smart homes.
Also, no unified authentication method in this field. Authentication is mostly done once,
when connected to the network, and never again. At least most of the protocols which
are widely used, support encryption, but some are lacking in this field and should not
even be used for sensitive data in open networks.

For example Kerberos can be used for authentication in smart home and smart grid
networks. [35]. This raised questions for the author, that why has not been used Kerberos
or any other more mature authentication method for smart homes or smart grid networks
before. Now when Kerberos authentication is feasible for IoT devices to use, author will
take this as a threshold to evaluate authentication. It is even more relevant for smart grid
networks, because Kerberos is used widely in organizations’ and companies’ networks
and smart grid networks are to manage by end users, so the difficulty of Kerberos
configuration should not be an issue. Kerberos has been suggested for authentication
with biometric templates [36]. This approach provides another aspect to authentication
for network security, because biological attributes are difficult to reproduce [36]. In
resource constrained networks, for example smart grid network, constrained application
protocol has been proposed using Kerberos [29]. This proposed authentication protocol
adds less bits to original message than other used encryption schemes [29]. Due this, it
reduces packet size decreases the communication overhead, also these parameters show
that security performance is improved as well [29].

More popular and used smart home and smart grid technologies’ authentication protocols
have been selected for this work. Proposed method is applicable to any smart home and
smart grid network authentication protocol and the result will be equal to these, which

were evaluated in this work.

4.1 Literature Review Method

First goal was to find out which smart home solutions are there. For this following
search terms were used: “smart home solutions”, “smart home platforms”. Second

goal was to find out which protocols were used for these smart home solutions. The

22

4

search term used for this was “smart home protocols”. Next search terms were “wireless
smart home protocols” and “wired smart home protocols”. After receiving results for
these questions search for these protocols began. Key terms for these searches were
“name communication protocol”, “name protocol”, “name protocol for smart home”,
“name protocol in smart home networks”, “name protocol IOT”, “name protocol design”,
“name protocol standard”, “name protocol comparison”. Third goal was to find out
authentication methods of these smart home solutions. Following search terms were
used ‘“name protocol authentication”, “name system authentication”, “name solution
authentication”, “name device authentication”, “name protocol authentication in smart
home network”, “name protocol authentication with IoT devices”.

More searched terms are available in Appendix 28.

Main research gap while conducting the review was identified, which is that there is
no unified authentication method or protocol standard for smart homes or smart grid
networks. Nowadays IoT devices are being developed so fast, that these devices are
catching up with computer computing power. In the past when smart homes were first
developed, IoT devices were not powerful enough to implement relevant cryptography.
Now this should be in the past and phone processors have enough computing power to

encrypt and decrypt data fast enough to have encrypted communication.

4.2 Wireless

Wireless connection is used by a computer network which uses radio frequencies for
communication. There are different area networks, for example personal, local, wide,
metropolitan. There is also mesh, cellular, global area and space. Personal area net-
work connects devices in a personal workspace, local area network interconnects devices
in a limited area, for example inside a school, wide area network is primally used by
businesses, education and government entities, metropolitan area network is a network,
which connects users and devices in a geographic region, mesh network is a local network
that connects network nodes directly, dynamically and not hierarchically to each other.
Cellular network connects voice and data devices with capable connectivity to public
telephone network and Internet. Most of the inhabited area of Earth has been covered
with needed radio towers by service providers, global area network is composed of different
networks. There are different technologies for each of these networks, these connections

are introduced in next sections.

23

4.2.1 Infrared

The infrared (IR) is a fast wireless information transfer. IR optical medium has been
restricted to the room of operation, of being spectrally unregulated and of providing
potentially very high data rates, but optical power output is limited by eye-safety regula-
tions and a desire to limit power consumption [37]. Wireless IR is particularly suited for
short-range indoor applications [38]. The Infrared Data Association was created in 1993
to establish an open standard for short-range IR data communication, IrDA SIR (serial
infrared) protocol standard was developed. It provided a simple, low cost and reliable

means of data communication between IrDA compliant devices using point-to-point
half-duplex IR links. [37].

4.2.1.1 IrDA protocol

IrDA protocol stack consists of three mandatory layers: the physical (IrPHY) layer, the
IrLAP layer, and the IrDA Link Management Protocol (IrLMP) layer. [37]

The IrPHY layer specifies the physical hardware for the IR link including IR transmitter
and receiver, filters, and modulation and encoding hardware. [37]

The IrLAP layer is an HDLC-based data link layer providing device discovery, link
establishment and shutdown, and reliable data exchange. [37]

The IrLMP layer consists of two distinct elements. The link management multiplexer
(LM-MUX) provides a means for multiple entities on a device to independently and
simultaneously a single established IrLAP link. The layer interacts with higher levels of
the protocol using link service access points (LSAPs). [37]

IrDA functions in the range of 1-3 meters and operates over 850nm — 900 nm frequency.
Its maximum data rate is 100 MB/s and it needs a line of sight to function. [39] I'DA
does not provide any link-level security, so there is no authentication or authorization
and all information is sent unencrypted. If authentication/authorization/encryption is
needed, it has to be implemented at software level. IrDA supports only Point-to-Point
connections and requires direct line-of-sight between two IrDA devices. [3] IrDA does
not provide any link-level security, so there is no authentication or authorization, and all
information is sent unencrypted. If authentication/authorization/encryption is needed, it

has to be implemented at software level. IrDA supports only Point-to-Point connections,

24

and requires direct line-of-sight between two IrDA devices. So, in spite of lacking support
for explicit security measures, IrDA can be considered as a relatively secure technology.
On the other hand, IrDA lacks the convenience of wireless RF technologies such as
Bluetooth and WLAN.

4.2.2 Cellular

Cellular or mobile network is wireless communications network distributed over a lim-
ited land area that includes at least one fixed position transceiver. Cellular network
uses time-division multiple access (TDMA), frequency-division multiple access (FDMA),
code-division multiple access (CDMA), and orthogonal frequency-division multiple access
(OFDMA) medium access controls for communication. Cellular Networks have been
around since the 1980s. First generation (1G) networks were the first cellular networks
introduced in the 1980s. They were only capable of transmitting voice at speeds of about
9.6 kbps max, because of that limitation, 1G networks are not reviewed in this work. [40]
Cellular connections use AKA (Authentication and Key Agreement) for authentica-
tion [41]:

4.2.2.1 GSM

GSM stands for Global System for Mobile Communication. It is a digital cellular
technology used for transmitting mobile voice and data services. GSM is a standard,
which is developed for second generation mobile networks (2G). It was developed by
European Telecommunications Standards Institute (ETSI). 2G uses different data rates
in all countries, depending of the service provider. It can achieve data rate of 270
kbps. [40] EAP-SIM is an authentication protocol, which has been developed for GSM
for authenticated key access. [42]

GSM involves services :

1. Short Messaging Service (SMS): Transfer of messages between cell phones. Large

messages are truncated and sent as multiple messages.

2. High-Speed Circuit-Switched Data (HSCSD): This was the first attempt at providing
data at high speeds data over GSM, with speeds of up to 115 kbps. This technique
cannot support large bursts of data. GPRS was adopted instead of HSCSD.

25

3. General Packet Radio Service (GPRS): This technique can support large bursty
data transfers. In order to support this two new elements have to be added to
existing networks. Service GPRS support node (SGSN) for security mobility and
access control and Gateway GPRS support node (GGSN) in order to connect to

external packet switched networks.

4. Enhanced Data Rates for GSM Evolution (EDGE): The standard GSM uses GMSK
modulation. Edge uses 8-PSK modulation. GPRS and EDGE combined provide
data rates of up to 384 kbps.

5. Cellular Digital Packet Data (CDPD): CDPD is a packet based data service. CDPD
is able to detect idle voice channels and uses them to transfer data traffic without

affecting voice communications.

GSM authentication is described in Appendix 14.
4.2.2.2 UMTS

[43] Universal Mobile Telecommunications System (UMTS) is a standard for third
generation digital cellular networks. It is based on GSM. UMTS was developed by
3GPP (3rd Generation Partnership Project) and uses different data rates in all countries,
depending of the service provider. UMTS can support maximum data transfer rate of
42 MB/s. The radio access specifications provide for Frequency Division Duplex (FDD)
and Time Division Duplex (TDD) variants, and several chip rates are provided for in
the TDD option, allowing UTRA technology to operate in a wide range of bands and
co-exist with other radio access technologies. UMTS includes the original W-CDMA
scheme using paired or unpaired 5 MHz wide channels in globally agreed bandwidth
around 2 GHz, though subsequently, further bandwidth has been allocated by the ITU
on a regional basis.

UMTS uses EPS-AKA [43]:

1. A shared secret K has been established earlier between the ISIM and the Authenti-
cation Centre (AuC). The secret is stored in the ISIM.

2. The AuC of the home network generates an authentication vector AV, based on the
shared secret K and a sequence number SQN. The authentication vector contains a

random challenge RAND, authentication token AUTN, expected authentication

26

result XRES, a session key IK for integrity check, and a session key CK for

encryption.

3. The authentication vector is sent to a server. Server can also have more than one
AVs.

4. The server creates an authentication request, which contains the random challenge
RAND, and the authentication token AUTN.

5. The authentication request is sent to the client.

6. Using the shared secret K and the sequence number SQN, the client verifies
the AUTN with the ISIM. If the verification is successful, the network has been
authenticated. The client then produces an authentication response RES, using
the shared secret K and the random challenge RAND.

7. The authentication response, RES, is delivered to the server.

8. Server compares the authentication response RES with the expected response XRES.
If the two matches, the user has been successfully authenticated, and the session
keys, IK and CK, can be used for protecting further communications between the

client and the server.

UMTS authentication is described in Appendix 15.
4.2.2.3 LTE

[43] LTE (Long Term Evolution) is a standard for wireless broadband communication for
mobile devices. This standard is based on previous UMTS and GSM standards. 4G uses
different data rates in all countries, depending of the service provider. LTE data rate can
peak over 200 MB/s. LTE is different from other technologies that call themselves 4G,
because it is completely integrated into the existing cellular infrastructure. his allows
seamless handoff and complete connectivity between previous standards and LTE. [44]
The standard is designed for full-duplex operation, with simultaneous transmission and
reception. [44]

LTE uses same same authentication protocol as UMTS, which is described in Appendix
15. [10]

27

4.2.3 Radio Frequency
4.2.3.1 Dash7

Dash7 (Developers’ Alliance for Standards Harmonization of ISO 18000-7) The protocol
is intended for RFID (Radio-Frequency Identification) and wireless sensor networks.
Dash7 operates in the 433 MHz frequency band, achieves a data rate of 27.8 kbps and
reaches up to 250 m. [39] [45]

There are four different device classes defined in D7A (Dash7 Alliance Protocol). [46]

1. Blinker - Transmits and does not use a receiver.
2. EndPoint - Transmits and receives data.
3. Subcontroller - Full featured device, not always active.

4. Gateway - It connects D7A network with the other networks. It is always online.

It always listens, unless it is transmitting.

All devices in the Dash7 network support one or more of the these device classes. Dash7
supports two communication models: pull and push. The dialogues between tags and
interrogators are query-response based (pull model). This request-response mechanism
is described by the D7A query protocol. Data transfer initiated from the tags to the
gateway, on the other hand, is based on the push model. This approach is implemented as
an automated message or a beacon which is sent on specific time intervals. This system is
called Beacon Transmit Series. DASH7 defines two types of frames: a foreground frame
and a background frame. The foreground frames are regular messages which contain data
or its requests. Background frames on the are very short broadcast messages. Background
frames are used by the DTA advertising protocol for rapid ad-hoc group synchronization.
. [47], 48]

Dash7 uses CCM for authenticate-and-encrypt block cipher mode. By using 128-bit
block cipher AES, CCM can be operated. To compute the authentication field, the
CBC-MAC mode is used and to encrypt the message data, the counter (CTR) mode is
used. [48], [49].

CCM (CBC-MAC) authentication has been shown in Appendix 20.

28

4.2.3.2 Bluetooth

Bluetooth is standardized according to IEEE 802.15.1, which is based on a wireless radio
system designed for short-range. Bluetooth functions as wireless personal area network.
Two connectivity topologies are defined in Bluetooth: the piconet and scatternet. A
piconet is a Wireless Personal Area Network (WPAN) formed by a Bluetooth device
serving as a master in the piconet and one or more Bluetooth devices serving as slaves.
A frequency-hopping channel based on the address of the master defines each piconet.
A scatternet is a collection of operational Bluetooth piconets overlapping in time and
space. Two piconets can be connected to form a scatternet. [50] Bluetooth uses 2.4 GHz
frequency band, and has a maximum signal rate of 1 MB/s with the nominal range of
10 meters. It also uses FSK modulation and supports EO stream cipher, shared secret
authentication and 16-bit CRC data protection [50].

In Bluetooth Generic Access Profile, the Bluetooth security is divided into three security
modes: [51]

1. Non-secure.
2. Service level enforced security.
3. Link level enforced security.

The difference between security mode 2 and security mode 3 is that in security mode
3, the Bluetooth device initiates security procedures before the channel is established.
There are also different security levels for devices and services. For devices, there are
2 levels, "trusted device” and "untrusted device”. The trusted device obviously has
unrestricted access to all services. For services, 3 security levels are defined: services that
require authorization and authentication, services that require authentication only and
services that are open to all devices. [51]

Bluetooth authentication is described more precisely in Appendix 1.
4.2.3.3 EnOcean Serial Protocol 3

Originally developed by Siemens AG but became an open protocol at 2008 when EnOcean
Alliance was formed by EnOcean. EnOcean Serial Protocol 3 (ESP3) is based on global
standard based on International Electrotechnical Commission (IEC) standard ISO/IEC

14543-3-10 for low-energy wireless applications. ESP3 uses point-to-point communication

29

with the maximum range of 30 meters. ESP messages are protected by AES-128
encryption [52], only mutual authentication means are available. The EHW security
is implemented on the OSI presentation layer of the EHW protocol stack. A message
contains all fields that a telegram may have: the R-ORG, DATA, Sender 1D, receiver ID,
repeater counter as well as the security specific members like RLC, CMAC, SLF. [4]

EnOcean authentication is described in Appendix 2.
4.2.3.4 ANT+

ANT is a proprietary wireless sensor network protocol. ANT operates on a 2.4GHz
frequency and provides a maximum data rate of 1Mbps. [39] Its primary current use
is for device-to-device communication between Master devices, typically sensors such
as heart rate monitors or geocaching chips, and slaves, such as ANT-enabled watches
and cell phones which process sensor data. However, the protocol supports more than a
one-to-one master-slave relationship; it supports star, tree, and mesh topologies. [53]
ANT typically operates in burst mode, with 64-bit packets of information. Each packet
contains header information necessary for message transmission and a check sum to verify
message contents. Optionally, ANT can operate in an authenticated mode which allows
for the acknowledgement of messages. However, this method simply adds an ACK reply,
based on the check sum, from receiving devices; it does not add a cryptographically-secure
MACs. Additionally, ANT offers an advanced burst mode of 128-bit packet size that
draws more power. A 64-bit Network Key is required to initiate a channel. This key
only secures the creation of the channel; it does not encrypt messages sent within the
channel. ANT supports an 8-byte network key and 128-bit AES encryption for ANT
master and slave channels, but is not required by default. If further security is required,
authentication and encryption can be implemented through the application level. [53]
ANT+, by Dynastream Innovations, builds on the ANT protocol by standardizing device
profiles, which are set parameters for a list of devices, such as a stride based speed and
distance monitor. These profiles assign each type of device to a specific frequency within
the ANT band as well setting more technical details, such as the other requirements for
initiating a channel. Furthermore, in order to allow for easy interoperability between
the various sensors and possible slave devices (phones, watches, etc). ANT+ dictates a
centrally-managed scheme for Network Keys, allowing devices to easily connect to one
another at the cost of the security benefits provided by the Network Key. [53]

ANT+ is as well unencrypted by default. The protocol appears to offer confidentiality

through two mechanisms: RF frequency/Channel ID and a network key. However, this

30

system only prevents legitimate users from receiving data from unintended IoT devices.
It does nothing to prevent malicious actions, as the ANT+ frequencies are assigned by
master devices profile. Each ANT+ packet can be encrypted with a 64-bit Network
Key. However, due to the relative short length of this key, and the deterministic nature
of the encryption function, this system does not provide adequate security. threats to
confidentiality could be prevented through use of ANT+s optional encryption, AES-128
in CTR mode. Unfortunately, there are three usage cases that severely impede the usage
of ANT+s AES encryption [53]:

Multi-node networks ANT+ prefers to use multichannel communication to sup-
port multi-node network topologies. However, AES encryption cannot be used in
multichannel mode, forcing the usage of single channel communications. While sin-
gle channel schemes do support multi-node topologies, it is not power inefficient any
more, as all Master devices must operate in continuous scanning mode, which draws

significant power and should not be used for devices that have tight power constraints. [53]

Low power applications ANT+ requires the advanced burst method of commu-
nication with AES encryption, which uses again more power than the traditional burst

mode. The AES computation itself is power intensive relative to other algorithms [53].

Low cost or legacy applications In low cost applications, it may not be feasible
to implement AES. Moreover, AES capability is a recent development, so older ANT+
processors also lack the capability, forcing implementations that require backwards com-

patibility to forego AES encryption. [53]

ANT+ provides no cryptographic authentication. However, experimental setup has
been done in [54] and CMAC was found to be most efficient for the purpose of ANT+.

4.2.3.5 ZigBee SEP Protocol

ZigBee is wireless communication protocol, which is based standardized protocol of IEEE
802.15.4, which is for low-rate wireless personal area networks. It is low in power usage,

data rate, complexity and cost of deployment [31]. ZigBee can be used in home area

31

networks (HAN) for smart homes and advanced metering infrastructure (AMI), which are
systems that collect and analyse energy usage, communicate with smart meters. It has
been declared as the most suitable communication standards for smart grid residential
network domain by the U.S. National Institute for Standards and Technology (NIST) [55].
ZigBee Smart Energy Profile 2 (SEP) is an application protocol standard, which has been
developed for smart grid solutions [56]. It has advantages for gas, water and electricity
utilities, such as load control and reduction, demand response, real-time pricing programs,
real-time system monitoring, and advanced metering support [31]. Otherwise, it is much
like ZigBee itself.

ZigBee devices require very low data rate, 250 KB/s [57]. Using ZigBee protocol has
also downsides, such as low processing capabilities, small memory size, small delay
requirements and interference with other applications sharing the same transmission
medium, license free industrial, scientific and wireless local area network frequency band
from IEEE 802.11 standards, Wi-Fi, Bluetooth and Microwaves [31].

ZigBee and ZigBee SEP both use AES-128 with CCM. ZigBee uses its own network
stack. ZigBee is built on the Physical layer (PHY) and the Medium Access Control layer
(MAC), both defined by the IEEE 802.15.4-2003 standard. The MAC layer controls
access to the radio channel using a CSMA-CA mechanism. Upon this structure, ZigBee
builds the Network layer (NWK) and the Application layer (APL) which consists of the
Application Support sublayer (APS) and the ZigBee Device Object (ZDO). [58]

ZigBee SEP authentication uses EAP-TLS authentication Appendix 12. [56]

4.2.3.6 Thread

Thread is relatively new protocol, only to have been announced in 2015. Thread intends
to consolidate IoT protocols by working with other IoT alliances. Thread is based on
open standards such as IEEE 802.15.4, IPv6, 6LoWPAN | wireless mesh personal area
network [59]. This network operates at 2.4 GHz and has a data rate up to 250 kbps,
has a maximum range of 30m per hop, with a default hop limit of 36 hops with the
ability to connect over 250 devices in a single network [59]. It introduces convenient
way to build low power networks with direct access to the Internet. Thread nodes use
[Pv6 to communicate with external servers, clouds, user computer or mobile device. [60]
Basic Thread topology consists of three classes : border routers, routers and end devices.
Thread has a border router to be a gateway between wireless connection and LAN.
Thread authentication procedure is described in Appendix 7. In this method, evaluation

is done based on Joiner—Joiner Router/Commissioner sequence.

32

4.2.3.7 Z-Wave

Z-Wave, originally named ZenSys, is a proprietary IoT protocol, owned by Sigma De-
signs [59]. It uses wireless mesh network and has an operating frequency 908,42 MHz
(USA) or 868,42 MHz (EU) with the data rate of 9,62 Kbps and uses frequency shift
keying (FSK) data modulation [59]. Z-Wave has a maximum range of 30m a hop, with
maximum of 4 hops with maximum number of devices in personal area network of 232.
It uses its own smart hub to connect to the Internet [59].

Z-Wave uses collision avoidance (CA) technique for medium access control, that allows
transmission of the frame when the channel is free. The data is split into 8-bit frames.
Transfer layer administrates connection between two sequential layers, including retran-
sition, checksum screening and ACK for the successful connection. Four fundamentals
are used: single cast frame pattern, transfer acknowledge frame pattern, multicast frame
pattern and broadcast frame pattern. Application layer is responsible for distributing
the frame payload, decoding and performing commands. [61]

All devices in Z-Wave personal area network have specific identification numbers, smart
hub has with the length of 32 bit, called Home-ID and Internet of Things (IoT) devices
have 8 bit, called Node-ID. ID-s are received after devices are connected in the network.
This is done once. Smart hub’s ID is embedded into the device during the manufactur-
ing. Z-Wave’s connection to the Internet is encrypted with AES-based pre-shared key
and uses 1.1 TLS [62]. Z-Wave accomplishes secure key exchange using Elliptic Curve
Diffie-Hellman (ECDH) [62]. [63]

Z-Wave authentication has been described in Appendix 6.

4.2.3.8 Wi-Fi

Wireless fidelity, more widely known Wi-Fi includes IEEE 802.11abg standards for wire-
less local area networks. Wi-Fi allows connection to the Internet when user connects to
access point or in ad hoc network. Wi-Fi uses 2.4 GHz or 5 GHz frequency band, with
maximum signal rate of 54 MB/s. It has a nominal range of 100 meters, uses frequency
shift keying modulation or coded orthogonal frequency division multiplexing or comple-
mentary code keying. Wi-Fi supports RC4 stream cipher WEP (wired equivalent privacy)
and AES block cipher encryption , WPA2 (Wi-Fi protected access) authentication, 32-bit
redundancy check (CRC) data protection. [50] WEP is old and not used any more, WPA2
is done with pre-shared key, nowadays it is done with AES.

33

Wi-Fi uses media access control’s protocol CSMA /CA, which is connectionless and

contention based.

Protocol Frequency Channel Width MIMO Maximum data rate
802.11ax 2.4 or 5GHz | 20, 40, 80, 160MHz | Multi-user (MU-MIMO) 2.4 Gbps
802.11ac wave2 5 GHz 20, 40, 80, 160MHz | Multi-user (MU-MIMO) 1.73 Gbps
802.11ac wavel 5 GHz 20, 40, SOMHz Single User (SU-MIMO) 866.7 Mbps
802.11n 2.4/5 GHz 20, 40MHz Single User (SU-MIMO) 450 Mbps
802.11¢g 2.4 GHz 20 MHz N/A 54 Mbps
802.11a 5 GHz 20 MHz N/A 54 Mbps
802.11b 2.4 GHz 20 MHz N/A 11 Mbps
802.11 2.4 GHz 20 MHz N/A 2 Mbps

Table 1: IEEE 802.11 Wi-Fi protocol summary [12]

Since the invention of Wi-Fi in the 1990s, wireless networks have used several different
security protocols. Each new standard provided greater security, and each promised to
be easier to configure than those that came before. All of them, though, retain some
inherent vulnerabilities. In addition, as each new protocol was released some systems
were upgraded, and some were not. As a result, today there are a number of different
security protocols in use. Some of these provide a pretty good level of protection, while
some don’t. Wi-Fi has four main security protocols in use today — WEP, WPA, WPA2
and WPA3.

WEP Wired Equivalent Privacy (WEP) was the first widely spread Wi-Fi security
standard, and was approved for use way back in 1999. Though, as its name suggests, it
was supposed to offer the same level of security as wired networks, it did not. A number
of security issues were quickly found, and despite many attempts to patch them, this
standard was abandoned by the Wi-Fi Alliance in 2004. WEP was introduced as part of
the original 802.11 standard ratified in 1997. It’s pretty recognizable by its key of 10
or 26 hexadecimal digits (40 or 104 bits). In 2004, both WEP-40 and WEP-104 were
declared deprecated. There were 128-bit (most common) and 256-bit WEP variants,
but with ever increasing computing power enable attackers to exploit numerous security
flaws. This protocol is not in use for quite some time [64] and therefore not evaluated in

this work. It has been updated by newer methods and is obsolete.

34

WPA The WiFi Protected Access (WPA) protocol was developed in 2003 as a
direct replacement for WEP. It increased security by using a pair of security keys: a
pre-shared key (PSK), most often referred to as WPA Personal, and the Temporal Key
Integrity Protocol (or TKIP) for encryption. Though WPA represented a significant
upgrade over WEP. WPA became available in 2003, and it was the Wi-Fi Alliance’s
direct response and replacement to the increasingly apparent vulnerabilities of the WEP
encryption standard. The most common WPA configuration is WPA-PSK (Pre-Shared
Key). [65] [2] The keys used by WPA are 256-bit, a significant increase compared to
the 64-bit and 128-bit keys used in the WEP system. WPA included message integrity
checks and the TKIP, which employs a per-packet key system that was radically more
secure than the fixed key system used by WEP. The TKIP encryption standard was later
superseded by Advanced Encryption Standard (AES). [64] [66]. TKIP is still used, but
it’s considered obsolete after being replaced by CCMP in 2009. [66]

WPA authentication has been described in Appendix 11.

WPA2 WPA2 was developed in 2004 as the first truly new security protocol since
the invention of Wi-Fi. The major advance made by WPA2 was the usage of the
Advanced Encryption System (AES), a system used by the US government for encrypting
Top Secret information. At the moment, WPA2 combined with AES represents the
highest level of security typically used in home WiFi networks, though there remain a
number of known security vulnerabilities even in this system. WPA2 replaced WPA.
Certification began in September, 2004 and from March 13, 2006 it was mandatory for all
new devices to bear the Wi-Fi trademark. Most important upgrade is mandatory use of
AES algorithms (instead of previous RC4) and the introduction of CCMP (AES CCMP,
Counter Cipher Mode with Block Chaining Message Authentication Code Protocol, 128
Bit) as a replacement for TKIP (which is still present in WPA2 as a fallback system and
WPA interoperability). [66] WPA2-PSK (Pre-Shared Key) requires a single password
to get on the wireless network. It’s generally accepted that a single password to access
Wi-Fi is safe, but only as much as you trust those using it. [65] [2] WPA2-Enterprise
- Deploying WPA2-Enterprise requires a RADIUS server, which handles the task of
authenticating network users access. The actual authentication process is based on
the 802.1X policy and comes in several different systems labelled EAP. Because each
device is authenticated before it connects, a personal, encrypted tunnel is effectively
created between the device and the network. WPA2-Enterprise uses EAP-TLS, EAP-
TTLS/PAP and PEAP-MSCHAPv2 authentication protocols. [67] EAP-PSK has been

35

described in Appendix 11 EAP-TLS in Appendix 12, EAP-TTLS Appendix 13 in and
PEAP-MSCHAP in Appendix 9.

WPA3 In January 2018, the Wi-Fi Alliance announced WPA3 as a replacement
to WPA2. The new standard uses 128-bit encryption in WPA3- Personal mode (WPA-
PSK, pre-shared key) or 192-bit in WPA3 — Enterprise (RADIUS authentication server).
WPA3-Personal modes are defined as follows [68]:

1. WPA3-Personal only Mode

2. WPA3-Personal transition Mode
WPA3-Enterprise modes are defined as follows:

1. WPA3-Enterprise only Mode - When a BSS (basic service set) is configured in
WPA3-Enterprise only mode, PMF shall be set to required (MFPR(Management
frame protection capable) bit in the RSN (Robust Security Network). Capabilities
field shall be set to 1 in the RSNE(RSN element) transmitted by the AP (access
point)), A WPA3-Enterprise STA shall negotiate PMF when associating to an AP
using WPA3-Enterprise only mode.

2. WPA3-Enterprise transition Mode - When WPA2-Enterprise and WPA3-Enterprise
transition Mode are configured on the same BSS, PMF shall be set to capable
(MFPC bit shall be set to 1, and MFPR bit is by default set to 0 in the RSN
Capabilities field in the RSNE transmitted by the AP), A WPA3-Enterprise STA
shall negotiate PMF when associating to an AP using WPA3-Enterprise transition

mode.

3. WPA3-Enterprise 192-bit Mode - WPA3-Enterprise 192-bit Mode may be deployed
in sensitive enterprise environments to further protect Wi-Fi networks with higher

security requirements such as government, defence, and industrial.
When operating in WPA3-Enterprise 192-bit Mode [69]:

1. When WPAS3-Enterprise 192-bit Mode is used by an AP, PMF shall be set to
required (MFPR bit in the RSN Capabilities field shall be set to 1 in the RSNE
transmitted by the AP).

2. When WPA3-Enterprise 192-bit Mode is used by a STA, PMF shall be set to
required (MFPR bit in the RSN Capabilities field shall be set to 1 in the RSNE
transmitted by the STA).

36

Permitted EAP (extensible authentication protocol) cipher suites for use with WPA3-
Enterprise 192-bit Mode are [69]:

1. TLS_.ECDHE_ECDSA_WITH_AES _256_GCM_SHA384 - ECDHE and ECDSA using
the 384-bit prime modulus curve P-384

2. TLS_ ECDHE_RSA WITH_AES 256 GCM_SHA384 - ECDHE using the 384-bit
prime modulus curve P-384 - RSA > 3072-bit modulus

3. TLS.DHE_RSA_WITH_AES_256_GCM_SHA384-RSA > 3072-bit modulus - DHE
> 3072-bit modulus

When a WPA3 STA needs to choose between multiple AKM(Authentication and Key
Management)-s on a BSS, the STA shall select the AKM in priority order from the
applicable list in the subclauses below. AKM selections not listed are out of scope of

this specification.
Personal Modes [69]:

1. FT (Fast BSS transition) Authentication using SAE 00-0F-AC:9
2. SAE Authentication 00-0F-AC:8
3. FT Authentication using PSK 00-0F-AC:4
4. PSK using SHA-256 00-0F-AC:6
5. PSK 00-0F-AC:2
Enterprise Modes [69]:
1. FT Authentication using IEEE Std 802.1X (SHA 256) 00-0F-AC:3
2. Authentication using IEEE Std 802.1X (SHA256) 00-0F-AC:5
3. Authentication using IEEE Std 802.1X 00-0F-AC:1

A WPA3 STA shall perform server certificate validation when using EAP-TTLS, EAP-
TLS, EAP-PEAPv0O or EAP-PEAPv1 EAP methods. A WPA3 STA shall, when per-
forming an EAP exchange with one of the above EAP methods, determine that server

certificate validation has failed if none of the following are true:

37

1. The STA is configured with EAP credentials that include a server certificate that

is exactly equal to the certificate in the received Server Certificate message.

2. The STA is configured with EAP credentials that explicitly specify a CA root
certificate that matches the root certificate in the received Server Certificate message
and, if the EAP credentials also include a domain name, it matches the domain

name of the certificate in the received Server Certificate message.

3. The STA is configured with EAP credentials that include a domain name (FQDN
or suffix-only) that matches the domain name of the certificate in the received
Server Certificate message, and the root certificate of that certificate is present in
the STA’s trust root store.

The standards that define each EAP method specify additional conditions under which
server certificate validation is required to fail. If a WPA3 STA’s validation of a server cer-
tificate fails during an EAP exchange with EAP-TTLS, EAP-PEAPv0 or EAPPEAPvI,
the STA shall not enter into Phase 2 of the EAP exchange.

WPA3-PSK - To improve the effectiveness of PSK, updates to WPA3-PSK offer greater
protection by improving the authentication process. A strategy to do this uses Simulta-
neous Authentication of Equals (SAE) to make brute-force dictionary attacks far more
difficult for a hacker. This protocol requires interaction from the user on each authentica-
tion attempt, causing a significant slowdown for those attempting to brute-force through
the authentication process.

WPA3-Enterprise : A significant improvement that WPA3-Enterprise offers is a require-
ment for server certificate validation to be configured to confirm the identity of the server
to which the device is connecting.

EAP-PSK has been described in Appendix 11 EAP-TLS in Appendix 12, EAP-TTLS
Appendix 13in and PEAP-MSCHAP in Appendix 9.

4.2.3.9 Ultra-Wide Band

Ultra-Wide Band (UWB) is standardized over IEEE 802.15.3. Its bandwidth is over 110
Mbps (up to 480 Mbps) and can act as a wireless cable replacement of high-speed serial
bus. UWB uses 3.1-10.6 GHz frequency band and its nominal range is 10 meters. It uses
binary shift keying (BSK) channel modulation and supports advanced encryption standard
(AES) block cipher encryption, cipher block chaining message authentication code (CBC-
MAC) authentication and 32-bit cyclic redundancy check (CRC) data protection. [50] [70]
Ultra-wideband (UWB) has emerged as a technology that offers great promise to satisfy

38

the growing demand for low cost, high data rate, short range wireless transmission systems
such as digital wireless indoor and home networks provide easy connection and efficient
media exchange. UWB presents a unique opportunity to become a widely adopted radio
solution for wireless personal networking technology because of the enormous bandwidth
available, the potential for high data rates, and the prospect of small size and low power
requirements along with low implementation cost. UWDB radio transmission can legally
operate in the range 3.1 to 10.6 GHz at a transmitter power of -41.3 dBM/MHz. [71] [72]
The use of UWB technology under the FCC guidelines can provide huge capacity over
short ranges. Currently, UWB is able to support various data rates, ranging from 110 to
480 Mbps, over distances up to 10 meters. he basic idea of UWB can be traced back to
the first wireless communication system in the late 1890s. However the main concept of
UWB was developed only in early 1960s through research in time-domain electromagnetic
systems, where impulse measurement techniques were used to characterise the transient
behaviour of a certain classes of microwave networks. Similar to spread spectrum or
code division multiple-access (CDMA), UWB technology was firstly used in a military
environment and just recently introduced in the commercial market. Today, UWDB has
been considered as one of the most promising candidates for wireless communications
within a short-range RF environment and has been creating a lot of interest from research
community worldwide. [71] [72] UWB authentication has been described in Appendix 17
and CCM (CBC-MAC) authentication has been shown in Appendix 18.

4.2.3.10 WiMAX

WiIiMAX (Worldwide Interoperability for Microwave Access) is based on IEEE 802.16
standard, which speeds as high as 70 MB/s and a range of up to 48 kilometres. WiMAX
can be used for wireless networking like Wi-Fi. It uses time division multiplexing (TDM)
or frequency division duplexing (FDD). WiMAX technology operates in between 2 and
11 MHz frequency range and uses power band profiles from 100 Mw up to 2W. Data
rates can reach 2b/Hz. WiMAX connection supports EAP (extensible authentication
protocol) and DES (data encryption standard). [73] The WiMAX network is a wireless
network technology and as such its operating principle can be related and compared to
the ISO OSI reference model. As a technology, which utilizes radio wave as a transmission
medium, it spans over two bottommost layers of the ISO model: the physical layer and
the Medium Access Control (MAC) layer.

The security architecture has been defined in a dedicated Privacy Sublayer (PS)to ensure

appropriate level of security for the parties involved in a transmission. This sublayer

39

ensures parties’ authentication as well as transmitted data integrity and confidentiality.
Security Association (SA) is a container of key information utilized for ensuring secure
communication between a Subscriber Station (SS) and a Base Station (BS). There are
two types of SA: Data SA and Authorization SA. Data SA protects communication
between one or more SS-s and a BS. Data SA contains 16-bit SA identifier (SAID),
Encryption cipher to protect the data exchanged over the connection, Two TEKSs: one
for current operation and another when the current key expires, Two 2-bit key identifiers,
one for each TEK, TEK lifetime - minimum value is 30 min and the maximum value is
7 days (default is 2 days), Initialization vector for each TEK, Data SA type indicator
(primary, static, dynamic). [73] Authorization SAs contain : [74]

1. X.509 certificate identifying the subscriber station.
2. 160-bit authorization key.
3. 4-bit authorization key identifier.

4. Authorization key lifetime. The minimum value is 1 day and the value maximum
is 70 days (default is 7 days).

5. Key encryption key (KEK) for distributing TEKS.

6. Downlink hash function-base message authentication code (HMAC) key.
7. Uplink HMAC keys.

8. List of authorized data SA-s.

These are shared by the base station and the subscriber station. They are used by base
stations to configure Data SA intended for a subscriber station. [5] Data confidentiality
is ensured by symmetric Data Encryption Standard (DES), by Triple DES (3DES),
Advanced Encryption Standard (AES) and asymmetric Rivest, Shamir, Adleman (RSA)
algorithms. In order to ensure integrity of transmitted data, Keyed-Hash Message
Authentication Code (HMAC) and Cipher-Based Message Authentication Code (CMAC)
mechanisms are used. The authorization and authentication processes are implemented
based on the Privacy Key Management (PKM) protocol which uses asymmetric encryption
as well as on public key certificates. IT is also involved in the key management mechanism
which performs as an immediate consequence of a device logging on to the network and
SS authentication. [5] This protocol is based on the so-called Security Associations (SA).

This is a state specific and unique for each connection, describing its cryptographic

40

properties, such as values and validities of used cryptographic keys and used algorithms.
There are two versions of the PKM protocol. The PKMv1 is used to protect nomadic
networks (including LOS and NLOS connections), whereas the other — PKMV2 is used
to protect WiMAX networks with mobility support (IEEE 802.16¢). [5] WiMAX has two
authentication protocols, PKMv1 and PKMV2. [75] WiMAX authentication has been
described in Appendix 5.

4.2.3.11 6LOWPAN

The 6LoWPAN is a protocol based on the IPv6 protocol. It is designed to be used
over the IEEE 802.15.4 standard for low power wireless communication. The issue with
this standard is that the frames are limited to 127 bytes, including the MAC header
of 23 bytes and an optional AES encryption header of 21 bytes. With a conventional
IPv6 protocol, the remaining payload is reduced to 33 bytes for UDP and 21 bytes for
TCP. [76] 6LOWPAN supports as well AES-128. Low-power, IP-driven nodes and large
mesh network support make this technology a great option for Internet of Things (IoT)
applications. As the full name implies — “IPv6 over Low-Power Wireless Personal Area
Networks” — 6LoWPAN is a networking technology or adaptation layer that allows IPv6
packets to be carried efficiently within small link layer frames, such as those defined by
IEEE 802.15.4. [77]

6LOWPAN supports EAP-TLS, which has been described in Appendix 12. [78§]

4.3 Wired

Data transmissions are broadcast in nature for wired connections, hence, the security
aspects are critical. Confidentiality, authentication, integrity, and user intervention are

some of the critical issues in smart grid communications. [31]
4.3.1 Ethernet

Digital subscriber line (DSL) is high-speed digital data transmission technology that uses
voice telephone network. There are two types of digital subscriber lines — symmetric
(SDSL) and asymmetric (ADSL). ADSL differs from SDSL in the matter of bandwidth
and bit rate towards the customer, it is higher. Greater than 1 MHz frequencies are
nothing spectacular for asynchronous DSL enabled telephone lines [79]. This technology

is already widespread, low-cost and has high-speed data transmission. DSL can have a

41

long downtime and may not be that reliable for critical infrastructure. It requires cables
for communication, which must be installed and regularly maintained.

Fibre-optic is a communication type in telecommunications, which uses cables made
from thin transparent glass or plastic, for example to transmit telephone signals, Internet
connection and cable television signals. Broadband network access using fibre-optics is
called passive optical network. There are different techniques to transmit bandwidth
using fibre-optic cables.

Comparing DSL is much slower, but cheaper because of in place telephone lines and
poles. Passive optical network can be extended further from the provider and it does
not rely on electricity. Ethernet operates in the data link layer and the physical layer.
It is a family of networking technologies that are defined in the IEEE 802.2 and 802.3
standards. Ethernet supports data bandwidths of: 10 Mb/s, 100 Mb/s, 1000 Mb/s (1
Gb/s), 10,000 Mb/s (10 Gb/s), 40,000 Mb/s (40 Gb/s) and 100,000 Mb/s (100 Gb/s).
Ethernet standards define both the Layer 2 protocols and the Layer 1 technologies. For
the Layer 2 protocols, as with all 802 IEEE standards, Ethernet relies on the two separate
sublayers of the data link layer to operate, the Logical Link Control (LLC) and the MAC

sublayers.
4.3.1.1 G.hn

Developed by ITU-T to be a unified interoperable standard consisting of all types of
existing cabling home phone line, power line, coaxial cable and Cat-5 targeted to work
in a residential environment as well as in small and medium offices. could provide a
data rate of up to 1Gbps. G.hn can interconnect a maximum of 250 devices in one
network [80]. [39] G.hn supports AES and uses password-authenticated key agreement
protocol that ensures mutual authentication of two parties by using a Diffie-Hellman
key exchange. [81] G.hn — stands for “next generation home network technology”— is
one of several approaches to home networking that seek to make first meter connectivity
easier to handle. Tt is a unified standard [81] for wired in-home networking developed by
the International Telecommunications Union Telecom (ITU-T) Standardization Sector
G.hn allows networking of all types of digital media over unshielded telephone lines,
power lines and coaxial cable — the most common wires found in today’s homes. G.hn
is compatible with the two most widely used Ethernet home networking technologies,
wired and wireless LAN connections. G.hn allows up to 250 nodes operating in the
network. It defines several profiles to address applications with significantly different

implementation complexity. High-profile devices, like gateways, are capable of providing

42

very high throughput and sophisticated management functions. Low-profile devices,
such as home automation, have low throughput and basic management functions but
can interoperate with higher profiles. [82] G.hn authentication has been described in

Appendix 3.
4.3.1.2 LonTalk Protocol

LonTalks is a protocol for LonWorks platform, which was created for the control of
applications. LonTalks is defined by standard ISO/TEC 14908.1. It supports network
connections over twisted pair, powerlines, fibre optics, and RF. It was developed by
Echelon Corporation. Its maximum data rate is 1,25 MB/s. LonTalk does not really use
encryption, rather encodes, where any 48-bit key is a valid encryption key. [83]
LonTalk protocol is designed for communication in control networks. These networks are
characterized by short messages, very low per node cost per multiple communications
media, low bandwidth and maintenance, multi-vendor equipment and low support
costs. [84]

Authentication protocol has two asymmetric parts, the challenger and the challengee.
The authentication process is initiated by the challenger, which generates a random
number X; next, the challengee responds with Y = E(X msg), an encryption of X and
the original message using a private key; and finally the challenger compares Y with
its own version of E(X msg) and makes a pass/fail decision based on the outcome. [83]

LonTalk authentication has been described in Appendix 16.
4.3.2 Powerline Communication

Powerline communication (PLC) is a technique, which uses existing powerlines to transmit
data signals from one device to another. Due to the direct contact of the electricity
meter it is the first choice for communication [85]. PLC technology sets restrictions for
applications, because it has low bandwidth network, 20 kb/s for neighbourhood area
networks [33]. For PLC, the network topology needs the devices to be connected to the
powerlines, wiring distances can be huge and. This affects the quality of the broadcasted
signal, therefore powerlines are not suited for data transmission. However, there are
hybrid solutions with different techniques, for example GPRS, GSM to provide full

connectivity [31].

43

4.3.2.1 TUniversal Powerline Bus

UPB is a proprietary software protocol developed by Powerline Control Systems. UPB
communication is a method of reliably communicating command, control, and status in-
formation across an electrical AC powerline. The UPB powerline communication method
consists of transmitting digitally encoded information over the electrical powerline as a
series of precisely timed electrical pulses (called UPB Pulses) that are superimposed on
top of the normal AC power waveform (sine wave). Receiving UPB devices can easily
detect and analyse these UPB Pulses and pull out the encoded digital information from
them. [86] UPB messages are limited to 480 bps. The UPB addressing scheme allows for
250 systems (houses) on each transformer and 250 devices on each system. UPB Pulse
is capable travelling large distances over the powerline and even coupling through the
power transformer to the other side of a split phase power arrangement. [86] Each UPB
device must be programmed with a Unit ID. The unit ID will have a value between 1
and 250. Units out of the box from the factory will have a Unit ID assigned that equals
the manufacturer’s product ID. [87]

Each UPB product must also have a Network ID. When control signals are sent out on
the powerline, part of the signal is the Network ID. Only devices that have that specific
Network ID will respond to the signal and take the appropriate action. In real life, it is
expected that a Network ID will correspond to one home. Adjacent homes should use
different Network IDs, in order to prevent signals in one home from controlling devices in
the next door house. The appropriate range for Network IDs is 1 — 250, with the default
Network ID out of the box being FF (hex) or 255 decimal. [87]

Each UPB product must also have a Network Password. In order to program a device
or change its programming, you must know the appropriate Network ID, and then the
appropriate Network Password. If two homes side by side have the same Network ID, but
different passwords, then users in both homes will be able to control devices in each home,
but they can’t program devices in the other home, only their own. Again, this highlights
the importance of using different Network IDs for adjacent homes. The Network Password
is a four character alpha-numeric password, with each character allowed to be in the
range of 0 — F (hexadecimal). The default Network Password out of the box is 1234
(hex). [87]

While the network name has little importance, it is a means of determining which network
is being used, especially in the case of a multi-network system. The default network

name out of the box is New Network Name. However, the Network Name is not used

44

as a primary means of identification, and has little importance. UPB devices are also
programmed for a room name, and a device name. The room name is important within
various controller environments, as it organizes all devices according to rooms. However,
it is not important for manual setup. The device name merely gives the user the ability
to name a device so that it is easily understood what the device does. For example,
rather than being named New Lamp Module, the module can be named bedside table
lamp [87]

4.4 Hybrid

4.4.1 Extensible Authentication Protocol

Extensible Authentication Protocol (EAP) is an authentication framework providing
multiple authentication methods, implemented as an arbitrary authentication method
for a network access connection. [2] EAP typically is used over data link layers such as
Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its
own support for duplicate elimination and retransmission, but is reliant on lower layer
ordering guarantees. [88] EAP was originally proposed for the Point-to-Point Protocol
for an optional authentication phase after the PPP link has been established. It is also a
general purpose authentication protocol. EAP supports multiple authentication methods,
such as token card, Kerberos, one-time password, certificate, public key authentication,
and smart card. [2] EAP supports wireless and wired connections. For example TLS and
TTLS and PEAP authentication methods use EAP. [88]
When using EAP, it is not necessary to pre-negotiate a particular authentication mech-
anism at the Link Control Phase. Instead, the authenticator usually sends an initial
Identity Request followed by one or more Requests to authenticate the supplicant. A
Request contains a type field to indicate what information is being requested. The
supplicant then replies a Response for each Request. The Response also contains a type
field according to the type field in the Request. Based on the specific authentication
mechanism, a series of Requests and Responses will be exchanged. The authenticator
then either sends an authentication Success or Failure to the supplicant. [89]
Message exchange for generic Extensible Authentication Protocol is show in Figure 1:
Authentication methods of EAP-PSK has been described in Appendix 11 EAP-TLS
in Appendix 12, EAP-TTLS Appendix 13in and PEAP-MSCHAP in Appendix 9.

45

Figure 1: EAP message flow for authentication [2]

=
—_— ..

Authenticator Authentication

(AP/NAS) Server
(RADIUS)
= EAP-RequestTdentity
EAP-Response Tdentity
=
-
» 5
>
Multiple Mes ' s ;
Mmjll:‘; Zfe;eig =eE Other Systems for :
o Authentication - RADIUS
Authentication Process -
-
'—
= EAP-Success or Faihwe

46

4.4.2 KNX Protocol

KNX is open standard (EN 50090, ISO/IEC 14543) for home automation. Technology
provides manufacturer and application domain independent KNX bus that interconnect
devices that can support twisted pair, power line, RF and IP communication in an
integrated manner. KNX supports implementation of AES and Diffie-Hellman algorithms
for encryption and authentication [90]. At the end of 2003, the KNX Standard was
approved by CENELEC (European Committee of Electrotechnical Standardisation) as
the European Standard for Home and Building Electronic Systems as part of the EN
50090 Series. The KNX Standard was also approved by CEN (EN 13321-1 for media
and protocol and EN 13321-2 for KNXnet/IP). At the end of 2006, KNX was also
approved as a world standard (ISO/IEC 14543-3). In 2007, the Chinese translation of the
international standard achieved GB/Z status as GB/Z 20965. KNX is also approved in
the USA as ANSI/ASHRAE 135. Due to the flexibility of the KNX technology, a KNX
installation can easily be adapted to the changing circumstances of the user. Various
communication media (and hence transmission methods) can be used for the exchange of

data between devices in a KNX system: [91]

1. KNXTwistedPair (KNXTP) — communication via a twisted pair data cable (bus
cable)

2. KNX Powerline (KNX PL) — uses the existing 230 V mains network
3. KNX Radio Frequency (KNX RF) — communication via radio signal
4. KNX IP — communication via Ethernet

In KNX TP the bus cable supplies all bus devices with both data and power. The rated
voltage of the bus system is 24 V, while the voltage provided by the power supplies is
30 V. The data transfer rate is 9,600 bit/s, and the data travel serially, one byte at a
time, via asynchronous data transfer. Access to the KNX bus, like several other bus
systems, is random and event-driven. A telegram can only be transmitted if no other
telegram is being transmitted at the same time. [91] KNX Authentication has bee shown

in Appendix 4.

47

4.4.3 X10

X10 was invented in 1975 by Pico Electronics in Glenrothes, Scotland. It is one of the
oldest protocols in the market. It is unreliable, slow and system is difficult to install.
This protocol does not support encryption. X10 was originally designed for powerline
communication only but through time the need for wireless communication emerged. X10
signal is composed of a series of 5-volt, 121 kHz pulses having a duration of 1 millisecond,
positioned at zero crossings of the 60 Hz AC power signal. Each pulse corresponds to a
binary 1, and the absence of a pulse corresponds to a binary 0. A single X10 command
consists of a 22-bit word obtained from eleven complete cycles of the AC power signal. [92]
X10 Technology is 20 years old, it was first meant for controlling low cost lighting and
appliance control devices. X10 powerline technology transmits binary data using AM
technique. X10 enables control over lights and virtually any other electrical device from
anywhere in the house with no additional wiring, just with a controller or transmitter
in electrical outlet. The controller/transmitter could use the electrical wiring as the
transmission media to communicate with those modules. X-10 powerline technology
employs an Amplitude Modulation (AM) technique to transmit binary data. [93]

X10 technology is still in use but there is almost no documentation for X10 proto-
col. Unfortunately, this very simple and convenient technology does not support any

authentication or encryption at all.
4.4.4 Insteon

Insteon uses wireless and powerline connection and merges these connection technologies
into a single network. It operates over 915 MHz/ 869.85 MHz/921.0 MHZ wireless radio
band on a peer-to-peer network with the data rate of 180 bps. Wireless range reaches to
45 meters and the power line uses 131.65 KHz. [39]

Insteon network security is maintained at two levels. All-Linking Control ensures that
users cannot create All-Links that would allow them to control their foreign Insteon
devices, even though those devices may be repeating each other’s messages. Encryption
within extended-length messages permits completely secure communications for appli-
cations that require it. Insteon enforces ALL-Linking Control by requiring that users
have physical possession of devices in order to actually create All-Links, and by masking
Non-linked Network Traffic when messages are relayed outside the Insteon network
itself. [94] Firmware in Insteon devices does not allow them to identify themselves to

other devices unless a user physically presses a button on the device. [94]

48

If owner pushes button on both the Controller device and the Responder device then
an All-Link has been established between them. Responder will not act on commands
from an unlinked controller. All-Linking by sending Insteon messages requires knowledge
of the 3-byte addresses of Insteon devices. These addresses are unique for each device
and assigned at the factory. They are printed on the labels of the devices. Codes can
be read from the label and typed to management program. Insteon really relies on
physical security rather than communicative mechanisms. [94] For applications such as
door locks and security systems, Insteon Extended-length messages can contain encrypted
payloads. Possible encryption methods include rolling-code, managed-key, and public-key
algorithms. The encryption method that will be certified as the Insteon standard is

currently under development. [94]
4.4.5 Wireless HART Protocol

HART is an acronym for Highway Addressable Remote Transducer, which is divided to
analogue or digital industrial automation open protocol. The HART Protocol superim-
poses digital communication signals at a low level on top of the 4-20mA. This enables
two-way field communication and makes it possible for additional information beyond
just the normal process variable to be communicated to/from a smart field instrument,
and there is no interference with the 4-20mA signal. Audio frequency-shift keying (FSK),
which uses modulated tones to produce a digital signal, transfers the digital information
containing the phone number. The data transfers at a rate of 1,200 bps using 1,200 Hz
and 2,200 Hz frequencies representing a binary 1 or 0. [95] Wireless HART is a wireless
mesh network communications technology for process automation applications. It adds
wireless capabilities to the HART Protocol while maintaining compatibility with existing
HART devices, commands, and tools. Wireless HART is built upon the IEEE 802.15.4
standard for low-power mesh radio networks. It is based on Time Division Multiple Access
(TDMA). Wireless HART uses several mechanisms in order to successfully coexist in the
shared 2.4GHz ISM band: Frequency Hopping Spread Spectrum (FHSS) allows Wireless
HART to hop across the 16 channels defined in the IEEE 802.15.4 standard in order to
avoid interference. Clear Channel Assessment (CCA) is an optional feature that can be
performed before transmitting a message, the transmit power level is configurable, and a
mechanism to permit the use of certain channels, called blacklisting, is available. [96]

Wireless HART uses uses IEEE 802.15.4 compatible radios operating in the 2.4GHz
Industrial, Scientific, and Medical radio band. [97] Wireless HART security protocol uses
CCM mode in conjunction with AES-128 block cipher using symmetric keys, for the

49

message authentication and encryption. A public and private keys are used to establish a
secure communication. A new device is provisioned with a ”join key” before it attempts
to join the wireless network. The Join key is used to authenticate the device for a that
specific Wireless HART network. [98] Once the device joined the network, the Network
manager is able to provide it with Session and Network keys. The real key generation
and management is done by a Security manager, which is not specified by Wireless
HART, but the keys are distributed to the Network devices by the Network manager. A
Session key is used by the Network layer to authenticate the end-to-end communication
between two devices. Different Session keys are used for each pairwise communication.
The Data Link layer uses a Network key to authenticate messages on a one-hop basis. A
well-known Network key is used when a device attempts to join the network. [98] [96]

Each Wireless HART network includes three main elements:

1. Wireless field devices connected to process or plant equipment. These devices can
be a device with Wireless HART built in or an existing installed HART-enabled
device with a Wireless HART adapter attached to it.

2. Gateways enabling communication between the field devices and host applications

connected to a high-speed backbone or other existing plant communications network.

3. A Network Manager responsible for configuring the network, scheduling communi-
cations between devices, managing message routes, and monitoring network health.
The Network Manager can be integrated into the gateway, host application, or

process automation controller.

CCM authentication has been shown in Appendix 19.

20

5 Methodology

The main research method for this work was formal verification of protocols with ProVerif
and BAN logic, but also quantitative analysis of existing data comparing and analysing
different aspects of the categories used in evaluating protocol authentication was con-
ducted. Evaluation method is proposed from the analysis and verification of these
authentication protocols. Scope for selecting the protocols is most prominent protocols
from different connection technologies. Proposed method is applicable to all smart home
and smart grid authentication protocols. New protocols could be also developed, at least
according to this method. Proposed evaluation method checks if criterion is implemented
and required by default in the technology and authentication protocol. This method does
not rank different cryptographic algorithms or evaluate key lengths, it is for checking
if there is a mechanism or answer to this criterion. These protocols are verified with
ProVerif [99] and using BAN-Logic [17]. For evaluation method not only security criterion
were considered. Criterion derived from the analysis were split to 5 different categories:
transport, administration, audit, efficiency and security. Different criterion are derived
from previous proposed standards, best practices and feasibility. Scoring is done by the

multi-attribute utility (MAU) analysis and paired comparison.

5.1 Requirements

Requirements for this method have been chosen from previous protocol standards and

proposed methods, protocol enhancements as well as for device compliance.

Transport

1. Independence - Authentication protocol transport must be independent, it must be

compliant to be transported on any given transport protocol. [100]

2. Congestion Control - Protocol must have method for congestion control, transmis-

sion control or medium access control over shared and public channels. [101]

3. Message Matching - Criteria for checking if mechanism for matching messages MAC
or IP address based. [101]

51

4. IP - Criteria for IP4 and IP6 support. [101], [102]
Administration
1. Data Types - All types of data should be supported, integer, characters, as well as

unified character set agreed on, to prevent compliance issues. [100] [103]

Request and Response Management - Requests and Responses must be kept count
of, as well as responded. Value is true if it is implemented in that protocol and
technology. [104]

Audit

1.

Message Headers - Messages must have headers for identification and verification.
101]

2. Accounting Management - For checking if any user authentication in present. [101]
Efficiency
1. Scalability - Value is true, if at least mesh network communication is supported. [100]

2.

Constrained - For evaluating if protocol is suited for communication with low-power

narrowband devices. [104]

Security

1.

Authentication Cluster - Criteria for evaluating, if multiple authentication server
presence is supported and therefore switching authentication authorities to prevent

authentication failure.

Error Detection and Correction - Criteria for any packer or frame error detection

and correction mechanism. [104], [105]
Encapsulation - Indicator for payload encapsulation support. [100]

Encryption - Value is TRUE, if any kind of encryption mechanism is implemented
by default. [100], [102]

Certificates - Value is TRUE if user, client or server certificate based authentication
is supported. [106] [104]

52

10.

11.

12.

13.

14.

15.

16.

5.2

. Integrity Check - Indicator for frame or packet integrity mechanism presence. [104],

105]
Mutual Authentication - Criteria for detecting mutual authentication. [100], [105]

Tunnelling - Tunnelling protocol support for private network communications. [100]
[107]

Reachability - ProVerif verification for event executions and injections, value is

TRUE if attacker is not able to inject nor execute events with its own variables. [108]

Secrecy - ProVerif verification for decrypted variable and private key, shared
key and passwords secrecy, value is TRUE if attack is not able to reach to this
value. [100], [108]

Crypto-Agility - Support for multiple cryptographic algorithms or ciphers for

encryption.

Authentication Authority - Presence of at least authoritative authentication or

checking device in the network.

Key Length - Value is TRUE, if the authentication protocol key length is greater

or equal than recommended size in [109].

Authentication Synchronization - Value is TRUE if authentication is done within

time window or period, there for connections are synchronized during authentication.

108

Authenticated Access - Value is TRUE, if the device is authenticated joining the
network. [108], [102]

Authentication Logic - Verification done according to BAN logic. Result is TRUE
if the postulated goal has been reached. [108]

ProVerif

Goal of ProVerif is the verification of cryptographic protocols. Cryptographic protocols

are concurrent programs which interact using public communication channel such as

the Internet to achieve some security-related objective. Since the attacker is assumed

to have a complete control of the communication channels, the attacker may: read,

23

modify, delete, and inject all messages. The attacker is also able to manipulate data, for
example: compute the element of a tuple and decrypt messages if it has the necessary
keys. ProVerif is able to capture the behaviour of adversaries. Only protocol must be
modelled to invoke these rules. ProVerif’s input language allows such cryptographic
protocols and associated security objectives to be encoded in a formal manner, allowing
ProVerif to automatically verify claimed security properties. [110]

In ProVerif cryptography is assumed to be perfect; that is, the attacker is only able
to perform cryptographic operations when in possession of the required keys. In other
words, it cannot apply any polynomial-time algorithm, but is restricted to apply only the
cryptographic primitives specified by the user. The relationships between cryptographic
primitives are captured using rewrite rules and/or an equational theory. [110]

The ProVerif tool is able to prove reachability properties, correspondence assertions,
and observational equivalence. Proving reachability properties is ProVerif’s most basic
capability. The tool allows to capture of which terms are available for an attacker; and
secrecy of terms can be evaluated with respect to a model.

Correspondence assertions are used to capture relationships between events which are
expressed in the form “if an event e has been executed, then event e’ has been previously
executed.” [110]

These events contain arguments, which allow relationships between the arguments of
events to be studied and executed. The correspondence is insufficient to capture authen-
tication in cases where a one-to-one relationship between the number of protocol runs
performed by each participant is desired. In order to understand the results correctly, it
is important to understand the difference between the attack derivation and the attack
trace. The attack derivation is an explanation of the actions that the attacker has to make

in order to break the security property, in the internal representation of ProVerif. [110]

ProVerif can display three kinds of results:

1. RESULT|[Query] is true: The query is proved, there is no attack. In this case,
ProVerif displays no attack derivation and no attack trace. [110]

2. RESULT [Query] is false: The query is false, ProVerif has discovered an attack
against the desired security property. The attack trace is displayed just before
the result (and an attack derivation is also displayed, but you should focus on the

attack trace since it represents the real attack). [110]

o4

3. RESULT [Query] cannot be proved: This is a “don’t know” answer. ProVerif could
not prove that the query is true and also could not find an attack that proves
that the query is false. Since the problem of verifying protocols for an unbounded
number of sessions is undecidable, this situation is unavoidable. Still, ProVerif gives
some additional information that can be useful in order to determine whether the
query is true. In particular, ProVerif displays an attack derivation. By manually
inspecting the derivation, it is sometimes possible to reconstruct an attack. For
observational equivalence properties, it may also display an attack trace, even if

this trace does not prove that the observational equivalence does not hold. [110]

Unfortunately, no software is sound and bulletproof, ProVerif cannot fully model the
incrementation of the message counter and the tests performed on this counter to accept
or reject the message. Trying to prove key validity is impossible in mutual authentication
lack of third party, key correctness and ”goodness” must be an assumption to validate

even authentication [110)]

5.3 BAN logic

Burrows, Abadi and Needham (BAN) logic is the logic of beliefs , which is based on
the authentication of entities and how principals relationships evolve during the run
of a protocol. It can be used to describe the exchange of messages, explaining what
is needed and what must be considered. BAN logic does not consider all aspects of
security protocols. This logic operates at an abstract level and therefore does not consider
implementation errors or inappropriate use of cryptosystems. [111]

BAN logic is simple and because of that not a powerful tool to consider all aspects of
a protocol. Verifying protocol with BAN logic means deriving the beliefs that honest
principals correctly executing a protocol can come to, as a result of the protocol execu-
tion. [111]

In order to use BAN logic, protocol must be transformed to idealized form. After the
protocol has been taken to idealized form, postulates of the logic and the inference rules
can be applied to the formulae. The idealized protocols do not include cleartext message
parts. Cleartext communication is omitted simply because it can be forged, and so its
contribution to an authentication protocol is mostly one of providing hints as to what
might be placed in encrypted messages.

Not all clear text authentication protocols messages could be omitted in this work.

In order to analyse idealized protocols, messages are annotated with logical formulas,

95

much as in a proof in Hoare logic [112]. Formulas are written before the first message
and after each message. The main rules for deriving legal annotations are If X holds
before the message P + Q: Y then both X and @ sees Y hold afterwards and if Y can be
derived from X by the logical postulates then Y holds whenever X holds. [17]

P |= X : P believes X, or P would be entitled to believe X. In particular, the principal

P may act as though X is true. This construct is central to the logic.

P <X : P sees X. Someone has sent a message containing X to P, who can read and

repeat X (possibly after doing some decryption).

P |~ X : P once said X. The principal P at some time sent a message including
the statement X. It is not known whether the message was sent long ago or during the

current run of the protocol, but it is known that P believed X then.

P = X : P has jurisdiction over X. The principal P is an authority on X and should
be trusted on this matter. For example, a server is often trusted to generate encryption
keys properly. This may be expressed by the assumption that the principals believe that

the server has jurisdiction over statements about the quality of keys.

#(X) : The formula X is fresh; that is, X has not been sent in a message at any time
before the current run of the protocol. This is usually true for nonces, that is, expressions
invented for the purpose of being fresh. Nonces commonly include a timestamp or a

number that is used only once.

P& @ : P and Q may use the shared key K to communicate. The key K is good, in
that it will never be discovered by any principal except P or Q, or a principal trusted by
either P or Q.

X P:PhasKasa public key. The matching secret key (denoted K-1) will never be
discovered by any principal except P or a principal trusted by P. P é, Q@ :The formula X
is a secret known only to P and , and possibly to principals trusted by them. Only P and

Q may use X to prove their identities to one another. An example of a secret is a password.

{X} 4 This represents the formula X encrypted under the key K. Formally, X), is a

26

convenient abbreviation for an expression of the form X), from P. We make the realistic
assumption that each principal is able to recognize and ignore his own messages; the

originator of each message is mentioned for this purpose.

(X)y: This represents X combined with the formula Y; it is intended that Y be a
secret and that its presence prove the identity of whoever utters (X) y. In implementa-
tions, X is simply concatenated with the password Y. Notation highlights that Y plays a
special role, as proof of origin for X, in much the same way as an encryption key.

The message-meaning rules concern the interpretation of messages. Two of the three con-
cern the interpretation of encrypted messages, and the third concerns the interpretation of

messages with secrets. They all explain how to derive beliefs about the origin of messages.

For shared keys:

P|=& PP a{X},
Pl=Q|~X

That is, if P believes that the key K is shared with QQ and sees X encrypted under K,
then P believes that QQ once said X. For this rule to be sound, it must be guaranteed that
P did not send the message himself, it suffices to recall that {X}, stands for a formula
of the form {X}, from R, and to require thatR # P.

Similarly, for public keys, it can be postulated that

Pl=% QPa{X}y
Pl=Q|~X

For shared secrets, it can be postulated that

Pl=Q< PPa(X),
PEQX

That is, if P believes that the secret Y is shared with Q and sees (X), , then P
believes that Q once said X. This postulate is sound because the rules for sees (given
below) guarantee that (X), was not just uttered by P himself.

The nonce-verification rule expresses the check that a message is recent and, hence, that

the sender still believes in it:

o7

Pl=#(X),Pl=Q[~ X
P=Q|=X

That is, if P believes that X could have been uttered only recently (in the present)
and that once said X (either in the past or in the present), then P believes that Q
believes X. For the sake of simplicity, X must be “cleartext”; that is, it should not include
any subformula of the form {Y}, .

The jurisdiction rule states that if P believes that QQ has jurisdiction over X then P trusts
Q on the truth of X:

P==XP|I=Q|=X
Pl=X

If a principal sees a formula, then he also sees its components, provided he knows the

necessary keys:

Pa(X)y

P<X
Pa{X}y
P<X

Pl=Q% PPa{X},
P<X

P|=% P Pa{X},
P<X

Pl=5%Q,Pa{X}y,
P<X

Recall that{ X}, stands for a formula of the form { X}, , from R. As a side condition,
it is required that R # P; that is, {X}, is not from P himself. A similar condition
applies to {X}, . The fourth rule is justified by the implicit assumption that if P
believes that K is his public key then P knows the corresponding secret key,K_; . Note
that if P<X and P<Y it does not follow that P < (X,Y) , since this means that X and
Y were uttered at the same time.

If one part of a formula is fresh, then the entire formula must also be fresh:

P|=#(X)
P|=#(X,Y)

o8

5.4 FEvaluation

In a technology evaluation, protocols must be evaluated and scored against a set of
evaluation criteria in order to determine the best choice. Clear assessment criteria have
been produced in Evaluation criteria paragraph.Scoring is done multiattribute utility
(MAU) analysis with, within the mathematical field of decision analysis. Decision analysis
is concerned with providing a mathematical framework for decision making, so that
decision makers can rigorously and consistently express their preferences, in such a way
that results can be readily and logically explained.

Multiattribute utility (MAU) analysis is a wellestablished decision analysis method that
specifically addresses how to select one alternative from a set of alternatives, which is
selecting a particular product from a set of products in a given technology area. In
preparing for the evaluation testing, the first step was to establish the evaluation criteria.
First step for successful evaluation was to choose criterion to determine scope of this
work. Evaluation criteria is specific, Boolean, true or false, types of questions that are
clearly stated and can be clearly tested. False if a product does not meet evaluation
criteria, True if a product fully meets evaluation criteria. The final step was to assign
weights to each criterion. These weights serve as scaling factors to specify the importance
of each criterion. Because they are scaling factors that specify relative importance in the
overall set of criteria, they should be non-negative numbers that sum to 1.

Paired Comparison was used for determining the weights in this method, which is or-
dering criteria from highest importance to least importance. In the evaluation of a
security product, security is the most important category. In this method it is followed
by efficiency, auditing, administration/management, and then transport. Starting with
the alternative of highest importance, express its importance with the alternatives of
lower importance in terms of a j, =, or ; relationship.

Following relationships of importance between categories were determined. To get the

weights, following equations were calculated:

E(Transport) =1
D(Administration) > E

C(Audit) = D+ E

29

B(Ef ficiency) =C+ D+ E
A(Security) = B+C+ D+ E

Back solving these equations gave the weights for these categories:

Security(A) = 12
Ef ficiency(B) = 6
Audit(C) =3
Administration(D) = 2
Transport(E) =1

These weights are used in evaluation by multiplying True or False with the weight and
summarizing to received total and then dividing the result with total sum of weight,

which gives a result of a score from 0 to 1.

60

6 Protocol Evaluation

In the evaluation ProVerif verification could not be done for CCM, because of the
limitations of the software, also skipped are protocols which have no authentication
by default or did not have cryptography implementations, same for BAN logic. Since
BAN logic is verifying of authentication logic and ProVerif is for proving cryptographic
protocols.

Evaluation tables contain protocol criterion, their weight for calculating overall score and
the result of the criterion for that particular protocol. Results have citation to a paper
where it has been deducted or links to the sections where is the ProVerif verification
result or BAN analysis of that protocol.

If for there was no information for criterion or not clear, TRUE value could not be given.
Considering the weights in these tables, security is the most important, which are all
equally scored. Next important category is efficiency, because the evaluation is about
smart home and smart grid protocols. These two categories are the ones that matter the
most, in this method. Smart home and smart grid protocols need to have constraints
and higher scalability because of the environment and technology of these devices which
are controlled.

Each criterion is described in (requirements subsection). In the evaluation tables, links
are after the result referring to the paper that this result is based on, authentication
logic (BAN logic), secrecy (ProVerif) and reachability (ProVerif) results are linked to

the appendices of specified verification method.

61

abod 1TouU U0 PaNULIUOY)

[ez1] ‘[e7] ANYL lev] ‘[ee1] ‘[pe1] INYUL [F11] ‘[eet] ASTVA 4 Ayumoog)8uoT Loy
[ez1] “[oeT] ‘[e¥] @nyL | [e7] ‘[ser] ‘[Fer] anyL | [Le1] ‘[e¥] ‘[pr1) ‘[ee1] ANyl 1 Ay1moog £YI0TINY WOTYROTIUSINY
JUoA01d ANUL JUoA01d HNML JuoA0Ld ANYUL 1 £y1moag £501008
JUoA01d INUL JUeA01d INUL JueA01d STV z1 Aymoog Ayiqeyoeay]
[621] ANYL [821] INY.L HSTVA 4 Aymoag Surpouun,

[ce1] “[oet] ‘[ev] @nyuL | [ev] ‘[cer] ‘[Fe1] @NYL [L2T1] ASTVA z1 Aymoog TOIROTURINY [RNININ
[921] ENUL [921] @NUL [921] HNUL a1 Ayrmoog Fooy Ajidejuy
ASTVA ASTVA ASTVA 1 Aymoog $08OY1310))

[ee1] ‘[0z1] ‘[ev] AnaL | [e7] ‘[ee1] ‘[Fo1] @nyL [F11] ‘[eT1] ANYL a1 £yumoog uondAouy
[zz1] ANUL [9TT] ANML ASTVA z1 Aymoog uoryensdeous]
\ddRcieting [STT] ANYL [F1T] NUL 1 £y1moog UOI300110) PUR UOIO03O(] I0LIF
HSTVA HSTVA ASTVA 1 Aymoog 1DYSND) UOIFRIUDINY
[Te1] AsT1vd [Tz1] ASTvA [T21] ASTVA 9 Loustoyyy pouTRI)SUO)
HSTVA ANML ANML 9 Lousroyy Aypqereog
[02T] ANYL [911] ‘[02T] ANUL [F11] ‘[e¥] INYUL ¢ npny JuotoSeue]y SURUNEddY
[F¥] INYUL [STT] INYL [F1T] INUL ¢ ypny S10peo}] o8essoIy
JUOWOSCURIA
7] NUL [e1T] ANYL [cF] HNYL z UOI}RISTUTIUPY ostodsoy] pie 1sonboy]
[L17] @NYL [611] ENUL [8TT] ANUL 4 UOLYRIISTUIPY sodAT, eye(]
7] 404l ASTVA ASTVA T yr0dstedt, d1
ASTVA ASTVA ASTVA T jrodsuedy, sodAJ, uoryoauuoy)
[L11] INYL [911] “[$TT] ANUL [F1T] INUL I jrodsuedf, Surgoye]y o8essoly
[F¥] ANUL [STT] INYL [F11) ‘[e1T] ANUL T jrodsuedy, [0IUO)) UOI}SOFUO))
ASTVA ASTVA ASTVA T jtodsuedy, eouepuadopuy
(A1) DY (SLINN) DE (NSD) De SM £1080700) RIIOII))

T uoljenyearf [020301d uonjedrjuayiny T['9

62

T uoIyen[eAry (090301 UOIIRIIYUSYINY :g d[qe],

(o801 NVd) HNYL (o801 NVd) ANYL (o801 NV) INY.L 1 Aymoog O150T TOWEOIIUIOINY
[ez1] ‘[e7] ANYL lev] ‘[ee1] ‘[pe1] INYL [F11] ‘[eeT] ANYL z1 Ayumoog $SO00Y POYRIIURYINY
lezT] ‘(7] ANYL lev] ‘[cet] ‘[pe1] ANyl [F11] ‘[€aT] ANYL z1 Aymoog UOI}RZINOIYIUAS UOTYRITIUDINY
(AL1) OF (SLINN) De (INSD) HT WS £10303%)) RLIDIID)

abod snowaad woif panuruo) — g 9qe],

63

abod jTouU U0 PanULIUO))

(L] anuL [9¢] INU.L [v) ASTVA [v] ASTVA 4| £yrmoog £yuoyiny uoyesULYINY
HSTVA [9¢] ANU.L 7] ASTVA [¥] ASTVA 4| £yrmoog Ay8y-opdLrp
JUOAOIJ INYL | JUOAOL HNYL JLUIOAOI HNYL JIOAOI HNYL 4 Ayumodog £591008
JUOAOIJ HNUL | JUPAOLJ HOYUL JUOA0IJ HNUL JLIOAOL] HNYL 4 Aymoog Ayqerpesy
HSTVA l9¢] TNY.L HSTVA HSTVA 1 £yrmoog Surjouun,
(L] anuL [9¢] ANUL 7] @nuL [¥] aNy.L 4| £yrmoog UOTYROTUDINY RN
ASTVA lo¢] @ny¥L [2¢] ‘[v] anaL [eg] “[v] anuL 1 Lymoog oy AyaSouy
[vo1] @nuL l9¢] @n¥.L ASTVA HASTVA 4 Aymoog s0yeOYILID))
(2] anyL lo¢] @nyuL 7] HNY.L [F] HNU.L 1 £ymoog uonydAmug
(L] anuL STV [¥] @nuL [¥] aNy.L 4| £yrmoog uoryesdeousy
[F01] @NUL [9¢] @NYU.L 7] HNYL [F] HNUL 1 £ymoog UOI}IOIIO)) PUE UOIFIIA(] I0LIF
HASTVA HSTVA ASTVA HSTVA 4 Aymoog IDJSI]) UOTJROTIUDYILY
(2] an¥L l9¢] @NYU.L 7] HNY.L [F] HNUL 9 A>uoryyy pouresuo))
loeT] TnUL l9¢] InY¥.L ASTVA HSTVA 9 Lousroyyy Ayqereng
HSTVA HSTVA HSTVA HSTVA ¢ npny JUOUOFRUR\ SUUNOIDY
(L] anuL [96] ANUL [v] @nuL [¥] aNUL € npny SIopeap] odessoy
JUOWOSCURIA
[F01] ENYUL l9¢] ANYU.L 7] A0aL [F] 9L 4 UOTJRISIUIPY ostodsoy] pie 1sonboy]
[701] INYU.L [l Rciting HNML HNYL 4 UOTJRISTUTUPY sodA7, eRQ
[FOT] NYL HSTVA HASTVA HASTVA T yrodsuedy, d1
HSTVA ASTVA ASTVA HSTVA I j1odsurely, sodA, monoauuoy)
(2] InYL [9¢] @NUL 7] AnaL 7] anyuL I yodsued, Suryoye]y 9FessoIy
[0eT] ANY.L [9¢] ANYL [c] STVA [ce] @STVA I prodsuery, [017U0) TOTYSATU0.)
HSTVA HSTVA ASTVA HASTVA I jodsued, oouspuadopuy
peaIy, dHS e0g3iy, [RISYRIIUN) €4S UeoOQUY | [enINA €4S UeadQUH | JYSWAN A103990) RLISILI)

¢ uoljenjearf] [090j014 uorjedrjuaoyiny g9

64

¢ uorjen[ear {09001 UOTJedNIUSYINY € S[qR],

(o180 NVE) | (9180 NVE) ANY.L (o180 NVE) ANY.L (o180[NVE) INYL 1 Ayumoog o130 UOROULINY
(2] dn¥L [9¢] ANUL HSTVA HSTVA 4 Ayrmoag SSP00Y PajRdIuRINY
(2] anYL l9¢] ANYUL [F] ANUL 7] 4NYL z1 Ayumoog UOTJRZIUOIYDUAG UOIIedYUDINY
(2] An¥L l9¢] ANYUL [F] ANUL [¥] anyuL z1 Aymoog)3ua Loy
Udopﬂrﬁ nﬁmm _@@mwMN HGMGHQEQD mmm Qﬁwoogm ﬁmﬂﬁﬂZ mn.ﬁm Qﬁ@oOQm uﬂ&ﬁw\(f %HOM@@@U dE@uEU

obod snowoaud wouf ponuruoy) — ¢ 9[qe],

65

abnd 3ToU U0 PINULUOY)

[69] ‘[89] ANUL [69] ‘[89] INUL [69] ‘[89] INY.L z1 Ayumoog AYLIOINY UOLYROIUOYINY
[69] ‘[89] HNU.L [69] ‘[89] INYU.L [69] ‘[89] ANUL z1 Aymoog A8y-oydLin
JUoA01d HNML JUA01d ANYUL JueA01d HANYL a1 £y1moag £501008
JuoA01d ANML JueA01d ANYUL Juep01d HANYL z1 Aymoog Ayiqeyoeay]
[69] ‘[89] HNUL [69] ‘[89] INUL [69] ‘[89] HNUL 1 Ayumoog Surpeuung,
[69] ANUL [69] ANYL [69] ANUL z1 £yumoag UOIROIYURY Y[R\
[69] ANYL [69] ANY.L [69] ANHL 1 Aymoog Foo) Ayra8ejuy
[69] ANYL [69] INY.L [69] ANYL z1 Aymoog $03eOYILI9))
[69] ANHML [69] INML [69] ANYL 1 Ay1moog wondAmugy
[69] ‘[89] HNY.L [69] ‘[89] INYU.L [69] ‘[89] ANUL z1 Aymoog uorjemsdesuy]
[69] ‘[89] HNU.L [69] ‘[89] NU.L [69] ‘[89] NH.L 1 £y1moog UOI300110) PUR UOIO03O(] I0LIF
[69] ‘[89] HNYU.L [69] ‘[89] TNYU.L [69] ‘[89] ANUL 1 Aymoog I0JSN]) UOTYRITIUBYINY
ASTVA ASTVA ASTVA 9 Loustoyyy pouTRI)SUO)
[89] ANY.L [89] INYU.L [89] ANYU.L 9 Lousroyy Aypqereog
[89] ANHL [89] INUL [89] ANY.L ¢ npny JuoWoFeUR] SUNUNOIY
[69] ‘[89] HNYU.L [69] ‘[89] INY.L [69] ‘[89] ANUL ¢ ypny S10peo}] o8essoIy
JUOWOSCURIA
[89] ANUL [89] ANYUL [89] ANUL z UOI}RISTUTIUPY sstodsoy pie 3sonboy
[89] ANUL [89] AINML [89] ANYU.L 4 UOLYRIISTUIPY sodAT, eye(]
[89] ANYL [89] ANY.L [89] ANY.L T yr0dstedt, d1
ASTVA HSTVA ASTVA T jrodsuedy, sodAJ, uoryoauuoy)
[89] ANUL [89] ANYUL [89] ANYUL I jrodsuedy, Surpyey o8essoly
[89] ANYUL [89] NYU.L [89] ANYUL T jrodsuedy, [0IUO)) UOI}SOFUO))
[89] ANUL [89] ANYUL [89] HNYL I jrodsuery, oouopuadopuy
(eAdVHDSIN-dVAd) €VdM (STLL-dVH) £VdM (STL-dVH) €VdAM | WSPM £10897e)) RLIOII)

€ UOIjen[eAry [090301J UOIIedU_dYIMY €9

66

¢ TUOIJReN[RAG [000301J UOI}RIIJUSINY :f, 9[qR],

(01801 NVd) HNUL (01801 NVE) INU.L (01901 NVE) INUL | 2T £ymoog D150 UOEDTIUAINY
[69] ‘[89] ANU.L [69] “[89] ANUL [69] “[89] ANU.L 1 £ymoog $S900Y POYRIIIUR LY
[69] ‘[89] ANY.L [69] ‘[89] NU.L [69] ‘[89] HNYU.L 4 Ayumoog UOIRZIUOIIUAG TOTYed U Ny
[69] ‘[89] HNU.L [69] ‘[89] INU.L [69] [89] ANHL 1 Aymoog [3Sue] £o3]
(CAAVHDSIN-dVHI) €VdM | (dVd/STLL-dVH) €VdM | (STL-dVH) €VdM | WM £108030)) BLIDILI)

abod snowaad woif panuruoy) — olqe],

67

abod 1ToU U0 PaNUIIUOY)

[68] ‘[29] “[99] @nuL | [68] ‘[29] ‘[99] wnuL | [e8] ‘[re1] @nyL [ce1] an¥L 1 Ayumodog AyLIoyINy UOyRONULINY
ASTVA ASTVA ASTVA [ce1] ANUL 4 Ayumoog A8y -oydLa)
SOy FANHL JLLAOL] ANHL JLLAOL] FANHL JLLAOL] FANHL 4| £ymoag L0108
msoy HNUL JLIOA0I HNHL JUOA 01 HSTVA JUOA0Id HNHL 4 Ayumoog Aypiqeypeay
[68] ‘[29] “[99] @nuL | [68] ‘[29] ‘[99] anuL | [e8] ‘[re1] @nyUL [ce1] @NUL 1 Aymoog Surouuny,
[68] ‘[29] “[99] @ | [68] ‘[29] ‘[99] anuL | (e8] ‘[1e1] ANUL [82] @NYUL 4| Ayumoog UOTJROUOINY [N
[68] ‘[29] “[99] @naL | [68] ‘[29] ‘[99] nuL | [es] ‘[re1] @nyuL [ce1] aNY.L 4| ISISUBEIS oy AyraBoug
[68] ‘[29] ‘[99] @mnax | [68] ‘[29] ‘[99] ANU.L ASTVA [82] @NYUL 4| Ayumoog SOYROYILIO))
[68] [29] ‘[99] @ | [68] ‘[29] ‘[99] anuL | [es] ‘[1e1] ANUL [82] INY.L 4| £yrmoog uonyd£roug
[29] ‘[99] TSTVA [29] “[99] ASTVA [te1] asTvA [82] @NYUL 4| Ayumoog uoryemsdeousy
[29] “[99] ANU.L [29] “[99] ANUL ASTVA [82] @NU.L 1 £ymoog UOI}IOIIO)) PUE UOIFIIA(] I0LIF
[29] ‘[99] TNUL [29] ‘[99] ENUL HSTVA [ee1] AnUL 4| ISISUBETS IS UOLPRIHUOYINY
ASTVA ASTVA e8] “[1€1] ANYUL [82] ANUL 9 A>uoryyy pouresuo))
[29] ‘[99] TNUL [29] ‘[99] ANUL [1e1] anuL [82] ANULL 9 Louoroyyy Ayiqeress
[29] “[99] ANUL [29] “[99] ANYL ASTVA [ce1] @NUL € npuy JULUILFRURI\ SUUNODY
[29] ‘[99] TNUL [29] ‘[99] ANUL e8] ‘[reT] AnYUL [82] ANUL € npny SIopeof] o8essoy
JUOWOSCURIA
[68] [29] ‘[99] @ | [68] ‘[29] ‘[99] @nuL | [e8] ‘[re1] ANUL [ce1] INYL 4 UOIYRI}SIUTPY ostodsoy pue 1sonboy
[68] ‘[29] “[99] @nuL | [68] ‘[29] ‘[99] anuL | [e8] ‘[re1] @nyL [82] AnYL 4 UOIRI)SIUIPY sodAT, ere(
[29] ‘[99] ANUL [29] ‘[99] ANUL ASTVA ASTVA T 1r0dsuedy, dI
dSTVA dSTVA ASTVA ASTVA I j1odsurely, sodA, monoauuoy)
[29] ‘[99] ANUL [29] ‘[99] ANUL e8] ‘[re1] @NUL [82] INU.L T ja0dsuredy, Suryoye\ oFesso]y
[29] “[99] ANU.L [29] “[99] ANU.L (e8] ANY.L [8L] AnUL T jr0dsuedy, [0I}U0)) UOTYSOFUOY)
[29] “[99] ANU.L [29] “[99] ANUL [e8] ANYL [82] AnYL I ja0dsuredy, oouopuadopuy
(STLL-dVd) ¢VdM | (STL-dVd) cVdM A[eLuoT NVdMOTY WS £108090) RLIONT)

¥ uoryenfear] [000301J uoljedUdYINY F°9

68

7 UOTYeN[RAG] [00010IJ UOIIRIIULYINY :G d[qR],

(1801 NV€d) INUL | (9180 NVd) NYL | (91801 NV€d) ANUL | (P180] NVed) dNHL 4 Aymodag D150 UOTyRITIILYINY

[68] ‘[29] “[99] @naL | [68] ‘[29] ‘[99] mnuL | [e8] ‘[reT] @nyL [8L] ANYL 4 £ymoog §S000Y PojRIlURYINY

[68] “[29] ‘[99] TnuL | [68] ‘[29] ‘[99] L | e8] ‘[reT] ANUL [8L] ANYL 4 Ayumoog UOIYRZIUOIYOUAS UOIFRIJUOYINY
ASTVA HSTVA ASTVA [8L] ANYL 1 Aymoog [3Sue] £o3]

(STLL-dVH) oVdM | (STL-dVH) cVdM qreLuo] NVdMOTI TSToAN £108030)) BLIOILL))

abod snowa.d woif panuruo) — ¢ 9[qe],

69

abnd 1ToU U0 PINULIUOY)

(29] “[99] ‘[e] @naL 29] “[99] ‘[e] mnaL [29] ‘[99] ‘[e] @nYL 4 Ayumoog AYLIOUINY UOLYROIUSYINY
ASTVA ASTVA ASTVA 1 £yamoog Aym8y-o3dLan
JuoA0Ld ANML JuoA0Ld ANML JLIOA0I] FANYUL z1 £y1moag £501008
JLIOA0IJ ANML JLOA0IJ FANUL JLOA0IJ ANUL 1 £y1amoog Ayqerpeay
[68] “[29] ‘[99] TNYU.L [68] ‘[29] ‘[99] ANYL [68] [29] ‘[99] ANY.L 1 £y1moag Surppuung,
[68] “[£9] ‘[99] TNU.L [68] “[29] ‘[99] ANUL [68] “[29] ‘[99] TNUL 4 £yamoog TOTYROTUATINY [RNINIA]
[68] ‘[29] ‘[99] ANYUL [68] “[29] [99] ANYUL [68] [29] ‘[99] ANY.L 1 Aymoog Foo) Ayra8ejuy
[68] “[29] ‘[99] ANUL [68] ‘[29] ‘[99] ANYUL [68] [29] ‘[99] ANYL 1 £yamoog $08OY1310))
[68] “[29] ‘[99] ANYU.L [68] ‘[29] ‘[99] ANYUL [68] [29] ‘[99] ANY.L 1 Ay1moog wondAmugy
[29] “[99] ANUL (29] ‘[99] HNYUL (29] ‘[99] ANML 1 £yamoog uoryemnsdeous
[29] “[99] ANU.L [29] “[99] ANYU.L 9] “[99] ANUL z1 £yumodag TOI}001I0)) PUR UOIJ003d(] I0II
[29] “[99] ANUL [29] ‘[99] NY.L (29] ‘[99] ANM.L 1 £yamoog 19)SN]D) UOTYRITIIDYINY
ASTVA ASTVA ASTVA 9 Koueronyy pourensuoy)
[29] “[99] ANUL [29] ‘[99] ANY.L (29] ‘[99] ANML 9 Louetoryy Ayiqereog
[68] “[29] ‘[99] ANYU.L [68] ‘[29] ‘[99] ANY.L [63] [29] ‘[99] ANUL ¢ ypny JuomeSeURy SUNUNOIY
[29] “[99] ANUL [29] ‘[99] ANY.L (29] ‘[99] ANML ¢ ypny SI0peO] 0Fesso]\
JUOWOSCURIA
[68] ‘[29] ‘[99] ANUL [68] ‘[29] ‘[99] NY.L [63] [29] ‘[99] ANUL 4 UOTJRI}STUIPY osttodsoy pure 1sonboy
[68] ‘[29] ‘[99] NYUL [68] ‘[L9] ‘[99] ANYL [68] “[29] ‘[99] HNY.L (4 UOTJRIISIUIPY sodAT, eye(]
[29] “[99] ANUL [29] ‘[99] INYL (29] ‘[99] ANML T 110dsuely, d1
HSTVvA HSTVA ASTVA T jrodsuedy, sodAJ, uoryoauuoy)
[29] “[99] ANUL (29] ‘[99] ANYUL (29] ‘[99] ANML T yr0dstedt, Surpye\ 98esssyy
[29] ‘[99] ANYL [29] ‘[99] ANUL (29] ‘[99] ANUL I j10dsuedf, [0IUO)) UOI}SOFUO))
[29] “[99] ANUL [29] ‘[99] HNYU.L [29] ‘[99] ANUL T jr0dstedt, eouepuadopuy
MSACVAMBVAM | (ISd-dVH) eVAMBVAM | (GAIVHOSIN-dVA) cVdA | 1S £1080700) RIIOII))

G uolIjenjeA;f] [090j014 UoIjedrjuayINy G'9

70

G UOIYRN[RAY [000301J UOIJedIJUSINY :9 9[qR],

(01801 NVE) INU.L (01801 NV€E) INYU.L (01801 NVE) HNUL 4l £ymoog D150 UOEDTIUAINY

[68] “[29] ‘[99] ANYUL [68] “[29] ‘[99] ANYU.L [68] “[29] ‘[99] TNUL 4 Aymoog §S000Y PojRIlURYINY

[68] “[29] ‘[99] ANUL [68] ‘[29] [99] ANYUL [68] ‘[29] ‘[99] ANY.L 4 Ayumoog UOIYRZIUOIYOUAS UOIFRIJUOYINY
HASTVA ASTVA ASTVA 1 Aymoog [3Sue] £o3]

MSAGVAMBVAM | (ISd-dVH) eVAMBVAM | (GAdVHOSIN-AVH) TVAM | YIS £108030)) BLIDILI)

abod snowoaad woif panuruoy) — 9 9[qe],

71

abod 1ToU U0 PaNULIUOY)

HSTVA HSTVA [Fe1] @yl 4 £yrmoog £JLIOYINY UOTYRITIUDYINY
HSTVA HSTVA HSTVA 4 Lyumoog Ayqdy-oydLa)
HSTVA HSTVA JUOAOIJ HNYL 4 Lyumooeg £20109g
HSTVA HSTVA JULA0Id HNYUL a1 Lyumoog Aypiqevoesy
HSTVA HSTVA [eeT] INYL 4 £yumoog Surpouuny,
HSTVA HSTVA [ce1] INYL 4 Lyumoog UOIROYURY LY (RN
[F6] ANUL | HSTVA [Fer] anuL 4 £yumoog oy Ayrigojuy
HSTVA HSTVA [Fe1] anyL 4 Lyumoog S9YeIY1}10))
HSTVA HSTVA [ceT] INYL 41 £31moog uonydLrouy
HSTVA HSTVA [Fe1] anyL a1 £yumoog uoryernsdesus
[76] HNUL | [£6] HNUL [eeT] ANUL z1 £yrmoog UOI}091I0)) PUR UOLO930(] I0LIF
HSTVA HSTVA HSTVA a1 £yumoog I9ISTI) UOIFRIIUOYINY
[76] 40U | [£6] HNUL ANYL 9 KouonyH pourensuo)
[F6] INYL | dSTVA [16] INUL 9 AouoniyH Ayqiqereng
[F6] INUL | dSTVA ASTVA ¢ upny JuoWOBEURT SUITUN0DDY
[F6] INYL | dSTVA [ee1] ANYL € npny SIOPESJ] 9BeSSOIN
TUOWOFeURN
[76] INYUL | [€6] ANYUL [ee1] INYL e UOI}RI}STUIIIPY osttodsoy] pue 3sonboy
[76] ANYUL | HSTVA [eeT] @NYL e U0 RI}SIUIWPY sodAT, ereq
HSTVA HSTVA [eeT] INYL I jrodsuedy, dl
AN NI ANYL 1 j1odsuedy, sodAT, uorjoouuo))
[F6] INYUL | [£6] ANYUL leeT] ANYL I jrodsuedy, Sunpyeyy oFessoly
[F6] ANUL | HSTVA [16] HNYL T jrodsuedy, [01JU0)) UOTYSATUO.)
HSTVA HSTVA [16] INUL I jrodsuedy, oouopuadopuy
NOALSNI 01X 0Imdag XN MSTOAN A1039%e)) BLIOYLL)

9 UOI}eN[eA}y [090101J UOIIedU_YIMNY 9°9

72

0 TOTJRNRAG] [000301] UOI}RIIULINY :J, 9[RBT,

dSTVA HSTVA | (91801 NVE) HNYL 4 Amoog 21307 UOTYRINUSINY

CIRENY HSTVA HOYL 4 £yrmoag $S900Y PIYROITUSINY

HSTVA HSTVA [geT] TNUL 4 £y1moag UOTRZIUOIIUAS UOTYRIITUSINY

HSTVA HSTVA HSTVA el Armoog)3uaT A93]
NOHLSNI 0TX 0moag XN 1S £108071R)) RLIOYI))

abnd snowa.d woif panuuoy) —) 9[qe],

73

abod jToU U0 PanULIUO))

CIRLIND [08] ‘[z8] ANUL l9g1] “[9o] INUL | [L€1] ANUL 1 Aymoog £Huoimy uoyedUOYINY
ASTVA ASTVA ASTVA ASTVA z1 £y1moag Anp8y-oydAn
HSTVA JueA01d HNYL JUoA01d HNML ASTVA 1 £y1moog £oo100g
ASTVA FA0IJ HNYUL Juep01d HNYL ASTVA z1 £y1moag Aypiqeyoeey
HSTVA HSTVA [9¢1] “[9] NYUL STV 4 £yumoog Surfeuung,
ASTVA [08] ‘[z8] ENU.L loeT] ‘[ol @nUL | [2€1] ANUL z1 £ymoag TOIROIUSINY [eNININ
HSTVA [28] ANYL [9¢1] ‘[9] @NYL ASTVA 1 £yumoog Yooy A3taSejug
ASTVA HASTVA l9¢1] ‘[9] INYUL HASTVA z1 £ymoag S93eOYILIO))
HSTVA [08] ‘e8] NUL [9¢1] “[9] STV 1 £yumoog uondAmuy
ASTVA ASTVA [8€T] ANY.L ASTVA z1 Aymoag uoryensdeouy

[06] ANYL (28] ANHL [9¢1] ‘[o] HNYUL [Fe] ANY.L z1 Ayrmoog TO1}091I0)) PUR TOT)IRI(] I0IIF
ASTVA ASTVA ASTVA ASTVA 1 £y1moag 2SI UOLJROUDINY

[06] ANYL (28] ANY.L [9e1] ‘[o] HNYUL [Fe] ANY.L 9 Loueroyy poureI)SuOD)
ASTVA ASTVA [19] INYU.L [L€T] ANUL 9 Lousroyy Aypqereog
ASTVA ASTVA ASTVA ASTVA ¢ npny JuoweFeuR]y SUUNOY
ASTVA (e8] NY.L l9e1] ‘[9] INUL [F¢] ANUL ¢ ypny s1opeo]] o8essoI\

JTOWOSeURTN

[06] AL | [08] ‘[z8] ANYL [8€T] ANU.L [2e1] ANYL z UOI}RI}STUIIIPY sstodsoy pure 3sonboy
HSTVA [c8] STV loe1] “[9] INUL | [L€1] ANUL 4 UOLYRIISTUTWPY sodAT, eye(
ASTVA (28] INYL loeT] ‘[9] INYUL ASTVA I jr0dstuely, dl
HSTVA [28] ANUL ASTVA HSTVA T jrodsuedy, sodA T, uorpoeuuo))

[06] TNYL (28] ANUL l9¢1] ‘[9] ANYUL 1 jrodsuedy, Suryoyey o8essoy
HSTVA [28] ANUL 9] HNYL HSTVA T jrodsuedf, [0IYUO)) UOI}SOTUO))
HSTVA [c8] HNUL [9] ANYL HSTVA 1 jrodsuedy, oouspuadopuy

adn o OARA -7, +INV MISTOAN A1030%0)) CISCHING)

2, UoIjen[eAr] [000301J UOIJedIUayINy

L9

4

2, UOTyenyeAs] (000301 UOIIRIIULYINY :§ 9[RBT,

HSTVA | (91801 NVd) HNYL | (91901 NVd) HNY.L HSTVA 4 Aymoog 01307 UOROIULINY
ANYML [08] ‘[z8] HNU.L loeT] ‘[o] @NUL | [L€1] ANYUL z1 £y1moag $S900Y PATRIIURTINY
HSTVA [08] ‘[z8] ANUL [9¢1] “[9] INYL HASTVA 4 Aymoog UOTRZINOIIUAG UOTYEIIUSINY
HASTVA [08] ‘[z8] HNU.L [9¢1] ‘[9] INYUL ASTVA z1 Aymoog LEELCE IE)S|

adn uyo) QARA -7, +INV MSTOM A10899R) RLIDILI))

abnd snowa.d woif panuruoy) — § 9qe],

5

abod jTouU U0 PanULIUO))

[Te] ANY.L HSTVA HSTVA HSTVA z1 Ayumoog AJIOYINY UOTYEOIJUSYINY
ASTVA ASTVA ASTVA ASTVA z1 Aymoog Anp8y-o3dLa)
Juer01d HNML FIoA0Id HNYUL HSTVA HSTVA a1 Ayumoog £da100g
Ju0A01d HNML JULAOIJ HSTVA ASTVA ASTVA z1 Aymoog Aypiqeyoeoy
HSTVA HSTVA HSTVA HSTVA z1 Aymoog Surppuung,
[1¢] ana.L [0L] INY.L [ev1] HNYUL HSTVA z1 Ayumoog TOTYROIUSTINY [enInJy
[1¢] @NUL [02] INYL [e7] ANUL [2€] ANUL a1 Ayrmoog Fooy Ajidejuy
ASTVA ASTVA ASTVA ASTVA z1 Aymoog $03eOYILI9))
[Te] AN¥.L [0L] ANYL [e71] ANYL ASTVA a1 Ayumoog uonyd£1oug
ASTVA ASTVA 6] ANYUL HSTVA z1 Ayumoog uoryemsdesuy]
[T¢] @NUL [02] NUL [57] ANUL [2€] ANYL 1 £y1moog UOI300110) PUR UOIO03O(] I0LIF
ASTVA ASTVA ASTVA HSTVA a1 Ayumoog 1DYSND) UOIFRIUDINY
[cPT] ANYL [cL] ‘[0L] AnYL [T71] ANYL [2€] ANYL 9 Loustoyyy pouTRI)SUO)
ASTVA [02] ANYL ASTVA HSTVA 9 Louetoyyy Aypiqereng
HSTVA HSTVA HSTVA HSTVA ¢ npny JuoWoFeUR] SUNUNOIY
[0¥71] ANYL [02] NYL 6] ANYUL HSTVA ¢ ypny S10peo}] o8essoIy
JUOWOSCURIA
[6£1] ANYL [02] ANYL [¢¥] ANUL [L¢] ANUL z UOI}RISTUTIUPY ostodsoy] pie 1sonboy]
HSTVA [04] ANYL ANYL HSTVA 4 UOTRIISTUTPY sodAT, ®1RQ
ASTVA [0L] ASTVA [T21] NUL ASTVA I yr0dstedt, d1
HSTVA HSTVA HSTVA HSTVA T jrodsuedy, sodAJ, uoryoauuoy)
HNYL [02] ANYL [¢¥] HNUL HNYL I jrodsuedy, Surpyey o8essoly
HSTVA [02] INYL [¢¥] INYL [2€] ‘[¢] anYL I jrodsuedry, [013U0)) TOTYSOFUO))
ASTVA ASTVA ASTVA ASTVA T jrodsued, eouepuadepuy
a1d amn Luseq vai MISTOA A10309€)) BLIDILL)

{ UOIJeN[eA] [090101J UOIIEdU_YIMNY 89

76

Q UOIYRN[RAG [000301J UOIYedIJUSINY :6 S[qR],

(1801 NVE) INYL | (91801 NVd) HNYL | (91501 Nvd) HNY.L HSTVA 1 Ayumoog 21807 WOTRIURYINY
[1¢] ANUL [02] ANYL HSTVA HSTVA 4 Ayrmoag SSP00Y PajRdIuRINY
[Te] ANY.L [0L] ANYL [e¥1] dNYL HSTVA z1 Ayumoog UOTJRZIUOIYDUAG UOIIedYUDINY
(18] ASTVA [0L] ANY.L [e¥1] HNYUL HSTVA z1 Ayumoog y3uo Aoy
q1d amn Lused vai SO A10307€)) RLIILLD)

abod snowoad woif panuruo) — ¢ 9[qe],

7

obod 1ToU U0 PINUIIUOY)

[eL] ‘[pL] ANUL (€] ‘[pL] NUL [86] HNU.L a1 Lyrmoog fyuoyiny uoreduYINY
[eL] ‘[pL] NYUL [eL] ‘[pL] NYUL [e2] ‘[pL] ANUL z1 £y1moag Lm8y-o3dLrn
JUIBAO1] JUoA01d HNML ASTVA z1 £yrmoog L1004
Juep01d HANYL JuoAO1d HSTVA ASTVA z1 £y1moag Aypqeyoesy
ASTVA ASTVA ASTVA a1 £yrmoog Surpouun,
[eL] ‘[pL] NYUL [eL] ‘[pL] NYUL [86] ANYL a1 £yrmoag TOTYROUSINY [eNININ
[eL] ‘[pL] INUL [eL] ‘[pL] HNUL [86] NUL a1 £yumoog ¥oay A3a8ejuy
[eL] ‘[pL] NYUL [eL] ‘[pL] HNUL [86] ANY.L a1 £y1moag $03eOYILIS))
[eL] ‘[pL] nUL [eL] ‘[pL] nUL [86] INU.L a1 £yumoog uondAmugy
ASTVA ASTVA ASTVA a1 £yrmoag uoryemsdeouy]
[eL] ‘[pL] HNYUL [eL] ‘[pL] HNUL [26] ANYL 4 £ymoog UOI3001I0)) PUR UOIO030(] I0LIF
ASTVA ASTVA HSTVA a1 £ymoag I93ST[D) UOIYROIUSYINY
(6] ‘[pL] INYUL (€] ‘[pL] HNYUL 36] 9 Louoyy PaUIeI}STO))
[eL] ‘[pL] NYUL [eL] ‘[pL] NYL [86] ANU.L 9 Lousroyyy Aypqereog
ASTVA ASTVA ASTVA S npny JuowpFeUR]y SUIFUN0IOY
[eL] ‘[pL] NYUL [eL] ‘[pL] NYL [86] ANYL ¢ npny SI0peo]] o8essoI\
TUIOWOFCURN
[e2] ‘[7L] ANYL [e2] ‘[72] ANYL [86] ANUL z UOI}RI}STUTUPY osttodsoy prre 1sonboy
[eL] ‘[pL] ANUL [eL] ‘[pL] INUL [86] HNU.L 4 UOIYRIISTUIWPY sodAT, eye(
[eL] ‘[pL] NUL [eL] ‘[pL] NUL [86] ANYL T jrodstredy, dI
ASTVA HSTVA HNYL 1 jrodsuredy, sodA T, uoroauUO))
[eL] ‘[pL] NYUL [eL] ‘[pL] NUL [86] ANYL I jrodsuedy, Suryoye]y o8essoly
[eL] ‘(L] ANYUL [¢2] ‘[pL] ANUL [26] HNYL I jrodsuedy, [013U0)) UOIYSOTUO))
HSTVA HSTVA [86] INUL I jrodsuedy, oouopuadopuy
oA XVINIM TA XVINIM TUVH SSOIA PSOMN A1030ye)) BLIOYLL)

6 UOIJen[eAr [090301J UOIIedua Ny

6°9

78

6 UOIJRN[RAG 000301 UOIJRdIJULINY (] 9[qel,

(01801 NVd) ANYL | (o190] NVE) ANYL | (9180 NVd) HNUL 4 Lyumoog OIS0 UOTYEOIUS Y
(6] ‘[pL] HNYUL (6] ‘[pL] HNYUL [86] ANY.L a1 £ymoog §S900Y POYRDIIUSINY
[e2] ‘[pL] ANUL [e2] ‘[pL] ANUL [86] ANUL a1 Lymoog UOTJRZIUOIYDUAG UOIYRdIJUDINY
[eL] ‘[pL] HNYUL [eL] ‘[pL] NUL [86] ANYL a1 £ymoog LEELC eS|

AN XVINIM TAINDMd XVINIM TIVH SS9 MSTOAN £10309e)) BLIOYL)

abod snowaad woif panuruo) — (0T d[qRT,

79

6.10 Scoring Result

Protocol Total Score
6LOWPAN 0.885714286

WPA3 (EAP-TLS) 0.816326531
WPA3 (EAP-TTLS/PAP) 0.816326531
WPA3 (PEAP-MSCHAPv2) | 0.816326531

Zigbee SEP 0.771428571
KNX 0.734693878
Z-Wave 0.730612245

WPA2 (EAP-TLS)

0.718367347

WPA2 (EAP-TTLS/PAP)

0.718367347

WPA2 (PEAP-MSCHAPv2)

0.718367347

4G 0.702040816

3G 0.697959184
WIiMAX PKMv2 0.67755102
Thread 0.628571429
WIMAX PKMvl 0.628571429
WPA (EAP-PSK) 0.620408163
WPA2 (PSK) 0.620408163
G.HN 0.604081633
Wireless HART 0.587755102
Lontalk 0.579591837

EnOcean SP3 Mutual

0.546938776

EnOcean SP3 Unilateral

0.546938776

Bluetooth Low Energy (BLE)

0.53877551

UWB 0.514285714
2G 0.453061224
Dash7 0.444897959
ANT+ 0.27755102
Insteon 0.248979592
UPB 0.183673469
IrDA 0.13877551
X10 0.089795918

80

Table 11: Authentication Protocol Scoring Results

7 Conclusion

According to this method most secure protocol is 6LOWPAN, next would be WPA3
technology based authentication protocols. The same statement is true as well to the
most security criterion achieved protocol. X10 received the lowest score, following IrDA
and with Insteon and UPB tied. Powerline communication protocols were expected to
be at the bottom of the table as well. If we would take efficiency to account, then most
secure efficient, meaning both constrained and scalability criterion are True, is ZigBee
SEP and next, Z-Wave tied with KNX. Which have their own smart home technology as
well. Unfortunately this method showed that some protocols, which are widely used, are
not fit for use on the public channel, for example Insteon. Insteon uses IP network as
well and relies on physical security only, this protocol would not be fit for smart grid,
but while it is actually designed for smart homes, then it is still the users choice, which
technology he or she is going to use.

Furthermore, it is understandable that not all smart home devices do not to be authenti-
cated, for example lighting system. It is just not feasible, but to join the actual network,
where communication takes place, that is something what must be restricted. One
should not be able to control smart home or smart grid devices with just plugging into
the power line network or local are network. Nevertheless, smart home and smart grid
protocols have a long way to go, but as it seems, the higher the power consumption the
higher the security, which can also be expected. So far, there has not been technological
breakthrough in computational strength with low power processing units, but while
smart grids being developed and smart homes becoming more common than ever and a
network containing of smart homes and more do not seem so unfeasible anymore, then
this is seems like a way to go.

According to these results, it is clear that depreciation of X10 should be considered, even
IrDA at least for smart home and smart home networks. Powerline communication has a
long way to go, comparing it to radio frequency or cellular based communication.
Truly seems like the title of the most suitable communication standard for smart grid
residential network domain by the U.S. National Institute for Standards and Technology;,
which was give for ZigBee, is something that is deserved. This also verifies that with this

method authentication protocols can be evaluated and get meaningful results.

81

8 Future Uses

This method can be improved a lot, for example evaluate the computational strength
of the used encryption algorithms and elaborate key strength criteria. Also one could
evaluate the computational power of these devices which are used by one’s technology.
Even going deeper into verification of authentication, using involing more tools and
criterion.

One might even be able to develop perfect protocol according to this method. Unfor-
tunately still some external measures have to be taken into account. Sound and secure
communication protocols cannot be developed over night, just like evaluation methods.
They must be constantly improved and be used, so that they could grow into something,

that would emerge into a standard.

82

Appendices

Appendix 1 — Bluetooth Authentication

Bluetooth uses for pairing Elliptic Curve Diffie Hellman based key agreement, which is
conducted as follows [3]: Two Bluetooth devices begin communication with the same
PIN (Personal Identification Number) code that is used for generating 128-bit random
numbers. Each master and slave pair can have a different PIN code for the devices.

An initialization key is generated when Bluetooth devices meet for the first time and is
used for securing the generation of other more secure 128-bit keys. An initialization key
is derived from an unencrypted 128-bit random number IN_.RAND, an L-byte (1 <L<16)
PIN code, and a BD_ADDR. If one device has a fixed PIN code, the BD_ADDR of the
other device is used. If both devices can support a variable PIN code, the BD_ADDR of
the device that received IN_RAND is used.

The initialization key is used for encrypting a 128-bit random number LK_RAND),
which is exchanged when the next link or a key is generated. A combination key is
always dependent on two devices and therefore derived from information of both devices
(BD_ADDRA, LK_ RANDA, BD_ADDRB, LK_RANDB). It is used for challenge-response
authentication in which an asker’s knowledge of a secret link key is checked.

During each authentication, a new 128-bit unencrypted random number AU _RAND is
exchanged. The asker returns a 32-bit result (SRES, Signed Response) to the verifier.
The verifier also calculates the same SRES value and compares it to the received SRES.
If the SRES values match, the authentication is completed successfully and a 96-bit
result (ACO, Authenticated Ciphering Offset) is computed in both devices.

An ACO, a link key and an unencrypted 128-bit random number EN_RAND are used for
generating an encryption key, which is one input to the keystream generator and makes
symmetric encryption possible. Other inputs to the keystream generator are master’s
BD_ADDR and 26 bits of the master’s real-time clock. Application layer key exchange
and encryption methods can also be used to secure communication on top of the existing
Bluetooth security measures. Bluetooth security has remained almost unchanged since
the first Bluetooth 1.0 specification was released 1999. [3] Diffie-Hellman key exchange
has been explained in Appendix 3. Message exchange for simplified BLE authentication

sequence is show in Figure 2:

83

Figure 2: Bluetooth authentication dialogue [3]

Device A Device B
| PIN code l | FPIN code
; | ber excl)
'} e ‘-- w i E)) N
Iutializatoon kev (K) b Random number exc L.llli’-:‘: »f [utialization key (K}
k4 W
Unitkey (K,gor | Random number exchange [Unitkey (K,)or
combmation key (K,z) [~ 7| combmation kev (K .z)
Y Random number exchange '
Anthentication { } Anthentication

h W

ando imber exchange
Encryption key (Ko) L Random number exchange

» Encryption key (K-)

L J wy

Encryption { ___,_,h_"""""_...--— Encryption

84

ProVerif Verification

set traceDisplay = long.

query attacker (DecryptedText4).

query attacker(DecryptedText5).

query attacker(LongTermKey).

query attacker(LongTermKeyBitstring).

query x:bitstring; event(Decryption4(x)).

query x:bitstring; event(Decryption5(x)).

query x:bitstring; event(Decryption4(x)) ==> event(Decryption5(x)).

query x:bitstring; inj—event(Decryption4(x)) ==> inj—event(Decryption5(x))

type pin.

type key.

type nonce.

type realkey.

free DeviceAPin:pin[privatel].

free DeviceBPin:pin[privatel].

free c: channel.

free Hello:bitstring [privatel].

free HelloACK, TESTACK:bitstring [privatel].

free RAND_NR:bitstring[privatel].

free INITKEY1:key[private].

free AU_RAND_B:bitstring[private].

free INITKEY2:key[privatel].

free AU_RAND_A, TEST:bitstring[privatel].

free DecryptedTextl, DecryptedText2, DecryptedText3,DecryptedText4,
DecryptedText5, LongTermKeyBitstring:bitstring[privatel].

free LongTermKey:realkey[privatel].

fun InitKeyGen(bitstring, bitstring, pin): key.

fun SRESGen(key, bitstring, bitstring): bitstring.

fun NonceToRealKey(bitstring):realkey [typeConverter].

reduc forall x: key, y: bitstring, z:bitstring ; SRESDeGen(SRESGen(x, y, z
), Yy, z) = X.

fun Encryption(bitstring, key): nonce.
reduc forall x: bitstring, y: key; Decryption(Encryption(x, y), y) = Xx.

fun RealEncryption(bitstring, realkey): nonce.

85

reduc forall x: bitstring, y: realkey; RealDecryption(RealEncryption(x, y)
, YY) = X

event RandomNumberGeneration(bitstring).
event RandomNumberGeneration2(bitstring).
event InitKeyGenerationl(key).

event InitKeyGeneration2(key).

event SRESGeneration(bitstring).

event SRESMATCH(bitstring).

event Decryptionl(bitstring).

event Decryption2(bitstring).

event Decryption3(bitstring).

event Decryption4(bitstring).

event Decryption5(bitstring).

event LongTermKeyGeneration(realkey).

let DeviceB1 =
new RAND_NR2:bitstring;
let AU_RAND_B = RAND_NR2 in
event RandomNumberGeneration2 (AU_RAND_B);
out(c, AU_RAND_B).

let DeviceAl =
in(c, AU_RAND_B:bitstring);
new RAND_NR:bitstring;
let AU_RAND_A = RAND_NR in
event RandomNumberGeneration (AU_RAND_A);
out(c, AU_RAND_A).

let DeviceB2 =
in(c, AU_RAND_A:bitstring);
let INITKEY2 = InitKeyGen(AU_RAND_B, AU_RAND_A, DeviceBPin) in
event InitKeyGeneration2 (INITKEY2);
let SRESB = SRESGen (INITKEY2,AU_RAND_B,AU_RAND_A) in
event SRESGeneration(SRESB);
out(c, SRESB).

let DeviceA2 =
in(c, SRESB:bitstring);
let INITKEY1 = InitKeyGen(AU_RAND_B, AU_RAND_A, DeviceAPin) in
event InitKeyGeneration1 (INITKEY1);
if SRESB = SRESGen (INITKEY1,AU_RAND_B,AU_RAND_A) then

86

event SRESMATCH(SRESB);
out(c, Encryption(Hello, INITKEY1))

else

let DeviceB3 =
in(c, EncryptedTextl:nonce);
let DecryptedTextl = Decryption(EncryptedTextl, INITKEY2) in
event Decryptionl(DecryptedText1);
out(c, Encryption(HelloACK, INITKEY2)).

let DeviceA3 =

in(c, EncryptedText2:nonce);

let DecryptedText2 = Decryption(EncryptedText2, INITKEY1) in
event Decryption2(DecryptedText2);

new LongTermKey:realkey;

new LongTermKeyBitstring:bitstring;

let LongTermKey = LongTermKey in
event LongTermKeyGeneration(LongTermKey);

out(c, Encryption(LongTermKeyBitstring, INITKEY1)).

let DeviceB4 =
in(c, EncryptedText3:nonce);
let DecryptedText3 = Decryption(EncryptedText3, INITKEY2)
in
event Decryption3(DecryptedText3);
out(c, RealEncryption(TEST, NonceToRealKey(DecryptedText3)

).

let DeviceA4 =
in(c, EncryptedText4:nonce);
let DecryptedText4 = RealDecryption(EncryptedText4,
LongTermKey) in
event Decryption4(DecryptedText4);
out(c, RealEncryption(TESTACK, LongTermKey)).

let DeviceB5=
in(c, EncryptedText5:nonce);

87

let DecryptedText5 = RealDecryption(EncryptedText5, NonceToRealKey
(DecryptedText3)) in
event Decryption5(DecryptedText5).

process (!DeviceAl|!DeviceB1|!DeviceA2|!DeviceB2|!DeviceA3|!DeviceB4]|!
DeviceA4|! DeviceB5)

88

Proverif Result

Process:
(
{1}!
{2}in(c, AU_RAND_B_35: bitstring);
{3}new RAND_NR_36: bitstring;
{4}1let AU_RAND_A_37: bitstring = RAND_NR_36 in
{5}event RandomNumberGeneration(AU_RAND_A_37);
{6}out(c, AU_RAND_A_37)
) |«
{7}!
{8}new RAND_NR2: bitstring;
{9}1let AU_RAND_B_38: bitstring = RAND_NR2 in
{10} event RandomNumberGeneration2 (AU_RAND_B_38);
{11}out(c, AU_RAND_B_38)
) |«
{12}
{13}in(c, SRESB: bitstring);
{14}1let INITKEY1.39: key = InitKeyGen (AU_RAND_B ,AU_RAND_A ,DeviceAPin)
in
{15}event InitKeyGeneration1 (INITKEY1.39);
{16}if (SRESB = SRESGen (INITKEY1.39,AU_RAND_B,AU_RAND_A)) then
{17}event SRESMATCH (SRESB) ;
{18}out(c, Encryption(Hello,INITKEY1.39))
) | (
{19}!
{20}in(c, AU_RAND_A_40: bitstring);
{21}1let INITKEY2_.41: key = InitKeyGen(AU_RAND_B,AU_RAND_A_40,
DeviceBPin) in
{22} event InitKeyGeneration2 (INITKEY2_ 41);
{23}1et SRESB_42: bitstring = SRESGen(INITKEY2_41,AU_RAND_B,
AU_RAND_A_40) in
{24} event SRESGeneration(SRESB_42);
{25}out(c, SRESB_42)
) |«
{26}!
{27}in(c, EncryptedText2: nonce);
{28}1let DecryptedText2_43: bitstring = Decryption(EncryptedText2,
INITKEY1) in
{29}event Decryption2(DecryptedText2_43);
{30} new LongTermKey_44: realkey;

89

{31}new LongTermKeyBitstring_45: bitstring;
{32}1let LongTermKey_46: realkey = LongTermKey_44 in
{33}event LongTermKeyGeneration(LongTermKey_46);
{34}out(c, Encryption(LongTermKeyBitstring_45,INITKEY1))
) | (
{35}!
{36}in(c, EncryptedText3: nonce);
{37}1let DecryptedText3_47: bitstring = Decryption(EncryptedText3,
INITKEY2) in
{38}event Decryption3(DecryptedText3_47);
{39}out(c, RealEncryption(TEST,DecryptedText3_47))
) | (
{40}!
{41}in(c, EncryptedText4: nonce);
{42}1let DecryptedText4_48: bitstring = RealDecryption(EncryptedText4,
LongTermKey) in
{43}event Decryption4(DecryptedText4_48);
{44}out(c, RealEncryption(TESTACK,LongTermKey))
) |«
{45}!
{46}in(c, EncryptedText5: nonce);
{47}1let DecryptedText5.49: bitstring = RealDecryption(EncryptedText5,
DecryptedText3) in
{48} event Decryption5(DecryptedText5.49)

— Query not attacker(DecryptedText4[])
nounif attacker (Encryption(DecryptedText2_337 ,INITKEY1[]))/—5000
Completing...
Starting query not attacker (DecryptedText4[])
RESULT not attacker(DecryptedText4[]) is true.
Query not attacker(DecryptedText5[])
nounif attacker (Encryption(DecryptedText2_732,INITKEY1[]))/—5000
Completing...
Starting query not attacker (DecryptedText5[])
RESULT not attacker(DecryptedText5[]) is true.
— Query not attacker (LongTermKey[1)
nounif attacker(Encryption(DecryptedText2_1131,INITKEY1[]))/—5000
Completing...
Starting query not attacker(LongTermKey[])
RESULT not attacker(LongTermKey[]) is true.
—— Query not attacker(LongTermKeyBitstring[])

90

nounif attacker (Encryption(DecryptedText2_153@ ,INITKEY1[]))/—5000

Completing...

Starting query not attacker(LongTermKeyBitstring[])

RESULT not attacker(LongTermKeyBitstring[]) is true.

— Query not event(Decryption4(x_50))

nounif attacker (Encryption(DecryptedText2_.1929 ,INITKEY1[]))/—5000

Completing...

Starting query not event(Decryption4(x_50))

RESULT not event(Decryption4(x_50)) is true.

— Query not event(Decryption5(x_51))

nounif attacker(Encryption(DecryptedText2_.2333,INITKEY1[]))/—5000

Completing...

Starting query not event(Decryption5(x_51))

RESULT not event(Decryption5(x_51)) is true.

— Query event(Decryption4(x_52)) ==> event(Decryption5(x_52))

nounif attacker(Encryption(DecryptedText2_.2737 ,INITKEY1[]))/—5000

Completing...

Starting query event(Decryption4(x_52)) ==> event(Decryption5(x_52))

RESULT event(Decryption4(x_52)) ==> event(Decryption5(x_52)) is true.

— Query inj—event(Decryption4(x_53)) ==> inj—event(Decryption5(x_53))

nounif attacker (Encryption(DecryptedText2_3141,INITKEY1[]))/—5000

Completing...

Starting query inj—event(Decryption4(x_53)) ==> inj—event(Decryption5(x_53
))

RESULT inj—event(Decryption4(x_53)) ==> inj—event(Decryption5(x_53)) is
true.

91

Appendix 2 — EnOcean Authentication

To configure the information needed for the secure communication in operation mode
a teach-in procedure mode must be executed. Within the teach-in procedure following
information are transmitted to one another : the encryption method, key, rolling code,
rolling code size and CMAC size that will be used during the operation mode. The
teach-in procedure can be set up to be an unidirectional or bidirectional process. [4]

In the case of unidirectional security teach-in Device B does not send a teach-in message.
Firstly, the Device B must be set in its learn mode to accept the teach-in messages from
Device A.The Device A sends the security teach-in message whenever its specific trigger
is activated.After reception of the teach-in message the Device B stores the security
parameters of Device A: these parameters include the Device’s A private key, KEYSs,
current RLC, RLCs, RLCs size and CMACs size and way of encrypting information. The
KEYs and RLCs can be sent encrypted by the sender using the so called pre-shared key,
PSKs. [4]

If the process is bidirectional the Device B, a gateway, for instance, answers back with a
security teach-in message. This teach-in message contains as receiver-ID the ID of the
Device A. If the Device B encrypts its teach-in message it will make use of the same PSKs
key of the Device A. In the second security teach-in depicted in the picture the Device
B informs the Device A of its own KEYg and RLCg and CMACg. The format of the
teach-in messages sent by Device A and Device B are the same. The teach-in delivered
by Device B must occur in worst case 500ms after the reception of the teach-in sent
by Device A. The Device’s A time-out for the reception of a teach-in is 750ms. Before
Device A sends the security teach-in message the receiver is put into teach-in mode —
active listening for teach-in messages. The teach-in method is limited typically to 30
seconds. After this time-out the module leaves its teach-in mode, and returns typically
to its operation mode. Teach-in messages are not accepted until the next activation of
the teach-in mode. [4]

EnOcean SP3 Teach-in message exchange is shown in Figure 3. Methods for the teach-in

for execution
1. Over wireless from the transmitter to the receiver
2. Over serial interface to the receiver through a third party

Execution over serial interface or other methods are not part of this specification and are

rather application / use case specific. The execution of the teach-in process via wireless

92

Figure 3: EnOcean Teach-In Process [4]

Device A Device B

e.g. Sensor e.g. Gateway

|

I |

I <«— Learn mode
|

Teach-in trigger . ON
Teach-in
Teach-in
-
Learn mode
OFF
<+

leads to two possibilities:

1. Teach-in message is sent in plain text (no encryption in the information is performed).

This means that any listener can eavesdrop the information.

2. Parts of the teach-in message are encrypted. For the encryption a pre-shared key is
used. Encrypted are the RLC and KEY. Message structure is listed below. Details

about this execution can be found in chapter

This secure teach-in message only transfers the security specific data. To enable profile
interpretation a profile-teach-in message (EEP or GP) has to be transmitted after the
secure teach-in. This profile teach-in is conducted already secured (encrypted) using the
decrypted key that the secure teach-in transmitted. With the information contained in
the teach-in SLF byte the receiver is informed about the details of the secure messages
in operation mode: what fields, how long they are, and what are the applied security
algorithms. The pre-shared key of the sender module must have been communicated to
the receiver (a gateway) via serial interface in advance. The pre-shared key is typically

written on a sticker on the sender module. The pre-shared key is not transmitted through

93

the EnOcean air interface. If pre-shared key is used RLC and KEY will be encrypted
using the VAES encryption. [4]

Authentication based on CMAC Authentication can be:

1. Unilateral — only one of the communication partners is authenticated and his out-

going communication is protected against replay attacks — one Nonce is exchanged.

2. Mutual — both communication partners are authenticated and both communication

ways are protected against replay attacks — two Nonce are exchanged

For CMAC computing the EnOcean security concept uses the Payload of telegrams. The
Nonce is used during CMAC computing too and so ensures that the Nonce is connected
with the exchanged message and its data content. So becomes the data content also valid
for limited time. EnOcean Security concept uses the VAES for data encryption. The
Nonce can be also used for the initialization vector for the VAES process. This way a
random element is added to the VAES process. This is required if Nonce is a random

number and no RLC is used. [4] The Nonce can be:
1. Used during CMAC counting
2. Used as initialization vector for VAES (encryption/decryption) counting

Nonce represents the challenge and has to be therefore exchanged between the communi-
cation partners via air interface. The Challenge and Response does not have to encrypt
and can be transferred plaintext. The CMAC algorithm represents the securing element.

During data communication following constrains are applied:

1. Bidirectional communication can be only executed after mutual authentication.

Both parties can trigger the authentication.

2. Unidirectional communication is unilateral authenticated. The emitter of the data
flow is authenticated and only the emitter can trigger the communication. The

challenge is provided by the consumer of the data.
For Nonce one can use:

1. Random number 32 bit — here is critical that the generator process is not predictable,

does not repeat same sequences and is equally spread on the defined range

2. Simple incrementing, non-repeating sequence 32-bit number

94

Figure 4: EnOcean mutual authentication [4]

sd Mutual authentication with RND as NDNCE/

Devics A

I
I
I
Send Challange to B ITl

RORG-MS DATA[RND)

Device B

{max 500 ms}

I
I
I
I
I
1 RORG-MS DATA(RND, CMAC)

: : jf.“.elnulate response CMAC
{RND A, RND B)

et

e _) Authenticate CMAG(RND A, RND B)

{B is authenticated}

Send Response to B with Payload

Calculate response CMAG(PAYLOAD,
le— — — RND B, RND A)

RORG-SEC (PAYLOAD. CMAC)

{max 500 ms}

Send Response and Challange to A

Fr-————- - - ==

{max 500 ms}

::: ~ T authenticate CMAC
(PAYLOAD, RND B, RND A}

{A is authenticated}

e — j Process Payload from A[)

opt /

[B wants to send data to A

RORG-SEC[PAYLOAD, CMAC)

| _ JCalculate cMAC

{PAYLOAD, RND A, RND B)

Authenticate CMAC and

process Payload

Send Payload to A

95

Figure 5: EnOcean Unilateral authentication [4]

sd Unilateral authentication with RND as NONCE /

Device A

Device B

RORG-MS DATA()

I
|
|
|
Send RequestforChalIangeLlJ
|
|
|
|

{max 500 ms} - _ _| Generate RND B()
RORG-MS DATA(RND)

— — — Calculate Response CMAC
. __l(pavLoAD rRNDB) {Max500 ms}

N Send Challange to A
|
|
|
|
|
|

RORG-SEC(PAYLOAD, CMAC)

Send Response to B
with Payload

- _| Authenticate CMAC
(PAYLOAD, RND B)

({A is authenticated})

|
< _ _| Process Payload from A()

96

EnOcean SP3 mutual authentication message exchange is shown in Figure 4 and unilateral
authentication Figure 5.

If the message gets lost the process is considered as failed. Repeated transmissions of
request for challenge or challenge messages between identical communication partners
shall restart the authentication process and cancel any previous ongoing validation.
The PSK code (16 bytes) comes together with an extra byte, CRC checksum, which is
used to verify that the installer writes correctly the 16-byte PSK code into the Device
B. The checksum uses a CRCS8 algorithm. Data can be encrypted using the standard
high-security AES128 algorithm with cipher-block chaining (CBC). Constant data will
result in constant encrypted information. [4]

CMAC authentication is showin in Appendix 18

97

Mutual Authentication ProVerif Verification

set traceDisplay = long.

query attacker (SecureKey).
query attacker(SecureKeyBitstring).

query attacker(DecryptedData4).
query attacker(DecryptedData5).

query x:bitstring; event(DataDecryption4(x)).
query x:bitstring; event(DataDecryption5(x)).
query x:bitstring; event(DataDecryption4(x)) ==> event(DataDecryption5(x))

query x:bitstring; inj—event(DataDecryption4(x)) ==> inj—event(
DataDecryption5(x)).

free c:channel.
type nonce.
type key.

type seckey.

free N:nonce [privatel].

fun CMAC(bitstring, bitstring, bitstring, nonce, key):nonce.
reduc forall x: bitstring, y: bitstring, v: bitstring, z: nonce, c:key;
DeCMAC (CMAC(x,y,v,z,c),c) = X.

free CMACDatal: nonce [privatel].
free CMACData2: nonce [private].

free Data:bitstring [privatel].

free RND_NumberA:bitstring [private].

free RND_NumberB:bitstring [private].

free Counterl:bitstring[privatel].

free Counter2:bitstring[private].

free Hello, HelloAck, SecureKeyBitstring:bitstring[privatel].
free KeyA:key [privatel].

free KeyB:key[privatel].

free SecureKey:seckey[privatel].

free Place_Holder:bitstringl[privatel].

98

free EncryptedData:noncelprivate].

free EncryptedData2:noncel[private].

free DecryptedData:noncel[private].

free DecryptedData2:noncel[private].

free DecryptedData4:bitstring[privatel].
free DecryptedData5:bitstring[privatel].
free DecryptedCMACDatal:bitstring[privatel].
free DecryptedCMACData2:bitstring[privatel].
free DecryptedCMACData3:bitstring[private].
free DecryptedCMACData4:bitstring[privatel].

fun KeyBasedEnc(nonce, key): nonce.

reduc forall x: nonce, y: key; KeyBasedDecryption(KeyBasedEnc(x,y),y)

fun SecureKeyEncryption(bitstring, seckey): nonce.

reduc forall x: bitstring, y: seckey; SecureKeyDecryption(
SecureKeyEncryption(x,y),y) = x.

fun bitstringTOseckey(bitstring):seckey.

event TimerStartl1_1(bitstring).

event TimerStartl1_2(bitstring).

event TimerStart1_3(bitstring).

event TimerStartl_4(bitstring).

event TimerStart2_1(bitstring).

event TimerStart2_2(bitstring).

event TimerStart2_3(bitstring).

event TimerStart2_4(bitstring).

event DataDecryptionl(nonce).

event DataDecryption2(nonce).

event DataDecryption3(nonce).

event DataDecryption4(bitstring).
event DataDecryption5(bitstring).
event CMACDataDecryptionl (bitstring).
event CMACDataDecryption2(bitstring).
event CMACDataDecryption3(bitstring).
event CMACDataDecryption4(bitstring).
event CMACDataDecryption5(bitstring).
event DecryptedSecureKey (seckey).

let DeviceAl =

new RND_NumberA:bitstring;
new Counterl:bitstring;

99

new KeyA:key;
let Counterl = Counterl in
event TimerStartl1_1(Counterl);
out(c, CMAC(Data, RND_NumberA, Place_Holder, N, KeyA)).

let DeviceB1 =

in(c, CMACDatal:nonce);

new KeyB:key;

let DecryptedCMACDatal = DeCMAC(CMACDatal, KeyB) in
event CMACDataDecryptionl (DecryptedCMACDatal);

new RND_NumberB:bitstring;

new Counter2:bitstring;

let Counter2 = Counter2 in
event TimerStart2_1(Counter2);

out(c, CMAC(Data, RND_NumberA, RND_NumberB, N, KeyB)).

let DeviceA2 =
in(c, CMACData2:nonce);
if Counter2 <> Counter2 then

(
0
)
else
(
let DecryptedCMACData2 = DeCMAC(CMACData2, KeyA) in
event CMACDataDecryption2(DecryptedCMACData2);
new Counterl:bitstring;
let Counterl = Counterl in
event TimerStartl1_2(Counterl);
out(c, KeyBasedEnc (CMAC(Data, RND_NumberA, RND_NumberB,
KeyA))
).

let DeviceB2 =
in(c, EncryptedData:nonce);
if Counter2 <> Counter2 then

(

)

else

(

new Counter2:bitstring;

100

N,

KeyA),

let

let Counter2 = Counter2 in
event TimerStart2_2(Counter2);

let DecryptedData = KeyBasedDecryption(EncryptedData, KeyB) in
event DataDecryptionl(DecryptedData);

let DecryptedCMACData3 = DeCMAC(DecryptedData, KeyB) in
event CMACDataDecryption3(DecryptedCMACData3);

out (c, KeyBasedEnc (CMAC(Data, RND_NumberA, RND_NumberB, N, KeyB),KeyB)

)

DeviceA3 =

in(c, EncryptedData2:nonce);

if Counter1 <> Counterl1 then

(

)

else

(

new Counterl:bitstring;

let Counterl = Counterl in
event TimerStart1_3(Counterl);

let DecryptedData2 = KeyBasedDecryption(EncryptedData2, KeyA) in
event DataDecryption2(DecryptedData2);

let DecryptedCMACData4 = DeCMAC(DecryptedData2, KeyA) in
event CMACDataDecryption4 (DecryptedCMACData4);

new SecureKeyBitstring:bitstring;

new SecureKey:seckey;

out (c, KeyBasedEnc (CMAC(SecureKeyBitstring, RND_NumberA, RND_NumberB,

N, KeyA),KeyA))

let DeviceB3 =

in(c, EncryptedData3:nonce);
if Counter2 <> Counter2 then

(

)

else

(

new Counter2:bitstring;
let Counter2 = Counter2 in

101

event TimerStart2_3(Counter2);

let DecryptedData3 = KeyBasedDecryption(EncryptedData3, KeyB) in

event DataDecryption3(DecryptedData3);

let DecryptedCMACData5 = DeCMAC(DecryptedData3, KeyA) in
event CMACDataDecryption5(DecryptedCMACData5);

let SecureKey = bitstringTOseckey(DecryptedCMACData5) in
event DecryptedSecureKey(SecureKey);

out(c, SecureKeyEncryption(Hello, SecureKey))

).

let DeviceA4 =

in(c, EncryptedData4:nonce);
if Counter1l <> Counterl then

(

)

else
(
new Counterl:bitstring;
let Counterl = Counterl in
event TimerStartl1_4(Counterl);
let DecryptedData4 = SecureKeyDecryption(EncryptedData4,
) in
event DataDecryption4 (DecryptedData4);
out(c, SecureKeyEncryption(HelloAck, SecureKey))

let DeviceB4 =
in(c, EncryptedData5:nonce);

if Counter2 <> Counter2 then

(

)

else
(
new Counter2:bitstring;
let Counter2 = Counter2 in
event TimerStart2_4(Counter2);

SecureKey

let DecryptedData5 = SecureKeyDecryption(EncryptedData5,

SecureKey) 1in
event DataDecryption5(DecryptedData5)

102

process

(

!DeviceAl|!DeviceB1|!DeviceA2|!DeviceB2|!DeviceA3|!DeviceA4|! DeviceB4

103

Mutual Authentication ProVerif Result

Process:
(
{1}!
{2}new RND_NumberA_34: bitstring;
{3}new Counter1.35: bitstring;
{4}new KeyA_36: key;
{5}1let Counter1.37: bitstring = Counter1_.35 in
{6}event TimerStartl1_1(Counter1_.37);
{7}out(c, CMAC(Data,RND_NumberA_34 ,Place_Holder ,N,KeyA_36))
) |«
{8}!
{9}in(c, CMACDatal1_38: nonce);
{10} new KeyB_39: key;
{11}1let DecryptedCMACDatal.40: bitstring = DeCMAC(CMACDatal1.38,KeyB_39
) in
{12}event CMACDataDecryptionl(DecryptedCMACDatal_40);
{13}new RND_NumberB_41: bitstring;
{14}new Counter2_42: bitstring;
{15}1let Counter2_43: bitstring = Counter2_42 in
{16}event TimerStart2_1(Counter2_43);
{17}out(c, CMAC(Data,RND_NumberA , RND_NumberB_41,N,KeyB_39))
) |«
{18}!
{19}in(c, CMACData2_44: nonce);
{20}if (Counter2 <> Counter2) then
Q
else
{21}1let DecryptedCMACData2_45: bitstring = DeCMAC(CMACData2_44,
KeyA) 1in
{22} event CMACDataDecryption2(DecryptedCMACData2_45);
{23} new Counter1.46: bitstring;
{24}1let Counter1_.47: bitstring = Counter1_.46 in
{25}event TimerStarti1_.2(Counter1_.47);
{26}out(c, KeyBasedEnc(CMAC(Data,RND_NumberA ,RND_NumberB ,N,KeyA),
KeyA))
) |«
{27}!
{28}in(c, EncryptedData_48: nonce);
{29}if (Counter2 <> Counter2) then
0

104

else
{30} new Counter2_49: bitstring;
{31}1let Counter2.50: bitstring = Counter2_49 in
{32}event TimerStart2_2(Counter2.50);
{33}1let DecryptedData_51: nonce = KeyBasedDecryption (
EncryptedData_48 ,KeyB) in
{34} event DataDecryptionl(DecryptedData_51);
{35}1let DecryptedCMACData3_52: bitstring = DeCMAC(DecryptedData_51
,KeyB) in
{36}event CMACDataDecryption3(DecryptedCMACData3_52);
{37}out(c, KeyBasedEnc(CMAC(Data,RND_NumberA ,RND_NumberB ,N,KeyB),
KeyB))
(
{38}!
{39}in(c, EncryptedData2.53: nonce);
{40}if (Counter1 <> Counterl) then
0
else
{41} new Counter1_.54: bitstring;
{42}1let Counter1.55: bitstring = Counter1.54 in
{43}event TimerStarti1_.3(Counter1.55);
{44}1let DecryptedData2_56: nonce = KeyBasedDecryption(
EncryptedData2_53,KeyA) in
{45}event DataDecryption2(DecryptedData2_56);
{46} 1let DecryptedCMACData4_57: bitstring = DeCMAC(
DecryptedData2_56 ,KeyA) in
{47}event CMACDataDecryption4(DecryptedCMACData4.57);
{48}new SecureKeyBitstring_58: bitstring;
{49} new SecureKey_59: seckey;
{50}out(c, KeyBasedEnc(CMAC(SecureKeyBitstring_58 ,RND_NumberA,
RND_NumberB ,N,KeyA) , KeyA))
(
{51}!
{52}in(c, EncryptedData4: nonce);
{53}if (Counter1 <> Counter1) then
Q
else
{54}new Counter1.60: bitstring;
{55}1let Counter1.61: bitstring = Counter1.60 in
{56}event TimerStartl_4(Counter1_61);
{57}1let DecryptedData4_62: bitstring = SecureKeyDecryption(
EncryptedData4 ,SecureKey) in

105

{58}event DataDecryption4(DecryptedData4_62);
{59}out(c, SecureKeyEncryption(HelloAck, SecureKey))
) |«
{60}!
{61}in(c, EncryptedData5: nonce);
{62}if (Counter2 <> Counter2) then
0
else
{63} new Counter2_.63: bitstring;
{64}1let Counter2_64: bitstring = Counter2_63 in
{65}event TimerStart2_4(Counter2_64);
{66}1let DecryptedData5.65: bitstring = SecureKeyDecryption(
EncryptedData5, SecureKey) in
{67}event DataDecryption5(DecryptedData5.65)

— Query not attacker(SecureKey[])

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_478 ,y_479,v_480,z_481,
KeyA[1) ,KeyA[1))/—5000

Completing...

Starting query not attacker(SecureKey[])

RESULT not attacker(SecureKey[]) is true.

— Query not attacker(SecureKeyBitstring[1])

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_1064 ,y_1065,v_1066,
z_1067 ,KeyA[]) ,KeyA[]))/—5000

Completing...

Starting query not attacker(SecureKeyBitstring[])

RESULT not attacker(SecureKeyBitstring[]) is true.

— Query not attacker(DecryptedData4[])

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_1652,y_1653,v_1654,
z_1655,KeyA[]),KeyA[]))/—5000

Completing...

Starting query not attacker(DecryptedData4[])

RESULT not attacker(DecryptedData4[]) is true.

— Query not attacker(DecryptedData5[1])

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4.2240,y_2241,v_2242,
z_2243 ,KeyA[]),KeyA[]))/—5000

Completing...

Starting query not attacker (DecryptedData5[])

RESULT not attacker (DecryptedData5[]) is true.

— Query not event(DataDecryption4(x_66))

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4.2828,y_2829,v_2830,

106

z_2831,KeyA[]),KeyA[]))/—5000

Completing...

Starting query not event(DataDecryption4(x_66))

RESULT not event(DataDecryption4(x_66)) is true.

— Query not event(DataDecryption5(x_67))

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_3421,y_3422,v_3423,
z2.3424 ,KeyA[]) ,KeyA[]))/—5000

Completing...

Starting query not event(DataDecryption5(x_67))

RESULT not event(DataDecryption5(x_67)) is true.

— Query event(DataDecryption4(x_68)) ==> event(DataDecryption5(x_68))

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_4014,y_4015,v_4016,
z_4017 ,KeyA[]) ,KeyA[]))/—5000

Completing...

Starting query event(DataDecryption4(x_-68)) ==> event(DataDecryption5(x_68
))

RESULT event(DataDecryption4(x_68)) ==> event(DataDecryption5(x_68)) is
true.

— Query inj—event(DataDecryption4(x_69)) ==> inj—event(DataDecryption5(
x_69))

nounif attacker (KeyBasedEnc (CMAC(DecryptedCMACData4_4607 ,y_4608,v_4609,
z_4610 ,KeyA[]),KeyA[]))/—5000

Completing...

Starting query inj—event(DataDecryption4(x_69)) ==> inj—event(
DataDecryption5(x_69))

RESULT inj—event(DataDecryption4(x_-69)) ==> inj—event(DataDecryption5(x_69
)) is true..

107

Unilateral Authentication ProVerif Verification

set traceDisplay = long.

query attacker (SecureKey).

query attacker (DeCMACDATA).

query attacker (DecryptedHello).

query x:seckey; event(DecryptedSecureKey(x)).

query x:bitstring; event(ConnectionVerification2(x)).

query x:seckey, y:bitstring; inj—event(DecryptedSecureKey(x)) ==> inj—
event (ConnectionVerification2(y)).

query x:seckey, y:bitstring; event(DecryptedSecureKey(x)) ==> event(
ConnectionVerification2(y)).

free c:channel.
type nonce.
type key.

type seckey.
type kkey.

free Data:bitstring [privatel].

free RND_NumberB:bitstring [private].
free Counterl:bitstring[private].

free Counter2:bitstring[privatel].

free KeyA:key [private].

free KeyB:key[privatel].

free KeyAA:kkey [privatel].

free KeyBB:kkey[private].

free DeCMACDATA:bitstring [privatel].
free DeCMACDATA2:bitstring [privatel].
free StartData:nonce [private].

free Hello:noncel[privatel].

free DecryptedHello, InTeachHello:bitstring[private].
free EncryptedHello:noncel[private].
free SecureKey:seckey[privatel].

free EncryptedData:noncelprivate].
free DecryptedData:bitstring[privatel].

fun KeyBasedEnc(nonce, key): nonce.
reduc forall x: nonce, y: key; KeyBasedDecryption(KeyBasedEnc(x,y),y)

fun SecureEncryption(bitstring, seckey): nonce.

108

reduc forall x: bitstring, y: seckey; SecureDecryption(SecureEncryption(x,

y),y) = x.

fun CMAC(bitstring, bitstring, kkey): nonce.

reduc forall x: bitstring, y:bitstring, z:kkey; DeCMAC(CMAC(x,y,z),z) = X.

fun bitstringTOseckey(bitstring):seckey.

event TimerStartil(bitstring).

event TimerStart2(bitstring).

event DataDecryptioni(nonce).

event RecievedData(bitstring).

event Connection(nonce).

event ConnectionVerification(nonce).
event ConnectionVerification2(bitstring).
event DecryptedSecureKey (seckey).

let DeviceAl =
new KeyA:key;
out(c, Data).

let DeviceB1 =
in(c, Data:bitstring);
new KeyB:key;
new RND_NumberB:bitstring;
new Counterl:bitstring;
let Counter1l = Counterl in
event TimerStartl(Counterl);
out(c, (Data, RND_NumberB)).

let DeviceA2 =
in(c, (Data:bitstring, RND_NumberB:bitstring));
new Counter2:bitstring;
let Counter2 = Counter2 in
event TimerStart2(Counter2);
if Counter2 = Counter2 then
(
new SecureKey:seckey;
new SecureKeyBitstring:bitstring;
out (c, KeyBasedEnc (CMAC(SecureKeyBitstring, RND_NumberB,
)

else

109

KeyAA) ,KeyA))

let DeviceB2 =
in(c, EncryptedData:nonce);
if Counterl = Counterl1 then
(
let DecryptedData = KeyBasedDecryption(EncryptedData,
event DataDecryptionl(DecryptedData);
let DeCMACDATA = DeCMAC(DecryptedData, KeyBB) in
event RecievedData (DeCMACDATA);
let SecureKey = bitstringTOseckey (DeCMACDATA) in
event DecryptedSecureKey(SecureKey);

out(c, SecureEncryption(InTeachHello, SecureKey))
)

else

(

let DeviceA3 =
in(c, EncryptedHello:nonce);
if Counter2 = Counter2 then
(
let DecryptedHello = SecureDecryption(EncryptedHello,
event ConnectionVerification2(DecryptedHello)

)

else

(

process

(

IDeviceAl

!DeviceB1

!DeviceA2

110

KeyB) in

SecureKey) in

!DeviceB2

!DeviceAs

111

Unilateral Authentication ProVerif Result

Process:

(

{1y

{2}new KeyA_32: key;

{3}out(c, Data)

(

{4}

{5}in(c, Data_33: bitstring);

{6}new KeyB_34: key;

{7}new RND_NumberB_35: bitstring;

{8}new Counter1.36: bitstring;

{9}1let Counter1.37: bitstring = Counter1.36 in

{10} event TimerStartl1(Counter1_.37);

{11}out(c, (Data-33,RND_NumberB_35))

(

{12}

{13}in(c, (Data_-38: bitstring,RND_NumberB_39: bitstring));

{14}new Counter2_40: bitstring;

{15}1let Counter2_41: bitstring = Counter2_40 in

{16}event TimerStart2(Counter2_41);

{17}if (Counter2_41 = Counter2_41) then

{18} new SecureKey_42: seckey;

{19} new SecureKeyBitstring: bitstring;

{20} out(c, KeyBasedEnc(CMAC(SecureKeyBitstring ,RND_NumberB_39 ,KeyAA),
KeyA))

(

{21}

{22}in(c, EncryptedData_43: nonce);

{23}if (Counter1 = Counter1) then

{24}1let DecryptedData_44: nonce = KeyBasedDecryption(EncryptedData_43,
KeyB) 1in

{25}event DataDecryptioni(DecryptedData_44);

{26}1let DeCMACDATA_45: bitstring = DeCMAC(DecryptedData_44 ,KeyBB) in

{27}event RecievedData(DeCMACDATA_45);

{28} 1let SecureKey_ 46: seckey = bitstringTOseckey(DeCMACDATA_45) in

{29} event DecryptedSecureKey(SecureKey_46);

{30}out(c, SecureEncryption(InTeachHello, SecureKey_46))

(

{31}!

{32}in(c, EncryptedHello_47: nonce);

112

{33}if (Counter2 = Counter2) then

{34}1let DecryptedHello 48: bitstring = SecureDecryption(
EncryptedHello_47 ,SecureKey) in

{35}event ConnectionVerification2(DecryptedHello_48)

— Query not attacker (SecureKey[])

Completing...

Starting query not attacker(SecureKey[1)

RESULT not attacker(SecureKey[]) is true.

— Query not attacker (DeCMACDATALI)

Completing...

Starting query not attacker (DeCMACDATAL])

RESULT not attacker (DeCMACDATA[]) is true.

— Query not attacker (DecryptedHello[])

Completing...

Starting query not attacker(DecryptedHello[])

RESULT not attacker (DecryptedHello[]) is true.

— Query not event(DecryptedSecureKey(x_49))

Completing...

Starting query not event(DecryptedSecureKey(x_49))

RESULT not event(DecryptedSecureKey(x_49)) is true.

— Query not event(ConnectionVerification2(x_.50))

Completing...

Starting query not event(ConnectionVerification2(x_.50))

RESULT not event(ConnectionVerification2(x_.50)) is true.

— Query inj—event(DecryptedSecureKey (x_.51)) ==> inj—event(
ConnectionVerification2(y_52))

Completing...

Starting query inj—event(DecryptedSecureKey(x_51)) ==> inj—event(
ConnectionVerification2(y_.52))

RESULT inj event(DecryptedSecureKey(x_-51)) ==> inj event(
ConnectionVerification2(y_52)) is true.

— Query event(DecryptedSecureKey(x_.53)) ==> event(ConnectionVerification2
(y-54))

Completing...

Starting query event(DecryptedSecureKey(x_53)) ==> event(
ConnectionVerification2(y_54))

RESULT event(DecryptedSecureKey(x_53)) ==> event(ConnectionVerification2(
y_54)) is true.

113

Appendix 3 — G.hn Authentication

Authentication is done according to the Diffie-Hellman algorithm and the Counter with
Cipher Block Chaining-Message Authentication Code algorithm (CCM), which uses
AES-128 standard for encryption. [82] This method is used to exchange cryptographic
keys over public channel securely, without revealing one’s private key to the public,
and using mathematical operations to calculate another key to communicate with one
another.

Diffie-Hellman algorithm works as follows:

Device A generates a random number R_A and sends it over to device B. Device B does
exactly the same, generates a random number R_B and sends it to A. This is called a
public key exchange. Both of these devices have their own private keys, which are used
to to calculate session key K. Most common example is to do this with certificates, where
devices derive public key from certificate.

CCM authentication is described in Appendix 19.

114

ProVerif Verification

set traceDisplay = long.

free

type
type
type
type
type
type

query
query

query
query

query
query
query
query

free
free
free
free
free
free
free
free
free
free
free

c:channel.

nonce.
pubkey .
privkey.
key.
certificate.

seckey.

attacker (ClientMKey).
attacker (ServerMKey).
attacker (DecryptedData).
attacker (DecryptedData2).

:bitstring; event(Decryptionl(x)).
:bitstring; event(Decryption2(x)).

ServerCertificate:certificatel[privatel].
ClientCertificate:certificatel[privatel].
ClientPublicKey:key [privatel].
ClientPrivateKey:key [private].
ServerPublicKey:key[private].
ServerPrivateKey:key [private].
KeyExchanceVerification, ServerHello:bitstring[privatel].
DecryptedVerification:bitstring[privatel].
DecryptedVerificationACK:bitstring[privatel].
Hello, Hello2, Hello2Ack:bitstring [privatel].
KeyExchangeVerificationACK:bitstring[private].

fun PublicKeyGeneration(certificate):key.

fun PrivateKey(privkey):key.

free

type
free

DecryptedData, DecryptedData2 :nonce [privatel].

mkey .
ServerMKey:mkey [private].

115

:bitstring; event(Decryptionl(x)) ==> event(Decryption2(x)).
:bitstring; inj—event(Decryption1(x)) ==> inj—event(Decryption2(x))

free ClientMKey:mkey [private].

fun MKeyGeneration(bitstring, key, key):mkey.
event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun Encryption(bitstring, mkey):nonce.
reduc forall x:bitstring, y: mkey; Decryption(Encryption(x,y), y) = X.

event ClientPublicKeyGeneration(key).
event ServerPublicKeyGeneration(key).
event Decryptionl(bitstring).
event Decryption2(bitstring).

let Client1 =
out(c, Hello).

let Serverl =
in(c, Hello:bitstring);
out(c, (ServerHello, ServerCertificate)).

let Client2 =

in(c,(ServerHello:bitstring, ServerCertificate:certificate));

let ServerPublicKey = PublicKeyGeneration(ServerCertificate) in
event ServerPublicKeyGeneration(ServerPublicKey);

let ClientMKey = MKeyGeneration(Hello, ServerPublicKey,

ClientPrivateKey) in

event ClientMKeyGeneration(ClientMKey);

out(c, ClientCertificate).

let Server2 =

in(c, ClientCertificate:certificate);

let ClientPublicKey = PublicKeyGeneration(ClientCertificate) in
event ClientPublicKeyGeneration(ClientPublicKey);

let ServerMKey = MKeyGeneration(ServerHello, ClientPublicKey,

ServerPrivateKey) in

event ServerMKeyGeneration(ServerMKey);

out(c, Encryption(Hello2, ServerMKey)).

let Client3 =

in(c, EncryptedHello:nonce);
let DecryptedData = Decryption(EncryptedHello, ClientMKey) in

116

event Decryptionl(DecryptedData);
out(c, Encryption(Hello2Ack, ClientMKey)).

let Server3 =
in(c, EncryptedAck:nonce);
let DecryptedData2 = Decryption(EncryptedAck, ServerMKey) in
event Decryption2(DecryptedData2).

process

(

IClient1|!Serverl|!Client2|!Server2|!Client3|!Server3

)

117

ProVerif Result

Process:
(

{13!

{2}out(c, Hello)
) |«

{3}!

{4}in(c, Hello_13: bitstring);
{5}out(c, (ServerHello,ServerCertificate))
) |«
{6}!
{7}in(c, (ServerHello_14: bitstring,ServerCertificate_15: certificate)
)5
{8}1let ServerPublicKey_ 16: key = PublicKeyGeneration(
ServerCertificate_15) in
{9}event ServerPublicKeyGeneration(ServerPublicKey_16);
{10}1let ClientMKey_-17: mkey = MKeyGeneration(Hello,ServerPublicKey_16,
ClientPrivateKey) in
{11}event ClientMKeyGeneration(ClientMKey_17);
{12}out(c, ClientCertificate)
) |«
{13}!
{14}in(c, ClientCertificate_18: certificate);
{15}1let ClientPublicKey_19: key = PublicKeyGeneration(
ClientCertificate_18) in
{16}event ClientPublicKeyGeneration(ClientPublicKey_19);
{17}1let ServerMKey_-20: mkey = MKeyGeneration(ServerHello,
ClientPublicKey_19,ServerPrivateKey) in
{18}event ServerMKeyGeneration(ServerMKey_20);
{19}out(c, Encryption(Hello2,ServerMKey_20))
) |«
{20}!
{21}in(c, EncryptedHello: nonce);
{22}1let DecryptedData_21: bitstring = Decryption(EncryptedHello,
ClientMKey) in
{23} event Decryptionl(DecryptedData_21);
{24}out(c, Encryption(Hello2Ack,ClientMKey))
) |«
{25}!
{26}in(c, EncryptedAck: nonce);
{27} 1let DecryptedData2_22: bitstring = Decryption(EncryptedAck,

118

ServerMKey) 1in
{28} event Decryption2(DecryptedData2_22)

— Query not attacker(ClientMKey[])

Completing...

Starting query not attacker(ClientMKey[])

RESULT not attacker(ClientMKey[]) is true.

— Query not attacker (ServerMKey[1)

Completing...

Starting query not attacker(ServerMKey[])

RESULT not attacker(ServerMKey[]) is true.

— Query not attacker(DecryptedDatall)

Completing...

Starting query not attacker(DecryptedDatall])

RESULT not attacker(DecryptedDatal[]) is true.

— Query not attacker(DecryptedData2[])

Completing...

Starting query not attacker (DecryptedData2[])

RESULT not attacker(DecryptedData2[]) is true.

— Query not event(Decryptionl(x_.23))

Completing...

Starting query not event(Decryptionl(x_23))

RESULT not event(Decryptionl(x_23)) is true.

— Query not event(Decryption2(x_24))

Completing...

Starting query not event(Decryption2(x_24))

RESULT not event(Decryption2(x_-24)) is true.

— Query event(Decryptionl(x_25)) ==> event(Decryption2(x_25))

Completing...

Starting query event(Decryptionl(x_-25)) ==> event(Decryption2(x_25))

RESULT event(Decryptionl(x_25)) ==> event(Decryption2(x_25)) is true.

— Query inj—event(Decryptionl1(x_26)) ==> inj—event(Decryption2(x_26))

Completing...

Starting query inj—event(Decryptionl1(x_26)) ==> inj—event(Decryption2(x_26
))

RESULT inj—event(Decryption1(x_26)) ==> inj—event(Decryption2(x_26)) is
true.

119

Appendix 4 — KNX Authentication

KNX supports basic access protection to authenticate unicast communication, this allows
to define up to 255 different access levels, where 0 is highest. Each access level can be
secured by a different 4 byte password.

In this method, KNXnet/IP authentication is evaluated, because of these device are
controlling the network. KNXnet/IP Secure is a security extension for KNXnet/IP that
aims to be backward compatible. This means that no changes to the underlying KNX
and KNXnet/IP protocol stack are required. The KNXnet/IP traffic is encapsulated
in KNXnet /TP Secure wrapper which provides confidentiality, integrity, freshness and
authenticity. KNXnet/IP encapsulated and encapsulates three logical layers in UDP /TP
datagram and uses Secure Advanced Encryption Standard (AES) with 128 bit as a block
cipher for all modes of operation. For authentication secret keys (Dk, Gk, pwd) are
used. There are two types of communication in KNXnet/IP Secure, namely unicast
communication and multicast communication. [144]

Multicast communication secures the traffic between members of one group. The mode
of operation uses a modified version of CCM. This communication type uses a pre-shared
secret called Group key (Gk). This key is unique for every multicast group. The same
group key can be found on every device that is in the same group The group key has a
size of 128 bit. [144]

Unicast traffic is used for configuration purposes, this means that securing the communi-
cation between a management device and an interconnection device is needed. To achieve
secrecy, KNXnet/IP Secure uses Elliptic Curve Diffie Hellman (ECDH) key exchange
algorithm over NIST curve. To authenticate the communication, two pre-shared secret
keys are used Device authentication code (Dk) and Passwords (Pwd). In the ECDH key
exchange, Dk serves as public key and Pwd as private key. [144]

Diffie-Hellman authentication has been described in Appendix 3

120

ProVerif Verification

type

type

type

type

query
query
query
query
query
query
query
query
query
query
query

nonce.
certificate.
key.
ssecret.

attacker (DeviceKeyA).

attacker (DeviceKeyB).

attacker (Password).

attacker (PrivateDeviceKeyA).

attacker (PrivateDeviceKeyB).

attacker (sharedsecret).
attacker (TESTDecryptl).
attacker (TESTDecrypt2).

X:bitstring
X:bitstring
X:bitstring

; event (TESTDecryptionl(x)).
; event (TESTDecryption2(x)).
; event (TESTDecryptionl(x)) ==> event(TESTDecryption2(x))

query x:bitstring; inj—event(TESTDecryptionl(x)) ==> inj—event(
TESTDecryption2(x)).

free

free
free
free
free
free
free
free
free
free
free
free
free
free

c:channel.

sharedsecret

:ssecret [privatel].

DeviceCertA:certificate [privatel].

DeviceCertB:certificatel[privatel].

DeviceKeyA:key[private].

PublicDeviceKeyA:key[private].

PrivateDeviceKeyA:key [privatel].

DeviceKeyB:key[privatel].

PublicDeviceKeyB:key[privatel].

PrivateDeviceKeyB:key[private].

PasswordFlag
Password:key
TESTDecrypt1
TESTDecrypt?2

:bitstring[privatel].
[private].

:bitstring [privatel].
:bitstring [privatel].

fun CTR(nonce,ssecret):nonce.

reduc

fun CBC(nonce,

reduc

forall x: nonce, y: ssecret; DeCTR(CTR(x,y),y) = Xx.

key): nonce.

forall x: nonce, y:key ; DeCBC(CBC(x,y), y) = X.
fun TCNonce(bitstring):nonce.

121

fun TCKey(nonce) :key.

fun TCssecret(ssecret):key.

fun TCCertificate(certificate):nonce.

fun CCM(bitstring, nonce, ssecret):nonce.

reduc forall z: bitstring, x: nonce, y:ssecret; DeCCM(CCM(z,x,y), y) = z.
fun KeyGeneration(certificate):key.

event DeviceAPublicKeyGeneration(key).
event DeviceBPublicKeyGeneration(key).
event TESTDecryptionl(bitstring).
event TESTDecryption2(bitstring).

let DeviceAl =
new Hello:bitstring;
out(c,Hello).

let DeviceB1 =
in(c, Hello:bitstring);
new HelloACK:bitstring;
out(c, HelloACK).

let DeviceA2 =
in(c, HelloACK:bitstring);
new PublicDeviceKeyA:key;
out(c, DeviceCertA).

let DeviceB2 =
in(c, DeviceCertA:certificate);
let PublicDeviceKeyA = KeyGeneration(DeviceCertA) in
event DeviceAPublicKeyGeneration(PublicDeviceKeyA);
new DeviceCertBTemplate:bitstring;
out(c, CTR(CBC(TCCertificate(DeviceCertB), DeviceKeyA), sharedsecret)).

let DeviceA3 =

in(c, EncryptedResponse:nonce);

let PublicDeviceKeyB = TCKey(DeCTR(DeCBC(EncryptedResponse,
PrivateDeviceKeyA), sharedsecret)) in

event DeviceBPublicKeyGeneration(PublicDeviceKeyB);

new PublicDeviceKeyBTemplate:nonce;

out(c, CCM(PasswordFlag, CBC(PublicDeviceKeyBTemplate,b Password),
sharedsecret)).

122

let DeviceB3 =
in(c, EncryptedComplete:nonce);
let TESTDecryptl = DeCCM(DeCBC(EncryptedComplete, TCssecret(sharedsecret
)), sharedsecret) in
event TESTDecryptionl1 (TESTDecrypt1);
new Success:bitstring;
out(c, CCM(PasswordFlag, CBC(TCNonce(Success),Password), sharedsecret)).

let DeviceA4 =
in(c, TestEncrypt:nonce);
let TESTDecrypt2 = DeCCM(DeCBC(TestEncrypt,TCssecret(sharedsecret)),
sharedsecret) in
event TESTDecryption2(TESTDecrypt2).

process

(

!DeviceAl|!DeviceB1|!DeviceA2|!DeviceB2|!DeviceA3|!DeviceB3|!DeviceA4

)

123

ProVerif Result

Process:

(

{1}!

{2}new Hello: bitstring;

{3}out(c, Hello)

(

{4}!

{5}in(c, Hello_29: bitstring);

{6}new HelloACK: bitstring;

{7}out(c, HelloACK)

(

{8}!

{9}in(c, HelloACK_30: bitstring);

{10} new PublicDeviceKeyA_31: key;

{11}out(c, DeviceCertA)

(

{12}

{13}in(c, DeviceCertA_32: certificate);

{14}1let PublicDeviceKeyA_33: key = KeyGeneration(DeviceCertA_32) in

{15}event DeviceAPublicKeyGeneration(PublicDeviceKeyA_33);

{16} new DeviceCertBTemplate: bitstring;

{17}out(c, CTR(CBC(TCCertificate(DeviceCertB),DeviceKeyA),sharedsecret
))

(

{18}!

{19}in(c, EncryptedResponse: nonce);

{20}1let PublicDeviceKeyB_34: key = TCKey(DeCTR(DeCBC(EncryptedResponse
,PrivateDeviceKeyA),sharedsecret)) in

{21} event DeviceBPublicKeyGeneration(PublicDeviceKeyB_34);

{22} new PublicDeviceKeyBTemplate: nonce;

{23}out(c, CCM(PasswordFlag,CBC(PublicDeviceKeyBTemplate ,h Password),
sharedsecret))

(

{24}!

{25}in(c, EncryptedComplete: nonce);

{26}1let TESTDecrypt1.35: bitstring = DeCCM(DeCBC(EncryptedComplete,
TCssecret(sharedsecret)),sharedsecret) in

{27}event TESTDecryption1(TESTDecrypt1.35);

{28} new Success: bitstring;

{29} out(c, CCM(PasswordFlag,CBC(TCNonce(Success),Password),

124

sharedsecret))
) | (
{30}!
{31}in(c, TestEncrypt: nonce);
{32}let TESTDecrypt2.36: bitstring = DeCCM(DeCBC(TestEncrypt,TCssecret
(sharedsecret)),sharedsecret) in
{33}event TESTDecryption2(TESTDecrypt2_36)

— Query not attacker (DeviceKeyA[1])
Completing...

Starting query not attacker(DeviceKeyA[])

RESULT not attacker (DeviceKeyA[]) is true.

— Query not attacker(DeviceKeyB[])
Completing...

Starting query not attacker(DeviceKeyB[])

RESULT not attacker(DeviceKeyB[]) is true.

— Query not attacker (Password[])

Completing...

Starting query not attacker(Password[])

RESULT not attacker(Password[]) is true.

— Query not attacker(PrivateDeviceKeyA[])
Completing...

Starting query not attacker(PrivateDeviceKeyA[])
RESULT not attacker(PrivateDeviceKeyA[]) is true.
—— Query not attacker(PrivateDeviceKeyB[])
Completing...

Starting query not attacker(PrivateDeviceKeyB[])
RESULT not attacker(PrivateDeviceKeyB[]) is true.
— Query not attacker(sharedsecret[])
Completing...

Starting query not attacker(sharedsecret[])
RESULT not attacker(sharedsecret[]) is true.

— Query not attacker (TESTDecrypt1[])
Completing...

Starting query not attacker (TESTDecrypti[])
RESULT not attacker (TESTDecrypt1[]) is true.

— Query not attacker (TESTDecrypt2[])
Completing...

Starting query not attacker (TESTDecrypt2[])
RESULT not attacker (TESTDecrypt2[]) is true.

— Query not event(TESTDecryption1(x_.37))

125

Completing...

Starting query not event(TESTDecryptionl(x_37))

RESULT not event(TESTDecryptionl(x_37)) is true.

— Query not event(TESTDecryption2(x_-38))

Completing...

Starting query not event(TESTDecryption2(x_38))

RESULT not event(TESTDecryption2(x_38)) is true.

— Query event(TESTDecryption1(x_39)) ==> event(TESTDecryption2(x_39))

Completing...

Starting query event(TESTDecryption1(x_39)) ==> event(TESTDecryption2(x_-39
))

RESULT event (TESTDecryptionl1(x_-39)) ==> event(TESTDecryption2(x_39)) is
true.

— Query inj—event (TESTDecryptionl1(x_40)) ==> inj—event(TESTDecryption2(
x_40))

Completing...

Starting query inj—event(TESTDecryption1(x_40)) ==> inj—event(
TESTDecryption2(x_40))

RESULT inj—event (TESTDecryptionl1(x_40)) ==> inj—event(TESTDecryption2(x_40
)) is true.

126

Appendix 5 — WiMAX Authentication

PKMv1

PKMv1 uses asymmetric ciphers (primarily RSA) to validate identity of stations. A
subscriber station starts the authentication process with presentation of the station’s
certificate issued by its manufacturer. Optionally it may can send the hardware man-
ufacturer certificate. Following certificate validation, the base station will generate an
Authorization Key (AK) which is sent back to the subscriber station, encrypting it with
a public key obtained from the subscriber station’s certificate. The subscriber station
decrypts it using its private key. In this way both parties obtain cryptographic material
necessary for link protection. The PKMv1 protocol skips user data authentication ensur-
ing only its privacy. [5]

Exchange of PKMv1 authentication messages has been shown in Figure 6.

The transmission Encryption Key (TEK), which is generated at a later stage, similarly to
AK is determined by the base station. Each new association is assigned with an individual
encryption key. The key, which is used to ensure secure transmission of the TEK key is
the Key Encryption Key (KEK). KEK is generated based on the AK key as well as Hash
Message Authentication Code Key for Downlink and Hash Message Authentication Code
Key for Uplink keys. The purpose of the KEK is to encrypt messages that are used to
transfer the TEK keys. On the other hand, HMAC family of keys are used to generate
authentication checksums in control messages. These checksums are calculated using the
SHA-1 function. Key transmission messages are encrypted with 3DES algorithm in a
mode, in which each 64-bit data block is encrypted independently. [5]

It is worth mentioning here that each security association consists of two TEKs (the
current and a spare one). Traffic decryption can be performed using both of these keys,
whereas only the current key permits data encryption. For purposes of user protection,
the PKMv1 protocol of the IEEE 802.16d standard utilizes advantages of the AES block
algorithm operating in a special mode called Counter Mode with Cipher Block Chaining
Message Authentication Code (CCM). [5]

CCM authentication is described in Appendix 19

PKMv2

[75] Version 2 of the PKM protocol was developed because of the numerous shortcomings

in the protection system used in the previous version of the protocol. The PKMv2

127

Figure 6: WiMax PKMv1 message flow for authentication [5]

Subscriber Base
Station Station

CA Certificate (S5 HanufacturerL

$S Manufacturer Certificate

>

Generate

*

standard bases on the techniques adopted in the IEEE 802.11i standard. Contrary to
the first version of the protocol, the authentication stage in the second version has been
implemented based on the Extensible Authentication Protocol (EAP). The network
infrastructure has been also extended with an Authentication, Authorization, Accounting
(AAA) server supporting the EAP on the network side. [5]

Exchange of PKMv2 authentication messages has been shown in Figure 7.

The result of these operations is a unique cryptographic material, generated independently
by mutually authenticating parties. The DES and AES algorithms have been used to
ensure link privacy. The PKMv2 protocol assumes that both subscriber and base stations
should have a certificate.

Terminal authentication starts with optional presentation of a manufacturer’s certificate
to the base station. Then the base station sends an authentication request containing
a certificate issued by its manufacturer and a generated random number (RAND_SS).
Having verified the certificate, the base station responds with a message containing its
own X.509 certificate encrypted with the subscriber station’s public key (Pre-Primary
Authorization Key /Pre-PAK/), the RAND_SS number received in the previous message
and with its generated RAND_BS number. Next, the subscriber station verifies the
validity of the certificate received, check correctness of the previously generated random
number and deciphers the Pre-PAK key. [5]

128

Figure 7: WiMax PKMv2 message flow for authentication [5]

Subscriber Base
Station Station

CA Certificate (SS Manm'acturerL

Authentication Information

SS Manufacturer Certificate
RAND SS

Authorization Request
PRE-PAK

RAND_SS
RAND_BS
CA Certificate(BS)

<
Authorization Reply

129

WiMAX PKMv1l ProVerif Verification

set traceDisplay = long.

query
query
query
query
query
query
query
query
query

query

attacker (privatekey).
attacker (AK).

attacker (AK2).

attacker (DecryptedText1).
attacker (DecryptedText2).

x: authkey; event(AuthorizationKeyGen(x)).

X: bitstring; event(TextDecryptionl(x)).

Xx: bitstring; event(TextDecryption2(x)).

x:bitstring; event(TextDecryptionl(x)) ==> event(TextDecryption2(x))

x:bitstring; inj—event(TextDecryptionl(x)) ==> inj—event(

TextDecryption2(x)).

free

type
type
type
type
free
free
free
free
free
free
free
free
free
free

free

free

fun CertificateGen(bitstring, key):

reduc

c: channel.

certificate.

authkey.

key.

nonce.
Hello:bitstring[private].
HelloAck:bitstring[private].

StationCertificate: certificate [privatel].

ManufacturerCertificate: certificate [privatel].

AK: authkey [privatel].
info:bitstring[private].
pubkey: key [privatel].
privatekey: key [privatel].

DecryptedTextl: bitstring [privatel].

DecryptedText2: bitstring [private].

ENCauthkey: nonce [privatel].

AK2: authkey [privatel].

forall x: bitstring, y: key;

= X.

certificate.
dec_Certificate(CertificateGen(x,y),

130

y)

fun authkey_enc(authkey, key): nonce.
reduc forall x: authkey, y: key; dec_authkey(authkey_enc(x,y), y) = x.

fun Encryption(bitstring, authkey): nonce.
reduc forall x: bitstring, y: authkey; Decryption(Encryption(x,y),y)=x.

event CertificateValidation(certificate).
event AuthorizationKeyGen (authkey).

event Authdec(authkey).

event TextDecryptionl(bitstring).

event TextDecryption2(bitstring).

let SubscriberStationl =
out(c, (StationCertificate, info)).

let BaseStationl =
in(c, (StationCertificate:certificate, info:bitstring));
let StationCertificate = ManufacturerCertificate in
event CertificateValidation(StationCertificate);
if StationCertificate = ManufacturerCertificate then
(
new AKey:authkey;
let AK = AKey in
event AuthorizationKeyGen (AKey);
out(c, authkey_enc(AKey, pubkey))

else

let SubscriberStation2
in(c, ENCauthkey:nonce);
let AK2 = dec_authkey (ENCauthkey, privatekey) in
event Authdec (AK2);
out(c, Encryption(Hello, AK)).

let BaseStation2 =
in(c, EncryptedTextl:nonce);
let DecryptedTextl = Decryption(EncryptedTextl, AK) in
event TextDecryptionl(DecryptedText1);
out(c, Encryption(HelloAck, AK)).

131

let SubscriberStation3 =
in(c, EncryptedText2:nonce);
let DecryptedText2 = Decryption(EncryptedText2, AK2) in
event TextDecryption2(DecryptedText2).

process
(
!'SubscriberStationl
|
IBaseStationt
|
!'SubscriberStation2
|
!BaseStation2
|
!'SubscriberStation3
)

132

WiMAX PKMv1l ProVerif Result

Process:
(
{1}!
{2}out(c, (StationCertificate,info))
) |«
{3}!
{4}in(c, (StationCertificate_32: certificate,info_33: bitstring));
{5}1let StationCertificate_34: certificate = ManufacturerCertificate in
{6}event CertificateValidation(StationCertificate_34);
{7}if (StationCertificate_34 = ManufacturerCertificate) then
{8}new AKey: authkey;
{9}1let AK_35: authkey = AKey in
{10} event AuthorizationKeyGen (AKey);
{11}out(c, authkey_enc(AKey, pubkey))
) |«
{12}
{13}in(c, ENCauthkey_36: nonce);
{14}1let AK2_37: authkey = dec_authkey(ENCauthkey_ 36 ,privatekey) in
{15}event Authdec(AK2_37);
{16}out(c, Encryption(Hello,AK))
) |«
{17}
{18}in(c, EncryptedTextl: nonce);
{19} 1let DecryptedText1.38: bitstring = Decryption(EncryptedTextl, AK)
in
{20}event TextDecryptionil(DecryptedText1.38);
{21}out(c, Encryption(HelloAck,b AK))
) |«
{22}
{23}in(c, EncryptedText2: nonce);
{24}1let DecryptedText2.39: bitstring = Decryption(EncryptedText2,b AK2)
in
{25}event TextDecryption2(DecryptedText2_39)

— Query not attacker(privatekey[])
Completing...

Starting query not attacker(privatekey[])
RESULT not attacker(privatekey[]) is true.
— Query not attacker (AK[])

133

Completing...

Starting query not attacker (AK[1])

RESULT not attacker (AK[]) is true.

—— Query not attacker (AK2[1)

Completing...

Starting query not attacker (AK2[1)

RESULT not attacker (AK2[]) is true.

— Query not attacker(DecryptedText1[])

Completing...

Starting query not attacker(DecryptedText1[])

RESULT not attacker(DecryptedText1[]) is true.

— Query not attacker(DecryptedText2[])

Completing...

Starting query not attacker(DecryptedText2[])

RESULT not attacker(DecryptedText2[]) is true.

— Query not event(AuthorizationKeyGen(x_40))

Completing...

Starting query not event(AuthorizationKeyGen(x_40))

goal reachable: attacker(StationCertificate_1352) && attacker(info_1353)
—> end(AuthorizationKeyGen(AKey[info_33 = info_1353,
StationCertificate_32 = StationCertificate_1352,!1 = @sid_13541]))

Abbreviations:

AKey_1362 = AKey[info_33 = info_1359,StationCertificate_32 =
StationCertificate_1358,!1 = @sid_13601]

1. We assume as hypothesis that
attacker(info_1359).

2. We assume as hypothesis that
attacker(StationCertificate_1358).

3. By 2, the attacker may know StationCertificate_1358.

By 1, the attacker may know info_1359.

Using the function 2—tuple the attacker may obtain (
StationCertificate_1358,info0_1359).

attacker ((StationCertificate_1358,info_1359)).

4. The message (StationCertificate_1358,info_1359) that the attacker may
have by 3 may be received at input {4}.

So event AuthorizationKeyGen(AKey_1362) may be executed at {10}.

end(AuthorizationKeyGen (AKey_1362)).

134

Initial state

Additional knowledge of the attacker:

C
a_1363
a

New processes:

(

|
out(c, (StationCertificate,info))
(

!

in(c, (StationCertificate_32: certificate,info_33: bitstring));

let StationCertificate_34: certificate = ManufacturerCertificate
in

event CertificateValidation(StationCertificate_34);

if (StationCertificate_34 = ManufacturerCertificate) then

new AKey: authkey;

let AK_35: authkey = AKey in

event AuthorizationKeyGen (AKey);

out(c, authkey_enc (AKey, pubkey))

(

!

in(c, ENCauthkey_36: nonce);

let AK2_37: authkey = dec_authkey(ENCauthkey_36 ,privatekey) in

event Authdec (AK2_.37);

out(c, Encryption(Hello,AK))

(

!

in(c, EncryptedTextl: nonce);

let DecryptedText1_.38: bitstring = Decryption(EncryptedTextl, AK)
in

event TextDecryptionl(DecryptedText1_.38);

out(c, Encryption(HelloAck, AK))

(

!

in(c, EncryptedText2: nonce);

let DecryptedText2_39: bitstring = Decryption(EncryptedText2,AK2)
in

event TextDecryption2(DecryptedText2_39)

135

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction |

5th process: Reduction ! @ copy(ies)

4th process: Reduction ! @ copy(ies)

3rd process: Reduction ! @ copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process BaseStationl

1st process: Reduction ! @ copy(ies)

New processes:
in(c, (StationCertificate_1369: certificate,info_1370: bitstring));
let StationCertificate_1371: certificate = ManufacturerCertificate in
event CertificateValidation(StationCertificate_1371);
if (StationCertificate_1371 = ManufacturerCertificate) then
new AKey: authkey;
let AK_1372: authkey = AKey in
event AuthorizationKeyGen (AKey);
out(c, authkey_enc (AKey, pubkey))

1st process: in(c, (StationCertificate_1369: certificate,info_1370:
bitstring)) done with message (a_1363,a)

1st process: let StationCertificate_1379: certificate =
ManufacturerCertificate succeeds

1st process: event CertificateValidation(ManufacturerCertificate) executed

136

1st process: if (ManufacturerCertificate = ManufacturerCertificate)

succeeds

1st process: new AKey: authkey creating AKey_1365

1st process: let AK_1381: authkey = AKey_1365 succeeds

1st process: event AuthorizationKeyGen(AKey_1365) executed; it is a goal

New processes:
out(c, authkey_enc(AKey_1365, pubkey))

The event AuthorizationKeyGen(AKey_1365) is executed.

A trace has been found.

RESULT not event(AuthorizationKeyGen(x_40)) is false.

— Query not event(TextDecryptionl(x_41))

Completing...

Starting query not event(TextDecryptionl(x_41))

RESULT not event(TextDecryptionl(x_41)) is true.

— Query not event(TextDecryption2(x_42))

Completing...

Starting query not event(TextDecryption2(x_42))

RESULT not event(TextDecryption2(x_42)) is true.

— Query event(TextDecryption1(x_43)) ==> event(TextDecryption2(x_43))

Completing...

Starting query event(TextDecryptionl1(x_43)) ==> event(TextDecryption2(x_43
))

RESULT event(TextDecryptionl(x_43)) ==> event(TextDecryption2(x_43)) is
true.

— Query inj—event(TextDecryptionl(x_44)) ==> inj—event(TextDecryption2(
x_44))

Completing...

Starting query inj—event(TextDecryptionl(x_44)) ==> inj—event(
TextDecryption2(x_44))

RESULT inj—event(TextDecryptionl(x_-44)) ==> inj—event(TextDecryption2(x_44
)) is true.

137

WiMAX PKMv2 ProVerif Verification

set traceDisplay = long.

query attacker (AuthorizationKey).

query attacker (SSPrivateKey).

query attacker (BSPrivateKey).

query attacker(DecryptedTextl).

query attacker (DecryptedText2).

query x: bitstring; event(Decryptionl(x)).

query x: bitstring; event(Decryption2(x)).

query x:bitstring; event(Decryptionl(x)) ==> event(Decryption2(x)).

query x:bitstring; inj—event(Decryptionl(x)) ==> inj—event(Decryption2(x))

free c: channel.

type certificate.
type nonce.
type key.

free SSCertificate:certificate [privatel].
free N:nonce [private].

free SSPublicKey:key [private].

free SSPrivateKey:key [private].

free BSPrivateKey:key [private].

free BSCertificate:certificate [privatel].
free AuthorizationKey:certificate [privatel].
free ACK:bitstring [privatel].

free Hello:bitstring[privatel].

free HelloAck:bitstring[private].

fun CertSign(certificate, nonce) : nonce.

reduc forall x:certificate, y:nonce; DeSignCert(CertSign(x,y), y) = X.
fun CertPub(certificate, key) : nonce.

reduc forall x:certificate, y:key; DeCertPub(CertPub(x,y), y) = x.

fun Encrypt(bitstring, certificate) : nonce.

reduc forall x:bitstring, y: certificate; Decrypt(Encrypt(x,y),y) = X.

138

event AuthorizationKeyGeneration(certificate).
event CertificateGeneration(certificate).
event Decryptionl(bitstring).

event Decryption2(bitstring).

let SS1 =
new SSCertificate:certificate;
let SSCertificate = SSCertificate in
event CertificateGeneration(SSCertificate);
out(c, SSCertificate).

let SS2

out(c, CertSign(SSCertificate, N)).

let BS1
in(c, SignedCertificate:nonce);

if DeSignCert(SignedCertificate,N) = SSCertificate then

out(c,CertPub(BSCertificate, SSPublicKey))

let SS3

in(c, SignedBSCertificate:nonce);
let AuthorizationKey = DeCertPub(SignedBSCertificate, SSPrivateKey
) in
event AuthorizationKeyGeneration(AuthorizationKey);
out(c, Encrypt(Hello, AuthorizationKey)).

let BS2

in(c, EncryptedTextl : nonce);

let DecryptedTextl = Decrypt(EncryptedTextl, AuthorizationKey) in
event Decryptionl(DecryptedText1);

out(c, Encrypt(HelloAck, AuthorizationKey)).

let SS4
in(c, EncryptedText2 : nonce);
let DecryptedText2 = Decrypt(EncryptedText2, AuthorizationKey) in
event Decryption2(DecryptedText2).

139

process

1SS1

1S8S2

IBS1

1SS3

1BS2

1554

140

WiMAX PKMv2 ProVerif Result

Process:

(

{1}!

{2}new SSCertificate_32: certificate;

{3}let SSCertificate_33: certificate = SSCertificate_32 in

{4}event CertificateGeneration(SSCertificate_33);

{5}out(c, SSCertificate_33)

(

{6}!

{7}out(c, CertSign(SSCertificate,N))

(

{8}!

{9}in(c, SignedCertificate: nonce);

{10}if (DeSignCert(SignedCertificate,N) = SSCertificate) then

{11}out(c, CertPub(BSCertificate, SSPublicKey))

(

{12}

{13}in(c, SignedBSCertificate: nonce);

{14}1let AuthorizationKey_34: certificate = DeCertPub(
SignedBSCertificate, SSPrivateKey) in

{15}event AuthorizationKeyGeneration(AuthorizationKey_34);

{16}out(c, Encrypt(Hello,AuthorizationKey_34))

(

{17}!

{18}in(c, EncryptedTextl: nonce);

{19}1let DecryptedText1.35: bitstring = Decrypt(EncryptedTextl,
AuthorizationKey) in

{20}event Decryptioni(DecryptedText1.35);

{21}out(c, Encrypt(HelloAck,AuthorizationKey))

(

{22}

{23}in(c, EncryptedText2: nonce);

{24}1let DecryptedText2_.36: bitstring = Decrypt(EncryptedText2,
AuthorizationKey) in

{25}event Decryption2(DecryptedText2_36)

— Query not attacker (AuthorizationKeyl[1)

Completing...

Starting query not attacker (AuthorizationKey[1])

141

RESULT not attacker (AuthorizationKey[]) is true.

— Query not attacker(SSPrivateKey[])

Completing...

Starting query not attacker(SSPrivateKeyl[])

RESULT not attacker (SSPrivateKey[]) is true.

— Query not attacker(BSPrivateKey[])

Completing...

Starting query not attacker (BSPrivateKey[])

RESULT not attacker(BSPrivateKey[]) is true.

— Query not attacker(DecryptedText1[])

Completing...

Starting query not attacker (DecryptedTextl1[])

RESULT not attacker (DecryptedText1[]) is true.

— Query not attacker(DecryptedText2[])

Completing...

Starting query not attacker (DecryptedText2[])

RESULT not attacker(DecryptedText2[]) is true.

— Query not event(Decryption1(x_37))

Completing...

Starting query not event(Decryptionl(x_37))

RESULT not event(Decryptionl1(x_37)) is true.

— Query not event(Decryption2(x_38))

Completing...

Starting query not event(Decryption2(x_38))

RESULT not event(Decryption2(x_-38)) is true.

— Query event(Decryption1(x_-39)) ==> event(Decryption2(x_-39))

Completing...

Starting query event(Decryptionl1(x_-39)) ==> event(Decryption2(x_39))

RESULT event(Decryption1(x_39)) ==> event(Decryption2(x_39)) is true.

— Query inj—event(Decryption1(x_40)) ==> inj—event(Decryption2(x_40))

Completing...

Starting query inj—event(Decryption1(x_40)) ==> inj event(Decryption2(x_40
))

RESULT inj—event(Decryptionl1(x_40)) ==> inj—event(Decryption2(x_40)) is
true.

142

Appendix 6 — Z-Wave Authentication

Z-Wave uses Out-of-Band authentication to be able to join Z-Wave PAN network. OoB
authentication is Z-Wave’s solution to mitigate the inclusion of rogue nodes. [63]

Like Wi-Fi, Z-Wave’s S2 security also operates with a network key. A strong temporary
key is used to assign keys for security classes. This allows segmentation of safety critical
devices like S2 Access Control and S2 Authenticated class. S2 Unauthenticated class
is used for constrained devices without authentication. Access to Z-Wave networks is
controlled by Z-Wave gateway, which forwards commands only from already trusted LAN
clients or trusted ISP. DTLS is used to secure communication between LAN hosts and
Z-Wave nodes. LAN hosts and Z-Wave nodes communicate via a Z/IP Gateway which
terminates the DTLS encryption and strips Z/IP and IP headers before forwarding Z-
Wave commands securely in the Z-Wave network. [136] DTLS Authentication is described
in Appendix 10. A given S2 security class not only identifies the network key to use but
also dictates the rules applying to authentication of a new node during inclusion. [136]

Z-Wave Authentication sequence has been show in Figure 8.

The “S2 Access Control” class is the highest trusted class, intended only for access control
devices like doors and locks. [136]

The “S2 Authenticated” class is used for regular household devices such as sensors and
lights. The “S2 Unauthenticated” class is the least trusted class and is intended for the
most constrained controllers that are not capable of authenticating a device joining the
network. [136]

SO and all three S2 classes use AES-128 encryption. A node, which has requested
and been granted access to several security classes during inclusion but it only accepts
incoming commands from the trusted classes. This means that if light bulb is a member
of both the S2 Authenticated and S2 Unauthenticated classes, it only accepts commands
encrypted with the S2 Authenticated class key, because its security requirements are the
highest.

The S2 authentication process allows a controller to verify that a joining node is device
that it claims to be. Depending on the UI, a controller may allow the installer to enter a
Device-Specific Key (DSK). The DSK is the first 16 bytes of the 32-byte long Elliptic
Curve Diffie-Hellman key exchange (ECDH) public key of the joining node. If a joining
node is granted membership of the S2 Access Control or S2 Authenticated class by
a controller; the joining node advertises a ECDH public key where the first 16 bits

have been set to zero. [136] If a joining node is only granted membership of the S2

143

Unauthenticated class, the node advertises the complete ECDH public key, so that the
authentication step can be skipped.

Key exchange is done with Diffie-Hellman. S2 nodes use Elliptic Curve cryptography
shared key to derive a temporary link key. SO and S2 classes use AES-128 based network
keys which are symmetric. S2 security class node can encrypt and decrypt commands
using the same network key. Asymmetric ECDH keys used for the temporary secure
channel are only used to send a few frames before nodes switch to the assigned S2
Network keys. [136]

S2 Network keys are physically stored in S2 nodes. The S2 transport layer integrates the
S2 out-of-sync Nonce error messages with the supervision application-layer acknowledge-
ments. If a frame can be decrypted, a supervision report is returned and if the frame
cannot be decrypted, an S2 out-of-sync Nonce error message is returned. After Nonce
resynchronization, the command may be re-transmitted. [136]

Z-Wave S2 bootstrapping message exchange has been shown in Figure 9.

Diffie-Hellman key exchange has been described briefly in Appendix 3

144

Figure 8: Z-Wave Authentication Sequence [6]

515, NodelD A Inclusion controller, NodelD C loining node, NodelD B

| |

| Metwork inclusion |

Initiate (NodelD=B, step=0x01/0x03)

*
Request Node Info Frame
Node Info Frame ¥
L)
aie |

[ModeBis an 52 node]

| 52 bootstrapping

[Node B is an 50 only node and 515 wants 50 boot§trapping for Node B]

"

Initiate {NodelD=B, step=0x02)

50 bootstrapping |

Complete (step=0x02, status=5TEP_OK)

I_l.)pi__,l Node probe (capabilities discovery) |

Complete [step=0x01/0x03, statu 5=5TEF_CII(H

I_OLI Mode probe (capabilities discovery) |

145

TAIZ

Figure 9: Z-Wave S2 Bootstrapping [6]

515, NodelD A loining node, NodelD B
- -~
,__.--'-'-'---‘

I r
Metwork inclusion
KEX Get > il
TA1¢ k KEX Report (Echo=0, Requested keys)
b

A KEX Set (Echo=0, Granted keys) tmz

TA2¢ le Public Key Report (Incl.Node=0, Node B ECDH Public key) | Bl l
A2 Public Key Report (Incl.Node=1, Node A ECDH Public key) N tTBS

A
Elliptic Curve Shared Secret established
Temporary symmetric key K, established
Encryption with K, is used until the end of 52 bootstrapping
MNetwork Key Verify Command is encrypted with Network keys TBI1
K;) Monce Get
l¢ (K
(K} Nonce Report (SO5=1, REl) N
52 Msg Encap K, (SPAN ext. with SEI, KEX Set [Echo=1, Granted keys)) A
|
3 | Temporary shared nonce (SPAN) established |
52 Misg Encap K, (KEX Report (Echo=1, Reguested keys)) N

,J [For each granted key K]

AREE 2
-8 —>

52 Msg Encap K, (Network Key Get (Requested key))

rF

52 Msg Encap K, (Network Key Report | Granted key, K}

Jres

>
| Network key K established | 1[ea]
taal| ke (K;) Nonce Get
(K;} Nonce Report (505=1, REI) >
le 52 Msg Encap K; (SPAN ext. with SEI, Network Key Verify)
AS (K.} Monce Get N
{K.) Nonce Report (S0O5=1, REI) TB5

r

52 Msg Encap K, (Transfer End (Key verified=1, Key req. complete=0}] >

TA5+
)

52 Msg Encap K, (Transfer End (Keyverified=0, Key req. complete=1))

| 52 bootstrapping completed

146

ProVerif Verification

set traceDisplay = long.

query attacker (SharedNetworkKey).
query attacker (DEC_SharedNetworkKey).
query attacker (RNonce).

query attacker (DEC_RealNonce).

query attacker (SharedNetworkKey_temp).
query attacker (RNonce_temp).

query attacker (DEC_Finish).

query attacker (Finish).

query x:bitstring; event(StartConnection(x)) ==> event(AcceptConnection(x)
).

query x:bitstring; inj—event(StartConnection(x)) ==> inj—event(
AcceptConnection(x)).

type key.

type pin.

type nonce.
type realnonce.
type realkey.

free c:channel.

free RealNonceRequest:bitstring [private].

free NetworkInformation_SIS:bitstring [privatel.
free NetworkInofrmation_JoiningNode:bitstring [privatel].
free KEX_Request:bitstring [privatel].

free KEX_Response:bitstring [privatel].

free KEX_SET:bitstring [private].

free PubKeyJoiningNode:key [private].

free UserSISPin:bitstring [privatel].

free PubKeySIS:key [privatel].

free JoiningDSK:pin [privatel].

free JoiningNodeTempSymKey:key[privatel].

free SISTempSymKey:key[privatel].

free TempNonce:noncel[private].

free NonceRequest:bitstring [privatel].

free DEC_KEX_SET:nonce [private].

147

free ENC_Sec2KeyGet:noncel[private].

free DEC_Sec2KeyGet:bitstring[privatel].
free SharedNetworkKey:realkey[privatel].
free ENC_SharedNetworkKey:nonce[privatel].
free DEC_SharedNetworkKey:realkey[privatel].
free ENC_RealNonceReg:noncel[privatel].

free DEC_RealNonceReq:bitstring [privatel].
free ENC_RealNonce:nonce [private].

free DEC_RealNonce:realnonce [private].
free RNonce:realnonce [private].

free Verification:bitstring [privatel].
free ENC_Verification:nonce [privatel].
free DEC_Verification:bitstring [privatel].
free KeyVerified:bitstring [privatel].

free ENCKeyVerified:nonce [private].

free DEC_KeyVerified:bitstring [privatel].
free Finish:bitstring [private].

free ENCFinish:nonce [private].

free DEC_Finish:bitstring [privatel].

free Sec2KeyGet:bitstring [private].

free SharedNetworkKey_temp:bitstring [privatel].
free RNonce_temp:bitstring [privatel].

event KEX_SET_Verification(bitstring).
event KEX_SET_Decryption(bitstring).

event KEX_Req_Decryption(bitstring).

event KEX_Response_Verification(bitstring).
event Sec2KeyGet_Decryption(bitstring).
event RealNonce_Decryption(realnonce).
event Verification_Decryption(bitstring).
event KeyVerifiedDecryption(bitstring).
event FinishDecryption(bitstring).

event RealNetworkKey(realkey).

event RealNonceRequest_Decryption(bitstring).
event SharedNetworkKeyGeneration(realkey).
event RNonceGeneration(realnonce).

event StartConnection(bitstring).

event AcceptConnection(bitstring).

fun TempSymENC(bitstring, nonce, key): nonce.

reduc forall x: bitstring, y: nonce, z:key; TempSymDEC(TempSymENC(x,y,z),

z) = X.

148

fun SecureComm(bitstring, realnonce, realkey):nonce.

reduc forall x:bitstring, y:realnonce, z:realkey; DecSecureComm(SecureComm

(x,y,2),z) = x.

fun tcl(bitstring) : realnonce [typeConverter].
fun tc2(bitstring) : realkey [typeConverter].

let JoiningNode =
out(c, NetworkInofrmation_JoiningNode).

let SISNode =
in(c, NetworkInformation_SIS:bitstring);
out(c, NetworkInformation_SIS).

let JoiningNode2 =
in(c, NetworkInformation_SIS:bitstring).

let SISNode2 =
out(c, KEX_Request).

let JoiningNode3 =
in(c, KEX_Request:bitstring);
out(c, KEX_Response).

let SISNode3 =
in(c, KEX_Response:bitstring);
let NetworkInformation_SIS = KEX_Response in
event KEX_Response_Verification(KEX_Response);
if NetworkInformation_SIS = KEX_Response then
(
out(c, KEX_SET)
)

else

(

let JoiningNode4 =
in(c, KEX_SET:bitstring);
let KEX_SET = KEX_Request in

149

event KEX_SET _Verification(KEX_SET);
if KEX_SET = KEX_Request then
(

out(c, PubKeyJoiningNode)

)

else

(

let SISNode4 =
in(c, PubKeyJoiningNode:key);
in(c, UserSISPin:bitstring);
if UserSISPin = UserSISPin then
(

out(c, PubKeySIS)
)

else

(

let JoiningNode5 =
in(c, PubKeySIS:key);
in(c, JoiningDSK:pin);
if JoiningDSK = JoiningDSK then
(

out(c, NonceRequest)

)

else

(
0

).
let SISNode5 =
in(c, NonceRequest: bitstring);
out(c, TempNonce).

let JoiningNode6=

in(c, TempNonce:nonce);

out(c, TempSymENC(KEX_SET, TempNonce,JoiningNodeTempSymKey)).

150

let SISNode6=

in(c, ENC_KEX_SET:nonce);

let DEC_KEX_SET = TempSymDEC(ENC_KEX_SET, SISTempSymKey) in
event KEX_SET_Decryption(DEC_KEX_SET);

if DEC_KEX_SET = KEX_SET then

(
out(c, TempSymENC(KEX_Request,TempNonce,SISTempSymKey))
)

else

(

let JoiningNode7 =

in(c, ENC_KEX_Reqg:nonce);

let DEC_KEX_Req = TempSymDEC(ENC_KEX_Req, JoiningNodeTempSymKey) in
event KEX_Req_Decryption(DEC_KEX_Req);

if DEC_KEX_Req = KEX_Request then

(
out(c, TempSymENC(Sec2KeyGet, TempNonce, JoiningNodeTempSymKey))
)

else

(

let SISNode7 =
in(c, ENC_Sec2KeyGet:nonce);
let DEC_Sec2KeyGet = TempSymDEC(ENC_Sec2KeyGet, SISTempSymKey) in
event Sec2KeyGet_Decryption(DEC_Sec2KeyGet);
let SharedNetworkKey = tc2(SharedNetworkKey_temp) in
event SharedNetworkKeyGeneration(SharedNetworkKey);
out(c, TempSymENC (SharedNetworkKey_temp, TempNonce, SISTempSymKey)).

let JoiningNode8 =
in(c, ENC_SharedNetworkKey:nonce);
let DEC_SharedNetworkKey = TempSymDEC(ENC_SharedNetworkKey,
JoiningNodeTempSymKey) in
event RealNetworkKey(tc2(DEC_SharedNetworkKey));
out(c, TempSymENC (RealNonceRequest, TempNonce, JoiningNodeTempSymKey))

151

let SISNode8 =
in(c, ENC_RealNonceReq:nonce);
let DEC_RealNonceReq = TempSymDEC(ENC_RealNonceReq, SISTempSymKey) in
event RealNonceRequest_Decryption(DEC_RealNonceReq);
let RNonce = tcl1(RNonce_temp) in
event RNonceGeneration(RNonce);

out(c,TempSymENC (RNonce_temp, TempNonce, SISTempSymKey)).

let JoiningNode9 =
in(c, ENC_RealNonce:nonce);
let DEC_RealNonce = TempSymDEC(ENC_RealNonce, JoiningNodeTempSymKey)
in
event RealNonce_Decryption(tcl1(DEC_RealNonce));
out(c, SecureComm(Verification, tcl1(DEC_RealNonce),
DEC_SharedNetworkKey)).

let SISNode9 =
in (c, ENC_Verification:nonce);
let DEC_Verification = DecSecureComm(ENC_Verification,
SharedNetworkKey) in

event Verification_Decryption(DEC_Verification);

if DEC_Verification = Verification then
(
out(c, SecureComm(KeyVerified, RNonce, SharedNetworkKey))
)
else
(
0
).

let JoiningNodel0 =
in(c, ENCKeyVerified:nonce);
let DEC_KeyVerified = DecSecureComm(ENCKeyVerified,
DEC_SharedNetworkKey) in

event KeyVerifiedDecryption(DEC_KeyVerified);

if DEC_KeyVerified = KeyVerified then

(
event StartConnection(Finish);
out (c, SecureComm(Finish, DEC_RealNonce, DEC_SharedNetworkKey))
)

else

152

let SISNodel@ =
in(c, ENCFinish:nonce);
let DEC_Finish = DecSecureComm(ENCFinish, SharedNetworkKey) in
event FinishDecryption(DEC_Finish);
if DEC_Finish = Finish then

(

event AcceptConnection(DEC_Finish)

)

else

(
4
).

process
(

!JoiningNode|! SISNode|! JoiningNode2|! SISNode2|! JoiningNode3|! SISNode3
|! JoiningNode4|! SISNode4|! JoiningNode5|! SISNode5|! JoiningNode6 |!
SISNode6 |! JoiningNode7|! SISNode7|! JoiningNode8|! SISNode8 |!
JoiningNode9 |! SISNode9|! JoiningNode1@|! SISNode10

)

153

ProVerif Result

Process:
(

{13!

{2}out(c, NetworkInofrmation_JoiningNode)
) (

{33!

{4}in(c, NetworkInformation_SIS_25: bitstring);
{5}out(c, NetworkInformation_SIS_25)

(

{6}!

{7}in(c, NetworkInformation_SIS_26: bitstring)
(

{8}!

{9}out(c, KEX_Request)

(

{10}!

{11}in(c, KEX_Request_27: bitstring);
{12}out(c, KEX_Response)

(

{13}!

{14}in(c, KEX_Response_28: bitstring);

{15}1let NetworkInformation_SIS_29: bitstring = KEX_Response_28
{16}event KEX_Response_Verification(KEX_Response_28);
{17}if (NetworkInformation_SIS_29 = KEX_Response_28) then
{18}Out(c, KEX_SET)

(

{19}!

{20}in(c, KEX_SET_30: bitstring);

{21}1let KEX_SET_31: bitstring = KEX_Request in
{22} event KEX_SET_Verification(KEX_SET_31);
{23}if (KEX_-SET_31 = KEX_Request) then
{24}out(c, PubKeyJoiningNode)

(

{25}!

{26}in(c, PubKeyJoiningNode_32: key);

{27}in(c, UserSISPin_33: bitstring);

{28}if (UserSISPin_33 = UserSISPin_33) then
{29}out(c, PubKeySIS)

(

{30}!

154

in

{31}in(c, PubKeySIS_34: key);

{32}in(c, JoiningDSK_35: pin);

{33}if (JoiningDSK_35 = JoiningDSK_35) then

{34}out(c, NonceRequest)

(

{35}!

{36}in(c, NonceRequest_36: bitstring);

{37}out(c, TempNonce)

(

{38}!

{39}in(c, TempNonce_37: nonce);

{40}out(c, TempSymENC(KEX_SET,TempNonce_37,JoiningNodeTempSymKey))

(

{41}

{42}in(c, ENC_KEX_SET: nonce);

{43}let DEC_KEX_SET_38: bitstring = TempSymDEC(ENC_KEX_SET,
SISTempSymKey) in

{44}event KEX_SET_Decryption(DEC_KEX_SET_38);

{45}if (DEC_KEX_SET_38 = KEX_SET) then

{46}out(c, TempSymENC(KEX_Request, TempNonce, SISTempSymKey))

(

{47}!

{48}in(c, ENC_KEX_Reqg: nonce);

{49} 1let DEC_KEX_Req: bitstring = TempSymDEC(ENC_KEX_Req,
JoiningNodeTempSymKey) in

{50}event KEX_Req_Decryption(DEC_KEX_Req);

{51}if (DEC_KEX_Req = KEX_Request) then

{52}out(c, TempSymENC(Sec2KeyGet, TempNonce, JoiningNodeTempSymKey))

(

{53}!

{54}in(c, ENC_Sec2KeyGet_39: nonce);

{55}1let DEC_Sec2KeyGet_40: bitstring = TempSymDEC (ENC_Sec2KeyGet_39,
SISTempSymKey) in

{56}event Sec2KeyGet_Decryption(DEC_Sec2KeyGet_40);

{57}1let SharedNetworkKey_41: realkey = SharedNetworkKey_temp in

{58} event SharedNetworkKeyGeneration(SharedNetworkKey_41);

{59}out(c, TempSymENC(SharedNetworkKey_temp ,TempNonce,SISTempSymKey))

(

{60}!

{61}in(c, ENC_SharedNetworkKey_42: nonce);

{62} 1let DEC_SharedNetworkKey_43: bitstring = TempSymDEC(
ENC_SharedNetworkKey_42 ,JoiningNodeTempSymKey) in

155

{63}event RealNetworkKey(DEC_SharedNetworkKey_43);

{64}out(c, TempSymENC(RealNonceRequest,b TempNonce, JoiningNodeTempSymKey
))

(

{65}!

{66}in(c, ENC_RealNonceReq_44: nonce);

{67} 1let DEC_RealNonceReq_45: bitstring = TempSymDEC (
ENC_RealNonceReq_44 ,SISTempSymKey) in

{68}event RealNonceRequest_Decryption(DEC_RealNonceReq_45);

{69}1let RNonce_46: realnonce = RNonce_temp in

{70}event RNonceGeneration(RNonce_46);

{71}out(c, TempSymENC(RNonce_temp, TempNonce,SISTempSymKey))

(

{72}

{73}in(c, ENC_RealNonce_47: nonce);

{74}1let DEC_RealNonce_48: bitstring = TempSymDEC(ENC_RealNonce_47,
JoiningNodeTempSymKey) in

{75}event RealNonce_Decryption(DEC_RealNonce_48);

{76}out(c, SecureComm(Verification,DEC_RealNonce_48,
DEC_SharedNetworkKey))

(

{77}

{78}in(c, ENC_Verification_49: nonce);

{79} 1let DEC_Verification_5@: bitstring = DecSecureComm(
ENC_Verification_49,SharedNetworkKey) in

{80}event Verification_Decryption(DEC_Verification_50);

{81}if (DEC_Verification_50 = Verification) then

{82}out(c, SecureComm(KeyVerified,RNonce, SharedNetworkKey))

(

{83}!

{84}in(c, ENCKeyVerified_.51: nonce);

{85}1let DEC_KeyVerified_52: bitstring = DecSecureComm(
ENCKeyVerified_51,DEC_SharedNetworkKey) in

{86}event KeyVerifiedDecryption(DEC_KeyVerified_52);

{87}if (DEC_KeyVerified 52 = KeyVerified) then

{88}event StartConnection(Finish);

{89}out(c, SecureComm(Finish,DEC_RealNonce,DEC_SharedNetworkKey))

(

{90}!

{91}in(c, ENCFinish_53: nonce);

{92}1let DEC_Finish_54: bitstring = DecSecureComm(ENCFinish_53,
SharedNetworkKey) in

156

{93}event FinishDecryption(DEC_Finish_54);
{94}if (DEC_Finish_54 = Finish) then
{95} event AcceptConnection(DEC_Finish_54)

— Query not attacker(SharedNetworkKey[1)

Completing...

Starting query not attacker (SharedNetworkKey[])

RESULT not attacker(SharedNetworkKey[]) is true.

—— Query not attacker (DEC_SharedNetworkKey[])

Completing...

Starting query not attacker (DEC_SharedNetworkKey[]1)

RESULT not attacker (DEC_SharedNetworkKey[]) is true.

— Query not attacker (RNoncel[])

Completing...

Starting query not attacker (RNoncel[])

RESULT not attacker (RNonce[]) is true.

— Query not attacker (DEC_RealNoncel[])

Completing...

Starting query not attacker(DEC_RealNoncel[])

RESULT not attacker (DEC_RealNonce[]) is true.

— Query not attacker(SharedNetworkKey_temp[])

Completing...

Starting query not attacker(SharedNetworkKey_temp[1])

RESULT not attacker (SharedNetworkKey_temp[]) is true.

— Query not attacker (RNonce_temp[])

Completing...

Starting query not attacker (RNonce_temp[])

RESULT not attacker (RNonce_temp[]) is true.

— Query not attacker (DEC_Finish[])

Completing...

Starting query not attacker (DEC_Finish[])

RESULT not attacker(DEC_Finish[]) is true.

— Query not attacker(Finish[])

Completing...

Starting query not attacker(Finish[1])

RESULT not attacker(Finish[]) is true.

— Query event(StartConnection(x_55)) ==> event(AcceptConnection(x_.55))

Completing...

Starting query event(StartConnection(x_55)) ==> event(AcceptConnection(
x_55))

RESULT event(StartConnection(x_55)) ==> event(AcceptConnection(x_55)) is

157

true.

— Query inj—event(StartConnection(x_56)) ==> inj—event (AcceptConnection(
x_56))

Completing...

Starting query inj—event(StartConnection(x_56)) ==> inj—event(
AcceptConnection(x_56))

RESULT inj—event(StartConnection(x_56)) ==> inj—event (AcceptConnection(
x_56)) 1is true.

158

Appendix 7 — Thread Authentication

Commissioning or authenticating must be able to take place in a system where a Joiner
that wishes to join to the Thread Network is authenticated using a device known as a
Commissioner, Authentication Server, which must be connected to the already existing
Thread network to authenticate. Commissioning can take place from being connected to
different network, if there is appropriate route to the Thread Network.

Thread uses elliptic curve variant of J-PAKE (EC-JPAKE), using the NIST P-256 elliptic
curve. J-PAKE [145] is a password-authenticated key exchange (PAKE) with juggling.
It essentially uses elliptic curve Diffie-Hellman for key agreement and Schnorr signatures
as a NIZK (Non-Interactive Zero-Knowledge) [146] proof mechanism to authenticate two
peers and to establish a shared secret between them based on the passphrase. [7]
Thread network is protected with a network-wide key, which is used at the MAC (Media
Access Control) layer to protect the MAC data frames. As it is a network key, compromise
of any Thread device could potentially reveal the key; therefore, it is not typically used
as the only form of protection within the Thread Network. [7]

When joining Thread Network, device is required to identify router which is used to join
and to communicate in a point-to-point protocol way. Router polices any traffic from the
device and forwards it to the authentication server in a controlled manner to allow the
authentication protocol (DTLS handshake) to execute. DTLS key exchange is described
in Appendix 10.

If the Commissioner is not in direct communication with the Joiner, the Joiner Router
must relay the DTLS handshake with the Commissioner. The Commissioning relay
protocol encapsulates DTLS handshake and relays of the DTLS handshake from the
Joiner all the way to the Commissioner. Authentication server uses Commissioning
protocol to keep a secure communication session, it is based on CoAP [104].

There are two different Commissioner appointing set ups, external Commissioner and
native.

If the Commissioner candidate uses a WLAN network for commissioning purposes, it
is known as an external Commissioner. An external Commissioner has to connect the
Thread network through a Thread router, which is known as border router to become au-
thorized Commissioner. Commissioner candidate must use an authentication handshake
with a router to prove it is eligible to become authorized Commissioner and set up a
secure Commissioning session. The Commissioner candidate then connects to the Leader

through the border router because there can be only one authorized Commissioner. If

159

connection and validation succeeds, the Commissioner candidate becomes authorized
external Commissioner. The secure Commissioning session remains in place and the
representative border router will be made known of the result in the Thread network,
because all subsequent communication with other Thread devices will be done through
that border router. [7]

If the Commissioner candidate uses a Thread network interface for commissioning, it is
known as a Native Commissioner. A Native Commissioner has to petition the Thread
Network through a representative Commissioner router) to become authorized Com-
missioner. The Commissioner candidate must use an authentication handshake with
the Commissioner router to prove it is eligible to become authorized Commissioner and
set up a secure Commissioning session. The Commissioner Candidate then connects
with the Leader via the Commissioner router because there can be only one authorized
Commissioner. If validation succeeds, the Commissioner candidate becomes the sole
authorized Native Commissioner. However, the Commissioner subsequently joins the
Thread Network and becomes an active device (on-mesh Commissioner) and all commu-
nication with other Thread devices takes place directly with the Commissioner. [7]

In this method, evaluation is done based on Joiner—Joiner Router/Commissioner sequence,
however all these sequences are similar, with the difference of the which Commissioner or
router is used. This message exchange has been show in Figure 10.

This communication is over an unsecured radio link and all traffic between the Joiner
and Joiner Router will be sent in the clear without any form of integrity checking.
This fundamentally means the Joiner Router has to treat any traffic from the Joiner as
completely unauthenticated. Normally, the Thread Network would be in a “lock down”
mode, which would cause any Thread Device on the perimeter to ignore any unsecured
802.15.4 traffic. However, when joining is permitted, Joiner Routers should carefully
police unsecured 802.15.4 traffic and assume it to be authentication traffic. [7]

The DTLS handshake will occur as initial communication being established between the
Joiner and Joiner Router. A relay agent will check the incoming traffic and the Joiner
Router will relay the DTLS client handshake along with address and port details of the
Joiner and the Joiner Router itself to the Border Router. The address and port details
ensure relayed DTLS server handshake response messages can be relayed back through
the Joiner Router to the originating Joiner. [7]

As mentioned earlier, DTLS key exchange is described in Appendix 10.

160

Figure 10: Thread Joiner—Joiner Router/Commissioner Sequence [7]

Commissioner Jairer

- OTLS-ClientHello

-
-

Joiner skarts OTLS
hardahake

DTLS-Helo\erify Reguest

OTLE-ChentHello {w cookie)

OTLS handshake finished.
Joiner and Commissionar
share & pair-wiss key

1angeCipherspec
5-Finished

- TOIN_EN 1aq

DTLS-ApplicationData

JOIW_FIN._rsp | ol

f/:_- L
.n-"‘"f

The Commissionsr can L’r;:'f JOIN_ENT .req | >
novs send netwri - Rasponse & also sent
parameters securaly "‘_l JOIN_ENT.rsp aecurealy

| RS CIE N U ™= Joiner chses the secure

Commissioner closas .,

CI‘.'IIT'II'I\IESIDI'IIHQ Se&55810n
using CLOSE_NOTIFY akrt

sacure Commissioning .
SE8S01 0N receipt of DTLS-Alert (close_naotify)
CLOSE_MOTIFY alert

161

Thread Joiner-Commissioner ProVerif Verification

set traceDisplay = long.

query
query
query
query
query
query

query

query
query

attacker (CommissionerPrivKey).
attacker (JoinerPrivKey).

attacker (JoinerMKey).

attacker (CommissionerMKey).

attacker (JoinerDecryptedDatal).
attacker (CommissionerDecryptedDatal).

x:bitstring; event(JoinerDecryptDatal(x)).
x:bitstring; event(CommissionerDecryptDatal(x)).
x:bitstring; event(JoinerDecryptDatal(x)) ==> event(

CommissionerDecryptDatal(x)).

query

x:bitstring; inj—event(JoinerDecryptDatal(x)) ==> inj—event(

CommissionerDecryptDatal (x)).

type
type
type

free

free
free
free
free
free
free
free
free
free
free

free
free
free
free

free
free

key.
nonce.

mkey .

c:channel.

AppData:bitstring[private].
JoinedReq:bitstring[privatel].
JoinFinishedVerified:bitstring[privatel].
JoinedFinished:bitstring[private].
Close, HelloCookie, JoinFinished, RealHello:bitstring[private].
Close_ACK, JoinerDecryptedDatal:bitstring[privatel].
CommissionerDecryptedDatal:bitstring[privatel].
CommissionerDecryptedData2:bitstring[privatel].
JoinerDecDatal:bitstring[private].

JoinerDecData2, Hello, HelloAck:bitstring[privatel].

CommissionerPubKey:key [privatel].
CommissionerPrivKey:key [privatel].
JoinerPubKey:key [private].
JoinerPrivKey:key [privatel].

CommissionerMKey:mkey [privatel].
JoinerMKey:mkey [private].

162

fun CommunicationKeyGeneration(bitstring, key, key):mkey.

event

event

event
event
event

event

JoinerMKeyGeneration (mkey).
CommissionerMKeyGeneration (mkey).

JoinerDecryptDatal (bitstring).
JoinerDecryptData2(bitstring).
CommissionerDecryptDatal (bitstring).
CommissionerDecryptData2(bitstring).

fun Encryption(bitstring, mkey): nonce.

reduc

forall x: bitstring, y: mkey; Decryption(Encryption(x,y),

let Joiner =

new Hello:bitstring;
out(c, Hello).

let Commissioner =

in(c, Hello:bitstring);

new HelloVerification: bitstring;

out(c, HelloVerification).

let Joiner2 =

in(c, HelloVerification:bitstring);

new HelloCookie:bitstring;
out(c, HelloCookie).

let Commissioner2 =

in(c, HelloCookie:bitstring);

new CommissionerPubKey:key;

out(c, (RealHello, CommissionerPubKey)).

let Joiner3 =

in(c, (RealHello:bitstring, CommissionerPubKey:key));

new JoinerPubKey:key;

new RealHelloFinished:bitstring;
out(c, (RealHelloFinished, JoinerPubKey)).

let Commissioner3 =

in(c, (RealHelloFinished:bitstring, JoinerPubKey:key));

new Finished:bitstring;
out(c, Finished).

163

y)

X.

let Joiner4 =
in(c, Finished:bitstring);
new JoinerPrivKey:key;
let JoinerMKey = CommunicationKeyGeneration(RealHello,
CommissionerPubKey, JoinerPrivKey) in
event JoinerMKeyGeneration(JoinerMKey);

out(c, Encryption((AppData, JoinFinished), JoinerMKey)).

let Commissioner4 =
in (c, JoinerEncDatal:nonce);
new CommissionerPrivKey:key;
let CommissionerMKey = CommunicationKeyGeneration(HelloCookie,
JoinerPubKey, CommissionerPrivKey) in
event CommissionerMKeyGeneration(CommissionerMKey);
let JoinerDecryptedDatal = Decryption(JoinerEncDatal, CommissionerMKey)
in
event JoinerDecryptDatal(JoinerDecryptedDatal);
out(c, Encryption((AppData, JoinFinishedVerified), CommissionerMKey)).

let Joiner5 =
in(c, CommissionerEncDatal:nonce);
new JoinerPrivKey:key;
let CommissionerDecryptedDatal = Decryption(CommissionerEncDatal,
JoinerMKey) in
event CommissionerDecryptDatal (CommissionerDecryptedDatal).

process (

!Joiner|! Commissioner|! Joiner2|! Commissioner2|! Joiner3|! Commissioner3|!

Joiner4|! Commissioner4|! Joiner5

164

Thread Joiner-Commissioner ProVerif Result

Process:

(

{1}!

{2}new Hello_13: bitstring;

{3}out(c, Hello_13)

(

{4}

{5}in(c, Hello_14: bitstring);

{6}new HelloVerification: bitstring;

{7}out(c, HelloVerification)

(

{8}!

{9}in(c, HelloVerification_15: bitstring);

{10} new HelloCookie_16: bitstring;

{11}out(c, HelloCookie_16)

(

{12}

{13}in(c, HelloCookie_17: bitstring);

{14} new CommissionerPubKey_18: key;

{15}out(c, (RealHello,CommissionerPubKey_18))

(

{16}!

{17}in(c, (RealHello_19: bitstring,CommissionerPubKey_20: key));

{18} new JoinerPubKey_21: key;

{19} new RealHelloFinished: bitstring;

{20}out(c, (RealHelloFinished, JoinerPubKey_21))

(

{21}

{22}in(c, (RealHelloFinished_22: bitstring,JoinerPubKey_23: key));

{23} new Finished: bitstring;

{24}out(c, Finished)

(

{25}!

{26}in(c, Finished_24: bitstring);

{27} new JoinerPrivKey_25: key;

{28}1let JoinerMKey_26: mkey = CommunicationKeyGeneration(RealHello,
CommissionerPubKey, JoinerPrivKey_25) in

{29}event JoinerMKeyGeneration(JoinerMKey_26);

{30}out(c, Encryption((AppData,JoinFinished),JoinerMKey_26))

(

165

{31}!

{32}in(c, JoinerEncDatal: nonce);

{33} new CommissionerPrivKey_27: key;

{34}1let CommissionerMKey_28: mkey = CommunicationKeyGeneration(
HelloCookie, JoinerPubKey,CommissionerPrivKey_27) in

{35}event CommissionerMKeyGeneration(CommissionerMKey_28);

{36}1let JoinerDecryptedDatal_29: bitstring = Decryption(JoinerEncDatal

,CommissionerMKey_28) 1in

{37}event JoinerDecryptDatal(JoinerDecryptedDatal_29);

{38}out(c, Encryption((AppData,JoinFinishedVerified),
CommissionerMKey_28))

) |«

{39}!

{40}in(c, CommissionerEncDatal: nonce);

{41}new JoinerPrivKey_30: key;

{42}1let CommissionerDecryptedDatal_31: bitstring = Decryption(
CommissionerEncDatal, JoinerMKey) in

{43}event CommissionerDecryptDatal(CommissionerDecryptedDatal_31)

— Query not attacker (CommissionerPrivKeyl[])
Completing...

Starting query not attacker(CommissionerPrivKey[])
RESULT not attacker(CommissionerPrivKey[]) is true.
— Query not attacker(JoinerPrivKey[])
Completing...

Starting query not attacker(JoinerPrivKey[])

RESULT not attacker(JoinerPrivKey[]) is true.

— Query not attacker(JoinerMKey[1])

Completing...

Starting query not attacker(JoinerMKey[])

RESULT not attacker(JoinerMKey[]) is true.

— Query not attacker(CommissionerMKey[1])
Completing...

Starting query not attacker (CommissionerMKey[])
RESULT not attacker(CommissionerMKey[]) is true.

—— Query not attacker(JoinerDecryptedDatall[])
Completing...

Starting query not attacker(JoinerDecryptedDatall[])
RESULT not attacker(JoinerDecryptedDatal[]) is true.
— Query not attacker(CommissionerDecryptedDatal[])
Completing...

166

Starting query not attacker(CommissionerDecryptedDatall[])

RESULT not attacker (CommissionerDecryptedDatal[]) is true.

— Query not event(JoinerDecryptDatal(x_-32))

Completing...

Starting query not event(JoinerDecryptDatal(x_32))

RESULT not event(JoinerDecryptDatal(x_32)) is true.

— Query not event(CommissionerDecryptDatal (x_33))

Completing...

Starting query not event(CommissionerDecryptDatal(x_-33))

RESULT not event(CommissionerDecryptDatal(x_33)) is true.

— Query event(JoinerDecryptDatal (x_.34)) ==> event(
CommissionerDecryptDatal (x_34))

Completing...

Starting query event(JoinerDecryptDatal(x_-34)) ==> event(
CommissionerDecryptDatal (x_34))

RESULT event(JoinerDecryptDatal(x_-34)) ==> event(CommissionerDecryptDatal(
x_34)) is true.

— Query inj—event(JoinerDecryptDatal (x_35)) ==> inj—event(
CommissionerDecryptDatal (x_35))

Completing...

Starting query inj—event(JoinerDecryptDatal (x_.35)) ==> inj—event(
CommissionerDecryptDatal (x_35))

RESULT inj—event(JoinerDecryptDatal (x_35)) ==> inj—event(
CommissionerDecryptDatal (x_35)) is true.

167

Appendix 8 — TLS Authentication

The TLS protocol enable two parties to identify and authenticate one another and
communicate with confidentiality and data integrity. TLS connection is started by an
application, which becomes TLS client. Every new connection begin with TLS handshake.
Handshake enables the the client and server to establish the secret keys with which they
communicate, from that point forward. TLS handshake means that client and server agree
on the version of the protocol to use, select cryptographic algorithms, authenticate each
other by exchanging and validating digital certificates and use asymmetric encryption
techniques to generate a shared secret key. SSL or TLS then uses the shared key for the
symmetric encryption of messages, which is faster than asymmetric encryption. TLS/SSL
authentication message exchange has been show in Figure 11 and short description of
it [8]:

1. The SSL or TLS client sends a client hello message that lists cryptographic infor-
mation such as the SSL or TLS version and, in the client’s order of preference, the
cipher suites supported by the client. The message also contains a random byte
string that is used in subsequent computations. The protocol allows for the client

hello to include the data compression methods supported by the client.

2. The SSL or TLS server responds with a server hello message that contains the
cipher suite chosen by the server from the list provided by the client, the session
ID, and another random byte string. The server also sends its digital certificate. If
the server requires a digital certificate for client authentication, the server sends a
client certificate request that includes a list of the types of certificates supported
and the Distinguished Names of acceptable Certification Authorities (CA-s).

3. The SSL or TLS client verifies the server’s digital certificate. For more information,
see How SSL and TLS provide identification, authentication, confidentiality, and

integrity.

4. The SSL or TLS client sends the random byte string that enables both the client
and the server to compute the secret key to be used for encrypting subsequent
message data. The random byte string itself is encrypted with the server’s public

key.

5. If the SSL or TLS server sent a client certificate request, the client sends a random

byte string encrypted with the client’s private key, together with the client’s digital

168

certificate, or a no digital certificate alert. This alert is only a warning, but with

some implementations the handshake fails if client authentication is mandatory.

. The SSL or TLS server verifies the client’s certificate. For more information,
see How SSL and TLS provide identification, authentication, confidentiality, and

integrity.

. The SSL or TLS client sends the server a finished message, which is encrypted with
the secret key, indicating that the client part of the handshake is complete.

. The SSL or TLS server sends the client a finished message, which is encrypted with
the secret key, indicating that the server part of the handshake is complete.

. For the duration of the SSL or TLS session, the server and client can now exchange

messages that are symmetrically encrypted with the shared secret key.

169

Figure 11: TLS Key Exchange Sequence [§]

SSL Client SSL Server
(1) "client hello” .
Cryptographic information
(2) "server hello”
of
(3 CipherSuite
Verify server Server certificate
cettificate. "client certificate request” (optional)
Check
cryptographic
parameters (4) Client key exchange B

Send secret key information
(encrypted with server public key) (6)

(5) Send dient certificate Verify client
certificate
(7) Client "finished” N (if required)
(8) Server “finished’
(9) Exchange messages ,

(encrypted with shared secret key)

170

ProVerif Verification

set traceDisplay = long.

query attacker(ClientPrivateKey).
query attacker(ServerPrivateKey).
query attacker (ServerMKey).
query attacker(ClientMKey).

query attacker(DecClientFinished).

query x:bitstring; event(startConnection(x)) ==> event(acceptConnection(x)
).
query x:bitstring; inj—event(startConnection(x)) ==> inj—event(

acceptConnection(x)).

free c:channel.

type nonce.

type certificate.

type key.

type secretkey.

free DecClientFinished:bitstring[privatel].
free ClientCertificate:certificatel[privatel].
free ServerCertificate:certificatel[privatel].
free ValidCANames:certificate[privatel].

type mkey.

free ServerMKey:mkey [privatel].

free ClientMKey:mkey [privatel].

fun MKeyGeneration(bitstring, key, key):mkey.
event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun Encryption(bitstring, mkey):nonce.

reduc forall x:bitstring, y:mkey; Decryption(Encryption(x,y),y)=x.

free ClientHello:bitstring[private].
free ServerHello:bitstring[privatel].

free ClientCertificateRequest:bitstring[privatel].
free ClientPrivateKey:key[private].

free ClientPublicKey:key[privatel].
free ServerPrivateKey:key[private].

171

free ServerPublicKey:key[private].

free randomByteForKey:bitstring[privatel].

free EncryptedrandomByteForKey:noncel[privatel].
free DecryptedrandomByteForKey:bitstring[privatel].
free ClientFinished:bitstring[privatel].

free ServerFinished:bitstring[privatel].

free ComputedSecretKeyClient:secretkey[privatel].
free ComputedSecretKeyServer:secretkey[privatel].

event ClientFinishDecryption(bitstring).
event VerifyServerCertificate(certificate).
event VerifyClientCertificate(certificate).
event RandomByteDecryption(bitstring).
event ClientComputation(secretkey).

event ServerComputation(secretkey).

event startConnection(bitstring).

event acceptConnection(bitstring).

let Client =
new ClientHello:bitstring;
out(c, ClientHello).

let Server =
in(c, ClientHello:bitstring);
new ServerCertificate:certificate;
new ServerHello:bitstring;
new ClientCertificateRequest:bitstring;
out(c, (ServerHello, (ServerCertificate, ClientCertificateRequest))).

let Client2 =
in(c, (ServerHello:bitstring, (ServerCertificate:certificate,
ClientCertificateRequest:bitstring)));
new ClientCertificate:certificate;
new ValidCANames:certificate;
let ServerCertificate = ValidCANames in
event VerifyServerCertificate(ServerCertificate);
if ServerCertificate = ValidCANames then
(
new randomByteForKey:bitstring;
let ClientMKey = MKeyGeneration(ServerHello, ServerPublicKey,
ClientPrivateKey) in

172

event ClientMKeyGeneration(ClientMKey);
out(c, (ClientCertificate,Encryption(randomByteForKey, ClientMKey)))
)

else

(

let Server2 =
in(c, (ClientCertificate:certificate,EncryptedrandomByteForKey:nonce))
let ClientCertificate = ValidCANames in
event VerifyClientCertificate(ClientCertificate);
if ClientCertificate = ValidCANames then
(
new ClientPublicKey:key;
let ServerMKey = MKeyGeneration(ClientHello, ClientPublicKey,
ServerPrivateKey) 1in
event ServerMKeyGeneration(ServerMKey);
let DecryptedrandomByteForKey = Decryption(EncryptedrandomByteForKey
, ServerMKey) in
event RandomByteDecryption(DecryptedrandomByteForKey);
event startConnection(DecryptedrandomByteForKey)
)

else

(
0
).
let Client3 =
out(c, Encryption(ClientFinished, ClientMKey)).

let Server3 =
in(c, EncryptedClientFinished:nonce);
let DecClientFinished = Decryption(EncryptedClientFinished,
ServerMKey) in
event ClientFinishDecryption(DecClientFinished);
if DecClientFinished = ClientFinished then
(
event acceptConnection(DecClientFinished)
)

else

(

173

process

(

IClient|! Server|!Client2|!Server2]|!Client3|! Server3

)

174

ProVerif Result

Process:
(
{1}!
{2}new ClientHello_16: bitstring;
{3}out(c, ClientHello_16)
) |«
{4}
{5}in(c, ClientHello_17: bitstring);
{6}new ServerCertificate_18: certificate;
{7}new ServerHello_19: bitstring;
{8}new ClientCertificateRequest_20: bitstring;
{9}out(c, (ServerHello_.19,(ServerCertificate_18,
ClientCertificateRequest_20)))
) |«
{10}!
{11}in(c, (ServerHello_21: bitstring,(ServerCertificate_22:
certificate,ClientCertificateRequest_23: bitstring)));
{12}new ClientCertificate_24: certificate;
{13} new ValidCANames_25: certificate;
{14} 1let ServerCertificate_26: certificate = ValidCANames_25 in
{15}event VerifyServerCertificate(ServerCertificate_26);
{16}if (ServerCertificate_26 = ValidCANames_25) then
{17}new randomByteForKey_27: bitstring;
{18} 1let ClientMKey_28: mkey = MKeyGeneration(ServerHello_ 21,
ServerPublicKey,ClientPrivateKey) in
{19}event ClientMKeyGeneration(ClientMKey_28);
{20}out(c, (ClientCertificate_24,Encryption(randomByteForKey_ 27,
ClientMKey_28)))
) | (
{21}!
{22}in(c, (ClientCertificate_29: certificate,
EncryptedrandomByteForKey_30: nonce));
{23}1let ClientCertificate_31: certificate = ValidCANames in
{24}event VerifyClientCertificate(ClientCertificate_31);
{25}if (ClientCertificate_31 = ValidCANames) then
{26} new ClientPublicKey_32: key;
{27}1let ServerMKey_-33: mkey = MKeyGeneration(ClientHello,
ClientPublicKey_32,ServerPrivateKey) in
{28}event ServerMKeyGeneration(ServerMKey_33);
{29} 1let DecryptedrandomByteForKey_34: bitstring = Decryption(

175

EncryptedrandomByteForKey_30,ServerMKey_33) in
{30}event RandomByteDecryption(DecryptedrandomByteForKey_34);
{31}event startConnection(DecryptedrandomByteForKey_34)

) |«
{32}!
{33}out(c, Encryption(ClientFinished,ClientMKey))
) | (
{34}!
{35}in(c, EncryptedClientFinished: nonce);
{36}let DecClientFinished_35: bitstring = Decryption(

EncryptedClientFinished, ServerMKey) in
{37}event ClientFinishDecryption(DecClientFinished_35);
{38}if (DecClientFinished_35 = ClientFinished) then
{39}event acceptConnection(DecClientFinished_35)

— Query not attacker(ClientPrivateKey[1)

Completing...

Starting query not attacker(ClientPrivateKey[])

RESULT not attacker(ClientPrivateKey[]) is true.
Query not attacker(ServerPrivateKey[1)

Completing...

Starting query not attacker(ServerPrivateKey[])

RESULT not attacker(ServerPrivateKey[]) is true.

— Query not attacker(ServerMKey[])

Completing...

Starting query not attacker(ServerMKey[])

RESULT not attacker(ServerMKey[]) is true.

— Query not attacker(ClientMKey[1])

Completing...

Starting query not attacker(ClientMKey[])

RESULT not attacker(ClientMKey[]) is true.

— Query not attacker(DecClientFinished[])

Completing...

Starting query not attacker(DecClientFinished[])

RESULT not attacker(DecClientFinished[]) is true.

— Query event(startConnection(x_-36)) ==> event(acceptConnection(x_36))

Completing...

Starting query event(startConnection(x_36)) ==> event(acceptConnection(
x_36))

RESULT event(startConnection(x_36)) ==> event(acceptConnection(x_36)) is
true.

176

— Query inj—event(startConnection(x_37)) ==> inj—event(acceptConnection(
x_37))

Completing...

Starting query inj—event(startConnection(x-37)) ==> inj—event(
acceptConnection(x_37))

RESULT inj—event(startConnection(x_37)) ==> inj—event(acceptConnection(
x_37)) 1is true.

177

Appendix 9 - PEAP-MSCHAPv2 Authentication

MS-CHAP is the Microsoft version of the Challenge-Handshake Authentication Protocol,
CHAP. The protocol exists in two versions, MS-CHAPv1 and MS-CHAPv2. PEAP-
MSCHAP provides an encrypted and authenticated tunnel based on TLS. In the first
phase, a TLS session is negotiated and established. The client also authenticates the
server by using a certificate. Optionally, the server can also authenticate the client. In
the second phase, EAP messages are encrypted by using the key negotiated in phase
one. The basic idea of PEAP and EAP-TTLS are identical. However, PEAP can only
use EAP protocols in the second phase, while EAP-TTLS can use EAP or non-EAP
protocols. [147]

MS-CHAP is used as one authentication option in Microsoft’s implementation of the
PPTP protocol for virtual private networks. It is also used as an authentication option
with RADIUSJ2] servers which are used with IEEE 802.1X (e.g., Wi-Fi security using
the WPA-Enterprise protocol). It is further used as the main authentication option of
the Protected Extensible Authentication Protocol (PEAP). [147] Compared with CHAP
MS-CHAP is enabled by negotiating CHAP Algorithm, Authentication Protocol provides
an authenticator-controlled password change mechanism, which provides an authenticator-
controlled authentication retry mechanism that failure codes returned in the failure packet
message field. MS-CHAPv2 provides mutual authentication between peers with a peer
challenge on the response packet and an authenticator response on the success packet.
The Extensible Authentication Protocol method for Microsoft Challenge Handshake
Authentication Protocol (CHAP) is an EAP method that is designed to meet this need.
It does so by having the client and server use MSCHAPv2 to mutually authenticate each
other. The flow for successful authentication with Extensible Authentication Protocol
Method for Microsoft CHAP is as follows: [147]

1. An EAP session is established between a client (EAP peer) and an EAP server.

2. The EAP server and EAP peer negotiate the EAP method to use. The Extensible
Authentication Protocol Method for Microsoft CHAP is selected.

3. The EAP peer and EAP server continue to exchange EAP messages with MSCHAPv2
packets encapsulated in the payload.

After the MSCHAPv2 packets successfully authenticate the client and the server to each
other, the EAP authentication finishes. Diffie-Hellman authentication has been described
in Appendix 3 and TLS Appendix 8.

178

ProVerif Verification

set traceDisplay = long.

query attacker (ServerMKey).

query attacker(ClientMKey).

query attacker (DecryptedTrafficl).

query attacker(DecryptedTraffic2).

query x:bitstring; event(TrafficDecryptionl(x)).

query x:bitstring; event(TrafficDecryption2(x)).

query x:bitstring; event(TrafficDecryptionl(x)) ==> event(
TrafficDecryption2(x)).

query x:bitstring; inj—event(TrafficDecryptionl(x)) ==> inj—event(
TrafficDecryption2(x)).

type nonce.

type key.

type certificate.

type material.

type challenge.

type response.

free DecryptedMessage:bitstring[privatel].

free DecryptedMessage2:bitstring[privatel].

free c:channel [privatel].

free ValidCA:certificatelprivate].

free EncKey:material[privatel].

free MSCHAPv2Challenge:challenge[privatel].

free Success:nonce [privatel].

free EncryptionKey, ClientKey:key[privatel].

free EAPResponse, EAPAuthRequest:bitstring[privatel].

free ClientDone, ClientKeyExchange, Hello, HelloAck, DecryptedTrafficl,
DecryptedTraffic2:bitstring[privatel].

free ClientlIdentity, DBClientIdentity, IdentityExists,
AuthenticationComplete, AuthenticationCompleteACK:bitstring [privatel].

free ServerKeyExchange, ServerDone, ServerHello, Cipher, ServerFinished:
bitstring [privatel].

free ServerCertificate, ClientCertificate:certificate[privatel].

free MSCHAPPassword:bitstring [privatel].

fun SolveChallenge(challenge, bitstring):response.

type mkey.

free ServerMKey:mkey [privatel].
free ClientMKey:mkey [private].

179

fun MKeyGeneration(bitstring, key, key):mkey.
event ClientMKeyGeneration(mkey).
event ServerMKeyGeneration(mkey).

fun GenerateKey(material):key.

fun EncryptTraffic(bitstring, mkey):nonce.

reduc forall x:bitstring, y:mkey; DecryptTraffic(EncryptTraffic(x,y),y)=x.
fun CombinedAuthentication(bitstring, response):nonce.

free ServerPublicKey, ServerPrivateKey, ClientPublicKey, ClientPrivateKey
key [private].

free TLSHello:bitstring [privatel].

event DBClientIdentityCheck(bitstring).

event FirstChallenge(response).

event EncryptionKeyGeneration(key).

event Decryptl(bitstring).

event Decrypt2(bitstring).

event Authentication(nonce).

event DCAuthentication(nonce).

event ServerCertificateValidation(certificate).

event ClientCertificateValidation(certificate).

event TrafficDecryptionl(bitstring).

event TrafficDecryption2(bitstring).

event ClientPrivateKeyGeneration(key).

let AP1 =
new AuthenticateRequest:bitstring;
out(c, AuthenticateRequest).

let Clientl =
in(c, AuthenticateRequest:bitstring);
new ClientIdentity:bitstring;
out(c, ClientIdentity).

let AP2 =
in(c, ClientIdentity:bitstring);
out(c, ClientIdentity).

let Serverl =
in(c, ClientIdentity:bitstring);
let ClientIdentity = DBClientIdentity in
event DBClientIdentityCheck(ClientIdentity);

180

if ClientIdentity = DBClientIdentity then
(
out(c, IdentityExists)
)
else
(
(]
).
let AP3 =
in(c, IdentityExists:bitstring);
new EAPAuthRequest:bitstring;
out(c, EAPAuthRequest).

let Client2 =
in(c, EAPAuthRequest:bitstring);
new TLSHello:bitstring;
out(c, TLSHello).

let AP4 =
in(c, TLSHello:bitstring);
out(c, TLSHello).

let Server2 =
in(c, TLSHello:bitstring);
out(c, (ServerHello, (ServerCertificate, (ServerKeyExchange,

))) -

let AP5 =
in(c, (ServerHello:bitstring, (ServerCertificate:certificate,
ServerKeyExchange:bitstring, ServerDone:bitstring))));
out(c, (ServerHello, (ServerCertificate, (ServerKeyExchange,

))) -

let Client3 =
in(c, (ServerHello:bitstring, (ServerCertificate:certificate,
ServerKeyExchange:bitstring, ServerDone:bitstring))));
let ServerCertificate = ValidCA in
event ServerCertificateValidation(ServerCertificate);
if ServerCertificate = ValidCA then
(

ServerDone)

(

ServerDone)

(

out(c, (ClientKeyExchange, (Cipher, (ClientCertificate, ClientDone))))

)

181

else

let AP6 =
in(c, (ClientKeyExchange:bitstring, (Cipher:bitstring, (
ClientCertificate:certificate, ClientFinished:bitstring))));
out(c, (ClientKeyExchange, (Cipher, (ClientCertificate, ClientDone)))).

let Server3 =
in(c, (ClientKeyExchange:bitstring, (Cipher:bitstring, (
ClientCertificate:certificate, ClientFinished:bitstring))));
let ClientCertificate = ValidCA in
event ClientCertificateValidation(ClientCertificate);
if ClientCertificate = ValidCA then
(
out(c, (Cipher, ServerFinished))
)

else

(

let AP7 =
in(c, (Cipher:bitstring, ServerFinished:bitstring));
out(c, (Cipher, ServerFinished)).

let Client4 =
in(c, (Cipher:bitstring, ServerFinished:bitstring));
out(c, EAPResponse).

let AP8 =
in(c, EAPResponse:bitstring);
out(c, EAPResponse).

let Server4 =
in(c, EAPResponse:bitstring);

out(c, EAPAuthRequest).

let AP9 =
in(c, EAPAuthRequest:bitstring);

182

out(c, EAPAuthRequest).

let Client5 =
in(c, EAPAuthRequest:bitstring);
out(c, ClientIdentity).

let AP10 =
in(c, ClientIdentity:bitstring);
out(c, ClientIdentity).

let Server5 =
in(c, ClientIdentity:bitstring);
let ClientIdentity = DBClientIdentity in
event DBClientIdentityCheck(ClientIdentity);
if ClientIdentity = DBClientIdentity then
(
out(c, MSCHAPv2Challenge)
)
else
(
0
).
let AP11 =
in(c, MSCHAPv2Challenge:challenge);
out (c, MSCHAPv2Challenge).

let Client6 =
in(c, MSCHAPv2Challenge:challenge);
let SolvedChallenge = SolveChallenge (MSCHAPv2Challenge,
in
event FirstChallenge(SolvedChallenge);
out(c, SolvedChallenge).

let AP12 =
in(c, SolvedChallenge:response);
out(c, SolvedChallenge).

let Server6 =
in(c, SolvedChallenge:response);

if SolvedChallenge = SolveChallenge (MSCHAPv2Challenge,
then

183

MSCHAPPassword)

MSCHAPPassword)

let Success = CombinedAuthentication(ClientIdentity, SolvedChallenge)
in
event Authentication(Success);
let DBSuccess = Success in
event DCAuthentication(DBSuccess);
if Success = DBSuccess then
(
out(c, AuthenticationComplete)
)
else
(
0

).

let AP13 =
in(c, AuthenticationComplete:bitstring);
out(c, AuthenticationComplete).

let Client7 =
in(c, AuthenticationComplete:bitstring);
out(c, AuthenticationCompleteACK).

let AP14 =
in(c, AuthenticationCompleteACK:bitstring);
out(c, AuthenticationCompleteACK).

let Server7 =
in(c, AuthenticationCompleteACK:bitstring);
out(c, EncKey).

let AP15 =
in(c, EncKey:material);
out(c, EncKey).

let Client8 =
in(c, EncKey:material);
let ClientPrivateKey = GenerateKey(EncKey) in
event ClientPrivateKeyGeneration(ClientPrivateKey);
let ClientMKey = MKeyGeneration(ServerHello, ServerPublicKey,
ClientPrivateKey) in
event ClientMKeyGeneration(ClientMKey);
out(c, EncryptTraffic(Hello, ClientMKey)).

184

let AP16 =
in(c, EncryptedTrafficl:nonce);
out(c, EncryptedTrafficl).

let Server8 =
in(c, EncryptedTrafficl:nonce);
let ServerMKey = MKeyGeneration(TLSHello, ClientPublicKey,
ServerPrivateKey) in

event ServerMKeyGeneration(ServerMKey);

let DecryptedTrafficl = DecryptTraffic(EncryptedTrafficl, ServerMKey) in
event TrafficDecryptionl (DecryptedTrafficl);

out(c, EncryptTraffic(HelloAck, ServerMKey)).

let AP17 =
in(c, EncryptedTraffic2:nonce);
out(c, EncryptedTraffic2).

let Client9 =
in(c, EncryptedTraffic2:nonce);
let DecryptedTraffic2 = DecryptTraffic(EncryptedTraffic2, ClientMKey) in
event TrafficDecryption2(DecryptedTraffic2).

process
(

'AP1]!Client1|! AP2|! Server1|!AP3|!Client2|!AP4|! Server2|!AP5|!Client3
|V AP6|! Server3|! AP7|!Client4|! AP8]|! Server4|! AP9|!Client5|! AP10]!
Server5|! AP11|!Client6|! AP12|! Server6|! AP13|!Client7|!AP14|!Server?
|!AP15|!Client8|

'AP16 |! Server8|! AP17|!Client9

)

185

ProVerif Result

Process:
(
{1}!
{2}new AuthenticateRequest: bitstring;
{3}out(c, AuthenticateRequest)
) | (
{4}
{5}in(c, AuthenticateRequest_16: bitstring);
{6}new ClientIdentity_17: bitstring;
{7}out(c, ClientIdentity_-17)
) | (
{8}!
{9}in(c, ClientIdentity_18: bitstring);
{10}out(c, ClientIdentity-18)
) |«
{11}
{12}in(c, ClientIdentity_19: bitstring);
{13}1let ClientIdentity 20: bitstring = DBClientIdentity in
{14} event DBClientIdentityCheck(ClientIdentity_20);
{15}if (ClientIdentity_20 = DBClientIdentity) then
{16}out(c, IdentityExists)
) | (
{17}
{18}in(c, IdentityExists_21: bitstring);
{19} new EAPAuthRequest_22: bitstring;
{20}out(c, EAPAuthRequest_22)
) | (
{21}
{22}in(c, EAPAuthRequest_23: bitstring);
{23} new TLSHello_24: bitstring;
{24}out(c, TLSHello_24)
) | (
{25}!
{26}in(c, TLSHello_25: bitstring);
{27}out(c, TLSHello_25)
) |«
{28}!
{29}in(c, TLSHello_26: bitstring);
{30}out(c, (ServerHello,(ServerCertificate, (ServerKeyExchange,

ServerDone))))

186

(

{31}!

{32}in(c, (ServerHello_27: bitstring,(ServerCertificate_28:
certificate,(ServerKeyExchange_29: bitstring,ServerDone_30:
bitstring))));

{33}out(c, (ServerHello_27,(ServerCertificate_28,(ServerKeyExchange_29
,ServerDone_30))))

(

{34}

{35}in(c, (ServerHello_31: bitstring,(ServerCertificate_32:
certificate,(ServerKeyExchange_33: bitstring,ServerDone_34:
bitstring))));

{36}1let ServerCertificate_35: certificate = ValidCA in

{37}event ServerCertificateValidation(ServerCertificate_35);

{38}if (ServerCertificate_35 = ValidCA) then

{39}out(c, (ClientKeyExchange,b (Cipher,(ClientCertificate,ClientDone)))
)

(

{40}!

{41}in(c, (ClientKeyExchange_36: bitstring,(Cipher_37: bitstring,(
ClientCertificate_38: certificate,ClientFinished: bitstring))));

{42}out(c, (ClientKeyExchange_36,(Cipher_37,(ClientCertificate_38,
ClientDone))))

(

{43}

{44}in(c, (ClientKeyExchange_39: bitstring,(Cipher_40: bitstring,(
ClientCertificate_41: certificate,ClientFinished_42: bitstring))));

{45}1let ClientCertificate_43: certificate = ValidCA in

{46}event ClientCertificateValidation(ClientCertificate_43);

{47}if (ClientCertificate_43 = ValidCA) then

{48}out(c, (Cipher_40,ServerFinished))

(

{49}!

{50}in(c, (Cipher_44: bitstring,ServerFinished_45: bitstring));

{51}out(c, (Cipher_44 ,ServerFinished_45))

(

{52}!

{53}in(c, (Cipher_46: bitstring,ServerFinished_47: bitstring));

{54}out(c, EAPResponse)

(

{55}!

{56}in(c, EAPResponse_48: bitstring);

187

{57}out(c, EAPResponse_48)

(

{58}!

{59}in(c, EAPResponse_49: bitstring);

{60}out(c, EAPAuthRequest)

(

{61}!

{62}in(c, EAPAuthRequest_50: bitstring);

{63}out(c, EAPAuthRequest_50)

(

{64}

{65}in(c, EAPAuthRequest_51: bitstring);

{66}out(c, ClientIdentity)

(

{67}!

{68}in(c, ClientIdentity_52: bitstring);

{69}out(c, ClientIdentity_52)

(

{70}!

{71}in(c, ClientIdentity_-53: bitstring);

{72}1let ClientIdentity_54: bitstring = DBClientIdentity

{73}event DBClientIdentityCheck(ClientIdentity_54);

{74}if (ClientIdentity_54 = DBClientIdentity) then

{75}out(c, MSCHAPv2Challenge)

(

{76}!

{77}in(c, MSCHAPv2Challenge_55: challenge);

{78}out(c, MSCHAPv2Challenge_55)

(

{79}!

{80}in(c, MSCHAPv2Challenge_56: challenge);

{81}let SolvedChallenge: response = SolveChallenge (
MSCHAPv2Challenge_56 ,MSCHAPPassword) in

{82}event FirstChallenge(SolvedChallenge);

{83}out(c, SolvedChallenge)

(

{84}!

{85}in(c, SolvedChallenge_57: response);

{86}out(c, SolvedChallenge_57)

(

{87}!

{88}in(c, SolvedChallenge_58: response);

188

in

{89}if (SolvedChallenge_58 = SolveChallenge(MSCHAPv2Challenge,
MSCHAPPassword)) then

{90} 1let Success_59: nonce = CombinedAuthentication(ClientIdentity,
SolvedChallenge_58) in

{91}event Authentication(Success_59);

{92}1let DBSuccess: nonce = Success_59 in

{93} event DCAuthentication(DBSuccess);

{94}if (Success_59 = DBSuccess) then

{95}out(c, AuthenticationComplete)

(

{96}!

{97}in(c, AuthenticationComplete_60: bitstring);

{98}out(c, AuthenticationComplete_60)

(

{99}!

{100}in(c, AuthenticationComplete_61: bitstring);

{101}out(c, AuthenticationCompleteACK)

(

{102}!

{103}in(c, AuthenticationCompleteACK_62: bitstring);

{104}out(c, AuthenticationCompleteACK_62)

(

{105}

{106}in(c, AuthenticationCompleteACK_63: bitstring);

{107}out(c, EncKey)

(

{108}!

{109}in(c, EncKey_-64: material);

{110}out(c, EncKey_64)

(

{111}!

{112}in(c, EncKey_65: material);

{113}1let ClientPrivateKey_66: key = GenerateKey(EncKey_65) in

{114}event ClientPrivateKeyGeneration(ClientPrivateKey_66);

{115} 1let ClientMKey_67: mkey = MKeyGeneration(ServerHello,
ServerPublicKey,ClientPrivateKey_66) in

{116}event ClientMKeyGeneration(ClientMKey_67);

{117}out(c, EncryptTraffic(Hello,ClientMKey_67))

(

{118}1

{119}in(c, EncryptedTrafficl: nonce);

{120}out(c, EncryptedTraffici)

189

) | (
{121}
{122}in(c, EncryptedTraffic1.68: nonce);
{123}1let ServerMKey_-69: mkey = MKeyGeneration(TLSHello,ClientPublicKey
,ServerPrivateKey) in
{124} event ServerMKeyGeneration(ServerMKey_69);
{125} 1let DecryptedTraffic1.70: bitstring = DecryptTraffic(
EncryptedTrafficl1_68,ServerMKey_69) in
{126}event TrafficDecryptionl(DecryptedTrafficl1.70);
{127}out(c, EncryptTraffic(HelloAck,ServerMKey_69))
) | (
{128}!
{129}in(c, EncryptedTraffic2: nonce);
{130}out(c, EncryptedTraffic2)
) |«
{131}!
{132}in(c, EncryptedTraffic2_71: nonce);
{133} 1let DecryptedTraffic2_72: bitstring = DecryptTraffic(
EncryptedTraffic2_71,ClientMKey) in
{134}event TrafficDecryption2(DecryptedTraffic2.72)

— Query not attacker(ServerMKey[])

nounif mess(c[],AuthenticateRequest_144)/—5000
Completing...

Starting query not attacker(ServerMKey[])

RESULT not attacker(ServerMKey[]) is true.

— Query not attacker(ClientMKey[])

nounif mess(c[],AuthenticateRequest_948)/—5000
Completing...

Starting query not attacker(ClientMKey[])

RESULT not attacker(ClientMKey[]) is true.

— Query not attacker(DecryptedTraffici1[])

nounif mess(c[],AuthenticateRequest_1748)/—5000
Completing...

Starting query not attacker(DecryptedTrafficl[])
RESULT not attacker(DecryptedTrafficl1[]) is true.
— Query not attacker(DecryptedTraffic2[])

nounif mess(c[],AuthenticateRequest_2548)/—5000
Completing...

Starting query not attacker(DecryptedTraffic2[])
RESULT not attacker(DecryptedTraffic2[]) is true.

190

— Query not event(TrafficDecryptionl(x_73))

nounif mess(c[],AuthenticateRequest_3348)/—5000

Completing...

Starting query not event(TrafficDecryption1(x_73))

RESULT not event(TrafficDecryptionl1(x_73)) is true.

— Query not event(TrafficDecryption2(x_74))

nounif mess(c[],AuthenticateRequest_4155)/—5000

Completing...

Starting query not event(TrafficDecryption2(x_74))

RESULT not event(TrafficDecryption2(x_74)) is true.

— Query event(TrafficDecryptionl(x_75)) ==> event(TrafficDecryption2(x_75
))

nounif mess(c[],AuthenticateRequest_4961)/—5000

Completing...

Starting query event(TrafficDecryptionl(x_75)) ==> event(
TrafficDecryption2(x_75))

RESULT event(TrafficDecryptionl(x_75)) ==> event(TrafficDecryption2(x_75))

is true.

— Query inj—event(TrafficDecryption1(x_76)) ==> inj—event(
TrafficDecryption2(x_76))

nounif mess(c[],AuthenticateRequest_5768)/—5000

Completing...

Starting query inj—event(TrafficDecryption1(x_.76)) ==> inj—event(
TrafficDecryption2(x_76))

RESULT inj—event(TrafficDecryption1(x_-76)) ==> inj—event(
TrafficDecryption2(x_76)) is true.

191

Appendix 10 — DTLS Authentication

DTLS uses TLS based key exchange, which is described in Appendix 8. Difference
between DTLS and TLS is that which transport protocol they use, TLS uses TCP and
DTLS UDP. Message flow for this authentication on key exchange in Figure 12 is as

follows:
Figure 12: DTLS Key Exchange Sequence [9]
Client Server
ClientHello
Key Share >
Generation HelloRetryRequest Stateless
< Cookie
ClientHello + Cookie Generation
-
ServerHello Key Share
B .
Generation
Handshake Handshake
Key Generation EncryptedExtensions Key Generation
CertificateRequest
Certificate Authentication
* —————————— - - +
CertificateVerify Encryption
Finished
Authentication Certificate
+ | peememesecessaasasama——
Encryption Certificate\ferify
Finished
Ack
o —— -

Application Application
Key Generation Key Generation
ApplicationData
Authenticated [®======= mmm——— =» Authenticated
Encryption / : Encryption /
Decryption L L L L T S ———— » Decryption

192

ProVerif Verification

set traceDisplay = long.

query attacker(ServerPrivKey).
query attacker(ClientPrivKey).
query attacker (ServerMKey).
query attacker(ClientMKey).
query attacker (DecryptedData).
query attacker (DecryptedData2).

query x:bitstring; event(DataDecryptionl(x)).
query x:bitstring; event(DataDecryption2(x)).
query x:bitstring; event(DataDecryptionl(x)) ==> event(DataDecryption2(x))

query x:bitstring; inj—event(DataDecryptionl(x)) ==> inj—event(
DataDecryption2(x)).

type certificate.
type key.

type nonce.

type mkey.

free c: channel.

free ClientCertificate, ServerCertificate, ValidCA:certificatel[privatel].

free Hello, TestHello, TestHelloAck, HelloVerify, Hello2, DecryptedData2,
DecryptedData:bitstring [private].

free ServerHello, ServerFinished, ServerKeyExchange, ClientKeyExchange,
ClientCertificateRequest, Cipher, ClientFinished, ServerHelloDone
bitstring[privatel].

free ServerPubKey, ServerPrivKey, ClientPrivKey, ClientPubKey : key [
private].

fun PublicKeyGeneration(certificate):key.
fun Encryption(bitstring, mkey):nonce.
reduc forall x:bitstring, y:mkey; Decryption(Encryption(x,y),y)=x.

free ServerMKey:mkey [privatel].

free ClientMKey:mkey [privatel].

fun CommunicationKeyGeneration(bitstring, key, key):mkey.
event ClientMKeyGeneration(mkey).

193

event ServerMKeyGeneration(mkey).

event HelloVerification(bitstring).

event ClientCertificateValidation(certificate).
event ServerCertificateValidation(certificate).
event ClientPublicKeyGeneration(key).

event ServerPublicKeyGeneration(key).

event DataDecryptionl(bitstring).

event DataDecryption2(bitstring).

event DataDecryption3(bitstring).

let Clientl =
out(c, Hello).

let Serverl =
in(c, Hello:bitstring);
out(c, HelloVerify).

let Client2 =
in(c, HelloVerify:bitstring);
out(c, Hello2).

let Server2 =
in(c, Hello2:bitstring);
let Hello2 = Hello in
event HelloVerification(Hello2);
if Hello = Hello2 then
(
out(c, (ServerHello, (ServerCertificate, (ServerKeyExchange, (
ClientCertificateRequest, ServerHelloDone)))))
)

else

(

let Client3 =
in(c, (ServerHello:bitstring, (ServerCertificate:certificate, (
ServerKeyExchange:bitstring, (ClientCertificateRequest:bitstring,
ServerHelloDone:bitstring)))));
let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);

194

if ServerCertificate = ValidCA then
(
out(c, (ClientCertificate, (ClientKeyExchange, (Cipher, ClientFinished
))))
)
else
(
0
).
let Server3 =
in(c, (ClientCertificate:certificate, (ClientKeyExchange:bitstring, (
Cipher:bitstring, ClientFinished:bitstring))));
let ClientCertificate = ValidCA in
event ClientCertificateValidation(ClientCertificate);
if ClientCertificate = ValidCA then
(
out(c, (Cipher, ServerFinished))
)

else

(
0
).
let Client4 =
in(c, (Cipher:bitstring, ServerFinished:bitstring));
let ServerPubKey = PublicKeyGeneration(ServerCertificate) in
event ServerPublicKeyGeneration(ServerPubKey);
let ClientMKey = CommunicationKeyGeneration(HelloVerify, ServerPubKey,
ClientPrivKey) in
event ClientMKeyGeneration(ClientMKey);
out(c, Encryption(TestHello, ClientMKey)).

let Server4 =

in(c, EncryptedData:nonce);

let ClientPubKey = PublicKeyGeneration(ClientCertificate) in
event ClientPublicKeyGeneration(ClientPubKey);

let ServerMKey = CommunicationKeyGeneration(Hello, ClientPubKey,

ServerPrivKey) in

event ClientMKeyGeneration(ServerMKey);

let DecryptedData = Decryption(EncryptedData, ServerMKey) in
event DataDecryptionl(DecryptedData);

if DecryptedData = TestHello then

(

195

out(c, Encryption(TestHelloAck, ServerMKey))
)

else

(

let Client5 =
in(c, EncryptedData2:nonce);

let DecryptedData2 = Decryption(EncryptedData2, ClientMKey) in
event DataDecryption2(DecryptedData2).

process(

!Client1]!Server1|!Client2|!Server2|!Client3|!Server3|!Client4|! Server4
|t Client5

196

ProVerif Result

Process:
(

{13!

{2}out(c, Hello)
) |«

{3}!

{4}in(c, Hello_16: bitstring);
{5}out(c, HelloVerify)
) |«

{6}!

{7}in(c, HelloVerify_17: bitstring);

{8}out(c, Hello2)

) | (

{9}!

{10}in(c, Hello2_18: bitstring);

{11}1let Hello2_.19: bitstring = Hello in

{12}event HelloVerification(Hello2_19);

{13}if (Hello = Hello2_19) then

{14}out(c, (ServerHello,(ServerCertificate, (ServerKeyExchange,(
ClientCertificateRequest, ServerHelloDone)))))

) |«

{15}!

{16}in(c, (ServerHello_20: bitstring,(ServerCertificate_21:
certificate, (ServerKeyExchange_22: bitstring, (
ClientCertificateRequest_23: bitstring, ServerHelloDone_24:
bitstring)))));

{17}1let ServerCertificate_25: certificate = ValidCA in

{18}event ServerCertificateValidation(ServerCertificate_25);

{19}if (ServerCertificate_25 = ValidCA) then

{20}out(c, (ClientCertificate,(ClientKeyExchange, (Cipher,
ClientFinished))))

) |«

{21}!

{22}in(c, (ClientCertificate_26: certificate,(ClientKeyExchange_27:
bitstring,(Cipher_28: bitstring,ClientFinished_29: bitstring))));

{23}1let ClientCertificate_30: certificate = ValidCA in

{24}event ClientCertificateValidation(ClientCertificate_30);

{25}if (ClientCertificate_-30 = ValidCA) then

{26}out(c, (Cipher_28,ServerFinished))

) |«

197

{27}

{28}in(c, (Cipher_31: bitstring,ServerFinished_32: bitstring));

{29} 1let ServerPubKey_33: key = PublicKeyGeneration(ServerCertificate)
in

{30}event ServerPublicKeyGeneration(ServerPubKey_33);

{31}1let ClientMKey_34: mkey = CommunicationKeyGeneration(HelloVerify,
ServerPubKey_33,ClientPrivKey) in

{32}event ClientMKeyGeneration(ClientMKey_34);

{33}out(c, Encryption(TestHello,ClientMKey_34))

) | (

{34}!

{35}in(c, EncryptedData: nonce);

{36}1let ClientPubKey_35: key = PublicKeyGeneration(ClientCertificate)
in

{37}event ClientPublicKeyGeneration(ClientPubKey_35);

{38}let ServerMKey_36: mkey = CommunicationKeyGeneration(Hello,
ClientPubKey_35,ServerPrivKey) in

{39}event ClientMKeyGeneration(ServerMKey_36);

{40} 1let DecryptedData_37: bitstring = Decryption(EncryptedData,
ServerMKey_36) in

{41}event DataDecryptioni(DecryptedData_37);

{42}if (DecryptedData_37 = TestHello) then

{43}out(c, Encryption(TestHelloAck, ServerMKey_36))

) | (

{44}!

{45}in(c, EncryptedData2: nonce);

{46}1let DecryptedData2_38: bitstring = Decryption(EncryptedData2,
ClientMKey) 1in

{47}event DataDecryption2(DecryptedData2_38)

—— Query not attacker(ServerPrivKey[1)
Completing...

Starting query not attacker(ServerPrivKey[])
RESULT not attacker(ServerPrivKey[]) is true.
— Query not attacker(ClientPrivKey[])
Completing...

Starting query not attacker(ClientPrivKey[])
RESULT not attacker(ClientPrivKey[]) is true.
— Query not attacker(ServerMKey[1])
Completing...

Starting query not attacker(ServerMKey[])

198

RESULT not attacker(ServerMKey[]) is true.

— Query not attacker(ClientMKey[])
Completing...

Starting query not attacker(ClientMKey[])

RESULT not attacker(ClientMKey[]) is true.

— Query not attacker(DecryptedDatall)
Completing...

Starting query not attacker (DecryptedDatal])
RESULT not attacker(DecryptedDatal[]) is true.

— Query not attacker(DecryptedData2[])
Completing...

Starting query not attacker (DecryptedData2[])
RESULT not attacker (DecryptedData2[]) is true.
— Query not event(DataDecryption1(x_-39))
Completing...

Starting query not event(DataDecryption1(x_39))
RESULT not event(DataDecryption1(x_-39)) is true.
— Query not event(DataDecryption2(x_40))
Completing...

Starting query not event(DataDecryption2(x_40))
RESULT not event(DataDecryption2(x_40)) is true.
— Query event(DataDecryptionl1(x_41)) ==> event(DataDecryption2(x_41))

Completing...

Starting query event(DataDecryptionl(x_41)) ==> event(DataDecryption2(x_41
))

RESULT event(DataDecryptionl1(x_41)) ==> event(DataDecryption2(x_41)) is
true.

— Query inj—event(DataDecryption1(x_42)) ==> inj—event(DataDecryption2(
x_42))

Completing...

Starting query inj—event(DataDecryptionl(x-42)) ==> inj—event(
DataDecryption2(x_42))

RESULT inj—event(DataDecryptionl(x_42)) ==> inj—event(DataDecryption2(x_42

)) is true.

199

Appendix 11 — PSK and EAP-PSK Authentication

EAP-PSK and PSK authentication protocols are similar but not that different. Their
biggest differences lie in the transport field and key lengths, but authentication flow is
the same as the goal.

EAP-PSK is composed of four messages: [148]

First message sent by the server to the peer which starts the mutual authentication
procedure and consists of a random value chosen by the server.

Second message sent by the peer to the server which contains a random value chosen
by the peer and an authentication tag over both random values as well as the peer and
server’s permanent network access identifier (NAI), that proves the identity of the peer
to the server.

Third message sent by the server to the peer that contains an authentication tag calculated
over the random value chosen by the peer and the server’s permanent full NAI that proves
the identity of the server to the peer. This message may also contain data encapsulated in
a protected channel that has just been set up as a result of the authentication procedure.
Fourth message sent by the peer to the server that may also contain data encapsulated

in a protected channel that has just been set up as a result of the authentication procedure

200

ProVerif Verification

set traceDisplay = long.

query attacker (PSK).

query attacker (MasterKey).
query attacker (DecryptedData).
query attacker(DecryptedData2).

query x:bitstring; event(DataAESDecryptionl(x)).

query x:bitstring; event(DataAESDecryption2(x)).

query x:bitstring; event(DataAESDecryptionl(x)) ==> event(
DataAESDecryption2(x)).

query x:bitstring; inj—event(DataAESDecryptionl(x)) ==> inj—event(
DataAESDecryption2(x)).

type challenge.
type response.
type nonce.
type key.

free c:channel.

free RequestlIdentity:bitstringl[privatel].
free Responseldentity:bitstring[privatel].
free Challengel:bitstring[private].

free PSKChallenge:challengel[private].
free MasterKey:key[privatel].

free PSK:key [private].

free PSKChallengeResponse:response[privatel].
free TestHello:bitstring[private].

free TestHelloAck:bitstring[private].
free Success:bitstring[privatel].

free EncryptedData:nonce [privatel].

free EncryptedData2:noncel[private].

free DecryptedData:bitstring[privatel].
free DecryptedData2:bitstring[privatel].
free DBResponse:bitstringl[privatel].

fun PSKChallengeGeneration(bitstring, key):challenge.
fun SolveChallenge(challenge, key):response.

201

fun AESEncryption(bitstring,6key):nonce.

reduc forall x:bitstring, y:key;AESDecryption(AESEncryption(x,y),y)=x.
event ResponseCheck(bitstring).

event ChallengeGeneration(challenge).

event DataAESDecryptionl(bitstring).

event DataAESDecryption2(bitstring).

event ChallengeSolving(response).

let Serverl =
out(c, RequestIdentity).
let Clientl =
in(c, Requestldentity:bitstring);
out(c, Responseldentity).
let Server2 =
in(c, Responseldentity:bitstring);
let Responseldentity = DBResponse in
event ResponseCheck (Responseldentity);
if Responseldentity = DBResponse then
(
new PSKChallenge:challenge;
new Challengel:bitstring;
let PSKChallenge = PSKChallengeGeneration(Challengel, MasterKey) in
event ChallengeGeneration(PSKChallenge);
out(c, PSKChallenge)
)
else
(
0
).
let Client2 =
in(c, PSKChallenge:challenge);
let PSKChallengeResponse = SolveChallenge (PSKChallenge, PSK) in
event ChallengeSolving(PSKChallengeResponse);
out(c, PSKChallengeResponse).

let Server3 =
in(c, PSKChallengeResponse:response);
if PSKChallengeResponse = SolveChallenge (PSKChallenge, MasterKey) then
(
out(c, AESEncryption(TestHello, MasterKey))

)

202

else

let Client3 =
in(c, EncryptedData:nonce);
let DecryptedData = AESDecryption(EncryptedData, PSK) in
event DataAESDecryptionl (DecryptedData);
out(c, AESEncryption(TestHelloAck, PSK)).

let Server4 =
in(c, EncryptedData2:nonce);
let DecryptedData2 = AESDecryption(EncryptedData2, PSK) in
event DataAESDecryption2(DecryptedData2).

process (

!Server1|!Client1|!Server2|!Client2]|!Server3|!Client3]|! Server4

)

203

ProVerif Result

Process:
(

{1y

{2}out(c, RequestIdentity)
) | (

{3}!

{4}in(c, RequestIdentity_16: bitstring);
{5}out(c, Responseldentity)
) |«
{6}!
{7}in(c, Responseldentity_17: bitstring);
{8}let Responseldentity_18: bitstring = DBResponse in
{9}event ResponseCheck(Responseldentity_18);
{10}if (Responseldentity_-18 = DBResponse) then
{11}new PSKChallenge_19: challenge;
{12}new Challengel1_20: bitstring;
{13}1let PSKChallenge_21: challenge = PSKChallengeGeneration (
Challengel1_20 ,MasterKey) in
{14} event ChallengeGeneration(PSKChallenge_21);
{15}out(c, PSKChallenge_21)
) | (
{16}!
{17}in(c, PSKChallenge_22: challenge);
{18} let PSKChallengeResponse_23: response = SolveChallenge (
PSKChallenge_22 ,PSK) in
{19}event ChallengeSolving(PSKChallengeResponse_23);
{20}out(c, PSKChallengeResponse_23)
) | (
{21}
{22}in(c, PSKChallengeResponse_24: response);
{23}if (PSKChallengeResponse_24 = SolveChallenge(PSKChallenge,
MasterKey)) then
{24}out(c, AESEncryption(TestHello, MasterKey))
) | (
{25}!
{26}in(c, EncryptedData_-25: nonce);
{27}1let DecryptedData_26: bitstring = AESDecryption(EncryptedData_25,
PSK) in
{28}event DataAESDecryptionl(DecryptedData_26);
{29} out(c, AESEncryption(TestHelloAck,hPSK))

204

) | (
{30}!
{31}in(c, EncryptedData2_27: nonce);
{32}1let DecryptedData2_28: bitstring = AESDecryption(EncryptedData2_27
,PSK) in
{33}event DataAESDecryption2(DecryptedData2_28)

—— Query not attacker (PSK[1])

Completing...

Starting query not attacker (PSK[])

RESULT not attacker (PSK[]) is true.

— Query not attacker(MasterKey[])

Completing...

Starting query not attacker(MasterKey[1)

RESULT not attacker(MasterKey[]) is true.

— Query not attacker(DecryptedDatall)

Completing...

Starting query not attacker (DecryptedDatal])

RESULT not attacker(DecryptedDatal[]) is true.

— Query not attacker(DecryptedData2[])

Completing...

Starting query not attacker (DecryptedData2[])

RESULT not attacker(DecryptedData2[]) is true.

— Query not event(DataAESDecryptionl(x-29))

Completing...

Starting query not event(DataAESDecryptionl1(x_-29))

RESULT not event(DataAESDecryption1(x_29)) is true.

— Query not event(DataAESDecryption2(x_30))

Completing...

Starting query not event(DataAESDecryption2(x_-30))

RESULT not event(DataAESDecryption2(x-30)) is true.

— Query event(DataAESDecryption1(x_31)) ==> event(DataAESDecryption2(x_31
))

Completing...

Starting query event(DataAESDecryptionl1(x_-31)) ==> event(
DataAESDecryption2(x_31))

RESULT event(DataAESDecryptionl(x_31)) ==> event(DataAESDecryption2(x_31))

is true.

— Query inj—event(DataAESDecryptionl1(x_32)) ==> inj—event(
DataAESDecryption2(x_32))

Completing...

205

Starting query inj—event(DataAESDecryption1(x_.32)) ==> inj—event(
DataAESDecryption2(x_32))

RESULT inj—event(DataAESDecryption1(x-32)) ==> inj—event(
DataAESDecryption2(x_32)) is true.

206

Appendix 12 — EAP-TLS Authentication

EAP-TLS is based on TLS, which is used to provide protected cipher-suite negotiation,
mutual authentication, and key management. After the EAP-TLS negotiation is com-
pleted, the two end-points can securely communicate within the encrypted TLS tunnel.
Therefore, user’s identity and password will not be revealed. Because TLS provides a
way to use certificates for both user and server to authenticate each other, a user, in

addition to being authenticated, can also authenticate the network. [89]

EAP-TLS uses the TLS public key certificate authentication mechanism within EAP
to provide mutual authentication of client to server and server to client. With EAP-TLS,
both the client and the server must be assigned a digital certificate signed by a Certificate
Authority (CA) that they both trust.

EAP-TLS provides :

Mutual authentication

Key exchange

Fragmentation and reassembly

Fast reconnect.

Diffie-Hellman authentication has been described in Appendix 3 and TLS Appendix 8.

207

ProVerif Verification

set traceDisplay = long.

query
query
query
query
query

query

query
query

query

attacker (EncryptionKey).
attacker (Password).

attacker (ServerKey).
attacker (DecryptedTraffic).
attacker (DecryptedTraffic2).

x:bitstring; event(DataDecryptionl(x)).
x:bitstring; event(DataDecryption2(x)).
x:bitstring; event(DataDecryptionl(x)) ==> event(DataDecryption2(x))

x:bitstring; inj—event(DataDecryptionl(x)) ==> inj—event(

DataDecryption2(x)).

type
type
type
type
type
type
type

free
free
free
free
free

certificate.
password.
challenge.
key.
response.
nonce.

material.

c:channel.

AccessChallenge:challenge[privatel].

EAPRequest ,DecryptedTraffic2, DecryptedTraffic:bitstring[privatel].
EAPResponseldentity:bitstring[privatel].

EAPTLSStart ,TLSHello2, TLSHello2ACK, ClientKeyExchange, Cipher,

ClientTLSFinished:bitstring[private].

free

EAPTLSHello, EAPTLSServerHello, Handshake, ServerKeyExchange,

CertificateRequest, ServerHelloDone:bitstring[privatel].

free
free
free
free
free
free
free

ServerCertificate, ClientCertificate, ValidCA:certificatel[privatel].
Password: password[private].

EncKey:material[private].

EncryptionKey:key[privatel].

ServerKey:key[privatel].

Hello:bitstring[private].

HelloACK:bitstring[privatel].

208

fun SolveChallenge(challenge, password):response.
fun EncryptionKeyGeneration(material):key.

fun TrafficEncryption(bitstring, key):nonce.
reduc forall x:bitstring, y:key; TrafficDecryption(TrafficEncryption(x,y),
y)=x.

event ServerCertificateValidation(certificate).
event ChallengeSolving(response).

event EncryptionKeyGen(key).

event ServerKeyTrafficDecryption(bitstring).
event ClientKeyTrafficDecryption(bitstring).
event ClientCertificateValidation(certificate).
event DataDecryptionl(bitstring).

event DataDecryption2(bitstring).

let AP1 =
out(c, EAPRequest).
let Clientl =
in(c, EAPRequest:bitstring);
out (c, EAPResponseldentity).
let AP2 =
in(c, EAPResponseldentity:bitstring);
out (c, EAPResponseldentity).
let Serverl =
in(c, EAPResponseldentity:bitstring);
out(c, EAPTLSStart).
let AP3 =
in(c, EAPTLStart:bitstring);
out(c, EAPTLSStart).
let Client2 =
in(c, EAPTLSStart:bitstring);
out(c, EAPTLSHello).
let AP4 =
in(c, EAPTLSHello:bitstring);
out(c, EAPTLSHello).
let Server2 =
in(c, EAPTLSHello:bitstring);
new ServerCertificate:certificate;
out(c, (EAPTLSServerHello, (Handshake, (ServerCertificate, (
ServerKeyExchange, (CertificateRequest, ServerHelloDone)))))).

209

let AP5 =
in(c, (EAPTLSServerHello:bitstring, (Handshake:bitstring,

ServerCertificate:certificate, (ServerKeyExchange:bitstring,
CertificateRequest:bitstring, ServerHelloDone:bitstring))))));
out(c, (EAPTLSServerHello, (Handshake, (ServerCertificate,
ServerKeyExchange, (CertificateRequest, ServerHelloDone)))))).

let Client3 =
in(c, (EAPTLSServerHello:bitstring, (Handshake:bitstring,

ServerCertificate:certificate, (ServerKeyExchange:bitstring,
CertificateRequest:bitstring, ServerHelloDone:bitstring))))));

let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);
if ServerCertificate = ValidCA then
(

new ClientCertificate:certificate;

out(c, (ClientCertificate, (ClientKeyExchange, (Cipher,

ClientTLSFinished))))
)

else
(
0
).
let AP6 =

in(c, (ClientCertificate:certificate, (ClientKeyExchange:bitstring,

Cipher:bitstring, ClientTLSFinished:bitstring))));
out(c, (ClientCertificate, (ClientKeyExchange, (Cipher,
ClientTLSFinished)))).

let Server3 =

in(c, (ClientCertificate:certificate, (ClientKeyExchange:bitstring,

Cipher:bitstring, ClientTLSFinished:bitstring))));
let ClientCertificate = ValidCA in
event ClientCertificateValidation(ClientCertificate);
if ClientCertificate = ValidCA then
(
out(c, AccessChallenge)
)

else

(

210

(

(

let AP7 =
in(c, AccessChallenge:challenge);
out(c, AccessChallenge).

let Client4 =
in(c, AccessChallenge:challenge);
let SolvedChallenge = SolveChallenge(AccessChallenge, Password) in
event ChallengeSolving(SolvedChallenge);
out(c, SolvedChallenge).

let AP8 =
in(c, SolvedChallenge:response);
out(c, SolvedChallenge).

let Server4 =
in(c, SolvedChallenge:response);
if SolvedChallenge = SolveChallenge(AccessChallenge, Password) then
(
new EncKey:material;
out(c, EncKey)
)

else

(

let AP9 =
in(c, EncKey:material);
out(c, EncKey).

let Client5 =
in(c, EncKey:material);
let EncryptionKey = EncryptionKeyGeneration(EncKey) in
event EncryptionKeyGen(EncryptionKey);
out(c, TrafficEncryption(TLSHello2, EncryptionKey)).

let AP10 =
in(c, EncryptedTraffic:nonce);

out(c, EncryptedTraffic).

let Server5 =

211

in(c, EncryptedTraffic:nonce);

let DecryptedTraffic = TrafficDecryption(EncryptedTraffic, ServerKey)
event ServerKeyTrafficDecryption(DecryptedTraffic);

out(c, TrafficEncryption(TLSHello2ACK, ServerKey)).

let AP11 =
in(c, EncryptedTraffic2:nonce);
out(c, EncryptedTraffic2).

let Client6 =
in(c, EncryptedTraffic2:nonce);
let DecryptedTraffic2 = TrafficDecryption(EncryptedTraffic2,
EncryptionKey) in
event ClientKeyTrafficDecryption(DecryptedTraffic2).

process (
'AP1]!Client1|! AP2|! Server1|! AP3|!Client2|!AP4|! Server2|!AP5|!

in

Client3|!AP6|! Server3|! AP7|!Client4|! AP8]|! Server4|! AP9|!Client5|!

AP1@|! Server5|! AP11|!Client6

212

ProVerif Result

Process:
(

{13!

{2}out(c, EAPRequest)
) (

{31!

{4}in(c, EAPRequest_16: bitstring);
{5}out(c, EAPResponseldentity)

(

{6}!

{7}in(c, EAPResponseldentity_17: bitstring);
{8}out(c, EAPResponseldentity_17)

(

{9}!

{10}in(c, EAPResponseldentity_18: bitstring);
{11}out(c, EAPTLSStart)

(

{12}!

{13}in(c, EAPTLStart: bitstring);
{14}out(c, EAPTLSStart)

(

{15}!

{16}in(c, EAPTLSStart_19: bitstring);
{17}out(c, EAPTLSHello)

(

{18}!

{19}in(c, EAPTLSHello_20: bitstring);
{20}out(c, EAPTLSHello_20)

(

{21}!

{22}in(c, EAPTLSHello_21: bitstring);
{23}new ServerCertificate_22: certificate;

{24}out(c, (EAPTLSServerHello, (Handshake,b (ServerCertificate_22,(
ServerKeyExchange ,(CertificateRequest, ServerHelloDone))))))

(
{25}

{26}in(c, (EAPTLSServerHello_23: bitstring,(Handshake_24:
ServerCertificate_25: certificate,(ServerKeyExchange_26:

,(CertificateRequest_27: bitstring, ServerHelloDone_28: bitstring)))

)));

213

bitstring,(
bitstring

{27}out(c, (EAPTLSServerHello_23,(Handshake_24,(ServerCertificate_25,(
ServerKeyExchange_26 ,(CertificateRequest_27,ServerHelloDone_28)))))

)

(

{28}!

{29}in(c, (EAPTLSServerHello_29: bitstring,(Handshake_30: bitstring,(
ServerCertificate_31: certificate,(ServerKeyExchange_32: bitstring
,(CertificateRequest_33: bitstring,ServerHelloDone_34: bitstring)))
)));

{30}let ServerCertificate_35: certificate = ValidCA in

{31}event ServerCertificatevValidation(ServerCertificate_35);

{32}if (ServerCertificate_35 = ValidCA) then

{33} new ClientCertificate_36: certificate;

{34}out(c, (ClientCertificate_36,(ClientKeyExchange,b (Cipher,
ClientTLSFinished))))

(

{35}!

{36}in(c, (ClientCertificate_37: certificate,(ClientKeyExchange_38:
bitstring,(Cipher_39: bitstring,ClientTLSFinished_40: bitstring))))

{37}out(c, (ClientCertificate_37,(ClientKeyExchange_38,(Cipher_39,
ClientTLSFinished_40))))

(

{38}!

{39}in(c, (ClientCertificate_41: certificate,(ClientKeyExchange_42:
bitstring,(Cipher_43: bitstring,ClientTLSFinished_44: bitstring))))

{40} 1let ClientCertificate_45: certificate = ValidCA in

{41}event ClientCertificateValidation(ClientCertificate_45);

{42}if (ClientCertificate_45 = ValidCA) then

{43}out(c, AccessChallenge)

(

{44}

{45}in(c, AccessChallenge_46: challenge);

{46}out(c, AccessChallenge_46)

(

{47}

{48}in(c, AccessChallenge_47: challenge);

{49}1let SolvedChallenge: response = SolveChallenge (AccessChallenge_47,
Password) in

{50}event ChallengeSolving(SolvedChallenge);

{51}out(c, SolvedChallenge)

214

(

{52}!

{53}in(c, SolvedChallenge_48: response);

{54}out(c, SolvedChallenge_48)

(

{55}!

{56}in(c, SolvedChallenge_49: response);

{57}if (SolvedChallenge_49 = SolveChallenge(AccessChallenge,b Password))
then

{58}new EncKey_50: material;

{59}out(c, EncKey_50)

(

{60}!

{61}in(c, EncKey_-51: material);

{62}out(c, EncKey_-51)

(

{63}!

{64}in(c, EncKey_52: material);

{65}1let EncryptionKey_53: key = EncryptionKeyGeneration(EncKey_52) in

{66}event EncryptionKeyGen(EncryptionKey_53);

{67}out(c, TrafficEncryption(TLSHello2,EncryptionKey_53))

(

{68}!

{69}in(c, EncryptedTraffic: nonce);

{70}out(c, EncryptedTraffic)

(

{71}

{72}in(c, EncryptedTraffic_54: nonce);

{73} 1let DecryptedTraffic_55: bitstring = TrafficDecryption(
EncryptedTraffic_54,ServerKey) in

{74} event ServerKeyTrafficDecryption(DecryptedTraffic_55);

{75}out(c, TrafficEncryption(TLSHello2ACK, ServerKey))

(

{76}!

{77}in(c, EncryptedTraffic2: nonce);

{78}out(c, EncryptedTraffic2)

(

{79}!

{80}in(c, EncryptedTraffic2_56: nonce);

{81}1let DecryptedTraffic2_57: bitstring = TrafficDecryption(
EncryptedTraffic2_56 ,EncryptionKey) in

{82}event ClientKeyTrafficDecryption(DecryptedTraffic2.57)

215

— Query not attacker(EncryptionKey[])

Completing...

Starting query not attacker (EncryptionKey[])

RESULT not attacker (EncryptionKey[]1) is true.

— Query not attacker(Password[])

Completing...

Starting query not attacker(Password[])

RESULT not attacker(Password[]) is true.

— Query not attacker(ServerKey[])

Completing...

Starting query not attacker(ServerKey[])

RESULT not attacker(ServerKey[]) is true.

—— Query not attacker (DecryptedTrafficl[])

Completing...

Starting query not attacker(DecryptedTrafficl[])

RESULT not attacker (DecryptedTraffic[]) is true.

— Query not attacker(DecryptedTraffic2[1)

Completing...

Starting query not attacker(DecryptedTraffic2[])

RESULT not attacker(DecryptedTraffic2[]) is true.

— Query not event(DataDecryptionl1(x_58))

Completing...

Starting query not event(DataDecryptionl(x_58))

RESULT not event(DataDecryptionl(x_58)) is true.

— Query not event(DataDecryption2(x_59))

Completing...

Starting query not event(DataDecryption2(x_59))

RESULT not event(DataDecryption2(x_59)) is true.

— Query event(DataDecryption1(x_60)) ==> event(DataDecryption2(x_60))

Completing. ..

Starting query event(DataDecryptionl1(x_60)) ==> event(DataDecryption2(x_60
))

RESULT event(DataDecryption1(x_60)) ==> event(DataDecryption2(x_60)) is
true.

— Query inj—event(DataDecryptionl(x_61)) ==> inj—event(DataDecryption2(
x_61))

Completing...

Starting query inj—event(DataDecryptionl1(x_61)) ==> inj—event(
DataDecryption2(x_61))

RESULT inj—event(DataDecryptionl(x_61)) ==> inj—event(DataDecryption2(x_61

216

)) is true.

217

Appendix 13 — EAP-TTLS Authentication

EAP-TTLS extends EAP-TLS to exchange information between client and server by
using the secure tunnel established by TLS negotiation. An EAP-TTLS negotiation
has two phases: the TLS handshake phase and the TLS tunnel phase. During phase
one, TLS is used for the client to authenticate the server. Similarly as in EAP-TLS, the
authentication is done by using certificates. A secure TLS tunnel is established after
the phase-one handshake. In phase two, the secure TLS tunnel can be used for other
information exchanges, such as additional user authentication key, communication of
accounting information, and so forth. [2]

It is very similar to the TLS authentication, but the outcome is different, which is a
secure tunnel to the destination, which is used for authentication, where EAP-TLS has
already authenticated and uses tunnel for communication.

Diffie-Hellman authentication has been described in Appendix 3 and TLS Appendix 8
and EAP-TLS Appendix 12.

218

ProVerif Verification

set traceDisplay = long.

query attacker(ClientKey).
query attacker (ServerKey).
query attacker(DiameterPassword).
query attacker (ServerMKey).
query attacker(ClientMKey).

query attacker (DecryptedTLSHello).
query attacker(DecryptedTLSHelloACK).

query x:bitstring; event(TLSHelloDecryption(x)).

query x:bitstring; event(TLSHelloACKDecryption(x)).

query x:bitstring; event(TLSHelloDecryption(x)) ==> event(
TLSHelloACKDecryption(x)).

query x:bitstring; inj—event(TLSHelloDecryption(x)) ==> inj—event(
TLSHelloACKDecryption(x)).

type certificate.
type password.
type challenge.
type key.

type response.
type nonce.

type material.

free c:channel.

free AccessChallenge:challengel[privatel].

free EAPRequest,DecryptedTraffic2, DecryptedTraffic:bitstringl[private].

free EAPResponseldentity, DecryptedTLSHello, DecryptedTLSHelloACK:
bitstring[privatel].

free EAPTLSStart,TLSHello2, TLSHello2ACK, ClientKeyExchange, Cipher,
ClientTLSFinished, TLSHello2ACKACK:bitstring[privatel].

free EAPTLSHello, EAPTLSServerHello, Handshake, ServerKeyExchange,
CertificateRequest, ServerHelloDone:bitstringl[privatel].

free ServerCertificate, ClientCertificate, ValidCA:certificatel[privatel.

free DiameterPassword:password[privatel].

free ClientKey:key[privatel].

219

free ServerKey:key[privatel].

free EncKey:material [private].
free ClientPubKey:key[private].
free ServerPubKey:key[privatel].

type mkey.

free ServerMKey:mkey [private].

free ClientMKey:mkey [private].

fun MKeyGeneration(bitstring, key, key):mkey.
event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun SolveChallenge(challenge, password):response.
fun EncryptionKeyGeneration(material):key.

fun TrafficEncryption(bitstring, mkey):nonce.
reduc forall x:bitstring, y:mkey; TrafficDecryption(TrafficEncryption(x,y)
yY)=X.

event ServerCertificateValidation(certificate).
event ChallengeSolving(response).

event EncryptionKeyGen(key).

event ServerKeyTrafficDecryption(bitstring).
event ClientKeyTrafficDecryption(bitstring).
event ClientCertificateValidation(certificate).
event SecretKeyDecryptionBitstring(bitstring).
event TLSHelloDecryption(bitstring).

event TLSHelloACKDecryption(bitstring).

let AP1 =
out(c, EAPRequest).

let Clientl =
in(c, EAPRequest:bitstring);
out (c, EAPResponseldentity).

let AP2 =
in(c, EAPResponseldentity:bitstring);
out(c, EAPResponseldentity).

let Serverl =
in(c, EAPResponseldentity:bitstring);
out(c, EAPTLSStart).

let AP3 =

220

in(c, EAPTLStart:bitstring);
out(c, EAPTLSStart).
let Client2 =
in(c, EAPTLSStart:bitstring);
out(c, EAPTLSHello).
let AP4 =
in(c, EAPTLSHello:bitstring);
out(c, EAPTLSHello).
let Server2 =
in(c, EAPTLSHello:bitstring);
new ServerCertificate:certificate;
out(c, (EAPTLSServerHello, (Handshake, (ServerCertificate, (
ServerKeyExchange, (CertificateRequest, ServerHelloDone)))))).

let AP5 =
in(c, (EAPTLSServerHello:bitstring, (Handshake:bitstring, (
ServerCertificate:certificate, (ServerKeyExchange:bitstring, (
CertificateRequest:bitstring, ServerHelloDone:bitstring))))));
out(c, (EAPTLSServerHello, (Handshake, (ServerCertificate, (
ServerKeyExchange, (CertificateRequest, ServerHelloDone)))))).

let Client3 =
in(c, (EAPTLSServerHello:bitstring, (Handshake:bitstring, (
ServerCertificate:certificate, (ServerKeyExchange:bitstring, (
CertificateRequest:bitstring, ServerHelloDone:bitstring))))));
let ServerCertificate = ValidCA in
event ServerCertificateValidation(ServerCertificate);
if ServerCertificate = ValidCA then
(
new ClientCertificate:certificate;
out(c, (ClientCertificate, (ClientKeyExchange, (Cipher,
ClientTLSFinished))))
)
else
(
0
).
let AP6 =
in(c, (ClientCertificate:certificate, (ClientKeyExchange:bitstring, (
Cipher:bitstring, ClientTLSFinished:bitstring))));
out(c, (ClientCertificate, (ClientKeyExchange, (Cipher,
ClientTLSFinished)))).

221

let Server3 =
in(c, (ClientCertificate:certificate, (ClientKeyExchange:bitstring,
Cipher:bitstring, ClientTLSFinished:bitstring))));
let ClientCertificate = ValidCA in
event ClientCertificateValidation(ClientCertificate);
if ClientCertificate = ValidCA then
(

out(c, AccessChallenge)

)

else

(

let AP7 =
in(c, AccessChallenge:challenge);
out(c, AccessChallenge).

let Client4 =

in(c, AccessChallenge:challenge);

(

let SolvedChallenge = SolveChallenge(AccessChallenge, DiameterPassword)

in
event ChallengeSolving(SolvedChallenge);
out(c, SolvedChallenge).

let AP8 =
in(c, SolvedChallenge:response);
out(c, SolvedChallenge).

let Server4 =

in(c, SolvedChallenge:response);

if SolvedChallenge = SolveChallenge(AccessChallenge, DiameterPassword)

then

let ServerMKey = MKeyGeneration(EAPTLSHello, ClientPubKey, ServerKey)

in
event ServerMKeyGeneration(ServerMKey);
out(c, (EncKey, TrafficEncryption(TLSHello2, ServerMKey)))
)

else

(

222

let Client5 =
in(c, (EncKey:material, EncryptedTraffic:nonce));
let ClientKey = EncryptionKeyGeneration(EncKey) in
event EncryptionKeyGen(ClientKey);
let ClientMKey = MKeyGeneration(EAPTLSServerHello, ServerPubKey,
ClientKey) in
event ClientMKeyGeneration(ClientMKey);
let DecryptedTLSHello = TrafficDecryption(EncryptedTraffic, ClientMKey)
in
event TLSHelloDecryption(DecryptedTLSHello);
out(c, TrafficEncryption(TLSHello2ACK, ClientMKey)).

let Server5 =
in(c, EncryptedTraffic2:nonce);
let DecryptedTLSHelloACK = TrafficDecryption(EncryptedTraffic2,
ServerMKey) in
event TLSHelloACKDecryption(DecryptedTLSHelloACK).

process (
!AP1|!Client1|!AP2|!Server1|! AP3|!Client2|! AP4|! Server2|! AP5|!Client3|!
AP6|! Server3 |l AP7|!Client4|! AP8|! Server4|!Client5|! Server5

223

ProVerif Result

Process:
(

{13!

{2}out(c, EAPRequest)
) (

{31!

{4}in(c, EAPRequest_16: bitstring);
{5}out(c, EAPResponseldentity)

(

{6}!

{7}in(c, EAPResponseldentity_17: bitstring);
{8}out(c, EAPResponseldentity_17)

(

{9}!

{10}in(c, EAPResponseldentity_18: bitstring);
{11}out(c, EAPTLSStart)

(

{12}!

{13}in(c, EAPTLStart: bitstring);
{14}out(c, EAPTLSStart)

(

{15}!

{16}in(c, EAPTLSStart_19: bitstring);
{17}out(c, EAPTLSHello)

(

{18}!

{19}in(c, EAPTLSHello_20: bitstring);
{20}out(c, EAPTLSHello_20)

(

{21}!

{22}in(c, EAPTLSHello_21: bitstring);
{23}new ServerCertificate_22: certificate;

{24}out(c, (EAPTLSServerHello, (Handshake,b (ServerCertificate_22,(
ServerKeyExchange ,(CertificateRequest, ServerHelloDone))))))

(
{25}

{26}in(c, (EAPTLSServerHello_23: bitstring,(Handshake_24:
ServerCertificate_25: certificate,(ServerKeyExchange_26:

,(CertificateRequest_27: bitstring, ServerHelloDone_28: bitstring)))

)));

224

bitstring,(
bitstring

{27}out(c, (EAPTLSServerHello_23,(Handshake_24,(ServerCertificate_25,(
ServerKeyExchange_26 ,(CertificateRequest_27,ServerHelloDone_28)))))

)

(

{28}!

{29}in(c, (EAPTLSServerHello_29: bitstring,(Handshake_30: bitstring,(
ServerCertificate_31: certificate,(ServerKeyExchange_32: bitstring
,(CertificateRequest_33: bitstring,ServerHelloDone_34: bitstring)))
)));

{30}let ServerCertificate_35: certificate = ValidCA in

{31}event ServerCertificatevValidation(ServerCertificate_35);

{32}if (ServerCertificate_35 = ValidCA) then

{33} new ClientCertificate_36: certificate;

{34}out(c, (ClientCertificate_36,(ClientKeyExchange,b (Cipher,
ClientTLSFinished))))

(

{35}!

{36}in(c, (ClientCertificate_37: certificate,(ClientKeyExchange_38:
bitstring,(Cipher_39: bitstring,ClientTLSFinished_40: bitstring))))

{37}out(c, (ClientCertificate_37,(ClientKeyExchange_38,(Cipher_39,
ClientTLSFinished_40))))

(

{38}!

{39}in(c, (ClientCertificate_41: certificate,(ClientKeyExchange_42:
bitstring,(Cipher_43: bitstring,ClientTLSFinished_44: bitstring))))

{40} 1let ClientCertificate_45: certificate = ValidCA in

{41}event ClientCertificateValidation(ClientCertificate_45);

{42}if (ClientCertificate_45 = ValidCA) then

{43}out(c, AccessChallenge)

(

{44}

{45}in(c, AccessChallenge_46: challenge);

{46}out(c, AccessChallenge_46)

(

{47}

{48}in(c, AccessChallenge_47: challenge);

{49}1let SolvedChallenge: response = SolveChallenge (AccessChallenge_47,
DiameterPassword) in

{50}event ChallengeSolving(SolvedChallenge);

{51}out(c, SolvedChallenge)

225

) | (
{52}!
{53}in(c, SolvedChallenge_48: response);
{54}out(c, SolvedChallenge_48)
) | (
{55}!
{56}in(c, SolvedChallenge_49: response);
{57}if (SolvedChallenge_ 49 = SolveChallenge(AccessChallenge,
DiameterPassword)) then
{58}let ServerMKey_50: mkey = MKeyGeneration(EAPTLSHello,ClientPubKey,
ServerKey) in
{59}event ServerMKeyGeneration(ServerMKey_50);
{60}out(c, (EncKey,TrafficEncryption(TLSHello2, ServerMKey_50)))
) |«
{61}!
{62}in(c, (EncKey_51: material,EncryptedTraffic: nonce));
{63}1let ClientKey_52: key = EncryptionKeyGeneration(EncKey_51) in
{64}event EncryptionKeyGen(ClientKey_52);
{65}1let ClientMKey_53: mkey = MKeyGeneration(EAPTLSServerHello,
ServerPubKey,ClientKey_52) in
{66}event ClientMKeyGeneration(ClientMKey_53);
{67}1let DecryptedTLSHello_54: bitstring = TrafficDecryption(
EncryptedTraffic,ClientMKey_53) in
{68}event TLSHelloDecryption(DecryptedTLSHello_54);
{69}out(c, TrafficEncryption(TLSHello2ACK,ClientMKey_53))
) |«
{70}!
{71}in(c, EncryptedTraffic2: nonce);
{72} 1let DecryptedTLSHelloACK_55: bitstring = TrafficDecryption(
EncryptedTraffic2, ServerMKey) in
{73}event TLSHelloACKDecryption(DecryptedTLSHelloACK_55)

— Query not attacker(ClientKey[])
Completing...

Starting query not attacker(ClientKey[])
RESULT not attacker(ClientKey[]) is true.
— Query not attacker(ServerKey[])
Completing...

Starting query not attacker (ServerKey[])
RESULT not attacker(ServerKey[]) is true.
— Query not attacker(DiameterPassword[])

226

Completing...

Starting query not attacker(DiameterPassword[])

RESULT not attacker(DiameterPassword[]) is true.

— Query not attacker (ServerMKey[1)

Completing...

Starting query not attacker(ServerMKey[])

RESULT not attacker(ServerMKey[]) is true.

— Query not attacker(ClientMKey[])

Completing...

Starting query not attacker(ClientMKey[])

RESULT not attacker(ClientMKey[]) is true.

— Query not attacker(DecryptedTLSHello[1)

Completing...

Starting query not attacker(DecryptedTLSHello[])

RESULT not attacker(DecryptedTLSHello[]) is true.

— Query not attacker(DecryptedTLSHelloACK[])

Completing...

Starting query not attacker(DecryptedTLSHelloACK[])

RESULT not attacker(DecryptedTLSHelloACK[]) is true.

— Query not event(TLSHelloDecryption(x_56))

Completing...

Starting query not event(TLSHelloDecryption(x_56))

RESULT not event(TLSHelloDecryption(x_56)) is true.

— Query not event(TLSHelloACKDecryption(x_57))

Completing...

Starting query not event(TLSHelloACKDecryption(x_57))

RESULT not event(TLSHelloACKDecryption(x_57)) is true.

— Query event(TLSHelloDecryption(x_-58)) ==> event(TLSHelloACKDecryption(
x_58))

Completing...

Starting query event(TLSHelloDecryption(x_58)) ==> event(
TLSHelloACKDecryption(x_58))

RESULT event(TLSHelloDecryption(x_58)) ==> event(TLSHelloACKDecryption(
x_58)) 1is true.

— Query inj—event (TLSHelloDecryption(x_59)) ==> inj—event(
TLSHelloACKDecryption(x_59))

Completing...

Starting query inj—event(TLSHelloDecryption(x_.59)) ==> inj—event(
TLSHelloACKDecryption(x_-59))

RESULT inj—event (TLSHelloDecryption(x_59)) ==> inj—event(
TLSHelloACKDecryption(x_59)) is true.

227

Appendix 14 — GSM Authentication

The GSM network authenticates the identity of the subscriber through the use of a
challenge-response mechanism. A 128-bit Random Number (RAND) is sent to the Mobile
Station (MS). The MS computes the 32-bit Signed Response (SRES) based on the encryp-
tion of the RAND with the authentication algorithm (A3) using the private subscriber
authentication key (Ki). Upon receiving the SRES from the subscriber, the GSM network
repeats the calculation to verify the identity of the subscriber. The individual subscriber
authentication key (Ki) is never transmitted over the radio channel, as it is present in the
subscriber’s SIM, as well as the AUC, HLR, and VLR databases. If the received SRES
agrees with the calculated value, the MS has been successfully authenticated and may
continue. If the values do not match, the connection is terminated and an authentication
failure is indicated to the MS. [123]

Signed response calculation is processed within the SIM, which holds confidential sub-
scriber information such as the IMSI or the private subscriber authentication key (Ki). It
is never released from the SIM during the authentication process. The SIM contains the
ciphering key generating algorithm (AS8) that is used to produce the 64-bit ciphering key
(Kc). This key is calculated by applying the same random number (RAND) used in the
authentication process to ciphering key generating algorithm (A8) with the individual
subscriber authentication key (Ki). [123] GSM supports another ciphering algorithm,
making the system more resistant to eavesdropping. The ciphering key may be changed
at regular intervals if required. As in case of the authentication process, the computation
of the ciphering key (Kc) takes place internally within the SIM. Therefore, sensitive
information such as the individual subscriber authentication key (Ki) is never revealed
by the SIM. [123] Encrypted voice and data communications between the MS and the
network is accomplished by using the ciphering algorithm A5. Encrypted communication
is initiated by a ciphering mode request command from the GSM network. Upon receipt
of this command, the mobile station begins encryption and decryption of data using
the ciphering algorithm (A5) and the ciphering key (Kc). [123] To ensure subscriber
identity confidentiality, the Temporary Mobile Subscriber Identity (TMSI) is used. Once
the authentication and encryption procedures are done, the TMSI is sent to the mobile
station. After the receipt, the mobile station responds. The TMSI is valid in the location
area in which it was issued. For communications outside the location area, the Location
Area Identification (LAI) is necessary in addition to the TMSI. [123]

GSM authentication is shown in Figure 13.

228

Figure 13: GSM message flow for authentication [10]

L8 A

®

Authentication
Authentication Request
-

Authentication Request
Request -

Response
(RAND, SRES, HE:

Authentication Request (RAND)

»-
Authentication Hesponse (SRES)

-
Cipher Mode (Turmn on Encryption)

>
Cipher Moge Complete

229

ProVerif Verification

set traceDisplay = long.

query attacker (KC).
query attacker (KI).

query attacker (DecryptedText).
query attacker (DecryptedText2).

query x:bitstring; event(TextDecryption(x)).
query x:bitstring; event(TextDecryption2(x)).

query x:bitstring; event(TextDecryption(x)) ==> event(TextDecryption2(x)).
query x:bitstring; inj—event(TextDecryption(x)) ==> inj—event(
TextDecryption2(x)).

type key.
type response.
type nonce.

free c:channel.

free AuthReq:bitstring [private].

free KI:key[privatel].

free KC:key[privatel].

free AuthResponse:bitstring[privatel].
free SRES:response[private].

free SRES2:responsel[privatel].

free Hello:bitstring[privatel].

free HelloACK:bitstring[private].

free DecryptedText:bitstring[private].
free DecryptedText2:bitstring[privatel].

fun GenerateRand(bitstring):bitstring.

fun GenerateCipherKey(key, bitstring): key.

fun Authenticate(key, bitstring):response.

fun Encrypt(bitstring, key):nonce.

reduc forall x:bitstring, y:key; Decrypt(Encrypt(x,y),y)=x.

event RANDGeneration(bitstring).

event CipherKeyGeneration(key).
event ResponseGeneration(response).

230

event ExpectedResponseGeneration(response).
event ResponseValidation(response).

event TextDecryption(bitstring).

event TextDecryption2(bitstring).

let UET1 =
out(c, AuthReq).
let Nodel =
in(c, AuthReq:bitstring);
out(c, AuthReq).
let VLR1 =
in(c, AuthReq:bitstring);
out(c, AuthReq).
let HLR=
in(c, AuthReq:bitstring);
new RandomNumber:bitstring;
let RAND = GenerateRand(RandomNumber) in
event RANDGeneration (RAND);
let KC = GenerateCipherKey(KI, RAND) in
event CipherKeyGeneration(KC);
let SRES = Authenticate(KI,RAND) in
event ExpectedResponseGeneration(SRES);
out(c, (RAND, (KC, SRES))).

let VLR2 =
in(c, (RAND:bitstring, (KC:key, SRES:response)));
out(c, (AuthReq, RAND)).

let UE2 =
in(c, (AuthReqg:bitstring, RAND:bitstring));
let SRES2 = Authenticate(KI, RAND) in
event ResponseGeneration(SRES2);
out(c, (AuthResponse, SRES2)).

let VLR3 =
in(c, (AuthResponse:bitstring, SRES2:response));
let SRES2 = SRES in
event ResponseValidation(SRES2);
if SRES2 = SRES then
(
out(c, Encrypt(Hello, KC))
)

231

else

0
).
let UE3 =
in(c, EncryptedText:nonce);
let DecryptedText = Decrypt(EncryptedText, KI) in
event TextDecryption(DecryptedText);
out(c, Encrypt(HelloACK, KI)).

let VLR4 =
in(c, EncryptedText2:nonce);
let DecryptedText2 = Decrypt(EncryptedText2, KC) in
event TextDecryption2(DecryptedText2).

process (

'UE1|!Nodel|!VLRT|!HLR|! VLR2|!UE2|! VLR3|! UE3|! VLR4
)

232

ProVerif Result

Process:
(

{13!

{2}out(c, AuthReq)
) (

{3}!

{4}in(c, AuthReq_16: bitstring);

{5}out(c, AuthReq_16)

(

{6}!

{7}in(c, AuthReq-17: bitstring);

{8}out(c, AuthReq_17)

(

{9}!

{10}in(c, AuthReq_-18: bitstring);

{11} new RandomNumber: bitstring;

{12}1let RAND: bitstring = GenerateRand(RandomNumber) in
{13} event RANDGeneration(RAND);

{14}1let KC_19: key = GenerateCipherKey (KI,RAND) in
{15}event CipherKeyGeneration(KC_19);

{16}1let SRES_20: response = Authenticate(KI,RAND) in
{17}event ExpectedResponseGeneration(SRES_20);
{18}out(c, (RAND , (KC_19,SRES_20)))

(

{19}!

{20}in(c, (RAND_21: bitstring,(KC_22: key,SRES_23: response)));
{21}out(c, (AuthReq,RAND_21))

(

{22}

{23}in(c, (AuthReq_24: bitstring,RAND_25: bitstring));
{24}1let SRES2.26: response = Authenticate(KI,RAND_25) in
{25}event ResponseGeneration(SRES2_.26);

{26}out(c, (AuthResponse,SRES2_26))

(

{27}

{28}in(c, (AuthResponse_27: bitstring,SRES2_28: response));
{29}1let SRES2.29: response = SRES in

{30}event ResponseValidation(SRES2.29);

{31}if (SRES2_.29 = SRES) then

{32}out(c, Encrypt(Hello,bKC))

233

) | (
{33}!
{34}in(c, EncryptedText: nonce);
{35}1let DecryptedText_30: bitstring = Decrypt(EncryptedText,KI) in
{36}event TextDecryption(DecryptedText_30);
{37}out(c, Encrypt(HelloACK,bKI))
) | (
{38}!
{39}in(c, EncryptedText2: nonce);
{40} let DecryptedText2_31: bitstring = Decrypt(EncryptedText2,KC) in
{41}event TextDecryption2(DecryptedText2_31)

— Query not attacker(KC[1)

Completing...

Starting query not attacker (KC[1])

RESULT not attacker(KC[]) is true.

— Query not attacker(KI[])

Completing...

Starting query not attacker(KI[])

RESULT not attacker(KI[]) is true.

— Query not attacker(DecryptedText[])
Completing...

Starting query not attacker (DecryptedText[])
RESULT not attacker(DecryptedText[]) is true.
— Query not attacker (DecryptedText2[])
Completing...

Starting query not attacker(DecryptedText2[])
RESULT not attacker(DecryptedText2[]) is true.
— Query not event(TextDecryption(x_.32))
Completing...

Starting query not event(TextDecryption(x_32))
RESULT not event(TextDecryption(x_32)) is true.
— Query not event(TextDecryption2(x_33))
Completing...

Starting query not event(TextDecryption2(x_33))
goal reachable: end(TextDecryption2(Hello[1))

1. The attacker has some term SRES2_.1948.
attacker (SRES2.1948).

2. The attacker has some term AuthResponse_1947.

234

attacker (AuthResponse_1947).

3. By 2, the attacker may know AuthResponse_1947.

By 1, the attacker may know SRES2.1948.

Using the function 2—tuple the attacker may obtain (AuthResponse_1947,
SRES2.1948).

attacker ((AuthResponse_1947 ,SRES2.1948)).

4. The message (AuthResponse_1947 ,SRES2_1948) that the attacker may have
by 3 may be received at input {28}.
So the message Encrypt(Hello[],KC[]) may be sent to the attacker at output
{32}.

attacker (Encrypt(Hello[],KC[])).

5. The message Encrypt(Hello[],KC[]) that the attacker may have by 4 may
be received at input {39}.

So event TextDecryption2(Hello[]) may be executed at {41}.

end(TextDecryption2(Hello[])).

Initial state

Additional knowledge of the attacker:
C

a

a_1953

New processes:

(
!
out(c, AuthReq)
) |«
!
in(c, AuthReq_16: bitstring);
out(c, AuthReq_16)
) |«
!
in(c, AuthReq_17: bitstring);
out(c, AuthReq_17)
) |«

!

in(c, AuthReq_18: bitstring);

235

new RandomNumber: bitstring;

let RAND: bitstring = GenerateRand(RandomNumber) in
event RANDGeneration(RAND);

let KC_.19: key = GenerateCipherKey (KI,RAND) in
event CipherKeyGeneration(KC_19);

let SRES_20: response = Authenticate(KI,RAND) in
event ExpectedResponseGeneration(SRES_20);

out(c, (RAND,(KC_19,SRES_20)))

) |«
!
in(c, (RAND_21: bitstring,(KC_22: key,SRES_23: response)));
out(c, (AuthReq,RAND_21))

) |«
!
in(c, (AuthReq_24: bitstring,RAND_25: bitstring));
let SRES2_.26: response = Authenticate(KI,RAND_25) in
event ResponseGeneration(SRES2_.26);
out(c, (AuthResponse, SRES2_.26))

) |«
!
in(c, (AuthResponse_27: bitstring,SRES2_28: response));
let SRES2_.29: response = SRES in
event ResponseValidation(SRES2_.29);
if (SRES2_.29 = SRES) then
out(c, Encrypt(Hello,KC))
) |«
!
in(c, EncryptedText: nonce);
let DecryptedText_30: bitstring = Decrypt(EncryptedText,KI) in
event TextDecryption(DecryptedText_30);
out(c, Encrypt(HelloACK ,6KI))
) |«
!
in(c, EncryptedText2: nonce);
let DecryptedText2_31: bitstring = Decrypt(EncryptedText2,KC) in
event TextDecryption2(DecryptedText2_31)

1st process: Reduction |

2nd process: Reduction |

236

3rd

4th

5th

6th

7th

8th

9th

9th

8th

7th

7th

6th

5th

4th

3rd

2nd

1st

New

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

process:

Reduction

Reduction

Reduction

Reduction

Reduction

Reduction

Reduction

Beginning

Reduction

Reduction

Beginning

Reduction

Reduction

Reduction

Reduction

Reduction

Reduction

processes:

in(c,

(AuthResponse_1960:
let SRES2_.1962:

response =

' 1 copy(ies)
of process VLR4
! @ copy(ies)
' 1 copy(ies)
of process VLR3
copy(ies)
copy(ies)
copy (ies)
copy(ies)

copy(ies)

copy(ies)

bitstring,SRES2_1961:
SRES in

response));

event ResponseValidation(SRES2.1962);

if (SRES2.1962 =
Encrypt (Hello,KC))

out (c,

SRES) then

237

) |«
in(c, EncryptedText2_.1956: nonce);
let DecryptedText2_1957: bitstring = Decrypt(EncryptedText2_1956,KC)
in

event TextDecryption2(DecryptedText2_.1957)

1st process: in(c, (AuthResponse_1960: bitstring,SRES2_1961: response))
done with message (a,a_1953)

1st process: let SRES2_.1974: response = SRES succeeds

1st process: event ResponseValidation(SRES) executed

1st process: if (SRES = SRES) succeeds

1st process: out(c, "M_1977) with "M_1977 = Encrypt(Hello,KC) done

Additional knowledge of the attacker:
"M_1977 = Encrypt(Hello,KC)

1st process: Reduction 0

New processes:
in(c, EncryptedText2_.1956: nonce);
let DecryptedText2_1957: bitstring = Decrypt(EncryptedText2_1956 ,KC)
in

event TextDecryption2(DecryptedText2_.1957)

1st process: in(c, EncryptedText2_1956: nonce) done with message "M_1977 =
Encrypt (Hello,KC)

1st process: let DecryptedText2_.1981: bitstring = Hello succeeds

1st process: event TextDecryption2(Hello) executed; it is a goal

New processes:
0

238

The event TextDecryption2(Hello) is executed.

A trace has been found.

RESULT not event(TextDecryption2(x_-33)) is false.

— Query event(TextDecryption(x_-34)) ==> event(TextDecryption2(x_-34))

Completing...

Starting query event(TextDecryption(x_34)) ==> event(TextDecryption2(x_34)
)

RESULT event(TextDecryption(x_34)) ==> event(TextDecryption2(x_34)) is
true.

— Query inj—event(TextDecryption(x_-35)) ==> inj—event(TextDecryption2(
x_35))

Completing...

Starting query inj—event(TextDecryption(x_.35)) ==> inj—event(
TextDecryption2(x_-35))

RESULT inj—event(TextDecryption(x_-35)) ==> inj—event(TextDecryption2(x-35)
) is true.

239

Appendix 15 — UMTS and LTE Authentication

[43] [149] UMTS and LTE use EPS-AKA [120], which is authentication key agreement
protocol designed for UMTS. LTE is reusing the concept of that protocol. EPS-AKA
has been shown in Figure 14.

The terms UEA (UMTS Encryption Algorithm) and UIA (UMTS Integrity Algorithm)
are used within UMTS as broad categories. UEA1 is a 128-bit block cipher called KA-
SUMI, which is related to the Japanese cipher MISTY. UIA1 is a message authentication
code (MAC), also based on KASUMI. UEA2 is a stream cipher related to SNOW 3G,
and UIA2 computes a MAC based on the same algorithm. LTE builds upon the lessons
learned from deploying the 2G and 3G cryptographic algorithms. [120] [125] [149]

LTE introduced a new set of cryptographic algorithms and a significantly different key
structure than that of GSM and UMTS. There are 3 sets of cryptographic algorithms
for both confidentiality and integrity termed EPS Encryption Algorithms (EEA) and
EPS Integrity Algorithms (EIA). EEA1 and EIA1 are based on SNOW 3G, very similar
to algorithms used in UMTS. EEA2 and EIA2 are based on the Advanced Encryption
Standard (AES) with EEA2 defined by AES in CTR mode and EIA2 defined by AES-
CMAC (Cipherbased MAC). EEA3 and EIA3 are both based on a Chinese cipher ZUC.
While these new algorithms have been introduced in LTE, network implementations
commonly include older algorithms for backward compatibility for legacy devices and
cellular deployments. Many keys in LTE are 256-bits long, but in some current imple-
mentations only the 128 least significant bits are used. The specification has allowed for
a system-wide upgrade from 128-bit to 256-bit keys. In LTE, the control and user planes
may use different algorithms and key sizes. [125]

Given a subscriber secret K (referred as Ki in GSM authentication but essentially the
same thing), an authentication sequence number SQN, a random challenge RAND (same
as 2G), 3gPP defines a set of algorithms which produce the following authentication and
keying materials: [124], [125]

1. MAC: a network authentication code which can be verified by the USIM. Checked
by the UE

2. XRES: an expected value returned by the SIM in response of the challenge. Checked
by the network.

3. CK: a session key used for ciphering (encrypting) traffic

240

4. IK: a session key used for marking all traffic packets with a hash signature.
5. AK: an anonymity key used to obfuscate the SQN on its way to the UE

Each one of the above values are generated by a set of five cryptographic functions
referred in 3GPP as f1, {2, {3, f4 and f5.

The role of each function is as follows:

1. f1: Generates MAC from K, SQN and RAND. An algorithm variant named AMF

can also be used as a salt of the algorithm.
2. f2: Generates XRES from K and RAND.
3. 3: Generates CK from K and RAND.
4. f4: Generates IK from K and RAND.

5. 15: Generates AK from K and RAND.

241

Figure 14: UMTS and LTE Authentication [10]

242

M5 |Nr.n:i: B/RNC SGSNMSC/VLR GSNMSC/HLR
ERC commection establishment
including:
1) security capabilities
integrify/encryption algonithms
2) TMSI 2 TMSI
3) ___idemtityrequest) idemtityrequest
I 1. MSL___ . S) SR - S |
4) authentication data request
5) authenmcation vecior
RAND, AUTN, IE CE, XRES MAC
6) authentcation challenge - 6) authentication challenge
RAND, AUTN RAND, AUTN
Ty verify AUTN
e RES
£) awthentication response £) authentication response
RES RES
9) venfy RES
decide allowed
algorithms
107 allowed allgonthms
CK.IK
11} decide algonthms
start miegrty protection
12) secunity mode command
selected algorithms, secunty capabilites
protected with IE
13) verify MAC and
security capabilites

ProVerif Verification

set traceDisplay = long.

query attacker (PSK).
query attacker (KASME).

query x:bitstring; event(ReceiptDecryption(x)).
query x:bitstring; event(Decryption(x)).

query x:bitstring; event(ReceiptDecryption(x)) ==> event(Decryption(x)).
query x:bitstring; inj—event(ReceiptDecryption(x)) ==> inj—event(
Decryption(x)).

type key.

type challenge.
type vector.
type response.
type token.

free c:channel.
free ServiceRequest : bitstring[private].
free AuthRequest:bitstring[privatel].

free IMSI:bitstring [privatel].

free SNID:bitstring [privatel].

free AUTN:token [privatel].

free XRES:response[privatel.

free RAND:challenge[privatel].

free AuthResponse:bitstring[privatel].
free ValidAUTN: token[private].

free Receipt:bitstringlprivatel].
free ReceiptACK:bitstring[privatel].
free KASME:key[privatel].

free PSK:key[private].

fun GenerateKASME (bitstring):key.

fun GenerateAuthVector(bitstring, bitstring):vector.
fun GenerateKeySetIdentifier(bitstring):key.

fun ComputeResponse(challenge):bitstring.

fun Anon(challenge):bitstring.

243

fun GeneratePSK(token, bitstring):key.

fun Encrypt(bitstring, key):response.
reduc forall x:bitstring, y:key; Decrypt(Encrypt(x,y),y)= Xx.

event AuthVectorGeneration(vector).
event KASMEGeneration(key).

event eKSIGeneration(key).

event AUTNValidation(token).

event ResponseCalculation(bitstring).
event PSKGeneration(key).

event ReceiptDecryption(bitstring).
event ResponseValidation(response).

event Decryption(bitstring).

let UET =

out(c, ServiceRequest).

let MMET1 =
in(c, ServiceRequest:bitstring);
out(c, (AuthRequest, (IMSI,SNID))).

let HSS1 =
in(c, (AuthRequest:bitstring, (IMSI:bitstring, SNID:bitstring)));
let EPSAV = GenerateAuthVector (AuthRequest, IMSI) in
event AuthVectorGeneration (EPSAV);
let KASME = GenerateKASME (SNID) in
event KASMEGeneration (KASME);
out(c, (AuthResponse, (EPSAV, (RAND, (XRES, (KASME, AUTN)))))).

let MME2 =
in(c, (AuthResponse:bitstring, (EPSAV:vector, (RAND:challenge, (XRES:
response, (KASME:key, AUTN:token))))));
new randomnumber:bitstring;
let eKSI = GenerateKeySetIdentifier(randomnumber) in
event eKSIGeneration(eKSI);
out(c, (RAND, (AUTN, eKSI))).

let UE2 =
in(c, (RAND: challenge, (AUTN:token, eKSI:key)));
let AUTN = ValidAUTN in
event AUTNValidation (AUTN);

244

if AUTN = ValidAUTN then

(

let AuthRes = ComputeResponse(RAND) in
event ResponseCalculation(AuthRes);

let PSK = GeneratePSK(AUTN, Anon(RAND)) in
event PSKGeneration(PSK);

out(c, Encrypt(Receipt, PSK))

)

else

(
0

let MME3 =

in(c, EncryptedReceipt:response);
let DecryptedReceipt = Decrypt(EncryptedReceipt, KASME) in
event ReceiptDecryption(DecryptedReceipt);
let DecryptedReceipt = XRES in
event ResponseValidation(DecryptedReceipt);
if DecryptedReceipt = XRES then
(
out(c, Encrypt(ReceiptACK, KASME))
)
else
(
0
).
let UE3 =
in(c, EncryptedReceiptACK:response);
let DecryptedReceiptACK = Decrypt(EncryptedReceiptACK, PSK)
event Decryption(DecryptedReceiptACK).

process (

YUE1|!MMET1|! HSS1|!MME2|! UE2|! MME3|! UE3
)

245

in

ProVerif Result

Process:
(

{1y

{2}out(c, ServiceRequest)
) (

{3}!

{4}in(c, ServiceRequest_16: bitstring);

{5}out(c, (AuthRequest,(IMSI,SNID)))

(

{6}!

{7}in(c, (AuthRequest_17: bitstring,(IMSI_18: bitstring,SNID_19:
bitstring)));

{8}let EPSAV: vector = GenerateAuthVector (AuthRequest_17,IMSI_18) in

{9}event AuthVectorGeneration (EPSAV);

{10}1let KASME_20: key = GenerateKASME(SNID_19) in

{11}event KASMEGeneration(KASME_20);

{12}out(c, (AuthResponse, (EPSAV, (RAND, (XRES, (KASME_20 ,AUTN))))))

(

{13}!

{14}in(c, (AuthResponse_21: bitstring,(EPSAV_22: vector,(RAND_23:
challenge, (XRES_24: response, (KASME_25: key,AUTN_26: token))))));

{15} new randomnumber: bitstring;

{16}1let eKSI: key = GenerateKeySetIdentifier (randomnumber) in

{17} event eKSIGeneration(eKSI);

{18}out(c, (RAND_23 , (AUTN_26 ,eKSI)))

(

{19}!

{20}in(c, (RAND_27: challenge,(AUTN_28: token,eKSI_29: key)));

{21}1let AUTN_3@: token = ValidAUTN in

{22} event AUTNValidation(AUTN_30);

{23}if (AUTN_30 = ValidAUTN) then

{24}1let AuthRes: bitstring = ComputeResponse(RAND_27) in

{25}event ResponseCalculation(AuthRes);

{26}1let PSK_31: key = GeneratePSK(AUTN_30@,Anon(RAND_27)) in

{27} event PSKGeneration(PSK_31);

{28}out(c, Encrypt(Receipt,PSK_31))

(

{29}!

{30}in(c, EncryptedReceipt: response);

{31}1let DecryptedReceipt: bitstring = Decrypt(EncryptedReceipt , KASME)

246

in
{32} event ReceiptDecryption(DecryptedReceipt);
{33}1let DecryptedReceipt_32: response = XRES in
{34}event ResponseValidation(DecryptedReceipt_32);
{35}if (DecryptedReceipt_32 = XRES) then
{36}out(c, Encrypt(ReceiptACK ,6KASME))
) | (
{37}!
{38}in(c, EncryptedReceiptACK: response);
{39}1let DecryptedReceiptACK: bitstring = Decrypt(EncryptedReceiptACK,
PSK) in
{40} event Decryption(DecryptedReceiptACK)

— Query not attacker (PSK[1)

Completing...

Starting query not attacker (PSK[1)

RESULT not attacker(PSK[]) is true.

— Query not attacker (KASME[])

Completing...

Starting query not attacker (KASME[])

RESULT not attacker (KASME[]) is true.

— Query not event(ReceiptDecryption(x_33))

Completing...

Starting query not event(ReceiptDecryption(x_33))

RESULT not event(ReceiptDecryption(x_33)) is true.

— Query not event(Decryption(x_34))

Completing...

Starting query not event(Decryption(x_34))

RESULT not event(Decryption(x_34)) is true.

— Query event(ReceiptDecryption(x-35)) ==> event(Decryption(x_-35))

Completing...

Starting query event(ReceiptDecryption(x_35)) ==> event(Decryption(x_35))

RESULT event(ReceiptDecryption(x_35)) ==> event(Decryption(x_35)) is true.

— Query inj—event(ReceiptDecryption(x_36)) ==> inj—event(Decryption(x_36)
)

Completing...

Starting query inj—event(ReceiptDecryption(x_36)) ==> inj—event(Decryption
(x_36))

RESULT inj—event(ReceiptDecryption(x_36)) ==> inj—event(Decryption(x_36))

is true.

247

Appendix 16 — LonTalk Authentication

When using authenticated messages, the receivers of an authenticated message determine
if the sender is authorized to send that message. This can prevent unauthorized access to
devices and their applications. This can be used to prevent unauthorized access to devices
and their applications. Authentication is implemented by distributing 48-bit keys, one
per domain, to the devices at or prior to installation time. For an authenticated message
to be accepted by the receiver, both sender and receiver must possess the same key.
This key is distinct from the device’s Neuron ID. [84] When an authenticated message is
sent, the receiver challenges the sender to authenticate itself, using a different random
number as a challenge every time. The sender then authenticates by transforming the
challenge, using the authentication key along with the data in the original message.
The receiver compares the reply to the challenge with its own transformation on the
challenge. If the transformations match, the transaction goes forward. This is called an
authenticated transaction. The transformation used is designed so that it is extremely
difficult to deduce the key, even if the challenge, reply, and authentication algorithm
are all known. The use of authentication is configurable individually for each network
variable connection. In addition, network management transactions may be optionally
authenticated. [84]

With LonTalk, it is up to the sender of the message to initiate an authenticated transaction
when required. The sender does this by setting the authentication bit in the message.
When a receiver receives a message with the authentication bit set, it must respond with
an authentication challenge, even if it does not require the message to be authenticated.
It is up to the receiver to determine whether or not the message must be authenticated.
This means that a sender may initiate an authenticated transaction on any message,

whether required or not. [84] Lontalk authentication sequence is shown in Figure 15:

248

Figure 15: LonTalk Authentication [10]

to/from Network Layer

to/from Application Layer

to/from Application Layer

Session Sublayer
"""""""" Initiate Ty T
R-R Protocol |-="2*"%%_ " Authentication Reply R-R Protocol :
(Server Part) [t ———# Server (Client Part) :

-------- e e o

to/from Transport Layer to/from Network Layer

ProVerif Verification

set traceDisplay = long.

query attacker (AuthenticationKey).

query
query

query
query

query

attacker (NodeBTransformationResult1).

attacker (NodeATransformationResult1).

x:nonce; event(NodeBTransformationl(x)).

x:nonce; event(NodeATransformationl(x)).

x:nonce; event(NodeBTransformationl(x)) ==> event(

NodeATransformationl (x)).

query

x:nonce; inj—event(NodeBTransformationl(x)) ==> inj—event(

NodeATransformationl(x)).

type
type

free
free
free
free
free
free

free

key.

nonce.

c:channel.

AuthenticationKey:key [privatel].

AuthenticationRequest:bitstring[private].

AuthenticationChallenge:

bitstring[privatel].

NodeBTransformationResultl:noncel[privatel].

NodeATransformationResultl:noncel[privatel].

Success:bitstring[private].

249

event NodeBTransformationl (nonce).
event NodeATransformationl (nonce).

fun Transformation(bitstring, key):nonce.
reduc forall x: bitstring, y:key; DeTransformation(Transformation(x,y), vy)

= X.

let NodeAl =
new AuthenticationRequest:bitstring;
out(c, AuthenticationRequest).

let NodeB1 =
in(c, AuthenticationRequest:bitstring);
new AuthenticationChallenge:bitstring;
let NodeBTransformationResultl = Transformation(AuthenticationChallenge,
AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1);
out(c, AuthenticationChallenge).

let NodeA2 =
in(c, AuthenticationChallenge:bitstring);
let NodeATransformationResultl = Transformation(AuthenticationChallenge,
AuthenticationKey) in
event NodeATransformationl (NodeATransformationResult1);
out(c, NodeATransformationResult1).

let NodeB2 =
in(c, NodeATransformationResult1:nonce);

if NodeATransformationResultl = NodeBTransformationResultl then

(

out (c, Success)

)

else

(
0

).
process (

INodeA1|!NodeB1|! NodeA2|! NodeB2
)

250

ProVerif Result

Process:
(
{1}
{2}new AuthenticationRequest_16: bitstring;
{3}out(c, AuthenticationRequest_16)
) |«
{4}!
{5}in(c, AuthenticationRequest_17: bitstring);
{6}new AuthenticationChallenge_18: bitstring;
{7}1let NodeBTransformationResult1_.19: nonce = Transformation (
AuthenticationChallenge_18 ,AuthenticationKey) in
{8}event NodeBTransformationl(NodeBTransformationResult1.19);
{9}out(c, AuthenticationChallenge_18)

) | (C
{10}!
{11}in(c, AuthenticationChallenge_20: bitstring);
{12}1let NodeATransformationResult1_21: nonce = Transformation (

AuthenticationChallenge_20 ,AuthenticationKey) in

{13}event NodeATransformationl (NodeATransformationResult1.21);

{14}out(c, NodeATransformationResult1.21)

) |«

{15}!

{16}in(c, NodeATransformationResult1.22: nonce);

{17}if (NodeATransformationResult1.22 = NodeBTransformationResult1)
then

{18}out(c, Success)

— Query not attacker (AuthenticationKey[1])

Completing...

Starting query not attacker(AuthenticationKey[1)

RESULT not attacker(AuthenticationKey[]) is true.

— Query not attacker(NodeBTransformationResultl1[])
Completing...

Starting query not attacker(NodeBTransformationResult1[])
RESULT not attacker(NodeBTransformationResult1[]) is true.
— Query not attacker(NodeATransformationResultl1[])
Completing...

Starting query not attacker (NodeATransformationResult1[1])
RESULT not attacker(NodeATransformationResult1[]) is true.

251

— Query not event(NodeBTransformationl(x_23))

Completing...

Starting query not event(NodeBTransformationl(x_23))

goal reachable: attacker(AuthenticationRequest_467) —> end(
NodeBTransformationl (Transformation(AuthenticationChallenge_18[
AuthenticationRequest_17 = AuthenticationRequest_467,!1 = @sid_468],
AuthenticationKey[1)))

Abbreviations:

AuthenticationChallenge_473 = AuthenticationChallenge_18[
AuthenticationRequest_17 = AuthenticationRequest_470,!1 = @sid_471]

1. We assume as hypothesis that
attacker (AuthenticationRequest_470).

2. The message AuthenticationRequest_470 that the attacker may have by 1
may be received at input {5}.

So event NodeBTransformationl(Transformation(AuthenticationChallenge_473,
AuthenticationKey[])) may be executed at {8}.

end(NodeBTransformationl (Transformation(AuthenticationChallenge_473,
AuthenticationKey[1))).

Initial state
Additional knowledge of the attacker:

C
a

New processes:

(
!
new AuthenticationRequest_16: bitstring;
out(c, AuthenticationRequest_16)
) |«
!
in(c, AuthenticationRequest_17: bitstring);
new AuthenticationChallenge_18: bitstring;
let NodeBTransformationResult1_19: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1_.19);
out(c, AuthenticationChallenge_18)

> |«

252

]

in(c, AuthenticationChallenge_20: bitstring);

let NodeATransformationResult1_.21: nonce = Transformation(
AuthenticationChallenge_20 ,AuthenticationKey) in

event NodeATransformationl (NodeATransformationResult1.21);

out(c, NodeATransformationResult1_.21)

) |«
!
in(c, NodeATransformationResult1_.22: nonce);
if (NodeATransformationResult1_.22 = NodeBTransformationResult1)
then

out(c, Success)

1st process: Reduction |
2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! @ copy(ies)
3rd process: Reduction ! @ copy(ies)
2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1

1st process: Reduction ! @ copy(ies)

New processes:
in(c, AuthenticationRequest_478: bitstring);
new AuthenticationChallenge_18: bitstring;
let NodeBTransformationResult1_479: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1_.479);
out(c, AuthenticationChallenge_18)

1st process: in(c, AuthenticationRequest_478: bitstring) done with message

a

253

1st process: new AuthenticationChallenge_18: bitstring creating
AuthenticationChallenge_475

1st process: let NodeBTransformationResult1_.482: nonce = Transformation(
AuthenticationChallenge_475,AuthenticationKey) succeeds

1st process: event NodeBTransformationl(Transformation/(
AuthenticationChallenge_475,AuthenticationKey)) executed; it is a goal

New processes:
out(c, AuthenticationChallenge_475)

The event NodeBTransformationl (Transformation(AuthenticationChallenge_475,
AuthenticationKey)) is executed.

A trace has been found.

RESULT not event(NodeBTransformationl(x_23)) is false.

— Query not event(NodeATransformationl(x_24))

Completing...

Starting query not event(NodeATransformationl (x_24))

goal reachable: attacker(AuthenticationChallenge_594) — end(
NodeATransformationl (Transformation(AuthenticationChallenge_594,
AuthenticationKey[]1)))

1. We assume as hypothesis that
attacker (AuthenticationChallenge_596).

2. The message AuthenticationChallenge_596 that the attacker may have by 1
may be received at input {11}.

So event NodeATransformationl(Transformation(AuthenticationChallenge_596,
AuthenticationKey[])) may be executed at {13}.

end(NodeATransformationl (Transformation(AuthenticationChallenge_596,
AuthenticationKey[1))).

Initial state
Additional knowledge of the attacker:

C
a_599

254

New processes:

(

!

new AuthenticationRequest_16: bitstring;

out(c, AuthenticationRequest_16)

(

!

in(c, AuthenticationRequest_17: bitstring);

new AuthenticationChallenge_18: bitstring;

let NodeBTransformationResult1.19: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in

event NodeBTransformationl (NodeBTransformationResult1_.19);

out(c, AuthenticationChallenge_18)

(

!

in(c, AuthenticationChallenge_20: bitstring);

let NodeATransformationResult1_.21: nonce = Transformation(
AuthenticationChallenge_20 ,AuthenticationKey) in

event NodeATransformationl (NodeATransformationResult1.21);

out(c, NodeATransformationResult1_.21)

(

!

in(c, NodeATransformationResult1_.22: nonce);

if (NodeATransformationResult1_.22 = NodeBTransformationResultl)
then

out(c, Success)

1st

2nd

3rd

4th

3rd

3rd

2nd

process: Reduction |

process: Reduction |

process: Reduction |

process: Reduction ! @ copy(ies)

process: Reduction ! 1 copy(ies)

process: Beginning of process NodeA?2

process: Reduction ! @ copy(ies)

255

1st process: Reduction ! @ copy(ies)

New processes:
in(c, AuthenticationChallenge_603: bitstring);
let NodeATransformationResult1_.604: nonce = Transformation(
AuthenticationChallenge_603 ,AuthenticationKey) in
event NodeATransformationl (NodeATransformationResult1_.604);
out(c, NodeATransformationResult1.604)

1st process: in(c, AuthenticationChallenge_603: bitstring) done with

message a_599

1st process: let NodeATransformationResult1_.610: nonce = Transformation(

a_599,AuthenticationKey) succeeds

1st process: event NodeATransformationl(Transformation(a_599,
AuthenticationKey)) executed; it is a goal

New processes:
out(c, Transformation(a_599,AuthenticationKey))

The event NodeATransformationl (Transformation(a_599,AuthenticationKey)) is
executed.

A trace has been found.

RESULT not event(NodeATransformationl(x_24)) is false.

— Query event(NodeBTransformation1(x_25)) ==> event(NodeATransformationl (
x_25))

Completing...

Starting query event(NodeBTransformationl(x_.25)) ==> event(
NodeATransformation1(x_25))

goal reachable: attacker(AuthenticationRequest_723) —> end(
NodeBTransformationl (Transformation(AuthenticationChallenge_18[
AuthenticationRequest_17 = AuthenticationRequest_723,!1 = @sid_724],
AuthenticationKey[1)))

Abbreviations:

AuthenticationChallenge_729 = AuthenticationChallenge_18[
AuthenticationRequest_17 = AuthenticationRequest_726,!1 = @sid_727]

1. We assume as hypothesis that

256

attacker (AuthenticationRequest_726).

2. The message AuthenticationRequest_726 that the attacker may have by 1
may be received at input {5}.

So event NodeBTransformationl(Transformation(AuthenticationChallenge_729,
AuthenticationKey[])) may be executed at {8}.

end (NodeBTransformationl (Transformation(AuthenticationChallenge_729,
AuthenticationKey[1))).

Initial state

Additional knowledge of the attacker:
C
a_730

New processes:

(
!
new AuthenticationRequest_16: bitstring;
out(c, AuthenticationRequest_16)
) |«
!
in(c, AuthenticationRequest_17: bitstring);
new AuthenticationChallenge_18: bitstring;
let NodeBTransformationResult1_.19: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1_.19);
out(c, AuthenticationChallenge_18)
) |«
!
in(c, AuthenticationChallenge_20: bitstring);
let NodeATransformationResult1_.21: nonce = Transformation(
AuthenticationChallenge_20 ,AuthenticationKey) in
event NodeATransformationl (NodeATransformationResult1.21);
out(c, NodeATransformationResult1_.21)
) |«

!

in(c, NodeATransformationResult1_.22: nonce);

if (NodeATransformationResult1_.22 = NodeBTransformationResult1)
then

out(c, Success)

257

1st process: Reduction |
2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! @ copy(ies)
3rd process: Reduction ! @ copy(ies)
2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1

1st process: Reduction ! @ copy(ies)

New processes:
in(c, AuthenticationRequest_736: bitstring);
new AuthenticationChallenge_18: bitstring;
let NodeBTransformationResult1_737: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1.737);
out(c, AuthenticationChallenge_18)

1st process: in(c, AuthenticationRequest_736: bitstring) done with message
a_730

1st process: new AuthenticationChallenge_18: bitstring creating
AuthenticationChallenge_732

1st process: let NodeBTransformationResult1.742: nonce = Transformation(
AuthenticationChallenge_732,AuthenticationKey) succeeds

1st process: event NodeBTransformationl(Transformation(
AuthenticationChallenge_732,AuthenticationKey)) executed; it is a goal

New processes:
out(c, AuthenticationChallenge_732)

258

The event NodeBTransformationl(Transformation(AuthenticationChallenge_732,
AuthenticationKey))

is executed.

A trace has been found.

RESULT event(NodeBTransformationl(x_25)) ==> event(NodeATransformationl (
x_25)) is false.

NodeATransformation1 (x_26))

— Query inj—event(NodeBTransformationl(x_26)) ==> inj—event(
Completing...

NodeATransformation1(x_26))

Starting query inj—event(NodeBTransformationl(x_26)) ==> inj—event(
goal reachable:

attacker (AuthenticationRequest_858) — end(endsid_859,
NodeBTransformationl (Transformation(AuthenticationChallenge_18[
AuthenticationRequest_17 = AuthenticationRequest_858,!1
AuthenticationKey[])))
Abbreviations:

= endsid_859],
AuthenticationChallenge_866

AuthenticationRequest_17

AuthenticationChallenge_18[

AuthenticationRequest_862,!1
1.

We assume as hypothesis that

endsid_864]
attacker (AuthenticationRequest_862).

2. The message AuthenticationRequest_862 that the attacker may have by 1
may be received at input {5}.

So event NodeBTransformationl(Transformation(AuthenticationChallenge_866,
AuthenticationKey[])) may be executed at {8} in session endsid_864.
end(endsid_864 ,NodeBTransformationl (Transformation(

AuthenticationChallenge_866 ,AuthenticationKey[]))).

Initial state

Additional knowledge of the attacker:
c

a_868

New processes:

(

!

new AuthenticationRequest_16:
out(c,

bitstring;
AuthenticationRequest_16)

259

) |
!
in(c, AuthenticationRequest_17: bitstring);
new AuthenticationChallenge_18: bitstring;
let NodeBTransformationResult1_19: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in
event NodeBTransformationl (NodeBTransformationResult1_.19);
out(c, AuthenticationChallenge_18)
) |«
!
in(c, AuthenticationChallenge_20: bitstring);
let NodeATransformationResult1_21: nonce = Transformation(
AuthenticationChallenge_20 ,AuthenticationKey) in
event NodeATransformationl (NodeATransformationResult1.21);
out(c, NodeATransformationResult1_.21)
) |«
!
in(c, NodeATransformationResultl1_.22: nonce);
if (NodeATransformationResult1_.22 = NodeBTransformationResultl)
then

out(c, Success)

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! © copy(ies)

3rd process: Reduction ! @ copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1
1st process: Reduction ! @ copy(ies)

New processes:
in(c, AuthenticationRequest_873: bitstring);

260

new AuthenticationChallenge_18: bitstring;

let NodeBTransformationResult1_.874: nonce = Transformation(
AuthenticationChallenge_18 ,AuthenticationKey) in

event NodeBTransformationl (NodeBTransformationResult1_.874);

out(c, AuthenticationChallenge_18)

1st process: in(c, AuthenticationRequest_873: bitstring) done with message
a_868

1st process: new AuthenticationChallenge_18: bitstring creating
AuthenticationChallenge_869

1st process: let NodeBTransformationResult1.879: nonce = Transformation(

AuthenticationChallenge_869,AuthenticationKey) succeeds

1st process: event NodeBTransformationl(Transformation/(
AuthenticationChallenge_869,AuthenticationKey)) executed; it is a goal

New processes:
out(c, AuthenticationChallenge_869)

The event NodeBTransformationl(Transformation(AuthenticationChallenge_869,
AuthenticationKey)) is executed in session a_867.

A trace has been found.

RESULT inj—event(NodeBTransformationl (x_26)) ==> inj—event(
NodeATransformationl (x_26)) is false.

RESULT (even event(NodeBTransformationl (x_860)) ==> event(
NodeATransformationl (x_860)) is false.)

261

Appendix 17 — UWB Authentication

ECMA-368 standard specifies a mutual authentication mechanism. Mutual authentication
is completed through 4-way handshake process. If both parts share the same master key,
authentication will be successful. This is a message authentication scheme and can be
applied to distributed systems. Message integrity code (MIC) also serves as authenticator.
It is calculated by Advanced Encryption Standard(AES) with cipher block chaining(CBC)
mode, and encrypted by counter mode. This scheme will be a long-term security solution
recommended in IEEE 802.11i. Confidentiality deals with the attacks of disclosure and
traffic analysis through encryption. For unicast traffic, this key is pair-wise temporal
key(PTK), and group temporal key(GTK) in broadcast or multicast traffic. PTK or
GTK is not same as the master key, though they are derived from the master key. A
master key is mapped to a master key identifier(MKID). A device can select a encryption
offset(EO) part in a frame not to be encrypted. Applying integrity to selected fields of a
message, a message integrity code(MIC) is produced. The MIC, also known as message
authentication code(MAC), is an 8-octet cryptographic checksum and is used to protect
the integrity of the MAC Header and frame Payload. The symmetric encrypted MIC
provides not only authentication but also confidentiality.

CCM authentication is described in Appendix 19.

262

ProVerif Verification

set traceDisplay=1long.

query attacker (PTKResponder).
query attacker (PTKInitiator).
query attacker(DecryptedDatal).
query attacker(DecryptedData2).

query x:bitstring; event(DataDecryptionl(x)).
query x:bitstring; event(DataDecryption2(x)).
query x:bitstring; event(DataDecryptionl(x)) ==> event(DataDecryption2(x))

query x:bitstring; inj—event(DataDecryptionl(x)) ==> inj—event(
DataDecryption2(x)).

type nonce.
type key.
type MIC.

free TKID:bitstring [privatel].

free UniqueTKID:bitstring [private].
free PTKMic:MIC[privatel].

free PTKMic2:MIC[privatel].

free PTKMic3:MIC[private].

free PTKMic4, PTKMic5:MIC[private].
free Success:bitstring[private].

free PTKResponder:key [private].

free PTKInitiator:key [privatel].

free INonce, INonce2, INonce3:nonce [privatel].
free RNonce, RNonce2, RNonce3:nonce [privatel].
free MKID:bitstring[privatel].

free StatusCode:bitstring[privatel].

free DecryptedDatal:bitstring[privatel].

free DecryptedData2:bitstring[privatel].

free TEST:bitstring[privatel].

event VerifyMKIDUniqueness(bitstring).

event PTKMicVerification(MIC).

event PTKMicVerification2(MIC).

event PTKMicVerification3(MIC).

event PTKMicVerification4 (MIC).

263

event PTKMicVerification5(MIC).
event DataDecryptionl(bitstring).
event DataDecryption2(bitstring).

free c:channel.

fun AESEnc(bitstring, nonce, key): nonce.
reduc forall x: bitstring, y:nonce, z:key; AESDec(AESEnc(x,y,z),z)

let Initiator =
out(c, (MKID, (TKID,INonce))).

let Responder =
in(c, (MKID:bitstring, (TKID:bitstring, INonce:nonce)));
let TKID = UniqueTKID in
event VerifyMKIDUniqueness (TKID);
if TKID = UniqueTKID then
(
out(c, (StatusCode, RNonce))
)

else

(

let Initiator2 =
in(c, (StatusCode:bitstring, RNonce:nonce));
let PTKMic = PTKMic in
event PTKMicVerification(PTKMic);
if PTKMic = PTKMic then
(
out(c, INonce2)
)

else

(

let Responder2 =
in(c, INonce2:nonce);
let PTKMic2 = PTKMic2 in
event PTKMicVerification2(PTKMic2);

264

if PTKMic2 = PTKMic2 then
(

out(c, RNonce2)

)

else

(

let Initiator3 =

in(c, RNonce2:nonce);

let PTKMic3 = PTKMic3 in
event PTKMicVerification3 (PTKMic3);

if PTKMic3 = PTKMic3 then

(
out(c, AESEnc(TEST, INonce3, PTKInitiator))
)

else

(

let Responder3 =

in(c, EncryptedDatal:nonce);

let PTKMic4 = PTKMic4 in
event PTKMicVerification4 (PTKMic4);

if PTKMic4 = PTKMic4 then

(
let DecryptedDatal = AESDec(EncryptedDatal, PTKResponder) in

event DataDecryptionl(DecryptedDatal);

out(c, AESEnc(Success, RNonce3, PTKResponder))
)
else

(

let Initiator4 =
in(c, EncryptedData2:nonce);
let PTKMic5 = PTKMic5 in
event PTKMicVerification5(PTKMic5);
if PTKMic5 = PTKMic5 then

265

let DecryptedData2 = AESDec(EncryptedData2, PTKInitiator) in
event DataDecryption2(DecryptedData2)

)
else
(
0
).
process
(
!Initiator|!Responder|!Initiator2|!Responder2|!Initiator3|!Responder3
[!Initiator4
)

266

ProVerif Result

Process:
(

{1y

{2}out(c, (MKID,(TKID,INonce)))
) (

{3}!

{4}in(c, (MKID_16: bitstring,(TKID_17: bitstring,INonce_18:

{5}let TKID_19: bitstring = UniqueTKID in
{6}event VerifyMKIDUniqueness (TKID_-19);
{7}if (TKID-19 = UniqueTKID) then
{8}out(c, (StatusCode,RNonce))

(

{9}!

{10}in(c, (StatusCode_20: bitstring,RNonce_21: nonce));
{11}1et PTKMic_22: MIC = PTKMic in
{12}event PTKMicVerification(PTKMic_22);
{13}if (PTKMic_22 = PTKMic_22) then
{14}out(c, INonce2)

(

{15}!

{16}in(c, INonce2_23: nonce);

{17}let PTKMic2_24: MIC = PTKMic2 in
{18}event PTKMicVerification2(PTKMic2_24);
{19}if (PTKMic2_.24 = PTKMic2_24) then

{20} out(c, RNonce2)

(

{21}

{22}in(c, RNonce2.25: nonce);

{23}let PTKMic3_.26: MIC = PTKMic3 in

{24} event PTKMicVerification3 (PTKMic3_.26);
{25}if (PTKMic3_.26 = PTKMic3_.26) then
{26}out(c, AESEnc(TEST,INonce3,PTKInitiator))
(

{27}

{28}in(c, EncryptedDatal: nonce);

{29}1et PTKMic4_27: MIC = PTKMic4 in
{30}event PTKMicVerification4 (PTKMic4_27);
{31}if (PTKMic4_27 = PTKMic4_27) then

nonce)));

{32}1let DecryptedDatal_28: bitstring = AESDec(EncryptedDatal,

PTKResponder) in

267

{33}event DataDecryptionl(DecryptedDatal_28);

{34}out(c, AESEnc(Success,RNonce3,PTKResponder))
) |«

{35}!

{36}in(c, EncryptedData2: nonce);

{37}let PTKMic5.29: MIC = PTKMic5 in

{38} event PTKMicVerification5(PTKMic5.29);

{39}if (PTKMic5.29 = PTKMic5.29) then

{40} 1let DecryptedData2.30: bitstring = AESDec(EncryptedData2,

PTKInitiator) in
{41}event DataDecryption2(DecryptedData2_30)

— Query not attacker (PTKResponder[])
Completing...

Starting query not attacker (PTKResponder[])
RESULT not attacker (PTKResponder[]) is true.

— Query not attacker(PTKInitiator[])
Completing...

Starting query not attacker(PTKInitiator[])
RESULT not attacker (PTKInitiator[]) is true.

— Query not attacker(DecryptedDatal[])
Completing...

Starting query not attacker (DecryptedDatal[])
RESULT not attacker(DecryptedDatal[]) is true.
— Query not attacker (DecryptedData2[])
Completing...

Starting query not attacker(DecryptedData2[])
RESULT not attacker (DecryptedData2[]) is true.
— Query not event(DataDecryptionl(x_.31))
Completing...

Starting query not event(DataDecryptionl(x_31))
RESULT not event(DataDecryptionl(x_31)) is true.
— Query not event(DataDecryption2(x_32))
Completing...

Starting query not event(DataDecryption2(x_32))
goal reachable: end(DataDecryption2(TEST[1))

1. The attacker has some term RNonce2_1755.
attacker (RNonce2_1755).

2. The message RNonce2_1755 that the attacker may have by 1 may be

268

received at input {22}.

So the message AESEnc(TEST[],INonce3[],PTKInitiator[]) may be sent to the
attacker at output {26}.

attacker (AESEnc (TESTL], INonce3[],PTKInitiator([])).

3. The message AESEnc(TEST[], INonce3[],PTKInitiator[]) that the attacker
may have by 2 may be received at input {36}.

So event DataDecryption2(TEST[]) may be executed at {41}.

end(DataDecryption2 (TESTL[]1)).

Initial state

Additional knowledge of the attacker:
c
a

New processes:

(

!
out(c, (MKID, (TKID,INonce)))
) |«
!
in(c, (MKID_16: bitstring,(TKID_17: bitstring,INonce_18: nonce)));
let TKID_19: bitstring = UniqueTKID in
event VerifyMKIDUniqueness(TKID_19);
if (TKID_19 = UniqueTKID) then
out(c, (StatusCode,RNonce))

) |«
!
in(c, (StatusCode_20: bitstring,RNonce_21: nonce));
let PTKMic_22: MIC = PTKMic in
event PTKMicVerification(PTKMic_22);
if (PTKMic_22 = PTKMic_22) then
out(c, INonce2)

) |«
!
in(c, INonce2_23: nonce);
let PTKMic2_24: MIC = PTKMic2 in
event PTKMicVerification2(PTKMic2_.24);
if (PTKMic2_24 = PTKMic2_24) then
out(c, RNonce2)

269

(

!

in(c, RNonce2_25: nonce);

let PTKMic3_.26: MIC = PTKMic3 in

event PTKMicVerification3(PTKMic3_.26);

if (PTKMic3_.26 = PTKMic3_.26) then

out(c, AESEnc(TEST,INonce3,PTKInitiator))

(

!

in(c, EncryptedDatal: nonce);

let PTKMic4_27: MIC = PTKMic4 in

event PTKMicVerification4 (PTKMic4_.27);

if (PTKMic4_27 = PTKMic4_.27) then

let DecryptedDatal_28: bitstring = AESDec(EncryptedDatal,
PTKResponder) in

event DataDecryptionl(DecryptedDatal_28);

out(c, AESEnc(Success,RNonce3,PTKResponder))

(

!

in(c, EncryptedData2: nonce);

let PTKMic5.29: MIC = PTKMic5 in

event PTKMicVerification5(PTKMic5.29);

if (PTKMic5.29 = PTKMic5.29) then

let DecryptedData2_30: bitstring = AESDec(EncryptedData2,
PTKInitiator) in

event DataDecryption2(DecryptedData2_30)

Tst

2nd

3rd

4th

5th

6th

7th

process: Reduction |
process: Reduction |
process: Reduction |
process: Reduction |
process: Reduction |
process: Reduction |
process: Reduction ! 1 copy(ies)

270

7th process: Beginning of process Initiator4

6th process: Reduction ! @ copy(ies)

5th process: Reduction ! 1 copy(ies)

5th process: Beginning of process Initiators3

4th process: Reduction ! @ copy(ies)
3rd process: Reduction ! @ copy(ies)
2nd process: Reduction ! @ copy(ies)
1st process: Reduction ! @ copy(ies)

New processes:

in(c, RNonce2_1768: nonce);

let PTKMic3.1769: MIC = PTKMic3 in

event PTKMicVerification3 (PTKMic3.1769);

if (PTKMic3_1769 = PTKMic3_.1769) then

out(c, AESEnc(TEST,INonce3,PTKInitiator))
) |«

in(c, EncryptedData2_.1763: nonce);

let PTKMic5.1764: MIC = PTKMic5 in

event PTKMicVerification5(PTKMic5.1764);

if (PTKMic5_.1764 = PTKMic5.1764) then

let DecryptedData2_1765: bitstring = AESDec(EncryptedData2_1763,

PTKInitiator) in
event DataDecryption2(DecryptedData2_1765)

1st process: in(c, RNonce2_1768: nonce) done with message a

1st process: let PTKMic3_.1775: MIC = PTKMic3 succeeds

1st process: event PTKMicVerification3 (PTKMic3) executed

1st process: if (PTKMic3 = PTKMic3) succeeds

271

1st process: out(c, "M_1778) with "M_1778 = AESEnc(TEST, INonce3,
PTKInitiator) done

Additional knowledge of the attacker:
"M_1778 = AESEnc(TEST,INonce3,PTKInitiator)

1st process: Reduction 0

New processes:
in(c, EncryptedData2_.1763: nonce);
let PTKMic5.1764: MIC = PTKMic5 in
event PTKMicVerification5(PTKMic5.1764);
if (PTKMic5.1764 = PTKMic5.1764) then
let DecryptedData2_1765: bitstring = AESDec(EncryptedData2_1763,
PTKInitiator) in
event DataDecryption2(DecryptedData2_1765)

1st process: in(c, EncryptedData2_1763: nonce) done with message "M_1778 =
AESEnc (TEST, INonce3,PTKInitiator)

1st process: let PTKMic5.1782: MIC = PTKMic5 succeeds

1st process: event PTKMicVerification5(PTKMic5) executed

1st process: if (PTKMic5 = PTKMic5) succeeds

1st process: let DecryptedData2_1784: bitstring = TEST succeeds

1st process: event DataDecryption2(TEST) executed; it is a goal

New processes:
0

The event DataDecryption2(TEST) is executed.

A trace has been found.

RESULT not event(DataDecryption2(x_32)) is false.

— Query event(DataDecryption1(x_33)) ==> event(DataDecryption2(x_33))
Completing...

Starting query event(DataDecryption1(x_-33)) ==> event(DataDecryption2(x-33

272

))

RESULT event(DataDecryption1(x_33)) ==> event(DataDecryption2(x_33)) is
true.

— Query inj—event(DataDecryptionl1(x_-34)) ==> inj—event(DataDecryption2(
x_34))

Completing...

Starting query inj—event(DataDecryption1(x_34)) ==> inj—event(
DataDecryption2(x_34))

RESULT inj—event(DataDecryptionl1(x_-34)) ==> inj—event(DataDecryption2(x_-34
)) is true.

273

Appendix 18 — CMAC Authentication

CMAC is a message authentication code (MAC), which is constructed with a block cipher

using its own cipher algorithm.

EnOcean has described CMAC authentication as follows, which has been shown in Figure

16: MAC generation algorithm for a message j= 16 bytes.
The R-ORG-S is the secure radio message R-ORG code.
DATA is the secure message DATA field.

XOR is used to encrypt message with a different key.

If the receiving device has a shared secret key, it is able to decrypt the message.

Figure 16: CMAC message calculation [4]

16 bytes
A
e ™
R-ORGS |[DATA| RLC Padding Bytes
@ <— Subkey derived from secret key
AES128 < Secret key
W
CMAC

274

Appendix 19 — CCM Authentication

CBC-MAC is a method for constructing a message authentication code from a block cipher.
With CBC (Cipher Block Chaining)-MAC (Message Authentication Code) messages
are authenticated with a secret shared key. Messages are encrypted with the standard
form of AES and then throw away everything apart from the last block, and use this
as a fixed-length MAC. If the key is not secret the method provides little in the way of
security.

Algorithm calculation has been shown in Figure 17.

Figure 17: CBC-MAC message calculation [11]

ml m?2 mx

o—d ——O ——

3
-

k — E k— E k—>E

result

275

Appendix 20 — BAN logic Verification for Diffie-Hellman Key
Exchange

Initial Assumptions:

Al=24 4
A|l=2% B
B|=~% B
B|Ei—IiA—)A
Al=B= GNs
Bl=A= GNa

Idealized Protocol:

Message 1: A<1GN-

Message 2: B<aGN4, {GN4, GNB}KA,
Message 3:A 1 GNe {GNE GN4 }KB,l
Protocol Goal:

Al= A& B

Bl=A&4% B

Bl=A|l=A&8 B
Al=zB|l=A&5 B

Verification:

1

In first message of idealized protocol, B chooses random Np and calculates GV and
then sends it to A, therefor

B |E NB
B |= #(Np)
AaGNs

In second message of idealized protocol, A chooses randomN, and calculates G4,
then sends and believes

A|= Ny

A |= #(Na)

B<aGNa {GNa, G’NB}K/F1

From the last sent message by A to B, we can obtain by applying message-meaning
rules and initial assumptions B |Elﬂ> A that

B |= A |~ (GNa,GNB)

Applying freshness conjucation to the B |= #(Npg), then it is possible to obtain:

B |= #(GNe,GN4)

276

Applying nonce verification rule to B |= A |~ (GN4,GN5) and B |= #(GNs:G™) |
then it can be obtained that

B |= A |= (GN4,GN8)

From decomposition, it can be obtained that

B|=A|=GN4

B|=A|= Ny

From B |= A |= GM and initial assumption of B |= A = G4 and applying

jurisdiction rule, it is obtained that

B |= GNa
From B |= #(GV5¢") it can be obtained that
Bl|=A|=GNs

From third message of idealized protocol it is possible to derive that

AaGNs {GN4, GNB}KJT1

From initial assumption of A |Enﬁ> B and applying message-meaning rule, it can be
obtained that

A |= B |~ (GN4,GVE)

Applying freshness conjucation to A |= #(Ny), it is obtained that

A |= #(GNa, GNE)

From nonce verification of B |= #(G"5,GN4) and A |= B |~ (GN4,GV5) it is
obtained that

Al= B |= (GNs,GN4)

From decomposition of last message, it is obtained that

Al=B|=G"s

A|=B|= Npg

From A |= B |= GV& | initial assumptions of A |= B = G"# and by applying
jurisdiction rule :

Al=GNs

From decomposition of A |= B |= (G, GM4) it is obtained that :

Al=B|=GN

A calculates now Kap = (GNB)N4,

From messages A <GY? and A |= #(N,) with applying freshness conjucation, it is
obtained that

A |=##(Kap)

From A |= #(K4p) and A |= B |= N by applying shared key rule :

Al= A& B

277

Due to symmetrical key exchange protocol B is bound to does the same.
Bl=A|=A £48 p

B calculates now Kap = (GN4)V5,

B |= #(Kap)

From B |= #(Kap) and B |= #(Np) by applying shared key rule :
Bl=A&S B

Due to symmetrical key exchange protocol A is bound to does the same.
Al=B|=A&% B

With these deductions following goals are reached :

Al=A&S B
Bl=A&E B
B|5A|EA&)B
AlEB‘EA&)B

Which means, that goals of the protocol are reached.

278

Appendix 21 — BAN logic Verification WiMAX PKMvl Key
Exchange

Initial Assumptions:

SS =54 A
BS |=24 A
SS |=552 §8
BS |=255 58

SS|= A==% BS
BS |= A =% 58
SS |= BS = (5SS & BS)
BS |= 5SS & BS

SS |= #(Tas)
SS |= #(Nss)
SS |= #(Tgs)
BS |= #(Tass)
BS |= #(Nps)
BS |= #(Tss)

Idealized Protocol:

Message 1: BS 1SS.REQ,{Tx,,, Lo, SS}KA_1

Message 2: SS<{SS A5 BS} ..

Protocol Goal:

SS |= 85 &5 BS

BS |= 85 &5 BS

BS |= SS |= 5SS &5 BS

SS|= BS |= SS &5 BS

Verification:

BS <SS — BS : SS.REQ,{TASS,& SS}KA_1 and by initial assumption of
BS |EIK—A> A it can be deduced with message-meaning rule that:

BS |= A |~ (Ta,,, =55 S9)

With initial assumption of BS |= #(T4,,) and last message, while applying nonce
verification rule, it can be deduced that

BS |= A |=2s%5

Applying rule of jurisdiction and initial assumption to last deduction :

S5 <55 &5 BS

279

No more assertions can be added and the result of this verification is that SS sees
that there is a key AK, which can be used to communicate with BS, but does not know

if it is assigned by BS or not, because the identity has not been included in the messages.

280

Appendix 22 — BAN logic Verification WiMAX PKMv2 Key
Exchange

SS - Subscriber Station
BS - Base Station
K - shared key
A - Authentication

Initial Assumptions:

SS =54 A
BS ‘Elﬂ} A
SS |=555 59
BS |=255 55

SS|= A==% BS
BS |= A= 58
SS |= BS = (S8 & BS)
BS |= 5SS & BS

SS |= #(Tups)
S8 |= #(Nss)
S8 |= #(Ips)
BS |= #(Tags)
BS |= #(Ns)
BS |= #(Tss)
BS |=255 S8
SS |=2E, B

Idealized Protocol:
Message 1: BS<SS.REQ,{Ta,,, EiEEN SS’}KN1

Message 2: SS <{Nss, Ngs, {55 AK BS}KSS}
Message 3: BS <{Npg, SS.RPL}
Protocol Goal:
AK
SS =88 < BS
BS |= 85 &5 BS
BS |=SS |= 5SS &5 BS
SS|= BS |= SS &5 BS

Verification:

Kps
Ky y {TABSa — BS}KA_l

281

SS < BS — S8 : {Nss, Nps, {55 <5 BS} .} S_l,{TABS,& BS}, , and

KB
with initial assumption of S.S |E»@> BS it can be deduced by applying message-
meaning rule that:

SS |= BS |~ (Nss, Nps, {SS €% BS}y..)

With last message and initial assumption of SS |= #(Ngg) it can be deduced with
nonce verification that:

SS |= BS |= {SS 5 BS} ..

Because the signing of the key, it can be assumed that:

SS |= BS |= 5SS &5 BS

Next, by applying jurisdiction rule to last message with initial assumption of SS |=
BS = (55 & BS) :

SS |= 58 &5 BS

Next, BS <SS — BS : {Npg,SS.RPL} ,;, and with the initial assumptions of
BS |= 5SS & BS and BS |= #(Npg) it can be deduced that

BS |= SS.RPL

The authentication comes through, but BS cannot verify if the authentication process

was started by SS, because the identity was not included in the requesting messages.

282

Appendix 23 — BAN logic Verification for GSM Key Exchange

Initial Assumptions:

MSC |= MS |~ (ServiceRequest)

VLR |= MSC |~ (IMSI)

HLR|=VLR |~ (IMSI)

VLR |= MSC |~ (IMSTI)

VLR |= MS &Evtionley yrp

MS |= MS Eirvrtionkey v

Idealized Protocol:

VLR <{Response2} p, ..otionicey

Protocol Goal:

MS |= MS§ Etioney vy p

VLR |= MS &Ervrtionley g

VLR |= MS |= MS &8y g

MS |= VLR |= MS &8vionley v

Verification:

With the communication being initiated by MS with sending ServiceRequest to MSC,
which includes CKSN, IMSI, TMSI and is forwarded to VLR, who sends Authentication-
Request(IMSI) to HLR. With the initial

belief of that HLR |= M S |~ IMSI, it sends out IMSI, generates RAND, with that
Ko, which is used to generate SRES to VLR. VLR starts the authentication process,
with sending out

CKSN and RAND which is forwarded to MS. MS then uses its private key to calculate
SRES and sends a response containing SRES to MSC, who sends it to VLR, who checks
if SRES matches with

SRES received from HLR. If it matches, MSC receives the response with success in it,
which is forwarded to MS. Then MS is authenticated and can start communication with
EncryptionKey, which

is generated with MS private key and A5 algorithm.

From fifth message, it can be deduced that :

After recieving Response from MSC, MS generates EncryptionKey and MS |=
MS V LR, because of the symmetry of the key, M'S |= VLR |= M S
VLR.

EncryptionKey EncryptionKey
— —

283

While recieving the message { Response2} EneryptionKey 214 with initial belief that

VLR |=MS Lneryptionfey, VLR, it can be deduced, that
V LR < Response2 and because of that VLR |= MS |= MS

EncryptionKey
—

VLR.

284

Appendix 24 — BAN logic Verification for EAP-AKA Key Ex-
change [1]

U - User HE - Home Environment SN - Serving Network r - random number K - shared
key SEQ - sequence number for synchronization between HE and U RES = 2(K, r) =
expected response CK = f3(K, r) = cipher key IK = f4(K, r) = integrity key K,= f5(K,
r) = anonymity key AUTN = authentication token

Idealized Protocol:

SN <ar, f2(K,r), f3(K,r), [AK, 1), {SEQ} 15k 1K, SEQ,T)

U ar, {SEQ} sy F1K. SEQ.T)

SN < f2(K,r)

Initial Assumptions:

SN |= HE = (SN &5 U, #(K"))

SN |= (HE |~ RES — HE |= (SN ££5 U, #(RES)))

SN |= (HE |~ CK — HE |= (SN <5 U, #(CK)))

SN |= (HE |~ IK — HE |= (SN <% U, #(1K)))

SN |=HE |~ (r, RES,CK,IK,AUTN)

SN |=(U |~ RES - U< (CK,IK))

SN |=!(SN |~ RES)

U<K

Ul=HE & U
Ul= HE<K
U |= #(SEQ)

U |=I(U |~ f1(K,1))

Ul=HE = SN & U

Ul= (HE |~ 7 — HE |= SN <% 1) for i=3,4
Ul|=HE = #(r)

Ul=HE |~r— HE |=#(r))
HE<K

HE|=HE & U

Protocol Goal:

SN |=U |~ RES

Ul|= HE |~ (SEQ,r)
SNaCK

SN <IK

285

U< f3(K,r)

U< fA(K,r)

SN |= SN &5 U

SN |= SN & U

Ul=sn LS80y

Ul=sN Z280 g

SN |= #(CK)

SN |= #(IK)

U= #(f3(K,r))

U= #(A(K, 7))

SN |= U < (CK, IK)

Ul|=HE<(f3(K,r), fA(K,r))

HE |= HE L5 @

Verification:

Receiving first message, SN < (CK, IK), goal

From initial assumptions of SN |= HE |~ (r, RES,CK,IK, AUTN) and SN |=
(HE |~ RES — HE |= (SN +—— JLLLZEN U,#(RES))), because of the interference and

rationality rule, it can be deduced that

SN |= HE |= (SN {55 U, #(RES))

From last deduction and initial assumption of SN |= HE = (SN & U, #(K')) :

SN |= (SN &E5 U, #(RES))

Now it can be proved that :

SN |=SN &5 U

SN |= SN & U

SN |= #(CK)

SN |= #(IK)

From second message, U <r and because of that and initial assumption of U < K,
it can be proved that U < K, r, therefor U < fi(K,r) for i=2,...5 ; with this deduction
U<SEQ.

Because of these deductions and second message, it can be shown that U |= U <«
fI(K,SEQ),r), because U is able to calculate it.

With initial assumptions of U |= HE & Uand U =1 (U |~ f1(K,r)), and the
last calculation and the initial assumption of U |= #(SEQ), it can be shown that
U|=HE |~ (SEQ,T).

In result of last deduction U |= HE < fi(K,r), for i = 3 /4.

fA(K,r)

286

Using initial assumption of U |= (HE |~r — HE |= SN Jurn, U) for i=3,4 and
Ul|=HE |~ (SEQ,r) it can be deduced that U |= (HE |= SN JUn, U) for i= 3,4.

With last message and initial assumption of U |= HE = SN & U that U |=
SN M for i = 3,4.

Using initial assumption of U |= (HE |~ r — HE |= #(r)) it can be said, that
U |= HE |= #(r) and with this U |= #(r) therefore U |= #(fi(K,r)) for i=34.

From third message and initial assumption of received expected response from SN |=
HE |~ (r,RES,CK,IK,AUTN)

SN |= SN <RES

SN |=U |~ RES

SN |=U<(CK,IK)

With initial assumption of HE |= HE & U and previous beliefs of fi(K,r) for i=
2,..,b that

HE |= HE &80

287

Appendix 25 — BAN logic Verification for ZigBee Key Exchange

Initial Assumptions:
TrustCenter |=TC
TrustCenter |= Joiner |= J
TrustCenter |= Joiner |= aQ
TrustCenter |= sub — MAC
Joiner |= J
Joiner |= TrustCenter |=TC
Joiner |= TrustCenter |= bQ
Joiner |= sub — M AC
Idealized Protocol:
Joiner < J,aQ), Ng, sub— M AC(aQ, Ns, J)
TrustCenter <TC,bQ, N1, sub — MAC(K)
Joiner <4 Ex, (Ng41)
Protocol Goal:
TrustCenter |= TrustCenter & Joiner
Joiner |= TrustCenter & Joiner
Joiner |= TrustCenter |= TrustCenter & Joiner
TrustCenter |= Joiner |= TrustCenter & Joiner

Verification:
Joiner < J,aQ, Ng, sub — M AC(aQ), Ng, J

Joiner |= J,aQ), Ng

From first idealized message, it can be deduced that
and
Joiner |= a@
Joiner |= K
From second idealized message, TrustCenter < (T'C,bQ, Nsy1), TrustCenter will
compute K and then sub-MAC(K).
Because TrustCenter calculates K and sub-MAC(K), it can be deduced that
TrustCenter < sub — MAC(K), TrustCenter |= sub— MAC

TrustCenter |= K ’

TrustCenter |= K

t d finall
NN TrustCenter |= bQ, TrustCenter |= #(Ng41) anc ety

TrustCenter |= K

therefor because

TrustCenter |= TrustCenter & Joiner

288

Next, TrustCenter |= Joiner |= TrustCenter & oiner, because of the Symmetric-
Key Key Establishment (SKKE) protocol.
Joiner <{Ngi1}

From last idealized message, < :
Joiner |= TrustCenter < Joiner

Because of the last message, it can be said that Joiner |= TrustCenter |= TrustCenter &

Joiner, because of the SKKE protocol.

289

Appendix 26 — BAN logic Verification for PSK Key Exchange

Initial Assumptions:

Device freshATRAN D sp

AP#(ATRANDp)

Idealized Protocol:

Device <« ATRAND 4p

AP < ATRANDp, AT\ ACpH

Device < {ATyACap} ik

AP < {ATyACp}

Device <« {EAPSuccess}rpy

Protocol Goal:

Device |= Device IER Ap

Device |= AP |= Device LR ap

AP |= Device IEE Ap

AP |= Device |= Device IEE Ap

Verification:

While AP sends out ATRAN D 4p, which was generated by itself, therefore AP |=
#H(ATRAND 4p).

From first message Device <« ATRAN D 4p, next device generated its own random and
sends it to AP while adding message authentication code in the second message AP <
ATRrANDp, AT)\ACh.

Because the device generated ATR AN Dp, therefore Device |= #(ATrRANDp).

From second message, AP check validity of the ATy, ACp. If it is valid, then AP |=
ATy ACD, it can be deduced that AP |= Device |~ ATRAN Dp as well.

AP sends out message { ATy AC4p}rpg, Which Device should be able to derive.

With third message, because of Device is able to resolve the challenge TEK with
its pre-shared key Device < ATy AC ap. With the validity of ATy ACsp then Device |=
ATy ACyp, Device |= AP |~ {ATvACAp 1ok

Also, then Device |= Device IR AP,

With fourth message, AP <{ATyACp} px, while AP is able to resolve the message
using its key, AP |= Device IR, AP for communication and AP |= Device |=
Device <25 AP, because of the response.

With fifth message Device « {EAPSuccess}ry, Device is able to deduct that
Device |= AP |= Device PR AP,

290

Appendix 27 — BAN logic Verification for CCM and CMAC Key
Exchange

Since CMAC and CCM BAN logic results and assumptions were the same, they have
been combined into one appendix. Difference is that CMAC encryption is applied to
whole message and CCM or CBC-MAC last block of the message.

Assumptions:

A= #(T)
B |= #(1y)
Al=AS B
Bl=A&B
Idealizad Protocol:
A« {Il, TI}K
B« {IQ, TQ}K
Goal:
Verification:
With initial assumption of that
Al=zASL B

, then A receives first message, this is deduced with message-meaning rule:

291

A= A4S B, A«
{1, Tt

Applying shared secret rule results with the initial assumption of
Al=ASE B
results :

Aa{l},T\} ., Al=AS B
A<111,T1

Applying message-meaning rule,

Al=Z=AS B AL T

After A was able to read the message,

A will respond with its own identity and same thing applies to

Bl=AL B

, this is also deduced with message-meaning rule:

Bl=A& B, B
{-[27 T2}K

Applying shared secret rule results with the initial assumption of

results :
Ba{l,, Ty}, Bl=A& B
B<1]2,T2

292

Applying message-meaning rule,

Bl=A& B, Bal, Ty

293

abod jxaou uo PanNUUO))

TR[OTPS 9[300D) | 6108/60/11 0 symsar1 O09FG prepue)s 1000301d gim
Iefoyog 913005y | 6102/60/TT 1 S)nsoI 00Z6T uorjedrjueyIne 10§ uostredurod [000301d Yim
Tejoypg 913005 | 6102/60/11 e symsarI 00G Gy uostreduwon [000j01d gim
TR[OTPS 913000 | 6106/60/TT I SyMsoI 00869 [000301d g
TR[OYPS 9[300D) | 6108/60/11 0 S3MsaI 009G ugtsep [000301d grm
TR[OTPG A[F00D) | 6103/60/TT 9 SYMSOI 008'ET $901A9D T,0] IM UOTYRdULIINE [000301d YIm
Tejoypg 913005 | 6102/60/11 c symsaI)0LGT SYIOM)OU SWIOY JIRWS Ul UOTYRDIIJUSYINe [000301d Jim
TR0 9[300D) | 6108/60/TT I SYMSAT O0TLE uoresUILINE 1000301d Yra
Tejoypg 913005 | 6102/60/11 e SHMSaI O0FLG uoryedIuaInNe 10§ s[000301d yim
Tejotpg 913005 | 6102/60/11 ¥ sy[nsa1)09°CE QuwIOY JIeWS 10§ [000j01d FYim
Tefoypg 913005 | 6102/60/TT . synsaI)OI EL [020301d TOTJROTUNTITIOD [IM
Tejotpg 913005 | 6102/60/11 0 symsar 000 F1IR pIepue)s [000j01d pareIjul
Te[oypg 913005y | 6102/60/1T 0 sy[nsaI 000°9g uorpednULINe 10§ uostredurod [000301d pareijur
Tejotpg 913005 | 6102/60/11 1 symsar)00 GLR uostreduwod [000301d pareryut
TROTPG A[F00D) | 6105/60/TT T | s3msa1 000‘0LE‘T [000101d paregyur
TROYPG 98000 | 6105/60/TT 0 | SIS 000°LES ugisop [090301d porejur
Teoypg 913005y | 6102/60/TT 0 synsaI 000‘1g S9OIAD O] UM uorjedrjuayjne [000j0xd parerjur
Tejotpg 913005 | 6102/60/11 0 symsax 00T1‘GT SYIOM)OU SUIOY JIRWIS Ul UOIJeduUsjne [000301d pareljur
TR[OTPS 9[300D) | 6106/60/1T 0 SYMSI 00E 9% UOTyeDUATIE [000301d PaTRIUL
Tejoypg 913005 | 6102/60/11 0 S)MSaI 00G TS UOIPRITIULINE 10} S[000301d paIeIjul
Iefoyog 013005y | 6102/60/TT 4 sy[nsa1 000‘0S QUWIOY JJIRWS I0J [000301d PaIRIjul
Tejoypg 913005 | 6102/60/11 4 S)msarI 2/, [090301d UOTYROTUNUITIOD POIRIJUL
TR[OTPS 9[300D) | 6106/60/1T ¥ | SISO 000°LY6 $1090301d SSO[OIIAN
Tejoypg 913005 | 6102/60/11 c symsar 000‘FES s1000301d SWOY JIeUIG

90IM0g 918(] | SsyIoM pasn S9[NsoI (8107, patIess W9,

MOIADY OINJeISNT J0J SWLIS], Pas) — 8¢ XIpuaddy

294

abod jrou uo panuUo))

TRIOYPG 98005 | 610/1/60 I symsar 00L QT uoryed UL INE [020301d 99317,
Te[oypg 913005y | 610¢/21/60 0 SHNsaI)0G‘]T uoryesrueyIne 10j s[000301d 99317,
Te[otpg 913005 | 610%/31/60 e synsa1 006 1E QuWIOY] }IeWS 10} [090301d 90317,
Te[oypg 913005y | 610¢/21/60 0 sy[nsaI 00Z ¥9 [090301d UOTJROTUNTIWOD 99317,
TROYPG 98005 | 6105/1/60 T | SHMSST 00067 T paepue)s [000301d proIyy
Tefoyog 913005y | 610¢/21/60 0 synsax 000 0% uoryedjueyIne I10J uostredurod [000301d peay)
Te[otpg 913005 | 610%/31/60 0 s)msa1 000‘F1g uostreduwoo [020301d peaIy}
Te[OTPS 9[300D) | 6108/31/60 T | SHOSOI 000'T6E [000301d peart)
TR[O1PS 9[300D) | 6108/31/60 0 | SHNSSI 0006 ugtsop [000301d peary)
Teoyog 913005y | 6102/¢1/60 T syInsaI)97 9 SO01ADD T,0T UM uoIjesnjuayjne [000301d peays
Te[oypg 813005 | 610%/31/60 0 S)MsaI 00G €T SYIOM)OU SWIOY }IBWS Ul UOIjedIjuayIne [000301d peaiyy
TR[OTPS 9[300D) | 6108/31/60 0 SYMSI 006G uoryedTIURYNE [000301d peAI)
Te[oypg 913005 | 610%/31/60 0 symsaI 00 0L uorjedIuaINe 10j [000301d praIy)
Tejoyog 913005y | 6102/¢1/60 1 syNsaI 006 LY QUIOY JIRWS I0J [000301d peaIy)
TROYPG A800D) | 6105/51/60 T SyMsa1 00811 101 10§ [000%01d peatTy
TROTPG A[800D) | 6103/E1/60 T SYMSI 00L 0L pIrepue)s 000301d q3003901q
Tejoypg 913005 | 6102/60/11 0 synsaI 0L €T uorjednuLINe 10j uostredurod [000301d 130099n[q
Tefoyog 913005y | 6102/60/TT 4 synsa1)0 eS uostredwoo [0o00301d yjoo3en[q
TROYPG A[F00D) | 6105/60/TT 0 s¥MsaI 0006 [000101d [100%9M[q
TeloYPG 98000 | 6105/60/T1 0 symsaI 000 8L ugisop [000301d 1100390[q
Tefoypg 913005y | 6102/60/TT 0 synsaI)0G‘E€T S9OIASD 1,0 UM uorjesruayine [000301d yjoolenyq
Tejotpg 913005 | 6102/60/11 T s3SI)0L 61T SYIOMIOU SWIOY 4IRS UL UOoIjRdIjUsjne [000301d r0030n[q
Tefoypg 913005 | 6102/60/TT 1 synsaI 0L ¥E uorjesrjueyIne [000301d yjoolenyq
Tejotpg 913005 | 6102/60/11 0 s3SI)00‘GE uorjedIjuLyINe I0J s[000301d 130039N[q
Tefoypg 913005y | 6102/60/TT ¥ synsaI 00T1°6¢ QuWIOY] JIews 10} [000301d [joolen[q
Tejotpg 913005 | 6102/60/11 9 synsa1 000‘¢0T [090301d TOIYeITUNITIOD [J00)aN[q

92INn0g je(] | sYIOM pasn SHNSaI [RI0T, payoIeas WLIAT,

abod snowaad woif panuruo) — gl dqRl,

295

abod jrou uo panuUo))

TROYPG 98005 | 6105/81/60 0 symsar €9/, [000301d oA\
TROTPG AF00D) | 6105/81/60 0 SYMSAT ()]G uStsop [000301d OO
Te[otpg 913005 | G10T/S1/60 0 SYNSAI G, S9OTADDP T,0T YIM UOIpedrjuayine [000301d OJAPAN
Te[oypg 913005y | 610¢/81/60 0 SIINSAI £]T SYIOM)OU SUWIOY }IeWS Ul UOIYRIIJUSINEe [00030Id OJAOAN
Te[otpg 913005 | 610Z/S1/60 0 SIINSAI 6T UO0IYe21URY e [000301d OTATOAN
Tefoypg 913005y | 610¢/81/60 0 SYMSAI 16T UuoTedIuaInNe 10j s[020301d OJNOAN
Te[otpg 913005 | 610Z/S1/60 0 S3INSAI 9G WOy 1IeWS 10} [000301d OTATOAN
Te[oyog 913005y | 610¢/81/60 0 SIINSAI £G9 [090301d TOTJRITUNUITIOD OJAJOAN
Te[otpg 913005 | 610%/31/60 0 SIMSAI)0 LT pIepuesls [000301d SABAN -7
Teoyog 913005y | 6102/¢1/60 0 SIMSAI ()LG°T uorjyedruayne 10j uostredurod [000301d dARA\ -7
Te[oypg 813005 | 610%/31/60 1 S}MNSAI ()G6°T uostredurod 1090301d dARAN -7
TR[OTPS 9[300D) | 6108/31/60 € SYMSAI 0GF'G [000j01d DA -7,
Te[oypg 913005 | 610%/31/60 1 SMNSAI)E]'T uS1sep [090301d SABAN -7,
Tejoyog 913005y | 6102/¢1/60 1 SIMSAI ()96°T SOOTAGD T,OT UM UOI}RdIjuaINe [00030Id 9ARA -7
Te[oypg 913005 | 610%/31/60 T S}MSaI ()98°T SYIOM}OU SUIOY }IBWS Ul UOIJRITJUSINE [000901d dARAN\ -7
Iejoyog 913005y | 6102/¢1/60 1 SIMSaI 0T0°'C uorpedIuaIne [000301d SARAN -7,
Te[oypg 913005 | 610%/31/60 0 SHMSaI)00°C UOIYeDTUdYNe 10] S[000j01d dARAN -7
Tejoyog 913005y | 610%/31/60 Z SINSOI)6E‘T QWIOY] JIRWS I0J [090301d OARAN -7,
Te[oypg 913005 | 610%/31/60 0 S}MSAI OET‘G [090301d TUOTYRITUNUIUIOD dARAN -7,
TR[OYDS 9[300D) | 6108/G1/60 0 SYMSAT 006 TG prepue)s [000301d 99q317,
Te[oypg 918005y | 610¢/21/60 0 synsaI 00G T uoryesrueyne 10j uosrtredurod [000301d 99317,
Te[otpg 913005 | 6T0T/T1/60 T sy[nsa1)0T‘RE uostreduwoo [000301d 90317,
TROTPG AF00D) | 6103/E1/60 9 SYMSAI 00T G [000301d 99317
Te[OYPG 915000 | 610%/2T/60 0 SHMSAT 008 9 ugisop [000301d 90qS17
Te[oypg 913005y | 610¢/21/60 0 s3SI 0K LT S9O1ADP T,OT UM uoryedrjustine [000j01d 00317,
Te[otpg 913005 | 610%/T1/60 1 SYNSaI 00Z‘ T SYI0MIOU SUIOY }IBWIS Ul UOIJBIIJULYINe [090301d 99317

92IN0G aye(| syIom pasn SH[NSaI T80T, [SELBREEERIIAEY §

abod snowaad woif panuruo) — gl dqRl,

296

abod jrou uo panuUo))

Te[otpg 913005 | GT0T/S1/60 1 synsar ()L9°¢ uostreduwoo joo0j01d g4n
TROTPG AF00D) | 6105/81/60 ¥ SYMSAT OZF'9 [000j01d gdn
TRIOYPG 98005 | 6105/81/60 0 SIS 0L9'F ugisop [000301d gqN
TROTPG A[800D) | 6103/81/60 0 SHNSsaI 9LG S901A9D T,0T UM uoresnuayine [000301d gdn
Te[otpg 913005 | 610Z/S1/60 0 S)INSAI QEE SYI0MOU SUIOY }IBWIS UI UOIedIjuayjne 1000301d gan
TROTPG A800D) | 6T03/81/60 0 synsal 199 uonednURINE [000301d gJN
TR[O1PS 9[300D) | 6108/81/60 0 symsox 199 uoryed1uaYINE 10 sj000301d g
Te[oyog 913005y | 610¢/81/60 Z SINSAI §/.G awoy] }rews 10j [0o0j01d gdn
Te[otpg 913005 | 610%/81/60 0 SMNSAI ()RE‘F [020301d TOTYRITUNTIUIOD)
TR[OTPS 9[300D) | 6108/81/60 T SYMSAT 00T ‘9 prepuess [ooojord SNg DId
Te[otpg a[3005) | 610%/81/60 0 syInsaI)0T‘CT uoryesnjuayjne 10y uostreduwod j0o00301d NG OTd
TR[OTPS 9[300D) | 6108/81/60 T SYMSAT 00T €L uostredwoo joo0j01d NG DI1d
TR[OTPS 9[300D) | 6108/81/60 ¢ S)MSaI 008FL [000%01d sng D'1d
TR[OTPS 9[300D) | 6108/81/60 0 SYMSAT 00]'6S ugtsop [o00101d SN DId
TROYPG A500D) | 6105/81/60 0 SJmsaI 009°'GT $90149D T,0T M woryeonuaIne [000301d SN D'Id
Iejoyog 913005y | 610%/81/60 0 S3INSaI)09‘GT SYIOM)OU SWIOY JIeWS Ul UOoryed1juajne [000301d §Ng O1d
TROYPG A500D) | 6105/81/60 0 SYMSAT 00 15 uonyesruayIne [000301d SNg D1d
TRIOTPG A[800D) | 6103/81/60 0 SYMSST 00T 6T uoryednyuANE 103 s[000301d §Ng D'1d
TROYPG A5005) | 6105/81/60 1 SYMSAT 009G awo jrewts 10y [020301d SN DTd
TR[OYDS 9[300D) | 610¢/8T/60 1 SHMSAT ()0L 8L [000301d woTyRSTUNITIOD SN T DTd
Te[oypg 918005y | 610¢/81/60 G synsaI 00806 QwIoY] Irewrs 10j s[000301d pLIqAH
Te[otpg 913005 | GT0T/S1/60 Q syMsaI 000 LST QWIOY] }Iewg I0] S[000301d SSO[IIAN
Te[oypg 918005y | 610¢/81/60 i% SYMSAI)0L‘6T SOWIOY }IRWS I0J S[0D030IJ POIIA\
Te[otpg 913005 | GT0T/S1/60 0 SNSaI F19 prepue)s 1090301d OTATOAN
Te[oypg 913005y | 610¢/81/60 0 S3MSaI OGT uoryeduayjNe 10y uostreduod 1000301d OAOAN
Te[otpg 913005 | G10T/S1/60 0 S)NSaI |9F uostreduod [020301d OJAOAN

92IN0G aye(| syIom pasn SH[NSaI T80T, [SELBREEERIIAEY §

abod snowaad woif panuruo) — gl dqRl,

297

abod jrou uo panuUo))

TRIOYPG 98005 | 6105/85/60 € SHMSAL OO0 TT owot] jrewrs 10y 1090301d NV MOTI
TROTPG AF00D) | 6103/85/60 ¢ SHNSAT 006']T [000301d TOTRITINIITOD NVIMOTI
TRIOYPG 98005 | 6105/81/60 0 SYNSOI Z66 prepue)s [000301d NOHLSNI
Te[oypg 913005y | 610¢/81/60 0 SYMSaI $9g uoryestyueyjne 10§ uostredurod [000301d NOHLSNI
TROYPG 98005 | 6105/81/60 T S)MSaI 19 uostredwon [000301d NOHLSNI
TROTPG A800D) | 6T03/81/60 ¢ SHSAI OE0‘T [000301d NOHALSNI
TR[O1PS 9[300D) | 6108/81/60 4 syMsaI 0g0'T ugisop [000301d NOHLSNI
TROTPG A[800D) | 6103/8T/60 0 SHNSAT Q)¢ $901A9P 0T Ui uoneorjusine [000301d NOHLSNI
Te[otpg 913005 | 610%/81/60 0 SHMSaI QO¢ SYIOMIDU SWOY JIRWS Ul Uoryedrjuayjne [000301d NOHISNI
TROTPG A[800D) | 6103/81/60 0 SHNSAT Y uoneanudINe [000301d NOHLSNI
TROYPG A500D) | 6105/81/60 0 S)NSOI 9¢ uonedTyULINE 10§ $[000301d NOHLSNI
TROTPG A[800D) | 6103/81/60 € SHNSAT 9C6 owoy Jrewrs 10§ [090301d NOHILSNI
Te[oypg 913005 | 610%/81/60 0 SHINsaI 0901 [020%01d woryesUNWOd NOHLSNI
TROTPG A[800D) | 6103/8T/60 4 SINSAT (CE'E prepue)s [000301d XN
Te[oypg 913005 | 610Z/81/60 1 SYMSAI 1S uorpedTuaINe 10y uostredurod [000301d YN
Iejoyog 913005y | 610%/81/60 0 SyINsaI 06T uostredwoo [000301d YN
TROYPG A500D) | 6105/81/60 I SHNSOI (L8°E [000301d X N3
TRIOTPG A[800D) | 6103/81/60 0 SHNSAT)0G'E ugtsop [000301d XN
Te[oypg 913005 | 610%/81/60 0 S)MSaI GOY S9O1ASD [,OT UM uoryeonrjuayine [000301d YN
Te[oTPg 913005 | GT0T/ST/60 0 SN EE) SYIOM)OU SWOY JIRWS Ul UOIYRdIjUaINe [000301d YN
TROYPG A[500D) | 6105/81/60 ¢ SYSOI 156 uoresyUILINE [000301d XN
TROYDS 9[300D) | 610¢/8T/60 € SHSOI 176 UoredIUdT YN 10§ $[000301d XN
TROTPG AF00D) | 6105/81/60 i S3NSAI 009G owoy jrews 10J [000301d XN
Te[otpg 913005 | GT0T/S1/60 ¥ syInsaI)g9‘e [090301d TOIRITUNUITIOD Y N3
TROTPG AF00D) | 6105/81/60 ¢ S)SAI OTC prepuess [ooojoxd gdn
Te[otpg 913005 | G10T/S1/60 0 XSNSII €C¢ uoryesrjuayIne 10y uostreduwos [ooojord gdn

92INn0g je(] | sYIOM pasn SHNSaI [RI0T, payoIeas WLIAT,

abod snowaad woif panuruo) — gl dqRl,

298

abod jrou uo panuUo))

Te[otpg 913005 | 610%,/33/60 0 symsa1 000‘0F S9OTADD T, UHM UOIpedIjuayIne [000301d Ienyen)
Te[oypg 913005y | 610¢/22/60 0 SMSaI 001 L6 SYIOM]OU SUWIOY JIBWIS Ul UOIJRdTIUDYINE [000301d IeIN[[)
TRIOYPG 98005 | 6105/85/60 T | SHOSAI(O00'6TE TOTyEDULINE [000301d TRTN[[A)
Te[oypg 913005y | 6102/22/60 0 s3IMsaI)00‘€0E uoIjedIULYINe I0J s[000301d Ie[ny[e))
Te[otpg 913005 | 610%/3g/60 G SUNSaI 000‘CLE owIoY JIews I0j [000301d Ie[N{[e)
Tefoyog 913005y | 6102/22/60 0 | s3MmsaI 000‘096°C [090301d UOTYROTUNUITOD IR[N[[S))
TR[OPS 9[300D) | 6108/32/60 T S¥MSoI 0066 prepue)s [o20301d y(Ig
Te[oyog 013005y | 6102/28/60 0 SIMSAI)L6°'6 uorjedTIURYNe I0] uosLreduwod [000301d (I
Te[otpg 913005 | 610%,/52/60 z SHNSaI)06 RT uostredurod [000301d y(II]
TR[OTPS 9[300D) | 6108/85/60 e SYMSOI 006°CE [oo0301d y(ag
TR[OYPS 9[300D) | 6108/32/60 1 SYMSAI 00T G ugtsop [020301d y (I
TR[OTPS 9[300D) | 6108/85/60 0 SYMSAT 000'ET S9OIASD L0 UM uorjeorpuayne 1000301d (g
Te[oypg 913005 | 610%,/8%/60 0 SYNSaI)OF'ET SYI0MJOU OWIOY RS UI UOIjedIjuayine [000301d (I
TR[OTPS 9[300D) | 6108/85/60 0 SYMSST OOT ‘ST uonyedruRINe [000301d VI
Te[oypg 913005 | 610%/3g/60 0 S3NSaI)09 LT UOI1edIULINe 10 s[000301d (1]
Iejoyog 913005y | 6102/88/60 1 SINSaI OOT LT auIo1] prews 10j [000301d (]
Te[oypg 913005 | 610%/3g/60 z S}MSAI ()0L‘9E [000301d TOTYEITUNWIWIOD Y (TI]
TROTPG A[800D) | 6103/25/60 0 SIMSAT 00T 9T prepue)s 000301d NVIMOTI
Te[otpg 913005 | 610%,/53/60 0 SYMSAI)66'F uoryednquayjne 10y uostreduwod [000301d NVJIMOT9
TR[OYS 9[300D) | 6108/5¢/60 0 SHMSAT 0L 0T uostredmoo 1000301d NYIMOTY
TROYPG AF00D) | 6105/86/60 1 SIMSAT 00R'6T [000301d NVIMOTI
TRIOYPG 98000 | 6105/85/60 0 SHMSAT O0G 9T ugtsop [000301d NYVIMOTI
TROTPG AF00D) | 6103/85/60 1 SYMSAT O9T'] $90149D T,0T Y woreonuaIne [000301d NVdMOTI
Te[otpg 913005 | 610%/53/60 m SYNSAI 06E‘9 SYI0MIOU SUIOY }IBWIS Ul UOIedTjuayjne 1000301d NVIMOT9
TROTPG AF00D) | 6103/85/60 0 SYMSAT)9¢'] uonyedruaYINe [000301d NYIMOTI
TRIOYPG 98005 | 6105/85/60 0 S)NSAI (0gE'8 uoryes1uaYINE 10§ 5[020301d NVdMOTI

92IN0G aye(| syIom pasn SH[NSaI T80T, [SELBREEERIIAEY §

abod snowaad woif panuruo) — gl dqRl,

299

abod jrou uo panuUo))

Te[otpg 913005 | 610%,/33/60 0 SINSOI 00665 uorjeoIjuayIne I10j uostredurod [000joid 5Hf
Te[oypg 913005y | 610¢/22/60 0 synsaI 000G 1 uostreduion joo0j01d Hj
TRIOYPG 98005 | 6105/85/60 T | SHOSST 000'9ET [oooj01d Hy
TROTPG A800D) | 6103/85/60 0| SHSAI 000 FET ugisap [000301d HY
TROYPG 98000 | 6105/85/60 ¢ SIS 007 LT $90149p T,0T UM uoTednuaIine [000301d Hy
Tefoyog 913005y | 6102/22/60 0 sy[nsaI 00862 SYIOMJOU SWOY JIRWS Ul UOIjedIjUayjne [000301d 0Hj
TR[OPS 9[300D) | 6108/32/60 T syMmso1 009 FS uoryestjusIINE [000301d Hf
Te[OTPS 9[300D) | 6108/83/60 0 SyMSoI 00T €S uoryedIuAYINE 10 s|020301d H
Te[otpg 913005 | 610%,/52/60 Z symsax 0018y QwIoY Iewis 10y [000301d Hf
TR[OTPS 9[300D) | 6108/85/60 0 | S¥MsdI 000TST [020301d UOTYLDTUNTIWOD)y
TR[OYPS 9[300D) | 6108/32/60 0 | S¥MsoI 000°€LT prepue)s 000301d HE
Tefoyog 913005y | 610¢/28/60 0 synsax)09 1§ uorjesrjueyIne 10j uostredurod [000301d g
Te[oypg 913005 | 610%,/8%/60 T SHMsaI 000‘C6T uostredwon jooojoxd He
TROTPG A800D) | 6103/85/60 T | SHOSAI O00'8TE [oo0j01d Hg
TR[O1PS 8[300D) | 6108/32/60 0 | SHNSSI 000°G0T ugisop [000301d HE
TROTPG A800D) | 6103/25/60 0 SYMSOI 00G LT $901A9D T,0T UM uorednuaine [000301d Heg
Te[oypg 913005 | 610%/3g/60 0 sHnsaI)0G 6E SYIOM)OU SWIOY JIRWS UL UOIRIIJUSINe [000%01d He
TROTPG A[800D) | 6103/25/60 I SYMSOI 00606 uoryedTuaY e [000301d HE
Te[otpg 913005 | 610%,/53/60 1 sHnsaI)0F‘RY uorpedTIuLINe 10j s[ooojord ¢
Te[oTog 913005 | 610%/5S/60 e sy[nsa1 00099 w0y jrewrs 10j [000j01d He
Te[oypg 918005y | 610¢/22/60 1 synsaI 000'C1E [090101d TOTJRITUNIUOD)¢
R[OS 9[300D) | 610¢/5¢/60 0 | S¥NSAT 000°069°C pIepue)s 000301d Ie[{PR)
Te[oypg 918005y | 6102/22/60 Z sMsaI 00T uorjpednIuLRINe 10§ uostredurod [000301d Ienye)
Te[otpg 913005 | 610%/53/60 < | symsa1 000‘00g‘e uostredwoo [000301d remypE)
TROTPG AF00D) | 6103/85/60 0 | S¥MSdI 000°09C '€ [000j01d remyPE)
TRIOYPG 98005 | 6105/85/60 g | SMNSAT 000°0V9°C ugisop [000301d IRy

92IN0Y 9)R(] | SYIOM pos(S1[NSaI [B107, poyoIeds WIT,

abod snowaad woif panuruo) — gl dqRl,

300

abod jrou uo panuUo))

TRIOYPG 98005 | 6105/85/60 G | SHMSAI 000'S6T UOTRIIIUAYINE 10 $[020301d U
Te[oypg 913005y | 610¢/22/60 ¢ S3MSaI 000 TTT QwIOY JIewWs I0J [000301d JOUIOY)H
Te[otpg 913005 | 610%/53/60 i% s1MSaI 000‘ZS9 [020301d TWOTYEITUNWIUIOD JOUISY I
Te[oypg 913005y | 6102/22/60 0 | sImse1 000‘0GR‘'T prepuess [000j01d Aouonboi orpey
Te[otpg 913005 | 610%/3g/60 0 symsa1 000‘68T uoryednjuaINe 10y uostreduod 0o0301d Lousnbaig orpey
Tefoyog 913005y | 6102/22/60 0 | s3mse1 000‘0Z9°T uostreduwoo [0ooj01d Aouonboig orpey
TR[OPS 9[300D) | 6108/32/60 0 | s¥MsoI 000'08L°C [000301d £ouenboig orpey
Te[oyog 013005y | 6102/28/60 T | s3mso1 000‘0%6°1 ugsop [000301d Aduenbaiq oipry
Te[otpg 913005 | 610%,/52/60 z SYNSAI)0L‘TT S901ASD T,0OT Ualm uoryedrjustine [000joxd Aouanbaiq orpey
Tefoyog 913005y | 6102/¢2/60 e S3INSaI)00 98T SYIOM)OU SWIOY JIeWS Ul UOTYRdIjUajNe [000j01d Aouenbaif opey
Te[otpg 913005 | 610%,/52/60 ¢ S3INSaI 000 0FF uoryedtjuayne [000301d Aousnbaig orpey
Tefoyog 913005y | 610¢/28/60 Z s3SI 000 TOF uorjpeduayne I0j s[ooojoid Aousnboaig orpey
Te[oypg 913005 | 610%,/8%/60 i% SHNSaI)00 TLE awoy jIrews 10j [000301d Aouanbaig opey
Tefoyog 913005y | 6102/88/60 G | symsaI 000‘0[T‘C [020%01d woTyROTUNWIIIOD Aouenbalf opey
TR[O1PS 8[300D) | 6108/32/60 0 | S¥MsoI 000 L9T prepue)s 000301d Hg
Iejoyog 913005y | 6102/88/60 0 SMSI 00T 61T uorjedrjuane 10j uosrredurod [000901d Hg
Te[oypg 913005 | 610%/3g/60 0 S3INSaI)00 LGT uostreduwod [000j01d 5,
TR[OTPS 913000 | 6108/83/60 T | SHOSOI 000'F1G [000j01d HF
TROYPG A800D) | 6105/85/60 0 | SHNSSI 000°CTT ugisop [000101d HF
TR[OYS 9[300D) | 6108/5¢/60 0 SYMSAT O0E 6T $90TASD O UMM Toreonuaine 1000301d Hg
Te[oypg 918005y | 610¢/22/60 0 SMSAI)0Z'CT SYI0M]OU SUWIOY JIBWIS UI UOIJRdTIUdINe [000301d)7
R[OS 9[300D) | 610¢/5¢/60 ! SYMSAT 000 FE uoryednyuIY e [000301d Hg
Te[oypg 918005y | 6102/22/60 1 SMSAI)09 TE UuoIYe2IULYINe I0] s[000301d N7
Te[otpg 913005 | 610%/53/60 1 syMsa1 0L LS owIOY 1Iews I0j 000301d ©7
Te[oypg 913005y | 610¢/22/60 e s3SI)00‘CTT [020301d TOTPEITUNWIWIOD N,
TRIOYPG 98005 | 6105/85/60 0 | S¥MSdT 000 FIT prepue)s [o00301d HY

92IN0G aye(| syIom pasn SH[NSaI T80T, [SELBREEERIIAEY §

abod snowaad woif panuruo) — gl dqRl,

301

abod jrou uo panuUo))

Te[OYPG 915000 | 6108/2¢/60 0 | S)Msa1 000 08T ugisop [000301d pueg OpIA\ BN
TROTPG AF00D) | 6103/85/60 0 S3SAI 000°CT $901A9D 0T YIM UoeonyuaIne [000301d puee 9pIA ®II[N)
Te[otpg 913005 | 610%/53/60 0 syInsa1)07 |T SYIOM)OU SWOY JIRWS Ul UOTYedIJUajne [000301d pueyg apIAA ©I)N
TROTPG A800D) | 6103/85/60 0 SYMSAT 0T Ve uoresUILINE [000301d PR SPIA B[N
TROYPG 98000 | 6105/85/60 0 S)MsaI 008 TE UOTYeDIJUSYINE 10f S[020301d pued opIA ®II[)
Tefoyog 913005y | 6102/22/60 1 sy[nsaI 000 6E owIoy JIRWS 10J [000301d pueg opIAA BRI
TR[OPS 9[300D) | 6108/32/60 0 | S¥msdI 000097 [020301d UOTYLITUNTIIOD PUeE dPIAN BII[[()
TROTPG A800D) | 6103/85/60 0 SHNSAT 0L 6 prepuess [000301d OTX
Te[otpg 913005 | 610%,/52/60 0 SYNsaI 0ROy uoryedrueyIne 10§ uostredurod [000901d OTY
Tefoyog 913005y | 6102/¢2/60 0 synsa1 00T1°0G uostredwoo [0o00301d O1YX
TR[OYPS 9[300D) | 6108/32/60 ¢ S3[MSOI)OGS [0o0301d 01X
TR[OTPS 9[300D) | 6108/85/60 0 symsor 00L°g ugtsop [000301d 01X
Te[oypg 913005 | 610%,/8%/60 0 symsax 00111 SOIAOD T,OT YHM uorjesnjusyine [0s0j01d 0¥
Tefoyog 913005y | 6102/88/60 1 s3InsaI)89°‘9 SYIOM)OU SWOY }IRWS Ul uorjedrjuayIne jodoyoxd oryx
Te[oypg 913005 | 610%/3g/60 1 s9InsaI 000‘9 uoryedrjueyne jod0301d 1Y
Iejoyog 913005y | 6102/88/60 1 synsaI 0109 uorjedIjuRyINe 10§ s[000301d OTY
Te[oypg 913005 | 610%/3g/60 ¥ SHNSeI 047 L awIoY] Jrews 10j [000301d OTY
Tejoyog 913005y | 610%/83/60 c synsa1)09°0¢ [000301d TOIjRITUNWITIOD ()TY
TROYPG A800D) | 6105/85/60 I | s¥mser 000°€0S prepue)s [000301d 19U
Te[oTog 913005 | 610%/5S/60 4 synsa1 00918 uoryesrjuayIne 10y uostreduwos [000901d WIS
Te[oypg 918005y | 610¢/22/60 9 SHMSaI)00 RET uostreduwoo [000301d jouIoyyH
TRIOYPG 98000 | 6105/85/60 ¢ | SMMSAT 000'G0L [000301d oW
TROTPG AF00D) | 6103/85/60 0 | SHMSI 000'6TF ugisop [000301d YUY
Te[otpg 913005 | 610%/53/60 0 synsa1 0% 0¢ S901ASD T,OT UM uorjesnjuayjne [000301d jourayiyq
Te[oypg 913005y | 610¢/22/60 1 synsaI)L C8 SYIOM)OU SUWIOY JIRWS Ul UOIJeINUdINE [000301d JOUIYIH
TRIOYPG 98005 | 6105/85/60 7| s¥mseI 000°90¢ TOTYEDUSIYNE [000301d JOUINY I

92INn0g je(] | sYIOM pasn SHNSaI [RI0T, payoIeas WLIAT,

abod snowaad woif panuruo) — gl dqRl,

302

abod jrou uo panuUo))

Te[otpg 913005 | 610T,/8%/60 ¥ synsox 0¥ ‘S TOTPROTIUSINR 9DTAOP OWIOY 1IRUIS
TROTPG AF00D) | 6103/8%/60 0 | s¥msa1 000'06L T UOTRDYIIUDPT SUIOY IRTUS
TROYPG 98005 | 6105/85/60 taxd symsar 00L 78 UOTYEOIUSYJTIE DUWIOY JIRS
Te[oypg 913005y | 610¢/82/60 1 sy[nsaI)09°9¢ OUWIOY 1IRWIS IO[[OJIUO)) UTRUWIO(] UOIIRINIUIYINE
TROYPG 98005 | 6105/85/60 9 S)MSaI 009 9E I9[[OIJUO)) UTRTIO(] UOTYEIUSTJIE
IR[OUDG 9[S00K) 6102/82/6 0 sy[nsax)09 0¥ OUWIOY 1IRWIS I0] 9INJIOIYIIR JIOMIDN IS[[OIJUO)) UTRWO(]
IRTOYDG 9[300K) 6102/82/6 0 SHMSaI 000 FLT 9IMN1099TYOIR JIOMION] JOJ[OIIU0)) UTRTIO(]
TR[OTPS 9[300D) | 6108/85/60 I | sHnsar 000995 JI0MPON] ID[[OIPU0)) UTRTIO(]
TROYPG A800D) | 6105/85/60 0 $HINSOI 0068 101 10 IS[[OIPU0D UTRWIO(]
IR[OYOG 9[300K) 6102/82/6 c synsar OIS UOT)ROTJUSINE JOT I0] IS[[OIJU0D UTRTO(]
IRTOYDG 9[300K) 6102/82/6 4 S)msax 000‘ST T QUWIO] JIRUIG IO0J JIS[[OIJUO)) UTRUIO(]
TR[OTPS 9[300D) | 6108/85/60 ¢ | symsar 000C8S paepuess [000301d THVH
Te[oypg 913005 | 610%,/8%/60 0 symsar 001 uorjyedruaIne 10§ uostredurod [000301d TMVH
TR[OTPS 9[300D) | 6108/85/60 [| sHnsax 000‘Le9 uostredwod [000301d THVH
TROYPG A[800D) | 6105/55/60 0 | S¥msa1 000'020‘T [0o0301d THVH
TROTPG A800D) | 6103/25/60 0 | s3mser 000 LLY ugtsop [000301d TVH
TROYPG A[800D) | 6105/85/60 I $HSOI 00T ET s901A0p [OT UM uoryestjustne [050301d TVH
Tejoyog 913005y | 610%/83/60 G synsaI)9y SYIOM)OU SWIOY JIRWS Ul UoIedIjuajne [000301d TMVH
TROYPG A800D) | 6105/85/60 0 $HSOL 00601 uoryeotjuaIne [000301d LVH
TR[OYS 9[300D) | 6108/5¢/60 0 SHSaL 009°9T uoreDTIULINE 10§ s[000301d THVH
TROYPG AF00D) | 6105/86/60 (4 SYMSOI 0L 65 ooy Jrewts 10§ [000301d TVH
Te[otpg 913005 | 610%/53/60 ¢ synsaI 000‘6LT [090301d woryRITUNWIIOD [TV H
TROTPG AF00D) | 6103/85/60 0 | sH0saI 000C0G prepue)s [000901d pueg OPIA\ RII[()
Te[otpg 913005 | 610%/53/60 0 synsa1 00z ¥g uorjedrjueyINe I10j uostredurod [000301d puryg 9pPIA\ BRI}
Te[oypg 913005y | 610¢/22/60 1 sMsaI 000‘CLI uostredwoo [000301d pueg OpIp\ BRI
TRIOYPG 98005 | 6105/85/60 g | SMSAT 000°0VC [000301d pureg 9PTA\ BII[()

92INn0g je(] | sYIOM pasn SHNSaI [RI0T, payoIeas WLIAT,

abod snowaad woif panuruo) — gl dqRl,

303

abod jrou uo panuUo))

Te[OYPG 913000 | 020T/¥0/€0 € 008‘TT STL dvd
TROTPG A800D) | 070T/70/€0 g 00972 uoneonuayImMy vy
Te[otpg 913005 | 0g0T,/¥0/€0 1 00°0LT potjewr uoryenyead 1000301d prid jrews
TROTPG A800D) | 070T/70/€0 e 000°€0¢ uoryenyeAd [000301d puid jrews
Te[otpg 913005 | 0g0Z,/¥0/€0 1 0002y potjeul UoIpen[esd [090301d aWOY 1IeUWS
Tefoypg 913005y | 0z0/70/€0 z 000'79S uoryen[eAs [000301d awoY }IeWs
TR[OPS 9[300D) | 0208/¥0/€0 I 00071 POT3oUL UOTYEN[RAD [090301d UOIFRIIJUD IR
Teoyog 913005y | 0z0/70/€0 Z 00°LLY uorjyen[eas [000301d UOI}RIIJUSYINE
TR[O1PS 9[300D) | 0208/¥0/€0 I 000°079°G potjowr uoryenyess [000301d
TR[OTPS 913000 | 0808/70/€0 I 000°0%LF uotyen[eas [020301d
Tejoypg 813005 | 0g0Z,/¥0/€0 1 001°6¢ | s[o0o0301d UOIYROIULYINE PLIS JIRWS PUR SWOY JIRWS I0] POYIDUW UOIJRT[eAH
Iefoyog 913005y | 0z0/70/€0 e 009‘9¢ [020301d TOTyEROTUNWITIOD dUT[IomOd
Te[oypg 813005 | 0g0Z,/¥0/€0 z 00°621 1090301d TOI}RITUNINIOD SULI)OUL JICTS
TR[OTPS 9[300D) | 0£08/70/€0 ¥ 000°0L9°C UoTyROYLIdA [000301d
TROYPG A800D) | 050G/0/€0 ¥ 000°0LL°C SPOT19W UOTRdYLIdA [000301d
Iejoyog 913005y | 0z0g/70/€0 G 00°20¢ uosITedwod SPOYJoU UOTFEIYLIDA [090301d UOTJBITJUIIIE
Te[oypg 913005 | 610%,/8%/60 0 SHMSAI ()LL°S UOIJROIJUSYJNE dWOY JIBWS 10] NJA
TROTPG A[800D) | 6103/8%/60 0 SYMSAT 009°GT Sowioy j.rews 10} NdA
Te[oypg 913005 | 610%/8%/60 0 synsaI)0L‘GT SowIOY JIews 10] ASo[ouyna) NJA
Te[oTpg 913005 | 6T0T/8%/60 0 S3MSOI)06°TE SOISO[OUTD9) UOTJRITIUSYINE SOUWOY }IRUS
Te[oypg 918005y | 610¢/82/60 0 symsar 000 IiE SOIZo[oUD9} AJLINIAS SOUWOY }IRS
Te[otpg 913005 | 6T0T/8%/60 0 syMsaI O0T‘GH POTJoUI UOTPEITJUSYINE IIIAIP PLIS }IBWS
Te[oypg 913005y | 610¢/82/60 1 SYMSaI 0T ‘TS UOT)edIJUS)Ne 9ITASD PLIS }IeWS
Te[otpg 913005 | 610T,/8%/60 0 S}MNSaI)0L ‘ST UOIYRIIIUS)TIE WLI0jye[d owoY] }Iews
TROTPG A[800D) | 6103/8%/60 0 SIMSAT 000'TLE SULIOJIR][{ OWIOH jIeulg
Te[otpg 913005 | 610%,/8%/60 0 9NsaI 00T SH POTIoUL UOTPEIIJUSYINE IIIAIP SUWOY LIRS

92IN0G aye(| syIom pasn SH[NSaI T80T, [SELBREEERIIAEY §

abod snowaad woif panuruo) — gl dqRl,

304

SULIOY, POTDIeag :ZT 9[qe],

Te[oYpg 213009 | 0802/70/€0 g 000°GL9 P80l NV
Te[oYpG 913000 | 020T/¥0/€0 (4 00T JURA0I]
TeoYPG 918000 | 070%/F0/€0 T 181 cAdVHOSIN-dVHd
Ie[OPG 98000 | 0Z0&/¥0/€0 T 06LC STLLAVH
Te[oypg 213009 | 0802/70/€0 4 0ST°9 STLAVH
TR0 9[3005) | 0Z08/70/€0 I pLE MSddvd
Te[OYPG 915000 | 020T/70/€0 i 00028 dvd
Te[OTYRgG (3005 | 0Z08/70/€0 9 01v'e STLL dvd
TR0 9[300D) | 070&/70/€0 (4 01€'T ZAdIVHOSIN

90In0g 91e(| SYIom pesn Spnsax (8107, paypIess WL,

abod snowaad woif panuruo) — gl dqRl,

305

References
[1] 3GPP, “Formal analysis of 3g authentication and key agreement protocol,” Tech.
Rep., 2001.
[2] M.-S. Kim and S. Valcourt, “Selecting a standard outer method for eap,” 01 2006.

3] K. M. J. Haataja, “Security in bluetooth, wlan and irda: a comparison,” Department

of Computer Science, Kuopio, Finland, Tech. Rep., 2006.
[4] E. A. Inc., “Security of enocean radio networks v2.3,” Tech. Rep., 2018.

[5] K. A. Alezabi, F. Hashim, S. J. Hashim, B. M. Ali, and A. Jamalipour, “Authenti-
cation process enhancements in wimax networks,” Sec. and Commun. Netw., vol. 9,
no. 17, p. 4703-4725, 2016.

(6] J. NOBRIOT and B. DEWASSIE, “Z-wave network-protocol command class speci-
fication,” Tech. Rep., 2020.

[7] T. Group, “Thread commissioning,” Tech. Rep., 2015.

8] IBM, “An overview of the ssl or tls handshake,” Available at https:
//www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/
sy10660_htm#sy10660___sy10660_2 Accessed : 2019/11/12.

9] Utsav, Chiraag, Samuel, and Anantha, “eedtls: Energy-efficient datagram transport
layer security for the internet of things,” 12 2017, pp. 1-6.

[10] R. Borgaonkar, “Authentication and related threats in 2g/3g/4g net-

works,” Available at https://coinsrs.no/wp-content /uploads/2016/08/
metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf ~ Accessed
2020/6/5.

[11] Wikipedia, “Cbc-mac,” Available at https://en.wikipedia.org/wiki/CBC-MAC
Accessed : 2020/11/12, 2019.

[12] Intel, “Intel,” 03 2019. [Online]. Available: https://www.intel.com/content/
www /us/en/support/articles /000005725 /network-and-i-o/wireless-networking.
htmAccessed2019/11/10

306

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://coinsrs.no/wp-content/uploads/2016/08/metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf
https://coinsrs.no/wp-content/uploads/2016/08/metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf
https://en.wikipedia.org/wiki/CBC-MAC
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10

[13] C. Rensing, M. Karsten, and B. Stiller, “A survey on aaa mechanisms, protocols,
and architectures and a policy-based approach beyond: Ax,” https://doi.org/10.
3929 /ethz-a-004283995, Department of Computer Science, Zurich, Switzerland,
Tech. Rep., 2001.

[14] B. Lloyd and W. Simpson, “Ppp authentication protocols,” https://tools.ietf.org/
html/rfc1334 Accessed : 2020/04/07, October 1992.

[15] L. Blunk and J. Vollbrecht, “Ppp extensible authentication protocol (eap),” https:
/ /tools.ietf.org/html/rfc1334 Accessed : 2020/04/07, March 1998.

[16] 1. Ali, S. Sabir, and Z. Ullah, “Internet of things security, device authentication
and access control: A review,” International Journal of Computer Science and
Information Security, vol. 14, no. 8, pp. 457466, 2016.

[17] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM
Transactions on Computer Systems, vol. 8 no. 1, pp. 18-36, 1990.

[18] Y. Ismail, “Internet of things (iot) for automated and smart applications,” Inte-
chOpen, 2019.

[19] J. R. Ltd, “Juniper research,” Available at https://www.juniperresearch.com/
resources/infographics/smart-home-statistics Accessed : 2019/11/12, November
2009.

[20] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “Smart grid technologies: Communication technologies and standards,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529-539, 2011.

[21] T. Wang, “Statista,” Available at https://www.juniperresearch.com/resources/
infographics/smart-home-statistics Accessed : 2019/11/12, June 2019.

[22] L. Jianchen, Z. Jianguang, F. Jingjing, and D. Juxing, “The security ecurity ecurity
ecurity research research research research of network network network network
access control control control control system,” First ACIS International Symposium
on Cryptography, and Network Security, Data Mining and Knowledge Discovery,
E-Commerce and Its Applications, and Embedded Systems, 2010.

[23] M. Ryan, M.Talabis, R. McPherson, I. Miyamoto, J. L. Martin, and D.Kaye, Access
Analytics, ser. Information Security Analytics. Syngress, 2015.

307

https://doi.org/10.3929/ethz-a-004283995
https://doi.org/10.3929/ethz-a-004283995
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://www.juniperresearch.com/resources/infographics/smart-home-statistics
https://www.juniperresearch.com/resources/infographics/smart-home-statistics
https://www.juniperresearch.com/resources/infographics/ smart-home-statistics
https://www.juniperresearch.com/resources/infographics/ smart-home-statistics

[24]

[25]

[26]

[30]

32]

A. Baviskar, J. Baviskar, A. M. S. Wagh, and P. Dave, “Comparative study of
communication technologies for power optimized automation systems: A review
and implementation,” Fifth International Conference on Communication Systems
and Network Technologies, 2015.

E. Ferro and F. Potorti, “Bluetooth and wi-fi wireless protocols: a survey and a

comparison,” IEEE Wireless Communications, vol. 12, no. 1, pp. 12-26, 2005.

T. Lennvall, S. Svensson, and F. Hekland, “A comparison of wirelesshart and zigbee
for industrial applications,” IEEE International Workshop on Factory Communica-
tion Systems, 2008.

A. J. D. Rathnayaka, V. M. Potdar, and S. J. Kuruppu, “Evaluation of wireless
home automation technologies,” 5th IEEE International Conference on Digital

Ecosystems and Technologies, 2011.

C. Withanage, R. Ashok, C. Yuen, and K. Otto, “A comparison of the popular

home automation technologies,” IEEE Innovative Smart Grid Technologies, 2014.

M. B. Tamboli and D. Dambawade, “Secure and efficient coap based authentication
and access control for internet of things (iot),” IEEE International Conference On

Recent Trends In Electronics Information Communication Technology, 2016.

M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, “A review of smart homes—past,
present, and future,” IEEFE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1190-1203, 2012.

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.
Hancke, “Smart grid technologies: Communication technologies and standards,”
IEEFE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529-539, November
2011.

L. Wenpeng, D. Sharp, and S. Lancashire, “Smart grid communication network
capacity planning for power utilities,” IEEE PES T&D 2010, Transmission Distrib.
Conf. Expo., New Orleans, April 2010.

V. C. Gungor, D. Sahin, T. Kocak, and S. Ergut, “Smart grid communications
and networking,” IFEE Transactions on Industrial Informatics, vol. 7, no. 4, pp.
529-539, 2011.

308

[34]

[35]

[36]

[38]

[39]

[40]

[41]

[42]

B. Sidhu, H. Singh, and A. Chhabra, “Emerging wireless standards: Wifi, zighee
and wimax,” International Journal of Electrical, Computer, Energetic, Electronic

and Communication Engineering, vol. 1, no. 1, pp. 43-48, 2007.

P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “3-level secure kerberos authenti-
cation for smart home systems using iot,” 1st International Conference on Next

Generation Computing Technologies, 2015.

R. Maheshwari, A. Gupta, and N. Chandra, “Secure authentication using biometric
templates in kerberos,” 2nd International Conference on Computing for Sustainable
Global Development, 2015.

P. Barker and A. Boucouvalas, “Performance modeling of the irda protocol for
infrared wireless communications,” IEEE Communications Magazine, vol. 36, no. 12,
pp- 113-117, 1998.

Samaras, O’Brian, and Edwards, “Indoor optical wireless systems - a review,” in
Optical and Quantum FElectronics, 1997.

A. T. Lodamo, “M2m protocols, solutions and platforms for smart home environ-
ments,” Master’s thesis, MID SWEDEN UNIVERSITY, Sundsvall, 2012.

A. 1. Gardezi, “Security in wireless cellular networks,” https://www.cse.wustl.
edu/~jain/cseb74-06/ftp/cellular_security /index.html Accessed : 2020/04/07, April
2006.

A. N. Nokia, J. Arkko, and V. Torvinen, “Hypertext transfer proto-
col (digest authentication using authentication and key agreement (aka),”
https://tools.ietf.org/html/rfc3310. Accessed 2019/10/11, September 2002.

H. Haverinen and J. Salowey, “Extensible authentication protocol method for global
system for mobile communications (gsm) subscriber identity modules (eap-sim),”
https://tools.ietf.org/html/rfc4186 Accessed : 2020/05/03, January 2006.

K. Prakasha, “Authentication and key agreement in 3gpp networks,” vol. 5, 07
2015, pp. 143-154.

F. S. Inc, “Long term evolution protocol overview,” Tech. Rep., 2008.

H.-J. Seo and H.-W. Kim, “Network and data link layer security for dash7,” Journal

of information and communication convergence engineering, vol. 10, 09 2012.

309

https://www.cse.wustl.edu/~jain/cse574-06/ftp/cellular_security/index.html
https://www.cse.wustl.edu/~jain/cse574-06/ftp/cellular_security/index.html
https://tools.ietf.org/html/rfc4186

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

M. Weyn, G. Ergeerts, L. Wante, C. Vercauteren, and P. Hellinckx, “Survey of the
dash7 alliance protocol for 433 mhz wireless sensor communication,” International
Journal of Distributed Sensor Networks, vol. 2013, p. 9, 10 2013.

U. Mehboob, Q. Zaib, and C. Usama, Survey of loT Communication Protocols

Techniques, Applications, and Issues. xFlow Research Inc, 2016.

A. Chirumamilla, H. Seo, D. Lee, and H. Kim, “Implementation of an rfid key man-
agement system for dash7.” Journal of information and communication convergence

engineering, vol. 12, 03 2014.

M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov, “Dash7
alliance protocol 1.0: Low-power, mid-range sensor and actuator communication,”

in IEE Conferenece on Standards for Communications and Networking, Tokyo,
2015.

J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols:
Bluetooth, uwb, zigbee, and wi-fi,” in The 33rd Annual Conference of the IEEE
Industrial Electronics Society, Taipei, 2007.

J. T. Vainio, “Bluetooth security,” http://www.yuuhaw.com/bluesec.pdf Accessed
: 2020/04/07, 2005.

EnOcean, “Enocean radio protocol 2,” Tech. Rep., 2017.

G. C. Inc, “Network keys and the ant+ managed net-
work,” https://www.thisisant.com/developer/resources/tech-bulletin/
network-keys-and-the-ant-managed-network Accessed : 2020/04/07, 2013.

L. Camelo, A. Greene, J. Loving, and U. Otgonbaatar, “The internet of insecure

things analyzing a low-energy protocol and cryptographic solutions,” Master’s
thesis, MIT, 2015.

Y. Peizhong, A. Iwayemi, and C. Zhou, “Developing zighee deployment guideline
under wifi interference for smart grid applications,” IEEFE Transactions on Smart
Grid, vol. 2, no. 1, pp. 110-120, March 2011.

H. P. A. ., “Smart energy profile 2 application protocol standard, zigbee alliance,”
ZigBee Alliance Inc, 2013.

310

http://www.yuuhaw.com/bluesec.pdf
https://www.thisisant.com/developer/resources/tech-bulletin/network-keys-and-the-ant-managed-network
https://www.thisisant.com/developer/resources/tech-bulletin/network-keys-and-the-ant-managed-network

[57] G. Thonet, P. Allard-Jacquin, and P. Colle, ZigBee — WiFi Coexistence. Grenoble:
Schneider Electric, 2008.

[58] H. R. Nielson, E. Yuksel, and F. Nielson, “Zigbee-2007 security essentials,” in
Proceedings of The 13. Nordic Workshop on Secure IT Systems, 2008.

[59] I. Unwala and J. Lu, “lot protocols : Z-wave and thread,” International Journal

on Future Revolution in Computer Science & Communication Engineering, vol. 3,
no. 11, pp. 355-359, 2017.

[60] W. Rzepecki, L. Iwanecki, and P. Ryba, “leee 802.15.4 thread mesh network — data
transmission in harsh environment,” in 6th International Conference on Future
Internet of Things and Cloud Workshops, 2018.

[61] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes automation using z-wave

protocol,” in International Conference on Engineering & MIS, 2016.

[62] 1. Unwala, Z. Taqvi, and J. Lu, “Iot security : Zwave and thread,” in IEEE Green
Technologies Conference, Austin, 2018.

63] JFR, NOBRIOT, BBR, and DEWASSIE, “Z-wave transport-encapsulation com-
mand class specification,” Tech. Rep., 2020.

[64] M. Caneill and J.-L. Gilis, “Attacks against the wifi protocols wep and wpa,”
https://matthieu.io/dl/papers/wifi-attacks-wep-wpa.pdf Accessed : 2020/04/07,
2010.

[65] PureVPN, “Wifi security protocols- difference between wep and wpa,” https:
//www.purevpn.com/wifi-vpn/security-protocols Accessed : 2020/04/07.

[66] Cyberpunk, “Wireless security protocols: Wep, wpa, wpa2 and wpa3,” https://
www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3 Accessed :
2020/04/07.

[67] SecureW2, “Simplifying wpa2-enterprise and 802.1x,” https://www.securew2.com/
solutions/wpa2-enterprise-and-802-1x-simplified/ Accessed : 2020/04/07.

[68] W.-F. Alliance, “Wpa3 specification version 2,” Tech. Rep., 2019.

[69] ——, “Wpa3 security considerations,” Tech. Rep., 2019.

311

https://matthieu.io/dl/papers/wifi-attacks-wep-wpa.pdf
https://www.purevpn.com/wifi-vpn/security-protocols
https://www.purevpn.com/wifi-vpn/security-protocols
https://www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3
https://www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3
https://www.securew2.com/solutions/wpa2-enterprise-and-802-1x-simplified/
https://www.securew2.com/solutions/wpa2-enterprise-and-802-1x-simplified/

[70] E. International, “High rate ultra wideband phy and mac standard,” Tech. Rep.,
2008.

[71] Q. Guan and Q. Guan, “Analysis of security mechanism in uwb standard of
ecmad68,” 01 2007.

[72] M. S. I. M. Zin and M. Hope, “A review of uwb mac protocols,” 06 2010, pp. 526 —
534.

[73] T. Haider, “Wireless communication using wimax technology,” vol. 14, pp. 142-161,
09 2010.

[74] U. Kucharzewski and Z. Kotulski, “Wimax networks-architecture and data security,”
Annales UMCS, Informatica, vol. 10, pp. 177-185, 01 2010.

[75] S. Xu and C.-T. Huang, “Attacks on pkm protocols of ieee 802.16 and its later
versions,” 10 2006, pp. 185 — 189.

[76] T. Gonnot and J. Saniie, “User defined interactions between devices on a 6lowpan
network for home automation,” in IFEE International Technology Management
Conference, Chicago, 2014.

[77] A. Badach, “Protocol structure of 6lowpan devices,” Tech. Rep., 09 2017.
[78] J. Olsson, “6lowpan demystified,” Tech. Rep., 2014.

[79] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, “Telecommunications
for smart grid: Backhaul solutions for the distribution network,” in IEEFE PES
General Meeting, Providence, 2010.

[80] V. Oksman and S. Galli, “G.hn: The new itu-t home networking standard,” IEEFE
Communications Magazine, vol. 47, no. 10, pp. 138-145, 2009.

[81] ITU-T, “Password-authenticated key exchange (pak) protocol,” Tech. Rep., 2007.
[82] F. Division, “G.hn - next generation home network technology,” Tech. Rep.
[83] E. Corporation, LonTalk Protocol Specification. Palo Alto: Echelon Corp, 1994.

[84] ——, “Introduction to the lonworks platform revision 2,” Tech. Rep., 2009.

312

[85]

[36]

[89]

[93]

R. P. Lewis, P. Igict, and Z. Zhou, “Assessment of communication methods for
smart electricity metering in the uw.k,” in Sustainable Alternative Energy (SAE),
IEEE PES/IAS, Valencia, 2009.

J. Luansheng, L. Chunxia, G. Xiumei, and M. Chongxiao, “The design of intelli-
gent lighting system in college classroom,” in International Conference on Future

Electrical Power and Energy Systems, Sanya, 2012.
T. H. C. Assistant, “Appendix 8 universal powerline bus (upb),” Tech. Rep.

B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and E. H. Levkowetz, “Extensible
authentication protocol (eap),” https://www.ietf.org/rfc/rfc3748.txt Accessed :
2020,/04/07.

J.-C. Chen and Y.-P. Wang, “Extensible authentication protocol (eap) and ieee
802.1x: tutorial and empirical experience,” IEEE Communications Magazine,
vol. 43, no. 12, 2005.

I. Simply Automated, “The upb system description,” April 2005.

K. Association, “Knx system arguments,” http://knx.com.ua/attachments/article/
132/KNX-basic_course_full.pdf Accessed : 2020/04/08, Tech. Rep.

S. Cavalieri and G. Cutuli, “Implementing encryption and authentication in knx
using diffie-hellman and aes algorithms,” in 35th Annual Conference of IEFEE
Industrial Electronics, Porto, 2009.

wanderingsamurai.net, “Interface communication protocol,” Available at https:

//wanderingsamurai.net/electronics/cmlla-x10-protocol-document Accessed
2019/11/12.

smartlabs, “Insteon developer’s guide,” Tech. Rep., 2007.

G. Odinak, “Automated home control using existing electrical lines as a communi-

cations medium,” U.S. Patent 5929 748A, 12 17, 1998.

G. Bakshi and A. Dearien, “Back to the basics: what is hart
protocol and how does it work?” Texas Instruments, 01 2018. [On-
line]. Available: https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/
back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed09/11/
2019

313

https://www.ietf.org/rfc/rfc3748.txt
http://knx.com.ua/attachments/article/132/KNX-basic_course_full.pdf
http://knx.com.ua/attachments/article/132/KNX-basic_course_full.pdf
https://wanderingsamurai.net/electronics/cm11a-x10-protocol-document
https://wanderingsamurai.net/electronics/cm11a-x10-protocol-document
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019

[97] S. Raza, A. Slabbert, T. Voigt, and K. Landernas, “Security considerations for the
wirelesshart protocol,” 10 2009, pp. 1 — 8.

[98] Emerson, “System engineering guidelines iec 62591 wirelesshart,” Tech. Rep., 2016.

[99] B. Blanchet, V. Cheval, X. Allamigeon, B. Smyth, and M. Sylvestre, “Proverif:
Cryptographic protocol verifier in the formal model,” Available at https://prosecco.
gforge.inria.fr/personal /bblanche/proverif/ Accessed : 2019/12/11.

[100] M. Beadles and D. Mitton, “Criteria for evaluating network access server protocols,”
RFC 3169 https://tools.ietf.org/html/rfc3169 Accessed : 2020/01/12, September
2001.

[101] E. G. Jones, “Operational security requirements for large internet service provider
(isp) ip network infrastructure,” Available at http://www.hjp.at/doc/rfc/rfc3871.
html Accessed : 2020/01/12, September 2004.

[102] E. J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building automation
routing requirements in low-power and lossy networks,” RFC 5867 http://www.
hjp.at/doc/rfc/rfc5867.html Accessed : 2020/01/12, June 2010.

[103] E. Stokes, D. Byrne, B. Blakley, and P. Behera, “hjp: doc: Rfc 2820: Access
control requirements for ldap,” RFC 2820 http://www.hjp.at/doc/rfc/rfc2820.html
Accessed : 2020/01/12, May 2000.

[104] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol
(coap),” RFC 7252 http://www.hjp.at/doc/rfc/rfc7252.html Accessed : 2020/01/12,
June 2014.

[105] E. Stokes, R. Weiser, R. Moats, and R. Huber, “Lightweight directory access
protocol (version 3) replication requirements,” RFC 3384 http://www.hjp.at/doc/
rfe/rfc3384.html Accessed : 2020/01/12, October 2002.

[106] E. Rescorla, “The transport layer security (tls) protocol version 1.3,” RFC 8446
https://tools.ietf.org/html/rfc8446 Accessed : 2020/01/12, August 2018.

[107] N. Brownlee, “Accounting requirements for ipng,” RFC 1672 http://www.hjp.at/
doc/rfc/rfc1672.html Accessed : 2020/01/12, August 1994.

314

 https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
 https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://tools.ietf.org/html/rfc3169
http://www.hjp.at/doc/rfc/rfc3871.html
http://www.hjp.at/doc/rfc/rfc3871.html
http://www.hjp.at/doc/rfc/rfc5867.html
http://www.hjp.at/doc/rfc/rfc5867.html
http://www.hjp.at/doc/rfc/rfc2820.html
http://www.hjp.at/doc/rfc/rfc7252.html
http://www.hjp.at/doc/rfc/rfc3384.html
http://www.hjp.at/doc/rfc/rfc3384.html
https://tools.ietf.org/html/rfc8446
http://www.hjp.at/doc/rfc/rfc1672.html
http://www.hjp.at/doc/rfc/rfc1672.html

[108] M. Parthasarathy, “Protocol for carrying authentication and network access (pana)
threat analysis and security requirements,” RFC 4016 http://www.hjp.at/doc/rfc/
rfc4016.html Accessed : 2020/01/12, March 2005.

[109] F. O. for Information Security, “Cryptographic mechanisms: Recommendations
and key lengths,” Tech. Rep., 2020.

[110] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00: Automatic

cryptographic protocol verifier, user manual and tutorial,” Tech. Rep., 2018.

[111] J. Hernandez-Castro, A. Alcaide, and J. Torres, “Validating the use of ban logic,”
in Computational Science and Its Applications - ICCSA, Assisi, Italy, 2004.

[112] A. Saabas and T. Uustalu, “A compositional natural semantics and hoare logic
for low-level languagesn,” FElectron. Notes Theor. Comput. Sci, vol. 156, no. 1, p.
151-168, 2006.

[113] TutorialsPoint, “Gsm - specification,” https://www.tutorialspoint.com/gsm/gsm_
specification.htm Accessed : 2020/04/08.

[114] E. Jorg, H.-J. V. C. Bettstetter, and C. Hartmann, GSM - Architecture, Protocols
and Services (3. ed.)., 01 2009.

[115] ETSI, “Universal mobile telecommunications system (umts), medium access control
(mac) protocol specification (3gpp ts 25.321 version 8.16.0 release 8),” Tech. Rep.,
2012.

[116] H. Kaaranen., A. Ahtiainen, L. Laitinen, S.Naghian, and V. Niemi, UM TS Networks:
Architecture, Mobility and Services: Second Fdition, 11 2005.

[117] ETSI, “Etsi ts 128 302 v14.0.0,” Tech. Rep., 2017.

[118] ——, “Digital cellular telecommunications system (phase 2), mobile application
part (map) specification (gsm 09.02),” Tech. Rep., 1996.

[119] ——, “Etsi ts 132 773 v9.0.0,” Tech. Rep., 2010.

[120] M. Abdeljebbar and R. Kouch, “Security improvements of eps-aka protocol,” In-
ternational Journal of Network Security, vol. 20, p. 636, 09 2017.

315

http://www.hjp.at/doc/rfc/rfc4016.html
http://www.hjp.at/doc/rfc/rfc4016.html
https://www.tutorialspoint.com/gsm/gsm_specification.htm
https://www.tutorialspoint.com/gsm/gsm_specification.htm

[121] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J. Prevotet, “Internet of
mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and

supported mobility,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp.
15611581, 2019.

[122] T. A. Yahiya, Understanding LTE and its Performance, 05 2011, pp. 55-73.

[123] TutorialsPoint, “Gsm - security and encryption,” https://www.tutorialspoint.com/
gsm/gsm _security.htm Accessed : 2020/04/08.

[124] irelandscape, “Introduction to mobile networks - 3g (umts) au-
thentication,” https: / /steemit.com/mobilenetworks/@irelandscape/
introduction-to-mobile-networks-3g-umts-authentication Accessed : 2020/04/07,
2018.

[125] S. Alt, P.-A. Fouque, G. Macario-Rat, C. Onete, and B. Richard, “A cryptographic
analysis of umts/lte aka,” 06 2016, pp. 18-35.

[126] ETSI, “Using cellular algorithms,” https://www.etsi.org/
security-algorithms-and-codes/cellular-algorithm-licences Accessed : 2020/04/08.

[127] K. Kumar, G. Shailaja, K. Ammayappan, and A. Saxena, “Mutual authentication
and key agreement for gsm,” 07 2006, pp. 25 — 25.

[128] ETSI, “Digital cellular telecommunications system (phase 2), universal mobile
telecommunications system (umts), direct tunnel deployment guideline (3gpp tr
23.919 version 7.0.0 release 7),” Tech. Rep., 2007.

[129] A. Technology, “Gprs tunneling protocol (gtp) processing,” Tech. Rep.

[130] I. Unwala, Z. Taqvi, and J. Lu, “Thread: An iot protocol,” in 2018 IEEE Green
Technologies Conference (GreenTech), 2018, pp. 161-167.

[131] E. Corporation, LonTalk Protocol Specification, LonWorks Engineering Bulltein.
Palo Alto: Echelon Corp, 1993.

[132] L. M. L. Oliveira, J. J. P. C. Rodrigues, A. F. de Sousa, and J. Lloret, “A network

access control framework for 6lowpan networks,” Tech. Rep., 2013.

[133] KNX, “Knx basics,” Available at http://knx.fi/doc/esitteet / KNX-Basics_en.pdf
Accessed : 2019/11/12, Tech. Rep.

316

https://www.tutorialspoint.com/gsm/gsm_security.htm
https://www.tutorialspoint.com/gsm/gsm_security.htm
https://steemit.com/mobilenetworks/@irelandscape/introduction-to-mobile-networks-3g-umts-authentication
https://steemit.com/mobilenetworks/@irelandscape/introduction-to-mobile-networks-3g-umts-authentication
https://www.etsi.org/security-algorithms-and-codes/cellular-algorithm-licences
https://www.etsi.org/security-algorithms-and-codes/cellular-algorithm-licences
http://knx.fi/doc/esitteet/KNX-Basics_en.pdf

[134]

[135]

[136]
[137]

138

[139)]

[140]

[141]

142]

[143]

[144]

[145]

[146]

V. Lourdas, “Knx ip secure,” Available at https://support.knx.org/hc/en-us/
articles/360012666599- KNX-IP-Secure Accessed : 2019/11/12.

KNX, “Knx security position paper,” http://knx.fi/doc/esitteet /
KNX-Security-Position-Paper_en.pdf Accessed : 2020/04/07, Tech. Rep.

ABR, “Introduction to the z-wave security ecosystem,” Tech. Rep., 2016.

ThisIsAnt, “Ant message protocol and usage,” Tech. Rep., 2014.

C. Badenhop, S. Graham, B. Ramsey, B. Mullins, and L. Mailloux, “The z-wave
routing protocol and its security implications,” Computers € Security, vol. 68, 04
2017.

C. Hager and S. Midkiff, “An analysis of bluetooth security vulnerabilities,” vol. 3,
04 2003, pp. 1825 — 1831 vol.3.

M. Conti and D. Moretti, “System level analysis of the bluetooth standard,” 03
2005, pp. 118-123.

J. Sanchez-Gomez, D. Garcia-Carrillo, R. Marin-Perez, and A. F. Skarmeta, “Secure
authentication and credential establishment in narrowband iot and 5g,” Tech. Rep.,
2020.

ITU-T, “Series y: Global information infrastructure, internet protocol aspects and

next-generation networks, internet of things and smart cities,” Tech. Rep., 2016.

M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov, “Dash7
alliance protocol 1.0 low-power, mid-range sensor and actuator communication,”

10 2015.

A. Judmayer, L. Krammer, and W. Kastner, “On the security of security ex-
tensions for ip-based knx networks,” in 2014 10th IEEE Workshop on Factory
Communication Systems (WEFCS 2014), 2014, pp. 1-10.

E. F. Hao, “J-pake: Password authenticated key exchange by juggling draft-hao-
jpake-01,” https://tools.ietf.org/html/draft-hao-jpake-01 Accessed : 2020/04/07,
December 2015.

——, “Schnorr nizk proof: Non-interactive zero knowledge proof for discrete
logarithm draft-hao-schnorr-01,” https://tools.ietf.org/html/rfc5021 Accessed :
2020/01/12, December 2015.

317

https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure
https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure
http://knx.fi/doc/esitteet/KNX-Security-Position-Paper_en.pdf
http://knx.fi/doc/esitteet/KNX-Security-Position-Paper_en.pdf
https://tools.ietf.org/html/draft-hao-jpake-01
https://tools.ietf.org/html/rfc5021

[147)

148]

[149]

[150]

151]

[152]

[153]

[154]

[155]

[156]

Microsoft, “Ms-chap: Extensible authentication protocol method
for ~ microsoft challenge handshake authentication protocol (chap),”
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/
4740bf05-db7e-4542-998f-5a4478768438 Accessed : 2020/04/07.

F. Bersani, “The eap-psk protocol: A pre-shared key extensible authen-
tication protocol (eap) method,” Available at https://tools.ietf.org/html/
draft-bersani-eap-psk-00 Accessed : 2019/11/12, 2004.

J.-K. Tsay and S. Mjolsnes, “A vulnerability in the umts and Ite authentication

and key agreement protocols,” 10 2012, pp. 65-76.

C. . H. C. for Information Security, “Cispa - helmholtz center for information
security,” Available at https://people.cispa.io/cas.cremers/scyther/ Accessed :
2019/12/11, April 2014.

C. C. J. D.S. M. R. S. B. S. D. Basin, “Tamarin prover,” Available at https:
//tamarin-prover.github.io/ Accessed : 2019/11/12.

P. W. Security, “Portswigger 1td,” Available at https://portswigger.net/burp
Accessed : 2019/12/11.

T. Lennvall, S. Svensson, and F. Hekland, “A comparison of wirelesshart and zigbee
for industrial applications,” in Factory Communication Systems, 2008. WFCS 2008.
IEEFE International Workshop, Dresden, 2008.

S. E. International, “Smart energy international,” Smart Energy International,
09 2003. [Online]. Available: https://www.smart-energy.com/regional-news/
europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/
Accessed10/11/2019

A. Fox and S. D. Gribble, “Security on the move: Indirect authentication using
kerberos,” in Proceedings of the 2nd annual international conference on Mobile

computing and networking, 1996.

E. El-Emam, M. Koutb, H. Kelash, and O. S. Faragallah, “An authentication
protocol based on kerberos 5,” International Journal of Network Security, vol. 12,
no. 2, pp. 147-158, 2011.

318

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://tools.ietf.org/html/draft-bersani-eap-psk-00
https://tools.ietf.org/html/draft-bersani-eap-psk-00
 https://people.cispa.io/cas.cremers/scyther/
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://portswigger.net/burp
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019

Y

[157] G. Bella and E. Riccobene, “Formal analysis of the kerberos authentication system,’
Journal of Universal Computer Science, vol. 3, no. 12, pp. 1337-1381, 1997.

[158] G. Bella and L. Paulson, “Kerberos version iv: Inductive analysis of the secrecy
goals,” in Computer Security - ESORICS 98. Springer, 1998, pp. 361-375.

Y

[159] S. Bellovin and M. Merrit, “Limitations of the kerberos authentication system,’
SIGCOMM Computer Communication Review, vol. 20, no. 5, pp. 119-132, 1990.

[160] W. Stallings, “Cryptography and network security principles and practices,” Upper
Saddle River: Pearson Prentice Hall, 2006.

[161] S. Cavalieri, G. Cutuli, and M. Malgeri, “A study on security mechanisms in
knx-based home/building automation,” in IEEE 15th Conference on Emerging
Technologies € Factory Automation, Bilbao, 2010.

[162] G. Bovet and J. Hennebert, “Web-of-things gateway for knx networks,” Erlan-
gen/Nuremberg, 2013.

[163] H.-J. Langels, “Knx ip — using ip networks as knx medium,” in KNX Scientific
Conference, Porto, 2008.

[164] J. A. Nazabal, F. Falcone, C. Fernandez-Valdivielso, and I. R. Matias, “Proposal
for improving connectivity and adding authentication and security to knxnet/ip

protocol,” International Journal of Smart Home, vol. 8, no. 2, pp. 77-90, 2014.

[165] J. A. Nazabal, F. Falcone, S. C. Mukhopadhyay, and I. R. Matias, “Accessing knx

devices using usb/knx interfaces for remote monitoring and storing sensor data,’
International Journal of Smart Home, vol. 7, no. 2, pp. 105-110, 2013.

[166] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: an authentication service
for open network systems,” in USENIX Winter Conference, Dallas, 1988.

[167) M. Bungart, C. Fohry, and J. Posner, “Fault-tolerant global load balancing in
x10,” in 16th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, Timisoara, 2014.

[168] D. Whiting, R. Housley, V. Security, and N. Ferguson, “Counter with cbc-
mac (ccm),” RFC 3610 https://tools.ietf.org/html/rfc3610 Accessed 11/11/2019,
September 2003.

319

https://tools.ietf.org/html/rfc3610

[169] M. Shabanzadeh and M. P. Moghaddam, “What is the smart grid? definitions,

[170]

[171]

[172]

173

[174]

[175]

[176]

[177]

[178]

[179]

perspectives, and ultimate goals,” in International Power System Conference (PSC),

Tehran, 2013.

S. Josefsson, “Using kerberos version 5 over the transport layer security (tls)
protocol,” RFC 6251 https://tools.ietf.org/html/rfc6251 Accessed : 2020/01/12,
May 2011.

T. Dierks and E. Rescorla, “The transport layer security (tls) protocol version 1.1,”
RFC 4346 https://tools.ietf.org/html/rfc4346 Accessed : 2020/01/12, April 2006.

——, “The transport layer security (tls) protocol version 1.2,” RFC 5246 https:
//tools.ietf.org/html/rfc5246 Accessed : 2020/01/12, August 2008.

D. Mitton, “Network access servers requirements: Extended radius practices,” RFC
2882 http://www.hjp.at/doc/rfc/rfc2882.html Accessed : 2020/01/12, July 2000.

J. Galvin and K. McCloghrie, “Security protocols for version 2 of the simple network
management protocol (snmpv2),” RFC 1446 http://www.hjp.at/doc/rfc/rfc1446.
html Accessed : 2020/01/12, April 1993.

S. Farrell, J. Vollbrecht, P. Calhoun, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence, “Aaa authorization requirements,” RFC
2906 http://www.hjp.at/doc/rfc/rfc2906.html Accessed : 2020/01/12, August 2000.

J. Loughney and G. Camarillo, “Authentication, authorization, and accounting
requirements for the session initiation protocol (sip),” RFC 3702 http://www.hjp.
at/doc/rfc/rfc3702.html Accessed : 2020/01/12, February 2004.

E. M. Brunner, “Requirements for signaling protocols,” RFC 3726 http://www.
hjp.at/doc/rfc/rfc3726.html Accessed : 2020/01/12, April 2004.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler, “Sip: Session initiation protocol,” RFC 3261 http:
//www.hjp.at/doc/rfc/rfc3261.html Accessed : 2020/01/12, June 2002.

S. Kelly and S. Ramamoorthi, “Requirements for ipsec remote access scenar-
ios,” RFC 3457 http://www.hjp.at/doc/rfc/rfc3457. html Accessed : 2020/01/12,
January 2003.

320

https://tools.ietf.org/html/rfc6251
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://www.hjp.at/doc/rfc/rfc2882.html
http://www.hjp.at/doc/rfc/rfc1446.html
http://www.hjp.at/doc/rfc/rfc1446.html
http://www.hjp.at/doc/rfc/rfc2906.html
http://www.hjp.at/doc/rfc/rfc3702.html
http://www.hjp.at/doc/rfc/rfc3702.html
http://www.hjp.at/doc/rfc/rfc3726.html
http://www.hjp.at/doc/rfc/rfc3726.html
http://www.hjp.at/doc/rfc/rfc3261.html
http://www.hjp.at/doc/rfc/rfc3261.html
http://www.hjp.at/doc/rfc/rfc3457.html

[180]

[181]

182]

[183]

[184]

[185]

[186]

187]

[188]

[189)]

[190]

J. Schiller, “Strong security requirements for internet engineering task force stan-
dard protocols,” RFC 3365 http://www.hjp.at/doc/rfc/rfc3365.html Accessed :
2020/01/12, August 2002.

K. Raeburn, “Encryption and checksum specifications for kerberos 5,” RFC 3961
https://tools.ietf.org/html/rfc3961 Accessed : 2020/01/12, February 2005.

C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberos network authen-
tication service (v5),” RFC 4120 https://tools.ietf.org/html/rfc4120 Accessed :
2020/01/12, July 2005.

S. Hartman and L. Zhu, “A generalized framework for kerberos pre-authentication,”
RFC 6113 https://tools.ietf.org/html/rfc6113 Accessed : 2020/01/12, April 2011.

L. H. Astrand and T. Yu, “Deprecate des, rc4-hmac-exp, and other weak cryp-
tographic algorithms in kerberos,” RFC 6649 https://tools.ietf.org/html/rfc6649
Accessed : 2020/01/12, July 2012.

E. S. Hartman, K. Raeburn, and L. Zhu, “Kerberos principal name canonicalization
and cross-realm referrals,” RFC 6806 https://tools.ietf.org/html/rfc6806 Accessed
: 2020/01/12, November 2012.

S. Sorce and T. Yu, “Kerberos authorization data container authenticated by
multiple message authentication codes (macs),” RFC 7751 https://tools.ietf.org/
html/rfc7751 Accessed : 2020/01/12, March 2016.

L. Zhu, P. Leach, S. Hartman, and E. S. Emery, “Anonymity support for kerberos,”
RFC 8062 https://tools.ietf.org/html/rfc8062 Accessed : 2020/01/12, February
2017.

A. Jainand, N. Kinder, and N. McCallum, “Authentication indicator in kerberos
tickets,” RFC 8129 https://tools.ietf.org/html/rfc8129 Accessed : 2020/01/12,
March 2017.

B. Kaduk and M. Short, “Deprecate triple-des (3des) and rc4 in kerberos,” RFC
8429 https://tools.ietf.org/html/rfc8429 Accessed : 2020/01/12, October 2018.

L. Zhu, P. Leach, and K. Jaganathan, “Kerberos cryptosystem negotiation exten-
sion,” RFC 4537 https://tools.ietf.org/html/rfc4537 Accessed : 2020/01/12, June
2006.

321

http://www.hjp.at/doc/rfc/rfc3365.html
https://tools.ietf.org/html/rfc3961
https://tools.ietf.org/html/rfc4120
https://tools.ietf.org/html/rfc6113
https://tools.ietf.org/html/rfc6649
https://tools.ietf.org/html/rfc6806
https://tools.ietf.org/html/rfc7751
https://tools.ietf.org/html/rfc7751
https://tools.ietf.org/html/rfc8062
https://tools.ietf.org/html/rfc8129
https://tools.ietf.org/html/rfc8429
https://tools.ietf.org/html/rfc4537

[191] L. Hornquist and S. Hartman, “Generic security service application program
interface (gss-api): Delegate if approved by policy,” RFC 5896 https://tools.ietf.
org/html/rfc5896 Accessed : 2020/01/12, June 2010.

[192] S. Josefsson, “Extended kerberos version 5 key distribution center (kdc) exchanges
over tcp,” RFC 5021 https://tools.ietf.org/html/rfc5021 Accessed : 2020/01/12,
August 2007.

(193] Q. Li, F. Yang, H. Zhu, and L. Zhu, “Formal modeling and analyzing kerberos
protocol,” in World Congress on Computer Science and Information Engineering,
Bilbao, 2009.

[194] I. U. the Artificial Intelligence Laboratory (Al-Lab) at DIST, Universita di Genova,
F. I. the CASSIS group at INRIA, Nancy, S. E. the Information Security Group at
ETHZ, Zurich, and G. S. Siemens AG, Munich, “Automated validation of internet

security protocols and applications,” Available at http://www.avispa-project.org/
Accessed : 2020/04/01, June 2006.

[195] M. M. andBorka Jerman Blazi¢ and S. Josimovski, “Quantifying usability and secu-
rity in authentication,” in 35th IEEE Annual Computer Software and Applications
Conference, 2011.

[196] H. Glanzer, L. Krammer, and W. Kastner, “Increasing security and availability in
knx networks,” in Sicherheit, 2016.

[197] smarthome.com, “What is x10?” https://www.smarthome.com/
sc-what-is-x10-home-automation Accessed : 2020/04/07.

[198] D. Lechner, W. Granzer, and W. Kastner, “Security for knxnet/ip,” Tech. Rep.,
2008.

[199] TutorialsPoint, “Gsm - protocol stack,” https://www.tutorialspoint.com/gsm/
gsm_protocol_stack.htm Accessed : 2020/04/08.

[200] R. Pinheiro, A. Aguiar, P. Pinheiro, A. Neto, R. Cunha, and D. Neto, “Scalability
analysis of a model for gsm mobile network design,” 01 2008, pp. 465-469.

[201] Y. Beyene, R. Jantti, K. Ruttik, and S. Iraji, “On the performance of narrow-band
internet of things (nb-iot),” 03 2017, pp. 1-6.

322

https://tools.ietf.org/html/rfc5896
https://tools.ietf.org/html/rfc5896
https://tools.ietf.org/html/rfc5021
 http://www.avispa-project.org/
https://www.smarthome.com/sc-what-is-x10-home-automation
https://www.smarthome.com/sc-what-is-x10-home-automation
https://www.tutorialspoint.com/gsm/gsm_protocol_stack.htm
https://www.tutorialspoint.com/gsm/gsm_protocol_stack.htm

[202] V. Lourdas, “Knx security overview,” Available at KNXSecurityoverview Accessed
£ 2019/11/12.

[203] ——, “Knx data secure,” Available at https://support.knx.org/hc/en-us/articles/
360012689639- KNX-Data-Secure Accessed : 2019/11/12.

323

KNX Security overview
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of Abbreviations and Terms
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background
	Smart Home
	Smart Grid

	Literature Review
	Literature Review Method
	Wireless
	Infrared
	IrDA protocol

	Cellular
	GSM
	UMTS
	LTE

	Radio Frequency
	Dash7
	Bluetooth
	EnOcean Serial Protocol 3
	ANT+
	ZigBee SEP Protocol
	Thread
	Z-Wave
	Wi-Fi
	Ultra-Wide Band
	WiMAX
	6LOWPAN

	Wired
	Ethernet
	G.hn
	LonTalk Protocol

	Powerline Communication
	Universal Powerline Bus

	Hybrid
	Extensible Authentication Protocol
	KNX Protocol
	X10
	Insteon
	Wireless HART Protocol

	Methodology
	Requirements
	ProVerif
	BAN logic
	Evaluation

	Protocol Evaluation
	Authentication Protocol Evaluation 1
	Authentication Protocol Evaluation 2
	Authentication Protocol Evaluation 3
	Authentication Protocol Evaluation 4
	Authentication Protocol Evaluation 5
	Authentication Protocol Evaluation 6
	Authentication Protocol Evaluation 7
	Authentication Protocol Evaluation 8
	Authentication Protocol Evaluation 9
	Scoring Result

	Conclusion
	Future Uses
	Appendices
	Appendix 1 - Bluetooth Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 2 - EnOcean Authentication
	Mutual Authentication ProVerif Verification
	Mutual Authentication ProVerif Result
	Unilateral Authentication ProVerif Verification
	Unilateral Authentication ProVerif Result

	Appendix 3 - G.hn Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 4 - KNX Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 5 - WiMAX Authentication
	PKMv1
	PKMv2
	WiMAX PKMv1 ProVerif Verification
	WiMAX PKMv1 ProVerif Result
	WiMAX PKMv2 ProVerif Verification
	WiMAX PKMv2 ProVerif Result

	Appendix 6 - Z-Wave Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 7 - Thread Authentication
	Thread Joiner-Commissioner ProVerif Verification
	Thread Joiner-Commissioner ProVerif Result

	Appendix 8 - TLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 9 - PEAP-MSCHAPv2 Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 10 - DTLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 11 - PSK and EAP-PSK Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 12 - EAP-TLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 13 - EAP-TTLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 14 - GSM Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 15 - UMTS and LTE Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 16 - LonTalk Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 17 - UWB Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 18 - CMAC Authentication
	Appendix 19 - CCM Authentication
	Appendix 20 – BAN logic Verification forDiffie-Hellman Key Exchange
	Appendix 21 – BAN logic Verification WiMAX PKMv1 Key Exchange
	Appendix 22 – BAN logic Verification WiMAX PKMv2 Key Exchange
	Appendix 23 – BAN logic Verification for GSM Key Exchange
	Appendix 24 – BAN logic Verification for EAP-AKA Key Exchange umtslteakaban
	Appendix 25 – BAN logic Verification for ZigBee Key Exchange
	Appendix 26 – BAN logic Verification for PSK Key Exchange
	Appendix 27 – BAN logic Verification for CCM and CMAC Key Exchange
	Appendix 28 – Used Terms for Literature Review

	References

