
Composition of Web Services on
Large Service Models

RIINA MAIGRE

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C65

TALLINN UNIVERSITY OF TECHNOLOGY
Institute of Cybernetics

Dissertation was accepted for the defence of the degree of Doctor of Philos-
ophy in Engineering on 2 May 2011.

Supervisors: D.Sc., Leading Researcher Enn Tõugu, Institute of Cybernetics at
Tallinn Universitiy of Technology

Ph.D., Senior Researcher Peep Küngas, University of Tartu,
Faculty of Mathematics and Computer Science,
Institute of Computer Science

Opponents: Dr. Margus Veanes, Microsoft Research, Redmond, WA, USA

Prof. Merik Meriste, Faculty of Science and Technology,
Institute of Technology, University of Tartu, Tartu, Estonia

Defence of the thesis: 22 June 2011

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achieve-
ment, submitted for the doctoral degree at Tallinn University of Technology has
not been submitted for any academic degree.

/Riina Maigre/

Copyright: Riina Maigre, 2011
ISSN 1406-4731
ISBN 978-9949-23-122-5 (publication)
ISBN 978-9949-23-123-2 (PDF)

INFORMAATIKA JA S TEHNIKA C65ÜSTEEMI

Veebiteenuste kompositsioon
suurtel teenustemudelitel

RIINA MAIGRE

Contents

Introduction 7
Problem Statement and Contributions 8
Automated Web Service Composition 9
X-Road . 11
References to the Published Work . 12
Organisation of the Thesis . 13

1 Related Work 15
1.1 Automated Web Service Composition Approaches 15

1.1.1 Automated Web Service Mapping into Service Template 15
1.1.2 Automated Workflow Generation from Existing Web Ser-

vices . 16
1.1.3 Tools that Combine Mapping and Automated Composition 18

1.2 Non-automatic Web Service Composition Tools 19
1.3 Composition on X-Road . 21
1.4 Summary . 21

2 Service Model and Workflows 22
2.1 Service Model . 22
2.2 Hierarchical Service Model . 24
2.3 Automated Service Model Generation 25

2.3.1 Using Service Descriptions for Service Model Generation 25
2.3.2 Problems in Web Service Descriptions 27

2.4 Higher-Order Workflow . 28
2.5 Service Models and Higher-Order Workflows 29
2.6 Conclusion . 29

3 Logic for Composition on Service Models 31
3.1 Preliminaries . 32

3.1.1 Implicative Fragment of the Intuitionistic Propositional
Logic . 32

3.1.2 Structural Synthesis of Programs (SSP) 33
3.2 Services and Simple Workflows 35
3.3 Logic for Higher-Order Workflows 36

3.3.1 Control Flow . 36
3.3.2 Control and Data Flow 36

3.4 Logical Representation of Service Models 38
3.5 Synthesis of Compound Services 40

3.5.1 Defining a Goal . 41

5

3.5.2 Finding a Proof . 41
3.6 Conclusion . 42

4 Web Service Composition Tool 43
4.1 Architecture of the Service Composition Tool 43

4.1.1 Knowledge System . 43
4.1.2 Knowledge Architecture 44
4.1.3 User Knowledge Level 45
4.1.4 Logical Level . 46
4.1.5 Service Implementation Level 46

4.2 CoCoViLa . 47
4.3 Implementation of the Web Service Composition Tool 50

4.3.1 Composition Packages 51
4.3.2 Specification Language for Web Service Composition . . 51
4.3.3 Visual Language for Web Service Composition 53
4.3.4 Output Generation . 53

4.4 Conclusion . 56

5 Web Service Composition on Large Service Models 57
5.1 X-Road Model . 57
5.2 Service Model in CoCoViLa . 59
5.3 Automatic Handling of a Service Model 61
5.4 Conclusion . 66

6 Web Service Composition on Hierarchical Service Models 67
6.1 Hierarchical X-Road Service Model 67

6.1.1 Generation of a Service Model in CoCoViLa 68
6.1.2 Submodels . 71
6.1.3 Hierarchical Model . 72

6.2 Composition on Hierarchical Service Models 73
6.2.1 Composition without Higher-Order Nodes 74
6.2.2 Composition with Higher-Order Nodes 77

6.3 Conclusion . 80

Conclusions and Future Work 81

References 83

List of Publications 90

Annotatsioon 91

Abstract 92

Elulookirjeldus 93

Curriculum Vitae 96

6

Introduction

Web services – software components, accessible over the web using machine
processable interface descriptions – have made their way into our everyday lives.
Web services are an integral part of Estonian e-government [20, 21]. Initiatives
exist for pan-European electronic cooperation, for example, ISA project, which
stands for Interoperability Solutions for European Public Administrations [71]
and SemanticGov [60]. Web services are offered by major companies, such as
Amazon [1] and integrated into various tools for software development and for
science and research. For example, web service development and automated
service description generation for web services is built in into Microsoft .NET
software development platform. Web service development is also supported by
Java by JAX-WS API.

Web services offer for businesses a possibility to make the developed func-
tionality available to others over the web. For researchers, web services offer an
easy way to share data and knowledge with their colleges in other places of the
world. They offer a way to decrease doing the same work again and again and
to strive for quicker results for both – business and research. Web services can
also be used as one of the building blocks of Cloud computing technology (e.g.,
to offer Software as a Service) which is a growing trend on how services should
be created, offered and used in the Internet [15, 52].

An atomic web service usually offers very basic functionality. Quite often the
functionality allows, for example, to retrieve or to update some information in
the database. Having a number of atomic web services with matching inputs and
outputs, bigger and more complex web services can be built from atomic web
services. Even simple business transactions and scientific tasks usually include
more than one query or update. With web services these tasks can involve
different databases and information systems, offered by different organisations,
and located on different servers. Seen in this light, it is very important to be
able to compose atomic web services into new, more complex web services.
Web service composition is a task of constructing new compound web services
from a predefined set of atomic or compound existing services. In the process
of composition, control constructs, such as cycle and condition, can be added
to create the workflow. Compound services are also called complex services in
the literature. Standards for web service composition, such as WS-BPEL [64],
WS-CDL [65], WSML [61] and OWL-S [42] have been proposed and work well
when workflows and the number of web services to choose from are small and
when the domain is simple enough for the developer, who is an expert in software
development and standards, to understand.

7

In order to compose web services offered by different organisations, it might be
necessary to understand very specialised concepts and functionality of services
from a number of different information systems. These information systems
might use different ontologies. In a very specialised and knowledge intensive
domain, a domain expert’s knowledge might be needed in order to construct
functional and correctly working workflows. Domain expert, however, may not
be a programmer or expert in all web services related standards. In this case,
having a simple domain-specific language to specify tasks and problems in the
domain would speed up the prototyping and development process. On the other
hand, if the number of available web services is very large, that is, thousand or
more web services, finding only one missing piece into a manually developed
workflow can be complicated even for an expert as there may be many candidate
web services with similar functionality. Constructing a complete workflow from
scratch is even harder as the complexity of finding suitable web services into a
workflow grows with every additional missing peace.

Web service composition is a complicated task, because the domain where
the composition is applied may be knowledge intensive, the number of candidate
services can be very large and services available for composition can updated or
removed [51]. Therefore, combining automated workflow creation that simplifies
finding candidate services with a simple visual language that enables domain ex-
perts to manipulate workflows would greatly reduce the complexity of web service
composition process. The problem of automating the web service composition
process in a knowledge intensive domain with a large number of candidate ser-
vices by combining planning with visual representation of services is addressed
in this thesis.

Many methods have been proposed that either try to automate compound
web service creation [45, 51] or offer manual visual modelling of web ser-
vices [11, 72]. However, there are only a few tools that combine visual language
with planning options, for example, Synthy [2], JOpera [44] and Web Service
Composer [55]. These tools allow to model only the workflow of the currently
developed compound web service. The same thing applies for other visual web
service modelling tools – they are used to work with one service at a time, while
in the approach proposed in this thesis, all available web services and control
constructs are modelled as a service model. A desired compound service is ex-
tracted out of this service model automatically using logic-based methods. This
offers visual specification possibilities for non-programmer users and allows to
translate service models into logic for automated planning.

Problem Statement and Contributions

The problem of automating web service composition in a knowledge intensive
domain with large number of available web services that might use different

8

ontologies is investigated in this thesis. The goal of this work is to propose
visual specification possibilities for domain experts, to be able use logic-based
methods in order to compose new web services automatically and to apply the
composition method to real world knowledge intensive domain with large number
of services offered by different organisations. This goal is achieved by creating
graphical service models from existing services. Graphical service models are
translated into logic that enables to reason automatically about the existing web
services. This method is applied to Estonian e-government services.

The following are the results of this thesis:
• The service model concept is proposed and discussed as a way to describe

a large number of available web services, control constructs and concepts
from an ontology. Service models have a visual representation that enables
domain experts, who are not programmers to compose new web services.

• Applicability of intuitionistic propositional logic for describing service
models that include control constructs and for synthesis of new compound
web services by means of structural program synthesis is investigated.

• To test the handling of large realistic service models, experiments were
done on real world, large and knowledge intensive service domain – Esto-
nian e-government web services. Experiments with the web service compo-
sition tool implementing the approach described in the thesis are conducted
on a large service model based on Estonian e-government web services.
These experiments show that the proposed method is applicable to very
large service models.

• In order to reduce the complexity on large service models, experiments
were performed on hierarchical service models, where web services are
separated into different submodels by their providers. A provider is ex-
pected to use the same ontology for all web services. However, different
submodels can use different ontologies. Models are generated from the real
world web service descriptions of the Estonian e-government information
system. This work also identifies some problems that one might encounter
when trying to automatically generate service models from existing de-
scriptions.

Problems of security and confidentiality that are big concerns when consid-
ering web service composition on Estonian e-government web services are out
of the scope of this thesis. In addition, this work does not deal with pre- and
postconditions in terms of resources, because the example domain – Estonian
e-government information system – is mostly data-oriented.

Automated Web Service Composition

The goal of the web service composition is to construct new web services from
existing ones. These new web services offer some new functionality that none

9

of the existing web services provide, but is achievable by combining multiple
existing web services and adding some control constructs. The goal of automated
web service composition is to automate the process of creating new web services
as much as possible. Automated web service composition assumes three steps:

1. description and annotation of web services;
2. finding of web services;
3. building a compound web service.

Web service description and annotation are strongly related to finding of web
services. In order to find suitable web services, good descriptions must exist. To
solve the problem of web service finding, web services’ descriptions must be en-
hanced with machine-processable semantic web service descriptions. Languages,
such as OWL-S [42], SAWSDL [53], WSML [61] and WSDL-S [63] have been
proposed for this. In theory, there should be only a small step from semantic
web services to fully automated web service composition. In practice, there are
not many web services with semantic descriptions available and there is no easy
way to annotate all existing web services such that their semantics would be the
same for everyone. This is a big obstacle for the automation of web service
composition. For this reason, it has been suggested that it will only be possible
to create a common understanding about web services published through one
service trader or a service park [46]. It is assumed in this work that web services
offered by one provider have a common ontology.

Once a common understanding exists, it is possible to start automating the
process of building compound web services. To build compound web services
automatically, the user defines a goal that describes the service to be composed
without defining the actual component web services. If it is possible to build
such a service from existing web services, its structure, that is, a workflow
describing the structure in which component web services should be executed,
will be automatically generated by the web service composition tool.

Tools for automating web service composition can be divided into two cate-
gories. In the first category, there are tools that, given a goal and descriptions of
available web services, try to synthesise the complete workflow of a compound
web service from scratch. In the second category, there are tools that, given
a goal and a workflow containing abstract web services, try to find and map
concrete web services into the given workflow. These tools are meant to work
with web services annotated with concepts from one ontology and not to address
the problem of composing web services offered by different providers or through
different service parks that are using different ontologies. An attempt has been
made in this work to solve the problem of connecting different web services of-
fered by different providers or different service parks by using hierarchical service
models.

Web service composition method proposed in this work is based on the well
researched method – structural synthesis of programs (SSP) [38, 40]. The main

10

idea of structural synthesis of programs is to construct programs automatically
from existing preprogrammed components based on their structural properties
and a goal given by the user. To construct a new program, its specification,
including the goal, needs to be given. If the problem described is solvable using
the specification, a constructive proof that a solution to the problem exists is
found. After that, a program solving the problem is extracted from the proof.
Therefore, the steps from the specification to the program are:

specification and a goal -> proof -> program

These steps are exactly the way automatic web service composition could be
handled. Preprogrammed components are atomic web services. Defining their
input and output variables describes their structural properties. The goal in the
case of web service composition is to get a description of the compound web
service. If the compound web service requested by a goal can be constructed
using the existing web services, a proof of its existence is obtained. A program is
extracted from the proof. This program can then execute or simulate the execution
of the resulting composition or generate the description of the compound web
service in some language designed to describe compound web services, such as
BPEL.

X-Road

Web service descriptions of the Estonian e-government information system were
used in the experiments described in this thesis. The Estonian e-government
information system integrates over 2000 web services from more than 80 different
information systems [49]. This means that it is a large and knowledge intensive
domain, where both domain expert knowledge and automation of composition
would offer new possibilities and reduce work.

The Estonian e-government information system has a service oriented ar-
chitecture and its central part is the X-Road data-exchange layer [20, 21, 73].
Estonian e-government web services enable to read and write data to and from
the national databases and develop business logic based on data. In X-Road,
the data exchange is handled by SOAP messages, web services are described in
WSDL and web service descriptions are published in a UDDI repository. The
descriptions of Estonian e-government web services are not created with web
service composition in mind. This makes them an ideal test-bed for identifying
problems that might occur in web service composition.

X-Road guarantees secure access to nearly all Estonian national databases
over the Internet. It is the environment through which services are provided to
the citizens, entrepreneurs and public servants on the 24/7 basis. These services
are available through governmental portal www.eesti.ee to a variety of user
groups (citizens, entrepreneurs, public servants). The number of requests per
month exceeds currently 3 million.

11

Public

... B
a

n
ks

E
st

o
n

ia
n

E
n

e
rg

y

Private

...V
e

h
ic

le
re

g
is

tr
y

X-Road

A
d

m
in

is
tr

a
tiv

e

sy
st

e
m

X-Road
center:
Monitoring,
Help-desk,
Certification
center,
cental servers

Governmental
Portal
www.eesti.ee

Users

P
o

p
u

la
tio

n
re

g
is

tr
y

ID-card &
Mobile ID

...

Figure 1. X-Road connects public and private information service providers

Figure 1 shows a simplified structure of the Estonian e-government informa-
tion system. As demonstrated in the figure, X-Road connects besides public
databases also some private ones. These are, for instance, main banks and some
privately owned infrastructure enterprises. X-Road infrastructure also offers PKI
infrastructure, help-desk and monitoring. Users connect to the system through
governmental portal where they can execute predefined services. All queries
have to be done one by one, even if semantic connections exist between between
the underlying web services. The original and more detailed scheme [12] can
be found from the homepage of Estonian Informatics Center. For brevity, the
Estonian e-government information system web services are from now on called
X-Road.

Different information systems offer web services with different functionality
and purpose. Currently no joint ontology exists for all X-Road web services
and even if it would exist, it is hard to imagine users being able to orient in all
concepts of all information systems which differ from one another quite a lot.

References to the Published Work

This section gives an overview of how the chapters in the thesis relate to the
author’s published work.

12

The overview of automatic composition tools in Chapter 1 is published as a
conference paper “Survey of the Tools for Automating Service Composition” [30]
in The 8th IEEE International Conference on Web Services (ICWS 2010).

Chapter 2 that gives a definition for the service model, its hierarchical rep-
resentation and relation to higher-order workflows is covered in the conference
paper “Composition of Services on Hierarchical Service Models” [34] that will be
published in The 21st European - Japanese Conference on Information Modelling
and Knowledge Bases (EJC 2011).

Chapter 3 on logic for service models is partially based on the conference
paper “Compositional Logical Semantics for Business Process Languages” [37]
presented at The 2nd International Conference on Internet and Web applica-
tions and Services (ICIW 2007) and on the journal article “Dynamic Service
Synthesis on a Large Service Models of a Federated Governmental Informa-
tion System” [33] published in International Journal on Advances in Intelligent
Systems.

Chapter 4 presents the architecture of the composition tool and is based on
the conference paper “Stratified Composition of Web Services” [31] presented at
The 8th Joint Conference on Knowledge-Based Software Engineering (JCKBSE
2008).

Chapter 5 about the experiments done on large service models is based on the
conference paper “Handling Large Web Services Models in a Federated Govern-
mental Information System” [32] presented in The 3rd International Conference
on Internet and Web Applications and Services (ICIW 2008) and on a journal
article “Dynamic Service Synthesis on a Large Service Models of a Federated
Governmental Information System” [33] published in International Journal on
Advances in Intelligent Systems.

The experiments on hierarchical service models described in Chapter 6 will
appear as a conference paper “Composition of Services on Hierarchical Service
Models” [34] in The 21st European - Japanese Conference on Information Mod-
elling and Knowledge Bases (EJC 2011).

Organisation of the Thesis

The thesis is organised as follows. First, an overview of the related work is given
in Chapter 1. Second, definitions of the service model and higher-order workflows
are given in Chapter 2. Third, logic for service models is described in Chapter 3.
A proof of concept tool for composing web services on X-Road service models
is described in Chapter 4. Experiments of web service composition on large
service models describing X-Road are discussed in Chapter 5 and experiments
on hierarchical service models generated from X-Road service descriptions are
discussed in Chapter 6.

13

Acknowledgements

I thank my supervisor Enn Tõugu for encouraging me to do the experiments
and in publishing the results. I learned a lot during these four years. I thank my
other supervisor Peep Küngas for introducing X-Road web services to me and for
providing the initial model and annotated descriptions of X-Road web services.
I am greatful to Pavel Grigorenko, Andres Ojamaa and Professor Merik Meriste
for suggestions on improving the thesis.

I thank the Estonian Information Technology Foundation’s Tiger University+
programme, Estonian Doctoral School in ICT (2005–2008 and 2009–2015),
Estonian Science Foundation grant No. 6886 and the target-financed theme
No. 0322709s06 of the Estonian Ministry of Education and Research for financial
support.

14

1 Related Work

This chapter gives an overview of the methods and tools available for automating
web service composition. The main emphasis is on methods and tools that
automate the process of building compound web services, are suitable for search
from large number of web services and are usable by domain experts, who might
not be programmers. Unfortunately, little has been published about the scalability
of composition methods, and no large examples are given in the literature.

1.1 Automated Web Service Composition Approaches

There are two main approaches to the web service composition: automated web
service mapping into service template that was constructed manually and au-
tomated workflow generation from existing web services. There are also some
tools that combine automated workflow generation with manual workflow con-
struction. All these automation approaches are described in this section, although
the combined approach is closest to the composition method described in this
thesis.

1.1.1 Automated Web Service Mapping into Service Template

In this approach, a compound service description template is created that de-
scribes the workflow and the templates of component web services. Graphical
modelling tools are often used for this task. Actual web service implementations
are mapped to web service templates when the workflow is executed. Automatic
composition in this case means that the mapping of actual web services, that is,
finding the web services that satisfy the workflow, is done automatically. This
subsection describes tools in this category.

eFlow is a dynamic web service composition and execution system [6] that
includes visual compound web service modelling and a possibility to specify web
service selection rule in a service node of the model. The suitable web service
is found using a service broker.

METEOR-S framework includes a tool for constraint driven web service com-
position [3]. First, abstract workflow, represented as BPEL process, is manually
created in METEOR-S abstract workflow designer. Web services can then be
mapped to the workflow by the user or automatically by the system. For map-
ping web services automatically, service templates need to be defined. A service
template includes its data semantics, classification of service operations by func-
tionality, pre- and postconditions and quality of service specifications. Discovery

15

engine will return a set of service advertisements that match the template. In
addition, transformations required to make a service advertisement match the
template are queried. At first, all matching web services are selected, then qual-
ity of service constraints specified in the abstract workflow are used to find the
optimal solution.

Zeng et al. [74] present AgFlow, a middleware platform that enables quality-
driven web service composition and execution. State charts are used to represent
control and data flow. Web services are assumed to be described in common,
community accepted ontology. To select a web service from similar web services
offered by one community, quality of service properties are used.

WSMO Studio [8] is a modelling environment for the semantic web services
domain. It supports creating and validating WSMO (Web Service Modelling On-
tology) [62] models, exporting and importing from various WSML (Web Service
Modelling Language) [61] formats, RDF and from a subset of OWL-DL. WSMO
Studio includes WSMO Editor that provides a user interface for modelling of
WSMO ontologies, goals, and mediators. WSMO Choreography Editor is used
to create choreographies that can be executed in the execution environments such
as WSMX [18] or IRS-II [9]. Semantic annotations to existing WSDL descrip-
tions can be added using the SAWSDL editor. Repository front-end is utilised for
storing and querying WSMO descriptions. WSMO services can be discovered by
representing a request in the form of a WSMO goal. A list of matching services
is returned as a result.

In all these approaches the workflow has to be created entirely manually even
if data dependencies between web services exist. In addition, a web service
matching the specified goal might not exist. In this case, the workflow has to be
manually redesigned.

1.1.2 Automated Workflow Generation from Existing Web Services

In the second approach, some predefined pool of web services exists (e.g., in a
service registry or in a service park), and a goal that has to be satisfied by the
compound web service is defined by the user. A solution that satisfies the goal
is constructed automatically by a planning method that uses actual web service
descriptions as planning data.

Sword [48] is a set of tools for composition and execution of web services. A
web service is represented by a rule expressing that given certain inputs, the web
service is capable of producing particular outputs. A rule-based expert system is
then used to automatically determine whether a desired compound web service
can be constructed using existing web services. If it is possible to construct such
a web service, a plan for creating a web service is constructed. Execution of the
plan instantiates the compound web service. Individual web services are defined
by their inputs and outputs. For each web service, a rule is defined.

16

Rao, Küngas and Matskin [50] describe a system based on propositional linear
logic that allows to describe both functional and non-functional properties of
web services. DAML-S is used to represent semantic web services. The pool
of DAML-S specifications are translated into linear logic axioms. A linear logic
theorem prover is used to prove whether the user’s defined goal can be achieved
by the composition of available atomic web services. If so, the process model
is extracted from the proof. The process model of the compound web service
can be translated into DAML-S or BPEL. A graphical user interface is used to
visualise web services.

Haav et al. [17] propose a framework for informational web services of
X-Road. This framework has two parts – annotation part and a logic-based
composition part. Annotated web services and a user request are translated
into the tool’s inner logical language that is then used in the theorem prover
RqlGandalf. Result of the synthesis is a Python program.

Kona et al. [23] propose a method that takes a repository of semantically an-
notated web services and a query to find a directed acyclic graph that represents
a compound web service. A resulting composition graph can be translated into
OWL-S. A prototype implementation has been tested in the domain of bioinfor-
matics.

ASTRO toolset [47, 56] consists of the following tools: WS-gen – for generat-
ing automated compositions; WS-mon – for monitoring; WS-console – extension
to the ActiveBPEL execution engine administration console to present the status
of monitoring; and WS-animator – to simulate execution. WS-gen takes abstract
BPEL specifications of participating partners that are translated into state transi-
tion systems for formal description, a choreography specification file and a goal
specification file as input. It then uses planning via symbolic model checking
technique to generate a state transition system of the process that satisfies the
requirements and translates it into BPEL.

QSynth [19] is a tool for quality of service aware automatic web service
composition. WSDL and OWL-S files are used to gather web service information
which is used to build a dependency graph. The dependency graph is then used
to compose new web services. The goal compound web service is defined by its
inputs, outputs and quality of service constraints. The resulting compound web
service can contain sequence, join and split constructs but cannot contain cycle
or condition constructs. The result can be transformed into BPEL. This approach
is shown to be scalable to a large number of web services, but seems to work
only on atomic web services.

Approaches described in this subsection try to fully automate web service
composition. It is easy to apply automated workflow construction when the
resulting workflow is a sequence. Automatic synthesis of control constructs
or composition of web services that are themselves compound web services,
however, needs a very detailed and complex goal specification language and a
very detailed goal from the user. Some of these approaches also address this, for

17

example, ASTRO toolset works with compound web services that are composed
to satisfy very detailed goals. However, to specify such goals, a domain expert is
needed and specification of the goal might sometimes be more complicated and
time consuming than manual specification of a workflow.

1.1.3 Tools that Combine Mapping and Automated Composition

When taking into account that in a specialised and knowledge intensive domain, a
domain expert can sometimes design a better workflow than software developers
or automated planners, a need for tools that combine both approaches arises.
This subsection describes a few tools that try to combine the manual workflow
specification with automated synthesis of workflows.

JOpera [44] is a software composition research platform used for visual web
service composition, execution and monitoring. JOpera’s Visual Composition
Language (JVCL) can be mapped to BPEL and vice versa. Building blocks for
workflows do not have to be web services. Other invocation mechanisms, such as
UNIX shell command execution, RPC and RMI, are also supported. Activities
can be imported from UDDI registry by translating WSDL descriptions into
JVCL notation. Each web service operation is imported as a separate activity.
It is possible to automate data flow creation as the editor can automatically
bind parameters with matching names and make recommendations based on the
parameter types.

Web Service Composer [55] is a web service composition and execution proto-
type tool for OWL-S that has two basic components: a composer and an inference
engine. Information about known web services is stored in the tool’s knowledge
base that is used by the inference engine to find matching web services. The
inference engine is an OWL reasoner written in Prolog and it is used to find
available choices at each composition step. The user starts a composition of a
new compound web service by selecting one of the services registered by the
engine to be the last web service in the workflow. The rest of the workflow is
created backwards by selecting input web services amongst these presented by
the tool. This means that new web services providing appropriate input data for
the selected web service are suggested automatically. Matching is done using
the information given in the service profile. To limit the suggestions found by
matching, filtering by non-functional attributes (such as location and type) is
supported.

Synthy [2] is a prototype of the semantic web service composition and exe-
cution system that aims to combine industry and research approaches. In Synthy
the developer has to formally model requirements for the compound web service.
Relevant web services to fulfil the tasks are then discovered automatically by
the system amongst available semantically annotated web services. If there are
no exact matches, web services that could fulfil the task are discovered and a

18

control flow is created automatically between those web services. The resulting
workflow is described in BPEL.

These approaches are most similar to the approach described in this thesis.
These tools, however, also have some shortcomings. For instance, workflow
generation in JOpera is relying on matching inputs and outputs with the same
name, not with the same meaning. In Web Service Composer, matching input
web services are discovered automatically, but if there is more than one matching
web service, the user still has to make a choice manually. Synthy is the closest
to the approach described in this thesis, but it allows to develop one workflow
at a time and there is no easy way to change the workflow without designing a
new one manually.

1.2 Non-automatic Web Service Composition Tools

This section will cover some tools that are not exactly automation tools but offer
some helping utilities or features for manual composition, like a visual workflow
modelling language or a built-in UDDI browser. Some of these features were
also present in the tools described in previous section.

ZenFlow [36] is a visual web service composition and execution tool that
uses BPEL as an underlying composition language. In addition to creating BPEL
workflows, importing workflows composed with other tools is supported. De-
veloper has to know which web services are involved in a workflow and insert
them to the workflow. Finding web services is supported by the built-in UDDI
browser.

Another application for working with BPEL is Sedna [67] – a web service
composition environment for scientists. Execution is supported through the Ac-
tiveBPEL engine. In Sedna, BPEL is extended with scientific and domain process
execution languages. As scientific workflows can contain thousands of atomic
web services, some constructs have been added to Sedna’s visual language for
supporting scalability and to decrease web service developer’s work. Additional
constructs allow, for example, parallel execution, using a set of activities as a
single atomic unit, and the hierarchical composition of workflows. Hierarchical
composition allows to describe subworkflows first, and then use them by other
workflows. Subworkflows can be described by a WSDL description. This enables
other workflows to invoke a subworkflow like any other web service. Hierarchical
composition is useful as it reduces the complexity of the workflow for the end
user.

Taverna [43] is a tool that allows biologists and bioinformaticians to manually
construct workflows from web services and execute these workflows. Workflows
created in Taverna are described in Taverna’s internal language Scufl and can be
semantically annotated. Taverna provides utilities to locate available web services
from provided data sources. It also has the support for workflow execution

19

monitoring and data provenance that are very important in case of scientific
workflows.

Kraemer, Samset and Braek [24] describe a web service orchestration method
implemented in the Eclipse-based tool Arctis. Method allows to import WSDL
files that become available to the developer as building blocks in UML. This
allows developers to work on UML level rather than on web service level. De-
veloped UML compositions are validated by model checking and transformed
into executable state machines. The system supports automatic code generation
for different frameworks and platforms.

Triana [35] supports the graphical composition and distributed execution of
services. Triana communicates with services through the interface that has bind-
ings for multiple middlewares (e.g., JXTA, Web services, OGSA). The exact
functionality of advertising, locating and communication with other services de-
pends on the binding. In case of web services, for example, discovery means
keyword-based search from the UDDI registry. Services are invoked through
a gateway that also handles data type conversions. Services retrieved from the
UDDI can be used in composition by dragging them from the toolbox to the
canvas and connecting them. Looping and conditional constructs are supported
to define the control flow. Constructed compound services can be executed or
saved in Triana’s custom XML or BPEL.

OWL-S Editor [54] supports importing WSDL descriptions and adding nec-
essary semantical annotations through a user interface. Atomic processes and
their inputs and outputs are extracted from WSDL. UML activity diagrams are
used for visual composition of web services.

Protégé ontology editing framework includes an OWL-S plug-in [13] that has
a graphical, form-based user interface for describing web services in OWL-S
and executing them in the editing environment. It is also possible to visualise
the specified control flow and data flow as a UML activity diagram. However,
the visual representation is only for visualisation and cannot be modified by the
user. Parts of the OWL-S description can be generated automatically based on
the inputs and outputs defined in the WSDL file.

WSMT [22] is a framework for developing ontologies, web services, goals and
mediators based on WSMO. It provides different WSML editors and conversion
tools to RDF and OWL. Services can be executed in the semantic execution
environments such as WSMX. The framework provides text-based and form-
based WSML editors. A graph-based visualiser that allows direct editing is also
included.

Liu, Huang and Mei [29] describe an approach that allows users to compose
web services as mashups in the web-based composition tool. The user starts with
a keyword-based search that brings out suitable web services, from which the
user has to make a choice. To include next web service into mashup, background
analysis information is used to suggest suitable web services. Background analy-

20

sis is done by building a directed acyclic graph based on input/output values and
annotation information extracted from WSDL.

1.3 Composition on X-Road

In addition to all the development done on X-Road [20, 21], X-Road web services
have been used, for example, in web services research and in testing web service
composition frameworks. A brief summary of these works is given here.

Automated composition of X-Road web services was proposed and tested by
Haav et al. [17]. Küngas and Matskin used automated composition methods
on X-Road web services for analysing differences between governmental and
commercial domains [26, 27]. The initial large X-Road model, used in the
present work as a base model for experiments in Chapter 5, is derived from the
work by Küngas and Matskin [27]. Küngas and Dumas [25] used X-Road web
services to test their automated annotation method.

1.4 Summary

The current state of tools and methods that increase the automation of web
service composition was given in this chapter. Although the number of tools
created for simplifying and automating web service composition is large, the
problem of automated composition is not solved and complete automation has
not been reached.

Tools that offer manual workflow specification are hard to use when the num-
ber of web services is large. Things are a bit easier, when web services are
automatically mapped into manually generated workflow. However, when it ap-
pears that there are no web services that match the workflow then the workflow
has to be manually redesigned. Methods that enable automated workflow syn-
thesis from existing web services either work only with atomic web services or
need very detailed and complex specifications of goals to compose two or more
compound web services. Specifying very detailed goals might be harder than
developing the workflow manually. Therefore, for some domains, there is a great
need for tools that combine manual workflow specification with automated work-
flow synthesis. Combined tools should offer visual interface for manual workflow
construction and a reasonably fast planner that offers automated synthesis in case
of large number of web services.

21

2 Service Model and Workflows

The concept of service model [34] is proposed in this thesis as a way to describe
a large number of available web services and concepts from ontology. Service
model is a central part of the web service composition method developed in this
work and it is explained in this chapter. First, the concept of service model is
defined. Second, hierarchical version of the service model is explained. Third,
possibilities to automate the service model generation are discussed. Fourth, the
concept of higher-order workflow suitable for representing service models with
cycles and other control nodes is introduced. Finally, service model’s relation to
higher-order workflows is described.

2.1 Service Model

Service model is a description of a collection of interoperable services that in-
cludes information necessary for automatic composition of compound services
and uses one ontology. Service model can describe a service park. Services in
one service model have to share a common ontology and background informa-
tion. Services from different service parks that share a common ontology can be
represented in one and the same service model. Service models that use differ-
ent ontologies can be connected using hierarchical representation of the service
model. This is discussed in Subsection 2.2. Note that, although web services are
used in the experiments described in Chapters 5 and 6, the concept of service
model is also applicable to services that are using other protocols than SOAP or
to custom services that are not made available on the web. Experiments with
custom services have also been done as part of this work [34].

A service model is abstractly represented as a bipartite graph with two sets
of nodes R and V. The set R is a set of services and data dependency relations
that can also be represented by atomic services. The set V is a set of variables
representing data that can be inputs and outputs of services, and logical variables
that are pre- and postconditions of services. Elements of V have names from the
ontology used. A node v of V is bound with a service r of R by an arc (v,r) if
and only if it is an input or precondition of r, and with an arc (r,v), if and only
if it is an output or postcondition of r. Service model can include higher-order
nodes, for example, cycle and condition constructs or services that are already
composed from other services. This will require some marking of arcs. The
higher-order nodes will be discussed in Section 2.3 and in Chapter 3. Example
of the service model is shown in Figure 2.1, where rectangles represent service

22

nodes and circles represent variables. Filled rectangle represents a higher-order
node.

A data dependency relation represents a connection between variables:

• with the same type, if background information (i.e., the information given
by a domain expert) shows that they have the same meaning;

• with different types or format, but the same meaning, if they can be con-
nected using a transformation component.

A two-way data dependency relation between any v1 and v2 can be always
represented by two abstract services r′ and r′′ and arcs (v1,r′), (r′,v2), (v2,r′′),
(r′′,v1). An abstract service is implemented by the synthesiser, it does not have
an explicit grounding. If v is a data structure, containing other variables, for
example, v′, v′′ and v′′′, then a data dependency relation r can be used to extract
the elements out of the structure v. Data dependency relation that takes the
elements v8, v9 and v10 out of the structure v7 is represented as a triangle
in Figure 2.1. It can be used also as a constructor of v7 from v8, v9 and v10.

v1
r1 v2 v3

v4 v5

v6

v7

v8

v12v11

v9 v10

v13

v14

r4

r2

r3 r5

r6 r7

r8

r9

Figure 2.1. Service model represented as a graph

23

There is a number of ways the service model can be represented (not only
as a graph, but also as a set of formulas), the only restriction is that it has to
be automatically processable in order to enable automated service composition.
Service model’s representation as a set of formulas is described in Chapter 3.
Compound service will be correct with respect to the service model, if the model
is used for composition by a provably correct synthesiser.

The difference between the service model approach and workflow-based com-
position approaches, for example, BPEL, is that although a workflow can be quite
complex, it still represents one possible combination of services. Service model,
on the other hand, is a universal description of a service park that describes all
currently possible workflows, and the choice of a concrete workflow depends on
the goal that a compound service has to serve.

The service model approach differs from most logic-based approaches be-
cause, in addition to obvious input and output mappings, domain’s background
information, given by an expert, can be taken into account when creating a ser-
vice model. For example, new data dependency relations can be added to connect
either data entities with the same meaning but different names or data entities
with different types, if type transformation is possible. Besides that, the user
is allowed to extend the model with customised higher-order nodes or atomic
services. That is, service model’s description is not limited to usual workflow
constructs like sequences, cycles and conditions, but developers can create ser-
vices that, for example, count the elements returned as a result of the invocation
or take some elements out of the set that is returned as a result. Of course, in
order to share the model with other organisations, the functionality of these ser-
vices must be made available over the web and custom higher-order components
need to be translatable into BPEL constructs in order to generate BPEL as an
output.

2.2 Hierarchical Service Model

The service model that was used in the first experiments in this work was a large
flat model representing a part of the X-Road services. This model had almost
900 components. It contained 300 atomic services and about 600 data entities.
Experiments on this model are described in Chapter 5. The visual representation
of this service model was very hard to use. Therefore, it was necessary to reduce
the complexity, without making sacrifices in the expressiveness of the service
model. One way to do that was to hide the information needed by different
users into different layers by dividing services into submodels and using them as
components in the upper layer service model. By using different submodels as
components, different views of hierarchical models can be created.

There are different possibilities for grouping services into submodels. The
approach taken in this work assumes that services are divided into different

24

submodels by their provider. A different approach would be to use some web
service/operation clustering algorithm (for example, methods suggested by El-
gazzar, Hassan and Martin [14] and Nayak and Lee [41]) to group web services
by functionality and use these functional groups as components in the upper
layer. This would simplify the composition of functionality-driven web services.
X-Road web services domain, however, is more data-driven, that is, it is based on
information web services, hence grouping by functionality would not add much
value. In addition, grouping by provider allows to hide some data resources of
the hierarchical component, representing the submodel, from the user of the up-
per layer. For example, it is possible to hide data entities that are used only by
one provider and therefore would not add any new arcs to the upper level. This
will make upper layer representation simpler and easier to use. It also enables
to use different ontologies for different submodels and to use a simplified joint
ontology with less concepts for the upper level model, where only those concepts
that are relevant for the user are defined. Experiments with hierarchical X-Road
service model are described in Chapter 6.

2.3 Automated Service Model Generation

Creating service models manually is a complicated task and duplicates the work
that is already done when creating web services and their descriptions. Therefore,
programs that enable to translate web service descriptions to service models were
created to automate service model generation as a part of this work. It appeared
that in the current state of X-Road web service descriptions it is not possible
to fully automate the service model generation. The idea of automated service
model generation and the problems that arose are described in this section.

2.3.1 Using Service Descriptions for Service Model Generation

Given a set of semantically annotated web service descriptions, the process of
developing a hierarchical service model begins with generating flat service mod-
els from web service descriptions. If web service descriptions and semantic
annotations are correct and automatically processable, then this part can be fully
automated.

Web service descriptions given in SAWSDL [53] – Semantic Annotations for
WSDL, were used to automate service model generation. In this setting, web
service operations in SAWSDL are translated into atomic services in the service
model, concepts in the ontology are translated into data entities and messages
are mapped to arcs. If necessary, data dependency relations are added. Service
models generated in this way are used in Chapter 6.

Models created from SAWSDL descriptions can be used as components in the
hierarchical service model. Creation of hierarchical service models can also be
partially automated, but in general a domain expert is expected to work on this

25

level. Depending on the context, a domain expert can remove some connections
or components and add other connections or components to the generated model.
This way it is possible to create views to serve the needs of different users.
The relations between semantically annotated web service descriptions, service
models and hierarchical views is shown in Figure 2.2.

Service
descriptions

1

Service
descriptions

2

Service
descriptions

n

...

...

...

Hierarchical view 1 Hierarchical view m

Layer 1:

Layer 2:

Layer 3:

Service
model 1

Service
model 2

Service
model n

Figure 2.2. Relations between annotated web service descriptions and service models
and hierarchical views

In the first layer in Figure 2.2 there are annotated web service descriptions
given, for example, in SAWSDL. Service models representing atomic services and
data entities are generated from these descriptions. Small rectangles in Layer 2
represent atomic services, circles represent data entities and arrows between them
represent data paths. Service models are saved as components and used in a
view of a hierarchical model in Layer 3. Note that there can be more than
one hierarchical model created from a set of services and that, depending on
the task’s context, different hierarchical models may contain different service
models as components. Therefore, these upper layer service models are called
hierarchical views in this thesis.

26

2.3.2 Problems in Web Service Descriptions

Web service descriptions as well as service models must be correct and easy
to use in order to serve their purpose. This section describes some problems
that came up when generating service models from existing X-Road web service
descriptions. It should be noted that these are just remarks about the experiments
and complete analysis of X-Road web service descriptions was not conducted as
part of this work.

In order to cover all data dependencies correctly, the common ontology and
correct semantic annotations have to exist. X-Road web services are not yet fully
annotated and the annotations that exist are mainly syntactic, therefore, after gen-
erating a model automatically it has to be revised by the domain expert. The
bigger problem is that WSDL descriptions themselves are often automatically gen-
erated by the web service development frameworks that create non-explanatory
names that rarely contain comments. This kind of web service descriptions are
hard to find and use even for human users and it is impossible to find and use
these descriptions automatically, unless they contain semantic annotatations. In
this context, processing these descriptions automatically to generate always cor-
rect service models is almost impossible.

Crasso et al. [7] have pointed out common mistakes in WSDL documents.
They give six suggestions for revising a WSDL document:

1. separate the schema from the definition of the offered operations;
2. remove repeated WSDL and XSD code;
3. put error information within fault messages and only convey operation

results as output of operations;
4. replace WSDL element names with explanatory names if original names

are cryptic (this includes the suggestion to write operation names in the
form <verb>+ <noun>);

5. move noncohesive operations from their original port type to separate port
types;

6. document the operations.

These suggestions are meant to improve usablity and to simplify finding of web
services for human users, but they would improve the possibilities for generating
service models as well. Many of those problems are also present in X-Road
web service descriptions. For example, X-Road specification of requirements on
information systems and adapter servers [68] requires that non-technical faults
should be included in the output of the operation and that WSDL fault message
should only be used for technical faults. This means that non-technical faults
are considered to be results. When generating a service model from the WSDL
where error is considered as a result, the resulting model is obviously wrong, as
the fault is not a result and it cannot be used in composition.

27

X-Road WSDL descriptions often use cryptic or ambiguous operation names
and it is required by X-Road specification [68] that message parts must be named
paring (query) or keha (body) that says nothing about the actual data and creates
redundancy. In addition, only few providers use the form <verb>+ <noun> for
operation names. With information web services the number of possible verbs
is quite limited. For example, most operations that are done with data could be
described with the following verbs select, update, delete, insert or their synonyms.
These verbs give quite a good idea about the functionality of operations. When
a web service provider offers web services through a service park, then it should
use the verbs accepted for service description in this particular service park, and
therefore limiting the number of verbs used for the same functionality is even
easier.

Web service descriptions created by following the suggestions given, for exam-
ple, by Crasso et al. [7], would make automated generation of service models that
represent web services much easier and more accurate. Less cryptic names and
documentation would also make it easier for the human domain expert to revise
the service models generated from partially annotated web service descriptions.
In addition, interoperability between different providers would become easier to
achieve as the web services would become easier to find and use.

2.4 Higher-Order Workflow

This section briefly describes the concept of higher-order workflow (HOW).
Higher-order workflows enable to represent both control and data flow by a
graph. Preconditions will denote from here on both logical propositions and
inputs, meaning for an input x that “x is given”. Respectively for outputs – an
output x becomes a proposition “x is given”. Therefore a service is represented
by a node and has connections to its pre- and postconditions. Control flow is
represented by means of higher-order nodes that in addition to simple data pre-
and postconditions, have services as parameters. Therefore, a higher-order node
is represented by a node that has connections to its pre- and postconditions as
well as to pre- and postconditions of the parameter services.

v1 service1 cycle

service2

service3v2 v3

v4 v5

v6

Figure 2.3. Higher-order workflow

28

Figure 2.3 illustrates a higher-order workflow containing a higher-order node
cycle (filled rectangle) and three atomic services (white rectangles). This work-
flow has v1 as precondition and v6 as postcondition. Service service2, with
precondition v4 and postcondition v5, is a parameter for the higher-order node
cycle. That is, service2 gets input from the body of a cycle and it must return
a result before cycle can continue. The graphical notation used in Figure 2.3 is
described in more detail in Chapter 3, where the logical representation of service
models is given.

2.5 Service Models and Higher-Order Workflows

Service models are representable using higher-order workflows. A service model
represents all possible combinations of services in the domain. These combina-
tions can contain higher-order nodes and control constructs. Concrete workflow
depends on the goal that represents a compound service to be composed. Fig-
ure 2.4 shows three possible workflows (marked with bold arrows) of the service
model that was shown in Figure 2.1. Other workflows are possible even in this
very simple service model. The three workflows shown in Figure 2.4 include the
following service nodes:

1. r1, r2(r4);
2. r6, r9;
3. r7, r8.

The first workflow r1, r2(r4) is a higher-order workflow, with an higher-order
node r2. This workflow has v1 as a precondition and v3 as a postcondition.
Service r4 is a parameter for higher-order node r2. The second workflow r6,
r9 has v6 as a precondition and v14 as a postcondition. The postcondition v7
of the service r6 is a data-structure, containing elements v8, v9 and v10. This
structure is connected to the precondition v9 of the service r9 using the data
dependency relation (represented as a triangle). The third workflow r7, r8 is a
simple workflow without higher-order nodes or data dependency relations. It has
v10 and v12 as preconditions and v13 as a postcondition.

2.6 Conclusion

The service model concept was defined and its graphical representation was given
in this chapter. Service models can be generated from annotated web service
descriptions and represented hierarchically in order to reduce the complexity. This
means that the goal to offer visual specification possibilities for non-programmer
users is achieved. However, there is still a need to reason automatically about
the service models. In order to do this, logical representation of service model
is given in Chapter 3.

29

v1
r1 v2 v3

v4 v5

v6

v7

v8

v12v11

v9 v10

v13

v14

r4

r2

r3 r5

r6 r7

r8

r9

Figure 2.4. Three possible workflows in the service model

30

3 Logic for Composition on Service Models

The concept of service model was defined and its graphical represenation was
given in Chapter 2.1. In order to reduce the complexity of the web service com-
position process, it is necessary to be able to handle service models automatically.
Intuitionistic propositional logic [39] is used in this thesis for representing the
semantics of service models. Service models are represented by means of higher-
order workflows (HOW) and the logic for service models is described by means
of logic for higher-order workflows. The logic for representing service models is
also applicable to all kinds of services, not just to web services.

Services and control constructs – the nodes in a higher-order workflow can be
described by formulas in a particular logic. Proofs in the logic can be transformed
into higher-order workflows. This allows to synthesise a new higher-order work-
flow from a proof. Higher-order workflow can be transformed into some process
language (for example, BPEL) via instantiating control and service nodes by the
language constructs or by transforming the structure of the resulting higher-order
workflow into some process language. This allows one to generate composite
processes (compound web services) automatically [33, 37]. Relations between
logical representation, higher-order workflow and process languages are shown
in Figure 3.1. In this figure HOW represents both a graphical representation
of a higher-order workflow and a synthesised stucture of a new compound web
service, which is itself a higher-order workflow.

Logic (formulas, rules) Proof

Process language (BPEL, OWL-S, etc.)

HOW

Figure 3.1. Logic, HOW and process languages

31

This chapter describes logical semantics for representing service models and
automating the creation of web service workflows. First, a short overview of
the implicative fragment of the intuitionistic propositional logic and structural
synthesis of programs is given. Second, a logical representation of services
and simple workflows containing only sequences is introduced. Third, logical
representation of higher-order workflows for representing control constructs is
described. Fourth, the approach is extended to service models. And finally,
compound web service synthesis method that uses the intuitionistic propositional
logic implemented in structural synthesis of programs is covered.

3.1 Preliminaries

Structural synthesis of programs (SSP) [38, 40, 57] is used for web service
composition in this thesis. SSP uses an implicative fragment of the intuitionistic
propositional logic. Therefore, it is also the logic used to represent service
models in this work. A short reminder of intuitionistic logic and SSP is given
in this section. This section is based on works written by Tyugu [59], Mints and
Tyugu [40], Matskin and Tyugu [38] and Lämmermann [28].

3.1.1 Implicative Fragment of the Intuitionistic Propositional Logic

In intuitionistic propositional logic (IPL) interpretation of a proposition is not a
truth-value, but an object with a proof of its existence. Implicative fragment of
the intuitionistic propositional logic uses only introduction and elimination rules
for conjunction and implication. Table 3.1 presents the inference rules for the
implicative fragment of IPL, where A and B are metavariables for propositional
formulas and Γ is a list of formulas.

Table 3.1. Inference rules for the implicative fragment of IPL
Introduction rules: Elimination rules:
Γ ` A Γ ` B

Γ ` A ∧B ∧I Γ ` A ∧B
Γ ` A ∧EL,

Γ ` A ∧B
Γ ` B ∧ER

Γ, A ` B
Γ ` A ⊃ B ⊃ I

Γ ` A ⊃ B Γ ` A
Γ ` B ⊃ E

In intuitionistic logic the information about constructing an object can be
extracted from the proof of its existence. To make this explicit, realisations can
be added to propositions. In this case, a : A means that a is a realisation of
the formula A. Table 3.2 shows the rules of implicative fragment of IPL with
realisations.

32

Table 3.2. Inference rules for implicative fragment of IPL with realisations
Introduction rules: Elimination rules:

Γ ` a : A Γ ` b : B
Γ ` (a, b) : A ∧B ∧I

Γ ` f : A ∧B
Γ ` fst f : A

∧EL,
Γ ` f : A ∧B
Γ ` snd f : B

∧ER

Γ, a : A ` b : B
Γ ` (λa.b) : A ⊃ B ⊃ I

Γ ` f : A ⊃ B Γ ` a : A
Γ ` f(a) : B

⊃ E

In conjunction introduction rule, a represents the realisation of A and b rep-
resents the realisation of B. Realisation of the conjunction A∧B is represented
by the pair (a, b). In conjunction elimination rules fst f extracts the realisation
for A from f and snd f extracts the realisation for B from f . In the implication
introduction rule realisation of A becomes a variable bound by λ on the realisa-
tion of B. In the implication elimination rule a function f (that is a realisation
of A ⊃ B) is applied to a.

3.1.2 Structural Synthesis of Programs (SSP)

The main idea of structural synthesis of programs is to construct programs au-
tomatically from existing preprogrammed components based on their structural
properties and a goal the user wants to achieve.

Instead of the conventional specification ∀x(P (x) ⊃ ∃yR(x, y)) of the pro-
gram component where input x and output y are bound by the relation R, SSP
uses the specification ∀x(P (X) ⊃ ∃yR(y)). This allows to consider the closed
formulas ∃x(P (x)) and ∃yR(y) as propositions and the specification becomes
P ⊃ R, where P denotes the computability of the input and R denotes the
computability of the output. This means that logical language of SSP is an
implicative fragment of propositional language with restricted nestedness of im-
plications. SSP’s logical language has three kinds of formulas:

1. Propositional variables: A, B , C , . . .
2. One level implications: A ∧ . . . ∧ B ⊃ C
3. Two level implications:

(A1 ∧ . . . ∧An ⊃ B1) ∧ . . . ∧ (D1 ∧ . . . ∧Dm ⊃ Bk) ∧ E ∧ . . . ∧ F ⊃ C

Computability statement is a formula that represents a function: a1, a2, . . . , an

⊃ b1, b2, . . . , bm{f}, where a1, a2, . . . , an are inputs and b1, b2, . . . , bm are out-
puts of the function f . The function f is actually a realisation of the formula just
like it was used in Subsection 3.1.1.

Computational meaning of the formulas from SSP’s logical language is the
following:

1. Propositional variable corresponds to the object variable from the specifi-
cation. If the problem specification includes a variable a, then there exists

33

a propositional variable A in the logical language. Propositional variable
A expresses the fact that a value of an object variable a can be computed.

2. Formula A ∧ . . . ∧ B ⊃ C expresses the computability of object variable
c (corresponding to the propositional variable C in the logic) from object
variables a, . . . , b that correspond to the propositional variables A, . . . , B.
Computability of the object variable c from the object variables a, . . . , b by
a function g can also be expressed as a computability statement a, . . . , b ⊃
c{g}, where the inputs of the function g is on the left side of the arrow
and the output is on the right side of the arrow.

3. Formula (A1∧. . .∧An ⊃ B1)∧. . .∧(D1∧. . .∧Dm ⊃ Bk)∧E∧. . .∧F ⊃ C
expresses computability of object variable c (corresponding to proposi-
tional variable C) from variables e, . . . , f when values of object variables
b1, . . . , bk are computable from their inputs a1, . . . , an and d1, . . . , dm re-
spectively. Computability statements that other computability statements
depend on are called subtasks. For example, computability statement
a1, . . . , an ⊃ b1 is a subtask of the computability statement: (a1, . . . , an ⊃
b1), d, e ⊃ c{g}. Note that realisation of the subtask is not given in the
formula, it must be synthesised.

Only one output was shown in the computability statements above, however,
one output was shown for simplicity and it is not a restriction of logic. Therefore,
computability statements can have multiple outputs, just like it was shown before.

When using the conventional IPL rules shown in Table 3.2, programs extracted
from the proof will contain unnecessary steps of composition and decomposition
of data structures that correspond to realisations of conjunctions. This, however,
leads to inefficient programs. To solve this problem, SSP uses the following
three structural synthesis rules (SSR) that are admissible rules in intuitionsitic
propositional logic. Note that realisations are given in the curly brackets. Bold
capital letter (i.e., A and Ci) represent conjunctions and lists.

Implication introduction:

Γ,A{a} ` B{b}
Γ ` A ⊃ B{λa.b} ⊃ I

Implication elimination:

Γ ` A ⊃ B{f} Σi ` Ai{ai}
Γ,Σ1,Σ2, . . .Σn ` B{f(a1, a2, ..., an)} ⊃ E

where i = 1, 2, . . . n.

34

Double implication elimination:

` ∧i(Ci ⊃ Di{φi}) ∧A ⊃ B{f} Γi,Ci ` Di{gi} Σj ` Aj{aj}
Γ1,Γ2, . . .Γn,Σ1,Σ2, . . .Σn ` B{f ′(g1, g2, . . . gn, a1, a2, . . . am)} ⊃ EE

where i = 1, 2, . . . n and j = 1, 2, . . .m.
Logic described in this section can be used to represent service models logi-

cally and to synthesise new compound services on them. Logical representation
of services, data flow, control flow and service models is given in the rest of
this chapter. A compound service synthesis rules and an example derivation are
given at the end of this chapter.

3.2 Services and Simple Workflows

In intuitionistic propositional logic the functionality of a web service with pre-
conditions A1, A2, . . . , An and postconditions B1, B2, Bm is representable by the
following implication:

A1 ∧ . . . ∧An ⊃ B1 ∧ . . . ∧Bm

where A1, . . . An, B1, . . . , Bm are propositions and having A1, . . . , An one can
obtain B1, . . . , Bm. According to the standard semantics of intuitionistic logic
the meaning of a proposition is not a truth-value, it is an object of a proper
type. According to the semantics of intuitionistic logic, the implications have a
computational meaning, or in other words – their realisations must be functions.
In this case their realisations are services that can be shown as the realisations
of the computability statement written in curly braces:

a1, . . . , an ⊃ b1, . . . , bm{service}.

When having more than one web service, for example, a ⊃ b{service1}
and b ⊃ c{service2}, it is easy to represent the order of these two services
by a graph. Figure 3.2 shows the graph representation of these two services.
Rectangles in the figure represent services and a, b and c represent data entities.
Data dependency between services is created with data entities and arrows that
represent pre- and postcondition descriptions.

a service1 service2b c

Figure 3.2. Simple workflow with data entities

35

3.3 Logic for Higher-Order Workflows

The question now is how to represent control constructs, for example, sequence,
cycle, condition. The difference between an atomic web service and a control
node is that the control node, in addition to simple data pre- and postconditions,
has other services and control nodes as parameters.

3.3.1 Control Flow

When two services have to be invoked one after another, they are controlled by
a higher-order node sequence. This is represented as a graph in Figure 3.3.

The thin line in Figure 3.3 expresses the order of invocation and thick lines
express the control that sequence has over other services. Types of control nodes
with incoming thick lines are one order higher than service nodes at the other
end of a thick line, because they have other nodes (both atomic and control) as
parameters.

service1

sequence

service2

Figure 3.3. Higher-order service sequence and atomic services service1 and service2

When a control node has other control nodes as parameters, it can be rep-
resented on the graph like shown in Figure 3.4, where control node cycle takes
sequence as a parameter and is itself a parameter to another sequence.

3.3.2 Control and Data Flow

To show the data passed between the nodes of the workflow one can extend a
workflow graph by including explicit data nodes, and use the arrows as pre- and
postcondition descriptions, as it was done with the simple workflow shown in
Section 3.2. A higher-order workflow graph extended with data dependencies is
shown in Figure 3.5.

The extension by data dependencies adds some implicit control information –
order of services may be defined already by data dependencies. When the order
is determined by data dependencies, the explicit ordering of control information
can be dropped. Deriving control information from data dependencies is the
main idea of the composition process described in this work. For example, in the
workflow described in Figure 3.5, both sequence control nodes, can be dropped

36

service1

sequence

service2

service3

sequence

cycle

Figure 3.4. Higher-order workflow with three control nodes

because the order is already defined by data dependencies. The result is shown
in Figure 3.6.

To avoid operating with names of services in logic, services that are parameters
to control nodes can be described by means of their pre- and postconditions,
binding them with control nodes, if needed. This is denoted by dashed arrows
and logically this is represented by a nested implication. Now the notation must
be changed. Instead of thick arrows, thin arrows that have a special marking
(dashed arrows) for preconditions and postconditions of nested implications can
be used. This way it is possible to use uniform representation for binding data
on all workflow models as shown in Figure 3.6. In this figure, b and d express
pre- and postcondition of a node (this node is actually a sequence, containing
two nodes) that is a parameter to the cycle.

The logic behind this workflow is expressed by four formulas, one formula
for each atomic service and one for a control node. Basic services are described
by simple implications:

B ⊃ C{service1};C ⊃ D{service2};E ⊃ F{service3}.

And a control node cycle is expressed in logic, using a nested implication as
follows:

A ∧ (B ⊃ D) ⊃ E{cycle}.

The nested implication B ⊃ D represents a subtask (i.e., an input) of the
control node cycle. Realisation of B ⊃ D is a body of the loop performed by
the cycle. This body must be synthesised from available services. Higher-order
nodes may have more than one subtask and depending on the realisation of the

37

service1

sequence

service2

service3

sequence

cyclea

b

c

d

e f

Figure 3.5. Higher-order workflow graph with data dependencies

service1 service2

service3cyclea

b

c

d

e f

Figure 3.6. Expressing higher-order workflow by means of data dependencies

higher-order node each subtask can be executed multiple times. For example,
in case of the higher-order node cycle, one might want to perform its body that
realises B ⊃ D, until some condition becomes true.

The fragment of logic used here is already sufficient for representing data and
control flow and also for synthesising services as nested flows of services taking
their data dependencies into account. The evaluation of the condition itself can
be expressed by another subtask, if needed.

3.4 Logical Representation of Service Models

It was shown in Section 2.5 that service model is representable by means of
higher-order workflows. The same thing applies for the logic. The logic described

38

in Section 3.3 is applicable to service models. Every service in the service model
is described by a formula.

v1
r1 v2 v3

v4 v5

v6

v7

v8

v12v11

v9 v10

v13

v14

r4

r2

r3 r5

r6 r7

r8

r9

Figure 3.7. Example service model

For example, service model shown in Figure 3.7 (it is the same service model
that was shown in Figure 2.1), could be specified with the following implications:

V 1 ⊃ V 2{r1};V 3 ∧ V 5 ⊃ V 12{r5};V 6 ⊃ V 4{r3};V 4 ⊃ V 5{r4};

V 6 ⊃ V 7{r6};V 10 ⊃ V 11{r7};V 9 ⊃ V 14{r9};V 11 ∧ V 12 ⊃ V 13{r8};

The implication for the higher-order component cycle is the following:

(V 4 ⊃ V 5) ∧ V 2 ⊃ V 3{r2};

And the implication for the Selector component is the following:

V 7 ⊃ V 8 ∧ V 9 ∧ V 10{select}.

The number of atomic services in the service model can be very large. Ex-
periments with service models containing 300 atomic services have been done as

39

part of this work. These experiments are described in Chapter 5. When hierar-
chical models are used, components of the upper level model can be unfolded in
the higher-order workflow representation. As a consequence, the representation is
applicable to hierarchical service models as well. Experiments with hierarchical
service models are described in Chapter 6.

3.5 Synthesis of Compound Services

The compound service synthesis method is based on structural synthesis of pro-
grams (SSP) [38, 40, 59]. In this setting, a goal service is considered as a
computational problem – computing a desired output from a given input. In-
formation for solving the problem is described for SSP by a set of formulas
automatically extracted from a specification. A goal that the expected result is
computable is formulated as a theorem to be proven. Formulas are given in the
intuitionistic logic. A proof of solvability of the problem is built, and a program
for solving the problem is extracted from the proof. A tool that implements the
method and is based on SSP is described in Chapter 4. The process of automated
composition on service models is explained in Figure 3.8.

Service model Goal (pre- and postconditions
of a service to be composed)

Formulas in intuitionistic logic

Proof

Synthesised structure of
a compound web service

Process language
(e.g., BPEL, OWL-S)

Figure 3.8. Steps in the composition process

In order to compose web services automatically in some domain, using the
composition method shown in Figure 3.8, domain’s service model needs to be
created. On the service model a goal, describing the pre- and postconditions of
a compound web service to be constructed, can be defined by the user. Service

40

model is then translated into the logic. Using the set of formulas describing
the service model, a proof of the composability of the goal service is obtained
automatically. The resulting proof corresponds to the structure of the compound
service and it can be translated into some process or workflow language.

3.5.1 Defining a Goal

A compound service, that is, a goal, can itself be represented as a logical formula.
When a new composite service with preconditions X1, . . . , Xm and postcondi-
tions Y1, . . . , Yn has to be built, a goal is given in the form of an implication:

X1 ∧ . . . ∧Xm ⊃ Y1 ∧ . . . ∧ Yn,

A program to construct the goal service is synthesised automatically. On the
service model shown in Figure 3.7, a goal can be represented, for example, as
an implication V 6 ⊃ V 11 and on the workflow shown in Figure 3.6 a goal can
be represented as an implication A ⊃ F .

3.5.2 Finding a Proof

SSP rules that were given in Subsection 3.1.2 can be simplified for service com-
position. The SSP rules for service composition are shown here with capital
letters as metasymbols denoting conjunctions of propositional variables:

A ⊃ B ∧ C{f} B ∧D ⊃ G{g}
A ∧D ⊃ C ∧G{f ; g} (SEQ)

(A ⊃ B) ∧X ⊃ Z{f} A ∧W ⊃ B{g}
X ∧W ⊃ Z{f(g)} (HOW)

The first rule (SEQ) is for sequential composition of services and the second
(HOW) is for higher-order control constructs that contain a subtask which can be
solved by the program g. A program g can represent, for example, a body of the
cycle and must be known before the HOW rule can be applied. When applying
HOW, g is given as a parameter for f. The rule HOW contains only one subtask,
but formulas with more than one subtask are also admissible.

In case of the example given in Figure 3.6 the problem of computing f from
a – the synthesis of compound service with an input a and an output f – is
described for SSP with the same formulas that were given before:

B ⊃ C{service1};

C ⊃ D{service2};

E ⊃ F{service3};

41

A ∧ (B ⊃ D) ⊃ E{cycle(φ)};

and a goal: A ⊃ F.

Note that the realisation of the subtask B ⊃ D in the program for cycle,
is unknown and is denoted by the functional variable φ. In this example the
resulting program is

cycle(service1; service2); service3.

To derive the goal, the rules SEQ and HOW, must be used. This results in the
following derivation:

A ∧ (B ⊃ D) ⊃ E{cycle(φ)}

B ⊃ C{service1} C ⊃ D{service2}

B ⊃ D{service1; service2}
SEQ

A ⊃ E{cycle(service1; service2)}
HOW

E ⊃ F{service3}

A ⊃ F{cycle(service1; service2); service3}
SEQ

This derivation represents a resulting compound service in logic. It also proves
that data entity f is computable from a in the given workflow. It is possible to ex-
tract the structure of the resulting compound service from the constructive proof.
In addition, realisations given as programs contain the information necessary to
either invoke atomic web services or to generate a process language description
for a given workflow. The actual result depends on the content of the realisations.

3.6 Conclusion

Semantics of service models, represented by means of implicative fragment of
intuitionistic propositional logic was described in this chapter. SSP-based com-
position on service models forms the web service composition proposed in this
work. To investigate the applicablity of service models and their logical repre-
sentetion to web service composition, the method was implemented as a proof
of concept web service composition tool, which is described in Chapter 4.

42

4 Web Service Composition Tool

To demonstrate the applicability of the SSP-based web service composition
method to service models, a proof of concept tool has been implemented on
CoCoViLa model-based software development platform [4, 16]. CoCoViLa sup-
ports SSP-based planning and is able to handle specifications in visual or textual
form.

Description of the architecture and implementation of the web service com-
position tool is given in this chapter. First, the knowledge architecture of the
web service composition tool [31] is given. Second, model-based software de-
velopment platform CoCoViLa is introduced. Third, implementation details –
composition package, specification language and visual language – of the web
service composition tool are described.

4.1 Architecture of the Service Composition Tool

Web service composition is a knowledge intensive process where knowledge is
used in different forms and ways. This section gives a brief abstract description
of the knowledge usage in the web service composition tool. A concept of
knowledge system as a component is used to describe the knowledge architecture
of the tool as a composition of knowledge systems.

4.1.1 Knowledge System

The definition of knowledge system (KS) and the notations introduced in [58]
are used in this thesis to describe the knowledge architecture of the composition
tool. A knowledge system is a component – a module of knowledge architecture
of a knowledge-based system. It includes a knowledge language, a knowledge
handling mechanism, for example, an inference engine, and a method for associ-
ating meanings to knowledge objects represented in the knowledge language. It
is assumed that there is always a set of meanings and a mapping from knowledge
objects into the set of meanings in a knowledge system. The set of knowledge
objects S and the set of meanings M of a knowledge system can be represented
visually as shown in Figure 4.1.

Knowledge systems can be composed into larger knowledge architectures by
connecting them hierarchically, semantically and operationally. Figure 4.2 shows
notations for hierarchical and semantic connections of knowledge systems. Two
knowledge systems K1 and K2 with sets of notations S1 , S2 and sets of meanings
M1 , M2 respectively are connected hierarchically (Figure 4.2(a)), if there is a

43

relation R between the sets M1 and S2 , that is, meanings of the knowledge
system K1 tell something about the knowledge objects of the knowledge system
K2 . K1 is called upper and K2 is called lower system. If the relation R is
one-to-one mapping between some subsets of M1 and S2 , then the knowledge
systems are strongly hierarchically connected.

S

M

Figure 4.1. Notation of a knowledge system

Knowledge systems K1 and K2 are connected semantically, if they have one
and the same set of meanings M . This is shown in Figure 4.2 (b).

S

M

S

M

1

1

2

2

K

K

1

2

a)

K
1

K

S1 S2

2

M

b)

Figure 4.2. Hierarchical (a) and semantic (b) connection of knowledge systems

4.1.2 Knowledge Architecture

The composition tool implemented in this work has three knowledge levels:

1. user knowledge level with visual and textual representation of knowledge;
2. logical level for formal representation of knowledge and automatic com-

position of new web services;
3. service implementation level for grounding of web services – invoking web

services and performing actual computations.

Figure 4.3 shows the knowledge architecture of the web service composition tool
developed as a package in CoCoViLa. On the user knowledge level there are
two semantically connected knowledge systems: visual and textual knowledge
systems. These systems have one and the same set of meanings – unfolded (de-
tailed) specifications of web services. This allows to connect these knowledge
systems semantically. Meanings of knowledge objects are unfolded textual repre-
sentations of specifications on this level. Their elements are almost in one-to-one

44

correspondence with knowledge objects of the logical level. This makes it easy
to introduce the hierarchical connection R1 between the user knowledge and the
logical level. Knowledge objects on the logical level are logical formulas repre-
senting functionality of atomic web services, data entities and control nodes. This
level is hidden from the user. Meanings of logical level are programs that are
realizations of intuitionistic formulas. Implementation of these programs is given
in the service implementation level. This creates the hierarchical connection R2

between the logical level and the service implementation level. Service imple-
mentation level also has a hierarchical connection R3 with the user knowledge
level where the grounding information (for example, names and locations of ser-
vices) comes from. Programs and grounding knowledge objects are mapped into
Java programs on the service implementation level. Java program is a generator
for the compound service (connection R4). Meanings of the service implemen-
tation level are composed web service descriptions generated by Java programs.
The following subsections describe the three knowledge levels in more detail.

logical formulas

realisations of formulas

visual KS textual KS

schemas textual specs

unfolded text

service programs grounding

Java program

Java program = service generator

service description

user knowledge level

logical level
(intuitionistic logic)

service implementation level

R1

R2

R3

R4

Figure 4.3. Knowledge architecture of the web service composition tool

4.1.3 User Knowledge Level

The user knowledge level supports visual and textual representation of knowledge
about service models, handling of inheritance, equality and structural relations.
Knowledge objects are both visual and textual specifications of web service com-
position problems given by users (i.e., service models and goals). This level is
implemented in CoCoViLa by extending it with suitable metaclasses for a generic

45

service. Inheritance, equality and structural relations are supported entirely by
CoCoViLa. The user can develop service models manually in the Scheme Ed-
itor of CoCoViLa or use service models generated automatically from service
descriptions given, for example, in SAWSDL.

It is also possible to introduce values of attributes of components of the
model and specify a goal that must be reached by the expected web service.
Visual representation of the knowledge on the user knowledge level is shown
in Figure 4.4. This figure also shows how a goal is defined using the pop-up
window. Textual representation of the knowledge on the user knowledge level is
shown in Figure 4.5. The visual model and a textual specification have exactly
the same meaning.

4.1.4 Logical Level

Knowledge system of the logical level can be represented as an implicative frag-
ment of the intuitionistic logic, this was explained in Chapter 3. Computability
statements describing web services become implications in the logical level and
are handled by a theorem prover. The knowledge objects on the logical level are
logical formulas – showing the functionality of atomic web services. Meanings
of logical formulas on this level are algorithms. A new composite web service
is synthesised by means of structural synthesis of programs.

In principle the synthesis process is as follows. The input to the process is a
set of logical formulas that represents knowledge about the atomic web services
that can be used as components of the synthesised web service, and also a goal,
that is, a formula that describes the web service to be composed.

The tool tries to derive logically the goal. If this is possible, then the web
service can be composed – the meaning of the derived goal is the algorithm of
the expected web service. This algorithm is represented only by its structure.
Implementation details are available from the specification given on the user
knowledge level, see relation R3 between the unfolded text and grounding in
Figure 4.3.

4.1.5 Service Implementation Level

The main input of the service implementation level is a representation of the
structure of a synthesised web service received from the logical level. Another
input comes from the specification, as shown in Figure 4.3. These inputs together
have meanings as Java programs. The output of this level is a specification of
the web service in some process language, for example, in BPEL. This level is a
hierarchical connection of two knowledge systems. The higher one takes structure
of a web service and grounding of atomic web services, and produces a meaning
that is a Java code with a method call for each atomic web service included into
the composed web service. The lower one takes the Java code as a knowledge

46

object and produces a web service description as the respective meaning. That
is, first a generator for generating a composed web service is synthesised, and
thereafter it is run and a required web service description is generated.

4.2 CoCoViLa

CoCoViLa [4, 16] is a model-based software development environment.
CoCoViLa enables the creation, modification and usage of software packages
with domain specific visual languages. Each software package allows to create
models describing some problem domain. On those models, problems to be
solved can be specified. Structural synthesis of programs can then be applied to
synthesise a solution to the problem, if a solution exists.

Tabs with names of the opened service models Components toolbar Properties window

Figure 4.4. CoCoViLa Scheme Editor with properties window

When creating a package for a new domain, it is possible to use language
components from other packages. This allows to create a software package that
provides general purpose workflow description as a base language and extend
this base language with domain specific components, for each possible domain.
For example, different languages can be created for the composition front-end for

47

the e-government web services and for web services offering access to scientific
data.

CoCoViLa includes two editors – Scheme Editor and Class Editor. Class
Editor is used to create and modify software packages, including visual parts and
component specifications. Class Editor allows to develop new components from
scratch or reuse and modify components from existing software packages.

In the context of web service composition, Scheme Editor is used to create,
visualise, modify, compile and run schemes, that is, to handle service models. It
is possible to specify pre- or postconditions of the web service to be composed,
using a properties window of the data entity and setting data to be either input
or output (see Figure 4.4). It is possible to open more than one model in the
same window. Names of opened models are shown in tabs on top of the window.
Figure 4.4 shows the Scheme Editor window with four opened service models
– XRoad, BusinessReg, VehicleReg, PopulationReg – and a properties window
of the selected data entity – NationalIDCode. PopulationReg model’s tab is
selected and its visual model is shown in the main window. Circles represent
data entities, rectangles represent atomic web services and a square with a label
“WSDL” represents a superclass that contains information that is common to the
whole model. Components that are available for service models in population
registry package are shown in components toolbar.

All visual components in CoCoViLa have a metaclass associated with them.
Metaclass contains two parts: a logical specification part and a program part.
The specification part is also called metainterface and it allows to use the logic
described in Chapter 3, by using the specification language that is covered in
Section 4.3.2. The specification is included in the metaclass as a comment
between /*@ and @*/. The program part includes the realisations for axioms
given in the specification part and it is implemented as a set of Java methods.
The specification language supports the inheritance of metaclasses. The following
code shows a metalclass for the web service GetAddress.

class GetAddress extends Service {

/*@ specification getAddress super Service {

String firstName, lastName;

String address;

opName, inputMsg, outputMsg, firstName,

lastName -> address {getAddress};

}@*/

public String getAddress (String opName, String inputMsg,

String outputMsg, firstName, lastName) {

String address;

...

return address;

}

}

48

The exact implementation of the realisation varies for different web services.
Metaclass GetAddress inherits the variables opName, inputMsg and outputMsg
from the metaclass Service. Other atomic web services also inherit common
variables from the generic Service class. Metaclass Service is implemented as
follows:

class Service {

/*@ specification Service {

String opName;

String inputMsg;

String outputMsg;

}@*/

}

CoCoViLa is implemented in Java and therefore it also supports Java inher-
itance. This means that in addition to metainterface inheritance it is possible
to inherit realisations. The specification language is covered in more detail in
Subsection 4.3.2.

Figure 4.5. CoCoViLa specification window

Visual domain models have one-to-one translation to the model’s textual form.
Textual representation is a bit more expressive and allows to express, for example,
logical pre-and postconditions and inheritance that might not be shown on visual

49

models. Textual specification of the visual model consists only of a metainterface
that is used for synthesis. If the problem is solvable, then the realisations of
scheme components are used for generating a program that solves the problem.
This means that in case of very large models, or if no visualisation is necessary,
visual part can be ignored and textual specification can be used instead. A
fragment of the model’s textual form is shown in the specification window in
Figure 4.5. The specification extends the WSDL class that was set as a superclass
in the Figure 4.4. Inheritance from the superclass is generated automatically into
the textual specifications. If the goal is given and the scheme is available, SSP-
based program synthesis method is applied to prove the computability of the
goal on the given model. If the proof is found it is automatically transformed
into a Java program. After compiling and running a Java program, the result is
obtained. Scheme Editor supports usage of hierarchical models that allows to
divide the complexity of large models into different layers.

4.3 Implementation of the Web Service Composition Tool

This section describes the implementation details of the web service composi-
tion tool. The method of automated web service composition has already been
described in Chapter 3 and the tool’s knowledge architecture was given in Sec-
tion 4.1. Automatic steps made by the composition tool are shown in Figure 4.6.
Note that this figure is almost the same as Figure 3.8, except, it has an additional
input – superclass and an additional step where Java code is generated. This step
is specific to the tool used – CoCoViLa, and not forced by the method of the
web service composition proposed in this work.

Superclass allows to specify additional information about the web service
to be composed. For example, a name of the resulting web service and a file
where the output is written to can be defined by the properties of the superclass.
Superclass also has an ability to gather data from the components of the service
model. The result of the Java program depends on the superclass.

To use the composition tool, the developer of a new compound web service
has to know how to specify the goal, that is, requested postconditions and needed
preconditions of the compound web service. After the pre- and postconditions
have been defined, a web service composition algorithm will be synthesised au-
tomatically. The structure of this algorithm already represents the structure of
the compound web service to be generated. However, CoCoViLa produces only
a Java code, but the user needs a representation in some process language (e.g.,
BPEL). Therefore the code uses preprogrammed generators of BPEL or OWL-S
(which one is generated is defined by the superclass). When the code is exe-
cuted, a web service description corresponding to the structure of the synthesised
algorithm is generated using additional information from the initial specification.

50

Service model
Goal (pre- and postconditions
of a web service to be composed)

Formulas in intuitionistic logic

Proof

Synthesised structure of
a compound web service

Process language
(e.g., BPEL, OWL-S)

Java code

Superclass

Figure 4.6. Automatic steps in the composition tool

All intermediate steps, that is, steps between defining a goal on the model and
getting a compound web service description as an output, are done automatically
by the composition tool. However, if necessary, intermediate steps (e.g., a struc-
ture of the compound web service or a generated Java code) can be visualised
for the developer, for instance, for debugging purposes.

4.3.1 Composition Packages

A package is a collection of components and schemes related to an application
domain. A package is described by a package description file in XML format.
Each package can have its own visual language, but it is also possible to reuse
components from other packages.

4.3.2 Specification Language for Web Service Composition

A specification language for the web service composition is described here. This
language allows to specify the expressions of the logic that were described in
Chapter 3 and it is implemented in CoCoViLa.

51

The specification language used for web service composition is the following:

• Specification of variables: type id, [id2, ...];
• Variable binding: variable1 = variable2; Variable binding specifies

the equality between variables variable1 and variable2.
• Axioms: input -> output {realisation}; Axiom is a computability

statement (see the Chapter 3 on logic), where input is a parameter for
the method realisation and output is what is returned. Axiom’s input
may include multiple variables, separated by commas. Commas denote
the conjunctions in logic and variables correspond to the propositional
variables of intuitionistic logic. Axiom’s output can be an array or a
structure. Input may also include subtasks, for instance:
[a->b], c -> output{realisation};.
In this example, axiom’s input contains a subtask [a->b], and a variable c.

• Aliases:
alias aliasName=(variableName1, ..., variableNameN);
Alias variable allows to define a structures containing several variables. It
is useful in Selector/Constructor components that enable to take individual
values out of the structure or to create structures.

• Wildcards: alias aliasName=(*.variableName);
In the case of wildcards, alias structure will contain all the variables having
the name variableName. Variables in alias with a wildcard depend on
particular specification where such a statement occurs.

• Control variables: void controlVariableName;.
Control variables are used as logical pre- and postconditions.

• Specification language supports inheritance. Inheritance is used in two
ways in the web service composition context:

1. Specific atomic web service components inherit common variables
and axioms from the generic Service component.

2. A scheme can inherit from its superclass. This allows to direct the
composition flow with control variables, pre- and postconditions and
to gather data from scheme using wildcards.

The full syntax of the specification language used for web service composition
is the following:

MetaInterface ::= ’specification’ SpecClassName [InheritanceDecl]

’{’Specification ’}’

InheritanceDecl ::= ’super’ SuperClassList

SuperClassList ::= SpecClassName [’,’ SuperClassList]

Specification ::= Statement ’;’ [Specification]

Statement ::= VariableDecl | Binding | Valuation | Axiom | Alias

VariableDecl ::= Type IdentList

IdentList ::= Identifier [’,’ IdentList]

Binding ::= Variable ’=’ Variable

52

Variable ::= Identifier | Variable’.’Identifier

Valuation ::= Variable ’=’ Value

Axiom ::= (SimpleAxiom | SubtaskAxiom) ’{’ Realization ’}’

SimpleAxiom ::= VariableList ’->’ Variable

VariableList ::= Variable [’,’ VariableList]

SubtaskAxiom ::= SubtaskList [’,’ VariableList] ’->’ Variable

SubtaskList ::= Subtask [’,’ SubtaskList]

Subtask ::= ’[’ VariableList ’->’ VariableList ’]’

Goal ::= [GoalInputs] ’->’ GoalOutputs

GoalInputs ::= VariableList

GoalOutputs ::= VariableList

Alias ::= (AliasDeclaration [’=’ AliasStructure]) | AliasDefinition

AliasDeclaration ::= ’alias’ [’(’ Type’)’] Identifier

AliasStructure ::= ’(’ (VariableList | AliasWildcard)’)’

AliasWildcard ::= ’*.’Identifier

AliasDefinition ::= Identifier ’=’ ’[’ VariableList ’]’

Type ::= JavaType | SpecClassName | ’void’ | ’any’

JavaType ::= JavaReferenceType | PrimitiveType

Identifier ::= Letter(Letter|Number|’_’)*

In addition to these language constructs, CoCoViLa also supports equations
and exceptions that have not been used for web service composition in this thesis.
Full description of the specification language of the tool used can be found from
the documentation on CoCoViLa’s homepage [5].

4.3.3 Visual Language for Web Service Composition

CoCoViLa allows the creation of domain specific visual languages. In this work,
the implemented language represents web services, control nodes, data entities,
transformation components and their connections. It is used to create/generate
and add data to schemes, that is, visual representations of service models. There
are three types of components in the visual language for web service composition:
components that are used in submodels (web service components), components
that are used in upper level hierarchical model (registry components) and general
components available to all models. Inputs and outputs in the visual language are
represented by small circles, called ports and specification variables accessible
through the properties window are called fields.

Generic atomic web service and registry components are shown in Table 4.1.
General components are described in Table 4.2. Note that the number of ports and
fields of components representing atomic web services and registry components
can be different and depends on actual web services, but in general they look
like shown in Table 4.1.

4.3.4 Output Generation

As it was stated earlier, a form of the output depends on the superclass that is
given. There are two ways to generate output:

53

Table 4.1. Atomic web service and registry components of the visual language
Visual image Meaning Description

Atomic web
service

Atomic web service allows to specify
pre- and postconditions by connecting
respective ports to the data entities.
Which ports represent pre- and which
ones are for postconditions is
indicated by the arrow. In addition, it
is possible to specify service name,
location, messages, etc. in the
properties window of the component.
Different atomic web services can
have different number of ports and
these ports can have different types.
But their general look is like shown
on the figure.

Registry

Registry components enable to use
submodel’s information from the
upper level model. They represent
web services from one registry or
information system. Different registry
components can have different
number of ports.

1. To instantiate all components with a correct text that is written to a file
when the component is reached. This approach is good when simulating
the execution. This approach also allows to create realisations of web
services that do not output text but invoke the web service. Text or other
preconditions can be set from the superclass by using the wildcard. This,
however, does not work well with block-structured languages like BPEL,
where the process contains information about all the variables involved,
followed by the web services and control nodes involved and where text
needs to be generated both when a control node is entered and when it is
left.

2. To extract the structure of the compound web service first and to generate
the output from the superclass. This approach works well when block-
structured output language needs to be generated.

The second approach has been used in the experiments on service models
described in this thesis. Previously, experiments have also been done as a part

54

of this work with generating text from the components that were a part of simple
workflows [37].

Table 4.2. General components of the visual language
Visual image Meaning Description

Data entity

Data entity has a hidden port in its
center. Data entities from different
types also have ports of different
types.

Selector/
Constructor

Selector/Constructor works both
ways, it either takes elements out of
the structure or inserts elements into
the structure. Different components
exist for structures with different
number of elements.

Same as
Same as component is used to
connect data entities that have
different names but the same meaning.

Cycle

Cycle is a higher-order component
that is used to cycle through a subtask
specified by its pre-and postconditions
connected by the ports at the bottom
of the Cycle component. (Other
higher-order components are
possible.)

Superclass

Superclass is used to insert new
information (process name,
description, etc.) and to choose an
output format. In this case, output
format is going to be BPEL, but other
formats are possible.

55

4.4 Conclusion

Knowledge architecture and implementation details of the web service composi-
tion tool, developed in this work, was described in this thesis. This tool enables
the user to work with visual service models. At the same time it is able to
handle service models automatically to reason about the goals, that is, desired
compound web services, given by the user. In order to see if the tool is scalable
and applicable to real world web services, experiments were done on Estonian
e-goverment web services. These experiments are described in Chapters 5 and 6.

56

5 Web Service Composition on Large Service
Models

In Chapter 4 a web service composition tool, developed as part of this work, was
described. This chapter describes the experiments done in order to test the tools
applicability to large real-world service models. X-Road service descriptions are
used for experiments described in this chapter and the following chapter. The
experiments on service models that are part of this work started in 2007. At this
time X-Road [20, 21] contained almost 1000 web services. Today the number of
web services is more than 2000 [49]. Experiments on the X-Road service mode
which was created by Peep Küngas [27] in 2006 are described in this chapter.
Experiments on hierarchical X-Road service models are described in Chapter 6.

This chapter starts with a description of the initial X-Road service model,
followed by its equivalent in CoCoViLa. After the description of the service
model the synthesis of compound web services on this model is explained on an
example.

5.1 X-Road Model

The first X-Road model that was used in this work, was a syntactic service model
created by Peep Küngas in 2006 [27], it included about 300 atomic web services
and about 600 unique references to data entities. This model was a graph in GML
(Graphical Modelling Language) format. Figure 5.1 shows a visual representation
of the whole service model visualised by yEd graph editor [70]. It is a large
graph where nodes are atomic web services and data entities.

A small part of the model shown by a rectangle in Figure 5.1 is enlarged
in the Figure 5.2. List in the left pane of the user interface fragment shows a
scrollable list of all components. Rectangles represent atomic web services and
circles represent inputs and outputs that are connected to web services in this
model fragment. Size of the circle shows its relative importance (connectivity to
web services). A resource with the largest value in this model is NationalIdCode
that is used in most of the web services in Estonian e-government information
system.

The model presented here was the basis for the automatic synthesis of web
services in the experiments on large service models. However, it had to be
transformed into CoCoViLa format in order to be applicable as a specification
for the synthesis.

57

Figure 5.1. Original X-Road service model

Figure 5.2. Zoomed-in part of the original X-Road service model

58

5.2 Service Model in CoCoViLa

To use the model described in the previous section in CoCoViLa – a program
was created that automatically translated models in GML format into CoCoViLa
models. Translation was quite easy, as the initial model only contained informa-
tion about the names of atomic web services, data entities and the input/output
dependencies. All atomic web services were created as components of one pack-
age, inputs and outputs of atomic web services were considered to have a type
String or a structure consisting of Strings. Therefore, all data entities were gener-
ated with a type String or as tuples of Strings. The initial model did not contain
any information about the actual messages exchanged, thus, all the input mes-
sages were generated in the form get + <servicename> and output messages
were generated in the form <servicename>+ Response.

Figure 5.3. X-Road model in CoCoViLa

59

The service model represented in CoCoViLa is shown in Figure 5.3. This
model can be zoomed in or out as needed. All components in this model are
part of one package in CoCoViLa, therefore, the number of components in the
toolbar is quite large. As in the initial model, rectangles represent atomic web
services and circles represent data entities. Note that the visual notation used in
this thesis for large service models is slightly different from the notation used in
the earlier published papers. Notation in the papers was more compact which
was important for large models. The notation used in the thesis is different in
order to conform to the notation developed for hierarchical service composition.

Figure 5.4. Zoomed in X-Road model with a search window in CoCoViLa

By opening the data entity’s properties window it is possible to define known
preconditions and desired postconditions from which the goal web service is
formulated. To simplify this task on such a large model, CoCoViLa offers a
possibility to search on a scheme (i.e., a visual representation of the model). It
is possible to search either by component’s (object in CoCoViLa) name or by the

60

name or a value of the field. If a component is found it is focused and highlighted
on the scheme. This is shown in Figure 5.4, which represents a fragment of the
zoomed in X-Road service model in CoCoViLa. This figure also shows a search
window with a search string Address and one of the highlighted data entities that
is returned as a result – OwnerAddressString.

5.3 Automatic Handling of a Service Model

In order to illustrate the composition process of the web service composition
tool described in Chapter 4, an example of composition on a large service model
described in the previous section is given here. Consider, for instance, that an
official has to find a person’s occupation and a contact address, having only infor-
mation about the person’s graduation certificate. When finding the information,
official has to keep in mind that different databases of X-Road registries have
their own copy of person’s address, which may not be the same in all registries.
Therefore, to find all possible addresses of a particular person, an official has to
query all databases that may have information about addresses. Currently these
queries have to be executed separately on different databases. A compound web
service would allow inserting a graduation certificate’s number or another iden-
tifier as an input to get an occupation area and different contact addresses as an
output.

To create this compound web service in CoCoViLa, the user must, first, to
define the output format by selecting corresponding superclass and to specify
other relevant details, for example, the name of the output process and the file
where the output is written. These details depend on the superclass that has
been selected. In this example, BPEL superclass is selected. This is shown
in Figure 5.3. The second step is to find relevant data entities on the service
model. These data entities are GraduationCertificate as a precondition and Oc-
cupationArea, AddressString, EstonianAddressString, OwnerAddressString, Resi-
dencyAddress as postconditions. Search window can be used to find relevant data
entities, like it has been shown in Figure 5.3, where data entities representing
address are looked up. By marking these variables as pre- or postconditions in
the model or specification, and by selecting a superclass, the user gives a goal
for the synthesiser.

After a goal is defined by the user, the steps shown in Figure 4.6 are performed.
That is, a service model and the goal are automatically translated into a textual
specification, which is used to generate a Java program if the proof of solvability
of the problem can be built. A part of the textual specification is shown in
Figure 5.5. The last line in this figure shows the goal that was specified by the
user on the visual model:

GraduationCertificate.data -> ResidencyAddress.data,

AddressString.data, OwnerAddressString.data,

OccupationArea.data, EstonianAddressString.data;

61

Figure 5.5. Service model’s textual specification window

An application window for viewing generated Java programs is shown in
Figure 5.6. The last line of the program in this figure shows a method cre-
ateProcess that is called from the BPEL superclass when the structure of the
goal web service has been synthesised and the results are gathered into alias
called bpelPrecondition that is a precondition to the generation of BPEL output:

createProcess(alias_bpelPrecondition_35719, processName,

processComment, processNamespace, outputFile);

The other parameters for the createProcess method are given in the superclass
component’s properties window. BPEL description of the compound web service
is generated by running the Java program. If the structure of the compound
service cannot be synthesised, BPEL output is not generated as the precondition
bpelPrecondition is not satisfied.

As the result of this example, eleven different atomic web services have to be
invoked in order to solve the task specified by the goal. When BPEL superclass
is selected the result is a process description in BPEL, that is, an XML file
with BPEL process. Because the initial model did not contain all the necessary
information, many details have been omitted from the BPEL description generated
by the CoCoViLa composition tool. For example, there is no information about
messageTypes and service names. Despite many omissions, the resulting web
service description is 118 lines long. Figure 5.7 shows a fragment of the BPEL
description.

62

Figure 5.6. Program window showing the resulting Java program

A BPEL description starts with the definition of the process, it proceeds with
defining variables used and then a structure of the process is described. In
this case, it is a sequence containing invocations of atomic web services. The
<assign> part takes care of copying the values of data entities to the relevant
messages. Figure 5.8 represents the resulting BPEL process visualised in Eclipse
BPEL editor [11].

Any service model can also contain higher-order control nodes that can be
added by the user and saved as part of the service model. The usage of higher-
order nodes is demonstrated in Chapter 6.

The synthesis algorithm without higher-order nodes has linear time complexity
and can be applied to very large service models. The time spent for solving the
example explained in this chapter was about 2.5 seconds on a laptop with 1.2 GHz
Intel processor. This includes specification parsing, planning and code generation
time.

63

<?xml version="1.0" encoding="UTF-8"?>

<process name="X-road compound service"

targetNamespace="http://x-tee.riik.ee/example_compound_service"

xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

...>

<documentation xml:lang="EN">X-road compound service

</documentation>

<variables>

<variable name="Request" messageType="getComplexServiceRequest"/>

<variable name="getselect_4_1_5"/>

<variable name="select_4_1_5Response"/>

<variable name="getehis_kod_oppur_laps"/>

<variable name="ehis_kod_oppur_lapsResponse"/>

<variable name="getTRAFFIC_paring22"/>

<variable name="TRAFFIC_paring22Response"/>

...

</variables>

<sequence>

<receive createIinstance="yes" name="start"

operation="getComplexService" variable="Request"/>

<invoke name="select_4_1_5"

operation="select_4_1_5"

inputVariable="getselect_4_1_5"

outputVariable="select_4_1_5Response"/>

<assign>

<copy>

<from variable="select_4_1_5Response" part="NationalIdCode"/>

<to variable="getehis_kod_oppur_laps"/>

</copy>

</assign>

<invoke name="ehis_kod_oppur_laps"

operation="ehis_kod_oppur_laps"

inputVariable="getehis_kod_oppur_laps"

outputVariable="ehis_kod_oppur_lapsResponse"/>

<assign>

<copy>

<from variable="select_4_1_5Response" part="NationalIdCode"/>

<to variable="getRR_RR40isikTaielikIsikukood"/>

</copy>

</assign>

<invoke name="RR_RR40isikTaielikIsikukood"

operation="RR_RR40isikTaielikIsikukood"

inputVariable="getRR_RR40isikTaielikIsikukood"

outputVariable="RR_RR40isikTaielikIsikukoodResponse"/>

...

</sequence>

</process>

Figure 5.7. BPEL output in XML

64

Figure 5.8. The resulting compound web service visualised in Eclipse BPEL editor

65

5.4 Conclusion

It was demonstrated in this chapter that the web service composition method,
proposed in this thesis, is applicable to very large service models. Planning on
models of this size works fast, however, service models of this size are rather
hard use manually. Because of this, complexity of the service model needed
to be reduced. This led to the development of hierarchical service models. In
order to create models as realistic as possible and to simplify service model
generation, programs were created to generate service models from real Esto-
nian e-government service descriptions. The hierarchical X-Road model and the
experiments on this model are covered in Chapter 6.

66

6 Web Service Composition on Hierarchical
Service Models

Although the initial service model of X-Road described in Chapter 5 was a
good reflection of reality, it was lacking some important details, like information
about the names and types of input and output messages and exact names and
types of data entities. Even the information about the provider was not explicit.
In addition, it was one large flat model with many components (almost 900).
Therefore, it was hard for the end user to use and modify the model’s visual
representation or define a goal. Definition of a goal required a knowledge of a
large joint ontology of all services of all ministries and organisations that have
joined X-Road. This, of course, is difficult for users. These were the reasons that
led to the experiments with hierarchical service models, generated from SAWSDL
descriptions. These experiments are described in this chapter. The chapter starts
with a description of hierarchical service model implementation details. After
that a few words are said about automatic generation of CoCoViLa packages and
service models. Finally, examples of composition problems are described on the
hierarchical X-Road service model.

6.1 Hierarchical X-Road Service Model

It was said already in Chapter 2 that components on the upper level of the
hierarchical service model correspond to submodels that represent atomic web
services from one or more web service providers that share a common ontology.
In the X-Road service model, one component of the hierarchical service model
represents the web services from the registry or database of one ministry or
organisation.

For composition on hierarchical models, a different package was created for
each provider and for the upper layer X-Road model. The buttons on the toolbar
represent only the components that are relevant to the corresponding submodel.
This allows the user to work with a smaller number of known concepts. All
packages include also some common general components, for example, a cycle,
a condition, components to represent data entities, superclasses and common data
transformation components. The main difference between these packages comes
from atomic web service components that have different pre- and postconditions.
All web service components inherit from the generic Service metaclass. A pack-
age can contain more than one service model. This allows to create different
views from the web services provided by one organisation.

67

6.1.1 Generation of a Service Model in CoCoViLa

Automated generation of a hierarchical service model was already investigated in
Section 2.3 of Chapter 2. Details specific to CoCoViLa service model generation
are given in this subsection.

Existing partially annotated SAWSDL descriptions were used to generate sub-
models. It should be mentioned that annotating X-Road web service descriptions
was not a part of this thesis. The SAWSDL extension of EasyWSDL Toolbox [10]
was used to parse SAWSDL descriptions from the Java program. The program
then generated a package description in XML, scheme of the service model and
metaclasses for web service components. Components, corresponding to the sub-
models, were generated for the X-Road package that is used for defining upper
level views of hierarchical service models.

Some components are shared among different packages, for example, compo-
nents for data entities of different types, control constructs, selector/constructor
components, BPEL and WSDL superclasses. When a new pacakge is generated,
description of these components is added to the package XML description, using
the XML external entity references. However, information about these com-
ponents still had to be generated into the service model description, using the
information extracted from the SAWSDL description.

X-Road web services currently use WSDL 1.1. WSDL specification allows
slight variations in its format, but, in general, WSDL description is similar to
the example WeatherService shown in Figure 6.1. More information on WSDL
can be found in WSDL 1.1 specification [66]. Requirements for X-Road services
are specified by the Requirements on information systems and adapter servers
document [68]. WSDL description usually contains a section for types that in-
cludes definitions for simpleTypes and complexTypes. It also includes messages
that can be sent to operations. Messages can include parts. Abstract operations
are defined in the portType. Binding section defines message format and protocol
details for operations and messages defined by a particular portType. Binding
details are omitted from the example, because they do not show up on the visual
service model representation and in examples about X-Road web services. Exe-
cution details are not used since these web services cannot be accessed without
correct access rights. SAWSDL descriptions are used to generate service models
in this work. SAWSDL description is a WSDL description with semantic anno-
tations. Semantic annotations added to elements are shown in Figure 6.1 using
a modelReference, for example:

sawsdl:modelReference="http://<ontology>#TownName"

where <ontology> refers to the URL of the ontology used and TownName is the
concept from the ontology.

68

<?xml version="1.0" encoding="UTF-8"?>

<definitions>

<types>

<complexType name="locationType">

<all>

<element name="town"

sawsdl:modelReference="http://<ontology>#TownName"

type="xsd:string />

<element name="zipcode"

sawsdl:modelReference="http://<ontology>#ZipCode"

type="xsd:string"/>

</all>

</complexType>

</types>

<message name="GetWeatherInput">

<part name="location" type="locationType">

</message>

<message name="GetWeatherOutput">

<part name="temp"

sawsdl:modelReference="http://<ontology>#TemperatureInCelsius"

type="xsd:string" />

</message>

<portType name="WeatherServicePort">

<operation name="GetWeather">

<input message="GetWeatherInput/>

<output message="getWeatherOutput/>

</operation>

</portType>

<binding name="WeatherServiceBinding">

...

</binding>

<service name="WeatherService">

<port name="WeatherServicePort"

binding="WeatherServiceBinding">

</port>

</service>

</definitions>

Figure 6.1. Simplified example of the SAWSDL description for the WeatherService

Data Entities

In the implementation of the web service composition tool the general part of the
service composition package description includes components for specifying data
entities. Different data entity components have different port types. For example,
data entity components exist for xsd:int type (port type int) and xsd:string type
(port type String). ComplexTypes are represented as structured data entities that
have a port type alias. Elements in SAWSDL types section are translated into
data entities. Because data entities are already defined in the default composition

69

package, they only need to be generated into the description of the service model.
Name of the data entity object in the service model will be the concept extracted
from the semantical annotation. For the example in Figure 6.1 data entities with
names TownName and ZipCode and with port types String are generated to the
service model.

Because data entities are generated from the concepts of elements defined
in the types section of the SAWSDL description, they depend on the ontology
used for the service model. Although the web service composition tool allows
to model very complex data types, automated generation is implemented for
simpleTypes and for complexTypes that are built from XML Schema simple types
and represent types of input or output messages. Data entities for arrays and
for complexTypes that contain other complexTypes have to be added manually
using the data entities with type alias and Selector/Constructor components. It
is possible to automate the generation of all data entities, but it needs deeper
analysis and probably also restructuring of the X-Road WSDL descriptions (see
the discussion in Section 2.3.2). This, however, is out of the scope of this thesis.

Atomic Web Services

Atomic web services are generated from the WSDL operations. Because dif-
ferent operations have different pre- and postconditions, these components are
generated as different atomic web services that extend the generic Service com-
ponent. In case of the example from Figure 6.1, an atomic web service with
a name GetWeather, with input message GetWeatherInput and output message
GetWeatherOutput are generated. Pre- and postconditions for planning are ex-
tracted from the parts of messages or from their types and they represent the
actual variables not the concepts from the ontology. In this example the vari-
ables town and zipcode become preconditions and temp becomes a postcondition
for the web service GetWeather. In logical specification this web service is
specified as follows:
town, zipcode -> temp {GetWeather};

Using real variable names is necessary, because this is the data used to invoke
atomic web services and therefore this information needs to be generated also
into the compound web service description.

Connections

Automatically created connections are added to the service model. Connections
are created between data entities and atomic web service pre- and postconditions
with the same concept name. Variables with different names are automatically
connected if they are marked with the same concept. An expert user can later
modify the service model and add data dependency relations to connect compo-
nents with different names or types.

70

WSDL Superclass

WSDL superclass contains information about the WSDL description. For exam-
ple, name and location of the description file itself and name and the location of
the (WSDL) service(s) described in WSDL. In case of the example in Figure 6.1
the name of the service generated to the WSDL component description would
be WeatherService. Correct values are added to the service model’s WSDL
superclass object for each submodel.

6.1.2 Submodels

The hierarchical X-Road service model that is used for examples in this chapter
is created from five annotated WSDL descriptions, describing atomic web ser-
vices offered by business registry, population registry, vehicle registry, migration
registry and pension insurance registry.

Figure 6.2. Fragment of the business registry’s service model

Figure 6.2 shows a fragment of the business registry service model. Rectangles
represent web services and circles represent data entities in this figure. Arrows
on the rectangles represent which ports are preconditions and which ports are
postconditions for the particular atomic web service. WSDL component, declared
as a superclass, in the top left corner contains additional information extracted

71

from the web service description about the particular registry. For readability,
only 8 atomic web services out of the 42 available for the business registry are
shown in this model. Service models for other registries are similar. Submodels
can include higher-order components that are hidden in the visual representation
of the upper layer, but are used in the synthesis.

6.1.3 Hierarchical Model

All service models can be saved as hierarchical components and used to create
hierarchical service models. When creating a hierarchical component, the de-
veloper can select which pre- and postconditions of the submodel are shown on
the hierarchical component. A hierarchical model of X-Road could represent the
whole X-Road, but in this case the number of hierarchical components would be
more than 100 (at least one for each organisation and ministry that has joined
X-Road) which would be rather hard to handle in a single model. In addition,
X-Road has quite complex access controls. Although this work currently does
not consider access rights, it is obvious that it is not useful to add components
with very tight access restrictions to all models. Fortunately, it is not necessary
to put all components into one model and it is possible to create different views
for users with different expertise and access rights.

Figure 6.3 shows a hierarchical view of the X-Road model. Rectangles with
pre- and postconditions (marked by the arrows) are hierarchical components that
contain submodels. The submodel for the business registry component was shown
in Figure 6.2. In addition, there are hierarchical components for migration reg-
istry, vehicle registry, population registry and pension insurance registry. In-
formation in the submodels is used in the synthesis but the complexity of the
submodels is hidden from the user. Some data entities that exist in the submodels
are also hidden and only those data entities that might be interesting to the user
of the upper layer model are brought out as ports for pre- and postconditions.

BPEL component in the top left corner in Figure 6.3 is a superclass for the
scheme and contains additional information about the compound web service to
be composed (e.g., its name and description) and the output file. This information
has to be entered by the user and it constitutes preconditions for the axiom in the
BPEL superclass that generates the BPEL output. In the synthesis process this
component will also gather information about the web services included into the
workflow.

White triangles in the Figure 6.3 are Selector components that take elements
out of the tuple. For example, triangle marked with number 5, takes Document-
TypeName and NotaryNationalIDCode out of the structure BusinessDocument.
NotaryNationalIDCode is connected to the NationalIDCode through the Sameas
component. Saying that two concepts with different names have the same mean-
ing on the model requires the background knowledge from the expert, who can
confirm that these data entities are in fact the same in this context. Higher-order

72

components can be added by the user. The usage of higher-order component
Cycle is shown in the second example of the following section.

Figure 6.3. Hierarchical view of the X-Road model

6.2 Composition on Hierarchical Service Models

The composition process on a hierarchical service model is shown on examples
in this section. In general everything works in the same way as in the example
on large models (Chapter 5). The difference is that parts of the service model
are hidden inside hierarchical components. The user is usually working on the
upper layer of the service model, so this is where the superclass for generating
output is chosen and where the goal, specifying the service to be composed, is
defined.

Otherwise the steps for composition are exactly the same. The visual rep-
resentation is translated into a textual specification that is used for proving the
goal. If the goal is derivable from the service model, a program to generate the
result is synthesised. All these steps, except the one where input is given to the
scheme, can be hidden from the user.

73

6.2.1 Composition without Higher-Order Nodes

An example on a hierarchical service model that does not contain higher-order
nodes is explained in this subsection. The hierarchical model shown in Figure 6.3
is used as the service model in this example.

The following example solves the problem where parts of notary’s home ad-
dress (Street, HouseNumber, Apartment) and information about the vehicles this
notary owns (ListOfVehicles) needs to be discovered from a given document num-
ber (DocumentNumber). The developer of the service should know that person’s
home address can be obtained from person’s NationalIDCode. From Document-
Number it is possible to obtain NotaryNationalIDCode that can be connected
to the NationalIDCode using the Sameas component to create the data depen-
dency relation. This is also shown in Figure 6.3. The goal for constructing this
compound web service on the given service model is the following:

DocumentNumber.data->ListOfVehicles.data, Street.data,

HouseNumber.data, Apartment.data

The user does not need to know anything about the exact names of web ser-
vices or even the registries that provide these web services. After setting the
goal and running the tool, invocations of operations (i.e., atomic web services)
are added to the resulting service in the following order:
arireg:toimiku dokument (BusinessReg)
autoregister:paring22 (VehicleReg)
rr:RR405IsikNimi (PopulationReg)
rr:RR57 (PopulationReg)

The name before the colon shows the service name extracted from WSDL de-
scription, saved into the variable of the WSDL superclass and propagated into
atomic web services. The name after the colon indicates the name of the oper-
ation (atomic web service) and the text in the bold shows the registry, that is,
a submodel, to which the web service belongs. Figure 6.4 shows the resulting
web service visualised in Eclipse BPEL editor. Note that Eclipse BPEL editor
visualises the WSDL service names instead of the operation names that are mod-
elled as atomic web services in the service model. This is why there are two
web services named rr on Figure 6.4. They represent two different atomic web
services (i.e., operations) (RR405IsikNimi and RR57) of the same WSDL service.

Figure 6.5 shows a fragment of the BPEL output which contains 59 lines.
XPath [69] expressions have been used for describing the assign statements syn-
thesised from the X-Road model generated from SAWSDL descriptions. Using
XPath expressions in assign statements allows to copy variables from complex
data structures that are modelled using the alias data type and the Selector com-
ponent.

74

Figure 6.4. Result of the hierarchical composition visualised in Eclipse BPEL editor

The time spent for solving the example of composing four atomic web services
without higher-order nodes was about 0.7 seconds on a laptop with 1.2 GHz
Intel processor. This time included the specification parsing, planning and code
generation time.

75

<?xml version="1.0" encoding="UTF-8"?>

<process name="X-road compound web service" ...>

<variables>

<variable name="Request"

messageType="wsdl:getComplexServiceRequest"/>

<variable name="toimiku_dokumentInputMessage"

messageType="toimiku_dokumentInputMessage"/>

<variable name ="toimiku_dokumentOutputMessage"

messageType="toimiku_dokumentOutputMessage"/ >

...

<variable name ="RR57_v1" messageType="RR57_v1"/>

<variable name ="RR57_v1Response" messageType="RR57_v1Response"/>

<variable name="Response"

messageType="wsdl:getComplexServiceResponse"/>

</variables>

<sequence>

<receive createIinstance="yes" name="start"

operation="getComplexService"

portType="wsdl:XRoadClientP" variable="Request"/>

...

<invoke name="arireg" operation="toimiku_dokument"

inputVariable="gettoimiku_dokument"

outputVariable="toimiku_dokumentResponse"/>

...

<assign>

<copy>

<from>$toimiku_dokumentInputMessage/notari_isikukood</from>

<to>$RR57_v1/Isikukood</to>

</copy>

<copy>

<from>$RR405IsikNimi_v1Response/Isikuenimi</from>

<to>$RR57_v1/Eesnimi</to>

</copy>

<copy>

<from>$RR405IsikNimi_v1Response/Isikupnimi</from>

<to>$RR57_v1/Perenimi</to>

</copy>

</assign>

<invoke name="rr" operation="RR57" inputVariable="getRR57"

outputVariable="RR57Response"/>

...

<reply name="response" operation="endComplexService"

variable="Response"/>

</sequence>

</process>

Figure 6.5. BPEL description for hierarchical composition without higher-order nodes

76

6.2.2 Composition with Higher-Order Nodes

This subsection demonstrates the usage of higher-order components on hierar-
chical service models. Higher-order components can be added both to the upper
level models and to the submodels. Components added to the submodels are un-
folded in the flat logical representation. This means that higher-order components
on the submodels do not make the composition more complex than higher-order
components on the upper level models.

Defining Services Models with Higher-Order Nodes

Ideally, submodels with higher-order components should be generated from web
service descriptions that are able to represent higher-order components, for ex-
ample, from BPEL descriptions. However, BPEL and other process description
languages, such as, OWL-S, are meant to describe one workflow and not all
workflows possible in the domain. Therefore, these languages are not the best
choice for describing service models and currently higher-order components are
added manually to the service models generated from SAWSDL descriptions.

One solution for description of a service model might be the creation of a
service model description language that extends, for example, SAWSDL. This is
one consideration for the future work. Another solution would be to create or
use some implementation specific service model description language. At the
moment, however, it is possible to save service models as CoCoViLa’s scheme
descriptions.

Example

The following example shows the usage of higher-order component Cycle that is
added to the upper level model in order to cycle through the list of document
numbers to discover the home addresses for the notaries related to the document.
The service model used in this example is almost the same as the one used
in the previous example (Figure 6.3), except it has an additional higher-order
component Cycle. The modified service model is shown in Figure 6.6. The Cycle
component has ListOfDocumentNumbers as precondition and ListOfAddresses as
postcondition. A goal for solving the problem is specified as follows:

ListOfDocumentNumbers.data->ListOfAddresses.data

An additional precondition – a subtask for taking document numbers out of the
ListOfDocumentNumbers and finding the corresponding addresses for notaries,
forms the body for the Cycle component. The subtask is specified by connecting
data entities of interest to the ports at the bottom of the Cycle component. Note
that the user does not specify exact services that have to be run repeatedly by
the Cycle, instead, the user specifies the subtask by its pre- and postconditions.
Subtask connections are translated to the logical representation.

77

Figure 6.6. Hierarchical X-Road model with higher-order component Cycle

As a result the following three services are cycled trough:
arireg:toimiku dokument (BusinessReg)
rr:RR405IsikNimi (PopulationReg)
rr:RR57 (PopulationReg)

Cycle is translated into BPEL forEach construct. It is possible to extend the
composition package with other looping constructs. Figure 6.7 visualises the
resulting web service in Eclipse BPEL editor. Solving the problem with one
subtask contains three services that are run once takes about 0.7 seconds.

78

Figure 6.7. Higher-order hierarchical composition visualised in Eclipse BPEL editor

79

6.3 Conclusion

This chapter showed the usage of hierachical service models generated from real
Estonian e-government web service descriptions. Although hierachical service
models can be very large, they allow to hide some information into submodels
and to create views for different users, which enables users to work only with fa-
miliar concepts. Experiments in this chapter showed that the proposed method is
applicable to service models generated from real-world web service descriptions.

80

Conclusions and Future Work

A logic-based web service composition method suitable for automating web ser-
vice composition in knowledge intensive domains with a large number of web
services was proposed in this thesis. This method uses service models that are
proposed in this thesis as a way to represent available web services, control
constructs and data dependency relations. To be able to connect different web
services offered by providers that use different ontologies, a hierarchical service
model that allows to create views with smaller number of concepts was pro-
posed. A prototype tool, based on the method proposed, was implemented on
the CoCoViLa model-based software development platform and tested on a set
of web service desciptions of the Estonian e-government information system.

To demonstrate the applicability of the web service composition method, two
kinds of experiments were done. First, the method was tested on an existing large
flat service model containing about 900 components. Second, a hierarchical
model was generated automatically from SAWSDL descriptions and extended
with additional data entities and higher-order components.

The existing large flat service model was performing well, but it was hard
to use and did not contain all the information necessary to generate a complete
output in business process languages, such as, BPEL or OWL-S. Models that were
automatically generated from SAWSDL descriptions, included more information
and enabled to divide web services into submodels that were used as components
on the hierarchical model. Automated model generation also simplifies coping
with service description changes. Hierarchical models were easier to use and
allowed to create different views for different users without losing in performance.
Because descriptions of real world web services were used, some problems that
might occur when automating the service model generation were identified as
part of this work.

The web service composition tool showed the feasibility of the approach even
in case of large models, however, currently the generation of models is not fully
automated. For example, complex data types containing other complex data types
and complex data types containing arrays are added manually at present. Some
difficulties in automating service model generation from SAWSDL descriptions
were identified in the thesis.

In addition, currently higher-order components are added manually to the
service model. In order to automate generation of service models with higher-
order components, a web service description langauge should be able to represent
higher-order workflows. The existing languages, for example, SAWSDL, BPEL,
OWL-S, are not the best solution for describing service models with higher-order

81

components. Hence, they are also not suitable for complete automation of service
model generation.

Therefore, future work includes analysis on how to automatically generate
service models that include complex data types. As part of the future work it
might be necessary to change how WSDL descriptions are usually generated,
in order to make them clearer and to reduce redundancy. Also the problem
of generating information about higher-order workflows into the service models
should be solved, either by creating a new service model specification language or
by extending, for example, SAWSDL with the possibility to describe higher-order
workflows.

There are many possiblities to extend the service model in the future. For ex-
ample, the service model could be extended with quality of service information.
This would enable to use of service models for commercial services, where the
same functionality might be offered by more than one provider. The problem of
security and access rights was also out of the scope of this thesis, although, this
is a very important topic in the X-Road and other similar domains with very tight
access restrictions. Therefore, extending the service model with additional infor-
mation about the confidentiality and access rights would also be an interesting
question for future research.

82

Bibliography

[1] Amazon Web Services. http://soap.amazon.com/schemas2/
AmazonWebServices.wsdl. [25 April 2011].

[2] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, Neeran Karnik, Arun
Kumar, Sumit Mittal, and Biplav Srivastava. Synthy: a System for End to
End Composition of Web Services. Web Semantics: Science, Services and
Agents on the World Wide Web, 3(4):311–339, 2005.

[3] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint
Driven Web Service Composition in METEOR-S. In IEEE International
Conference on Service Computing, pages 23–30, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

[4] CoCoVila. http://www.cs.ioc.ee/cocovila/. [20 April 2011].

[5] CoCoViLa documentation (Specification Language). http://www.cs.
ioc.ee/cocovila/manual/03_speclang.pdf. [20 April 2011].

[6] Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-
Chien Shan. Adaptive and Dynamic Service Composition in eFlow. In
Proceedings of 12th International Conference on Advanced Information Sys-
tems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Computer
Science, pages 13–31. Springer-Verlag, 2000.

[7] Marco Crasso, Juan Manuel Rodriguez, Alejandro Zunino, and Marcelo
Campo. Revising WSDL Documents: Why and How. Internet Computing,
IEEE, 14(5):48–56, 2010.

[8] Marin Dimitrov, Alex Simov, Vassil Momtchev, and Mihail Konstantinov.
WSMO Studio – A Semantic Web Services Modelling Environment for
WSMO. In ESWC ’07: Proceedings of the 4th European conference on The
Semantic Web, pages 749–758, Berlin, Heidelberg, 2007. Springer-Verlag.

[9] John Domingue, Liliana Cabral, Stefania Galizia, Vlad Tanasescu, Alessio
Gugliotta, Barry Norton, and Carlos Pedrinaci. IRS-III: A Broker-Based
Approach to Semantic Web Services. Journal of Web Semantics, 6(2):109–
132, 2008.

[10] Easy WSDL Toolbox. http://easywsdl.ow2.org/. [14 March 2011].

[11] Eclipse BPEL Project. http://www.eclipse.org/bpel/. [29 March
2011].

83

http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://soap.amazon.com/schemas2/AmazonWebServices.wsdl
http://www.cs.ioc.ee/cocovila/
http://www.cs.ioc.ee/cocovila/manual/03_speclang.pdf
http://www.cs.ioc.ee/cocovila/manual/03_speclang.pdf
http://easywsdl.ow2.org/
http://www.eclipse.org/bpel/

[12] Estonian Information System. http://ria.ee/public/
publikatsioonid_/X-road.pdf. [3 March 2011].

[13] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri,
Shahin Sadaati, and Rukman Senanayake. The OWL-S Editor – a Develop-
ment Tool for Semantic Web Services. In the Second European Semantic
Web Conference, 2005.

[14] Khalid Elgazzar, Ahmed E. Hassan, and Patrick Martin. Clustering WSDL
Documents to Bootstrap the Discovery of Web Services. IEEE International
Conference on Web Services, pages 147–154, 2010.

[15] Ian Foster, Yong Zhao, Ioan Raicu, and Lu Shiyong. Cloud Computing and
Grid Computing 360-Degree Compared. In Grid Computing Environments
Workshop, 2008. GCE ’08, pages 1–10, nov. 2008.

[16] Pavel Grigorenko, Ando Saabas, and Enn Tyugu. Visual Tool for Generative
Programming. ACM SIGSOFT Software Engineering Notes, 30(5):249–252,
2005.

[17] Hele-Mai Haav, Tanel Tammet, Vello Kadarpik, Kristiina Kindel, and
Marko Kääramees. A Semantic-Based Web Service Composition Frame-
work. In Gabor Magyar, Gabor Knapp, Wita Wojtkowski, W. Gregory
Wojtkowski, and Jože Zupančič, editors, Advances in Information Systems
Development, pages 379–391. Springer US, 2008.

[18] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph
Bussler. WSMX-A Semantic Service-Oriented Architecture. In IEEE In-
ternational Conference on Web Services (ICWS 05), pages 321–328, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[19] Wei Jiang, Charles Zhang, Zhenqiu Huang, Mingwen Chen, Songlin Hu,
and Zhiyong Liu. QSynth: A Tool for QoS-aware Automatic Service Com-
position. In 2010 IEEE International Conference on Web Services (ICWS),
pages 42–49, july 2010.

[20] Ahto Kalja, Aleksander Reitsakas, and Niilo Saard. eGovernment in Estonia:
Best Practices. In Technology Management : A Unifying Discipline for
Melting the Boundaries, pages 500–506. IEEE, 2005.

[21] Ahto Kalja, Tarmo Robal, and Uuno Vallner. Towards information society:
Estonian case study. In Management of Engineering Technology, 2009.
PICMET 2009. Portland International Conference on, pages 3218–3225,
aug. 2009.

84

http://ria.ee/public/publikatsioonid_/X-road.pdf
http://ria.ee/public/publikatsioonid_/X-road.pdf

[22] Mick Kerrigan and Adrian Mocan. The Web Service Modeling Toolkit. In
The Semantic Web: Research and Applications, volume 5021 of Lecture
Notes in Computer Science, pages 812–816. Springer Berlin / Heidelberg,
2008.

[23] Srividya Kona, Ajay Bansal, M. Brian Blake, and Gopal Gupta. Generalized
Semantics-Based Service Composition. In IEEE International Conference
on Web Services, pages 219–227, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[24] Frank Alexander Kraemer, Haldor Samset, and Rolv Braek. An Automated
Method for Web Service Orchestration Based on Reusable Building Blocks.
In ICWS ’09: Proceedings of the 2009 IEEE International Conference on
Web Services, pages 262–270, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[25] Peep Küngas and Marlon Dumas. Cost-Effective Semantic Annotation of
XML Schemas and Web Service Interfaces. pages 372–379, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[26] Peep Küngas and Mihhail Matskin. Web Services Analysis: Making Use of
Web Service Composition and Annotation. In Riichiro Mizoguchi, Zhongzhi
Shi, and Fausto Giunchiglia, editors, The Semantic Web – ASWC 2006, vol-
ume 4185 of Lecture Notes in Computer Science, pages 501–515. Springer
Berlin / Heidelberg.

[27] Peep Küngas and Mihhail Matskin. From web services annotation and
composition to web services domain analysis. Int. J. Metadata Semant.
Ontologies, 2:157–178, March 2007.

[28] Sven Lämmermann. Runtime Service Composition via Logic-Based Pro-
gram Synthesis. PhD thesis, Department of Microelectronics and Informa-
tion Technology, Royal Institute of Technology, Stockholm, 2002.

[29] Xuanzhe Liu, Gang Huang, and Hong Mei. A User-Oriented Approach to
Automated Service Composition. In IEEE International Conference on Web
Services, 2008. ICWS ’08., pages 773–776, sept. 2008.

[30] Riina Maigre. Survey of the Tools for Automating Service Composition. In
2010 IEEE International Conference on Web Services (ICWS 2010), pages
628–629. IEEE Computer Society, 2010.

[31] Riina Maigre, Pavel Grigorenko, Peep Küngas, and Enn Tyugu. Stratified
Composition of Web Services. In Proceeding of the 2008 conference on
Knowledge-Based Software Engineering: Proceedings of the Eighth Joint
Conference on Knowledge-Based Software Engineering, pages 49–58, Am-
sterdam, The Netherlands, The Netherlands, 2008. IOS Press.

85

[32] Riina Maigre, Peep Küngas, Mihhail Matskin, and Enn Tyugu. Handling
Large Web Services Models in a Federated Governmental Information Sys-
tem. In ICIW ’08: Proceedings of the 2008 Third International Conference
on Internet and Web Applications and Services, pages 626–631, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[33] Riina Maigre, Peep Küngas, Mihhail Matskin, and Enn Tyugu. Dynamic
Service Synthesis on Large Service Models of a Federated Governmental In-
formation System. International Journal On Advances in Intelligent Systems,
2(1):182–191, 2009. http://www.iariajournals.org/intelligent_
systems/.

[34] Riina Maigre and Enn Tyugu. Composition of Services on Hierarchical Ser-
vice Models. In The 21st European - Japanese Conference on Information
Modelling and Knowledge Bases (EJC 2011), 2011. [in print].

[35] Shalil Majithia, Matthew S. Shields, Ian J. Taylor, and Ian Wang. Triana: A
Graphical Web Service Composition and Execution Toolkit. In Proceedings
of the IEEE International Conference on Web Services (ICWS’04), pages
514–524. IEEE Computer Society, 2004.

[36] Alberto Martı́nez, Marta Patiño Martı́nez, Ricardo Jiménez-Peris, and Fran-
cisco Pérez-Sorrosal. ZenFlow: a Visual Web Service Composition Tool for
BPEL4WS. In IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 181–188, 2005.

[37] Mihhail Matskin, Riina Maigre, and Enn Tyugu. Compositional Logical
Semantics for Business Process Languages. In Proceedings of Second Inter-
national Conference on Internet and Web Applications and Services (ICIW
2007). IEEE Computer Society, 2007.

[38] Mihhail Matskin and Enn Tyugu. Strategies of Structural Synthesis of
Programs and its Extensions. Computing and Informatics, 20:1–25, 2001.

[39] Grigori Mints. A Short Introduction to Intuitionistic Logic. University Series
in Mathematics. Springer, 2001.

[40] Grigori Mints and Enn Tyugu. Justifications of the Structural Synthesis of
Programs. Science of Computer Programming, 2(3):215–240, 1982.

[41] Richi Nayak and Bryan Lee. Web Service Discovery with Additional Se-
mantics and Clustering. In WI ’07: Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence, pages 555–558, Washington,
DC, USA, 2007. IEEE Computer Society.

[42] OWL-S: Semantic Markup for Web Services. http://www.w3.org/
Submission/OWL-S/. [13 March 2011].

86

http://www.iariajournals.org/intelligent_systems/
http://www.iariajournals.org/intelligent_systems/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/

[43] Thomas Oinn, Mark Greenwood, Matthew Addis, Nedim Alpdemir, Justin
Ferris, Kevin Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren
Marvin, Peter Li, Phillip Lord, Matthew Pocock, Martin Senger, Robert
Stevens, Anil Wipat, and Christopher Wroe. Taverna: Lessons in Creating
a Workflow Environment for the Life Sciences. Concurrency and Compu-
tation: Practice and Experience, 18(10):1067–1100, August 2006.

[44] Cesare Pautasso and Gustavo Alonso. JOpera: a Toolkit for Efficient Vi-
sual Composition of Web Services. International Journal of Electronic
Commerce, 9(2):107–141, 2004.

[45] J. Peer. Web Service Composition as AI Planning – a Survey. University
of St. Gallen, Switzerland, 2005.

[46] Charles Petrie and Christoph Bussler. The Myth of Open Web Services:
The Rise of the Service Parks. IEEE Internet Computing, 12(3):96–95,
2008.

[47] Marco Pistore, Paolo Traverso, Piegiorgio Bertoli, and Annapaola Marconi.
Automated Synthesis of Composite BPEL4WS Web Services. In Proceed-
ings of 2005 IEEE International Conference on Web Services (ICWS 2005),
pages 293–301, 2005.

[48] Shankar R. Ponnekanti and Armando Fox. Sword: A Developer Toolkit
for Web Service Composition. In WWW ’02: Proceedings of the 11th
International World Wide Web Conference, 2002.

[49] The administration system for state infromation system (RIHA). https:
//riha.eesti.ee. [2 March 2011].

[50] Jinghai Rao, Peep Küngas, and Mihhail Matskin. Composition of Semantic
Web Services Using Linear Logic Theorem Proving. Information Systems,
Special Issue on the Semantic Web and Web Services, 31(4–5):340–360,
2006.

[51] Jinghai Rao and Xiaomeng Su. A Survey of Automated Web Service Com-
position Methods. In Jorge Cardoso and Amit P. Sheth, editors, SWSWPC,
volume 3387 of Lecture Notes in Computer Science, pages 43–54. Springer,
2004.

[52] John W. Rittinghouse and James F. Ransome. Cloud Computing:
Implementation, Management, and Security. Auerbach Publications,
2010. Books24x7. http://common.books24x7.com/book/id_32102/
book.asp. [24 April 2011].

[53] Semantic Annotations for WSDL and XML Schema. http://www.w3.
org/TR/sawsdl/. [13 March 2011].

87

https://riha.eesti.ee
https://riha.eesti.ee
http://common.books24x7.com/book/id_32102/book.asp
http://common.books24x7.com/book/id_32102/book.asp
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/

[54] James Scicluna, Charlie Abela, and Matthew Montebello. Visual Modelling
of OWL-S Services. In IADIS International Conference WWW/Internet,
2004.

[55] Evren Sirin, James Hendler, and Bijan Parsia. Semi-Automatic Composition
of Web Services Using Semantic Descriptions. In Web Services: Modeling,
Architecture and Infrastructure workshop in ICEIS 2003, pages 17–24, 2002.

[56] Michele Trainotti, Marco Pistore, Gaetano Calabrese, Gabriele Zacco, Gigi
Lucchese, Fabio Barbon, Piergiorgio Bertoli, and Paolo Traverso. AS-
TRO: Supporting Composition and Execution of Web Services. In Service-
Oriented Computing - ICSOC 2005, volume 3826 of Lecture Notes in Com-
puter Science, pages 495–501. Springer Berlin / Heidelberg, 2005.

[57] Enn Tyugu. The Structural Synthesis of Programs. In Algorithms in Mod-
ern Mathematics and Computer Science, pages 82–99, London, UK, 1981.
Springer-Verlag.

[58] Enn Tyugu. Algorithms and Architectures of Artificial Intelligence. IOS
Press, 2007.

[59] Enn Tyugu. Grigori Mints and computer science. In Solomon Feferman
and Wilfried Sieg, editors, Proofs, Categories and Computations: Essays
in Honor of Grigori Mints, pages 267–277. London: College Publications,
2010.

[60] Tomas Vitvar, Mick Kerrigan, Arnold van Overeem, Vassilios Peristeras,
and Konstantinos Tarabanis. Infrastructure for the Semantic Pan-European
E-government Services. In Proceedings of the 2006 AAAI Spring Symposium
on The Semantic Web meets eGovernment (SWEG), 3 2006.

[61] Web Service Modeling Language. http://www.wsmo.org/wsml/. [16
April 2011].

[62] Web Service Modeling Ontology. http://www.wsmo.org/. [16 April
2011].

[63] Web Service Semantics – WSDL-S. http://www.w3.org/Submission/
WSDL-S/. [25 April 2011].

[64] Web Services Business Process Execution Language Version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. [13 March
2011].

[65] Web Services Choreography Description Language Version 1.0. http:
//www.w3.org/TR/ws-cdl-10/. [5 April 2011].

88

http://www.wsmo.org/wsml/
http://www.wsmo.org/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

[66] Web Services Description Language (WSDL) 1.1. http://www.w3.org/
TR/wsdl. [15 March 2011].

[67] Bruno Wassermann, Wolfgang Emmerich, Ben Butchart, Nick Cameron,
Liang Chen, and Jignesh Patel. Sedna: a BPEL-Based Environment for Vi-
sual Scientific Workflow Modelling. In I.J. Taylor, E. Deelman, D. Gannon,
and M. Shields, editors, Workflows for eScience – Scientific Workflows for
Grids. Springer Verlag, 2007.

[68] Requirements on information systems and adapter servers. http://ftp.
ria.ee/pub/x-tee/doc/nouded_infosysteemidele_en.pdf. [Speci-
fication date: 10 June 2005].

[69] XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/
xpath/. [27 March 2011].

[70] yEd Graph Editor. http://www.yworks.com/en/products_yed_
about.html. [2 March 2011].

[71] Interoperability Solutions for European Public Administrations. http://
ec.europa.eu/isa/. [10 April 2011].

[72] Oracle BPEL Process Manager. http://www.oracle.com/technology/
bpel. [28 April 2010].

[73] Information Technology in Public Administration of Estonia. Yearbook
2006, Estonian Ministry of Economic Affairs and Communication, 2007.

[74] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Du-
mas, Jayant Kalagnanam, and Henry Chang. QoS-Aware Middleware for
Web Services Composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

89

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://ftp.ria.ee/pub/x-tee/doc/nouded_infosysteemidele_en.pdf
http://ftp.ria.ee/pub/x-tee/doc/nouded_infosysteemidele_en.pdf
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://ec.europa.eu/isa/
http://ec.europa.eu/isa/
http://www.oracle.com/technology/bpel
http://www.oracle.com/technology/bpel

List of Publications

• Riina Maigre, Enn Tyugu (2011). Composition of Services on Hierarchical
Service Models. In: EJC 2011: 21st European-Japanese Conference on
Information Modelling and Knowledge Bases. [in print]

• Riina Maigre (2010). Survey of the Tools for Automating Service Com-
position. In: ICWS 2010: 2010 IEEE Eighth International Conference on
Web Services: Miami, Florida, 5–10 July 2010: IEEE Computer Society,
2010, 628–629.

• Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2009). Dynamic
Service Synthesis on a Large Service Models of a Federated Governmen-
tal Information System. International Journal on Advances in Intelligent
Systems, 2(1), 181–191.

• Riina Maigre, Pavel Grigorenko, Peep Küngas, Enn Tyugu (2008). Strat-
ified Composition of Web Services. In: Knowledge-based software engi-
neering: Proceedings of the Eighth Joint Conference on Knowledge-Based
Software Engineering: (Eds.) Virvou, Maria; Nakamura, Taichi. Amster-
dam: IOS Press, 2008, (Frontiers in Artificial Intelligence and Applica-
tions; 180), 49–58.

• Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2008). Han-
dling Large Web services models in a Federated Governmental Information
System. In: The Third International Conference on Internet and Web Ap-
plications and Services, ICIW 2008: 8–13 June 2008, Athens, Greece,
proceedings: (Eds.) Mellouk, A.; Bi, J.; Ortiz, G. et al. Los Alamitos:
IEEE Computer Society, 2008, 626–631.

• Mihhail Matskin, Riina Maigre, Enn Tyugu (2007). Compositional Logical
Semantics for Business Process Languages. In: Second International Con-
ference on Internet and Web applications and services ICIW 2007, 13–19
May 2007, Morne, Mauritius: Los Alamitos, CA: IEEE Computer Society,
2007, 6 p.

90

Veebiteenuste kompositsioon suurtel teenuste-
mudelitel

Annotatsioon

Käesolev väitekiri uurib uute kompleksveebiteenuste automaatset konstrueerimist
reaalses teadmistemahukas valdkonnas suure hulga eri ontoloogiaid kasutavate
baasveebiteenuste korral. Teenuste kompositsiooni eesmärk on konstrueerida ole-
masolevatest veebiteenustest uusi veebiteenuseid, et lahendada ülesandeid, mida
esialgsed veebiteenused ei võimaldanud. Kompositsiooni muudab sellises vald-
konnas keeruliseks ühest küljest väga suur baasveebiteenuste hulk, millest kom-
ponentteenused valida tuleb. Teisest küljest võivad veebiteenused, mida on vaja
kompositsiooni lisada, kasutada erinevaid ontoloogiad, mistõttu automatiseerimi-
ne on raske. Lisaks võib väga spetsiiflise ja keerulise valdkonna korral valdkonna
spetsialist, kes ei pruugi olla programmeerija, disainida parema kompleksteenuse,
kui seda teeks programmeerijast veebiteenuste arendaja või automaatne kompo-
sitsiooni tööriist. Sellisel juhul on vaja kergesti kasutatavaid tööriistu, mille raken-
damisega saab valdkonna spetsialist hakkama. Veebiteenuste automaatne kompo-
sitsioon on väga oluline ka Eesti riigi jaoks, sest riigi infosüsteem koosneb juba
praegu rohkem kui kahest tuhandest veebiteenusest, kuid nende automaatseks
kompositsiooniks puuduvad veel tööriistad.

Käesolev doktoritöö defineerib teenustemudeli mõiste ning kasutab teenus-
temudeleid suure hulga olemasolevate veebiteenuste, ontoloogiamõistete ning
juhtstruktuuride kirjeldamiseks. Teenustemudelil on visuaalne esitus, mida saab
kasutada valdkonna ekspert, ning loogikapõhine esitus, mida kasutab planee-
rija automaatseks veebiteenuste sünteesiks. Teenustemudeli formaalseks kirjel-
damiseks kasutatakse intuitsionistlikku lauseloogikat. Juhtstruktuure sisaldavatel
suurtel mudelitel uute veebiteenuste automaatseks sünteesiks kasutatakse struk-
tuurset programmide sünteesi, mis põhineb intuitsionistlikul lauseloogikal.

Sünteesimeetodi praktilist rakendatavust ja skaleeruvust on katsetatud Eesti
riigi infosüsteemi veebiteenuste põhjal valminud suurel teenustemudelil. Kuigi
süntees sellel suurel mudelil toimub kiiresti, on vajalik, et veebiteenused kasutaks
kõiki teenusepakkujaid hõlmavat ühist ontoloogiat.

Suure teenustemudeli keerukuse vähendamiseks ning erinevaid ontoloogiaid
kasutavate teenustemudelite ühendamiseks on välja pakutud teenustemudeli hie-
rarhiline versioon. Hierarhiline mudel võimaldab jagada veebiteenusted alammu-
delitesse ning kasutada alammudeleid hierarhilise mudeli komponentidena. See
võimaldab kasutada erinevaid ontoloogiad eri alammudelite jaoks ning tuua hie-
rarhilise mudeli ülemisel tasemel välja vaid kasutajale olulised mõisted.

91

Composition of Web Services on Large Service
Models

Abstract
This thesis addresses the task of building new web services automatically in a real
world knowledge intensive domain with a large number of available web services
using different ontologies. The aim of web service composition is to construct
new, more complex web services from existing ones, in order to solve tasks that
existing web services could not solve on their own. The manual composition
process gets very complicated when the set of web services to choose from is
large. Automated composition, on the other hand, is hard to archive because web
services that have to be composed might use different ontologies. In addition, in
the case of a very specialised and knowledge intensive domain, a domain expert,
who might not be a programmer, may be able to design better compound web
services than a web service developer or an automated composition tool. In
this case, visual composition tools are needed that are simple enough, so that
domain experts are able to use them. Automated web service composition is also
important for Estonia, because the Estonian e-government information system
contains already more than 2000 web services, but currently there are no tools
that allow to compose these web services automatically.

A concept of service model is defined and the usage of service models is pro-
posed in this thesis as a way to describe a large number of available web services,
concepts from ontology and control constructs. The service model has a visual
representation that can be used by a domain expert, and a logical representation
that is used by a planner to automate web service composition. Intuitionistic
propositional logic is used for formal description of service models, and struc-
tural synthesis of programs based on this logic is applied for automating the web
service composition on large service models that include control constructs.

Experiments have been conducted on a large service model built from the
Estonian e-government web service descriptions in order to show the practical
applicability and scalability of the synthesis method. Although planning on this
large model had a good performance, it required the usage of a single large
ontology for all web service providers.

To reduce the complexity of this large service model, and to be able to con-
nect web services using different ontologies, a hierarchical service model was
developed. The hierarchical model enables the splitting of a set of web services
into submodels and the use of submodels as components of a hierarchical model.
This allows to use different ontologies for different submodels and to bring out
relevant concepts on the upper level model.

92

Elulookirjeldus

1. Isikuandmed
Ees- ja perekonnanimi: Riina Maigre
Sünniaeg ja -koht: 24. oktoober 1981, Tallinn, Eesti
Kodakondsus: Eesti

2. Kontaktandmed
Aadress: Akadeemia tee 21, 12618, Tallinn
Telefon: 620 4224
E-posti aadress: riina@ioc.ee

3. Hariduskäik

Õppeasutus
(nimetus lõpetamise ajal) Lõpetamise aeg Haridus

(eriala/kraad)

Tallinna Tehnikaülikool 2007 informaatika/tehnikateaduste
magister

Tallinna Tehnikaülikool 2005
Võrgutarkvara ja
intelligentsed
süsteemid/diplom

4. Keelteoskus (alg-, kesk- või kõrgtase)

Keel Tase
eesti keel emakeel
inglise keel kõrgtase
vene keel algtase

5. Täiendusõpe

Õppimise aeg Täiendusõppe läbiviija nimetus

1.–6. juuni 2009
9th International School on Formal Methods for the
Design of Computer, Communication and Software
Systems: Web Services (SFM-09:WS)

26.–30. august 2007 6th Estonian Summer School in Computer and
Systems Science (ESSCaSS’07)

6.–10. august 2006 5th Estonian Summer School in Computer and
Systems Science (ESSCaSS’06)

93

6. Teenistuskäik

Töötamise aeg Tööandja nimetus Ametikoht

2009–... Tallinna Tehnikaülikooli
Küberneetika Instituut teadur

2005–... Tallinna Tehnikaülikooli
Küberneetika Instituut

arvutisüsteemi
administraator

7. Teadustegevus

Riina Maigre, Enn Tyugu (2011). Composition of services on hierarchical ser-
vice models. In: EJC 2011: 21st European-Japanese Conference on Information
Modelling and Knowledge Bases. [ilmumas]

Vahur Kotkas, Andres Ojamaa, Pavel Grigorenko, Riina Maigre, Mait Harf, Enn
Tyugu (2011). CoCoViLa as a multifunctional simulation platform. In: SIMU-
TOOLS 2011: 4th International ICST Conference on Simulation Tools and Tech-
niques: 21–25 March 2011, Barcelona, Spain: Brussels: ICST, 2011, 1–8.

Riina Maigre (2010). Survey of the tools for automating service composition.
In: ICWS 2010: 2010 IEEE Eighth International Conference on Web Services:
Miami, Florida, 5–10 July 2010: IEEE Computer Society, 2010, 628–629.

Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2009). Dynamic ser-
vice synthesis on a large service models of a federated governmental information
system. International Journal on Advances in Intelligent Systems, 2(1), 181–191.

Riina Maigre, Pavel Grigorenko, Peep Küngas, Enn Tyugu (2008). Stratified
composition of web services. In: Knowledge-based software engineering: Pro-
ceedings of the Eighth Joint Conference on Knowledge-Based Software Engi-
neering: (Toim.) Virvou, Maria; Nakamura, Taichi. Amsterdam: IOS Press,
2008, (Frontiers in Artificial Intelligence and Applications; 180), 49–58.

Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2008). Handling large
web services models in a federated governmental information system. In: The
Third International Conference on Internet and Web Applications and Services,
ICIW 2008: 8–13 June 2008, Athens, Greece, proceedings: (Toim.) Mellouk,
A.; Bi, J.; Ortiz, G. et al. Los Alamitos: IEEE Computer Society, 2008, 626–631.

94

Mihhail Matskin, Riina Maigre, Enn Tyugu (2007). Compositional logical se-
mantics for business process languages. In: Second International Conference on
Internet and Web applications and services ICIW 2007, 13–19 May 2007, Morne,
Mauritius: Los Alamitos, CA: IEEE Computer Society, 2007, 6 p.

Adam Eppendahl, Riina Maigre (2005). Mobile camera parameter recovery in an
unknown environment without point features. In: Proceedings 2005 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and Automation
CIRA 2005: 27–30 June 2005, Espoo, Finland: Piscataway, N.J.: IEEE, 2005,
279–283.

8. Kaitstud lõputööd

Visuaalse kasutajaliidesega veebiteenuste kompositsioonitarkvara, Tallinna Teh-
nikaülikool, Küberneetika Instiuut, 2007, juhendaja Enn Tõugu.

Valgusväljamudelitest liikuva kaamera ja sõiduki parameetrite tuletamine. Tallin-
na Tehnikaülikool, Arvutiteaduse Instituut, 2005, juhendajad Adam Eppendahl,
Juhan Ernits.

9. Teadustöö põhisuunad

Veebiteenused, veebiteenuste automaatne kompositsioon, veebiteenuste semanti-
ka.

95

Curriculum Vitae

1. Personal data
Name: Riina Maigre
Date and place of birth: 24 October 1981, Tallinn, Estonia

2. Contact information
Address: Akadeemia tee 21, 12618, Tallinn, Estonia
Phone: +372 620 4224
E-mail: riina@ioc.ee

3. Education

Educational institution Graduation year Education
(field of study/degree)

Tallinn University of
Technology 2007 Informatics/Master of Science

in Engineering
Tallinn University of
Technology 2005 Network software and

intelligent systems/diploma

4. Language competence/skills (fluent, average, basic skills)

Language Level
Estonian fluent
English fluent
Russian basic skills

5. Special Courses

Period Educational or other information

1–6 June 2009
9th International School on Formal Methods for the
Design of Computer, Communication and Software
Systems: Web Services (SFM-09:WS)

26–30 August 2007 6th Estonian Summer School in Computer and
Systems Science (ESSCaSS’07)

6–10 August 2006 5th Estonian Summer School in Computer and
Systems Science (ESSCaSS’06)

96

6. Professional Employment

Period Organisation Position

2009–...
Institute of Cybernetics at
Tallinn University of
Technology

researcher

2005–...
Institute of Cybernetics at
Tallinn University of
Technology

system administrator

7. Scientific work

Riina Maigre, Enn Tyugu (2011). Composition of services on hierarchical ser-
vice models. In: EJC 2011: 21st European-Japanese Conference on Information
Mod- elling and Knowledge Bases. [in print]

Vahur Kotkas, Andres Ojamaa, Pavel Grigorenko, Riina Maigre, Mait Harf, Enn
Tyugu (2011). CoCoViLa as a multifunctional simulation platform. In: SIMU-
TOOLS 2011: 4th International ICST Conference on Simulation Tools and Tech-
niques: 21–25 March 2011, Barcelona, Spain: Brussels: ICST, 2011, 1–8.

Riina Maigre (2010). Survey of the tools for automating service composition.
In: ICWS 2010: 2010 IEEE Eighth International Conference on Web Services:
Miami, Florida, 5–10 July 2010: IEEE Computer Society, 2010, 628–629.

Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2009). Dynamic ser-
vice synthesis on a large service models of a federated governmental information
system. International Journal on Advances in Intelligent Systems, 2, 181–191.

Riina Maigre, Pavel Grigorenko, Peep Küngas, Enn Tyugu (2008). Stratified
composition of web services. In: Knowledge-based software engineering: Pro-
ceedings of the Eighth Joint Conference on Knowledge-Based Software Engi-
neering: (Eds.)Virvou, Maria; Nakamura, Taichi. Amsterdam: IOS Press, 2008,
(Frontiers in Artificial Intelligence and Applications; 180), 49–58.

Riina Maigre, Peep Küngas, Mihhail Matskin, Enn Tyugu (2008). Handling large
web services models in a federated governmental information system. In: The
Third International Conference on Internet and Web Applications and Services,
ICIW 2008: 8–13 June 2008, Athens, Greece, proceedings: (Eds.)Mellouk, A.;
Bi, J.; Ortiz, G. et al. Los Alamitos: IEEE Computer Society, 2008, 626-631.

97

Mihhail Matskin, Riina Maigre, Enn Tyugu (2007). Compositional logical se-
mantics for business process languages. In: Second International Conference on
Internet and Web applications and services ICIW 2007, 13–19 May 2007, Morne,
Mauritius: Los Alamitos, CA: IEEE Computer Society, 2007, 6 p.

Adam Eppendahl, Riina Maigre (2005). Mobile camera parameter recovery in an
unknown environment without point features. In: Proceedings 2005 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and Automation
CIRA 2005: 27–30 June 2005, Espoo, Finland: Piscataway, N.J.: IEEE, 2005,
279–283.

8. Defended theses

Web service composition software with visual user interface, Institute of Cyber-
netis at Tallinn University of Technology, 2007. Supervisor Enn Tõugu.

Using light field models to recover mobile camera and vehicle parameters, Tallinn
University of Technology, Department of Computer Science, 2005. Supervisors
Adam Eppendahl, Juhan Ernits.

9. Main areas of scientific work/Current research topics

Web services, automated composition of web services, semantics of web services.

98

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

Informatics and System Engineering

1. Lea Elmik. Informational modelling of a communication office. 1992.
2. Kalle Tammemäe. Control intensive digital system synthesis. 1997.
3. Eerik Lossmann. Complex signal classification algorithms, based on the

third-order statistical models. 1999.
4. Kaido Kikkas. Using the Internet in rehabilitation of people with mobility

impairments – case studies and views from Estonia. 1999.
5. Nazmun Nahar. Global electronic commerce process: business-to-business.

1999.
6. Jevgeni Riipulk. Microwave radiometry for medical applications. 2000.
7. Alar Kuusik. Compact smart home systems: design and verification of

cost effective hardware solutions. 2001.
8. Jaan Raik. Hierarchical test generation for digital circuits represented by

decision diagrams. 2001.
9. Andri Riid. Transparent fuzzy systems: model and control. 2002.

10. Marina Brik. Investigation and development of test generation methods
for control part of digital systems. 2002.

11. Raul Land. Synchronous approximation and processing of sampled data
signals. 2002.

12. Ants Ronk. An extended block-adaptive Fourier analyser for analysis and
reproduction of periodic components of band-limited discrete-time signals.
2002.

13. Toivo Paavle. System level modeling of the phase locked loops: behavioral
analysis and parameterization. 2003.

14. Irina Astrova. On integration of object-oriented applications with rela-
tional databases. 2003.

15. Kuldar Taveter. A multi-perspective methodology for agent-oriented busi-
ness modelling and simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.
17. Artur Jutman. Selected issues of modeling, verification and testing of

digital systems. 2004.
18. Ander Tenno. Simulation and estimation of electro-chemical processes in

maintenance-free batteries with fixed electrolyte. 2004.
19. Oleg Korolkov. Formation of diffusion welded Al contacts to semicon-

ductor silicon. 2004.
20. Risto Vaarandi. Tools and techniques for event log analysis. 2005.
21. Marko Koort. Transmitter power control in wireless communication sys-

tems. 2005.

99

22. Raul Savimaa. Modelling emergent behaviour of organizations. Time-
aware, UML and agent based approach. 2005.

23. Raido Kurel. Investigation of electrical characteristics of SiC based com-
plementary JBS structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete
ja elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive secure data transmission method for OSI level I.
2005.

26. Deniss Kumlander. Some practical algorithms to solve the maximum
clique problem. 2005.

27. Tarmo Veskioja. Stable marriage problem and college admission. 2005.
28. Elena Fomina. Low power finite state machine synthesis. 2005.
29. Eero Ivask. Digital test in WEB-based environment 2006.
30. Виктор Войтович. Разработка технологий выращивания из жидкой фа-

зы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian large vocabulary speech recognition.
2006.

32. Erki Eessaar. Relational and object-relational database management sys-
tems as platforms for managing softwareengineering artefacts. 2006.

33. Rauno Gordon. Modelling of cardiac dynamics and intracardiac bio-
impedance. 2007.

34. Madis Listak. A task-oriented design of a biologically inspired underwater
robot. 2007.

35. Elmet Orasson. Hybrid built-in self-test. Methods and tools for analysis
and optimization of BIST. 2007.

36. Eduard Petlenkov. Neural networks based identification and control of
nonlinear systems: ANARX model based approach. 2007.

37. Toomas Kirt. Concept formation in exploratory data analysis: case studies
of linguistic and banking data. 2007.

38. Juhan-Peep Ernits. Two state space reduction techniques for explicit state
model checking. 2007.

39. Innar Liiv. Pattern discovery using seriation and matrix reordering: A uni-
fied view, extensions and an application to inventory management. 2008.

40. Andrei Pokatilov. Development of national standard for voltage unit based
on solid-state references. 2008.

41. Karin Lindroos. Mapping social structures by formal non-linear informa-
tion processing methods: case studies of Estonian islands environments.
2008.

42. Maksim Jenihhin. Simulation-based hardware verification with high-level
decision diagrams. 2008.

100

43. Ando Saabas. Logics for low-level code and proof-preserving program
transformations. 2008.

44. Ilja Tšahhirov. Security protocols analysis in the computational model –
dependency flow graphs-based approach. 2008.

45. Toomas Ruuben. Wideband digital beamforming in sonar systems. 2009.
46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.
47. Andrei Krivošei. Model based method for adaptive decomposition of the

thoracic bio-impedance variations into cardiac and respiratory components.
48. Vineeth Govind. DfT-based external test and diagnosis of mesh-like net-

works on chips. 2009.
49. Andres Kull. Model-based testing of reactive systems. 2009.
50. Ants Torim. Formal concepts in the theory of monotone systems. 2009.
51. Erika Matsak. Discovering logical constructs from Estonian children lan-

guage. 2009.
52. Paul Annus. Multichannel bioimpedance spectroscopy: instrumentation

methods and design principles. 2009.
53. Maris Tõnso. Computer algebra tools for modelling, analysis and synthesis

for nonlinear control systems. 2010.
54. Aivo Jürgenson. Efficient semantics of parallel and serial models of attack

trees. 2010.
55. Erkki Joasoon. The tactile feedback device for multi-touch user interfaces.

2010.
56. Jürgo-Sören Preden. Enhancing situation – awareness cognition and rea-

soning of ad-hoc network agents. 2010.
57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.

2010.
58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability

Identification Techniques for Synchronous Sequential Circuits. 2010.
59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Inte-

grated Circuit for Portable Applications. 2011.
60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.

2011.
61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-

Silicon Carbide Contact Obtained by Diffusion Welding. 2011.
62. Martin Jaanus. The Interactive Learning Environment for Mobile Labo-

ratories. 2011.
63. Argo Kasemaa. Analog Front End Components for Bio-Impedance Mea-

surement: Current Source Design and Implementation. 2011.
64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber

Attack Mitigation Strategies. 2011.

101

	Introduction
	Problem Statement and Contributions
	Automated Web Service Composition
	X-Road
	References to the Published Work
	Organisation of the Thesis

	Related Work
	Automated Web Service Composition Approaches
	Automated Web Service Mapping into Service Template
	Automated Workflow Generation from Existing Web Services
	Tools that Combine Mapping and Automated Composition

	Non-automatic Web Service Composition Tools
	Composition on X-Road
	Summary

	Service Model and Workflows
	Service Model
	Hierarchical Service Model
	Automated Service Model Generation
	Using Service Descriptions for Service Model Generation
	Problems in Web Service Descriptions

	Higher-Order Workflow
	Service Models and Higher-Order Workflows
	Conclusion

	Logic for Composition on Service Models
	Preliminaries
	Implicative Fragment of the Intuitionistic Propositional Logic
	Structural Synthesis of Programs (SSP)

	Services and Simple Workflows
	Logic for Higher-Order Workflows
	Control Flow
	Control and Data Flow

	Logical Representation of Service Models
	Synthesis of Compound Services
	Defining a Goal
	Finding a Proof

	Conclusion

	Web Service Composition Tool
	Architecture of the Service Composition Tool
	Knowledge System
	Knowledge Architecture
	User Knowledge Level
	Logical Level
	Service Implementation Level

	CoCoViLa
	Implementation of the Web Service Composition Tool
	Composition Packages
	Specification Language for Web Service Composition
	Visual Language for Web Service Composition
	Output Generation

	Conclusion

	Web Service Composition on Large Service Models
	X-Road Model
	Service Model in CoCoViLa
	Automatic Handling of a Service Model
	Conclusion

	Web Service Composition on Hierarchical Service Models
	Hierarchical X-Road Service Model
	Generation of a Service Model in CoCoViLa
	Submodels
	Hierarchical Model

	Composition on Hierarchical Service Models
	Composition without Higher-Order Nodes
	Composition with Higher-Order Nodes

	Conclusion

	Conclusions and Future Work
	References
	List of Publications
	Annotatsioon
	Abstract
	Elulookirjeldus
	Curriculum Vitae

