
Evaluation Method for Smart Home and
Smart Grid Authentication Protocols

Master’s thesis

Student: Marvin Uku
182509IVCM

Supervisor: Olaf Manuel Maennel, Ph.D
E-mail: marvin.uku@ttu.ee

Study programme: Cyber Security

Tallinn 2020

Table of Contents

Author’s declaration of originality 7

Abstract 8

Annotatsioon 9

List of Abbreviations and Terms 10

List of Figures 14

List of Tables 15

1 Introduction 16

2 Problem Statement 18

3 Background 20

3.1 Smart Home . 20

3.2 Smart Grid . 20

4 Literature Review 22

4.1 Literature Review Method . 22

4.2 Wireless . 23

4.2.1 Infrared . 24

4.2.1.1 IrDA protocol . 24

4.2.2 Cellular . 25

4.2.2.1 GSM . 25

4.2.2.2 UMTS . 26

4.2.2.3 LTE . 27

4.2.3 Radio Frequency . 28

4.2.3.1 Dash7 . 28

4.2.3.2 Bluetooth . 29

4.2.3.3 EnOcean Serial Protocol 3 29

4.2.3.4 ANT+ . 30

4.2.3.5 ZigBee SEP Protocol . 31

2

4.2.3.6 Thread . 32

4.2.3.7 Z-Wave . 33

4.2.3.8 Wi-Fi . 33

4.2.3.9 Ultra-Wide Band . 38

4.2.3.10 WiMAX . 39

4.2.3.11 6LOWPAN . 41

4.3 Wired . 41

4.3.1 Ethernet . 41

4.3.1.1 G.hn . 42

4.3.1.2 LonTalk Protocol . 43

4.3.2 Powerline Communication . 43

4.3.2.1 Universal Powerline Bus 44

4.4 Hybrid . 45

4.4.1 Extensible Authentication Protocol 45

4.4.2 KNX Protocol . 47

4.4.3 X10 . 48

4.4.4 Insteon . 48

4.4.5 Wireless HART Protocol . 49

5 Methodology 51

5.1 Requirements . 51

5.2 ProVerif . 53

5.3 BAN logic . 55

5.4 Evaluation . 59

6 Protocol Evaluation 61

6.1 Authentication Protocol Evaluation 1 . 62

6.2 Authentication Protocol Evaluation 2 . 64

6.3 Authentication Protocol Evaluation 3 . 66

6.4 Authentication Protocol Evaluation 4 . 68

6.5 Authentication Protocol Evaluation 5 . 70

6.6 Authentication Protocol Evaluation 6 . 72

6.7 Authentication Protocol Evaluation 7 . 74

6.8 Authentication Protocol Evaluation 8 . 76

6.9 Authentication Protocol Evaluation 9 . 78

6.10 Scoring Result . 80

3

7 Conclusion 81

8 Future Uses 82

Appendices 83

Appendix 1 - Bluetooth Authentication . 83

ProVerif Verification . 85

ProVerif Result . 89

Appendix 2 - EnOcean Authentication . 92

Mutual Authentication ProVerif Verification 98

Mutual Authentication ProVerif Result 104

Unilateral Authentication ProVerif Verification 108

Unilateral Authentication ProVerif Result 112

Appendix 3 - G.hn Authentication . 114

ProVerif Verification . 115

ProVerif Result . 118

Appendix 4 - KNX Authentication . 120

ProVerif Verification . 121

ProVerif Result . 124

Appendix 5 - WiMAX Authentication . 127

PKMv1 . 127

PKMv2 . 127

WiMAX PKMv1 ProVerif Verification 130

WiMAX PKMv1 ProVerif Result 133

WiMAX PKMv2 ProVerif Verification 138

WiMAX PKMv2 ProVerif Result 141

Appendix 6 - Z-Wave Authentication . 143

ProVerif Verification . 147

ProVerif Result . 154

Appendix 7 - Thread Authentication . 159

Thread Joiner-Commissioner ProVerif Verification 162

Thread Joiner-Commissioner ProVerif Result 165

Appendix 8 - TLS Authentication . 168

ProVerif Verification . 171

ProVerif Result . 175

Appendix 9 - PEAP-MSCHAPv2 Authentication 178

4

ProVerif Verification . 179

ProVerif Result . 186

Appendix 10 - DTLS Authentication . 192

ProVerif Verification . 193

ProVerif Result . 197

Appendix 11 - PSK and EAP-PSK Authentication 200

ProVerif Verification . 201

ProVerif Result . 204

Appendix 12 - EAP-TLS Authentication . 207

ProVerif Verification . 208

ProVerif Result . 213

Appendix 13 - EAP-TTLS Authentication . 218

ProVerif Verification . 219

ProVerif Result . 224

Appendix 14 - GSM Authentication . 228

ProVerif Verification . 230

ProVerif Result . 233

Appendix 15 - UMTS and LTE Authentication 240

ProVerif Verification . 243

ProVerif Result . 246

Appendix 16 - LonTalk Authentication . 248

ProVerif Verification . 249

ProVerif Result . 251

Appendix 17 - UWB Authentication . 262

ProVerif Verification . 263

ProVerif Result . 267

Appendix 18 - CMAC Authentication . 274

Appendix 19 - CCM Authentication . 275

Appendix 20 – BAN logic Verification forDiffie-Hellman Key Exchange 276

Appendix 21 – BAN logic Verification WiMAX PKMv1 Key Exchange 279

Appendix 22 – BAN logic Verification WiMAX PKMv2 Key Exchange 281

Appendix 23 – BAN logic Verification for GSM Key Exchange 283

Appendix 24 – BAN logic Verification for EAP-AKA Key Exchange [1] 285

Appendix 25 – BAN logic Verification for ZigBee Key Exchange 288

Appendix 26 – BAN logic Verification for PSK Key Exchange 290

5

Appendix 27 – BAN logic Verification for CCM and CMAC Key Exchange . . 291

Appendix 28 – Used Terms for Literature Review 294

References 306

6

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and this thesis has not been

presented for examination or submitted for defence anywhere else. All used materials,

references to the literature and work of others have been cited.

Author: Marvin Uku

05.11.2020

7

Abstract

Authentication is an essential part of accessing network resources and therefore necessary

in every network. It is the verification of identity which is attached to some kind of an

identifier, which is presented to an authority or other participant in the communication to

access needed service or resource. In this work smart grid and smart home authentication

protocols evaluation method is proposed. Evaluation is done according to 5 categories

- security, efficiency, audit, administration and transport. These categories contain 27

criterion in total, three of them contain formal verification of a security protocol using

BAN logic and ProVerif cryptographic protocol verifier. All of the mentioned categories

have different weights in the evaluation method, each of the criterion results and boolean

result, TRUE or FALSE. Final score is calculated according to these criterion total sum

divided with the total sum of the weights, giving the result from 0 to 1, one being the

best and zero worst choice for smart home and smart grid network.

6LOWPAN is found to be most secure according to this method, following WPA3. In

this work depreciation of X10 and IrDA is proposed according to the results gained from

this method.

The thesis is in English and contains 323 pages of text, 8 chapters, 17 figures, 12 tables.

8

Annotatsioon

Autentimine on üks põhilistest osadest võrguressursi ligipääsu protsessi juures ja seega

oluline osa igas võrgus. See on identiteedi verifitseermine mingi kindla tunnuse abil, mille

ettenäitamist on vaja, et pääseda ligi mingile teenusele või ressursile võrgus. Selles töös

pakutakse välja hindamismeetod nutivõrgu ja targakodu autentimisprotokollidele. Selle

meetodi abil hinnatakse protokolli viie kategooria abil - turvalisus, tõhusus, auditeermine,

administreerimine ja transport. Need kategooriad jagunevad omakorda 27-ks erinevaks

kriteeriumiks, millest kolm on turvaprotokolli ametlik verifitseerimine kasutades BAN

loogikat ja ProVerifi krüptograafilist protokolli kinnitajat. Kõik eelnevalt nimetatud

kategooriad omavad erinevaid kaalusid. Iga kriteerium on hinnatud tõeväärtusega, kas

õige või vale. Lõpptulemus saadakse, kui nende kriteeriumite summa jagada kaalude

kogu summaga, mis annab väärtuseks hinde nullist üheni, milles üks on parim ja null

kõige halvem valik nutivõrgu ja targakodu võrgus autentimiseks.

Selle meetodi tulemusena on kõige turvalisem 6LOWPAN protokoll, sellele järgneb

WPA3-l baseeruvad ühendused. Selles töös soovitatakse samuti kaaluda X10 kui ka IrDA

protokollide kasutamist. Kui nende kasutamist jätkata, siis need protokollid vajavad

suurt arendamist. Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 323 leheküljel,

8 peatükki, 17 Figuret, 12 tabelit.

9

List of Abbreviations and Terms

BAN logic - Burrows–Abadi–Needham logic

MAC - Medium Access Control

IP - Internet Protocol Address

IMSI - International Mobile Subscriber Identity

SIM - Subscriber Identification Module

PIN - Personal Identification Number

NAS - Network Access Server

PAP - Password Authentication Protocol

CHAP - Challenge Handshake Authentication Protocol

EAP - Extensible Authentication Protocol

IoT - Internet of Things

ISP - Internet Service Provider

Kerberos - Network authentication protocol

IR - Infrared

IrDA - Infrared Data Association

IrDA SIR - IrDA Serial Infrared

IrPHY - IR Physical Layer

IrLAP - IrDA Link Access Protocol

IrLMP - IrDA Link Management Protocol

LM-MUX - Link Management Multiplexer

LSAP - Link Service Access Point

RF - Radio Frequency

TDMA - Time-Division Multiple Access

FDMA - Frequency-Division Multiple Access

CDMA - Code-Division Multiple Access

OFDMA - Orthogonal Frequency-Division Multiple Access

AKA - Authentication and Key Agreement

ETSI - European Telecommunications Standards Institute

GSM - Global System for Mobile Communication

SMS - Short Messaging Service

HSCSD - High-Speed Circuit-Switched Data

GPRS - General Packet Radio Service

SGSN - Service GPRS support node

10

GGSN - Gateway GPRS support node

EDGE - Enhanced Data Rates for GSM Evolution

CDPD - Cellular Digital Packet Data

UMTS - Universal Mobile Telecommunications System

3GPP - 3rd Generation Partnership Project

FDD - Frequency Division Duplex

TDD - Time Division Duplex

UTRA - UMTS Terrestrial Radio Access

W-CDMA - Wideband-Code Division Multiple Access

EPS-APA - Evolved Packet System Authentication and Key Agreement

ISIM - IP Multimedia Services Identity Module

LTE - Long Term Eveolution

RFID - Radio-Frequency Identification

CCM - Cipher Block Chaining

AES - Advanced Encryption Standard

CBC-MAC - Cipher Block Chaining Message Authentication Code

CTR - Counter

WPAN - Wireless Personal Area Network

AD hoc network - A network that is composed of individual devices communicating with

each other directly

Piconet - An ad hoc network that links a wireless user group of devices using Bluetooth

technology protocols

Scatternet - A type of ad hoc computer network consisting of two or more piconets

FSK - Frequency-shift keying

EHW - Energy Harvested Wireless protocol

OSI - Open Systems Interconnection model

RLC - Rolling Code

SLF - Security Level Format

CMAC - Cipher-based Message Authentication Code

AMI - Advanced Metering Infrastructure

NIST - National Institute for Standards and Technology

SEP - Smart Energy Profile

PHY - Physical Layer

CSMA-CA - Carrier-Sense Multiple Access with Collision Avoidance

ACK - Acknowledgement

11

ECDH - Elliptic Curve Diffie-Hellman

CRC - Cyclic Redundancy Check

PSK - Pre-Shared Key

MIMO - Multiple Input, Multiple Output

WEP - Wired Equivalent Privacy

WPA - WiFi Protected Access

TKIP - Temporal Key Integrity Protocol

CCMP - Counter Cipher Mode with Block Chaining Message Authentication Code

Protocol

TLS - Transport Layer Security

TTLS - Tunneled Transport Layer Security

PAP - Password Authentication Protocol

PEAP - Protected Extensible Authentication Protocol

AP - Access Point

STA - Station

AKM - Authentication and Key Management

FQDN - Fully Qualified Domain Name

UWB - Ultra-Wide Band

BSK - Binary Shift Keying

WiMAX - Worldwide Interoperability for Microwave Access

ISO - International Organization for Standardization

SS - Subscriber Station

BS - Base Station

SA - Security Association

TEK - Temporary/Transmission Encryption Key

HMAC - Hash function-based Message Authentication Code

DES - Data Encryption Standard

RSA - Rivest, Shamir, Adleman algorithm

PKM - Privacy Key Management

SDSL - Symmetric Digital Subscriber Lines

ADSL - Aymmetric Digital Subscriber Lines

LLC - Logical Link Control

PLC - Powerline Communication

UPB - Universal Powerline Bus

PPP - Point-to-Point Protocol

12

CENELEC - European Committee of Electrotechnical Standardisation

FHSS - Frequency Hopping Spread Spectrum

CCA - Clear Channel Assessment

MAU - Multiattribute Utility

VAES - Variable AES

KEK - Key Encryption Key

PAK - Primary Authorization Key

DTLS - Datagram Transport Layer Security

LAN - Local Area Network

WLAN - Wireless Local Area Network

DSK - Device-Specific Key

J-PAKE - Password Authenticated Key Exchange by Juggling

CoAP - Constrained Application Protocol

SSL - Secure Socket Layer

CA - Certificate Authority

MS - Microsoft

PPTP - Point-to-Point Tunneling Protocol

TCP - Transmission Control Protocol

UDP - User Datagram Protocol

UEA - UMTS Encryption Algorithm

UIA - UMTS Integrity Algorithm

EIA - EPS Integrity Algorithms

EEA - EPS Encryption Algorithms

PTK - Pair-wise Temporal Key

GTK - Group Temporal Key

MKID - Master Key Identifier

MIC - Message Integrity Code

13

List of Figures

1 EAP message flow for authentication [2] 46

2 Bluetooth authentication dialogue [3] . 84

3 EnOcean Teach-In Process [4] . 93

4 EnOcean mutual authentication [4] . 95

5 EnOcean Unilateral authentication [4] . 96

6 WiMax PKMv1 message flow for authentication [5] 128

7 WiMax PKMv2 message flow for authentication [5] 129

8 Z-Wave Authentication Sequence [6] . 145

9 Z-Wave S2 Bootstrapping [6] . 146

10 Thread Joiner–Joiner Router/Commissioner Sequence [7] 161

11 TLS Key Exchange Sequence [8] . 170

12 DTLS Key Exchange Sequence [9] . 192

13 GSM message flow for authentication [10] 229

14 UMTS and LTE Authentication [10] . 242

15 LonTalk Authentication [10] . 249

16 CMAC message calculation [4] . 274

17 CBC-MAC message calculation [11] . 275

14

List of Tables

1 IEEE 802.11 Wi-Fi protocol summary [12] 34

2 Authentication Protocol Evaluation 1 . 63

3 Authentication Protocol Evaluation 2 . 65

4 Authentication Protocol Evaluation 3 . 67

5 Authentication Protocol Evaluation 4 . 69

6 Authentication Protocol Evaluation 5 . 71

7 Authentication Protocol Evaluation 6 . 73

8 Authentication Protocol Evaluation 7 . 75

9 Authentication Protocol Evaluation 8 . 77

10 Authentication Protocol Evaluation 9 . 79

11 Authentication Protocol Scoring Results 80

12 Searched Terms . 305

15

1 Introduction

Authentication is the verification of the identity or a subject performing an action. The

identity can be personal, logical, like a user ID and password, bound to an infrastructure

like an IP-Address, or bound to a device, like a Medium Access Control (MAC) address

or the International Mobile Subscriber Identity stored in the SIM (Subscriber Identifi-

cation Module) Card. The subject of authentication can be a service user or a service

provider. [13]

Authentication mechanisms can be classified as follows: [13]

1. Knowledge-based authentication founds on the knowledge of shared secrets, such

as PINs (Personal Identification Number) and passwords.

2. Cryptography-based authentication includes digital signatures, challenge-response

mechanisms, and message authentication codes. The user owns a private key as a

characteristics.

3. Authentication based on biometrics uses inherent informations on subjects like

fingerprint, voice, and eye characteristic.

4. Authentication based on secure tokens binds the subject to some kind of ownership,

e.g. the ownership of a smart card. It is combined mostly with cryptographic

mechanisms to transfer the information on the token to the authenticator.

5. Digitized signatures, including digital images of handwritten signatures and sig-

nature dynamics (i.e., measurements of the direction, pressure, speed, and other

attributes of a handwritten signature) are not widely used so far.

Authentication protocols are used in establishing a data-link layer connection, mostly a

dial-up connection between an end-user’s host and the Network Access Server (NAS),

but also for switched lines. In general, they allow a peer to transmit authentication

information to the authenticator until the authenticator acknowledges the peer. In PAP

(Password Authentication Protocol) the authentication is based on a pair of user name

and password. CHAP (Challenge Handshake Authentication Protocol) [14] supports a

challenge response mechanism, which is controlled by the authenticator. In a challenge

response mechanism the password does not have to be transmitted over the link. EAP

(Extensible Authentication Protocol) [15] supports authentication based on different

16

mechanisms, identity and challenge-based, but also using One Time Passwords or Generic

Token Cards. These protocols are often integrated in the protocols at the transport level,

which implement authentication-based authorization. [13]

The goal of this study is to develop a method to evaluate authentication protocols for

smart home and smart grid networks, with the scope of all prominent protocols. The

outcome should be applicable method to evaluate authentication methods for existing

and in-development smart home and smart grid protocols. As mentioned earlier this

method could lead the developers to the path of unified protocol, which would assist in

communicating with different service providers and facilities nearby, when needed in the

future.

This work will show different shortcomings and advantages of these protocols and meth-

ods of authentication, as well as help smart home and smart grid developers to choose

which protocol to implement for authentication and communication for smart home

and smart grid networks. This research will also point out some main threat vectors

for authentication in these networks from the security specialist’s point of view. It

might point out some key aspects in this field for developers, which needs to be taken

into consideration. Main contribution of this research is working applicable evaluation

method for protocol authentication methods. Another contribution is the evaluation of

the protocols used in this work.

17

2 Problem Statement

Internet of Things devices are being developed so fast, that for example smartphones

are more powerful than computers first used to authenticate themselves in network for

resource access. IoT device authentication is still relevant security topic. The growth of

using IoT devices is expected to reach 100 billion in 2020. [16] With the rapid increase

of devices and users, authentication becomes more relevant than ever before. Each

device and user need unique identity which can be verified, for devices IP or MAC

address, for users username and password, token or something that would verify their

identity. With these in place, administrators and service provides, can ensure secure

communication as well as prevent devices from harmful actions. Authentication protocols

are the foundation of security in distributed systems, and therefore it is essential that

these protocols function correctly [17].

Node authentication is necessary to prevent illegal access to system. Authentication

mechanisms provide integrity and confidentiality as well, there for authentication is

necessary and must-have in used system. It is as essential as having a key to open a door

to one’s home. Without authentication, door is without a key and anyone could access it.

Smart home is a building automation, which involves the control and automation of all

its embedded technology. Smart home has appliances, lighting, heating, air conditioning,

TVs, computers, entertainment systems, big home appliances such as washers/dryers and

refrigerators/freezers, security and camera systems capable of communicating with each

other and being controlled remotely by smartphone, computer or really any Internet of

Things device. [18] According to the research [19] done by Juniper Research, there will

be 1.3 billion automation and/or monitoring smart homes by 2024.

Smart grid is an electrical grid whose operation has been transformed from a twentieth

century analog technology base to the pervasive use of Digital Technology for commu-

nications, monitoring (e.g., sensing), computation, and control. [20] Smart grid can be

also controlled remotely. With the development of smart grid networks, there are more

industrial uses for these connections and even for smart cities soon. It is expected to have

90 million units of smart grid meter installations only in the Unites States of America by

the end of this year [21].

Regarding to the use of these devices and networks, the need for security grows as well.

In the field of smart home and grid, network devices accessing network resources [22]

are not authenticated for each access of needed network resource at all or it is done in

the way, which is not considered secure nowadays [23]. For example not using relevant

18

cryptographical standards or protocols which are being used, do not support these

standards. In the past when smart homes were first developed, IoT devices were not

powerful enough to implement relevant cryptography. Now this should be in the past

and now IoT device’s processors have enough computing power to encrypt and decrypt

fast enough to hold encrypted communication and key exchanges during communication.

If there is no method to evaluate smart home and smart grid protocols, there cannot

be unified smart home or smart grid protocol for different Internet Service Providers

and electricity companies to use for interoperable communication. To evaluate protocols

and deciding the best and secure protocol to use in the network, there has to be deep

and detailed analysis of existing protocols or standard, according to which protocol will

be developed. There are comparisons between different smart home and smart grid

protocols, but not detailed enough. These comparisons have not been fully analysed.

For example [24], [25], [20], [26], [27], [28], [29] which have compared different protocols’

metrics, but not full examination.

Deeper analysis and comparison of smart home and smart grid protocols is needed. Every

category which is compared, comes with pros and cons, not just in plain text. There are

reasons for these implementations and these reasons should be analysed. Some tradeoffs

can be eliminated with other comparison and evaluation categories. For example from

which network layer protocol uses to send data or access resource or even according to

which standard cryptography is implemented and how it is done.

From comparison evaluation method should be developed to understand which protocols

to prefer in smart home and smart grid environments. This method considers all needed

features and characteristics of applied protocols. It should be applicable to any smart

home and smart grid network protocol. This evaluation method could point developers

in the way of unified protocol. This protocol could be used by Internet Service Provider

and electricity company in the region, so that nearby facilities and establishments could

function with same manufacturer’s devices and service provider.

19

3 Background

3.1 Smart Home

A smart home is a convenient home setup where appliances and devices can be automati-

cally controlled remotely from any internet-connected IoT device. Smart homes offer a

more convenient and better quality of life by introducing automated appliance control

and helpful services. Smart homes optimize user comfort by using context awareness and

predefined constraints based on the conditions of the home environment. A user can

control home appliances and devices remotely, which enables him or her to execute tasks

before arriving home.For example, most common appliances in smart home are Smart TV,

wireless speakers, lighting devices, doors, cameras, thermostats and even refrigerators.

Earliest smart home devices date back as far as 1998. Ambient intelligence systems,

which monitor smart homes, sometimes optimize the household’s electricity usage. Smart

homes enhance traditional security and safety mechanisms by using intelligent monitoring

and access control. [30] From smart home technology, the possibility of smart cities

can grow, which means that the network will grow exponentially, where the devices

are connected. When all this might be more convenient, but this means that security

problems is much bigger problem in this field than ever before.

3.2 Smart Grid

To tackle the challenges of the existing power grid, the new concept of smart grid has

risen. The smart grid can be considered as a modern electric power grid infrastructure

for enhanced efficiency and reliability through automated control, high-power converters,

modern communications infrastructure, sensing and metering technologies, and mod-

ern energy management techniques based on the optimization of demand, energy and

network availability. [31] The new smart grid needs much more complex and different

infrastructure than current one. A communications system is the key component of the

smart grid infrastructure. It is critical for electric utilities to define the communications

requirements and find the best infrastructure to handle the output data and deliver a

reliable, secure and cost-effective service throughout the total system. Different com-

munications technologies, wired, wireless and both, can be used for data transmission

20

between smart meters and electric utilities. In some instances, wireless communications

have some advantages over wired technologies, such as low-cost infrastructure and ease

of connection to difficult or unreachable areas. On the other hand, wired connections

have no interference problems. [32]

The challenge is that the smart grid systems are lacking globally accepted standards and

this situation prevents the integration of advanced applications, smart meters, smart

devices, and renewable energy sources and limits the interoperability between them [33].

Both smart home and smart grid networks are are connected to internet and allow remote

control of the connected devices, with the difference that a smart grid sends electricity

as well with the same connection.

21

4 Literature Review

There are a lot of metrics comparisons between different protocols used by smart home

and smart grid, for example [28], [26], [25], [24], [34], [27], [20], but there are no com-

parisons between all the authentication protocols used for smart grid and smart homes.

Also, no unified authentication method in this field. Authentication is mostly done once,

when connected to the network, and never again. At least most of the protocols which

are widely used, support encryption, but some are lacking in this field and should not

even be used for sensitive data in open networks.

For example Kerberos can be used for authentication in smart home and smart grid

networks. [35]. This raised questions for the author, that why has not been used Kerberos

or any other more mature authentication method for smart homes or smart grid networks

before. Now when Kerberos authentication is feasible for IoT devices to use, author will

take this as a threshold to evaluate authentication. It is even more relevant for smart grid

networks, because Kerberos is used widely in organizations’ and companies’ networks

and smart grid networks are to manage by end users, so the difficulty of Kerberos

configuration should not be an issue. Kerberos has been suggested for authentication

with biometric templates [36]. This approach provides another aspect to authentication

for network security, because biological attributes are difficult to reproduce [36]. In

resource constrained networks, for example smart grid network, constrained application

protocol has been proposed using Kerberos [29]. This proposed authentication protocol

adds less bits to original message than other used encryption schemes [29]. Due this, it

reduces packet size decreases the communication overhead, also these parameters show

that security performance is improved as well [29].

More popular and used smart home and smart grid technologies’ authentication protocols

have been selected for this work. Proposed method is applicable to any smart home and

smart grid network authentication protocol and the result will be equal to these, which

were evaluated in this work.

4.1 Literature Review Method

First goal was to find out which smart home solutions are there. For this following

search terms were used: “smart home solutions”, “smart home platforms”. Second

goal was to find out which protocols were used for these smart home solutions. The

22

search term used for this was “smart home protocols”. Next search terms were “wireless

smart home protocols” and “wired smart home protocols”. After receiving results for

these questions search for these protocols began. Key terms for these searches were

“name communication protocol”, “name protocol”, “name protocol for smart home”,

“name protocol in smart home networks”, “name protocol IOT”, “name protocol design”,

“name protocol standard”, “name protocol comparison”. Third goal was to find out

authentication methods of these smart home solutions. Following search terms were

used “name protocol authentication”, “name system authentication”, “name solution

authentication”, “name device authentication”, “name protocol authentication in smart

home network”, “name protocol authentication with IoT devices”.

More searched terms are available in Appendix 28.

Main research gap while conducting the review was identified, which is that there is

no unified authentication method or protocol standard for smart homes or smart grid

networks. Nowadays IoT devices are being developed so fast, that these devices are

catching up with computer computing power. In the past when smart homes were first

developed, IoT devices were not powerful enough to implement relevant cryptography.

Now this should be in the past and phone processors have enough computing power to

encrypt and decrypt data fast enough to have encrypted communication.

4.2 Wireless

Wireless connection is used by a computer network which uses radio frequencies for

communication. There are different area networks, for example personal, local, wide,

metropolitan. There is also mesh, cellular, global area and space. Personal area net-

work connects devices in a personal workspace, local area network interconnects devices

in a limited area, for example inside a school, wide area network is primally used by

businesses, education and government entities, metropolitan area network is a network,

which connects users and devices in a geographic region, mesh network is a local network

that connects network nodes directly, dynamically and not hierarchically to each other.

Cellular network connects voice and data devices with capable connectivity to public

telephone network and Internet. Most of the inhabited area of Earth has been covered

with needed radio towers by service providers, global area network is composed of different

networks. There are different technologies for each of these networks, these connections

are introduced in next sections.

23

4.2.1 Infrared

The infrared (IR) is a fast wireless information transfer. IR optical medium has been

restricted to the room of operation, of being spectrally unregulated and of providing

potentially very high data rates, but optical power output is limited by eye-safety regula-

tions and a desire to limit power consumption [37]. Wireless IR is particularly suited for

short-range indoor applications [38]. The Infrared Data Association was created in 1993

to establish an open standard for short-range IR data communication, IrDA SIR (serial

infrared) protocol standard was developed. It provided a simple, low cost and reliable

means of data communication between IrDA compliant devices using point-to-point

half-duplex IR links. [37].

4.2.1.1 IrDA protocol

IrDA protocol stack consists of three mandatory layers: the physical (IrPHY) layer, the

IrLAP layer, and the IrDA Link Management Protocol (IrLMP) layer. [37]

The IrPHY layer specifies the physical hardware for the IR link including IR transmitter

and receiver, filters, and modulation and encoding hardware. [37]

The IrLAP layer is an HDLC-based data link layer providing device discovery, link

establishment and shutdown, and reliable data exchange. [37]

The IrLMP layer consists of two distinct elements. The link management multiplexer

(LM-MUX) provides a means for multiple entities on a device to independently and

simultaneously a single established IrLAP link. The layer interacts with higher levels of

the protocol using link service access points (LSAPs). [37]

IrDA functions in the range of 1-3 meters and operates over 850nm – 900 nm frequency.

Its maximum data rate is 100 MB/s and it needs a line of sight to function. [39] IrDA

does not provide any link-level security, so there is no authentication or authorization

and all information is sent unencrypted. If authentication/authorization/encryption is

needed, it has to be implemented at software level. IrDA supports only Point-to-Point

connections and requires direct line-of-sight between two IrDA devices. [3] IrDA does

not provide any link-level security, so there is no authentication or authorization, and all

information is sent unencrypted. If authentication/authorization/encryption is needed, it

has to be implemented at software level. IrDA supports only Point-to-Point connections,

24

and requires direct line-of-sight between two IrDA devices. So, in spite of lacking support

for explicit security measures, IrDA can be considered as a relatively secure technology.

On the other hand, IrDA lacks the convenience of wireless RF technologies such as

Bluetooth and WLAN.

4.2.2 Cellular

Cellular or mobile network is wireless communications network distributed over a lim-

ited land area that includes at least one fixed position transceiver. Cellular network

uses time-division multiple access (TDMA), frequency-division multiple access (FDMA),

code-division multiple access (CDMA), and orthogonal frequency-division multiple access

(OFDMA) medium access controls for communication. Cellular Networks have been

around since the 1980s. First generation (1G) networks were the first cellular networks

introduced in the 1980s. They were only capable of transmitting voice at speeds of about

9.6 kbps max, because of that limitation, 1G networks are not reviewed in this work. [40]

Cellular connections use AKA (Authentication and Key Agreement) for authentica-

tion [41]:

4.2.2.1 GSM

GSM stands for Global System for Mobile Communication. It is a digital cellular

technology used for transmitting mobile voice and data services. GSM is a standard,

which is developed for second generation mobile networks (2G). It was developed by

European Telecommunications Standards Institute (ETSI). 2G uses different data rates

in all countries, depending of the service provider. It can achieve data rate of 270

kbps. [40] EAP-SIM is an authentication protocol, which has been developed for GSM

for authenticated key access. [42]

GSM involves services :

1. Short Messaging Service (SMS): Transfer of messages between cell phones. Large

messages are truncated and sent as multiple messages.

2. High-Speed Circuit-Switched Data (HSCSD): This was the first attempt at providing

data at high speeds data over GSM, with speeds of up to 115 kbps. This technique

cannot support large bursts of data. GPRS was adopted instead of HSCSD.

25

3. General Packet Radio Service (GPRS): This technique can support large bursty

data transfers. In order to support this two new elements have to be added to

existing networks. Service GPRS support node (SGSN) for security mobility and

access control and Gateway GPRS support node (GGSN) in order to connect to

external packet switched networks.

4. Enhanced Data Rates for GSM Evolution (EDGE): The standard GSM uses GMSK

modulation. Edge uses 8-PSK modulation. GPRS and EDGE combined provide

data rates of up to 384 kbps.

5. Cellular Digital Packet Data (CDPD): CDPD is a packet based data service. CDPD

is able to detect idle voice channels and uses them to transfer data traffic without

affecting voice communications.

GSM authentication is described in Appendix 14.

4.2.2.2 UMTS

[43] Universal Mobile Telecommunications System (UMTS) is a standard for third

generation digital cellular networks. It is based on GSM. UMTS was developed by

3GPP (3rd Generation Partnership Project) and uses different data rates in all countries,

depending of the service provider. UMTS can support maximum data transfer rate of

42 MB/s. The radio access specifications provide for Frequency Division Duplex (FDD)

and Time Division Duplex (TDD) variants, and several chip rates are provided for in

the TDD option, allowing UTRA technology to operate in a wide range of bands and

co-exist with other radio access technologies. UMTS includes the original W-CDMA

scheme using paired or unpaired 5 MHz wide channels in globally agreed bandwidth

around 2 GHz, though subsequently, further bandwidth has been allocated by the ITU

on a regional basis.

UMTS uses EPS-AKA [43]:

1. A shared secret K has been established earlier between the ISIM and the Authenti-

cation Centre (AuC). The secret is stored in the ISIM.

2. The AuC of the home network generates an authentication vector AV, based on the

shared secret K and a sequence number SQN. The authentication vector contains a

random challenge RAND, authentication token AUTN, expected authentication

26

result XRES, a session key IK for integrity check, and a session key CK for

encryption.

3. The authentication vector is sent to a server. Server can also have more than one

AVs.

4. The server creates an authentication request, which contains the random challenge

RAND, and the authentication token AUTN.

5. The authentication request is sent to the client.

6. Using the shared secret K and the sequence number SQN, the client verifies

the AUTN with the ISIM. If the verification is successful, the network has been

authenticated. The client then produces an authentication response RES, using

the shared secret K and the random challenge RAND.

7. The authentication response, RES, is delivered to the server.

8. Server compares the authentication response RES with the expected response XRES.

If the two matches, the user has been successfully authenticated, and the session

keys, IK and CK, can be used for protecting further communications between the

client and the server.

UMTS authentication is described in Appendix 15.

4.2.2.3 LTE

[43] LTE (Long Term Evolution) is a standard for wireless broadband communication for

mobile devices. This standard is based on previous UMTS and GSM standards. 4G uses

different data rates in all countries, depending of the service provider. LTE data rate can

peak over 200 MB/s. LTE is different from other technologies that call themselves 4G,

because it is completely integrated into the existing cellular infrastructure. his allows

seamless handoff and complete connectivity between previous standards and LTE. [44]

The standard is designed for full-duplex operation, with simultaneous transmission and

reception. [44]

LTE uses same same authentication protocol as UMTS, which is described in Appendix

15. [10]

27

4.2.3 Radio Frequency

4.2.3.1 Dash7

Dash7 (Developers’ Alliance for Standards Harmonization of ISO 18000-7) The protocol

is intended for RFID (Radio-Frequency Identification) and wireless sensor networks.

Dash7 operates in the 433 MHz frequency band, achieves a data rate of 27.8 kbps and

reaches up to 250 m. [39] [45]

There are four different device classes defined in D7A (Dash7 Alliance Protocol). [46]

1. Blinker - Transmits and does not use a receiver.

2. EndPoint - Transmits and receives data.

3. Subcontroller - Full featured device, not always active.

4. Gateway - It connects D7A network with the other networks. It is always online.

It always listens, unless it is transmitting.

All devices in the Dash7 network support one or more of the these device classes. Dash7

supports two communication models: pull and push. The dialogues between tags and

interrogators are query-response based (pull model). This request-response mechanism

is described by the D7A query protocol. Data transfer initiated from the tags to the

gateway, on the other hand, is based on the push model. This approach is implemented as

an automated message or a beacon which is sent on specific time intervals. This system is

called Beacon Transmit Series. DASH7 defines two types of frames: a foreground frame

and a background frame. The foreground frames are regular messages which contain data

or its requests. Background frames on the are very short broadcast messages. Background

frames are used by the D7A advertising protocol for rapid ad-hoc group synchronization.

. [47], [48]

Dash7 uses CCM for authenticate-and-encrypt block cipher mode. By using 128-bit

block cipher AES, CCM can be operated. To compute the authentication field, the

CBC-MAC mode is used and to encrypt the message data, the counter (CTR) mode is

used. [48], [49].

CCM (CBC-MAC) authentication has been shown in Appendix 20.

28

4.2.3.2 Bluetooth

Bluetooth is standardized according to IEEE 802.15.1, which is based on a wireless radio

system designed for short-range. Bluetooth functions as wireless personal area network.

Two connectivity topologies are defined in Bluetooth: the piconet and scatternet. A

piconet is a Wireless Personal Area Network (WPAN) formed by a Bluetooth device

serving as a master in the piconet and one or more Bluetooth devices serving as slaves.

A frequency-hopping channel based on the address of the master defines each piconet.

A scatternet is a collection of operational Bluetooth piconets overlapping in time and

space. Two piconets can be connected to form a scatternet. [50] Bluetooth uses 2.4 GHz

frequency band, and has a maximum signal rate of 1 MB/s with the nominal range of

10 meters. It also uses FSK modulation and supports E0 stream cipher, shared secret

authentication and 16-bit CRC data protection [50].

In Bluetooth Generic Access Profile, the Bluetooth security is divided into three security

modes: [51]

1. Non-secure.

2. Service level enforced security.

3. Link level enforced security.

The difference between security mode 2 and security mode 3 is that in security mode

3, the Bluetooth device initiates security procedures before the channel is established.

There are also different security levels for devices and services. For devices, there are

2 levels, ”trusted device” and ”untrusted device”. The trusted device obviously has

unrestricted access to all services. For services, 3 security levels are defined: services that

require authorization and authentication, services that require authentication only and

services that are open to all devices. [51]

Bluetooth authentication is described more precisely in Appendix 1.

4.2.3.3 EnOcean Serial Protocol 3

Originally developed by Siemens AG but became an open protocol at 2008 when EnOcean

Alliance was formed by EnOcean. EnOcean Serial Protocol 3 (ESP3) is based on global

standard based on International Electrotechnical Commission (IEC) standard ISO/IEC

14543-3-10 for low-energy wireless applications. ESP3 uses point-to-point communication

29

with the maximum range of 30 meters. ESP messages are protected by AES-128

encryption [52], only mutual authentication means are available. The EHW security

is implemented on the OSI presentation layer of the EHW protocol stack. A message

contains all fields that a telegram may have: the R-ORG, DATA, Sender ID, receiver ID,

repeater counter as well as the security specific members like RLC, CMAC, SLF. [4]

EnOcean authentication is described in Appendix 2.

4.2.3.4 ANT+

ANT is a proprietary wireless sensor network protocol. ANT operates on a 2.4GHz

frequency and provides a maximum data rate of 1Mbps. [39] Its primary current use

is for device-to-device communication between Master devices, typically sensors such

as heart rate monitors or geocaching chips, and slaves, such as ANT-enabled watches

and cell phones which process sensor data. However, the protocol supports more than a

one-to-one master-slave relationship; it supports star, tree, and mesh topologies. [53]

ANT typically operates in burst mode, with 64-bit packets of information. Each packet

contains header information necessary for message transmission and a check sum to verify

message contents. Optionally, ANT can operate in an authenticated mode which allows

for the acknowledgement of messages. However, this method simply adds an ACK reply,

based on the check sum, from receiving devices; it does not add a cryptographically-secure

MACs. Additionally, ANT offers an advanced burst mode of 128-bit packet size that

draws more power. A 64-bit Network Key is required to initiate a channel. This key

only secures the creation of the channel; it does not encrypt messages sent within the

channel. ANT supports an 8-byte network key and 128-bit AES encryption for ANT

master and slave channels, but is not required by default. If further security is required,

authentication and encryption can be implemented through the application level. [53]

ANT+, by Dynastream Innovations, builds on the ANT protocol by standardizing device

profiles, which are set parameters for a list of devices, such as a stride based speed and

distance monitor. These profiles assign each type of device to a specific frequency within

the ANT band as well setting more technical details, such as the other requirements for

initiating a channel. Furthermore, in order to allow for easy interoperability between

the various sensors and possible slave devices (phones, watches, etc). ANT+ dictates a

centrally-managed scheme for Network Keys, allowing devices to easily connect to one

another at the cost of the security benefits provided by the Network Key. [53]

ANT+ is as well unencrypted by default. The protocol appears to offer confidentiality

through two mechanisms: RF frequency/Channel ID and a network key. However, this

30

system only prevents legitimate users from receiving data from unintended IoT devices.

It does nothing to prevent malicious actions, as the ANT+ frequencies are assigned by

master devices profile. Each ANT+ packet can be encrypted with a 64-bit Network

Key. However, due to the relative short length of this key, and the deterministic nature

of the encryption function, this system does not provide adequate security. threats to

confidentiality could be prevented through use of ANT+s optional encryption, AES-128

in CTR mode. Unfortunately, there are three usage cases that severely impede the usage

of ANT+s AES encryption [53]:

Multi-node networks ANT+ prefers to use multichannel communication to sup-

port multi-node network topologies. However, AES encryption cannot be used in

multichannel mode, forcing the usage of single channel communications. While sin-

gle channel schemes do support multi-node topologies, it is not power inefficient any

more, as all Master devices must operate in continuous scanning mode, which draws

significant power and should not be used for devices that have tight power constraints. [53]

Low power applications ANT+ requires the advanced burst method of commu-

nication with AES encryption, which uses again more power than the traditional burst

mode. The AES computation itself is power intensive relative to other algorithms [53].

Low cost or legacy applications In low cost applications, it may not be feasible

to implement AES. Moreover, AES capability is a recent development, so older ANT+

processors also lack the capability, forcing implementations that require backwards com-

patibility to forego AES encryption. [53]

ANT+ provides no cryptographic authentication. However, experimental setup has

been done in [54] and CMAC was found to be most efficient for the purpose of ANT+.

4.2.3.5 ZigBee SEP Protocol

ZigBee is wireless communication protocol, which is based standardized protocol of IEEE

802.15.4, which is for low-rate wireless personal area networks. It is low in power usage,

data rate, complexity and cost of deployment [31]. ZigBee can be used in home area

31

networks (HAN) for smart homes and advanced metering infrastructure (AMI), which are

systems that collect and analyse energy usage, communicate with smart meters. It has

been declared as the most suitable communication standards for smart grid residential

network domain by the U.S. National Institute for Standards and Technology (NIST) [55].

ZigBee Smart Energy Profile 2 (SEP) is an application protocol standard, which has been

developed for smart grid solutions [56]. It has advantages for gas, water and electricity

utilities, such as load control and reduction, demand response, real-time pricing programs,

real-time system monitoring, and advanced metering support [31]. Otherwise, it is much

like ZigBee itself.

ZigBee devices require very low data rate, 250 KB/s [57]. Using ZigBee protocol has

also downsides, such as low processing capabilities, small memory size, small delay

requirements and interference with other applications sharing the same transmission

medium, license free industrial, scientific and wireless local area network frequency band

from IEEE 802.11 standards, Wi-Fi, Bluetooth and Microwaves [31].

ZigBee and ZigBee SEP both use AES-128 with CCM. ZigBee uses its own network

stack. ZigBee is built on the Physical layer (PHY) and the Medium Access Control layer

(MAC), both defined by the IEEE 802.15.4-2003 standard. The MAC layer controls

access to the radio channel using a CSMA-CA mechanism. Upon this structure, ZigBee

builds the Network layer (NWK) and the Application layer (APL) which consists of the

Application Support sublayer (APS) and the ZigBee Device Object (ZDO). [58]

ZigBee SEP authentication uses EAP-TLS authentication Appendix 12. [56]

4.2.3.6 Thread

Thread is relatively new protocol, only to have been announced in 2015. Thread intends

to consolidate IoT protocols by working with other IoT alliances. Thread is based on

open standards such as IEEE 802.15.4, IPv6, 6LoWPAN , wireless mesh personal area

network [59]. This network operates at 2.4 GHz and has a data rate up to 250 kbps,

has a maximum range of 30m per hop, with a default hop limit of 36 hops with the

ability to connect over 250 devices in a single network [59]. It introduces convenient

way to build low power networks with direct access to the Internet. Thread nodes use

IPv6 to communicate with external servers, clouds, user computer or mobile device. [60]

Basic Thread topology consists of three classes : border routers, routers and end devices.

Thread has a border router to be a gateway between wireless connection and LAN.

Thread authentication procedure is described in Appendix 7. In this method, evaluation

is done based on Joiner–Joiner Router/Commissioner sequence.

32

4.2.3.7 Z-Wave

Z-Wave, originally named ZenSys, is a proprietary IoT protocol, owned by Sigma De-

signs [59]. It uses wireless mesh network and has an operating frequency 908,42 MHz

(USA) or 868,42 MHz (EU) with the data rate of 9,62 Kbps and uses frequency shift

keying (FSK) data modulation [59]. Z-Wave has a maximum range of 30m a hop, with

maximum of 4 hops with maximum number of devices in personal area network of 232.

It uses its own smart hub to connect to the Internet [59].

Z-Wave uses collision avoidance (CA) technique for medium access control, that allows

transmission of the frame when the channel is free. The data is split into 8-bit frames.

Transfer layer administrates connection between two sequential layers, including retran-

sition, checksum screening and ACK for the successful connection. Four fundamentals

are used: single cast frame pattern, transfer acknowledge frame pattern, multicast frame

pattern and broadcast frame pattern. Application layer is responsible for distributing

the frame payload, decoding and performing commands. [61]

All devices in Z-Wave personal area network have specific identification numbers, smart

hub has with the length of 32 bit, called Home-ID and Internet of Things (IoT) devices

have 8 bit, called Node-ID. ID-s are received after devices are connected in the network.

This is done once. Smart hub’s ID is embedded into the device during the manufactur-

ing. Z-Wave’s connection to the Internet is encrypted with AES-based pre-shared key

and uses 1.1 TLS [62]. Z-Wave accomplishes secure key exchange using Elliptic Curve

Diffie-Hellman (ECDH) [62]. [63]

Z-Wave authentication has been described in Appendix 6.

4.2.3.8 Wi-Fi

Wireless fidelity, more widely known Wi-Fi includes IEEE 802.11abg standards for wire-

less local area networks. Wi-Fi allows connection to the Internet when user connects to

access point or in ad hoc network. Wi-Fi uses 2.4 GHz or 5 GHz frequency band, with

maximum signal rate of 54 MB/s. It has a nominal range of 100 meters, uses frequency

shift keying modulation or coded orthogonal frequency division multiplexing or comple-

mentary code keying. Wi-Fi supports RC4 stream cipher WEP (wired equivalent privacy)

and AES block cipher encryption , WPA2 (Wi-Fi protected access) authentication, 32-bit

redundancy check (CRC) data protection. [50] WEP is old and not used any more, WPA2

is done with pre-shared key, nowadays it is done with AES.

33

Wi-Fi uses media access control’s protocol CSMA/CA, which is connectionless and

contention based.

Protocol Frequency Channel Width MIMO Maximum data rate
802.11ax 2.4 or 5GHz 20, 40, 80, 160MHz Multi-user (MU-MIMO) 2.4 Gbps

802.11ac wave2 5 GHz 20, 40, 80, 160MHz Multi-user (MU-MIMO) 1.73 Gbps
802.11ac wave1 5 GHz 20, 40, 80MHz Single User (SU-MIMO) 866.7 Mbps

802.11n 2.4/5 GHz 20, 40MHz Single User (SU-MIMO) 450 Mbps
802.11g 2.4 GHz 20 MHz N/A 54 Mbps
802.11a 5 GHz 20 MHz N/A 54 Mbps
802.11b 2.4 GHz 20 MHz N/A 11 Mbps
802.11 2.4 GHz 20 MHz N/A 2 Mbps

Table 1: IEEE 802.11 Wi-Fi protocol summary [12]

Since the invention of Wi-Fi in the 1990s, wireless networks have used several different

security protocols. Each new standard provided greater security, and each promised to

be easier to configure than those that came before. All of them, though, retain some

inherent vulnerabilities. In addition, as each new protocol was released some systems

were upgraded, and some were not. As a result, today there are a number of different

security protocols in use. Some of these provide a pretty good level of protection, while

some don’t. Wi-Fi has four main security protocols in use today – WEP, WPA, WPA2

and WPA3.

WEP Wired Equivalent Privacy (WEP) was the first widely spread Wi-Fi security

standard, and was approved for use way back in 1999. Though, as its name suggests, it

was supposed to offer the same level of security as wired networks, it did not. A number

of security issues were quickly found, and despite many attempts to patch them, this

standard was abandoned by the Wi-Fi Alliance in 2004. WEP was introduced as part of

the original 802.11 standard ratified in 1997. It’s pretty recognizable by its key of 10

or 26 hexadecimal digits (40 or 104 bits). In 2004, both WEP-40 and WEP-104 were

declared deprecated. There were 128-bit (most common) and 256-bit WEP variants,

but with ever increasing computing power enable attackers to exploit numerous security

flaws. This protocol is not in use for quite some time [64] and therefore not evaluated in

this work. It has been updated by newer methods and is obsolete.

34

WPA The WiFi Protected Access (WPA) protocol was developed in 2003 as a

direct replacement for WEP. It increased security by using a pair of security keys: a

pre-shared key (PSK), most often referred to as WPA Personal, and the Temporal Key

Integrity Protocol (or TKIP) for encryption. Though WPA represented a significant

upgrade over WEP. WPA became available in 2003, and it was the Wi-Fi Alliance’s

direct response and replacement to the increasingly apparent vulnerabilities of the WEP

encryption standard. The most common WPA configuration is WPA-PSK (Pre-Shared

Key). [65] [2] The keys used by WPA are 256-bit, a significant increase compared to

the 64-bit and 128-bit keys used in the WEP system. WPA included message integrity

checks and the TKIP, which employs a per-packet key system that was radically more

secure than the fixed key system used by WEP. The TKIP encryption standard was later

superseded by Advanced Encryption Standard (AES). [64] [66]. TKIP is still used, but

it’s considered obsolete after being replaced by CCMP in 2009. [66]

WPA authentication has been described in Appendix 11.

WPA2 WPA2 was developed in 2004 as the first truly new security protocol since

the invention of Wi-Fi. The major advance made by WPA2 was the usage of the

Advanced Encryption System (AES), a system used by the US government for encrypting

Top Secret information. At the moment, WPA2 combined with AES represents the

highest level of security typically used in home WiFi networks, though there remain a

number of known security vulnerabilities even in this system. WPA2 replaced WPA.

Certification began in September, 2004 and from March 13, 2006 it was mandatory for all

new devices to bear the Wi-Fi trademark. Most important upgrade is mandatory use of

AES algorithms (instead of previous RC4) and the introduction of CCMP (AES CCMP,

Counter Cipher Mode with Block Chaining Message Authentication Code Protocol, 128

Bit) as a replacement for TKIP (which is still present in WPA2, as a fallback system and

WPA interoperability). [66] WPA2-PSK (Pre-Shared Key) requires a single password

to get on the wireless network. It’s generally accepted that a single password to access

Wi-Fi is safe, but only as much as you trust those using it. [65] [2] WPA2-Enterprise

- Deploying WPA2-Enterprise requires a RADIUS server, which handles the task of

authenticating network users access. The actual authentication process is based on

the 802.1X policy and comes in several different systems labelled EAP. Because each

device is authenticated before it connects, a personal, encrypted tunnel is effectively

created between the device and the network. WPA2-Enterprise uses EAP-TLS, EAP-

TTLS/PAP and PEAP-MSCHAPv2 authentication protocols. [67] EAP-PSK has been

35

described in Appendix 11 EAP-TLS in Appendix 12, EAP-TTLS Appendix 13 in and

PEAP-MSCHAP in Appendix 9.

WPA3 In January 2018, the Wi-Fi Alliance announced WPA3 as a replacement

to WPA2. The new standard uses 128-bit encryption in WPA3- Personal mode (WPA-

PSK, pre-shared key) or 192-bit in WPA3 – Enterprise (RADIUS authentication server).

WPA3-Personal modes are defined as follows [68]:

1. WPA3-Personal only Mode

2. WPA3-Personal transition Mode

WPA3-Enterprise modes are defined as follows:

1. WPA3-Enterprise only Mode - When a BSS (basic service set) is configured in

WPA3-Enterprise only mode, PMF shall be set to required (MFPR(Management

frame protection capable) bit in the RSN (Robust Security Network). Capabilities

field shall be set to 1 in the RSNE(RSN element) transmitted by the AP(access

point)), A WPA3-Enterprise STA shall negotiate PMF when associating to an AP

using WPA3-Enterprise only mode.

2. WPA3-Enterprise transition Mode - When WPA2-Enterprise and WPA3-Enterprise

transition Mode are configured on the same BSS, PMF shall be set to capable

(MFPC bit shall be set to 1, and MFPR bit is by default set to 0 in the RSN

Capabilities field in the RSNE transmitted by the AP), A WPA3-Enterprise STA

shall negotiate PMF when associating to an AP using WPA3-Enterprise transition

mode.

3. WPA3-Enterprise 192-bit Mode - WPA3-Enterprise 192-bit Mode may be deployed

in sensitive enterprise environments to further protect Wi-Fi networks with higher

security requirements such as government, defence, and industrial.

When operating in WPA3-Enterprise 192-bit Mode [69]:

1. When WPA3-Enterprise 192-bit Mode is used by an AP, PMF shall be set to

required (MFPR bit in the RSN Capabilities field shall be set to 1 in the RSNE

transmitted by the AP).

2. When WPA3-Enterprise 192-bit Mode is used by a STA, PMF shall be set to

required (MFPR bit in the RSN Capabilities field shall be set to 1 in the RSNE

transmitted by the STA).

36

Permitted EAP (extensible authentication protocol) cipher suites for use with WPA3-

Enterprise 192-bit Mode are [69]:

1. TLS ECDHE ECDSA WITH AES 256 GCM SHA384 - ECDHE and ECDSA using

the 384-bit prime modulus curve P-384

2. TLS ECDHE RSA WITH AES 256 GCM SHA384 - ECDHE using the 384-bit

prime modulus curve P-384 - RSA ≥ 3072-bit modulus

3. TLS DHE RSA WITH AES 256 GCM SHA384-RSA ≥ 3072-bit modulus - DHE

≥ 3072-bit modulus

When a WPA3 STA needs to choose between multiple AKM(Authentication and Key

Management)-s on a BSS, the STA shall select the AKM in priority order from the

applicable list in the subclauses below. AKM selections not listed are out of scope of

this specification.

Personal Modes [69]:

1. FT (Fast BSS transition) Authentication using SAE 00-0F-AC:9

2. SAE Authentication 00-0F-AC:8

3. FT Authentication using PSK 00-0F-AC:4

4. PSK using SHA-256 00-0F-AC:6

5. PSK 00-0F-AC:2

Enterprise Modes [69]:

1. FT Authentication using IEEE Std 802.1X (SHA 256) 00-0F-AC:3

2. Authentication using IEEE Std 802.1X (SHA256) 00-0F-AC:5

3. Authentication using IEEE Std 802.1X 00-0F-AC:1

A WPA3 STA shall perform server certificate validation when using EAP-TTLS, EAP-

TLS, EAP-PEAPv0 or EAP-PEAPv1 EAP methods. A WPA3 STA shall, when per-

forming an EAP exchange with one of the above EAP methods, determine that server

certificate validation has failed if none of the following are true:

37

1. The STA is configured with EAP credentials that include a server certificate that

is exactly equal to the certificate in the received Server Certificate message.

2. The STA is configured with EAP credentials that explicitly specify a CA root

certificate that matches the root certificate in the received Server Certificate message

and, if the EAP credentials also include a domain name, it matches the domain

name of the certificate in the received Server Certificate message.

3. The STA is configured with EAP credentials that include a domain name (FQDN

or suffix-only) that matches the domain name of the certificate in the received

Server Certificate message, and the root certificate of that certificate is present in

the STA’s trust root store.

The standards that define each EAP method specify additional conditions under which

server certificate validation is required to fail. If a WPA3 STA’s validation of a server cer-

tificate fails during an EAP exchange with EAP-TTLS, EAP-PEAPv0 or EAPPEAPv1,

the STA shall not enter into Phase 2 of the EAP exchange.

WPA3-PSK - To improve the effectiveness of PSK, updates to WPA3-PSK offer greater

protection by improving the authentication process. A strategy to do this uses Simulta-

neous Authentication of Equals (SAE) to make brute-force dictionary attacks far more

difficult for a hacker. This protocol requires interaction from the user on each authentica-

tion attempt, causing a significant slowdown for those attempting to brute-force through

the authentication process.

WPA3-Enterprise : A significant improvement that WPA3-Enterprise offers is a require-

ment for server certificate validation to be configured to confirm the identity of the server

to which the device is connecting.

EAP-PSK has been described in Appendix 11 EAP-TLS in Appendix 12, EAP-TTLS

Appendix 13in and PEAP-MSCHAP in Appendix 9.

4.2.3.9 Ultra-Wide Band

Ultra-Wide Band (UWB) is standardized over IEEE 802.15.3. Its bandwidth is over 110

Mbps (up to 480 Mbps) and can act as a wireless cable replacement of high-speed serial

bus. UWB uses 3.1-10.6 GHz frequency band and its nominal range is 10 meters. It uses

binary shift keying (BSK) channel modulation and supports advanced encryption standard

(AES) block cipher encryption, cipher block chaining message authentication code (CBC-

MAC) authentication and 32-bit cyclic redundancy check (CRC) data protection. [50] [70]

Ultra-wideband (UWB) has emerged as a technology that offers great promise to satisfy

38

the growing demand for low cost, high data rate, short range wireless transmission systems

such as digital wireless indoor and home networks provide easy connection and efficient

media exchange. UWB presents a unique opportunity to become a widely adopted radio

solution for wireless personal networking technology because of the enormous bandwidth

available, the potential for high data rates, and the prospect of small size and low power

requirements along with low implementation cost. UWB radio transmission can legally

operate in the range 3.1 to 10.6 GHz at a transmitter power of -41.3 dBM/MHz. [71] [72]

The use of UWB technology under the FCC guidelines can provide huge capacity over

short ranges. Currently, UWB is able to support various data rates, ranging from 110 to

480 Mbps, over distances up to 10 meters. he basic idea of UWB can be traced back to

the first wireless communication system in the late 1890s. However the main concept of

UWB was developed only in early 1960s through research in time-domain electromagnetic

systems, where impulse measurement techniques were used to characterise the transient

behaviour of a certain classes of microwave networks. Similar to spread spectrum or

code division multiple-access (CDMA), UWB technology was firstly used in a military

environment and just recently introduced in the commercial market. Today, UWB has

been considered as one of the most promising candidates for wireless communications

within a short-range RF environment and has been creating a lot of interest from research

community worldwide. [71] [72] UWB authentication has been described in Appendix 17

and CCM (CBC-MAC) authentication has been shown in Appendix 18.

4.2.3.10 WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) is based on IEEE 802.16

standard, which speeds as high as 70 MB/s and a range of up to 48 kilometres. WiMAX

can be used for wireless networking like Wi-Fi. It uses time division multiplexing (TDM)

or frequency division duplexing (FDD). WiMAX technology operates in between 2 and

11 MHz frequency range and uses power band profiles from 100 Mw up to 2W. Data

rates can reach 2b/Hz. WiMAX connection supports EAP (extensible authentication

protocol) and DES (data encryption standard). [73] The WiMAX network is a wireless

network technology and as such its operating principle can be related and compared to

the ISO OSI reference model. As a technology, which utilizes radio wave as a transmission

medium, it spans over two bottommost layers of the ISO model: the physical layer and

the Medium Access Control (MAC) layer.

The security architecture has been defined in a dedicated Privacy Sublayer (PS)to ensure

appropriate level of security for the parties involved in a transmission. This sublayer

39

ensures parties’ authentication as well as transmitted data integrity and confidentiality.

Security Association (SA) is a container of key information utilized for ensuring secure

communication between a Subscriber Station (SS) and a Base Station (BS). There are

two types of SA: Data SA and Authorization SA. Data SA protects communication

between one or more SS-s and a BS. Data SA contains 16-bit SA identifier (SAID),

Encryption cipher to protect the data exchanged over the connection, Two TEKs: one

for current operation and another when the current key expires, Two 2-bit key identifiers,

one for each TEK, TEK lifetime - minimum value is 30 min and the maximum value is

7 days (default is 2 days), Initialization vector for each TEK, Data SA type indicator

(primary, static, dynamic). [73] Authorization SAs contain : [74]

1. X.509 certificate identifying the subscriber station.

2. 160-bit authorization key.

3. 4-bit authorization key identifier.

4. Authorization key lifetime. The minimum value is 1 day and the value maximum

is 70 days (default is 7 days).

5. Key encryption key (KEK) for distributing TEKs.

6. Downlink hash function-base message authentication code (HMAC) key.

7. Uplink HMAC keys.

8. List of authorized data SA-s.

These are shared by the base station and the subscriber station. They are used by base

stations to configure Data SA intended for a subscriber station. [5] Data confidentiality

is ensured by symmetric Data Encryption Standard (DES), by Triple DES (3DES),

Advanced Encryption Standard (AES) and asymmetric Rivest, Shamir, Adleman (RSA)

algorithms. In order to ensure integrity of transmitted data, Keyed-Hash Message

Authentication Code (HMAC) and Cipher-Based Message Authentication Code (CMAC)

mechanisms are used. The authorization and authentication processes are implemented

based on the Privacy Key Management (PKM) protocol which uses asymmetric encryption

as well as on public key certificates. IT is also involved in the key management mechanism

which performs as an immediate consequence of a device logging on to the network and

SS authentication. [5] This protocol is based on the so-called Security Associations (SA).

This is a state specific and unique for each connection, describing its cryptographic

40

properties, such as values and validities of used cryptographic keys and used algorithms.

There are two versions of the PKM protocol. The PKMv1 is used to protect nomadic

networks (including LOS and NLOS connections), whereas the other – PKMV2 is used

to protect WiMAX networks with mobility support (IEEE 802.16e). [5] WiMAX has two

authentication protocols, PKMv1 and PKMV2. [75] WiMAX authentication has been

described in Appendix 5.

4.2.3.11 6LOWPAN

The 6LoWPAN is a protocol based on the IPv6 protocol. It is designed to be used

over the IEEE 802.15.4 standard for low power wireless communication. The issue with

this standard is that the frames are limited to 127 bytes, including the MAC header

of 23 bytes and an optional AES encryption header of 21 bytes. With a conventional

IPv6 protocol, the remaining payload is reduced to 33 bytes for UDP and 21 bytes for

TCP. [76] 6LOWPAN supports as well AES-128. Low-power, IP-driven nodes and large

mesh network support make this technology a great option for Internet of Things (IoT)

applications. As the full name implies – “IPv6 over Low-Power Wireless Personal Area

Networks” – 6LoWPAN is a networking technology or adaptation layer that allows IPv6

packets to be carried efficiently within small link layer frames, such as those defined by

IEEE 802.15.4. [77]

6LOWPAN supports EAP-TLS, which has been described in Appendix 12. [78]

4.3 Wired

Data transmissions are broadcast in nature for wired connections, hence, the security

aspects are critical. Confidentiality, authentication, integrity, and user intervention are

some of the critical issues in smart grid communications. [31]

4.3.1 Ethernet

Digital subscriber line (DSL) is high-speed digital data transmission technology that uses

voice telephone network. There are two types of digital subscriber lines – symmetric

(SDSL) and asymmetric (ADSL). ADSL differs from SDSL in the matter of bandwidth

and bit rate towards the customer, it is higher. Greater than 1 MHz frequencies are

nothing spectacular for asynchronous DSL enabled telephone lines [79]. This technology

is already widespread, low-cost and has high-speed data transmission. DSL can have a

41

long downtime and may not be that reliable for critical infrastructure. It requires cables

for communication, which must be installed and regularly maintained.

Fibre-optic is a communication type in telecommunications, which uses cables made

from thin transparent glass or plastic, for example to transmit telephone signals, Internet

connection and cable television signals. Broadband network access using fibre-optics is

called passive optical network. There are different techniques to transmit bandwidth

using fibre-optic cables.

Comparing DSL is much slower, but cheaper because of in place telephone lines and

poles. Passive optical network can be extended further from the provider and it does

not rely on electricity. Ethernet operates in the data link layer and the physical layer.

It is a family of networking technologies that are defined in the IEEE 802.2 and 802.3

standards. Ethernet supports data bandwidths of: 10 Mb/s, 100 Mb/s, 1000 Mb/s (1

Gb/s), 10,000 Mb/s (10 Gb/s), 40,000 Mb/s (40 Gb/s) and 100,000 Mb/s (100 Gb/s).

Ethernet standards define both the Layer 2 protocols and the Layer 1 technologies. For

the Layer 2 protocols, as with all 802 IEEE standards, Ethernet relies on the two separate

sublayers of the data link layer to operate, the Logical Link Control (LLC) and the MAC

sublayers.

4.3.1.1 G.hn

Developed by ITU-T to be a unified interoperable standard consisting of all types of

existing cabling home phone line, power line, coaxial cable and Cat-5 targeted to work

in a residential environment as well as in small and medium offices. could provide a

data rate of up to 1Gbps. G.hn can interconnect a maximum of 250 devices in one

network [80]. [39] G.hn supports AES and uses password-authenticated key agreement

protocol that ensures mutual authentication of two parties by using a Diffie–Hellman

key exchange. [81] G.hn – stands for “next generation home network technology”– is

one of several approaches to home networking that seek to make first meter connectivity

easier to handle. It is a unified standard [81] for wired in-home networking developed by

the International Telecommunications Union Telecom (ITU-T) Standardization Sector

G.hn allows networking of all types of digital media over unshielded telephone lines,

power lines and coaxial cable – the most common wires found in today’s homes. G.hn

is compatible with the two most widely used Ethernet home networking technologies,

wired and wireless LAN connections. G.hn allows up to 250 nodes operating in the

network. It defines several profiles to address applications with significantly different

implementation complexity. High-profile devices, like gateways, are capable of providing

42

very high throughput and sophisticated management functions. Low-profile devices,

such as home automation, have low throughput and basic management functions but

can interoperate with higher profiles. [82] G.hn authentication has been described in

Appendix 3.

4.3.1.2 LonTalk Protocol

LonTalks is a protocol for LonWorks platform, which was created for the control of

applications. LonTalks is defined by standard ISO/IEC 14908.1. It supports network

connections over twisted pair, powerlines, fibre optics, and RF. It was developed by

Echelon Corporation. Its maximum data rate is 1,25 MB/s. LonTalk does not really use

encryption, rather encodes, where any 48-bit key is a valid encryption key. [83]

LonTalk protocol is designed for communication in control networks. These networks are

characterized by short messages, very low per node cost per multiple communications

media, low bandwidth and maintenance, multi-vendor equipment and low support

costs. [84]

Authentication protocol has two asymmetric parts, the challenger and the challengee.

The authentication process is initiated by the challenger, which generates a random

number X; next, the challengee responds with Y = E(X msg), an encryption of X and

the original message using a private key; and finally the challenger compares Y with

its own version of E(X msg) and makes a pass/fail decision based on the outcome. [83]

LonTalk authentication has been described in Appendix 16.

4.3.2 Powerline Communication

Powerline communication (PLC) is a technique, which uses existing powerlines to transmit

data signals from one device to another. Due to the direct contact of the electricity

meter it is the first choice for communication [85]. PLC technology sets restrictions for

applications, because it has low bandwidth network, 20 kb/s for neighbourhood area

networks [33]. For PLC, the network topology needs the devices to be connected to the

powerlines, wiring distances can be huge and. This affects the quality of the broadcasted

signal, therefore powerlines are not suited for data transmission. However, there are

hybrid solutions with different techniques, for example GPRS, GSM to provide full

connectivity [31].

43

4.3.2.1 Universal Powerline Bus

UPB is a proprietary software protocol developed by Powerline Control Systems. UPB

communication is a method of reliably communicating command, control, and status in-

formation across an electrical AC powerline. The UPB powerline communication method

consists of transmitting digitally encoded information over the electrical powerline as a

series of precisely timed electrical pulses (called UPB Pulses) that are superimposed on

top of the normal AC power waveform (sine wave). Receiving UPB devices can easily

detect and analyse these UPB Pulses and pull out the encoded digital information from

them. [86] UPB messages are limited to 480 bps. The UPB addressing scheme allows for

250 systems (houses) on each transformer and 250 devices on each system. UPB Pulse

is capable travelling large distances over the powerline and even coupling through the

power transformer to the other side of a split phase power arrangement. [86] Each UPB

device must be programmed with a Unit ID. The unit ID will have a value between 1

and 250. Units out of the box from the factory will have a Unit ID assigned that equals

the manufacturer’s product ID. [87]

Each UPB product must also have a Network ID. When control signals are sent out on

the powerline, part of the signal is the Network ID. Only devices that have that specific

Network ID will respond to the signal and take the appropriate action. In real life, it is

expected that a Network ID will correspond to one home. Adjacent homes should use

different Network IDs, in order to prevent signals in one home from controlling devices in

the next door house. The appropriate range for Network IDs is 1 – 250, with the default

Network ID out of the box being FF (hex) or 255 decimal. [87]

Each UPB product must also have a Network Password. In order to program a device

or change its programming, you must know the appropriate Network ID, and then the

appropriate Network Password. If two homes side by side have the same Network ID, but

different passwords, then users in both homes will be able to control devices in each home,

but they can’t program devices in the other home, only their own. Again, this highlights

the importance of using different Network IDs for adjacent homes. The Network Password

is a four character alpha-numeric password, with each character allowed to be in the

range of 0 – F (hexadecimal). The default Network Password out of the box is 1234

(hex). [87]

While the network name has little importance, it is a means of determining which network

is being used, especially in the case of a multi-network system. The default network

name out of the box is New Network Name. However, the Network Name is not used

44

as a primary means of identification, and has little importance. UPB devices are also

programmed for a room name, and a device name. The room name is important within

various controller environments, as it organizes all devices according to rooms. However,

it is not important for manual setup. The device name merely gives the user the ability

to name a device so that it is easily understood what the device does. For example,

rather than being named New Lamp Module, the module can be named bedside table

lamp [87]

4.4 Hybrid

4.4.1 Extensible Authentication Protocol

Extensible Authentication Protocol (EAP) is an authentication framework providing

multiple authentication methods, implemented as an arbitrary authentication method

for a network access connection. [2] EAP typically is used over data link layers such as

Point-to-Point Protocol (PPP) or IEEE 802, without requiring IP. EAP provides its

own support for duplicate elimination and retransmission, but is reliant on lower layer

ordering guarantees. [88] EAP was originally proposed for the Point-to-Point Protocol

for an optional authentication phase after the PPP link has been established. It is also a

general purpose authentication protocol. EAP supports multiple authentication methods,

such as token card, Kerberos, one-time password, certificate, public key authentication,

and smart card. [2] EAP supports wireless and wired connections. For example TLS and

TTLS and PEAP authentication methods use EAP. [88]

When using EAP, it is not necessary to pre-negotiate a particular authentication mech-

anism at the Link Control Phase. Instead, the authenticator usually sends an initial

Identity Request followed by one or more Requests to authenticate the supplicant. A

Request contains a type field to indicate what information is being requested. The

supplicant then replies a Response for each Request. The Response also contains a type

field according to the type field in the Request. Based on the specific authentication

mechanism, a series of Requests and Responses will be exchanged. The authenticator

then either sends an authentication Success or Failure to the supplicant. [89]

Message exchange for generic Extensible Authentication Protocol is show in Figure 1:

Authentication methods of EAP-PSK has been described in Appendix 11 EAP-TLS

in Appendix 12, EAP-TTLS Appendix 13in and PEAP-MSCHAP in Appendix 9.

45

Figure 1: EAP message flow for authentication [2]

46

4.4.2 KNX Protocol

KNX is open standard (EN 50090, ISO/IEC 14543) for home automation. Technology

provides manufacturer and application domain independent KNX bus that interconnect

devices that can support twisted pair, power line, RF and IP communication in an

integrated manner. KNX supports implementation of AES and Diffie-Hellman algorithms

for encryption and authentication [90]. At the end of 2003, the KNX Standard was

approved by CENELEC (European Committee of Electrotechnical Standardisation) as

the European Standard for Home and Building Electronic Systems as part of the EN

50090 Series. The KNX Standard was also approved by CEN (EN 13321-1 for media

and protocol and EN 13321-2 for KNXnet/IP). At the end of 2006, KNX was also

approved as a world standard (ISO/IEC 14543-3). In 2007, the Chinese translation of the

international standard achieved GB/Z status as GB/Z 20965. KNX is also approved in

the USA as ANSI/ASHRAE 135. Due to the flexibility of the KNX technology, a KNX

installation can easily be adapted to the changing circumstances of the user. Various

communication media (and hence transmission methods) can be used for the exchange of

data between devices in a KNX system: [91]

1. KNXTwistedPair (KNXTP) – communication via a twisted pair data cable (bus

cable)

2. KNX Powerline (KNX PL) – uses the existing 230 V mains network

3. KNX Radio Frequency (KNX RF) – communication via radio signal

4. KNX IP – communication via Ethernet

In KNX TP the bus cable supplies all bus devices with both data and power. The rated

voltage of the bus system is 24 V, while the voltage provided by the power supplies is

30 V. The data transfer rate is 9,600 bit/s, and the data travel serially, one byte at a

time, via asynchronous data transfer. Access to the KNX bus, like several other bus

systems, is random and event-driven. A telegram can only be transmitted if no other

telegram is being transmitted at the same time. [91] KNX Authentication has bee shown

in Appendix 4.

47

4.4.3 X10

X10 was invented in 1975 by Pico Electronics in Glenrothes, Scotland. It is one of the

oldest protocols in the market. It is unreliable, slow and system is difficult to install.

This protocol does not support encryption. X10 was originally designed for powerline

communication only but through time the need for wireless communication emerged. X10

signal is composed of a series of 5-volt, 121 kHz pulses having a duration of 1 millisecond,

positioned at zero crossings of the 60 Hz AC power signal. Each pulse corresponds to a

binary 1, and the absence of a pulse corresponds to a binary 0. A single X10 command

consists of a 22-bit word obtained from eleven complete cycles of the AC power signal. [92]

X10 Technology is 20 years old, it was first meant for controlling low cost lighting and

appliance control devices. X10 powerline technology transmits binary data using AM

technique. X10 enables control over lights and virtually any other electrical device from

anywhere in the house with no additional wiring, just with a controller or transmitter

in electrical outlet. The controller/transmitter could use the electrical wiring as the

transmission media to communicate with those modules. X-10 powerline technology

employs an Amplitude Modulation (AM) technique to transmit binary data. [93]

X10 technology is still in use but there is almost no documentation for X10 proto-

col. Unfortunately, this very simple and convenient technology does not support any

authentication or encryption at all.

4.4.4 Insteon

Insteon uses wireless and powerline connection and merges these connection technologies

into a single network. It operates over 915 MHz/ 869.85 MHz/921.0 MHZ wireless radio

band on a peer-to-peer network with the data rate of 180 bps. Wireless range reaches to

45 meters and the power line uses 131.65 KHz. [39]

Insteon network security is maintained at two levels. All-Linking Control ensures that

users cannot create All-Links that would allow them to control their foreign Insteon

devices, even though those devices may be repeating each other’s messages. Encryption

within extended-length messages permits completely secure communications for appli-

cations that require it. Insteon enforces ALL-Linking Control by requiring that users

have physical possession of devices in order to actually create All-Links, and by masking

Non-linked Network Traffic when messages are relayed outside the Insteon network

itself. [94] Firmware in Insteon devices does not allow them to identify themselves to

other devices unless a user physically presses a button on the device. [94]

48

If owner pushes button on both the Controller device and the Responder device then

an All-Link has been established between them. Responder will not act on commands

from an unlinked controller. All-Linking by sending Insteon messages requires knowledge

of the 3-byte addresses of Insteon devices. These addresses are unique for each device

and assigned at the factory. They are printed on the labels of the devices. Codes can

be read from the label and typed to management program. Insteon really relies on

physical security rather than communicative mechanisms. [94] For applications such as

door locks and security systems, Insteon Extended-length messages can contain encrypted

payloads. Possible encryption methods include rolling-code, managed-key, and public-key

algorithms. The encryption method that will be certified as the Insteon standard is

currently under development. [94]

4.4.5 Wireless HART Protocol

HART is an acronym for Highway Addressable Remote Transducer, which is divided to

analogue or digital industrial automation open protocol. The HART Protocol superim-

poses digital communication signals at a low level on top of the 4-20mA. This enables

two-way field communication and makes it possible for additional information beyond

just the normal process variable to be communicated to/from a smart field instrument,

and there is no interference with the 4-20mA signal. Audio frequency-shift keying (FSK),

which uses modulated tones to produce a digital signal, transfers the digital information

containing the phone number. The data transfers at a rate of 1,200 bps using 1,200 Hz

and 2,200 Hz frequencies representing a binary 1 or 0. [95] Wireless HART is a wireless

mesh network communications technology for process automation applications. It adds

wireless capabilities to the HART Protocol while maintaining compatibility with existing

HART devices, commands, and tools. Wireless HART is built upon the IEEE 802.15.4

standard for low-power mesh radio networks. It is based on Time Division Multiple Access

(TDMA). Wireless HART uses several mechanisms in order to successfully coexist in the

shared 2.4GHz ISM band: Frequency Hopping Spread Spectrum (FHSS) allows Wireless

HART to hop across the 16 channels defined in the IEEE 802.15.4 standard in order to

avoid interference. Clear Channel Assessment (CCA) is an optional feature that can be

performed before transmitting a message, the transmit power level is configurable, and a

mechanism to permit the use of certain channels, called blacklisting, is available. [96]

Wireless HART uses uses IEEE 802.15.4 compatible radios operating in the 2.4GHz

Industrial, Scientific, and Medical radio band. [97] Wireless HART security protocol uses

CCM mode in conjunction with AES-128 block cipher using symmetric keys, for the

49

message authentication and encryption. A public and private keys are used to establish a

secure communication. A new device is provisioned with a ”join key” before it attempts

to join the wireless network. The Join key is used to authenticate the device for a that

specific Wireless HART network. [98] Once the device joined the network, the Network

manager is able to provide it with Session and Network keys. The real key generation

and management is done by a Security manager, which is not specified by Wireless

HART, but the keys are distributed to the Network devices by the Network manager. A

Session key is used by the Network layer to authenticate the end-to-end communication

between two devices. Different Session keys are used for each pairwise communication.

The Data Link layer uses a Network key to authenticate messages on a one-hop basis. A

well-known Network key is used when a device attempts to join the network. [98] [96]

Each Wireless HART network includes three main elements:

1. Wireless field devices connected to process or plant equipment. These devices can

be a device with Wireless HART built in or an existing installed HART-enabled

device with a Wireless HART adapter attached to it.

2. Gateways enabling communication between the field devices and host applications

connected to a high-speed backbone or other existing plant communications network.

3. A Network Manager responsible for configuring the network, scheduling communi-

cations between devices, managing message routes, and monitoring network health.

The Network Manager can be integrated into the gateway, host application, or

process automation controller.

CCM authentication has been shown in Appendix 19.

50

5 Methodology

The main research method for this work was formal verification of protocols with ProVerif

and BAN logic, but also quantitative analysis of existing data comparing and analysing

different aspects of the categories used in evaluating protocol authentication was con-

ducted. Evaluation method is proposed from the analysis and verification of these

authentication protocols. Scope for selecting the protocols is most prominent protocols

from different connection technologies. Proposed method is applicable to all smart home

and smart grid authentication protocols. New protocols could be also developed, at least

according to this method. Proposed evaluation method checks if criterion is implemented

and required by default in the technology and authentication protocol. This method does

not rank different cryptographic algorithms or evaluate key lengths, it is for checking

if there is a mechanism or answer to this criterion. These protocols are verified with

ProVerif [99] and using BAN-Logic [17]. For evaluation method not only security criterion

were considered. Criterion derived from the analysis were split to 5 different categories:

transport, administration, audit, efficiency and security. Different criterion are derived

from previous proposed standards, best practices and feasibility. Scoring is done by the

multi-attribute utility (MAU) analysis and paired comparison.

5.1 Requirements

Requirements for this method have been chosen from previous protocol standards and

proposed methods, protocol enhancements as well as for device compliance.

Transport

1. Independence - Authentication protocol transport must be independent, it must be

compliant to be transported on any given transport protocol. [100]

2. Congestion Control - Protocol must have method for congestion control, transmis-

sion control or medium access control over shared and public channels. [101]

3. Message Matching - Criteria for checking if mechanism for matching messages MAC

or IP address based. [101]

51

4. IP - Criteria for IP4 and IP6 support. [101], [102]

Administration

1. Data Types - All types of data should be supported, integer, characters, as well as

unified character set agreed on, to prevent compliance issues. [100] [103]

2. Request and Response Management - Requests and Responses must be kept count

of, as well as responded. Value is true if it is implemented in that protocol and

technology. [104]

Audit

1. Message Headers - Messages must have headers for identification and verification.

[101]

2. Accounting Management - For checking if any user authentication in present. [101]

Efficiency

1. Scalability - Value is true, if at least mesh network communication is supported. [100]

2. Constrained - For evaluating if protocol is suited for communication with low-power

narrowband devices. [104]

Security

1. Authentication Cluster - Criteria for evaluating, if multiple authentication server

presence is supported and therefore switching authentication authorities to prevent

authentication failure.

2. Error Detection and Correction - Criteria for any packer or frame error detection

and correction mechanism. [104], [105]

3. Encapsulation - Indicator for payload encapsulation support. [100]

4. Encryption - Value is TRUE, if any kind of encryption mechanism is implemented

by default. [100], [102]

5. Certificates - Value is TRUE if user, client or server certificate based authentication

is supported. [106] [104]

52

6. Integrity Check - Indicator for frame or packet integrity mechanism presence. [104],

[105]

7. Mutual Authentication - Criteria for detecting mutual authentication. [100], [105]

8. Tunnelling - Tunnelling protocol support for private network communications. [100]

[107]

9. Reachability - ProVerif verification for event executions and injections, value is

TRUE if attacker is not able to inject nor execute events with its own variables. [108]

10. Secrecy - ProVerif verification for decrypted variable and private key, shared

key and passwords secrecy, value is TRUE if attack is not able to reach to this

value. [100], [108]

11. Crypto-Agility - Support for multiple cryptographic algorithms or ciphers for

encryption.

12. Authentication Authority - Presence of at least authoritative authentication or

checking device in the network.

13. Key Length - Value is TRUE, if the authentication protocol key length is greater

or equal than recommended size in [109].

14. Authentication Synchronization - Value is TRUE if authentication is done within

time window or period, there for connections are synchronized during authentication.

[108]

15. Authenticated Access - Value is TRUE, if the device is authenticated joining the

network. [108], [102]

16. Authentication Logic - Verification done according to BAN logic. Result is TRUE

if the postulated goal has been reached. [108]

5.2 ProVerif

Goal of ProVerif is the verification of cryptographic protocols. Cryptographic protocols

are concurrent programs which interact using public communication channel such as

the Internet to achieve some security-related objective. Since the attacker is assumed

to have a complete control of the communication channels, the attacker may: read,

53

modify, delete, and inject all messages. The attacker is also able to manipulate data, for

example: compute the element of a tuple and decrypt messages if it has the necessary

keys. ProVerif is able to capture the behaviour of adversaries. Only protocol must be

modelled to invoke these rules. ProVerif’s input language allows such cryptographic

protocols and associated security objectives to be encoded in a formal manner, allowing

ProVerif to automatically verify claimed security properties. [110]

In ProVerif cryptography is assumed to be perfect; that is, the attacker is only able

to perform cryptographic operations when in possession of the required keys. In other

words, it cannot apply any polynomial-time algorithm, but is restricted to apply only the

cryptographic primitives specified by the user. The relationships between cryptographic

primitives are captured using rewrite rules and/or an equational theory. [110]

The ProVerif tool is able to prove reachability properties, correspondence assertions,

and observational equivalence. Proving reachability properties is ProVerif’s most basic

capability. The tool allows to capture of which terms are available for an attacker; and

secrecy of terms can be evaluated with respect to a model.

Correspondence assertions are used to capture relationships between events which are

expressed in the form “if an event e has been executed, then event e’ has been previously

executed.” [110]

These events contain arguments, which allow relationships between the arguments of

events to be studied and executed. The correspondence is insufficient to capture authen-

tication in cases where a one-to-one relationship between the number of protocol runs

performed by each participant is desired. In order to understand the results correctly, it

is important to understand the difference between the attack derivation and the attack

trace. The attack derivation is an explanation of the actions that the attacker has to make

in order to break the security property, in the internal representation of ProVerif. [110]

ProVerif can display three kinds of results:

1. RESULT[Query] is true: The query is proved, there is no attack. In this case,

ProVerif displays no attack derivation and no attack trace. [110]

2. RESULT [Query] is false: The query is false, ProVerif has discovered an attack

against the desired security property. The attack trace is displayed just before

the result (and an attack derivation is also displayed, but you should focus on the

attack trace since it represents the real attack). [110]

54

3. RESULT [Query] cannot be proved: This is a “don’t know” answer. ProVerif could

not prove that the query is true and also could not find an attack that proves

that the query is false. Since the problem of verifying protocols for an unbounded

number of sessions is undecidable, this situation is unavoidable. Still, ProVerif gives

some additional information that can be useful in order to determine whether the

query is true. In particular, ProVerif displays an attack derivation. By manually

inspecting the derivation, it is sometimes possible to reconstruct an attack. For

observational equivalence properties, it may also display an attack trace, even if

this trace does not prove that the observational equivalence does not hold. [110]

Unfortunately, no software is sound and bulletproof, ProVerif cannot fully model the

incrementation of the message counter and the tests performed on this counter to accept

or reject the message. Trying to prove key validity is impossible in mutual authentication

lack of third party, key correctness and ”goodness” must be an assumption to validate

even authentication [110]

5.3 BAN logic

Burrows, Abadi and Needham (BAN) logic is the logic of beliefs , which is based on

the authentication of entities and how principals relationships evolve during the run

of a protocol. It can be used to describe the exchange of messages, explaining what

is needed and what must be considered. BAN logic does not consider all aspects of

security protocols. This logic operates at an abstract level and therefore does not consider

implementation errors or inappropriate use of cryptosystems. [111]

BAN logic is simple and because of that not a powerful tool to consider all aspects of

a protocol. Verifying protocol with BAN logic means deriving the beliefs that honest

principals correctly executing a protocol can come to, as a result of the protocol execu-

tion. [111]

In order to use BAN logic, protocol must be transformed to idealized form. After the

protocol has been taken to idealized form, postulates of the logic and the inference rules

can be applied to the formulae. The idealized protocols do not include cleartext message

parts. Cleartext communication is omitted simply because it can be forged, and so its

contribution to an authentication protocol is mostly one of providing hints as to what

might be placed in encrypted messages.

Not all clear text authentication protocols messages could be omitted in this work.

In order to analyse idealized protocols, messages are annotated with logical formulas,

55

much as in a proof in Hoare logic [112]. Formulas are written before the first message

and after each message. The main rules for deriving legal annotations are If X holds

before the message P + Q: Y then both X and Q sees Y hold afterwards and if Y can be

derived from X by the logical postulates then Y holds whenever X holds. [17]

P |≡ X : P believes X, or P would be entitled to believe X. In particular, the principal

P may act as though X is true. This construct is central to the logic.

P / X : P sees X. Someone has sent a message containing X to P, who can read and

repeat X (possibly after doing some decryption).

P |∼ X : P once said X. The principal P at some time sent a message including

the statement X. It is not known whether the message was sent long ago or during the

current run of the protocol, but it is known that P believed X then.

P ⇒ X : P has jurisdiction over X. The principal P is an authority on X and should

be trusted on this matter. For example, a server is often trusted to generate encryption

keys properly. This may be expressed by the assumption that the principals believe that

the server has jurisdiction over statements about the quality of keys.

#(X) : The formula X is fresh; that is, X has not been sent in a message at any time

before the current run of the protocol. This is usually true for nonces, that is, expressions

invented for the purpose of being fresh. Nonces commonly include a timestamp or a

number that is used only once.

P
K←→ Q : P and Q may use the shared key K to communicate. The key K is good, in

that it will never be discovered by any principal except P or Q, or a principal trusted by

either P or Q.

K7−→ P : P has K as a public key. The matching secret key (denoted K-l) will never be

discovered by any principal except P or a principal trusted by P. P
X
↼−−⇁ Q :The formula X

is a secret known only to P and Q, and possibly to principals trusted by them. Only P and

Q may use X to prove their identities to one another. An example of a secret is a password.

{X}K : This represents the formula X encrypted under the key K. Formally, X), is a

56

convenient abbreviation for an expression of the form X), from P. We make the realistic

assumption that each principal is able to recognize and ignore his own messages; the

originator of each message is mentioned for this purpose.

〈X〉Y : This represents X combined with the formula Y; it is intended that Y be a

secret and that its presence prove the identity of whoever utters (X) y. In implementa-

tions, X is simply concatenated with the password Y. Notation highlights that Y plays a

special role, as proof of origin for X, in much the same way as an encryption key.

The message-meaning rules concern the interpretation of messages. Two of the three con-

cern the interpretation of encrypted messages, and the third concerns the interpretation of

messages with secrets. They all explain how to derive beliefs about the origin of messages.

For shared keys:

P |≡ K←→ P, P / {X}K
P |≡ Q |∼ X

That is, if P believes that the key K is shared with Q and sees X encrypted under K,

then P believes that Q once said X. For this rule to be sound, it must be guaranteed that

P did not send the message himself, it suffices to recall that {X}K stands for a formula

of the form {X}K from R, and to require thatR 6= P .

Similarly, for public keys, it can be postulated that

P |≡ K7−→ Q,P / {X}K−1

P |≡ Q |∼ X

For shared secrets, it can be postulated that

P |≡ Q
X
↼−−⇁ P,P / 〈X〉Y

P |≡ Q |∼ X

That is, if P believes that the secret Y is shared with Q and sees 〈X〉Y , then P

believes that Q once said X. This postulate is sound because the rules for sees (given

below) guarantee that 〈X〉Y was not just uttered by P himself.

The nonce-verification rule expresses the check that a message is recent and, hence, that

the sender still believes in it:

57

P |≡ #(X), P |≡ Q |∼ X

P |≡ Q |≡ X

That is, if P believes that X could have been uttered only recently (in the present)

and that Q once said X (either in the past or in the present), then P believes that Q

believes X. For the sake of simplicity, X must be “cleartext”; that is, it should not include

any subformula of the form {Y }K .

The jurisdiction rule states that if P believes that Q has jurisdiction over X then P trusts

Q on the truth of X:

P |≡ Q⇒ X,P |≡ Q |≡ X

P |≡ X

If a principal sees a formula, then he also sees its components, provided he knows the

necessary keys:

P / 〈X〉Y
P / X

P / {X}Y
P / X

P |≡ Q
K
↼−−⇁ P,P / {X}K
P / X

P |≡ K7−→ P, P / {X}K
P / X

P |≡ K7−→ Q,P / {X}K−1

P / X

Recall that{X}K , stands for a formula of the form {X}K , from R. As a side condition,

it is required that R 6= P ; that is, {X}K is not from P himself. A similar condition

applies to {X}K−1
. The fourth rule is justified by the implicit assumption that if P

believes that K is his public key then P knows the corresponding secret key,K−1 . Note

that if P / X and P / Y it does not follow that P / (X, Y) , since this means that X and

Y were uttered at the same time.

If one part of a formula is fresh, then the entire formula must also be fresh:

P |≡ #(X)

P |≡ #(X, Y)

58

5.4 Evaluation

In a technology evaluation, protocols must be evaluated and scored against a set of

evaluation criteria in order to determine the best choice. Clear assessment criteria have

been produced in Evaluation criteria paragraph.Scoring is done multiattribute utility

(MAU) analysis with, within the mathematical field of decision analysis. Decision analysis

is concerned with providing a mathematical framework for decision making, so that

decision makers can rigorously and consistently express their preferences, in such a way

that results can be readily and logically explained.

Multiattribute utility (MAU) analysis is a wellestablished decision analysis method that

specifically addresses how to select one alternative from a set of alternatives, which is

selecting a particular product from a set of products in a given technology area. In

preparing for the evaluation testing, the first step was to establish the evaluation criteria.

First step for successful evaluation was to choose criterion to determine scope of this

work. Evaluation criteria is specific, Boolean, true or false, types of questions that are

clearly stated and can be clearly tested. False if a product does not meet evaluation

criteria, True if a product fully meets evaluation criteria. The final step was to assign

weights to each criterion. These weights serve as scaling factors to specify the importance

of each criterion. Because they are scaling factors that specify relative importance in the

overall set of criteria, they should be non-negative numbers that sum to 1.

Paired Comparison was used for determining the weights in this method, which is or-

dering criteria from highest importance to least importance. In the evaluation of a

security product, security is the most important category. In this method it is followed

by efficiency, auditing, administration/management, and then transport. Starting with

the alternative of highest importance, express its importance with the alternatives of

lower importance in terms of a ¡, =, or ¿ relationship.

Following relationships of importance between categories were determined. To get the

weights, following equations were calculated:

E(Transport) = 1

D(Administration) > E

C(Audit) = D + E

59

B(Efficiency) = C + D + E

A(Security) = B + C + D + E

Back solving these equations gave the weights for these categories:

Security(A) = 12

Efficiency(B) = 6

Audit(C) = 3

Administration(D) = 2

Transport(E) = 1

These weights are used in evaluation by multiplying True or False with the weight and

summarizing to received total and then dividing the result with total sum of weight,

which gives a result of a score from 0 to 1.

60

6 Protocol Evaluation

In the evaluation ProVerif verification could not be done for CCM, because of the

limitations of the software, also skipped are protocols which have no authentication

by default or did not have cryptography implementations, same for BAN logic. Since

BAN logic is verifying of authentication logic and ProVerif is for proving cryptographic

protocols.

Evaluation tables contain protocol criterion, their weight for calculating overall score and

the result of the criterion for that particular protocol. Results have citation to a paper

where it has been deducted or links to the sections where is the ProVerif verification

result or BAN analysis of that protocol.

If for there was no information for criterion or not clear, TRUE value could not be given.

Considering the weights in these tables, security is the most important, which are all

equally scored. Next important category is efficiency, because the evaluation is about

smart home and smart grid protocols. These two categories are the ones that matter the

most, in this method. Smart home and smart grid protocols need to have constraints

and higher scalability because of the environment and technology of these devices which

are controlled.

Each criterion is described in (requirements subsection). In the evaluation tables, links

are after the result referring to the paper that this result is based on, authentication

logic (BAN logic), secrecy (ProVerif) and reachability (ProVerif) results are linked to

the appendices of specified verification method.

61

6
.1

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

1

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

2
G

(G
S

M
)

3
G

(U
M

T
S

)
4
G

(L
T

E
)

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[1

1
3
],

[1
1
4
]

T
R

U
E

[1
1
5
]

T
R

U
E

[4
4
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[1

1
4
]

T
R

U
E

[1
1
5
],

[1
1
6]

T
R

U
E

[1
1
7
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[4

4
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[1

1
8
]

T
R

U
E

[1
1
9
]

T
R

U
E

[1
1
7
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[4

2
]

T
R

U
E

[1
1
5
]

T
R

U
E

[4
4
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[1
1
4
]

T
R

U
E

[1
1
5
]

T
R

U
E

[4
4
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
T

R
U

E
[4

2
],

[1
1
4
]

T
R

U
E

[1
2
0
],

[1
1
6]

T
R

U
E

[1
2
0
]

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
T

R
U

E
F
A

L
S

E

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

F
A

L
S

E
[1

2
1
]

F
A

L
S

E
[1

2
1
]

F
A

L
S

E
[1

2
1
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[1
1
4
]

T
R

U
E

[1
1
5
]

T
R

U
E

[4
4
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[1

1
6
]

T
R

U
E

[1
2
2
]

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[1
2
3
],

[1
1
4
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
0
],

[1
2
5
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[1
2
6
]

T
R

U
E

[1
2
6
]

T
R

U
E

[1
2
6
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
[1

2
7
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
0
],

[1
2
5
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[1

2
8
]

T
R

U
E

[1
2
9
]

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

F
A

L
S

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[1
2
3
],

[1
1
4
],

[4
2
],

[1
2
7
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
0
],

[1
2
5
]

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

F
A

L
S

E
[1

2
3
],

[1
1
4
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
5
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

62

T
a
b

le
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

2
G

(G
S

M
)

3
G

(U
M

T
S

)
4
G

(L
T

E
)

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[1
2
3
],

[1
1
4
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
5
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[1
2
3
],

[1
1
4
]

T
R

U
E

[1
2
4
],

[1
2
5
],

[4
3
]

T
R

U
E

[4
3
],

[1
2
5
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
2
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

1

63

6
.2

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

2

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

E
n

O
ce

a
n

S
P

3
M

u
tu

a
l

E
n

O
ce

a
n

S
P

3
U

n
il
a
te

ra
l

Z
ig

B
ee

S
E

P
T

h
re

a
d

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
F
A

L
S

E
[5

2
]

F
A

L
S

E
[5

2
]

T
R

U
E

[5
6
]

T
R

U
E

[1
3
0
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[4

]
T

R
U

E
[4

]
T

R
U

E
[5

6
]

T
R

U
E

[7
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[1

0
4
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
T

R
U

E
T

R
U

E
[5

6
]

T
R

U
E

[1
0
4
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[4

]
T

R
U

E
[4

]
T

R
U

E
[5

6
]

T
R

U
E

[1
0
4
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[5

6
]

T
R

U
E

[1
3
0
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[1
0
4
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

F
A

L
S

E
T

R
U

E
[7

]

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
T

R
U

E
[5

6
]

T
R

U
E

[1
0
4
]

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[4
],

[5
2
]

T
R

U
E

[4
],

[5
2
]

T
R

U
E

[5
6
]

F
A

L
S

E

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
T

R
U

E
[5

6
]

F
A

L
S

E

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

F
A

L
S

E
[4

]
F
A

L
S

E
[4

]
T

R
U

E
[5

6
]

F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

F
A

L
S

E
[4

]
F
A

L
S

E
[4

]
T

R
U

E
[5

6
]

T
R

U
E

[7
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

64

T
a
b

le
3

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

E
n

O
ce

a
n

S
P

3
M

u
tu

a
l

E
n

O
ce

a
n

S
P

3
U

n
il
a
te

ra
l

Z
ig

B
ee

S
E

P
T

h
re

a
d

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[4
]

T
R

U
E

[4
]

T
R

U
E

[5
6
]

T
R

U
E

[7
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
T

R
U

E
[5

6
]

T
R

U
E

[7
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
(B

A
N

lo
g
ic

)

T
a
b

le
3
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

2

65

6
.3

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

3

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

W
P

A
3

(E
A

P
-T

L
S

)
W

P
A

3
(E

A
P

-T
T

L
S

)
W

P
A

3
(P

E
A

P
-M

S
C

H
A

P
v
2
)

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[6

8
]

T
R

U
E

[6
8
]

T
R

U
E

[6
8
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

T
R

U
E

[6
9
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

66

T
a
b

le
4

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

W
P

A
3

(E
A

P
-T

L
S

)
W

P
A

3
(E

A
P

-T
T

L
S

/
P

A
P

)
W

P
A

3
(P

E
A

P
-M

S
C

H
A

P
v
2
)

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

T
R

U
E

[6
8
],

[6
9
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
4
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

3

67

6
.4

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

4

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

6
L

O
W

P
A

N
L

o
n

T
a
lk

W
P

A
2

(E
A

P
-T

L
S

)
W

P
A

2
(E

A
P

-T
T

L
S

)

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
T

R
U

E
[7

8
]

T
R

U
E

[8
3
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[7

8
]

T
R

U
E

[8
3
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[7

8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[7

8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[1

3
2
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
T

R
U

E
[1

3
2
]

F
A

L
S

E
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[7

8
]

T
R

U
E

[1
3
1
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
2
]

F
A

L
S

E
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

F
A

L
S

E
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

F
A

L
S

E
[1

3
1
]

F
A

L
S

E
[6

6
],

[6
7
]

F
A

L
S

E
[6

6
],

[6
7
]

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

T
R

U
E

[7
8
]

F
A

L
S

E
T

R
U

E
[6

6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[1
3
2
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

T
R

U
E

[1
3
2
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

T
R

U
E

P
ro

V
er

if
F
A

L
S

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
T

R
U

E
R

es
u

lt

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
T

R
U

E
R

es
u

lt

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
2
]

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
2
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

68

T
a
b

le
5

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

6
L

O
W

P
A

N
L

o
n

T
a
lk

W
P

A
2

(E
A

P
-T

L
S

)
W

P
A

2
(E

A
P

-T
T

L
S

)

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[7
8
]

T
R

U
E

[1
3
1
],

[8
3
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
5
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

4

69

6
.5

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

5

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

W
P

A
2

(P
E

A
P

-M
S

C
H

A
P

v
2
)

W
P

A
&

W
P

A
2

(E
A

P
-P

S
K

)
W

P
A

&
W

P
A

2
-P

S
K

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[6

6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[6

6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
T

R
U

E
[6

6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[6

6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

T
R

U
E

[6
6
],

[6
7
]

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[2
],

[6
6
],

[6
7
]

T
R

U
E

[2
],

[6
6
],

[6
7
]

T
R

U
E

[2
],

[6
6
],

[6
7
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

70

T
a
b

le
6

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

W
P

A
2

(P
E

A
P

-M
S

C
H

A
P

v
2
)

W
P

A
&

W
P

A
2

(E
A

P
-P

S
K

)
W

P
A

&
W

P
A

2
-P

S
K

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

T
R

U
E

[6
6
],

[6
7
],

[8
9
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
gi

c)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
6
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

5

71

6
.6

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

6

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

K
N

X
S

ec
u

re
X

1
0

IN
S

T
E

O
N

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
T

R
U

E
[9

1
]

F
A

L
S

E
F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[9

1
]

F
A

L
S

E
T

R
U

E
[9

4
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[1

3
3
]

T
R

U
E

[9
3
]

T
R

U
E

[9
4
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
T

R
U

E
T

R
U

E
T

R
U

E

IP
T

ra
n

sp
o
rt

1
T

R
U

E
[1

3
3
]

F
A

L
S

E
F
A

L
S

E

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[1

3
3
]

F
A

L
S

E
T

R
U

E
[9

4
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[1

3
3
]

T
R

U
E

[9
3
]

T
R

U
E

[9
4
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[1
3
3
]

F
A

L
S

E
T

R
U

E
[9

4
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[9

4
]

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[9

1
]

F
A

L
S

E
T

R
U

E
[9

4
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

T
R

U
E

T
R

U
E

[9
3
]

T
R

U
E

[9
4
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
3
]

T
R

U
E

[9
3
]

T
R

U
E

[9
4
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
4
]

F
A

L
S

E
F
A

L
S

E

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
5
]

F
A

L
S

E
F
A

L
S

E

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

T
R

U
E

[1
3
4
]

F
A

L
S

E
F
A

L
S

E

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[1
3
4
]

F
A

L
S

E
T

R
U

E
[9

4
]

M
u

tu
al

A
u

th
en

ti
ca

ti
o
n

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
5
]

F
A

L
S

E
F
A

L
S

E

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

T
R

U
E

[1
3
3
]

F
A

L
S

E
F
A

L
S

E

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

T
R

U
E

P
ro

V
er

if
F
A

L
S

E
F
A

L
S

E

S
ec

re
cy

S
ec

u
ri

ty
1
2

T
R

U
E

P
ro

V
er

if
F
A

L
S

E
F
A

L
S

E

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
4
]

F
A

L
S

E
F
A

L
S

E

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

72

T
a
b

le
7

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

K
N

X
S

ec
u

re
X

1
0

IN
S

T
E

O
N

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

a
ti

o
n

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
5
]

F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

F
A

L
S

E
T

R
U

E

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
F
A

L
S

E
F
A

L
S

E

T
a
b

le
7
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

6

73

6
.7

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

7

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

A
N

T
+

Z
-W

av
e

G
.h

n
U

P
B

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
F
A

L
S

E
T

R
U

E
[6

]
T

R
U

E
[8

2
]

F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
F
A

L
S

E
T

R
U

E
[6

]
T

R
U

E
[8

2
]

F
A

L
S

E

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
]

T
R

U
E

[9
0
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[8

2
]

F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
]

F
A

L
S

E

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[1

3
7
]

T
R

U
E

[6
],

[1
3
6
]

F
A

L
S

E
[8

2
]

F
A

L
S

E

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[1

3
7
]

T
R

U
E

[1
3
8
]

T
R

U
E

[8
2
],

[8
0
]

T
R

U
E

[9
0
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[5
4
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
]

F
A

L
S

E

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[1

3
7
]

T
R

U
E

[6
1
]

F
A

L
S

E
F
A

L
S

E

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

T
R

U
E

[5
4
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
]

T
R

U
E

[9
0
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[5
4
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
]

T
R

U
E

[9
0
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[1

3
8
]

F
A

L
S

E
F
A

L
S

E

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
],

[8
0
]

F
A

L
S

E

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

F
A

L
S

E
F
A

L
S

E

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
]

F
A

L
S

E

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
7
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
],

[8
0
]

F
A

L
S

E

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

F
A

L
S

E
F
A

L
S

E

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
F
A

L
S

E

S
ec

re
cy

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if
F
A

L
S

E

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
7
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
],

[8
0
]

T
R

U
E

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

74

T
a
b

le
8

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

A
N

T
+

Z
-W

av
e

G
.h

n
U

P
B

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
],

[8
0
]

F
A

L
S

E

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[6

],
[1

3
6
]

T
R

U
E

[8
2
],

[8
0
]

F
A

L
S

E

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[1
3
7
]

T
R

U
E

[6
],

[1
3
6
]

T
R

U
E

[8
2
],

[8
0
]

T
R

U
E

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
F
A

L
S

E

T
a
b

le
8
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

7

75

6
.8

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

8

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

Ir
D

A
D

a
sh

7
U

W
B

B
L

E

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[3

],
[3

7
]

T
R

U
E

[4
5
]

T
R

U
E

[7
0
]

F
A

L
S

E

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
T

R
U

E
[4

5
]

T
R

U
E

[7
0
]

T
R

U
E

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
F
A

L
S

E
T

R
U

E
[1

2
1
]

F
A

L
S

E
[7

0
]

F
A

L
S

E

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
F
A

L
S

E
T

R
U

E
T

R
U

E
[7

0
]

F
A

L
S

E

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[3

7
]

T
R

U
E

[4
5
]

T
R

U
E

[7
0
]

T
R

U
E

[1
3
9
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

F
A

L
S

E
T

R
U

E
[4

5
]

T
R

U
E

[7
0
]

T
R

U
E

[1
4
0
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[7

0
]

F
A

L
S

E

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

T
R

U
E

[3
7
]

T
R

U
E

[1
4
1
]

T
R

U
E

[7
0]

,
[7

2
]

T
R

U
E

[1
4
2
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[3
7
]

T
R

U
E

[4
5
]

T
R

U
E

[7
0
]

T
R

U
E

[5
1
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[4

5
]

F
A

L
S

E
F
A

L
S

E

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[1

4
3
]

T
R

U
E

[7
0
]

T
R

U
E

[5
1
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[3
7
]

T
R

U
E

[4
5
]

T
R

U
E

[7
0
]

T
R

U
E

[5
1
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[1

4
3
]

T
R

U
E

[7
0
]

T
R

U
E

[5
1
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
P

ro
V

er
if

T
R

U
E

P
ro

ve
ri

f

S
ec

re
cy

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
T

R
U

E
P

ro
V

er
if

T
R

U
E

P
ro

ve
ri

f

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E
T

R
U

E
[5

1
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

76

T
a
b

le
9

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

at
eg

o
ry

W
ei

g
h
t

Ir
D

A
D

a
sh

7
U

W
B

B
L

E

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
[1

4
3
]

T
R

U
E

[7
0
]

F
A

L
S

E
[5

1
]

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
[1

4
3
]

T
R

U
E

[7
0
]

T
R

U
E

[5
1
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
T

R
U

E
[7

0
]

T
R

U
E

[5
1
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

F
A

L
S

E
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
9
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

8

77

6
.9

A
u

th
e
n
ti

ca
ti

o
n

P
ro

to
co

l
E

v
a
lu

a
ti

o
n

9

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

W
ir

el
es

s
H

A
R

T
W

iM
A

X
v
1

W
iM

A
X

v
2

In
d

ep
en

d
en

ce
T

ra
n

sp
o
rt

1
T

R
U

E
[9

8
]

F
A

L
S

E
F
A

L
S

E

C
on

ge
st

io
n

C
on

tr
ol

T
ra

n
sp

o
rt

1
T

R
U

E
[9

7
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

M
es

sa
ge

M
at

ch
in

g
T

ra
n

sp
o
rt

1
T

R
U

E
[9

8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

C
on

n
ec

ti
on

T
y
p

es
T

ra
n

sp
o
rt

1
T

R
U

E
F
A

L
S

E
F
A

L
S

E

IP
T

ra
n

sp
o
rt

1
T

R
U

E
[9

8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

D
at

a
T

y
p

es
A

d
m

in
is

tr
a
ti

o
n

2
T

R
U

E
[9

8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

R
eq

u
es

t
an

d
R

es
p

on
se

M
an

ag
em

en
t

A
d

m
in

is
tr

a
ti

o
n

2
T

R
U

E
[9

8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

M
es

sa
ge

H
ea

d
er

s
A

u
d

it
3

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
cc

ou
n
ti

n
g

M
an

ag
em

en
t

A
u

d
it

3
F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

S
ca

la
b

il
it

y
E

ffi
ci

en
cy

6
T

R
U

E
[9

8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

C
on

st
ra

in
ed

E
ffi

ci
en

cy
6

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
u

th
en

ti
ca

ti
on

C
lu

st
er

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
rr

or
D

et
ec

ti
on

an
d

C
or

re
ct

io
n

S
ec

u
ri

ty
1
2

T
R

U
E

[9
7
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

E
n

ca
p

su
la

ti
on

S
ec

u
ri

ty
1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

E
n

cr
y
p

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

C
er

ti
fi

ca
te

s
S

ec
u

ri
ty

1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

In
te

gr
it

y
C

h
ec

k
S

ec
u

ri
ty

1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

M
u

tu
al

A
u

th
en

ti
ca

ti
on

S
ec

u
ri

ty
1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

T
u

n
n

el
in

g
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
F
A

L
S

E

R
ea

ch
ab

il
it

y
S

ec
u

ri
ty

1
2

F
A

L
S

E
F
A

L
S

E
P

ro
V

er
if

T
R

U
E

P
ro

V
er

if

S
ec

re
cy

S
ec

u
ri

ty
1
2

F
A

L
S

E
T

R
U

E
P

ro
V

er
if

P
ro

V
er

if

C
ry

p
to

-A
gi

li
ty

S
ec

u
ri

ty
1
2

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
u

th
en

ti
ca

ti
on

A
u

th
or

it
y

S
ec

u
ri

ty
1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

78

T
a
b

le
1
0

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

C
ri

te
ri

a
C

a
te

g
o
ry

W
ei

g
h
t

W
ir

el
es

s
H

A
R

T
W

iM
A

X
P

K
M

v
1

W
iM

A
X

P
K

M
v
2

K
ey

L
en

gt
h

S
ec

u
ri

ty
1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
u

th
en

ti
ca

ti
on

S
y
n

ch
ro

n
iz

at
io

n
S

ec
u

ri
ty

1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
u

th
en

ti
ca

te
d

A
cc

es
s

S
ec

u
ri

ty
1
2

T
R

U
E

[9
8
]

T
R

U
E

[7
4
],

[7
3
]

T
R

U
E

[7
4
],

[7
3
]

A
u

th
en

ti
ca

ti
on

L
og

ic
S

ec
u

ri
ty

1
2

T
R

U
E

(B
A

N
lo

g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)
T

R
U

E
(B

A
N

lo
g
ic

)

T
a
b

le
1
0
:

A
u

th
en

ti
ca

ti
o
n

P
ro

to
co

l
E

va
lu

a
ti

o
n

9

79

6.10 Scoring Result

Protocol Total Score

6LOWPAN 0.885714286

WPA3 (EAP-TLS) 0.816326531

WPA3 (EAP-TTLS/PAP) 0.816326531

WPA3 (PEAP-MSCHAPv2) 0.816326531

Zigbee SEP 0.771428571

KNX 0.734693878

Z-Wave 0.730612245

WPA2 (EAP-TLS) 0.718367347

WPA2 (EAP-TTLS/PAP) 0.718367347

WPA2 (PEAP-MSCHAPv2) 0.718367347

4G 0.702040816

3G 0.697959184

WiMAX PKMv2 0.67755102

Thread 0.628571429

WiMAX PKMv1 0.628571429

WPA (EAP-PSK) 0.620408163

WPA2 (PSK) 0.620408163

G.HN 0.604081633

Wireless HART 0.587755102

Lontalk 0.579591837

EnOcean SP3 Mutual 0.546938776

EnOcean SP3 Unilateral 0.546938776

Bluetooth Low Energy (BLE) 0.53877551

UWB 0.514285714

2G 0.453061224

Dash7 0.444897959

ANT+ 0.27755102

Insteon 0.248979592

UPB 0.183673469

IrDA 0.13877551

X10 0.089795918

Table 11: Authentication Protocol Scoring Results

80

7 Conclusion

According to this method most secure protocol is 6LOWPAN, next would be WPA3

technology based authentication protocols. The same statement is true as well to the

most security criterion achieved protocol. X10 received the lowest score, following IrDA

and with Insteon and UPB tied. Powerline communication protocols were expected to

be at the bottom of the table as well. If we would take efficiency to account, then most

secure efficient, meaning both constrained and scalability criterion are True, is ZigBee

SEP and next, Z-Wave tied with KNX. Which have their own smart home technology as

well. Unfortunately this method showed that some protocols, which are widely used, are

not fit for use on the public channel, for example Insteon. Insteon uses IP network as

well and relies on physical security only, this protocol would not be fit for smart grid,

but while it is actually designed for smart homes, then it is still the users choice, which

technology he or she is going to use.

Furthermore, it is understandable that not all smart home devices do not to be authenti-

cated, for example lighting system. It is just not feasible, but to join the actual network,

where communication takes place, that is something what must be restricted. One

should not be able to control smart home or smart grid devices with just plugging into

the power line network or local are network. Nevertheless, smart home and smart grid

protocols have a long way to go, but as it seems, the higher the power consumption the

higher the security, which can also be expected. So far, there has not been technological

breakthrough in computational strength with low power processing units, but while

smart grids being developed and smart homes becoming more common than ever and a

network containing of smart homes and more do not seem so unfeasible anymore, then

this is seems like a way to go.

According to these results, it is clear that depreciation of X10 should be considered, even

IrDA at least for smart home and smart home networks. Powerline communication has a

long way to go, comparing it to radio frequency or cellular based communication.

Truly seems like the title of the most suitable communication standard for smart grid

residential network domain by the U.S. National Institute for Standards and Technology,

which was give for ZigBee, is something that is deserved. This also verifies that with this

method authentication protocols can be evaluated and get meaningful results.

81

8 Future Uses

This method can be improved a lot, for example evaluate the computational strength

of the used encryption algorithms and elaborate key strength criteria. Also one could

evaluate the computational power of these devices which are used by one’s technology.

Even going deeper into verification of authentication, using involing more tools and

criterion.

One might even be able to develop perfect protocol according to this method. Unfor-

tunately still some external measures have to be taken into account. Sound and secure

communication protocols cannot be developed over night, just like evaluation methods.

They must be constantly improved and be used, so that they could grow into something,

that would emerge into a standard.

82

Appendices

Appendix 1 – Bluetooth Authentication

Bluetooth uses for pairing Elliptic Curve Diffie Hellman based key agreement, which is

conducted as follows [3]: Two Bluetooth devices begin communication with the same

PIN (Personal Identification Number) code that is used for generating 128-bit random

numbers. Each master and slave pair can have a different PIN code for the devices.

An initialization key is generated when Bluetooth devices meet for the first time and is

used for securing the generation of other more secure 128-bit keys. An initialization key

is derived from an unencrypted 128-bit random number IN RAND, an L-byte (1 ≤L≤16)

PIN code, and a BD ADDR. If one device has a fixed PIN code, the BD ADDR of the

other device is used. If both devices can support a variable PIN code, the BD ADDR of

the device that received IN RAND is used.

The initialization key is used for encrypting a 128-bit random number LK RAND,

which is exchanged when the next link or a key is generated. A combination key is

always dependent on two devices and therefore derived from information of both devices

(BD ADDRA, LK RANDA, BD ADDRB, LK RANDB). It is used for challenge-response

authentication in which an asker’s knowledge of a secret link key is checked.

During each authentication, a new 128-bit unencrypted random number AU RAND is

exchanged. The asker returns a 32-bit result (SRES, Signed Response) to the verifier.

The verifier also calculates the same SRES value and compares it to the received SRES.

If the SRES values match, the authentication is completed successfully and a 96-bit

result (ACO, Authenticated Ciphering Offset) is computed in both devices.

An ACO, a link key and an unencrypted 128-bit random number EN RAND are used for

generating an encryption key, which is one input to the keystream generator and makes

symmetric encryption possible. Other inputs to the keystream generator are master’s

BD ADDR and 26 bits of the master’s real-time clock. Application layer key exchange

and encryption methods can also be used to secure communication on top of the existing

Bluetooth security measures. Bluetooth security has remained almost unchanged since

the first Bluetooth 1.0 specification was released 1999. [3] Diffie-Hellman key exchange

has been explained in Appendix 3. Message exchange for simplified BLE authentication

sequence is show in Figure 2:

83

Figure 2: Bluetooth authentication dialogue [3]

84

ProVerif Verification

set traceDisplay = long.

query attacker(DecryptedText4).

query attacker(DecryptedText5).

query attacker(LongTermKey).

query attacker(LongTermKeyBitstring).

query x:bitstring; event(Decryption4(x)).

query x:bitstring; event(Decryption5(x)).

query x:bitstring; event(Decryption4(x)) ==> event(Decryption5(x)).

query x:bitstring; inj=event(Decryption4(x)) ==> inj=event(Decryption5(x))

.

type pin.

type key.

type nonce.

type realkey.

free DeviceAPin:pin[private].

free DeviceBPin:pin[private].

free c: channel.

free Hello:bitstring [private].

free HelloACK , TESTACK:bitstring [private].

free RAND NR :bitstring[private].

free INITKEY1:key[private].

free AU RAND B :bitstring[private].

free INITKEY2:key[private].

free AU RAND A , TEST:bitstring[private].

free DecryptedText1 , DecryptedText2 , DecryptedText3 ,DecryptedText4 ,

DecryptedText5 , LongTermKeyBitstring:bitstring[private].

free LongTermKey:realkey[private].

fun InitKeyGen(bitstring , bitstring , pin): key.

fun SRESGen(key , bitstring , bitstring): bitstring.

fun NonceToRealKey(bitstring):realkey [typeConverter].

reduc forall x: key , y: bitstring , z:bitstring ; SRESDeGen(SRESGen(x, y, z

), y, z) = x.

fun Encryption(bitstring , key): nonce.

reduc forall x: bitstring , y: key; Decryption(Encryption(x, y), y) = x.

fun RealEncryption(bitstring , realkey): nonce.

85

reduc forall x: bitstring , y: realkey; RealDecryption(RealEncryption(x, y)

, y) = x.

event RandomNumberGeneration(bitstring).

event RandomNumberGeneration2(bitstring).

event InitKeyGeneration1(key).

event InitKeyGeneration2(key).

event SRESGeneration(bitstring).

event SRESMATCH(bitstring).

event Decryption1(bitstring).

event Decryption2(bitstring).

event Decryption3(bitstring).

event Decryption4(bitstring).

event Decryption5(bitstring).

event LongTermKeyGeneration(realkey).

let DeviceB1 =

new RAND NR2 :bitstring;

let AU RAND B = RAND NR2 in

event RandomNumberGeneration2(AU RAND B);

out(c, AU RAND B).

let DeviceA1 =

in(c, AU RAND B :bitstring);

new RAND NR :bitstring;

let AU RAND A = RAND NR in

event RandomNumberGeneration(AU RAND A);

out(c, AU RAND A).

let DeviceB2 =

in(c, AU RAND A :bitstring);

let INITKEY2 = InitKeyGen(AU RAND B , AU RAND A , DeviceBPin) in

event InitKeyGeneration2(INITKEY2);

let SRESB = SRESGen(INITKEY2 , AU RAND B , AU RAND A) in

event SRESGeneration(SRESB);

out(c, SRESB).

let DeviceA2 =

in(c, SRESB:bitstring);

let INITKEY1 = InitKeyGen(AU RAND B , AU RAND A , DeviceAPin) in

event InitKeyGeneration1(INITKEY1);

if SRESB = SRESGen(INITKEY1 , AU RAND B , AU RAND A) then

86

(

event SRESMATCH(SRESB);

out(c, Encryption(Hello , INITKEY1))

)

else

(

0

).

let DeviceB3 =

in(c, EncryptedText1:nonce);

let DecryptedText1 = Decryption(EncryptedText1 , INITKEY2) in

event Decryption1(DecryptedText1);

out(c, Encryption(HelloACK , INITKEY2)).

let DeviceA3 =

in(c, EncryptedText2:nonce);

let DecryptedText2 = Decryption(EncryptedText2 , INITKEY1) in

event Decryption2(DecryptedText2);

new LongTermKey:realkey;

new LongTermKeyBitstring:bitstring;

let LongTermKey = LongTermKey in

event LongTermKeyGeneration(LongTermKey);

out(c, Encryption(LongTermKeyBitstring , INITKEY1)).

let DeviceB4 =

in(c, EncryptedText3:nonce);

let DecryptedText3 = Decryption(EncryptedText3 , INITKEY2)

in

event Decryption3(DecryptedText3);

out(c, RealEncryption(TEST , NonceToRealKey(DecryptedText3)

)).

let DeviceA4 =

in(c, EncryptedText4:nonce);

let DecryptedText4 = RealDecryption(EncryptedText4 ,

LongTermKey) in

event Decryption4(DecryptedText4);

out(c, RealEncryption(TESTACK , LongTermKey)).

let DeviceB5=

in(c, EncryptedText5:nonce);

87

let DecryptedText5 = RealDecryption(EncryptedText5 , NonceToRealKey

(DecryptedText3)) in

event Decryption5(DecryptedText5).

process (! DeviceA1 |! DeviceB1 |! DeviceA2 |! DeviceB2 |! DeviceA3 |! DeviceB4 |!
DeviceA4 |! DeviceB5)

88

Proverif Result

Process:

(

{1}!
{2}in(c, AU RAND B 35 : bitstring);

{3} new RAND NR 36 : bitstring;

{4} let AU RAND A 37 : bitstring = RAND NR 36 in

{5} event RandomNumberGeneration(AU RAND A 37);

{6} out(c, AU RAND A 37)

) | (

{7}!
{8} new RAND NR2 : bitstring;

{9} let AU RAND B 38 : bitstring = RAND NR2 in

{10} event RandomNumberGeneration2(AU RAND B 38);

{11} out(c, AU RAND B 38)

) | (

{12}!
{13}in(c, SRESB: bitstring);

{14} let INITKEY1 39 : key = InitKeyGen(AU RAND B , AU RAND A ,DeviceAPin)

in

{15} event InitKeyGeneration1(INITKEY1 39);

{16}if (SRESB = SRESGen(INITKEY1 39 , AU RAND B , AU RAND A)) then

{17} event SRESMATCH(SRESB);

{18} out(c, Encryption(Hello , INITKEY1 39))

) | (

{19}!
{20}in(c, AU RAND A 40 : bitstring);

{21} let INITKEY2 41 : key = InitKeyGen(AU RAND B , AU RAND A 40 ,

DeviceBPin) in

{22} event InitKeyGeneration2(INITKEY2 41);

{23} let SRESB 42 : bitstring = SRESGen(INITKEY2 41 , AU RAND B ,

AU RAND A 40) in

{24} event SRESGeneration(SRESB 42);

{25} out(c, SRESB 42)

) | (

{26}!
{27}in(c, EncryptedText2: nonce);

{28} let DecryptedText2 43 : bitstring = Decryption(EncryptedText2 ,

INITKEY1) in

{29} event Decryption2(DecryptedText2 43);

{30} new LongTermKey 44 : realkey;

89

{31} new LongTermKeyBitstring 45 : bitstring;

{32} let LongTermKey 46 : realkey = LongTermKey 44 in

{33} event LongTermKeyGeneration(LongTermKey 46);

{34} out(c, Encryption(LongTermKeyBitstring 45 ,INITKEY1))

) | (

{35}!
{36}in(c, EncryptedText3: nonce);

{37} let DecryptedText3 47 : bitstring = Decryption(EncryptedText3 ,

INITKEY2) in

{38} event Decryption3(DecryptedText3 47);

{39} out(c, RealEncryption(TEST , DecryptedText3 47))

) | (

{40}!
{41}in(c, EncryptedText4: nonce);

{42} let DecryptedText4 48 : bitstring = RealDecryption(EncryptedText4 ,

LongTermKey) in

{43} event Decryption4(DecryptedText4 48);

{44} out(c, RealEncryption(TESTACK ,LongTermKey))

) | (

{45}!
{46}in(c, EncryptedText5: nonce);

{47} let DecryptedText5 49 : bitstring = RealDecryption(EncryptedText5 ,

DecryptedText3) in

{48} event Decryption5(DecryptedText5 49)

)

== Query not attacker(DecryptedText4 [])

nounif attacker(Encryption(DecryptedText2 337 ,INITKEY1 []))/=5000

Completing ...

Starting query not attacker(DecryptedText4 [])

RESULT not attacker(DecryptedText4 []) is true.

== Query not attacker(DecryptedText5 [])

nounif attacker(Encryption(DecryptedText2 732 ,INITKEY1 []))/=5000

Completing ...

Starting query not attacker(DecryptedText5 [])

RESULT not attacker(DecryptedText5 []) is true.

== Query not attacker(LongTermKey [])

nounif attacker(Encryption(DecryptedText2 1131 ,INITKEY1 []))/=5000

Completing ...

Starting query not attacker(LongTermKey [])

RESULT not attacker(LongTermKey []) is true.

== Query not attacker(LongTermKeyBitstring [])

90

nounif attacker(Encryption(DecryptedText2 1530 ,INITKEY1 []))/=5000

Completing ...

Starting query not attacker(LongTermKeyBitstring [])

RESULT not attacker(LongTermKeyBitstring []) is true.

== Query not event(Decryption4(x 50))

nounif attacker(Encryption(DecryptedText2 1929 ,INITKEY1 []))/=5000

Completing ...

Starting query not event(Decryption4(x 50))

RESULT not event(Decryption4(x 50)) is true.

== Query not event(Decryption5(x 51))

nounif attacker(Encryption(DecryptedText2 2333 ,INITKEY1 []))/=5000

Completing ...

Starting query not event(Decryption5(x 51))

RESULT not event(Decryption5(x 51)) is true.

== Query event(Decryption4(x 52)) ==> event(Decryption5(x 52))

nounif attacker(Encryption(DecryptedText2 2737 ,INITKEY1 []))/=5000

Completing ...

Starting query event(Decryption4(x 52)) ==> event(Decryption5(x 52))

RESULT event(Decryption4(x 52)) ==> event(Decryption5(x 52)) is true.

== Query inj=event(Decryption4(x 53)) ==> inj=event(Decryption5(x 53))

nounif attacker(Encryption(DecryptedText2 3141 ,INITKEY1 []))/=5000

Completing ...

Starting query inj=event(Decryption4(x 53)) ==> inj=event(Decryption5(x 53

))

RESULT inj=event(Decryption4(x 53)) ==> inj=event(Decryption5(x 53)) is

true.

91

Appendix 2 – EnOcean Authentication

To configure the information needed for the secure communication in operation mode

a teach-in procedure mode must be executed. Within the teach-in procedure following

information are transmitted to one another : the encryption method, key, rolling code,

rolling code size and CMAC size that will be used during the operation mode. The

teach-in procedure can be set up to be an unidirectional or bidirectional process. [4]

In the case of unidirectional security teach-in Device B does not send a teach-in message.

Firstly, the Device B must be set in its learn mode to accept the teach-in messages from

Device A.The Device A sends the security teach-in message whenever its specific trigger

is activated.After reception of the teach-in message the Device B stores the security

parameters of Device A: these parameters include the Device’s A private key, KEYs,

current RLC, RLCs, RLCs size and CMACs size and way of encrypting information. The

KEYs and RLCs can be sent encrypted by the sender using the so called pre-shared key,

PSKs. [4]

If the process is bidirectional the Device B, a gateway, for instance, answers back with a

security teach-in message. This teach-in message contains as receiver-ID the ID of the

Device A. If the Device B encrypts its teach-in message it will make use of the same PSKs

key of the Device A. In the second security teach-in depicted in the picture the Device

B informs the Device A of its own KEYg and RLCg and CMACg. The format of the

teach-in messages sent by Device A and Device B are the same. The teach-in delivered

by Device B must occur in worst case 500ms after the reception of the teach-in sent

by Device A. The Device’s A time-out for the reception of a teach-in is 750ms. Before

Device A sends the security teach-in message the receiver is put into teach-in mode –

active listening for teach-in messages. The teach-in method is limited typically to 30

seconds. After this time-out the module leaves its teach-in mode, and returns typically

to its operation mode. Teach-in messages are not accepted until the next activation of

the teach-in mode. [4]

EnOcean SP3 Teach-in message exchange is shown in Figure 3. Methods for the teach-in

for execution

1. Over wireless from the transmitter to the receiver

2. Over serial interface to the receiver through a third party

Execution over serial interface or other methods are not part of this specification and are

rather application / use case specific. The execution of the teach-in process via wireless

92

Figure 3: EnOcean Teach-In Process [4]

leads to two possibilities:

1. Teach-in message is sent in plain text (no encryption in the information is performed).

This means that any listener can eavesdrop the information.

2. Parts of the teach-in message are encrypted. For the encryption a pre-shared key is

used. Encrypted are the RLC and KEY. Message structure is listed below. Details

about this execution can be found in chapter

This secure teach-in message only transfers the security specific data. To enable profile

interpretation a profile-teach-in message (EEP or GP) has to be transmitted after the

secure teach-in. This profile teach-in is conducted already secured (encrypted) using the

decrypted key that the secure teach-in transmitted. With the information contained in

the teach-in SLF byte the receiver is informed about the details of the secure messages

in operation mode: what fields, how long they are, and what are the applied security

algorithms. The pre-shared key of the sender module must have been communicated to

the receiver (a gateway) via serial interface in advance. The pre-shared key is typically

written on a sticker on the sender module. The pre-shared key is not transmitted through

93

the EnOcean air interface. If pre-shared key is used RLC and KEY will be encrypted

using the VAES encryption. [4]

Authentication based on CMAC Authentication can be:

1. Unilateral – only one of the communication partners is authenticated and his out-

going communication is protected against replay attacks – one Nonce is exchanged.

2. Mutual – both communication partners are authenticated and both communication

ways are protected against replay attacks – two Nonce are exchanged

For CMAC computing the EnOcean security concept uses the Payload of telegrams. The

Nonce is used during CMAC computing too and so ensures that the Nonce is connected

with the exchanged message and its data content. So becomes the data content also valid

for limited time. EnOcean Security concept uses the VAES for data encryption. The

Nonce can be also used for the initialization vector for the VAES process. This way a

random element is added to the VAES process. This is required if Nonce is a random

number and no RLC is used. [4] The Nonce can be:

1. Used during CMAC counting

2. Used as initialization vector for VAES (encryption/decryption) counting

Nonce represents the challenge and has to be therefore exchanged between the communi-

cation partners via air interface. The Challenge and Response does not have to encrypt

and can be transferred plaintext. The CMAC algorithm represents the securing element.

During data communication following constrains are applied:

1. Bidirectional communication can be only executed after mutual authentication.

Both parties can trigger the authentication.

2. Unidirectional communication is unilateral authenticated. The emitter of the data

flow is authenticated and only the emitter can trigger the communication. The

challenge is provided by the consumer of the data.

For Nonce one can use:

1. Random number 32 bit – here is critical that the generator process is not predictable,

does not repeat same sequences and is equally spread on the defined range

2. Simple incrementing, non-repeating sequence 32-bit number

94

Figure 4: EnOcean mutual authentication [4]

95

Figure 5: EnOcean Unilateral authentication [4]

96

EnOcean SP3 mutual authentication message exchange is shown in Figure 4 and unilateral

authentication Figure 5.

If the message gets lost the process is considered as failed. Repeated transmissions of

request for challenge or challenge messages between identical communication partners

shall restart the authentication process and cancel any previous ongoing validation.

The PSK code (16 bytes) comes together with an extra byte, CRC checksum, which is

used to verify that the installer writes correctly the 16-byte PSK code into the Device

B. The checksum uses a CRC8 algorithm. Data can be encrypted using the standard

high-security AES128 algorithm with cipher-block chaining (CBC). Constant data will

result in constant encrypted information. [4]

CMAC authentication is showin in Appendix 18

97

Mutual Authentication ProVerif Verification

set traceDisplay = long.

query attacker(SecureKey).

query attacker(SecureKeyBitstring).

query attacker(DecryptedData4).

query attacker(DecryptedData5).

query x:bitstring; event(DataDecryption4(x)).

query x:bitstring; event(DataDecryption5(x)).

query x:bitstring; event(DataDecryption4(x)) ==> event(DataDecryption5(x))

.

query x:bitstring; inj=event(DataDecryption4(x)) ==> inj=event(

DataDecryption5(x)).

free c:channel.

type nonce.

type key.

type seckey.

free N:nonce [private].

fun CMAC(bitstring , bitstring , bitstring , nonce , key):nonce.

reduc forall x: bitstring , y: bitstring , v: bitstring , z: nonce , c:key;

DeCMAC(CMAC(x,y,v,z,c),c) = x.

free CMACData1: nonce [private].

free CMACData2: nonce [private].

free Data:bitstring [private].

free RND NumberA :bitstring [private].

free RND NumberB :bitstring [private].

free Counter1:bitstring[private].

free Counter2:bitstring[private].

free Hello , HelloAck , SecureKeyBitstring:bitstring[private].

free KeyA:key [private].

free KeyB:key[private].

free SecureKey:seckey[private].

free Place Holder :bitstring[private].

98

free EncryptedData:nonce[private].

free EncryptedData2:nonce[private].

free DecryptedData:nonce[private].

free DecryptedData2:nonce[private].

free DecryptedData4:bitstring[private].

free DecryptedData5:bitstring[private].

free DecryptedCMACData1:bitstring[private].

free DecryptedCMACData2:bitstring[private].

free DecryptedCMACData3:bitstring[private].

free DecryptedCMACData4:bitstring[private].

fun KeyBasedEnc(nonce , key): nonce.

reduc forall x: nonce , y: key; KeyBasedDecryption(KeyBasedEnc(x,y),y) = x.

fun SecureKeyEncryption(bitstring , seckey): nonce.

reduc forall x: bitstring , y: seckey; SecureKeyDecryption(

SecureKeyEncryption(x,y),y) = x.

fun bitstringTOseckey(bitstring):seckey.

event TimerStart1 1 (bitstring).

event TimerStart1 2 (bitstring).

event TimerStart1 3 (bitstring).

event TimerStart1 4 (bitstring).

event TimerStart2 1 (bitstring).

event TimerStart2 2 (bitstring).

event TimerStart2 3 (bitstring).

event TimerStart2 4 (bitstring).

event DataDecryption1(nonce).

event DataDecryption2(nonce).

event DataDecryption3(nonce).

event DataDecryption4(bitstring).

event DataDecryption5(bitstring).

event CMACDataDecryption1(bitstring).

event CMACDataDecryption2(bitstring).

event CMACDataDecryption3(bitstring).

event CMACDataDecryption4(bitstring).

event CMACDataDecryption5(bitstring).

event DecryptedSecureKey(seckey).

let DeviceA1 =

new RND NumberA :bitstring;

new Counter1:bitstring;

99

new KeyA:key;

let Counter1 = Counter1 in

event TimerStart1 1 (Counter1);

out(c, CMAC(Data , RND NumberA , Place Holder , N, KeyA)).

let DeviceB1 =

in(c, CMACData1:nonce);

new KeyB:key;

let DecryptedCMACData1 = DeCMAC(CMACData1 , KeyB) in

event CMACDataDecryption1(DecryptedCMACData1);

new RND NumberB :bitstring;

new Counter2:bitstring;

let Counter2 = Counter2 in

event TimerStart2 1 (Counter2);

out(c, CMAC(Data , RND NumberA , RND NumberB , N, KeyB)).

let DeviceA2 =

in(c, CMACData2:nonce);

if Counter2 <> Counter2 then

(

0

)

else

(

let DecryptedCMACData2 = DeCMAC(CMACData2 , KeyA) in

event CMACDataDecryption2(DecryptedCMACData2);

new Counter1:bitstring;

let Counter1 = Counter1 in

event TimerStart1 2 (Counter1);

out(c, KeyBasedEnc(CMAC(Data , RND NumberA , RND NumberB , N, KeyA),

KeyA))

).

let DeviceB2 =

in(c, EncryptedData:nonce);

if Counter2 <> Counter2 then

(

0

)

else

(

new Counter2:bitstring;

100

let Counter2 = Counter2 in

event TimerStart2 2 (Counter2);

let DecryptedData = KeyBasedDecryption(EncryptedData , KeyB) in

event DataDecryption1(DecryptedData);

let DecryptedCMACData3 = DeCMAC(DecryptedData , KeyB) in

event CMACDataDecryption3(DecryptedCMACData3);

out(c, KeyBasedEnc(CMAC(Data , RND NumberA , RND NumberB , N, KeyB),KeyB)

)

).

let DeviceA3 =

in(c, EncryptedData2:nonce);

if Counter1 <> Counter1 then

(

0

)

else

(

new Counter1:bitstring;

let Counter1 = Counter1 in

event TimerStart1 3 (Counter1);

let DecryptedData2 = KeyBasedDecryption(EncryptedData2 , KeyA) in

event DataDecryption2(DecryptedData2);

let DecryptedCMACData4 = DeCMAC(DecryptedData2 , KeyA) in

event CMACDataDecryption4(DecryptedCMACData4);

new SecureKeyBitstring:bitstring;

new SecureKey:seckey;

out(c, KeyBasedEnc(CMAC(SecureKeyBitstring , RND NumberA , RND NumberB ,

N, KeyA),KeyA))

).

let DeviceB3 =

in(c, EncryptedData3:nonce);

if Counter2 <> Counter2 then

(

0

)

else

(

new Counter2:bitstring;

let Counter2 = Counter2 in

101

event TimerStart2 3 (Counter2);

let DecryptedData3 = KeyBasedDecryption(EncryptedData3 , KeyB) in

event DataDecryption3(DecryptedData3);

let DecryptedCMACData5 = DeCMAC(DecryptedData3 , KeyA) in

event CMACDataDecryption5(DecryptedCMACData5);

let SecureKey = bitstringTOseckey(DecryptedCMACData5) in

event DecryptedSecureKey(SecureKey);

out(c, SecureKeyEncryption(Hello , SecureKey))

).

let DeviceA4 =

in(c, EncryptedData4:nonce);

if Counter1 <> Counter1 then

(

0

)

else

(

new Counter1:bitstring;

let Counter1 = Counter1 in

event TimerStart1 4 (Counter1);

let DecryptedData4 = SecureKeyDecryption(EncryptedData4 , SecureKey

) in

event DataDecryption4(DecryptedData4);

out(c, SecureKeyEncryption(HelloAck , SecureKey))

).

let DeviceB4 =

in(c, EncryptedData5:nonce);

if Counter2 <> Counter2 then

(

0

)

else

(

new Counter2:bitstring;

let Counter2 = Counter2 in

event TimerStart2 4 (Counter2);

let DecryptedData5 = SecureKeyDecryption(EncryptedData5 ,

SecureKey) in

event DataDecryption5(DecryptedData5)

).

102

process

(

!DeviceA1 |! DeviceB1 |! DeviceA2 |! DeviceB2 |! DeviceA3 |! DeviceA4 |! DeviceB4
)

103

Mutual Authentication ProVerif Result

Process:

(

{1}!
{2} new RND NumberA 34 : bitstring;

{3} new Counter1 35 : bitstring;

{4} new KeyA 36 : key;

{5} let Counter1 37 : bitstring = Counter1 35 in

{6} event TimerStart1 1 (Counter1 37);

{7} out(c, CMAC(Data , RND NumberA 34 ,Place Holder ,N, KeyA 36))

) | (

{8}!
{9}in(c, CMACData1 38 : nonce);

{10} new KeyB 39 : key;

{11} let DecryptedCMACData1 40 : bitstring = DeCMAC(CMACData1 38 , KeyB 39

) in

{12} event CMACDataDecryption1(DecryptedCMACData1 40);

{13} new RND NumberB 41 : bitstring;

{14} new Counter2 42 : bitstring;

{15} let Counter2 43 : bitstring = Counter2 42 in

{16} event TimerStart2 1 (Counter2 43);

{17} out(c, CMAC(Data ,RND NumberA , RND NumberB 41 ,N, KeyB 39))

) | (

{18}!
{19}in(c, CMACData2 44 : nonce);

{20}if (Counter2 <> Counter2) then

0

else

{21} let DecryptedCMACData2 45 : bitstring = DeCMAC(CMACData2 44 ,

KeyA) in

{22} event CMACDataDecryption2(DecryptedCMACData2 45);

{23} new Counter1 46 : bitstring;

{24} let Counter1 47 : bitstring = Counter1 46 in

{25} event TimerStart1 2 (Counter1 47);

{26} out(c, KeyBasedEnc(CMAC(Data ,RND NumberA ,RND NumberB ,N,KeyA),

KeyA))

) | (

{27}!
{28}in(c, EncryptedData 48 : nonce);

{29}if (Counter2 <> Counter2) then

0

104

else

{30} new Counter2 49 : bitstring;

{31} let Counter2 50 : bitstring = Counter2 49 in

{32} event TimerStart2 2 (Counter2 50);

{33} let DecryptedData 51 : nonce = KeyBasedDecryption(

EncryptedData 48 ,KeyB) in

{34} event DataDecryption1(DecryptedData 51);

{35} let DecryptedCMACData3 52 : bitstring = DeCMAC(DecryptedData 51

,KeyB) in

{36} event CMACDataDecryption3(DecryptedCMACData3 52);

{37} out(c, KeyBasedEnc(CMAC(Data ,RND NumberA ,RND NumberB ,N,KeyB),

KeyB))

) | (

{38}!
{39}in(c, EncryptedData2 53 : nonce);

{40}if (Counter1 <> Counter1) then

0

else

{41} new Counter1 54 : bitstring;

{42} let Counter1 55 : bitstring = Counter1 54 in

{43} event TimerStart1 3 (Counter1 55);

{44} let DecryptedData2 56 : nonce = KeyBasedDecryption(

EncryptedData2 53 ,KeyA) in

{45} event DataDecryption2(DecryptedData2 56);

{46} let DecryptedCMACData4 57 : bitstring = DeCMAC(

DecryptedData2 56 ,KeyA) in

{47} event CMACDataDecryption4(DecryptedCMACData4 57);

{48} new SecureKeyBitstring 58 : bitstring;

{49} new SecureKey 59 : seckey;

{50} out(c, KeyBasedEnc(CMAC(SecureKeyBitstring 58 ,RND NumberA ,

RND NumberB ,N,KeyA),KeyA))

) | (

{51}!
{52}in(c, EncryptedData4: nonce);

{53}if (Counter1 <> Counter1) then

0

else

{54} new Counter1 60 : bitstring;

{55} let Counter1 61 : bitstring = Counter1 60 in

{56} event TimerStart1 4 (Counter1 61);

{57} let DecryptedData4 62 : bitstring = SecureKeyDecryption(

EncryptedData4 ,SecureKey) in

105

{58} event DataDecryption4(DecryptedData4 62);

{59} out(c, SecureKeyEncryption(HelloAck ,SecureKey))

) | (

{60}!
{61}in(c, EncryptedData5: nonce);

{62}if (Counter2 <> Counter2) then

0

else

{63} new Counter2 63 : bitstring;

{64} let Counter2 64 : bitstring = Counter2 63 in

{65} event TimerStart2 4 (Counter2 64);

{66} let DecryptedData5 65 : bitstring = SecureKeyDecryption(

EncryptedData5 ,SecureKey) in

{67} event DataDecryption5(DecryptedData5 65)

)

== Query not attacker(SecureKey [])

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 478 ,y 479 ,v 480 ,z 481 ,

KeyA []),KeyA []))/=5000

Completing ...

Starting query not attacker(SecureKey [])

RESULT not attacker(SecureKey []) is true.

== Query not attacker(SecureKeyBitstring [])

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 1064 ,y 1065 ,v 1066 ,

z 1067 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query not attacker(SecureKeyBitstring [])

RESULT not attacker(SecureKeyBitstring []) is true.

== Query not attacker(DecryptedData4 [])

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 1652 ,y 1653 ,v 1654 ,

z 1655 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query not attacker(DecryptedData4 [])

RESULT not attacker(DecryptedData4 []) is true.

== Query not attacker(DecryptedData5 [])

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 2240 ,y 2241 ,v 2242 ,

z 2243 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query not attacker(DecryptedData5 [])

RESULT not attacker(DecryptedData5 []) is true.

== Query not event(DataDecryption4(x 66))

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 2828 ,y 2829 ,v 2830 ,

106

z 2831 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query not event(DataDecryption4(x 66))

RESULT not event(DataDecryption4(x 66)) is true.

== Query not event(DataDecryption5(x 67))

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 3421 ,y 3422 ,v 3423 ,

z 3424 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query not event(DataDecryption5(x 67))

RESULT not event(DataDecryption5(x 67)) is true.

== Query event(DataDecryption4(x 68)) ==> event(DataDecryption5(x 68))

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 4014 ,y 4015 ,v 4016 ,

z 4017 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query event(DataDecryption4(x 68)) ==> event(DataDecryption5(x 68

))

RESULT event(DataDecryption4(x 68)) ==> event(DataDecryption5(x 68)) is

true.

== Query inj=event(DataDecryption4(x 69)) ==> inj=event(DataDecryption5(

x 69))

nounif attacker(KeyBasedEnc(CMAC(DecryptedCMACData4 4607 ,y 4608 ,v 4609 ,

z 4610 ,KeyA []),KeyA []))/=5000

Completing ...

Starting query inj=event(DataDecryption4(x 69)) ==> inj=event(

DataDecryption5(x 69))

RESULT inj=event(DataDecryption4(x 69)) ==> inj=event(DataDecryption5(x 69

)) is true..

107

Unilateral Authentication ProVerif Verification

set traceDisplay = long.

query attacker(SecureKey).

query attacker (DeCMACDATA).

query attacker (DecryptedHello).

query x:seckey; event(DecryptedSecureKey(x)).

query x:bitstring; event(ConnectionVerification2(x)).

query x:seckey , y:bitstring; inj=event(DecryptedSecureKey(x)) ==> inj=

event(ConnectionVerification2(y)).

query x:seckey , y:bitstring; event(DecryptedSecureKey(x)) ==> event(

ConnectionVerification2(y)).

free c:channel.

type nonce.

type key.

type seckey.

type kkey.

free Data:bitstring [private].

free RND NumberB :bitstring [private].

free Counter1:bitstring[private].

free Counter2:bitstring[private].

free KeyA:key [private].

free KeyB:key[private].

free KeyAA:kkey [private].

free KeyBB:kkey[private].

free DeCMACDATA:bitstring [private].

free DeCMACDATA2:bitstring [private].

free StartData:nonce [private].

free Hello:nonce[private].

free DecryptedHello , InTeachHello:bitstring[private].

free EncryptedHello:nonce[private].

free SecureKey:seckey[private].

free EncryptedData:nonce[private].

free DecryptedData:bitstring[private].

fun KeyBasedEnc(nonce , key): nonce.

reduc forall x: nonce , y: key; KeyBasedDecryption(KeyBasedEnc(x,y),y) = x.

fun SecureEncryption(bitstring , seckey): nonce.

108

reduc forall x: bitstring , y: seckey; SecureDecryption(SecureEncryption(x,

y),y) = x.

fun CMAC(bitstring , bitstring , kkey): nonce.

reduc forall x: bitstring , y:bitstring , z:kkey; DeCMAC(CMAC(x,y,z),z) = x.

fun bitstringTOseckey(bitstring):seckey.

event TimerStart1(bitstring).

event TimerStart2(bitstring).

event DataDecryption1(nonce).

event RecievedData(bitstring).

event Connection(nonce).

event ConnectionVerification(nonce).

event ConnectionVerification2(bitstring).

event DecryptedSecureKey(seckey).

let DeviceA1 =

new KeyA:key;

out(c, Data).

let DeviceB1 =

in(c, Data:bitstring);

new KeyB:key;

new RND NumberB :bitstring;

new Counter1:bitstring;

let Counter1 = Counter1 in

event TimerStart1(Counter1);

out(c, (Data , RND NumberB)).

let DeviceA2 =

in(c, (Data:bitstring , RND NumberB :bitstring));

new Counter2:bitstring;

let Counter2 = Counter2 in

event TimerStart2(Counter2);

if Counter2 = Counter2 then

(

new SecureKey:seckey;

new SecureKeyBitstring:bitstring;

out(c, KeyBasedEnc(CMAC(SecureKeyBitstring , RND NumberB , KeyAA),KeyA))

)

else

109

(

0

).

let DeviceB2 =

in(c, EncryptedData:nonce);

if Counter1 = Counter1 then

(

let DecryptedData = KeyBasedDecryption(EncryptedData , KeyB) in

event DataDecryption1(DecryptedData);

let DeCMACDATA = DeCMAC(DecryptedData , KeyBB) in

event RecievedData(DeCMACDATA);

let SecureKey = bitstringTOseckey(DeCMACDATA) in

event DecryptedSecureKey(SecureKey);

out(c, SecureEncryption(InTeachHello , SecureKey))

)

else

(

0

).

let DeviceA3 =

in(c, EncryptedHello:nonce);

if Counter2 = Counter2 then

(

let DecryptedHello = SecureDecryption(EncryptedHello , SecureKey) in

event ConnectionVerification2(DecryptedHello)

)

else

(

0

).

process

(

!DeviceA1

|
!DeviceB1

|
!DeviceA2

110

|
!DeviceB2

|
!DeviceA3

)

111

Unilateral Authentication ProVerif Result

Process:

(

{1}!
{2} new KeyA 32 : key;

{3} out(c, Data)

) | (

{4}!
{5}in(c, Data 33 : bitstring);

{6} new KeyB 34 : key;

{7} new RND NumberB 35 : bitstring;

{8} new Counter1 36 : bitstring;

{9} let Counter1 37 : bitstring = Counter1 36 in

{10} event TimerStart1(Counter1 37);

{11} out(c, (Data 33 , RND NumberB 35))

) | (

{12}!
{13}in(c, (Data 38 : bitstring , RND NumberB 39 : bitstring));

{14} new Counter2 40 : bitstring;

{15} let Counter2 41 : bitstring = Counter2 40 in

{16} event TimerStart2(Counter2 41);

{17}if (Counter2 41 = Counter2 41) then

{18} new SecureKey 42 : seckey;

{19} new SecureKeyBitstring: bitstring;

{20} out(c, KeyBasedEnc(CMAC(SecureKeyBitstring , RND NumberB 39 ,KeyAA),

KeyA))

) | (

{21}!
{22}in(c, EncryptedData 43 : nonce);

{23}if (Counter1 = Counter1) then

{24} let DecryptedData 44 : nonce = KeyBasedDecryption(EncryptedData 43 ,

KeyB) in

{25} event DataDecryption1(DecryptedData 44);

{26} let DeCMACDATA 45 : bitstring = DeCMAC(DecryptedData 44 ,KeyBB) in

{27} event RecievedData(DeCMACDATA 45);

{28} let SecureKey 46 : seckey = bitstringTOseckey(DeCMACDATA 45) in

{29} event DecryptedSecureKey(SecureKey 46);

{30} out(c, SecureEncryption(InTeachHello , SecureKey 46))

) | (

{31}!
{32}in(c, EncryptedHello 47 : nonce);

112

{33}if (Counter2 = Counter2) then

{34} let DecryptedHello 48 : bitstring = SecureDecryption(

EncryptedHello 47 ,SecureKey) in

{35} event ConnectionVerification2(DecryptedHello 48)

)

== Query not attacker(SecureKey [])

Completing ...

Starting query not attacker(SecureKey [])

RESULT not attacker(SecureKey []) is true.

== Query not attacker(DeCMACDATA [])

Completing ...

Starting query not attacker(DeCMACDATA [])

RESULT not attacker(DeCMACDATA []) is true.

== Query not attacker(DecryptedHello [])

Completing ...

Starting query not attacker(DecryptedHello [])

RESULT not attacker(DecryptedHello []) is true.

== Query not event(DecryptedSecureKey(x 49))

Completing ...

Starting query not event(DecryptedSecureKey(x 49))

RESULT not event(DecryptedSecureKey(x 49)) is true.

== Query not event(ConnectionVerification2(x 50))

Completing ...

Starting query not event(ConnectionVerification2(x 50))

RESULT not event(ConnectionVerification2(x 50)) is true.

== Query inj=event(DecryptedSecureKey(x 51)) ==> inj=event(

ConnectionVerification2(y 52))

Completing ...

Starting query inj=event(DecryptedSecureKey(x 51)) ==> inj=event(

ConnectionVerification2(y 52))

RESULT inj=event(DecryptedSecureKey(x 51)) ==> inj=event(

ConnectionVerification2(y 52)) is true.

== Query event(DecryptedSecureKey(x 53)) ==> event(ConnectionVerification2

(y 54))

Completing ...

Starting query event(DecryptedSecureKey(x 53)) ==> event(

ConnectionVerification2(y 54))

RESULT event(DecryptedSecureKey(x 53)) ==> event(ConnectionVerification2(

y 54)) is true.

113

Appendix 3 – G.hn Authentication

Authentication is done according to the Diffie-Hellman algorithm and the Counter with

Cipher Block Chaining-Message Authentication Code algorithm (CCM), which uses

AES-128 standard for encryption. [82] This method is used to exchange cryptographic

keys over public channel securely, without revealing one’s private key to the public,

and using mathematical operations to calculate another key to communicate with one

another.

Diffie-Hellman algorithm works as follows:

Device A generates a random number R A and sends it over to device B. Device B does

exactly the same, generates a random number R B and sends it to A. This is called a

public key exchange. Both of these devices have their own private keys, which are used

to to calculate session key K. Most common example is to do this with certificates, where

devices derive public key from certificate.

CCM authentication is described in Appendix 19.

114

ProVerif Verification

set traceDisplay = long.

free c:channel.

type nonce.

type pubkey.

type privkey.

type key.

type certificate.

type seckey.

query attacker(ClientMKey).

query attacker(ServerMKey).

query attacker(DecryptedData).

query attacker(DecryptedData2).

query x:bitstring; event(Decryption1(x)).

query x:bitstring; event(Decryption2(x)).

query x:bitstring; event(Decryption1(x)) ==> event(Decryption2(x)).

query x:bitstring; inj=event(Decryption1(x)) ==> inj=event(Decryption2(x))

.

free ServerCertificate:certificate[private].

free ClientCertificate:certificate[private].

free ClientPublicKey:key [private].

free ClientPrivateKey:key [private].

free ServerPublicKey:key[private].

free ServerPrivateKey:key [private].

free KeyExchanceVerification , ServerHello:bitstring[private].

free DecryptedVerification:bitstring[private].

free DecryptedVerificationACK:bitstring[private].

free Hello , Hello2 , Hello2Ack:bitstring [private].

free KeyExchangeVerificationACK:bitstring[private].

fun PublicKeyGeneration(certificate):key.

fun PrivateKey(privkey):key.

free DecryptedData , DecryptedData2 :nonce [private].

type mkey.

free ServerMKey:mkey [private].

115

free ClientMKey:mkey [private].

fun MKeyGeneration(bitstring , key , key):mkey.

event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun Encryption(bitstring , mkey):nonce.

reduc forall x:bitstring , y: mkey; Decryption(Encryption(x,y), y) = x.

event ClientPublicKeyGeneration(key).

event ServerPublicKeyGeneration(key).

event Decryption1(bitstring).

event Decryption2(bitstring).

let Client1 =

out(c, Hello).

let Server1 =

in(c, Hello:bitstring);

out(c, (ServerHello , ServerCertificate)).

let Client2 =

in(c,(ServerHello:bitstring , ServerCertificate:certificate));

let ServerPublicKey = PublicKeyGeneration(ServerCertificate) in

event ServerPublicKeyGeneration(ServerPublicKey);

let ClientMKey = MKeyGeneration(Hello , ServerPublicKey ,

ClientPrivateKey) in

event ClientMKeyGeneration(ClientMKey);

out(c, ClientCertificate).

let Server2 =

in(c, ClientCertificate:certificate);

let ClientPublicKey = PublicKeyGeneration(ClientCertificate) in

event ClientPublicKeyGeneration(ClientPublicKey);

let ServerMKey = MKeyGeneration(ServerHello , ClientPublicKey ,

ServerPrivateKey) in

event ServerMKeyGeneration(ServerMKey);

out(c, Encryption(Hello2 , ServerMKey)).

let Client3 =

in(c, EncryptedHello:nonce);

let DecryptedData = Decryption(EncryptedHello , ClientMKey) in

116

event Decryption1(DecryptedData);

out(c, Encryption(Hello2Ack , ClientMKey)).

let Server3 =

in(c, EncryptedAck:nonce);

let DecryptedData2 = Decryption(EncryptedAck , ServerMKey) in

event Decryption2(DecryptedData2).

process

(

!Client1 |! Server1 |! Client2 |! Server2 |! Client3 |! Server3
)

117

ProVerif Result

Process:

(

{1}!
{2} out(c, Hello)

) | (

{3}!
{4}in(c, Hello 13 : bitstring);

{5} out(c, (ServerHello ,ServerCertificate))

) | (

{6}!
{7}in(c, (ServerHello 14 : bitstring , ServerCertificate 15 : certificate)

);

{8} let ServerPublicKey 16 : key = PublicKeyGeneration(

ServerCertificate 15) in

{9} event ServerPublicKeyGeneration(ServerPublicKey 16);

{10} let ClientMKey 17 : mkey = MKeyGeneration(Hello ,ServerPublicKey 16 ,

ClientPrivateKey) in

{11} event ClientMKeyGeneration(ClientMKey 17);

{12} out(c, ClientCertificate)

) | (

{13}!
{14}in(c, ClientCertificate 18 : certificate);

{15} let ClientPublicKey 19 : key = PublicKeyGeneration(

ClientCertificate 18) in

{16} event ClientPublicKeyGeneration(ClientPublicKey 19);

{17} let ServerMKey 20 : mkey = MKeyGeneration(ServerHello ,

ClientPublicKey 19 ,ServerPrivateKey) in

{18} event ServerMKeyGeneration(ServerMKey 20);

{19} out(c, Encryption(Hello2 , ServerMKey 20))

) | (

{20}!
{21}in(c, EncryptedHello: nonce);

{22} let DecryptedData 21 : bitstring = Decryption(EncryptedHello ,

ClientMKey) in

{23} event Decryption1(DecryptedData 21);

{24} out(c, Encryption(Hello2Ack ,ClientMKey))

) | (

{25}!
{26}in(c, EncryptedAck: nonce);

{27} let DecryptedData2 22 : bitstring = Decryption(EncryptedAck ,

118

ServerMKey) in

{28} event Decryption2(DecryptedData2 22)

)

== Query not attacker(ClientMKey [])

Completing ...

Starting query not attacker(ClientMKey [])

RESULT not attacker(ClientMKey []) is true.

== Query not attacker(ServerMKey [])

Completing ...

Starting query not attacker(ServerMKey [])

RESULT not attacker(ServerMKey []) is true.

== Query not attacker(DecryptedData [])

Completing ...

Starting query not attacker(DecryptedData [])

RESULT not attacker(DecryptedData []) is true.

== Query not attacker(DecryptedData2 [])

Completing ...

Starting query not attacker(DecryptedData2 [])

RESULT not attacker(DecryptedData2 []) is true.

== Query not event(Decryption1(x 23))

Completing ...

Starting query not event(Decryption1(x 23))

RESULT not event(Decryption1(x 23)) is true.

== Query not event(Decryption2(x 24))

Completing ...

Starting query not event(Decryption2(x 24))

RESULT not event(Decryption2(x 24)) is true.

== Query event(Decryption1(x 25)) ==> event(Decryption2(x 25))

Completing ...

Starting query event(Decryption1(x 25)) ==> event(Decryption2(x 25))

RESULT event(Decryption1(x 25)) ==> event(Decryption2(x 25)) is true.

== Query inj=event(Decryption1(x 26)) ==> inj=event(Decryption2(x 26))

Completing ...

Starting query inj=event(Decryption1(x 26)) ==> inj=event(Decryption2(x 26

))

RESULT inj=event(Decryption1(x 26)) ==> inj=event(Decryption2(x 26)) is

true.

119

Appendix 4 – KNX Authentication

KNX supports basic access protection to authenticate unicast communication, this allows

to define up to 255 different access levels, where 0 is highest. Each access level can be

secured by a different 4 byte password.

In this method, KNXnet/IP authentication is evaluated, because of these device are

controlling the network. KNXnet/IP Secure is a security extension for KNXnet/IP that

aims to be backward compatible. This means that no changes to the underlying KNX

and KNXnet/IP protocol stack are required. The KNXnet/IP traffic is encapsulated

in KNXnet/IP Secure wrapper which provides confidentiality, integrity, freshness and

authenticity. KNXnet/IP encapsulated and encapsulates three logical layers in UDP/IP

datagram and uses Secure Advanced Encryption Standard (AES) with 128 bit as a block

cipher for all modes of operation. For authentication secret keys (Dk, Gk, pwd) are

used. There are two types of communication in KNXnet/IP Secure, namely unicast

communication and multicast communication. [144]

Multicast communication secures the traffic between members of one group. The mode

of operation uses a modified version of CCM. This communication type uses a pre-shared

secret called Group key (Gk). This key is unique for every multicast group. The same

group key can be found on every device that is in the same group The group key has a

size of 128 bit. [144]

Unicast traffic is used for configuration purposes, this means that securing the communi-

cation between a management device and an interconnection device is needed. To achieve

secrecy, KNXnet/IP Secure uses Elliptic Curve Diffie Hellman (ECDH) key exchange

algorithm over NIST curve. To authenticate the communication, two pre-shared secret

keys are used Device authentication code (Dk) and Passwords (Pwd). In the ECDH key

exchange, Dk serves as public key and Pwd as private key. [144]

Diffie-Hellman authentication has been described in Appendix 3

120

ProVerif Verification

type nonce.

type certificate.

type key.

type ssecret.

query attacker(DeviceKeyA).

query attacker(DeviceKeyB).

query attacker(Password).

query attacker(PrivateDeviceKeyA).

query attacker(PrivateDeviceKeyB).

query attacker(sharedsecret).

query attacker (TESTDecrypt1).

query attacker (TESTDecrypt2).

query x:bitstring; event(TESTDecryption1(x)).

query x:bitstring; event(TESTDecryption2(x)).

query x:bitstring; event(TESTDecryption1(x)) ==> event(TESTDecryption2(x))

.

query x:bitstring; inj=event(TESTDecryption1(x)) ==> inj=event(

TESTDecryption2(x)).

free c:channel.

free sharedsecret:ssecret [private].

free DeviceCertA:certificate [private].

free DeviceCertB:certificate[private].

free DeviceKeyA:key[private].

free PublicDeviceKeyA:key[private].

free PrivateDeviceKeyA:key [private].

free DeviceKeyB:key[private].

free PublicDeviceKeyB:key[private].

free PrivateDeviceKeyB:key[private].

free PasswordFlag:bitstring[private].

free Password:key [private].

free TESTDecrypt1:bitstring [private].

free TESTDecrypt2:bitstring [private].

fun CTR(nonce ,ssecret):nonce.

reduc forall x: nonce , y: ssecret; DeCTR(CTR(x,y),y) = x.

fun CBC(nonce , key): nonce.

reduc forall x: nonce , y:key ; DeCBC(CBC(x,y), y) = x.

fun TCNonce(bitstring):nonce.

121

fun TCKey(nonce):key.

fun TCssecret(ssecret):key.

fun TCCertificate(certificate):nonce.

fun CCM(bitstring , nonce , ssecret):nonce.

reduc forall z: bitstring , x: nonce , y:ssecret; DeCCM(CCM(z,x,y), y) = z.

fun KeyGeneration(certificate):key.

event DeviceAPublicKeyGeneration(key).

event DeviceBPublicKeyGeneration(key).

event TESTDecryption1(bitstring).

event TESTDecryption2(bitstring).

let DeviceA1 =

new Hello:bitstring;

out(c,Hello).

let DeviceB1 =

in(c, Hello:bitstring);

new HelloACK:bitstring;

out(c, HelloACK).

let DeviceA2 =

in(c, HelloACK:bitstring);

new PublicDeviceKeyA:key;

out(c, DeviceCertA).

let DeviceB2 =

in(c, DeviceCertA:certificate);

let PublicDeviceKeyA = KeyGeneration(DeviceCertA) in

event DeviceAPublicKeyGeneration(PublicDeviceKeyA);

new DeviceCertBTemplate:bitstring;

out(c, CTR(CBC(TCCertificate(DeviceCertB), DeviceKeyA), sharedsecret)).

let DeviceA3 =

in(c, EncryptedResponse:nonce);

let PublicDeviceKeyB = TCKey(DeCTR(DeCBC(EncryptedResponse ,

PrivateDeviceKeyA), sharedsecret)) in

event DeviceBPublicKeyGeneration(PublicDeviceKeyB);

new PublicDeviceKeyBTemplate:nonce;

out(c, CCM(PasswordFlag , CBC(PublicDeviceKeyBTemplate ,Password),

sharedsecret)).

122

let DeviceB3 =

in(c, EncryptedComplete:nonce);

let TESTDecrypt1 = DeCCM(DeCBC(EncryptedComplete , TCssecret(sharedsecret

)), sharedsecret) in

event TESTDecryption1(TESTDecrypt1);

new Success:bitstring;

out(c, CCM(PasswordFlag , CBC(TCNonce(Success),Password), sharedsecret)).

let DeviceA4 =

in(c, TestEncrypt:nonce);

let TESTDecrypt2 = DeCCM(DeCBC(TestEncrypt ,TCssecret(sharedsecret)),

sharedsecret) in

event TESTDecryption2(TESTDecrypt2).

process

(

!DeviceA1 |! DeviceB1 |! DeviceA2 |! DeviceB2 |! DeviceA3 |! DeviceB3 |! DeviceA4
)

123

ProVerif Result

Process:

(

{1}!
{2} new Hello: bitstring;

{3} out(c, Hello)

) | (

{4}!
{5}in(c, Hello 29 : bitstring);

{6} new HelloACK: bitstring;

{7} out(c, HelloACK)

) | (

{8}!
{9}in(c, HelloACK 30 : bitstring);

{10} new PublicDeviceKeyA 31 : key;

{11} out(c, DeviceCertA)

) | (

{12}!
{13}in(c, DeviceCertA 32 : certificate);

{14} let PublicDeviceKeyA 33 : key = KeyGeneration(DeviceCertA 32) in

{15} event DeviceAPublicKeyGeneration(PublicDeviceKeyA 33);

{16} new DeviceCertBTemplate: bitstring;

{17} out(c, CTR(CBC(TCCertificate(DeviceCertB),DeviceKeyA),sharedsecret

))

) | (

{18}!
{19}in(c, EncryptedResponse: nonce);

{20} let PublicDeviceKeyB 34 : key = TCKey(DeCTR(DeCBC(EncryptedResponse

,PrivateDeviceKeyA),sharedsecret)) in

{21} event DeviceBPublicKeyGeneration(PublicDeviceKeyB 34);

{22} new PublicDeviceKeyBTemplate: nonce;

{23} out(c, CCM(PasswordFlag ,CBC(PublicDeviceKeyBTemplate ,Password),

sharedsecret))

) | (

{24}!
{25}in(c, EncryptedComplete: nonce);

{26} let TESTDecrypt1 35 : bitstring = DeCCM(DeCBC(EncryptedComplete ,

TCssecret(sharedsecret)),sharedsecret) in

{27} event TESTDecryption1(TESTDecrypt1 35);

{28} new Success: bitstring;

{29} out(c, CCM(PasswordFlag ,CBC(TCNonce(Success),Password),

124

sharedsecret))

) | (

{30}!
{31}in(c, TestEncrypt: nonce);

{32} let TESTDecrypt2 36 : bitstring = DeCCM(DeCBC(TestEncrypt ,TCssecret

(sharedsecret)),sharedsecret) in

{33} event TESTDecryption2(TESTDecrypt2 36)

)

== Query not attacker(DeviceKeyA [])

Completing ...

Starting query not attacker(DeviceKeyA [])

RESULT not attacker(DeviceKeyA []) is true.

== Query not attacker(DeviceKeyB [])

Completing ...

Starting query not attacker(DeviceKeyB [])

RESULT not attacker(DeviceKeyB []) is true.

== Query not attacker(Password [])

Completing ...

Starting query not attacker(Password [])

RESULT not attacker(Password []) is true.

== Query not attacker(PrivateDeviceKeyA [])

Completing ...

Starting query not attacker(PrivateDeviceKeyA [])

RESULT not attacker(PrivateDeviceKeyA []) is true.

== Query not attacker(PrivateDeviceKeyB [])

Completing ...

Starting query not attacker(PrivateDeviceKeyB [])

RESULT not attacker(PrivateDeviceKeyB []) is true.

== Query not attacker(sharedsecret [])

Completing ...

Starting query not attacker(sharedsecret [])

RESULT not attacker(sharedsecret []) is true.

== Query not attacker(TESTDecrypt1 [])

Completing ...

Starting query not attacker(TESTDecrypt1 [])

RESULT not attacker(TESTDecrypt1 []) is true.

== Query not attacker(TESTDecrypt2 [])

Completing ...

Starting query not attacker(TESTDecrypt2 [])

RESULT not attacker(TESTDecrypt2 []) is true.

== Query not event(TESTDecryption1(x 37))

125

Completing ...

Starting query not event(TESTDecryption1(x 37))

RESULT not event(TESTDecryption1(x 37)) is true.

== Query not event(TESTDecryption2(x 38))

Completing ...

Starting query not event(TESTDecryption2(x 38))

RESULT not event(TESTDecryption2(x 38)) is true.

== Query event(TESTDecryption1(x 39)) ==> event(TESTDecryption2(x 39))

Completing ...

Starting query event(TESTDecryption1(x 39)) ==> event(TESTDecryption2(x 39

))

RESULT event(TESTDecryption1(x 39)) ==> event(TESTDecryption2(x 39)) is

true.

== Query inj=event(TESTDecryption1(x 40)) ==> inj=event(TESTDecryption2(

x 40))

Completing ...

Starting query inj=event(TESTDecryption1(x 40)) ==> inj=event(

TESTDecryption2(x 40))

RESULT inj=event(TESTDecryption1(x 40)) ==> inj=event(TESTDecryption2(x 40

)) is true.

126

Appendix 5 – WiMAX Authentication

PKMv1

PKMv1 uses asymmetric ciphers (primarily RSA) to validate identity of stations. A

subscriber station starts the authentication process with presentation of the station’s

certificate issued by its manufacturer. Optionally it may can send the hardware man-

ufacturer certificate. Following certificate validation, the base station will generate an

Authorization Key (AK) which is sent back to the subscriber station, encrypting it with

a public key obtained from the subscriber station’s certificate. The subscriber station

decrypts it using its private key. In this way both parties obtain cryptographic material

necessary for link protection. The PKMv1 protocol skips user data authentication ensur-

ing only its privacy. [5]

Exchange of PKMv1 authentication messages has been shown in Figure 6.

The transmission Encryption Key (TEK), which is generated at a later stage, similarly to

AK is determined by the base station. Each new association is assigned with an individual

encryption key. The key, which is used to ensure secure transmission of the TEK key is

the Key Encryption Key (KEK). KEK is generated based on the AK key as well as Hash

Message Authentication Code Key for Downlink and Hash Message Authentication Code

Key for Uplink keys. The purpose of the KEK is to encrypt messages that are used to

transfer the TEK keys. On the other hand, HMAC family of keys are used to generate

authentication checksums in control messages. These checksums are calculated using the

SHA-1 function. Key transmission messages are encrypted with 3DES algorithm in a

mode, in which each 64-bit data block is encrypted independently. [5]

It is worth mentioning here that each security association consists of two TEKs (the

current and a spare one). Traffic decryption can be performed using both of these keys,

whereas only the current key permits data encryption. For purposes of user protection,

the PKMv1 protocol of the IEEE 802.16d standard utilizes advantages of the AES block

algorithm operating in a special mode called Counter Mode with Cipher Block Chaining

Message Authentication Code (CCM). [5]

CCM authentication is described in Appendix 19

PKMv2

[75] Version 2 of the PKM protocol was developed because of the numerous shortcomings

in the protection system used in the previous version of the protocol. The PKMv2

127

Figure 6: WiMax PKMv1 message flow for authentication [5]

standard bases on the techniques adopted in the IEEE 802.11i standard. Contrary to

the first version of the protocol, the authentication stage in the second version has been

implemented based on the Extensible Authentication Protocol (EAP). The network

infrastructure has been also extended with an Authentication, Authorization, Accounting

(AAA) server supporting the EAP on the network side. [5]

Exchange of PKMv2 authentication messages has been shown in Figure 7.

The result of these operations is a unique cryptographic material, generated independently

by mutually authenticating parties. The DES and AES algorithms have been used to

ensure link privacy. The PKMv2 protocol assumes that both subscriber and base stations

should have a certificate.

Terminal authentication starts with optional presentation of a manufacturer’s certificate

to the base station. Then the base station sends an authentication request containing

a certificate issued by its manufacturer and a generated random number (RAND SS).

Having verified the certificate, the base station responds with a message containing its

own X.509 certificate encrypted with the subscriber station’s public key (Pre-Primary

Authorization Key /Pre-PAK/), the RAND SS number received in the previous message

and with its generated RAND BS number. Next, the subscriber station verifies the

validity of the certificate received, check correctness of the previously generated random

number and deciphers the Pre-PAK key. [5]

128

Figure 7: WiMax PKMv2 message flow for authentication [5]

129

WiMAX PKMv1 ProVerif Verification

set traceDisplay = long.

query attacker(privatekey).

query attacker(AK).

query attacker(AK2).

query attacker(DecryptedText1).

query attacker(DecryptedText2).

query x: authkey; event(AuthorizationKeyGen(x)).

query x: bitstring; event(TextDecryption1(x)).

query x: bitstring; event(TextDecryption2(x)).

query x:bitstring; event(TextDecryption1(x)) ==> event(TextDecryption2(x))

.

query x:bitstring; inj=event(TextDecryption1(x)) ==> inj=event(

TextDecryption2(x)).

free c: channel.

type certificate.

type authkey.

type key.

type nonce.

free Hello:bitstring[private].

free HelloAck:bitstring[private].

free StationCertificate: certificate [private].

free ManufacturerCertificate: certificate [private].

free AK: authkey [private].

free info:bitstring[private].

free pubkey: key [private].

free privatekey: key [private].

free DecryptedText1: bitstring [private].

free DecryptedText2: bitstring [private].

free ENCauthkey: nonce [private].

free AK2: authkey [private].

fun CertificateGen(bitstring , key): certificate.

reduc forall x: bitstring , y: key; dec Certificate (CertificateGen(x,y), y)

= x.

130

fun authkey enc (authkey , key): nonce.

reduc forall x: authkey , y: key; dec authkey (authkey enc (x,y), y) = x.

fun Encryption(bitstring , authkey): nonce.

reduc forall x: bitstring , y: authkey; Decryption(Encryption(x,y),y)=x.

event CertificateValidation(certificate).

event AuthorizationKeyGen(authkey).

event Authdec(authkey).

event TextDecryption1(bitstring).

event TextDecryption2(bitstring).

let SubscriberStation1 =

out(c, (StationCertificate , info)).

let BaseStation1 =

in(c, (StationCertificate:certificate , info:bitstring));

let StationCertificate = ManufacturerCertificate in

event CertificateValidation(StationCertificate);

if StationCertificate = ManufacturerCertificate then

(

new AKey:authkey;

let AK = AKey in

event AuthorizationKeyGen(AKey);

out(c, authkey enc (AKey , pubkey))

)

else

(

0

).

let SubscriberStation2 =

in(c, ENCauthkey:nonce);

let AK2 = dec authkey (ENCauthkey , privatekey) in

event Authdec(AK2);

out(c, Encryption(Hello , AK)).

let BaseStation2 =

in(c, EncryptedText1:nonce);

let DecryptedText1 = Decryption(EncryptedText1 , AK) in

event TextDecryption1(DecryptedText1);

out(c, Encryption(HelloAck , AK)).

131

let SubscriberStation3 =

in(c, EncryptedText2:nonce);

let DecryptedText2 = Decryption(EncryptedText2 , AK2) in

event TextDecryption2(DecryptedText2).

process

(

!SubscriberStation1

|
!BaseStation1

|
!SubscriberStation2

|
!BaseStation2

|
!SubscriberStation3

)

132

WiMAX PKMv1 ProVerif Result

Process:

(

{1}!
{2} out(c, (StationCertificate ,info))

) | (

{3}!
{4}in(c, (StationCertificate 32 : certificate , info 33 : bitstring));

{5} let StationCertificate 34 : certificate = ManufacturerCertificate in

{6} event CertificateValidation(StationCertificate 34);

{7}if (StationCertificate 34 = ManufacturerCertificate) then

{8} new AKey: authkey;

{9} let AK 35 : authkey = AKey in

{10} event AuthorizationKeyGen(AKey);

{11} out(c, authkey enc (AKey ,pubkey))

) | (

{12}!
{13}in(c, ENCauthkey 36 : nonce);

{14} let AK2 37 : authkey = dec authkey (ENCauthkey 36 ,privatekey) in

{15} event Authdec(AK2 37);

{16} out(c, Encryption(Hello ,AK))

) | (

{17}!
{18}in(c, EncryptedText1: nonce);

{19} let DecryptedText1 38 : bitstring = Decryption(EncryptedText1 ,AK)

in

{20} event TextDecryption1(DecryptedText1 38);

{21} out(c, Encryption(HelloAck ,AK))

) | (

{22}!
{23}in(c, EncryptedText2: nonce);

{24} let DecryptedText2 39 : bitstring = Decryption(EncryptedText2 ,AK2)

in

{25} event TextDecryption2(DecryptedText2 39)

)

== Query not attacker(privatekey [])

Completing ...

Starting query not attacker(privatekey [])

RESULT not attacker(privatekey []) is true.

== Query not attacker(AK[])

133

Completing ...

Starting query not attacker(AK[])

RESULT not attacker(AK[]) is true.

== Query not attacker(AK2[])

Completing ...

Starting query not attacker(AK2[])

RESULT not attacker(AK2[]) is true.

== Query not attacker(DecryptedText1 [])

Completing ...

Starting query not attacker(DecryptedText1 [])

RESULT not attacker(DecryptedText1 []) is true.

== Query not attacker(DecryptedText2 [])

Completing ...

Starting query not attacker(DecryptedText2 [])

RESULT not attacker(DecryptedText2 []) is true.

== Query not event(AuthorizationKeyGen(x 40))

Completing ...

Starting query not event(AuthorizationKeyGen(x 40))

goal reachable: attacker(StationCertificate 1352) && attacker(info 1353)

=> end(AuthorizationKeyGen(AKey[info 33 = info 1353 ,

StationCertificate 32 = StationCertificate 1352 ,!1 = @sid 1354]))

Abbreviations:

AKey 1362 = AKey[info 33 = info 1359 , StationCertificate 32 =

StationCertificate 1358 ,!1 = @sid 1360]

1. We assume as hypothesis that

attacker(info 1359).

2. We assume as hypothesis that

attacker(StationCertificate 1358).

3. By 2, the attacker may know StationCertificate 1358 .

By 1, the attacker may know info 1359 .

Using the function 2=tuple the attacker may obtain (

StationCertificate 1358 , info 1359).

attacker ((StationCertificate 1358 , info 1359)).

4. The message (StationCertificate 1358 , info 1359) that the attacker may

have by 3 may be received at input {4}.
So event AuthorizationKeyGen(AKey 1362) may be executed at {10}.
end(AuthorizationKeyGen(AKey 1362)).

134

Initial state

Additional knowledge of the attacker:

c

a 1363

a

==

New processes:

(

!

out(c, (StationCertificate ,info))

) | (

!

in(c, (StationCertificate 32 : certificate , info 33 : bitstring));

let StationCertificate 34 : certificate = ManufacturerCertificate

in

event CertificateValidation(StationCertificate 34);

if (StationCertificate 34 = ManufacturerCertificate) then

new AKey: authkey;

let AK 35 : authkey = AKey in

event AuthorizationKeyGen(AKey);

out(c, authkey enc (AKey ,pubkey))

) | (

!

in(c, ENCauthkey 36 : nonce);

let AK2 37 : authkey = dec authkey (ENCauthkey 36 ,privatekey) in

event Authdec(AK2 37);

out(c, Encryption(Hello ,AK))

) | (

!

in(c, EncryptedText1: nonce);

let DecryptedText1 38 : bitstring = Decryption(EncryptedText1 ,AK)

in

event TextDecryption1(DecryptedText1 38);

out(c, Encryption(HelloAck ,AK))

) | (

!

in(c, EncryptedText2: nonce);

let DecryptedText2 39 : bitstring = Decryption(EncryptedText2 ,AK2)

in

event TextDecryption2(DecryptedText2 39)

135

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction |

5th process: Reduction ! 0 copy(ies)

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process BaseStation1

1st process: Reduction ! 0 copy(ies)

New processes:

in(c, (StationCertificate 1369 : certificate , info 1370 : bitstring));

let StationCertificate 1371 : certificate = ManufacturerCertificate in

event CertificateValidation(StationCertificate 1371);

if (StationCertificate 1371 = ManufacturerCertificate) then

new AKey: authkey;

let AK 1372 : authkey = AKey in

event AuthorizationKeyGen(AKey);

out(c, authkey enc (AKey ,pubkey))

==

1st process: in(c, (StationCertificate 1369 : certificate , info 1370 :

bitstring)) done with message (a 1363 ,a)

1st process: let StationCertificate 1379 : certificate =

ManufacturerCertificate succeeds

1st process: event CertificateValidation(ManufacturerCertificate) executed

136

1st process: if (ManufacturerCertificate = ManufacturerCertificate)

succeeds

1st process: new AKey: authkey creating AKey 1365

1st process: let AK 1381 : authkey = AKey 1365 succeeds

1st process: event AuthorizationKeyGen(AKey 1365) executed; it is a goal

New processes:

out(c, authkey enc (AKey 1365 ,pubkey))

==

The event AuthorizationKeyGen(AKey 1365) is executed.

A trace has been found.

RESULT not event(AuthorizationKeyGen(x 40)) is false.

== Query not event(TextDecryption1(x 41))

Completing ...

Starting query not event(TextDecryption1(x 41))

RESULT not event(TextDecryption1(x 41)) is true.

== Query not event(TextDecryption2(x 42))

Completing ...

Starting query not event(TextDecryption2(x 42))

RESULT not event(TextDecryption2(x 42)) is true.

== Query event(TextDecryption1(x 43)) ==> event(TextDecryption2(x 43))

Completing ...

Starting query event(TextDecryption1(x 43)) ==> event(TextDecryption2(x 43

))

RESULT event(TextDecryption1(x 43)) ==> event(TextDecryption2(x 43)) is

true.

== Query inj=event(TextDecryption1(x 44)) ==> inj=event(TextDecryption2(

x 44))

Completing ...

Starting query inj=event(TextDecryption1(x 44)) ==> inj=event(

TextDecryption2(x 44))

RESULT inj=event(TextDecryption1(x 44)) ==> inj=event(TextDecryption2(x 44

)) is true.

137

WiMAX PKMv2 ProVerif Verification

set traceDisplay = long.

query attacker (AuthorizationKey).

query attacker (SSPrivateKey).

query attacker (BSPrivateKey).

query attacker(DecryptedText1).

query attacker(DecryptedText2).

query x: bitstring; event(Decryption1(x)).

query x: bitstring; event(Decryption2(x)).

query x:bitstring; event(Decryption1(x)) ==> event(Decryption2(x)).

query x:bitstring; inj=event(Decryption1(x)) ==> inj=event(Decryption2(x))

.

free c: channel.

type certificate.

type nonce.

type key.

free SSCertificate:certificate [private].

free N:nonce [private].

free SSPublicKey:key [private].

free SSPrivateKey:key [private].

free BSPrivateKey:key [private].

free BSCertificate:certificate [private].

free AuthorizationKey:certificate [private].

free ACK:bitstring [private].

free Hello:bitstring[private].

free HelloAck:bitstring[private].

fun CertSign(certificate , nonce) : nonce.

reduc forall x:certificate , y:nonce; DeSignCert(CertSign(x,y), y) = x.

fun CertPub(certificate , key) : nonce.

reduc forall x:certificate , y:key; DeCertPub(CertPub(x,y), y) = x.

fun Encrypt(bitstring , certificate) : nonce.

reduc forall x:bitstring , y: certificate; Decrypt(Encrypt(x,y),y) = x.

138

event AuthorizationKeyGeneration(certificate).

event CertificateGeneration(certificate).

event Decryption1(bitstring).

event Decryption2(bitstring).

let SS1 =

new SSCertificate:certificate;

let SSCertificate = SSCertificate in

event CertificateGeneration(SSCertificate);

out(c, SSCertificate).

let SS2 =

out(c, CertSign(SSCertificate , N)).

let BS1 =

in(c, SignedCertificate:nonce);

if DeSignCert(SignedCertificate ,N) = SSCertificate then

(

out(c,CertPub(BSCertificate ,SSPublicKey))

)

else

(

0

).

let SS3 =

in(c, SignedBSCertificate:nonce);

let AuthorizationKey = DeCertPub(SignedBSCertificate , SSPrivateKey

) in

event AuthorizationKeyGeneration(AuthorizationKey);

out(c, Encrypt(Hello , AuthorizationKey)).

let BS2 =

in(c, EncryptedText1 : nonce);

let DecryptedText1 = Decrypt(EncryptedText1 , AuthorizationKey) in

event Decryption1(DecryptedText1);

out(c, Encrypt(HelloAck , AuthorizationKey)).

let SS4 =

in(c, EncryptedText2 : nonce);

let DecryptedText2 = Decrypt(EncryptedText2 , AuthorizationKey) in

event Decryption2(DecryptedText2).

139

process

(

!SS1

|
!SS2

|
!BS1

|
!SS3

|
!BS2

|
!SS4

)

140

WiMAX PKMv2 ProVerif Result

Process:

(

{1}!
{2} new SSCertificate 32 : certificate;

{3} let SSCertificate 33 : certificate = SSCertificate 32 in

{4} event CertificateGeneration(SSCertificate 33);

{5} out(c, SSCertificate 33)

) | (

{6}!
{7} out(c, CertSign(SSCertificate ,N))

) | (

{8}!
{9}in(c, SignedCertificate: nonce);

{10}if (DeSignCert(SignedCertificate ,N) = SSCertificate) then

{11} out(c, CertPub(BSCertificate ,SSPublicKey))

) | (

{12}!
{13}in(c, SignedBSCertificate: nonce);

{14} let AuthorizationKey 34 : certificate = DeCertPub(

SignedBSCertificate ,SSPrivateKey) in

{15} event AuthorizationKeyGeneration(AuthorizationKey 34);

{16} out(c, Encrypt(Hello , AuthorizationKey 34))

) | (

{17}!
{18}in(c, EncryptedText1: nonce);

{19} let DecryptedText1 35 : bitstring = Decrypt(EncryptedText1 ,

AuthorizationKey) in

{20} event Decryption1(DecryptedText1 35);

{21} out(c, Encrypt(HelloAck ,AuthorizationKey))

) | (

{22}!
{23}in(c, EncryptedText2: nonce);

{24} let DecryptedText2 36 : bitstring = Decrypt(EncryptedText2 ,

AuthorizationKey) in

{25} event Decryption2(DecryptedText2 36)

)

== Query not attacker(AuthorizationKey [])

Completing ...

Starting query not attacker(AuthorizationKey [])

141

RESULT not attacker(AuthorizationKey []) is true.

== Query not attacker(SSPrivateKey [])

Completing ...

Starting query not attacker(SSPrivateKey [])

RESULT not attacker(SSPrivateKey []) is true.

== Query not attacker(BSPrivateKey [])

Completing ...

Starting query not attacker(BSPrivateKey [])

RESULT not attacker(BSPrivateKey []) is true.

== Query not attacker(DecryptedText1 [])

Completing ...

Starting query not attacker(DecryptedText1 [])

RESULT not attacker(DecryptedText1 []) is true.

== Query not attacker(DecryptedText2 [])

Completing ...

Starting query not attacker(DecryptedText2 [])

RESULT not attacker(DecryptedText2 []) is true.

== Query not event(Decryption1(x 37))

Completing ...

Starting query not event(Decryption1(x 37))

RESULT not event(Decryption1(x 37)) is true.

== Query not event(Decryption2(x 38))

Completing ...

Starting query not event(Decryption2(x 38))

RESULT not event(Decryption2(x 38)) is true.

== Query event(Decryption1(x 39)) ==> event(Decryption2(x 39))

Completing ...

Starting query event(Decryption1(x 39)) ==> event(Decryption2(x 39))

RESULT event(Decryption1(x 39)) ==> event(Decryption2(x 39)) is true.

== Query inj=event(Decryption1(x 40)) ==> inj=event(Decryption2(x 40))

Completing ...

Starting query inj=event(Decryption1(x 40)) ==> inj=event(Decryption2(x 40

))

RESULT inj=event(Decryption1(x 40)) ==> inj=event(Decryption2(x 40)) is

true.

142

Appendix 6 – Z-Wave Authentication

Z-Wave uses Out-of-Band authentication to be able to join Z-Wave PAN network. OoB

authentication is Z-Wave’s solution to mitigate the inclusion of rogue nodes. [63]

Like Wi-Fi, Z-Wave’s S2 security also operates with a network key. A strong temporary

key is used to assign keys for security classes. This allows segmentation of safety critical

devices like S2 Access Control and S2 Authenticated class. S2 Unauthenticated class

is used for constrained devices without authentication. Access to Z-Wave networks is

controlled by Z-Wave gateway, which forwards commands only from already trusted LAN

clients or trusted ISP. DTLS is used to secure communication between LAN hosts and

Z-Wave nodes. LAN hosts and Z-Wave nodes communicate via a Z/IP Gateway which

terminates the DTLS encryption and strips Z/IP and IP headers before forwarding Z-

Wave commands securely in the Z-Wave network. [136] DTLS Authentication is described

in Appendix 10. A given S2 security class not only identifies the network key to use but

also dictates the rules applying to authentication of a new node during inclusion. [136]

Z-Wave Authentication sequence has been show in Figure 8.

The “S2 Access Control” class is the highest trusted class, intended only for access control

devices like doors and locks. [136]

The “S2 Authenticated” class is used for regular household devices such as sensors and

lights. The “S2 Unauthenticated” class is the least trusted class and is intended for the

most constrained controllers that are not capable of authenticating a device joining the

network. [136]

S0 and all three S2 classes use AES-128 encryption. A node, which has requested

and been granted access to several security classes during inclusion but it only accepts

incoming commands from the trusted classes. This means that if light bulb is a member

of both the S2 Authenticated and S2 Unauthenticated classes, it only accepts commands

encrypted with the S2 Authenticated class key, because its security requirements are the

highest.

The S2 authentication process allows a controller to verify that a joining node is device

that it claims to be. Depending on the UI, a controller may allow the installer to enter a

Device-Specific Key (DSK). The DSK is the first 16 bytes of the 32-byte long Elliptic

Curve Diffie-Hellman key exchange (ECDH) public key of the joining node. If a joining

node is granted membership of the S2 Access Control or S2 Authenticated class by

a controller, the joining node advertises a ECDH public key where the first 16 bits

have been set to zero. [136] If a joining node is only granted membership of the S2

143

Unauthenticated class, the node advertises the complete ECDH public key, so that the

authentication step can be skipped.

Key exchange is done with Diffie-Hellman. S2 nodes use Elliptic Curve cryptography

shared key to derive a temporary link key. S0 and S2 classes use AES-128 based network

keys which are symmetric. S2 security class node can encrypt and decrypt commands

using the same network key. Asymmetric ECDH keys used for the temporary secure

channel are only used to send a few frames before nodes switch to the assigned S2

Network keys. [136]

S2 Network keys are physically stored in S2 nodes. The S2 transport layer integrates the

S2 out-of-sync Nonce error messages with the supervision application-layer acknowledge-

ments. If a frame can be decrypted, a supervision report is returned and if the frame

cannot be decrypted, an S2 out-of-sync Nonce error message is returned. After Nonce

resynchronization, the command may be re-transmitted. [136]

Z-Wave S2 bootstrapping message exchange has been shown in Figure 9.

Diffie-Hellman key exchange has been described briefly in Appendix 3

144

Figure 8: Z-Wave Authentication Sequence [6]

145

Figure 9: Z-Wave S2 Bootstrapping [6]

146

ProVerif Verification

set traceDisplay = long.

query attacker (SharedNetworkKey).

query attacker (DEC SharedNetworkKey).

query attacker (RNonce).

query attacker (DEC RealNonce).

query attacker (SharedNetworkKey temp).

query attacker (RNonce temp).

query attacker (DEC Finish).

query attacker (Finish).

query x:bitstring; event(StartConnection(x)) ==> event(AcceptConnection(x)

).

query x:bitstring; inj=event(StartConnection(x)) ==> inj=event(

AcceptConnection(x)).

type key.

type pin.

type nonce.

type realnonce.

type realkey.

free c:channel.

free RealNonceRequest:bitstring [private].

free NetworkInformation SIS :bitstring [private].

free NetworkInofrmation JoiningNode :bitstring [private].

free KEX Request :bitstring [private].

free KEX Response :bitstring [private].

free KEX SET :bitstring [private].

free PubKeyJoiningNode:key [private].

free UserSISPin:bitstring [private].

free PubKeySIS:key [private].

free JoiningDSK:pin [private].

free JoiningNodeTempSymKey:key[private].

free SISTempSymKey:key[private].

free TempNonce:nonce[private].

free NonceRequest:bitstring [private].

free DEC KEX SET :nonce [private].

147

free ENC Sec2KeyGet :nonce[private].

free DEC Sec2KeyGet :bitstring[private].

free SharedNetworkKey:realkey[private].

free ENC SharedNetworkKey :nonce[private].

free DEC SharedNetworkKey :realkey[private].

free ENC RealNonceReq :nonce[private].

free DEC RealNonceReq :bitstring [private].

free ENC RealNonce :nonce [private].

free DEC RealNonce :realnonce [private].

free RNonce:realnonce [private].

free Verification:bitstring [private].

free ENC Verification :nonce [private].

free DEC Verification :bitstring [private].

free KeyVerified:bitstring [private].

free ENCKeyVerified:nonce [private].

free DEC KeyVerified :bitstring [private].

free Finish:bitstring [private].

free ENCFinish:nonce [private].

free DEC Finish :bitstring [private].

free Sec2KeyGet:bitstring [private].

free SharedNetworkKey temp :bitstring [private].

free RNonce temp :bitstring [private].

event KEX SET Verification (bitstring).

event KEX SET Decryption (bitstring).

event KEX Req Decryption (bitstring).

event KEX Response Verification (bitstring).

event Sec2KeyGet Decryption (bitstring).

event RealNonce Decryption (realnonce).

event Verification Decryption (bitstring).

event KeyVerifiedDecryption(bitstring).

event FinishDecryption(bitstring).

event RealNetworkKey(realkey).

event RealNonceRequest Decryption (bitstring).

event SharedNetworkKeyGeneration(realkey).

event RNonceGeneration(realnonce).

event StartConnection(bitstring).

event AcceptConnection(bitstring).

fun TempSymENC(bitstring , nonce , key): nonce.

reduc forall x: bitstring , y: nonce , z:key; TempSymDEC(TempSymENC(x,y,z),

z) = x.

148

fun SecureComm(bitstring , realnonce , realkey):nonce.

reduc forall x:bitstring , y:realnonce , z:realkey; DecSecureComm(SecureComm

(x,y,z),z) = x.

fun tc1(bitstring) : realnonce [typeConverter].

fun tc2(bitstring) : realkey [typeConverter].

let JoiningNode =

out(c, NetworkInofrmation JoiningNode).

let SISNode =

in(c, NetworkInformation SIS :bitstring);

out(c, NetworkInformation SIS).

let JoiningNode2 =

in(c, NetworkInformation SIS :bitstring).

let SISNode2 =

out(c, KEX Request).

let JoiningNode3 =

in(c, KEX Request :bitstring);

out(c, KEX Response).

let SISNode3 =

in(c, KEX Response :bitstring);

let NetworkInformation SIS = KEX Response in

event KEX Response Verification (KEX Response);

if NetworkInformation SIS = KEX Response then

(

out(c, KEX SET)

)

else

(

0

).

let JoiningNode4 =

in(c, KEX SET :bitstring);

let KEX SET = KEX Request in

149

event KEX SET Verification (KEX SET);

if KEX SET = KEX Request then

(

out(c, PubKeyJoiningNode)

)

else

(

0

).

let SISNode4 =

in(c, PubKeyJoiningNode:key);

in(c, UserSISPin:bitstring);

if UserSISPin = UserSISPin then

(

out(c, PubKeySIS)

)

else

(

0

).

let JoiningNode5 =

in(c, PubKeySIS:key);

in(c, JoiningDSK:pin);

if JoiningDSK = JoiningDSK then

(

out(c, NonceRequest)

)

else

(

0

).

let SISNode5 =

in(c, NonceRequest: bitstring);

out(c, TempNonce).

let JoiningNode6=

in(c, TempNonce:nonce);

out(c, TempSymENC(KEX SET ,TempNonce ,JoiningNodeTempSymKey)).

150

let SISNode6=

in(c, ENC KEX SET :nonce);

let DEC KEX SET = TempSymDEC(ENC KEX SET , SISTempSymKey) in

event KEX SET Decryption (DEC KEX SET);

if DEC KEX SET = KEX SET then

(

out(c, TempSymENC(KEX Request ,TempNonce ,SISTempSymKey))

)

else

(

0

).

let JoiningNode7 =

in(c, ENC KEX Req :nonce);

let DEC KEX Req = TempSymDEC(ENC KEX Req , JoiningNodeTempSymKey) in

event KEX Req Decryption (DEC KEX Req);

if DEC KEX Req = KEX Request then

(

out(c, TempSymENC(Sec2KeyGet , TempNonce , JoiningNodeTempSymKey))

)

else

(

0

).

let SISNode7 =

in(c, ENC Sec2KeyGet :nonce);

let DEC Sec2KeyGet = TempSymDEC(ENC Sec2KeyGet , SISTempSymKey) in

event Sec2KeyGet Decryption (DEC Sec2KeyGet);

let SharedNetworkKey = tc2(SharedNetworkKey temp) in

event SharedNetworkKeyGeneration(SharedNetworkKey);

out(c, TempSymENC(SharedNetworkKey temp ,TempNonce ,SISTempSymKey)).

let JoiningNode8 =

in(c, ENC SharedNetworkKey :nonce);

let DEC SharedNetworkKey = TempSymDEC(ENC SharedNetworkKey ,

JoiningNodeTempSymKey) in

event RealNetworkKey(tc2(DEC SharedNetworkKey));

out(c, TempSymENC(RealNonceRequest , TempNonce , JoiningNodeTempSymKey))

.

151

let SISNode8 =

in(c, ENC RealNonceReq :nonce);

let DEC RealNonceReq = TempSymDEC(ENC RealNonceReq , SISTempSymKey) in

event RealNonceRequest Decryption (DEC RealNonceReq);

let RNonce = tc1(RNonce temp) in

event RNonceGeneration(RNonce);

out(c,TempSymENC(RNonce temp , TempNonce , SISTempSymKey)).

let JoiningNode9 =

in(c, ENC RealNonce :nonce);

let DEC RealNonce = TempSymDEC(ENC RealNonce , JoiningNodeTempSymKey)

in

event RealNonce Decryption (tc1(DEC RealNonce));

out(c, SecureComm(Verification , tc1(DEC RealNonce),

DEC SharedNetworkKey)).

let SISNode9 =

in (c, ENC Verification :nonce);

let DEC Verification = DecSecureComm(ENC Verification ,

SharedNetworkKey) in

event Verification Decryption (DEC Verification);

if DEC Verification = Verification then

(

out(c, SecureComm(KeyVerified , RNonce , SharedNetworkKey))

)

else

(

0

).

let JoiningNode10 =

in(c, ENCKeyVerified:nonce);

let DEC KeyVerified = DecSecureComm(ENCKeyVerified ,

DEC SharedNetworkKey) in

event KeyVerifiedDecryption(DEC KeyVerified);

if DEC KeyVerified = KeyVerified then

(

event StartConnection(Finish);

out(c, SecureComm(Finish , DEC RealNonce , DEC SharedNetworkKey))

)

else

152

(

0

).

let SISNode10 =

in(c, ENCFinish:nonce);

let DEC Finish = DecSecureComm(ENCFinish , SharedNetworkKey) in

event FinishDecryption(DEC Finish);

if DEC Finish = Finish then

(

event AcceptConnection(DEC Finish)

)

else

(

0

).

process

(

!JoiningNode |! SISNode |! JoiningNode2 |! SISNode2 |! JoiningNode3 |! SISNode3
|! JoiningNode4 |! SISNode4 |! JoiningNode5 |! SISNode5 |! JoiningNode6 |!
SISNode6 |! JoiningNode7 |! SISNode7 |! JoiningNode8 |! SISNode8 |!
JoiningNode9 |! SISNode9 |! JoiningNode10 |! SISNode10

)

153

ProVerif Result

Process:

(

{1}!
{2} out(c, NetworkInofrmation JoiningNode)

) | (

{3}!
{4}in(c, NetworkInformation SIS 25 : bitstring);

{5} out(c, NetworkInformation SIS 25)

) | (

{6}!
{7}in(c, NetworkInformation SIS 26 : bitstring)

) | (

{8}!
{9} out(c, KEX Request)

) | (

{10}!
{11}in(c, KEX Request 27 : bitstring);

{12} out(c, KEX Response)

) | (

{13}!
{14}in(c, KEX Response 28 : bitstring);

{15} let NetworkInformation SIS 29 : bitstring = KEX Response 28 in

{16} event KEX Response Verification (KEX Response 28);

{17}if (NetworkInformation SIS 29 = KEX Response 28) then

{18} out(c, KEX SET)

) | (

{19}!
{20}in(c, KEX SET 30 : bitstring);

{21} let KEX SET 31 : bitstring = KEX Request in

{22} event KEX SET Verification (KEX SET 31);

{23}if (KEX SET 31 = KEX Request) then

{24} out(c, PubKeyJoiningNode)

) | (

{25}!
{26}in(c, PubKeyJoiningNode 32 : key);

{27}in(c, UserSISPin 33 : bitstring);

{28}if (UserSISPin 33 = UserSISPin 33) then

{29} out(c, PubKeySIS)

) | (

{30}!

154

{31}in(c, PubKeySIS 34 : key);

{32}in(c, JoiningDSK 35 : pin);

{33}if (JoiningDSK 35 = JoiningDSK 35) then

{34} out(c, NonceRequest)

) | (

{35}!
{36}in(c, NonceRequest 36 : bitstring);

{37} out(c, TempNonce)

) | (

{38}!
{39}in(c, TempNonce 37 : nonce);

{40} out(c, TempSymENC(KEX SET ,TempNonce 37 ,JoiningNodeTempSymKey))

) | (

{41}!
{42}in(c, ENC KEX SET : nonce);

{43} let DEC KEX SET 38 : bitstring = TempSymDEC(ENC KEX SET ,

SISTempSymKey) in

{44} event KEX SET Decryption (DEC KEX SET 38);

{45}if (DEC KEX SET 38 = KEX SET) then

{46} out(c, TempSymENC(KEX Request ,TempNonce ,SISTempSymKey))

) | (

{47}!
{48}in(c, ENC KEX Req : nonce);

{49} let DEC KEX Req : bitstring = TempSymDEC(ENC KEX Req ,

JoiningNodeTempSymKey) in

{50} event KEX Req Decryption (DEC KEX Req);

{51}if (DEC KEX Req = KEX Request) then

{52} out(c, TempSymENC(Sec2KeyGet ,TempNonce ,JoiningNodeTempSymKey))

) | (

{53}!
{54}in(c, ENC Sec2KeyGet 39 : nonce);

{55} let DEC Sec2KeyGet 40 : bitstring = TempSymDEC(ENC Sec2KeyGet 39 ,

SISTempSymKey) in

{56} event Sec2KeyGet Decryption (DEC Sec2KeyGet 40);

{57} let SharedNetworkKey 41 : realkey = SharedNetworkKey temp in

{58} event SharedNetworkKeyGeneration(SharedNetworkKey 41);

{59} out(c, TempSymENC(SharedNetworkKey temp ,TempNonce ,SISTempSymKey))

) | (

{60}!
{61}in(c, ENC SharedNetworkKey 42 : nonce);

{62} let DEC SharedNetworkKey 43 : bitstring = TempSymDEC(

ENC SharedNetworkKey 42 ,JoiningNodeTempSymKey) in

155

{63} event RealNetworkKey(DEC SharedNetworkKey 43);

{64} out(c, TempSymENC(RealNonceRequest ,TempNonce ,JoiningNodeTempSymKey

))

) | (

{65}!
{66}in(c, ENC RealNonceReq 44 : nonce);

{67} let DEC RealNonceReq 45 : bitstring = TempSymDEC(

ENC RealNonceReq 44 ,SISTempSymKey) in

{68} event RealNonceRequest Decryption (DEC RealNonceReq 45);

{69} let RNonce 46 : realnonce = RNonce temp in

{70} event RNonceGeneration(RNonce 46);

{71} out(c, TempSymENC(RNonce temp ,TempNonce ,SISTempSymKey))

) | (

{72}!
{73}in(c, ENC RealNonce 47 : nonce);

{74} let DEC RealNonce 48 : bitstring = TempSymDEC(ENC RealNonce 47 ,

JoiningNodeTempSymKey) in

{75} event RealNonce Decryption (DEC RealNonce 48);

{76} out(c, SecureComm(Verification , DEC RealNonce 48 ,

DEC SharedNetworkKey))

) | (

{77}!
{78}in(c, ENC Verification 49 : nonce);

{79} let DEC Verification 50 : bitstring = DecSecureComm(

ENC Verification 49 ,SharedNetworkKey) in

{80} event Verification Decryption (DEC Verification 50);

{81}if (DEC Verification 50 = Verification) then

{82} out(c, SecureComm(KeyVerified ,RNonce ,SharedNetworkKey))

) | (

{83}!
{84}in(c, ENCKeyVerified 51 : nonce);

{85} let DEC KeyVerified 52 : bitstring = DecSecureComm(

ENCKeyVerified 51 , DEC SharedNetworkKey) in

{86} event KeyVerifiedDecryption(DEC KeyVerified 52);

{87}if (DEC KeyVerified 52 = KeyVerified) then

{88} event StartConnection(Finish);

{89} out(c, SecureComm(Finish ,DEC RealNonce , DEC SharedNetworkKey))

) | (

{90}!
{91}in(c, ENCFinish 53 : nonce);

{92} let DEC Finish 54 : bitstring = DecSecureComm(ENCFinish 53 ,

SharedNetworkKey) in

156

{93} event FinishDecryption(DEC Finish 54);

{94}if (DEC Finish 54 = Finish) then

{95} event AcceptConnection(DEC Finish 54)

)

== Query not attacker(SharedNetworkKey [])

Completing ...

Starting query not attacker(SharedNetworkKey [])

RESULT not attacker(SharedNetworkKey []) is true.

== Query not attacker(DEC SharedNetworkKey [])

Completing ...

Starting query not attacker(DEC SharedNetworkKey [])

RESULT not attacker(DEC SharedNetworkKey []) is true.

== Query not attacker(RNonce [])

Completing ...

Starting query not attacker(RNonce [])

RESULT not attacker(RNonce []) is true.

== Query not attacker(DEC RealNonce [])

Completing ...

Starting query not attacker(DEC RealNonce [])

RESULT not attacker(DEC RealNonce []) is true.

== Query not attacker(SharedNetworkKey temp [])

Completing ...

Starting query not attacker(SharedNetworkKey temp [])

RESULT not attacker(SharedNetworkKey temp []) is true.

== Query not attacker(RNonce temp [])

Completing ...

Starting query not attacker(RNonce temp [])

RESULT not attacker(RNonce temp []) is true.

== Query not attacker(DEC Finish [])

Completing ...

Starting query not attacker(DEC Finish [])

RESULT not attacker(DEC Finish []) is true.

== Query not attacker(Finish [])

Completing ...

Starting query not attacker(Finish [])

RESULT not attacker(Finish []) is true.

== Query event(StartConnection(x 55)) ==> event(AcceptConnection(x 55))

Completing ...

Starting query event(StartConnection(x 55)) ==> event(AcceptConnection(

x 55))

RESULT event(StartConnection(x 55)) ==> event(AcceptConnection(x 55)) is

157

true.

== Query inj=event(StartConnection(x 56)) ==> inj=event(AcceptConnection(

x 56))

Completing ...

Starting query inj=event(StartConnection(x 56)) ==> inj=event(

AcceptConnection(x 56))

RESULT inj=event(StartConnection(x 56)) ==> inj=event(AcceptConnection(

x 56)) is true.

158

Appendix 7 – Thread Authentication

Commissioning or authenticating must be able to take place in a system where a Joiner

that wishes to join to the Thread Network is authenticated using a device known as a

Commissioner, Authentication Server, which must be connected to the already existing

Thread network to authenticate. Commissioning can take place from being connected to

different network, if there is appropriate route to the Thread Network.

Thread uses elliptic curve variant of J-PAKE (EC-JPAKE), using the NIST P-256 elliptic

curve. J-PAKE [145] is a password-authenticated key exchange (PAKE) with juggling.

It essentially uses elliptic curve Diffie-Hellman for key agreement and Schnorr signatures

as a NIZK (Non-Interactive Zero-Knowledge) [146] proof mechanism to authenticate two

peers and to establish a shared secret between them based on the passphrase. [7]

Thread network is protected with a network-wide key, which is used at the MAC (Media

Access Control) layer to protect the MAC data frames. As it is a network key, compromise

of any Thread device could potentially reveal the key; therefore, it is not typically used

as the only form of protection within the Thread Network. [7]

When joining Thread Network, device is required to identify router which is used to join

and to communicate in a point-to-point protocol way. Router polices any traffic from the

device and forwards it to the authentication server in a controlled manner to allow the

authentication protocol (DTLS handshake) to execute. DTLS key exchange is described

in Appendix 10.

If the Commissioner is not in direct communication with the Joiner, the Joiner Router

must relay the DTLS handshake with the Commissioner. The Commissioning relay

protocol encapsulates DTLS handshake and relays of the DTLS handshake from the

Joiner all the way to the Commissioner. Authentication server uses Commissioning

protocol to keep a secure communication session, it is based on CoAP [104].

There are two different Commissioner appointing set ups, external Commissioner and

native.

If the Commissioner candidate uses a WLAN network for commissioning purposes, it

is known as an external Commissioner. An external Commissioner has to connect the

Thread network through a Thread router, which is known as border router to become au-

thorized Commissioner. Commissioner candidate must use an authentication handshake

with a router to prove it is eligible to become authorized Commissioner and set up a

secure Commissioning session. The Commissioner candidate then connects to the Leader

through the border router because there can be only one authorized Commissioner. If

159

connection and validation succeeds, the Commissioner candidate becomes authorized

external Commissioner. The secure Commissioning session remains in place and the

representative border router will be made known of the result in the Thread network,

because all subsequent communication with other Thread devices will be done through

that border router. [7]

If the Commissioner candidate uses a Thread network interface for commissioning, it is

known as a Native Commissioner. A Native Commissioner has to petition the Thread

Network through a representative Commissioner router) to become authorized Com-

missioner. The Commissioner candidate must use an authentication handshake with

the Commissioner router to prove it is eligible to become authorized Commissioner and

set up a secure Commissioning session. The Commissioner Candidate then connects

with the Leader via the Commissioner router because there can be only one authorized

Commissioner. If validation succeeds, the Commissioner candidate becomes the sole

authorized Native Commissioner. However, the Commissioner subsequently joins the

Thread Network and becomes an active device (on-mesh Commissioner) and all commu-

nication with other Thread devices takes place directly with the Commissioner. [7]

In this method, evaluation is done based on Joiner–Joiner Router/Commissioner sequence,

however all these sequences are similar, with the difference of the which Commissioner or

router is used. This message exchange has been show in Figure 10.

This communication is over an unsecured radio link and all traffic between the Joiner

and Joiner Router will be sent in the clear without any form of integrity checking.

This fundamentally means the Joiner Router has to treat any traffic from the Joiner as

completely unauthenticated. Normally, the Thread Network would be in a “lock down”

mode, which would cause any Thread Device on the perimeter to ignore any unsecured

802.15.4 traffic. However, when joining is permitted, Joiner Routers should carefully

police unsecured 802.15.4 traffic and assume it to be authentication traffic. [7]

The DTLS handshake will occur as initial communication being established between the

Joiner and Joiner Router. A relay agent will check the incoming traffic and the Joiner

Router will relay the DTLS client handshake along with address and port details of the

Joiner and the Joiner Router itself to the Border Router. The address and port details

ensure relayed DTLS server handshake response messages can be relayed back through

the Joiner Router to the originating Joiner. [7]

As mentioned earlier, DTLS key exchange is described in Appendix 10.

160

Figure 10: Thread Joiner–Joiner Router/Commissioner Sequence [7]

161

Thread Joiner-Commissioner ProVerif Verification

set traceDisplay = long.

query attacker(CommissionerPrivKey).

query attacker(JoinerPrivKey).

query attacker(JoinerMKey).

query attacker(CommissionerMKey).

query attacker(JoinerDecryptedData1).

query attacker(CommissionerDecryptedData1).

query x:bitstring; event(JoinerDecryptData1(x)).

query x:bitstring; event(CommissionerDecryptData1(x)).

query x:bitstring; event(JoinerDecryptData1(x)) ==> event(

CommissionerDecryptData1(x)).

query x:bitstring; inj=event(JoinerDecryptData1(x)) ==> inj=event(

CommissionerDecryptData1(x)).

type key.

type nonce.

type mkey.

free c:channel.

free AppData:bitstring[private].

free JoinedReq:bitstring[private].

free JoinFinishedVerified:bitstring[private].

free JoinedFinished:bitstring[private].

free Close , HelloCookie , JoinFinished , RealHello:bitstring[private].

free Close ACK , JoinerDecryptedData1:bitstring[private].

free CommissionerDecryptedData1:bitstring[private].

free CommissionerDecryptedData2:bitstring[private].

free JoinerDecData1:bitstring[private].

free JoinerDecData2 , Hello , HelloAck:bitstring[private].

free CommissionerPubKey:key [private].

free CommissionerPrivKey:key [private].

free JoinerPubKey:key [private].

free JoinerPrivKey:key [private].

free CommissionerMKey:mkey [private].

free JoinerMKey:mkey [private].

162

fun CommunicationKeyGeneration(bitstring , key , key):mkey.

event JoinerMKeyGeneration(mkey).

event CommissionerMKeyGeneration(mkey).

event JoinerDecryptData1(bitstring).

event JoinerDecryptData2(bitstring).

event CommissionerDecryptData1(bitstring).

event CommissionerDecryptData2(bitstring).

fun Encryption(bitstring , mkey): nonce.

reduc forall x: bitstring , y: mkey; Decryption(Encryption(x,y), y) = x.

let Joiner =

new Hello:bitstring;

out(c, Hello).

let Commissioner =

in(c, Hello:bitstring);

new HelloVerification: bitstring;

out(c, HelloVerification).

let Joiner2 =

in(c, HelloVerification:bitstring);

new HelloCookie:bitstring;

out(c, HelloCookie).

let Commissioner2 =

in(c, HelloCookie:bitstring);

new CommissionerPubKey:key;

out(c, (RealHello , CommissionerPubKey)).

let Joiner3 =

in(c, (RealHello:bitstring , CommissionerPubKey:key));

new JoinerPubKey:key;

new RealHelloFinished:bitstring;

out(c, (RealHelloFinished , JoinerPubKey)).

let Commissioner3 =

in(c, (RealHelloFinished:bitstring , JoinerPubKey:key));

new Finished:bitstring;

out(c, Finished).

163

let Joiner4 =

in(c, Finished:bitstring);

new JoinerPrivKey:key;

let JoinerMKey = CommunicationKeyGeneration(RealHello ,

CommissionerPubKey , JoinerPrivKey) in

event JoinerMKeyGeneration(JoinerMKey);

out(c, Encryption ((AppData , JoinFinished),JoinerMKey)).

let Commissioner4 =

in (c, JoinerEncData1:nonce);

new CommissionerPrivKey:key;

let CommissionerMKey = CommunicationKeyGeneration(HelloCookie ,

JoinerPubKey , CommissionerPrivKey) in

event CommissionerMKeyGeneration(CommissionerMKey);

let JoinerDecryptedData1 = Decryption(JoinerEncData1 , CommissionerMKey)

in

event JoinerDecryptData1(JoinerDecryptedData1);

out(c, Encryption ((AppData , JoinFinishedVerified), CommissionerMKey)).

let Joiner5 =

in(c, CommissionerEncData1:nonce);

new JoinerPrivKey:key;

let CommissionerDecryptedData1 = Decryption(CommissionerEncData1 ,

JoinerMKey) in

event CommissionerDecryptData1(CommissionerDecryptedData1).

process (

!Joiner |! Commissioner |! Joiner2 |! Commissioner2 |! Joiner3 |! Commissioner3 |!
Joiner4 |! Commissioner4 |! Joiner5

)

164

Thread Joiner-Commissioner ProVerif Result

Process:

(

{1}!
{2} new Hello 13 : bitstring;

{3} out(c, Hello 13)

) | (

{4}!
{5}in(c, Hello 14 : bitstring);

{6} new HelloVerification: bitstring;

{7} out(c, HelloVerification)

) | (

{8}!
{9}in(c, HelloVerification 15 : bitstring);

{10} new HelloCookie 16 : bitstring;

{11} out(c, HelloCookie 16)

) | (

{12}!
{13}in(c, HelloCookie 17 : bitstring);

{14} new CommissionerPubKey 18 : key;

{15} out(c, (RealHello , CommissionerPubKey 18))

) | (

{16}!
{17}in(c, (RealHello 19 : bitstring , CommissionerPubKey 20 : key));

{18} new JoinerPubKey 21 : key;

{19} new RealHelloFinished: bitstring;

{20} out(c, (RealHelloFinished , JoinerPubKey 21))

) | (

{21}!
{22}in(c, (RealHelloFinished 22 : bitstring , JoinerPubKey 23 : key));

{23} new Finished: bitstring;

{24} out(c, Finished)

) | (

{25}!
{26}in(c, Finished 24 : bitstring);

{27} new JoinerPrivKey 25 : key;

{28} let JoinerMKey 26 : mkey = CommunicationKeyGeneration(RealHello ,

CommissionerPubKey , JoinerPrivKey 25) in

{29} event JoinerMKeyGeneration(JoinerMKey 26);

{30} out(c, Encryption ((AppData ,JoinFinished),JoinerMKey 26))

) | (

165

{31}!
{32}in(c, JoinerEncData1: nonce);

{33} new CommissionerPrivKey 27 : key;

{34} let CommissionerMKey 28 : mkey = CommunicationKeyGeneration(

HelloCookie ,JoinerPubKey , CommissionerPrivKey 27) in

{35} event CommissionerMKeyGeneration(CommissionerMKey 28);

{36} let JoinerDecryptedData1 29 : bitstring = Decryption(JoinerEncData1

, CommissionerMKey 28) in

{37} event JoinerDecryptData1(JoinerDecryptedData1 29);

{38} out(c, Encryption ((AppData ,JoinFinishedVerified),

CommissionerMKey 28))

) | (

{39}!
{40}in(c, CommissionerEncData1: nonce);

{41} new JoinerPrivKey 30 : key;

{42} let CommissionerDecryptedData1 31 : bitstring = Decryption(

CommissionerEncData1 ,JoinerMKey) in

{43} event CommissionerDecryptData1(CommissionerDecryptedData1 31)

)

== Query not attacker(CommissionerPrivKey [])

Completing ...

Starting query not attacker(CommissionerPrivKey [])

RESULT not attacker(CommissionerPrivKey []) is true.

== Query not attacker(JoinerPrivKey [])

Completing ...

Starting query not attacker(JoinerPrivKey [])

RESULT not attacker(JoinerPrivKey []) is true.

== Query not attacker(JoinerMKey [])

Completing ...

Starting query not attacker(JoinerMKey [])

RESULT not attacker(JoinerMKey []) is true.

== Query not attacker(CommissionerMKey [])

Completing ...

Starting query not attacker(CommissionerMKey [])

RESULT not attacker(CommissionerMKey []) is true.

== Query not attacker(JoinerDecryptedData1 [])

Completing ...

Starting query not attacker(JoinerDecryptedData1 [])

RESULT not attacker(JoinerDecryptedData1 []) is true.

== Query not attacker(CommissionerDecryptedData1 [])

Completing ...

166

Starting query not attacker(CommissionerDecryptedData1 [])

RESULT not attacker(CommissionerDecryptedData1 []) is true.

== Query not event(JoinerDecryptData1(x 32))

Completing ...

Starting query not event(JoinerDecryptData1(x 32))

RESULT not event(JoinerDecryptData1(x 32)) is true.

== Query not event(CommissionerDecryptData1(x 33))

Completing ...

Starting query not event(CommissionerDecryptData1(x 33))

RESULT not event(CommissionerDecryptData1(x 33)) is true.

== Query event(JoinerDecryptData1(x 34)) ==> event(

CommissionerDecryptData1(x 34))

Completing ...

Starting query event(JoinerDecryptData1(x 34)) ==> event(

CommissionerDecryptData1(x 34))

RESULT event(JoinerDecryptData1(x 34)) ==> event(CommissionerDecryptData1(

x 34)) is true.

== Query inj=event(JoinerDecryptData1(x 35)) ==> inj=event(

CommissionerDecryptData1(x 35))

Completing ...

Starting query inj=event(JoinerDecryptData1(x 35)) ==> inj=event(

CommissionerDecryptData1(x 35))

RESULT inj=event(JoinerDecryptData1(x 35)) ==> inj=event(

CommissionerDecryptData1(x 35)) is true.

167

Appendix 8 – TLS Authentication

The TLS protocol enable two parties to identify and authenticate one another and

communicate with confidentiality and data integrity. TLS connection is started by an

application, which becomes TLS client. Every new connection begin with TLS handshake.

Handshake enables the the client and server to establish the secret keys with which they

communicate, from that point forward. TLS handshake means that client and server agree

on the version of the protocol to use, select cryptographic algorithms, authenticate each

other by exchanging and validating digital certificates and use asymmetric encryption

techniques to generate a shared secret key. SSL or TLS then uses the shared key for the

symmetric encryption of messages, which is faster than asymmetric encryption. TLS/SSL

authentication message exchange has been show in Figure 11 and short description of

it [8]:

1. The SSL or TLS client sends a client hello message that lists cryptographic infor-

mation such as the SSL or TLS version and, in the client’s order of preference, the

cipher suites supported by the client. The message also contains a random byte

string that is used in subsequent computations. The protocol allows for the client

hello to include the data compression methods supported by the client.

2. The SSL or TLS server responds with a server hello message that contains the

cipher suite chosen by the server from the list provided by the client, the session

ID, and another random byte string. The server also sends its digital certificate. If

the server requires a digital certificate for client authentication, the server sends a

client certificate request that includes a list of the types of certificates supported

and the Distinguished Names of acceptable Certification Authorities (CA-s).

3. The SSL or TLS client verifies the server’s digital certificate. For more information,

see How SSL and TLS provide identification, authentication, confidentiality, and

integrity.

4. The SSL or TLS client sends the random byte string that enables both the client

and the server to compute the secret key to be used for encrypting subsequent

message data. The random byte string itself is encrypted with the server’s public

key.

5. If the SSL or TLS server sent a client certificate request, the client sends a random

byte string encrypted with the client’s private key, together with the client’s digital

168

certificate, or a no digital certificate alert. This alert is only a warning, but with

some implementations the handshake fails if client authentication is mandatory.

6. The SSL or TLS server verifies the client’s certificate. For more information,

see How SSL and TLS provide identification, authentication, confidentiality, and

integrity.

7. The SSL or TLS client sends the server a finished message, which is encrypted with

the secret key, indicating that the client part of the handshake is complete.

8. The SSL or TLS server sends the client a finished message, which is encrypted with

the secret key, indicating that the server part of the handshake is complete.

9. For the duration of the SSL or TLS session, the server and client can now exchange

messages that are symmetrically encrypted with the shared secret key.

169

Figure 11: TLS Key Exchange Sequence [8]

170

ProVerif Verification

set traceDisplay = long.

query attacker(ClientPrivateKey).

query attacker(ServerPrivateKey).

query attacker(ServerMKey).

query attacker(ClientMKey).

query attacker(DecClientFinished).

query x:bitstring; event(startConnection(x)) ==> event(acceptConnection(x)

).

query x:bitstring; inj=event(startConnection(x)) ==> inj=event(

acceptConnection(x)).

free c:channel.

type nonce.

type certificate.

type key.

type secretkey.

free DecClientFinished:bitstring[private].

free ClientCertificate:certificate[private].

free ServerCertificate:certificate[private].

free ValidCANames:certificate[private].

type mkey.

free ServerMKey:mkey [private].

free ClientMKey:mkey [private].

fun MKeyGeneration(bitstring , key , key):mkey.

event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun Encryption(bitstring , mkey):nonce.

reduc forall x:bitstring , y:mkey; Decryption(Encryption(x,y),y)=x.

free ClientHello:bitstring[private].

free ServerHello:bitstring[private].

free ClientCertificateRequest:bitstring[private].

free ClientPrivateKey:key[private].

free ClientPublicKey:key[private].

free ServerPrivateKey:key[private].

171

free ServerPublicKey:key[private].

free randomByteForKey:bitstring[private].

free EncryptedrandomByteForKey:nonce[private].

free DecryptedrandomByteForKey:bitstring[private].

free ClientFinished:bitstring[private].

free ServerFinished:bitstring[private].

free ComputedSecretKeyClient:secretkey[private].

free ComputedSecretKeyServer:secretkey[private].

event ClientFinishDecryption(bitstring).

event VerifyServerCertificate(certificate).

event VerifyClientCertificate(certificate).

event RandomByteDecryption(bitstring).

event ClientComputation(secretkey).

event ServerComputation(secretkey).

event startConnection(bitstring).

event acceptConnection(bitstring).

let Client =

new ClientHello:bitstring;

out(c, ClientHello).

let Server =

in(c, ClientHello:bitstring);

new ServerCertificate:certificate;

new ServerHello:bitstring;

new ClientCertificateRequest:bitstring;

out(c, (ServerHello , (ServerCertificate , ClientCertificateRequest))).

let Client2 =

in(c, (ServerHello:bitstring , (ServerCertificate:certificate ,

ClientCertificateRequest:bitstring)));

new ClientCertificate:certificate;

new ValidCANames:certificate;

let ServerCertificate = ValidCANames in

event VerifyServerCertificate(ServerCertificate);

if ServerCertificate = ValidCANames then

(

new randomByteForKey:bitstring;

let ClientMKey = MKeyGeneration(ServerHello , ServerPublicKey ,

ClientPrivateKey) in

172

event ClientMKeyGeneration(ClientMKey);

out(c, (ClientCertificate ,Encryption(randomByteForKey , ClientMKey)))

)

else

(

0

).

let Server2 =

in(c, (ClientCertificate:certificate ,EncryptedrandomByteForKey:nonce))

;

let ClientCertificate = ValidCANames in

event VerifyClientCertificate(ClientCertificate);

if ClientCertificate = ValidCANames then

(

new ClientPublicKey:key;

let ServerMKey = MKeyGeneration(ClientHello , ClientPublicKey ,

ServerPrivateKey) in

event ServerMKeyGeneration(ServerMKey);

let DecryptedrandomByteForKey = Decryption(EncryptedrandomByteForKey

, ServerMKey) in

event RandomByteDecryption(DecryptedrandomByteForKey);

event startConnection(DecryptedrandomByteForKey)

)

else

(

0

).

let Client3 =

out(c, Encryption(ClientFinished , ClientMKey)).

let Server3 =

in(c, EncryptedClientFinished:nonce);

let DecClientFinished = Decryption(EncryptedClientFinished ,

ServerMKey) in

event ClientFinishDecryption(DecClientFinished);

if DecClientFinished = ClientFinished then

(

event acceptConnection(DecClientFinished)

)

else

(

173

0

).

process

(

!Client |! Server |! Client2 |! Server2 |! Client3 |! Server3
)

174

ProVerif Result

Process:

(

{1}!
{2} new ClientHello 16 : bitstring;

{3} out(c, ClientHello 16)

) | (

{4}!
{5}in(c, ClientHello 17 : bitstring);

{6} new ServerCertificate 18 : certificate;

{7} new ServerHello 19 : bitstring;

{8} new ClientCertificateRequest 20 : bitstring;

{9} out(c, (ServerHello 19 ,(ServerCertificate 18 ,

ClientCertificateRequest 20)))

) | (

{10}!
{11}in(c, (ServerHello 21 : bitstring ,(ServerCertificate 22 :

certificate , ClientCertificateRequest 23 : bitstring)));

{12} new ClientCertificate 24 : certificate;

{13} new ValidCANames 25 : certificate;

{14} let ServerCertificate 26 : certificate = ValidCANames 25 in

{15} event VerifyServerCertificate(ServerCertificate 26);

{16}if (ServerCertificate 26 = ValidCANames 25) then

{17} new randomByteForKey 27 : bitstring;

{18} let ClientMKey 28 : mkey = MKeyGeneration(ServerHello 21 ,

ServerPublicKey ,ClientPrivateKey) in

{19} event ClientMKeyGeneration(ClientMKey 28);

{20} out(c, (ClientCertificate 24 ,Encryption(randomByteForKey 27 ,

ClientMKey 28)))

) | (

{21}!
{22}in(c, (ClientCertificate 29 : certificate ,

EncryptedrandomByteForKey 30 : nonce));

{23} let ClientCertificate 31 : certificate = ValidCANames in

{24} event VerifyClientCertificate(ClientCertificate 31);

{25}if (ClientCertificate 31 = ValidCANames) then

{26} new ClientPublicKey 32 : key;

{27} let ServerMKey 33 : mkey = MKeyGeneration(ClientHello ,

ClientPublicKey 32 ,ServerPrivateKey) in

{28} event ServerMKeyGeneration(ServerMKey 33);

{29} let DecryptedrandomByteForKey 34 : bitstring = Decryption(

175

EncryptedrandomByteForKey 30 , ServerMKey 33) in

{30} event RandomByteDecryption(DecryptedrandomByteForKey 34);

{31} event startConnection(DecryptedrandomByteForKey 34)

) | (

{32}!
{33} out(c, Encryption(ClientFinished ,ClientMKey))

) | (

{34}!
{35}in(c, EncryptedClientFinished: nonce);

{36} let DecClientFinished 35 : bitstring = Decryption(

EncryptedClientFinished ,ServerMKey) in

{37} event ClientFinishDecryption(DecClientFinished 35);

{38}if (DecClientFinished 35 = ClientFinished) then

{39} event acceptConnection(DecClientFinished 35)

)

== Query not attacker(ClientPrivateKey [])

Completing ...

Starting query not attacker(ClientPrivateKey [])

RESULT not attacker(ClientPrivateKey []) is true.

== Query not attacker(ServerPrivateKey [])

Completing ...

Starting query not attacker(ServerPrivateKey [])

RESULT not attacker(ServerPrivateKey []) is true.

== Query not attacker(ServerMKey [])

Completing ...

Starting query not attacker(ServerMKey [])

RESULT not attacker(ServerMKey []) is true.

== Query not attacker(ClientMKey [])

Completing ...

Starting query not attacker(ClientMKey [])

RESULT not attacker(ClientMKey []) is true.

== Query not attacker(DecClientFinished [])

Completing ...

Starting query not attacker(DecClientFinished [])

RESULT not attacker(DecClientFinished []) is true.

== Query event(startConnection(x 36)) ==> event(acceptConnection(x 36))

Completing ...

Starting query event(startConnection(x 36)) ==> event(acceptConnection(

x 36))

RESULT event(startConnection(x 36)) ==> event(acceptConnection(x 36)) is

true.

176

== Query inj=event(startConnection(x 37)) ==> inj=event(acceptConnection(

x 37))

Completing ...

Starting query inj=event(startConnection(x 37)) ==> inj=event(

acceptConnection(x 37))

RESULT inj=event(startConnection(x 37)) ==> inj=event(acceptConnection(

x 37)) is true.

177

Appendix 9 – PEAP-MSCHAPv2 Authentication

MS-CHAP is the Microsoft version of the Challenge-Handshake Authentication Protocol,

CHAP. The protocol exists in two versions, MS-CHAPv1 and MS-CHAPv2. PEAP-

MSCHAP provides an encrypted and authenticated tunnel based on TLS. In the first

phase, a TLS session is negotiated and established. The client also authenticates the

server by using a certificate. Optionally, the server can also authenticate the client. In

the second phase, EAP messages are encrypted by using the key negotiated in phase

one. The basic idea of PEAP and EAP-TTLS are identical. However, PEAP can only

use EAP protocols in the second phase, while EAP-TTLS can use EAP or non-EAP

protocols. [147]

MS-CHAP is used as one authentication option in Microsoft’s implementation of the

PPTP protocol for virtual private networks. It is also used as an authentication option

with RADIUS[2] servers which are used with IEEE 802.1X (e.g., Wi-Fi security using

the WPA-Enterprise protocol). It is further used as the main authentication option of

the Protected Extensible Authentication Protocol (PEAP). [147] Compared with CHAP

MS-CHAP is enabled by negotiating CHAP Algorithm, Authentication Protocol provides

an authenticator-controlled password change mechanism, which provides an authenticator-

controlled authentication retry mechanism that failure codes returned in the failure packet

message field. MS-CHAPv2 provides mutual authentication between peers with a peer

challenge on the response packet and an authenticator response on the success packet.

The Extensible Authentication Protocol method for Microsoft Challenge Handshake

Authentication Protocol (CHAP) is an EAP method that is designed to meet this need.

It does so by having the client and server use MSCHAPv2 to mutually authenticate each

other. The flow for successful authentication with Extensible Authentication Protocol

Method for Microsoft CHAP is as follows: [147]

1. An EAP session is established between a client (EAP peer) and an EAP server.

2. The EAP server and EAP peer negotiate the EAP method to use. The Extensible

Authentication Protocol Method for Microsoft CHAP is selected.

3. The EAP peer and EAP server continue to exchange EAP messages with MSCHAPv2

packets encapsulated in the payload.

After the MSCHAPv2 packets successfully authenticate the client and the server to each

other, the EAP authentication finishes. Diffie-Hellman authentication has been described

in Appendix 3 and TLS Appendix 8.

178

ProVerif Verification

set traceDisplay = long.

query attacker(ServerMKey).

query attacker(ClientMKey).

query attacker(DecryptedTraffic1).

query attacker(DecryptedTraffic2).

query x:bitstring; event(TrafficDecryption1(x)).

query x:bitstring; event(TrafficDecryption2(x)).

query x:bitstring; event(TrafficDecryption1(x)) ==> event(

TrafficDecryption2(x)).

query x:bitstring; inj=event(TrafficDecryption1(x)) ==> inj=event(

TrafficDecryption2(x)).

type nonce.

type key.

type certificate.

type material.

type challenge.

type response.

free DecryptedMessage:bitstring[private].

free DecryptedMessage2:bitstring[private].

free c:channel [private].

free ValidCA:certificate[private].

free EncKey:material[private].

free MSCHAPv2Challenge:challenge[private].

free Success:nonce [private].

free EncryptionKey , ClientKey:key[private].

free EAPResponse , EAPAuthRequest:bitstring[private].

free ClientDone , ClientKeyExchange , Hello , HelloAck , DecryptedTraffic1 ,

DecryptedTraffic2:bitstring[private].

free ClientIdentity , DBClientIdentity , IdentityExists ,

AuthenticationComplete , AuthenticationCompleteACK:bitstring [private].

free ServerKeyExchange , ServerDone , ServerHello , Cipher , ServerFinished:

bitstring [private].

free ServerCertificate , ClientCertificate:certificate[private].

free MSCHAPPassword:bitstring [private].

fun SolveChallenge(challenge , bitstring):response.

type mkey.

free ServerMKey:mkey [private].

free ClientMKey:mkey [private].

179

fun MKeyGeneration(bitstring , key , key):mkey.

event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun GenerateKey(material):key.

fun EncryptTraffic(bitstring , mkey):nonce.

reduc forall x:bitstring , y:mkey; DecryptTraffic(EncryptTraffic(x,y),y)=x.

fun CombinedAuthentication(bitstring , response):nonce.

free ServerPublicKey , ServerPrivateKey , ClientPublicKey , ClientPrivateKey

: key [private].

free TLSHello:bitstring [private].

event DBClientIdentityCheck(bitstring).

event FirstChallenge(response).

event EncryptionKeyGeneration(key).

event Decrypt1(bitstring).

event Decrypt2(bitstring).

event Authentication(nonce).

event DCAuthentication(nonce).

event ServerCertificateValidation(certificate).

event ClientCertificateValidation(certificate).

event TrafficDecryption1(bitstring).

event TrafficDecryption2(bitstring).

event ClientPrivateKeyGeneration(key).

let AP1 =

new AuthenticateRequest:bitstring;

out(c, AuthenticateRequest).

let Client1 =

in(c, AuthenticateRequest:bitstring);

new ClientIdentity:bitstring;

out(c, ClientIdentity).

let AP2 =

in(c, ClientIdentity:bitstring);

out(c, ClientIdentity).

let Server1 =

in(c, ClientIdentity:bitstring);

let ClientIdentity = DBClientIdentity in

event DBClientIdentityCheck(ClientIdentity);

180

if ClientIdentity = DBClientIdentity then

(

out(c, IdentityExists)

)

else

(

0

).

let AP3 =

in(c, IdentityExists:bitstring);

new EAPAuthRequest:bitstring;

out(c, EAPAuthRequest).

let Client2 =

in(c, EAPAuthRequest:bitstring);

new TLSHello:bitstring;

out(c, TLSHello).

let AP4 =

in(c, TLSHello:bitstring);

out(c, TLSHello).

let Server2 =

in(c, TLSHello:bitstring);

out(c, (ServerHello , (ServerCertificate , (ServerKeyExchange , ServerDone)

))).

let AP5 =

in(c, (ServerHello:bitstring , (ServerCertificate:certificate , (

ServerKeyExchange:bitstring , ServerDone:bitstring))));

out(c, (ServerHello , (ServerCertificate , (ServerKeyExchange , ServerDone)

))).

let Client3 =

in(c, (ServerHello:bitstring , (ServerCertificate:certificate , (

ServerKeyExchange:bitstring , ServerDone:bitstring))));

let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);

if ServerCertificate = ValidCA then

(

out(c, (ClientKeyExchange , (Cipher , (ClientCertificate , ClientDone))))

)

181

else

(

0

).

let AP6 =

in(c, (ClientKeyExchange:bitstring , (Cipher:bitstring , (

ClientCertificate:certificate , ClientFinished:bitstring))));

out(c, (ClientKeyExchange , (Cipher , (ClientCertificate , ClientDone)))).

let Server3 =

in(c, (ClientKeyExchange:bitstring , (Cipher:bitstring , (

ClientCertificate:certificate , ClientFinished:bitstring))));

let ClientCertificate = ValidCA in

event ClientCertificateValidation(ClientCertificate);

if ClientCertificate = ValidCA then

(

out(c, (Cipher , ServerFinished))

)

else

(

0

).

let AP7 =

in(c, (Cipher:bitstring , ServerFinished:bitstring));

out(c, (Cipher , ServerFinished)).

let Client4 =

in(c, (Cipher:bitstring , ServerFinished:bitstring));

out(c, EAPResponse).

let AP8 =

in(c, EAPResponse:bitstring);

out(c, EAPResponse).

let Server4 =

in(c, EAPResponse:bitstring);

out(c, EAPAuthRequest).

let AP9 =

in(c, EAPAuthRequest:bitstring);

182

out(c, EAPAuthRequest).

let Client5 =

in(c, EAPAuthRequest:bitstring);

out(c, ClientIdentity).

let AP10 =

in(c, ClientIdentity:bitstring);

out(c, ClientIdentity).

let Server5 =

in(c, ClientIdentity:bitstring);

let ClientIdentity = DBClientIdentity in

event DBClientIdentityCheck(ClientIdentity);

if ClientIdentity = DBClientIdentity then

(

out(c, MSCHAPv2Challenge)

)

else

(

0

).

let AP11 =

in(c, MSCHAPv2Challenge:challenge);

out(c, MSCHAPv2Challenge).

let Client6 =

in(c, MSCHAPv2Challenge:challenge);

let SolvedChallenge = SolveChallenge(MSCHAPv2Challenge , MSCHAPPassword)

in

event FirstChallenge(SolvedChallenge);

out(c, SolvedChallenge).

let AP12 =

in(c, SolvedChallenge:response);

out(c, SolvedChallenge).

let Server6 =

in(c, SolvedChallenge:response);

if SolvedChallenge = SolveChallenge(MSCHAPv2Challenge , MSCHAPPassword)

then

(

183

let Success = CombinedAuthentication(ClientIdentity , SolvedChallenge)

in

event Authentication(Success);

let DBSuccess = Success in

event DCAuthentication(DBSuccess);

if Success = DBSuccess then

(

out(c, AuthenticationComplete)

)

else

(

0

)).

let AP13 =

in(c, AuthenticationComplete:bitstring);

out(c, AuthenticationComplete).

let Client7 =

in(c, AuthenticationComplete:bitstring);

out(c, AuthenticationCompleteACK).

let AP14 =

in(c, AuthenticationCompleteACK:bitstring);

out(c, AuthenticationCompleteACK).

let Server7 =

in(c, AuthenticationCompleteACK:bitstring);

out(c, EncKey).

let AP15 =

in(c, EncKey:material);

out(c, EncKey).

let Client8 =

in(c, EncKey:material);

let ClientPrivateKey = GenerateKey(EncKey) in

event ClientPrivateKeyGeneration(ClientPrivateKey);

let ClientMKey = MKeyGeneration(ServerHello , ServerPublicKey ,

ClientPrivateKey) in

event ClientMKeyGeneration(ClientMKey);

out(c, EncryptTraffic(Hello , ClientMKey)).

184

let AP16 =

in(c, EncryptedTraffic1:nonce);

out(c, EncryptedTraffic1).

let Server8 =

in(c, EncryptedTraffic1:nonce);

let ServerMKey = MKeyGeneration(TLSHello , ClientPublicKey ,

ServerPrivateKey) in

event ServerMKeyGeneration(ServerMKey);

let DecryptedTraffic1 = DecryptTraffic(EncryptedTraffic1 , ServerMKey) in

event TrafficDecryption1(DecryptedTraffic1);

out(c, EncryptTraffic(HelloAck , ServerMKey)).

let AP17 =

in(c, EncryptedTraffic2:nonce);

out(c, EncryptedTraffic2).

let Client9 =

in(c, EncryptedTraffic2:nonce);

let DecryptedTraffic2 = DecryptTraffic(EncryptedTraffic2 , ClientMKey) in

event TrafficDecryption2(DecryptedTraffic2).

process

(

!AP1 |! Client1 |! AP2 |! Server1 |! AP3 |! Client2 |! AP4 |! Server2 |! AP5 |! Client3
|! AP6 |! Server3 |! AP7 |! Client4 |! AP8 |! Server4 |! AP9 |! Client5 |! AP10 |!
Server5 |! AP11 |! Client6 |! AP12 |! Server6 |! AP13 |! Client7 |! AP14 |! Server7
|! AP15 |! Client8 |

!AP16 |! Server8 |! AP17 |! Client9
)

185

ProVerif Result

Process:

(

{1}!
{2} new AuthenticateRequest: bitstring;

{3} out(c, AuthenticateRequest)

) | (

{4}!
{5}in(c, AuthenticateRequest 16 : bitstring);

{6} new ClientIdentity 17 : bitstring;

{7} out(c, ClientIdentity 17)

) | (

{8}!
{9}in(c, ClientIdentity 18 : bitstring);

{10} out(c, ClientIdentity 18)

) | (

{11}!
{12}in(c, ClientIdentity 19 : bitstring);

{13} let ClientIdentity 20 : bitstring = DBClientIdentity in

{14} event DBClientIdentityCheck(ClientIdentity 20);

{15}if (ClientIdentity 20 = DBClientIdentity) then

{16} out(c, IdentityExists)

) | (

{17}!
{18}in(c, IdentityExists 21 : bitstring);

{19} new EAPAuthRequest 22 : bitstring;

{20} out(c, EAPAuthRequest 22)

) | (

{21}!
{22}in(c, EAPAuthRequest 23 : bitstring);

{23} new TLSHello 24 : bitstring;

{24} out(c, TLSHello 24)

) | (

{25}!
{26}in(c, TLSHello 25 : bitstring);

{27} out(c, TLSHello 25)

) | (

{28}!
{29}in(c, TLSHello 26 : bitstring);

{30} out(c, (ServerHello ,(ServerCertificate ,(ServerKeyExchange ,

ServerDone))))

186

) | (

{31}!
{32}in(c, (ServerHello 27 : bitstring ,(ServerCertificate 28 :

certificate ,(ServerKeyExchange 29 : bitstring , ServerDone 30 :

bitstring))));

{33} out(c, (ServerHello 27 ,(ServerCertificate 28 ,(ServerKeyExchange 29

, ServerDone 30))))

) | (

{34}!
{35}in(c, (ServerHello 31 : bitstring ,(ServerCertificate 32 :

certificate ,(ServerKeyExchange 33 : bitstring , ServerDone 34 :

bitstring))));

{36} let ServerCertificate 35 : certificate = ValidCA in

{37} event ServerCertificateValidation(ServerCertificate 35);

{38}if (ServerCertificate 35 = ValidCA) then

{39} out(c, (ClientKeyExchange ,(Cipher ,(ClientCertificate ,ClientDone)))

)

) | (

{40}!
{41}in(c, (ClientKeyExchange 36 : bitstring ,(Cipher 37 : bitstring ,(

ClientCertificate 38 : certificate ,ClientFinished: bitstring))));

{42} out(c, (ClientKeyExchange 36 ,(Cipher 37 ,(ClientCertificate 38 ,

ClientDone))))

) | (

{43}!
{44}in(c, (ClientKeyExchange 39 : bitstring ,(Cipher 40 : bitstring ,(

ClientCertificate 41 : certificate , ClientFinished 42 : bitstring))));

{45} let ClientCertificate 43 : certificate = ValidCA in

{46} event ClientCertificateValidation(ClientCertificate 43);

{47}if (ClientCertificate 43 = ValidCA) then

{48} out(c, (Cipher 40 ,ServerFinished))

) | (

{49}!
{50}in(c, (Cipher 44 : bitstring , ServerFinished 45 : bitstring));

{51} out(c, (Cipher 44 , ServerFinished 45))

) | (

{52}!
{53}in(c, (Cipher 46 : bitstring , ServerFinished 47 : bitstring));

{54} out(c, EAPResponse)

) | (

{55}!
{56}in(c, EAPResponse 48 : bitstring);

187

{57} out(c, EAPResponse 48)

) | (

{58}!
{59}in(c, EAPResponse 49 : bitstring);

{60} out(c, EAPAuthRequest)

) | (

{61}!
{62}in(c, EAPAuthRequest 50 : bitstring);

{63} out(c, EAPAuthRequest 50)

) | (

{64}!
{65}in(c, EAPAuthRequest 51 : bitstring);

{66} out(c, ClientIdentity)

) | (

{67}!
{68}in(c, ClientIdentity 52 : bitstring);

{69} out(c, ClientIdentity 52)

) | (

{70}!
{71}in(c, ClientIdentity 53 : bitstring);

{72} let ClientIdentity 54 : bitstring = DBClientIdentity in

{73} event DBClientIdentityCheck(ClientIdentity 54);

{74}if (ClientIdentity 54 = DBClientIdentity) then

{75} out(c, MSCHAPv2Challenge)

) | (

{76}!
{77}in(c, MSCHAPv2Challenge 55 : challenge);

{78} out(c, MSCHAPv2Challenge 55)

) | (

{79}!
{80}in(c, MSCHAPv2Challenge 56 : challenge);

{81} let SolvedChallenge: response = SolveChallenge(

MSCHAPv2Challenge 56 ,MSCHAPPassword) in

{82} event FirstChallenge(SolvedChallenge);

{83} out(c, SolvedChallenge)

) | (

{84}!
{85}in(c, SolvedChallenge 57 : response);

{86} out(c, SolvedChallenge 57)

) | (

{87}!
{88}in(c, SolvedChallenge 58 : response);

188

{89}if (SolvedChallenge 58 = SolveChallenge(MSCHAPv2Challenge ,

MSCHAPPassword)) then

{90} let Success 59 : nonce = CombinedAuthentication(ClientIdentity ,

SolvedChallenge 58) in

{91} event Authentication(Success 59);

{92} let DBSuccess: nonce = Success 59 in

{93} event DCAuthentication(DBSuccess);

{94}if (Success 59 = DBSuccess) then

{95} out(c, AuthenticationComplete)

) | (

{96}!
{97}in(c, AuthenticationComplete 60 : bitstring);

{98} out(c, AuthenticationComplete 60)

) | (

{99}!
{100}in(c, AuthenticationComplete 61 : bitstring);

{101} out(c, AuthenticationCompleteACK)

) | (

{102}!
{103}in(c, AuthenticationCompleteACK 62 : bitstring);

{104} out(c, AuthenticationCompleteACK 62)

) | (

{105}!
{106}in(c, AuthenticationCompleteACK 63 : bitstring);

{107} out(c, EncKey)

) | (

{108}!
{109} in(c, EncKey 64 : material);

{110} out(c, EncKey 64)

) | (

{111}!
{112}in(c, EncKey 65 : material);

{113} let ClientPrivateKey 66 : key = GenerateKey(EncKey 65) in

{114} event ClientPrivateKeyGeneration(ClientPrivateKey 66);

{115} let ClientMKey 67 : mkey = MKeyGeneration(ServerHello ,

ServerPublicKey , ClientPrivateKey 66) in

{116} event ClientMKeyGeneration(ClientMKey 67);

{117} out(c, EncryptTraffic(Hello , ClientMKey 67))

) | (

{118}!
{119}in(c, EncryptedTraffic1: nonce);

{120} out(c, EncryptedTraffic1)

189

) | (

{121}!
{122}in(c, EncryptedTraffic1 68 : nonce);

{123} let ServerMKey 69 : mkey = MKeyGeneration(TLSHello ,ClientPublicKey

,ServerPrivateKey) in

{124} event ServerMKeyGeneration(ServerMKey 69);

{125} let DecryptedTraffic1 70 : bitstring = DecryptTraffic(

EncryptedTraffic1 68 , ServerMKey 69) in

{126} event TrafficDecryption1(DecryptedTraffic1 70);

{127} out(c, EncryptTraffic(HelloAck , ServerMKey 69))

) | (

{128}!
{129}in(c, EncryptedTraffic2: nonce);

{130} out(c, EncryptedTraffic2)

) | (

{131}!
{132} in(c, EncryptedTraffic2 71 : nonce);

{133} let DecryptedTraffic2 72 : bitstring = DecryptTraffic(

EncryptedTraffic2 71 ,ClientMKey) in

{134} event TrafficDecryption2(DecryptedTraffic2 72)

)

== Query not attacker(ServerMKey [])

nounif mess(c[], AuthenticateRequest 144)/=5000

Completing ...

Starting query not attacker(ServerMKey [])

RESULT not attacker(ServerMKey []) is true.

== Query not attacker(ClientMKey [])

nounif mess(c[], AuthenticateRequest 948)/=5000

Completing ...

Starting query not attacker(ClientMKey [])

RESULT not attacker(ClientMKey []) is true.

== Query not attacker(DecryptedTraffic1 [])

nounif mess(c[], AuthenticateRequest 1748)/=5000

Completing ...

Starting query not attacker(DecryptedTraffic1 [])

RESULT not attacker(DecryptedTraffic1 []) is true.

== Query not attacker(DecryptedTraffic2 [])

nounif mess(c[], AuthenticateRequest 2548)/=5000

Completing ...

Starting query not attacker(DecryptedTraffic2 [])

RESULT not attacker(DecryptedTraffic2 []) is true.

190

== Query not event(TrafficDecryption1(x 73))

nounif mess(c[], AuthenticateRequest 3348)/=5000

Completing ...

Starting query not event(TrafficDecryption1(x 73))

RESULT not event(TrafficDecryption1(x 73)) is true.

== Query not event(TrafficDecryption2(x 74))

nounif mess(c[], AuthenticateRequest 4155)/=5000

Completing ...

Starting query not event(TrafficDecryption2(x 74))

RESULT not event(TrafficDecryption2(x 74)) is true.

== Query event(TrafficDecryption1(x 75)) ==> event(TrafficDecryption2(x 75

))

nounif mess(c[], AuthenticateRequest 4961)/=5000

Completing ...

Starting query event(TrafficDecryption1(x 75)) ==> event(

TrafficDecryption2(x 75))

RESULT event(TrafficDecryption1(x 75)) ==> event(TrafficDecryption2(x 75))

is true.

== Query inj=event(TrafficDecryption1(x 76)) ==> inj=event(

TrafficDecryption2(x 76))

nounif mess(c[], AuthenticateRequest 5768)/=5000

Completing ...

Starting query inj=event(TrafficDecryption1(x 76)) ==> inj=event(

TrafficDecryption2(x 76))

RESULT inj=event(TrafficDecryption1(x 76)) ==> inj=event(

TrafficDecryption2(x 76)) is true.

191

Appendix 10 – DTLS Authentication

DTLS uses TLS based key exchange, which is described in Appendix 8. Difference

between DTLS and TLS is that which transport protocol they use, TLS uses TCP and

DTLS UDP. Message flow for this authentication on key exchange in Figure 12 is as

follows:

Figure 12: DTLS Key Exchange Sequence [9]

192

ProVerif Verification

set traceDisplay = long.

query attacker(ServerPrivKey).

query attacker(ClientPrivKey).

query attacker(ServerMKey).

query attacker(ClientMKey).

query attacker(DecryptedData).

query attacker(DecryptedData2).

query x:bitstring; event(DataDecryption1(x)).

query x:bitstring; event(DataDecryption2(x)).

query x:bitstring; event(DataDecryption1(x)) ==> event(DataDecryption2(x))

.

query x:bitstring; inj=event(DataDecryption1(x)) ==> inj=event(

DataDecryption2(x)).

type certificate.

type key.

type nonce.

type mkey.

free c: channel.

free ClientCertificate , ServerCertificate , ValidCA:certificate[private].

free Hello , TestHello , TestHelloAck , HelloVerify , Hello2 , DecryptedData2 ,

DecryptedData:bitstring [private].

free ServerHello , ServerFinished , ServerKeyExchange , ClientKeyExchange ,

ClientCertificateRequest , Cipher , ClientFinished , ServerHelloDone :

bitstring[private].

free ServerPubKey ,ServerPrivKey , ClientPrivKey , ClientPubKey : key [

private].

fun PublicKeyGeneration(certificate):key.

fun Encryption(bitstring , mkey):nonce.

reduc forall x:bitstring , y:mkey; Decryption(Encryption(x,y),y)=x.

free ServerMKey:mkey [private].

free ClientMKey:mkey [private].

fun CommunicationKeyGeneration(bitstring , key , key):mkey.

event ClientMKeyGeneration(mkey).

193

event ServerMKeyGeneration(mkey).

event HelloVerification(bitstring).

event ClientCertificateValidation(certificate).

event ServerCertificateValidation(certificate).

event ClientPublicKeyGeneration(key).

event ServerPublicKeyGeneration(key).

event DataDecryption1(bitstring).

event DataDecryption2(bitstring).

event DataDecryption3(bitstring).

let Client1 =

out(c, Hello).

let Server1 =

in(c, Hello:bitstring);

out(c, HelloVerify).

let Client2 =

in(c, HelloVerify:bitstring);

out(c, Hello2).

let Server2 =

in(c, Hello2:bitstring);

let Hello2 = Hello in

event HelloVerification(Hello2);

if Hello = Hello2 then

(

out(c, (ServerHello , (ServerCertificate , (ServerKeyExchange , (

ClientCertificateRequest , ServerHelloDone)))))

)

else

(

0

).

let Client3 =

in(c, (ServerHello:bitstring , (ServerCertificate:certificate , (

ServerKeyExchange:bitstring , (ClientCertificateRequest:bitstring ,

ServerHelloDone:bitstring)))));

let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);

194

if ServerCertificate = ValidCA then

(

out(c, (ClientCertificate , (ClientKeyExchange , (Cipher , ClientFinished

))))

)

else

(

0

).

let Server3 =

in(c, (ClientCertificate:certificate , (ClientKeyExchange:bitstring , (

Cipher:bitstring , ClientFinished:bitstring))));

let ClientCertificate = ValidCA in

event ClientCertificateValidation(ClientCertificate);

if ClientCertificate = ValidCA then

(

out(c, (Cipher , ServerFinished))

)

else

(

0

).

let Client4 =

in(c, (Cipher:bitstring , ServerFinished:bitstring));

let ServerPubKey = PublicKeyGeneration(ServerCertificate) in

event ServerPublicKeyGeneration(ServerPubKey);

let ClientMKey = CommunicationKeyGeneration(HelloVerify , ServerPubKey ,

ClientPrivKey) in

event ClientMKeyGeneration(ClientMKey);

out(c, Encryption(TestHello , ClientMKey)).

let Server4 =

in(c, EncryptedData:nonce);

let ClientPubKey = PublicKeyGeneration(ClientCertificate) in

event ClientPublicKeyGeneration(ClientPubKey);

let ServerMKey = CommunicationKeyGeneration(Hello , ClientPubKey ,

ServerPrivKey) in

event ClientMKeyGeneration(ServerMKey);

let DecryptedData = Decryption(EncryptedData , ServerMKey) in

event DataDecryption1(DecryptedData);

if DecryptedData = TestHello then

(

195

out(c, Encryption(TestHelloAck , ServerMKey))

)

else

(

0

).

let Client5 =

in(c, EncryptedData2:nonce);

let DecryptedData2 = Decryption(EncryptedData2 , ClientMKey) in

event DataDecryption2(DecryptedData2).

process(

!Client1 |! Server1 |! Client2 |! Server2 |! Client3 |! Server3 |! Client4 |! Server4
|! Client5

)

196

ProVerif Result

Process:

(

{1}!
{2} out(c, Hello)

) | (

{3}!
{4}in(c, Hello 16 : bitstring);

{5} out(c, HelloVerify)

) | (

{6}!
{7}in(c, HelloVerify 17 : bitstring);

{8} out(c, Hello2)

) | (

{9}!
{10}in(c, Hello2 18 : bitstring);

{11} let Hello2 19 : bitstring = Hello in

{12} event HelloVerification(Hello2 19);

{13}if (Hello = Hello2 19) then

{14} out(c, (ServerHello ,(ServerCertificate ,(ServerKeyExchange ,(

ClientCertificateRequest ,ServerHelloDone)))))

) | (

{15}!
{16}in(c, (ServerHello 20 : bitstring ,(ServerCertificate 21 :

certificate ,(ServerKeyExchange 22 : bitstring ,(

ClientCertificateRequest 23 : bitstring , ServerHelloDone 24 :

bitstring)))));

{17} let ServerCertificate 25 : certificate = ValidCA in

{18} event ServerCertificateValidation(ServerCertificate 25);

{19}if (ServerCertificate 25 = ValidCA) then

{20} out(c, (ClientCertificate ,(ClientKeyExchange ,(Cipher ,

ClientFinished))))

) | (

{21}!
{22}in(c, (ClientCertificate 26 : certificate ,(ClientKeyExchange 27 :

bitstring ,(Cipher 28 : bitstring , ClientFinished 29 : bitstring))));

{23} let ClientCertificate 30 : certificate = ValidCA in

{24} event ClientCertificateValidation(ClientCertificate 30);

{25}if (ClientCertificate 30 = ValidCA) then

{26} out(c, (Cipher 28 ,ServerFinished))

) | (

197

{27}!
{28}in(c, (Cipher 31 : bitstring , ServerFinished 32 : bitstring));

{29} let ServerPubKey 33 : key = PublicKeyGeneration(ServerCertificate)

in

{30} event ServerPublicKeyGeneration(ServerPubKey 33);

{31} let ClientMKey 34 : mkey = CommunicationKeyGeneration(HelloVerify ,

ServerPubKey 33 ,ClientPrivKey) in

{32} event ClientMKeyGeneration(ClientMKey 34);

{33} out(c, Encryption(TestHello , ClientMKey 34))

) | (

{34}!
{35}in(c, EncryptedData: nonce);

{36} let ClientPubKey 35 : key = PublicKeyGeneration(ClientCertificate)

in

{37} event ClientPublicKeyGeneration(ClientPubKey 35);

{38} let ServerMKey 36 : mkey = CommunicationKeyGeneration(Hello ,

ClientPubKey 35 ,ServerPrivKey) in

{39} event ClientMKeyGeneration(ServerMKey 36);

{40} let DecryptedData 37 : bitstring = Decryption(EncryptedData ,

ServerMKey 36) in

{41} event DataDecryption1(DecryptedData 37);

{42}if (DecryptedData 37 = TestHello) then

{43} out(c, Encryption(TestHelloAck , ServerMKey 36))

) | (

{44}!
{45}in(c, EncryptedData2: nonce);

{46} let DecryptedData2 38 : bitstring = Decryption(EncryptedData2 ,

ClientMKey) in

{47} event DataDecryption2(DecryptedData2 38)

)

== Query not attacker(ServerPrivKey [])

Completing ...

Starting query not attacker(ServerPrivKey [])

RESULT not attacker(ServerPrivKey []) is true.

== Query not attacker(ClientPrivKey [])

Completing ...

Starting query not attacker(ClientPrivKey [])

RESULT not attacker(ClientPrivKey []) is true.

== Query not attacker(ServerMKey [])

Completing ...

Starting query not attacker(ServerMKey [])

198

RESULT not attacker(ServerMKey []) is true.

== Query not attacker(ClientMKey [])

Completing ...

Starting query not attacker(ClientMKey [])

RESULT not attacker(ClientMKey []) is true.

== Query not attacker(DecryptedData [])

Completing ...

Starting query not attacker(DecryptedData [])

RESULT not attacker(DecryptedData []) is true.

== Query not attacker(DecryptedData2 [])

Completing ...

Starting query not attacker(DecryptedData2 [])

RESULT not attacker(DecryptedData2 []) is true.

== Query not event(DataDecryption1(x 39))

Completing ...

Starting query not event(DataDecryption1(x 39))

RESULT not event(DataDecryption1(x 39)) is true.

== Query not event(DataDecryption2(x 40))

Completing ...

Starting query not event(DataDecryption2(x 40))

RESULT not event(DataDecryption2(x 40)) is true.

== Query event(DataDecryption1(x 41)) ==> event(DataDecryption2(x 41))

Completing ...

Starting query event(DataDecryption1(x 41)) ==> event(DataDecryption2(x 41

))

RESULT event(DataDecryption1(x 41)) ==> event(DataDecryption2(x 41)) is

true.

== Query inj=event(DataDecryption1(x 42)) ==> inj=event(DataDecryption2(

x 42))

Completing ...

Starting query inj=event(DataDecryption1(x 42)) ==> inj=event(

DataDecryption2(x 42))

RESULT inj=event(DataDecryption1(x 42)) ==> inj=event(DataDecryption2(x 42

)) is true.

199

Appendix 11 – PSK and EAP-PSK Authentication

EAP-PSK and PSK authentication protocols are similar but not that different. Their

biggest differences lie in the transport field and key lengths, but authentication flow is

the same as the goal.

EAP-PSK is composed of four messages: [148]

First message sent by the server to the peer which starts the mutual authentication

procedure and consists of a random value chosen by the server.

Second message sent by the peer to the server which contains a random value chosen

by the peer and an authentication tag over both random values as well as the peer and

server’s permanent network access identifier (NAI), that proves the identity of the peer

to the server.

Third message sent by the server to the peer that contains an authentication tag calculated

over the random value chosen by the peer and the server’s permanent full NAI that proves

the identity of the server to the peer. This message may also contain data encapsulated in

a protected channel that has just been set up as a result of the authentication procedure.

Fourth message sent by the peer to the server that may also contain data encapsulated

in a protected channel that has just been set up as a result of the authentication procedure

200

ProVerif Verification

set traceDisplay = long.

query attacker(PSK).

query attacker(MasterKey).

query attacker(DecryptedData).

query attacker(DecryptedData2).

query x:bitstring; event(DataAESDecryption1(x)).

query x:bitstring; event(DataAESDecryption2(x)).

query x:bitstring; event(DataAESDecryption1(x)) ==> event(

DataAESDecryption2(x)).

query x:bitstring; inj=event(DataAESDecryption1(x)) ==> inj=event(

DataAESDecryption2(x)).

type challenge.

type response.

type nonce.

type key.

free c:channel.

free RequestIdentity:bitstring[private].

free ResponseIdentity:bitstring[private].

free Challenge1:bitstring[private].

free PSKChallenge:challenge[private].

free MasterKey:key[private].

free PSK:key [private].

free PSKChallengeResponse:response[private].

free TestHello:bitstring[private].

free TestHelloAck:bitstring[private].

free Success:bitstring[private].

free EncryptedData:nonce [private].

free EncryptedData2:nonce[private].

free DecryptedData:bitstring[private].

free DecryptedData2:bitstring[private].

free DBResponse:bitstring[private].

fun PSKChallengeGeneration(bitstring , key):challenge.

fun SolveChallenge(challenge , key):response.

201

fun AESEncryption(bitstring ,key):nonce.

reduc forall x:bitstring , y:key;AESDecryption(AESEncryption(x,y),y)=x.

event ResponseCheck(bitstring).

event ChallengeGeneration(challenge).

event DataAESDecryption1(bitstring).

event DataAESDecryption2(bitstring).

event ChallengeSolving(response).

let Server1 =

out(c, RequestIdentity).

let Client1 =

in(c, RequestIdentity:bitstring);

out(c, ResponseIdentity).

let Server2 =

in(c, ResponseIdentity:bitstring);

let ResponseIdentity = DBResponse in

event ResponseCheck(ResponseIdentity);

if ResponseIdentity = DBResponse then

(

new PSKChallenge:challenge;

new Challenge1:bitstring;

let PSKChallenge = PSKChallengeGeneration(Challenge1 , MasterKey) in

event ChallengeGeneration(PSKChallenge);

out(c, PSKChallenge)

)

else

(

0

).

let Client2 =

in(c, PSKChallenge:challenge);

let PSKChallengeResponse = SolveChallenge(PSKChallenge , PSK) in

event ChallengeSolving(PSKChallengeResponse);

out(c, PSKChallengeResponse).

let Server3 =

in(c, PSKChallengeResponse:response);

if PSKChallengeResponse = SolveChallenge(PSKChallenge , MasterKey) then

(

out(c, AESEncryption(TestHello , MasterKey))

)

202

else

(

0

).

let Client3 =

in(c, EncryptedData:nonce);

let DecryptedData = AESDecryption(EncryptedData , PSK) in

event DataAESDecryption1(DecryptedData);

out(c, AESEncryption(TestHelloAck , PSK)).

let Server4 =

in(c, EncryptedData2:nonce);

let DecryptedData2 = AESDecryption(EncryptedData2 , PSK) in

event DataAESDecryption2(DecryptedData2).

process (

!Server1 |! Client1 |! Server2 |! Client2 |! Server3 |! Client3 |! Server4
)

203

ProVerif Result

Process:

(

{1}!
{2} out(c, RequestIdentity)

) | (

{3}!
{4}in(c, RequestIdentity 16 : bitstring);

{5} out(c, ResponseIdentity)

) | (

{6}!
{7}in(c, ResponseIdentity 17 : bitstring);

{8} let ResponseIdentity 18 : bitstring = DBResponse in

{9} event ResponseCheck(ResponseIdentity 18);

{10}if (ResponseIdentity 18 = DBResponse) then

{11} new PSKChallenge 19 : challenge;

{12} new Challenge1 20 : bitstring;

{13} let PSKChallenge 21 : challenge = PSKChallengeGeneration(

Challenge1 20 ,MasterKey) in

{14} event ChallengeGeneration(PSKChallenge 21);

{15} out(c, PSKChallenge 21)

) | (

{16}!
{17}in(c, PSKChallenge 22 : challenge);

{18} let PSKChallengeResponse 23 : response = SolveChallenge(

PSKChallenge 22 ,PSK) in

{19} event ChallengeSolving(PSKChallengeResponse 23);

{20} out(c, PSKChallengeResponse 23)

) | (

{21}!
{22}in(c, PSKChallengeResponse 24 : response);

{23}if (PSKChallengeResponse 24 = SolveChallenge(PSKChallenge ,

MasterKey)) then

{24} out(c, AESEncryption(TestHello ,MasterKey))

) | (

{25}!
{26}in(c, EncryptedData 25 : nonce);

{27} let DecryptedData 26 : bitstring = AESDecryption(EncryptedData 25 ,

PSK) in

{28} event DataAESDecryption1(DecryptedData 26);

{29} out(c, AESEncryption(TestHelloAck ,PSK))

204

) | (

{30}!
{31}in(c, EncryptedData2 27 : nonce);

{32} let DecryptedData2 28 : bitstring = AESDecryption(EncryptedData2 27

,PSK) in

{33} event DataAESDecryption2(DecryptedData2 28)

)

== Query not attacker(PSK[])

Completing ...

Starting query not attacker(PSK[])

RESULT not attacker(PSK[]) is true.

== Query not attacker(MasterKey [])

Completing ...

Starting query not attacker(MasterKey [])

RESULT not attacker(MasterKey []) is true.

== Query not attacker(DecryptedData [])

Completing ...

Starting query not attacker(DecryptedData [])

RESULT not attacker(DecryptedData []) is true.

== Query not attacker(DecryptedData2 [])

Completing ...

Starting query not attacker(DecryptedData2 [])

RESULT not attacker(DecryptedData2 []) is true.

== Query not event(DataAESDecryption1(x 29))

Completing ...

Starting query not event(DataAESDecryption1(x 29))

RESULT not event(DataAESDecryption1(x 29)) is true.

== Query not event(DataAESDecryption2(x 30))

Completing ...

Starting query not event(DataAESDecryption2(x 30))

RESULT not event(DataAESDecryption2(x 30)) is true.

== Query event(DataAESDecryption1(x 31)) ==> event(DataAESDecryption2(x 31

))

Completing ...

Starting query event(DataAESDecryption1(x 31)) ==> event(

DataAESDecryption2(x 31))

RESULT event(DataAESDecryption1(x 31)) ==> event(DataAESDecryption2(x 31))

is true.

== Query inj=event(DataAESDecryption1(x 32)) ==> inj=event(

DataAESDecryption2(x 32))

Completing ...

205

Starting query inj=event(DataAESDecryption1(x 32)) ==> inj=event(

DataAESDecryption2(x 32))

RESULT inj=event(DataAESDecryption1(x 32)) ==> inj=event(

DataAESDecryption2(x 32)) is true.

206

Appendix 12 – EAP-TLS Authentication

EAP-TLS is based on TLS, which is used to provide protected cipher-suite negotiation,

mutual authentication, and key management. After the EAP-TLS negotiation is com-

pleted, the two end-points can securely communicate within the encrypted TLS tunnel.

Therefore, user’s identity and password will not be revealed. Because TLS provides a

way to use certificates for both user and server to authenticate each other, a user, in

addition to being authenticated, can also authenticate the network. [89]

EAP-TLS uses the TLS public key certificate authentication mechanism within EAP

to provide mutual authentication of client to server and server to client. With EAP-TLS,

both the client and the server must be assigned a digital certificate signed by a Certificate

Authority (CA) that they both trust.

EAP-TLS provides :

Mutual authentication

Key exchange

Fragmentation and reassembly

Fast reconnect.

Diffie-Hellman authentication has been described in Appendix 3 and TLS Appendix 8.

207

ProVerif Verification

set traceDisplay = long.

query attacker(EncryptionKey).

query attacker(Password).

query attacker(ServerKey).

query attacker(DecryptedTraffic).

query attacker(DecryptedTraffic2).

query x:bitstring; event(DataDecryption1(x)).

query x:bitstring; event(DataDecryption2(x)).

query x:bitstring; event(DataDecryption1(x)) ==> event(DataDecryption2(x))

.

query x:bitstring; inj=event(DataDecryption1(x)) ==> inj=event(

DataDecryption2(x)).

type certificate.

type password.

type challenge.

type key.

type response.

type nonce.

type material.

free c:channel.

free AccessChallenge:challenge[private].

free EAPRequest ,DecryptedTraffic2 , DecryptedTraffic:bitstring[private].

free EAPResponseIdentity:bitstring[private].

free EAPTLSStart ,TLSHello2 , TLSHello2ACK , ClientKeyExchange , Cipher ,

ClientTLSFinished:bitstring[private].

free EAPTLSHello , EAPTLSServerHello , Handshake , ServerKeyExchange ,

CertificateRequest , ServerHelloDone:bitstring[private].

free ServerCertificate , ClientCertificate , ValidCA:certificate[private].

free Password:password[private].

free EncKey:material[private].

free EncryptionKey:key[private].

free ServerKey:key[private].

free Hello:bitstring[private].

free HelloACK:bitstring[private].

208

fun SolveChallenge(challenge , password):response.

fun EncryptionKeyGeneration(material):key.

fun TrafficEncryption(bitstring , key):nonce.

reduc forall x:bitstring , y:key; TrafficDecryption(TrafficEncryption(x,y),

y)=x.

event ServerCertificateValidation(certificate).

event ChallengeSolving(response).

event EncryptionKeyGen(key).

event ServerKeyTrafficDecryption(bitstring).

event ClientKeyTrafficDecryption(bitstring).

event ClientCertificateValidation(certificate).

event DataDecryption1(bitstring).

event DataDecryption2(bitstring).

let AP1 =

out(c, EAPRequest).

let Client1 =

in(c, EAPRequest:bitstring);

out(c, EAPResponseIdentity).

let AP2 =

in(c, EAPResponseIdentity:bitstring);

out(c, EAPResponseIdentity).

let Server1 =

in(c, EAPResponseIdentity:bitstring);

out(c, EAPTLSStart).

let AP3 =

in(c, EAPTLStart:bitstring);

out(c, EAPTLSStart).

let Client2 =

in(c, EAPTLSStart:bitstring);

out(c, EAPTLSHello).

let AP4 =

in(c, EAPTLSHello:bitstring);

out(c, EAPTLSHello).

let Server2 =

in(c, EAPTLSHello:bitstring);

new ServerCertificate:certificate;

out(c, (EAPTLSServerHello , (Handshake , (ServerCertificate , (

ServerKeyExchange , (CertificateRequest , ServerHelloDone)))))).

209

let AP5 =

in(c, (EAPTLSServerHello:bitstring , (Handshake:bitstring , (

ServerCertificate:certificate , (ServerKeyExchange:bitstring , (

CertificateRequest:bitstring , ServerHelloDone:bitstring))))));

out(c, (EAPTLSServerHello , (Handshake , (ServerCertificate , (

ServerKeyExchange , (CertificateRequest , ServerHelloDone)))))).

let Client3 =

in(c, (EAPTLSServerHello:bitstring , (Handshake:bitstring , (

ServerCertificate:certificate , (ServerKeyExchange:bitstring , (

CertificateRequest:bitstring , ServerHelloDone:bitstring))))));

let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);

if ServerCertificate = ValidCA then

(

new ClientCertificate:certificate;

out(c, (ClientCertificate , (ClientKeyExchange , (Cipher ,

ClientTLSFinished))))

)

else

(

0

).

let AP6 =

in(c, (ClientCertificate:certificate , (ClientKeyExchange:bitstring , (

Cipher:bitstring , ClientTLSFinished:bitstring))));

out(c, (ClientCertificate , (ClientKeyExchange , (Cipher ,

ClientTLSFinished)))).

let Server3 =

in(c, (ClientCertificate:certificate , (ClientKeyExchange:bitstring , (

Cipher:bitstring , ClientTLSFinished:bitstring))));

let ClientCertificate = ValidCA in

event ClientCertificateValidation(ClientCertificate);

if ClientCertificate = ValidCA then

(

out(c, AccessChallenge)

)

else

(

0

).

210

let AP7 =

in(c, AccessChallenge:challenge);

out(c, AccessChallenge).

let Client4 =

in(c, AccessChallenge:challenge);

let SolvedChallenge = SolveChallenge(AccessChallenge , Password) in

event ChallengeSolving(SolvedChallenge);

out(c, SolvedChallenge).

let AP8 =

in(c, SolvedChallenge:response);

out(c, SolvedChallenge).

let Server4 =

in(c, SolvedChallenge:response);

if SolvedChallenge = SolveChallenge(AccessChallenge , Password) then

(

new EncKey:material;

out(c, EncKey)

)

else

(

0

).

let AP9 =

in(c, EncKey:material);

out(c, EncKey).

let Client5 =

in(c, EncKey:material);

let EncryptionKey = EncryptionKeyGeneration(EncKey) in

event EncryptionKeyGen(EncryptionKey);

out(c, TrafficEncryption(TLSHello2 , EncryptionKey)).

let AP10 =

in(c, EncryptedTraffic:nonce);

out(c, EncryptedTraffic).

let Server5 =

211

in(c, EncryptedTraffic:nonce);

let DecryptedTraffic = TrafficDecryption(EncryptedTraffic , ServerKey) in

event ServerKeyTrafficDecryption(DecryptedTraffic);

out(c, TrafficEncryption(TLSHello2ACK , ServerKey)).

let AP11 =

in(c, EncryptedTraffic2:nonce);

out(c, EncryptedTraffic2).

let Client6 =

in(c, EncryptedTraffic2:nonce);

let DecryptedTraffic2 = TrafficDecryption(EncryptedTraffic2 ,

EncryptionKey) in

event ClientKeyTrafficDecryption(DecryptedTraffic2).

process (

!AP1 |! Client1 |! AP2 |! Server1 |! AP3 |! Client2 |! AP4 |! Server2 |! AP5 |!
Client3 |! AP6 |! Server3 |! AP7 |! Client4 |! AP8 |! Server4 |! AP9 |! Client5 |!
AP10 |! Server5 |! AP11 |! Client6

)

212

ProVerif Result

Process:

(

{1}!
{2} out(c, EAPRequest)

) | (

{3}!
{4}in(c, EAPRequest 16 : bitstring);

{5} out(c, EAPResponseIdentity)

) | (

{6}!
{7}in(c, EAPResponseIdentity 17 : bitstring);

{8} out(c, EAPResponseIdentity 17)

) | (

{9}!
{10}in(c, EAPResponseIdentity 18 : bitstring);

{11} out(c, EAPTLSStart)

) | (

{12}!
{13}in(c, EAPTLStart: bitstring);

{14} out(c, EAPTLSStart)

) | (

{15}!
{16}in(c, EAPTLSStart 19 : bitstring);

{17} out(c, EAPTLSHello)

) | (

{18}!
{19}in(c, EAPTLSHello 20 : bitstring);

{20} out(c, EAPTLSHello 20)

) | (

{21}!
{22}in(c, EAPTLSHello 21 : bitstring);

{23} new ServerCertificate 22 : certificate;

{24} out(c, (EAPTLSServerHello ,(Handshake ,(ServerCertificate 22 ,(

ServerKeyExchange ,(CertificateRequest ,ServerHelloDone))))))

) | (

{25}!
{26}in(c, (EAPTLSServerHello 23 : bitstring ,(Handshake 24 : bitstring ,(

ServerCertificate 25 : certificate ,(ServerKeyExchange 26 : bitstring

,(CertificateRequest 27 : bitstring , ServerHelloDone 28 : bitstring)))

)));

213

{27} out(c, (EAPTLSServerHello 23 ,(Handshake 24 ,(ServerCertificate 25 ,(

ServerKeyExchange 26 ,(CertificateRequest 27 , ServerHelloDone 28)))))

)

) | (

{28}!
{29}in(c, (EAPTLSServerHello 29 : bitstring ,(Handshake 30 : bitstring ,(

ServerCertificate 31 : certificate ,(ServerKeyExchange 32 : bitstring

,(CertificateRequest 33 : bitstring , ServerHelloDone 34 : bitstring)))

)));

{30} let ServerCertificate 35 : certificate = ValidCA in

{31} event ServerCertificateValidation(ServerCertificate 35);

{32}if (ServerCertificate 35 = ValidCA) then

{33} new ClientCertificate 36 : certificate;

{34} out(c, (ClientCertificate 36 ,(ClientKeyExchange ,(Cipher ,

ClientTLSFinished))))

) | (

{35}!
{36}in(c, (ClientCertificate 37 : certificate ,(ClientKeyExchange 38 :

bitstring ,(Cipher 39 : bitstring , ClientTLSFinished 40 : bitstring))))

;

{37} out(c, (ClientCertificate 37 ,(ClientKeyExchange 38 ,(Cipher 39 ,

ClientTLSFinished 40))))

) | (

{38}!
{39}in(c, (ClientCertificate 41 : certificate ,(ClientKeyExchange 42 :

bitstring ,(Cipher 43 : bitstring , ClientTLSFinished 44 : bitstring))))

;

{40} let ClientCertificate 45 : certificate = ValidCA in

{41} event ClientCertificateValidation(ClientCertificate 45);

{42}if (ClientCertificate 45 = ValidCA) then

{43} out(c, AccessChallenge)

) | (

{44}!
{45}in(c, AccessChallenge 46 : challenge);

{46} out(c, AccessChallenge 46)

) | (

{47}!
{48}in(c, AccessChallenge 47 : challenge);

{49} let SolvedChallenge: response = SolveChallenge(AccessChallenge 47 ,

Password) in

{50} event ChallengeSolving(SolvedChallenge);

{51} out(c, SolvedChallenge)

214

) | (

{52}!
{53}in(c, SolvedChallenge 48 : response);

{54} out(c, SolvedChallenge 48)

) | (

{55}!
{56}in(c, SolvedChallenge 49 : response);

{57}if (SolvedChallenge 49 = SolveChallenge(AccessChallenge ,Password))

then

{58} new EncKey 50 : material;

{59} out(c, EncKey 50)

) | (

{60}!
{61}in(c, EncKey 51 : material);

{62} out(c, EncKey 51)

) | (

{63}!
{64}in(c, EncKey 52 : material);

{65} let EncryptionKey 53 : key = EncryptionKeyGeneration(EncKey 52) in

{66} event EncryptionKeyGen(EncryptionKey 53);

{67} out(c, TrafficEncryption(TLSHello2 , EncryptionKey 53))

) | (

{68}!
{69}in(c, EncryptedTraffic: nonce);

{70} out(c, EncryptedTraffic)

) | (

{71}!
{72}in(c, EncryptedTraffic 54 : nonce);

{73} let DecryptedTraffic 55 : bitstring = TrafficDecryption(

EncryptedTraffic 54 ,ServerKey) in

{74} event ServerKeyTrafficDecryption(DecryptedTraffic 55);

{75} out(c, TrafficEncryption(TLSHello2ACK ,ServerKey))

) | (

{76}!
{77}in(c, EncryptedTraffic2: nonce);

{78} out(c, EncryptedTraffic2)

) | (

{79}!
{80}in(c, EncryptedTraffic2 56 : nonce);

{81} let DecryptedTraffic2 57 : bitstring = TrafficDecryption(

EncryptedTraffic2 56 ,EncryptionKey) in

{82} event ClientKeyTrafficDecryption(DecryptedTraffic2 57)

215

)

== Query not attacker(EncryptionKey [])

Completing ...

Starting query not attacker(EncryptionKey [])

RESULT not attacker(EncryptionKey []) is true.

== Query not attacker(Password [])

Completing ...

Starting query not attacker(Password [])

RESULT not attacker(Password []) is true.

== Query not attacker(ServerKey [])

Completing ...

Starting query not attacker(ServerKey [])

RESULT not attacker(ServerKey []) is true.

== Query not attacker(DecryptedTraffic [])

Completing ...

Starting query not attacker(DecryptedTraffic [])

RESULT not attacker(DecryptedTraffic []) is true.

== Query not attacker(DecryptedTraffic2 [])

Completing ...

Starting query not attacker(DecryptedTraffic2 [])

RESULT not attacker(DecryptedTraffic2 []) is true.

== Query not event(DataDecryption1(x 58))

Completing ...

Starting query not event(DataDecryption1(x 58))

RESULT not event(DataDecryption1(x 58)) is true.

== Query not event(DataDecryption2(x 59))

Completing ...

Starting query not event(DataDecryption2(x 59))

RESULT not event(DataDecryption2(x 59)) is true.

== Query event(DataDecryption1(x 60)) ==> event(DataDecryption2(x 60))

Completing ...

Starting query event(DataDecryption1(x 60)) ==> event(DataDecryption2(x 60

))

RESULT event(DataDecryption1(x 60)) ==> event(DataDecryption2(x 60)) is

true.

== Query inj=event(DataDecryption1(x 61)) ==> inj=event(DataDecryption2(

x 61))

Completing ...

Starting query inj=event(DataDecryption1(x 61)) ==> inj=event(

DataDecryption2(x 61))

RESULT inj=event(DataDecryption1(x 61)) ==> inj=event(DataDecryption2(x 61

216

)) is true.

217

Appendix 13 – EAP-TTLS Authentication

EAP-TTLS extends EAP-TLS to exchange information between client and server by

using the secure tunnel established by TLS negotiation. An EAP-TTLS negotiation

has two phases: the TLS handshake phase and the TLS tunnel phase. During phase

one, TLS is used for the client to authenticate the server. Similarly as in EAP-TLS, the

authentication is done by using certificates. A secure TLS tunnel is established after

the phase-one handshake. In phase two, the secure TLS tunnel can be used for other

information exchanges, such as additional user authentication key, communication of

accounting information, and so forth. [2]

It is very similar to the TLS authentication, but the outcome is different, which is a

secure tunnel to the destination, which is used for authentication, where EAP-TLS has

already authenticated and uses tunnel for communication.

Diffie-Hellman authentication has been described in Appendix 3 and TLS Appendix 8

and EAP-TLS Appendix 12.

218

ProVerif Verification

set traceDisplay = long.

query attacker(ClientKey).

query attacker(ServerKey).

query attacker(DiameterPassword).

query attacker(ServerMKey).

query attacker(ClientMKey).

query attacker(DecryptedTLSHello).

query attacker(DecryptedTLSHelloACK).

query x:bitstring; event(TLSHelloDecryption(x)).

query x:bitstring; event(TLSHelloACKDecryption(x)).

query x:bitstring; event(TLSHelloDecryption(x)) ==> event(

TLSHelloACKDecryption(x)).

query x:bitstring; inj=event(TLSHelloDecryption(x)) ==> inj=event(

TLSHelloACKDecryption(x)).

type certificate.

type password.

type challenge.

type key.

type response.

type nonce.

type material.

free c:channel.

free AccessChallenge:challenge[private].

free EAPRequest ,DecryptedTraffic2 , DecryptedTraffic:bitstring[private].

free EAPResponseIdentity , DecryptedTLSHello , DecryptedTLSHelloACK:

bitstring[private].

free EAPTLSStart ,TLSHello2 , TLSHello2ACK , ClientKeyExchange , Cipher ,

ClientTLSFinished , TLSHello2ACKACK:bitstring[private].

free EAPTLSHello , EAPTLSServerHello , Handshake , ServerKeyExchange ,

CertificateRequest , ServerHelloDone:bitstring[private].

free ServerCertificate , ClientCertificate , ValidCA:certificate[private].

free DiameterPassword:password[private].

free ClientKey:key[private].

219

free ServerKey:key[private].

free EncKey:material [private].

free ClientPubKey:key[private].

free ServerPubKey:key[private].

type mkey.

free ServerMKey:mkey [private].

free ClientMKey:mkey [private].

fun MKeyGeneration(bitstring , key , key):mkey.

event ClientMKeyGeneration(mkey).

event ServerMKeyGeneration(mkey).

fun SolveChallenge(challenge , password):response.

fun EncryptionKeyGeneration(material):key.

fun TrafficEncryption(bitstring , mkey):nonce.

reduc forall x:bitstring , y:mkey; TrafficDecryption(TrafficEncryption(x,y)

,y)=x.

event ServerCertificateValidation(certificate).

event ChallengeSolving(response).

event EncryptionKeyGen(key).

event ServerKeyTrafficDecryption(bitstring).

event ClientKeyTrafficDecryption(bitstring).

event ClientCertificateValidation(certificate).

event SecretKeyDecryptionBitstring(bitstring).

event TLSHelloDecryption(bitstring).

event TLSHelloACKDecryption(bitstring).

let AP1 =

out(c, EAPRequest).

let Client1 =

in(c, EAPRequest:bitstring);

out(c, EAPResponseIdentity).

let AP2 =

in(c, EAPResponseIdentity:bitstring);

out(c, EAPResponseIdentity).

let Server1 =

in(c, EAPResponseIdentity:bitstring);

out(c, EAPTLSStart).

let AP3 =

220

in(c, EAPTLStart:bitstring);

out(c, EAPTLSStart).

let Client2 =

in(c, EAPTLSStart:bitstring);

out(c, EAPTLSHello).

let AP4 =

in(c, EAPTLSHello:bitstring);

out(c, EAPTLSHello).

let Server2 =

in(c, EAPTLSHello:bitstring);

new ServerCertificate:certificate;

out(c, (EAPTLSServerHello , (Handshake , (ServerCertificate , (

ServerKeyExchange , (CertificateRequest , ServerHelloDone)))))).

let AP5 =

in(c, (EAPTLSServerHello:bitstring , (Handshake:bitstring , (

ServerCertificate:certificate , (ServerKeyExchange:bitstring , (

CertificateRequest:bitstring , ServerHelloDone:bitstring))))));

out(c, (EAPTLSServerHello , (Handshake , (ServerCertificate , (

ServerKeyExchange , (CertificateRequest , ServerHelloDone)))))).

let Client3 =

in(c, (EAPTLSServerHello:bitstring , (Handshake:bitstring , (

ServerCertificate:certificate , (ServerKeyExchange:bitstring , (

CertificateRequest:bitstring , ServerHelloDone:bitstring))))));

let ServerCertificate = ValidCA in

event ServerCertificateValidation(ServerCertificate);

if ServerCertificate = ValidCA then

(

new ClientCertificate:certificate;

out(c, (ClientCertificate , (ClientKeyExchange , (Cipher ,

ClientTLSFinished))))

)

else

(

0

).

let AP6 =

in(c, (ClientCertificate:certificate , (ClientKeyExchange:bitstring , (

Cipher:bitstring , ClientTLSFinished:bitstring))));

out(c, (ClientCertificate , (ClientKeyExchange , (Cipher ,

ClientTLSFinished)))).

221

let Server3 =

in(c, (ClientCertificate:certificate , (ClientKeyExchange:bitstring , (

Cipher:bitstring , ClientTLSFinished:bitstring))));

let ClientCertificate = ValidCA in

event ClientCertificateValidation(ClientCertificate);

if ClientCertificate = ValidCA then

(

out(c, AccessChallenge)

)

else

(

0

).

let AP7 =

in(c, AccessChallenge:challenge);

out(c, AccessChallenge).

let Client4 =

in(c, AccessChallenge:challenge);

let SolvedChallenge = SolveChallenge(AccessChallenge , DiameterPassword)

in

event ChallengeSolving(SolvedChallenge);

out(c, SolvedChallenge).

let AP8 =

in(c, SolvedChallenge:response);

out(c, SolvedChallenge).

let Server4 =

in(c, SolvedChallenge:response);

if SolvedChallenge = SolveChallenge(AccessChallenge , DiameterPassword)

then

(

let ServerMKey = MKeyGeneration(EAPTLSHello , ClientPubKey , ServerKey)

in

event ServerMKeyGeneration(ServerMKey);

out(c, (EncKey , TrafficEncryption(TLSHello2 , ServerMKey)))

)

else

(

222

0

).

let Client5 =

in(c, (EncKey:material , EncryptedTraffic:nonce));

let ClientKey = EncryptionKeyGeneration(EncKey) in

event EncryptionKeyGen(ClientKey);

let ClientMKey = MKeyGeneration(EAPTLSServerHello , ServerPubKey ,

ClientKey) in

event ClientMKeyGeneration(ClientMKey);

let DecryptedTLSHello = TrafficDecryption(EncryptedTraffic , ClientMKey)

in

event TLSHelloDecryption(DecryptedTLSHello);

out(c, TrafficEncryption(TLSHello2ACK , ClientMKey)).

let Server5 =

in(c, EncryptedTraffic2:nonce);

let DecryptedTLSHelloACK = TrafficDecryption(EncryptedTraffic2 ,

ServerMKey) in

event TLSHelloACKDecryption(DecryptedTLSHelloACK).

process (

!AP1 |! Client1 |! AP2 |! Server1 |! AP3 |! Client2 |! AP4 |! Server2 |! AP5 |! Client3 |!
AP6 |! Server3 |! AP7 |! Client4 |! AP8 |! Server4 |! Client5 |! Server5

)

223

ProVerif Result

Process:

(

{1}!
{2} out(c, EAPRequest)

) | (

{3}!
{4}in(c, EAPRequest 16 : bitstring);

{5} out(c, EAPResponseIdentity)

) | (

{6}!
{7}in(c, EAPResponseIdentity 17 : bitstring);

{8} out(c, EAPResponseIdentity 17)

) | (

{9}!
{10}in(c, EAPResponseIdentity 18 : bitstring);

{11} out(c, EAPTLSStart)

) | (

{12}!
{13}in(c, EAPTLStart: bitstring);

{14} out(c, EAPTLSStart)

) | (

{15}!
{16}in(c, EAPTLSStart 19 : bitstring);

{17} out(c, EAPTLSHello)

) | (

{18}!
{19}in(c, EAPTLSHello 20 : bitstring);

{20} out(c, EAPTLSHello 20)

) | (

{21}!
{22}in(c, EAPTLSHello 21 : bitstring);

{23} new ServerCertificate 22 : certificate;

{24} out(c, (EAPTLSServerHello ,(Handshake ,(ServerCertificate 22 ,(

ServerKeyExchange ,(CertificateRequest ,ServerHelloDone))))))

) | (

{25}!
{26}in(c, (EAPTLSServerHello 23 : bitstring ,(Handshake 24 : bitstring ,(

ServerCertificate 25 : certificate ,(ServerKeyExchange 26 : bitstring

,(CertificateRequest 27 : bitstring , ServerHelloDone 28 : bitstring)))

)));

224

{27} out(c, (EAPTLSServerHello 23 ,(Handshake 24 ,(ServerCertificate 25 ,(

ServerKeyExchange 26 ,(CertificateRequest 27 , ServerHelloDone 28)))))

)

) | (

{28}!
{29}in(c, (EAPTLSServerHello 29 : bitstring ,(Handshake 30 : bitstring ,(

ServerCertificate 31 : certificate ,(ServerKeyExchange 32 : bitstring

,(CertificateRequest 33 : bitstring , ServerHelloDone 34 : bitstring)))

)));

{30} let ServerCertificate 35 : certificate = ValidCA in

{31} event ServerCertificateValidation(ServerCertificate 35);

{32}if (ServerCertificate 35 = ValidCA) then

{33} new ClientCertificate 36 : certificate;

{34} out(c, (ClientCertificate 36 ,(ClientKeyExchange ,(Cipher ,

ClientTLSFinished))))

) | (

{35}!
{36}in(c, (ClientCertificate 37 : certificate ,(ClientKeyExchange 38 :

bitstring ,(Cipher 39 : bitstring , ClientTLSFinished 40 : bitstring))))

;

{37} out(c, (ClientCertificate 37 ,(ClientKeyExchange 38 ,(Cipher 39 ,

ClientTLSFinished 40))))

) | (

{38}!
{39}in(c, (ClientCertificate 41 : certificate ,(ClientKeyExchange 42 :

bitstring ,(Cipher 43 : bitstring , ClientTLSFinished 44 : bitstring))))

;

{40} let ClientCertificate 45 : certificate = ValidCA in

{41} event ClientCertificateValidation(ClientCertificate 45);

{42}if (ClientCertificate 45 = ValidCA) then

{43} out(c, AccessChallenge)

) | (

{44}!
{45}in(c, AccessChallenge 46 : challenge);

{46} out(c, AccessChallenge 46)

) | (

{47}!
{48}in(c, AccessChallenge 47 : challenge);

{49} let SolvedChallenge: response = SolveChallenge(AccessChallenge 47 ,

DiameterPassword) in

{50} event ChallengeSolving(SolvedChallenge);

{51} out(c, SolvedChallenge)

225

) | (

{52}!
{53}in(c, SolvedChallenge 48 : response);

{54} out(c, SolvedChallenge 48)

) | (

{55}!
{56}in(c, SolvedChallenge 49 : response);

{57}if (SolvedChallenge 49 = SolveChallenge(AccessChallenge ,

DiameterPassword)) then

{58} let ServerMKey 50 : mkey = MKeyGeneration(EAPTLSHello ,ClientPubKey ,

ServerKey) in

{59} event ServerMKeyGeneration(ServerMKey 50);

{60} out(c, (EncKey ,TrafficEncryption(TLSHello2 , ServerMKey 50)))

) | (

{61}!
{62}in(c, (EncKey 51 : material ,EncryptedTraffic: nonce));

{63} let ClientKey 52 : key = EncryptionKeyGeneration(EncKey 51) in

{64} event EncryptionKeyGen(ClientKey 52);

{65} let ClientMKey 53 : mkey = MKeyGeneration(EAPTLSServerHello ,

ServerPubKey , ClientKey 52) in

{66} event ClientMKeyGeneration(ClientMKey 53);

{67} let DecryptedTLSHello 54 : bitstring = TrafficDecryption(

EncryptedTraffic , ClientMKey 53) in

{68} event TLSHelloDecryption(DecryptedTLSHello 54);

{69} out(c, TrafficEncryption(TLSHello2ACK , ClientMKey 53))

) | (

{70}!
{71}in(c, EncryptedTraffic2: nonce);

{72} let DecryptedTLSHelloACK 55 : bitstring = TrafficDecryption(

EncryptedTraffic2 ,ServerMKey) in

{73} event TLSHelloACKDecryption(DecryptedTLSHelloACK 55)

)

== Query not attacker(ClientKey [])

Completing ...

Starting query not attacker(ClientKey [])

RESULT not attacker(ClientKey []) is true.

== Query not attacker(ServerKey [])

Completing ...

Starting query not attacker(ServerKey [])

RESULT not attacker(ServerKey []) is true.

== Query not attacker(DiameterPassword [])

226

Completing ...

Starting query not attacker(DiameterPassword [])

RESULT not attacker(DiameterPassword []) is true.

== Query not attacker(ServerMKey [])

Completing ...

Starting query not attacker(ServerMKey [])

RESULT not attacker(ServerMKey []) is true.

== Query not attacker(ClientMKey [])

Completing ...

Starting query not attacker(ClientMKey [])

RESULT not attacker(ClientMKey []) is true.

== Query not attacker(DecryptedTLSHello [])

Completing ...

Starting query not attacker(DecryptedTLSHello [])

RESULT not attacker(DecryptedTLSHello []) is true.

== Query not attacker(DecryptedTLSHelloACK [])

Completing ...

Starting query not attacker(DecryptedTLSHelloACK [])

RESULT not attacker(DecryptedTLSHelloACK []) is true.

== Query not event(TLSHelloDecryption(x 56))

Completing ...

Starting query not event(TLSHelloDecryption(x 56))

RESULT not event(TLSHelloDecryption(x 56)) is true.

== Query not event(TLSHelloACKDecryption(x 57))

Completing ...

Starting query not event(TLSHelloACKDecryption(x 57))

RESULT not event(TLSHelloACKDecryption(x 57)) is true.

== Query event(TLSHelloDecryption(x 58)) ==> event(TLSHelloACKDecryption(

x 58))

Completing ...

Starting query event(TLSHelloDecryption(x 58)) ==> event(

TLSHelloACKDecryption(x 58))

RESULT event(TLSHelloDecryption(x 58)) ==> event(TLSHelloACKDecryption(

x 58)) is true.

== Query inj=event(TLSHelloDecryption(x 59)) ==> inj=event(

TLSHelloACKDecryption(x 59))

Completing ...

Starting query inj=event(TLSHelloDecryption(x 59)) ==> inj=event(

TLSHelloACKDecryption(x 59))

RESULT inj=event(TLSHelloDecryption(x 59)) ==> inj=event(

TLSHelloACKDecryption(x 59)) is true.

227

Appendix 14 – GSM Authentication

The GSM network authenticates the identity of the subscriber through the use of a

challenge-response mechanism. A 128-bit Random Number (RAND) is sent to the Mobile

Station (MS). The MS computes the 32-bit Signed Response (SRES) based on the encryp-

tion of the RAND with the authentication algorithm (A3) using the private subscriber

authentication key (Ki). Upon receiving the SRES from the subscriber, the GSM network

repeats the calculation to verify the identity of the subscriber. The individual subscriber

authentication key (Ki) is never transmitted over the radio channel, as it is present in the

subscriber’s SIM, as well as the AUC, HLR, and VLR databases. If the received SRES

agrees with the calculated value, the MS has been successfully authenticated and may

continue. If the values do not match, the connection is terminated and an authentication

failure is indicated to the MS. [123]

Signed response calculation is processed within the SIM, which holds confidential sub-

scriber information such as the IMSI or the private subscriber authentication key (Ki). It

is never released from the SIM during the authentication process. The SIM contains the

ciphering key generating algorithm (A8) that is used to produce the 64-bit ciphering key

(Kc). This key is calculated by applying the same random number (RAND) used in the

authentication process to ciphering key generating algorithm (A8) with the individual

subscriber authentication key (Ki). [123] GSM supports another ciphering algorithm,

making the system more resistant to eavesdropping. The ciphering key may be changed

at regular intervals if required. As in case of the authentication process, the computation

of the ciphering key (Kc) takes place internally within the SIM. Therefore, sensitive

information such as the individual subscriber authentication key (Ki) is never revealed

by the SIM. [123] Encrypted voice and data communications between the MS and the

network is accomplished by using the ciphering algorithm A5. Encrypted communication

is initiated by a ciphering mode request command from the GSM network. Upon receipt

of this command, the mobile station begins encryption and decryption of data using

the ciphering algorithm (A5) and the ciphering key (Kc). [123] To ensure subscriber

identity confidentiality, the Temporary Mobile Subscriber Identity (TMSI) is used. Once

the authentication and encryption procedures are done, the TMSI is sent to the mobile

station. After the receipt, the mobile station responds. The TMSI is valid in the location

area in which it was issued. For communications outside the location area, the Location

Area Identification (LAI) is necessary in addition to the TMSI. [123]

GSM authentication is shown in Figure 13.

228

Figure 13: GSM message flow for authentication [10]

229

ProVerif Verification

set traceDisplay = long.

query attacker (KC).

query attacker (KI).

query attacker(DecryptedText).

query attacker(DecryptedText2).

query x:bitstring; event(TextDecryption(x)).

query x:bitstring; event(TextDecryption2(x)).

query x:bitstring; event(TextDecryption(x)) ==> event(TextDecryption2(x)).

query x:bitstring; inj=event(TextDecryption(x)) ==> inj=event(

TextDecryption2(x)).

type key.

type response.

type nonce.

free c:channel.

free AuthReq:bitstring [private].

free KI:key[private].

free KC:key[private].

free AuthResponse:bitstring[private].

free SRES:response[private].

free SRES2:response[private].

free Hello:bitstring[private].

free HelloACK:bitstring[private].

free DecryptedText:bitstring[private].

free DecryptedText2:bitstring[private].

fun GenerateRand(bitstring):bitstring.

fun GenerateCipherKey(key , bitstring): key.

fun Authenticate(key , bitstring):response.

fun Encrypt(bitstring , key):nonce.

reduc forall x:bitstring , y:key; Decrypt(Encrypt(x,y),y)=x.

event RANDGeneration(bitstring).

event CipherKeyGeneration(key).

event ResponseGeneration(response).

230

event ExpectedResponseGeneration(response).

event ResponseValidation(response).

event TextDecryption(bitstring).

event TextDecryption2(bitstring).

let UE1 =

out(c, AuthReq).

let Node1 =

in(c, AuthReq:bitstring);

out(c, AuthReq).

let VLR1 =

in(c, AuthReq:bitstring);

out(c, AuthReq).

let HLR=

in(c, AuthReq:bitstring);

new RandomNumber:bitstring;

let RAND = GenerateRand(RandomNumber) in

event RANDGeneration(RAND);

let KC = GenerateCipherKey(KI, RAND) in

event CipherKeyGeneration(KC);

let SRES = Authenticate(KI,RAND) in

event ExpectedResponseGeneration(SRES);

out(c, (RAND , (KC, SRES))).

let VLR2 =

in(c, (RAND:bitstring , (KC:key , SRES:response)));

out(c, (AuthReq , RAND)).

let UE2 =

in(c, (AuthReq:bitstring , RAND:bitstring));

let SRES2 = Authenticate(KI, RAND) in

event ResponseGeneration(SRES2);

out(c, (AuthResponse , SRES2)).

let VLR3 =

in(c, (AuthResponse:bitstring , SRES2:response));

let SRES2 = SRES in

event ResponseValidation(SRES2);

if SRES2 = SRES then

(

out(c, Encrypt(Hello , KC))

)

231

else

(

0

).

let UE3 =

in(c, EncryptedText:nonce);

let DecryptedText = Decrypt(EncryptedText , KI) in

event TextDecryption(DecryptedText);

out(c, Encrypt(HelloACK , KI)).

let VLR4 =

in(c, EncryptedText2:nonce);

let DecryptedText2 = Decrypt(EncryptedText2 , KC) in

event TextDecryption2(DecryptedText2).

process (

!UE1 |! Node1 |! VLR1 |! HLR |! VLR2 |! UE2 |! VLR3 |! UE3 |! VLR4
)

232

ProVerif Result

Process:

(

{1}!
{2} out(c, AuthReq)

) | (

{3}!
{4}in(c, AuthReq 16 : bitstring);

{5} out(c, AuthReq 16)

) | (

{6}!
{7}in(c, AuthReq 17 : bitstring);

{8} out(c, AuthReq 17)

) | (

{9}!
{10}in(c, AuthReq 18 : bitstring);

{11} new RandomNumber: bitstring;

{12} let RAND: bitstring = GenerateRand(RandomNumber) in

{13} event RANDGeneration(RAND);

{14} let KC 19 : key = GenerateCipherKey(KI,RAND) in

{15} event CipherKeyGeneration(KC 19);

{16} let SRES 20 : response = Authenticate(KI,RAND) in

{17} event ExpectedResponseGeneration(SRES 20);

{18} out(c, (RAND ,(KC 19 , SRES 20)))

) | (

{19}!
{20}in(c, (RAND 21 : bitstring ,(KC 22 : key , SRES 23 : response)));

{21} out(c, (AuthReq , RAND 21))

) | (

{22}!
{23}in(c, (AuthReq 24 : bitstring , RAND 25 : bitstring));

{24} let SRES2 26 : response = Authenticate(KI, RAND 25) in

{25} event ResponseGeneration(SRES2 26);

{26} out(c, (AuthResponse , SRES2 26))

) | (

{27}!
{28}in(c, (AuthResponse 27 : bitstring , SRES2 28 : response));

{29} let SRES2 29 : response = SRES in

{30} event ResponseValidation(SRES2 29);

{31}if (SRES2 29 = SRES) then

{32} out(c, Encrypt(Hello ,KC))

233

) | (

{33}!
{34}in(c, EncryptedText: nonce);

{35} let DecryptedText 30 : bitstring = Decrypt(EncryptedText ,KI) in

{36} event TextDecryption(DecryptedText 30);

{37} out(c, Encrypt(HelloACK ,KI))

) | (

{38}!
{39}in(c, EncryptedText2: nonce);

{40} let DecryptedText2 31 : bitstring = Decrypt(EncryptedText2 ,KC) in

{41} event TextDecryption2(DecryptedText2 31)

)

== Query not attacker(KC[])

Completing ...

Starting query not attacker(KC[])

RESULT not attacker(KC[]) is true.

== Query not attacker(KI[])

Completing ...

Starting query not attacker(KI[])

RESULT not attacker(KI[]) is true.

== Query not attacker(DecryptedText [])

Completing ...

Starting query not attacker(DecryptedText [])

RESULT not attacker(DecryptedText []) is true.

== Query not attacker(DecryptedText2 [])

Completing ...

Starting query not attacker(DecryptedText2 [])

RESULT not attacker(DecryptedText2 []) is true.

== Query not event(TextDecryption(x 32))

Completing ...

Starting query not event(TextDecryption(x 32))

RESULT not event(TextDecryption(x 32)) is true.

== Query not event(TextDecryption2(x 33))

Completing ...

Starting query not event(TextDecryption2(x 33))

goal reachable: end(TextDecryption2(Hello []))

1. The attacker has some term SRES2 1948 .

attacker(SRES2 1948).

2. The attacker has some term AuthResponse 1947 .

234

attacker(AuthResponse 1947).

3. By 2, the attacker may know AuthResponse 1947 .

By 1, the attacker may know SRES2 1948 .

Using the function 2=tuple the attacker may obtain (AuthResponse 1947 ,

SRES2 1948).

attacker ((AuthResponse 1947 , SRES2 1948)).

4. The message (AuthResponse 1947 , SRES2 1948) that the attacker may have

by 3 may be received at input {28}.
So the message Encrypt(Hello[],KC[]) may be sent to the attacker at output

{32}.
attacker(Encrypt(Hello[],KC[])).

5. The message Encrypt(Hello[],KC[]) that the attacker may have by 4 may

be received at input {39}.
So event TextDecryption2(Hello []) may be executed at {41}.
end(TextDecryption2(Hello [])).

Initial state

Additional knowledge of the attacker:

c

a

a 1953

==

New processes:

(

!

out(c, AuthReq)

) | (

!

in(c, AuthReq 16 : bitstring);

out(c, AuthReq 16)

) | (

!

in(c, AuthReq 17 : bitstring);

out(c, AuthReq 17)

) | (

!

in(c, AuthReq 18 : bitstring);

235

new RandomNumber: bitstring;

let RAND: bitstring = GenerateRand(RandomNumber) in

event RANDGeneration(RAND);

let KC 19 : key = GenerateCipherKey(KI,RAND) in

event CipherKeyGeneration(KC 19);

let SRES 20 : response = Authenticate(KI,RAND) in

event ExpectedResponseGeneration(SRES 20);

out(c, (RAND ,(KC 19 , SRES 20)))

) | (

!

in(c, (RAND 21 : bitstring ,(KC 22 : key , SRES 23 : response)));

out(c, (AuthReq , RAND 21))

) | (

!

in(c, (AuthReq 24 : bitstring , RAND 25 : bitstring));

let SRES2 26 : response = Authenticate(KI, RAND 25) in

event ResponseGeneration(SRES2 26);

out(c, (AuthResponse , SRES2 26))

) | (

!

in(c, (AuthResponse 27 : bitstring , SRES2 28 : response));

let SRES2 29 : response = SRES in

event ResponseValidation(SRES2 29);

if (SRES2 29 = SRES) then

out(c, Encrypt(Hello ,KC))

) | (

!

in(c, EncryptedText: nonce);

let DecryptedText 30 : bitstring = Decrypt(EncryptedText ,KI) in

event TextDecryption(DecryptedText 30);

out(c, Encrypt(HelloACK ,KI))

) | (

!

in(c, EncryptedText2: nonce);

let DecryptedText2 31 : bitstring = Decrypt(EncryptedText2 ,KC) in

event TextDecryption2(DecryptedText2 31)

)

==

1st process: Reduction |

2nd process: Reduction |

236

3rd process: Reduction |

4th process: Reduction |

5th process: Reduction |

6th process: Reduction |

7th process: Reduction |

8th process: Reduction |

9th process: Reduction ! 1 copy(ies)

9th process: Beginning of process VLR4

8th process: Reduction ! 0 copy(ies)

7th process: Reduction ! 1 copy(ies)

7th process: Beginning of process VLR3

6th process: Reduction ! 0 copy(ies)

5th process: Reduction ! 0 copy(ies)

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 0 copy(ies)

1st process: Reduction ! 0 copy(ies)

New processes:

(

in(c, (AuthResponse 1960 : bitstring , SRES2 1961 : response));

let SRES2 1962 : response = SRES in

event ResponseValidation(SRES2 1962);

if (SRES2 1962 = SRES) then

out(c, Encrypt(Hello ,KC))

237

) | (

in(c, EncryptedText2 1956 : nonce);

let DecryptedText2 1957 : bitstring = Decrypt(EncryptedText2 1956 ,KC)

in

event TextDecryption2(DecryptedText2 1957)

)

==

1st process: in(c, (AuthResponse 1960 : bitstring , SRES2 1961 : response))

done with message (a, a 1953)

1st process: let SRES2 1974 : response = SRES succeeds

1st process: event ResponseValidation(SRES) executed

1st process: if (SRES = SRES) succeeds

1st process: out(c, ˜ M 1977) with ˜ M 1977 = Encrypt(Hello ,KC) done

Additional knowledge of the attacker:

˜ M 1977 = Encrypt(Hello ,KC)

==

1st process: Reduction 0

New processes:

in(c, EncryptedText2 1956 : nonce);

let DecryptedText2 1957 : bitstring = Decrypt(EncryptedText2 1956 ,KC)

in

event TextDecryption2(DecryptedText2 1957)

==

1st process: in(c, EncryptedText2 1956 : nonce) done with message ˜ M 1977 =

Encrypt(Hello ,KC)

1st process: let DecryptedText2 1981 : bitstring = Hello succeeds

1st process: event TextDecryption2(Hello) executed; it is a goal

New processes:

0

==

238

The event TextDecryption2(Hello) is executed.

A trace has been found.

RESULT not event(TextDecryption2(x 33)) is false.

== Query event(TextDecryption(x 34)) ==> event(TextDecryption2(x 34))

Completing ...

Starting query event(TextDecryption(x 34)) ==> event(TextDecryption2(x 34)

)

RESULT event(TextDecryption(x 34)) ==> event(TextDecryption2(x 34)) is

true.

== Query inj=event(TextDecryption(x 35)) ==> inj=event(TextDecryption2(

x 35))

Completing ...

Starting query inj=event(TextDecryption(x 35)) ==> inj=event(

TextDecryption2(x 35))

RESULT inj=event(TextDecryption(x 35)) ==> inj=event(TextDecryption2(x 35)

) is true.

239

Appendix 15 – UMTS and LTE Authentication

[43] [149] UMTS and LTE use EPS-AKA [120], which is authentication key agreement

protocol designed for UMTS. LTE is reusing the concept of that protocol. EPS-AKA

has been shown in Figure 14.

The terms UEA (UMTS Encryption Algorithm) and UIA (UMTS Integrity Algorithm)

are used within UMTS as broad categories. UEA1 is a 128-bit block cipher called KA-

SUMI, which is related to the Japanese cipher MISTY. UIA1 is a message authentication

code (MAC), also based on KASUMI. UEA2 is a stream cipher related to SNOW 3G,

and UIA2 computes a MAC based on the same algorithm. LTE builds upon the lessons

learned from deploying the 2G and 3G cryptographic algorithms. [120] [125] [149]

LTE introduced a new set of cryptographic algorithms and a significantly different key

structure than that of GSM and UMTS. There are 3 sets of cryptographic algorithms

for both confidentiality and integrity termed EPS Encryption Algorithms (EEA) and

EPS Integrity Algorithms (EIA). EEA1 and EIA1 are based on SNOW 3G, very similar

to algorithms used in UMTS. EEA2 and EIA2 are based on the Advanced Encryption

Standard (AES) with EEA2 defined by AES in CTR mode and EIA2 defined by AES-

CMAC (Cipherbased MAC). EEA3 and EIA3 are both based on a Chinese cipher ZUC.

While these new algorithms have been introduced in LTE, network implementations

commonly include older algorithms for backward compatibility for legacy devices and

cellular deployments. Many keys in LTE are 256-bits long, but in some current imple-

mentations only the 128 least significant bits are used. The specification has allowed for

a system-wide upgrade from 128-bit to 256-bit keys. In LTE, the control and user planes

may use different algorithms and key sizes. [125]

Given a subscriber secret K (referred as Ki in GSM authentication but essentially the

same thing), an authentication sequence number SQN, a random challenge RAND (same

as 2G), 3gPP defines a set of algorithms which produce the following authentication and

keying materials: [124], [125]

1. MAC: a network authentication code which can be verified by the USIM. Checked

by the UE

2. XRES: an expected value returned by the SIM in response of the challenge. Checked

by the network.

3. CK: a session key used for ciphering (encrypting) traffic

240

4. IK: a session key used for marking all traffic packets with a hash signature.

5. AK: an anonymity key used to obfuscate the SQN on its way to the UE

Each one of the above values are generated by a set of five cryptographic functions

referred in 3GPP as f1, f2, f3, f4 and f5.

The role of each function is as follows:

1. f1: Generates MAC from K, SQN and RAND. An algorithm variant named AMF

can also be used as a salt of the algorithm.

2. f2: Generates XRES from K and RAND.

3. f3: Generates CK from K and RAND.

4. f4: Generates IK from K and RAND.

5. f5: Generates AK from K and RAND.

241

Figure 14: UMTS and LTE Authentication [10]

242

ProVerif Verification

set traceDisplay = long.

query attacker(PSK).

query attacker(KASME).

query x:bitstring; event(ReceiptDecryption(x)).

query x:bitstring; event(Decryption(x)).

query x:bitstring; event(ReceiptDecryption(x)) ==> event(Decryption(x)).

query x:bitstring; inj=event(ReceiptDecryption(x)) ==> inj=event(

Decryption(x)).

type key.

type challenge.

type vector.

type response.

type token.

free c:channel.

free ServiceRequest : bitstring[private].

free AuthRequest:bitstring[private].

free IMSI:bitstring [private].

free SNID:bitstring [private].

free AUTN:token [private].

free XRES:response[private].

free RAND:challenge[private].

free AuthResponse:bitstring[private].

free ValidAUTN:token[private].

free Receipt:bitstring[private].

free ReceiptACK:bitstring[private].

free KASME:key[private].

free PSK:key[private].

fun GenerateKASME(bitstring):key.

fun GenerateAuthVector(bitstring , bitstring):vector.

fun GenerateKeySetIdentifier(bitstring):key.

fun ComputeResponse(challenge):bitstring.

fun Anon(challenge):bitstring.

243

fun GeneratePSK(token , bitstring):key.

fun Encrypt(bitstring , key):response.

reduc forall x:bitstring , y:key; Decrypt(Encrypt(x,y),y)= x.

event AuthVectorGeneration(vector).

event KASMEGeneration(key).

event eKSIGeneration(key).

event AUTNValidation(token).

event ResponseCalculation(bitstring).

event PSKGeneration(key).

event ReceiptDecryption(bitstring).

event ResponseValidation(response).

event Decryption(bitstring).

let UE1 =

out(c, ServiceRequest).

let MME1 =

in(c, ServiceRequest:bitstring);

out(c, (AuthRequest , (IMSI ,SNID))).

let HSS1 =

in(c, (AuthRequest:bitstring , (IMSI:bitstring , SNID:bitstring)));

let EPSAV = GenerateAuthVector(AuthRequest , IMSI) in

event AuthVectorGeneration(EPSAV);

let KASME = GenerateKASME(SNID) in

event KASMEGeneration(KASME);

out(c, (AuthResponse , (EPSAV , (RAND , (XRES , (KASME , AUTN)))))).

let MME2 =

in(c, (AuthResponse:bitstring , (EPSAV:vector , (RAND:challenge , (XRES:

response , (KASME:key , AUTN:token))))));

new randomnumber:bitstring;

let eKSI = GenerateKeySetIdentifier(randomnumber) in

event eKSIGeneration(eKSI);

out(c, (RAND , (AUTN , eKSI))).

let UE2 =

in(c, (RAND: challenge ,(AUTN:token , eKSI:key)));

let AUTN = ValidAUTN in

event AUTNValidation(AUTN);

244

if AUTN = ValidAUTN then

(

let AuthRes = ComputeResponse(RAND) in

event ResponseCalculation(AuthRes);

let PSK = GeneratePSK(AUTN , Anon(RAND)) in

event PSKGeneration(PSK);

out(c, Encrypt(Receipt , PSK))

)

else

(

0

).

let MME3 =

in(c, EncryptedReceipt:response);

let DecryptedReceipt = Decrypt(EncryptedReceipt , KASME) in

event ReceiptDecryption(DecryptedReceipt);

let DecryptedReceipt = XRES in

event ResponseValidation(DecryptedReceipt);

if DecryptedReceipt = XRES then

(

out(c, Encrypt(ReceiptACK , KASME))

)

else

(

0

).

let UE3 =

in(c, EncryptedReceiptACK:response);

let DecryptedReceiptACK = Decrypt(EncryptedReceiptACK , PSK) in

event Decryption(DecryptedReceiptACK).

process (

!UE1 |! MME1 |! HSS1 |! MME2 |! UE2 |! MME3 |! UE3
)

245

ProVerif Result

Process:

(

{1}!
{2} out(c, ServiceRequest)

) | (

{3}!
{4}in(c, ServiceRequest 16 : bitstring);

{5} out(c, (AuthRequest ,(IMSI ,SNID)))

) | (

{6}!
{7}in(c, (AuthRequest 17 : bitstring ,(IMSI 18 : bitstring , SNID 19 :

bitstring)));

{8} let EPSAV: vector = GenerateAuthVector(AuthRequest 17 , IMSI 18) in

{9} event AuthVectorGeneration(EPSAV);

{10} let KASME 20 : key = GenerateKASME(SNID 19) in

{11} event KASMEGeneration(KASME 20);

{12} out(c, (AuthResponse ,(EPSAV ,(RAND ,(XRES ,(KASME 20 ,AUTN))))))

) | (

{13}!
{14}in(c, (AuthResponse 21 : bitstring ,(EPSAV 22 : vector ,(RAND 23 :

challenge ,(XRES 24 : response ,(KASME 25 : key , AUTN 26 : token))))));

{15} new randomnumber: bitstring;

{16} let eKSI: key = GenerateKeySetIdentifier(randomnumber) in

{17} event eKSIGeneration(eKSI);

{18} out(c, (RAND 23 ,(AUTN 26 ,eKSI)))

) | (

{19}!
{20}in(c, (RAND 27 : challenge ,(AUTN 28 : token , eKSI 29 : key)));

{21} let AUTN 30 : token = ValidAUTN in

{22} event AUTNValidation(AUTN 30);

{23}if (AUTN 30 = ValidAUTN) then

{24} let AuthRes: bitstring = ComputeResponse(RAND 27) in

{25} event ResponseCalculation(AuthRes);

{26} let PSK 31 : key = GeneratePSK(AUTN 30 ,Anon(RAND 27)) in

{27} event PSKGeneration(PSK 31);

{28} out(c, Encrypt(Receipt , PSK 31))

) | (

{29}!
{30}in(c, EncryptedReceipt: response);

{31} let DecryptedReceipt: bitstring = Decrypt(EncryptedReceipt ,KASME)

246

in

{32} event ReceiptDecryption(DecryptedReceipt);

{33} let DecryptedReceipt 32 : response = XRES in

{34} event ResponseValidation(DecryptedReceipt 32);

{35}if (DecryptedReceipt 32 = XRES) then

{36} out(c, Encrypt(ReceiptACK ,KASME))

) | (

{37}!
{38}in(c, EncryptedReceiptACK: response);

{39} let DecryptedReceiptACK: bitstring = Decrypt(EncryptedReceiptACK ,

PSK) in

{40} event Decryption(DecryptedReceiptACK)

)

== Query not attacker(PSK[])

Completing ...

Starting query not attacker(PSK[])

RESULT not attacker(PSK[]) is true.

== Query not attacker(KASME [])

Completing ...

Starting query not attacker(KASME [])

RESULT not attacker(KASME []) is true.

== Query not event(ReceiptDecryption(x 33))

Completing ...

Starting query not event(ReceiptDecryption(x 33))

RESULT not event(ReceiptDecryption(x 33)) is true.

== Query not event(Decryption(x 34))

Completing ...

Starting query not event(Decryption(x 34))

RESULT not event(Decryption(x 34)) is true.

== Query event(ReceiptDecryption(x 35)) ==> event(Decryption(x 35))

Completing ...

Starting query event(ReceiptDecryption(x 35)) ==> event(Decryption(x 35))

RESULT event(ReceiptDecryption(x 35)) ==> event(Decryption(x 35)) is true.

== Query inj=event(ReceiptDecryption(x 36)) ==> inj=event(Decryption(x 36)

)

Completing ...

Starting query inj=event(ReceiptDecryption(x 36)) ==> inj=event(Decryption

(x 36))

RESULT inj=event(ReceiptDecryption(x 36)) ==> inj=event(Decryption(x 36))

is true.

247

Appendix 16 – LonTalk Authentication

When using authenticated messages, the receivers of an authenticated message determine

if the sender is authorized to send that message. This can prevent unauthorized access to

devices and their applications. This can be used to prevent unauthorized access to devices

and their applications. Authentication is implemented by distributing 48-bit keys, one

per domain, to the devices at or prior to installation time. For an authenticated message

to be accepted by the receiver, both sender and receiver must possess the same key.

This key is distinct from the device’s Neuron ID. [84] When an authenticated message is

sent, the receiver challenges the sender to authenticate itself, using a different random

number as a challenge every time. The sender then authenticates by transforming the

challenge, using the authentication key along with the data in the original message.

The receiver compares the reply to the challenge with its own transformation on the

challenge. If the transformations match, the transaction goes forward. This is called an

authenticated transaction. The transformation used is designed so that it is extremely

difficult to deduce the key, even if the challenge, reply, and authentication algorithm

are all known. The use of authentication is configurable individually for each network

variable connection. In addition, network management transactions may be optionally

authenticated. [84]

With LonTalk, it is up to the sender of the message to initiate an authenticated transaction

when required. The sender does this by setting the authentication bit in the message.

When a receiver receives a message with the authentication bit set, it must respond with

an authentication challenge, even if it does not require the message to be authenticated.

It is up to the receiver to determine whether or not the message must be authenticated.

This means that a sender may initiate an authenticated transaction on any message,

whether required or not. [84] Lontalk authentication sequence is shown in Figure 15:

248

Figure 15: LonTalk Authentication [10]

ProVerif Verification

set traceDisplay = long.

query attacker(AuthenticationKey).

query attacker(NodeBTransformationResult1).

query attacker(NodeATransformationResult1).

query x:nonce; event(NodeBTransformation1(x)).

query x:nonce; event(NodeATransformation1(x)).

query x:nonce; event(NodeBTransformation1(x)) ==> event(

NodeATransformation1(x)).

query x:nonce; inj=event(NodeBTransformation1(x)) ==> inj=event(

NodeATransformation1(x)).

type key.

type nonce.

free c:channel.

free AuthenticationKey:key [private].

free AuthenticationRequest:bitstring[private].

free AuthenticationChallenge:bitstring[private].

free NodeBTransformationResult1:nonce[private].

free NodeATransformationResult1:nonce[private].

free Success:bitstring[private].

249

event NodeBTransformation1(nonce).

event NodeATransformation1(nonce).

fun Transformation(bitstring , key):nonce.

reduc forall x: bitstring , y:key; DeTransformation(Transformation(x,y), y)

= x.

let NodeA1 =

new AuthenticationRequest:bitstring;

out(c, AuthenticationRequest).

let NodeB1 =

in(c, AuthenticationRequest:bitstring);

new AuthenticationChallenge:bitstring;

let NodeBTransformationResult1 = Transformation(AuthenticationChallenge ,

AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1);

out(c, AuthenticationChallenge).

let NodeA2 =

in(c, AuthenticationChallenge:bitstring);

let NodeATransformationResult1 = Transformation(AuthenticationChallenge ,

AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1);

out(c, NodeATransformationResult1).

let NodeB2 =

in(c, NodeATransformationResult1:nonce);

if NodeATransformationResult1 = NodeBTransformationResult1 then

(

out(c,Success)

)

else

(

0

).

process (

!NodeA1 |! NodeB1 |! NodeA2 |! NodeB2
)

250

ProVerif Result

Process:

(

{1}!
{2} new AuthenticationRequest 16 : bitstring;

{3} out(c, AuthenticationRequest 16)

) | (

{4}!
{5}in(c, AuthenticationRequest 17 : bitstring);

{6} new AuthenticationChallenge 18 : bitstring;

{7} let NodeBTransformationResult1 19 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

{8} event NodeBTransformation1(NodeBTransformationResult1 19);

{9} out(c, AuthenticationChallenge 18)

) | (

{10}!
{11}in(c, AuthenticationChallenge 20 : bitstring);

{12} let NodeATransformationResult1 21 : nonce = Transformation(

AuthenticationChallenge 20 ,AuthenticationKey) in

{13} event NodeATransformation1(NodeATransformationResult1 21);

{14} out(c, NodeATransformationResult1 21)

) | (

{15}!
{16}in(c, NodeATransformationResult1 22 : nonce);

{17}if (NodeATransformationResult1 22 = NodeBTransformationResult1)

then

{18} out(c, Success)

)

== Query not attacker(AuthenticationKey [])

Completing ...

Starting query not attacker(AuthenticationKey [])

RESULT not attacker(AuthenticationKey []) is true.

== Query not attacker(NodeBTransformationResult1 [])

Completing ...

Starting query not attacker(NodeBTransformationResult1 [])

RESULT not attacker(NodeBTransformationResult1 []) is true.

== Query not attacker(NodeATransformationResult1 [])

Completing ...

Starting query not attacker(NodeATransformationResult1 [])

RESULT not attacker(NodeATransformationResult1 []) is true.

251

== Query not event(NodeBTransformation1(x 23))

Completing ...

Starting query not event(NodeBTransformation1(x 23))

goal reachable: attacker(AuthenticationRequest 467) => end(

NodeBTransformation1(Transformation(AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 467 ,!1 = @sid 468],

AuthenticationKey [])))

Abbreviations:

AuthenticationChallenge 473 = AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 470 ,!1 = @sid 471]

1. We assume as hypothesis that

attacker(AuthenticationRequest 470).

2. The message AuthenticationRequest 470 that the attacker may have by 1

may be received at input {5}.
So event NodeBTransformation1(Transformation(AuthenticationChallenge 473 ,

AuthenticationKey [])) may be executed at {8}.
end(NodeBTransformation1(Transformation(AuthenticationChallenge 473 ,

AuthenticationKey []))).

Initial state

Additional knowledge of the attacker:

c

a

==

New processes:

(

!

new AuthenticationRequest 16 : bitstring;

out(c, AuthenticationRequest 16)

) | (

!

in(c, AuthenticationRequest 17 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 19 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 19);

out(c, AuthenticationChallenge 18)

) | (

252

!

in(c, AuthenticationChallenge 20 : bitstring);

let NodeATransformationResult1 21 : nonce = Transformation(

AuthenticationChallenge 20 ,AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1 21);

out(c, NodeATransformationResult1 21)

) | (

!

in(c, NodeATransformationResult1 22 : nonce);

if (NodeATransformationResult1 22 = NodeBTransformationResult1)

then

out(c, Success)

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1

1st process: Reduction ! 0 copy(ies)

New processes:

in(c, AuthenticationRequest 478 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 479 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 479);

out(c, AuthenticationChallenge 18)

==

1st process: in(c, AuthenticationRequest 478 : bitstring) done with message

a

253

1st process: new AuthenticationChallenge 18 : bitstring creating

AuthenticationChallenge 475

1st process: let NodeBTransformationResult1 482 : nonce = Transformation(

AuthenticationChallenge 475 ,AuthenticationKey) succeeds

1st process: event NodeBTransformation1(Transformation(

AuthenticationChallenge 475 ,AuthenticationKey)) executed; it is a goal

New processes:

out(c, AuthenticationChallenge 475)

==

The event NodeBTransformation1(Transformation(AuthenticationChallenge 475 ,

AuthenticationKey)) is executed.

A trace has been found.

RESULT not event(NodeBTransformation1(x 23)) is false.

== Query not event(NodeATransformation1(x 24))

Completing ...

Starting query not event(NodeATransformation1(x 24))

goal reachable: attacker(AuthenticationChallenge 594) => end(

NodeATransformation1(Transformation(AuthenticationChallenge 594 ,

AuthenticationKey [])))

1. We assume as hypothesis that

attacker(AuthenticationChallenge 596).

2. The message AuthenticationChallenge 596 that the attacker may have by 1

may be received at input {11}.
So event NodeATransformation1(Transformation(AuthenticationChallenge 596 ,

AuthenticationKey [])) may be executed at {13}.
end(NodeATransformation1(Transformation(AuthenticationChallenge 596 ,

AuthenticationKey []))).

Initial state

Additional knowledge of the attacker:

c

a 599

==

254

New processes:

(

!

new AuthenticationRequest 16 : bitstring;

out(c, AuthenticationRequest 16)

) | (

!

in(c, AuthenticationRequest 17 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 19 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 19);

out(c, AuthenticationChallenge 18)

) | (

!

in(c, AuthenticationChallenge 20 : bitstring);

let NodeATransformationResult1 21 : nonce = Transformation(

AuthenticationChallenge 20 ,AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1 21);

out(c, NodeATransformationResult1 21)

) | (

!

in(c, NodeATransformationResult1 22 : nonce);

if (NodeATransformationResult1 22 = NodeBTransformationResult1)

then

out(c, Success)

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 1 copy(ies)

3rd process: Beginning of process NodeA2

2nd process: Reduction ! 0 copy(ies)

255

1st process: Reduction ! 0 copy(ies)

New processes:

in(c, AuthenticationChallenge 603 : bitstring);

let NodeATransformationResult1 604 : nonce = Transformation(

AuthenticationChallenge 603 ,AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1 604);

out(c, NodeATransformationResult1 604)

==

1st process: in(c, AuthenticationChallenge 603 : bitstring) done with

message a 599

1st process: let NodeATransformationResult1 610 : nonce = Transformation(

a 599 ,AuthenticationKey) succeeds

1st process: event NodeATransformation1(Transformation(a 599 ,

AuthenticationKey)) executed; it is a goal

New processes:

out(c, Transformation(a 599 ,AuthenticationKey))

==

The event NodeATransformation1(Transformation(a 599 ,AuthenticationKey)) is

executed.

A trace has been found.

RESULT not event(NodeATransformation1(x 24)) is false.

== Query event(NodeBTransformation1(x 25)) ==> event(NodeATransformation1(

x 25))

Completing ...

Starting query event(NodeBTransformation1(x 25)) ==> event(

NodeATransformation1(x 25))

goal reachable: attacker(AuthenticationRequest 723) => end(

NodeBTransformation1(Transformation(AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 723 ,!1 = @sid 724],

AuthenticationKey [])))

Abbreviations:

AuthenticationChallenge 729 = AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 726 ,!1 = @sid 727]

1. We assume as hypothesis that

256

attacker(AuthenticationRequest 726).

2. The message AuthenticationRequest 726 that the attacker may have by 1

may be received at input {5}.
So event NodeBTransformation1(Transformation(AuthenticationChallenge 729 ,

AuthenticationKey [])) may be executed at {8}.
end(NodeBTransformation1(Transformation(AuthenticationChallenge 729 ,

AuthenticationKey []))).

Initial state

Additional knowledge of the attacker:

c

a 730

==

New processes:

(

!

new AuthenticationRequest 16 : bitstring;

out(c, AuthenticationRequest 16)

) | (

!

in(c, AuthenticationRequest 17 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 19 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 19);

out(c, AuthenticationChallenge 18)

) | (

!

in(c, AuthenticationChallenge 20 : bitstring);

let NodeATransformationResult1 21 : nonce = Transformation(

AuthenticationChallenge 20 ,AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1 21);

out(c, NodeATransformationResult1 21)

) | (

!

in(c, NodeATransformationResult1 22 : nonce);

if (NodeATransformationResult1 22 = NodeBTransformationResult1)

then

out(c, Success)

257

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1

1st process: Reduction ! 0 copy(ies)

New processes:

in(c, AuthenticationRequest 736 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 737 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 737);

out(c, AuthenticationChallenge 18)

==

1st process: in(c, AuthenticationRequest 736 : bitstring) done with message

a 730

1st process: new AuthenticationChallenge 18 : bitstring creating

AuthenticationChallenge 732

1st process: let NodeBTransformationResult1 742 : nonce = Transformation(

AuthenticationChallenge 732 ,AuthenticationKey) succeeds

1st process: event NodeBTransformation1(Transformation(

AuthenticationChallenge 732 ,AuthenticationKey)) executed; it is a goal

New processes:

out(c, AuthenticationChallenge 732)

258

==

The event NodeBTransformation1(Transformation(AuthenticationChallenge 732 ,

AuthenticationKey)) is executed.

A trace has been found.

RESULT event(NodeBTransformation1(x 25)) ==> event(NodeATransformation1(

x 25)) is false.

== Query inj=event(NodeBTransformation1(x 26)) ==> inj=event(

NodeATransformation1(x 26))

Completing ...

Starting query inj=event(NodeBTransformation1(x 26)) ==> inj=event(

NodeATransformation1(x 26))

goal reachable: attacker(AuthenticationRequest 858) => end(endsid 859 ,

NodeBTransformation1(Transformation(AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 858 ,!1 = endsid 859],

AuthenticationKey [])))

Abbreviations:

AuthenticationChallenge 866 = AuthenticationChallenge 18 [

AuthenticationRequest 17 = AuthenticationRequest 862 ,!1 = endsid 864]

1. We assume as hypothesis that

attacker(AuthenticationRequest 862).

2. The message AuthenticationRequest 862 that the attacker may have by 1

may be received at input {5}.
So event NodeBTransformation1(Transformation(AuthenticationChallenge 866 ,

AuthenticationKey [])) may be executed at {8} in session endsid 864 .

end(endsid 864 ,NodeBTransformation1(Transformation(

AuthenticationChallenge 866 ,AuthenticationKey []))).

Initial state

Additional knowledge of the attacker:

c

a 868

==

New processes:

(

!

new AuthenticationRequest 16 : bitstring;

out(c, AuthenticationRequest 16)

259

) | (

!

in(c, AuthenticationRequest 17 : bitstring);

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 19 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 19);

out(c, AuthenticationChallenge 18)

) | (

!

in(c, AuthenticationChallenge 20 : bitstring);

let NodeATransformationResult1 21 : nonce = Transformation(

AuthenticationChallenge 20 ,AuthenticationKey) in

event NodeATransformation1(NodeATransformationResult1 21);

out(c, NodeATransformationResult1 21)

) | (

!

in(c, NodeATransformationResult1 22 : nonce);

if (NodeATransformationResult1 22 = NodeBTransformationResult1)

then

out(c, Success)

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 1 copy(ies)

2nd process: Beginning of process NodeB1

1st process: Reduction ! 0 copy(ies)

New processes:

in(c, AuthenticationRequest 873 : bitstring);

260

new AuthenticationChallenge 18 : bitstring;

let NodeBTransformationResult1 874 : nonce = Transformation(

AuthenticationChallenge 18 ,AuthenticationKey) in

event NodeBTransformation1(NodeBTransformationResult1 874);

out(c, AuthenticationChallenge 18)

==

1st process: in(c, AuthenticationRequest 873 : bitstring) done with message

a 868

1st process: new AuthenticationChallenge 18 : bitstring creating

AuthenticationChallenge 869

1st process: let NodeBTransformationResult1 879 : nonce = Transformation(

AuthenticationChallenge 869 ,AuthenticationKey) succeeds

1st process: event NodeBTransformation1(Transformation(

AuthenticationChallenge 869 ,AuthenticationKey)) executed; it is a goal

New processes:

out(c, AuthenticationChallenge 869)

==

The event NodeBTransformation1(Transformation(AuthenticationChallenge 869 ,

AuthenticationKey)) is executed in session a 867 .

A trace has been found.

RESULT inj=event(NodeBTransformation1(x 26)) ==> inj=event(

NodeATransformation1(x 26)) is false.

RESULT (even event(NodeBTransformation1(x 860)) ==> event(

NodeATransformation1(x 860)) is false.)

261

Appendix 17 – UWB Authentication

ECMA-368 standard specifies a mutual authentication mechanism. Mutual authentication

is completed through 4-way handshake process. If both parts share the same master key,

authentication will be successful. This is a message authentication scheme and can be

applied to distributed systems. Message integrity code (MIC) also serves as authenticator.

It is calculated by Advanced Encryption Standard(AES) with cipher block chaining(CBC)

mode, and encrypted by counter mode. This scheme will be a long-term security solution

recommended in IEEE 802.11i. Confidentiality deals with the attacks of disclosure and

traffic analysis through encryption. For unicast traffic, this key is pair-wise temporal

key(PTK), and group temporal key(GTK) in broadcast or multicast traffic. PTK or

GTK is not same as the master key, though they are derived from the master key. A

master key is mapped to a master key identifier(MKID). A device can select a encryption

offset(EO) part in a frame not to be encrypted. Applying integrity to selected fields of a

message, a message integrity code(MIC) is produced. The MIC, also known as message

authentication code(MAC), is an 8-octet cryptographic checksum and is used to protect

the integrity of the MAC Header and frame Payload. The symmetric encrypted MIC

provides not only authentication but also confidentiality.

CCM authentication is described in Appendix 19.

262

ProVerif Verification

set traceDisplay=long.

query attacker(PTKResponder).

query attacker(PTKInitiator).

query attacker(DecryptedData1).

query attacker(DecryptedData2).

query x:bitstring; event(DataDecryption1(x)).

query x:bitstring; event(DataDecryption2(x)).

query x:bitstring; event(DataDecryption1(x)) ==> event(DataDecryption2(x))

.

query x:bitstring; inj=event(DataDecryption1(x)) ==> inj=event(

DataDecryption2(x)).

type nonce.

type key.

type MIC.

free TKID:bitstring [private].

free UniqueTKID:bitstring [private].

free PTKMic:MIC[private].

free PTKMic2:MIC[private].

free PTKMic3:MIC[private].

free PTKMic4 , PTKMic5:MIC[private].

free Success:bitstring[private].

free PTKResponder:key [private].

free PTKInitiator:key [private].

free INonce , INonce2 , INonce3:nonce [private].

free RNonce , RNonce2 , RNonce3:nonce [private].

free MKID:bitstring[private].

free StatusCode:bitstring[private].

free DecryptedData1:bitstring[private].

free DecryptedData2:bitstring[private].

free TEST:bitstring[private].

event VerifyMKIDUniqueness(bitstring).

event PTKMicVerification(MIC).

event PTKMicVerification2(MIC).

event PTKMicVerification3(MIC).

event PTKMicVerification4(MIC).

263

event PTKMicVerification5(MIC).

event DataDecryption1(bitstring).

event DataDecryption2(bitstring).

free c:channel.

fun AESEnc(bitstring , nonce , key): nonce.

reduc forall x: bitstring , y:nonce , z:key; AESDec(AESEnc(x,y,z),z) = x.

let Initiator =

out(c, (MKID , (TKID ,INonce))).

let Responder =

in(c, (MKID:bitstring , (TKID:bitstring ,INonce:nonce)));

let TKID = UniqueTKID in

event VerifyMKIDUniqueness(TKID);

if TKID = UniqueTKID then

(

out(c, (StatusCode , RNonce))

)

else

(

0

).

let Initiator2 =

in(c, (StatusCode:bitstring , RNonce:nonce));

let PTKMic = PTKMic in

event PTKMicVerification(PTKMic);

if PTKMic = PTKMic then

(

out(c, INonce2)

)

else

(

0

).

let Responder2 =

in(c, INonce2:nonce);

let PTKMic2 = PTKMic2 in

event PTKMicVerification2(PTKMic2);

264

if PTKMic2 = PTKMic2 then

(

out(c, RNonce2)

)

else

(

0

).

let Initiator3 =

in(c, RNonce2:nonce);

let PTKMic3 = PTKMic3 in

event PTKMicVerification3(PTKMic3);

if PTKMic3 = PTKMic3 then

(

out(c, AESEnc(TEST , INonce3 , PTKInitiator))

)

else

(

0

).

let Responder3 =

in(c, EncryptedData1:nonce);

let PTKMic4 = PTKMic4 in

event PTKMicVerification4(PTKMic4);

if PTKMic4 = PTKMic4 then

(

let DecryptedData1 = AESDec(EncryptedData1 , PTKResponder) in

event DataDecryption1(DecryptedData1);

out(c, AESEnc(Success , RNonce3 , PTKResponder))

)

else

(

0

).

let Initiator4 =

in(c, EncryptedData2:nonce);

let PTKMic5 = PTKMic5 in

event PTKMicVerification5(PTKMic5);

if PTKMic5 = PTKMic5 then

265

(

let DecryptedData2 = AESDec(EncryptedData2 , PTKInitiator) in

event DataDecryption2(DecryptedData2)

)

else

(

0

).

process

(

!Initiator |! Responder |! Initiator2 |! Responder2 |! Initiator3 |! Responder3
|! Initiator4

)

266

ProVerif Result

Process:

(

{1}!
{2} out(c, (MKID ,(TKID ,INonce)))

) | (

{3}!
{4}in(c, (MKID 16 : bitstring ,(TKID 17 : bitstring , INonce 18 : nonce)));

{5} let TKID 19 : bitstring = UniqueTKID in

{6} event VerifyMKIDUniqueness(TKID 19);

{7}if (TKID 19 = UniqueTKID) then

{8} out(c, (StatusCode ,RNonce))

) | (

{9}!
{10}in(c, (StatusCode 20 : bitstring , RNonce 21 : nonce));

{11} let PTKMic 22 : MIC = PTKMic in

{12} event PTKMicVerification(PTKMic 22);

{13}if (PTKMic 22 = PTKMic 22) then

{14} out(c, INonce2)

) | (

{15}!
{16}in(c, INonce2 23 : nonce);

{17} let PTKMic2 24 : MIC = PTKMic2 in

{18} event PTKMicVerification2(PTKMic2 24);

{19}if (PTKMic2 24 = PTKMic2 24) then

{20} out(c, RNonce2)

) | (

{21}!
{22}in(c, RNonce2 25 : nonce);

{23} let PTKMic3 26 : MIC = PTKMic3 in

{24} event PTKMicVerification3(PTKMic3 26);

{25}if (PTKMic3 26 = PTKMic3 26) then

{26} out(c, AESEnc(TEST ,INonce3 ,PTKInitiator))

) | (

{27}!
{28}in(c, EncryptedData1: nonce);

{29} let PTKMic4 27 : MIC = PTKMic4 in

{30} event PTKMicVerification4(PTKMic4 27);

{31}if (PTKMic4 27 = PTKMic4 27) then

{32} let DecryptedData1 28 : bitstring = AESDec(EncryptedData1 ,

PTKResponder) in

267

{33} event DataDecryption1(DecryptedData1 28);

{34} out(c, AESEnc(Success ,RNonce3 ,PTKResponder))

) | (

{35}!
{36}in(c, EncryptedData2: nonce);

{37} let PTKMic5 29 : MIC = PTKMic5 in

{38} event PTKMicVerification5(PTKMic5 29);

{39}if (PTKMic5 29 = PTKMic5 29) then

{40} let DecryptedData2 30 : bitstring = AESDec(EncryptedData2 ,

PTKInitiator) in

{41} event DataDecryption2(DecryptedData2 30)

)

== Query not attacker(PTKResponder [])

Completing ...

Starting query not attacker(PTKResponder [])

RESULT not attacker(PTKResponder []) is true.

== Query not attacker(PTKInitiator [])

Completing ...

Starting query not attacker(PTKInitiator [])

RESULT not attacker(PTKInitiator []) is true.

== Query not attacker(DecryptedData1 [])

Completing ...

Starting query not attacker(DecryptedData1 [])

RESULT not attacker(DecryptedData1 []) is true.

== Query not attacker(DecryptedData2 [])

Completing ...

Starting query not attacker(DecryptedData2 [])

RESULT not attacker(DecryptedData2 []) is true.

== Query not event(DataDecryption1(x 31))

Completing ...

Starting query not event(DataDecryption1(x 31))

RESULT not event(DataDecryption1(x 31)) is true.

== Query not event(DataDecryption2(x 32))

Completing ...

Starting query not event(DataDecryption2(x 32))

goal reachable: end(DataDecryption2(TEST []))

1. The attacker has some term RNonce2 1755 .

attacker(RNonce2 1755).

2. The message RNonce2 1755 that the attacker may have by 1 may be

268

received at input {22}.
So the message AESEnc(TEST[],INonce3[], PTKInitiator []) may be sent to the

attacker at output {26}.
attacker(AESEnc(TEST[],INonce3[], PTKInitiator [])).

3. The message AESEnc(TEST[],INonce3[], PTKInitiator []) that the attacker

may have by 2 may be received at input {36}.
So event DataDecryption2(TEST []) may be executed at {41}.
end(DataDecryption2(TEST [])).

Initial state

Additional knowledge of the attacker:

c

a

==

New processes:

(

!

out(c, (MKID ,(TKID ,INonce)))

) | (

!

in(c, (MKID 16 : bitstring ,(TKID 17 : bitstring , INonce 18 : nonce)));

let TKID 19 : bitstring = UniqueTKID in

event VerifyMKIDUniqueness(TKID 19);

if (TKID 19 = UniqueTKID) then

out(c, (StatusCode ,RNonce))

) | (

!

in(c, (StatusCode 20 : bitstring , RNonce 21 : nonce));

let PTKMic 22 : MIC = PTKMic in

event PTKMicVerification(PTKMic 22);

if (PTKMic 22 = PTKMic 22) then

out(c, INonce2)

) | (

!

in(c, INonce2 23 : nonce);

let PTKMic2 24 : MIC = PTKMic2 in

event PTKMicVerification2(PTKMic2 24);

if (PTKMic2 24 = PTKMic2 24) then

out(c, RNonce2)

269

) | (

!

in(c, RNonce2 25 : nonce);

let PTKMic3 26 : MIC = PTKMic3 in

event PTKMicVerification3(PTKMic3 26);

if (PTKMic3 26 = PTKMic3 26) then

out(c, AESEnc(TEST ,INonce3 ,PTKInitiator))

) | (

!

in(c, EncryptedData1: nonce);

let PTKMic4 27 : MIC = PTKMic4 in

event PTKMicVerification4(PTKMic4 27);

if (PTKMic4 27 = PTKMic4 27) then

let DecryptedData1 28 : bitstring = AESDec(EncryptedData1 ,

PTKResponder) in

event DataDecryption1(DecryptedData1 28);

out(c, AESEnc(Success ,RNonce3 ,PTKResponder))

) | (

!

in(c, EncryptedData2: nonce);

let PTKMic5 29 : MIC = PTKMic5 in

event PTKMicVerification5(PTKMic5 29);

if (PTKMic5 29 = PTKMic5 29) then

let DecryptedData2 30 : bitstring = AESDec(EncryptedData2 ,

PTKInitiator) in

event DataDecryption2(DecryptedData2 30)

)

==

1st process: Reduction |

2nd process: Reduction |

3rd process: Reduction |

4th process: Reduction |

5th process: Reduction |

6th process: Reduction |

7th process: Reduction ! 1 copy(ies)

270

7th process: Beginning of process Initiator4

6th process: Reduction ! 0 copy(ies)

5th process: Reduction ! 1 copy(ies)

5th process: Beginning of process Initiator3

4th process: Reduction ! 0 copy(ies)

3rd process: Reduction ! 0 copy(ies)

2nd process: Reduction ! 0 copy(ies)

1st process: Reduction ! 0 copy(ies)

New processes:

(

in(c, RNonce2 1768 : nonce);

let PTKMic3 1769 : MIC = PTKMic3 in

event PTKMicVerification3(PTKMic3 1769);

if (PTKMic3 1769 = PTKMic3 1769) then

out(c, AESEnc(TEST ,INonce3 ,PTKInitiator))

) | (

in(c, EncryptedData2 1763 : nonce);

let PTKMic5 1764 : MIC = PTKMic5 in

event PTKMicVerification5(PTKMic5 1764);

if (PTKMic5 1764 = PTKMic5 1764) then

let DecryptedData2 1765 : bitstring = AESDec(EncryptedData2 1763 ,

PTKInitiator) in

event DataDecryption2(DecryptedData2 1765)

)

==

1st process: in(c, RNonce2 1768 : nonce) done with message a

1st process: let PTKMic3 1775 : MIC = PTKMic3 succeeds

1st process: event PTKMicVerification3(PTKMic3) executed

1st process: if (PTKMic3 = PTKMic3) succeeds

271

1st process: out(c, ˜ M 1778) with ˜ M 1778 = AESEnc(TEST ,INonce3 ,

PTKInitiator) done

Additional knowledge of the attacker:

˜ M 1778 = AESEnc(TEST ,INonce3 ,PTKInitiator)

==

1st process: Reduction 0

New processes:

in(c, EncryptedData2 1763 : nonce);

let PTKMic5 1764 : MIC = PTKMic5 in

event PTKMicVerification5(PTKMic5 1764);

if (PTKMic5 1764 = PTKMic5 1764) then

let DecryptedData2 1765 : bitstring = AESDec(EncryptedData2 1763 ,

PTKInitiator) in

event DataDecryption2(DecryptedData2 1765)

==

1st process: in(c, EncryptedData2 1763 : nonce) done with message ˜ M 1778 =

AESEnc(TEST ,INonce3 ,PTKInitiator)

1st process: let PTKMic5 1782 : MIC = PTKMic5 succeeds

1st process: event PTKMicVerification5(PTKMic5) executed

1st process: if (PTKMic5 = PTKMic5) succeeds

1st process: let DecryptedData2 1784 : bitstring = TEST succeeds

1st process: event DataDecryption2(TEST) executed; it is a goal

New processes:

0

==

The event DataDecryption2(TEST) is executed.

A trace has been found.

RESULT not event(DataDecryption2(x 32)) is false.

== Query event(DataDecryption1(x 33)) ==> event(DataDecryption2(x 33))

Completing ...

Starting query event(DataDecryption1(x 33)) ==> event(DataDecryption2(x 33

272

))

RESULT event(DataDecryption1(x 33)) ==> event(DataDecryption2(x 33)) is

true.

== Query inj=event(DataDecryption1(x 34)) ==> inj=event(DataDecryption2(

x 34))

Completing ...

Starting query inj=event(DataDecryption1(x 34)) ==> inj=event(

DataDecryption2(x 34))

RESULT inj=event(DataDecryption1(x 34)) ==> inj=event(DataDecryption2(x 34

)) is true.

273

Appendix 18 – CMAC Authentication

CMAC is a message authentication code (MAC), which is constructed with a block cipher

using its own cipher algorithm.

EnOcean has described CMAC authentication as follows, which has been shown in Figure

16: MAC generation algorithm for a message ¡= 16 bytes.

The R-ORG-S is the secure radio message R-ORG code.

DATA is the secure message DATA field.

XOR is used to encrypt message with a different key.

If the receiving device has a shared secret key, it is able to decrypt the message.

Figure 16: CMAC message calculation [4]

274

Appendix 19 – CCM Authentication

CBC-MAC is a method for constructing a message authentication code from a block cipher.

With CBC (Cipher Block Chaining)-MAC (Message Authentication Code) messages

are authenticated with a secret shared key. Messages are encrypted with the standard

form of AES and then throw away everything apart from the last block, and use this

as a fixed-length MAC. If the key is not secret the method provides little in the way of

security.

Algorithm calculation has been shown in Figure 17.

Figure 17: CBC-MAC message calculation [11]

275

Appendix 20 – BAN logic Verification for Diffie-Hellman Key

Exchange

Initial Assumptions:

A |≡ KA7−−→ A

A |≡ KB7−−→ B

B |≡ KB7−−→ B

B |≡ KA7−−→ A

A |≡ B ⇒ GNB

B |≡ A⇒ GNA

Idealized Protocol:

Message 1: A / GNB

Message 2: B / GNA , {GNA , GNB}KA−1

Message 3:A / GNB , {GNB , GNA}KB−1

Protocol Goal:

A |≡ A
KAB←−→ B

B |≡ A
KAB←−→ B

B |≡ A |≡ A
KAB←−→ B

A |≡ B |≡ A
KAB←−→ B

Verification:

In first message of idealized protocol, B chooses random NB and calculates GNB and

then sends it to A, therefor

B |≡ NB

B |≡ #(NB)

A / GNB

In second message of idealized protocol, A chooses randomNA and calculates GNA ,

then sends and believes

A |≡ NA

A |≡ #(NA)

B / GNA , {GNA , GNB}KA−1

From the last sent message by A to B, we can obtain by applying message-meaning

rules and initial assumptions B |≡ KA7−−→ A that

B |≡ A |∼ (GNA , GNB)

Applying freshness conjucation to the B |≡ #(NB), then it is possible to obtain:

B |≡ #(GNB , GNA)

276

Applying nonce verification rule to B |≡ A |∼ (GNA , GNB) and B |≡ #(GNB ,GNA) ,

then it can be obtained that

B |≡ A |≡ (GNA , GNB)

From decomposition, it can be obtained that

B |≡ A |≡ GNA

B |≡ A |≡ NA

From B |≡ A |≡ GNA and initial assumption of B |≡ A ⇒ GNA and applying

jurisdiction rule, it is obtained that

B |≡ GNA

From B |≡ #(GNB ,GNA) it can be obtained that

B |≡ A |≡ GNB

From third message of idealized protocol it is possible to derive that

A / GNB , {GNA , GNB}KB−1

From initial assumption of A |≡ KB7−−→ B and applying message-meaning rule, it can be

obtained that

A |≡ B |∼ (GNA , GNB)

Applying freshness conjucation to A |≡ #(NA), it is obtained that

A |≡ #(GNA , GNB)

From nonce verification of B |≡ #(GNB , GNA) and A |≡ B |∼ (GNA , GNB) it is

obtained that

A |≡ B |≡ (GNB , GNA)

From decomposition of last message, it is obtained that

A |≡ B |≡ GNB

A |≡ B |≡ NB

From A |≡ B |≡ GNB , initial assumptions of A |≡ B ⇒ GNB and by applying

jurisdiction rule :

A |≡ GNB

From decomposition of A |≡ B |≡ (GNB , GNA) it is obtained that :

A |≡ B |≡ GNA

A calculates now KAB = (GNB)NA .

From messages A / GNB and A |≡ #(NA) with applying freshness conjucation, it is

obtained that

A |≡ #(KAB)

From A |≡ #(KAB) and A |≡ B |≡ NB by applying shared key rule :

A |≡ A
KAB←−→ B

277

Due to symmetrical key exchange protocol B is bound to does the same.

B |≡ A |≡ A
KAB←−→ B

B calculates now KAB = (GNA)NB .

B |≡ #(KAB)

From B |≡ #(KAB) and B |≡ #(NB) by applying shared key rule :

B |≡ A
KAB←−→ B

Due to symmetrical key exchange protocol A is bound to does the same.

A |≡ B |≡ A
KAB←−→ B

With these deductions following goals are reached :

A |≡ A
KAB←−→ B

B |≡ A
KAB←−→ B

B |≡ A |≡ A
KAB←−→ B

A |≡ B |≡ A
KAB←−→ B

Which means, that goals of the protocol are reached.

278

Appendix 21 – BAN logic Verification WiMAX PKMv1 Key

Exchange

Initial Assumptions:

SS |≡ KA7−−→ A

BS |≡ KA7−−→ A

SS |≡ KSS7−−→ SS

BS |≡ KSS7−−→ SS

SS |≡ A⇒ K7−→ BS

BS |≡ A⇒ K7−→ SS

SS |≡ BS ⇒ (SS
K←→ BS)

BS |≡ SS
K←→ BS

SS |≡ #(TABS)

SS |≡ #(NSS)

SS |≡ #(TBS)

BS |≡ #(TASS
)

BS |≡ #(NBS)

BS |≡ #(TSS)

Idealized Protocol:

Message 1: BS / SS.REQ, {TASS
,
KSS7−−→ SS}KA−1

Message 2: SS / {SS AK←→ BS}KSS

Protocol Goal:

SS |≡ SS
AK←→ BS

BS |≡ SS
AK←→ BS

BS |≡ SS |≡ SS
AK←→ BS

SS |≡ BS |≡ SS
AK←→ BS

Verification:

BS / SS → BS : SS.REQ, {TASS
,
KSS7−−→ SS}KA−1

and by initial assumption of

BS |≡ KA7−−→ A it can be deduced with message-meaning rule that:

BS |≡ A |∼ (TASS
,
KSS7−−→ SS)

With initial assumption of BS |≡ #(TASS
) and last message, while applying nonce

verification rule, it can be deduced that

BS |≡ A |≡ KSSSS7−−−−→
Applying rule of jurisdiction and initial assumption to last deduction :

SS / SS
AK←→ BS

279

No more assertions can be added and the result of this verification is that SS sees

that there is a key AK, which can be used to communicate with BS, but does not know

if it is assigned by BS or not, because the identity has not been included in the messages.

280

Appendix 22 – BAN logic Verification WiMAX PKMv2 Key

Exchange

SS - Subscriber Station

BS - Base Station

K - shared key

A - Authentication

Initial Assumptions:

SS |≡ KA7−−→ A

BS |≡ KA7−−→ A

SS |≡ KSS7−−→ SS

BS |≡ KSS7−−→ SS

SS |≡ A⇒ K7−→ BS

BS |≡ A⇒ K7−→ SS

SS |≡ BS ⇒ (SS
K←→ BS)

BS |≡ SS
K←→ BS

SS |≡ #(TABS)

SS |≡ #(NSS)

SS |≡ #(TBS)

BS |≡ #(TASS
)

BS |≡ #(NBS)

BS |≡ #(TSS)

BS |≡ KSS7−−→ SS

SS |≡ KBS7−−→ BS

Idealized Protocol:

Message 1: BS / SS.REQ, {TASS
,
KSS7−−→ SS}KA−1

Message 2: SS / {NSS, NBS, {SS
AK←→ BS}KSS

}
KBS−1

, {TABS,
KBS7−−→ BS}KA−1

Message 3: BS / {NBS, SS.RPL}AK

Protocol Goal:

SS |≡ SS
AK←→ BS

BS |≡ SS
AK←→ BS

BS |≡ SS |≡ SS
AK←→ BS

SS |≡ BS |≡ SS
AK←→ BS

Verification:

281

SS / BS → SS : {NSS, NBS, {SS
AK←→ BS}KSS

}
KBS−1

, {TABS,
KBS7−−→ BS}KA−1

and

with initial assumption of SS |≡ KBS7−−→ BS it can be deduced by applying message-

meaning rule that:

SS |≡ BS |∼ (NSS, NBS, {SS
AK←→ BS}KSS

)

With last message and initial assumption of SS |≡ #(NSS) it can be deduced with

nonce verification that:

SS |≡ BS |≡ {SS AK←→ BS}KSS

Because the signing of the key, it can be assumed that:

SS |≡ BS |≡ SS
AK←→ BS

Next, by applying jurisdiction rule to last message with initial assumption of SS |≡
BS ⇒ (SS

K←→ BS) :

SS |≡ SS
AK←→ BS

Next, BS / SS → BS : {NBS, SS.RPL}AK and with the initial assumptions of

BS |≡ SS
K←→ BS and BS |≡ #(NBS) it can be deduced that

BS |≡ SS.RPL

The authentication comes through, but BS cannot verify if the authentication process

was started by SS, because the identity was not included in the requesting messages.

282

Appendix 23 – BAN logic Verification for GSM Key Exchange

Initial Assumptions:

MSC |≡MS |∼ (ServiceRequest)

V LR |≡MSC |∼ (IMSI)

HLR |≡ V LR |∼ (IMSI)

V LR |≡MSC |∼ (IMSI)

V LR |≡MS
EncryptionKey←−−−−−−−→ V LR

MS |≡MS
EncryptionKey←−−−−−−−→ V LR

Idealized Protocol:

V LR / {Response2}EncryptionKey

Protocol Goal:

MS |≡MS
EncryptionKey←−−−−−−−→ V LR

V LR |≡MS
EncryptionKey←−−−−−−−→ V LR

V LR |≡MS |≡MS
EncryptionKey←−−−−−−−→ V LR

MS |≡ V LR |≡MS
EncryptionKey←−−−−−−−→ V LR

Verification:

With the communication being initiated by MS with sending ServiceRequest to MSC,

which includes CKSN, IMSI, TMSI and is forwarded to VLR, who sends Authentication-

Request(IMSI) to HLR. With the initial

belief of that HLR |≡MS |∼ IMSI, it sends out IMSI, generates RAND, with that

KC , which is used to generate SRES to VLR. VLR starts the authentication process,

with sending out

CKSN and RAND which is forwarded to MS. MS then uses its private key to calculate

SRES and sends a response containing SRES to MSC, who sends it to VLR, who checks

if SRES matches with

SRES received from HLR. If it matches, MSC receives the response with success in it,

which is forwarded to MS. Then MS is authenticated and can start communication with

EncryptionKey, which

is generated with MS private key and A5 algorithm.

From fifth message, it can be deduced that :

After recieving Response from MSC, MS generates EncryptionKey and MS |≡
MS

EncryptionKey←−−−−−−−→ V LR, because of the symmetry of the key, MS |≡ V LR |≡MS
EncryptionKey←−−−−−−−→

V LR.

283

While recieving the message {Response2}EncryptionKey and with initial belief that

V LR |≡MS
EncryptionKey←−−−−−−−→ V LR, it can be deduced, that

V LR / Response2 and because of that V LR |≡MS |≡MS
EncryptionKey←−−−−−−−→ V LR.

284

Appendix 24 – BAN logic Verification for EAP-AKA Key Ex-

change [1]

U - User HE - Home Environment SN - Serving Network r - random number K - shared

key SEQ - sequence number for synchronization between HE and U RES = f2(K, r) =

expected response CK = f3(K, r) = cipher key IK = f4(K, r) = integrity key Ka= f5(K,

r) = anonymity key AUTN = authentication token

Idealized Protocol:

SN / r, f2(K, r), f3(K, r), f4(K, r), {SEQ}f5(K,r), f1(K,SEQ, r)

U / r, {SEQ}f5(K,r), f1(K,SEQ, r)

SN / f2(K, r)

Initial Assumptions:

SN |≡ HE ⇒ (SN
K′←→ U,#(K ′))

SN |≡ (HE |∼ RES → HE |≡ (SN
RES←−→ U,#(RES)))

SN |≡ (HE |∼ CK → HE |≡ (SN
CK←→ U,#(CK)))

SN |≡ (HE |∼ IK → HE |≡ (SN
IK←→ U,#(IK)))

SN |≡ HE |∼ (r, RES,CK, IK,AUTN)

SN |≡ (U |∼ RES → U / (CK, IK))

SN |≡!(SN |∼ RES)

U / K

U |≡ HE
K←→ U

U |≡ HE / K

U |≡ #(SEQ)

U |≡!(U |∼ f1(K, r))

U |≡ HE ⇒ SN
K′←→ U

U |≡ (HE |∼ r → HE |≡ SN
fi(K,r)←−−−→ U) for i=3,4

U |≡ HE ⇒ #(r)

U |≡ (HE |∼ r → HE |≡ #(r))

HE / K

HE |≡ HE
K←→ U

Protocol Goal:

SN |≡ U |∼ RES

U |≡ HE |∼ (SEQ, r)

SN / CK

SN / IK

285

U / f3(K, r)

U / f4(K, r)

SN |≡ SN
CK←→ U

SN |≡ SN
IK←→ U

U |≡ SN
f3(K,r)←−−−→ U

U |≡ SN
f4(K,r)←−−−→ U

SN |≡ #(CK)

SN |≡ #(IK)

U |≡ #(f3(K, r))

U |≡ #(f4(K, r))

SN |≡ U / (CK, IK)

U |≡ HE / (f3(K, r), f4(K, r))

HE |≡ HE
f5(K,r)←−−−→ U

Verification:

Receiving first message, SN / (CK, IK), goal

From initial assumptions of SN |≡ HE |∼ (r, RES,CK, IK,AUTN) and SN |≡
(HE |∼ RES → HE |≡ (SN

RES←−→ U,#(RES))), because of the interference and

rationality rule, it can be deduced that

SN |≡ HE |≡ (SN
RES←−→ U,#(RES))

From last deduction and initial assumption of SN |≡ HE ⇒ (SN
K′←→ U,#(K ′)) :

SN |≡ (SN
RES←−→ U,#(RES))

Now it can be proved that :

SN |≡ SN
CK←→ U

SN |≡ SN
IK←→ U

SN |≡ #(CK)

SN |≡ #(IK)

From second message, U / r and because of that and initial assumption of U / K,

it can be proved that U / K, r, therefor U / fi(K, r) for i=2,..,5 ; with this deduction

U / SEQ.

Because of these deductions and second message, it can be shown that U |≡ U /

f1(K,SEQ, r), because U is able to calculate it.

With initial assumptions of U |≡ HE
K←→ U and U |≡!(U |∼ f1(K, r)), and the

last calculation and the initial assumption of U |≡ #(SEQ), it can be shown that

U |≡ HE |∼ (SEQ, r).

In result of last deduction U |≡ HE / fi(K, r), for i = 3,4.

286

Using initial assumption of U |≡ (HE |∼ r → HE |≡ SN
fi(K,r)←−−−→ U) for i=3,4 and

U |≡ HE |∼ (SEQ, r) it can be deduced that U |≡ (HE |≡ SN
fi(K,r)←−−−→ U) for i= 3,4.

With last message and initial assumption of U |≡ HE ⇒ SN
K′←→ U that U |≡

SN
fi(K,r)U←−−−−→ for i = 3,4.

Using initial assumption of U |≡ (HE |∼ r → HE |≡ #(r)) it can be said, that

U |≡ HE |≡ #(r) and with this U |≡ #(r) therefore U |≡ #(fi(K, r)) for i=3,4.

From third message and initial assumption of received expected response from SN |≡
HE |∼ (r, RES,CK, IK,AUTN)

SN |≡ SN / RES

SN |≡ U |∼ RES

SN |≡ U / (CK, IK)

With initial assumption of HE |≡ HE
K←→ U and previous beliefs of fi(K,r) for i=

2,..,5 that

HE |≡ HE
f5(K,r)U←−−−−→

287

Appendix 25 – BAN logic Verification for ZigBee Key Exchange

Initial Assumptions:

TrustCenter |≡ TC

TrustCenter |≡ Joiner |≡ J

TrustCenter |≡ Joiner |≡ aQ

TrustCenter |≡ sub−MAC

Joiner |≡ J

Joiner |≡ TrustCenter |≡ TC

Joiner |≡ TrustCenter |≡ bQ

Joiner |≡ sub−MAC

Idealized Protocol:

Joiner / J, aQ,NS, sub−MAC(aQ,NS, J)

TrustCenter / TC, bQ,NS+1, sub−MAC(K)

Joiner / EK , (NS+1)

Protocol Goal:

TrustCenter |≡ TrustCenter
K←→ Joiner

Joiner |≡ TrustCenter
K←→ Joiner

Joiner |≡ TrustCenter |≡ TrustCenter
K←→ Joiner

TrustCenter |≡ Joiner |≡ TrustCenter
K←→ Joiner

Verification:

From first idealized message, it can be deduced that
Joiner / J, aQ,NS, sub−MAC(aQ,NS, J

Joiner |≡ J, aQ,NS

and

therefor because
Joiner |≡ aQ

Joiner |≡ K
From second idealized message, TrustCenter / (TC, bQ,NS+1), TrustCenter will

compute K and then sub-MAC(K).

Because TrustCenter calculates K and sub-MAC(K), it can be deduced that

TrustCenter / sub−MAC(K), T rustCenter |≡ sub−MAC

TrustCenter |≡ K
,

next
TrustCenter |≡ K

TrustCenter |≡ bQ, TrustCenter |≡ #(NS+1)
and finally

TrustCenter |≡ K

TrustCenter |≡ TrustCenter
K←→ Joiner

.

288

Next, TrustCenter |≡ Joiner |≡ TrustCenter
k←→ Joiner, because of the Symmetric-

Key Key Establishment (SKKE) protocol.

From last idealized message,
Joiner / {NS+1}K

Joiner |≡ TrustCenter
K←→ Joiner

.

Because of the last message, it can be said that Joiner |≡ TrustCenter |≡ TrustCenter
K←→

Joiner, because of the SKKE protocol.

289

Appendix 26 – BAN logic Verification for PSK Key Exchange

Initial Assumptions:

DevicefreshATRANDAP

AP#(ATRANDD)

Idealized Protocol:

Device / ATRANDAP

AP / ATRANDD, ATMACD

Device / {ATMACAP}TEK

AP / {ATMACD}TEK

Device / {EAPSuccess}TEK

Protocol Goal:

Device |≡ Device
TEK←−→ AP

Device |≡ AP |≡ Device
TEK←−→ AP

AP |≡ Device
TEK←−→ AP

AP |≡ Device |≡ Device
TEK←−→ AP

Verification:

While AP sends out ATRANDAP , which was generated by itself, therefore AP |≡
#(ATRANDAP).

From first message Device / ATRANDAP , next device generated its own random and

sends it to AP while adding message authentication code in the second messageAP /

ATRANDD, ATMACD.

Because the device generated ATRANDD, therefore Device |≡ #(ATRANDD).

From second message, AP check validity of the ATMACD. If it is valid, then AP |≡
ATMACD, it can be deduced that AP |≡ Device |∼ ATRANDD as well.

AP sends out message {ATMACAP}TEK , which Device should be able to derive.

With third message, because of Device is able to resolve the challenge TEK with

its pre-shared key Device / ATMACAP . With the validity of ATMACAP then Device |≡
ATMACAP , Device |≡ AP |∼ {ATMACAP}TEK .

Also, then Device |≡ Device
TEK←−→ AP .

With fourth message, AP / {ATMACD}TEK , while AP is able to resolve the message

using its key, AP |≡ Device
TEK←−→ AP for communication and AP |≡ Device |≡

Device
TEK←−→ AP , because of the response.

With fifth message Device / {EAPSuccess}TEK , Device is able to deduct that

Device |≡ AP |≡ Device
TEK←−→ AP .

290

Appendix 27 – BAN logic Verification for CCM and CMAC Key

Exchange

Since CMAC and CCM BAN logic results and assumptions were the same, they have

been combined into one appendix. Difference is that CMAC encryption is applied to

whole message and CCM or CBC-MAC last block of the message.

Assumptions:

A |≡ #(T1)

B |≡ #(T2)

A |≡ A
K←→ B

B |≡ A
K←→ B

Idealizad Protocol:

A / {I1, T1}K

B / {I2, T2}K

Goal:

A |≡ B |∼ I1

B |≡ A |∼ I2

Verification:

With initial assumption of that

A |≡ A
K←→ B

, then A receives first message, this is deduced with message-meaning rule:

291

A |≡ A
K←→ B,A/

{I1, T1}K
.

Applying shared secret rule results with the initial assumption of

A |≡ A
K←→ B

results :
A / {I1, T1}K , A |≡ A

K←→ B

A / I1, T1

.

Applying message-meaning rule,

A |≡ A
K←→ B,A / I1, T1

A |≡ B |∼ I1

.

After A was able to read the message,

A will respond with its own identity and same thing applies to

B |≡ A
K←→ B

, this is also deduced with message-meaning rule:

B |≡ A
K←→ B,B/

{I2, T2}K
.

Applying shared secret rule results with the initial assumption of

B |≡ A
K←→ B

results :
B / {I2, T2}K , B |≡ A

K←→ B

B / I2, T2

.

292

Applying message-meaning rule,

B |≡ A
K←→ B,B / I2, T2

B |≡ A |∼ I2

.

293

A
p

p
e
n

d
ix

2
8

–
U

se
d

T
e
rm

s
fo

r
L

it
e
ra

tu
re

R
e
v
ie

w

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

S
m

ar
t

H
om

e
p

ro
to

co
ls

5
3
4
,0

0
0

re
su

lt
s

5
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
ir

el
es

s
p

ro
to

co
ls

9
4
7
,0

0
0

re
st

u
lt

s
4

1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

co
m

m
u
n

ic
at

io
n

p
ro

to
co

l
7
7

re
su

lt
s

2
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
5
0
,0

0
0

re
su

lt
s

2
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

2
2
,5

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
au

th
en

ti
ca

ti
on

2
6
,2

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
1
5
,1

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
2
1
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
d

es
ig

n
5
2
7
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
1
,3

7
0
,0

0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
co

m
p

ar
is

on
8
7
5
,0

0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

2
6
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

in
fr

ar
ed

p
ro

to
co

l
st

an
d

ar
d

8
1
4
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

7
3
,1

0
0

re
su

lt
s

7
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
3
2
,6

0
0

re
su

lt
s

4
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

2
7
4
0
0

re
su

lt
s

3
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
au

th
en

ti
ca

ti
on

2
7
1
0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
om

e
n

et
w

o
rk

s
1
5
,7

0
0

re
su

lt
s

5
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
2
3
,8

0
0

re
su

lt
s

6
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
d

es
ig

n
5
6
1
0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
6
9
,8

0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
co

m
p

ar
is

on
4
5
,5

0
0

re
su

lt
s

3
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
on

1
9
2
0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

w
ifi

p
ro

to
co

l
st

an
d

ar
d

5
4
6
0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

294

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

b
lu

et
o
ot

h
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
1
0
2
,0

0
0

re
su

lt
s

6
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

3
9
,1

0
0

re
su

lt
s

4
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
3
5
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

au
th

en
ti

ca
ti

on
3
4
,7

0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

o
m

e
n

et
w

o
rk

s
1
9
,7

0
0

re
su

lt
s

1
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

2
3
,5

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

d
es

ig
n

7
8
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

9
2
,0

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

co
m

p
ar

is
on

5
3
,3

0
0

re
su

lt
s

2
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

2
3
,3

0
0

re
su

lt
s

0
1
1/

0
9
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

b
lu

et
o
ot

h
p

ro
to

co
l

st
an

d
ar

d
7
0
,7

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

fo
r

io
t

1
1
,8

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

4
7
,9

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

fo
r

au
th

en
ti

ca
ti

on
7
0
,3

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

au
th

en
ti

ca
ti

on
6
5
,9

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

o
m

e
n

et
w

o
rk

s
2
3
,5

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

6
,2

6
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

d
es

ig
n

2
9
2
,0

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

3
9
2
,0

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

co
m

p
ar

is
on

2
1
4
,0

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

4
0
,0

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

th
re

ad
p

ro
to

co
l

st
an

d
ar

d
1
4
9
,0

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

co
m

m
u
n

ic
at

io
n

p
ro

to
co

l
6
4
,2

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
3
1
,9

0
0

re
su

lt
s

3
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

1
8
,5

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
au

th
en

ti
ca

ti
on

1
8
,7

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

295

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

Z
ig

b
ee

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
1
4
,2

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
1
7
,8

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
d

es
ig

n
5
6
,8

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
6
2
,2

0
0

re
su

lt
s

6
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
co

m
p

ar
is

on
3
8
,1

0
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

1
1
,5

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
ig

b
ee

p
ro

to
co

l
st

an
d

ar
d

5
1
,9

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

5
,1

3
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
4
,3

9
0

re
su

lt
s

2
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

2
,0

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
au

th
en

ti
ca

ti
on

2
,0

1
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
1
,8

6
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
1
,9

6
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
d

es
ig

n
4
,8

3
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
5
,4

5
0

re
su

lt
s

3
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
co

m
p

ar
is

on
2
,9

5
0

re
su

lt
s

1
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

1
,5

7
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Z
-W

av
e

p
ro

to
co

l
st

an
d

ar
d

4
,7

0
0

re
su

lt
s

0
0
9/

1
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
6
5
3

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

5
6
4

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
2
9
7

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

au
th

en
ti

ca
ti

on
2
9
7

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

o
m

e
n

et
w

o
rk

s
2
8
3

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

2
9
5

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

d
es

ig
n

5
8
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

7
6
3

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

296

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

W
eM

o
p

ro
to

co
l

co
m

p
ar

is
on

4
6
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

1
9
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
eM

o
p

ro
to

co
l

st
an

d
ar

d
6
1
4

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
ir

ed
P

ro
to

co
ls

fo
r

sm
ar

t
h

om
es

2
9
,3

0
0

re
su

lt
s

4
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

W
ir

el
es

s
p

ro
to

co
ls

fo
r

S
m

ar
t

H
om

e
1
5
7
,0

0
0

re
su

lt
s

8
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
y
b

ri
d

p
ro

to
co

ls
fo

r
sm

ar
t

h
om

e
9
0
,8

0
0

re
su

lt
s

5
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

7
8
,7

0
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
2
2
,6

0
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

1
9
,2

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
au

th
en

ti
ca

ti
on

2
1
,4

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
1
5
,6

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
1
5
,6

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
d

es
ig

n
5
9
,8

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
7
4
,8

0
0

re
su

lt
s

3
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
co

m
p

ar
is

on
3
3
,2

0
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

1
5
,1

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

P
L

C
B

U
S

p
ro

to
co

l
st

an
d

ar
d

6
2
,1

0
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
4
,3

8
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

5
7
8

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
6
6
1

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

au
th

en
ti

ca
ti

on
6
6
1

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

om
e

n
et

w
o
rk

s
3
3
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

5
7
6

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

d
es

ig
n

4
,6

7
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

6
,4

2
0

re
su

lt
s

4
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

co
m

p
ar

is
on

3
,6

7
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

297

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

U
P

B
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

3
5
3

re
su

lt
sx

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
P

B
p

ro
to

co
l

st
an

d
ar

d
4
,5

1
0

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
3
,6

3
0

re
su

lt
s

4
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

2
,6

0
0

re
su

lt
s

4
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
9
2
1

re
su

lt
s

3
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

au
th

en
ti

ca
ti

on
9
2
1

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

om
e

n
et

w
o
rk

s
7
8
9

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

8
6
5

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

d
es

ig
n

3
,5

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

3
,8

7
0

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

co
m

p
ar

is
on

1
,9

0
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

5
2
1

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

K
N

X
p

ro
to

co
l

st
an

d
ar

d
3
,3

5
0

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

1
,0

6
0

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
9
5
6

re
su

lt
s

3
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

3
6
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

3
6
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
3
6
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
3
7
8

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
d

es
ig

n
1
,0

2
0

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
1
,0

3
0

re
su

lt
s

2
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
co

m
p

ar
is

on
6
4
1

re
su

lt
s

1
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

2
6
4

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

IN
S

T
E

O
N

p
ro

to
co

l
st

an
d

ar
d

9
9
2

re
su

lt
s

0
0
9/

1
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

co
m

m
u
n

ic
at

io
n

p
ro

to
co

l
1
8
,9

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
1
1
,0

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

298

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

6L
O

W
P

A
N

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

8
,3

2
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

8
,3

6
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

a
rt

h
o
m

e
n

et
w

o
rk

s
6
,2

9
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
8
,1

6
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
d

es
ig

n
1
6
,5

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
1
9
,8

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
co

m
p

ar
is

on
1
0
,7

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

4
,9

9
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

6L
O

W
P

A
N

p
ro

to
co

l
st

an
d

ar
d

1
6
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
3
6
,3

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

1
7
,1

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
1
7
,6

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

au
th

en
ti

ca
ti

on
1
8
,1

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

om
e

n
et

w
o
rk

s
1
3
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

1
3
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

d
es

ig
n

2
5
,2

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

3
3
,9

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

co
m

p
ar

is
on

1
8
,9

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

9
,9

7
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

Ir
D

A
p

ro
to

co
l

st
an

d
ar

d
2
9
,9

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
2
,9

6
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

2
7
2
,0

0
0

re
su

lt
s

5
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
3
0
3
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

au
th

en
ti

ca
ti

on
3
1
9
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

o
m

e
n

et
w

o
rk

s
9
7
,7

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

4
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

299

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

C
el

lu
la

r
p

ro
to

co
l

d
es

ig
n

2
,6

4
0
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

3
,2

5
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

co
m

p
ar

is
on

3
,3

0
0
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

1
1
3
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
el

lu
la

r
p

ro
to

co
l

st
an

d
ar

d
2
,6

9
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
2
1
2
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

6
6
,0

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
8
8
,4

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
9
0
,9

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h
om

e
n

et
w

o
rk

s
3
9
,5

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

2
7
,5

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

d
es

ig
n

2
0
5
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

3
1
8
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

co
m

p
ar

is
on

1
9
3
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

on
4
1
,6

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

3G
p

ro
to

co
l

st
an

d
ar

d
2
7
3
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
1
5
2
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

4
8
,1

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
5
3
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
5
4
,6

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h
om

e
n

et
w

o
rk

s
2
9
,8

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

2
7
,4

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

d
es

ig
n

1
3
4
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

2
3
6
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

co
m

p
ar

is
on

1
4
2
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

4G
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

on
2
9
,9

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

300

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

4G
p

ro
to

co
l

st
an

d
ar

d
1
6
4
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
1
1
3
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

2
7
,3

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
3
1
,6

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
3
4
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h
om

e
n

et
w

o
rk

s
2
2
,2

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

1
9
,3

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

d
es

ig
n

1
2
5
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

2
1
4
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

co
m

p
ar

is
on

1
5
7
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

on
1
9
,2

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

2G
p

ro
to

co
l

st
an

d
ar

d
1
6
7
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

2
,1

8
0
,0

0
0

re
su

lt
s

5
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
3
7
1
,0

0
0

re
su

lt
s

4
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
o
n

4
0
1
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
au

th
en

ti
ca

ti
on

4
4
0
,0

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

a
rt

h
o
m

e
n

et
w

o
rk

s
1
8
6
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
4
2
,3

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
d

es
ig

n
1
,9

4
0
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
2
,7

5
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
co

m
p

ar
is

on
1
,6

2
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
a
u

th
en

ti
ca

ti
o
n

1
8
9
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

R
ad

io
F

re
q
u

en
cy

p
ro

to
co

l
st

an
d

ar
d

1
,8

5
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
6
5
2
,0

0
0

re
su

lt
s

4
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

1
1
1
,0

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

on
1
9
8
,0

0
0

re
su

lt
s

5
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

301

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

E
th

er
n

et
p

ro
to

co
l

au
th

en
ti

ca
ti

on
2
0
6
,0

0
0

re
su

lt
s

4
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
ar

t
h

o
m

e
n

et
w

o
rk

s
8
2
,3

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

3
0
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

d
es

ig
n

4
1
9
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

7
0
5
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

co
m

p
ar

is
on

2
3
8
,0

0
0

re
su

lt
s

6
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

8
1
,6

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

E
th

er
n

et
p

ro
to

co
l

st
an

d
ar

d
5
0
3
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

3
0
,6

0
0

re
su

lt
s

5
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
7
,2

7
0

re
su

lt
s

4
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

6
,0

1
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
au

th
en

ti
ca

ti
on

6
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
om

e
n

et
w

o
rk

s
6
,6

8
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
1
1
,1

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
d

es
ig

n
4
2
,7

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
5
8
,5

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
co

m
p
ar

is
on

5
0
,1

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
co

m
p
ar

is
on

fo
r

au
th

en
ti

ca
ti

o
n

4
,0

4
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

X
10

p
ro

to
co

l
st

an
d

ar
d

4
9
,3

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
co

m
m

u
n

ic
at

io
n

p
ro

to
co

l
1
6
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

fo
r

sm
ar

t
h

om
e

3
9
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
ls

fo
r

au
th

en
ti

ca
ti

o
n

3
1
,8

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

au
th

en
ti

ca
ti

on
3
4
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

au
th

en
ti

ca
ti

on
in

sm
a
rt

h
o
m

e
n

et
w

o
rk

s
2
8
,2

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

au
th

en
ti

ca
ti

on
w

it
h

IO
T

d
ev

ic
es

2
2
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

d
es

ig
n

1
8
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

302

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

2
4
0
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

co
m

p
ar

is
on

1
7
2
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

co
m

p
ar

is
on

fo
r

a
u

th
en

ti
ca

ti
o
n

2
4
,2

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

U
lt

ra
W

id
e

B
an

d
p

ro
to

co
l

st
an

d
ar

d
2
0
2
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

1
7
9
,0

0
0

re
su

lt
s

3
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
fo

r
sm

ar
t

h
om

e
2
9
,7

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

ls
fo

r
au

th
en

ti
ca

ti
on

1
6
,6

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
au

th
en

ti
ca

ti
on

1
0
,9

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
au

th
en

ti
ca

ti
on

in
sm

ar
t

h
o
m

e
n

et
w

o
rk

s
4
,7

6
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
au

th
en

ti
ca

ti
on

w
it

h
IO

T
d

ev
ic

es
1
3
,2

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
d

es
ig

n
4
7
7
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
1
,0

2
0
,0

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
co

m
p

ar
is

on
6
3
7
,0

0
0

re
su

lt
s

1
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
co

m
p

ar
is

on
fo

r
au

th
en

ti
ca

ti
o
n

1
3
,4

0
0

re
su

lt
s

0
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

H
A

R
T

p
ro

to
co

l
st

an
d

ar
d

5
8
5
,0

0
0

re
su

lt
s

2
0
9/

2
2
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

C
on

tr
ol

le
r

fo
r

S
m

ar
t

H
om

e
1
4
8
,0

0
0

re
su

lt
s

2
9
/2

8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

co
n
tr

ol
le

r
fo

r
io

t
au

th
en

ti
ca

ti
on

1
5
,1

0
0

re
su

lt
s

5
9
/2

8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

co
n
tr

ol
le

r
fo

r
io

t
2
8
,9

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

C
on

tr
ol

le
r

N
et

w
or

k
5
6
6
,0

0
0

re
su

lt
s

1
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

C
on

tr
ol

le
r

N
et

w
or

k
ar

ch
it

ec
tu

re
1
7
4
,0

0
0

re
su

lt
s

0
9
/2

8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

D
om

ai
n

C
on

tr
ol

le
r

N
et

w
or

k
ar

ch
it

ec
tu

re
fo

r
sm

a
rt

h
o
m

e
4
0
,6

0
0

re
su

lt
s

0
9
/2

8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

au
th

en
ti

ca
ti

on
D

om
ai

n
C

on
tr

ol
le

r
3
6
,6

0
0

re
su

lt
s

6
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

au
th

en
ti

ca
ti

on
D

om
ai

n
C

on
tr

ol
le

r
sm

ar
t

h
o
m

e
3
6
,6

0
0

re
su

lt
s

1
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

au
th

en
ti

ca
ti

on
8
4
,7

0
0

re
su

lt
s

2
2

0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

id
en

ti
fi

ca
ti

on
1
,7

5
0
,0

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

d
ev

ic
e

au
th

en
ti

ca
ti

on
5
4
,4

0
0

re
su

lt
s

4
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

303

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

sm
ar

t
h

om
e

d
ev

ic
e

au
th

en
ti

ca
ti

on
m

et
h

o
d

4
5
,1

0
0

re
su

lt
0

0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

S
m

ar
t

H
om

e
P

la
tf

or
m

s
2
7
2
,0

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

p
la

tf
or

m
au

th
en

ti
ca

ti
on

4
8
,3

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
gr

id
d

ev
ic

e
au

th
en

ti
ca

ti
on

5
4
,4

0
0

re
su

lt
s

1
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
gr

id
d

ev
ic

e
au

th
en

ti
ca

ti
on

m
et

h
o
d

4
5
,1

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
es

se
cu

ri
ty

te
ch

n
ol

og
ie

s
3
4
1
,0

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
es

au
th

en
ti

ca
ti

on
te

ch
n
ol

og
ie

s
3
2
,9

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

V
P

N
te

ch
n

ol
og

y
fo

r
sm

ar
t

h
om

es
1
5
,3

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

V
P

N
fo

r
sm

ar
t

h
om

es
1
5
,6

0
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

V
P

N
fo

r
sm

ar
t

h
om

e
au

th
en

ti
ca

ti
on

8
,7

7
0

re
su

lt
s

0
0
9/

2
8
/
2
0
1
9

G
o
o
g
le

S
ch

o
la

r

au
th

en
ti

ca
ti

on
p

ro
to

co
l

ve
ri

fi
ca

ti
on

m
et

h
o
d

s
co

m
p

a
ri

so
n

3
0
7
,0

0
5

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

p
ro

to
co

l
ve

ri
fi

ca
ti

on
m

et
h

o
d

s
2
,7

7
0
,0

0
0

4
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

p
ro

to
co

l
ve

ri
fi

ca
ti

on
2
,6

7
0
,0

0
0

4
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
m

et
er

in
g

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

1
2
9
,0

0
2

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

p
ow

er
li

n
e

co
m

m
u

n
ic

at
io

n
p

ro
to

co
l

3
6
,6

0
0

3
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
va

lu
at

io
n

m
et

h
o
d

fo
r

sm
ar

t
h

om
e

an
d

sm
a
rt

g
ri

d
a
u

th
en

ti
ca

ti
o
n

p
ro

to
co

ls
2
9
,1

0
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

p
ro

to
co

l
ev

al
u
at

io
n

4
,7

4
0
,0

0
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

p
ro

to
co

l
ev

al
u
at

io
n

m
et

h
o
d

5
,6

4
0
,0

0
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

au
th

en
ti

ca
ti

on
p

ro
to

co
l

ev
al

u
at

io
n

4
7
7
,0

0
2

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

au
th

en
ti

ca
ti

on
p

ro
to

co
l

ev
al

u
at

io
n

m
et

h
o
d

5
1
4
,0

0
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

p
ro

to
co

l
ev

al
u

at
io

n
5
6
4
,0

0
0

2
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
h

om
e

p
ro

to
co

l
ev

al
u

at
io

n
m

et
h

o
d

4
2
2
,0

0
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
gr

id
p

ro
to

co
l

ev
al

u
at

io
n

2
0
3
,0

0
0

2
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

sm
ar

t
gr

id
p

ro
to

co
l

ev
al

u
at

io
n

m
et

h
o
d

1
7
0
,0

0
1

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
A

u
th

en
ti

ca
ti

on
2
4
,6

0
0

5
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
T

L
S

1
1
,8

0
0

3
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

304

T
a
b

le
1
2

–
C
o
n
ti
n
u
ed

fr
o
m

p
re
vi
o
u
s
pa
ge

T
er

m
se

ar
ch

ed
T

o
ta

l
re

su
lt

s
U

se
d

w
o
rk

s
D

a
te

S
o
u

rc
e

M
S

C
H

A
P

v
2

1
,3

1
0

2
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
T

T
L

S
3
,4

1
0

6
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
4
8
2
,0

0
0

4
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
P

S
K

3
7
4

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
T

L
S

6
,1

5
0

2
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

E
A

P
T

T
L

S
2
,7

9
0

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

P
E

A
P

-M
S

C
H

A
P

v
2

1
8
1

1
0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

P
ro

V
er

if
2
,7

0
0

1
2

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

B
A

N
lo

gi
c

6
7
5
,0

0
0

1
4

0
3/

0
4
/
2
0
2
0

G
o
o
g
le

S
ch

o
la

r

T
a
b

le
1
2
:

S
ea

rc
h

ed
T

er
m

s

305

References

[1] 3GPP, “Formal analysis of 3g authentication and key agreement protocol,” Tech.

Rep., 2001.

[2] M.-S. Kim and S. Valcourt, “Selecting a standard outer method for eap,” 01 2006.

[3] K. M. J. Haataja, “Security in bluetooth, wlan and irda: a comparison,” Department

of Computer Science, Kuopio, Finland, Tech. Rep., 2006.

[4] E. A. Inc., “Security of enocean radio networks v2.3,” Tech. Rep., 2018.

[5] K. A. Alezabi, F. Hashim, S. J. Hashim, B. M. Ali, and A. Jamalipour, “Authenti-

cation process enhancements in wimax networks,” Sec. and Commun. Netw., vol. 9,

no. 17, p. 4703–4725, 2016.

[6] J. NOBRIOT and B. DEWASSIE, “Z-wave network-protocol command class speci-

fication,” Tech. Rep., 2020.

[7] T. Group, “Thread commissioning,” Tech. Rep., 2015.

[8] IBM, “An overview of the ssl or tls handshake,” Available at https:

//www.ibm.com/support/knowledgecenter/SSFKSJ 7.1.0/com.ibm.mq.doc/

sy10660 .htm#sy10660 sy10660 2 Accessed : 2019/11/12.

[9] Utsav, Chiraag, Samuel, and Anantha, “eedtls: Energy-efficient datagram transport

layer security for the internet of things,” 12 2017, pp. 1–6.

[10] R. Borgaonkar, “Authentication and related threats in 2g/3g/4g net-

works,” Available at https://coinsrs.no/wp-content/uploads/2016/08/

metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf Accessed :

2020/6/5.

[11] Wikipedia, “Cbc-mac,” Available at https://en.wikipedia.org/wiki/CBC-MAC

Accessed : 2020/11/12, 2019.

[12] Intel, “Intel,” 03 2019. [Online]. Available: https://www.intel.com/content/

www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.

htmAccessed2019/11/10

306

https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://www.ibm.com/support/knowledgecenter/SSFKSJ_7.1.0/com.ibm.mq.doc/sy10660_.htm#sy10660___sy10660_2
https://coinsrs.no/wp-content/uploads/2016/08/metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf
https://coinsrs.no/wp-content/uploads/2016/08/metochi2016-Borgaonkar-authentication-in-2g3g4g-networks.pdf
https://en.wikipedia.org/wiki/CBC-MAC
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10
https://www.intel.com/content/www/us/en/support/articles/000005725/network-and-i-o/wireless-networking.htm Accessed 2019/11/10

[13] C. Rensing, M. Karsten, and B. Stiller, “A survey on aaa mechanisms, protocols,

and architectures and a policy-based approach beyond: Ax,” https://doi.org/10.

3929/ethz-a-004283995, Department of Computer Science, Zurich, Switzerland,

Tech. Rep., 2001.

[14] B. Lloyd and W. Simpson, “Ppp authentication protocols,” https://tools.ietf.org/

html/rfc1334 Accessed : 2020/04/07, October 1992.

[15] L. Blunk and J. Vollbrecht, “Ppp extensible authentication protocol (eap),” https:

//tools.ietf.org/html/rfc1334 Accessed : 2020/04/07, March 1998.

[16] I. Ali, S. Sabir, and Z. Ullah, “Internet of things security, device authentication

and access control: A review,” International Journal of Computer Science and

Information Security, vol. 14, no. 8, pp. 457–466, 2016.

[17] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM

Transactions on Computer Systems, vol. 8, no. 1, pp. 18–36, 1990.

[18] Y. Ismail, “Internet of things (iot) for automated and smart applications,” Inte-

chOpen, 2019.

[19] J. R. Ltd, “Juniper research,” Available at https://www.juniperresearch.com/

resources/infographics/smart-home-statistics Accessed : 2019/11/12, November

2009.

[20] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.

Hancke, “Smart grid technologies: Communication technologies and standards,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–539, 2011.

[21] T. Wang, “Statista,” Available at https://www.juniperresearch.com/resources/

infographics/smart-home-statistics Accessed : 2019/11/12, June 2019.

[22] L. Jianchen, Z. Jianguang, F. Jingjing, and D. Juxing, “The security ecurity ecurity

ecurity research research research research of network network network network

access control control control control system,” First ACIS International Symposium

on Cryptography, and Network Security, Data Mining and Knowledge Discovery,

E-Commerce and Its Applications, and Embedded Systems, 2010.

[23] M. Ryan, M.Talabis, R. McPherson, I. Miyamoto, J. L. Martin, and D.Kaye, Access

Analytics, ser. Information Security Analytics. Syngress, 2015.

307

https://doi.org/10.3929/ethz-a-004283995
https://doi.org/10.3929/ethz-a-004283995
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://tools.ietf.org/html/rfc1334
https://www.juniperresearch.com/resources/infographics/smart-home-statistics
https://www.juniperresearch.com/resources/infographics/smart-home-statistics
https://www.juniperresearch.com/resources/infographics/ smart-home-statistics
https://www.juniperresearch.com/resources/infographics/ smart-home-statistics

[24] A. Baviskar, J. Baviskar, A. M. S. Wagh, and P. Dave, “Comparative study of

communication technologies for power optimized automation systems: A review

and implementation,” Fifth International Conference on Communication Systems

and Network Technologies, 2015.

[25] E. Ferro and F. Potorti, “Bluetooth and wi-fi wireless protocols: a survey and a

comparison,” IEEE Wireless Communications, vol. 12, no. 1, pp. 12–26, 2005.

[26] T. Lennvall, S. Svensson, and F. Hekland, “A comparison of wirelesshart and zigbee

for industrial applications,” IEEE International Workshop on Factory Communica-

tion Systems, 2008.

[27] A. J. D. Rathnayaka, V. M. Potdar, and S. J. Kuruppu, “Evaluation of wireless

home automation technologies,” 5th IEEE International Conference on Digital

Ecosystems and Technologies, 2011.

[28] C. Withanage, R. Ashok, C. Yuen, and K. Otto, “A comparison of the popular

home automation technologies,” IEEE Innovative Smart Grid Technologies, 2014.

[29] M. B. Tamboli and D. Dambawade, “Secure and efficient coap based authentication

and access control for internet of things (iot),” IEEE International Conference On

Recent Trends In Electronics Information Communication Technology, 2016.

[30] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, “A review of smart homes—past,

present, and future,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 42, no. 6, pp. 1190–1203, 2012.

[31] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P.

Hancke, “Smart grid technologies: Communication technologies and standards,”

IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–539, November

2011.

[32] L. Wenpeng, D. Sharp, and S. Lancashire, “Smart grid communication network

capacity planning for power utilities,” IEEE PES T&D 2010, Transmission Distrib.

Conf. Expo., New Orleans, April 2010.

[33] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergut, “Smart grid communications

and networking,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp.

529–539, 2011.

308

[34] B. Sidhu, H. Singh, and A. Chhabra, “Emerging wireless standards: Wifi, zigbee

and wimax,” International Journal of Electrical, Computer, Energetic, Electronic

and Communication Engineering, vol. 1, no. 1, pp. 43–48, 2007.

[35] P. P. Gaikwad, J. P. Gabhane, and S. S. Golait, “3-level secure kerberos authenti-

cation for smart home systems using iot,” 1st International Conference on Next

Generation Computing Technologies, 2015.

[36] R. Maheshwari, A. Gupta, and N. Chandra, “Secure authentication using biometric

templates in kerberos,” 2nd International Conference on Computing for Sustainable

Global Development, 2015.

[37] P. Barker and A. Boucouvalas, “Performance modeling of the irda protocol for

infrared wireless communications,” IEEE Communications Magazine, vol. 36, no. 12,

pp. 113–117, 1998.

[38] Samaras, O’Brian, and Edwards, “Indoor optical wireless systems - a review,” in

Optical and Quantum Electronics, 1997.

[39] A. T. Lodamo, “M2m protocols, solutions and platforms for smart home environ-

ments,” Master’s thesis, MID SWEDEN UNIVERSITY, Sundsvall, 2012.

[40] A. I. Gardezi, “Security in wireless cellular networks,” https://www.cse.wustl.

edu/∼jain/cse574-06/ftp/cellular security/index.html Accessed : 2020/04/07, April

2006.

[41] A. N. Nokia, J. Arkko, and V. Torvinen, “Hypertext transfer proto-

col (digest authentication using authentication and key agreement (aka),”

https://tools.ietf.org/html/rfc3310. Accessed 2019/10/11, September 2002.

[42] H. Haverinen and J. Salowey, “Extensible authentication protocol method for global

system for mobile communications (gsm) subscriber identity modules (eap-sim),”

https://tools.ietf.org/html/rfc4186 Accessed : 2020/05/03, January 2006.

[43] K. Prakasha, “Authentication and key agreement in 3gpp networks,” vol. 5, 07

2015, pp. 143–154.

[44] F. S. Inc, “Long term evolution protocol overview,” Tech. Rep., 2008.

[45] H.-J. Seo and H.-W. Kim, “Network and data link layer security for dash7,” Journal

of information and communication convergence engineering, vol. 10, 09 2012.

309

https://www.cse.wustl.edu/~jain/cse574-06/ftp/cellular_security/index.html
https://www.cse.wustl.edu/~jain/cse574-06/ftp/cellular_security/index.html
https://tools.ietf.org/html/rfc4186

[46] M. Weyn, G. Ergeerts, L. Wante, C. Vercauteren, and P. Hellinckx, “Survey of the

dash7 alliance protocol for 433 mhz wireless sensor communication,” International

Journal of Distributed Sensor Networks, vol. 2013, p. 9, 10 2013.

[47] U. Mehboob, Q. Zaib, and C. Usama, Survey of IoT Communication Protocols

Techniques, Applications, and Issues. xFlow Research Inc, 2016.

[48] A. Chirumamilla, H. Seo, D. Lee, and H. Kim, “Implementation of an rfid key man-

agement system for dash7,” Journal of information and communication convergence

engineering, vol. 12, 03 2014.

[49] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov, “Dash7

alliance protocol 1.0: Low-power, mid-range sensor and actuator communication,”

in IEE Conferenece on Standards for Communications and Networking, Tokyo,

2015.

[50] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A comparative study of wireless protocols:

Bluetooth, uwb, zigbee, and wi-fi,” in The 33rd Annual Conference of the IEEE

Industrial Electronics Society, Taipei, 2007.

[51] J. T. Vainio, “Bluetooth security,” http://www.yuuhaw.com/bluesec.pdf Accessed

: 2020/04/07, 2005.

[52] EnOcean, “Enocean radio protocol 2,” Tech. Rep., 2017.

[53] G. C. Inc, “Network keys and the ant+ managed net-

work,” https://www.thisisant.com/developer/resources/tech-bulletin/

network-keys-and-the-ant-managed-network Accessed : 2020/04/07, 2013.

[54] L. Camelo, A. Greene, J. Loving, and U. Otgonbaatar, “The internet of insecure

things analyzing a low-energy protocol and cryptographic solutions,” Master’s

thesis, MIT, 2015.

[55] Y. Peizhong, A. Iwayemi, and C. Zhou, “Developing zigbee deployment guideline

under wifi interference for smart grid applications,” IEEE Transactions on Smart

Grid, vol. 2, no. 1, pp. 110–120, March 2011.

[56] H. P. A. I., “Smart energy profile 2 application protocol standard, zigbee alliance,”

ZigBee Alliance Inc, 2013.

310

http://www.yuuhaw.com/bluesec.pdf
https://www.thisisant.com/developer/resources/tech-bulletin/network-keys-and-the-ant-managed-network
https://www.thisisant.com/developer/resources/tech-bulletin/network-keys-and-the-ant-managed-network

[57] G. Thonet, P. Allard-Jacquin, and P. Colle, ZigBee – WiFi Coexistence. Grenoble:

Schneider Electric, 2008.

[58] H. R. Nielson, E. Yuksel, and F. Nielson, “Zigbee-2007 security essentials,” in

Proceedings of The 13. Nordic Workshop on Secure IT Systems, 2008.

[59] I. Unwala and J. Lu, “Iot protocols : Z-wave and thread,” International Journal

on Future Revolution in Computer Science & Communication Engineering, vol. 3,

no. 11, pp. 355–359, 2017.

[60] W. Rzepecki, L. Iwanecki, and P. Ryba, “Ieee 802.15.4 thread mesh network – data

transmission in harsh environment,” in 6th International Conference on Future

Internet of Things and Cloud Workshops, 2018.

[61] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes automation using z-wave

protocol,” in International Conference on Engineering & MIS, 2016.

[62] I. Unwala, Z. Taqvi, and J. Lu, “Iot security : Zwave and thread,” in IEEE Green

Technologies Conference, Austin, 2018.

[63] JFR, NOBRIOT, BBR, and DEWASSIE, “Z-wave transport-encapsulation com-

mand class specification,” Tech. Rep., 2020.

[64] M. Caneill and J.-L. Gilis, “Attacks against the wifi protocols wep and wpa,”

https://matthieu.io/dl/papers/wifi-attacks-wep-wpa.pdf Accessed : 2020/04/07,

2010.

[65] PureVPN, “Wifi security protocols- difference between wep and wpa,” https:

//www.purevpn.com/wifi-vpn/security-protocols Accessed : 2020/04/07.

[66] Cyberpunk, “Wireless security protocols: Wep, wpa, wpa2 and wpa3,” https://

www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3 Accessed :

2020/04/07.

[67] SecureW2, “Simplifying wpa2-enterprise and 802.1x,” https://www.securew2.com/

solutions/wpa2-enterprise-and-802-1x-simplified/ Accessed : 2020/04/07.

[68] W.-F. Alliance, “Wpa3 specification version 2,” Tech. Rep., 2019.

[69] ——, “Wpa3 security considerations,” Tech. Rep., 2019.

311

https://matthieu.io/dl/papers/wifi-attacks-wep-wpa.pdf
https://www.purevpn.com/wifi-vpn/security-protocols
https://www.purevpn.com/wifi-vpn/security-protocols
https://www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3
https://www.cyberpunk.rs/wireless-security-protocols-wep-wpa-wpa2-and-wpa3
https://www.securew2.com/solutions/wpa2-enterprise-and-802-1x-simplified/
https://www.securew2.com/solutions/wpa2-enterprise-and-802-1x-simplified/

[70] E. International, “High rate ultra wideband phy and mac standard,” Tech. Rep.,

2008.

[71] Q. Guan and Q. Guan, “Analysis of security mechanism in uwb standard of

ecma368,” 01 2007.

[72] M. S. I. M. Zin and M. Hope, “A review of uwb mac protocols,” 06 2010, pp. 526 –

534.

[73] T. Haider, “Wireless communication using wimax technology,” vol. 14, pp. 142–161,

09 2010.

[74] U. Kucharzewski and Z. Kotulski, “Wimax networks-architecture and data security,”

Annales UMCS, Informatica, vol. 10, pp. 177–185, 01 2010.

[75] S. Xu and C.-T. Huang, “Attacks on pkm protocols of ieee 802.16 and its later

versions,” 10 2006, pp. 185 – 189.

[76] T. Gonnot and J. Saniie, “User defined interactions between devices on a 6lowpan

network for home automation,” in IEEE International Technology Management

Conference, Chicago, 2014.

[77] A. Badach, “Protocol structure of 6lowpan devices,” Tech. Rep., 09 2017.

[78] J. Olsson, “6lowpan demystified,” Tech. Rep., 2014.

[79] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, “Telecommunications

for smart grid: Backhaul solutions for the distribution network,” in IEEE PES

General Meeting, Providence, 2010.

[80] V. Oksman and S. Galli, “G.hn: The new itu-t home networking standard,” IEEE

Communications Magazine, vol. 47, no. 10, pp. 138–145, 2009.

[81] ITU-T, “Password-authenticated key exchange (pak) protocol,” Tech. Rep., 2007.

[82] F. Division, “G.hn - next generation home network technology,” Tech. Rep.

[83] E. Corporation, LonTalk Protocol Specification. Palo Alto: Echelon Corp, 1994.

[84] ——, “Introduction to the lonworks platform revision 2,” Tech. Rep., 2009.

312

[85] R. P. Lewis, P. Igict, and Z. Zhou, “Assessment of communication methods for

smart electricity metering in the u.k,” in Sustainable Alternative Energy (SAE),

IEEE PES/IAS, Valencia, 2009.

[86] J. Luansheng, L. Chunxia, G. Xiumei, and M. Chongxiao, “The design of intelli-

gent lighting system in college classroom,” in International Conference on Future

Electrical Power and Energy Systems, Sanya, 2012.

[87] T. H. C. Assistant, “Appendix 8 universal powerline bus (upb),” Tech. Rep.

[88] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and E. H. Levkowetz, “Extensible

authentication protocol (eap),” https://www.ietf.org/rfc/rfc3748.txt Accessed :

2020/04/07.

[89] J.-C. Chen and Y.-P. Wang, “Extensible authentication protocol (eap) and ieee

802.1x: tutorial and empirical experience,” IEEE Communications Magazine,

vol. 43, no. 12, 2005.

[90] I. Simply Automated, “The upb system description,” April 2005.

[91] K. Association, “Knx system arguments,” http://knx.com.ua/attachments/article/

132/KNX-basic course full.pdf Accessed : 2020/04/08, Tech. Rep.

[92] S. Cavalieri and G. Cutuli, “Implementing encryption and authentication in knx

using diffie-hellman and aes algorithms,” in 35th Annual Conference of IEEE

Industrial Electronics, Porto, 2009.

[93] wanderingsamurai.net, “Interface communication protocol,” Available at https:

//wanderingsamurai.net/electronics/cm11a-x10-protocol-document Accessed :

2019/11/12.

[94] smartlabs, “Insteon developer’s guide,” Tech. Rep., 2007.

[95] G. Odinak, “Automated home control using existing electrical lines as a communi-

cations medium,” U.S. Patent 5 929 748A, 12 17, 1998.

[96] G. Bakshi and A. Dearien, “Back to the basics: what is hart

protocol and how does it work?” Texas Instruments, 01 2018. [On-

line]. Available: https://e2e.ti.com/blogs /b/analogwire/archive/2018/01/26/

back-to-the-basics-what-is-hart-protocol-and-how-does-it-workAccessed09/11/

2019

313

https://www.ietf.org/rfc/rfc3748.txt
http://knx.com.ua/attachments/article/132/KNX-basic_course_full.pdf
http://knx.com.ua/attachments/article/132/KNX-basic_course_full.pdf
https://wanderingsamurai.net/electronics/cm11a-x10-protocol-document
https://wanderingsamurai.net/electronics/cm11a-x10-protocol-document
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019
https://e2e.ti.com/blogs_/b/analogwire/archive/2018/01/26/back-to-the-basics-what-is-hart-protocol-and-how-does-it-work Accessed 09/11/2019

[97] S. Raza, A. Slabbert, T. Voigt, and K. Landernas, “Security considerations for the

wirelesshart protocol,” 10 2009, pp. 1 – 8.

[98] Emerson, “System engineering guidelines iec 62591 wirelesshart,” Tech. Rep., 2016.

[99] B. Blanchet, V. Cheval, X. Allamigeon, B. Smyth, and M. Sylvestre, “Proverif:

Cryptographic protocol verifier in the formal model,” Available at https://prosecco.

gforge.inria.fr/personal/bblanche/proverif/ Accessed : 2019/12/11.

[100] M. Beadles and D. Mitton, “Criteria for evaluating network access server protocols,”

RFC 3169 https://tools.ietf.org/html/rfc3169 Accessed : 2020/01/12, September

2001.

[101] E. G. Jones, “Operational security requirements for large internet service provider

(isp) ip network infrastructure,” Available at http://www.hjp.at/doc/rfc/rfc3871.

html Accessed : 2020/01/12, September 2004.

[102] E. J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building automation

routing requirements in low-power and lossy networks,” RFC 5867 http://www.

hjp.at/doc/rfc/rfc5867.html Accessed : 2020/01/12, June 2010.

[103] E. Stokes, D. Byrne, B. Blakley, and P. Behera, “hjp: doc: Rfc 2820: Access

control requirements for ldap,” RFC 2820 http://www.hjp.at/doc/rfc/rfc2820.html

Accessed : 2020/01/12, May 2000.

[104] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol

(coap),” RFC 7252 http://www.hjp.at/doc/rfc/rfc7252.html Accessed : 2020/01/12,

June 2014.

[105] E. Stokes, R. Weiser, R. Moats, and R. Huber, “Lightweight directory access

protocol (version 3) replication requirements,” RFC 3384 http://www.hjp.at/doc/

rfc/rfc3384.html Accessed : 2020/01/12, October 2002.

[106] E. Rescorla, “The transport layer security (tls) protocol version 1.3,” RFC 8446

https://tools.ietf.org/html/rfc8446 Accessed : 2020/01/12, August 2018.

[107] N. Brownlee, “Accounting requirements for ipng,” RFC 1672 http://www.hjp.at/

doc/rfc/rfc1672.html Accessed : 2020/01/12, August 1994.

314

 https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
 https://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://tools.ietf.org/html/rfc3169
http://www.hjp.at/doc/rfc/rfc3871.html
http://www.hjp.at/doc/rfc/rfc3871.html
http://www.hjp.at/doc/rfc/rfc5867.html
http://www.hjp.at/doc/rfc/rfc5867.html
http://www.hjp.at/doc/rfc/rfc2820.html
http://www.hjp.at/doc/rfc/rfc7252.html
http://www.hjp.at/doc/rfc/rfc3384.html
http://www.hjp.at/doc/rfc/rfc3384.html
https://tools.ietf.org/html/rfc8446
http://www.hjp.at/doc/rfc/rfc1672.html
http://www.hjp.at/doc/rfc/rfc1672.html

[108] M. Parthasarathy, “Protocol for carrying authentication and network access (pana)

threat analysis and security requirements,” RFC 4016 http://www.hjp.at/doc/rfc/

rfc4016.html Accessed : 2020/01/12, March 2005.

[109] F. O. for Information Security, “Cryptographic mechanisms: Recommendations

and key lengths,” Tech. Rep., 2020.

[110] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00: Automatic

cryptographic protocol verifier, user manual and tutorial,” Tech. Rep., 2018.

[111] J. Hernandez-Castro, A. Alcaide, and J. Torres, “Validating the use of ban logic,”

in Computational Science and Its Applications - ICCSA, Assisi, Italy, 2004.

[112] A. Saabas and T. Uustalu, “A compositional natural semantics and hoare logic

for low-level languagesn,” Electron. Notes Theor. Comput. Sci, vol. 156, no. 1, p.

151–168, 2006.

[113] TutorialsPoint, “Gsm - specification,” https://www.tutorialspoint.com/gsm/gsm

specification.htm Accessed : 2020/04/08.

[114] E. Jorg, H.-J. V. C. Bettstetter, and C. Hartmann, GSM - Architecture, Protocols

and Services (3. ed.)., 01 2009.

[115] ETSI, “Universal mobile telecommunications system (umts), medium access control

(mac) protocol specification (3gpp ts 25.321 version 8.16.0 release 8),” Tech. Rep.,

2012.

[116] H. Kaaranen., A. Ahtiainen, L. Laitinen, S.Naghian, and V. Niemi, UMTS Networks:

Architecture, Mobility and Services: Second Edition, 11 2005.

[117] ETSI, “Etsi ts 128 302 v14.0.0,” Tech. Rep., 2017.

[118] ——, “Digital cellular telecommunications system (phase 2), mobile application

part (map) specification (gsm 09.02),” Tech. Rep., 1996.

[119] ——, “Etsi ts 132 773 v9.0.0,” Tech. Rep., 2010.

[120] M. Abdeljebbar and R. Kouch, “Security improvements of eps-aka protocol,” In-

ternational Journal of Network Security, vol. 20, p. 636, 09 2017.

315

http://www.hjp.at/doc/rfc/rfc4016.html
http://www.hjp.at/doc/rfc/rfc4016.html
https://www.tutorialspoint.com/gsm/gsm_specification.htm
https://www.tutorialspoint.com/gsm/gsm_specification.htm

[121] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J. Prevotet, “Internet of

mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and

supported mobility,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp.

1561–1581, 2019.

[122] T. A. Yahiya, Understanding LTE and its Performance, 05 2011, pp. 55–73.

[123] TutorialsPoint, “Gsm - security and encryption,” https://www.tutorialspoint.com/

gsm/gsm security.htm Accessed : 2020/04/08.

[124] irelandscape, “Introduction to mobile networks - 3g (umts) au-

thentication,” https://steemit.com/mobilenetworks/@irelandscape/

introduction-to-mobile-networks-3g-umts-authentication Accessed : 2020/04/07,

2018.

[125] S. Alt, P.-A. Fouque, G. Macario-Rat, C. Onete, and B. Richard, “A cryptographic

analysis of umts/lte aka,” 06 2016, pp. 18–35.

[126] ETSI, “Using cellular algorithms,” https://www.etsi.org/

security-algorithms-and-codes/cellular-algorithm-licences Accessed : 2020/04/08.

[127] K. Kumar, G. Shailaja, K. Ammayappan, and A. Saxena, “Mutual authentication

and key agreement for gsm,” 07 2006, pp. 25 – 25.

[128] ETSI, “Digital cellular telecommunications system (phase 2), universal mobile

telecommunications system (umts), direct tunnel deployment guideline (3gpp tr

23.919 version 7.0.0 release 7),” Tech. Rep., 2007.

[129] A. Technology, “Gprs tunneling protocol (gtp) processing,” Tech. Rep.

[130] I. Unwala, Z. Taqvi, and J. Lu, “Thread: An iot protocol,” in 2018 IEEE Green

Technologies Conference (GreenTech), 2018, pp. 161–167.

[131] E. Corporation, LonTalk Protocol Specification, LonWorks Engineering Bulltein.

Palo Alto: Echelon Corp, 1993.

[132] L. M. L. Oliveira, J. J. P. C. Rodrigues, A. F. de Sousa, and J. Lloret, “A network

access control framework for 6lowpan networks,” Tech. Rep., 2013.

[133] KNX, “Knx basics,” Available at http://knx.fi/doc/esitteet/KNX-Basics en.pdf

Accessed : 2019/11/12, Tech. Rep.

316

https://www.tutorialspoint.com/gsm/gsm_security.htm
https://www.tutorialspoint.com/gsm/gsm_security.htm
https://steemit.com/mobilenetworks/@irelandscape/introduction-to-mobile-networks-3g-umts-authentication
https://steemit.com/mobilenetworks/@irelandscape/introduction-to-mobile-networks-3g-umts-authentication
https://www.etsi.org/security-algorithms-and-codes/cellular-algorithm-licences
https://www.etsi.org/security-algorithms-and-codes/cellular-algorithm-licences
http://knx.fi/doc/esitteet/KNX-Basics_en.pdf

[134] V. Lourdas, “Knx ip secure,” Available at https://support.knx.org/hc/en-us/

articles/360012666599-KNX-IP-Secure Accessed : 2019/11/12.

[135] KNX, “Knx security position paper,” http://knx.fi/doc/esitteet/

KNX-Security-Position-Paper en.pdf Accessed : 2020/04/07, Tech. Rep.

[136] ABR, “Introduction to the z-wave security ecosystem,” Tech. Rep., 2016.

[137] ThisIsAnt, “Ant message protocol and usage,” Tech. Rep., 2014.

[138] C. Badenhop, S. Graham, B. Ramsey, B. Mullins, and L. Mailloux, “The z-wave

routing protocol and its security implications,” Computers & Security, vol. 68, 04

2017.

[139] C. Hager and S. Midkiff, “An analysis of bluetooth security vulnerabilities,” vol. 3,

04 2003, pp. 1825 – 1831 vol.3.

[140] M. Conti and D. Moretti, “System level analysis of the bluetooth standard,” 03

2005, pp. 118–123.

[141] J. Sanchez-Gomez, D. Garcia-Carrillo, R. Marin-Perez, and A. F. Skarmeta, “Secure

authentication and credential establishment in narrowband iot and 5g,” Tech. Rep.,

2020.

[142] ITU-T, “Series y: Global information infrastructure, internet protocol aspects and

next-generation networks, internet of things and smart cities,” Tech. Rep., 2016.

[143] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov, “Dash7

alliance protocol 1.0 low-power, mid-range sensor and actuator communication,”

10 2015.

[144] A. Judmayer, L. Krammer, and W. Kastner, “On the security of security ex-

tensions for ip-based knx networks,” in 2014 10th IEEE Workshop on Factory

Communication Systems (WFCS 2014), 2014, pp. 1–10.

[145] E. F. Hao, “J-pake: Password authenticated key exchange by juggling draft-hao-

jpake-01,” https://tools.ietf.org/html/draft-hao-jpake-01 Accessed : 2020/04/07,

December 2015.

[146] ——, “Schnorr nizk proof: Non-interactive zero knowledge proof for discrete

logarithm draft-hao-schnorr-01,” https://tools.ietf.org/html/rfc5021 Accessed :

2020/01/12, December 2015.

317

https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure
https://support.knx.org/hc/en-us/articles/360012666599-KNX-IP-Secure
http://knx.fi/doc/esitteet/KNX-Security-Position-Paper_en.pdf
http://knx.fi/doc/esitteet/KNX-Security-Position-Paper_en.pdf
https://tools.ietf.org/html/draft-hao-jpake-01
https://tools.ietf.org/html/rfc5021

[147] Microsoft, “Ms-chap: Extensible authentication protocol method

for microsoft challenge handshake authentication protocol (chap),”

https://docs.microsoft.com/en-us/openspecs/windows protocols/ms-chap/

4740bf05-db7e-4542-998f-5a4478768438 Accessed : 2020/04/07.

[148] F. Bersani, “The eap-psk protocol: A pre-shared key extensible authen-

tication protocol (eap) method,” Available at https://tools.ietf.org/html/

draft-bersani-eap-psk-00 Accessed : 2019/11/12, 2004.

[149] J.-K. Tsay and S. Mjolsnes, “A vulnerability in the umts and lte authentication

and key agreement protocols,” 10 2012, pp. 65–76.

[150] C. . H. C. for Information Security, “Cispa - helmholtz center for information

security,” Available at https://people.cispa.io/cas.cremers/scyther/ Accessed :

2019/12/11, April 2014.

[151] C. C. J. D. S. M. R. S. B. S. D. Basin, “Tamarin prover,” Available at https:

//tamarin-prover.github.io/ Accessed : 2019/11/12.

[152] P. W. Security, “Portswigger ltd,” Available at https://portswigger.net/burp

Accessed : 2019/12/11.

[153] T. Lennvall, S. Svensson, and F. Hekland, “A comparison of wirelesshart and zigbee

for industrial applications,” in Factory Communication Systems, 2008. WFCS 2008.

IEEE International Workshop, Dresden, 2008.

[154] S. E. International, “Smart energy international,” Smart Energy International,

09 2003. [Online]. Available: https://www.smart-energy.com/regional-news/

europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/

Accessed10/11/2019

[155] A. Fox and S. D. Gribble, “Security on the move: Indirect authentication using

kerberos,” in Proceedings of the 2nd annual international conference on Mobile

computing and networking, 1996.

[156] E. El-Emam, M. Koutb, H. Kelash, and O. S. Faragallah, “An authentication

protocol based on kerberos 5,” International Journal of Network Security, vol. 12,

no. 2, pp. 147–158, 2011.

318

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-chap/4740bf05-db7e-4542-998f-5a4478768438
https://tools.ietf.org/html/draft-bersani-eap-psk-00
https://tools.ietf.org/html/draft-bersani-eap-psk-00
 https://people.cispa.io/cas.cremers/scyther/
https://tamarin-prover.github.io/
https://tamarin-prover.github.io/
https://portswigger.net/burp
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019
https://www.smart-energy.com/regional-news/europe-uk/the-euridis-protocol-an-open-solution-for-amr-using-various-media/ Accessed 10/11/2019

[157] G. Bella and E. Riccobene, “Formal analysis of the kerberos authentication system,”

Journal of Universal Computer Science, vol. 3, no. 12, pp. 1337–1381, 1997.

[158] G. Bella and L. Paulson, “Kerberos version iv: Inductive analysis of the secrecy

goals,” in Computer Security - ESORICS 98. Springer, 1998, pp. 361–375.

[159] S. Bellovin and M. Merrit, “Limitations of the kerberos authentication system,”

SIGCOMM Computer Communication Review, vol. 20, no. 5, pp. 119–132, 1990.

[160] W. Stallings, “Cryptography and network security principles and practices,” Upper

Saddle River: Pearson Prentice Hall, 2006.

[161] S. Cavalieri, G. Cutuli, and M. Malgeri, “A study on security mechanisms in

knx-based home/building automation,” in IEEE 15th Conference on Emerging

Technologies & Factory Automation, Bilbao, 2010.

[162] G. Bovet and J. Hennebert, “Web-of-things gateway for knx networks,” Erlan-

gen/Nuremberg, 2013.

[163] H.-J. Langels, “Knx ip – using ip networks as knx medium,” in KNX Scientific

Conference, Porto, 2008.

[164] J. A. Nazabal, F. Falcone, C. Fernandez-Valdivielso, and I. R. Matias, “Proposal

for improving connectivity and adding authentication and security to knxnet/ip

protocol,” International Journal of Smart Home, vol. 8, no. 2, pp. 77–90, 2014.

[165] J. A. Nazabal, F. Falcone, S. C. Mukhopadhyay, and I. R. Matias, “Accessing knx

devices using usb/knx interfaces for remote monitoring and storing sensor data,”

International Journal of Smart Home, vol. 7, no. 2, pp. 105–110, 2013.

[166] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: an authentication service

for open network systems,” in USENIX Winter Conference, Dallas, 1988.

[167] M. Bungart, C. Fohry, and J. Posner, “Fault-tolerant global load balancing in

x10,” in 16th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, Timisoara, 2014.

[168] D. Whiting, R. Housley, V. Security, and N. Ferguson, “Counter with cbc-

mac (ccm),” RFC 3610 https://tools.ietf.org/html/rfc3610 Accessed 11/11/2019,

September 2003.

319

https://tools.ietf.org/html/rfc3610

[169] M. Shabanzadeh and M. P. Moghaddam, “What is the smart grid? definitions,

perspectives, and ultimate goals,” in International Power System Conference (PSC),

Tehran, 2013.

[170] S. Josefsson, “Using kerberos version 5 over the transport layer security (tls)

protocol,” RFC 6251 https://tools.ietf.org/html/rfc6251 Accessed : 2020/01/12,

May 2011.

[171] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol version 1.1,”

RFC 4346 https://tools.ietf.org/html/rfc4346 Accessed : 2020/01/12, April 2006.

[172] ——, “The transport layer security (tls) protocol version 1.2,” RFC 5246 https:

//tools.ietf.org/html/rfc5246 Accessed : 2020/01/12, August 2008.

[173] D. Mitton, “Network access servers requirements: Extended radius practices,” RFC

2882 http://www.hjp.at/doc/rfc/rfc2882.html Accessed : 2020/01/12, July 2000.

[174] J. Galvin and K. McCloghrie, “Security protocols for version 2 of the simple network

management protocol (snmpv2),” RFC 1446 http://www.hjp.at/doc/rfc/rfc1446.

html Accessed : 2020/01/12, April 1993.

[175] S. Farrell, J. Vollbrecht, P. Calhoun, L. Gommans, G. Gross, B. de Bruijn,

C. de Laat, M. Holdrege, and D. Spence, “Aaa authorization requirements,” RFC

2906 http://www.hjp.at/doc/rfc/rfc2906.html Accessed : 2020/01/12, August 2000.

[176] J. Loughney and G. Camarillo, “Authentication, authorization, and accounting

requirements for the session initiation protocol (sip),” RFC 3702 http://www.hjp.

at/doc/rfc/rfc3702.html Accessed : 2020/01/12, February 2004.

[177] E. M. Brunner, “Requirements for signaling protocols,” RFC 3726 http://www.

hjp.at/doc/rfc/rfc3726.html Accessed : 2020/01/12, April 2004.

[178] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler, “Sip: Session initiation protocol,” RFC 3261 http:

//www.hjp.at/doc/rfc/rfc3261.html Accessed : 2020/01/12, June 2002.

[179] S. Kelly and S. Ramamoorthi, “Requirements for ipsec remote access scenar-

ios,” RFC 3457 http://www.hjp.at/doc/rfc/rfc3457.html Accessed : 2020/01/12,

January 2003.

320

https://tools.ietf.org/html/rfc6251
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://www.hjp.at/doc/rfc/rfc2882.html
http://www.hjp.at/doc/rfc/rfc1446.html
http://www.hjp.at/doc/rfc/rfc1446.html
http://www.hjp.at/doc/rfc/rfc2906.html
http://www.hjp.at/doc/rfc/rfc3702.html
http://www.hjp.at/doc/rfc/rfc3702.html
http://www.hjp.at/doc/rfc/rfc3726.html
http://www.hjp.at/doc/rfc/rfc3726.html
http://www.hjp.at/doc/rfc/rfc3261.html
http://www.hjp.at/doc/rfc/rfc3261.html
http://www.hjp.at/doc/rfc/rfc3457.html

[180] J. Schiller, “Strong security requirements for internet engineering task force stan-

dard protocols,” RFC 3365 http://www.hjp.at/doc/rfc/rfc3365.html Accessed :

2020/01/12, August 2002.

[181] K. Raeburn, “Encryption and checksum specifications for kerberos 5,” RFC 3961

https://tools.ietf.org/html/rfc3961 Accessed : 2020/01/12, February 2005.

[182] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberos network authen-

tication service (v5),” RFC 4120 https://tools.ietf.org/html/rfc4120 Accessed :

2020/01/12, July 2005.

[183] S. Hartman and L. Zhu, “A generalized framework for kerberos pre-authentication,”

RFC 6113 https://tools.ietf.org/html/rfc6113 Accessed : 2020/01/12, April 2011.

[184] L. H. Astrand and T. Yu, “Deprecate des, rc4-hmac-exp, and other weak cryp-

tographic algorithms in kerberos,” RFC 6649 https://tools.ietf.org/html/rfc6649

Accessed : 2020/01/12, July 2012.

[185] E. S. Hartman, K. Raeburn, and L. Zhu, “Kerberos principal name canonicalization

and cross-realm referrals,” RFC 6806 https://tools.ietf.org/html/rfc6806 Accessed

: 2020/01/12, November 2012.

[186] S. Sorce and T. Yu, “Kerberos authorization data container authenticated by

multiple message authentication codes (macs),” RFC 7751 https://tools.ietf.org/

html/rfc7751 Accessed : 2020/01/12, March 2016.

[187] L. Zhu, P. Leach, S. Hartman, and E. S. Emery, “Anonymity support for kerberos,”

RFC 8062 https://tools.ietf.org/html/rfc8062 Accessed : 2020/01/12, February

2017.

[188] A. Jainand, N. Kinder, and N. McCallum, “Authentication indicator in kerberos

tickets,” RFC 8129 https://tools.ietf.org/html/rfc8129 Accessed : 2020/01/12,

March 2017.

[189] B. Kaduk and M. Short, “Deprecate triple-des (3des) and rc4 in kerberos,” RFC

8429 https://tools.ietf.org/html/rfc8429 Accessed : 2020/01/12, October 2018.

[190] L. Zhu, P. Leach, and K. Jaganathan, “Kerberos cryptosystem negotiation exten-

sion,” RFC 4537 https://tools.ietf.org/html/rfc4537 Accessed : 2020/01/12, June

2006.

321

http://www.hjp.at/doc/rfc/rfc3365.html
https://tools.ietf.org/html/rfc3961
https://tools.ietf.org/html/rfc4120
https://tools.ietf.org/html/rfc6113
https://tools.ietf.org/html/rfc6649
https://tools.ietf.org/html/rfc6806
https://tools.ietf.org/html/rfc7751
https://tools.ietf.org/html/rfc7751
https://tools.ietf.org/html/rfc8062
https://tools.ietf.org/html/rfc8129
https://tools.ietf.org/html/rfc8429
https://tools.ietf.org/html/rfc4537

[191] L. Hornquist and S. Hartman, “Generic security service application program

interface (gss-api): Delegate if approved by policy,” RFC 5896 https://tools.ietf.

org/html/rfc5896 Accessed : 2020/01/12, June 2010.

[192] S. Josefsson, “Extended kerberos version 5 key distribution center (kdc) exchanges

over tcp,” RFC 5021 https://tools.ietf.org/html/rfc5021 Accessed : 2020/01/12,

August 2007.

[193] Q. Li, F. Yang, H. Zhu, and L. Zhu, “Formal modeling and analyzing kerberos

protocol,” in World Congress on Computer Science and Information Engineering,

Bilbao, 2009.

[194] I. U. the Artificial Intelligence Laboratory (AI-Lab) at DIST, Università di Genova,

F. I. the CASSIS group at INRIA, Nancy, S. E. the Information Security Group at

ETHZ, Zurich, and G. S. Siemens AG, Munich, “Automated validation of internet

security protocols and applications,” Available at http://www.avispa-project.org/

Accessed : 2020/04/01, June 2006.

[195] M. M. andBorka Jerman Blažič and S. Josimovski, “Quantifying usability and secu-

rity in authentication,” in 35th IEEE Annual Computer Software and Applications

Conference, 2011.

[196] H. Glanzer, L. Krammer, and W. Kastner, “Increasing security and availability in

knx networks,” in Sicherheit, 2016.

[197] smarthome.com, “What is x10?” https://www.smarthome.com/

sc-what-is-x10-home-automation Accessed : 2020/04/07.

[198] D. Lechner, W. Granzer, and W. Kastner, “Security for knxnet/ip,” Tech. Rep.,

2008.

[199] TutorialsPoint, “Gsm - protocol stack,” https://www.tutorialspoint.com/gsm/

gsm protocol stack.htm Accessed : 2020/04/08.

[200] R. Pinheiro, A. Aguiar, P. Pinheiro, A. Neto, R. Cunha, and D. Neto, “Scalability

analysis of a model for gsm mobile network design,” 01 2008, pp. 465–469.

[201] Y. Beyene, R. Jantti, K. Ruttik, and S. Iraji, “On the performance of narrow-band

internet of things (nb-iot),” 03 2017, pp. 1–6.

322

https://tools.ietf.org/html/rfc5896
https://tools.ietf.org/html/rfc5896
https://tools.ietf.org/html/rfc5021
 http://www.avispa-project.org/
https://www.smarthome.com/sc-what-is-x10-home-automation
https://www.smarthome.com/sc-what-is-x10-home-automation
https://www.tutorialspoint.com/gsm/gsm_protocol_stack.htm
https://www.tutorialspoint.com/gsm/gsm_protocol_stack.htm

[202] V. Lourdas, “Knx security overview,” Available at KNXSecurityoverview Accessed

: 2019/11/12.

[203] ——, “Knx data secure,” Available at https://support.knx.org/hc/en-us/articles/

360012689639-KNX-Data-Secure Accessed : 2019/11/12.

323

KNX Security overview
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure
https://support.knx.org/hc/en-us/articles/360012689639-KNX-Data-Secure

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of Abbreviations and Terms
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background
	Smart Home
	Smart Grid

	Literature Review
	Literature Review Method
	Wireless
	Infrared
	IrDA protocol

	Cellular
	GSM
	UMTS
	LTE

	Radio Frequency
	Dash7
	Bluetooth
	EnOcean Serial Protocol 3
	ANT+
	ZigBee SEP Protocol
	Thread
	Z-Wave
	Wi-Fi
	Ultra-Wide Band
	WiMAX
	6LOWPAN

	Wired
	Ethernet
	G.hn
	LonTalk Protocol

	Powerline Communication
	Universal Powerline Bus

	Hybrid
	Extensible Authentication Protocol
	KNX Protocol
	X10
	Insteon
	Wireless HART Protocol

	Methodology
	Requirements
	ProVerif
	BAN logic
	Evaluation

	Protocol Evaluation
	Authentication Protocol Evaluation 1
	Authentication Protocol Evaluation 2
	Authentication Protocol Evaluation 3
	Authentication Protocol Evaluation 4
	Authentication Protocol Evaluation 5
	Authentication Protocol Evaluation 6
	Authentication Protocol Evaluation 7
	Authentication Protocol Evaluation 8
	Authentication Protocol Evaluation 9
	Scoring Result

	Conclusion
	Future Uses
	Appendices
	Appendix 1 - Bluetooth Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 2 - EnOcean Authentication
	Mutual Authentication ProVerif Verification
	Mutual Authentication ProVerif Result
	Unilateral Authentication ProVerif Verification
	Unilateral Authentication ProVerif Result

	Appendix 3 - G.hn Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 4 - KNX Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 5 - WiMAX Authentication
	PKMv1
	PKMv2
	WiMAX PKMv1 ProVerif Verification
	WiMAX PKMv1 ProVerif Result
	WiMAX PKMv2 ProVerif Verification
	WiMAX PKMv2 ProVerif Result

	Appendix 6 - Z-Wave Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 7 - Thread Authentication
	Thread Joiner-Commissioner ProVerif Verification
	Thread Joiner-Commissioner ProVerif Result

	Appendix 8 - TLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 9 - PEAP-MSCHAPv2 Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 10 - DTLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 11 - PSK and EAP-PSK Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 12 - EAP-TLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 13 - EAP-TTLS Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 14 - GSM Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 15 - UMTS and LTE Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 16 - LonTalk Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 17 - UWB Authentication
	ProVerif Verification
	ProVerif Result

	Appendix 18 - CMAC Authentication
	Appendix 19 - CCM Authentication
	Appendix 20 – BAN logic Verification forDiffie-Hellman Key Exchange
	Appendix 21 – BAN logic Verification WiMAX PKMv1 Key Exchange
	Appendix 22 – BAN logic Verification WiMAX PKMv2 Key Exchange
	Appendix 23 – BAN logic Verification for GSM Key Exchange
	Appendix 24 – BAN logic Verification for EAP-AKA Key Exchange umtslteakaban
	Appendix 25 – BAN logic Verification for ZigBee Key Exchange
	Appendix 26 – BAN logic Verification for PSK Key Exchange
	Appendix 27 – BAN logic Verification for CCM and CMAC Key Exchange
	Appendix 28 – Used Terms for Literature Review

	References

