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ABC Artificial Bee Colony.

AI Artificial Intelligence.

DDPG Deep Deterministic Policy Gradient.

FEM Finite Element Method.

GA Genetic Algorithm.
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MPPT Maximum Power Point Tracking.

ODE Ordinary Differential Equation.

PDE Partial Differential Equation.

PSO Particle Swarm Optimization.

RL Reinforcement Learning.
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SECE Synchronized Electric Charge Extraction.

SSE Sum of Squared Errors.

SSHI Synchronized Switch Harvesting on Inductor.
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Terms
Bandgap A range of frequencies in which wave propagation is forbidden or signif-

icantly attenuated; A range of frequencies in which waves cannot propagate
through a structure, often created deliberately in metamaterials for vibration
suppression.

Damping The effect of reducing the amplitude of oscillations in a dynamic system.

Energy Harvesting The process by which energy is derived from external sources
(e.g., solar power, thermal energy, kinetic energy), converted to electrical
energy, and stored or used immediately.

Metamaterial A material engineered to have properties not found in naturally
occurring materials.

Modal Analysis The process of determining the natural frequencies, mode shapes,
and damping ratios of a structure.

Notch Filter An electronic filter that passes most frequencies unaltered but at-
tenuates those in a specific range to very low levels.

Piezoelectric Effect The ability of certain materials to generate an electric charge
in response to applied mechanical stress.

Resonator A device or system that naturally oscillates at some frequencies.

Transmittance The ratio of transmitted wave intensity to incident wave intensity
in a material.
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Symbols
Greek Symbols

β Coefficient representing a proportionality factor.

γ Nonlinear stiffness coefficient.

δ(x − xr) Dirac delta function indicating resonator location.

δmn Kronecker delta function for modes m and n.

ζ Damping ratio.

θ Electromechanical coupling coefficient (N/V).

ϑp,r Piezoelectric coupling coefficient for resonator r (N/V).

κ Internal coupling stiffness (N/m).

λ Wavelength of the propagating wave (m).

µ Mass ratio.

ν Stiffness ratio.

ρ Density of the material (kg/m3).

τ Time constant related to the resistor and capacitor in the circuit (s).

τr Transmittance of output displacement to input displacement.

Ψm Resonator’s modal coordinate.

ω Angular frequency of oscillation; natural frequency of the system’s modes (rad/s).

ϕm Mode shape function of the m-th mode.

ϕn Mode shape function of the n-th mode.

Other Symbols

A Cross-sectional area of the beam (m2).

E Young’s modulus of the beam material (Pa).

Gn Wave number of the n-th mode in the structure (rad/m).

I Moment of inertia of the beam cross-section (m4).

L Structural flexibility parameter (N/m).

M Mass per unit length of the beam (kg/m).

mr Mass of the r-th resonator (kg).

Nm Number of modes.

Nr Number of resonators.

C Damping coefficient (Ns/m).
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C∗
p,r Effective capacitance of the piezoelectric element in resonator r (F).

Fbm
External force distributed across the beam due to modals (N).

Fbr External force distributed across the beam due to resonators (N).

xr Position of the r-th resonator (m).

zm Modal displacement amplitude (m).

zr Displacement of the r-th resonator (m).

2r−1 Subscript notation for odd-numbered resonators.

2r Subscript notation for even-numbered resonators.
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1 Introduction
Vibration isolation is essential across multiple engineering disciplines such as robotics,
precision manufacturing, seismic protection, and automotive engineering. In robotics,
particularly with flexible manipulators, controlling vibrations is essential for pre-
cision and accuracy. In precision manufacturing, vibration isolation ensures the
quality of production processes. Seismic vibration isolation protects structures
during earthquakes, while in automotive engineering, reducing engine vibrations
that reach the cabin enhances comfort and safety. For flexible space structures and
telescopes in space, effective vibration isolation is crucial for maintaining structural
integrity and functionality in harsh environments. In aircraft engines and wings,
where lightweight structures are essential, metamaterials offer a significant advan-
tage by providing effective vibration isolation while being lighter than traditional
materials.

Traditional vibration control techniques, such as passive damping, tuned mass
dampers, and active control methods, have been extensively used in various in-
dustries. However, they each come with inherent limitations. Damping materials,
for instance, dissipate vibrational energy into heat but often add weight and com-
plexity to the system, making them impractical for lightweight structures such as
aircraft wings or flexible robotic arms. Additionally, damping materials can de-
grade over time due to environmental conditions such as temperature fluctuations,
humidity, and mechanical fatigue. Additionally, it might not be efficient over a
broad range of frequencies [1].

Another widely employed vibration control method is the Tuned Mass Damper
(TMD), which consists of an auxiliary mass attached to a structure via a spring-
damper system [2]. By introducing an anti-resonance at a specific frequency, TMDs
effectively reduce vibrations at that frequency. However, their effectiveness is typ-
ically limited to a narrow frequency band, making them unsuitable for systems
subjected to broadband or time-varying excitations. When a system is exposed to
broadband excitation, such as turbulence in aircraft wings or road irregularities
in vehicles, TMDs are insufficient in providing effective vibration mitigation. Fur-
thermore, the tuning of mass dampers requires precision, and slight variations in
structural properties or environmental conditions can render them ineffective.

To overcome these limitations, Mechanical Metamaterials (or Metastructures)
offer a novel solution and significant advantages over traditional methods. Meta-
materials are engineered with repeated lattices that manipulate wave propagation,
creating vibrational bandgaps where elastic waves cannot propagate through the
material.

Initially stemming from optical and electromagnetic waves [3, 4], the concept
has expanded into domains such as acoustic [5, 6] and elastic waves [7]. The elastic
metamaterials have emerged to control elastic waves, encompassing longitudinal,
transverse, and rotational waves. This extension opens new avenues for appli-
cations in vibration control, seismic protection, and medical ultrasound imaging,
demonstrating the versatile and far-reaching impact of metamaterial technology
[7].

One of the primary mechanisms behind bandgap formation in metamaterials is
Bragg scattering, a phenomenon observed in phononic crystals—composite mate-
rials characterized by periodically varying material properties. Bragg scattering
occurs when wave reflections from periodic structures interfere destructively, pre-
venting wave propagation at specific frequencies [8]. However, a major drawback of
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Bragg scattering-based phononic crystals is that the bandgap frequency depends on
the lattice size. To create bandgaps at low frequencies, which are essential for seis-
mic vibration isolation or large-scale structures, the lattice size must be relatively
large, making the structure impractical for real-world applications. A promising
solution to overcome the limitations of Bragg scattering in phononic crystals is the
use of locally resonant metamaterials.

1.1 Locally Resonant Metamaterials
Locally resonant metamaterials provide a superior alternative for practical appli-
cations, especially at low frequencies. This approach was first demonstrated by Liu
et al. [5], who experimentally showed a bandgap at wavelengths significantly larger
than the lattice size. Since then, numerous types of locally resonant metamaterials
have been developed, broadly categorized into mechanical and electromechanical
systems. These materials ingeniously incorporate resonant unit cells that enable
the creation of band gaps at virtually any desired frequency by fine-tuning the res-
onator’s frequency. This adaptation facilitates the mitigation of phase differences
between the resonator and the lattice, allowing for effective vibration suppression
across a broader range of frequencies.

To fully exploit the potential of locally resonant metamaterials, it is crucial to
employ accurate and versatile modeling approaches. In the following sections, we
delve into two primary modeling methodologies: Lumped Parameter Metastruc-
tures, and Distributed Parameter Metastructures. Lumped Parameter Modeling
simplifies systems into discrete components like masses and springs, leading to Or-
dinary Differential Equations (ODEs) that depend solely on time. This modeling
approach is represented by the equation:
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t, z(t), ∂z(t)

∂t
,

∂2z(t)
∂t2 , . . . ,
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)
= g(t) (1)

This methodology is suitable for preliminary designs and rapid analyses due to
its straightforward computational nature.

On the other hand, Distributed Parameter Modeling treats systems as contin-
uous media, leading to Partial Differential Equations (PDEs). This approach is
expressed through the equation:
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Here, w(x, t) represents the modal summation
∑Nm

m=1 ϕm(x)zm(t), where ϕm(x)
are the mode shapes and zm(t) are the modal coordinates. This method accounts
for changes across both spatial and temporal coordinates, providing a comprehen-
sive and accurate representation of dynamic behaviors in flexible structures and
machines. It captures the potentially infinite number of natural frequencies due to
minute variations in distributed masses and stiffnesses along the structure.

By implementing an effective methodology for metastructural vibration sup-
pression with locally resonant units, the vibrations of the main structure are sig-
nificantly attenuated, achieving the desired vibration control. Rather than being
dissipated, the energy is transferred to the resonators, resulting in minimal vi-
brational energy in the primary structure while maximizing energy accumulation
within the resonators. This fundamental mechanism underpins vibrational energy
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harvesting, wherein the concentrated vibrational energy in resonators is efficiently
converted into usable electrical power through piezoelectric, electromagnetic, or
other transduction mechanisms.

A broader bandgap range in the main structure enhances energy harvesting
efficiency by concentrating vibrational energy within the resonators, thereby opti-
mizing energy conversion. Beyond establishing the transfer function of such metas-
tructures for control applications, a key objective is to improve energy harvesting
by expanding bandgap width, deepening existing bandgaps, or generating multi-
ple distinct bandgaps. Advancing these capabilities necessitates a range of strate-
gies, including multi-resonator configurations, internally coupled resonators, graded
metastructures, nonlinear metamaterials, topology optimization, optimized energy
harvesting circuits, and advanced filtering techniques such as notch filters. These
methodologies collectively enhance vibration suppression and maximize energy con-
version efficiency, enabling the development of high-performance metastructures for
engineering applications.

1.2 Application
Classical vibration control techniques—such as passive damping, TMDs, and active
control methods—are widely used in engineering applications. However, they often
fall short in fully eliminating wave propagation or suppressing structural vibrations
across a broad frequency range. Passive damping dissipates energy but cannot fully
prevent wave transmission, while TMDs are typically narrowband and sensitive to
parameter variations. Active methods require significant power and complexity,
making them impractical in many scenarios.

In contrast, locally resonant metastructures are increasingly recognized as crit-
ical solutions across diverse engineering domains due to their tailored dynamic
properties. Rather than merely reducing the amplitude of vibration, these systems
are designed to create bandgaps—frequency ranges in which wave propagation is
entirely suppressed. This enables superior vibration isolation, noise reduction, and
structural control across a range of conditions.

Such metastructures are particularly valuable in high-precision manufacturing
(e.g., nanopositioning systems), where even minimal vibrations can degrade per-
formance. They also enhance durability and comfort in automotive and railway
systems by suppressing vibration transmission and reducing noise. Furthermore,
by integrating electromechanical components, metastructures can serve a dual pur-
pose: simultaneously suppressing vibrations and harvesting ambient mechanical
energy. This makes them ideal for powering autonomous monitoring systems and
extends their utility to applications such as smart infrastructure and seismic pro-
tection.

1.3 Problem Statement
Despite these promising potentials, significant technical challenges remain unre-
solved. Most prior works rely on linear approximations of metastructure dy-
namics, which fail to capture the full complexity of real-world nonlinear phe-
nomena—especially in systems with internal coupling or piezoelectric integration.
These nonlinearities can significantly influence bandgap characteristics and energy
harvesting behavior, yet are not adequately addressed in existing analytical frame-
works. Moreover, although closed-form transfer functions are essential for control
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and real-time tuning of metastructures, current literature primarily focuses on sim-
plified unit-cell models. There is a lack of closed-form models that account for
advanced configurations, such as internally coupled resonators or systems designed
for structural damping compensation.

Additionally, multifunctional optimization, especially in closed-form presenta-
tion —balancing vibration suppression with energy harvesting and other structural
or performance constraints—has not been sufficiently developed within a unified
modeling and control framework. While some research has highlighted how struc-
tural damping reduces bandgap depth, few have proposed effective methods to
compensate for this, particularly through active strategies such as piezoelectric ac-
tuation. Furthermore, although piezoelectric-based control has been explored to a
degree, its stability boundaries, design trade-offs, and integration into distributed
metastructure models remain open questions.

In summary, the nonlinear modeling of advanced metastructures, the develop-
ment of closed-form transfer functions for real-time control, and the formulation
of damping compensation strategies using electromechanical methods remain key
challenges. These aspects have not yet been addressed within a cohesive and prac-
tically applicable framework. This thesis aims to fill that gap.

1.4 Significance of the Research
The increasing demand for high-performance, energy-efficient, and autonomous
structural systems has made vibration suppression and energy harvesting critical
in modern engineering. Locally resonant metastructures provide a lightweight,
scalable foundation for both passive and actively controlled vibration suppression
systems. However, their widespread adoption is limited by unresolved issues in non-
linear modeling, damping effects, and control implementation to enhance bandgap
and harvesting energy performance. This thesis addresses these barriers by develop-
ing mathematically rigorous and practically oriented frameworks, contributing both
to the theoretical understanding and to the future deployment of metastructures in
real-world applications such as smart infrastructure, precision manufacturing, and
transport systems.

1.5 Research Gap
Despite growing interest in locally resonant metastructures, several critical gaps
remain that hinder their widespread practical adoption and multifunctional per-
formance. This thesis identifies and addresses the following unresolved challenges
in the current literature:

• Nonlinear Dynamics: The influence of nonlinearities—both mechanical
and electromechanical—on bandgap behavior and energy harvesting potential
is insufficiently understood, especially when internal coupling or piezoelectric
actuation is involved.

• Internal Coupling: While internal resonators have been studied, the role of
linear and nonlinear internal coupling in modifying bandgap depth, merging
phenomena, and dynamic behavior remains underexplored, particularly in
configurations beyond the fundamental unit-cell level.

• Closed-form Modeling: There is a lack of closed-form transfer function
models that can describe distributed metastructures with complex config-
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urations, such as internally coupled resonators and systems incorporating
damping compensation or adaptive control.

• Stability Under Piezoelectric Actuation: Although piezoelectric ele-
ments have been used for vibration control, comprehensive analyses of how
piezoelectric compensation for damping affects the system’s stability bound-
aries, especially in the presence of feedback loops or nonlinearities, are limited.

• Structural Damping Compensation: The detrimental effect of structural
damping on bandgap depth is known, but methods for actively compensating
for it—especially using piezoelectric or electromechanical feedback—are not
well established in the literature.

• Experimental Scalability and Real-World Testing: Although several
analytical and numerical studies have examined internally coupled metastruc-
tures, experimental validation is still lacking. The absence of physical testing
under realistic boundary conditions and dynamic loading highlights a signif-
icant gap, limiting the practical confidence and adoption of such advanced
configurations.

• AI-Driven Optimization: Advanced AI techniques, such as reinforcement
learning or evolutionary optimization, have only recently been introduced
in this field. Their application in tuning piezoelectric actuators, optimizing
damping profiles, and enhancing bandgap control remains limited.

• Frequency Control through Notch Filtering: While theoretical designs
may achieve ideal bandgap performance, real-world implementations often
deviate due to structural damping and energy losses. Various approaches
have been proposed to overcome damping-induced degradation of bandgaps,
including shunted piezoelectric circuits, resonator grading strategies, hierar-
chical unit cells, and nonlinear design techniques. While these methods have
shown partial success, the integration of such mechanisms within closed-form,
control-ready models remains limited. Notch filtering, in particular, though
widely used, still lacks a general framework for dynamic and adaptive fre-
quency control under realistic damping conditions.

This thesis addresses the above gaps by developing nonlinear and distributed
models, introducing closed-form control-oriented formulations, and implementing
both experimental validation and AI-based tuning approaches to advance the mul-
tifunctional performance of metastructures for vibration suppression and energy
harvesting.

1.6 Research Objectives and Questions
The overarching goal of this thesis is to enhance the characteristics of band gaps
(BG)—in particular, by increasing their width and depth—and to maximize energy
harvesting in locally resonant metamaterials. Additionally, it aims to streamline
the modeling methodology and develop closed-form transfer functions to enable
real-time control of distributed metastructures.

To achieve this, the research addresses the following specific objectives:

1. Develop nonlinear mechanical and electromechanical models for resonant unit
cells.
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2. Formulate closed-form and control-theoretic transfer functions for distributed
metastructures.

3. Investigate internal coupling effects, including bistability and frequency merg-
ing phenomena.

4. Explore spatial tuning strategies, such as mass distribution and center-of-
mass shifting.

5. Propose and validate experimentally feasible methods for damping compen-
sation, including piezoelectric actuation.

6. Analyze stability boundaries under nonlinear coupling and active control con-
ditions.

7. Employ artificial intelligence-based optimization techniques for parameter es-
timation and adaptive tuning.

8. Validate the analytical model through numerical simulations and targeted
experimental investigations.

To realize these objectives and to address the challenges of vibration suppression
and energy harvesting in metastructures, this thesis is driven by the following main
research question:

Main RQ: How can the performance of bandgap formation and energy harvest-
ing in metastructures be enhanced through nonlinear modeling, closed-form control
techniques, and AI-based tuning, particularly in the presence of structural damping?

To support this goal, the research is structured around a set of focused sub-
questions, grouped into four thematic areas: (1) Modeling and Dynamics, (2)
Control and Closed-form Representation, (3) Experimental Validation, and (4)
Optimization and Intelligence:

• RQ1: How do nonlinear mechanical and electromechanical effects influence
bandgap formation and energy harvesting in metastructures? This question
is elaborated in Chapter 3 and supported by the nonlinear modeling and
energy harvesting framework presented in [9].

• RQ2: How do linear and nonlinear coupling mechanisms affect vibration
suppression and bandgap evolution in metastructures? This is addressed in
Chapter 4 and Chapter 5, and supported by [10, 9].

• RQ3: What closed-form analytical formulations best describe continuous
metastructures with internal coupling, and how can they enable effective
bandgap tuning? This is addressed in Chapter 5, and supported by the
closed-form modeling work in [11].

• RQ4: What are the stability boundaries of metastructures under piezoelec-
tric actuation, feedback loops, and nonlinear coupling, and how can they be
analyzed analytically? These aspects are explored in Chapter 4 and Chap-
ter 5, and analyzed in [12, 13].

• RQ5: How accurately do theoretical and numerical predictions of inter-
nally coupled metastructures match experimental results under realistic con-
ditions? This validation is carried out in Chapter 5, and supported by [14].

20



• RQ6: How can artificial intelligence techniques (e.g., RL, GA, PSO) be used
to estimate parameters, optimize bandgap depth, and enable real-time tuning
in closed-form presentation of metastructures? This is presented in Chapter 6
and explored in [15, 16, 17].

• RQ7: How can notch filtering strategies be formulated and optimized for
adaptive, closed-form control of bandgaps in damped, nonlinear, or uncertain
metastructures? This control method is developed in Chapter 6 and detailed
in [16].

• RQ8: How can spatial variation strategies, such as center-of-mass shifting
and mass grading, passively tune or extend bandgap ranges? This is explored
in Chapter 3 and discussed in [18].

These questions and objectives form the methodological foundation for the the-
oretical modeling, simulations, optimizations, and experimental studies presented
throughout this thesis.

1.7 Scope of the Research
This thesis encompasses analytical modeling, numerical simulations, and selective
experimental investigations relevant to locally resonant metastructures. The pri-
mary objective is to enhance vibration suppression through increased and deepened
bandgaps while maximizing energy harvesting performance.

The research particularly emphasizes the development of generalized mathe-
matical models that account for nonlinear behaviors, such as those arising from
internally coupled resonators and piezoelectric actuation. While several analytical
and numerical frameworks are presented to characterize piezoelectric-based sys-
tems, the experimental validation of nonlinear piezoelectric effects is not included
within the scope of this work. This is due to practical limitations in accessing piezo-
electric elements capable of exhibiting the specific nonlinear phenomena modeled
in this study.

As such, the focus remains on providing a comprehensive theoretical and simulation-
based foundation for understanding the performance and control potential of metas-
tructures under a wide range of nonlinear and coupled conditions. The groundwork
established here is intended to guide and motivate future experimental research,
particularly involving nonlinear piezoelectric resonators.

1.8 Contributions
This thesis presents several novel contributions to the modeling, analysis, and con-
trol of locally resonant metastructures. In particular, the research introduces (i)
generalized nonlinear modeling frameworks, (ii) closed-form analytical formula-
tions for continuous systems, (iii) damping compensation strategies for closed-form
metastructures, utilizing piezoelectric actuation, (iv) detailed stability analyses un-
der nonlinear coupling, (v) AI-driven optimization methods for closed-form metas-
tructure identification and tuning, and (vi) experimental validation of metastruc-
ture configurations as well as internally coupled designs. The primary contributions
are detailed as follows:

• Development of generalized nonlinear mechanical and electromechanical mod-
els for locally resonant metastructures, enabling enhanced vibration suppres-
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sion and improved energy harvesting performance;

• Derivation of novel closed-form analytical formulations for continuous (dis-
tributed) metastructures with internally coupled resonators, extending be-
yond traditional lumped models;

• Introduction of new functionalities enabled by closed-form solutions, such as
active structural damping compensation via piezoelectric actuation, allowing
significant improvements in bandgap depth and tunability;

• In-depth stability analyses for internally coupled metastructures, clearly defin-
ing safe operational limits for both mechanical and electromechanical cou-
pling scenarios;

• Integration of artificial intelligence and optimization techniques for param-
eter estimation of mathematical models and optimization of metastructure
functionalities;

• Experimental validation of theoretical and numerical predictions, clearly iden-
tifying and discussing real-world implementation challenges and practical lim-
itations.

1.9 Dissertation Outline
Each chapter of the dissertation begins with a concise introduction, followed by a
detailed explanation of the methodology and mathematical formulations related to
metamaterial dynamics. This is succeeded by sections on simulation and experi-
mental procedures, culminating in a thorough analysis of the results. The summary
of each chapter provides insights and commentary on the findings, thereby enhanc-
ing the understanding of their implications.

The dissertation is organized as follows: Chapter 2 provides an overview of re-
levant studies and foundational concepts for understanding the advanced modeling
techniques used throughout this research. Chapter 3 develops the formulation and
general theory for modeling mechanical locally resonant metastructures through
lumped parameter modeling and distributed parameter modeling, accompanied by
experimental validation for a locally resonant beam. Chapter 4 extends the theoret-
ical framework to electromechanical locally resonant metastructures, incorporating
both lumped metamaterial models with piezoelectric resonators and distributed
beam models in bending. Numerical validation is performed using the Finite El-
ement Method (FEM). This chapter highlights the role of electromechanical res-
onators in vibration control and energy harvesting, and presents comprehensive
modeling approaches including analytical formulations, lumped and distributed pa-
rameter models (linear and nonlinear), and modal analysis techniques. Chapter 5
describes the streamlining of a closed-form methodology for flexible metastructures
with internally coupled resonators. It discusses the concept and theoretical ben-
efits, challenges in practical application, and details the experimental setup and
methodology, including FEM analysis. Chapter 6 focuses on streamlining more
techniques for enhanced functional diversity, such as piezoelectric actuation and
notch filter integration, utilizing AI-driven optimization, and conducting a set of
experiments to estimate structural damping. Finally, Chapter 7 summarizes the
contributions of this dissertation to the field of elastic metamaterials and outlines
potential topics for future research.

22



2 Relevant Studies
Vibration control technologies have rapidly evolved to address the demands of mod-
ern engineering applications, ranging from automotive to civil engineering struc-
tures. The development of metastructures, especially those incorporating advanced
material properties and geometrical designs, represents a significant leap in our
ability to control and manipulate wave propagation. This section delves into vari-
ous methodologies for modeling and optimizing such structures, focusing on both
lumped and distributed parameter approaches. The insights gained from these
studies not only enhance our understanding of dynamic systems but also pave the
way for innovating new applications in noise reduction, energy harvesting, and
beyond.

2.1 Lumped Parameter Metastructures
Lumped parameter metastructures are a simplified yet powerful approach to mod-
eling and understanding the dynamic behavior of metamaterials. This method
treats the metamaterial as a collection of discrete elements, each with its own
distinct properties such as mass, stiffness, and damping. By focusing on these
individual elements, lumped parameter models provide a clear and manageable
framework for analyzing the resonant behavior and vibration suppression capabili-
ties of metastructures [19, 20]. Central to these systems are chain oscillators, which
both convert and suppress vibrational energy, enhancing the efficiency of energy
extraction from ambient sources [21, 22, 23].

In the realm of electromechanical systems, lumped parameter models have been
extended to include the effects of piezoelectric materials, which convert mechan-
ical energy into electrical energy and vice versa. This integration allows for the
development of advanced vibration suppression and energy harvesting devices. Re-
searchers have extensively studied the use of piezoelectric elements in metastruc-
tures, highlighting their potential to create tunable bandgaps and improve the
overall efficiency of energy conversion systems [24, 25, 26, 27, 28].

Moreover, lumped parameter models facilitate the incorporation of nonlinear
dynamics, which are crucial for predicting the behavior of metastructures under
real-world operating conditions [29]. Nonlinearities such as cubic stiffness and
quadratic damping can significantly influence the formation and characteristics of
bandgaps [30, 31]. The inclusion of bistable systems within these chains extends
their wave control capabilities beyond conventional models, offering a broader at-
tenuation of vibrations and an expanded operational bandwidth [32, 33].

The primary goal in integrating metamaterials into energy harvesting systems
is to maximize bandgaps in the main structure, which leads to more energy be-
ing transferred to the resonators and, consequently, more harvested energy. This
strategy enhances the resonators’ energy harvesting capabilities and the overall
system’s efficiency [34, 35]. While traditional circuits [24, 25] directly connect the
load to the harvesting component, advanced designs like SSHI, SECE, and MPPT
improve energy conversion efficiency and adapt to environmental changes, signif-
icantly enhancing the performance of energy harvesting systems [36, 37, 38, 39,
40]. Data-driven methods, particularly neural networks, have been integrated into
Piezoelectric Energy Harvesting (PEH) systems, significantly advancing their per-
formance by allowing these systems to adapt dynamically to varying conditions,
optimizing energy conversion efficiency in real-time [41, 42].
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However, while lumped parameter models offer significant insights and practical
advantages, they also have limitations. The simplification inherent in this approach
means that some of the finer details of the wave propagation and interaction may be
overlooked. This is where distributed parameter models, which will be discussed in
the following section, come into play, providing a more detailed and comprehensive
analysis of metastructures.

2.2 Distributed Parameter Metastructures
Distributed parameter metastructures represent a more detailed approach to mod-
eling metamaterials, capturing the continuous nature of wave propagation through
these engineered structures. Unlike lumped parameter models, which treat the
system as a collection of discrete elements, distributed parameter models consider
the material’s properties as continuous functions over space and time. This allows
for a more comprehensive analysis of the dynamic behavior of metastructures, par-
ticularly when dealing with complex geometries and material distributions. They
are particularly relevant in various fields, including electromechanical [43] systems,
fluid dynamics [44], biological systems [45], and data analysis systems [46].

The foundation of distributed parameter modeling lies in its ability to describe
the spatially varying properties of a metamaterial, such as geometry, density, stiff-
ness, and damping. One of the significant advantages of distributed parameter
models is their ability to account for higher-order effects and interactions that
are often neglected in lumped parameter models. This includes phenomena such as
wave scattering, mode coupling, and the influence of boundary conditions. Develop-
ing closed-form expressions for the behavior of locally resonant units in metastruc-
tures significantly advances the field, offering new perspectives and methodologies
for tuned dynamic response and control in engineering applications [47, 11].

Despite their advantages, distributed parameter models are often more computa-
tionally intensive than lumped parameter models. The continuous nature of these
models requires solving partial differential equations, which can be challenging
and time-consuming. However, advances in numerical methods and computational
power have made it increasingly feasible to employ distributed parameter models
for practical applications.

To further explore the potential of distributed parameter metastructures, it is
essential to delve into the specific categories of these materials. The following sec-
tions will discuss mechanical and electromechanical locally resonant metamaterials,
highlighting their unique properties and applications.

2.2.1 Mechanical Locally Resonant Metamaterials
Mechanical Locally Resonant Metamaterials (MLRMs) utilize resonant unit cells
to achieve band gaps at wavelengths much larger than the size of their periodic
structure. These materials typically consist of a host matrix embedded with reso-
nant inclusions, which can be designed to target specific frequencies for vibration
attenuation. By carefully tuning the mass, stiffness, and damping properties of
these inclusions, MLRMs can be optimized to suppress vibrations across a wide
range of frequencies.

One of the key advantages of MLRMs is their ability to create low-frequency
band gaps without the need for large, impractical structures. This is achieved by
leveraging the resonance of the inclusions, which interact with the host matrix to
dissipate vibrational energy effectively. The resulting band gaps can be fine-tuned
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by adjusting the properties of the resonant units, allowing for precise control over
the vibrational characteristics of the material.

Recent research has focused on enhancing the performance of MLRMs through
the development of advanced materials and fabrication techniques. For example,
researchers have explored the use of lightweight, high-strength materials to cre-
ate more efficient resonant inclusions, as well as novel fabrication methods such
as additive manufacturing to produce complex metamaterial structures with high
precision [48, 49]. Other researchers have examined various implementations of res-
onators for different types of elastic waves, such as longitudinal, shear, and surface
waves. These studies include exploring the potential for harnessing such waves in
applications ranging from seismic vibration control to advanced acoustic filtering
[50, 51, 52, 53, 54].

Additionally, the integration of nonlinear resonators has been investigated to
extend the operational bandwidth of MLRMs [55, 56, 57]. Nonlinear resonators
can exhibit behaviors such as amplitude-dependent frequency shifts, which enable
the creation of broader and more adaptable band gaps. This makes MLRMs par-
ticularly suitable for applications in dynamic environments where the frequency
content of vibrations may vary over time [10, 58, 59].

2.2.2 Electromechanical Locally Resonant Metamaterials
Electromechanical Locally Resonant Metamaterials (ELRMs) combine mechanical
resonators with electromechanical components, such as piezoelectric elements, to
achieve enhanced vibration control and energy harvesting capabilities. These ma-
terials exploit the electromechanical coupling between the mechanical resonators
and the piezoelectric elements to convert mechanical energy into electrical energy,
which can then be dissipated or harvested for use in low-power electronic devices
[43].

The incorporation of piezoelectric elements into the resonant unit cells of ELRMs
allows for the active tuning of resonant frequencies through the application of
electrical signals. This capability enables the dynamic adjustment of band gaps in
response to changing environmental conditions, providing a more adaptable and
responsive solution for vibration control [60, 61, 62].

ELRMs have been shown to be highly effective in both vibration suppression and
energy harvesting applications. In vibration suppression, the piezoelectric elements
can be used to shunt the electrical energy [63, 64] generated by the mechanical
vibrations, effectively damping the resonant response of the system. This approach
has been demonstrated to provide significant attenuation of vibrational energy
across a wide frequency range [65].

In energy harvesting, ELRMs can convert ambient mechanical vibrations into
usable electrical energy, offering a sustainable power source for low-power devices.
The efficiency of energy harvesting can be optimized by tuning the resonant fre-
quencies of the unit cells or resonators to match the dominant frequencies of the
ambient vibrations. This makes ELRMs particularly suitable for applications in
environments with abundant vibrational energy, such as industrial machinery or
transportation systems [66, 67].

Furthermore, recent advancements in materials science and fabrication tech-
nologies have enabled the development of more efficient and durable piezoelectric
materials, significantly enhancing the performance and longevity of ELRMs [68].
Additionally, research has highlighted the potential of employing active feedback
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control in piezoelectric metastructures to create tunable bandgaps, enabling tar-
geted vibration suppression across specific frequency ranges without relying on ex-
tensive parametric modeling [69]. Meanwhile, nonlinearities have been recognized
for their beneficial role in broadening the effective bandwidth of vibratory energy
harvesters, suggesting opportunities for improved energy conversion efficiency in
environments characterized by variable excitation conditions [70].

The integration of nonlinear resonators has been investigated to extend the oper-
ational bandwidth of ELRMs. Research has examined the benefits of nonlinearities
in vibratory energy harvesting, highlighting that nonlinear energy harvesters have
a broader steady-state frequency bandwidth than linear ones [71]. This makes
them more efficient in varying ambient conditions, potentially providing a better
power source for low-power devices used in wireless sensing, data transmission,
actuation, and medical implants. Diodes introduce a marked nonlinearity in the
current-voltage relationship, significantly impacting energy harvesting efficiency.
This effect is critical in rectifying the alternating current (AC) generated by piezo-
electric elements into direct current (DC), which is more readily used by electronic
devices [24, 25, 26]. Moreover, the interaction between mechanical structures and
embedded piezoelectric materials leads to nonlinear behaviors such as amplitude-
dependent frequency shifts, essential for enhancing the energy harvester’s band-
width [27, 28].

2.3 Streamlining Metastructure Modeling: More Techniques
for Enhanced Functional Diversity

Developing closed-form expressions for the behavior of locally resonant units in
metastructures significantly advances the field, offering new perspectives and method-
ologies for tuned dynamic response and control in engineering applications [47, 43,
72, 73, 74]. This section aims to enable different functionalities of the recent
closed-form transfer function approach in metastructures, opening new avenues for
control.

2.3.1 Enabling Distributed Metastructures with Internally Coupled Res-
onators

This involves developing models that incorporate internal coupling mechanisms
to enhance the bandgap features of distributed metastructures [75, 11]. Internal
coupling, both linear and nonlinear, can improve vibration control and energy har-
vesting by manipulating wave propagation characteristics. Studies on linear chains
with nonlinear resonators [30, 76, 77] and nonlinear chains with linear resonators
[30, 78] have demonstrated this phenomenon. Additionally, a novel metamate-
rial with a multiresonator mass-in-mass lattice system achieved internal coupling
through a linear spring, forming two additional bandgaps over conventional designs
[79]. Furthermore, coherent internally coupled distant magnonic resonators via su-
perconducting circuits demonstrated operation at quantum-compatible scales [80].
Nonlinear internally coupled resonators have shown promising results, employing a
distributed parameter model for the main structure while using a chain or lumped
model for resonators. This approach introduces nonlinear internally coupled res-
onators, demonstrating enhanced wave manipulation capabilities. Modeling and
analysis have highlighted the advantages of incorporating nonlinear dynamics into
the design of metastructures [10].

26



2.3.2 Developing Closed-Form Distributed Models with Piezo Actuators
to Compensate Structural Damping

Integrating piezoelectric actuators with applied voltage-dependent control can com-
pensate for structural damping that influences bandgap features, particularly en-
hancing the depth of the bandgap. This approach seeks to refine control over
bandgap properties, ensuring more effective vibration suppression [81, 82, 83]. Ac-
tive control strategies have been explored as a means to adaptively tune vibration
characteristics [84]. However, these methods often fall short in unstable ratios,
where the active components can introduce additional poles and zeroes in the
right-hand side of root locations without significantly improving isolation [85].

2.3.3 Formulating Closed-Form Transfer Function Equations for Notched-
Piezo Actuators

Deriving mathematical equations for notched-piezo actuators aimed at frequency-
dependent control of bandgap features is crucial for applications requiring precise
control over the frequency response of the metastructures. This development lever-
ages advanced control strategies and optimization algorithms to enhance system
performance. The application of notch filters within the control loop of piezoelec-
tric actuators has been less documented, with pioneering work suggesting potential
improvements in bandgap depth [86]. The integration of AI and machine learning
techniques into metastructure design further enhances the adaptability and effi-
ciency of these systems. AI algorithms can optimize the parameters of notch filters
in piezoelectric actuators, leading to significant improvements in bandgap depth
and vibration isolation [87, 86, 88]. Enhancing bandgap depth in high-damping
metastructures involves using piezoelectric actuators paired with notch filters, op-
timized through reinforcement learning algorithms to achieve improved vibration
isolation [16].

Despite significant advancements, several gaps remain in the current understand-
ing and application of distributed parameter metastructures, particularly those
integrating nonlinear piezoelectric sensors for energy harvesting and piezoelectric
actuators for applications such as structural damping compensation and internal
coupling mechanisms. One major gap is the development and implementation of
closed-form transfer functions for enhanced control and analysis in various applica-
tions, such as piezoelectric actuation and internally coupled resonators. This would
enable more precise control over the dynamic responses of metastructures.

Another critical area is the validation of models to confirm their scalability and
practicality. Real-world testing remains a crucial step to ensure these metastruc-
tures function effectively outside controlled laboratory settings. Alongside this,
there is a need for an in-depth analysis of the effects of nonlinear dynamics on
electromechanical metastructure performance.

The variable coupling effects in electromechanical systems, such as those involv-
ing piezoelectric materials, also require further study. These effects significantly
influence bandgap characteristics, energy harvesting, and vibration control capabil-
ities. Additionally, stability challenges need to be addressed when updating metas-
tructures with various elements such as piezoelectric actuation, internally coupled
resonators, mass asymmetry, piezoelectric feedback loops, and the introduction of
nonlinear components.

Practical implementation limitations, such as accurately estimating and com-
pensating for structural damping in real-world conditions, are another critical area
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needing attention. Testing built metastructures in practical environments will re-
fine these estimates and ensure the structures’ applicability.

Finally, there is substantial potential in leveraging machine learning and AI-
driven techniques to optimize these models. AI can provide accurate dynamic
predictions, adjust damping ratios, and optimize piezoelectric actuation and notch
filters, significantly enhancing the performance and adaptability of metastructures.
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3 Modeling of Flexible Metastructures with Mechan-
ical Resonators

This chapter explores the modal analysis of mechanical locally resonant metastruc-
tures through the use of lumped and distributed parameter models. The focus is
placed on understanding and predicting the dynamic behaviors of these systems,
which are relevant in various engineering applications due to their unique properties
in manipulating wave propagation and vibration characteristics.

The fundamental concepts of modal analysis are introduced, utilizing differential
operator notation to establish the governing equations. This approach simplifies the
mathematical complexities involved and lays the groundwork for further analysis.

The bandgap frequency range and its edge frequencies are derived, predicated
on the assumption of an infinite number of resonators. Furthermore, these theo-
retical predictions undergo validation through numerical approaches, notably the
plane wave expansion method, to verify their practical relevance and applicability.
Additionally, the chapter discusses experimental validation conducted to assess the
performance of the metastructure.

Overall, the chapter aims to provide a detailed understanding of the dynamics
of mechanical metastructures, emphasizing the importance of practical design and
application to achieve desired dynamic properties through strategic manipulation
of structural parameters.

3.1 Lumped Parameter Modeling
Lumped parameter modeling simplifies the analysis of complex physical systems
by condensing key properties like inertia, elasticity, and damping into discrete,
manageable components. These components, defined by characteristic parameters
of mechanical or electrical systems—such as mass, damping, stiffness, resistance,
capacitance, and inductance—are interconnected within a network governed by
Ordinary Differential Equations (ODEs).

This modeling approach is particularly effective for systems where spatial vari-
ations in properties are minimal, thus allowing the simplification of the analysis to
ordinary differential equations rather than more complex partial differential equa-
tions. It offers a clear, intuitive understanding of system dynamics by abstract-
ing complex phenomena into simpler, discrete elements like springs, dampers, and
masses.

3.2 Linear Lumped Parameter Modeling
Linear Lumped Parameter Modeling serves as the cornerstone for understanding
wave propagation in metamaterials, laying the groundwork for more complex non-
linear analyses. This approach simplifies the dynamic behavior of a metamaterial
system into a series of discrete masses, springs, and dampers, whose interactions can
be described by linear differential equations. For a one-dimensional (1D) phononic
medium, this linearized model provides an insightful preliminary assessment of
wave transmission and reflection characteristics.

Consider a periodic structure consisting of an infinite series of identical unit
cells, each comprising a primary mass mm connected to its neighbors by springs
of stiffness km, (see Fig. 1). This setup forms a monoatomic chain that can sup-
port wave propagation due to mechanical vibrations. Each unit cell is augmented
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Figure 1: Foundational model of linear phononic media: a linear monoatomic chain with
linear resonators of masses, spring, and damping. Dashed rectangle is unit cell.

with a linear resonator, characterized by a mass mr and connected to the primary
chain by a spring of stiffness kr. For the linear model, we assume the resonator’s
response to displacement is proportional to the applied force, neglecting any form
of nonlinearity or damping for simplicity. The interaction between the chain mass
and the resonator can thus be represented as:

fr = krδ, (3)

where δ denotes the relative displacement between the chain mass and the res-
onator.

Applying Newton’s second law to both the chain mass and the resonator yields
the following set of equations describing the system dynamics:

mmüm + km (2um − um− − um+) + kr(um − ur) = 0 (4)

mrür − kr (um − ur) = 0, (5)
where um and ur represent the displacements of the chain mass and the res-

onator, respectively, and um+ and um− are the displacements of the neighboring
chain masses. For the last mass in the chain: um − um+ = 0, u̇m − u̇m+ = 0, and
for the first mass in the chain: um− = ub.

The Linear Lumped Parameter Model elucidates the fundamental mechanics be-
hind wave propagation and band gap formation in mechanical metamaterials. By
revealing the influence of mass and stiffness ratios on the system’s dynamic proper-
ties, this model guides the design of metamaterials with tailored wave manipulation
capabilities.

3.2.1 Nonlinear Lumped Parameter Modeling
Transitioning from the foundational principles established in linear dynamics, we
now delve into the complexities of Nonlinear Lumped Parameter Modeling, explor-
ing how nonlinearity of resonators enriches the metamaterial’s response to external
stimuli. The simplest lumped model of a 1D nonlinear phononic medium repeating
unit cell, as illustrated in Fig. 2, is characterized as a linear atomic chain with em-
bedded nonlinear resonators. This chain comprises an infinite series of uniform unit
cells. Each of these unit cells consists of a mass, mm, pertaining to the monoatomic
chain, interconnected through linear springs.

This primary linear chain is interfaced with nonlinear resonators, each identified
by its mass, mr. For simplicity, let us initially neglect both the damping element
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Figure 2: Foundational model of nonlinear phononic media: a linear monoatomic chain
with nonlinear resonators of masses, spring, and damping. Dashed rectangle is unit cell.

and any external actuation or feedback mechanisms. The net force exerted by the
nonlinear spring connecting the resonators can be represented as:

fr = krδ +
∑

γqδq, (6)

where δ is the relative displacement between the adjacent masses (chain mass
and resonator). Subsequently, the dynamics of the system can be expounded as
follows:

mmüm + km (2um − um− − um+) +
∑

γqm
((um − um−)q + (um − um+)q)

+ kr(um − ur) +
∑

γqr (um − ur)q = 0
(7)

mrür − kr (um − ur) −
∑

γqr
(um − ur)q = 0, (8)

where for the last mass in the chain: um − um+ = 0, u̇m − u̇m+ = 0, and for the
first mass in the chain: um− = ub.

Here, γqm
, γqr

denote the nonlinear stiffness of the monoatomic chain and res-
onator, respectively. Here, um denotes the displacement of the mth mass, km

represents the stiffness of that mass, kr is the resonator’s stiffness, while um+ and
um− indicate the displacements of the succeeding and preceding masses, respec-
tively, and ub signifies the displacement of the excitation at the base or first mass
chain.

The parameter q can assume values (0, 1, 2, 3, . . .), denoting the degree of sys-
tem nonlinearity: linear (q = 0, 1), quadratic (q = 2), cubic (q = 3), and so forth.
Weakly and strongly nonlinear systems can be distinguished based on the relative
magnitude of the nonlinear force term, expressed as

∑
γqδq. Essentially nonlin-

ear systems are characterized by vanishing linear forces (km,r → 0) but non-zero
nonlinear forces (γ > 0 for all q except q = 0 and q = 1).

Cubic nonlinearities can manifest as either purely hardening (γ > 0) or soften-
ing (γ < 0), while quadratic nonlinearities combine both softening and hardening
behaviors. The versatility of this elementary discrete model extends to representing
more intricate media configurations. These adaptations empower discrete modeling
techniques to provide insights into the complexities of nonlinear phenomena.

Considering wave propagation in a system and applying boundary conditions
with an input ub = eiωt, the transmittance of the system can be quantified as
τr =

∣∣∣uN
m

u1
m

∣∣∣, where uN
m represents the displacement of um at the end of the chain

sequence, while u1
m denotes the displacement of the mass at the first position in

the sequence or the base excitation or the displacement at the initial position ub.
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The Laplace transform of nonlinear terms, specifically γqr
(um − ur)q, is not

straightforward. While one could approach this by linearizing around a specific
operating point, a more practical solution is often to address it numerically. Es-
sentially, due to the complexities introduced by nonlinearity, numerical methods
frequently provide the most feasible approach for analysis.

3.2.2 Dispersion Curve
To elucidate the influence of the resonator’s mass and spring within these config-
urations, the dispersion curve is determined for linear mechanical resonators. A
streamlined model, where mechanical damping and the effects of the piezoelectric
transducer are neglected (refer to Fig. 17), is employed. In this model, both the
stiffness of the monoatomic chain and the resonator are treated as linear. Assum-
ing a harmonic wave solution and incorporating Bloch’s theorem, the harmonic
displacements of the masses can be expressed as:

um = um0ei(Gna−ωt) (9)

ur = ur0ei(Gna−ωt), (10)
where um0 and ur0 are the initial displacements or amplitudes for unit cell or main
chain and resonator. Substituting into linear form of Eq. (7) and Eq. (8) results
in:

mmmrω4 − (2kmmr (1 − cos (Gna)) + krmm + krmr) ω2

− 2kmkr (cos (Gna) − 1) = 0
(11)

For wider scope and easy analysis, the normalized dimensionless parameters
µ, ν, and ωL, along with the natural frequency ω0, are defined as follows:

ωL = 1
2

√
mm

km

kr

mr
, µ =

√
mr

mm
, ν =

√
kr

km
, ω0 =

√
4km

mm
(12)

The parameters µ and ν represent the mass and stiffness ratios of the resonator
relative to the main structure. Solving the Eq. (11) produces four roots for ω,
which leads to Eq. (13) and (14) for the individual derivatives with respect to
mass and stiffness ratios, µ and ν.

ω±(k) = ω0

(
1
2

{
1
2 [1 − cos(Gn)] + ω2

L(1 + µ2)±√
4 (µω2

L)2 +
[

1
2 [1 − cos(Gn)] + ω2

L(µ2 − 1)
]2

1/2 (13)

ω±(k) = ω0

(
1
16

{
sin
(

Gn

2

)2
+ 1

4ν2 + ω2
L±

√(
1
4ν2 + ω2

L

)2
+
(

ν2

4 − 4ω2
L

)
sin
(

Gn

2

)2
+ 1

4 cos(Gn)2 − 1
4


1/2

(14)
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Figure 3: Dispersion in the periodic structure with varying resonance coupling, and mass
ratio. The plots demonstrate the profound influence of resonance conditions on the emer-
gence and width of band gaps, highlighting the potential for tuned wave propagation control
by adjusting the µ parameter.

The dispersion relation in Eq. (13) emphasizes the effects of µ, profoundly
affecting the value of ω at each wave vector Gn. On the other hand, the dispersion
relation Eq. (14) focuses more on the stiffness ratio ν, playing a critical role as well
in determining the behavior of the system.

From Fig. 3 and Fig. 4, it becomes evident that the properties of the peri-
odic structure are intricately linked with the resonance conditions. One striking
observation is that the emergence of a band gap isn’t directly associated with a
specific wave vector Gn. Instead, it’s bound to certain conditions or parameters,
possibly hinting at the importance of resonator properties in dictating wave propa-
gation characteristics. This indicates a more complex interplay between the system
parameters than just the wave vector, emphasizing the significance of resonator
configurations in the system’s acoustic properties.

Another pivotal observation is how the width of the band gap is influenced by ν.
As the stiffness ratio becomes more pronounced, the width of the band gap enlarges.
This suggests that by manipulating the stiffness of the resonator, one could have
a direct influence on the system’s acoustic insulation or filtering capabilities. The
stronger the coupling, the more formidable the band gap, acting as a more robust
barrier to certain frequency components.

Fig. 4 suggests that controlling the system by adjusting ν is a valuable approach.
Online tuning with the mass ratio µ can be challenging and impractical, whereas
tuning with ν is straightforward, even in real-time scenarios. This holds significant
importance for real-time control applications. Changing the mass ratio typically
requires halting the operation to physically modify the system—a process that is
both time-consuming and may inadvertently alter other critical parameters like
the bandgap width. On the other hand, stiffness can be dynamically altered by
implementing mechanisms such as actuators that adjust the position of an attached
mass on the resonator, facilitating on-the-fly tuning of the bandgap frequency edges
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Figure 4: Dispersion in the periodic structure with varying resonance coupling, and stiff-
ness ratio. The plots demonstrate the profound influence of resonance conditions on the
emergence and width of band gaps, highlighting the potential for tuned wave propagation
control by adjusting the ν parameter.

without needing to stop the system. This method provides a streamlined and
practical solution for tuning the system’s acoustic properties in real-time, enhancing
its adaptability and effectiveness in various applications.

3.2.3 Numerical Studies
The dynamic behaviors of the proposed mechanical resonator models are character-
ized through simulations informed by parameters detailed in Table 1. The models
incorporate sets of ordinary differential equations that capture the mechanical dy-
namics of the resonators. Solutions are numerically derived using the fourth-order
Runge-Kutta method, ensuring accuracy and stability.

Table 1: Defined parameters for the lumped models

Parameter Value
Mass of main chain (mm) 0.056 kg
Mass of resonator (mr) 0.0336 kg
Spring constant of main chain (km) 150 N/m
Spring constant of resonator (kr) 129.6 N/m
Damping coefficient of main chain (cm) 0.0464 Ns/m
Damping coefficient of resonator (cr) 0.0334 Ns/m
Nonlinear stiffnesses quadratic coefficient (γ2) −500 N/m2

Nonlinear stiffnesses cubic coefficient (γ3) 15000 N/m3

The focus on nonlinear resonators, characterized by quadratic and cubic stiffness
terms, indicates a significant influence on the bandgap’s extent. The quadratic
nonlinearity is expressed as:

fr = kru + γr2u|u|, (15)
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Figure 5: Comparative Analysis of Band Gap Behaviors in a 1-D Chain System: Insights
from Mass Chain without Resonators, Conventional Metastructure, Linear, and Nonlinear
Resonator Configurations

This simplified expression is utilized to simulate nonlinear effects and compare
them against linearities. Bistable nonlinearities were excluded from the analysis to
focus on single-state behavior and avoid the complexity of the system.

Simulations reveal the frequency range of natural vibrations extends from 6 to 17
Hz, with the integration of resonators delineating band gaps within this spectrum.
These band gaps stem from the local resonance of the mechanical resonators and are
depicted in Fig. 5. Fig. 6 (Right) shows the nonlinear spring force–displacement
relation for cubic nonlinearities, and the influence of such a nonlinearity in the
system. Distinctly, the nonlinearity is characterized by the coefficient γ3, where
its sign determines the hardening or softening nature of the system. Transmit-
tance response in Fig. 6 (Left) demonstrates that the behavior of cubic nonlinear
resonators, whether hardening or softening, is determined by the sign of the cu-
bic stiffness coefficient, γr3 . In practical applications, these characteristics can be
harnessed to design systems with desired dynamic responses, such as vibration iso-
lators or mechanical filters, where the specific nonlinearity can be chosen to control
the behavior of the system under varying load conditions. The cubic nonlinearity
is modeled as:

fr = kru + γr3u3, (16)

By varying γr3 within a range of ±15000 N/m3 clearly exhibits the system’s
transition between hardening and softening behaviors. The analytical focus re-
mains on the primary effects of cubic nonlinearity without delving into the com-
plexities of bistability or tristability. By simplifying the approach, the need for
comprehensive frequency sweeps typically necessary for analyzing nonlinear sys-
tems is effectively circumvented, streamlining the study of the system’s dynamic
response. Factors like excitation frequency and material properties influence the
efficacy and persistence of this suppression.
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Figure 6: Impact of Cubic Nonlinearity on the 1-D Chain System: (a) Transmittance
response influenced by cubic nonlinearity, and (b) Nonlinear spring force–displacement
relationship for cubic nonlinearities.

3.3 Distributed Parameter Modeling
Distributed Parameter Modeling (DPM) stands in contrast to Lumped Parame-
ter Modeling (LPM) by offering a more granular perspective on physical systems.
Where LPM simplifies systems into discrete, point-like elements that aggregate
mass, energy, or stiffness, DPM employs partial differential equations to reflect the
continuous spatial distribution of these properties. This approach helps accurately
capture the nuanced spatial variations inherent in complex metastructures, such
as the vibration patterns of fluid flows, the temperature distribution in a body,
acoustic behavior of the materials, or the vibration of a membrane or beam. By
embracing the spatial heterogeneity of the system’s properties, DPM enables a
more precise simulation of real-world phenomena, enhancing our ability to design
and analyze advanced metastructures that leverage spatial variation for innovative
functionalities.

3.3.1 Modal Analysis and Bandgap Formation in Mechanical Metastruc-
tures

The research primarily employs modal analysis in the design and optimization of
mechanical locally resonant metastructures. This analysis is crucial for identifying
key vibration characteristics, such as natural frequencies, mode shapes, and modal
damping ratios, under specific conditions. These insights enable the engineering of
metastructures with tailored mechanical wave propagation behaviors.

The study employs a distributed parameter model approach, utilizing PDEs
to capture the system dynamics more precisely than lumped parameter models.
This methodology is particularly applicable to systems where spatial variations are
non-negligible, affecting phenomena such as wave propagation, heat transfer, and
fluid dynamics. Analytical models are derived using modal analysis through the
frequency determinant method, providing a solid theoretical foundation for un-
derstanding the intricate behavior of internally coupled resonators within metas-
tructures. This type of methodology has already been presented by Sugino et al.
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[47] and serves as both background and input for our further investigation in this
research, enabling its application to other functionalities and applications.

The standard distributed model of the metastructure under investigation, sub-
ject to base excitation and external forces, is illustrated in Fig. 7. Employing
Newtonian mechanics and drawing from classical vibration textbooks, the behav-
ior of the metastructure is captured by the following partial differential equation,
as detailed in Eq. (17).

Lw(x, t)+C ∂w(x, t)
∂t

+M∂2w(x, t)
∂t2 −

Nr∑
r=1

(
krzr(t) + cr

∂zr(t)
∂t

)
δ (x − xr) = Fbm

(x, t)

(17)
which includes structural flexibility L, damping C, and inertia M. The interac-
tion with the resonators is represented by the summation term, encompassing the
stiffness kr, damping cr, and location xr of each resonator. The dynamic of the
system is a linear homogeneous differential operator, exhibiting orders of 2p and
2q, respectively, with q ≤ p. The spatial coordinate x extends over domain D. The
function w(x, t) captures the system’s relative transverse vibration compared to
the base motion, essentially reflecting the displacement at specific points relative
to the base’s harmonic movement. On the other hand, zr(t) denotes the resonator’s
relative vibration in absolute coordinates, providing insight into its displacement to
the overall structure’s vibration. The δ(x − xr) is the Kronecker delta function to
pinpoint the resonators’ locations on the beam, with xr specifying the position of
the r-th resonator. Moreover, F symbolizes the external force, distributed across
D, and incorporates the impact of the base excitation on the beam.

Figure 7: Example of standard locally resonant metastructures, where m represents the
mass of the resonators, c is the damping, and k is the stiffness of the resonators.

Similarly, the governing equation for the resonators, derived from Newton’s
second law of motion, is expressed as follows:

mr
∂2zr(t)

∂t2 + cr
∂zr(t)

∂t
+ krzr(t) + mr

∂2w (xr, t)
∂t2 = Fbr

(t) (18)

The boundary conditions for the system, as outlined in Eq. (17), are defined by
Eq. (19), where each Bi is a linear homogeneous differential operator of order no
greater than 2p − 1.

Bi[w(x, t)] = 0, i = 1, 2, . . . , p (19)

Proportional damping, a method often used in real-world structures for esti-
mating natural frequencies and mode shapes, relates the damping matrix to the
mass and stiffness matrices. This concept allows C to be expressed as a combi-
nation of mass and stiffness operators L and M, as shown in Eq. (20), with c1
and c2 being non-negative constants, determined based on the physical properties
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of the system. However, engineers usually use experimental modal analysis or fit
data from vibration tests to find them. This approach, as referenced in [89], main-
tains consistent mode shapes and similar natural frequencies for both damped and
undamped systems.

C = c1L + c2M (20)

The eigenfunctions ϕm(x) of the system are derived by solving the eigenvalue
problem of the undamped version of Eq. (17), presented in Eq. (21).

L [ϕm(x)] = λmM [ϕm(x)] , m = 1, 2, . . . , Nm (21)

The symbol λm represents an eigenvalue associated with the mth eigenfunction
ϕm(x) of the system. For structures like beams equipped with resonators, the sys-
tem is defined by coupled differential equations for each resonator and the structure
itself. These equations account for the mutual influence of each component on the
system’s dynamics. The mode shapes of the base structure alone are not the exact
mode shapes of the entire metastructure, but using them simplifies the analysis
significantly.

In the case of an Euler beam spanning domain D = [0, L], assumed to be
linearly elastic and homogeneous, the operators L, M, C, B1, and B2 are defined
in terms of the beam’s physical properties: flexural rigidity (EI), density (ρ), and
cross-sectional area (A).

L = EI
∂4

∂x4 , M = ρA, C = c,

B1 = 1, B2 = EI
∂2

∂x2

(22)

In advancing the understanding of modal expansion in the system, the orthogo-
nality of eigenfunctions is critical for solving Eq. (17). The self-adjoint (Hermitian)
nature of the eigenvalue problem ensures this orthogonality. For any two eigen-
functions ϕm(x) and ϕn(x), the problem is self-adjoint if they satisfy the conditions
given in Eq. (23), as highlighted by [90, 91].∫

D

ϕm(x)L [ϕn(x)] dx =
∫

D

ϕn(x)L [ϕm(x)] dx∫
D

ϕm(x)M [ϕn(x)] dx =
∫

D

ϕn(x)M [ϕm(x)] dx.

(23)

When considering unique eigenvalues ω2
m and ω2

n with their respective eigen-
functions ϕm(x) and ϕn(x), these functions are normalized with respect to M.
This normalization leads to the generalized orthogonality condition outlined in
Equations (24) and (25), with δmn being the Kronecker delta function.∫

D

ϕm(x)M [ϕn(x)] dx = δmn (24)

and ∫
D

ϕm(x)L [ϕn(x)] dx = δmnω2
m (25)

Assuming proportional damping, the structural damping characteristics are cap-
tured by Eq. (26). Here, ζm denotes the damping ratio of the m-th mode, which is

38



precisely defined in Eq. (27) utilizing the constants c1 and c2. Equations (24)–(26)
are integral to constructing a set of orthonormal eigenfunctions, which together
form a complete basis for the solution space pertinent to the eigenvalue problem.∫

D

ϕm(x)C [wm(x)] dx = c1δmnω2
m + c2δmn = 2δmnζmωm (26)

with
ζm = 1

2ωm

(
c1ω2

m + c2
)

(27)

Modal decomposition is a method used to describe the structure’s vibration
across a domain D by representing it as a sum of modal shapes in one direction.
This method assumes that the behavior of the structure can be accurately captured
using a finite set of modes. For instance, the Euler–Bernoulli beam theory, com-
monly used in these analyses, may not provide sufficient accuracy in high-frequency
situations. This technique, widely used in modal analysis, produces convergent so-
lutions to the boundary value problem as formulated.

Using modal decomposition, the beam’s deflection in the domain D is expressed
as a sum of modal shapes in one direction. This assumes that the behavior of the
beam can be accurately represented by a finite number of modes, as expressed in
Eq. (28):

w(x, t) =
Nm∑

m=1
ϕm(x)zm(t), (28)

Here, ϕm(x) denotes the spatial mode shape, and zm(t) is the time-dependent
modal coordinate for the m-th mode. These modal representations are crucial in
modeling the dynamics of a flexible beam with integrated discrete resonators.

Incorporating the modal expansion from Eq. (28) into the system’s governing
differential equation, given by Eq. (17), yields Eq. (29). This resultant equation
effectively combines the modal decomposition with the system’s differential opera-
tors, capturing the influence of the resonators. It provides a complete representa-
tion of the beam’s dynamic response, encompassing both the modal characteristics
and the interactive effects of the resonators.
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L
Nm∑

m=1
ϕm(x)zm(t) + C ∂

∂t

Nm∑
m=1

ϕm(x)zm(t) + M ∂2

∂t2

Nm∑
m=1

ϕm(x)zm(t)−

Nr∑
r=1

(
krzr(t) + cr

dzr(t)
dt

)
δ (x − xr) = Fbm

(x, t)

(29)

Multiplying Eq. (29) by ϕn(x) and integrating over the domain D, and applying
the orthogonality conditions Equations (24)–(27) of the mode shapes, gives

-0cm

z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t) −

Nr∑
r=1

mrω2
rzr(t)ϕm (xr) = Qbm (x, t), m = 1, 2, . . . , Nm

(30)
Similarly for resonators, substituting the modal expansion Equations (28) into

(18) yields

z̈r(t) + 2ζrωr żr(t) + ω2
rzr(t) +

Nm∑
m=1

z̈m(t)ϕm(xr) = Qbr
(t), r = 1, 2, . . . , Nr (31)

Here, Nm and Nr denote the number of modes and resonators, respectively.
Each mode has a specific modal frequency ωm, and each resonator has a mass mr

and its own natural frequency ωr. The damping ratios ζm for the modes and ζr for
the resonators quantify energy dissipation.

To simplify, the superscript “dot” indicates time derivatives, and “prime” indi-
cates spatial derivatives. Each equation in the model represents the dynamics of
modal coordinates or resonator displacement as a second-order ordinary differen-
tial equation. The dynamics are influenced by modal and resonator parameters
(natural frequencies ωm and ωr, damping ratios ζm and ζr), their interactions, and
base excitation forces (Qbm

and Qbr
).

Decoupling of these equations is achieved through an orthogonal transformation,
involving pre- and post-multiplication by the mode shape matrix. This leads to
diagonalization of the mass and stiffness matrices, thanks to the orthogonality of
eigenvectors to both matrices. The result is a set of decoupled ordinary differential
equations. This normal mode method applies in the absence of damping or with
proportional damping, where the damping matrix is a linear combination of the
mass and stiffness matrices. The transformation becomes orthonormal when the
mode shape is normalized to the mass matrix.

Combining the structural dynamics represented in Eq. (30) with the dynamics
of resonators from Eq. (31) enables the coupling of inertial terms and decoupling of
stiffness in the system, facilitating analysis in the frequency domain. This process
is expressed in Eq. (32), where Hbm

(x, t) is determined by integrating the effects of
external forces, base motion, and damping into a net external force, as shown in Eq.
(33). Equations (31) and (32) together form a set of coupled second-order linear
ordinary differential equations, which, upon solving, yield the mode shapes and
resonant frequencies of the entire system and its steady-state response to harmonic
excitation.
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z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t) +

Nr∑
r=1

mrϕm(xr)
Nm∑
p=1

z̈m(t)ϕp(xr)+

Nr∑
r=1

mr z̈r(t)ϕm(xr) + 2
Nr∑
r=1

mrϕm(xr)ζrωr żr(t) = Hbm (x, t), m = 1, 2, . . . , Nm

(32)

Hbm
(x, t) =

∫ L

0
Fe(x, t)ϕm(x)dx − ẅb(t)

(∫ L

0
Mϕm(x)dx +

Nr∑
r=1

mrϕm (xr)
)

−

ẇb(t)
∫ L

0
Cϕm(x)dx

(33)

The Laplace transform is applied to the system of equations, assuming zero
initial conditions, to transition the analysis to the frequency domain, as seen in
Equations (34) and (35). In these equations, Zm(s) and Zr(s) represent the Laplace
transforms of the modal and resonator displacements, respectively. This transfor-
mation simplifies the algebraic manipulation and analysis of the system’s dynamics.

Zr(s) = Qbr (s) −
∑Nm

m=1 s2Zm(s)ϕm (xr)
s2 + 2ζrωrs + ω2

r

, r = 1, 2, . . . , Nr (34)

s2Zm(s) + 2ζmωmsZm(s) + ω2
mZm(s) +

Nr∑
r=1

mrϕm (xr)
Nm∑
p=1

s2Zp(s)ϕp (xr) +

Nr∑
r=1

mrs2Zr(s)ϕm (xr) + 2
Nr∑
r=1

mrϕm (xr) ζrωrsZr(s) = Hbm(s), m = 1, 2, . . . , Nm

(35)
For a deeper analytical understanding, applying Eq. (34) to the Laplace trans-

form of Eq. (30) yields the following expression in Eq. (36).

(s2 + 2ζmωms + ω2
m)Zm(s) −

Nr∑
r=1

mrω2
r

(
Qbr

(s) −
∑Nm

p=1 s2Zp(s)ϕp (xr)
s2 + 2ζrωrs + ω2

r

)
ϕm (xr) = Qbm

(s),

m = 1, 2, . . . , Nm

(36)

The analysis focuses on the transfer function Zm

Qbm
, particularly when the effect

of Qbr
is ignored. Here, the mass ratio µ, a dimensionless quantity, relates the

mass of each resonator to a differential mass element of the system and is defined
as µ = mr

m(xr)dxr
, where m(xr) represents the mass per unit length at xr and dxr is

an infinitesimal segment length at this point. To simplify the system of equations,
it is assumed that an infinite number of resonators are distributed throughout the
entire domain of x, and the regions represented by xr become infinitesimally small.
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lim
Nr→∞

Nr∑
r=1

m (xr) ϕm (xr) ϕp (xr) dxr ≈
∫ L

0
m(x)ϕm(x)ϕp(x)dx = δmp, m, p = 1, 2, . . .

(37)
Applying these assumptions results in the following expression:

Zm(s)
Qbm

(s) = 1
s2
(

1 + µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

m = 1, 2, . . . , Nm (38)

Equation (38) indicates that resonators add a frequency-dependent mass to the
system. With the assumption of an infinite resonator distribution, leading to con-
tinuous spatial displacements, similar reductions apply to the resonator displace-
ments. By substituting Equations (38) into (34) and transitioning from the discrete
xr to a continuous spatial domain x, a simplified equation emerges as presented in
Eq. (39).

Zr(x, s) = − s2

s2 + 2ζrωrs + ω2
r

Nm∑
m=1

Qbm
(s)ϕm (x)

s2
(

1 + µ(ω2
r+2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

(39)

Equation (39) defines the motion Zr(x, s) of resonators along the beam in the
Laplace domain, influenced by modal forces Qbm

(s). The displacement of the
resonators is presented as a weighted sum of the beam’s modal shapes:

Zr(x, s) =
Nm∑

m=1
Ψm(s)ϕm(x) (40)

Equation (41) expresses the relationship between the modal force Qbm
(s) and

the modal coordinate Ψm(s) in the Laplace domain. It illustrates how resonator
displacements are influenced by the modes of the structure:

Ψm(s)
Qbm

(s) = −s2

[s2 + 2ζrωrs + ω2
r ]
[
s2
(

1 + µ(ω2
r +2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

] , m = 1, 2, . . . , Nm

(41)
The transfer function in Eq. (41) clarifies how the input forces are transformed

into modal responses. The function’s poles, indicative of the system’s natural
frequencies, are the points at which the system exhibits peak responses.

3.4 Dispersion Analysis by Plane Wave Expansion Method
The Plane Wave Expansion (PWE) method is extensively utilized to analyze wave
propagation in periodic structures. This technique provides critical insights into
wave behaviors, which are crucial for designing and optimizing periodic structures
in applications like vibration suppression and energy harvesting [92, 93].

Consider the transverse displacement of a conventional metastructure defined
as follows: For the beam: Wt(x, t) = Ŵte

i(Gnx−ωt), and for resonators: zr(t) =
ẑrei(ωt)
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The dynamic behavior of the conventional metastructure and its resonators is
described by the following differential equations:

EIG4
nŴt − ρAω2Ŵt + krŴt − kr ẑr = 0, (42)

−krŴt + kr ẑr − mrω2ẑr = 0. (43)

Here, Ŵt and ẑr denote the amplitudes of the transverse displacements for the
beam and resonator, respectively; Gn is the wave number; ω is the frequency of
interest; E is the modulus of elasticity; I is the second moment of area of the
beam’s cross-section; A is the cross-sectional area; ρ is the material density; kr is
the stiffness of the resonators; and mr is the mass of each resonator.

The dispersion relation is derived by applying periodic boundary conditions and
seeking non-trivial solutions. The characteristic equation relating frequency ω and
wavevector Gn simplifies to:

(Amrρ)ω4 + (−EImrG4
n − krmr − Akrρ)ω2 + EIG4

nkr = 0 (44)
The fourth-order dispersion equation in ω derived from the PWE method yields

four solutions. However, considering that negative frequencies are non-physical in
this context, we only focus on the positive solutions. Among these, two solutions
on the positive frequency axis delineate the dispersion relationship, mapping fre-
quency to wave number Gn. Notably, there are specific wave numbers for which
the equation does not yield real frequency solutions; these ranges are identified as
bandgaps. These bandgaps represent frequency intervals where wave propagation is
inhibited due to the periodic structure of the metastructure. Hence, the dispersion
curve computed for a given target frequency, such as ft = 31.2 Hz, provides critical
insights into the wave propagation characteristics of the metastructure, highlight-
ing frequencies that correspond to propagating waves and those that fall within the
bandgap regions, as shown in Fig. 8. The designated target frequency, (here, the
resonator’s frequency) delineates the frequency edge of the bandgap, marking the
frequency range where local resonances substantially alter wave propagation. This
initiation point heralds the emergence of a bandgap within the out-of-plane phase.

3.5 Numerical Studies
The numerical study presented here is derived from the analytical equations (Eq.
38) developed in the preceding sections, showcasing the dynamic behavior of a
metamaterial beam through its transmittance plot. The parameters used in the
simulation are detailed in Table 2. The excitation is applied at the base of the
beam using a shaker, and the response is measured at the tip.

Table 2: Geometric and material properties of the studied rectangular aluminum beam

Parameter Value Parameter Value
Lm 0.91 m ζr 0.02
wm 40 mm ρm 2710 kg/m3

hm 3 mm Nm 8
Em 69.5 GPa Nr 8
ζm 0.02 µ 1.04
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Figure 8: Dispersion curves computed using the plane wave expansion method for target
frequency ft=31.2 Hz
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Figure 9: Transmittance plot for a metamaterial beam.
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In Fig. 9, the depicted transmittance plot for the metamaterial beam reveals the
bandgap regions. These regions are characterized by a dramatic decrease in trans-
mittance, indicating effective vibration isolation. The beginning of the bandgap
starts at the resonator’s natural frequency, ωr. Given the mass ratio µ = 1.04,
the width of the bandgap extends from the resonator frequency ωr to a frequency
less than ωr

√
1 + µ. Within this frequency span, the structural design effectively

suppresses wave propagation, resulting in the bandgap observed. The depth and
breadth of the bandgap are dependent on factors such as resonator damping and
the physical properties of the metamaterial, which influence the degree of vibra-
tion attenuation. This behavior is essential for applications that require vibration
isolation or wave filtering at specific frequencies.

The formation of a bandgap is closely linked to the resonators’ natural frequency,
ωr. The resonant frequency acts as a critical threshold, marking the lower boundary
of the bandgap. Serving as a modal response model, G(s), as derived from Eq. 38
articulates the dynamic behavior of a beam within a negative feedback system
where the proportional feedback gain is symbolized by ω2

r . This transfer function
systematically relates the input forces to the consequent displacements across the
structure’s modal frequencies, delineating the system’s vibrational characteristics
in relation to its inherent resonant behavior.

Given the mass ratio µ = 1.04, the bandgap phenomenon in the system can
be analyzed through the root locus method, which delineates the trajectories of
the system’s poles in response to variations in the feedback gain ω2

r , with further
details explained in Chapter 5. The zeros of the system, occurring at s = ±iωt, are
fixed points in the s-plane, while the poles, initially at s = ±iωt

√
1 + µ, shift along

the imaginary axis as ω2
r varies. Due to the symmetrical nature of the poles and

zeros on the imaginary axis and the fundamental property that poles must migrate
towards zeros or infinity, the frequency range defined by ωt < ω < ωt

√
1 + µ

emerges as a forbidden zone for pole existence, thereby creating a bandgap.

3.6 Finite Element Study
The established methodology enables manipulation of the transfer function, thereby
permitting exploration into how adjustments in the mass placement on a resonator
affect bandgap traits, a key factor for refining bandgap properties within a closed-
loop control system.

This section explores the impact of spatial variations on bandgap characteristics
by adjusting resonator stiffness while maintaining constant mass, a method benefi-
cial for heavy machinery applications where traditional piezoelectric solutions may
fall short. Stiffness tuning, as opposed to piezoelectric adjustments, offers a more
durable and practical solution for these demanding environments. The current
study examines a conventional metastructure that does not incorporate internally
coupled resonators. The resonators are of the cantilever type, with a mass that can
be positioned along the length from the tip to the base. The specific parameters
defining the metastructure and resonators are as follows: eight resonators (Nr = 8),
with the beam dimensions being 300 mm in length, 25 mm in width, and 3 mm in
height. The material density is 2710 kg/m3, and the modulus of elasticity is 69.5
GPa. The damping ratio of the structure and resonators is the same at 0.01. An
attached mass (ma) of 3.8 grams is placed at distances that vary from 20 to 57.3
millimeters along the resonator. The natural frequency of the resonator (ωr), when
the attached mass is at the tip, is 32 Hz. This setup allows for an exploration of

45



Figure 10: A 3D representation of the bandgap frequency shift as a function of the mass
positioning along a resonator. Here, delta (δ) is indicative of the mass location on the
resonator, increasing from the tip (lower δ ) to the base (higher δ ) of the cantilever beam.
This spatial variation results in a downward shift of the bandgap edge frequency, moving
from higher frequencies (approaching 8ωr ) to lower frequencies (close to ωr ), as the mass
is repositioned towards the base, [18].

the resonator stiffness’s impact on the bandgap properties of the metastructure.
Fig. 10 provides a 3D visualization of how the position of the attached mass

along the length of a resonator affects the bandgap frequencies in a metastructure.
The natural frequency at which the bandgap starts is denoted as ωr, corresponding
to the case when the mass is located at the tip of the resonator. The graph
demonstrates that as the mass moves closer to the base of the resonator—decreasing
δ—the resonator’s stiffness increases, leading to a rise in ωr and a subsequent shift
of the bandgap towards higher frequencies.

The contour plot in the x-y plane clearly depicts the bandgap’s initiation at the
initial natural frequency ωr when the mass is at the resonator’s tip. From there,
the bandgap expands and moves as the location of the mass changes. This shift
is particularly crucial for applications requiring tunable vibration isolation, as it
shows the potential to adjust the bandgap frequency by simply repositioning the
resonator mass without altering the resonator or structure itself.

The binary representation in Fig. 11 illustrates the influence of the mass loca-
tion along the resonator on the bandgap frequencies. With the bandgap depth limit
set at a decibel ratio of output to input displacement of 0.2, the plot shows that
when the attached mass is positioned at the tip of the resonator, the bandgap orig-
inates at the resonator frequency ωr. The white areas in the binary representation
correlate to the regions of significant transmittance reduction, effectively mapping
the bandgap’s presence and evolution as the mass moves closer to the resonator’s
base.

3.7 Experimental Study
The experimental investigations centered on a specifically designed cantilever beam
setup, detailed in Table 3 and illustrated in Fig. 12. The beam, fabricated from
aluminum, measured 3 mm in thickness, 40 mm in width, and 0.91 m in length.
A nut and bolt assembly, weighing 19 grams, was affixed to the beam’s tip to
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Figure 11: Binary mapping of the bandgap presence as a function of mass placement along
the resonator, with δ indicating the distance from the cantilever beam’s fixed end, versus
normalized frequency (ω/ωr), illustrating how the bandgap shifts with frequency and mass
position. White areas denote regions where the transmittance falls below the threshold of
0.2 decibels, signifying the vibration isolation at these frequencies.

adjust the natural frequency to 64 Hz, thereby tuning the resonant characteristics
essential for the study.

Vibration excitation was provided by a 100 N TIRA 51110 Shaker. Vibrational
responses were precisely recorded using two Dytran Accelerometer 3055D21 units,
each with a sensitivity of 100 mV/g, connected using wires designed for low elec-
trical resistance and high signal integrity. One accelerometer was mounted at the
beam’s tip to measure acceleration, while another was positioned at the base to
monitor and control input vibrations. The signal to the shaker was amplified us-
ing a Power Amplifier BAA 120, and a Vibration Controller VR9500 regulated
the shaker’s input and monitored the beam’s response. Notably, the inclusion of
accelerometer wiring introduced an additional mass approximately 1% of the ac-
celerometer’s mass, a factor considered in the experimental analysis to ensure the
accuracy of the dynamic response measurements.

Table 3: Experimental parameters
Symbol Parameter Value
L Length of the beam 91 cm
b Width of the beam 4 cm
h Thickness of the beam 3 mm
E Young’s modulus of the beam 70 GPa
ρ Density of the beam 2710 kg/m3

ωr Resonator’s natural frequency 64 Hz
Nr Number of Resonators 8

The experimental results displayed in Fig. 13 demonstrate the transmittance
spectrum, which corresponds to the resonant frequencies of the standard metastruc-
ture with µ = 1.2. The regions of low transmittance, which signify the bandgaps,
commence at a frequency of ωr = 64 Hz, in line with analytical predictions. Addi-
tionally, the observed width of the bandgap is consistent with the anticipated value
of (1+µ) = 2.2. This data shows the existence of a bandgap between frequencies ω
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Figure 12: Experimental setup of a metastructure prototype equipped with 8 resonators,
each tuned to a resonator’s natural frequency using adjustable mass at the tip. Measure-
ment accuracy is ensured with two Dytran Accelerometers, linked by low-resistance wires.
Geometric and material properties of the beam and resonators used in the setup are pro-
vided in Table 3. A schematic in the top right illustrates the direction of excitation and
response measurement.

and ωr
√

1 + µ, corresponding to the calculated bandgap limit of
√

1 + µ = 1.484.
This observation confirms the presence of the primary bandgap, illustrating the
dynamic behavior of the system across the spectrum.
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Figure 13: Experimental transmittance data versus excitation frequency for the metas-
tructure, with µ = 1.2. The plot highlights the bandgap region between 64 to 95 Hz, which
corresponds to the analytical bandgap boundary ωr

√
1 + µ.

3.8 Summary
This chapter delved into the modal analysis of flexible metastructures equipped
with mechanical resonators, employing both lumped and distributed parameter
models to elucidate their dynamic behavior. The primary goal was to understand
how these metastructures can be optimized to achieve desirable wave propagation
characteristics, particularly the formation and manipulation of bandgaps. Through
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a combination of analytical derivations, numerical studies, and experimental val-
idations, this chapter provided a comprehensive examination of the influence of
structural parameters on the metastructure’s ability to control vibrational energy.

The lumped parameter modeling approach offered a simplified yet powerful tool
for analyzing metastructures. By abstracting the system into discrete components,
this model provided clarity on the fundamental dynamic interactions within the
metastructure. Numerical simulations based on these models revealed how non-
linearity, specifically cubic nonlinearity, could be leveraged to modulate bandgap
properties, paving the way for designing metastructures with custom-tailored dy-
namic responses.

Conversely, distributed parameter modeling presented a more detailed perspec-
tive by accounting for the spatial continuity of the system’s properties. This ap-
proach was essential for capturing the nuances of wave propagation in metastruc-
tures, enabling the prediction of bandgap behavior with high fidelity. Analytical
methods such as modal expansion and frequency determinant analysis, alongside
numerical simulations, were key in assessing the impact of mechanical resonators
on the bandgap characteristics.

Experimental studies served as the ultimate testbed, validating the analytical
and numerical findings. The experiments confirmed the presence of bandgaps and
their dependence on various parameters like the mass ratio and resonator posi-
tioning. By manipulating these parameters, the experiments demonstrated the
feasibility of tuning the bandgap edges, offering practical insights for real-world
applications.

Here are the key points summarizing the contributions and insights gained:
• Introduced a systematic approach for analyzing the wave propagation and

dynamic behavior in mechanical metastructures using both lumped and distributed
parameter models.

• Demonstrated the application of modal analysis for predicting bandgap behav-
ior in metastructures, thereby facilitating the design of structures with enhanced
vibration control capabilities.

• Showed how nonlinearity, especially cubic nonlinearity, affects the transmit-
tance spectrum and bandgap properties, offering a pathway to custom-designed
dynamic responses.

• Provided numerical validation of the bandgap phenomena and showcased the
effects of spatial variations in resonator properties on the emergent bandgaps.

• Conducted experimental investigations to validate the analytical and numeri-
cal models, thus bridging the gap between theory and practical application.

• Established the practical feasibility of tuning bandgap properties by manipu-
lating structural parameters such as resonator mass, stiffness, and placement.

• Revealed the potential of metastructures in a wide array of applications, from
isolation of undesired vibrations to efficient energy harvesting solutions.
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4 Modeling of Flexible Metastructures with Elec-
tromechanical Resonators

This chapter delves into the theoretical modeling of flexible metastructures with
electromechanical resonators, exploring their dynamic properties through analyti-
cal approaches and numerical simulations. Particularly, piezoelectric materials are
utilized within these electromechanical resonators, offering unique advantages in
energy harvesting and vibration control due to their electromechanical coupling
capabilities.

The chapter is structured into two main sections: lumped parameter modeling
and distributed parameter modeling. In the lumped parameter section, models are
presented that simplify the physical system into discrete elements whose dynamic
behavior can be captured by algebraic equations.

Conversely, in the distributed parameter modeling section, the system is treated
more holistically, considering the continuous distribution of mass, energy, and forces
along the structure. This method provides a more detailed and accurate represen-
tation of the wave propagation phenomena inherent in flexible metastructures. By
focusing on these theoretical models, it is aimed to provide a robust foundation for
understanding how electromechanical resonators can influence the dynamic char-
acteristics of metastructures, particularly in terms of vibration control and energy
harvesting potential.

4.1 Lumped Parameter Modeling
This section explores the application of lumped parameter models to analyze linear
and nonlinear behaviors of electromechanical resonators, emphasizing their role
in energy harvesting and vibration attenuation. Through detailed mathematical
modeling and simulation, the intricacies of how piezoelectric components can be
optimized to enhance system performance, both in energy efficiency and dynamic
response, are delved into. This approach not only elucidates the fundamental
principles governing such systems but also provides insights into more practical
investigations of more realistic structures through distributed parameter modeling.

4.1.1 Linear Electromechanical Resonators
Electromechanical systems can incorporate piezoelectric components that intro-
duce additional nonlinearity to the system dynamics. These piezoelectric elements
serve a dual purpose: they aid in attenuating vibrations within the unit cell, while
simultaneously enhancing energy harvesting in the resonators. With reference to
Fig. 17, let’s take a scenario where resonators are equipped with piezoelectric el-
ements. This incorporation couples the mechanical motion of the resonators with
electrical dynamics, enriching the behavior and capabilities of the system but also
complicating its dynamics.

To derive the dynamic equations of the harvester, the Lagrangian formulation
for electromechanical systems is employed. The Lagrangian L is defined as:

L = T − U + We − D (45)

Using Lagrange’s equation, the governing dynamics are given by:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+ ∂D

∂q̇i
= Qi (46)
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Figure 14: Foundational models of linear phononic media: a linear monoatomic chain
with linear resonators of masses, spring, damping, and piezoelectric element, PZ. Dashed
rectangle is unit cell.

Here, T represents the kinetic energy of the system, U is the potential energy, We

denotes the coenergy of the piezoelectric module, and D is the dissipative function
capturing both mechanical and electrical energy losses. In this formulation, qi is
the generalized displacement corresponding to a specific degree of freedom in the
system. Qi represents the external force or input acting on the respective degree
of freedom. By applying this equation, a set of differential equations governing the
behavior of the harvester can be derived, effectively capturing its mechanical and
electrical characteristics. The mechanical damping, often referred to as Rayleigh
damping, is represented by the term

Dm = 1
2cr (u̇r − u̇m)2 + 1

2cm (u̇m− − u̇m)2 + 1
2cm (u̇m − u̇m+)2 (47)

Figure 15: An equivalent circuit for piezoelectric device model with internal electrode
capacitance and load resistance

Piezoelectric devices are often represented by a model where a current source
is in parallel with their internal electrode capacitance cp, as depicted in Fig. 15.
Additionally, a simple resistance R is connected to the load in this configuration.
The electrical damping arises from the piezoelectric coupling, and it represents the
energy dissipation due to electrical losses, denoted by Dp :

Dp = 1
2

v2
p

R
(48)

Thus, the total dissipation function for the electromechanical system is given
by D = Dm + Dp. Considering the piezoelectric transducer integrated into the
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resonator, the coenergy We of the piezoelectric module is given by:

We = 1
2cpv2

p − θvp (um − ur) − 1
2kp (um − ur)2 (49)

Where cp and kp denote the equivalent free-body capacitance and stiffness of the
piezoelectric element, respectively. θ represents the equivalent force-electric factor
of the piezoelectric cantilever beam. The first term corresponds to the electrical co-
energy in the capacitance cp. The second term represents the piezoelectric coenergy.
The third term signifies the elastic strain coenergy in a spring with stiffness kp.
Eqs. (46)-(49) detail the electrical behavior of the piezoelectric resonators within
the system. It’s essential to note that θ and kp must be experimentally determined
to ensure the proposed model aligns with the real setup. In the total mechanical
stiffness, kr + kp, the stiffness contribution from the piezoelectric material, kp, is
significantly smaller in magnitude compared to the resonator’s mechanical stiffness,
kr. Therefore, its contribution to mechanical stiffness is often disregarded in the
analysis. The energy equations are characterized by linear representations. Given
these linear forms of the energy equations, the associated governing equations of
motion in metastructure are as follows:

mmüm(t) + km (2um(t) − um−(t) − um+(t))
+ cm (2u̇m(t) − u̇m−(t) + ṁm+(t)) + kr (um(t) − ur(t))
+ cr (u̇m(t) − u̇r(t)) + θv(t) = 0

(50)

mrür(t) − cr (u̇m(t) − u̇r(t)) − kr (um(t) − ur(t)) − θv(t) = 0 (51)

cpv̇p(t) + vp(t)
R

− θ(u̇m(t) − u̇r(t)) = 0 (52)

Equations (50) to (52) are included with multiple parameters, adding to their
complexity. For enhanced clarity and broader applicability, the model’s governing
equations are recast using the established normalized parameters as follows:

üm(t) + 4ζmωmu̇m(t) − 2ζmωm (u̇m−(t) + u̇m+(t)) + 2ω2
mum(t)

− ω2
m(um−(t) + um+(t)) + 2µζrωr (u̇m(t) − u̇r(t)) + ν2ω2

m (um(t) − ur(t))
+ k2

eν2ω2
mv̄(t) = 0,

(53)

where for the last mass um(t) − um+(t) = 0, u̇m(t) − u̇m+(t) = 0, and for the
first mass um−(t) = ub(t). The equation for the resonator becomes:

ür(t) − 2ζrωr (u̇m(t) − u̇r(t)) − ω2
r (um(t) − ur(t)) − k2

eω2
r v̄(t) = 0 (54)

Lastly, the equation representing the piezoelectric effect is given as:

˙̄v(t) + ω ˙̄v(t)
rg

− (u̇m(t) − u̇r(t)) = 0 (55)

where k2
e = θ2/ (cpkr) indicates the electromechanical coupling coefficient, v̄ =

cpvp/θ is the scaled piezoelectric output voltage, and rg = Rcpωr designates the
proportion of the actual load R to its optimal value Ropt . Additionally, ζm =
cm/ (2mmωm) and ζr = cr/ (2mrωr) are the damping ratios of the main chain
and the resonator, respectively. Furthermore, v2 = kr/km represents the stiffness
proportion between the resonator and the chain mass, while µ = mr/mm depicts
the mass ratio between the resonator and the chain mass.
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4.1.2 Analysis of Power Output of Standard Piezoelectric Circuit for
Energy Harvesting

The primary objective of this research is to investigate the inherent properties of
various types of nonlinearity in piezoelectric materials, rather than comparing dif-
ferent circuit models. For a consistent evaluation, every type of nonlinearity is
paired with the same standard circuit, ensuring each nonlinearity is studied in iso-
lation and without the influence of varying circuit efficiencies. A standard rectifier
interface circuit with no electrical losses for energy harvesting is explored using a
lumped parameter model. In design analysis for energy harvesting, a simplified cir-
cuit is frequently employed, as shown Fig. 16. In this configuration, the regulation
circuit and battery are substituted with an equivalent resistor labeled as R, and the
rectified voltage across it is denoted as ve. It is assumed, for the purposes of this
study, that the rectifying bridge is in an ideal and faultless state. A rectifying bridge
circuit is integrated, targeting a stable output DC voltage ve, which connects the
load directly. It is assumed that the filter capacitor ce is sufficiently large to render
ve essentially constant. In steady-state operation, the average rectified voltage and
displacement are related. Governed by equations, the piezo voltage vp(t) is propor-
tional to the displacement u(t). Both variables are modeled as u(t) = u0 sin(wt−θ)
and vp(t) = vp0(wt − θ), where u0 is the constant displacement magnitude, and
vp0(t) is a periodic function with |vp0(t)| ≤ ve.

During a semi-period T
2 , defined as T = 2π

w , the integral of the rate of change
of vp(t) is 2ve. This yields ∫ t2

t1

I(t)dt = T

2
ve

R
, (56)

delineating the relationship between the current and average rectified voltage [94].
The integral

∫ t2
t1

v̇p(t)dt represents the total change in the piezoelectric voltage vp(t)
from time t1 to t2. If vp(t) oscillates between −ve and ve during this semi-period
T
2 , then the total change in vp(t) is ve − (−ve) = 2ve. If u(t) is oscillating from its
minimum −u0 to its maximum u0 during the semi-period from time t1 to t2, then
the change in u(t) during this period is u0 − (−u0) = 2u0. Assuming the standard

Figure 16: Classical energy harvesting circuit for the standard electronic interfaces.

linear form and rewriting Eq. (52) yields to:

cpv̇p(t) + ip(t) = θż(t), (57)

where z(t) is the relative displacement of the mass chain with respect to the res-
onator in each unit cell. Integration of Eq. (57) from time t1 to t2 gives:

2cpve + T

2
ve

R
= 2θz0 (58)
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This equation correlates the changes in stored electric charge, current, and me-
chanical displacement between times a and b. Given T

2 = π
ω , the equation for ve

expressed as:
ve = Rθω

Rcpω + π
2

z0 (59)

Furthermore, the average harvested power P can be well-defined as:

P = v2
e

R
= Rθ2ω2(

Rcpω + π
2
)2 z2

0 (60)

Although it is possible to derive using only the absolute displacement of res-
onators zr, the decision was made to use the relative displacement, z0, instead.
This method is preferred in this research because it simplifies the investigation of
various piezoelectric configurations.

4.1.3 Nonlinear Electromechanical Resonators
The behavior of a linear piezoelectric element is described by Eq. (52). While lin-
earized models offer simplicity and are often adequate for many applications, they
may miss critical behaviors and limit our understanding and predictive capabilities.
The study of nonlinearity provides a comprehensive and accurate view of systems,
essential for both practical applications and scientific inquiry. When introducing
any of these nonlinearities into the model, it is essential to ensure that they are
grounded in physical reality or experimental observations relevant to the system.
Modeling choices should be justified based on the underlying physics, empirical
data, or both.

Figure 17: Foundational models of nonlinear phononic media: a linear monoatomic chain
with nonlinear resonators of masses, spring, damping, and piezoelectric element, PZ.
Dashed rectangle is unit cell.

Let’s consider a metastructure system incorporating nonlinear piezoelectric el-
ements, as depicted in Fig. 17. One common approach to introduce nonlinearity
is by using a polynomial expansion. When considering the piezoelectric response,
one possibility is a nonlinear dependency of the voltage, denoted as v(t), on strain.
Adding a simple quadratic nonlinearity to the piezoelectric equation, yields to:

cpv̇(t) + v(t)
R

− θ (u̇m(t) − u̇r(t)) − β (u̇m(t) − u̇r(t))2 = 0 (61)

Where β is a coefficient of the nonlinear term. In this model, the piezoelectric
response starts to deviate from linearity as the strain (differential displacement)
increases. The term β dictates the strength of this nonlinearity. If β is zero, the
system returns to the original linear behavior. In electronic circuits, transistors,
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especially MOSFETs, can exhibit polynomial behavior with respect to gate-source
voltage and drain current, leading to nonlinear amplification. Moreover, the dy-
namics of robotic arms can have nonlinear components due to joint friction, and
these can be represented as polynomial functions of velocities.

Upon introducing nonlinearity, the system can be numerically simulated using
techniques tailored for nonlinear differential equations, such as the Runge-Kutta
method. Software packages, like MATLAB’s Simulink or COMSOL, can also be
employed. Initial conditions and boundary conditions need to be established based
on the specific study.

Apart from polynomial expansion, there are several other types to introduce
and study nonlinearity in a piezoelectric energy harvester.

4.1.4 Theoretical Models for the Nonlinear Energy Harvesting
The nonlinear behavior in energy harvesting can be succinctly captured in a gen-
eralized equation which encompasses multiple facets of nonlinearity. Consider the
following expression [9]:

α
v(t)
R(ω) + cp

d

dt
[f(v(t))] − θ

[
g

(
d2

dt2 um(t) − d2

dt2 ur(t), v(t)
)]

− h

(∫
v(t)dt

)
= 0

(62)
Here: R(ω) introduces nonlinearity as a function of frequency. Adjustable param-
eter, α can be varied to explore different system behaviors and regimes. f(v(t))
introduces nonlinearity as a function of the voltage across the impedance.

The term g
(

d2

dt2 um(t) − d2

dt2 ur(t), v(t)
)

represents a nonlinear function of the
acceleration and voltage. h

(∫
v(t)dt

)
is the nonlinearity introduced by an integral

of voltage over time. It is important to note that this is a completely abstract and
generalized equation that must be determined based on the system specifications
and the physics involved.

The Eq. (62) exemplifies a multi-faceted nonlinear system that integrates var-
ious nonlinear dependencies into a comprehensive framework. R(ω) denotes a
frequency-dependent nonlinearity, reflective of materials like semiconductors or
piezoelectric elements under resonance. f(v(t)) embodies a voltage-dependent non-
linearity, typical in devices like diodes or transistors, where shifting voltage can alter
operational regimes.

The term g
(

d2

dt2 um(t) − d2

dt2 ur(t), v(t)
)

encapsulates a coupled nonlinearity, hint-
ing at a complex relationship between the accelerations of two system components
and voltage. Lastly, h

(∫
v(t)dt

)
introduces a memory effect, capturing historical

influences on the system, akin to hysteresis or capacitive responses. To derive the
standard linear form of a piezoelectric equation, the resistance is considered as not
frequency-dependent, and the capacitance is assumed not to be influenced by volt-
age variations, simplifying the term cp

d
dt [f(v(t))] to cpv̇(t) by setting f(v(t)) = v(t).

The electromechanical coupling is taken to be linear, meaning the term with g(·)
reduces to θ (u̇2(t) − u̇1(t)), indicating the coupling coefficient isn’t influenced by
displacement, velocity, or acceleration. Lastly, the term h

(∫
v(t)dt

)
is disregarded,

signifying that the integral of voltage over time does not significantly influence the
system dynamics. Under these assumptions and simplifications, the generalized Eq.
(62) reduces to Eq. (52), which is the standard linear form of a rectifier circuit.
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4.2 Numerical Studies
This section presents a comprehensive numerical analysis of lumped linear and
nonlinear electromechanical resonators. The analysis harnesses the parameters de-
lineated in Table 4, addressing the electrical and electromechanical characteristics
that influence the behavior of the resonators. The mechanical characteristics de-
tailed in Table 1 have been enhanced with terms representing electromechanical
parameters. Through simulation studies, the dynamic responses of the resonators
are thoroughly investigated, revealing the impact of key parameters on the energy
harvesting capabilities and vibration attenuation potential of the metamaterials in
question. Various high-efficiency advanced rectifiers have been developed to maxi-
mize harvested energy, as reported in the literature [39, 95]. However, a standard
rectifier is used in all cases of this investigation, as the goal is to examine vari-
ous piezoelectric designs rather than different rectifiers. The objective here is to
broaden the frequency of the bandgap and enhance harvested energy.

Table 4: Defined parameters for the lumped models

Parameter Value
Mass of main chain (mm) 0.056 kg
Mass of resonator (mr) 0.0336 kg
Spring constant of main chain (km) 150 N/m
Spring constant of resonator (kr) 129.6 N/m
Damping coefficient of main chain (cm) 0.0464 Ns/m
Damping coefficient of resonator (cr) 0.0334 Ns/m
Piezoelectric capacitance (cp) 1.5 mF(C/m)
Electromechanical coupling coefficient (θ) 0.25 N/V
Nonlinear stiffnesses quadratic coefficient (γ2) −500 N/m2

Nonlinear stiffnesses cubic coefficient (γ3) 15000 N/m3

Shunt capacitance (cs) −7.9 mF(C/m)
Internal resistance (R) 500 Ω

4.2.1 Investigation on Energy Harvesting Performance in Linear Elec-
tromechanical Metamaterial

In Fig.18, the transmittance for various values of ke, representing the piezoelectric
coupling coefficient (Eq. 55), is depicted. For the analysis, the stiffness of the
piezoelectric element, represented by kp, is considered negligible compared to the
significantly greater stiffness of the resonator, denoted by kr. This simplification
enables a focus on the effects of other parameters without the interference of kp.

A noticeable broadening of the band gap is observed as the electromechanical
coupling coefficient ke is increased, indicating an enhanced capacity of the system
to suppress vibrations. The peaks of the transmittance adjacent to this band gap
are notably sensitive to variations in ke, while those further from the band gap show
minimal alternations. This observation emphasizes the crucial role played by ke in
modulating the system’s response when using piezoelectric materials, highlighting
its significant contribution to vibration control in complex systems. Additionally,
the parameter rg, defined as rg = ωrcpR, can be adjusted to achieve minimal
transmittance at each frequency.

The influence of the electromechanical coupling coefficient on energy harvest-
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Figure 18: Band gap illustration for a monochain featuring linear local resonators with
n = 8 mass chains, demonstrating the influence of ke on band gap and metastructure
response. The results are based on the electromechanical model described by Eq. 55, which
corresponds to the schematic shown in Figure 14.

Figure 19: Electromechanical Coupling’s Impact on Energy Harvesting: Illustration of
the power harvested across varying ke in an n = 8 unit cell monochain, showcasing the
pivotal role of the electromechanical coupling coefficient in optimizing energy conversion
and system dynamics.
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ing, as it pertains to the relative displacement between the main structure and
the resonator, is demonstrated in Fig. 19,. This parameter, essentially governs
how efficiently piezoelectric materials convert mechanical energy to electrical en-
ergy and vice versa, exerting a significant influence on the outcomes of energy
harvesting. In scenarios characterized by weak coupling, an increase in ke results
in a notable increase in power output. Conversely, in situations involving strong
coupling, an increase in ke leads to a power level that remains constant, prevent-
ing any additional improvements. For our subsequent analysis, a weak coupling
value of ke = 0.567 (cp = 1.5mF) is selected to avoid the complex power response
patterns observed in strong coupling situations. To comprehensively assess over-
all energy harvesting performance, we uniformly adjust the resistors R, connected
to the piezoelectric transducers, and consolidate power outputs from these resis-
tors. High-capacitance (millifarad-level) piezoelectric materials have a wide range
of applications, from energy-harvesting floor tiles in busy areas to vibration damp-
ing in machinery, structural monitoring, energy recapture in vehicle suspensions,
self-charging personal electronics, and power sources for wearable health monitors.
To enhance the capacitance of these materials, strategies include selecting materi-
als with higher dielectric constants, optimizing element geometry, using multi-layer
structures, and parallel capacitor configurations, aiming to boost energy harvesting
capabilities and efficiency in diverse applications.

4.2.2 Model NL:1 - Polynomial Nonlinearity in Resonators
Polynomial nonlinearity finds practical applications in electronic circuits with diodes
and in thermostats or temperature controllers. In diodes, the voltage-dependent
behavior transitions from an open switch to a closed switch as voltage crosses a
threshold, using piecewise linear approximations. In temperature controllers, piece-
wise linear models are employed to control heaters based on temperature thresholds,
resulting in distinct on-off behavior points in the response curve. Introducing poly-
nomial nonlinearity in resonators by adding a term with coefficient β fundamentally
alters the voltage-strain relationship within the piezoelectric equation, encapsulat-
ing the nonlinear disposition of the piezoelectric material under substantial strains.
The primary system equations for mm and mr persistently portray the dynamics
of the masses along with their reciprocal interactions, which remain unaffected
by the inherent nonlinearity of the piezoelectric element. This incorporation of a
nonlinearity parameter, β, facilitates a discernable softening behavior when it is
positive and a hardening behavior when negative, each having distinct implications
on resonance frequency and amplitude of vibration. Optimization of the nonlinear
polynomial parameters can be a viable strategy for maximizing energy harvesting
within the outlined system. This can be achieved by defining a cost function, an
integration of power across a desired frequency span, thereby quantifying the per-
formance. Utilizing computational tools, such as MATLAB, enables optimization
of this function concerning the nonlinear coefficient. By examining the system’s
eigenvalues to extract information about the bandgap, a thorough combination of
analytical and numerical methods is used to enhance the system’s performance to
achieve optimal results.

Fig. 20 shows the relationship between the nonlinearity coefficient β and the har-
vested power in a monochain system. The n = 8 mass chain model is instrumental
in depicting this correlation, serving as a concise yet representative framework to
showcase the trends. Although a larger number of chains could enhance the meta-
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Figure 20: Harvested power from a monochain with polynomial nonlinear local resonators
in an eight-mass chain configuration. The graph highlights the impact of varying the
nonlinearity coefficient β on the piezoelectric response and the resultant band gap behavior.
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Figure 21: Temporal Evolution of Harvested Energy: A depiction of energy harvested
from piezoelectric elements over time in a monochain with polynomial nonlinear local
resonators, utilizing n = 8 mass chains. This visualization underscores the profound
influence of polynomial nonlinearity on the system’s energy-harvesting trajectory, revealing
a substantial enhancement in energy accumulation even in the absence of notable bandgap
alterations.
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material characteristic, the chosen size suffices to capture the essential dynamics
for this analysis, aligning with the findings from Eq. (60).

The interaction among β, vibration dynamics, and energy conversion can pro-
vide insights for enhancing energy collection in similar systems. Fig. 21 delves
into this concept, demonstrating how energy harvested from piezoelectric elements
evolves over time. Although the introduction of polynomial nonlinearity doesn’t
significantly alter the formation of bandgaps, it noticeably impacts power and en-
ergy harvesting because of the increased motion in the presence of nonlinearity.

4.2.3 Model NL:2 - Nonlinear Capacitance in Voltage-Dependent Sce-
narios

Starting with the general nonlinear equation in Eq. (62) and making a few sim-
plifications, such as assuming consistent resistance, introducing voltage-dependent
capacitance, transitioning from acceleration nonlinearity to velocity differences,
and disregarding memory effects, the following model is derived to describe the
nonlinear capacitance in the piezoelectric equation:

v(t)
R

+ cp(v(t))dv(t)
dt

− θ

(
dum(t)

dt
− dur(t)

dt

)
= 0 (63)

Here, cp(v(t)) represents the voltage-dependent capacitance, mathematically rep-
resenting scenarios where capacitance shifts with applied voltage.

In practical applications, encountering nonlinear capacitance isn’t rare and can
be observed in various electronic components and systems like varactors, ferroelec-
tric materials, and memristors. These systems showcase a capacitance that isn’t
static but modulates with the voltage applied, thereby exhibiting diverse behaviors
across assorted operating regimes.

When simulating scenarios where capacitance nonlinearly shifts with voltage,
an example relationship might be expressed as:

cp(v(t)) = cp0 + kvv2(t), (64)
where kv serves as a proportionality constant, illuminating and predicting how sys-
tems respond when capacitance dynamically interacts with applied voltage. In Fig.
22, a specific relationship between capacitance and voltage under the parameters
cp = 1.5 mF (base capacitance). The figure, composed of four subplots detailing
Transmitance, Power, and Harvested Energy in relation to excitation frequency,
and an illustration of the quadratic term coefficient of cp piezo capacitance, pro-
vides a detailed overview of key data points. Notably, there’s an evident increase
in power when dealing with nonlinear capacitance compared to linear piezo ca-
pacitance. This observation is corroborated by the energy acquired during the
simulation time, which is 3.67 Joules, in contrast to the 2.82 Joules observed in a
linear framework.

Thus, in this scenario, not only is more energy harvested from the resonators,
but there is also an expansion in the transmittance bandgap. The dual advantages
of vibration suppression in the main chain and enhanced energy harvesting from
the resonator open the door to potentially more effective approaches for optimizing
energy extraction in comparable systems.

4.2.4 Model NL:3 - Cubic Nonlinearities
Cubic nonlinearities can be found in electromechanical systems, such as sensors and
actuators. In micro electromechanical systems (MEMS ), such as accelerometers
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Figure 22: Influence of quadratic nonlinear piezo capacitance, cp on transmittance and
harvested energy

or gyroscopes, cubic nonlinearities can arise due to the miniaturized mechanical
components. For nonlinear electromechanical coupling, the piezoelectric equation
can be represented as:

v(t)
R

+ cp
dv(t)

dt
− θ

(
dum(t)

dt
− dur(t)

dt

)3
= 0 (65)

In Fig. 23, the relation between voltage v(t) and relative displacement z is
explored within the context of cubic nonlinearity. The subplot detailing the v(t) −
z(t) relationship illustrates that the equation simplifies to:

v(t)
R

− θz(t)n = 0 (66)

To maintain comparable saturation characteristics between a conventional linear
resonator and one with a cubic term, resistances of R = 500Ω and 192 kΩ are
utilized, respectively.

The case study demonstrates that introducing cubic nonlinear terms, linked to
the relative velocities of the primary chain and resonator, significantly affects both
harvested energy and transmittance. Specifically, the observed cubic nonlinearity
contributes to a decline in harvested energy, posing noteworthy implications for
optimization in energy-harvesting contexts, where strategies to circumvent or offset
this reduction are crucial. Simultaneously, the incidence of these nonlinear terms
provokes a contraction of the transmittance band gap, which could potentially
affect the system’s efficacy, inviting further exploration and mitigation strategy
development.

4.3 Distributed Parameter Modeling
In this study, the dynamics of the metamaterial system are explored using a dis-
tributed parameter model. This approach considers spatial variations in param-
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Figure 23: Illustrating the Interplay of v(t) and z(t) in the Presence of Cubic Nonlineari-
ties. The figure demonstrates how cubic nonlinearity affects electromechanical coupling in
a piezoelectric system, utilizing specific resistances for standard and cubic terms (R = 500
Ω and R = 192 kΩ, respectively) to maintain consistent saturation characteristics across
scenarios.

eters, which is crucial for detailed analysis of wave propagation across the struc-
ture. Modal analysis is employed to determine the natural frequencies and mode
shapes of the metastructure, critical for identifying and optimizing bandgaps. The
previous section discussed how mechanical resonators facilitate bandgap creation.
In this section, the focus shifts to electromechanical elements, specifically piezo-
electric components attached to resonators. The aim is to investigate how these
configurations influence the bandgap characteristics of the main plain structure.
Additionally, this setup explores energy harvesting from significant fluctuations of
the resonators. While the main plain structure suppresses vibrations within the
bandgap region, the resonators experience maximal fluctuations, presenting oppor-
tunities for effective energy harvesting.

4.3.1 Electromechanical Resonators for Energy Harvesting

Proceeding with the methodology discussed in [48], Fig. 24 depicts the configura-
tion of the locally resonant metastructure, which incorporates piezoelectric energy
harvesters with admittance load Gr of the shunt circuit on the r-th resonator. Fur-
ther deepening the analysis in this section, the effects of the resonator’s damping
are involved, which is essential for future investigations in subsequent chapters.
The implementation of a distributed parameter model leads to a series of partial
differential equations, accurately representing the system’s dynamics. These equa-
tions are discretized and solved computationally to determine the modal properties
of the metastructure. The system’s dynamics are encapsulated by a set of partial
differential equations, using principles of Newtonian mechanics as:

62



Figure 24: Schematic of the mechanical locally resonant energy harvesting metastructure.
The design features cantilever beams with tip masses, serving as mechanical resonators
attached to the primary beam structure. Piezoelectric elements are integrated with a re-
sistive load admittance, denoted as Gr.

Lw(x, t)+C ∂w(x, t)
∂t

+M∂2w(x, t)
∂t2 −

Nr∑
r=1

(
krzr(t) + cr

∂zr(t)
∂t

)
δ (x − xr) = Fbm

(x, t)

(67)

mr
∂2zr(t)

∂t2 + cr
∂zr(t)

∂t
+ krzr(t) + mr

∂2w (xr, t)
∂t2 − ϑp,rvp,r(t) = Fbr

(t) (68)

Cp,r
∂vp,r(t)

∂t
+ Grvp,r(t) + ϑp,r

∂zr(t)
∂t

= 0 (69)

L, C, and M denote the spatial, damping, and mass distribution characteristics,
respectively. ϑp,r, Cp,r, and Gr represent the electromechanical coupling, piezo-
electric capacitance, and admittance of the r-th resonator’s shunt circuit. w(x, t)
and zr(t) indicate the transverse vibration of the structure and the resonator’s vi-
bration, respectively. δ(x − xr) is the Kronecker delta, signifying the location of
resonators.

The system’s boundary conditions are set using linear homogeneous differential
operators. The damping matrix is a combination of the mass and stiffness matri-
ces, resulting in the same mode shapes for both damped and undamped systems.
These undamped system mode shapes, while not fully accurate, are employed for
simplification in the metastructure with resonators. The operators are defined as
L = EI ∂4

∂x4 (flexural rigidity), M = ρA (mass distribution), C = c (damping), and
the boundary conditions as B1 = 1, B2 = EI ∂2

∂x2 . The modal expansion method
utilizes orthogonal eigenfunctions to solve Eqs. (67), (68), and (69). This orthog-
onality stems from the self-adjoint (Hermitian) nature of the eigenvalue problem,
as outlined by [96] and demonstrated in the integrals of mass and stiffness over
domain D. For eigenvalues ωm and ωn with their respective eigenfunctions ϕm(x)
and ϕn(x), orthogonality is established, as indicated in Eqs. (70) and (71), with
the Kronecker delta function, δmn, confirming their orthogonal relationship.∫

D

ϕm(x)M [ϕn(x)] dx = δmn (70)
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∫
D

ϕm(x)L [ϕn(x)] dx = δmnω2
m (71)

In the context of proportional damping, the interplay between damping and
orthogonal eigenfunctions is expressed in Eqs. (72) to (74). Here, ζm denotes the
damping ratio of a mode, and constants c1 and c2 establish the linear damping
relationship. ∫

D

ϕm(x)C [wm(x)] dx = c1δmnω2
m + c2δmn (72)∫

D

ϕm(x)C [wm(x)] dx = δmn2ζmωm (73)

ζm = 1
2ωm

(
c1ω2

m + c2
)

(74)

Utilizing the modal decomposition method, the Euler beam’s deflection within
domain D = [0, L] is expressed as a series of modal shapes in a single direction,
as shown in Eq. (75). This approach assumes that the beam’s dynamics can be
adequately represented by a finite number of modes:

w(x, t) =
Nm∑

m=1
ϕm(x)zm(t), (75)

Here, ϕm(x) is the spatial mode shape, and zm(t) is the temporal modal coordinate
for the m-th mode. This equation is part of the PDEs describing the motion of a
flexible beam system integrated with individual resonators.

Substituting the modal expansion Eq. (75) into Eqs. (67) and (68), and applying
orthogonal conditions Eqs. (70) and (71) yields to:

z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t) −

Nr∑
r=1

mrωr (ωrzr(t) + 2ζr żr(t)) ϕm(xr)

= Qbm
(x, t), m = 1, 2, . . . , Nm

(76)

z̈r(t)+2ζrωr żr(t)+ω2
rzr(t)+

Nm∑
m=1

z̈m(t)ϕm(xr)− ϑp,r

mr
vp,r(t) = Qbr

(t), r = 1, 2, . . . , Nr

(77)

Cp,rv̇p,r(t) + Grvp,r(t) + ϑp,r żr(t) = 0, r = 1, 2, . . . , Nr (78)
where, Nm denotes the total number of structural modes under consideration,

while Nr signifies the count of resonators present. The term zm(t) corresponds to
the relative displacement observable in the system’s m-th mode. Both ζm and ζr

are the damping ratios for the m-th structural mode and the resonator, respectively,
expressed as dimensionless quantities. The function ϕm(xr) describes the shape of
the m-th mode’s deformation, assessed at the specific location xr. Eqs. (76), (77),
and (78) can be determined using standard techniques for linear multi-degree-of-
freedom dynamical systems. By rearranging the equations and applying Laplace
transforms under the assumption of zero initial conditions, a corresponding set of
linear equations can be formulated as:
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(
s2 + 2ζmωms + ω2

m

)
Zm(s)+

s2 (ω2
r + 2ζrωrs

)∑Nr

r=1 mrϕm(xr)
∑Nm

p=1 ϕp(xr)Zp(s)

s2 + 2ζrωrs + ω2
r

(
1 + κhs

s+g(s)

) = Qbm
(s)

(79)
where, Zm(s) denotes the Laplace-transformed displacement of the structure’s m

th mode, while Qbm
(s) represents the Laplace-transformed external disturbances.

The admittance function g(s) is defined as the ratio of the Laplace transform of Gr,
denoted as Gr(s), represented as: g(s) = Gr(s)

Cp,r
, and the term κh is dimensionless of

resonator electromechanical coupling factor expressed as κh = ϑ2
p,r

krCp,r
. The masses

of the resonators (mr) are set proportional to the structure’s mass distribution at
the resonator attachment points, scaled by a mass ratio (µ), which reflects the total
resonator mass in relation to the mass of the underlying structure, as expressed by
mr = µm(xr)dxr. This simplification allows for the resonator masses to be directly
linked to the structure’s mass distribution, ensuring that the behavior of the res-
onators is closely coordinated with the dynamics of the structure to which they’re
attached. When the number of resonators is large, the system can be approximated
accordingly as

∑Nr

r=1 m(xr)ϕm(xr)ϕp(xr)dxr ≈
∫ L

0 m(x)ϕm(x)ϕp(x)dx = δmp, and
the Eq. (79) derived to:

(
s2 + 2ζmωms + ω2

m

)
Zm(s) +

s2 (ω2
r + 2ζrωrs

)
µZm(s)

s2 + 2ζrωrs + ω2
r

(
1 + κhs

s+g(s)

) = Qbm
(s) (80)

The transfer function representing the relationship between the displacement of
the m-th mode of the structure and the excitation force on the m-th mode is given
by:

Zm(s)
Qbm(s) = 1

s2
(

1 + µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r

(
1+ κhs

s+g(s)

))+ 2ζmωms + ω2
m

(81)

This equation describes how the structural mode’s displacement is influenced by
the applied excitation force, taking into account various damping, frequency, and
system parameters.

When a resonator is short-circuited (g(s) → ∞), the piezoelectric element’s
impedance is effectively zero, which means that the mechanical and electrical sys-
tems are strongly coupled. This results in a significant alteration of the system’s
resonant frequencies and potentially enhances energy dissipation within the me-
chanical system. In an open-circuit condition (g(s) = 0), the electrical impedance
is infinite, which minimizes the coupling between the mechanical and electrical
systems. The alteration in the system’s resonant frequencies is less pronounced
compared to the short-circuit case. The bandgap shift due to the piezoelectric
element is expected to be marginal in practical applications.

There are different shunt circuits (Purely Resistive Shunts, Resistive-Inductive-
Capacitive, Switched Shunts, Nonlinear Shunts, etc.), each type introduces distinct
dynamics to the system, influencing the energy harvesting performance in terms
of frequency, bandwidth, and efficiency. The choice depends on the application
requirements and the nature of the vibrational energy to be harvested.
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To calculate the voltage output at a specific location xr, the Laplace transform
is applied to Eq. (77). Subsequently, integrating this result into Eq. (78) leads to
the following expression for resonator voltage:

Vr(xr, s) = ϑp,r

Cp,r

s

s + g(s)
s2W (xr, s)

s2 + 2ζrωrs + ω2
r

(
1 + κhs

s+g(s)

) (82)

Here, W (xr, s) is the Laplace transform of the resonator’s absolute displacement
at location xr, determined via modal expansion. The power dissipated in each
resonator, when considering the frequency domain with s = iω, can be determined
through the admittance Gr(s). The power, denoted as P (xr, iω), is expressed as
follows:

P (xr, iω) = |Vr (xr, iω)|2 G∗
r(iω) = µκhω6ω2

t g∗(iω) |W (xr, iω)|2 m (xr) dxr∣∣∣(iω + g(iω))
(

ω2 − i2ζrωtω − ω2
t

(
1 + iκhω

iω+g(iω)

))∣∣∣2
(83)

Here, the term ()∗ represents the complex conjugate. The power is calculated
based on the voltage at the resonator, the admittance, and various parameters
of the system, such as frequency, damping, and coupling coefficients. With the
assumption that resonators become infinitesimally small, the total complex power
of the system is approximated by integrating the power of individual resonators
over the domain as: Ptot(iω) =

∑Nr

r=1 P (xr, iω) ≈
∫

x
dP. This integral equation

represents the total power dissipation in the system, factoring in the cumulative
effect of all resonators and yields to total power dissipation in the system as:

P (xr, iω) =
µκhω6ω2

t g∗(iω)
∫

x
m(x)|W (x, iω)|2dx∣∣∣(iω + g(iω))

(
ω2 − i2ζrωtω − ω2

t

(
1 + iκhω

iω+g(iω)

))∣∣∣2 (84)

The total complex power of the system, Ptot (iω), is derived by considering the
modal weightings Zm(s) and applying the orthogonality condition of the mode
shapes as stated in equations (70) to (73). This approach simplifies the integral in
Eq. (84), leading to:

∫
x

m(x)|W (x, iω)|2dx =
∫

x

m(x)
Nm∑

m=1

Zm(iω)ϕm(x)
Nm∑
k=1

Z∗
k(iω)ϕk(x)dx =

Nm∑
m=1

|Zm(iω)|2

(85)
With this simplification, the total complex power can be written as:

Ptot(iω) = κhµω6ω2
t g∗(iω)

∑Nm

m=1 |Zm(iω)|2∣∣∣(iω + g(iω))
(

ω2 − i2ζrωtω − ω2
t

(
1 + iκhω

iω+g(iω)

))∣∣∣2 (86)

For further simplification, it can be expressed as:

Ptot(iω) = κhµω6ω2
t g∗(iω)

∑Nm

m=1 |Zm(iω)|2

|(iω + g(iω)) (ω2 − i2ζrωtω − ω2
t ) − iωω2

t κh|2
(87)
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4.4 Numerical Studies
This section presents a numerical study on vibration attenuation of distributed
metastructure achieved by installing piezoelectric elements on resonators. It also
explores how varying the damping ratios of these resonators influences both the
attenuation of vibrations and the efficiency of energy harvesting. It delves into
energy harvesting via resistive shunting, a method involving a resistor connected
across electrodes, leading to a normalized admittance g(iω) = 1/τ . Here, τ =
RpCp,r signifies the time constant associated with the parallel resistance Rp. The
study extensively investigates the impact of varying the resonator’s damping ratios
ζr and different load resistances (values of τ ) on the system’s performance. The
analysis encompasses the structural response and power output of a cantilever beam
under base excitation, characterized by an amplitude wb at various frequencies ω.
Key aspects of the study include the generation of heatmaps to display the beam’s
tip transmissibility and power output, with these visualizations highlighting the
dependence on both the damping ratio ζr and the load resistance parameter τ ,
along with the frequency ω. This comprehensive analysis aids in understanding
the intricate relationships between damping, load resistance, and the efficiency of
energy harvesting.

Additionally, for each excitation frequency, the optimal value of τopt that max-
imizes the real part of the power output P (iω) = Re {Ptot (iω)} is determined.
The resulting optimal real power is then plotted as a function of the excitation fre-
quency alone. Alongside, the tip displacement at this optimal load is evaluated to
verify the presence of the bandgap, even under optimal loading conditions. These
findings are depicted in Figs 25 to 29, illustrating the behavior of the mechanical
metastructure with energy harvesting resonators. This approach helps in identify-
ing the most effective operating conditions for maximizing energy harvesting while
ensuring the structural integrity and functionality of the metastructure.
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Figure 25: Beam tip response of a mechanical metastructure with variable damping ratios
(ζr), demonstrating the effect on resonance peaks and bandgaps at optimal power output
conditions. The responses are plotted as a function of normalized excitation frequency
(ω/ωr), with parameters set to κh = 0.1, g = 1, and µ = 1.4, for a cantilever beam
subjected to base motion. The comparison with a simple beam, which has a damping ratio
of ζm = 0.03, highlights the influence of the resonators on the formation of the bandgap
and the system’s pronounced sensitivity to ζr.
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Figure 25 exhibits the beam tip response of a cantilever metastructure, un-
der base excitation for various damping ratios ζr at optimal power output condi-
tions. The responses, plotted against the normalized excitation frequency ω/ωr,
reveal the influence of damping on the amplitude and bandwidth of the resonant
peaks. Increased damping ratios lead to broader and lower peaks, indicative of
energy dissipation, while the presence of bandgaps-regions of reduced vibrational
transmission-suggests the metastructure’s capability for targeted vibration atten-
uation. Compared to a simple beam with ζm = 0.03, the metastructure demon-
strates altered dynamics due to the resonators, particularly under the conditions
κh = 0.1, g = 1, µ = 1.4, and ωt = 3ωr, signifying a system tuned for enhanced
energy harvesting around the tripled resonant frequency. The figure underscores
the critical role of damping optimization in maximizing the efficiency of energy
harvesting within the metastructure.
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Figure 26: Optimal real power output of a cantilever beam in a mechanical metastructure
with resistive shunting, presented across a spectrum of normalized metastructure with re-
sistive shunting, presented across a spectrum of normalized excitation frequencies (ω/ωr).
The graph showcases the dependency of power output on various resonator damping ratios
(ζr), with the parameter ωt = 3ωr consistent with previous analyses. It highlights the
influence of damping on energy harvesting efficiency, notably at and around the resonant
frequency.

Figure 26 shows the optimal real power output of a cantilever beam in a me-
chanical metastructure with resistive shunting. Large, broadband power output is
observed near the resonant frequency of the resonators. This occurs just before
the targeterd locally resonant bandgap. Sudden peaks in displacement and power
at optimal loading are noted. The frequency neighborhood where this occurs is
affected by damping and system parameter variations. As the damping ratio ζr

increases, the peak magnitude decreases and the curve flattens, signifying reduced
power output efficiency. The significance of the damping ratio is emphasized for
optimizing energy harvesting capability, with lower damping ratios being prefer-
able for higher power outputs. A large but narrower-band power output is also
seen near the system resonances.

Figure 27 showcases heatmaps of power output density across excitation frequen-
cies and load resistances for different damping ratios. An optimal load resistance
region is identified, where power output is maximized, showing a dependency on
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Figure 27: Heatmaps display the power output density variation with normalized excitation
frequency and load resistance for different ζr. The dashed line indicates the optimal loading
condition at each excitation frequency. Notable is the decrease in energy harvesting at
higher frequencies with increased damping. Parameters: g = 1, κh = 0.1, ωt = 3ωr, µ =
1.4, ζm = 0.027.

mechanical damping and electrical loading. Increasing the damping ratio leads
to decreased maximum power output and a less distinct optimal load resistance
region. The necessity of selecting appropriate resistive loads for efficient power
conversion at various frequencies is highlighted. At higher frequencies, there is a
noticeable dissipation of energy, with a reduction in power output intensity in the
heatmaps.

Figures 28 and 29 illustrate the impact of varying ζr on the beam tip response
of a cantilever beam in a mechanical metastructure under base excitation. With
increased damping, the resonant peaks at lower frequencies are reduced in inten-
sity and sharpness, leading to a wider energy distribution. Higher damping ratios
cause a pronounced broadening effect at frequencies just below the locally resonant
bandgap, aiding in effective attenuation of the structural response. This damping
behavior is important for reducing unwanted vibrations and for energy harvesting,
as it enables a smoother transition from resonance to bandgap The resonant fre-
quencies below the bandgap show strong attenuation, which correlates with high
power output near the resonator’s resonant frequency, suggesting efficient energy
harvesting. The resonant frequencies below the bandgap show strong attenuation
due to the energy harvesting, as suggested by the high power output near the
resonator’s resonant frequency.

Figure 30 illustrates a significant shift in the bandgap frequency range under
varying conditions, from low to high electromechanical coupling. In cases of mini-
mal coupling, the bandgap known for its high vibration damping shows little sen-
sitivity to the optimal loading conditions of the energy harvester. With increased
electromechanical coupling, the bandgap’s influence grows, yet it remains narrow
in bandwidth. Although the bandwidth for attenuation marginally decreases, the
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Figure 28: Influence of resonator damping on the beam tip response within a mechanical
metastructure, visualized over RC time constant and normalized excitation frequency.
The heatmaps depict attenuation effects at lower frequencies and the persistent bandgap
stability despite varied damping, with dashed lines marking optimal energy harvesting
conditions. Parameters: g = 1, κh = 0.1, ωt = 3ωr, µ = 1.4, ζm = 0.027.
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Figure 29: Beam tip response of a mechanical metastructure with varying ζr at optimal
power output, plotted against normalized excitation frequency. The graph illustrates the
impact of damping on the vibrational response of a cantilever beam under base excitation,
with parameters set to g = 1, κh = 0.1, ωt = 3ωr, µ = 1.4, and ζm = 0.027
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Figure 30: Bandgap frequency shifts and attenuation characteristics across different elec-
tromechanical coupling conditions. The heatmaps underscore the transition of the bandgap
response with minimal to increased coupling (κh), highlighting the narrow bandwidth yet
noticeable impact on vibration damping, especially under optimal energy harvester loading.
The sensitivity of lower damping ratios to frequency changes and the broadened response
at higher ratios are evident.

impact is noticeable. Higher levels of electromechanical coupling indicate a balance
between bandwidth and amplitude, akin to the behavior of a damped vibration ab-
sorber. While higher electromechanical coupling in energy harvesters might seem
advantageous, its desirability is limited by the availability of piezoelectric materials.
The pattern of electromechanical coupling remains consistent across all damping
ranges of the resonator. However, at high damping ratios, the electromechanical
coupling is expected to shift the frequency edge of attenuation. The heatmaps re-
veal that for lower damping ratios, the response is highly sensitive to changes in the
frequency ratio, as shown by the sharp, bright bands indicating significant peaks
in the response. As the damping ratio increases, the peaks become less intense and
more spread out, indicating a broader frequency range of response but with less
pronounced peaks. This suggests that lower damping ratios are more effective for
energy harvesting at specific resonant frequencies, while higher damping ratios may
be better suited for applications that require a wider range of frequency responses.

4.5 Summary
This chapter established a robust theoretical foundation for understanding the dy-
namic characteristics of flexible metastructures with electromechanical resonators.
The lumped parameter models offered simplicity and clarity in capturing the es-
sential dynamics, while the distributed parameter models provided detailed and
accurate representations of wave propagation and energy harvesting phenomena.
The integration of piezoelectric elements within these models demonstrated signifi-
cant potential for enhancing vibration control and energy harvesting efficiency. The
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modal expansion method was employed to derive the natural frequencies and mode
shapes of the metastructure, integrating electromechanical elements to study their
influence on bandgap characteristics. The results demonstrated that piezoelectric
elements, when attached to resonators, significantly affect the system’s bandgap
properties, offering substantial potential for energy harvesting from resonator fluc-
tuations.

Here are the key points summarizing the contributions and insights gained from
this chapter:

• Developed lumped and distributed parameter models for flexible metastruc-
tures with electromechanical resonators, providing a robust framework for
analyzing dynamic behavior.

• Demonstrated the potential of piezoelectric elements to enhance energy har-
vesting and vibration control, particularly through the modulation of bandgap
characteristics.

• Explored the impact of of various nonlinearities, including polynomial, voltage-
dependent, and cubic forms, has revealed their critical roles in optimizing
system performance. This investigation has shown how these nonlinearities
can be adjusted to maximize energy harvesting and vibration attenuation.

• Extensive numerical studies have been conducted to evaluate the effects of
key metastructure parameters such as resonator damping ratios and load
resistances. These studies have provided valuable insights into designing these
systems to achieve optimal conditions for energy harvesting and vibration
control.
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5 Streamlining Metastructure Modeling: Internally
Coupled Resonators

Traditional metastructures enhance dynamic responses by incorporating periodic
inclusions that disrupt and absorb wave energy. The introduction of internal cou-
pling among resonators introduces a refined layer of control over these bandgap
properties, potentially allowing for more bandgap creation.

The concept of internally coupled resonators refines the traditional designs by
coupling resonators within the same unit cell or between neighboring cells. This
adjustment alters the local dynamics, possibly leading to new secondary bandgaps
and improved performance characteristics. The theoretical implications of such
configurations are profound, suggesting potential benefits for industries like build-
ing construction, civil engineering, automotive manufacturing, and even consumer
electronics, where precise control over vibrational energy is essential.

However, the transition from theory to practice with internally coupled res-
onators in metastructures is fraught with challenges. These include the need for
precise manufacturing, sensitivity to structural variations, and the complexities
involved in seamlessly integrating these systems. This chapter delves into these
challenges through both lumped and distributed parameter models, employing ex-
perimental validations and numerical simulations to refine our understanding and
application of these advanced theoretical models.

5.1 Lumped Parameter Model of Mechanical Internally Cou-
pled Resonators

To clarify the dynamics within the mechanically internally coupled system, the
analysis strategically simplifies the system by focusing exclusively on the springs,
omitting damping effects and electromechanical elements. This approach allows
for a concentrated examination of the system’s behavior under the influence of
linear springs in the primary chain and resonators, alongside nonlinear springs
that facilitate internal coupling between resonators. As depicted in Fig. 31, the
system consists of a nonlinear mechanical internally coupled chain, with the unit
cell highlighted by the dashed rectangle. Consequently, the dynamic behavior of
the system will be primarily dictated by this nonlinear internal coupling between
resonators, even as the rest of the system retains its linearity. This configuration
allows for a focused study on the impacts and potential advantages of having a
nonlinear inter-resonator spring in an otherwise linear spring system.

Figure 31: Mechanically internally coupled resonators. The dashed rectangle signifies a
unit cell.

The kinetic energy, symbolized by T , includes the dynamic activities of both
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the main chain and the resonators, and is expressed as follows:

T = 1
2mm

(
u̇2

m + u̇2
m+

)
+ 1

2mr

(
u̇2

r + u̇2
r+

)
(88)

The potential energy, denoted by U , encapsulates the energy stored in various com-
ponents of a mechanically coupled system: the main chain’s linear springs, cou-
pling springs between the chain and resonators, and notably, the nonlinear springs
internally coupling the resonators, providing a comprehensive view of energy dis-
tribution and interplay in a predominantly linear mechanical chain with specific
nonlinear interactions.

U =1
2km

[
(um− − um)2 + (um − um+)2 + (um+ − um++)2]

+ 1
2kr

[
(um − ur)2 + (um+ − ur+)2]+ 1

2kc1(ur − ur+)2 + 1
4kc2(ur − ur+)4

(89)

Here, kc1 and kc2 serve as linear and nonlinear coupling coefficients respectively.
While kc1 facilitates a linear coupling between resonators, kc2 introduces a bistable
nonlinearity due to its fourth-order nature among the resonators. If both kc1 and
kc2 are positive (kc1 > 0 and kc2 > 0), the system achieves a traditional monostable
state, thereby circumventing the need to identify and linearize around a stable
point. Opting for this strategy not only guarantees straightforward and stable
system dynamics but also commonly serves to sidestep the intricacies encountered
when navigating through bistable systems, especially in scenarios where kc1 < 0
and kc2 > 0.

Utilizing the Lagrangian formulation, and defining zr(t) as relative displacement
between chain mass and resonator, the resonator’s equation of motion yields:

mmz̈r(t) + cm (2żr(t) − żr− (t) − żr+ (t)) + km (2zr(t) − zr− (t) − zr+ (t)) + krzr(t) = fer

(90)

mmz̈r+ (t)+cm (2żr+ (t) − żr(t) − żr++ (t))+km (2zr+ (t) − zr(t) − zr++ (t))+krzr+ (t) = fer+

(91)

mr z̈r(t) + cr żr(t) + krzr(t) + kc1 (zr(t) − zr+ (t)) + kc2 (zr(t) − zr+ (t))3 = fem (92)

mr z̈r+ (t) + cr żr+ (t) + krzr+ (t) − kc1 (zr(t) − zr+ (t)) − kc2 (zr(t) − zr+ (t))3 = fem+ (93)

Here, mm represents the mass of the main chain, and the coefficient km is
the main chain’s stiffness, interacting with the relative displacements between the
resonator and its neighbors, while kr characterizes the resonator’s inherent stiffness.
The resonator, with mass mr, has a damping coefficient cr that represents its
resistance to motion due to velocity. The coefficients kc1 and kc2 represent the linear
and nonlinear coupling stiffness between adjacent resonators, respectively. These
couplings govern the interaction forces that depend on the relative displacement
and displacement cubed between neighboring resonators, enhancing the dynamic
response control. The forces fer

and fer+ indicate excitation on the primary mass
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chain, influenced by the resonator and internal connections. fem
and fem+ are

forcing on the resonators, sourced from the main chain mass and internal stiffness
interactions.

The superscript ’++’ indicates the two adjacent mass-in-mass structures, where
um++ denotes the displacement of the mass or unit that is two positions away from
mass m. Utilizing Bloch’s theorem, the waveform of the harmonic displacements
of masses can be expressed as:

um = um0ei(Gnx−ωt)

um+ = um1ei(Gnx+Gna−ωt)

ur = ur0ei(Gnx−ωt)

ur+ = ur1ei(Gnx+Gna−ωt)

(94)

where Gn represents the wave number or spatial frequency, dictating the spatial
periodicity of the wave over the unit cell with the dimension of a. The coefficients
um0 , um1 , ur0 , and ur1 represent the complex wave amplitudes. Integrating these
terms into the provided equations leads to the derivation of the dispersion relation.
The associated matrix is determined for this purpose, and by setting its determinant
to zero, a relationship between Gn and ω is established. For nonlinear scenarios,
as presented in the above equations, a numerical approach is typically employed.
From four inertias in a unit cell, an eighth-order dispersion equation arises when
the determinant is zero. This results in four curves with three band gaps on the
positive real axis, indicating that internally coupled metamaterials offer additional
band gaps over conventional ones.

In this study, we focus on a specific frequency range. A comprehensive analysis
of the effects of piezoelectric nonlinearities across the entire frequency spectrum is
beyond the scope of this work.

5.1.1 Stability Analysis for Mechanical Internally Coupled Metamaterial
The Jacobian matrix is commonly used to analyze the stability of equilibrium
points for nonlinear systems. The idea is to linearize the nonlinear system around
its equilibrium points and then analyze the stability of the resulting linear system.
This provides insight into the local behavior of the nonlinear system around those
points.

Considering Eqs. (92) and (93) without the excitation force, the equilibrium
points of the system can be ascertained. Setting the velocities żr and żr+ , along
with the accelerations z̈r and z̈r+ , to zero provides the necessary conditions that
define these equilibrium positions. The equilibrium points satisfy:

krzr0 + kc1

(
zr0 − zr+

0

)
+ kc2

(
zr0 − zr+

0

)3
= 0

krzr+
0

− kc1

(
zr0 − zr+

0

)
− kc2

(
zr0 − zr+

0

)3
= 0

(95)

Introducing small perturbations around these equilibrium points results in the fol-
lowing expressions [13]:

δzr = zr − zr0

δzr+ = zr+ − zr+
0

(96)

Upon linearization of the equations of motion around the equilibrium, terms of
higher order in δzr and δzr+ are neglected, leading to:
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mrδz̈r +crδżr +krδzr +kc1 (δzr − δzr+)+3kc2

(
zr0 − zr+

0

)2
(δzr − δzr+) = 0 (97)

mrδz̈r+ + crδżr+ + krδzr+ − kc1 (δzr − δzr+) − 3kc2

(
zr0 − zr+

0

)2
(δzr − δzr+) = 0

(98)
A state vector is introduced to convert the second-order system into a system

of first order:

X =


δzr

δzr+

δżr

δżr+

 (99)

Differentiating the state vector yields:

Ẋ =


δżr

δżr+

δz̈r

δz̈r+

 (100)

The objective is to represent Ẋ in the form AX, where A is a matrix constructed
from the system parameters and possibly the equilibrium point. The matrix A is
determined by linearizing the equations of motion. The eigenvalues of A indicate
the stability of the system around the equilibrium.

The eigenvalue for the nonlinear internally coupled resonators is determined by
Eqs. (101) and (102):

λ1,3 = −
cr ±

√
c2

r − 4krmr

2mr
(101)

λ2,4 = − 1
2mr

(cr±
√

c2
r − 4mrkr − 8mr (kc1 + 3kc2(δzr − δzr+)2)

)
(102)

By omitting the nonlinear term kc2 , the system transitions to a linear internally
coupled resonator. This exclusion simplifies the stability analysis by removing the
nonlinear component. Consequently, the system’s behavior is analyzed linearly
around its equilibrium point. After this simplification, the governing equation of
motion becomes:

λ1,3 = −
cr ±

√
c2

r − 4krmr

2mr
(103)

λ2,4 = −
cr ±

√
c2

r − 4mr(kr + 2kc)
2mr

(104)

Stability scenarios for internally coupled systems, both nonlinear and linear, are
summarized as follows:

Nonlinear Systems:
Case 1: For c2

r − 4krmr < 0, λ1,3 imply a stable focus.
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Case 2: With c2
r − 4krmr > 0 and all positive parameters, λ1 and λ3 ensure

stability.
Case 3: Sign of λ2,4 depends on term magnitudes and cr.
Case 4: c2

r − 4krmr − 8mr

(
kc1 + 3kc2 (δzr − δzr+)2

)
< 0 denotes stability.

Linear Systems:
Case 1: For c2

r − 4krmr < 0, λ1,3 indicate a stable focus.
Case 2: With c2

r − 4krmr > 0, signs of λ1 and λ3 are determined by cr.
Case 3: In c2

r − 4krmr − 8kcmr > 0, stability relies on signs of λ2 and λ4.
Case 4: Condition c2

r − 4krmr − 8kcmr < 0 signals stability.

5.2 Lumped Parameter Model of Electromechanical Internally
Coupled Resonators

In the preceding section, the metamaterial with internal resonator coupling was
examined. Due to challenges in constructing and instructing the internal spring,
especially when aiming for negative stiffness, an alternative is to utilize an electrical
shunt circuit, specifically a prototype capacitance, offering behavior similar to the
mechanically internally coupled resonator.

5.2.1 Internal Coupling Through Shunt Capacitance Circuit Techniques
In this section, the shunt capacitance circuit technique is employed to model a
two-degree-of-freedom electrical system with internal coupling, as illustrated in
Fig. 32. In this scenario, capacitance is incorporated as a key component instead
of utilizing the previously formulated resistance (R). Fig. 32 presents two different

Figure 32: Internally coupled with electrical shunt circuit. Forward (dash) and reverse
(solid) capacitance shunting configuration.

configurations of the shunt circuit: the forward and the reverse. For the forward
setup, the top and bottom surfaces of the piezoelectric transducer on the left align
with the analogous surfaces of its counterpart on the right. Conversely, the reverse
configuration has the top and bottom surfaces of the two piezoelectric transducers
connected in an opposite fashion. In both setups, a capacitor is connected in
parallel to both piezoelectric transducers.

The analytical procedures for both configurations are analogous, leading to com-
parable conclusions. The distinction in circuit connectivity between these two se-
tups only results in a sign reversal in the ultimate expression for equivalent coupling
stiffness. Both forward and reverse connections can achieve the same functionality,
albeit with differing capacitance tuning strategies. This investigation primarily
focuses on the reverse connection configuration. In its absence of external capac-
itance, it exhibits characteristics akin to a standard spring with positive stiffness,
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simplifying its interpretation in an equivalent mechanical context.

Figure 33: Equivalent Electrical System Representation of the Unit Cell Resonators with
Capacitance Shunt Circuit Using the Impedance Analogy

Capacitance typically relates the change in electric charge to shifts in electric
potential. With positive total capacitance, a discharge of current leads to a voltage
decrease across the capacitor, whereas with negative total capacitance, the voltage
increases. Utilizing the impedance analogy (current to velocity, charge to displace-
ment, voltage to force), the circuit segments LRC and LRC+ correspond to the
resonators mrcrkr and (mrcrkr)+, respectively, as illustrated in Fig. 33. For sim-
plicity, the mechanical properties of the resonators (mass, stiffness, and damping)
are assumed to be identical.

The voltage across the total capacitance represents the force interaction between
these resonators. Additionally, the current through total capacitance, representing
the difference in currents in the loops’ paths, indicates the difference in velocity
between the resonators. The charge variation in total capacitance indicates the dis-
placement difference between the resonators. Hence, the capacitor in the electrical
system can be envisioned as a spring, ks coupling the resonators in the mechani-
cal domain, with positive total capacitance acting as a positive-stiffness coupling
spring and negative total capacitance as a negative-stiffness spring.

Considering the reversed configuration of the two piezoelectric transducers, the
voltages exhibit identical magnitudes but with opposite directions. Factoring in
the current passing through the parallel-connected capacitance cs, the relationship
between the voltages is expressed as:

1
cs

∫ (
ip(t) − ip+(t)

)
dt = vp(t) (105)

The design employs an internal shunt capacitance circuit to optimize the band gap
behavior in resonators. When this capacitance acts as a negative capacitor and
is finely tuned, it can offset the capacitances of linked piezoelectric transducers,
enhancing the coupling between adjacent resonator.

Considering damping in the resonators and assuming identical stiffness, damping
coefficients, and masses for all resonators, the governing equations for the motion
of the two resonators within a unit cell (refer to Fig. 32) relative to the mass of
the chain is as follows:

mr z̈r(t) + cr żr(t) + krzr(t) + θrvp(t) = mrüm(t) (106)

mr z̈r+(t) + cr żr+(t) + krzr+(t) + θr+vp+(t) = mrüm+(t) (107)

The relative displacements of these resonators with respect to the main chain
structure are denoted by zr(t) and zr+(t). The electromechanical coupling coef-
ficients are θr and θr+ , and the voltages across the corresponding piezoelectric
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transducers are vp(t) and vp+(t). The excitation displacements are represented as
um(t) for the left and um+(t) for the right resonators.

The governing electrical domain equations for the piezoelectric transducers are
as follows:

cpv̇p(t) + ip(t) − θr żr(t) = 0 (108)

cp+ v̇p+(t) + ip+(t) − θr+ żr+(t) = 0 (109)

ip(t) = cp+θr żr + cpθr+ żr+ + csθr żr

cp + cp+ + cs
(110)

ip+(t) = cp+θr żr + cpθr+ żr+ + csθr+ żr+

cp + cp+ + cs
(111)

Substituting Eq. (110) and Eq. (111) into Eq. (105) and integrating with
respect to time for zero initial condition yields:

vp(t) = (θrzr − θr+zr+)
cp + cp+ + cs

(112)

vp+(t) = − (θrzr − θr+zr+)
cp + cp+ + cs

(113)

Substituting equations Eq. (112) and Eq. (113) into Eqs. (106) and Eq. (107)
yields the following expressions:

mr z̈r(t) + cr żr(t) + krzr(t) + θr(θrzr(t) − θr+zr+(t))
cp + cp+ + cs

= mrüm(t) (114)

mr z̈r+(t) + cr żr+(t) + krzr+(t) − θr+(θrzr(t) − θr+zr+(t))
cp + cp+ + cs

= mrüm+(t) (115)

Rearranging

mr z̈r(t) + cr żr(t) + krzr(t) + ks1zr(t) − ks2zr+(t) = mrüm(t) (116)

mr z̈r+(t) + cr żr+(t) + krzr+(t) − ks2zr(t) + ks3zr+(t) = mrüm+(t), (117)

where
ks1 = θ2

r

cp + cp+ + cs
(118)

ks2 = θrθ+
r

cp + cp+ + cs
(119)

ks3 = θ2
r+

cp + cp+ + cs
. (120)
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For identical electromechanical couplings and after substituting the relevant
equations into Eq. (105), the integrated result yields the following condensed mo-
tion equations:

mr z̈r(t) + cr żr(t) + krzr(t) + ks (zr(t) − zr+(t)) = mrüm(t) (121)

mr z̈r+(t) + cr żr+(t) + krzr+(t) − ks (zr(t) − zr+(t)) = mrüm+(t) (122)

where
ks = θ2

r

cp + cp+ + cs
(123)

Implementing coupling through piezoelectric transducers and a shunt capaci-
tance circuit is practical, as it serves as an equivalent spring that relates the mo-
tions of two resonators via their relative displacements. This coupling mechanism,
resulting from local resonances, creates additional band gaps in metamaterials by
generating two resonant frequencies. The piezoelectric transducers, when shunted,
act as an analogous internal coupling spring ks, similar to the mechanical internal
coupling that links the movement of two resonators.

However, it’s important to note that using a negative shunt capacitor, which
is a type of positive feedback in op-amp circuits, can increase the risk of system
instability without the right parameter choices. Despite this, the design’s strength
is its tunability and ability to generate multiple band gaps, offering robust vibration
suppression.

5.2.2 Stability Analysis of Electromechanical Internally Coupled Res-
onators Using Shunt Capacitance

The stability of the system hinges on ks, denoting electromechanical coupling
through the shunt circuit. Instability might arise with negative shunt capacitance.
For the dual-resonator setup, stability is gauged by linearizing its equations of mo-
tion and inspecting the eigenvalues of the Jacobian matrix. A system is stable if
all its eigenvalues possess negative real parts. By analyzing the Jacobian matrix
derived from linearizing around equilibrium, we discern system behavior. The sys-
tem remains stable with all eigenvalues in the left-half complex plane. Achieving
negative stiffness necessitates ks1 , ks2 , and ks3 to be negative. Uniform electrome-
chanical coupling demands ks < 0.

For a system with positive electromechanical coupling, achieving a negative ks

necessitates the combined cp and cs to be negative, indicating a need for negative
capacitance. This can be realized using active circuits with operational amplifiers
or ferroelectric capacitors. However, this introduces challenges such as potential
destabilization. Ensuring system stability, especially with negative capacitance, is
paramount, often verified using Jacobian analysis. Mathematically, a correspond-
ing linear system is expressed as:

mz̈(t) + cż(t) + kz(t) = f(t) (124)

with
z(t) =

[
zr(t)

zr+(t)

]
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λ =
−cr ±

√
c2

r − 2ks1mr − 2ks3mr − 4krmr ± 2mr

√
k2

s1
− 2ks1ks3 + 4k2

s2
+ k2

s3

2mr
(125)

The system’s stability is influenced by the eigenvalues of the Jacobian matrix,
determined by Eq. (125). These eigenvalues are shaped by the damping coefficient
cr and shunt coefficients ks1 , ks2 , and ks3 . While damping can promote stability,
spring coefficients introduce potential oscillations. The interplay of ks1 , ks3 , and
coupling ks2 deeply impacts the system dynamics. A system is stable when all
eigenvalues have negative real parts. If the discriminant is negative, oscillatory
behaviors emerge. Notably, the real component of λ, defined as −cr

2mr
, predisposes

the system to stability, but further analysis is essential for full understanding.

a = c2
r − 2ks1mr − 2ks3mr − 4krmr (126)

b = 2mr

√
k2

s1
− 2ks1ks3 + 4k2

s2
+ k2

s3
(127)

Case 1: a < 0 and b < 0, the system is stable if |a| > |b|.
Case 2: a > 0 and b > 0, the system is stable if a < b.

Case 3: a > 0 and b < 0, stability would need to be ascertained by calculating
the actual values and verifying the sign of λ. The system can lead to an unstable
region.

Case 4: a < 0 and b > 0, the system is stable if |a| > |b|.
Case 5: a = 0 or b = 0, the system is stable.
For a marginally stable system, damping is typically disregarded to establish

boundaries of stability. As per Eq. (128), when the system’s eigenvalues are purely
imaginary, it denotes a marginal stability condition. This equation delineates con-
straints on the stiffness coefficients kr and ks, defining the threshold between stable
and unstable regimes.

2kr > −ks1 − ks3 −
√

k2
s1

− 2ks1ks3 + 4k2
s2

+ k2
s3

(128)

The associated eigenvalues, representing the system’s characteristic frequencies,
are given by:

λ = ± 1√
2

√
−
(
2kr + ks1 + ks3 ±

√
k2

s1
− 2ks1ks3 + 4k2

s2
+ k2

s3

)
mr

(129)

To identify criteria for cs that ensures a negative equivalent stiffness, Equations
(118), (119), and (120) are substituted into (126) and (127). The derived expres-
sions are then analyzed to determine the conditions for cs that satisfy the stability
conditions:

a − b < 0 (130)

|a| > |b| (131)
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Substituting a and b into Eq. (130) for the stability condition of a−b < 0 yields
to:

c2
r − 4krmr < 2mr

θ2
r + θ2

r+ +
√

θ4
r + 2θ2

rθ2
r+ + θ4

r+

cp + cp+ + cs

 (132)

Taking into account the absolute values in Eq. (131), it becomes imperative to
explore two scenarios due to the potential positivity or negativity of both a and b.

∣∣c2
r − 4krmr

∣∣ >

∣∣∣∣∣∣2mr

√
θ4

r + 2θ2
rθ2

r+ + θ4
r+

cp + cp+ + cs

∣∣∣∣∣∣ (133)

The inequalities (133) and (132) should be satisfied for stability, and cs ap-
pears in the denominator of the fractions in these expressions, implying that as
cs changes, the values of these expressions will alter, potentially changing the sign
of the inequalities. To derive explicit criteria, one could further manipulate these
expressions or, depending on the specific application or system, analyze them nu-
merically by substituting values of other parameters (cr, kr, mr , etc.) to explore
how varying cs affects the system’s stability. solving for cs results in:

cs >
2mr

(
θ2

r + θ2
r+ +

√
θ4

r + 2θ2
rθ2

r+ + θ4
r+

)
c2

r − 4krmr
− cp − cp+ (134)

In the case of identical electromechanical coupling, and capacitance, the criteria
for cs can be simplified as follows:

cs >
8mrθ2

r

c2
r − 4krmr

− 2cp (135)

In the scenario devoid of damping, the eigenvalues of the system, representing
its characteristic roots, are provided as follows:

λ1,2 = ±
√

−krmr

mr

λ3,4 = ±
√

−mr (kr + 2ks)
mr

(136)

The system’s stability is defined by the real parts of its eigenvalues. When
kr+2ks > 0, the system exhibits marginal stability, oscillating continuously without
decay or growth. However, if kr + 2ks < 0, the system has both positive and
negative eigenvalues, indicating instability. This highlights the critical relationship
between the resonator’s spring constant and the shunt capacitance stiffness (ks).
If the feedback from the shunt is overly negative, it can destabilize the system. In
most applications, full stability is preferred over marginal stability. The stability
criterion for cs is:

cs > −(2θ2
r

kr
+ 2cp) (137)

In contrast to purely mechanical internally coupled resonators, electromechani-
cal shunt capacitance circuits provide benefits over solely mechanical resonators by
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allowing easy adjustments for negative stiffness. The system’s flexibility is further
amplified by altering parameters like cp, cp+ , θr, and θr+ , enabling advanced system
behaviors and improved dynamic control.

For most practical applications, a strictly stable system, where all disturbances
decay, is more desirable than a marginally stable one. Exploring stability in lumped
parameter systems reveals that maintaining a strictly stable condition, preferable
for practical applications, hinges on a fine balance within the system’s parameters,
as indicated by the derived criterion. For a detailed examination of stability anal-
ysis and energy harvesting within lumped parameter systems, particularly those
incorporating internally coupled resonators, the study in [12] extends the discussion
to encompass a variety of conditions.

5.3 Numerical Studies
This section delves into simulations that distinguish between mechanical and elec-
tromechanical systems, further bifurcated into linear and nonlinear models with
internal coupling resonators. The exploration is grounded in the lumped parameter
methodology, where the dynamics of these systems, including piezoelectric energy
harvesters, are investigated. Simulations were conducted to analyze the dynamic
behaviors of the proposed models featuring internally coupled electromechanical
resonators, using parameters listed in Table 5. The mechanical and electrome-
chanical characteristics, previously elaborated in Table 1 and Table 4, have been
augmented with terms representing internal coupling.

Table 5: Defined parameters for the piezoelectric model

Parameter Value
Mass of main chain (mm) 0.056 kg
Mass of resonator (mr) 0.0336 kg
Spring constant of main chain (km) 150 N/m
Spring constant of resonator (kr) 129.6 N/m
Damping coefficient of main chain (cm) 0.0464 Ns/m
Damping coefficient of resonator (cr) 0.0334 Ns/m
Piezoelectric capacitance (cp) 1.5 mF(C/m)
Electromechanical coupling coefficient (θ) 0.25 N/V
Nonlinear stiffnesses quadratic coefficient (γ1) −500 N/m2

Nonlinear stiffnesses cubic coefficient (γ3) 15000 N/m3

Linear coupling coefficient (kc1) 198(−20) N/m
Nonlinear coupling coefficient (kc2) 2386(880) N/m3

Shunt capacitance (cs) −7.9 mF(C/m)
Internal resistance (R) 500 Ω

5.3.1 Nonlinear Mechanical Resonators and Internal Coupling Dynamics
Figure 34 illustrates the transmittance responses and bandgap creation across a
range of system configurations. For a comprehensive perspective, this figure inte-
grates the outcomes from Chapter 2, juxtaposing the linear and nonlinear resonator,
and internally coupled resonator analyses results to facilitate a direct comparison.
The system’s natural frequencies are analyzed within a range from 6 to 17 Hz. The
introduction of locally resonating elements distinctly establishes a band gap, dif-
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ferentiating these configurations from the conventional metastructure setup. This
band gap characteristic is attributed to the linear local resonance, which undergoes
out-of-phase motion when subjected to an external excitation frequency near its
local resonance frequency.
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Figure 34: Comparative Analysis of Band Gap Behaviors in a 1-D Chain System: Insights
from Linear, Nonlinear, and Internally Coupled Resonator Configurations

The nonlinear analysis focuses primarily on contrasting linear systems with their
nonlinear counterparts, in addition to examining internally coupled systems. Ef-
fects arising from bifurcation and its influence on frequency sweeps are not explored
in this context. With the substitutions kr → kc1 and γr3 → kc2 , the Eq. 16 modifies
to:

fr = kc1u + kc2u3 (138)
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Figure 35: Displacement response of bistable nonlinear mechanical internal coupling res-
onators. Linear coupling coefficient kc1 = −20N/m, and nonlinear coupling coefficient
kc2 = 880N/m3. Inset: Resonator’s potential energy profile for the specified coupling pa-
rameters.
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Figure 35 shows the transmission response of a metastructure equipped with a
nonlinear bi-stable internal coupling resonator.

The observed bifurcation is shaped by linear (kc1 = −20 N/m) and nonlinear
(kc2 = 880 N/m3) coupling coefficients, with the continuous sweep offering a de-
tailed system response. The main graph underlines the system’s potential energy
dynamics, with an unstable origin indicating negative stiffness. This complexity
is further highlighted by bifurcations between 14-16 Hz. The inset reveals vari-
ous energy states the system can attain. Multiple local minima suggest system
multi-stability, especially during large fluctuations. Hysteresis is evident from dis-
crepancies in sweep traces, particularly in lower frequencies from 6 Hz and 10 Hz.
However, it’s vital to understand the intent behind the choice of parameters in
this study. The deliberate restriction to a specific frequency range serves to mimic
negative stiffness phenomena observed in specific electromechanical systems.

Cubic nonlinearities, with their symmetric properties, are observed to mani-
fest either pure hardening or softening behaviors. This stands in contrast to the
dual behavior inherent to asymmetric quadratic nonlinearities. The significance
of optimal impedance matching is underscored, highlighting its role in achieving
enhanced vibration suppression and energy harvesting. However, as theoretical
constructs transition to tangible systems, certain compromises are often necessary
to accommodate weakly and strongly coupled systems.

Setting both kc1 and kc2 to be positive (see Table 5) induces a classic monostable
state, simplifying the system and avoiding the complications inherent in managing
bistable systems, particularly when kc1 < 0 and kc2 > 0.

5.3.2 Internally Coupled Resonators with Electromechanical Nonlinear-
ity

Fig. 36 visualizes the derived relationship of Eq. (137) and its implications for sys-
tem stability. Based on the analysis, the threshold value of the equivalent internally
coupled stiffness ks for stability is given by ks > − kr

2 . The relationship between ks

and shunt capacitance cs is clearly illustrated, with the light gray region represent-
ing system stability and the dark gray region indicating system instability. The
dividing threshold between these regions is represented by the line at ks = − kr

2 .
For the provided parameters, the system remains stable for cs values ranging from
negative infinity to approximately -0.004 Farad and resumes stability from around
-0.003 Farad (ks = −3468 to 5203 N/m) to positive infinity, with a brief interval
of instability between these ranges. The magnified view offers a closer perspective
on the critical transition points, emphasizing the pivotal cs values at which the
system’s dynamical response alternates.

In the study of energy harvesting systems, understanding the behavior of dif-
ferent parameters is essential for optimization. Fig. 38 presents the harvested
power and energy across a range of shunt capacitances. It clearly underscores the
influential role of shunt capacitance on the system’s overall efficiency.

An observation made from the results is the superiority of electrical internal cou-
pling via shunt circuits in terms of tunability. Specifically, electrical coupling seems
to allow for easier tuning of the band gap compared to its mechanical counterpart.
This is evident in Fig. 37 and 38, where the chosen shunt capacitor facilitates
a band gap at a notably lower frequency in comparison to a mechanically inter-
nally coupled system, as illustrated in Fig. 34. Choosing a shunt capacitance of
cs = −5.08mF results in an equivalent stiffness of ks = -30. This specific choice
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Figure 36: Stability Area of the Electromechanical Internally Coupled Lumped-Mass Sys-
tem: Exploring the Interplay Between Equivalent Stiffness ks and Shunt Capacitance cs.
Parameters: n = 4, mm = 56 g, mr = 33.6 g, km = 150 N/m, kr = 129.6 N/m, θ = 0.25
N/V, R = 500 Ω, cp = 1.5 × 10−3 F.
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Figure 37: Transmittance Comparison of Electrical Internally Coupling with Shunt Circuit
for θ = 0.25 and cp = 1.5mF, Demonstrating the Impact of an Equivalent Negative
Stiffness.
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Figure 38: Harvested Power and Energy across Different Shunt Capacitances for θ = 0.25
and cp = 1.5mF

not only introduces an equivalent negative stiffness into the system, enhancing en-
ergy harvesting capabilities across varied frequency spectrums and enabling the
creation of a lower-frequency band gap (see Fig. 37). Compared to mechanical
internal coupling, this provides more flexibility in tuning the band gap across dif-
ferent frequencies.

The results underscore the intricate balance required between nonlinearity pa-
rameters and system efficiency, opening avenues for the optimization of energy har-
vesters in practical applications. Future studies are anticipated to delve deeper into
electromechanical nonlinearity models, with an emphasis on scalability, parameter-
specific impacts, and the development of feedback circuits for adaptive systems.
The transition to distributed parameter models also stands out as a promising
direction for achieving a closer representation of physical systems in piezoelectric
energy harvesting research.

5.4 Distributed Parameter Model of Mechanical Internally
Coupled Resonators

By introducing an internal linear coupling term, κ, within the resonators illustrated
in Fig. 39, the system evolves into an interconnected pair of resonators. This trans-
formation creates an environment where the displacements of the resonators are
no longer independent but coupled. Specifically, the displacement of one resonator
influences the displacement of the other, establishing a dynamic interaction. The
energy associated with this coupling is quantified by the coupling potential energy,
in which each pair of resonators (1 and 2, 3 and 4, 5 and 6, etc.) forms a system
with two degrees of freedom:

Vc(t) = 1
2κ (zr1(t) − zr2(t) + w (xr1 , t) − w (xr2 , t))2 (139)

The equations for the coupled oscillator system can be formulated as follows:
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Figure 39: Locally resonant metastructures with internally coupled resonators. Each pair
of resonators forms one unit cell, with m representing the mass of the resonators, c the
damping, k the stiffness of the resonators, and κ the internal coupling stiffness between
them.

z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t) −

Nr/2∑
r=1

(
m2r−1ω2

2r−1z2r−1(t)ϕm (x2r−1) +

m2rω2
2rz2r(t)ϕm (x2r) = Qbm

, m = 1, 2, . . . , Nm, and Nr ∈ 2N

(140)

Meanwhile, the equation for the resonators is given by:

z̈2r−1(t) + 2ζ2r−1ω2r−1ż2r−1(t) + ω2
2r−1z2r−1(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r−1) +

β
κ

m2r−1
= Qb2r−1 , r = 1, 2, . . . , Nr/2

(141)

z̈2r(t) + 2ζ2rω2r ż2r(t) + ω2
2rz2r(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r) −

β
κ

m2r
= Qb2r

, r = 1, 2, . . . , Nr/2
(142)

where

β = z2r−1(t) − z2r(t) +
Nm∑

m=1
zm(t)ϕm (x2r−1) −

Nm∑
m=1

zm(t)ϕm (x2r) (143)

These equations characterize the underlying dynamics of both the beam and the
internally linear coupled resonator system. The Laplace transform of Eq. (140)
with zero initial conditions results in Eq. (144).

(s2 + 2ζmωms + ω2
m)Zm(s) −

Nr/2∑
r=1

(
m2r−1ω2

2r−1Z2r−1(s)ϕm(x2r−1)+

m2rω2
2rZ2r(s)ϕm(x2r)

)
= Qbm

(s)

(144)

Given that the forces Qb2r−1 and Qb2r are equal to −ẅb(t), and considering that
m2r−1 = m2r or identical mass mr for all resonators, along with the distribution
of numerous resonators along a beam, it is assumed that the derivative of position
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within each unit cell is the same, indicated by dx2r−1 = dx2r. This reflects a
uniform position derivative across all resonators. Furthermore, the following rela-
tionships are established: m2r−1 = µm(x2r−1)dx2r−1, and m2r = µm(x2r)dx2r.

lim
Nr→∞

Nr/2∑
r=1

m (x2r−1) ϕm (x2r−1) ϕp (x2r−1) dx2r−1 = 1
2δmp, m, p = 1, 2, . . .

(145)

lim
Nr→∞

Nr/2∑
r=1

m (x2r) ϕm (x2r) ϕp (x2r) dx2r = 1
2δmp, m, p = 1, 2, . . . (146)

Taking the Laplace transform of equations (141) and (142), and applying the
orthogonality of the mode shapes as demonstrated in Eqs. (145) and (146), results
in the derivation of the transfer function for a metastructure with internally coupled
resonators, as represented in Eq. (147).

Zm(s)
Qbm

(s) = 1
s2
(

1 + µω2
2r−1

s2+ω2
2r−1

)(
1 +

µ
4 ω2

2r

s2+ω2
2r

)
+ ω2

m

, m = 1, 2, . . . , Nm (147)

The transfer function presented in Eq. (147) incorporates coupling effects
through the κ parameter, allowing for the interaction between multiple resonators,
denoted as ω2r−1 and ω2r. This interaction can lead to complex dynamic behav-
ior, including the potential for multiple bandgaps or more pronounced resonant
effects. The integration of damping elements for both the plain structure and the
resonators can be conveniently executed at this stage.

In distributed parameter systems, such as beams, the resonators are two-degree-
of-freedom (2 DOF) systems. It can be proven that ω2r−1 = ωr, where ωr is the
natural frequency of a resonator when it is not coupled with its adjacent resonator.
Additionally, ω2r =

√
ω2

2r−1 + 2κ
mr

, where κ is the mechanical coupling coefficient
and mr is the mass of the resonator. This framework leads to the formation of
secondary bandgaps in metastructures with internally coupled resonators. These
bandgaps are associated with a 180-degree phase shift in the resonators. Con-
sequently, such metastructures exhibit both primary and secondary bandgaps, a
distinct feature compared to traditional structures. The condition of no stretching
in the coupling spring essentially renders its influence negligible. Consequently,
this scenario simplifies the equation, reducing it to a form that corresponds to the
conventional metastructure dynamics, as established in Eq. (38). This simplifica-
tion allows for a more straightforward analysis of the metastructure by reverting
to a more basic, yet fundamental, form of the equation. On the other hand, if
the resonators differ in frequency or have the same frequency but with a phase
difference, the parameter κ experiences stretching. This results in an additional
pole and zero, creating an extra bandgap.

Now, leveraging the transfer function method enables the utilization of the well-
known root locus analysis. By considering the modal response as the closed-loop
transfer function of a negative feedback system, which incorporates a proportional
feedback gain of ω2

m, and defining the feedforward transfer function as G(s), as
specified in Eq. (148), one can observe this interpretation.
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G(s) =
s2 + ω2

2r−1

s2
(
s2 + ω2

2r−1 + µω2
2r−1

) s2 + ω2
2r−1 + 2κ

mr(
s2 + (1 + ( µ

4 ))(ω2
2r−1 + 2κ

mr
)
) (148)

The first transfer function accurately represents what is found in a conventional
metastructure. This function has two poles at the origin, characteristic of a sys-
tem’s inherent response dynamics. It includes an additional pole at

√
1 + µω2r−1,

influenced by the mass of the resonators. This pole is responsible for creating a
bandgap with a length of

√
1 + µ, indicative of the system’s frequency-selective

behavior. The internal coupling of resonators introduces additional dynamics, par-
ticularly influencing the system’s behavior near resonant frequencies. The second
transfer function introduces terms that model the added poles and zeros in the
metastructure due to the internal coupling of resonators. In this function, the
roots progress from zero at ω2r to a pole at

√
1 + µ

4 ω2r, creating a bandgap with
a length of

√
1 + µ

4 .
The comparative analysis of the root locus plots for a conventional metamate-

rial and a metamaterial with internal resonator coupling, as depicted in Figures 40
and 41, clearly indicate the influence of the coupling term κ on the system dynam-
ics. Figure 40 illustrates the resonance characteristics and bandgap frequencies
of a metastructure, as indicated by the poles of its transfer function. The sys-
tem’s resonances correspond to the imaginary components of these poles. Modal
responses of the plain beam are modeled as a closed-loop transfer function with
proportional feedback. Bandgap edge frequencies are identified using root locus
analysis, with specific zeros and poles on the imaginary axis determining these fre-
quencies. Notably, within the bandgap defined by ω2r−1 < ω < ω2r−1

√
1 + µ, and

ω2r < ω < ω2r

√
1 + µ

4 , no poles are present. Root locus analysis is advantageous
for evaluating general linear attachments and facilitating the creation of multiple
bandgaps.

As mentioned earlier, the introduction of κ in the coupled system leads to ad-
ditional zeros and poles, as evidenced by the second root locus in Fig. 41. This
modification is characterized by the resonant frequencies ω2r−1 = 1(rad/s) and
ω2r = 1.7(rad/s), suggesting the emergence of a second bandgap. Moreover, the
root locus plot in Fig. 41 (left) indicates that the internal coupling parameter in-
fluences the system’s pole trajectories. Conversely, the Bode plot (right) reveals a
pronounced resonant peak, suggesting an increased selective sensitivity to certain
frequencies. While the phase response indicates the overall system’s stability un-
der the new coupling condition must be carefully evaluated to ensure robustness,
especially in control applications where stability is critical.

Following the approach in Chapter 3, the PWE method is utilized here to analyze
wave propagation in metastructures with internally coupled resonators. In the
unit cell, the transverse displacements for the first and neighboring resonators
are expressed as z2r−1(t) = ẑ2r−1ei(ωt) and z2r(t) = ẑ2rei(Gna+ωt), respectively.
Assuming equal stiffness and mass for both resonators, kr1 = kr2 = kr and mr1 =
mr2 = mr, the governing equations for the system simplifies as follows:

C1ω6 + C2ω4 + C3ω2 + C4 = 0 (149)
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Figure 40: Left: Conventional metastructure root locus with ωm = 0.5, ω2r−1 = ωr = 1,
kr = 1, mr = 1, and µ = 0.5. Right: Metastructure with internal coupling, exhibiting a
narrow band gap, characterized by ωm = 0.5, ω2r = 1.7, κ = kr and µ = 0.5. The internal
coupling’s impact on the system dynamics is highlighted by the additional band gap in the
right plot.

Figure 41: Bode and root locus plots for Eq. (148). (Left) Root locus with K = ω2
m,

showing conventional and internally coupled bandgap for µ = 0.5 and κ = 1. Markers:
system poles at ω2

m = 0, solid lines: pole trajectory as ω2
m increases. Grey region: bandgap

frequency range. (Right) Bode plot showing frequency response, including resonance from
coupling effect.
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where:
C1 = −Am2

rρ,

C2 = m2
r

(
EIG4

n + 2kr

)
+ 2Aρmrκ + 2Aρmrkr,

C3 = −
(
2κmrkr + Aρk2

r + 2Aρκkr + EIG4
nm2

r (κ + 2kr)
)

,

C4 = EIG4
n

(
2κkr + k2

r

)
.

(150)

5.5 Numerical Studies
The rectangular beam under analysis is characterized using the properties outlined
in Table 2. Additionally, the stiffness of the internally coupled resonators, denoted
by κ, is aligned with the resonator stiffness kr, to ensure a harmonized response
between the structural and resonant components of the system.

Figure 42 depicts the dispersion curve of the internally coupled metamaterial
beam (κ = kr) using the plane wave expansion method. The target frequency
corresponds to the resonator frequency. The diagram illustrates two bandgaps:
the first is associated with the in-plane behavior of both resonators within each
unit cell, while the second bandgap emerges due to the out-of-plane behavior of
the two resonators in each unit cell. Here, Gn represents the wave vector number
and a denotes the lattice size.
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Figure 42: Dispersion curve of an internally coupled metamaterial beam, displaying two
distinct bandgaps resulting from in-plane and out-of-plane resonator behavior.

Figure 43 illustrates the transmittance characteristics of a metamaterial beam
with internal resonator coupling in terms of tip displacement relative to the base
displacement in absolute coordinates. The presence of a common initial bandgap
aligns with the theoretical expectations discussed earlier, assuming that all res-
onators resonate at the same frequency (ω2r−1 = ω2r = ωr) and maintain iden-
tical phase relationships. In the case of the internally coupled metastructure, an
additional bandgap is observed, which substantiates the theoretical premise that
variations in resonator frequencies or phase differences can extend the parameter κ.
This extension, facilitated by the assumption of a massless coupling spring, intro-
duces new dynamics to the system by adding an extra pole and zero, resulting in
the creation of an additional bandgap. The primary bandgap occurs at the target
frequency, which corresponds to the resonator’s frequency adjusted by the length

92



factor
√

1 + µ. The secondary bandgap’s location is contingent upon the stiffness
of the internal coupling and is defined by the length factor

√
1 + µ

4 . Notably, the
dips in the graph signify areas of low transmittance, indicating reduced vibration
at the beam’s tip and effectively marking the bandgap regions.
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Figure 43: Transmittance plot for a metamaterial beam with internal resonator coupling
( k = kr ) comprising eight resonators, which equates to four unit cells.

Figure 44 presents a graphical analysis illustrating the influence of varying in-
ternal coupling spring constant values, denoted as κ, on the bandgap frequencies
within a metastructure. Notably, alterations in κ do not induce substantial shifts
in the frequency edges of the primary first bandgap. However, as κ increases, it
introduces additional, narrower gaps at frequencies above the rest of the second
bandgap. These narrower gaps underscore the sensitivity of the metastructure’s
dynamic response to specific ranges of internal coupling strength.

Figure 44: Analysis of the influence of internal coupling stiffness κ on the metastructure’s
bandgap frequencies in Eq. (147), showing the consistent edge of the first bandgap and the
emergence of narrow higher frequency gaps within certain κ ranges.

Figure 45 presents a contour plot of the transmittance across the metastructure
as a function of the normalized internal coupling strength, κ/ωr, and normalized
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frequency, ω/ωr. The color gradient represents the logarithmic scale of transmit-
tance, indicating the level of wave attenuation within the metastructure. Dark
regions correspond to high attenuation levels, signifying the presence of bandgaps.
As observed, the contour lines delineate the boundaries of the bandgaps, which
become more distinct with specific values of internal coupling strength. This visu-
alization provides a comprehensive understanding of how internal coupling affects
the bandgap frequencies, offering insights into the precise tuning of the metas-
tructure’s vibrational properties. It can be seen that the emergence of additional
bandgaps occurs within certain ranges of κ, demonstrating the metastructure’s
sensitivity to variations in internal coupling. The plot serves as a detailed map
for predicting the dynamic behavior of the metastructure under varying conditions
of internal coupling, which is critical for applications requiring targeted vibration
isolation frequencies.
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Figure 45: Transmittance contour plot against normalized internal coupling strength and
frequency in Eq. (147), highlighting bandgap boundaries and the metastructure’s sensitiv-
ity to κ variations.

The results reveal that metastructures with internally coupled resonators re-
tain the primary bandgap found in conventional metastructures but also introduce
an additional, thinner bandgap at a higher frequency. This secondary bandgap
remains separate from the primary one, making it challenging to use internal cou-
pling to merge both bandgaps for vibration isolation in continuous and distributed
metastructures. This difficulty arises because the second bandgap’s nature is linked
to a 180-degree phase change in resonators with identical natural frequencies (ωr).
It would be beneficial to investigate the impact of varying ωr in different unit cells.
Despite these challenges, it is noteworthy that in lumped systems, metastructures
with internally coupled resonators significantly widen the bandgap compared to
conventional configurations.

5.6 Experimental Study
An experimental study detailed in Fig. 46 focuses on the crafting and integration
of each resonator within the metastructure to scrutinize the effects of internal
coupling on the system’s dynamic behavior. The metastructure features internally
coupled resonators made from pure aluminum, each with a thickness of 2 mm,
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a width of 20 mm, and a length of 11.3 mm. The properties of the main plane
and resonators align with those specified in Table 3. The natural frequency of the
unitcell resonator, denoted as ωrk

, is identified to be 85 Hz.

Figure 46: Experimental Design for a Prototype Metastructure Comprising Four Unit
Cells of Internally Linked Resonators, Constructed from Pure Aluminum.

5.6.1 Transmittance Measurements
While the experimental outcomes for the standard metastructure corroborated the
theoretical forecasts, the scenario markedly diverged with the introduction of in-
ternally coupled resonators. Fig. 47 encapsulates the experimental transmittance
data, evidencing a distinct behavioral pattern for the metastructure endowed with
internal coupling mechanisms. The manifestation of the initial bandgap at 85 Hz,
slightly higher than what is observed in the standard metastructure (Fig. 13),
aligns with the natural frequency of the coupled resonators. This is indicative of
increased stiffness within the unit cell, a direct result of the resonators’ collective
configuration.

This measurement uncovers a scenario marked by chaos and irregularities in the
transmittance spectrum, diverging from the uniform patterns expected based on
theoretical projections by researchers in earlier studies, as highlighted in the in-
troduction. Such manifestations underscore the sensitivity of the metastructure’s
dynamic behavior to the precise integration and configuration of internally coupled
resonators, highlighting the challenges inherent in translating theoretical advan-
tages into practical applications. It raises questions about the practical realization
of internally coupled resonator benefits, such as significant bandgap widening or
enhanced energy dissipation. The results imply that while the concept of inter-
nal coupling holds promise in theory, the transition to tangible applications faces
challenges that may limit the effectiveness of such designs in real-world vibration
control scenarios. Further investigation and refinement of the metastructure design
and manufacturing processes are necessary to harness the full potential of internal
coupling in metastructures for practical vibration suppression and energy harvest-
ing applications. This claim is further supported by FEM analysis in the following
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Figure 47: Experimental transmittance results for the metastructure with internally cou-
pled resonators. The first bandgap is observed between 90-110 Hz. This shift can be
attributed to the enhanced stiffness of the unit cell, which is composed of a pair of res-
onators. Measurement devices are located at the base and the tip of the metastructure to
capture the full spectrum of its response.

section. FEM simulations here, aimed to offer an analytical view complementary
to the experimental insights, especially concerning metastructures with internally
coupled resonators. This shift towards numerical modeling serves as a crucial phase
in corroborating experimental findings, with the primary aim of substantiating the
observed behaviors in experiments, thereby deepening our comprehension of the
metastructure’s dynamic characteristics.

5.6.2 Observations from FEM Analysis:
Fig. 48 depicts the transmissibility across different internal coupling stiffness, κ,
as a function of normalized frequency. These results highlight the appearance of a
pronounced second bandgap at a specific internal coupling stiffness, κ, matched to
the resonator’s stiffness (κ/ωr = 0.003), pinpointing this condition as essential for
optimal bandgap definition (see bottom left corner subplot). Such precise matching
between the internal coupling and resonator stiffness is key to achieving the desired
dynamic behavior in the metastructure.

However, deviations from this optimal κ value lead to significantly disordered
responses, underlining the metastructure’s acute sensitivity to variations in internal
coupling stiffness. Such behavior showcases the challenges associated with achiev-
ing and maintaining this precision in stiffness alignment in practical applications.
The observed irregularities and chaotic dynamics for non-optimal κ values high-
light potential difficulties in predictability and replicability of the metastructure’s
performance in real-world settings. This sensitivity to the exactness of internal
coupling stiffness calls for rigorous precision in the design and manufacturing of
such metastructures to ensure their effective implementation and functionality in
targeted vibration control applications.

Confirmed by Fig. 49, which provides different transmittance for κ, illustrates
the necessity for precise tuning of κ to harness the desired vibration isolation capa-
bilities of the metastructure. The results emphasize the critical nature of parameter
optimization in designing metastructures with internally coupled resonators, where
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Figure 48: Transmissibility of a cantilever beam for varying stiffness ratios κ, show-
ing system sensitivity and its effects. Subplots detail responses at different κ/ωr ratios,
highlighting a critical condition at κ = kr in the bottom left corner subplot for optimal
internal coupling. The y-axis is absolute displacement of beam tip to base displacement,
ln |wa(L)/wb|, and the x-axis is normalized frequency ω/ωr.

slight deviations from the optimal stiffness ratio can lead to notable changes in the
system’s transmissive behavior. The contour plot provided in Fig. 49 visualizes
that there are distinct regions where the transmittance drops significantly, indi-
cated by cooler colors, which are indicative of bandgap formation. These regions
represent frequencies at which the metastructure effectively blocks wave propaga-
tion, a desired feature for vibration isolation applications. The figure indicates that
the bifurcation of the bandgap from κ = 0 to higher values does not exhibit the
clarity observed in analytical results, highlighting potential discrepancies between
theoretical predictions and practical observations.

The necessity for precision in calibrating κ is evident, as small variations can
lead to significant changes in the transmittance landscape. Achieving the exact
bandgap properties requires careful adjustment of the metastructure’s internal stiff-
ness. While analytical models predict clear transitions and bandgap formations,
the observed data might show more gradual changes and less distinct boundaries
between bandgap regions. This disparity highlights the challenges in translating
theoretical models into experimental or real-world scenarios.

The irregularities and variations presented in the FEM results underscore the
imperative for experimental studies to authenticate and fine-tune the theoretical
models, thereby confirming their relevance and effectiveness in real-world applica-
tions.

In Figs. 50 and 51, an internal coupling mechanism is demonstrated at work
within the metastructure, where each pair of resonators acts as a unit cell. Fig.
50 demonstrates the initial out-of-plane oscillations that give rise to the primary
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Figure 49: Contour plot of transmittance for varying κ, illustrating the frequency-
dependent formation and bifurcation of the bandgap. The plot captures the perturbations
and potential destabilization inherent to varying internal coupling stiffness, underscoring
the need for precise κ calibration. It also highlights the discrepancies between analytical
predictions and observed bandgap clarity.

Figure 50: Metastructure with internally coupled resonators configured as unit cells.

Figure 51: Visual representation of the mechanism leading to the second bandgap in the
internally coupled metastructure.
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bandgap, analogous to the behavior observed in conventional metastructures. As
the excitation frequency increases, the system temporarily reverts to normal vibra-
tional modes before encountering a specific frequency where the resonators within
each cell commence vibration in opposing directions. This antiphase motion, de-
picted in Fig. 51, signifies the onset of the secondary bandgap due to the stiffness
matching between the resonator and the internal coupling. However, the crucial
insight is that despite the exact stiffness alignment (resonators and internal couple
stiffness), merging the primary and secondary bandgaps to expand the bandgap
width is not feasible. The inherent nature of the secondary bandgap’s forma-
tion in such metastructures prevents the amalgamation of multiple bandgaps, thus
questioning the practical application of internally coupled resonators in continuous
metastructures.

To consolidate the findings, experimental assessments were meticulously exe-
cuted in configurations devoid of gravitational bias, both vertical and horizontal,
ensuring the authenticity of the dynamic behavior observed in the metastructures.
The outcomes for the standard metastructure without internal coupling resonated
well with the theoretical anticipations, affirming the models’ predictive reliability.

Conversely, when internal coupling was introduced in the metastructures, the
experimental data diverged from the theoretical expectations. The finer points of
the FEM analysis brought to light the necessity for an exact match in the stiffness
of the internal coupling and the resonators (κ to kr). Replicating this precise
parameter in a physical experimental setup posed substantial challenges due to
the limitations inherent in manufacturing precision. Furthermore, the pursuit to
merge multiple bandgaps into a wider singular bandgap was stymied by the intrinsic
characteristics of the second bandgap’s formation within these metastructures, thus
calling into question the feasibility of utilizing internally coupled resonators in
metastructures.

Future research could focus on developing new manufacturing techniques or ma-
terial configurations that mitigate the current limitations. Innovations in precision
engineering and design optimization may hold the key to successfully harnessing the
full potential of internally coupled resonators. Further studies could also explore
alternative mechanisms for bandgap manipulation that may offer more practical
and flexible solutions for real-world applications.

5.7 Summary
This chapter has provided an in-depth exploration of metastructures incorporating
internally coupled resonators, focusing on both theoretical modeling and practical
applications. By employing mathematical models, finite element analysis, and ex-
perimental studies, the chapter has illuminated the dynamics and potential of using
internally coupled resonators for enhanced vibration control and energy harvesting.

While the pioneering research by Hu et al. [75], and related studies [97],
have highlighted the theoretical benefits of internal coupling in creating secondary
bandgaps and boosting energy harvesting efficiency, our findings underscore the
difficulties faced when translating these concepts into practical applications [14].
The challenges identified, such as the precision required in assembly and the lim-
itations in merging multiple bandgaps, were substantiated through experimental
observations and reinforced by FEM analysis, revealing a nuanced understanding
of the real-world applicability of internally coupled resonator metastructures.

Here are the key points summarizing the contributions and insights gained:
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• The chapter introduced and detailed lumped and distributed parameter mod-
els for analyzing the dynamics of metastructures with internally coupled resonators.
The lumped models provided insights into unit cell interactions, while distributed
models offered a more comprehensive view of wave propagation and bandgap be-
havior.

• Internal coupling mechanisms enabled the formation of secondary bandgaps
and enhanced tunability. However, in distributed metastructures, merging multiple
bandgaps to broaden the attenuation range remains challenging due to structural
constraints and complex wave interactions.

• The transition from theoretical models to practical applications, substantiated
by FEM analysis, revealed significant challenges, including the precision required in
manufacturing and the sensitivity of system performance to structural variations.
These findings underscore the importance of meticulous design and optimization.

• Numerical studies on lumped models clarified localized dynamics and demon-
strated potential for enhanced vibration suppression and energy harvesting. Ex-
perimental and numerical validation of distributed models confirmed theoretical
predictions but revealed practical limitations, such as structural sensitivity and
limited bandgap merging.

• The exploration of internal coupling in metastructures presents a valuable
case study of how advanced material concepts transition from theory to practice.
While several limitations were identified, the findings open new directions for future
research.
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6 Streamlining Metastructure Modeling: More Tech-
niques for Enhanced Functional Diversity

This chapter explores the integration of AI-driven optimization, piezoelectric ac-
tuation, and notch filter technology in the design and optimization of metastruc-
tures. It focuses on using machine learning and AI for parameter estimation and
optimizing notch filters. The aim is to improve modeling accuracy by estimating
mathematical models through experimental data. A new mathematical closed-form
transfer function for piezoelectrically-actuated metastructure is derived, and sta-
bility analysis is performed. The chapter also discusses optimizing the parameters
of piezoelectrically-actuated metastructures to enhance their performance, specifi-
cally by deepening the bandgap.

6.1 AI-Driven Optimization of Metastructures: Analytical
and Experimental Approaches for Parameter Estimation
of Metastructure

This section delves into the AI-driven optimization of metastructures through
both analytical and experimental approaches, focusing on the precise estimation of
damping ratios critical for effective vibration control. By employing a suite of opti-
mization algorithms, this study integrates AI techniques with robust mathematical
modeling to enhance the design and performance of metastructures. The method-
ologies adopted here bridge theoretical predictions with real-world experimental
validations, thereby reinforcing the accuracy and applicability of the models. In
this section, a Hybrid Genetic Algorithm–Particle Swarm Optimization (GA-PSO)
method is applied to estimate damping parameters that influence the accuracy of
metastructure response predictions. While all physical parameters of the metas-
tructure were available and measurable, the structural and resonator damping ra-
tios could not be directly obtained. Hence, optimization algorithms were employed
for parameter estimation. This approach ensures the analytical model aligns closely
with experimental observations and supports the development of accurate, control-
oriented dynamic models.

6.1.1 Estimation of Damping Ratio in Metastructures
The study employs modal analysis within a distributed parameter model to explore
the dynamic characteristics of a metastructure, consisting of an aluminum rectan-
gular beam with integrated local resonators. This analytical approach facilitates
the identification of natural frequencies and mode shapes, which are used for the
control of the structure’s bandgap properties.

The transfer function, detailing the relationship between the displacement of the
structure’s m-th mode and the corresponding excitation force, is presented earlier
in Eq. (38) as follows:

Zm(s)
Qbm

(s) = 1
s2
(

1 + µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

, m = 1, 2, . . . , Nm (151)

In this context, Zm(s) represents the Laplace-transformed displacement of the
structure’s m-th mode, Qbm

(s) symbolizes the Laplace-transformed external force,
ζm and ζr are damping ratio of structure’s m-th mode and resonator, respectively.
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ωm and ωr are the natural frequencies of the structure’s m-th mode and the res-
onators, respectively.

In the study of metastructures, estimating the damping ratio ζr from experi-
mental data is pivotal for the effective modeling of vibration suppression and dy-
namic response tuning. Various methods can be employed for this estimation, each
with its specific advantages and requirements. These include Frequency Response
Analysis, System Identification Techniques, Energy Decay Method, Optimization
Algorithms, and Bayesian Inference.

To estimate the damping ratio, optimization algorithms are utilized due to their
ability to navigate complex, multidimensional parameter spaces. These algorithms
are particularly effective in situations where the objective function is nonlinear
or nonsmooth, as often encountered in real-world data from metastructures. An
objective function is defined to quantify the error between the experimental data
and theoretical model predictions. Typically, the Sum of Squared Errors (SSE) is
used for this purpose. Several algorithms are considered for algorithm Selection
and configuration:

Nelder-Mead Simplex Algorithm: A heuristic search method ideal for non-
smooth functions, enabling robust initial parameter estimation without derivatives.
Genetic Algorithm (GA): This algorithm excels in finding global solutions in com-
plex problems characterized by multiple local minima.

Particle Swarm Optimization (PSO): It simulates a social process, effectively
honing in on global optima, especially in continuous optimization scenarios.

Artificial Bee Colony (ABC) Algorithm: Inspired by the foraging behavior of
bees, it balances local and global search effectively, useful for complex parameter
estimation tasks.

Hybrid GA-PSO: Combining GA’s exploration and PSO’s exploitation efficiency,
this approach aims to quickly and reliably find global optima in multi-modal data
landscapes.

For implementation, each algorithm is configured with appropriate parameters
such as learning rate, population size, mutation rates, and particle velocities. The
choice and configuration of the algorithm depend on the specific requirements of
the problem and the nature of the experimental data. The selected algorithm is run
to optimize the ζr, using the objective function to guide the search. This process
is iterative, involving continuous evaluation and refinement based on performance
metrics.

6.1.2 Structural Damping Impact on Metastructural Dynamics
Before delving deeper into the estimation of damping in metastructures, it is first
necessary to understand how they influence bandgap characteristics. It evaluates
how changes in both structural and resonator damping ratios impact the effec-
tiveness of vibration suppression in metastructures. Through detailed frequency
response analyses of Equation 151, the study aims to clarify how various damp-
ing parameters affect the dynamic responses of metastructures, offering primary
insights for optimizing design strategies to enhance vibration control.

Figure 52 depicts the frequency response functions illustrating the impact of
varying damping ratios on the dynamic response of a metastructure. The upper plot
reveals that altering the structural damping ratio influences the overall dynamic
response but leaves the bandgap region largely unaffected. In contrast, the lower
plot indicates that changes in the resonator damping ratio significantly alter the
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Figure 52: Transmittance showcasing the impact of damping ratios in the main plain and
local resonators on the dynamic response of a metastructure, particularly in modifying the
bandgap regions.

bandgap region’s dynamics, highlighting the critical role of resonator damping in
tuning the metastructure’s vibration suppression capabilities.

6.1.3 Numerical Studies and Experimental Approaches for Parameter
Estimation of Metastructur

This section aims to conduct an examination of structural damping estimation
through a dual approach involving both simulated models and experimental vali-
dations. The primary aim is to substantiate the accuracy of simulation outcomes
within the context of real-world experimental conditions. The methodology in-
volves the calibration of the numerical model to ensure its parameters align with
empirical observations, coupled with the use of an experimental framework struc-
tured around two simple beams of different lengths and material properties, as well
as a metastructure beam. The analysis will include a detailed vibrational analysis
for each setup, and identification of natural frequencies, mode shapes, and damping
ratios, with a particular focus on conditions that foster the creation of bandgaps.
The expected outcome is the validation of theoretical models through empirical
data, leading to an enhanced understanding of dynamic behaviors within closed-
form presentation of metastructures, particularly through the practical examina-
tion of bandgaps. This approach integrates theoretical modeling with practical
experiments to deepen the understanding of structural dynamics in metastructures
[15].

6.1.4 Noisy Signal: Case Study #1
The initial phase of this investigation involves simulating the transmittance of a
metastructure subject to a noisy signal. This scenario is quintessential in real-
world applications where operational conditions are rarely ideal and noise is an
inherent part of the system dynamics. The primary objective is to develop an
algorithm capable of deducing the damping ratio of the resonator within this noisy
environment. The challenge here lies in distinguishing the true signal from the
noise to accurately identify the system’s damping characteristics, which are crucial
for predicting the metastructure’s behavior and optimizing its performance.
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Figure 53: Comparison of the beam’s transmittance: noisy signal versus model predic-
tions, highlighting the algorithm’s effectiveness in identifying transmittance characteristics
within the bandgap frequency range. Parameters as listed in Table 6.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 54: Scatter plot demonstrating the correlation between measured and simulated
data via the Hybrid GA-PSO algorithm, evidencing high model accuracy with a correlation
coefficient (R) of 0.98.
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Table 6: Geometric and material properties of Case Study #1

Parameter Value Parameter Value
Lm 0.3 m mr 140 g
wm 40 mm kr 72 kN/m
hm 3 mm Nr 8
ρm 2710 kg/m3 Nm 8
Em 69.5 GP

The algorithm’s performance in calculating ζr is illustrated in Fig. 53. The
nominal value of the highly damped resonator ζr is 0.2, and the results are con-
textualized within the parameters outlined in Table 6, which details the geometric
and material properties of the rectangular aluminum beam under investigation.
The findings indicate the algorithm’s robustness in parameter estimation amidst
experimental uncertainties. Figure 54 presents a scatter plot comparing measured
data against values simulated by the Hybrid GA-PSO algorithm. The tight clus-
tering of data points around the line of unity and the high correlation coefficient
(R = 0.98) suggest a strong agreement between the model’s predictions and the
measured data. The scatter plot highlights the algorithm’s precision in estimating
the damping parameter ζr, as evidenced by the low root mean square error (RMSE
= 0.71) and the sum of squared errors (SSE = 500.66), which quantify the model’s
predictive accuracy. This figure substantiates the Hybrid GA-PSO’s efficacy in
capturing the underlying dynamics of the metastructure under study.
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Figure 55: Residual plot from the Hybrid GA-PSO model prediction demonstrating the
residuals’ distribution against sample points, underscoring the model’s accuracy with a
high coefficient of determination (R2).

Figure 55 reveals the model’s residual distribution, crucial for evaluating the
Hybrid GA-PSO algorithm’s accuracy in estimating ζr. The residuals, mostly
centered around zero, suggest a strong model fit, corroborated by a high R2 value
(0.91). Outliers at the start may signal deviations due to experimental anomalies
or noise, warranting further investigation to enhance the algorithm’s reliability.
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6.1.5 Experimental Setup: Case Study #2
As detailed in Chapter 3, the experimental setup employed a specifically designed
cantilever beam configuration. The procedures and equipment used are outlined
therein. The current experiments build upon the foundational tests described pre-
viously to explore additional variables and their impact on the system’s dynamic
responses.

The response of the cantilever beam under base excitation generates data on
the dynamic behavior of metamaterials. The data obtained from this experimental
setup will be further analyzed and compared with model predictions.

Since the resonators are not incorporated into the system for the first part of the
experiment, the focus shifts to estimating the modal damping ratio ζm of the main
structure. The GA algorithm is used for the first case study due to its robustness
and to provide a clear baseline for performance evaluation. However, drawing on
conclusions from the previous sections, the Hybrid GA-PSO algorithm emerged as
a strong candidate for such estimations in the subsequent studies.

To validate the theoretical models and optimization approaches outlined in this
study, the first experimental setup was constructed, as illustrated in Fig. 56. The
specifications of the prototype are detailed in Table 7.

Figure 56: A cantilever beam experimental setup with detailed geometric and material
properties listed in Table 7. The setup includes a shaker for base excitation and Dytran
accelerometers at the beam’s base and tip for dynamic response measurements, all inter-
faced with a power amplifier and a control system.

Table 7: Geometric and material properties of the studied rectangular aluminum short
beam

Parameter Value Parameter Value
Lm 0.3 m Em 69.5 GP
wm 40 mm ρm 2710 kg/m3

hm 2 mm Nm 8

Figure 57 displays a transmittance response curve, comparing GA algorithm es-
timations to experimental data. This comparison reveals a high degree of accuracy
in the lower frequency range, where the GA’s predictions and the experimental ob-
servations align closely. Nonetheless, as we move to higher frequencies, the model’s
predictions start to deviate from the empirical data, suggesting that the GA’s
estimations become less reliable.
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Figure 57: Transmittance response of a cantilever beam with GA algorithm estimations,
for structural modal damping ratio ζm estimation.
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Figure 58: Correlation between the measured and predicted values of the modal damping
ratio.
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The scatter plot in Fig. 58 demonstrates a spread of data points that reveals
the model’s limitations, particularly beyond the sixth modal frequency. While
the model’s estimations align sufficiently with the experimental data within the
bandgap frequency region, the coefficient of determination, with an R2 ≈ 0.3,
indicates a moderate fit. This value, considerably below the ideal of 1 , suggests
that the model does not comprehensively explain the variance of the experimental
data, especially at higher frequencies.

While most residuals cluster around the baseline in Fig. 59 indicating decent
model accuracy for a range of frequencies, the plot also shows significant outliers.
These outliers become more pronounced at higher sample points, underlining po-
tential weaknesses in the model, particularly at higher modal frequencies.
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Figure 59: Residual plot of the experimental data versus the model predictions, identifying
areas of discrepancy and potential model improvements within the context of Case Study
#2.

In this case study, inaccuracies in determining the higher modal frequencies
and subsequently modal damping are not solely attributed to the optimization
algorithms, but also arise from limitations within the transfer function and modal
expansion methodologies employed. These techniques, combined with assumptions
such as idealized boundary conditions and material uniformity made during model
derivation, contribute to the reduced precision in parameter estimation at higher
modal frequencies. The complex dynamic behavior observed at these frequencies
underscores the need for advanced modeling techniques to more accurately capture
the system’s behavior across its entire modal spectrum.

6.1.6 Experimental Setup: Case Study #3
The next configuration is a long beam, as shown in Fig. 60. The specifications of the
prototype are detailed in Chapter 2, Table 3. The various optimization algorithms
such as GA, PSO, ABC, Hybrid GA-PSO, and Nelder-Mead are utilized to assess
their effectiveness in estimating the modal damping ratio.

Figure 61 presents the transmittance response, comparing the experimental data
with theoretical model prediction. The plot illustrates the algorithm’s effectiveness
in estimating ζm, crucial for accurate dynamic modeling of the cantilever beam.
The close alignment of the model predictions with the experimental data across
the frequency spectrum validates the accuracy of all algorithms including Hybrid
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Figure 60: Experimental setup with a longer cantilever beam, reusing the same measure-
ment and control components as the previous experiment. A schematic in the top right
illustrates the direction of excitation and response measurement.
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Figure 61: Transmittance response of a cantilever beam: comparison between experimental
measurements and analytical predictions incorporating the estimated structural damping
ratio ζm, identified using the Hybrid GA-PSO algorithm.
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GA-PSO algorithm. This successful estimation of ζm underscores the potential
of hybrid optimization techniques in flexible structures, where accurate damping
characterization is essential for designing and controlling dynamic systems.
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Figure 62: Scatter plot comparing measured data to Hybrid GA-PSO simulated estima-
tions, demonstrating the algorithm’s efficacy in predicting the structural modal damping
ratio (ζm) with a correlation coefficient (R) of 0.91.
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Figure 63: Residual analysis of the Hybrid GA-PSO model predictions showcasing the
estimation accuracy across the experimental data set, with a focus on identifying outlier
discrepancies for further model refinement.

The scatter plot in Fig. 62 illustrates the correlation between the measured
and simulated data points using the Hybrid GA-PSO algorithm for estimating the
modal damping ratio. The correlation coefficient (R) of 0.91 indicates a strong pos-
itive relationship, suggesting that the algorithm can predict the system’s behavior
with a high degree of accuracy. The SSE and RMSE provide further insight into
the model’s precision, with lower values indicating a closer fit to the experimental
data. In this case, an RMSE of 1.03 reflects a reasonably accurate model, although
there is room for improvement in minimizing the prediction error.

The residuals plot in Fig. 63 predominantly indicates a satisfactory model fit,
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as evidenced by the majority of residuals clustering near the zero line. However,
the presence of outliers with higher residuals at the structure’s modal resonant
frequencies suggests that the model’s predictions diverge from the experimental
data at these critical points. This could be due to the heightened sensitivity of the
system’s response to parameter variations at resonance.

6.1.7 Experimental Setup: Case Study #4
The experimental setup is captured in Fig. 64, illustrating the prototype of metas-
tructure real-world application. The resonators, integral to the metastructure, were
crafted from pure aluminum, featuring a thickness of 2 mm, a width of 20 mm,
and a length of 11.3 mm. A set of nuts and bolts served as adjustable tip masses,
enabling the fine-tuning of the natural frequency to the target 64 Hz, as determined
by FEM analysis.

Figure 64: The experimental setup for the metastructure’s dynamic analysis. This con-
figuration is instrumental in examining the effects of damping and resonator adjustments
on the metastructure’s vibrational characteristics.

The data illustrated in Fig. 65 compares experimental data with model predic-
tions that estimate ζr using the GA-PSO algorithm. The observed transmittance
peaks and troughs align well with the predicted values, particularly in the lower
frequency range up to 150 Hz, which includes the designed bandgap region. Be-
yond this, while the model continues to follow the general trend of the experimental
data, some deviations become apparent, suggesting areas for further refinement of
the model. Notably, the bandgap’s expected impact is clear, with a marked reduc-
tion in transmittance indicating effective vibration suppression within the targeted
frequency range.

The data depicted in Fig. 66 is indicative of the correlation between the mea-
sured and simulated values, obtained through the Hybrid GA-PSO algorithm. The
scatter plot, with an R-value of 0.54, suggests a moderate correlation. The SSE
of 391.18 and RMSE of 1.21 reflect the discrepancies between the model predic-
tions and the experimental observations. These metrics highlight areas where the
model could be further calibrated to enhance its predictive accuracy. Despite these
challenges, the model accurately predicts behavior within the critical bandgap fre-
quency region. This indicates that these challenges are influenced more by dis-
crepancies at higher modal frequencies than by those at the targeted bandgap
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frequencies.
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Figure 65: Transmittance response of a metastructure: comparison between experimental
measurements and analytical results based on the estimated damping ratios ζm and ζr.
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Figure 66: Hybrid GA-PSO Scatter plot of Metastructure’s Measured vs. Simulated data
in predicting the resonator damping (ζr).

Figure 67 presents the residual plot resulting from the algorithm’s predictions.
The distribution of residuals along the sample points illustrates the model’s areas
of strength, as well as points where the prediction does not align closely with the
experimental data. Together, these figures articulate the performance of the Hybrid
GA-PSO algorithm. While the moderate correlation and the residual trends indi-
cate the algorithm’s potential, they also suggest that further tuning and validation
are necessary for the model to reliably predict dynamic behavior in metastructures.

As compiled in Tables 8 and 9, the different optimization algorithms, while vary-
ing slightly in the correlation coefficient (R) and the sum of squared errors (SSE),
consistently identified the damping ratios with enough precision for the theoretical
model. Upon comparing the results in Table 9, it’s evident that the estimated res-
onator damping ratio values obtained from the Hybrid GA-PSO and Nelder-Mead
methods align closely, both indicating a ζr of 0.021. This contrasts with the slightly
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Figure 67: Distribution of residuals from the Hybrid GA-PSO algorithm’s predictions.

Table 8: Comparison results of different optimization algorithms in estimating the struc-
tural modal damping ratio ζm for Case Study #3.

Algorithm R SSE Population size Estimated ζm

GA 0.92 104.57 80 0.0273
PSO 0.92 102.40 80 0.0271
ABC 0.92 103.35 50 0.0268
Hybrid GA-PSO 0.92 101.34 50 0.0273
Nelder-Mead 0.91 101.34 N/A 0.0272

lower estimates from the PSO and ABC algorithms, which may reflect differences
in their search strategies or convergence criteria. Notably, the values from the
initial table were significantly higher, suggesting a refinement of experimental or
algorithmic parameters in the updated analysis. The convergence of estimates in
the updated table, particularly for ζr, reinforces the robustness of the optimization
methods and supports their reliability for accurate metastructure analysis. The
hybrid GA–PSO algorithm was configured with crossover and mutation rates of
0.8 and 0.1 respectively, and a PSO inertia weight of 0.7. The fitness function was
defined as the Sum of Squared Errors (SSE) between the analytical and experi-
mental transmittance magnitudes. The algorithm terminated after 50 generations
or when the fitness change between successive generations fell below 10−6. This
hybrid approach was selected to balance exploration and exploitation in the search
space, ensuring robust identification of the damping coefficients. The consensus
on ζm and ζr values highlights the algorithms’ success in capturing the metastruc-
ture’s key dynamics. Validation by experimental data emphasizes their potential
in designing and optimizing metastructures for enhanced vibration suppression.

6.2 Methodology for Structural Damping Compensation in
Distributed Parameter Metastructures through Piezo Ac-
tuation with Constant Voltage

In the preceding section, the importance of accurately estimating damping ratios
was established, revealing their influence on the dynamic behavior of metastruc-
tures, particularly in relation to bandgap efficiency. However, excessive structural
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Table 9: Comparison results of different optimization algorithms in estimating the res-
onator damping ratio ζr for Case Study #4.

Algorithm R SSE Population size Estimated ζr

GA 0.93 398.29 80 0.020
PSO 0.92 405.22 80 0.019
ABC 0.91 410.67 50 0.018
Hybrid GA-PSO 0.94 391.18 50 0.021
Nelder-Mead 0.90 420.00 N/A 0.021

damping can adversely affect the depth and efficacy of these bandgaps, leading
to diminished vibration suppression capabilities. Recognizing this challenge, the
following section explores viable methods to counteract the effects of high damping
in metastructures. By integrating piezoelectric elements within the metamaterial
structure, it is possible to dynamically adjust the metastructure’s characteristics
and enhance the bandgap’s effectiveness.

Metastructures face the inherent challenge of structural damping, where mate-
rials dissipate vibrational energy as heat. This can undermine the effectiveness of
the bandgaps crucial for the functionality of metamaterials. To address this issue,
piezoelectric actuators are integrated into metamaterial designs. These actuators,
which convert electrical energy into mechanical strain and vice versa, can actively
modulate mechanical properties such as stiffness. By applying a constant voltage,
piezoelectric actuators provide a counterbalancing force that mitigates the effects
of structural damping. This helps maintain or restore the desired damping charac-
teristics of the metamaterial. Beyond just countering damping, the actuators also
enable adaptive tuning of the bandgaps of the metamaterials to better suit spe-
cific operational conditions. Using a constant voltage simplifies the control scheme
for actuators, making it easier to implement this damping compensation method
across various applications. This approach lays the groundwork for exploring more
sophisticated control strategies, such as using variable voltages and notch filters,
which will be detailed in further sections of the discussion.

6.2.1 Enabling Methodology for Damping Compensation of Metastruc-
ture

The locally resonant metastructure, incorporating piezoelectric actuators, is illus-
trated in Fig. 68. Employing a distributed parameter model aids in formulating
partial differential equations that delineate the system’s dynamics, which are sub-
sequently discretized and numerically analyzed to determine the metastructure’s
modal properties.

The dynamics of the system are captured by unchanged plain beam dynamics
(Eq. (67)) and piezo-actuated resonators as follows:

mr
∂2zr(t)

∂t2 + cr
∂zr(t)

∂t
+ krzr(t) + mr

∂2w (xr, t)
∂t2 + ϑp,rvp,r(t) = Fbr

(t) (152)

C∗
p,r

∂vp,r(t)
∂t

+ ϑp,rzr(t) = 0 (153)

Equations (67), (152), and (153) address the dynamics of a metamaterial beam
system with piezoelectric actuators. Substituting the modal expansion from Eq.
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Figure 68: Schematic of a locally resonant metastructure with piezoelectric actuators.
Features cantilever beams with tip masses as resonators and piezoelectric elements (with
voltage vp,r) bonded to alter stiffness dynamically.

(75) into Eq. (67) and Eqs. (152) and (153), and leveraging the orthogonality
conditions from Eqs. (70) and (71), simplifies the system dynamics to:

z̈r(t)+2ζrωr żr(t)+ω2
rzr(t)+

Nm∑
m=1

z̈m(t)ϕm(xr)+ ϑp,r

mr
vp,r(t) = Qbr

(t), r = 1, 2, . . . , Nr

(154)

C∗
p,rv̇p,r(t) + ϑp,rzr(t) = 0, r = 1, 2, . . . , Nr (155)

Here, Nm is the number of structural modes, and Nr is the number of resonators.
The term zm(t) is the modal displacement, while ζm and ζr are the structural and
resonator damping ratios, respectively. The mode shape at the resonator’s loca-
tion is given by ϕm (xr). These equations encapsulate the interactions between the
structure’s modes and the piezo-actuated resonators, forming a solvable system for
linear multi-degree-of-freedom dynamics. C∗

p,r represents the effective capacitance
of the piezoelectric actuator at resonator r, and ϑp,r denotes the piezoelectric cou-
pling coefficient, which quantifies the mechanical strain produced by the applied
voltage vp,r(t). The term ϑp,rzr(t) reflects the mechanical feedback to the electri-
cal system through the piezoelectric effect, indicating how deformation of the piezo
material generates a voltage. This equation links the electrical behavior of the
piezoelectric elements with the mechanical vibrations of the resonators, integrating
the dynamics of both domains to describe how voltage influences resonator behav-
ior and vice versa, effectively coupling the electrical inputs to mechanical outputs
in the metastructure’s design.

By applying Laplace transforms and assuming no initial conditions, a set of
linear equations in the Laplace domain can be derived.

(s2 + 2ζmωms + ω2
m)Zm(s) −

Nr∑
r=1

Zr(s)
((

mrω2
r + 2ζrmrωrs

)
ϕm(xr)

)
= Qbm

(x, s)

(156)

(s2 + 2ζrωrs + ω2
r)Zr(s) +

Nm∑
m=1

Zm(s)s2ϕm (xr) +
ϑ2

p,r

sC∗
p,rmr

Zr(s) = Qbr
(s) (157)

sC∗
p,rVp,r(s) + ϑp,rZr(s) = 0 (158)
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Building on the methodologies and definitions presented in previous chapters,
and through mathematical rearrangement, the transfer function for the displace-
ment of the resonator is formulated as:

Zr(s) = −s2wb −
∑Nm

m=1 Zm(s)s2ϕm (xr)
s2 + 2ζrωrs + ω2

r + k∗
e ω2

r

s

, r = 1, 2, . . . , Nr (159)

The effective electromechanical coupling of the resonator, denoted as k∗
e , is de-

fined by k∗
e = ϑ2

p,r

C∗
p,rkr

. When considering the voltage source as the input, this
effective stiffness k∗

e can be expressed through the relationship k∗
e = αωrv0 = vp,r,

where ωr represents the natural frequency of the resonator, v0 is the voltage ap-
plied to the piezoelectric component, and α is an empirical constant with the unit
Farads per Coulomb (F/C). After some mathematical manipulation, the transfer
function for the displacement of the m-th mode of the structure relative to the
excitation force on the same mode is formulated, simplified, and described by Eq.
(160). This equation includes terms for modal frequency, damping, and the inter-
action between the structure’s dynamics and the resonator’s properties, including
the applied voltage.

Zm(s)
Qbm

(s) = 1

s2
(

1 + µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r(1+ vp,r

s )

)
+ 2ζmωms + ω2

m

, m = 1, 2, . . . , Nm

(160)
Here, Zm(s) and Qbm(s) represent the Laplace transforms of the displacement

response and the external force applied to the m-th mode, respectively. The damp-
ing ratios, ζr for the resonator and ζm for the structure’s mode, describe the rate
of oscillation decay due to damping, and vp,r represents the voltage applied to the
piezoelectric elements of the r-th resonator.

Table 10: Geometric and material properties of the voltage dependant piezo actuation
metastructure

Parameter Value Parameter Value
Lm 0.3 m ζr 0.01 − 0.4
wm 40 mm Nm 8
hm 3 mm Nr 8
ρm 2710 kg/m3 v0 10 V
Em 69.5 GP α 0.0976 F/C
ζm 0.01 µ 1.39

Adding a piezoelectric actuator to a resonator within a system can indeed in-
fluence its stability. The piezoelectric actuator introduces an additional dynamic
component to the system, which can modify the system’s natural frequencies and
potentially introduce new modes of vibration. Depending on how the actuator is
applied and controlled, this can lead to changes in the system’s stability, due to
changing the system’s characteristic equations, possibly adding poles to the sys-
tem’s transfer function.

In principle, the actuation can be designed to enhance stability by damping
vibrations or controlling specific modes. However, if not carefully managed, the
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actuation can also introduce energy into the system at frequencies that resonate
with the system’s natural frequencies, potentially leading to increased amplitudes
of vibration.

Figure 69: Root locus plot demonstrating the stabilization effect of increasing piezoelectric
actuation voltage vp on stability of metamaterial beam system. System parameters include
a mass ratio µ = 1, resonator damping ratio ζr = 0.1, resonator natural frequency ωr =
10, structural damping ratio ζm = 0.1, and the first structural natural frequency ωm1 = 10.
The plot traces the pole movement across modes, showing enhanced stability with higher
vp, pertinent to the precise dynamic control of metamaterials.

Stability analysis, such as examining the poles’ positions in the complex plane
or conducting a root locus analysis, becomes essential to predict how variations in
control parameters, like the applied voltage, affect stability. The detailed stability
analysis of such systems, as well as the dynamic control using variable voltages,
have been covered in the associated article [17].

The root locus plot depicted in Fig. 69 provides insight into the dynamic sta-
bility of a metamaterial beam with piezoelectric actuators. As shown, varying the
applied voltage vp as a constant voltage (v0) alters the pole positions within the
system, which can lead to instability. The plot reveals that the system’s poles
respond differently to changes in vp, with some poles moving toward the instability
region (the right-half of the s-plane) as vp increases. This differential responsive-
ness underscores the nuanced control that piezoelectric actuation can exert on the
system.

Utilizing simulations with the parameters in Table 10, Fig. 70 highlights the
impact of high damping ζr = 0.4. This level of damping markedly reduces vibration
amplitudes and suppresses resonant peaks across the frequency spectrum. Piezo-
electric actuation, when used alongside high damping, further reduces peak ampli-
tudes and compensates for the dampened bandgap effect, enhancing the depth of
the bandgap. This analysis underscores piezoelectric actuation’s superiority over
passive damping for vibration reduction and demonstrates its ability to modify
dynamic properties like stiffness distribution. Thus, integrating piezoelectric ac-
tuators into metamaterial beams emerges as an effective and dynamically tunable
strategy for vibration isolation and noise reduction.

While using a constant voltage input on piezoelectric actuators provided ini-
tial insights into the metamaterial’s behavior, it didn’t fully leverage the potential
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Figure 70: The figure illustrates the effect of constant voltage applied by piezoelectric
actuators to compensate for over-damping, as well as the impact of the over-damping
resonator on the bandgap properties of the metastructure with unchanged metamaterial
structural damping ratio ζm. Parameters are sourced from Table 10.

for dynamic control over varying frequencies. Introducing a notch filter along-
side the piezoelectric actuator enables frequency-dependent voltage control, which
brings several benefits. This setup allows for selective vibration attenuation or
amplification at targeted frequencies, improving adaptability and precision in con-
trolling resonant frequencies. Consequently, it broadens the system’s bandgap and
enhances vibration suppression. This method also permits fine-tuning of the meta-
material’s dynamic response, optimizing performance for specific applications that
require precise control over narrow frequency ranges.

6.3 Methodology for Structural Damping Compensation in
Distributed Parameter Metastructures via Notched Piezo
Actuation

To address the challenge of enhancing the bandgap depth within metastructures,
this section builds upon the distributed parameter model described in the pre-
ceding sections. The equations set forth earlier (67), (152), and (153) provide a
robust foundation for understanding and manipulating the interaction between the
structural dynamics of the metastructure and the localized piezoelectric actuation
implemented on the resonators.

To avoid instability resulting from constant voltage application, and enable pre-
cise adjustments to the metamaterial’s response across various operational condi-
tions, the introduction of notch filters into the control loop of the piezoelectric
actuators is proposed. The design of the notch filter is pivotal, shaping the sys-
tem’s response to diverse frequency components. By attenuating certain frequen-
cies linked with the resonators, the notch filter can proficiently deepen the bandgap
while preserving system stability.

This strategy proffers a dual benefit: it deepens the bandgap to enable more
effective vibration isolation and upholds system stability by averting excessive am-
plitudes in the resonators. The forthcoming sections will delineate the design pro-
cess for the notch filter and the analyses performed to affirm the validity of this
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technique.
A notch filter is mathematically represented as:

Hno = k
s2 + ωno

Qβ
s + ω2

no

s2 + ωno

Q s + ω2
no

(161)

In this formula, Q and Qβ correlate with the quality factor of the filter, albeit
serving distinct functions in the filter’s design. The quality factor Q gauges the
filter’s selectivity or the resonance sharpness. It dictates the bandwidth’s width at
the notch frequency ωno, with a higher Q yielding a narrower bandwidth, enhancing
selectivity and steepening the frequency attenuation near ωno. Conversely, Qβ

usually denotes an adjusted quality factor that modulates the notch’s depth or the
filter’s response outside the notch frequency. Although not universally standard,
Qβ is employed in certain designs for achieving specific filter attributes.

The notch filter defined here uses k for gain, ωno as the notch frequency, and
Q and Qβ to influence the notch’s bandwidth and depth. The differentiation of
quality factors provides greater control over the filter’s frequency response, with
adjustments to Qβ allowing for attenuation modulation at the notch frequency or
altering the filter’s response in ways not feasible by solely manipulating Q.

The integration of the notch filter into the system is evaluated through derived
Eq. (162), which now accounts for the notch filter’s effects. This revised equation
facilitates the analysis of the system’s performance, illustrating the modulation of
the bandgap via active control, made possible by the inclusion of the notch filter.

Zm(s)
Qbm

(s) = 1

s2

1 + µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r

(
1+ kvp,r

s

s2+ ωno
Qβ

s+ω2
no

s2+ ωno
Q

s+ω2
no

)
+ 2ζmωms + ω2

m

(162)

A notch filter with precisely optimized parameters (Q, Qβ , and k) is utilized
to counteract the negative effects of damping and deepen the bandgap for each
mode m = 1, 2, . . . , Nm. AI algorithms, specifically the Hybrid PSO-GA and a
Reinforcement Learning (RL) approach, are employed to find the global minimum
and optimally adjust the notch filter parameters. The RL approach uses an uncon-
ventional actor-critic method for continuous control parameters, where the actor
suggests parameter values and the critic evaluates their impact. The optimization
process involves defining the environment and state, action adjustments, reward-
based learning, and training of the RL agent using the Deep Deterministic Policy
Gradient (DDPG) algorithm. Post-training evaluation checks for convergence to
optimal k, Q, and Qβ values. This optimization strategy enhances the vibrational
characteristics of the system.

6.3.1 Numerical Studies
The geometric and material characteristics of the examined rectangular aluminum
beam are outlined in Table 11. Fig. 71 displays the root locus for the metastructure
when a conventional piezoelectric actuated voltage is applied. In this configuration,
the poles of the system, which correspond to the system’s natural frequencies,
can be observed moving towards the right-half of the complex plane as system
parameters vary, indicating a potential for instability.
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Table 11: Geometric and material properties of the notched-piezo actuation metastructure

Parameter Value Parameter Value
Lm 910 mm ζr 0.0 − 0.2
wm 40 mm Nm 8
hm 3 mm Nr 8
ρm 2710 kg/m3 v0 10 V
Em 69.5 GPa α 0.0976 F/C
ζm 0.027 µ 1.04

Figure 71: Root locus plot for the first mode of the metastructure with conventional piezo-
electric actuation v0 = 50 V, highlighting the stability characteristics without the applica-
tion of a notch filter

Figure 72: Root locus plot for the first mode of the metastructure with notched piezoelectric
actuation for v0 = 50 V, k = 11.25, Q = 0.001, and Qβ = 0.021, demonstrating enhanced
stability through the introduction of a notch filter that shifts the poles and zeroes farther
from the origin.
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In contrast, Fig. 72 illustrates the root locus with a notched piezoelectric ac-
tuated voltage. The notch filter’s transfer function introduces a new set of poles
and zeroes. These new elements in the system’s transfer function are strategically
placed far from the origin, which contributes to an artificially created stability in
the system. By relocating these critical points, the notch filter effectively broadens
the stability margins of the metastructure, as indicated by the leftward positioning
of the poles on the plot.

The significant difference between the two figures is the introduction of the
notch filter, which transforms the stability landscape of the metastructure. The
notch filter’s impact is particularly evident in the way it modifies the root locus
path, steering the system away from the instability regions marked by the right-
half plane crossing. This implies that the notch filter, through its parameterization,
plays a pivotal role in enhancing the metastructure’s stability and, subsequently,
its vibration suppression capabilities.

Figure 73: Heatmap demonstrating the bandgap depth’s sensitivity to Qβ across different
resonator damping levels. This visualization indicates optimal Qβ values for achieving
maximum bandgap depth, varying with the level of damping present in the system.

Contrastingly, Fig. 73 depicts the sensitivity of the bandgap depth to changes in
the Qβ parameter of the notch filter. The heatmap indicates that the optimal Qβ

value that maximizes the bandgap depth shifts depending on the level of damping
in the resonators. A key insight from this figure is the interplay between Qβ and
the resonator damping, revealing a trend where higher Qβ values are preferable
for systems with lower damping to deepen the bandgap, while lower Qβ values are
more effective in systems with higher damping.

Fig. 74 illustrates the impact of individual notch filter parameters on the vibra-
tion transmittance in a beam metastructure, through a series of contour plots. The
top left plot illustrates the variation of gain k while Q and Qβ are held constant.
Different levels of attenuation over the frequency spectrum can be observed as k
changes, indicating the filter’s sensitivity to gain alterations. The top right plot
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seems to focus on varying Qβ with fixed values for Q and k. This plot would be
particularly useful for understanding how the depth and sharpness of the notch in
the filter’s response are affected by Qβ . The bottom left plot probably shows the
effect of altering Q with Qβ and k remaining constant. Adjusting Q affects the
bandwidth of the notch, and this visualization helps in finding the balance between
selectivity and attenuation efficiency. The bottom right plot could be a specific case
where Qβ , Q, and k are set to optimal values determined by prior optimization
algorithms. This plot would exemplify the achieved balance between attenuation
depth and bandwidth for effective vibration suppression.

Figure 74: Parameter Sensitivity Analysis of Notch Filter Performance on Metastructure
Transmittance, Displaying the Effects of Variations in Gain (k), Quality Factor (Q), and
Adjusted Quality Factor (Qβ) Across Frequency Bands.

Fig. 75 illustrates that the notch filter gain (k) significantly affects the depth
of the bandgap in the system. At low damping, a low gain results in a deeper
bandgap. Higher damping scenarios require an optimal notch filter gain to achieve
the best bandgap characteristics. The behavior of the metastructure changes with
varying notch filter gain from zero damping to high damping. The selection or
design of the notch filter needs to be tailored to the specific damping conditions of
the system.

For optimizing the notch filter parameters Q, Qβ , and k, Hybrid PSO-GA and
RL algorithms were utilized. The Hybrid PSO-GA identified optimal values of
Qβopt = 0.021, Qopt = 0.001, and kopt = 11.35. In parallel, RL found a slightly
different optimal set, with Qβopt = 0.019, Qopt = 0.001, and kopt = 11.25. These
results demonstrate the effectiveness of both algorithms in fine-tuning the system
for enhanced performance, with each algorithm converging on a similar but dis-
tinct solution that influences the transmittance and bandgap characteristics of the
metastructure.

The transmittance response of the highly damped structure depicted in Fig. 76
illustrates the impact of optimized notch filter parameters on the bandgap in com-
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Figure 75: Heatmap showing the influence of notch filter gain (k) on the depth of the
bandgap, under different damping conditions. The plot emphasizes how the optimal gain
setting for the notch filter is dependent on the specific damping characteristics of the
metastructure.
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Figure 76: Transmittance response of the beam’s tip optimized with Reinforcement Learn-
ing, illustrating the effectiveness of notch piezo-actuation in restoring the bandgap at crit-
ical resonator frequencies with RL-optimized parameters: ζm = 0.03, ζr = 0.2, v0 = 10 V,
Qβopt = 0.019, Qopt = 0.001, kopt = 11.25. The inset depicts the second-order filter fre-
quency response, demonstrating the precision of notch frequency placement.
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parison to the conventional piezo-actuated resonators. The graph reveals that at
the target frequency, which coincides with the natural frequency of the resonator,
the bandgap is significantly affected by the damping levels. Without any inter-
vention, a high amount of damping at this frequency can obliterate the bandgap,
impeding the structure’s ability to isolate vibrations. The transmittance response,
optimized at Qβopt

, Qopt, and kopt via Reinforcement Learning, demonstrates that
the notch piezo-actuation method successfully restores the bandgap dampened by
resonator energy losses. While the RL method is preferred, the performance be-
tween this and the Hybrid PSO-GA optimization is comparable, with both ef-
fectively enhancing the bandgap for improved vibration suppression, though with
slight differences that may affect the system’s overall response.

The inset plot within the figure provides a visual of the Second Order Filter
Frequency Responses, with the notch frequency ωnt set at the target frequency.
This notch is crucial in creating a deep and well-defined bandgap by attenuating
the energy around the resonator’s frequency, thereby enhancing the metastructure’s
vibration isolation capabilities.

This detailed analysis underlines the importance of precise parameter selection
for notch filters in engineering applications where vibration control is paramount.
The successful enforcement of a bandgap through piezo-actuation stands as a testa-
ment to the potential of AI-driven optimization algorithms in fine-tuning complex
mechanical systems.

6.4 Summary
This chapter has explored methodologies for modeling and optimizing metastruc-
tures through AI-driven techniques, piezoelectric actuation, and the application
of notch filters. The integration of these technologies has provided a substan-
tial improvement in the control over bandgap properties, essential for the effective
suppression of vibrations and enhancement of structural integrity in engineering
applications.

Significant efforts were made to enhance the precision of damping ratio estima-
tions, which play a crucial role in the dynamic behavior of metastructures. The
combined use of analytical and experimental methods, supported by sophisticated
optimization algorithms, has confirmed the ability of these models to bridge the
gap between theoretical predictions and practical, real-world applications.

The introduction of piezoelectric components facilitated the active manipulation
of structural properties, offering a promising avenue for compensating for inherent
material damping and optimizing the metastructure’s response to vibrational en-
ergy. Furthermore, the implementation of notch filters allowed for targeted atten-
uation of vibrations, enhancing the depth and effectiveness of the metastructures’
bandgaps.

While the results are promising, the complexities involved in the practical ap-
plication of these technologies suggest a need for further research. Future studies
could focus on refining the integration of AI algorithms to enhance model precision
and exploring the scalability of these approaches for larger or more complex struc-
tural systems. Additionally, long-term stability and the impact of environmental
factors on the performance of piezoelectric actuators and notch filters merit further
investigation.

Overall, the methodologies developed and validated in this study contribute
significantly to the field of structural engineering, particularly in the design and
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optimization of metastructures. The key contributions of this study are summa-
rized as follows:

• The chapter introduces advanced AI-driven optimization techniques for pre-
cise estimation of damping ratios, which are critical for effective vibration
control in metastructures;

• The mathematical model for metastructures has been refined, enhancing the
precision of bandgap optimization. Particularly, the estimation of damping
ratios is emphasized as critical for effectively controlling bandgap properties
and achieving superior vibration suppression;

• A framework has been presented for addressing variable damping in metas-
tructures, an area not fully explored in current methodologies;

• Explored the use of piezoelectric materials to dynamically modify the struc-
tural properties of metastructures to enhance structural response and vibra-
tion suppression;

• The study demonstrates the implementation of notch filters in the design
of metastructures to selectively control and manipulate frequency responses,
thereby improving the effectiveness and depth of bandgaps;

• By combining theoretical models with experimental validations, the chapter
helps bridge the gap between conceptual research and practical implementa-
tions, enhancing the reliability and applicability of metastructures in various
industries;

• It discusses the application of various optimization algorithms, including Hy-
brid GA-PSO and RL, providing a robust framework for optimizing the com-
plex interactions within metastructures.

• The chapter includes comprehensive experimental setups and validations that
confirm the effectiveness of the theoretical models and optimization approaches,
ensuring they are grounded in real-world applicability;

• It identifies areas for future research, particularly in refining AI integration,
exploring scalability issues, and understanding the long-term stability and
environmental impacts on metastructure performance.
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7 Conclusions, Contributions, and Future Work
7.1 Summary and Conclusions
This research investigates the dynamics of both mechanical and electromechanical
locally resonant metastructures using two complementary modeling approaches:
lumped parameter modeling (LPM) and distributed parameter modeling (DPM).
The study also explores advanced techniques for enhancing functional diversity in
metastructures, with a focus on internally coupled resonators, piezoelectric actua-
tion strategies, and optimization through artificial intelligence.

Key scientific contributions include the development of generalized nonlinear
models for complex metastructures, closed-form analytical transfer functions for
distributed systems, and the proposal of new theoretical configurations for piezo-
electric resonators aimed at improving energy harvesting performance. The thesis
also addresses a critical practical challenge—structural damping—by proposing and
numerically validating a damping compensation method using piezoelectric actua-
tion. In addition, the work delivers the first experimental validation of internally
coupled metastructures and demonstrates how AI-driven optimization techniques
can improve parameter estimation and model-experiment agreement.

Throughout this research, a variety of dynamic equations, including Ordinary
Differential Equations (ODEs) and Partial Differential Equations (PDEs), are for-
mulated and solved in both time and frequency domains. Methodologies such as
modal analysis, finite element analysis, Bloch-Floquet boundary conditions, and
the Plane Wave Expansion (PWE) method are applied to address complex chal-
lenges in metastructure design.

The primary objective of this study is to develop innovative designs that enhance
bandgap width and depth, create multiple bandgaps, and improve energy harvest-
ing capabilities. Through this comprehensive approach, the study advances our
understanding of linear and nonlinear mechanical and electromechanical metama-
terials, offering new possibilities for practical applications, and address challenges
related to instability in varying design contexts.

Understanding the dynamics of metamaterials using simplified lumped param-
eter models helps to take the next step: novel analytical techniques to develop
closed-form transfer functions for finite metamaterial systems using modal analy-
sis. These techniques can accommodate boundary conditions, resonator placement,
and other effects that are challenging to capture with unit cell dispersion analysis.
This approach enables the derivation of closed-form transfer functions for various
functionalities utilized in control engineering, such as internal resonator coupling,
and voltage- and frequency-dependent piezo-actuated metastructures. It also ad-
dresses challenges associated with metamaterials across diverse design scenarios,
facilitating control engineering applications in the field of metamaterials.

7.1.1 Modeling of Flexible Metastructures with Mechanical Resonators
The exploration delves into the modeling of flexible metastructures with mechanical
resonators, focusing on their dynamic behaviors and the manipulation of bandgap
properties through both lumped and distributed parameter models. This exami-
nation is crucial for various engineering applications where controlling vibrational
energy and wave propagation is essential.

It begins by applying lumped parameter modeling, which simplifies complex
physical systems into discrete elements. This method facilitates an easier under-
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standing and preliminary exploration of wave propagation, alongside initial as-
sessments of bandgap characteristics in mechanical metastructures. Conversely,
distributed parameter modeling offers a refined analysis by accounting for the con-
tinuous distribution of properties across the metastructure, using partial differential
equations to provide detailed insights into wave propagation and bandgap forma-
tion.

Numerical simulations support these theoretical models, validating the predicted
dynamic behaviors and highlighting how structural parameters like mass and stiff-
ness ratios influence the metastructures’ bandgap properties. Experimental vali-
dations further corroborate the theoretical predictions, demonstrating the actual
dynamic responses of metastructures under controlled conditions and confirming
the existence and tunability of bandgaps.

Analytical methods, including modal analysis and the frequency determinant
method, are employed to analyze the impact of mechanical resonators on the sys-
tem’s dynamics. These methods provide a solid theoretical basis for understanding
complex behaviors within metastructures [11]. The research underscores the po-
tential of optimizing mechanical resonators to enhance control over vibrational
energy within metastructures. It is demonstrated that nonlinearity, particularly
cubic nonlinearity, can be utilized to tailor the metastructures’ dynamic responses,
offering potential for custom-designed applications [9]. Adjusting bandgap proper-
ties by altering structural parameters such as the resonator’s mass, stiffness, and
placement provides flexibility in designing metastructures for specific needs [18].

7.1.2 Modeling of Flexible Metastructures with Electromechanical Res-
onators

Modeling flexible metastructures with electromechanical resonators emphasizes
their dynamic properties through analytical methods and numerical simulations.
The incorporation of piezoelectric materials in these resonators provides distinct
benefits for energy harvesting and vibration control due to their electromechanical
capabilities.

It is structured into sections on lumped parameter modeling and distributed
parameter modeling. In the findings from both modeling approaches, the lumped
parameter models demonstrated significant enhancements in energy harvesting ef-
ficiency and vibration control through optimized electromechanical coupling co-
efficients. These simulations indicated that broader bandgaps, resulting from in-
creased coupling, lead to improved vibration isolation and heightened energy con-
version capabilities [12]. Particularly, the integration of nonlinear dynamics, such
as polynomial and cubic nonlinearity, allowed for a nuanced control over system re-
sponse, optimizing energy harvesting outputs without compromising the structural
integrity of the bandgaps [9].

From the distributed parameter modeling, it was evident that the spatial con-
sideration of piezoelectric elements attached to resonators profoundly affected the
wave propagation within the metastructures. The modal analysis revealed that
these configurations could significantly alter natural frequencies and mode shapes,
thereby modifying the bandgap characteristics essential for targeted energy har-
vesting and vibration mitigation. Furthermore, numerical studies highlighted the
critical role of resonator damping ratios and load resistances, showing that careful
tuning of these parameters could lead to optimal conditions for energy harvesting,
thus enhancing the overall efficiency of the metastructures in practical applications.
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Together, these results underscore the potential of utilizing advanced electrome-
chanical resonators in metastructures for superior control over energy harvesting
and vibration damping, aligning theoretical advancements with practical engineer-
ing applications.

7.1.3 Streamlining Metastructure Modeling: Internally Coupled Res-
onator

Detailed lumped and distributed parameter models are introduced to study the
dynamic behaviors of metastructures incorporating internally coupled resonators.
These models help understand the intricate interactions within the structures and
predict the formation of secondary bandgaps. Through theoretical modeling and
experimental validation, it is demonstrated how internal coupling can be manip-
ulated to refine bandgap properties, potentially creating new secondary bandgaps
[11]. This enhancement is crucial for applications requiring precise control over
vibrational energy. Experimental setups and FEM simulations validate the theo-
retical models, confirming the enhanced performance characteristics and highlight-
ing practical challenges and limitations. The research identifies significant chal-
lenges in transitioning from theoretical models to practical applications, such as
the need for precise manufacturing and the sensitivity of the system’s performance
to structural variations [14]. These insights are critical for the future development
of metastructures with internally coupled resonators. While several challenges are
highlighted, the research also opens avenues for innovations in design and material
science to overcome these hurdles and fully harness the capabilities of internally
coupled resonators in enhancing vibration control and energy efficiency in engi-
neered structures.

7.1.4 Streamlining Metastructure Modeling: More Techniques for En-
hanced Functional Diversity

This research has extensively explored the integration of AI-driven optimization,
piezoelectric actuation, and notch filter applications to enhance the functional di-
versity and control of metastructures. It introduced AI-driven methods, including
Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Hybrid GA-
PSO, to optimize metastructures effectively. These algorithms were instrumental
in accurately estimating critical damping ratios and enhancing the dynamic behav-
ior of metastructures, confirming their utility in translating theoretical models into
practical applications [15]. Piezoelectric materials were utilized to dynamically ad-
just the structural properties of metastructures. The closed-form transfer function
methodology has been utilized, and new mathematical representations have been
derived. The numerical implementation of piezoelectric actuation demonstrated
how active materials could compensate for inherent material damping, thereby en-
hancing the effectiveness of vibration suppression techniques. Notch filters were
integrated into the metastructure design to selectively attenuate vibrations at spe-
cific frequencies [16]. This approach deepened and refined the bandgap properties,
leading to more effective control over structural vibrations. The detailed analysis
of notch filter parameters through AI-driven methods showcased their impact on
improving the metastructure’s response to external vibrations.
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7.2 Contributions
The following summarizes the major contributions of this dissertation to the current
state of the art:

• Introduced advanced lumped and distributed parameter models that provide
deep insights into the dynamic behaviors of flexible metastructures, enabling
precise prediction of wave propagation and vibration characteristics (Chapter
3);

• Systematized the use of modal analysis to predict and analyze bandgap for-
mation within metastructures, facilitating the strategic design of structures
for optimized vibration control and wave manipulation (Chapter 3);

• Explored the impact of nonlinear dynamics, particularly focusing on cubic
nonlinearity, on the transmittance spectrum and bandgap properties, thus
paving the way for metastructures tailored for specific dynamic response re-
quirements (Chapter 3);

• Validated analytical models for mechanical metastructures through numerical
simulations and experimental setups, confirming the practical applicability
and reliability of the proposed models in real-world scenarios (Chapter 3);

• Demonstrated practical techniques for tuning the properties of bandgaps by
adjusting physical parameters such as mass, stiffness, and placement of res-
onators, contributing to the field of adaptive and tunable metastructures
(Chapter 3);

• Introduced lumped and distributed parameter models that capture the com-
plex dynamics of metastructures with electromechanical resonators. These
models provide a deeper understanding of the interaction between mechanical
and electrical dynamics, to design more efficient energy harvesting systems
(Chapter 4);

• Demonstrated how piezoelectric elements can be effectively integrated within
metastructures to enhance energy harvesting and vibration control. The dis-
sertation outlines the impact of piezoelectric coupling on the bandgap prop-
erties of metastructures, which is pivotal for improving energy efficiency and
suppression of vibrations (Chapter 4);

• Explored the impact of various nonlinearities, including polynomial, voltage-
dependent, and cubic forms, on the performance of electromechanical res-
onators. The dissertation provides a framework for optimizing these nonlin-
earities to maximize energy harvesting and mitigate vibrations, expanding the
practical applications of metastructures in dynamic environments (Chapter
4);

• Conducted extensive numerical analyses to investigate the effects of resonator
damping ratios and load resistances on the metastructure’s performance.
This research contributes optimized strategies for setting these parameters
to enhance energy harvesting efficiency and dynamic response under differ-
ent operational conditions (Chapter 4);
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• Introduced comprehensive lumped and distributed parameter models for metas-
tructures with internally coupled resonators. These models enhance un-
derstanding of the dynamic interactions within the structures and demon-
strate how internal coupling can be used to manipulate and create additional
bandgaps, leading to improved performance in vibration control and energy
harvesting (Chapter 5);

• Established how internal coupling mechanisms within resonators can be op-
timized to refine control over bandgap properties, potentially leading to the
creation of new secondary bandgaps. This capability is crucial for applica-
tions requiring precise control over vibrational energy, such as in building
construction, automotive manufacturing, and consumer electronics (Chapter
5);

• Significant challenges in the transition from theoretical models to practical
applications, such as the need for precise manufacturing and the sensitivity of
system performance to structural variations. These insights are critical for the
practical deployment of metastructures in real-world applications (Chapter
5);

• Extensive experimental and numerical studies, including FEM analysis: Vali-
dating theoretical models and highlighting practical limitations, thereby guid-
ing future design and implementation strategies (Chapter 5);

• The research opens several avenues for future investigations, particularly in
improving the design and integration of internally coupled resonators, ex-
ploring new materials and configurations, and overcoming current limitations
(Chapter 5);

• Developed and implemented AI-driven optimization strategies, including hy-
brid algorithms and reinforcement learning, for precise estimation of damping
ratios essential for effective vibration control in metastructures (Chapter 6);

• Pioneered the use of piezoelectric materials to dynamically modify structural
properties, enabling active control over vibration suppression and structural
responses, enhancing the functional capabilities of metastructures (Chapter
6);

• Introduced notch filters in the structural design to selectively manipulate
frequency responses, significantly improving the depth and effectiveness of
bandgaps in vibration control (Chapter 6);

• Effectively bridged the gap between theoretical research and real-world im-
plementation by validating advanced mathematical models through extensive
experimental setups to parameter estimation, enhancing the reliability and
industrial applicability of metastructures (Chapter 6);

• Established a robust methodological framework for the analysis and design
of metastructures, combining analytical, experimental, and computational
approaches to address complex challenges in structural dynamics (Chapter
6).
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7.2.1 Practical Engineering and Scientific Impact
The outcomes of this thesis contribute to both scientific understanding and engi-
neering practice in several important ways, as outlined below:

• Nonlinear Configurations for Enhanced Energy Harvesting: While
prior research has explored various methods for enhancing energy harvest-
ing—such as nonlinear circuit techniques (e.g., SSHI, SECE), graded res-
onator arrangements, and multi-resonator systems—this thesis contributes
by investigating alternative nonlinear structural configurations. These in-
clude internal coupling between resonators, nonlinear stiffness elements, and
nonlinear piezoelectric capacitance. The proposed configurations are theo-
retically analyzed in terms of their potential to increase bandgap depth and
harvested energy. Although these setups have not yet been implemented
experimentally, the work provides a rigorous analytical and stability frame-
work that lays the foundation for future realization and application in smart
metastructures.

• Damping Compensation in Distributed Metastructures: A common
challenge in practical metastructures is the loss of ideal bandgap characteris-
tics due to structural damping. This thesis addresses this issue by proposing
a damping compensation strategy based on piezoelectric actuation. Unlike
most studies that focus on simplified lumped-mass systems, the proposed ap-
proach is developed and validated in the context of distributed (continuous)
metastructures, making it more directly applicable to engineering structures
such as beams and plates. While the piezoelectric damping compensation
strategy was not experimentally implemented, its feasibility and impact were
thoroughly analyzed through analytical modeling and simulations.

• Experimental Validation of Internally Coupled Metastructures: Al-
though internal coupling in metastructures has received theoretical attention,
this work presents one of the first experimental investigations of a beam-based
metastructure incorporating internal mechanical coupling. The experimental
results align with analytical predictions and offer valuable insights for practi-
cal implementation, particularly regarding sensitivity to coupling mismatch
and its effect on bandgap behavior.

• Extension of Closed-Form Modeling to Distributed Systems: This
thesis extends the control-oriented transfer function framework from lumped
systems to distributed metastructures, enabling real-time dynamic modeling
of continuous systems. These models support advanced vibration control
and structural health monitoring applications by bridging the gap between
theoretical formulations and practical implementation.

• AI-Based Parameter Estimation for Metastructure Identification:
This thesis integrates optimization-based parameter estimation techniques
into the analytical modeling framework to identify critical system proper-
ties—such as structural and resonator damping ratios—that are difficult to
measure experimentally. This approach improves agreement between theoret-
ical predictions and experimental results, thereby strengthening the reliability
of metastructure models for practical applications.
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• Framework for Future Smart Metastructures: Although nonlinear
piezoelectric configurations could not be physically realized within this work,
the proposed concepts, mathematical modeling, and stability criteria estab-
lish a robust theoretical foundation for future engineering solutions. These
tools support the development of next-generation smart metastructures with
integrated sensing, control, and energy harvesting functionalities.

7.3 Future Work
Building on the findings and methodologies developed in this dissertation on flexible
metastructures, several key areas for future research are identified. Future studies
should integrate more sophisticated modeling techniques that account for multi-
physical phenomena and higher-order nonlinearities. Introducing time-dependent
boundary conditions and external influences, such as thermal and electromagnetic
fields, would provide deeper insights into the dynamic behavior of metastructures
under realistic conditions.

The continued development and refinement of algorithms will facilitate the in-
tegration of natural frequency and mode shape calculations with finite element
analysis (FEA) tools. This integration will improve the precision of metastructure
modeling, allowing mode shapes and natural frequencies extracted from FEA to
inform analytical derivations of transfer functions for complex designs.

Future development should emphasize creating feedback circuits that automat-
ically adapt to changing conditions, significantly enhancing the performance sta-
bility of metastructures. Advanced control loops and Model Predictive Control
(MPC) systems should be investigated to improve the responsiveness and adapt-
ability of these structures. Additionally, developing and testing piezo-actuator
prototypes specifically tuned for metastructures—especially actuators capable of
handling higher loads and stresses suitable for industrial applications—is essen-
tial. Further research into complex nonlinear dynamics, including bistable and
multistable behaviors and their interactions with other physical phenomena, is rec-
ommended.

Advanced circuits surpassing traditional energy harvesting methods should be
developed, including synthetic impedance circuits that actively manage energy cap-
ture and dissipation processes. By adapting to changes in system dynamics such as
load or vibration levels, these circuits could optimize energy harvesting efficiency.

Current one-dimensional (1D) modeling approaches should be extended to three-
dimensional (3D) modeling to more accurately represent spatial complexities in
metastructures. Exploring advanced materials such as shape-memory alloys and
piezoelectric composites can further enhance tunability and responsiveness. Efforts
should also be dedicated to establishing industry standards and best practices
for the design, testing, and implementation of metastructures, promoting broader
acceptance in relevant industries.

Future research should enhance design precision and manufacturing techniques
for effectively implementing internal coupling mechanisms. Investigating advanced
materials and alternative coupling configurations may overcome current challenges
related to stiffness alignment and bandgap merging in practical applications. De-
veloping adaptive control strategies can improve robustness and performance under
varying operational conditions.

The complexity of integrating AI, piezoelectric materials, and notch filters sug-
gests that further research is necessary. Future studies should evaluate the scala-
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bility of these methods for larger or more complex systems. Additionally, the long-
term stability and environmental resilience of piezoelectric actuators and notch
filters require further investigation to ensure reliable real-world deployment. Con-
tinuous refinement of AI algorithms will enhance the precision of metastructure
modeling and optimization, potentially introducing adaptive and self-learning sys-
tems for real-time structural dynamics control.

Finally, leveraging cloud computing and high-performance computing (HPC)
resources should be explored to handle complex simulations and the optimization of
metastructures more effectively. This would accelerate the iterative design process,
enabling efficient handling of multi-physics simulations within practical timeframes.
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Abstract
Dynamics Modeling and Optimization of Locally Res-
onant Metastructures for Vibration Suppression and
Energy Harvesting
This dissertation presents advanced analytical, numerical, and experimental frame-
works for the dynamic modeling, optimization, and practical validation of locally
resonant metastructures, specifically aimed at vibration suppression and efficient
energy harvesting. By combining lumped and distributed parameter modeling,
the thesis develops comprehensive and closed-form analytical solutions that allow
precise predictions and facilitate real-time adaptive control.

Novel contributions of this work include the in-depth exploration of nonlinear
dynamics within resonators, enabling the design of metastructures that robustly
suppress vibrations across broader frequency bands. A generalized nonlinear formu-
lation for piezoelectric energy harvesting systems has been developed, significantly
enhancing both harvested energy and vibration suppression performance. Addi-
tionally, this thesis introduces internally coupled mechanical and electromechanical
resonators, deriving closed-form transfer functions suitable for control engineering
applications, substantially improving vibration isolation capabilities, and facilitat-
ing the generation of multiple bandgaps.

To address practical challenges, advanced techniques were proposed, such as
piezoelectric actuation integrated with tailored notch-filtered controllers for struc-
tural damping compensation, which substantially deepened and widened the effec-
tive bandgaps. Furthermore, the incorporation of AI-driven hybrid optimization
algorithms (Genetic Algorithm-Particle Swarm Optimization) provided robust pa-
rameter tuning and improved the performance of vibration suppression and energy
harvesting.

The theoretical predictions and methodologies have been rigorously validated
through comprehensive numerical simulations, employing Finite Element Methods
(FEM), and systematically verified with experimental setups, ensuring their effec-
tiveness in realistic engineering contexts. This thesis ultimately provides a versatile
and validated framework for systematically designing and optimizing metastruc-
tures with significant implications for structural engineering, energy harvesting,
and vibration mitigation technologies.
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Kokkuvõte
Dünaamiline modelleerimine ja optimeerimine koha-
likult resonantsete metastruktuuride jaoks vibratsioo-
ni summutamiseks ja energia kogumiseks
See doktoritöö esitab põhjalikud analüütilised, numbrilised ja eksperimentaalsed
raamistikud lokaalsete resonantsete metastruktuuride dünaamiliseks modelleeri-
miseks, optimeerimiseks ja praktiliseks valideerimiseks, keskendudes vibratsioonide
summutamisele ja tõhusale energia kogumisele. Koondatud ja jaotatud parameetri-
te modelleerimise ühendamisega on töös välja töötatud põhjalikud ja suletud kujul
analüütilised lahendid, mis võimaldavad täpseid prognoose ja reaalajas kohanduvat
juhtimist.

Selle töö uudsed panused hõlmavad resonaatorite mittelineaarse dünaamika põh-
jalikku uurimist, mis võimaldab projekteerida metastruktuure, mis tõhusalt sum-
mutavad vibratsioone laiemates sagedusvahemikes. Välja on töötatud üldistatud
mittelineaarne mudel piesoelektrilistele energia kogumise süsteemidele, parandades
märkimisväärselt nii kogutud energia hulka kui ka vibratsioonide summutamise
tõhusust. Lisaks esitleb käesolev töö sisemiselt seotud mehaaniliste ja elektrome-
haaniliste resonaatorite integratsiooni ning nendega seotud suletud kujul ülekande-
funktsioonide tuletamist, mis sobivad kasutamiseks juhtimistehnilistes rakendustes,
parandavad oluliselt vibratsioonide isoleerimise võimekust ning võimaldavad luua
mitmeid sagedusriba vahemikke (bandgaps).

Praktiliste väljakutsete lahendamiseks on töös välja pakutud täiustatud tehni-
kad, sealhulgas piesoelektrilised täiturid koos spetsiaalselt kohandatud kitsasriba-
filtritega (notch filters) struktuurse summutuse kompenseerimiseks, mis laiendavad
ja süvendavad efektiivseid sagedusriba vahemikke. Lisaks võimaldas tehisintellektil
põhinevate hübriid-optimeerimisalgoritmide (geneetiline algoritm – osakeste par-
vede optimeerimine) rakendamine süsteemi parameetreid tõhusalt häälestada, pa-
randades vibratsioonide summutamise ja energia kogumise tulemuslikkust.

Teoreetilisi prognoose ja meetodeid on põhjalikult kinnitatud numbriliste simu-
latsioonidega piiratud elementide meetodi (FEM) abil ning süstemaatiliselt validee-
ritud eksperimentaalsete katsetega, tagades nende tõhususe realistlikes insenerira-
kendustes. Kokkuvõttes pakub käesolev doktoritöö mitmekülgset ja valideeritud
raamistikku kõrgjõudluslike metastruktuuride süstemaatiliseks disainiks ja opti-
meerimiseks, omades olulist mõju ehitustehnika, energia kogumise ja vibratsioonide
summutamise tehnoloogiate valdkonnas.
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Abstract This study delves into the nonlinear dynam-
ics of metamaterials, exploring the dual objective
of enhancing power output and achieving vibration
suppression through piezoelectric energy harvesters
(PEHs). Our approach is structured into a sequence of
increasingly complex models that bridge mechanical
resonators with their electromechanical counterparts.
We initiate with (1) modeling mechanical resonators,
incorporating nonlinear behaviors that are often over-
looked in the linear domain. This lays the ground-
work for understanding the fundamental mechanisms
of vibration within metamaterials. Subsequently, we
progress to (2) electromechanical resonators, where
piezoelectric components are integrated, revealing a
richer dynamic landscape that is influenced by the inter-
play of mechanical and electrical energies. The latter
sections of our investigation introduce and examine (3)
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mechanical and (4) electromechanical internally cou-
pled resonators. These segments unveil the role of inter-
nal couplings in steering themetamaterial’s energy har-
vesting capabilities and its resilience to vibrational dis-
turbances. Through meticulous simulations and analy-
sis, the research brings to light the significant influ-
ence of specific PEH nonlinear parameters on the sys-
tem’s efficiency, offering insights for the optimization
of PEHs in practical applications.

Keywords Nonlinear dynamics · Piezoelectric
energy harvesting · Electromechanical nonlinearity ·
Internally coupled resonators · Vibration suppression ·
Lumped parameter model

1 Introduction

The advent ofmechanical metamaterials, characterized
by their unique ability to control vibrational energy, has
revolutionized the design and application of energy har-
vesting systems. For instance, the work by Jiao et al.
highlights how modern mechanical metamaterials can
interact with their environment and adapt to various
conditions, offering insights into the design and opti-
mization of these innovative materials [1]. Central to
this innovation are the piezoelectric energy harvesters
(PEHs) that form a chain of oscillators, each capable
of converting vibrational energy into electrical power.
This paper focuses on the detailed study and enhance-

123



12942 H. Alimohammadi et al.

ment of such systems through the lens of nonlinear
dynamics, [2,3].

Our investigation begins by defining the mechanical
and electromechanical metamaterial system that forms
the basis of our theoretical models.We consider a chain
of mechanical oscillators, each linked to a piezoelec-
tric resonator, forming an electromechanical system
that spans both the mechanical and electrical domains.
This interconnected system not only offers the promise
of energy harvesting but also presents a platform for
vibration suppression-two objectives that are often at
odds in traditional materials.

The objective of this study is twofold: to explore the
underlying nonlinear dynamic behavior of the meta-
material/electromechanical system and to optimize the
design for maximum power output while minimizing
vibrational disturbances. To this end, we develop com-
prehensive theoretical models that capture the intricate
behaviors of the resonators and their electromechani-
cal interactions. These models are rigorously validated
through a series of numerical simulations that not only
ensure the theoretical models align with expected out-
comes but also establish comprehensive metrics for
evaluating the performance of the energy harvesters.

In summary, this research sets the stage for an in-
depth exploration of PEHs within the realm of meta-
materials. By addressing the nonlinear dynamics inher-
ent to these systems, we aim to unveil strategies for
enhanced energy harvesting and vibration mitigation.
The key contributions of this paper are summarized as
follows:

• Development of comprehensive theoretical mod-
els that integrate both mechanical and electrome-
chanical aspects of piezoelectric energy harvesters
within mechanical metamaterials, offering new
insights into their nonlinear dynamic behavior.

• A detailed analysis of the impact of various forms
of nonlinearity on the performance of energy har-
vesters, including mechanical and electromechan-
ical nonlinearities, thereby extending the under-
standing of their operation and optimization.

• Introduction of novel metrics for evaluating the
effectiveness of energy harvesters, bridging the gap
between theoretical analysis and practical applica-
tion, and paving the way for future research in opti-
mizing metamaterial-based energy harvesting sys-
tems.

• Validation of the theoretical models through rigor-
ous numerical simulations, ensuring their accuracy
and reliability, and providing a solid foundation for
future experimental investigations.

The structure of the remaining sections of this
paper is organized as follows: Sect. 2 delves into the
background and relevant literature, laying the ground-
work for understanding the current state of research in
piezoelectric energy harvesting. Section3 outlines the
methodology employed in this study, including mathe-
matical modeling and simulation approaches. Section4
presents the results and discussions, where the findings
from the application of the proposed models are ana-
lyzed and interpreted. Section5 details the contribu-
tions and findings related to nonlinear electromechan-
ical dynamics and their impact on piezoelectric energy
harvesters. Section6 introduces internally coupled res-
onators with a focus on electromechanical nonlinear-
ity, exploring their implications for energy harvesting.
Finally, Sect. 7 concludes the paper with a summary of
the findings, contributions to the field, and suggestions
for future research directions.

2 Background

The field of energy harvesting has seen significant
advancements with the integration of piezoelectric
materials into mechanical metamaterials. These mate-
rials, capable of converting mechanical vibrations into
electrical energy, have opened new avenues for creat-
ing efficient energy harvesters. Central to the design of
these systems are chain oscillators, which play a dual
role in energy conversion and vibration suppression
[4,5]. Chain oscillators are fundamental in mechanical
metamaterials, designed to control vibrational energy
flow through the system while maximizing energy
extraction from ambient sources [6].

2.1 The role of nonlinearities in energy harvesting

Nonlinear dynamics play a pivotal role in enhancing
the performance of energy harvesting systems [7]. Both
mechanical and electromechanical nonlinearities intro-
duce complex behaviors such as bifurcations and chaos,
extending the frequency range over which energy can
be efficiently harvested. Recent advancements have led
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to a deeper understanding and exploitation of nonlin-
earities within PEHs. Through resonators, the vibration
suppression and energy harvesting capabilities of non-
linearmodels for PEHs have been thoroughly analyzed.
These models highlight the role of nonlinear dynam-
ics in enhancing PEH performance, offering insights
for more efficient energy solutions. Daqaq et al. [8]
found that nonlinear vibratory energy harvesters are
more adaptable and efficient in varied environments
than their linear counterparts, due to their broader fre-
quency response. This makes them a potentially supe-
rior option for powering low-power devices. Further-
more, recent research by Daqaq [9] has extended the
nonlinear dynamics to practical applications, specifi-
cally focusing on how weakly nonlinear energy har-
vesters can effectively charge batteries under various
excitations, offering a balance between simplicity and
accuracy in their analytical models.

2.2 Chain oscillators in mechanical metamaterials

Chain oscillators form the backbone of mechanical
metamaterials used in energy harvesting applications.
Their primary function is to suppress undesirable
vibrations while facilitating the transfer of mechan-
ical energy to piezoelectric elements for conversion
into electrical energy. The integration of chain oscil-
lators with piezoelectric resonators exemplifies the
synergy between mechanical and electrical compo-
nents in metamaterials [10]. By designing the oscilla-
tors to exploit specific nonlinear dynamics, it is pos-
sible to achieve optimal conditions for energy har-
vesting, wherein the system’s natural frequency aligns
with prevalent ambient vibrations. Furthermore, the
suppression of vibrations through chain oscillators
enhances the lifespan and reliability of the harvesting
system [11].

In the quest for optimized energy harvesting sys-
tems, the exploration of nonlinear dynamics within
mechanical and electromechanical systemshas emerged
as a critical area of research. These nonlinearities,
whether inherent in the mechanical structure or intro-
duced through electromechanical coupling, signifi-
cantly influence the system’s ability to harvest energy
and suppress vibrations [12]. As such, understanding
and leveraging these nonlinear effects can lead to sub-
stantial improvements in PEH performance. This back-
drop of nonlinear dynamics sets the stage for an in-

depth examination of mechanical and electromechan-
ical nonlinearities in PEHs. The following sections
delve into the mechanical nonlinearity of resonators,
the electromechanical nonlinearity of resonators, and
the nuanced dynamics of internally coupled resonators
with bothmechanical and electromechanical nonlinear-
ities. Each area offers unique insights into the potential
for advancing energy harvesting technologies, under-
scoring the complex interplay between mechanical
structures and piezoelectric elements in metamaterials
designed for optimized energy conversion

2.3 Nonlinearity in energy harvesters
and metamaterial chains

The exploration of mechanical nonlinearities in energy
harvesters andmetamaterial chains reveals their signifi-
cant impact on enhancing energy conversion efficiency
and vibration control capabilities. This line of inquiry
delves into how the introduction of nonlinear proper-
ties to resonators, specifically those exhibiting mildly
cubic nonlinearities, influences the behavior of acous-
tic metamaterials and, consequently, the performance
of energy harvesting systems (see Fig. 1).

Local resonatorswithin periodic chains,whenembed-
ded with nonlinearities, are shown to initiate a detailed
wave response, providing an intricate interactionwithin
the system. This interaction is pivotal, as it shapes
the system’s capability to adapt and respond to vibra-
tional energies more effectively [13,14]. The dynam-
ics of wave propagation in these metamaterials are
fundamentally altered by the integration of resonators
embedded with mildly cubic nonlinearities, leading to
modifications in the frequency domain where energy
harvesting and vibration suppression are optimized
[15,16]. The study of systems where periodic chains
integrate multiple local resonators, each exhibiting
nonlinear behavior, has highlighted the potential for
expanding the operational bandwidth of energy har-
vesters. Such systems are adept at adapting to a wider
range of vibrational frequencies, thereby enhancing
the efficiency of energy conversion. Additionally, the
incorporation of bistable systemswithin thesemetama-
terial chains introduces a dynamic range of wave con-
trol, extending the capabilities of these systems beyond
conventional linearmodels [17,18]. The chaotic behav-
ior induced by high-intensity excitations in bistable
systems allows for a broader attenuation of vibra-
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tions, showcasing the advanced potential of nonlin-
ear mechanical metamaterials in energy harvesting
and vibration suppression [19]. However, experimental
studies such as those by Khasawneh and Daqaq in [20],
have challenged theoretical predictions about bistabil-
ity in energy harvesters, showing that while bistable
systems can shift operational bandwidths to lower fre-
quencies, they may not always enhance the effective
bandwidth compared to linear systems.

Bridging the concepts from nonlinear mechani-
cal behaviors to electromechanical nonlinearities, it
becomes evident that the complexity of energy har-
vesters is magnified when electrical components are
introduced. This transition from purely mechanical to
electromechanical systems opens up a broader spec-
trum for energy conversion efficiency and dynamic
response control, setting the stage for a deeper explo-
ration into the multifaceted nature of piezoelectric
energy harvesters.

The exploration of electromechanical nonlinearity
in piezoelectric energy harvesters is fundamental for
advancing the efficiency and functionality of these
systems. The nonlinear interactions between mechan-
ical vibrations and electrical responses in PEHs, often
mediated by components such as diodes and piezoelec-
tric materials, play a crucial role in energy conversion
dynamics.

Diodes introduce a marked non-linearity in the
current–voltage relationship, significantly impacting
energy harvesting efficiency. This effect is critical in
rectifying the alternating current (AC) generated by
piezoelectric elements into direct current (DC), which
is more readily used by electronic devices [21–23].
Moreover, the interaction between mechanical struc-
tures and embedded piezoelectric materials leads to
nonlinear behaviors such as amplitude-dependent fre-
quency shifts, essential for enhancing the energy har-
vester’s bandwidth [24,25].

The integration of data-driven methods, particularly
neural networks, into PEH systems, has significantly
advanced their performance, [26,27]. By leveraging
smart electronic chips programmed based on these
models, these systems can dynamically adapt to vary-
ing operational conditions, optimizing energy conver-
sion efficiency in real-time. These chips, designed to
handle nonlinear dynamics, enhance the adaptability
and efficiency of PEHs, ensuring maximum energy
extraction from environmental vibrations. This innova-
tive approach, which combines the precision of empir-

ical data analysis with cutting-edge electronic technol-
ogy, marks a significant step forward in making energy
harvesting systems more effective, reliable, and versa-
tile.

2.4 Standard piezoelectric circuit for energy
harvesting

The primary goal when integrating metamaterials into
energy harvesting systems is to minimize vibrations
within the main chain of the device. This minimization
leads to the dissipation of the base or excitation energy
primarily through the resonators attached to the sys-
tem. In essence, reducing vibration in the main chain
results in increased vibrationwithin the resonators [28].
By effectively transferring energy from the main chain
to the resonators, metamaterials not only protect the
structural integrity of the system but also enhance the
resonator’s energy harvesting capabilities. This strate-
gic distribution of vibrational energy is foundational
to maximizing the efficiency of energy capture from
ambient vibrations, marking a significant advancement
in the development of sustainable energy solutions [29].

While metamaterials with resonators can enhance
the energy capture capability, the rectifier circuit plays a
pivotal role in processing this harvested energy,making
it suitable for practical applications. Traditional energy
harvesting circuits, characterized by their simplicity,
directly connect the load to the harvesting component
but often fall short in energy conversion efficiency.

Advanced circuit designs such as Synchronized
Switch Harvesting on Inductor (SSHI), Synchronous
Electric Charge Extraction (SECE), and Maximum
Power Point Tracking (MPPT) [30–32] have been
developed to address these limitations, substantially
improving energy conversion efficiency. These systems
not only surpass traditional models in efficiency but
also adapt dynamically to varying environmental con-
ditions to extract optimal energy. Recent progress in
this field has been comprehensively reviewed in stud-
ies such as the work by Wang et al. [33] highlighting
the evolution of interface circuits that significantly con-
tribute to the efficiency and adaptability of PEHs.

Transitioning from the exploration of energy har-
vesting circuits to the study of internally coupled
mechanical resonators, this shift underscores the inte-
gration of advanced energy conversion techniques
with strategic vibration management. Through this, the

123



Nonlinear dynamics in PEH for enhanced power output 12945

emphasis onmechanical nonlinearity within resonators
emerges as a critical factor in enhancing both energy
capture efficiency and system stability, signifying a
comprehensive approach to optimizing metamaterial-
based energy harvesting systems. Introducing nonlin-
earity into periodic chains with local resonators trig-
gers wave responses that are shaped by the interplay
of nonlinearity and local resonance effects. Studies on
linear chains with nonlinear resonators [13,15,34] and
nonlinear chains with linear resonators [15,35] have
demonstrated this phenomenon.

Internally coupled mechanical resonators have
emerged recently in modern dynamics and vibration
control research. By harnessing the intricate interac-
tions between internal structural elements, these res-
onators display a diverse range of vibrational behav-
iors. These characteristics offer unprecedented capabil-
ities inmanipulating and controllingwave propagation,
making them invaluable assets in areas like structural
health monitoring, acoustic metamaterials, and vibra-
tion mitigation. One of the pioneering research in this
domain, as exemplified by studies like that of Hu et al.
[36], has explored metastructures integrated with lin-
early coupled resonators. Their investigations reveal
the presence of an additional narrow bandgap com-
pared to conventional metastructures, highlighting the
intriguing prospects of this research area.

Building upon this foundation, recent advancements
have seen the development of metastructures incor-
porating coupled mechanical resonators with inher-
ent nonlinearities. Notably, work by Alimohammadi
et al. [37] delves into metastructures that employ a dis-
tributed parameter model for the main structure while
utilizing a chain or lumped model for resonators. This
approach introduces nonlinear internally coupled res-
onators, demonstrating enhanced wave manipulation
capabilities. Their findings, showcasing the frequency
response of such systems can affect the performance of
metastructures with nonlinear internally coupled res-
onators compared to their linear counterparts. Never-
theless, a significant research gap persists in the area
of nonlinear internally coupled resonators.

Transitioning frommechanical nonlinearity in inter-
nal coupled resonators, the focus shifts to electrome-
chanical systems, where piezoelectric elements reveal
intricate interactions between mechanical and electri-
cal energies. This area, rich with potential for advanc-
ing energy harvesting and vibration control, remains
largely unexplored, pointing to significant opportu-

nities for research. In electromechanical resonators,
the concept of internally coupled configurations, par-
ticularly when piezoelectric elements are intercon-
nected, introduces a captivating complexity. These
arrangements initiate a profound interaction between
themechanical and electrical domains, leading to unex-
pected wave propagation characteristics. Yet, despite
the potential they harbor, exploration into nonlinear,
internally coupled electromechanical systems remains
notably limited.

This gap in the research landscape underscores the
need for a comprehensive understanding of such sys-
tems, which promises to redefine the boundaries of
vibration control and energy harvesting. By leverag-
ing electromechanical nonlinearities, this design strat-
egy enhances the efficiency and adaptability of energy
harvesting systems. Studies such as those by Hu et al.
and Silva et al. [25,36] underline the potential of this
methodology inbroadening thebandwidth for vibration
suppression and energy harvesting. The integration of
piezoelectric shunt techniques not only facilitates the
adjustment of system dynamics but also aids in the cre-
ation of tunable band gaps.

3 Methodology

The lumped parameters model approach simplifies the
analysis of a complex physical system by assuming that
the system’s physical properties, such as inertia, elas-
ticity, and damping are concentrated at specific points
or elements. Each element is characterized by a set of
parameters, such as resistance, capacitance, and induc-
tance for electrical circuits, ormass, damping, and stiff-
ness for mechanical systems. These elements are inter-
connected in a network described by ordinary differ-
ential equations. Lumped parameter models are com-
monly employed when the wavelength of wave propa-
gation is significantly larger than the dimensions of the
structure, enabling the use of simplified assumptions.

3.1 Nonlinear mechanical resonators

The simplest lumpedmodel of a 1Dnonlinear phononic
medium repeating unit cell, as illustrated in Fig. 1, is
characterized as a linear atomic chain with embedded
nonlinear resonators. This chain comprises an infinite
series of uniform unit cells. Each of these unit cells
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Fig. 1 Foundational models of nonlinear phononic media: a
linear monoatomic chain with nonlinear resonators of masses,
spring, damping, and piezoelectric element, PZ. Dashed rectan-
gle is unit cell

consists of a mass, mm , pertaining to the monoatomic
chain, interconnected through linear springs. This pri-
mary linear chain is interfaced with nonlinear res-
onators, each identified by itsmass,mr . Both the damp-
ing element and the piezoelectric force of the resonators
are neglected for simplicity. The net force exerted by
the nonlinear spring connecting the resonators can be
represented as:

fr = krδ +
∑

γqδ
q , (1)

where δ is the relative displacement between the adja-
cent masses (chain mass and resonator). Subsequently,
the dynamics of the system can be expounded as fol-
lows:

mmüm + km (2um − um− − um+)

+
∑

γqm
(
(um − um−)q + (um − um+)q

)

+kr (um − ur ) +
∑

γqr (um − ur )
q = 0 (2)

mr ür − kr (um − ur ) −
∑

γqr (um − ur )
q = 0,

(3)

where for the last mass in the chain: um − um+ =
0, u̇m − u̇m+ = 0, and for the first mass in the chain:
um− = ub. Here, γqm , γqr denote the nonlinear stiff-
ness of the monoatomic chain and resonator, respec-
tively. Here, um denotes the displacement of the mth

mass, km represents the stiffness of that mass, kr is the
resonator’s stiffness, while um+ and um− indicate the
displacements of the succeeding and precedingmasses,
respectively, and ub signifies the displacement of the
excitation at the base or first mass chain.

The parameter q can assume values (0, 1, 2, 3, . . .),
denoting the degree of system nonlinearity: linear (q =
0, 1), quadratic (q = 2), cubic (q = 3), and so forth.
Weakly and strongly nonlinear systems can be distin-
guished based on the relative magnitude of the non-
linear force term, expressed as

∑
γqδ

q . Essentially

nonlinear systems are characterized by vanishing lin-
ear forces (km,r → 0) but non-zero nonlinear forces
(γ > 0 for all q except q = 0 and q = 1).

Cubic nonlinearities can manifest as either purely
hardening (γ > 0) or softening (γ < 0), while
quadratic nonlinearities combine both softening and
hardening behaviors. The versatility of this elementary
discrete model extends to representing more intricate
media configurations. These adaptations empower dis-
crete modeling techniques to provide insights into the
complexities of nonlinear phenomena.

Considering wave propagation in a system and
applying boundary conditions with an input ub = eiωt ,
the transmittance of the system can be quantified as

τ =
∣∣∣ u

N
m

u1m

∣∣∣, where uNm represents the displacement of

um at the end of the chain sequence, while u1m denotes
the displacement of the mass at the first position in the
sequence or the base excitation or the displacement at
the initial position ub.

The Laplace transform of nonlinear terms, specifi-
cally γqr (um − ur )q , is not straightforward.While one
could approach this by linearizing around a specific
operating point, a more practical solution is often to
address it numerically. Essentially, due to the complexi-
ties introduced by nonlinearity, numerical methods fre-
quently provide themost feasible approach for analysis.

3.2 Dispersion curve

To elucidate the influence of the resonator’s mass
and spring within these configurations, the dispersion
curve is determined for linear mechanical resonators.
A streamlined model, where mechanical damping and
the effects of the piezoelectric transducer are neglected
(refer to Fig. 1), is employed. In this model, both the
stiffness of the monoatomic chain and the resonator
are treated as linear. Assuming a harmonic wave solu-
tion and incorporating Bloch’s theorem, the harmonic
displacements of the masses can be expressed as:

um = um0e
i(Gna−ωt) (4)

ur = ur0e
i(Gna−ωt), (5)

where um0 and ur0 are the initial displacements or
amplitudes for unit cell or main chain and resonator.
Substituting into linear form of Eq. (2) and Eq. (3)
results in:

mmmrω
4 − (2kmmr (1 − cos(Gna)) + krmm
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Fig. 2 Dispersion in the periodic structure with varying reso-
nance coupling, and mass ratio. The plots demonstrate the pro-
found influence of resonance conditions on the emergence and
width of band gaps, highlighting the potential for tuned wave
propagation control by adjusting the μ parameter

+ krmr )ω
2 − 2kmkr (cos (Gna) − 1) = 0 (6)

For wider scope and easy analysis, the normalized
dimensionless parameters are defined as follows:

ωL = 1

2

√
mm

km

kr
mr

, μ =
√

mr

mm
, ν =

√
kr
km

,

ω0 =
√
4km
mm

(7)

Solving the Eq. (6) produces four roots for ω, which
leads to Eqs. (8) and (9) for the individual derivatives
with respect to mass and stiffness ratios, μ and ν.

ω±(k) = ω0

√√√√√1

2

⎧
⎨

⎩
1

2
[1 − cos(Gn)] + ω2

L

(
1 + μ2

) ±
√

4
(
μω2

L

)2 +
[
1

2
[1 − cos(Gn)] + ω2

L

(
μ2 − 1

)]2
⎫
⎬

⎭ (8)

ω±(k) = ω0

√√√√√ 1

16

⎧
⎨

⎩sin

(
Gn

2

)2

+ 1

4
ν2 + ω2

L ±
√√√√

(
1

4
ν2 + ω2

L

)2

+
(

ν2

4
− 4ω2

L

)
sin

(
Gn

2

)2

+ 1

4
cos(Gn)2 − 1

4

}
(9)

Thedispersion relation inEq. (8) emphasizes the effects
of μ, profoundly affecting the value of ω at each wave
vector Gn . On the other hand, the dispersion relation
Eq. (9) focuses more on the stiffness ratio ν, playing a
critical role as well in determining the behavior of the
system.
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Fig. 3 Dispersion in the periodic structure with varying reso-
nance coupling, and stiffness ratio. The plots demonstrate the
profound influence of resonance conditions on the emergence
andwidth of band gaps, highlighting the potential for tuned wave
propagation control by adjusting the ν parameter

From Figs. 2 and 3, it becomes evident that the prop-
erties of the periodic structure are intricately linked
with the resonance conditions. One striking observa-
tion is that the emergence of a band gap isn’t directly
associated with a specific wave vector Gn . Instead,
it’s bound to certain conditions or parameters, possi-
bly hinting at the importance of resonator properties in
dictating wave propagation characteristics. This indi-
cates a more complex interplay between the system
parameters than just the wave vector, emphasizing the
significance of resonator configurations in the system’s
acoustic properties.

Another pivotal observation is how the width of
the band gap is influenced by ν. As the stiffness ratio

becomes more pronounced, the width of the band gap
enlarges. This suggests that by manipulating the stiff-
ness of the resonator, one could have a direct influence
on the system’s acoustic insulation or filtering capabil-
ities. The stronger the coupling, the more formidable
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the band gap, acting as a more robust barrier to certain
frequency components.

Figure 3 suggests that controlling the system by
adjusting ν is a valuable approach. Online tuning with
the mass ratio μ can be challenging and impracti-
cal, whereas tuning with ν is straightforward, even in
real-time scenarios. This holds significant importance
for real-time control applications. Changing the mass
ratio typically requires halting the operation to phys-
ically modify the system-a process that is both time-
consuming and may inadvertently alter other critical
parameters like the bandgap width. On the other hand,
stiffness can be dynamically altered by implementing
mechanisms such as actuators that adjust the position
of an attached mass on the resonator, facilitating on-
the-fly tuning of the bandgap frequency edges without
needing to stop the system. This method provides a
streamlined and practical solution for tuning the sys-
tem’s acoustic properties in real time, enhancing its
adaptability and effectiveness in various applications.

3.3 Linear electromechanical resonators

Electromechanical systems can incorporate piezoelec-
tric components that introduce additional nonlinearity
to the system dynamics. These piezoelectric elements
serve a dual purpose: they aid in attenuating vibra-
tions within the unit cell, while simultaneously captur-
ing and enhancing energy harvesting in the resonators.
With reference to Fig. 1, let’s take a scenario where
resonators are equipped with piezoelectric elements.
This incorporation couples the mechanical motion of
the resonators with electrical dynamics, enriching the
behavior and capabilities of the system but also com-
plicating its dynamics.

To derive the dynamic equations of the harvester, the
Lagrangian formulation for electromechanical systems
is employed. The Lagrangian L is defined as:

L = T −U + We − D (10)

Using Lagrange’s equation, the governing dynamics
are given by:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+ ∂D

∂q̇i
= Qi (11)

Here, T represents the kinetic energy of the system, U
is the potential energy, We denotes the coenergy of the
piezoelectric module, and D is the dissipative function
capturing bothmechanical and electrical energy losses.

Fig. 4 An equivalent circuit for piezoelectric device model with
internal electrode capacitance and load resistance

In this formulation, qi is the generalized displacement
corresponding to a specific degree of freedom in the
system. Qi represents the external force or input acting
on the respective degree of freedom. By applying this
equation, a set of differential equations governing the
behavior of the harvester can be derived, effectively
capturing its mechanical and electrical characteristics.
The mechanical damping, often referred to as Rayleigh
damping, is represented by the term

Dm = 1

2
cr (u̇r − u̇m)2 + 1

2
cm (u̇m− − u̇m)2

+1

2
cm (u̇m − u̇m+)2 (12)

Piezoelectric devices are often represented by a
model where a current source is in parallel with their
internal electrode capacitance cp, as depicted in Fig. 4.
Additionally, a simple resistance R is connected to the
load in this configuration. The electrical damping arises
from the piezoelectric coupling, and it represents the
energy dissipation due to electrical losses, denoted by
Dp:

Dp = 1

2

v2p

R
(13)

Thus, the total dissipation function for the elec-
tromechanical system is given by D = Dm +Dp. Con-
sidering the piezoelectric transducer integrated into the
resonator, the coenergyWe of the piezoelectric module
is given by:

We = 1

2
cpv

2
p − θvp (um − ur ) − 1

2
kp (um − ur )

2

(14)

where cp and kp denote the equivalent free-body capac-
itance and stiffness of the piezoelectric element, respec-
tively. θ represents the equivalent force-electric fac-
tor of the piezoelectric cantilever beam. The first term
corresponds to the electrical coenergy in the capaci-
tance cp. The second term represents the piezoelec-
tric coenergy. The third term signifies the elastic strain
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coenergy in a spring with stiffness kp. Equatins (11)
to (14) detail the electrical behavior of the piezoelec-
tric resonators within the system. It’s essential to note
that θ and kp must be experimentally determined to
ensure the proposed model aligns with the real setup.
In the total mechanical stiffness, kr + kp, the stiffness
contribution from the piezoelectric material, kp, is sig-
nificantly smaller in magnitude compared to the res-
onator’s mechanical stiffness, kr . Therefore, its contri-
bution to mechanical stiffness is often disregarded in
the analysis. The energy equations are characterized by
linear representations. Given these linear forms of the
energy equations, the associated governing equations
of motion in metastructure are as follows:

mmüm(t) + km (2um(t) − um−(t) − um+(t))

+cm (2u̇m(t) − u̇m−(t) + ṁm+(t)) + kr (um(t) − ur (t))

+cr (u̇m(t) − u̇r (t)) + θv(t) = 0 (15)

mr ür (t) − cr (u̇m(t) − u̇r (t))

−kr (um(t) − ur (t)) − θv(t) = 0 (16)

cp v̇p(t) + vp(t)

R
− θ(u̇m(t) − u̇r (t)) = 0 (17)

Equations (15) to (17) are included with multiple
parameters, adding to their complexity. For enhanced
clarity and broader applicability, themodel’s governing
equations are recast using the established normalized
parameters as follows:

üm(t) + 4ζmωmu̇m(t) − 2ζmωm (u̇m−(t) + u̇m+(t))

+ 2ω2
mum(t) − ω2

m(um−(t) + um+(t))

+ 2μζrωr (u̇m(t) − u̇r (t)) + ν2ω2
m (um(t) − ur (t))

+ k2e ν
2ω2

m v̄(t) = 0, (18)

where for the last mass um(t)−um+(t) = 0, u̇m(t)−
u̇m+(t) = 0, and for the firstmass um−(t) = ub(t). The
equation for the resonator becomes:

ür (t) − 2ζrωr (u̇m(t) − u̇r (t))

− ω2
r (um(t) − ur (t)) − k2eω

2
r v̄(t) = 0

(19)

Lastly, the equation representing the piezoelectric
effect is given as:

˙̄v(t) + ω ˙̄v(t)

rg
− (u̇m(t) − u̇r (t)) = 0 (20)

where k2e = θ2/
(
cpkr

)
indicates the electromechan-

ical coupling coefficient, v̄ = cpvp/θ is the scaled
piezoelectric output voltage, and rg = Rcpωr desig-
nates the proportion of the actual load R to its opti-
mal value Ropt . Additionally, ζm = cm/ (2mmωm)

and ζr = cr/ (2mrωr ) are the damping ratios of the
main chain and the resonator, respectively. Further-
more, v2 = kr/km represents the stiffness propor-
tion between the resonator and the chain mass, while

μ = mr/mm depicts the mass ratio between the res-
onator and the chain mass.

3.4 Analysis of power output of standard
piezoelectric circuit for energy harvesting

The primary objective of this research is to investigate
the inherent properties of various types of nonlinear-
ity in piezoelectric materials, rather than comparing
different circuit models. For a consistent evaluation,
every type of nonlinearity is paired with the same stan-
dard circuit, ensuring each nonlinearity is studied in
isolation and without the influence of varying circuit
efficiencies. A standard rectifier interface circuit with
no electrical losses for energy harvesting is explored
using a lumped parameter model. In design analysis
for energy harvesting, a simplified circuit is frequently
employed, as shown Fig. 5. In this configuration, the
regulation circuit and battery are substituted with an
equivalent resistor labeled as R, and the rectified volt-
age across it is denoted as ve. It is assumed, for the
purposes of this study, that the rectifying bridge is in
an ideal and faultless state. A rectifying bridge circuit
is integrated, targeting a stable output DC voltage ve,
which connects the load directly. It is assumed that
the filter capacitor ce is sufficiently large to render ve
essentially constant. In steady-state operation, the aver-
age rectified voltage and displacement are related.Gov-
erned by equations, the piezo voltage vp(t) is propor-
tional to the displacement u(t). Both variables aremod-
eled as u(t) = u0 sin(wt−θ) and vp(t) = vp0(wt−θ),
where u0 is the constant displacement magnitude, and
vp0(t) is a periodic function with |vp0(t)| ≤ ve.

During a semi-period T
2 , defined as T = 2π

w
, the

integral of the rate of change of vp(t) is 2ve. This yields∫ t2

t1
I (t)dt = T

2

ve

R
, (21)

delineating the relationship between the current and
average rectified voltage [38]. The integral

∫ t2
t1

v̇p(t)dt
represents the total change in the piezoelectric voltage
vp(t) from time t1 to t2. If vp(t) oscillates between−ve
and ve during this semi-period T

2 , then the total change
in vp(t) is ve − (−ve) = 2ve. If u(t) is oscillating from
its minimum −u0 to its maximum u0 during the semi-
period from time t1 to t2, then the change in u(t) during
this period is u0 − (−u0) = 2u0.

Assuming the standard linear form and rewriting Eq.
(17) yields to:
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Fig. 5 Classical energy harvesting circuit for the standard elec-
tronic interfaces

cp v̇p(t) + i p(t) = θ ż(t), (22)

where z(t) is the relative displacement of themass chain
with respect to the resonator in each unit cell. Integra-
tion of Eq. (22) from time t1 to t2 gives:

2cpve + T

2

ve

R
= 2θ z0 (23)

This equation correlates the changes in stored electric
charge, current, and mechanical displacement between
times a and b. Given T

2 = π
ω
, the equation for ve

expressed as:

ve = Rθω

Rcpω + π
2

z0 (24)

Furthermore, the average harvested power P can be
well-defined as:

P = v2e

R
= Rθ2ω2

(
Rcpω + π

2

)2 z
2
0 (25)

3.5 Nonlinear electromechanical resonators

The behavior of a linear piezoelectric element is
described by Eq. (17). While linearized models offer
simplicity and are often adequate for many applica-
tions, they may miss critical behaviors and limit our
understanding and predictive capabilities. The study
of nonlinearity provides a comprehensive and accurate
view of systems, essential for both practical applica-
tions and scientific inquiry. When introducing any of
these nonlinearities into the model, it is essential to
ensure that they are grounded in physical reality or
experimental observations relevant to the system.Mod-
eling choices should be justified based on the underly-
ing physics, empirical data, or both.

One common approach to introduce nonlinearity is
by using a polynomial expansion. When considering
the piezoelectric response, one possibility is a nonlinear
dependency of the voltage, denoted as v(t), on strain.

Adding a simple quadratic nonlinearity to the piezo-
electric equation, yields to:

cp v̇(t) + v(t)

R
− θ (u̇m(t) − u̇r (t))

−β (u̇m(t) − u̇r (t))
2 = 0 (26)

where β is a coefficient of the nonlinear term. In
this model, the piezoelectric response starts to deviate
from linearity as the strain (differential displacement)
increases. The term β dictates the strength of this non-
linearity. If β is zero, the system returns to the original
linear behavior. In electronic circuits, transistors, espe-
ciallyMOSFETs, can exhibit polynomial behaviorwith
respect to gate-source voltage and drain current, lead-
ing to nonlinear amplification.Moreover, the dynamics
of robotic arms can have nonlinear components due to
joint friction, and these can be represented as polyno-
mial functions of velocities.

Upon introducing nonlinearity, the system can be
numerically simulated using techniques tailored for
nonlinear differential equations, such as the Runge–
Kutta method. Software packages, like MATLAB’s
Simulink or COMSOL, can also be employed. Initial
conditions and boundary conditions need to be estab-
lished based on the specific study.

Apart from polynomial expansion, there are several
other types to introduce and study nonlinearity in a
piezoelectric energy harvester.

3.6 Theoretical models for the nonlinear energy
harvesting

The nonlinear behavior in energy harvesting can be
succinctly captured in a generalized equation which
encompasses multiple facets of nonlinearity. Consider
the following expression:

α
v(t)

R(ω)
+ cp

d

dt
[ f (v(t))]

− θ

[
g

(
d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)]

− h

(∫
v(t)dt

)
= 0

(27)

Here: R(ω) introduces nonlinearity as a function of
frequency. Adjustable parameter, α can be varied
to explore different system behaviors and regimes.
f (v(t)) introduces nonlinearity as a function of the
voltage across the impedance.
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The term g
(

d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)
represents

a nonlinear function of the acceleration and voltage.
h

(∫
v(t)dt

)
is the nonlinearity introduced by an inte-

gral of voltage over time. It is important to note that this
is a completely abstract and generalized equation that
must be determined based on the system specifications
and the physics involved.

The Eq. (27) exemplifies a multi-faceted nonlin-
ear system that integrates various nonlinear dependen-
cies into a comprehensive framework. R(ω) denotes a
frequency-dependent nonlinearity, reflective of materi-
als like semiconductors or piezoelectric elements under
resonance. f (v(t)) embodies a voltage-dependent non-
linearity, typical in devices like diodes or transistors,
where shifting voltage can alter operational regimes.

The term g
(

d2

dt2
um(t) − d2

dt2
ur (t), v(t)

)
encapsulates

a coupled nonlinearity, hinting at a complex relation-
ship between the accelerations of two system com-
ponents and voltage. Lastly, h

(∫
v(t)dt

)
introduces a

memory effect, capturing historical influences on the
system, akin to hysteresis or capacitive responses.

To derive the standard linear form of a piezoelectric
equation, the resistance is considered as not frequency-
dependent, and the capacitance is assumed not to be
influenced by voltage variations, simplifying the term
cp

d
dt [ f (v(t))] to cp v̇(t) by setting f (v(t)) = v(t). The

electromechanical coupling is taken to be linear, mean-
ing the term with g(·) reduces to θ (u̇2(t) − u̇1(t)),
indicating the coupling coefficient isn’t influenced by
displacement, velocity, or acceleration. Lastly, the term
h

(∫
v(t)dt

)
is disregarded, signifying that the integral

of voltage over time does not significantly influence the
system dynamics. Under these assumptions and simpli-
fications, the generalized Eq. (27) reduces to Eq. (17),
which is the standard linear form of a rectifier circuit.

3.7 Internally coupled resonators with mechanical
nonlinearity

To clarify the dynamics within the mechanically inter-
nally coupled system, the analysis strategically simpli-
fies the system by focusing exclusively on the springs,
omitting damping effects and electromechanical ele-
ments. This approach allows for a concentrated exam-
ination of the system’s behavior under the influence
of linear springs in the primary chain and resonators,
alongside nonlinear springs that facilitate internal cou-
pling between resonators. As depicted in Fig. 6, the

Fig. 6 Nonlinear mechanical internally coupled chain. The
dashed rectangle is unit cell

system consists of a nonlinear mechanical internally
coupled chain, with the unit cell highlighted by the
dashed rectangle. Consequently, the dynamic behavior
of the system will be primarily dictated by this non-
linear internal coupling between resonators, even as
the rest of the system retains its linearity. This con-
figuration allows for a focused study on the impacts
and potential advantages of having a nonlinear inter-
resonator spring in an otherwise linear spring system.

The kinetic energy, denoted by T , encompasses the
motion of the main chain and the resonators and is
given by:

T = 1

2
mm

(
u̇2m + u̇2m+

)
+ 1

2
mr

(
u̇2r + u̇2r+

)
(28)

The potential energy, represented by U , captures the
energy stored in the main chain’s linear springs, the
coupling springs between the main chain and res-
onators, and the nonlinear internal coupling springs of
the resonators:

U =1

2
km

[
(um−−um)2+(um−um+)2 + (um+ − um++)2

]

+ 1

2
kr

[
(um − ur )

2 + (um+ − ur+)2
]

+ 1

2
kc1(ur − ur+)2 + 1

4
kc2 (ur − ur+)4 (29)

Here, kc1 and kc2 are the linear and nonlinear coupling
coefficients, respectively. The kc1 term introduces a lin-
ear coupling between resonators, while kc2 induces a
bistable nonlinearity due to its quartic nature between
resonators.When both kc1 and kc2 are positive

(
kc1 > 0

and kc2 > 0), a classic monostable state is achieved,
simplifying the system by avoiding the necessity to
find and linearize around a stable point. This selec-
tion, while ensuring straightforward and stable system
behavior, is often employed to eschew the complexities
that arise when dealing with bistable systems, particu-
larly when kc1 < 0 and kc2 > 0.
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Utilizing the Lagrangian formulation, the system’s
equations of motion are derived as:

mmüm(t) + km (2um(t) − um−(t) − um+(t))

+kr (um(t) − ur (t)) = 0 (30)

mr ür (t) − kr (um(t) − ur (t)) + kc1 (ur (t) − ur+(t))

+kc2 (ur (t) − ur+(t))3 = 0 (31)

mmüm+(t) + km (2um+(t) − um(t) − um++(t))

+kr (um+(t) − ur+(t)) = 0 (32)

mr ür+(t) − kr (um+(t) − ur+(t)) − kc1
× (ur (t) − ur+(t)) − kc2 (ur (t) − ur+(t))3 = 0 (33)

The superscript ’+’ indicates the two adjacent mass-
in-mass structures, where um++ denotes the displace-
ment of themass or unit that is two positions away from
massm. UtilizingBloch’s theorem, thewaveformof the
harmonic displacements ofmasses can be expressed as:

um = um0e
i(Gnx−ωt)

um+ = um1e
i(Gnx+Gna−ωt)

ur = ur0e
i(Gnx−ωt)

ur+ = ur1e
i(Gnx+Gna−ωt),

(34)

where Gn represents the wave number or spatial fre-
quency, dictating the spatial periodicity of the wave
over the unit cell with the dimension of a. The coef-
ficients um0 , um1 , ur0 , and ur1 represent the complex
wave amplitudes. Integrating these terms into the pro-
vided equations leads to the derivation of the disper-
sion relation. The associated matrix is determined for
this purpose, and by setting its determinant to zero, a
relationship between Gn and ω is established. For non-
linear scenarios, as presented in the above equations, a
numerical approach is typically employed. From four
inertias in a unit cell, an eighth-order dispersion equa-
tion arises when the determinant is zero. This results
in four curves with three band gaps on the positive real
axis, indicating that internally coupled metamaterials
offer additional band gaps over conventional ones.

In this study, we focus on a specific frequency range.
Acomprehensive analysis of the effects of piezoelectric
nonlinearities across the entire frequency spectrum is
beyond the scope of this work.

3.8 Electromchanical internally coupled resonators

In the previous sections, we explored metamaterials
with internal resonator coupling. Given the challenges

Fig. 7 Internally coupled with electrical shunt circuit. Forward
(dash) and reverse (solid) capacitance shunting configuration

associated with designing and implementing the inter-
nal spring, especially when targeting negative stiffness,
an alternative approach is to employ an electrical shunt
circuit. Specifically, a prototype capacitance canmimic
the behavior of a mechanically internally coupled res-
onator.

3.8.1 Internal coupling via shunt capacitance circuit
technique

In this section, the shunt capacitance circuit technique
is employed to model a two-degree-of-freedom elec-
trical system with internal coupling, as illustrated in
Fig. 7. In this scenario, capacitance is incorporated as a
key component instead of utilizing the previously for-
mulated resistance (R).

Figure 7 presents two different configurations of the
shunt circuit: the forward and the reverse. For the for-
ward setup, the top and bottom surfaces of the piezo-
electric transducer on the left align with the analogous
surfaces of its counterpart on the right. Conversely, the
reverse configuration has the top and bottom surfaces of
the two piezoelectric transducers connected in an oppo-
site fashion. In both setups, a capacitor is connected in
parallel to both piezoelectric transducers.

The analytical procedures for both configurations
are analogous, leading to comparable conclusions. The
distinction in circuit connectivity between these two
setups only results in a sign reversal in the ultimate
expression for equivalent coupling stiffness. Both for-
ward and reverse connections can achieve the same
functionality, albeit with differing capacitance tuning
strategies. This investigation primarily focuses on the
reverse connection configuration. In its absence of
external capacitance, it exhibits characteristics akin to
a standard spring with positive stiffness, simplifying its
interpretation in an equivalent mechanical context.
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Fig. 8 Equivalent electrical system representation of the unit cell
resonators with capacitance shunt circuit using the impedance
analogy

Capacitance typically relates the change in electric
charge to shifts in electric potential. With positive total
capacitance, a discharge of current leads to a voltage
decrease across the capacitor, whereas with negative
total capacitance, the voltage increases. Utilizing the
impedance analogy (current to velocity, charge to dis-
placement, voltage to force), the circuit segments LRC
and LRC+ correspond to the resonators mrcr kr and
(mrcr kr )+, respectively, as illustrated in Fig. 8. For
simplicity, the mechanical properties of the resonators
(mass, stiffness, and damping) are assumed to be iden-
tical.

The voltage across the total capacitance represents
the force interaction between these resonators. Addi-
tionally, the current through total capacitance, repre-
senting the difference in currents in the loops’ paths,
indicates the difference in velocity between the res-
onators. The charge variation in total capacitance indi-
cates the displacement difference between the res-
onators. Hence, the capacitor in the electrical system
canbe envisioned as a spring, ks coupling the resonators
in the mechanical domain, with positive total capaci-
tance acting as a positive-stiffness coupling spring and
negative total capacitance as a negative-stiffness spring.

Considering the reversed configuration of the two
piezoelectric transducers, the voltages exhibit identi-
cal magnitudes but with opposite directions. Factoring
in the current passing through the parallel-connected
capacitance cs , the relationship between the voltages is
expressed as:

1

cs

∫ (
i p(t) − i p+(t)

)
dt = vp(t) (35)

The design employs an internal shunt capacitance cir-
cuit to optimize the band gap behavior in resonators.
When this capacitance acts as a negative capacitor
and is finely tuned, it can offset the capacitances of
linked piezoelectric transducers, enhancing the cou-
pling between adjacent resonator.

Considering damping in the resonators and assum-
ing identical stiffness, damping coefficients, andmasses
for all resonators, the governing equations for the
motion of the two resonators within a unit cell (refer to
Fig. 7) relative to the mass of the chain is as follows:

mr z̈r (t) + cr żr (t) + kr zr (t) + θrvp(t)

= mr üm(t) (36)

mr z̈r+(t) + cr żr+(t) + kr zr+(t) + θr+vp+(t)

= mr üm+(t) (37)

The relative displacements of these resonators with
respect to the main chain structure are denoted by
zr (t) and zr+(t). The electromechanical coupling coef-
ficients are θr and θr+ , and the voltages across the
corresponding piezoelectric transducers are vp(t) and
vp+(t). The excitation displacements are represented as
um(t) for the left and um+(t) for the right resonators.

The governing electrical domain equations for the
piezoelectric transducers are as follows:

cp v̇p(t) + i p(t) − θr żr (t) = 0 (38)

cp+ v̇p+(t) + i p+(t) − θr+ żr+(t) = 0 (39)

By substituting Eq. (35) into Eqs. (38) and (39), expres-
sions for currents i p(t) and i p+(t) in the loops are
derived as:

i p(t) = cp+θr żr + cpθr+ żr+ + csθr żr
cp + cp+ + cs

(40)

i p+(t) = cp+θr żr + cpθr+ żr+ + csθr+ żr+

cp + cp+ + cs
(41)

Substituting Eqs. (40) and (41) into Eq. (35) and inte-
grating with respect to time for zero initial condition
yields:

vp(t) = (θr zr − θr+ zr+)

cp + cp+ + cs
(42)

vp+(t) = − (θr zr − θr+ zr+)

cp + cp+ + cs
(43)

After substituting Eqs. (40) and (41) into Eq. (35) and
integrating with respect to time, assuming θr is equal
to θr+ , the equations of motion can be simplified as
follows

mr z̈r (t) + cr żr (t) + kr zr (t)

+ks (zr (t) − zr+(t)) = mr üm(t) (44)

mr z̈r+(t) + cr żr+(t) + kr zr+(t)

−ks (zr (t) − zr+(t)) = mr üm+(t), (45)
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where

ks = θ2r

cp + cp+ + cs
. (46)

Implementing coupling throughpiezoelectric transduc-
ers and a shunt capacitance circuit is practical, as it
serves as an equivalent spring that relates the motions
of two resonators via their relative displacements. This
coupling mechanism, resulting from local resonances,
creates additional band gaps in metamaterials by gen-
erating two resonant frequencies.

The piezoelectric transducers, when shunted, act as
an analogous internal coupling spring ks , similar to the
mechanical internal coupling that links the movement
of two resonators. However, it’s important to note that
using a negative shunt capacitor,which is a type of posi-
tive feedback in op-ampcircuits, can increase the risk of
system instability without the right parameter choices.
Despite this, the design’s strength is its tunability and
ability to generate multiple band gaps, offering robust
vibration suppression.

3.9 Stability analysis

The behavior of the system is largely determined by the
parameter ks , which characterizes the stiffness intro-
duced due to electromechanical coupling via the shunt
circuit. To introduce negative stiffness, assuming elec-
tromechanical coupling, θr is equal to θ+

r , it is requisite
that ks be negative. This can be expressed mathemati-
cally as:

ks = θ2r

cp + cp+ + cs
< 0 (47)

Given that θ2r will always be positive, the denominator
must be negative for ks to be negative. Thus, either cp
and/or cp+must be negative (which could signify neg-
ative capacitance introduced, for instance, by an active
circuit) while the magnitude of their sum should be
greater than cs .

Utilizing the Jacobian method and employing the
vector [zr (t), zr+(t)] for the linear matrix of the system
depicted by Eqs. (44) and (45), the eigenvalues are pro-

vided as λ1,2 = ±
√−krmr

mr
, and λ3,4 = ±

√−mr (kr+2ks )
mr

.
The stability of a system is contingent upon the real
parts of its eigenvalues. For the system at hand, when
kr + 2ks > 0, all eigenvalues are purely imaginary,
suggesting marginal stability. In this scenario, the sys-
tem, when perturbed, will oscillate indefinitely without

growing unbounded or decaying to zero. Conversely,
when kr + 2ks < 0, the system presents two positive
eigenvalues and two negative ones. The presence of
positive real eigenvalues clearly indicates an unstable
system. This underscores the paramountcy of the inter-
play between the resonator’s spring constant and the
feedback shunt capacitance stiffness (associated with
ks ). If the feedback’s influence is excessively robust
and negative, it could push the system into an unstable
regime. Therefore, for a stable system, the criterion for
cs is:

cs >
8mrθ

2
r

c2r − 4krmr
− cp − cp+ (48)

Formost practical applications, a strictly stable system,
where all disturbances decay, is more desirable than a
marginally stable one. Exploring stability in lumped
parameter systems reveals that maintaining a strictly
stable condition, preferable for practical applications,
hinges on a fine balance within the system’s parame-
ters, as indicated by the derived criterion. For a detailed
examination of stability analysis and energy harvesting
within lumped parameter systems, particularly those
incorporating internally coupled resonators, the study
in [39] extends the discussion to encompass a variety
of conditions.

4 Simulation analysis and discussion

The behavior of the proposed models is observed
through simulations using the case study parameters
outlined in Table 1. The system model was developed
by formulating a set of interconnected ordinary differ-
ential equations that encapsulate both the mechanical
and electrical dynamics of the piezoelectric harvesters.
Numerical solutions to this systemwere obtainedutiliz-
ing the fourth-order Runge–Kutta method with a care-
fully chosen time step to guarantee precision and stabil-
ity in the results. The simulation results explore various
aspects of the system’s dynamic response, including
vibration mitigation, energy harvesting, power output,
and robustness analysis.

4.1 Nonlinear mechanical resonators and internal
coupling dynamics

In Fig. 9, the band gap behaviors for various system
configurations are presented. The system’s natural fre-
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Table 1 Defined parameters for the piezoelectric model

Parameter Value

Mass of main chain (mm ) 0.056 kg

Mass of resonator (mr ) 0.0336 kg

Spring constant of main chain (km ) 150 N/m

Spring constant of resonator (kr ) 129.6 N/m

Damping coefficient of main chain (cm ) 0.0464 Ns/m

Damping coefficient of resonator (cr ) 0.0334 Ns/m

Piezoelectric capacitance (cp) 1.5 mF(C/m)

Electromechanical coupling coefficient (θ) 0.25 N/V

Nonlinear stiffnesses quadratic coefficient (γ2)−500 N/m2

Nonlinear stiffnesses cubic coefficient (γ3) 15000 N/m3

Linear coupling coefficient (kc1 ) 198(−20) N/m

Nonlinear coupling coefficient (kc2 ) 2386(880) N/m3

Shunt capacitance (cs ) −7.9 mF(C/m)

Internal resistance (R) 500 �
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Fig. 9 Comparative analysis of band gap behaviors in a 1-D
chain system: insights from linear, nonlinear, and internally cou-
pled resonator configurations

quencies are analyzed within a range from 6 to 17 Hz.
The introduction of locally resonating elements dis-
tinctly establishes a band gap, differentiating these con-
figurations from the conventional metastructure setup.
This band gap characteristic is attributed to the linear
local resonance, which undergoes out-of-phase motion
when subjected to an external excitation frequency near
its local resonance frequency.

The nonlinear analysis focuses primarily on con-
trasting linear systems with their nonlinear counter-
parts, in addition to examining internally coupled sys-

6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

-0.2 0 0.2
-0.2

0

0.2

(-0.1509,-0.11364)(0.1509,-0.11364)

Fig. 10 Displacement response of bistable nonlinear mechan-
ical internal coupling resonators. Linear coupling coefficient
kc1 = −20 N/m, and nonlinear coupling coefficient kc2 = 880
N/m3. Inset: Resonator’s potential energy profile for the specified
coupling parameters

tems. Effects arising from bifurcation and its influence
on frequency sweeps are not explored in this context.
Nonlinear resonators, both quadratic and cubic, exhibit
a more extensive band gap compared to their linear
counterparts. For the quadratic nonlinearity, a modified
relation is employed:

fr = kru + γr2u|u| (49)

This model facilitates numerical simulations and pro-
vides a comparative benchmark against cubic nonlin-
earities. Both linear and nonlinear internal coupling
serve to effectively increase the bandgap within the
main chain, as illustrated in Fig. 9. The analysis of
mechanical internal coupling reveals that linear and
nonlinear internal couplings may not necessarily boost
power and energy generation, even when the main
chain has a wider bandgap. Surprisingly, energy har-
vested with internal coupling is sometimes lower than
in a single-chain setup. This suggests that interactions
between resonators could hinder energy accumulation.

Figure 10 shows the transmission response of a
metastructure equippedwith a nonlinear bi-stable inter-
nal coupling resonator. The observed bifurcation is
shaped by linear (kc1 = −20 N/m) and nonlinear
(kc2 = 880 N/m3) coupling coefficients, with the con-
tinuous sweep offering a detailed system response. The
main graph underlines the system’s potential energy
dynamics, with an unstable origin indicating negative
stiffness. This complexity is further highlighted by
bifurcations between 14–16 Hz. The inset reveals var-
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ious energy states the system can attain. Multiple local
minima suggest system multi-stability, especially dur-
ing large fluctuations. Hysteresis is evident from dis-
crepancies in sweep traces, particularly in lower fre-
quencies from 6 Hz and 10 Hz. However, it’s vital
to understand the intent behind the choice of param-
eters in this study. The deliberate restriction to a spe-
cific frequency range serves tomimic negative stiffness
phenomenaobserved in specific electromechanical sys-
tems.

Cubic nonlinearities, with their symmetric proper-
ties, are observed to manifest either pure hardening or
softening behaviors. This stands in contrast to the dual
behavior inherent to asymmetric quadratic nonlinear-
ities. The significance of optimal impedance match-
ing is underscored, highlighting its role in achieving
enhanced vibration suppression and energy harvesting.
However, as theoretical constructs transition to tangi-
ble systems, certain compromises are often necessary
to accommodate weakly and strongly coupled systems
[34,40].

Setting both kc1 and kc2 to be positive (see Table
1) induces a classic monostable state, simplifying the
systemand avoiding the complications inherent inman-
aging bistable systems, particularly when kc1 < 0 and
kc2 > 0.

Furthermore,when evaluatingmechanically internal
coupling configurations, there is a discernible decrease
in efficiency for energy harvesting.While band gaps are
inherent features of these systems, theymay sometimes
present challenges, especially in terms of wave prop-
agation. The compounded presence of a band gap and
internal coupling appears to negatively impact overall
energy output. Detailed investigations into the dynam-
ics of these coupled resonators could provide deeper
insights into the underlying mechanisms that result in
reduced efficiency.

Nonetheless, simulating internally coupled
resonators with bistable nonlinearity to observe bifur-
cation effects was considered valuable. However, due
to the inherent complexity and the desire to avoid sim-
ulating rapid transitions, this approach was ultimately
avoided.

Figure 11 shows the nonlinear spring force-
displacement relation for cubic nonlinearities, and
transmittance of this nonlinearity. It shows the influ-
ence of cubic nonlinearity in the system. Distinctly,
the nonlinearity is characterized by the coefficient γ3,
where its sign determines the hardening or softening
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Fig. 11 Nonlinear characteristics of the 1-D chain system: a
Transmittance response influenced by cubic nonlinearity, and b
nonlinear spring force-displacement relationship for cubic non-
linearities

nature of the system. For the resonator’s equation force:

fr = kru + γr3u
3, (50)

The value of γr3 has been varied as ±15000 N/m3,
pointing to two contrasting behaviors. When γr3 > 0,
the system exhibits hardening nonlinearity. This means
as the amplitude of excitation increases, the natural fre-
quency of the system also escalates. Conversely, for
γr3 < 0, we observe a softening nonlinearity. Here, an
increase in the excitation amplitude leads to a decrease
in the system’s natural frequency. To reduce the com-
plexity of the system, bistable nonlinearity is deliber-
ately avoided, eliminating the need to perform up and
down-frequency simulations. In the broader context,
the introduction of diatomic chains, incorporation of
nonlinear local resonators (as depicted in Figs. 6, 7), or
a transition to 2D setups, allows for deeper exploration
and comprehension of the intricate nonlinear phenom-
ena in advanced systems. Building on the findings from
the frequency domain analysis, it becomes evident in
the time domain that systems with cubic nonlinearity
commence vibration suppression earlier compared to
thosewith linear resonators. The duration duringwhich
effective suppression occurs depends on multiple fac-
tors, including the natural frequency of the system and
its inherent physical properties.
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Fig. 12 Band gap illustration for a monochain featuring lin-
ear local resonators with n = 8 mass chains, demonstrating the
influence of ke on band gap and metastructure response

4.2 Investigation on energy harvesting performance in
linear electromechanical metamaterial

In Fig. 12, the transmittance for various values of
ke, representing the piezoelectric coupling coefficient
(Eq. 20), is depicted. For the analysis, the stiffness of
the piezoelectric element, represented by kp, is consid-
ered negligible compared to the significantly greater
stiffness of the resonator, denoted by kr . This simplifi-
cation enables a focus on the effects of other parameters
without the interference of kp.

A noticeable broadening of the band gap is observed
as the electromechanical coupling coefficient ke is
increased, indicating an enhanced capacity of the sys-
tem to suppress vibrations. The peaks of the trans-
mittance adjacent to this band gap are notably sensi-
tive to variations in ke, while those further from the
band gap show minimal alternations. This observation
emphasizes the crucial role played by ke in modulating
the system’s response when using piezoelectric materi-
als, highlighting its significant contribution to vibration
control in complex systems. Additionally, the param-
eter rg , defined as rg = ωr cp R, can be adjusted to
achieve minimal transmittance at each frequency.

As depicted in Fig. 13, the electromechanical cou-
pling coefficient ke, plays a pivotal role in the energy
harvesting performance of a system comprising eight
unit cells. This parameter ke, essentially governs how
efficiently piezoelectric materials convert mechanical
energy to electrical energy and vice versa, exerting a

Fig. 13 Electromechanical coupling’s impact on energy harvest-
ing: illustration of the power harvested across varying ke in an
n = 8 unit cell monochain, showcasing the pivotal role of the
electromechanical coupling coefficient in optimizing energy con-
version and system dynamics

significant influence on the outcomes of energy har-
vesting. In scenarios characterized by weak coupling,
an increase in ke results in a notable increase in power
output. Conversely, in situations involving strong cou-
pling, an increase in ke leads to a power level that
remains constant, preventing any additional improve-
ments. For our subsequent analysis, a weak coupling
value of ke = 0.567

(
cp = 1.5mF

)
is selected to

avoid the complex power response patterns observed in
strong coupling situations. To comprehensively assess
overall energy harvesting performance, we uniformly
adjust the resistors R, connected to the piezoelectric
transducers, and consolidate power outputs from these
resistors. High-capacitance (millifarad-level) piezo-
electric materials have a wide range of applications,
from energy-harvesting floor tiles in busy areas to
vibration damping inmachinery, structural monitoring,
energy recapture in vehicle suspensions, self-charging
personal electronics, and power sources for wearable
health monitors. To enhance the capacitance of these
materials, strategies include selecting materials with
higher dielectric constants, optimizing element geom-
etry, using multi-layer structures, and parallel capaci-
tor configurations, aiming to boost energy harvesting
capabilities and efficiency in diverse applications.

5 Nonlinear electromechanical models

This section examines the dynamics of nonlinear elec-
tromechanical models, essential for advancing energy
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harvesting systems. Various nonlinear phenomena are
examined to reveal their significant impact on the per-
formance of piezoelectric devices. By elucidating the
interactions betweenmechanical and electrical compo-
nents, these nonlinearmodels demonstrate potential for
optimizing energy conversion.

5.1 Model NL: 1-polynomial nonlinearity in
resonators

Polynomial nonlinearity finds practical applications
in electronic circuits with diodes and in thermostats
or temperature controllers. In diodes, the voltage-
dependent behavior transitions from an open switch
to a closed switch as voltage crosses a threshold, using
piecewise linear approximations. In temperature con-
trollers, piecewise linear models are employed to con-
trol heaters based on temperature thresholds, resulting
in distinct on-off behavior points in the response curve.
Introducing polynomial nonlinearity in resonators by
adding a term with coefficient β fundamentally alters
the voltage-strain relationship within the piezoelectric
equation, encapsulating the nonlinear disposition of
the piezoelectric material under substantial strains. The
primary system equations for mm and mr persistently
portray the dynamics of the masses along with their
reciprocal interactions, which remain unaffected by the
inherent nonlinearity of the piezoelectric element. This
incorporation of a nonlinearity parameter, β, facilitates
a discernable softening behavior when it is positive and
a hardening behavior when negative, each having dis-
tinct implications on resonance frequency and ampli-
tude of vibration. Optimization of the nonlinear poly-
nomial parameters can be a viable strategy for maxi-
mizing energy harvesting within the outlined system.
This can be achieved by defining a cost function, an
integration of power across a desired frequency span,
thereby quantifying the performance. Utilizing compu-
tational tools, such as MATLAB, enables optimization
of this function concerning the nonlinear coefficient.
By examining the system’s eigenvalues to extract infor-
mation about the bandgap, a thorough combination of
analytical and numerical methods is used to enhance
the system’s performance to achieve optimal results.

Figure 14 shows the relationship between the non-
linearity coefficient β and the harvested power in a
monochain system. The n = 8 mass chain model is
instrumental in depicting this correlation, serving as

6 8 10 12 14 16 18 20
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100

101
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Fig. 14 Harvested power from a monochain with polynomial
nonlinear local resonators in an eight-mass chain configuration.
The graph highlights the impact of varying the nonlinearity coef-
ficient β on the piezoelectric response and the resultant band gap
behavior
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Fig. 15 Temporal Evolution of Harvested Energy: A depiction
of energy harvested from piezoelectric elements over time in a
monochain with polynomial nonlinear local resonators, utilizing
n = 8 mass chains. This visualization underscores the profound
influence of polynomial nonlinearity on the system’s energy-
harvesting trajectory, revealing a substantial enhancement in
energy accumulation even in the absence of notable bandgap
alterations

a concise yet representative framework to showcase
the trends. Although a larger number of chains could
enhance the metamaterial characteristic, the chosen
size suffices to capture the essential dynamics for this
analysis, aligning with the findings from Eq. (25).

The interaction among β, vibration dynamics, and
energy conversion can provide insights for enhanc-
ing energy collection in similar systems. Figure 15
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delves into this concept, demonstrating how energy
harvested from piezoelectric elements evolves over
time. Although the introduction of polynomial non-
linearity doesn’t significantly alter the formation of
bandgaps, it noticeably impacts power and energy har-
vesting because of the increasedmotion in the presence
of nonlinearity.

5.2 Model NL: 2-nonlinear capacitance in
voltage-dependent scenarios

Starting with the general nonlinear equation in Eq. (27)
and making a few simplifications, such as assuming
consistent resistance, introducing voltage-dependent
capacitance, transitioning from acceleration nonlinear-
ity to velocity differences, and disregarding memory
effects, the following model is derived to describe the
nonlinear capacitance in the piezoelectric equation:

v(t)

R
+ cp(v(t))

dv(t)

dt
− θ

(
dum(t)

dt
− dur (t)

dt

)
= 0

(51)

Here, cp(v(t)) represents the voltage-dependent capac-
itance, mathematically representing scenarios where
capacitance shifts with applied voltage.

In practical applications, encountering nonlinear
capacitance isn’t rare and can be observed in vari-
ous electronic components and systems like varactors,
ferroelectric materials, and memristors. These systems
showcase a capacitance that isn’t static but modulates
with the voltage applied, thereby exhibiting diverse
behaviors across assorted operating regimes.

When simulating scenarios where capacitance non-
linearly shifts with voltage, an example relationship
might be expressed as:

cp(v(t)) = cp0 + kv · v2(t), (52)

where kv serves as a proportionality constant, illu-
minating and predicting how systems respond when
capacitance dynamically interactswith applied voltage.
In Fig. 16, a specific relationship between capacitance
and voltage under the parameters cp = 1.5 mF (base
capacitance). The figure, composed of four subplots
detailing Transmitance, Power, and Harvested Energy
in relation to excitation frequency, and an illustration
of the quadratic term coefficient of cp piezo capaci-
tance, provides a detailed overview of key data points.
Notably, there’s an evident increase in power when
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Fig. 16 Influence of quadratic nonlinear piezo capacitance, cp
on transmittance and harvested energy

dealing with nonlinear capacitance compared to linear
piezo capacitance. This observation is corroborated by
the energy acquired during the simulation time, which
is 3.67 Joules, in contrast to the 2.82 Joules observed
in a linear framework.

Thus, in this scenario, not only is more energy har-
vested from the resonators, but there is also an expan-
sion in the transmittance bandgap. The dual advan-
tages of vibration suppression in the main chain and
enhanced energy harvesting from the resonator open
the door to potentially more effective approaches for
optimizing energy extraction in comparable systems.

5.3 Model NL: 3-cubic nonlinearities

Cubic nonlinearities can be found in electromechanical
systems, such as sensors and actuators. In micro elec-
tromechanical systems (MEMS ), such as accelerome-
ters or gyroscopes, cubic nonlinearities can arise due to
the miniaturized mechanical components. For nonlin-
ear electromechanical coupling, the piezoelectric equa-
tion can be represented as:

v(t)

R
+ cp

dv(t)

dt
− θ

(
dum(t)

dt
− dur (t)

dt

)3

= 0

(53)

In Fig. 17, the relation between voltage v(t) and
relative displacement z is exploredwithin the context of
cubic nonlinearity. The subplot detailing the v(t)−z(t)
relationship illustrates that the equation simplifies to:
v(t)

R
− θ z(t)n = 0 (54)
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Fig. 17 Illustrating the Interplay of v(t) and z(t) in the Pres-
ence of Cubic Nonlinearities. The figure demonstrates how cubic
nonlinearity affects electromechanical coupling in a piezoelec-
tric system, utilizing specific resistances for standard and cubic
terms (R = 500 � and R = 192 k�, respectively) to maintain
consistent saturation characteristics across scenarios

To maintain comparable saturation characteristics
between a conventional linear resonator and one with
a cubic term, resistances of R = 500� and 192 k� are
utilized, respectively.

The case study demonstrates that introducing cubic
nonlinear terms, linked to the relative velocities of the
primary chain and resonator, significantly affects both
harvested energy and transmittance. Specifically, the
observed cubic nonlinearity contributes to a decline
in harvested energy, posing noteworthy implications
for optimization in energy-harvesting contexts, where
strategies to circumvent or offset this reduction are cru-
cial. Simultaneously, the incidence of these nonlinear
terms provokes a contraction of the transmittance band
gap, which could potentially affect the system’s effi-
cacy, inviting further exploration and mitigation strat-
egy development.

6 Internally coupled resonators with
electromechanical nonlinearity

Figure 18 visualizes the derived relationship of Eq. (48)
and its implications for system stability. Based on the
analysis, the threshold value of the equivalent internally
coupled stiffness ks for stability is given by ks > − kr

2 .
The relationship between ks and shunt capacitance cs
is clearly illustrated, with the light gray region rep-
resenting system stability and the dark gray region

(-0.004, -63.8)

-10 -8 -6 -4 -2 0 2 4

10-3

-250

-200

-150

-100

-50

0

50

100

150

200

250

Stable
Unstable
k

s

-k
r
/2

Fig. 18 Stability area of the electromechanical internally cou-
pled lumped-mass system: Exploring the interplay between
equivalent stiffness ks and Shunt Capacitance cs . Parameters:
n = 4, mm = 56 g, mr = 33.6 g, km = 150 N/m, kr = 129.6
N/m, θ = 0.25 N/V, R = 500 �, cp = 1.5 × 10−3 F
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Fig. 19 Transmittance comparison of electrical internally cou-
pling with shunt circuit for θ = 0.25 and cp = 1.5mF, demon-
strating the impact of an equivalent negative stiffness

indicating system instability. The dividing threshold
between these regions is represented by the line at
ks = − kr

2 . For the provided parameters, the system
remains stable for cs values ranging from negative
infinity to approximately −0.004 Farad and resumes
stability from around −0.003 Farad (ks = −3468 to
5203 N/m) to positive infinity, with a brief interval of
instability between these ranges. The magnified view
offers a closer perspective on the critical transition
points, emphasizing the pivotal cs values at which the
system’s dynamical response alternates.
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Fig. 20 Harvested power and energy across different shunt
capacitances for θ = 0.25 and cp = 1.5mF

Figure 20 presents the harvested power and energy
across a range of shunt capacitances. It clearly under-
scores the influential role of shunt capacitance on the
system’s overall efficiency. An observation made from
the results is the superiority of electrical internal cou-
pling via shunt circuits in terms of tunability. Specifi-
cally, electrical coupling seems to allow for easier tun-
ing of the band gap compared to itsmechanical counter-
part. This is evident in Figs. 19 and 20, where the cho-
sen shunt capacitor facilitates a band gap at a notably
lower frequency in comparison to amechanically inter-
nally coupled system, as illustrated in Fig. 9. Choosing
a shunt capacitance of cs = −5.08mF results in an
equivalent stiffness of ks = -30. This specific choice
not only introduces an equivalent negative stiffness into
the system, enhancing energy harvesting capabilities
across varied frequency spectrums and enabling the
creation of a lower-frequency band gap (see Fig. 19).
Compared to mechanical internal coupling, this pro-
vides more flexibility in tuning the band gap across
different frequencies.

7 Conclusion

This study utilized advanced mathematical modeling
to analyze piezoelectric energy harvesters, delving into
their mechanical and electrical dynamics. It elucidated
the generalized formula for electromechanical non-
linearity and its impact on system performance. The
insights gained from examining the interplay between
nonlinear dynamics and energy harvesting efficiency

have potential implications for optimizing such sys-
tems in future practical applications. The main contri-
butions of this research include:

• The development and analysis of a comprehensive
theoretical model for electromechanical nonlinear-
ity, elucidating its significant impact on the perfor-
mance of piezoelectric energy harvesters.

• A detailed examination of the band gap phe-
nomenon in piezoelectric systems, revealing the
significant impact of electromechanical parameters
such as ke and γ3 on the energy harvesting process.

• An investigation into various models of nonlinear-
ity within piezoelectric resonators, shedding light
on the correlation between nonlinearity coefficients
like β and the system’s energy output.

• Insights into the benefits of employing nonlin-
ear mechanical resonators within a mass chain,
demonstrating an expansion of the band gap and
an increase in energy harvesting potential.

• Observations on the effects of shunt capacitance
and its role in internal resonator coupling, with
implications for enhancing the energy harvesting
capabilities of metamaterials.

The results underscore the intricate balance required
between nonlinearity parameters and systemefficiency,
opening avenues for the optimization of energy har-
vesters in practical applications. Future studies are
anticipated to delve deeper into electromechanical
nonlinearity models, with an emphasis on scalabil-
ity, parameter-specific impacts, and the development
of feedback circuits for adaptive systems. The transi-
tion to distributed parameter models also stands out
as a promising direction for achieving a closer repre-
sentation of physical systems in piezoelectric energy
harvesting research.
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Abstract: The dynamics of metastructures, incorporating both conventional and internally coupled
resonators, are investigated to enhance vibration suppression capabilities through a novel mathe-
matical framework. A close-form formulation and a transfer function methodology are introduced,
integrating control system theory with metastructure analysis, offering new insights into the role of
internal coupling. The findings reveal that precise internal coupling, when matched exactly to the
stiffness of the resonator, enables the clear formation of secondary bandgaps, significantly influenc-
ing the vibration isolation efficacy of the metastructure. Although the study primarily focuses on
theoretical and numerical analyses, the implications of adjusting mass distribution on resonators
are also explored. This formulation methodology enables the adjustment of bandgap characteristics,
underscoring the potential for adaptive control over bandgaps in metastructures. Such capabilities
are crucial for tailoring the vibration isolation and energy harvesting functionalities in mechanically
resonant systems, especially when applied to demanding heavy-duty applications.

Keywords: metastructures; internally-coupled resonators; modal analysis; distributed parameter
model; spatial variation

1. Introduction

Locally resonant metamaterials have revolutionized the field of material science by
enabling the manipulation of mechanical waves through unique structural designs that
are not possible with conventional materials. Such metamaterials utilize an intricate
arrangement of embedded resonators to selectively amplify or attenuate waves, yielding
capabilities like enhanced vibration isolation, targeted wave trapping, and precise steering.
The cross-disciplinary value of these materials is evident in their wide-ranging applications,
from improving acoustic insulation and energy harvesting to managing seismic waves and
developing advanced sensors.

The concept of metamaterials is not exclusive to structural dynamics; its origins can
be traced back to research in optics by Shelby et al. [1], and it has since become a subject of
extensive study in various fields, including acoustics. Moreover, the concept of mechanical
locally resonant metamaterials was first introduced by Liu et al. [2], who demonstrated
an elastic locally resonant bandgap phenomenon, akin to a mass-spring oscillator. Since
then, various types of mechanical locally resonant metamaterials have been extensively
investigated in the literature.

The field of resonator couplings and dispersion has seen substantial progress in
recent years. For instance, Hazra et al. [3] innovated a superconducting architecture
utilizing a ring resonator for multiqubit connectivity, enhancing the efficiency of quantum
processors. In the realm of optics and spectroscopy, Rozenman et al. [4] developed a novel
experimental setup to measure the dispersion of organic exciton polaritons, revealing the
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quantized interactions between light and matter in organic materials. Additionally, Li
et al. [5] demonstrated the coherent internally coupled distant magnonic resonators via
superconducting circuits for integrated magnonic networks that can operate coherently at
quantum-compatible scales.

From optics and materials science to structural vibration and energy harvesting, these
advancements bridge diverse fields to pioneer new applications and efficiencies. Hu
et al. [6] proposed a modified metamaterial beam that combined vibration suppression and
energy harvesting functions in internally coupled resonators in the low-frequency range.
In their design, local resonators were alternately coupled, with piezoelectric elements
attached for energy conversion. Oyelade and Oladimeji [7] also contributed by introducing
a novel metamaterial with a multiresonator mass-in-mass lattice system, where the internal
coupling was achieved through a linear spring, leading to the formation of two additional
bandgaps over conventional designs.

The research trajectory in metastructure system formulation has been significantly
advanced by Erturk et al. [8], who developed a robust framework that culminates in
transfer functions, allowing for nuanced manipulation and control of system responses.
Sugino et al.’s mathematical framework, leveraging Laplace transformations, further sim-
plifies the analysis of metastructures, especially in damping low-frequency vibrations, thus
enhancing the practical applicability of these complex systems in engineering solutions.
Sugino et al. [9] developed the mathematical framework using Laplace transformations
for analyzing locally resonant metastructures, simplifying examination of their responses,
and deriving a closed-form expression for bandgap frequency range, validated through
dispersion analysis and experimental tests.

Traditional methods focus on dispersion analysis and limit the scope of analysis to
wave propagation without offering insights into control strategies. This work develops
a mathematical framework to derive a close-form formulation for analyzing both con-
ventional and internally coupled resonators in metastructures, integrating control system
theory and the transfer function method to provide enhanced control mechanisms and
bandgap tuning methods through resonator stiffness adjustments. This advancement has
the potential to revolutionize metastructural design for industrial applications, enabling
the creation of structures with multiple bandgaps and diverse functionalities.

This framework not only enhances our understanding of metastructures but also
provides novel methods for tuning bandgaps, thereby improving vibration isolation and
facilitating energy harvesting. With implications spanning industrial machinery and noise
cancellation, these advancements promise to revolutionize engineering practices by en-
abling more efficient and effective control mechanisms in various industrial applications.

This work addresses the knowledge gap in linear internal coupling in metastructures,
and aims to improve wave manipulation and dynamic control through a new mathematical
framework, expanding the applications and functionalities of metastructures.

It claims that transfer function methodology can model and control metastructure dy-
namics, including internally coupled resonators. It highlights a gap in understanding linear
internal coupling effects on bandgap manipulation, and demonstrates the maintenance of
primary bandgaps and the emergence of secondary bandgaps through internal coupling,
suggesting adjustable resonator mass distribution for further tuning.

This leads to the following research questions:

• How does internal coupling affect the bandgap characteristics of a metastructure?
• What is the role of internal coupling in enhancing or merging bandgaps for vibration

isolation in continuous (distributed) metastructures?
• Can the integration of control system theory and transfer function methodology lead

to real-time adaptive tuning of metastructure bandgaps?
• Can an alternative method, such as modifying the mass distribution on resonators,

offer a practical way to alter bandgap characteristics without restructuring, while
also being suitable for heavy-duty applications where piezoelectric solutions are
less viable?
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The key contributions of this paper are as follows:

• We enable the transfer function approach as an analysis method for metastructures,
enhancing dynamic bandgap characteristics through the use of different functionalities
and precise control engineering techniques.

• We develop a mathematical method for formulating closed-form equations describing
the behaviors of internally coupled resonators, providing a deeper understanding of
their impact on metastructure dynamics.

• We address the challenge of merging bandgaps from internally coupled and conven-
tional resonators, offering insights into continuous vibration control in distributed systems.

The structure of the remaining sections of this paper is as follows: Section 2 delves
into the methodology, detailing the theoretical foundations and optimization strategies
employed for bandgap generation. Results and discussion are presented in Section 3, where
the implications of the applied methodologies are interpreted in the context of mechanical
system design and enhancement. A “Finite Element Study” is detailed in Section 4, show-
casing the vibrational behaviors and bandgap characteristics of the metastructures under
study. This section includes a focused examination of the effects of spatial variations on
bandgap properties, emphasizing the utility and implications of these findings for practical
applications. Finally, Section 5 concludes the paper, summarizing the key findings and
proposing directions for future research.

2. Modal Analysis and Bandgap Formation in Mechanical Metastructures

The research primarily employs modal analysis in the design and optimization of
mechanical locally resonant metastructures. This analysis is crucial for identifying key
vibration characteristics, such as natural frequencies, mode shapes, and modal damping
ratios, under specific conditions. These insights enable the engineering of metastructures
with tailored mechanical wave propagation behaviors.

The study employs a distributed parameter model approach, utilizing partial dif-
ferential equations (PDEs) to capture the system dynamics more precisely than lumped
parameter models. This methodology is particularly applicable to systems where spatial
variations are non-negligible, affecting phenomena such as wave propagation, heat transfer,
and fluid dynamics. Analytical models are derived using modal analysis through the
frequency determinant method, providing a solid theoretical foundation for understanding
the intricate behavior of internally coupled resonators within metastructures.

The standard distributed model of the metastructure under investigation, subject to
base excitation and external forces, is illustrated in Figure 1. Employing Newtonian me-
chanics and drawing from classical vibration textbooks, the behavior of the metastructure
is captured by the following partial differential equation, as detailed in Equation (1).

Lw(x, t) + C ∂w(x, t)
∂t

+M∂2w(x, t)
∂t2 −

Nr

∑
r=1

(
krzr(t) + cr

∂zr(t)
∂t

)
δ(x − xr) = Fbm(x, t) (1)

which includes structural flexibility L, damping C, and inertia M. The interaction with the
resonators is represented by the summation term, encompassing the stiffness kr, damping
cr, and location xr of each resonator. The dynamic of the system is a linear homogeneous
differential operator, exhibiting orders of 2p and 2q, respectively, with q ≤ p. The spatial
coordinate x extends over domain D. The function w(x, t) captures the system’s relative
transverse vibration compared to the base motion, essentially reflecting the displacement
at specific points relative to the base’s harmonic movement. On the other hand, zr(t)
denotes the resonator’s relative vibration in absolute coordinates, providing insight into
its displacement to the overall structure’s vibration. The δ(x − xr) is the Kronecker delta
function to pinpoint the resonators’ locations on the beam, with xr specifying the position
of the r-th resonator. Moreover, F symbolizes the external force, distributed across D, and
incorporates the impact of the base excitation on the beam.
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Figure 1. Example of standard locally resonant metastructures, where m represents the mass of the
resonators, c is the damping, and k is the stiffness of the resonators.

Similarly, the governing equation for the resonators, derived from Newton’s second
law of motion, is expressed as follows:

mr
∂2zr(t)

∂t2 + cr
∂zr(t)

∂t
+ krzr(t) + mr

∂2w(xr, t)
∂t2 = Fbr (t) (2)

The boundary conditions for the system, as outlined in Equation (1), are defined by
Equation (3), where each Bi is a linear homogeneous differential operator of order no
greater than 2p − 1.

Bi[w(x, t)] = 0, i = 1, 2, . . . , p (3)

Proportional damping, a method often used in real-world structures for estimating
natural frequencies and mode shapes, relates the damping matrix to the mass and stiffness
matrices. This concept allows C to be expressed as a combination of mass and stiffness
operators L and M, as shown in Equation (4), with c1 and c2 being non-negative constants,
determined based on the physical properties of the system. However, engineers usually use
experimental modal analysis or fit data from vibration tests to find them. This approach, as
referenced in [10], maintains consistent mode shapes and similar natural frequencies for
both damped and undamped systems.

C = c1L+ c2M (4)

The eigenfunctions ϕm(x) of the system are derived by solving the eigenvalue problem
of the undamped version of Equation (1), presented in Equation (5).

L[ϕm(x)] = λmM[ϕm(x)], m = 1, 2, . . . , Nm (5)

The symbol λm represents an eigenvalue associated with the mth eigenfunction ϕm(x)
of the system. For structures like beams equipped with resonators, the system is defined by
coupled differential equations for each resonator and the structure itself. These equations
account for the mutual influence of each component on the system’s dynamics. The mode
shapes of the base structure alone are not the exact mode shapes of the entire metastructure,
but using them simplifies the analysis significantly. The solution to Equation (5) is provided
in Appendix A.

In the case of an Euler beam spanning domain D = [0, L], assumed to be linearly
elastic and homogeneous, the operators L, M, C, B1, and B2 are defined in terms of the
beam’s physical properties: flexural rigidity (EI), density (ρ), and cross-sectional area (A).

L = EI
∂4

∂x4 , M = ρA, C = c,

B1 = 1, B2 = EI
∂2

∂x2

(6)

In advancing the understanding of modal expansion in the system, the orthogonality
of eigenfunctions is critical for solving Equation (1). The self-adjoint (Hermitian) nature
of the eigenvalue problem ensures this orthogonality. For any two eigenfunctions ϕm(x)
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and ϕn(x), the problem is self-adjoint if they satisfy the conditions given in Equation (7), as
highlighted by [11].

∫

D
ϕm(x)L[ϕn(x)]dx =

∫

D
ϕn(x)L[ϕm(x)]dx

∫

D
ϕm(x)M[ϕn(x)]dx =

∫

D
ϕn(x)M[ϕm(x)]dx.

(7)

When considering unique eigenvalues ω2
m and ω2

n with their respective eigenfunctions
ϕm(x) and ϕn(x), these functions are normalized with respect to M. This normalization
leads to the generalized orthogonality condition outlined in Equations (8) and (9), with δmn
being the Kronecker delta function.

∫

D
ϕm(x)M[ϕn(x)]dx = δmn (8)

and ∫

D
ϕm(x)L[ϕn(x)]dx = δmnω2

m (9)

Assuming proportional damping, the structural damping characteristics are captured
by Equation (10). Here, ζm denotes the damping ratio of the m-th mode, which is precisely
defined in Equation (11) utilizing the constants c1 and c2. Equations (8)–(10) are integral to
constructing a set of orthonormal eigenfunctions, which together form a complete basis for
the solution space pertinent to the eigenvalue problem.

∫

D
ϕm(x)C[wm(x)]dx = c1δmnω2

m + c2δmn = 2δmnζmωm (10)

with
ζm =

1
2ωm

(
c1ω2

m + c2

)
(11)

Modal decomposition is a method used to describe the structure’s vibration across
a domain D by representing it as a sum of modal shapes in one direction. This method
assumes that the behavior of the structure can be accurately captured using a finite set of
modes. For instance, the Euler–Bernoulli beam theory, commonly used in these analyses,
may not provide sufficient accuracy in high-frequency situations. This technique, widely
used in modal analysis, produces convergent solutions to the boundary value problem
as formulated.

Using modal decomposition, the beam’s deflection in the domain D is expressed as a
sum of modal shapes in one direction. This assumes that the behavior of the beam can be
accurately represented by a finite number of modes, as expressed in Equation (12):

w(x, t) =
Nm

∑
m=1

ϕm(x)zm(t), (12)

Here, ϕm(x) denotes the spatial mode shape, and zm(t) is the time-dependent modal
coordinate for the m-th mode. These modal representations are crucial in modeling the
dynamics of a flexible beam with integrated discrete resonators.

Incorporating the modal expansion from Equation (12) into the system’s governing
differential equation, given by Equation (1), yields Equation (13). This resultant equation
effectively combines the modal decomposition with the system’s differential operators,
capturing the influence of the resonators. It provides a complete representation of the
beam’s dynamic response, encompassing both the modal characteristics and the interactive
effects of the resonators.
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L
Nm

∑
m=1

ϕm(x)zm(t) + C ∂

∂t

Nm

∑
m=1

ϕm(x)zm(t) +M ∂2

∂t2

Nm

∑
m=1

ϕm(x)zm(t)−

Nr

∑
r=1

(
krzr(t) + cr

dzr(t)
dt

)
δ(x − xr) = Fbm(x, t)

(13)

Multiplying Equation (13) by ϕn(x) and integrating over the domain D, and applying
the orthogonality conditions Equations (8)–(11) of the mode shapes, gives

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t)−

Nr

∑
r=1

mrω2
r zr(t)ϕm(xr) = Qbm(x, t), m = 1, 2, . . . , Nm (14)

Similarly for resonators, substituting the modal expansion Equations (12) into (2)
yields

z̈r(t) + 2ζrωr żr(t) + ω2
r zr(t) +

Nm

∑
m=1

z̈m(t)ϕm(xr) = Qbr (t), r = 1, 2, . . . , Nr (15)

Here, Nm and Nr denote the number of modes and resonators, respectively. Each mode
has a specific modal frequency ωm, and each resonator has a mass mr and its own natural
frequency ωr. The damping ratios ζm for the modes and ζr for the resonators quantify
energy dissipation.

To simplify, the superscript “dot” indicates time derivatives, and “prime” indicates
spatial derivatives. Each equation in the model represents the dynamics of modal coor-
dinates or resonator displacement as a second-order ordinary differential equation. The
dynamics are influenced by modal and resonator parameters (natural frequencies ωm and
ωr, damping ratios ζm and ζr), their interactions, and base excitation forces (Qbm and Qbr ).

Decoupling of these equations is achieved through an orthogonal transformation,
involving pre- and post-multiplication by the mode shape matrix. This leads to diagonaliza-
tion of the mass and stiffness matrices, thanks to the orthogonality of eigenvectors to both
matrices. The result is a set of decoupled ordinary differential equations. This normal mode
method applies in the absence of damping or with proportional damping, where the damp-
ing matrix is a linear combination of the mass and stiffness matrices. The transformation
becomes orthonormal when the mode shape is normalized to the mass matrix.

Combining the structural dynamics represented in Equation (14) with the dynamics
of resonators from Equation (15) enables the coupling of inertial terms and decoupling
of stiffness in the system, facilitating analysis in the frequency domain. This process is
expressed in Equation (16), where Hbm(x, t) is determined by integrating the effects of ex-
ternal forces, base motion, and damping into a net external force, as shown in Equation (17).
Equations (15) and (16) together form a set of coupled second-order linear ordinary differ-
ential equations, which, upon solving, yield the mode shapes and resonant frequencies of
the entire system and its steady-state response to harmonic excitation.

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t) +

Nr

∑
r=1

mrϕm(xr)
Nm

∑
p=1

z̈m(t)ϕp(xr)+

Nr

∑
r=1

mr z̈r(t)ϕm(xr) + 2
Nr

∑
r=1

mrϕm(xr)ζrωr żr(t) = Hbm(x, t), m = 1, 2, . . . , Nm

(16)

Hbm(x, t) =
∫ L

0
Fe(x, t)ϕm(x)dx − ẅb(t)

(∫ L

0
Mϕm(x)dx +

Nr

∑
r=1

mrϕm(xr)

)
−

ẇb(t)
∫ L

0
Cϕm(x)dx

(17)
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The Laplace transform is applied to the system of equations, assuming zero initial con-
ditions, to transition the analysis to the frequency domain, as seen in Equations (18) and (19).
In these equations, Zm(s) and Zr(s) represent the Laplace transforms of the modal and
resonator displacements, respectively. This transformation simplifies the algebraic manipu-
lation and analysis of the system’s dynamics.

Zr(s) =
Qbr (s)− ∑Nm

m=1 s2Zm(s)ϕm(xr)

s2 + 2ζrωrs + ω2
r

, r = 1, 2, . . . , Nr (18)

s2Zm(s) + 2ζmωmsZm(s) + ω2
mZm(s) +

Nr

∑
r=1

mrϕm(xr)
Nm

∑
p=1

s2Zp(s)ϕp(xr)+

Nr

∑
r=1

mrs2Zr(s)ϕm(xr) + 2
Nr

∑
r=1

mrϕm(xr)ζrωrsZr(s) = Hbm(s), m = 1, 2, . . . , Nm

(19)

For a deeper analytical understanding, applying Equation (18) to the Laplace transform
of Equation (14) yields the following expression in Equation (20).

(s2 + 2ζmωms + ω2
m)Zm(s)−

Nr

∑
r=1

mrω2
r


Qbr (s)− ∑Nm

p=1 s2Zp(s)ϕp(xr)

s2 + 2ζrωrs + ω2
r


ϕm(xr) = Qbm(s),

m = 1, 2, . . . , Nm

(20)

The analysis focuses on the transfer function Zm
Qbm

, particularly when the effect of Qbr is
ignored. Here, the mass ratio µ, a dimensionless quantity, relates the mass of each resonator
to a differential mass element of the system and is defined as µ = mr

m(xr)dxr
, where m(xr)

represents the mass per unit length at xr and dxr is an infinitesimal segment length at
this point. To simplify the system of equations, it is assumed that an infinite number of
resonators are distributed throughout the entire domain of x, and the regions represented
by xr become infinitesimally small.

lim
Nr→∞

Nr

∑
r=1

m(xr)ϕm(xr)ϕp(xr)dxr ≈
∫ L

0
m(x)ϕm(x)ϕp(x)dx = δmp, m, p = 1, 2, . . . (21)

Applying these assumptions results in the following expression:

Zm(s)
Qbm(s)

=
1

s2
(

1 + µ(2ζrωrs+ω2
r )

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

m = 1, 2, . . . , Nm

(22)

Equation (22) indicates that resonators add a frequency-dependent mass to the system.
With the assumption of an infinite resonator distribution, leading to continuous spatial
displacements, similar reductions apply to the resonator displacements. By substituting
Equations (22) into (18) and transitioning from the discrete xr to a continuous spatial
domain x, a simplified equation emerges as presented in Equation (23).

Zr(x, s) = − s2

s2 + 2ζrωrs + ω2
r

Nm

∑
m=1

Qbm(s)ϕm(x)

s2
(

1 + µ(ω2
r +2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

(23)
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Equation (23) defines the motion Zr(x, s) of resonators along the beam in the Laplace
domain, influenced by modal forces Qbm(s). The displacement of the resonators is presented
as a weighted sum of the beam’s modal shapes:

Zr(x, s) =
Nm

∑
m=1

Ψm(s)ϕm(x) (24)

Equation (25) expresses the relationship between the modal force Qbm(s) and the
modal coordinate Ψm(s) in the Laplace domain. It illustrates how resonator displacements
are influenced by the modes of the structure:

Ψm(s)
Qbm(s)

=
−s2

[s2 + 2ζrωrs + ω2
r ]
[
s2
(

1 + µ(ω2
r +2ζrωrs)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms + ω2

m

] , m = 1, 2, . . . , Nm (25)

The transfer function in Equation (25) clarifies how the input forces are transformed
into modal responses. The function’s poles, indicative of the system’s natural frequencies,
are the points at which the system exhibits peak responses.

By introducing an internal linear coupling term, κ, within the resonators illustrated
in Figure 2, the system evolves into internally coupled resonators. This transformation
creates an environment where the displacements of the resonators are no longer inde-
pendent but are coupled. Specifically, the displacement of one resonator influences the
displacement of the other, establishing a dynamic interaction. The energy associated with
this coupling is quantified by the coupling potential energy, in which each pair of res-
onators (1 and 2, 3 and 4, 5 and 6, etc.) forms a system with two degrees of freedom:
Vc(t) = 1

2 κ(zr1(t)− zr2(t) + w(xr1 , t)− w(xr2 , t))2. The equations for the coupled oscillator
system can be formulated as follows:

z̈m(t) + 2ζmωm żm(t) + ω2
mzm(t)−

Nr/2

∑
r=1

(
m2r−1ω2

2r−1z2r−1(t)ϕm(x2r−1)+

m2rω2
2rz2r(t)ϕm(x2r)

)
= Qbm , m = 1, 2, . . . , Nm, and Nr ∈ 2N

(26)

Figure 2. Locally resonant metastructures with internally coupled resonators. Each pair of resonators
forms one unit cell, with m representing the mass of the resonators, c the damping, k the stiffness of
the resonators, and κ the internal coupling stiffness between them.

Meanwhile, the equation for the resonators is given by the following:

z̈2r−1(t) + 2ξ2r−1ω2r−1ż2r−1(t) + ω2
2r−1z2r−1(t) +

Nm

∑
m=1

z̈m(t)ϕm(x2r−1)+

β
κ

m2r−1
= Qb2r−1 , r = 1, 2, . . . , Nr/2

(27)

z̈2r(t) + 2ξ2rω2r ż2r(t) + ω2
2rz2r(t) +

Nm

∑
m=1

z̈m(t)ϕm(x2r)

− β
κ

m2r
= Qb2r , r = 1, 2, . . . , Nr/2

(28)
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where

β = z2r−1(t)− z2r(t) +
Nm

∑
m=1

zm(t)ϕm(x2r−1)−
Nm

∑
m=1

zm(t)ϕm(x2r) (29)

These equations characterize the underlying dynamics of both the beam and the
internally linear coupled resonator system. The Laplace transform of Equation (26) with
zero initial conditions results in Equation (30).

(s2 + 2ζmωms + ω2
m)Zm(s)−

Nr/2

∑
r=1

(
m2r−1ω2

2r−1Z2r−1(s)ϕm(x2r−1)+

m2rω2
2rZ2r(s)ϕm(x2r)

)
= Qbm(s)

(30)

Given that the forces Qb2r−1 and Qb2r are equal to −ẅb(t), and considering that
m2r−1 = m2r or identical mass mr for all resonators, along with the distribution of nu-
merous resonators along a beam, it is assumed that the derivative of position within
each unit cell is the same, indicated by dx2r−1 = dx2r. This reflects a uniform position
derivative across all resonators. Furthermore, the following relationships are established:
m2r−1 = µm(x2r−1)dx2r−1, and m2r = µm(x2r)dx2r.

lim
Nr→∞

Nr/2

∑
r=1

m(x2r−1)ϕm(x2r−1)ϕp(x2r−1)dx2r−1 =
1
2

δmp, m, p = 1, 2, . . . (31)

lim
Nr→∞

Nr/2

∑
r=1

m(x2r)ϕm(x2r)ϕp(x2r)dx2r =
1
2

δmp, m, p = 1, 2, . . . (32)

Taking the Laplace transform of Equations (27) and (28), and applying the orthog-
onality of the mode shapes, as demonstrated in Equations (31) and (32), results in the
derivation of the transfer function for a metastructure with internally coupled resonators,
as represented in Equation (33).

Zm(s)
Qbm(s)

=
1

s2
(

1 +
µω2

2r−1
s2+ω2

2r−1

)(
1 +

µ
4 ω2

2r
s2+ω2

2r

)
+ ω2

m

m = 1, 2, . . . , Nm (33)

The transfer function presented in Equation (33) incorporates coupling effects through
the κ parameter, allowing for the interaction between multiple resonators, denoted as ω2r−1
and ω2r. This interaction can lead to complex dynamic behavior, including the potential
for multiple bandgaps or more pronounced resonant effects. The integration of damping
elements for both the plain structure and the resonators can be conveniently executed at
this stage.

In distributed parameter systems, such as beams, the resonators are two-degree-of-
freedom (2 DOF) systems. It can be proven that ω2r−1 = ωr, where ωr is the natural
frequency of a resonator when it is not coupled with its adjacent resonator. Addition-

ally, ω2r =
√

ω2
2r−1 +

2κ
mr

, where κ is the mechanical coupling coefficient and mr is the
mass of the resonator. This framework leads to the formation of secondary bandgaps in
metastructures with internally coupled resonators. These bandgaps are associated with a
180-degree phase shift in the resonators. Consequently, such metastructures exhibit both
primary and secondary bandgaps, a distinct feature compared to traditional structures.
The condition of no stretching in the coupling spring essentially renders its influence
negligible. Consequently, this scenario simplifies the equation, reducing it to a form that
corresponds to the conventional metastructure dynamics, as established in Equation (22).
This simplification allows for a more straightforward analysis of the metastructure by
reverting to a more basic, yet fundamental, form of the equation. On the other hand, if the
resonators differ in frequency or have the same frequency but with a phase difference, the
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parameter κ experiences stretching. This results in an additional pole and zero, creating an
extra bandgap.

Now, leveraging the transfer function method enables the utilization of the well-
known root locus analysis. By considering the modal response as the closed-loop transfer
function of a negative feedback system, which incorporates a proportional feedback gain of
ω2

m, and defining the feedforward transfer function as G(s), as specified in Equation (34),
one can observe this interpretation.

G(s) =
s2 + ω2

2r−1

s2
(
s2 + ω2

2r−1 + µω2
2r−1

)
s2 + ω2

2r−1 +
2κ
mr(

s2 + (1 + ( µ
4 ))(ω

2
2r−1 +

2κ
mr
)
) (34)

The first transfer function accurately represents what is found in a conventional
metastructure. This function has two poles at the origin, characteristic of a system’s
inherent response dynamics. It includes an additional pole at

√
1 + µω2r−1, influenced by

the mass of the resonators. This pole is responsible for creating a bandgap with a length of√
1 + µ, indicative of the system’s frequency-selective behavior. The internal coupling of

resonators introduces additional dynamics, particularly influencing the system’s behavior
near resonant frequencies. The second transfer function introduces terms that model the
added poles and zeros in the metastructure due to the internal coupling of resonators. In

this function, the roots progress from zero at ω2r to a pole at
√

1 + µ
4 ω2r, creating a bandgap

with a length of
√

1 + µ
4 .

The comparative analysis of the root locus plots for a conventional metamaterial and
a metamaterial with internal resonator coupling, as depicted in Figures 3 and 4, clearly
indicate the influence of the coupling term κ on the system dynamics. Figure 3 illustrates
the resonance characteristics and bandgap frequencies of a metastructure, as indicated by
the poles of its transfer function. The system’s resonances correspond to the imaginary
components of these poles. Modal responses of the plain beam are modeled as a closed-loop
transfer function with proportional feedback. Bandgap edge frequencies are identified
using root locus analysis, with specific zeros and poles on the imaginary axis determining
these frequencies. Notably, within the bandgap defined by ω2r−1 < ω < ω2r−1

√
1 + µ,

and ω2r < ω < ω2r

√
1 + µ

4 , no poles are present. Root locus analysis is advantageous for
evaluating general linear attachments and facilitating the creation of multiple bandgaps.

Figure 3. (Left) Conventional metastructure root locus with ωm = 0.5, ω2r−1 = ωr = 1, kr = 1,
mr = 1, and µ = 0.5. (Right) Metastructure with internal coupling, showing narrow bandgap
with ωm = 0.5, ω2r = 1.7, κ = kr, and µ = 0.5. Internal coupling’s impact on system dynamics is
highlighted by the additional bandgap in the right plot.
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Figure 4. Bode and root locus plots for Equation (34). (Left) Root locus with K = ω2
m, showing

conventional and internally coupled bandgap for µ = 0.5 and κ = 1. Markers: system poles at ω2
m = 0,

solid lines: pole trajectory as ω2
m increases. Grey region: bandgap frequency range. (Right) Bode plot

showing frequency response, including resonance from coupling effect.

As mentioned earlier, the introduction of κ in the coupled system leads to additional
zeros and poles, as evidenced by the second root locus in Figure 4. This modification
is characterized by the resonant frequencies ω2r−1 = 1 (rad/s) and ω2r = 1.7 (rad/s),
suggesting the emergence of a second bandgap. Moreover, the root locus plot in Figure 4
(left) indicates that the internal coupling parameter influences the system’s pole trajectories.
Conversely, the Bode plot (right) reveals a pronounced resonant peak, suggesting an
increased selective sensitivity to certain frequencies. While the phase response indicates the
overall system’s stability under the new coupling condition, it must be carefully evaluated
to ensure robustness, especially in control applications where stability is critical.

Dispersion Analysis and Model Validation of Internally Coupled Resonators by Plane Wave
Expansion Method

The plane wave expansion (PWE) method is commonly used for analyzing the propa-
gation of waves in periodic structures, and provides valuable insights into the behavior of
these waves, facilitating the design and optimization of these periodic structures for a wide
range of applications, such as vibration suppression and energy harvesting [12,13].

The transverse displacement of a metastructure with linearly internally coupled
resonators in absolute coordinates is defined as Wt(x, t) = Ŵtei(Gnx−ωt) for the beam,
z2r−1(t) = ẑ2r−1ei(ωt) for the first resonator, and z2r(t) = ẑ2rei(ωt) for the second res-
onator. The dispersion relation emerges from applying periodic boundary conditions to
find nontrivial solutions. The relationship between frequency ω and wavevector Gn in
one-directional transformation is established by multiplying the variable’s amplitude with
exp(i(Gnx − ωt)). With both kr1 = kr2 = kr and mr1 = mr2 = mr, the equation simplifies
as follows:

C1ω6 + C2ω4 + C3ω2 + C4 = 0 (35)

where:
C1 = −Am2

r ρ,

C2 = m2
r

(
EIG4

n + 2kr

)
+ 2Aρmrκ + 2Aρmrkr,

C3 = −
(

2κmrkr + Aρk2
r + 2Aρκkr + EIG4

nm2
r (κ + 2kr)

)
,

C4 = EIG4
n

(
2κkr + k2

r

)
.

(36)
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3. Results and Discussion

The rectangular beam under investigation has the following dimensions: a length of
0.91 m (Lm), a width of 40 mm (wm), and a height of 3 mm (hm). The material used for the
beam has a density of 2710 km per cubic meter (ρm) and a modulus of elasticity of 52 GPa
(Em). The beam is characterized by a damping ratio of 0.03 (ζm), and the analysis considers
a total of eight vibration modes (Nm). Each resonator (Nr) within the system has a mass of
80 g (mr) and a spring constant of 380 kilonewtons per meter (kr). The damping ratio for
the resonators is also set at 0.03 (ζr).

Figure 5 depicts the dispersion curve of the internally coupled metamaterial beam
(κ = kr) using the plane wave expansion method. The target frequency corresponds to the
resonator frequency. The diagram illustrates two bandgaps: the first is associated with
the in-plane behavior of both resonators within each unit cell, while the second bandgap
emerges due to the out-of-plane behavior of the two resonators in each unit cell. Here, Gn
represents the wave vector number and a denotes the lattice size.
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Figure 5. Dispersion curve of an internally coupled metamaterial beam, displaying two distinct
bandgaps resulting from in-plane and out-of-plane resonator behavior.

Figure 6 illustrates the transmittance characteristics of a metamaterial beam with
internal resonator coupling in terms of tip displacement relative to the base displacement in
absolute coordinates. The presence of a common initial bandgap aligns with the theoretical
expectations discussed earlier, assuming that all resonators resonate at the same frequency
(ω2r−1 = ω2r = ωr) and maintain identical phase relationships. In the case of the internally
coupled metastructure, an additional bandgap is observed, which substantiates the theoret-
ical premise that variations in resonator frequencies or phase differences can extend the
parameter κ. This extension, facilitated by the assumption of a massless coupling spring,
introduces new dynamics to the system by adding an extra pole and zero, resulting in the
creation of an additional bandgap. The primary bandgap occurs at the target frequency,
which corresponds to the resonator’s frequency adjusted by the length factor

√
1 + µ. The

secondary bandgap’s location is contingent upon the stiffness of the internal coupling and

is defined by the length factor
√

1 + µ
4 . Notably, the dips in the graph signify areas of low

transmittance, indicating reduced vibration at the beam’s tip and effectively marking the
bandgap regions.
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Figure 6. Transmittance plot for a metamaterial beam with internal resonator coupling (k = kr)
comprising eight resonators, which equates to four unit cells.

Figure 7 presents a graphical analysis illustrating the influence of varying internal
coupling spring constant values, denoted as κ, on the bandgap frequencies within a metas-
tructure. Notably, alterations in κ do not induce substantial shifts in the frequency edges
of the primary first bandgap. However, as κ increases, it introduces additional, narrower
gaps at frequencies above the rest of the second bandgap. These narrower gaps under-
score the sensitivity of the metastructure’s dynamic response to specific ranges of internal
coupling strength.

Figure 7. Analysis of the influence of internal coupling stiffness κ on the metastructure’s bandgap
frequencies in Equation (33), showing the consistent edge of the first bandgap and the emergence of
narrow higher-frequency gaps within certain κ ranges.

Figure 8 presents a contour plot of the transmittance across the metastructure as a
function of the normalized internal coupling strength, κ/ωr, and normalized frequency,
ω/ωr. The color gradient represents the logarithmic scale of transmittance, indicating
the level of wave attenuation within the metastructure. Dark regions correspond to high
attenuation levels, signifying the presence of bandgaps. As observed, the contour lines
delineate the boundaries of the bandgaps, which become more distinct with specific values
of internal coupling strength. This visualization provides a comprehensive understanding
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of how internal coupling affects the bandgap frequencies, offering insights into the precise
tuning of the metastructure’s vibrational properties. It can be seen that the emergence of
additional bandgaps occurs within certain ranges of κ, demonstrating the metastructure’s
sensitivity to variations in internal coupling. The plot serves as a detailed map for predicting
the dynamic behavior of the metastructure under varying conditions of internal coupling,
which is critical for applications requiring targeted vibration isolation frequencies.
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Figure 8. Transmittance contour plot against normalized internal coupling strength and frequency,
highlighting bandgap boundaries and the metastructure’s sensitivity to κ variations.

The results reveal that metastructures with internally coupled resonators retain the
primary bandgap found in conventional metastructures but also introduce an additional,
thinner bandgap at a higher frequency. This secondary bandgap remains separate from
the primary one, making it challenging to use internal coupling to merge both bandgaps
for vibration isolation in continuous and distributed metastructures. This difficulty arises
because the second bandgap’s nature is linked to a 180-degree phase change in resonators
with identical natural frequencies (ωr). It would be beneficial to investigate the impact
of varying ωr in different unit cells. Despite these challenges, it is noteworthy that in
lumped systems, metastructures with internally coupled resonators significantly widen the
bandgap compared to conventional configurations.

4. Finite Element Study

The dynamic behavior of metastructures incorporating internally coupled resonators
is investigated using finite element method (FEM) simulations, affirming theoretical pre-
dictions. The analysis outputs present the vibrational modes of the metastructure. These
modes are expressed as amplitude variations across a spectrum of normalized frequencies,
with a particular focus on resonant frequencies pertinent to bandgap development. Signifi-
cant findings from the analysis illustrate the variance in bandgap distribution and intensity
of resonant peaks as a function of stiffness ratio. This implies a substantial relationship
between internal coupling stiffness and the dynamic response of the metastructure. Visual-
ization of these results not only confirms primary and secondary bandgap presence but also
aligns with the theoretical implications of internal resonator coupling. Figure 9 concentrates
on the transmissibility for a specific stiffness ratio κ, reflecting a critical scenario where κ
is precisely matched with the resonator’s stiffness (κ/ωr = 0.003), an essential condition
for optimal bandgap definition. This particular observation underscores the necessity of
accurate internal coupling stiffness to achieve the designed dynamic response.

However, deviations from the ideal κ value lead to pronounced disorder within the
system’s response, emphasizing the metastructure’s sensitivity to variations in internal
coupling stiffness. Such irregularities pose challenges for ensuring predictability and
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consistent performance in practical applications, thus advocating for stringent precision in
design and manufacturing processes.

The contour plot depicted in Figure 10 utilizes a binary representation to mark regions
of transmittance reduction, set at log(10−0.1). The provided binary representation displays
two distinct white regions against a cyan background, illustrating the transmittance levels
across various stiffness ratios κ and normalized frequencies. The first white region, located
at the target resonator frequency ωr, corresponds to a bandgap typically observed in
conventional metamaterials. This bandgap represents a frequency range where the structure
prevents wave propagation, thereby indicating a strong vibration isolation capability at
the resonant frequency of the metamaterial. The second white region appears at a higher
frequency range and signifies the impact of internal coupling within the metamaterial
structure. This additional bandgap is a result of the specific design and internal resonator
interactions that are a characteristic of the studied metastructures. The emergence of this
second bandgap highlights the effect of internal coupling on the extension of vibration
isolation performance to higher frequency ranges.
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Figure 9. Transmissibility for a cantilever beam with stiffness ratio κ equal to kr, demonstrating
optimal internal coupling for bandgap clarity.
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Figure 10. Binary contour plot illustrating the presence and absence of transmittance corresponding
to bandgaps as a function of stiffness ratio κ and normalized frequency.
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Impact of Spacial Variations on Bandgap Characteristics

The established methodology enables manipulation of the transfer function, thereby
permitting exploration into how adjustments in the mass placement on a resonator af-
fect bandgap traits, a key factor for refining bandgap properties within a closed-loop
control system.

This section explores adjusting resonator stiffness while maintaining constant mass,
a method beneficial for heavy machinery applications where traditional piezoelectric
solutions may fall short. Stiffness tuning, as opposed to piezoelectric adjustments, offers
a more durable and practical solution for these demanding environments. The current
study examines a conventional metastructure that does not incorporate internally coupled
resonators. The resonators are of the cantilever type, with a mass that can be positioned
along the length from the tip to the base. The specific parameters defining the metastructure
and resonators are as follows: eight resonators (Nr = 8), with the beam dimensions being
300 mm in length, 25 mm in width, and 3 mm in height. The material density is 2700 kg/m3,
and the modulus of elasticity is 69.5 GPa. The damping ratio of the structure and resonators
is the same, at 0.01. An attached mass (ma) of 3.8 g is placed at distances that vary from
20 to 57.3 mm along the resonator. The natural frequency of the resonator (ωr), when the
attached mass is at the tip, is 32 Hz. This setup allows for an exploration of the resonator
stiffness’s impact on the bandgap properties of the metastructure.

Figure 11 provides a 3D visualization of how the position of the attached mass along
the length of a resonator affects the bandgap frequencies in a metastructure. The natural
frequency at which the bandgap starts is denoted as ωr, corresponding to the case when
the mass is located at the tip of the resonator. The graph demonstrates that as the mass
moves closer to the base of the resonator—decreasing δ—the resonator’s stiffness increases,
leading to a rise in ωr and a subsequent shift of the bandgap towards higher frequencies.

Figure 11. A 3D plot showing the shift in bandgap frequency related to mass positioning on the
resonator, with delta (δ) representing the mass location from the resonator’s tip to base.

The contour plot in the x–y plane clearly depicts the bandgap’s initiation at the initial
natural frequency ωr when the mass is at the resonator’s tip. From there, the bandgap
expands and moves as the location of the mass changes. This shift is particularly crucial
for applications requiring tunable vibration isolation, as it shows the potential to adjust
the bandgap frequency by simply repositioning the resonator mass without altering the
resonator or structure itself.

The binary representation in Figure 12 illustrates the influence of the mass location
along the resonator on the bandgap frequencies. With the bandgap depth limit set at a deci-
bel ratio of output to input displacement of 0.2, the plot shows that when the attached mass
is positioned at the tip of the resonator, the bandgap originates at the resonator frequency
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ωr. The white areas in the binary representation correlate to the regions of significant
transmittance reduction, effectively mapping the bandgap’s presence and evolution as the
mass moves closer to the resonator’s base.
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Figure 12. Binary contour plot of bandgap presence against resonator mass placement (δ) and
normalized frequency (ω/ωr), with white areas indicating effective vibration isolation regions.

5. Conclusions

This study explored the dynamic behavior of metastructures, focusing on those with
conventional configurations and those augmented with internally coupled resonators,
through a theoretical lens. The development of analytical models deepened our under-
standing of bandgap dynamics, highlighting the prediction of primary and secondary
bandgaps as influenced by internal coupling stiffness. Finite element analysis (FEA) cor-
roborated these theoretical insights, yet it also exposed complexities beyond the analytical
models’ scope. Insights gained from this study stress the importance of accurately account-
ing for the physical characteristics of internal couplings and achieving exact stiffness ratios.
Additionally, this work shows that adjusting the natural frequencies of resonators through
stiffness manipulation—via the strategic positioning of mounted masses—provides a viable
approach for customizing vibration isolation solutions. This strategy is particularly rele-
vant for environments subjected to heavy loads and extreme conditions, offering tailored
responses to complex vibrational challenges.

The principal contributions of this research are as follows:

• We established a novel transfer function approach for the analysis of metastructures,
diverging from traditional bandgap investigation methods such as dispersion analysis
and wave finite element methods.

• We applied root locus analysis and transfer function modeling, offering new perspec-
tives on metastructure control.

• We demonstrated the enhanced dynamic bandgap characteristics achievable through
the use of internally coupled resonators, incorporating control engineering techniques
for refined metastructure management.

This research showcases the fusion of control system theory with metastructure analy-
sis, presenting a groundbreaking approach for the precise manipulation of bandgaps. This
methodology not only marks a significant advancement in the understanding and appli-
cation of vibration control technologies but also opens new avenues for energy-efficient
solutions across multiple industries. Specifically, in the automotive sector, the integration of
metastructures can significantly reduce noise and vibrations, enhancing vehicle durability.
In civil engineering, buildings and infrastructure equipped with optimized bandgaps offer
enhanced protection against environmental vibrations and seismic activities. Moreover,
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the innovative application of these metastructures in energy harvesting from vibrational
bandgaps paves the way for smart buildings to achieve superior energy sustainability.

Future studies will prioritize empirical validation through experimentation to confirm
the theoretical and numerical models’ applicability in real-world scenarios. Subsequent
research will focus on fabricating metastructures with internally coupled resonators, with
a particular emphasis on manufacturing precision to accurately match the stiffness of the
resonators, thereby ensuring optimal system performance. Additionally, the integration of
piezoelectric materials for vibration suppression and energy harvesting will be explored,
aiming to enhance the functional versatility of these advanced materials.
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Abbreviations
The following abbreviations are used in this manuscript:

L Structural flexibility parameter (N/m)
C Damping coefficient (Ns/m)
M Mass per unit length of the beam (kg/m)
kr Stiffness of the resonator (N/m)
cr Damping coefficient of the resonator (Ns/m)
xr Position of the r-th resonator (m)
δ(x − xr) Dirac delta function indicating resonator location
Fbm External force distributed across the beam due to modals (N)
Fbr External force distributed across the beam due to resonators (N)
mr Mass of the r-th resonator (kg)
ω Angular frequency of the wave (rad/s)
κ Internal coupling stiffness (N/m)
zr Displacement of the r-th resonator (m)
ϕm Mode shape function of the m-th mode
ϕn Mode shape function of the n-th mode
E Young’s modulus of the beam material (Pa)
I Moment of inertia of the beam cross-section (m4)
ρ Density of the beam material (kg/m3)
A Cross-sectional area of the beam (m2)
Nm Number of modes
Nr Number of resonators
δmn Kronecker delta function for modes m and n
ζm Damping ratio of the m-th mode
ζr Damping ratio of the r-th resonator
ωm Natural frequency of the m-th mode (rad/s)
ωr Natural frequency of the r-th resonator (rad/s)
zm Modal displacement amplitude
λm Eigenvalue associated with the m-th eigenfunction ϕm(x)
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µ Mass ratio
Gn Wave number of the n-th mode in the structure (rad/m)
2r−1 Subscript notation for odd-numbered resonators
2r Subscript notation for even-numbered resonators

Appendix A

Solution for a Cantilevered Beam

Equation (5) has a general solution of [14]:

ϕm(x) = C1m cos βmx + C2m sin βmx + C3m cosh βmx + C4m sinh βmx (A1)

where

β4
m =

ρAω2
m

EI
(A2)

The constant coefficients C1m, C2m, C3m, and C4m can be found from the boundary
conditions.

The frequency equation can be derived by applying the frequency determinant method
to the eigenfunctions given by (A1) and considering the boundary conditions for a cantilever
beam with length L, which involve zero displacement and slope at the fixed end, as well as
zero shear and moment at the free end.

A nontrivial solution for coefficients C1 to C4 is obtained when the coefficient matrix
is set to zero. Solving the resulting determinant yields the frequency equation.

cos(βL) cosh(βL) = −1 (A3)

The roots of this equation can be determined either numerically or graphically. Con-
sidering the speed of wave propagation in the material, applying βmL to Equation (A2)
gives the natural frequency of vibration.

ωm = (βmL)2

√
EI

ρAL4 , m = 1, 2, . . . (A4)

This equation provides the natural frequencies for different modes of vibration, where
βm represents the roots of the mode shape equation.

By determining the coefficients C1 to C4 and substituting them into Equation (A1), we
obtain the normalized equation for the mode shapes in Equation (A5).

ϕm(x) =
1√
ρLA

[
(sin βmx − sinh βmx)− (sin βmL + sinh βmL)

(cos βmL + cosh βmL)
(cos βmx − cosh βmx)

]
(A5)

There is no necessity to numerically solve for a large number of solutions to this
equation. For larger solutions, a reliable approximation can be obtained using the following
formula:

βmL ≈ (2m − 1)π
2

, m > 5 (A6)

Given the presence of hyperbolic functions in Equation (A3), it becomes crucial to
approximate the mode shape for values of m exceeding 10 to circumvent numerical issues.
An approximation can be derived by expanding the precise mode shape and presuming a
large value for βmL. This results in the expression in Equation (A7).

ϕm(x) ≈ 1√
ρAL

[
cos(βmx)− sin(βmx)− e−βmx − eβmx−βm L sin βmL

]
(A7)



Appl. Sci. 2024, 14, 2447 20 of 20

References
1. Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79.

[CrossRef] [PubMed]
2. Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736.

[CrossRef] [PubMed]
3. Hazra, S.; Bhattacharjee, A.; Chand, M.; Salunkhe, K.V.; Gopalakrishnan, S.; Patankar, M.P.; Vijay, R. Ring-resonator-based

coupling architecture for enhanced connectivity in a superconducting multiqubit network. Phys. Rev. Appl. 2021, 16, 024018.
[CrossRef]

4. Rozenman, G.G.; Peisakhov, A.; Zadok, N. Dispersion of organic exciton polaritons—A novel undergraduate experiment. Eur. J.
Phys. 2022, 43, 035301. [CrossRef]

5. Li, Y.; Yefremenko, V.G.; Lisovenko, M.; Trevillian, C.; Polakovic, T.; Cecil, T.W.; Barry, P.S.; Pearson, J.; Divan, R.; Tyberkevych,
V.; et al. Coherent coupling of two remote magnonic resonators mediated by superconducting circuits. Phys. Rev. Lett. 2022,
128, 047701. [CrossRef]

6. Hu, G.; Tang, L.; Das, R. Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy
harvesting. J. Appl. Phys. 2018, 123, 055107. [CrossRef]

7. Oyelade, A.O.; Oladimeji, O.J. Coupled multiresonators acoustic metamaterial for vibration suppression in civil engineering
structures. Forces Mech. 2021, 5, 100052. [CrossRef]

8. Erturk, A.; Inman, D.J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters.
J. Vib. Acoust. 2008, 130, 041002. [CrossRef]

9. Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A. A general theory for bandgap estimation in locally resonant
metastructures. J. Sound Vib. 2017, 406, 104–123. [CrossRef]

10. Hansen, C.; Snyder, S.; Qiu, X.; Brooks, L.; Moreau, D. Active Control of Noise and Vibration; CRC Press: Boca Raton, FL, USA, 2012.
11. Meirovitch, L. Fundamentals of Vibrations; Waveland Press: Long Grove, IL, USA, 2010.
12. Li, F.L.; Zhang, C.; Wang, Y.S. Band structure analysis of phononic crystals with imperfect interface layers by the BEM. Eng. Anal.

Bound. Elem. 2021, 131, 240–257. [CrossRef]
13. Lei, L.; Miao, L.; Zheng, H.; Wu, P.; Lu, M. Band gap extending of locally resonant phononic crystal with outward hierarchical

structure. Appl. Phys. A 2022, 128, 492. [CrossRef]
14. Rao, S.S. Vibration of Continuous Systems; John Wiley & Sons: Hoboken, NJ, USA, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



Appendix 3

Hossein Alimohammadi et al. “Stability analysis and en-
ergy harvesting in lumped parameter systems with internally
coupled resonators”. In: Journal of Vibration and Control
(2024)

201





Original Manuscript
Journal of Vibration and Control

2024, Vol. 0(0) 1–13

© The Author(s) 2024

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/10775463241241161

journals.sagepub.com/home/jvc

Stability analysis and energy harvesting in
lumped parameter systems with internally
coupled resonators

Hossein Alimohammadi1, Kristina Vassiljeva1, S Hassan
HosseinNia2, and Eduard Petlenkov1

Abstract
This article explores internally coupled resonators in metamaterial systems, focusing on mechanical and electromechanical

coupling. The article provides a thorough examination of stability within the context of internally coupled resonators. It

establishes stability criteria, emphasizing the importance of strictly stable systems in practical applications. Furthermore, it

analyzes stability through simulations, revealing how various parameters impact system behavior and highlighting the

challenges and benefits of achieving stability in metamaterial systems. Additionally, the article explores the impact of

damping coefficients and resonator characteristics, on displacement and power generation profiles. Nonlinear behavior in

internally coupled resonators is examined, revealing the presence of bifurcation in simulation and offering insights into

multi-stability and system behavior.

Keywords
stability, internally coupled resonators, piezoelectric energy harvesting, vibration suppression, lumped systems

1. Introduction

Internally coupled resonators, integral in wave control,
stability, and energy collection, are crucial in lumped pa-
rameter systems’ engineering. This article emphasizes the
role of these resonators, highlighting the benefits of me-
chanical linear, nonlinear internal coupling, and electro-
mechanical shunt capacitance circuits. These mechanisms
allow for negative stiffness and refined system dynamic
control. Electrical internal coupling, as shown through
simulations, offers tunability and superior energy harvest-
ing. Moreover, the article examines how parameters like
damping coefficients and resonator traits influence dis-
placement and energy output at varied frequencies. The
nonlinear aspects of these resonators, leading to multi-
stability and specific system behaviors, are also explored.

1.1. Internally coupled resonators exhibiting
mechanical nonlinearity

The emergence of internally coupled resonators has been
identified as a key element in recent dynamics and vibration
control research. Through the complex interactions among
internal structural components, these resonators exhibit
a varied array of vibrational behaviors. These distinctive
properties afford unprecedented capabilities in managing

and directing wave propagation, establishing themselves as
invaluable resources in various fields, such as structural
health monitoring, acoustic metamaterials, and vibration
mitigation. Notable research in this field, particularly ex-
emplified by the studies of Hu et al. (2018), has traversed
through metastructures featuring linearly coupled reso-
nators. The discoveries from such investigations illuminate
the existence of an additional narrow band gap in com-
parison to conventional metastructures, thereby highlight-
ing the fascinating potentialities within this area of research.

While the concept of employing negative stiffness has
been explored extensively in past research, Liu et al. (2022)
delve into a diatomic-chain locally resonant acoustic
metamaterial structure, underscoring the pivotal role of the
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negative-stiffness mechanism in enhancing vibration sup-
pression. By utilizing additional band gaps and Bragg
scattering, the structure exhibits superior management of
vibration transmission, particularly in managing ultralow
frequency vibrations in the lower frequency spectrum. The
negative-stiffness mechanism proves vital for fine-tuning
the metamaterial’s band gap characteristics and potential
applications in vibration reduction, especially under specific
material parameters.

1.2. Electromechanical internally coupled
resonators

Electromechanical resonators, notably those in-
corporating piezoelectric elements and internal coupling
of resonators, manifest a compelling complexity by
merging mechanical and electrical aspects, thus en-
abling unique wave propagation properties. While their
promising attributes are evident, an exploration into
nonlinear, internally coupled electromechanical systems
is relatively untapped. This discernible gap in research
accentuates the need for an exhaustive study of these
systems, which have the capacity to innovate vibration
control and energy-harvesting sectors (Shu and Lien,
2006; Lefeuvre et al., 2005).

Despite their remarkable wave propagation features,
metamaterials are often hindered by the limited band-
width of their band gaps, impacting their performance in
broad-spectrum vibration applications. To counteract
this, research has pivoted toward developing meta-
material configurations with multiple band gaps and
utilizing nonlinearity as a powerful tactic (Fang et al.,
2017). The characteristics of piezoelectric shunt
methods, marked by their mechanical–electrical con-
version capabilities, have spurred research into dy-
namically tunable metamaterials. However, most
studies predominantly utilize independent piezoelectric
shunt circuits for each local resonator (Chatziathanasiou
et al., 2022; Li et al., 2023).

The primary objective of this study is to comprehen-
sively examine the band gap characteristics of the proposed
lumped system, emphasizing the mechanical and electro-
mechanical internal coupling through the shunt capacitance
circuit and conceptualizing the circuit as a negative ca-
pacitor (Hu et al., 2017). Additional goals involve con-
ducting a stability analysis of the piezoelectric elements
model on the resonator and a pivotal comparison of power
and energy harvested from the resonators, with a special
focus on their impact on band gap formation in the chain
mass structure.

1.3. Solution stability

The stability and singularity of nonlinear solutions in
mechanical internally coupled resonators,

electromechanical internal coupling, and other non-
linear periodic media have been somewhat overlooked.
Stability analysis regarding wave responses in pho-
nonic media is documented in foundational systems
(Newton and Keller, 1987), works addressing geo-
metric nonlinearity (Liu et al., 2022; Murer et al.,
2023), and studies on topological modes (Chaunsali
et al., 2021). The introduction of nonlinearity often
induces bifurcations, leading to dynamic solutions with
multiple branches. Without a stability analysis, theo-
retical responses might not represent physical systems
accurately. Investigations into the stability of harmonic
excitations have revealed transitions between stable
solutions with increasing amplitude, eventually leading
to chaotic dynamics (Hoogeboom et al., 2013).

Meanwhile, stability analysis of plane waves in non-
linear phononics remains relatively unexplored. Newton
and Keller (Newton and Keller, 1987) introduced an
equation to assess the perturbation growth rate to ascertain
the start and end of plane wave stability. Further studies by
Fronk and Leamy (Fronk and Leamy, 2017, 2019) ad-
dressed plane wave stability in monoatomic and diatomic
chains. These findings highlight that in 1D systems, sta-
bility is amplitude-dependent, and in 2D, it also depends
on direction. Recent studies have also analyzed the sta-
bility of topologically protected modes (Mančić et al.,
2023) in highly nonlinear systems, unveiling specific
frequency–energy domains where the protected mode
becomes unstable.

This research tackles the challenge of optimizing band
gap characteristics and energy harvesting in linear and
nonlinear internally coupled resonators, a significant gap in
current metamaterial applications crucial for advancing
energy efficiency and vibration control.

The primary contributions of this paper are summarized
as follows:

• Analyzed band gap and energy harvesting in nonlinear
coupled resonators in lumped system.

• Developed new stability analysis for nonlinear resonator
systems.

• Identified enhancements in band gaps specifically in
internally coupled resonators.

• Illustrated how internal coupling boosts energy har-
vesting and analyzed damping impacts.

• Provided insights on optimizing metamaterials for en-
ergy harvesting.

• Demonstrated advantages of electromechanical shunt
circuits in tuning band gaps.

2. Method

Using the lumped parameter model, intricate physical
systems are distilled into discrete points defined by pa-
rameters such as resistance, capacitance, or mass. This is
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suitable for systems where the wave propagation wave-
length far exceeds structural dimensions.

Through the Lagrangian energy method, equations of
motion are derived for metamaterials interfaced with in-
ternally coupled resonators. Given the system’s inclusion of
negative stiffness, an essential stability analysis is executed,
aiming for vibration suppression enhancements while en-
suring stability and reliability.

2.1. Linear electromechanical resonators

In electromechanical systems employing piezoelectric el-
ements, additional nonlinearity is introduced to the system
dynamics, serving to dampen vibrations and enhance en-
ergy harvesting in resonators. When resonators are in-
tegrated with piezoelectric elements, a coupling between
mechanical and electrical dynamics occurs, which enriches
yet complicates system behavior. Utilizing Lagrange’s
equation, governing dynamics can be obtained, with me-
chanical damping typically represented via Rayleigh
damping and energy equations being linearly characterized.
The resulting governing equations of motion are delineated
accordingly.

2.2. Analysis of power output of standard
piezoelectric circuit for energy harvesting

In investigating the nonlinearity properties in piezoelectric
materials, this study utilizes a standard circuit paired with
each nonlinearity type. This approach ensures that each
nonlinearity is observed in isolation, unaffected by dif-
ferent circuit efficiencies. Here, the piezo voltage, vp(t),
has a direct proportionality to the displacement, u(t). An
in-depth analysis yields the average harvested power P in
the system as

P ¼ v2c
R
¼ Rθ2ω2�

Rcpωþ π
2

�2z
2
0 (1)

This formulation encapsulates the intricate interplay
between electric charge storage, current dynamics,

mechanical displacement, and the system’s power har-
vesting (Shu and Lien, 2006).

2.3. Internally coupled resonators with mechanical
nonlinearity

The system, illustrated in Figure 1, embodies a nonlinear
mechanical chain internally coupled, with a unit cell de-
lineated by a dashed rectangle. The analysis simplifies the
system dynamics by exclusively considering springs, as-
suming linearity for both the primary and resonator-
associated springs while maintaining nonlinearities in the
internally coupled springs, and disregarding damping and
electromechanical elements. The primary dynamic behavior
emerges predominantly from the nonlinear internal cou-
pling amidst resonators within a generally linear spring
system, thereby facilitating a concentrated exploration into
the effects and potential benefits of nonlinearity in inter-
resonator springs.

The kinetic energy, symbolized by T, includes the dy-
namic activities of both the main chain and the resonators
and is expressed as follows:

T ¼ 1

2
mm

�
_u2m þ _u2mþ

�þ 1

2
mr

�
_u2r þ _u2rþ

�
(2)

The potential energy, denoted by U, encapsulates the
energy stored in various components of a mechanically
coupled system: the main chain’s linear springs, coupling
springs between the chain and resonators, and notably, the
nonlinear springs internally coupling the resonators provide
a comprehensive view of energy distribution and interplay
in a predominantly linear mechanical chain with specific
nonlinear interactions.

U ¼ 1

2
km
�ðum�� umÞ2 þ ðum � umþÞ2 þ ðumþ � umþþÞ2�

þ1

2
kr
�ðum � urÞ2 þ ðumþ � urþÞ2

�

þ1

2
kc1ður � urþÞ2 þ 1

4
kc2ður � urþÞ4

(3)

Here, kc1 and kc2 serve as the linear and nonlinear
coupling coefficients, respectively. While kc1 facilitates
a linear coupling between resonators, kc2 introduces a bi-
stable nonlinearity due to its fourth-order nature among the
resonators. If both kc1 and kc2 are positive ðkc1 > 0 and
kc2 > 0Þ, the system achieves a traditional monostable state,
thereby circumventing the need to identify and linearize
around a stable point. Opting for this strategy not only
guarantees straightforward and stable system dynamics but
also commonly serves to sidestep the intricacies encoun-
tered when navigating through bistable systems, especially
in scenarios where kc1 < 0 and kc2 > 0. Utilizing the

Figure 1. A mechanically internally coupled resonator. The

dashed rectangle signifies a unit cell.
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Lagrangian formulation, and defining zr(t) as relative dis-
placement between chain mass and resonator, the reso-
nator’s equation of motion yields

mm€zrðtÞ þ cmð2 _zrðtÞ � _zr�ðtÞ � _zrþðtÞÞ
þkmð2zrðtÞ � zr�ðtÞ � zrþðtÞÞ þ krzrðtÞ ¼ fer

(4)

mm€zrþðtÞ þ cmð2 _zrþðtÞ � _zrðtÞ � _zrþþðtÞÞ
þkmð2zrþðtÞ � zrðtÞ � zrþþðtÞÞ þ krzrþðtÞ ¼ ferþ

(5)

mr€zrðtÞ þ cr _zrðtÞ þ krzrðtÞ þ kc1ðzrðtÞ � zrþðtÞÞ
þkc2ðzrðtÞ � zrþðtÞÞ3 ¼ fem

(6)

mr€zrþðtÞ þ cr _zrþðtÞ þ krzrþðtÞ � kc1ðzrðtÞ � zrþðtÞÞ
�kc2ðzrðtÞ � zrþðtÞÞ3 ¼ femþ

(7)

Here, mm represents the mass of the main chain, and
the coefficient km is the main chain’s stiffness, inter-
acting with the relative displacements between the
resonator and its neighbors, while kr characterizes the
resonator’s inherent stiffness. The fer is the external
excitation force on the primary mass chain. The reso-
nator, with mass mr, has a damping coefficient cr and
stiffness kr. kc1 is the linear coupling stiffness, while kc2
is nonlinear. The forces fer and ferþ indicate excitation on
the primary mass chain, influenced by the resonator and
internal connections. fem and femþ are the forcing on the
resonators, sourced from the main chain mass and in-
ternal stiffness interactions.

2.4. Stability analysis for mechanical internally
coupled metamaterial

The Jacobian matrix is commonly used to analyze the
stability of equilibrium points for nonlinear systems.
The idea is to linearize the nonlinear system around its
equilibrium points and then analyze the stability of the
resulting linear system. This provides insight into the
local behavior of the nonlinear system around those
points.

Considering equations (6) and (7) without the excitation
force, the equilibrium points of the system can be ascer-
tained. Setting the velocities _zr and _zrþ , along with the
accelerations €zr and €zrþ , to zero provides the necessary
conditions that define these equilibrium positions. The
equilibrium points satisfy

krzr0 þ kc1

�
zr0 � zrþ0

�
þ kc2

�
zr0 � zrþ0

�3

¼ 0

krzrþ0 � kc1

�
zr0 � zrþ0

�
� kc2

�
zr0 � zrþ0

�3

¼ 0
(8)

Introducing small perturbations around these equilib-
rium points results in the following expressions:

δzr ¼ zr � zr0
δzrþ¼ zrþ � zrþ0

(9)

Upon linearization of the equations of motion around the
equilibrium, terms of higher order in δzr and δzrþ are ne-
glected, leading to

mrδ€zr þ crδ _zr þ krδzr þ kc1ðδzr � δzrþÞ
þ3kc2

�
zr0 � zrþ

0

�2

ðδzr � δzrþÞ ¼ 0
(10)

mrδ€zrþ þ crδ _zrþ þ krδzrþ � kc1ðδzr � δzrþÞ
�3kc2

�
zr0 � zrþ

0

�2

ðδzr � δzrþÞ ¼ 0
(11)

A state vector is introduced to convert the second-order
system into a system of first order:

X ¼

2
664
δzr
δzrþ
δ _zr
δ _zrþ

3
775 (12)

Differentiating the state vector yields

_X ¼

2
664
δ _zr
δ _zrþ
δ€zr
δ€zrþ

3
775 (13)

The objective is to represent _X in the form AX, where A is
a matrix constructed from the system parameters and
possibly the equilibrium point. The matrix A is determined
by linearizing the equations of motion. The eigenvalues of A
indicate the stability of the system around the equilibrium.

The eigenvalue for the nonlinear internally coupled
resonators is determined by equations (14) and (15):

λ1, 3 ¼ �cr ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r � 4krmr

p
2mr

(14)

λ2, 4 ¼ � 1

2mr
ðcr ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r � 4mrkr � 8mrðkc1 þ 3kc2ðδzr � δzrþÞ2

�q 	 (15)

By omitting the nonlinear term kc2, the system transitions
to a linear internally coupled resonator. This exclusion
simplifies the stability analysis by removing the nonlinear
component. Consequently, the system’s behavior is ana-
lyzed linearly around its equilibrium point. After this
simplification, the governing equation of motion becomes

λ1, 3 ¼ �cr ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r � 4krmr

p
2mr

(16)
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λ2, 4 ¼ �cr ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r � 4mrðkr þ 2kcÞ

p
2mr

(17)

Stability scenarios for internally coupled systems:

2.4.1. Nonlinear systems:
Case 1: For c2r � 4krmr < 0, λ1,3 imply a stable focus.
Case 2:With c2r � 4krmr > 0 and all positive parameters, λ1

and λ3 ensure stability.
Case 3: Sign of λ2,4 depends on term magnitudes and cr.
Case 4: c2r � 4krmr � 8mrðkc1 þ 3kc2ðδzr � δzrþÞ2Þ< 0 de-

notes stability.

2.4.2. Linear systems:
Case 1: For c2r � 4krmr < 0, λ1,3 indicate a stable focus.
Case 2: With c2r � 4krmr > 0, signs of λ1 and λ3 are de-

termined by cr.
Case 3: In c2r � 4krmr � 8kcmr > 0, stability relies on signs

of λ2 and λ4.
Case 4: Condition c2r � 4krmr � 8kcmr < 0 signals stability.

2.5. Electromechanical resonators with internal
coupling via shunt capacitance circuit
technique

In the preceding section, the metamaterial with internal
resonator coupling was examined. Due to challenges in
constructing and instructing the internal spring, especially
when aiming for negative stiffness, an alternative is to
utilize an electrical shunt circuit, specifically a prototype
capacitance, offering behavior similar to the mechanically
internally coupled resonator.

In this section, the shunt capacitance circuit technique is
employed to model a two-degree-of-freedom electrical
system with internal coupling, as illustrated in Figure 2. In
this scenario, capacitance is incorporated as a key com-
ponent instead of utilizing the resistance (R) as load.

Figure 2 illustrates the forward and reverse shunt circuit
setups. The forward pairs the top and bottom surfaces of
piezoelectric transducers, whereas the reverse opposes

them. Both configurations use a parallel capacitor and
yield similar analytical conclusions, with the only dif-
ference being a sign change in the coupling stiffness.
Despite their similarities, this study primarily focuses on
the reverse setup due to its straightforward mechanical
interpretation when no external capacitance is present. In
terms of capacitance, positive values lower voltage during
current discharge, while negative ones raise it. Drawing
from the impedance analogy, the segments LRC and LRC+

correspond to resonators mrcrkr and ðmrcrkrÞþ, as dis-
played in Figure 3.

The voltage across the capacitance reflects force inter-
actions between resonators. Current and charge shifts de-
note velocity and displacement variations. Essentially, the
capacitor acts as a coupling spring, its stiffness determined
by the capacitance sign. In the reverse setup for piezo-
electric transducers, voltages possess equal magnitude but
opposite directions, influenced by the current in the parallel
capacitance cs, as

1

cs

Z �
ipðtÞ � ipþðtÞ

�
dt ¼ vpðtÞ (18)

The design uses an internal shunt capacitance, tuned to
act as a negative capacitor, to boost resonator performance
and strengthen adjacent resonator coupling. Given iden-
tical properties for all resonators, including stiffness,
damping, and mass, the governing equations for the
motion of two resonators within a unit cell, as seen in
Figure 2, are

mr€zrðtÞ þ cr _zrðtÞ þ krzrðtÞ þ θrvpðtÞ ¼ mr €umðtÞ (19)

mr€zrþðtÞ þ cr _zrþðtÞ þ krzrþðtÞ þ θrþvpþðtÞ ¼ mr €umþðtÞ
(20)

Relative displacements of the resonators to the main
structure can be defined as zr = um � ur and
zrþ ¼ umþ � urþ . The coefficients θr and θrþ represent
electromechanical coupling, with associated voltages vp(t)
and vpþðtÞ. The corresponding electrical equations for the
transducers are

cp _vpðtÞ þ ipðtÞ � θr _zrðtÞ ¼ 0 (21)

Figure 2. Internally coupled system with electrical shunt circuit:

Forward (dashed line) and reverse (solid line) capacitance shunting

configurations.

Figure 3. Electrical analog of unit cell resonators with capaci-

tance shunt circuit via impedance method.

Alimohammadi et al. 5



cpþ _vpþðtÞ þ ipþðtÞ � θrþ _zrþðtÞ ¼ 0 (22)

By substituting equation (18) into equations (21) and
(22), expressions for currents ip(t) and ipþðtÞ in the loops are
derived as

ipðtÞ ¼ cpþθr _zr þ cpθrþ _zrþ þ csθr _zr
cp þ cpþ þ cs

(23)

ipþðtÞ ¼ cpþθr _zr þ cpθrþ _zrþ þ csθrþ _zrþ

cp þ cpþ þ cs
(24)

Substituting equation (23) and equation (24) into
equation (18) and integrating with respect to time for zero
initial condition yields

vpðtÞ ¼ ðθrzr � θrþzrþÞ
cp þ cpþ þ cs

(25)

vpþðtÞ ¼ �ðθrzr � θrþzrþÞ
cp þ cpþ þ cs

(26)

Substituting equation (25) and equation (26) into equation
(19) and equation (20) yields the following expressions:

mr€zrðtÞ þ cr _zrðtÞ þ krzrðtÞ þ ks1zrðtÞ
�ks2zrþðtÞ ¼ mr €umðtÞ (27)

mr€zrþðtÞ þ cr _zrþðtÞ þ krzrþðtÞ
�ks2zrðtÞ þ ks3zrþðtÞ ¼ mr €umþðtÞ (28)

where

ks1 ¼
θ2r

cp þ cpþ þ cs
(29)

ks2 ¼
θrθrþ

cp þ cpþ þ cs
(30)

ks3 ¼
θ2rþ

cp þ cpþ þ cs
(31)

For identical electromechanical couplings and after
substituting the relevant equations into equation (18), the
integrated result yields the following condensed motion
equations:

mr€zrðtÞ þ cr _zrðtÞ þ krzrðtÞ
þksðzrðtÞ � zrþðtÞÞ ¼ mr €umðtÞ (32)

mr€zrþðtÞ þ cr _zrþðtÞ þ krzrþðtÞ
�ksðzrðtÞ � zrþðtÞÞ ¼ mr €umþðtÞ (33)

where

ks ¼ θ2r
cp þ cpþ þ cs

(34)

2.6. Stability analysis for electromechanical
internally coupled resonators via shunt
capacitance

The stability of the system hinges on ks, denoting elec-
tromechanical coupling through the shunt circuit. Instability
might arise with negative shunt capacitance. For the dual-
resonator setup, stability is gauged by linearizing its
equations of motion and inspecting the eigenvalues of the
Jacobian matrix. A system is stable if all its eigenvalues
possess negative real parts. By analyzing the Jacobian
matrix derived from linearizing around equilibrium, we
discern system behavior. The system remains stable with all
eigenvalues in the left-half complex plane. Achieving
negative stiffness necessitates ks1, ks2, and ks3 to be negative.
Uniform electromechanical coupling demands ks < 0.

For a system with positive electromechanical coupling,
achieving a negative ks necessitates the combined cp and cs
to be negative, indicating a need for negative capacitance.
This can be realized using active circuits with operational
amplifiers or ferroelectric capacitors. However, this in-
troduces challenges such as potential destabilization. En-
suring system stability, especially with negative
capacitance, is paramount, often verified using Jacobian
analysis. Mathematically, a corresponding linear system is
expressed as

m€zðtÞ þ c _zðtÞ þ kzðtÞ ¼ f ðtÞ (35)

with

zðtÞ ¼


zrðtÞ
zrþðtÞ

�

The system’s stability is influenced by the eigenvalues
of the Jacobian matrix, determined by equation (36).
These eigenvalues are shaped by the damping coefficient
cr and shunt coefficients ks1, ks2, and ks3. While damping
can promote stability, spring coefficients introduce po-
tential oscillations. The interplay of couplings ks1, ks3, and
ks2 deeply impacts the system dynamics. A system is
stable when all eigenvalues have negative real parts. If

λ ¼
�cr ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r � 2ks1mr � 2ks3mr � 4krmr ± 2mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s1 � 2ks1ks3 þ 4k2s2 þ k2s3

qr

2mr
(36)
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the discriminant is negative, oscillatory behaviors
emerge.

Notably, the real component of λ, defined as �cr/2mr,
predisposes the system to stability, but further analysis is
essential for a full understanding.

a ¼ c2r � 2ks1mr � 2ks3mr � 4krmr (37)

b ¼ 2mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s1 � 2ks1ks3 þ 4k2s2 þ k2s3

q
(38)

Case 1: a < 0 and b < 0, the system is stable if |a| > |b|.
Case 2: a > 0 and b > 0, the system is stable if a < b.
Case 3: a > 0 and b < 0, stability would need to be as-

certained by calculating the actual values and verifying
the sign of λ. The system can lead to an unstable region.

Case 4: a < 0 and b > 0, the system is stable if |a| > |b|.
Case 5: a = 0 or b = 0, the system is stable.

For a marginally stable system, damping is typically
disregarded to establish boundaries of stability. As per
equation (39), when the system’s eigenvalues are purely
imaginary, it denotes a marginal stability condition. This
equation delineates constraints on the stiffness coefficients
kr and ks, defining the threshold between stable and unstable
regimes.

2kr >� ks1 � ks3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s1 � 2ks1ks3 þ 4k2s2 þ k2s3

q
(39)

The associated eigenvalues, representing the system’s
characteristic frequencies, are given by

λ¼±
1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
2krþks1þks3 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s1 �2ks1ks3þ4k2s2 þk2s3

q �
mr

vuut
(40)

To identify criteria for cs that ensures a negative
equivalent stiffness, equations (29), (30), and (31) are
substituted into (37) and (38). The derived expressions are
then analyzed to determine the conditions for cs that satisfy
the stability conditions

a� b< 0 (41)

jaj> jbj (42)

Substituting a and b into equation (41) for the stability
condition of a � b < 0 yields

c2r � 4krmr < 2mr

0
@θ2r þ θ2rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ4r þ 2θ2rθ

2
rþ þ θ4rþ

q
cp þ cpþ þ cs

1
A
(43)

Taking into account the absolute values in equation (42),
it becomes imperative to explore two scenarios due to the
potential positivity or negativity of both a and b.

��c2r � 4krmr

��>
������2mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ4r þ 2θ2rθ

2
rþ þ θ4rþ

q
cp þ cpþ þ cs

������ (44)

The inequalities (44) and (43) should be satisfied for stability,
and cs appears in the denominator of the fractions in these
expressions, implying that as cs changes, the values of these
expressions will alter, potentially changing the sign of the in-
equalities. To derive explicit criteria, one could further ma-
nipulate these expressions or, depending on the specific
application or system, analyze them numerically by substituting
values of other parameters ðcr, kr,mr, etc.) to explore how
varying cs affects the system’s stability. Solving for cs results in

cs >
2mr



θ2r þ θ2rþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ4r þ 2θ2rθ

2
rþ þ θ4rþ

q 	

c2r � 4krmr
� cp � cpþ

(45)

In the case of identical electromechanical coupling, and
capacitance, the criteria for cs can be simplified as follows:

cs >
8mrθ

2
r

c2r � 4krmr
� 2cp (46)

In the scenario devoid of damping, the eigenvalues of the
system, representing its characteristic roots, are provided as
follows:

Table 1. Defined parameters for the piezoelectric model.

Parameter Value

Mass of main chain (mm) 0.056 kg

Mass of resonator (mr) 0.0336 kg

Spring constant of main chain (km) 150 N/m

Spring constant of resonator (kr) 129.6 N/m

Damping coefficient of main chain (cm) 0.0464 Ns/m

Damping coefficient of resonator (cr) 0.0334 Ns/m

Piezoelectric capacitance (cp) 1.5 mF(C/m)

Adjacent resonator’s capacitance ðcpþÞ 1.2 mF(C/m)

Electromechanical coupling coefficient (θr) 0.25 N/V

Adjacent electromechanical coupling ðθrþÞ 0.2 N/V

Linear coupling coefficient ðkc1Þ 198 (�20) N/m

Nonlinear coupling coefficient ðkc2Þ 2386 (880) N/m3

Shunt capacitance (cs) �7.9 mF(C/m)

Internal resistance (R) 500 V

Alimohammadi et al. 7



λ1, 2 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi�krmr

p
mr

λ3, 4 ¼ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�mrðkr þ 2ksÞ
p

mr

(47)

The system’s stability is defined by the real parts of its
eigenvalues. When kr + 2ks > 0, the system exhibits mar-
ginal stability, oscillating continuously without decay or
growth. However, if kr + 2ks < 0, the system has both
positive and negative eigenvalues, indicating instability.
This highlights the critical relationship between the reso-
nator’s spring constant and the shunt capacitance stiffness
(ks). If the feedback from the shunt is overly negative, it can
destabilize the system. In most applications, full stability is
preferred over marginal stability. The stability criterion for
cs is

cs >�


2θ2r
kr

þ 2cp

	
(48)

In contrast to purely mechanical internally coupled
resonators, electromechanical shunt capacitance circuits
provide benefits over solely mechanical resonators by al-
lowing easy adjustments for negative stiffness. The sys-
tem’s flexibility is further amplified by altering parameters
like cp, cpþ , θr, and θrþ , enabling advanced system behav-
iors and improved dynamic control.

3. Simulation analysis and discussion

The simulation model used in this study has in-
vestigated both mechanical and electromechanical
dynamics, with a focus on piezoelectric components’

key parameters as depicted in Table 1. Differential
equations representing the system were solved using the
fourth-order Runge–Kutta method. The garnered re-
sults have offered profound insights into system per-
formance aspects, notably vibration control, energy
capture, and power efficiency.

The model revealed four wavelengths (λ) for creating
distinct dispersion curves stemming from the presence of
four inertias within a unit cell, suggesting the potential for
enhanced band gaps in internally coupled metamaterials as
opposed to conventional ones. While our research con-
centrated on a select frequency range to delineate the
variances between mechanical and electromechanical in-
ternal coupling, the broader implications of all band gaps
across the entire frequency spectrum remain an open field
for future exploration.

Incorporating real-world scenarios, our research en-
capsulates applications that harness high-capacitance pie-
zoelectric materials. These include pedestrian energy-
harvesting floor tiles in airports, vibration dampers in in-
dustrial machinery, structural health monitors for bridges
and buildings, energy-recapturing systems in automotive
suspensions, and self-charging phone cases. These case
studies demonstrate the practical engineering scenarios
where our research can be applied, emphasizing the
transformative impact of our findings on sustainable en-
gineering design and operation.

3.1. Shunt capacitance influence on system stability
and energy-harvesting efficiency

Figure 4 illustrates the relationship from equation (48). For
system stability, the equivalent internal coupling stiffness ks
should exceed ks = �kr/2. The figure illustrates the

Figure 4. Stability map for the electromechanical lumped system:

interplay between equivalent stiffness ks and shunt capacitance cs.
Parameters: n = 4,mm = 56 g,mr = 33.6 g, km = 150 N/m, kr = 129.6

N/m, θ = 0.25 N/V, R = 500 V, and cp = 1.5 × 10�3 F.

Figure 5. Transmittance comparison of electrical internally

coupling with shunt circuit for θ = 0.25 and cp = 1.5 mF, dem-

onstrating the impact of an equivalent negative stiffness of ks =
�30.
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relationship between ks and shunt capacitance cs. The light
blue area denotes system stability, while the reddish color
signifies instability. Given the parameters, stability is
maintained for cs values from negative infinity to
about �0.004 F and from around �0.003 F to positive
infinity. However, there’s a brief unstable period in between.
A zoomed-in view highlights the crucial cs values where the
system behavior changes.

In the study of energy-harvesting systems, understanding
the behavior of different parameters is essential for opti-
mization. From the simulations, key insights have emerged.
Figure 6 presents the harvested power and energy across
a range of shunt capacitances. It clearly underscores the
influential role of shunt capacitance on the system’s overall
efficiency.

A pivotal observation made from the results is the su-
periority of electrical internal coupling via shunt circuits in
terms of tunability. Specifically, electrical coupling seems to
allow for easier tuning of the band gap compared to its
mechanical counterpart. This is evident in Figures 5 and 6,
where the chosen shunt capacitor facilitates a band gap at
a notably lower frequency in comparison to a mechanically
internally coupled system, as illustrated in Figure 7.

Selecting a shunt capacitance of cs =�5.08 mF results in
an equivalent stiffness of ks = �30. This specific choice not
only introduces an equivalent negative stiffness into the
system, enhancing energy-harvesting capabilities across
varied frequency spectrums, but also facilitates the creation
of a band gap at a lower frequency (see Figure 5). Compared
to mechanical internally coupled resonators, this allows for
more flexible and straightforward tuning of the band gap
across different frequencies.

3.2. Electromechanical internally coupled
resonators

Figure 7 illustrates the displacement response across dif-
ferent frequency ranges for four distinct systems: mass–

Figure 6. Power and energy harvesting across various shunt capacitances with θ = 0.25 and cp = 1.5 mF.

Figure 7. Frequency response analysis: comparative displace-

ment profiles of mechanical, conventional metamaterial, and

electromechanical internally coupled systems based on parame-

ters in Table 1.

Alimohammadi et al. 9



spring chain, conventional metamaterial, mechanical in-
ternal coupling, and electromechanical internal coupling.
The mechanical internally coupled system has a dominant
response at around 7 Hz, peaking at a displacement of
approximately 0.06 m, but its effectiveness drops beyond
12 Hz. In contrast, the conventional metamaterial with
linear resonators responds at multiple frequencies, espe-
cially around 12 Hz and 14 Hz. Both the mechanical and
electromechanical internal coupling systems exhibit in-
tricate frequency responses, with the latter demonstrating
a wider range of resonances. Displacement magnitudes
suggest potential energy-harvesting capabilities, with
greater displacements indicating more energy conversion
potential. Notably, while the electromechanical system
might display a reduced displacement compared to its
purely mechanical counterpart, its broader frequency re-
sponse makes it versatile, though its energy-harvesting
efficacy needs further examination as indicated in Figure 9.

From Figures 8 and 9, the damping coefficients of mass
chain cm and resonator cr alter displacement and power
generation profiles across frequencies. A higher damping
smoothens the response, lessening peak displacements
while broadening the frequency response. This results in
decreased peak power but an enhanced ability to harvest

energy across a wider frequency range. Observations show
that a steeper curve corresponds to more energy harvested
over time with a higher cr. For this case study, the elec-
tromechanical parameters, θ = 0.25 N/V, internal resistance
R = 500 V, and shunt capacitance cs = �5 mF are selected.
As seen in Figure 8, different values of cr lead to varied
displacement, power, and energy profiles. It directly affects
the sharpness of the resonance peak and the bandwidth of
the system’s frequency response. A high cr broadens the
response, suitable for environments with varied frequencies
but at the cost of peak performance.

In comparing the displacements from Figures 8 and 9,
it’s evident that the behaviors of cm and cr diverge. Spe-
cifically, cm prominently impacts the system’s transient
response and settling time. Notably, even with piezoele-
ments on the resonator, increased main chain damping ðcmÞ
leads to reduced energy harvesting. This underlines the
intricate dynamics between resonator and mass chain
damping in energy-harvesting systems.

Figure 10 shows the displacement response of nonlinear
mechanical internal coupling resonators over a frequency
sweep. The plot contrasts the displacement during upward
and downward frequency sweeps, revealing the nonlinear
behavior and hinting at the presence of bifurcation around

Figure 8. Frequency response showcasing the influence of varying resonator damping coefficients ðcrÞ on displacement, power

generation, and accumulated harvested energy. A higher cr reveals a smoothed response with broader bandwidth but reduced peak

values.
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15 Hz. This nonlinearity is influenced by the linear coupling
coefficient ðkc1Þ of 198 N/m and the nonlinear coupling
coefficient ðkc2Þ of 2386 N/m3. The continuous nature of the
sweep and the plot’s point-connecting methodology give
the bifurcation its observed shape.

Figure 11 illustrates bistable-type nonlinear me-
chanical resonators with internal coupling. The pa-
rameters employed include linear coupling coefficient
ðkc1Þ �20 N/m and nonlinear coupling coefficient ðkc2Þ
0.88e3 N/m3. The graph represents the resonator’s

Figure 9. Displacement profiles as influenced by themass chain damping ðcmÞ. The transient response and settling time of the system are

notably affected by cm. The plot underscores the reduced energy harvesting as cm increases, despite the presence of piezoelements on the

resonator.

Figure 10. Displacement response of nonlinear mechanical

internal coupling resonators over a frequency sweep, with linear

coupling coefficient kc1 ¼ 198 N=m and nonlinear coupling co-

efficient kc2 ¼ 2386 N=m3.

Figure 11. Displacement response of bistable nonlinear me-

chanical internal coupling resonators: linear coupling coefficient

kc1 ¼ �20N=m and nonlinear coupling coefficient kc2 ¼ 880N=m3.

Inset: Resonator’s potential energy profile for the specified cou-

pling parameters.
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potential energy in relation to displacement. It em-
phasizes the unstable point of origin with negative
stiffness. It’s worth noting that the system’s dynamics
are highly sensitive to the value of kc2. Similar to
Figure 10, in the frequency range of 14–16 Hz, bi-
furcation is observed. The non-coinciding sweep up/
down traces indicates the presence of hysteresis,
highlighting the system’s nonlinear behavior.

The inset plot within the main figure shows a graph of
potential energy against displacement. This highlights the
energy state of the system for different displacements. The
presence of multiple local minima indicates that the system
can occupy multiple stable states for specific energy levels.
This behavior indicates multi-stability in the system, es-
pecially if the resonators encounter large fluctuation range.
The peaks, especially those around 8 Hz and 15 Hz, show
clear discrepancies between the sweep up/down traces. This
difference highlights the system’s nonlinear hysteresis be-
havior. Beyond the 16 Hz mark, multiple peaks and valleys
suggest that the system has several resonance frequencies or
harmonics. These characteristics can arise due to the in-
terplay of the system parameters and nonlinearities.

Leveraging bistability in phononic media can profoundly
alter the wave response within band gaps via supra-
transmission, a phenomenon documented in bistable peri-
odic chains both with and without resonators (Frazier and
Kochmann, 2017), as well as in metastable modular met-
astructures (Wu and Wang, 2019). Nonetheless, in this
context, the parameters of the bistable system are de-
liberately chosen to operate within a confined frequency
range, aiming to exclusively simulate the system akin to
negative stiffness found in electromechanical systems uti-
lizing shunt circuits.

To enhance the validity of these findings, supplementary
numerical simulations were executed, integrating decreased
piezoelectric capacitance values. Specifically, cp and cp+ were
adjusted to 800 nF. With other parameters kept constant (kr,
mr, and cr), and the electromechanical coupling coefficients θr
and θrþ set at 0.01 N/V, these simulations were crucial in
reinforcing the robustness of the study’s findings. Stability
analysis revealed that, for system stability, the shunt capac-
itance csmust exceed�3.48 μF. This criterionwas testedwith
values such as �1.5 μF, �200 nF, and �10pF. Conducted
within a pragmatic range of piezoelectric capacitance, these
simulations not only confirmed the initial results but also
underscored the model’s practical applicability and relevance.
The insights derived from this extended simulation effort are
integrated into the study, ensuring that the conclusions drawn
are firmly rooted in realistic engineering contexts.

4. Conclusion

In conclusion, this investigation into the dynamics of in-
ternally coupled resonators within metamaterial systems has
underscored the critical balance between resonator stiffness

and shunt capacitance stiffness, ks. Our stability analysis
reveals that excessive negative feedback can lead to system
instability, thus necessitating careful parameter tuning.

The simulations have demonstrated the significant ad-
vantages of electromechanical shunt capacitance circuits,
notably in adjusting negative stiffness and facilitating lower
operational frequency band gaps. These insights are in-
valuable for understanding system efficiency and the ef-
fectiveness of electrical internal coupling in energy
harvesting. Furthermore, the study of nonlinear character-
istics like bifurcation and hysteresis in resonators paves the
way for innovative energy-harvesting device designs.

To further validate these findings, additional numerical
simulations were conducted with lower piezoelectric ca-
pacitance values. This extension of the simulation frame-
work reinforced the robustness of the initial results and
confirmed the model’s practical applicability and relevance
in realistic scenarios.

The applications of high-capacitance (millifarad-level)
piezoelectric materials span various sectors. They enable
energy-harvesting floor tiles in high-traffic areas like airports,
vibration damping in industrial machinery, continuous
structural monitoring in buildings and bridges, energy re-
capture in vehicle suspensions, self-charging solutions for
personal electronics, and long-lasting power sources for
wearable health monitors. These applications underscore the
significant potential and real-world impact of advanced pi-
ezoelectric materials in energy harvesting and sustainability.

Guidance for augmenting the capacitance of piezo-
electric materials involves selecting materials such as PZT
or polymer-based composites with higher dielectric con-
stants, optimizing the geometry of piezoelectric elements,
employing multi-layer structures, and connecting multiple
capacitors in parallel. These strategies cumulatively in-
crease the overall capacitance available for energy har-
vesting and other applications.

The key contributions of this research include the
analysis of band gaps and energy-harvesting capabilities
within linear and nonlinear coupled resonators in lumped
systems, a novel stability analysis approach for these
systems, and insights into optimizing metamaterials for
energy harvesting. A significant discovery is the identifi-
cation of enhanced band gaps in internally coupled reso-
nators. Our work demonstrates the advantages of
electromechanical shunt circuits in fine-tuning band gaps
for optimized performance, marking significant steps for-
ward in harnessing the potential of piezoelectric materials
for sustainable energy solutions.

5. Future works

This study offers significant insights into the stability and
energy harvesting capabilities of internally coupled reso-
nators within lumped parameter systems. Looking ahead,
several suggestion for future research emerge: Firstly, there
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is a clear necessity for detailed investigation aimed at op-
timizing coupling parameters, such as capacitance values
and nonlinear coefficients, with the aim of maximizing
energy harvesting efficiency and bolstering system stability.
Furthermore, extending our analysis to encompass net-
works of internally coupled resonators within distributed
parameter systems will be invaluable. Such exploration is
critical for deciphering how interactions among multiple
resonators affect their collective stability and energy har-
vesting efficiency. Additionally, the exploration of adaptive
control techniques presents an exciting frontier. By dy-
namically adjusting the coupling parameters in response to
fluctuating system conditions, these techniques promise to
significantly enhance the adaptability and performance of
resonator systems.
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Abstract—This paper presents a comprehensive study on
lumped parameter systems with internally coupled resonators,
emphasizing stability analysis and energy harvesting potential.
Both mechanical and electromechanical coupling mechanisms
are explored, revealing the critical role of the resonator’s spring
constant and feedback shunt capacitance stiffness. Simulation
analyses demonstrate the significant advantages of electrical
internal coupling, such as enhanced tunability and superior
energy harvesting capabilities. By harnessing negative stiffness
through electromechanical coupling, the paper highlights possi-
bilities for precise control over system dynamics and the creation
of band gaps at lower frequencies. The findings underscore
the potential of internally coupled resonators in metamaterial
systems, particularly for vibration control and energy harvesting
applications.

Index Terms—Lumped Systems, Internally Coupled Res-
onators, Piezoelectric Energy Harvesting, Vibration Suppression.

I. INTRODUCTION

Internally coupled resonators play a vital role in wave
control, stability, and energy collection within lumped pa-
rameter systems. The article focuses on the advantages of
mechanical linear and nonlinear internal coupling, as well
as the electromechanical shunt capacitance circuits. These
mechanisms enable the creation of negative stiffness and
improved dynamic control of systems. Through simulations,
electrical internal coupling is demonstrated to provide better
tunability and enhanced energy harvesting capabilities. The
impact of parameters such as damping coefficients and the
characteristics of the resonators on displacement and energy
outputs at different frequencies are analyzed. Additionally, the
article delves into the nonlinear attributes of these resonators,
which can lead to multiple stable states and unique system
behaviors.

II. BACKGROUND: INTERNALLY COUPLED RESONATORS
EXHIBITING MECHANICAL NONLINEARITY

Internally coupled resonators have recently gained promi-
nence in the realm of dynamics and vibration control, owing
to their unique vibrational behaviors resulting from intricate
internal structural interactions. These behaviors present novel

opportunities in wave propagation management, finding ap-
plications in areas like structural health monitoring, acous-
tic metamaterials, and vibration dampening. While previous
studies, such as those by Hu et al. [1], have delved into
metastructures with linearly coupled resonators, unveiling an
added narrow bandgap compared to traditional metastructures,
the work by Y Liu et al. [2] takes a different angle. Liu’s
research explores a diatomic-chain locally resonant acoustic
metamaterial structure, emphasizing the significance of the
negative-stiffness mechanism. This mechanism, when lever-
aged, enhances vibration suppression by introducing additional
bandgaps and facilitating Bragg scattering. Consequently, it
proves invaluable for mitigating ultralow frequency vibrations
in the lower spectrum and fine-tuning the metamaterial’s
bandgap attributes for specific vibration reduction applications.

III. BACKGROUND: ELECTROMECHANICAL
NONLINEARITY IN INTERNALLY COUPLED RESONATORS

Electromechanical resonators with piezoelectric elements
offer unique wave propagation characteristics. However, re-
search on their nonlinear, internally coupled variants remains
sparse, highlighting a promising avenue for vibration control
and energy harvesting advancements [3]. While metamaterials
present wave propagation advantages, they face band gap
bandwidth limitations. This study explores a novel design
approach, viewing the shunt capacitance circuit as a nega-
tive capacitor, as inspired by [4]. The aim is to understand
its implications on bandgap behavior and energy harvesting
efficiency within the chain mass structure.

IV. BACKGROUND: STABILITY SOLUTION

In the realm of mechanical internally coupled resonators
and nonlinear periodic media, the stability of nonlinear solu-
tions remains underexplored. While nonlinearity often leads to
bifurcations and dynamic solutions with multiple branches, a
proper stability analysis is vital to ensure theoretical responses
align with physical systems. Specifically, upon amplitude
enhancement, there can be transitions between stable solutions,
eventually leading to chaotic dynamics at high amplitudes [5].
Regarding the stability of plane waves in nonlinear phononics,
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Fig. 1. A mechanically internally coupled resonators. The dashed rectangle
signifies a unit cell..

Fronk and Leamy’s work [6] highlighted that stability in 1D
systems is amplitude-dependent, while in 2D systems, it also
depends on direction.

V. METHOD

The lumped parameters model simplifies complex physical
systems by concentrating properties like inertia or elasticity
at discrete points, aiding in systems where wave propagation
wavelength is much larger than the structure’s size. Using
the Lagrangian energy method, an equation of motion for
metamaterial interfaced with internally coupled resonators is
established, blending mechanical and electrical domains for
comprehensive wave propagation and stability analysis. As
negative stiffness is integrated, a rigorous stability analysis
is essential since, while it aids in vibration suppression, it can
also introduce stability issues, underlining the importance of
ensuring system reliability and safety.

VI. INTERNALLY COUPLED RESONATORS WITH
MECHANICAL NONLINEARITY

Fig. 1 presents a schematic representation of a linear mass
chain. A unique feature of this chain is the integration of inter-
nally coupled resonators that exhibit nonlinear characteristics.
The dashed rectangle encompasses a single representative unit
cell, providing a clearer view of the chain’s arrangement.

The dynamic behavior of these nonlinear resonators, specifi-
cally the relationship between their motions and applied forces,
can be captured by utilizing the Lagrangian formulation, and
defining zr(t) as relative displacement between chain mass
and resonator:

mmz̈r(t) + cm (2żr(t)− żr−(t)− żr+(t))

+ km (2zr(t)− zr−(t)− zr+(t))

+ krzr(t) = fer

(1)

mmz̈r+(t) + cm (2żr+(t)− żr(t)− żr++(t))

+ km (2zr+(t)− zr(t)− zr++(t))

+ krzr+(t) = fer+

(2)

mr z̈r(t) + cr żr(t) + krzr(t) + kc1 (zr(t)− zr+(t))

+ kc2 (zr(t)− zr+(t))
3
= fem

(3)

mr z̈r+(t) + cr żr+(t) + krzr+(t)− kc1 (zr(t)− zr+(t))

− kc2 (zr(t)− zr+(t))
3
= fem+

(4)

Here, mm represents the mass of the main chain, and the
coefficient km is the main chain’s stiffness, interacting with the
relative displacements between the resonator and its neighbors,
while kr characterizes the resonator’s inherent stiffness. The
fer is the external excitation force on the primary mass chain.
The resonator, with mass mr, has a damping coefficient cr and
stiffness kr. kc1 is the linear coupling stiffness, while kc2 is
nonlinear. The forces fer and fer+ indicate excitation on the
primary mass chain, influenced by the resonator and internal
connections. fem and fem+ are forcing on the resonators,
sourced from the main chain mass and internal stiffness
interactions.

A. Stability Analysis for Mechanical Internally Coupled Meta-
material

The Jacobian matrix is used to assess the stability of equilib-
rium points in nonlinear systems. By linearizing these systems
around their equilibrium, we can analyze the stability of the
subsequent linear system, revealing the nonlinear system’s
local behavior. In Eqs. (3) and (4), when external force is
absent, the equilibrium points of the system are identified. By
setting the velocities żr and żr+ , as well as the accelerations z̈r
and z̈r+ , to zero, the conditions for these equilibrium positions
are established. These points fulfill the following criteria:

krzr0 + kc1

(
zr0 − zr+0

)
+ kc2

(
zr0 − zr+0

)3
= 0

krzr+0
− kc1

(
zr0 − zr+0

)
− kc2

(
zr0 − zr+0

)3
= 0

(5)

Introducing small perturbations around these equilibrium
points results in the following expressions:

δzr = zr − zr0
δzr+ = zr+ − zr+0

(6)

Linearizing the equations of motion about the equilibrium,
higher-order terms in δzr and δzr+ are disregarded, resulting
in:

mrδz̈r + crδżr + krδzr + kc1 (δzr − δzr+)

+ 3kc2

(
zr0 − zr+0

)2
(δzr − δzr+) = 0

(7)

mrδz̈r+ + crδżr+ + krδzr+ − kc1 (δzr − δzr+)

− 3kc2

(
zr0 − zr+0

)2
(δzr − δzr+) = 0

(8)

To transform the second-order system into a first-order
system, a state vector is defined as:

X =




δzr
δzr+
δżr
δżr+


 (9)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on September 24,2024 at 09:15:45 UTC from IEEE Xplore.  Restrictions apply. 



with its derivative:

Ẋ =




δżr
δżr+
δz̈r
δz̈r+


 (10)

To determine the stability of the system around its equilib-
rium, Ẋ is represented as AX . By linearizing the equations,
matrix A is obtained from system parameters. The system’s
equilibrium stability is indicated by the eigenvalues of A. For
nonlinear internally coupled resonators, the eigenvalue is:

λ1,3 = −cr ±
√

c2r − 4krmr

2mr
(11)

λ2,4 = −cr ±
√

c2r − 4mrkr − 8mr (kc1 + 3kc2(δzr − δzr+)2)

2mr
(12)

Removing the nonlinear term kc2 turns the system into a
linear internally coupled resonator, streamlining the stability
analysis. The system can then be studied linearly around its
equilibrium. With this simplification, the resulting equation of
motion is:

λ1,3 = −cr ±
√

c2r − 4krmr

2mr
(13)

λ2,4 = −cr ±
√

c2r − 4mr(kr + 2kc)

2mr
(14)

Stability scenarios for internally coupled systems:
1) Nonlinear Systems: :
Case 1: For c2r − 4krmr < 0, λ1,3 imply a stable focus.
Case 2: With c2r − 4krmr > 0 and all positive parameters,

λ1 and λ3 ensure stability.
Case 3: Sign of λ2,4 depends on term magnitudes and cr.
Case 4: c2r−4krmr−8mr

(
kc1 + 3kc2 (δzr − δzr+)

2
)
< 0

denotes stability.
2) Linear Systems: :
Case 1: For c2r − 4krmr < 0, λ1,3 indicate a stable focus.
Case 2: With c2r − 4krmr > 0, signs of λ1 and λ3 are

determined by cr.
Case 3: In c2r − 4krmr − 8kcmr > 0, stability relies on

signs of λ2 and λ4.
Case 4: Condition c2r−4krmr−8kcmr < 0 signals stability.

VII. ELECTROMCHANICAL INTERNALLY COUPLED
RESONATORS

A. Internal Coupling Via Shunt Capacitance Circuit Technique

The previous section discussed metamaterials with internal
resonator coupling. Given the challenges with internal springs,
especially for negative stiffness, we turn to an electrical
shunt circuit. Specifically, a prototype capacitance mirrors the
behavior of mechanically coupled resonators.

This section models a two-degree-of-freedom electrical
system using shunt capacitance, as shown in Fig. 2, where

Fig. 2. Internally Coupled System with Electrical Shunt Circuit. Forward
(Dashed Line) and Reverse (Solid Line) Capacitance Shunting Configurations.

capacitance plays a central role, replacing the resistance (R)
as the primary load.

Fig. 2 illustrates the forward and reverse shunt circuit
setups. The forward pairs the top and bottom surfaces of
piezoelectric transducers, while the reverse connects them
inversely. Both designs include a parallel capacitor. The two
configurations discussed share similar analytical methods and
results, differentiated mainly by a change in coupling stiffness
sign. This study centers on the reverse setup, which inherently
acts like a traditional spring without external capacitance,
making its mechanics more intuitive. Capacitance links charge
shifts to voltage changes: positive capacitance reduces voltage
during discharge, while negative increases it. The overall
system voltage mirrors resonator force interactions, with cur-
rent and charge changes indicating velocity and displacement
differences. Essentially, the capacitor serves as a mechanical
spring with its behavior defined by the capacitance sign. In
the reversed setup, voltages on piezoelectric transducers have
equal magnitudes but opposing directions.

Utilizing an internal shunt capacitance, tuned as a negative
capacitor, enhances resonator performance and intensifies their
interconnection. Given similar properties across resonators, the
resulting motion equations are:

mr z̈r(t) + cr żr(t) + krzr(t) + θrvp(t) = mrüm(t) (15)

mr z̈r+(t) + cr żr+(t) + krzr+(t) + θr+vp+(t) = mrüm+(t)
(16)

Here, the term ks, given by

ks =
θ2r

cp + cp+ + cs
(17)

which represents the effective spring constant, which arises
due to the electrical coupling between the resonators.

B. Electromechanical Resonators’ Stability equivalent nega-
tive stiffness

Stability hinges on ks, denoting the electromechanical link
through the shunt circuit. A system is stable if its Jacobian
matrix’s eigenvalues, derived from its linearized motion equa-
tions, all have negative real parts. A negative ks implies the
potential of negative capacitance, which might be achieved
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with active circuits. Adjusting these parameters necessitates
rigorous stability checks, especially when integrating negative
capacitance. Eigenvalues, considering identical electromechan-
ical coupling and piezoelectric capacitance, are:

λ =
−cr ±

√
c2r − 4krmr

2mr
(18)

λ =
−cr ±

√
c2r − 4mr(kr + 2ks)

2mr
(19)

By applying stability criteria, similar to previous mechanical
stability analyses, the criterion for cs to achieve a negative ks
is derived as:

cs >
8mrθ

2
r

c2r − 4krmr
− 2cp (20)

The performance of the system, whether oscillatory or
steady, is heavily influenced by the shunt ks. Electromechan-
ical shunt capacitance resonators provide flexibility, enabling
unique behaviors and enhanced control over system dynamics.

VIII. SIMULATION ANALYSIS AND DISCUSSION

A simulation model was employed to investigate the dynam-
ics of piezoelectric components, as detailed in Table I. Dif-
ferential equations, processed using the fourth-order Runge-
Kutta method, outlined the system’s behavior. Key perfor-
mance aspects, such as vibration control, energy capture, and
power efficiency, emerged. Notably, four inertias in a unit cell
generated distinct dispersion curves with enhanced band gaps
in internally coupled metamaterials. The research emphasized
distinctions between mechanical and electromechanical inter-
nal coupling within a specified frequency domain, omitting an
all-encompassing exploration of all band gaps induced by the
complexities of internal coupling.

TABLE I
DEFINED PARAMETERS FOR THE PIEZOELECTRIC MODEL

Parameter Value
Mass of main chain (mm) 0.056 kg
Mass of resonator (mr) 0.0336 kg
Spring constant of main chain (km) 150 N/m
Spring constant of resonator (kr) 129.6 N/m
Damping coefficient of main chain (cm) 0.0464 Ns/m
Damping coefficient of resonator (cr) 0.0334 Ns/m
Piezoelectric capacitance (cp) 1.5 mF(C/m)
Electromechanical coupling coefficient (θr) 0.25 N/V
Linear coupling coefficient (kc1 ) 198(−20) N/m
Nonlinear coupling coefficient (kc2 ) 2386(0.88e3) N/m3

Shunt capacitance (cs) −7.9 mF(C/m)
Internal resistance (R) 500 Ω

IX. SHUNT CAPACITANCE IN BAND GAP TUNING AND
SYSTEM PERFORMANCE

Fig. 3 demonstrates the correlation from (20), with damping
terms omitted to emphasize stability margins. To achieve
system stability, ks must surpass ks = −kr/2. The diagram
shows the link between ks and shunt capacitance cs. The
light blue region indicates stability, whereas the reddish zone
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Fig. 3. Stability Map for the Electromechanical Lumped System: Interplay
between Equivalent Stiffness ks and Shunt Capacitance cs. Parameters: n =
4, mm = 56 g, mr = 33.6 g, km = 150 N/m, kr = 129.6 N/m, θ = 0.25
N/V, R = 500 Ω, cp = 1.5× 10−3 F.
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Fig. 4. Transmittance Comparison of Electrical Internally Coupling with
Shunt Circuit for θ = 0.25 and cp = 1.5mF, Demonstrating the Impact
of an Equivalent Negative Stiffness of ks = −30.

indicates instability. With the provided parameters, stability
persists except between approximately -0.004 Farad and -0.003
Farad. A closer view reveals pivotal cs values where system
dynamics shift.

Simulations reveal the pivotal role of shunt capacitance
in system efficiency, as depicted in Fig. 5. A notable find-
ing is the enhanced tunability of electrical internal coupling
through shunt circuits. This electrical coupling allows for a
simpler band gap adjustment than its mechanical counterpart,
evident in Figs. 4 and 5. A chosen shunt capacitance of
cs = −5.08mF, leading to a stiffness of ks = -30, provides
the system with an equivalent negative stiffness. This boosts
energy harvesting across frequencies and facilitates a lower-
frequency band gap, seen in Fig.4. Thus, electrical coupling
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Fig. 5. Power and Energy Harvesting Across Various Shunt Capacitances
with θ = 0.25 and cp = 1.5mF.

offers a more adaptable frequency tuning than mechanical
counterparts.

Fig. 5 shows power and energy harvesting metrics across
various shunt capacitances. In the study of a standard piezo-
electric circuit for energy harvesting, a conventional rectifier
circuit is analyzed. This assumes an ideal rectifying bridge
and models the piezo voltage in proportion to the relative
displacement using sine functions. Through integral calculus,
relationships among electric charge, current, and displacement
are established. The primary outcome is an expression for the
average harvested power P as:

P =
v2c
R

=
Rθ2rω

2

(
Rcpω + π

2

)2 z2 (21)

This formula represents the integrated performance of the
piezoelectric energy harvesting system, considering mechan-
ical, electrical, and material factors. The left plot illustrates
the harvested power for different shunt capacitance values. It
can be observed that the power harvested has distinct peaks
and troughs, and its behavior varies with the shunt capacitance
values. Specifically, there is a notable peak in power harvested
around the 7 Hz frequency range, signifying a resonance
phenomenon. The right plot delves into the total harvested
energy over time for the same capacitance values. It appears
that the energy increases steadily with time, with variations in
its growth rate based on the capacitance value. Different shunt
capacitance values demonstrate varied energy accumulation
over time, with certain values, like cs= −5.08 mF, showing a
swift rise, thereby achieving higher harvested energy.

Fig. 6 depicts displacement responses for four systems:
Mass-Spring Chain, Conventional Metamaterial, Mechanical
Internal Coupling, and Electromechanical Internal Coupling.
The Mechanical Internal Coupling peaks at 7 Hz with a
0.06 m displacement but fades past 12 Hz. The Conventional
Metamaterial shows multiple peaks, particularly at 12 Hz and
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Fig. 6. Frequency Response Analysis: Comparative Displacement Profiles
of Mechanical, Conventional Metamaterial, and Electromechanical Internally
Coupled Systems based on parameters in Table I.
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Fig. 7. Displacement response of bistable nonlinear mechanical internal
coupling resonators. Linear coupling coefficient kc1 = −20N/m, and
nonlinear coupling coefficient kc2 = 880N/m3. Inset: Resonator’s potential
energy profile for the specified coupling parameters.

14 Hz. Both Mechanical and Electromechanical systems have
complex frequency responses, but the Electromechanical has
broader resonances. Given the linear coupling coefficient kc1
is 198 N/m and the nonlinear coefficient kc2 is 2386 N/m∧3,
higher displacements suggest more energy conversion po-
tential. The Electromechanical system, despite lower peaks,
offers versatility with its wide frequency response. Its energy
conversion efficiency requires more analysis.

Fig. 7 illustrates bistable-type nonlinear mechanical res-
onators with internal coupling. The parameters employed in-
clude linear coupling coefficient (kc1 ) −20 N/m, and nonlin-
ear coupling coefficient (kc2 ) 880 N/m3. The graph represents
the resonator’s potential energy in relation to displacement. It
emphasizes the unstable point of origin with negative stiffness.
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It’s worth noting that the system’s dynamics are highly sensi-
tive to the value of kc2 . In the frequency range of 14-16 Hz,
bifurcation is observed. The non-coinciding sweep up/down
traces indicates the presence of hysteresis, highlighting the
system’s nonlinear behavior.

The inset plot within the main figure shows a graph of
potential energy against displacement. This highlights the
energy state of the system for different displacements. The
presence of multiple local minima indicates that the system
can occupy multiple stable states for specific energy levels.
This behavior indicates multi-stability in the system, especially
if the resonators encounter with large fluctuation range. The
peaks, especially those around 8 Hz and 15 Hz, show clear dis-
crepancies between the sweep up/down traces. This difference
highlights the system’s nonlinear hysteresis behavior. Beyond
the 16 Hz mark, multiple peaks and valleys suggest that the
system has several resonance frequencies or harmonics. These
characteristics can arise due to the interplay of the system
parameters and nonlinearities.

Leveraging bistability in phononic media can profoundly
alter the wave response within band gaps via supratransmis-
sion, a phenomenon documented in bistable periodic chains
both with and without resonators [7], as well as in metastable
modular metastructures [8]. Nonetheless, in this context, the
parameters of the bistable system are deliberately chosen to
operate within a confined frequency range, aiming to exclu-
sively simulate the system akin to negative stiffness found in
electromechanical systems utilizing shunt circuits.

X. CONCLUSION

This study examined internally coupled resonators in meta-
material systems, focusing on mechanical and electromechan-
ical coupling. The interdependence between the resonator’s
spring constant and feedback shunt capacitance stiffness (ks)
was emphasized, with stability being a critical concern. Elec-
tromechanical shunt capacitance circuits offer adaptability,
especially in controlling system dynamics and generating band
gaps at lower frequencies. Simulations revealed the system’s
performance nuances, including the influence of shunt ca-
pacitance and the advantages of electrical coupling articulat-
ing negative stiffness. Overall, the research underscores the
potential of these resonators in applications like vibration
control and energy harvesting, emphasizing the promising
opportunities from leveraging negative stiffness and tunability.

ACKNOWLEDGMENT

This work has been partially conducted in the project ”ICT
programme” which was supported by the European Union
through the European Social Fund. It was also supported by
the Estonian Research Council grant PRG658.

REFERENCES

[1] G. Hu, L. Tang, and R. Das, “Internally coupled metamate-
rial beam for simultaneous vibration suppression and low
frequency energy harvesting,” Journal of Applied Physics,
vol. 123, no. 5, 2018.

[2] Y. Liu, J. Yang, X. Yi, W. Guo, Q. Feng, and
D. Chronopoulos, “Enhanced vibration suppression using
diatomic acoustic metamaterial with negative stiffness
mechanism,” Engineering Structures, vol. 271, p. 114939,
2022.

[3] Y. Shu and I. Lien, “Analysis of power output for piezo-
electric energy harvesting systems,” Smart materials and
structures, vol. 15, no. 6, p. 1499, 2006.

[4] G. Hu, L. Tang, A. Banerjee, and R. Das, “Metastructure
with piezoelectric element for simultaneous vibration sup-
pression and energy harvesting,” Journal of Vibration and
Acoustics, vol. 139, no. 1, p. 011012, 2017.

[5] C. Hoogeboom, Y. Man, N. Boechler, G. Theocharis,
P. Kevrekidis, I. Kevrekidis, and C. Daraio, “Hysteresis
loops and multi-stability: From periodic orbits to chaotic
dynamics (and back) in diatomic granular crystals,” Euro-
physics Letters, vol. 101, no. 4, p. 44003, 2013.

[6] M. D. Fronk and M. J. Leamy, “Higher-order disper-
sion, stability, and waveform invariance in nonlinear
monoatomic and diatomic systems,” Journal of Vibration
and Acoustics, vol. 139, no. 5, p. 051003, 2017.

[7] M. J. Frazier and D. M. Kochmann, “Band gap transmis-
sion in periodic bistable mechanical systems,” Journal of
Sound and Vibration, vol. 388, pp. 315–326, 2017.

[8] Z. Wu and K.-W. Wang, “On the wave propagation analy-
sis and supratransmission prediction of a metastable mod-
ular metastructure for non-reciprocal energy transmission,”
Journal of Sound and Vibration, vol. 458, pp. 389–406,
2019.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on September 24,2024 at 09:15:45 UTC from IEEE Xplore.  Restrictions apply. 



Appendix 5

Hossein Alimohammadi et al. “Enhancing Bandgap Depth
in Locally Resonant Metastructures via Notch-filtered Piezo-
electric Actuation”. In: 2024 25th IEEE International Con-
ference on Industrial Technology (ICIT). vol. 1. IEEE. 2024

225





Enhancing Bandgap Depth in Locally Resonant
Metastructures via Notch-filtered Piezoelectric

Actuation
H. Alimohammadi∗, K. Vassiljeva∗, S. H. HosseinNia†, and E. Petlenkov∗

∗Department of Computer Systems
Tallinn University of Technology

Tallinn, Estonia
Email: eduard.petlenkov@taltech.ee

†Department of Precision and Microsystems Engineering
Delft University of Technology

Delft, The Netherlands

Abstract—This paper proposes an effective approach to en-
hance bandgap depth in metastructures with high damping
ratios, utilizing piezoelectric actuators coupled with notch filters
for improved vibration isolation. The active control strategy
focuses on dynamically attenuating specific resonant frequencies
through the application of notch filters within the actuator control
loops. AI algorithm, in particular Reinforcement Learning, is
employed to optimize the notch filter parameters, thereby fine-
tuning the system’s response. Numerical validation reveals that
this approach not only maintains system stability but also
significantly deepens the bandgap. The results highlight that
utilizing notched piezo-actuation achieves a more pronounced
bandgap depth in overdamped systems compared to traditional
piezo-actuated resonators, marking a substantial advancement in
vibration control technologies.

Index Terms—Metastructures, Notch Filters, Piezoelectric Ac-
tuators, Bandgap Enhancement.

I. INTRODUCTION

In the realm of engineering, the quest for efficient vi-
bration control in mechanical structures and metastructures
is a perennial challenge that has significant implications for
the longevity, safety, and performance of various systems.
The ability to manipulate and manage vibrational energy
via bandgaps—frequency ranges where wave propagation is
inhibited—has emerged as a potent strategy in the design of
such structures. However, the presence of high damping ratios
within these systems has historically presented a considerable
obstacle, as it tends to diminish the effectiveness of the
bandgap and thus, the overall vibration isolation capabilities.

The complexity of integrating active vibration control mech-
anisms that can adapt and respond to varying operational con-
ditions further accentuates the need for innovative solutions.
It is within this context that the current research endeavors
to bridge the gap, proposing a novel approach that leverages
the sophistication of active control strategies to enhance the
bandgap depth even in highly damped metastructures.

This paper is structured as follows: Section two provides
a literature review and background, setting the stage for the

current study by discussing previous work in the field. Section
three succinctly describes the methodology used, employing
advanced artificial intelligence algorithms to optimize the
parameters of notch filters in piezo-actuated systems for im-
proved vibration isolation. Section four presents the results and
discussion, delving into the efficacy of the proposed approach
through a comparative analysis with traditional methods. Fi-
nally, section five offers a conclusion that encapsulates the
contributions and insights gleaned from this research and
proposes avenues for future work that could expand on the
findings presented herein.

II. LITERATURE REVIEW AND BACKGROUND

The literature on vibration isolation in metastructures has
extensively covered passive and active control strategies. Pas-
sive methods, such as the incorporation of resonators, have
been widely researched for their natural bandgap properties.
Soukoulis et al. [1] outlined the basic principles of bandgap
creation through periodic structuring, while the work of John-
son and Rifaie et al. [2] expanded on the impact of intrinsic
material damping on these bandgaps

Active control strategies, including the use of piezoelectric
actuators, were explored by Wang and Inman [3] as a means
to adaptively tune vibration characteristics. However, these
methods often fall short in systems with high damping ratios,
as noted by Van Spengen [4], where the active components
can introduce additional complexity without significantly im-
proving isolation.

The application of notch filters within the control loop
of piezoelectric actuators has been less documented, with
pioneering work by Song et al. [5] suggesting potential im-
provements in bandgap depth. The use of AI algorithms for
system optimization is a relatively new approach in this field,
with Huang et al. [6] demonstrating the feasibility of machine
learning methods for parameter tuning in complex systems.

This study builds on the foundation laid by previous re-
search while addressing the noted gap. By employing an active
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control strategy using notch filters, the research provides a
novel solution to the challenges posed by high damping ratios
in metastructures, a solution that is both robust and adaptable.

The existing research gap is identified in the inadequate per-
formance of current vibration isolation approaches in highly
damped metastructures, where traditional methods fall short in
fully utilizing the bandgap effect. This study primarily aims
to explore whether implementing an active control approach
with notch filters can enhance the manipulation of bandgap
properties in overdamped systems more efficiently than typical
passive or active methods. The research centers on assessing
how well these custom-designed notch filters can replicate the
vibration isolation capabilities of undamped systems, thereby
addressing the difficulties posed by high damping levels.

III. ENHANCING METASTRUCTURE BANDGAP DEPTH
WITH NOTCH FILTERS

In the Method section of your academic article, the dynam-
ics of a metastructure with integrated piezoelectric actuators
and resonators are explored through a mathematical model.
The model is represented by a set of differential equations
that describe the motion of the beam and resonators, their
interactions, and the role of the piezoelectric actuators in
controlling vibration.

The primary beam’s motion is captured by (1), which
includes the effects of the flexural rigidity and mass distri-
bution, along with the interactions with attached resonators.
The resonators’ dynamics are detailed in (2), which accounts
for their mass, damping, stiffness, and the influence of the
piezoelectric actuators. (3) represents the electrical dynamics
of the piezoelectric actuator, linking its voltage to the res-
onator’s motion. The governing equations are as follows [7]:

EI
∂4w(x, t)

∂x4
+ C

∂w(x, t)

∂t
+ ρA

∂2w(x, t)

∂t2
−

Nr∑

r=1

(
krzr(t) + cr

∂zr(t)

∂t

)
δ (x− xr) = Fbm(x, t)

(1)

mr
∂2zr(t)

∂t2
+ cr

∂zr(t)

∂t
+ krzr(t) +mr

∂2w (xr, t)

∂t2
−

ϑp,rvp,r(t) = Fbr (t)
(2)

C∗
p,r

∂vp,r(t)

∂t
+ ϑp,rzr(t) = 0 (3)

Parameters EI , ρA, and C represent the beam’s flexural
rigidity, mass per unit length, and damping coefficient, re-
spectively. Terms ϑp,r, C

∗
p,r, and Fbm(x, t) denote the piezo-

electric properties: electromechanical coupling, capacitance,
and external force on the main beam. Functions w(x, t) and
zr(t) describe the primary structure’s transverse vibrations
and the resonators’ movements. The Kronecker delta function
δ(x − xr) positions the resonators on the beam. Nr is the
number of resonators, mr their mass, kr their stiffness, and
cr their damping coefficient.

Orthogonality conditions are employed to simplify the com-
plex dynamics into a more manageable form, leading to a
modal decomposition of the beam’s deflection in (4). By sub-
stituting this modal expansion into the governing equations and
applying orthogonality conditions, a reduced set of equations
is obtained, capturing the interactions between the structure’s
modes and the resonators.

w(x, t) =

Nm∑

m=1

ϕm(x)zm(t), (4)

Where ϕm(x) represents the spatial configuration of the m-
th mode shape, and zm(t) corresponds to its time-dependent
amplitude. This approach simplifies the intricate dynamics of a
flexible structure with embedded resonators into a set of more
comprehensible modal elements.

The application of Laplace transforms to these equations,
assuming no initial conditions, provides a linear set of equa-
tions in the Laplace domain, which are used to derive the
transfer function for the resonator’s displacement, as shown in
(5). This equation demonstrates the effect of applying voltage
to the piezoelectric actuator on the dynamics of the resonator.

The influence of the resonators’ mass distribution on the
structure is taken into account, leading to the approximation
of the mass distribution across the structure in terms of a mass
ratio. This mass ratio ensures that the resonator masses are
synchronized with the structural dynamics.

The transfer function for the displacement of the resonator is
derived from the aforementioned definitions and mathematical
rearrangement, as follows:

Zr(s) =
−s2wb − s2

∑Nm

m=1 Zm(s)ϕm (xr)

s2 + 2ζrωrs+ ω2
r +

vaω2
r

s

, r = 1, 2, . . . , Nr

(5)
Here, the active voltage applied to the piezo, va, equals

κ∗
e and assumed that κ∗

e is defined as κ∗
e =

ϑ2
p,r

C∗
p,rkr

. When
considering the voltage source as an input in piezoelectric as
an actuator, we assume that the effective coupling stiffness, κ∗

e ,
can be represented by the κ∗

e = αωrv0 = va. In this equation,
ωr denotes the resonator’s natural frequency, v0 is the voltage
applied to the piezoelectric element, and α is an empirical
coefficient with units of Farads per Coulomb (F/C). Equation
(5) represents the Laplace transform of the displacement of
the r-th resonator, Zr(s), in a dynamic system. It incorporates
Zm, the modal displacement for each of the Nm number of
modes of the system, and wb, the base excitation displacement.
The term ϕ(xr) indicates the mode shape at the location of
the r-th resonator.

Further mathematical manipulation brings to light the in-
teraction between structural modes and resonators in the
Laplace domain, as demonstrated in equation (6). This equa-
tion incorporates Zm(s), representing the Laplace-transformed
displacement of the m-th structural mode, and Qbm(s) for the
transformed external disturbances affecting the system. Here,
ζm and ζr denote the modal and resonator damping ratios,
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(
s2 + 2ζmωms+ ω2

m

)
Zm(s)+

s2
(
ω2
r + 2ζrωrs

)∑Nr

r=1 mrϕm(xr)
∑Nm

p=1 ϕp(xr)Zp(s)

s2 + 2ζrωrs+ ω2
r

(
1 + va

s

) = Qbm(s), m = 1, 2, . . . , Nm (6)

respectively. The equation thus underscores the resonators’ dy-
namic response to applied voltage and delineates the effect of
piezoelectric actuation on the system, taking into account the
damping characteristics of both the modes and the resonators.

The masses of the resonators, represented by (mr), are cal-
culated based on the structure’s mass distribution at the points
where resonators are installed. This calculation uses a mass
ratio, denoted as (µ), to define the resonator mass in relation
to the total mass of the primary structure. The formula mr =
µm (xr) dxr links resonator masses to the structure’s mass
distribution, ensuring their behavior aligns with the structural
dynamics. In systems with many resonators, their distribution
can be approximated by

∑Nr

r=1 m (xr)ϕm (xr)ϕp (xr) dxr ≈∫ L

0
m(x)ϕm(x)ϕp(x)dx = δmp. This approximation considers

the cumulative impact of resonators over the entire structure,
in line with the orthogonality expressed by the Kronecker delta
function δmp.

Enhancing the bandgap depth with notch filters introduces
an innovative approach to mitigate the challenges posed by
high damping ratios in mechanical systems that affect the per-
formance of the bandgap, especially its depth. The utilization
of notch filters is proposed as a means to fine-tune the system,
deepening the bandgap and improving vibration isolation.

The method involves integrating a notch filter, represented
by (7), into the piezoelectric actuator circuit to refine the
performance and stabilize the system. The notch filter’s param-
eters, such as the quality factor Q, the adjusted quality factor
Qβ , and the gain k, are key to its function. These parameters
allow the filter to selectively attenuate specific frequencies,
which corresponds to the resonant frequencies that contribute
to excess damping.

Hno = k
s2 + ωno

Qβ
s+ ω2

no

s2 + ωno

Q s+ ω2
no

(7)

Where Hno describes the filter’s response, with k as its
gain, and ωno as the notch frequency. The quality factor Q
determines the filter’s selectivity and bandwidth width at ωno,
with a higher Q leading to narrower bandwidth and sharper
resonance. In contrast, Qβ is an adjusted quality factor that
controls the depth of the notch and the filter’s response outside
the notch frequency. This differentiation between Q and Qβ

allows for precise control over the filter’s frequency response,
with changes in Qβ enabling modulation of attenuation at the
notch frequency and altering the filter’s behavior in specific
ways. The use of Qβ varies based on the filter design and the
engineer’s objectives.

The integration of the notch filter into the system is evalu-
ated through the derived (8), which now accounts for the notch
filter’s effects. This revised equation facilitates the analysis of
the system’s performance, illustrating the modulation of the

bandgap via active control, made possible by the inclusion of
the notch filter.

Equation (8) incorporates the dynamics of a notch filter, en-
abling the analysis of its influence on the system’s performance
(eliminating modal damping for simplicity). This includes
examining how the filter affects the depth of the system’s
bandgap through active control using piezoelectric actuators.
This equation provides a framework for understanding how the
notch filter’s parameters interact with the system dynamics,
especially in terms of modifying bandgap characteristics.

To deepen the bandgap, Reinforcement Learning (RL) with
an actor-critic method is utilized, focusing on optimizing notch
filter parameters. This RL approach refines control parameters
by iteratively adjusting actions based on the environmental
state and corresponding rewards. The optimization leverages
the Deep Deterministic Policy Gradient (DDPG) algorithm to
target optimal values for parameters k, Q, and Qβ , which
are critical for enhancing the bandgap depth and achieving
superior vibration isolation.

IV. RESULTS AND DISCUSSION

The parameters of this study are detailed in Table I, that
presents the geometric and material properties of the rectan-
gular aluminum beam.

TABLE I
GEOMETRIC AND MATERIAL PROPERTIES OF THE STUDIED RECTANGULAR

ALUMINUM BEAM

Parameter Value Parameter Value
Lm 300 mm wr 87 Hz
wm 40 mm ωm 18, 114, 319, .. Hz
hm 2 mm ζr 0.08
ρm 2700 kg/m3 Nm 8
Em 69.5 GPa Nr 8
ζm 0.02 v0 1 V
µ 0.66 α 0.098 F/C

Fig. 1 illustrates the sensitivity of the notch filter with
varying parameters Q, Qβ , and k. The graph demonstrates the
filter’s frequency response, highlighting the attenuation levels
across a range of frequencies. The shaded areas represent
the variation in attenuation due to changes in the notch filter
parameters, providing insight into the filter’s effectiveness in
suppressing specific frequency bands. The notch depths and
bandwidths at various frequencies show how the system’s
response can be fine-tuned for enhanced vibration isolation. A
comparison of the optimized parameters obtained through the
Reinforcement Learning algorithm demonstrates their impact
on the system’s performance. The sensitivity analysis confirms
that precise adjustments of Q, Qβ , and k are crucial for achiev-
ing the desired bandgap depth, validating the RL approach’s
efficacy in optimizing the metastructure’s dynamic behavior.
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Fig. 1. Sensitivity of Transmittance from the Base to the Tip of the Aluminum
Beam Metastructure, Illustrating Attenuation Variability with Parameter Ad-
justments of Q, Qβ , and k.

Fig. 2. Parameter Sensitivity Analysis of Notch Filter Performance on
Metastructure Transmittance, Displaying the Effects of Variations in Gain
(k), Quality Factor (Q), and Adjusted Quality Factor (Qβ ) Across Frequency
Bands.

Fig. 2 illustrates the impact of individual notch filter param-
eters on the vibration transmittance in a beam metastructure,
through a series of contour plots. The top left plot illustrates
the variation of gain k while Q and Qβ are held constant.
Different levels of attenuation over the frequency spectrum
can be observed as k changes, indicating the filter’s sensitivity
to gain alterations. The top right plot seems to focus on
varying Qβ with fixed values for Q and k. This plot would
be particularly useful for understanding how the depth and
sharpness of the notch in the filter’s response are affected
by Qβ . The bottom left plot probably shows the effect of
altering Q with Qβ and k remaining constant. Adjusting Q
affects the bandwidth of the notch, and this visualization helps
in finding the balance between selectivity and attenuation
efficiency. The bottom right plot could be a specific case
where Qβ , Q, and k are set to optimal values determined by
prior optimization algorithms. This plot would exemplify the
achieved balance between attenuation depth and bandwidth for
effective vibration suppression.

For optimizing the notch filter parameters Q, Qβ , and k,
Artificial Intelligence algorithms were utilized. The Reinforce-
ment Learning (RL) approach pinpointed an optimal parameter
set, achieving a structural damping ratio ζm of 0.03 and a
resonator damping ratio ζr of 0.08. The parameters were
determined to be Qβopt at 0.021, Qopt at 0.001, and kopt
at 33.3. These values are indicative of the RL algorithm’s
capability to finely adjust the system, enhancing its perfor-
mance and demonstrating a similar yet uniquely effective
solution compared to other algorithms for influencing the
metastructure’s transmittance and bandgap properties.

Fig. 3 compares transmittance across a range of frequencies
for different damping treatments and system configurations.
It includes four scenarios: an undamped metastructure, a
damped system, a conventional piezo-actuated system with
constant voltage, and a notch piezo-actuated system with
optimized parameters. The optimized notch parameters, ob-
tained through a Reinforcement Learning algorithm to re-
duce structural damping to ζm = 0.03, illustrate the notch
filter’s effectiveness in decreasing transmittance at resonant
frequencies, thereby deepening the bandgap and enhancing
vibration isolation. This comparison underscores the enhanced
vibration suppression of the notch piezo-actuated system com-
pared to other configurations. The results highlight that in
an overdamped metastructure, a piezo-actuator with constant
voltage is less effective. However, integrating a notch filter
significantly improves bandgap characteristics, even surpass-
ing an undamped system’s performance. This finding is pivotal
in addressing the research objective of augmenting bandgap
depth in highly damped metastructures, demonstrating that an
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Fig. 3. Performance Comparison of Transmittance in High Damping Metas-
tructures, Demonstrating the Effectiveness of Notch Filter Application in
Piezo-Actuated Systems Versus Constant Voltage Application, with param-
eters: ζm = 0.02, ζr = 0.08, v0 = 1 V, Qβopt = 0.021, Qopt = 0.001,
kopt = 33.3. Achieving Bandgap Characteristics Comparable to Conventional
and Undamped System.

actively controlled piezo-actuated system with a notch filter
can achieve favorable bandgap properties in an overdamped
system.

V. CONCLUSION

This research has made significant contributions to the field
of vibration control in mechanical metastructures. Through
the integration of notch filters in piezo-actuated systems, the
study has demonstrated an innovative approach to enhancing
bandgap characteristics in systems with high damping ratios.
The use of Reinforcement Learning algorithms to optimize the
parameters of the notch filter represents a noteworthy advance,
enabling the precise tuning of the system’s dynamic response.
Results have shown that the application of a notch filter in an
overdamped metastructure can effectively emulate the bandgap
features of an undamped system, thereby achieving superior
vibration isolation.

The insights gained from this study underscore the poten-
tial of smart materials and control strategies in engineering
applications where vibration suppression is crucial. It affirms
the viability of using advanced AI algorithms for system
optimization, setting a precedent for their application in more
complex dynamic systems.

Looking forward, future research could explore the scal-
ability of this approach to larger structures or those with
varying damping characteristics. Further investigation into
the long-term stability and robustness of the control system
under different operational conditions would also be valuable.
Additionally, the integration of this approach with other smart
material technologies could lead to the development of even
more sophisticated vibration control systems, broadening the
scope of practical applications in industries ranging from
aerospace to civil engineering.

The principal contribution of this paper is the introduction
of an active control strategy using notch filters to enhance
the bandgap depth within highly damped metastructures. This
approach has proven to be more effective than traditional
piezo-actuated methods that employ constant voltage. The
study demonstrates that by carefully adjusting the notch filter
parameters, it is possible to achieve bandgap characteristics
similar to those in undamped systems, thus providing a sig-
nificant improvement in vibration isolation. This methodology
represents a substantial advancement in metastructural design,
offering a sophisticated tool for engineers to optimize dynamic
responses in a variety of practical applications.
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Abstract 

This research article employs the finite element method to 
simulate the system and investigates the mechanisms for 
achieving broadband vibration suppression through 
adjustable stiffness by tuning the bandgap of beam-type 
resonators. The method involves changing the center of 
mass of the cantilever-type resonator to achieve piezo-free 
tuning of stiffness. The study explores the effect of varying 
the center of masses of attached masses (δ) on the bandgap 
and vibration suppression performance of a non-uniform 
beam-type resonator within a phononic structure. The 
results suggest that the cantilever-type resonator beam can 
be used for tunability and real-time control and demonstrate 
that varying the center of masses significantly impacts the 
bandgap and transmittance response. The research also 
examines the feasibility of using the first and second modes 
of resonators for tunability and real-time control, providing 
insights into the design and optimization of metamaterial 
beams for vibration suppression applications. 

1. Introduction 

The recent development of advanced vibration has made it 
possible to create innovative and resilient structures that can 
withstand extreme environmental and operating conditions. 
To protect critical components and sensitive equipment from 
excessive vibration in extreme operating conditions, 
engineers need to develop innovative solutions. The use of 
metamaterials has gained significant attention in recent years 
due to their unique properties that enable the control of 
electromagnetic and acoustic waves. In particular, the Locally 
Resonant (LR) mechanism has been found to be suitable for 
obtaining band gaps in the low-frequency range. This is in 
contrast to the Brag Scattering (BS) mechanism, which is 
more commonly used for band gaps in higher frequencies. 
One advantage of LR is that it eliminates the dependence of 
the band frequency on the lattice constant of the 
metamaterial. This section focuses on the approaches used to 
regulate the LR band gap, which can be achieved through 
adjusting the stiffness of the resonator. By understanding 
these fundamental strategies, it becomes possible to design 
and optimize metamaterials for specific applications in areas 
such as noise reduction, vibration control, and energy 
harvesting.  
An approach for tuning the band gap in metamaterials 
involves the manipulation of the mass of the resonators. This 

can be achieved through direct mass variation, where a 
portion of mass is transferred between the resonator and the 
primary structure, or through introducing an inertial 
amplification mechanism that creates a large effective mass 
based on a small resonator mass. Direct mass variation can be 
accomplished using various methods, including 
electromagnets and pumps. Electromagnetic mass switching 
involves manipulating the current to attach or detach 
electromagnets, which alters the resonator's mass. Pump-
based mass switching relies on pumping fluid to modify the 
resonator's mass. In contrast, the inertial amplification 
mechanism involves amplifying the resonator's mass by using 
a non-linear coupling between the resonator and the 
surrounding medium. 
The tuning of the resonator mass is a fundamental strategy 
for adjusting the edge frequency of the band gap in 
metamaterials. Tuning the band gap through this method 
finds its application in various fields such as noise reduction, 
energy harvesting, sensing, and vibration control. By 
comprehending these techniques, researchers can optimize 
and design metamaterials with specific properties that meet 
the requirements of particular applications. 
Another way to tune the bandgap of metamaterials is by 
adjusting the stiffness of the resonator. This can be achieved 
through two approaches: changing the mechanical structure 
of the material or adjusting the stiffness in real-time. 
Mechanical approaches include introducing negative stiffness 
mechanisms, decreasing the cross-section of elastic materials, 
or adjusting the amount of compression.  
Nonetheless, implementing alterations to these techniques 
after material design is typically challenging, thus making 
real-time adjustments difficult This can be a significant 
limitation in situations where the desired resonant frequency 
changes, or where there is a need to adjust the properties of 
the resonator to improve its performance. Although 
mechanical structures can be useful in achieving the desired 
resonator properties, it is crucial to carefully weigh the trade-
offs associated with their design, including the challenges 
involved in modifying them once they are installed. 
Alternatively, metamaterials can be designed with real-time 
controllable configurations, allowing for more precise and 
dynamic adjustments to the resonator stiffness. Controllable 
variables include electrical elements such as current, voltage, 
inductance, and resistance, air pressure, and temperature. 
Piezoelectric actuators and electromagnets are two primary 
electronic components used to adjust the stiffness of the 
material based on electrical elements. By adjusting the 
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inductance or resistance, these components enable the 
creation of intelligent metamaterials that can simultaneously 
open multiple types of band gaps and easily tune the 
frequency of band gaps. Overall, the ability to tune 
metamaterial properties in real-time makes them promising 
candidates for a wide range of applications, including 
communication devices, energy harvesting, and sensing 
technologies.  
There are two main mechanisms for creating bandgaps due to 
LRs: mechanical and electromechanical. Mechanical LR 
bandgap formation is based on the principle of periodic 
structures. It involves changing the physical characteristics of 
the structure, such as the size, shape, and material 
composition of the structure. By changing these 
characteristics, it is possible to create a periodic pattern of 
dielectric and metallic layers that form a bandgap. This type 
of bandgap is used in applications such as filters, 
interconnects, and antennas. 
Most electromechanical LR can be divided into two 
categories: those that use piezoelectric unit cells and 
inductive circuits, and those that use magnetic motors. LR 
bandgaps do not rely on periodic lattice arrangements and can 
be controlled and tuned in different spatial configurations. 
With the advent of new technologies, it is now possible to 
create more efficient and powerful electromechanical LR. 
The ability to adjust the bandgap of a material via an external 
mechanical force paves the way for novel material and device 
development with enhanced performance. Numerous types of 
mechanical locally resonant metastructures have been studied 
in the past. Bilal et al. [1] studied the way sound waves travel 
through elastic metastructures made up of a periodic array of 
pillars with and without holes. They found that the presence 
of holes in the pillars caused an increase in bandgap. Tsung-
Tsong Wu et al. [2] demonstrated through both numerical 
analysis and physical experiments that a periodic stubbed 
surface can create a complete band gap. They found that 
when the stub height is roughly three times the plain 
thickness, the band gap is created formed precisely. Xudong 
Wu et al. [3] suggested a locally resonant beam that 
incorporated an aperiodic mass distribution. They utilized an 
optimization algorithm to identify the desired bandgap, and 
demonstrated through finite element simulations that this 
configuration could effectively expand the frequency range of 
bandgaps in flexural vibrations. Despite the potential of mass 
distribution, the desired rigidity of the system remains 
unchanged in this study. Zhi Tao et al. [4] studied two-
dimensional phononic metamaterials consisting of plates with 
resonant cylinders that have a negative Poisson's ratio 
structure. Their study showed that this design could achieve a 
lower frequency, wider bandgap, and tunable bandgap than 
traditional designs. Nonetheless, similar to most other works, 
this approach necessitates design at the outset and cannot be 
fine-tuned or adjusted during its operation.  
Jian et al. [5] proposes a novel method of broadband 
vibration attenuation using a graded piezoelectric 
metamaterial beam. The term "graded" refers to a variation in 
the natural frequencies of the resonators. This means that the 
resonators are designed or arranged in such a way that they 
have different natural frequencies across a certain range or 

spectrum. By applying electrode pairs with varying lengths 
connected to an identical shunt resonant circuit, the proposed 
graded metamaterial can broaden the vibration attenuation 
region through varying spatial profiles. The results show that 
the graded piezoelectric metamaterial beams achieve the 
widest theoretical attenuation area and increase the 
bandwidth compared to conventional methods. 
The concept of graded materials is based on the assumption 
of “gradual” changes, which makes it suitable for certain 
systems, for example considering the allowable variations in 
dimensions or properties of a resonator that are inevitable 
during the manufacturing process. However, the use of 
graded metamaterials may not be practical or feasible for 
achieving real-time controller tunability in some systems. 
Therefore, it is important to carefully consider the specific 
requirements of each application before choosing to use 
graded materials. Hence, it is crucial to meticulously evaluate 
the particular needs of each application before deciding to 
employ graded materials. It may not be appropriate to use the 
term "graded" in the present research context. Instead, 
"graded disorder" or center of mass (CM) variation could be 
utilized as a substitute. 
As it is mentioned in the introduction, tuning the band gap 
based on the adjustable stiffness is done through two 
methods: changing the mechanical structure or adjusting the 
stiffness in real time. The first has a limited operating range 
due to initial design, and the second has a limited actuator 
that uses piezo to change the stiffness.  
This research proposes a method for tuning the band gap of 
beam-type resonators based on adjustable stiffness to achieve 
broadband vibration suppression. The study explores the 
possibility of piezo-free tuning of the resonator's stiffness by 
changing its CM. It is noteworthy that this method does not 
involve mass tuning, but rather adjusts the stiffness of the 
resonator by altering its mass. The article examines the 
viability of this technique and its potential for enhancing the 
performance of the resonator. The main research question is 
how the δ affects its frequency behavior via adjusting the 
stiffness when the resonator is clamped to a host beam. The 
results of this study will allow us to continue our efforts to 
enhance the metastructure for future work.  

2. Method 

First, we analyze propagation of acoustic waves through a 
phononic structure with one, two, and four beams connected 
to a non-uniform beam-type resonator. By using a reduced 
wave factor, the unit cell is able to disperse waves in a way 
that the attenuation can be achieved. The frequency 
response of the tip of the Euler–Bernoulli beam is than 
monitored to verify the outcomes found in the dispersion 
curves. To determine the bandgap of a structure, typically, 
one unit cell and a resonator are examined, as this reduces 
the computational workload. In this study, these waves 
propagate along the unit cell, and their propagation is 
restricted to the ΓX direction.  
Solving the equation of motion involves applying a 
harmonic input force, while taking into account the entire 
beam with periodic boundary conditions and Floquet 
periodicity to obtain precise outcomes. Due to forced 
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vibration, it can be assumed transverse displacement z(t) for 
define location, x, on beam is equal to 

 )(z(t) ti
aez  , (1) 

where zα is the displacement amplitude.  
Moreover, if we consider that the transverse displacement 
z(t) is also a function of position, x, we can obtain the 
periodic function z(x). This function can be represented by a 
set of base vectors, ai in a real space. This function follows 
the wave propagation of an infinite periodic structure. 

 )()(z(x) 00 xzrxz  , (2) 

Here, r=aiS, where x represents the global location, and x0 is 
the relative location in the primitive unit cell. S is an integer 
(the number of resonators). If an elastic wave travels through 
a structure with repeating patterns, it must satisfy the Bloch 
condition at the edges of the repeating unit. This condition 
ensures that the wave can propagate through the structure 
without any disruption. By combining the properties of 
waves, we can define the wave equation with respect to 
temporal and spatial frequencies as follows: 

 )(t)z(x, kxti
aez   , (3) 

Where k is the Bloch wave vector confined in the first 
Brillouin zone in the spatial position (rad/m). The considered 
physical model is a square lattice of rectangular resonators of 
a thin homogeneous beam as shown in Fig.1. 

 
 
Fig. 1. Schematic of studied phononic structure by a square lattice 
dots deposited on both sides of a thin beam. The geometrical 
parameters are as: unit cell outer/inner length=20, 12mm, 
width=20mm, hight=5mm. The resonator parameters are: 
length=12mm, width=3.6mm, hight=1mm. The attached mass: 
length=3.6mm, width=7.2mm, hight=5mm, Number of resonators, 
S=8. 
The reference position of the attached mass is located at the 
CM of the resonator. Shifting the position of the attached 
mass alters the CM of resonator from δmin=-3.6 mm to 
δmax=+3.6 mm. The z axis is perpendicular to the beam axis, 
x. The modulus of elasticity is E=2.8 GPa and mass density 
of the material is ρ=992 Kg/m3, which is relatively low 
compared to some other common 3D printing materials like 
ABS and Nylon. It is important to recognize that various 
factors such as printing temperature, print speed, and cooling 
can also affect the final properties of the object. Moreover, 
the infill density during printing process can alter the rigidity 
of the structure. In this manner, a spring-mass resonator is 
designed within the unit cells, which are connected to the 
beam by one, two and four slender beams, which serve as the 

spring. Then, local resonance at some particular frequencies 
may be stimulated.  
An acceptable and continent approach to analyzing the 
acoustic bandgaps in the proposed structure is to calculate the 
dispersion curve. The amount of wave that passes through a 
metamaterial beam is measured as the transmittance ratio. 
This ratio is determined as follows: 

 
)(

)(
)TR(





base

tip

z

z
 , (4) 

The ratio TR is a measure of how much the vibration of the 
free end is reduced compared to the vibration of the base. TR 
less than 1 indicates that the vibration at the free end is 
smaller than at the base, meaning the vibration is being 
attenuated. 
The dominant attenuation bandwidth XBW is defined  

  -40))log(TR( 20 , ),max(  BWX , (5) 
which measures the largest bandwidth in the attenuation 
region. Less than 1% of the base amplitude is allocated in this 
work for complete suppression, which means XBW = 
20log(TR) < -40 dB. For an infinite number of resonators on 
a plain (simple) structure, (6) can be used to calculate the 
mass ratio.  
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This ratio represents the total mass of the resonators to the 
total mass of the planar structure. Here, mp refers to the mass 
of the plain structure, and S represents the number of 
resonators. 
The total mass of the resonator is sum of beam-type resonator 
and attached mass. Equation (6) was derived using an 
undamped model that is infinitely long. In a practical 
metamaterial system with limited cells, the effective range of 
attenuation frequencies may be smaller than what was 
predicted. To overcome this, the natural frequency due to CM 
variation δ can be intentionally changed so that each 
resonator operates within overlapping frequency ranges. This 
can overcome the difficulties of changing mass in real-time 
tuning control, where the mass ratio is fixed. The resonator’s 
CM is a key factor in determining the system's resonance 
frequency. The CM is presented as δ and determined by the 
mass, the location, and the shape of the resonator. The 
reference point of δ is located in the initial center of mass of a 
plain beam-type resonator without any attached mass. The 
host beam is lattice shaped metastructure. At its minimum 
value, the δ on the resonator is located close to the base, and 
at its maximum, it is near the tip of the resonator. This can 
impact the width of the XBW, causing it to become narrower 
or wider. 

3. Results and Discussion 

A parametric study was conducted to investigate how the δ 
affects the bandgap and transmittance of the host beam. The 
COMSOL software is used to simulate wave propagation and 
analyze bandgaps. MATLAB scripts are written to facilitate 
the related steps of modeling and calculations. The Bloch 
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calculation produces eigenfrequencies and corresponding 
eigenvectors by varying the wave vector in the first 
irreducible Brillouin zone, allowing the dispersion curves to 
be obtained. A study was conducted on how the dispersion 
curves evolve along the direction from ΓX, by arranging the 
resonators from a lower equivalent stiffness distribution to a 
higher distribution. The objective of this study is to analyze 
the impact of the attached mass's δ on the bandgap and 
vibration suppression performance. The investigation 
concentrates on a beam consisting of eight resonators with a 
μ value of 0.1 to 0.9. 

 
Figure 2: Transmittance responses of the fixed-fixed type 
resonator beam with μ=0.1 for different δ.  

 
Figure 3: Binary representation of the transmittance pattern 
evolution in response to the variation of δ, and μ=0.1. The 
unshaded, XBW=-40 dB. 
The results presented in Fig. 2 and Fig. 3 demonstrate the 
impact of the δ on the transmittance response of the fixed-
fixed resonator beam with μ = 0.1. Fig. 2 shows that varying 
δ does not result in any noticeable changes in the XBW or edge 
frequency. This lack of dependence is attributed to the 
symmetry of the first Brillouin zone, which causes the 
dispersion curve for waves traveling in the ΓX direction to 
remain consistent regardless of δ. 
To further investigate the effect of δ on the transmittance 
pattern, Fig. 3 represents the binary representation of the 
transmittance pattern evolution with changes in δ. The 
unshaded region in the figure denotes the dominant 
attenuation region below -40 dB. It is evident that the XBW 
remains consistent regardless of the value of δ, indicating that 
δ has no impact on the transmittance pattern in the dominant  
XBW. 

 
Figure 4: Transmittance responses of the cross type 
resonator beam with μ=0.1.  

 
Figure 5: Binary representation of the transmittance pattern 
evolution contour in response to the variation of δ, and 
μ=0.1 
The results presented in Fig. 4 and Fig. 5 demonstrate the 
impact of the δ on the transmittance response of the cross-
type resonator beam with a μ= 0.1. Fig. 3 shows that the 
transmittance response changes with variations in δ, but the 
bandgap characteristics remain constant. Similar to fixed-
fixed beams resonator, this is attributed to the symmetry of 
the first Brillouin zone, which results the dispersion curve to 
remaining consistent regardless of δ. However, the rigidity is 
enhanced because, in a cross configuration, two extra 
stiffnesses are added in parallel to what existed before. This 
configuration leads to a change in the edge of the bandgap 
towards higher frequencies. Fig. 4 shows the binary 
representation of the transmittance contour pattern evolution 
with changes in δ for -40dB. The area without shading in the 
plot represents the XBW, and it can be observed that the 
transmittance response is not greatly influenced by δ. This 
independence implies that the position of the resonator's 
center of mass does not have a significant impact on the 
beam's bandgap properties. Therefore, it is difficult to adjust 
or manipulate the beam in real-time by modifying δ. Based 
on these findings, it can be concluded that the center of mass 
location of the attached masses has little effect on the 
vibration suppression capabilities of the metamaterial beam 
in this particular scenario. 
To overcome this issue, the fixed-fixed beams were 
converted into cantilever-type resonators. To determine the 
possibility of creating a bandgap, the dispersion curve was 
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calculated and plotted in Fig. 6. These results suggest that the 
cantilever-type resonator beam can be used to achieve 
tunability and real-time control by utilizing the second mode 
shape for specific bandgap tuning purposes. Overall, these 
findings provide insights into the design and optimization of 
graded metamaterial beams for vibration suppression 
applications. 

 
Figure 6: The dispersion curves along the ΓX direction with 
the δ variation, and μ=0.1. The filled area denotes the 
bandgap region. 
Fig.6 displays the dispersion relations for waves travelling in 
the ΓX direction within the first Brillouin zone. The plot 
depicts the relationship between the wave vector and the 
frequency of the wave as it propagates through the zone. The 
result demonstrates that the bandgap characteristics of the 
graded disorder metamaterial beam can be influenced by the 
value of δ. Specifically, the figure reveals that increasing δ 
leads the formation of a bandgap at lower frequencies, while 
decreasing δ produces a bandgap at higher frequencies. This 
observation is significant as it suggests that the bandgap 
characteristics can be tuned by adjusting the value of δ. 
Moreover, the results suggest that the value of δ can be used 
as a tuning parameter to adjust the bandgap characteristics of 
graded disorder metamaterial beams. This information can be 
helpful in optimizing the design of such beams for specific 
applications where a certain bandgap frequency range is 
desired. By varying the value of δ, researchers can achieve 
the desired bandgap characteristics and improve the overall 
performance of the metamaterial beam.  
Fig. 7 provides additional insight into the transmittance 
responses of the metamaterial beam with 8 cantilever 
resonators for different values of δ. The results show that 
there are significant changes in the edge of the bandgap, 
which indicates the potential for practical applications of this 
metamaterial beam. It is also important to consider the effect 
of δ on the mass ratio μ mathematically called CM ratio, and 
how it impacts the edge of the bandgap. Further analysis of 
these parameters can provide a more comprehensive 
understanding of the behavior of the metamaterial beam. 

 
Figure 7: Transmittance responses of the first and second 
mode of resonator with μ=0.1 for different δ.  

 
Figure 8: Image binarization contour of the transmittance 
using -40 dB as reference in response to the variation of δ, 
and μ=0.1.  
Fig. 8 provides a visual representation of how the bandgap 
edge is affected by changes in δ for the region below -40 dB. 
This plot helps to visualize the dependence of the edge of 
bandgap on the variation of δ. It is clear that δ has a 
significant impact on the location of the bandgap edge, 
indicating that the resonator's center of mass location is 
crucial in determining the beam's bandgap characteristics. 
This discovery enables real-time control and tuning of the 
beam's bandgap characteristics, which is a significant 
advantage. Additionally, the discrete zones in the plot can be 
attributed to the small value of μ and the selected attenuation 
level of -40 dB. It is important to note that selecting different 
values of μ or attenuation levels would yield different plot 
features. 
By using a cantilever-type resonator instead of a lumped 
mass spring, it becomes feasible to examine other modes of 
the resonator. Fig. 9 shows the transmittance responses of the 
first and second mode of the resonator with a high mass ratio 
of μ=0.9 for different values of δ. The second mode is 
observed in the transverse vibration of the beam, and the 
attached mass on the resonator material is replaced from PLA 
to steel to decrease the natural frequency of the resonator to 
the desired frequency range. The result shows the same 
behaviour in the second mode as well, and the variation of δ 
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changes the bandwidth XBW and edge of bandgap similar to 
first mode.  

 
Figure 9: Transmittance responses of the first and second 
mode of resonator with μ=0.9 for different δ.  

 
Figure 10: Image binarization contour of the transmittance 
using -40 dB as reference in response to the variation of δ, 
and μ=0.9.  
Fig.10 shows the binary representation of the transmittance 
contour pattern evolution with changes in δ for a high mass 
ratio of μ=0.9. The image binary contour of the transmittance 
for μ=0.9 and -40 dB as reference is shown in Fig. 10. The 
second mode of resonator creates an additional gap in higher 
frequencies, as shown in the top part of Fig. 10. Using a 
cantilever-type resonator instead of a lumped mass spring 
enables the investigation of additional resonator modes, as 
indicated by this result. Additionally, the ability to alter the 
attached mass and mass ratio permits real-time control and 
tuning of the bandgap characteristics of the beam. The results 
presented in this study demonstrate the impact of the δ on the 
transmittance response of graded disorder metamaterial 
beams. Additionally, the study highlights the importance of 
considering the resonator mode shape when designing and 
optimizing graded disorder metamaterial beams for specific 
bandgap applications. By using a cantilever-type resonator 
instead of a lumped mass spring, other modes of the resonator 
can be studied, providing greater flexibility in designing the 
bandgap characteristics. The ability to tune and control the 
bandgap characteristics in real-time experiments makes this 
type of metamaterial beam a promising candidate for various 

applications, including vibration and noise suppression in 
mechanical system.  

4. Conclusion 

In conclusion, this research has examined the possibility of 
tuning the band gap of beam-type resonators based on 
adjustable stiffness to achieve broadband vibration 
suppression. Through the analysis of dispersion relations and 
the binary representation of transmittance contour patterns, it 
has been demonstrated that the center of masses of attached 
masses does not significantly affect the vibration suppression 
performance of the metamaterial beam. However, by using a 
cantilever-type resonator instead of a lumped mass spring, it 
has become possible to examine other modes of the resonator 
and to tune and control the bandgap characteristics of the 
beam in real-time experiments. This research proposes a 
piezo-free method for tuning the adjustable stiffness of beam-
type resonators to achieve broadband vibration suppression. 
The study explores the feasibility of changing the center of 
mass to tune the resonator's stiffness and discusses its 
potential for improving performance. This study has provided 
valuable insights into the design and optimization of graded 
metamaterial beams for vibration suppression applications. 
Additionally, further research could be conducted to 
investigate the potential of using graded disorder 
metamaterial beams for other applications beyond vibration 
suppression, such as energy harvesting or acoustic insulation. 
Overall, the findings of this study provide a promising 
avenue for the development of advanced metamaterial beams 
with tailored bandgap characteristics for a wide range of 
applications.  
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ABSTRACT

This paper examines the stability implications of integrating piezoelectric actuators into metamaterial beams,
focusing on the compensation of structural damping and its effect on the system’s dynamic performance. Meta-
materials, characterized by their unique bandgap properties, offer potential in various engineering applications,
including vibration control and energy harvesting. However, structural damping inherent in such systems can
degrade these properties, prompting the use of piezoelectric actuators as a compensatory mechanism. Through
a distributed parameter model and modal analysis, this study explores the temporal and spatial dynamics of
the metamaterial beam and investigates how piezoelectric actuation influences the natural frequencies and mode
shapes, with a particular emphasis on stability thresholds. Employing root locus analysis, the paper visualizes
the transition of system stability across different levels of actuation voltage, highlighting the delicate balance
between enhanced performance and stability. The findings delineate a clear operational voltage range, within
which piezoelectric actuation improves bandgap properties without compromising system stability.

Keywords: Damping Compensation, Stability Analysis, Piezoelectric Actuation, Distributed parameter model
of metastructures, Bandgap Engineering

1. INTRODUCTION

In this study, we delve into the stability analysis of metamaterial beams incorporating piezoelectric actuators, a
subject that sits at the intersection of advanced materials science and dynamic system control. The crux of this
investigation lies in understanding how the integration of active control elements affects the overall stability of
these sophisticated structures.

Metamaterial beams, known for their unique mechanical properties and dynamic behaviors, present a complex
challenge when augmented with piezoelectric actuators. These actuators, capable of precise manipulation of
the beam’s response, introduce a new dimension to the system’s dynamics. Thus, a rigorous stability analysis
becomes paramount to ensure that such modifications do not lead to detrimental outcomes like system instability
or resonance failures.

Our approach begins with constructing a distributed parameter model for the metamaterial beam. This
model, essential for capturing the continuous spatial variation of mechanical properties along the beam, is
governed by a nuanced set of partial differential equations. These equations are the backbone of our analysis,
allowing us to explore the temporal and spatial dynamics of the beam in detail.

We employ modal analysis to uncover the natural frequencies and mode shapes of the beam. Understanding
these characteristics is crucial for predicting the emergence of bandgaps—a phenomenon where certain frequency
ranges are blocked or altered by the structure of the metamaterial. Modal analysis also aids in assessing how
active control via piezoelectric actuators can be used to tailor these bandgaps effectively.

To visualize and understand the implications of varying control parameters, specifically the applied voltage
va, we utilize root locus analysis to track the movement of the poles in the complex plane as the applied voltage
changes, offering a clear depiction of the stability landscape of the system under different operational scenarios.

Further author information: (Send correspondence to E. Petlenkov)
E.P.: E-mail: eduard.petlenkov@taltech.ee, Telephone: 1 234 567 890

Active and Passive Smart Structures and Integrated Systems XVIII, edited by Serife Tol, Guoliang Huang, 
Xiaopeng Li, Mostafa A. Nouh, Shima Shahab, Jinkyu Yang, Proc. of SPIE Vol. 12946, 

129460J · © 2024 SPIE · 0277-786X · doi: 10.1117/12.3024120

Proc. of SPIE Vol. 12946  129460J-1



A focal point of our study is the exploration of the potential risks associated with using piezoelectric actuation
to counteract damping effects. We rigorously investigate whether this approach introduces new poles or zeros in
the transfer function, potentially leading to instability. Through comprehensive simulations, we aim to establish
stability thresholds, providing a concrete framework for evaluating the system’s resilience to various levels of
piezoelectric actuation.

This research is not just an academic exercise but a practical guide for engineers and designers. By identi-
fying and understanding the boundaries of stability in such complex systems, we aim to inform the design and
operational protocols of metamaterial beams, ensuring they achieve their intended dynamic performance without
compromising their structural integrity.

2. LITERATURE REVIEW AND BACKGROUND

The study of bandgaps in metamaterials has garnered considerable attention from engineers and researchers due
to its potential in various practical applications. This Literature Review and Background section will delve into
the existing research and identify the gap that our study aims to address.

Metamaterials, known for their extraordinary mechanical properties, have been a focal point in materials
science research. One of the key features of these materials is their ability to exhibit bandgaps - frequency ranges
in which wave propagation is significantly reduced or entirely inhibited. The control over bandgap characteristics,
such as width and depth, has important implications for noise reduction, vibration control, and energy harvesting
applications.1

In practical scenarios, the effectiveness of these bandgaps is often compromised due to the inherent damping
characteristics of the structure. Damping, a natural phenomenon in materials, leads to the dissipation of energy,
thereby affecting the depth of the bandgaps and diminishing their effectiveness.2

To counteract this issue, one approach has been the integration of piezoelectric actuators. These actuators,
leveraging the piezoelectric effect, are employed to enhance the resonator’s performance, thereby compensating
for the damping and potentially restoring the depth of the.3,4

However, the introduction of piezoelectric actuators alters the dynamic properties of the system, potentially
leading to instability. The interaction between the piezoelectric elements and the mechanical structure can
introduce changes in the system’s natural frequencies and mode shapes, which in turn might affect its stability.5,6

While previous studies have explored the influence of piezoelectric actuation on metamaterial bandgaps, there
is a lack of comprehensive understanding of how this actuation affects the stability of the system. This leads
us to the primary research question of our study: How does the use of piezoelectric actuators to compensate
for damping in metamaterial beams influence the stability of the system, and what are the implications for the
practical application of these enhanced bandgaps?

Our research aims to investigate this stability, or potential instability, introduced by piezoelectric actuation
in metamaterial beams. By addressing this question, we seek to bridge the gap in current understanding and
provide insights that are crucial for the practical application and optimization of piezoelectrically enhanced
metamaterials.

3. DISTRIBUTED PARAMETER MODEL USING MODAL ANALYSIS

In this study, a distributed parameter model is employed to analyze the behavior of a metamaterial system. This
model is crucial for understanding spatial variations in physical properties and their impact on wave propagation.
Modal analysis is utilized to determine the natural frequencies and mode shapes of the metastructure, which are
essential for identifying and manipulating bandgaps.

The locally resonant metastructure, incorporating piezoelectric actuators, is illustrated in Fig. 1. This dia-
gram emphasizes the deliberate placement of piezoelectric elements crucial for the actuation approach. Employing
a distributed parameter model aids in formulating partial differential equations that delineate the system’s dy-
namics, which are subsequently discretized and numerically analyzed to determine the metastructure’s modal
properties.
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Figure 1. Schematic of a locally resonant metastructure with piezoelectric actuators. Features cantilever beams with tip
masses as resonators and piezoelectric elements (with voltage vpr ) bonded to alter stiffness dynamically.

The dynamics of the system are captured by a set of partial differential equations as follows:7

Lw(x, t) + C ∂w(x, t)
∂t

+M∂2w(x, t)

∂t2
−

Nr∑
r=1

(
krzr(t) + cr

∂zr(t)

∂t

)
δ (x− xr) = Fbm(x, t) (1)

mr
∂2zr(t)

∂t2
+ cr

∂zr(t)

∂t
+ krzr(t) +mr

∂2w (xr, t)

∂t2
− ϑp,rvp,r(t) = Fbr (t) (2)

C∗
p,r

∂vp,r(t)

∂t
+ ϑp,rzr(t) = 0 (3)

Equations (1), (2), and (3) in the study address the dynamics of a metamaterial beam system with piezo-
electric actuators. Equation (1) focuses on the primary beam’s displacement and its interaction with resonators,
while Equation (2) details the resonators’ motion and the influence of the piezoelectric actuator force. Equation
(3) links the actuator voltage to the resonator motion through capacitance and a coupling coefficient.

The parameters L, C, and M represent the system’s flexural rigidity, damping, and mass distribution. The
piezoelectric properties defined as electromechanical coupling (ϑr), capacitance (C∗

p,r), and the shunt circuit
admittance (Gr) on each resonator. The functions w(x, t) and zr(t) describe the main structure’s and resonators’
transverse vibrations, respectively. The Kronecker delta function δ (x− xr) denotes resonator locations, with Nr

being the total number.

The system’s boundary conditions are determined by linear homogeneous differential operators, and damping
is often modeled based on the mass and stiffness matrices. This approach simplifies analysis using common mode
shapes for both damped and undamped scenarios, albeit as an approximation.

Orthogonality conditions involving these operators, as indicated by δmn in Equations (4) and (5), confirm
that the mode shapes are orthogonal in terms of the system’s stiffness and mass. Proportional damping links
damping characteristics to these orthogonal eigenfunctions, defining the damping ratio ζm for each mode as a
linear combination of the system’s mass and stiffness.∫

D

ϕm(x)M [ϕn(x)] dx = δmn (4)

and ∫
D

ϕm(x)L [ϕn(x)] dx = δmnω
2
m (5)

In modal decomposition, the deflection of an Euler beam over the domain D = [0, L] is represented as a sum
of modal contributions:
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w(x, t) =

Nm∑
m=1

ϕm(x)zm(t), (6)

The deflection of an Euler beam in modal decomposition is expressed through a series of modal contributions,
where ϕm(x) illustrates the spatial pattern of each mode shape, and zm(t) indicates the time-dependent devel-
opment for each mode. This method effectively reduces the intricate dynamics of a flexible beam with embedded
resonators to simpler, more understandable elements.

The modal expansion from Eq. (6) is substituted into Eqs. (1) and (2), using the orthogonality conditions
from Eqs. (4) and (5). By reorganizing these equations and applying Laplace transforms (assuming no initial
conditions), a set of linear equations in the Laplace domain is derived. This process leads to the formulation of
a transfer function for the displacement of the resonator.

In this framework, the resonator masses (mr) are proportionally defined relative to the mass distribution of
the structure at resonator attachment points, scaled by a mass ratio (µ). This ratio represents the total mass
of the resonators compared to the base structure’s mass. The relationship is expressed as mr = µm (xr) dxr,
ensuring that the resonator masses are integrally linked to the structure’s mass distribution.

For systems with a large number of resonators, the expression involving the sum of resonator masses can
be approximated by an integral over the structure’s length. This approximation aligns with the orthogonality
condition represented by the Kronecker delta function δmp.

Using the defined terms and after rearranging the equations mathematically, the transfer function that
describes the displacement of the resonator is constructed as follows:

Zr(s) =
−s2wb −

∑Nm

m=1 Zm(s)s2ϕm (xr)

s2 + 2ζrωrs+ ω2
r +

k∗
eω

2
r

s

, r = 1, 2, . . . , Nr (7)

where Zr(s) signifies the Laplace transform of the displacement response for the r-th resonator in a meta-
material system, where ωb represents the base excitation. The term ϕm (xr) indicates the mode shape at the
location xr of the resonator, Nr is the total number of resonators, ζr is the damping ratio signifying energy
dissipation efficiency, and ωr is the resonator’s natural frequency.

The effective electromechanical coupling of the resonator, denoted as k∗e , is defined by k∗e =
ϑ2
p,r

C∗
p,rkr

. When

considering the voltage source as the input, this effective stiffness k∗e can be expressed through the relationship
k∗e = αωrv0 = va, , where ωr represents the natural frequency of the resonator, v0 is the voltage applied to the
piezoelectric component, and α is an empirical constant with the unit Farads per Coulomb (F/C). After some
mathematical manipulation, the transfer function for the displacement of the m-th mode of the structure relative
to the excitation force on the same mode is formulated, simplified, and described by Eq. (8). This equation
includes terms for modal frequency, damping, and the interaction between the structure’s dynamics and the
resonator’s properties, including the applied voltage.

Zm(s)

Qbm(s)
=

1

s2
(
1 +

µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r(1+

va
s )

)
+ 2ζmωms+ ω2

m

, m = 1, 2, . . . , Nm (8)

Here, Zm(s) and Qbm(s) represent the Laplace transforms of the displacement response and the external force
applied to the m-th mode, respectively. ωr and ωm are the natural frequencies of the resonator and the m-th
mode of the structure. The damping ratios, ζr for the resonator and ζm for the structure’s mode, describe the
rate of oscillation decay due to damping. va is the voltage applied to the piezoelectric elements, influencing the
system’s response. Nm indicates the number of modes in the analysis.
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4. STABILITY ANALYSIS

The theoretical framework for the stability analysis of a piezoelectrically actuated metamaterial beam is rooted
in a distributed parameter model and modal analysis. These models illuminate the system’s natural frequencies
and mode shapes, crucial for evaluating dynamic manipulation and potential bandgaps. The stability is assessed
by the poles’ locations of Eq. (8) in the complex plane, with stability indicated by poles residing in the left-half
plane.

Root locus analysis is used to visualize how the poles shift with varying applied voltages va, offering a graph-
ical perspective of stability regions against the control parameter changes. This analysis becomes particularly
significant when examining the effects of piezoelectric actuation meant to counteract damping. The introduction
of an additional s term in the transfer function’s denominator, indicative of a new pole, poses a critical inquiry
into whether such compensation might inadvertently lead to instability. Further, a specific stability criterion is
set where the system is considered stable if the weighted average of the real parts of the poles is less than the
threshold of wa(L)/wb = 0.1. This benchmark, both theoretical and empirical, allows for a pragmatic assessment
of stability, taking into account the practical operational limits.

The methodological framework outlined in this study serves as the foundation for the subsequent numerical
simulations aimed at exploring the stability characteristics of the metamaterial beam under various actuation
strategies. The outcomes of this theoretical analysis will inform the design decisions and operational procedures
to ensure that the system can achieve the desired dynamic behavior without succumbing to instability.

5. RESULTS AND DISCUSSION

This section presents a numerical analysis using defined geometric and material properties of a rectangular beam,
detailed in Table 1. This table provides the parameters for the simulations and calculations, offering a precise
depiction of the beam’s properties for the study.

Table 1. Geometric and material properties of the studied rectangular aluminum beam
Parameter Value Parameter Value

Lm 0.3 m mr 17 g
wm 40 mm kr 9 kN/m
hm 3 mm ζr 0.01
ρm 2700 kg/m3 Nm 8
Em 69.5 GP Nr 8
ζm 0.01

The root locus plot in Fig. 2 demonstrates the stability of a flexible structure with varying modes. It
illustrates the pole trajectories for a system considering one mode versus eight modes. As the plot shows,
including more modes in the analysis captures a more complex stability behavior, indicated by the poles’ paths
moving into the left-half plane, which suggests increased stability. This highlights the critical importance of
accounting for multiple modes in flexible structures to ensure a robust stability analysis and accurate prediction
of the system’s dynamic response. Neglecting higher modes could omit essential details, potentially compromising
the effectiveness of stability enhancement strategies like the implementation of deep bandgaps with controlled
damping.

The root locus plot depicted in Fig. 3 provides insight into the dynamic stability of a metamaterial beam with
piezoelectric actuators. As shown, varying the applied voltage vp alters the pole positions within the system,
which can lead to instability. The plot reveals that the system’s poles respond differently to changes in vp, with
some poles moving toward the instability region (the right-half of the s-plane) as vp increases. This differential
responsiveness underscores the nuanced control that piezoelectric actuation can exert on the system.

By finely adjusting vp, it is possible to tune the dynamic stability of the beam, which is a critical aspect
of enhancing the performance of metamaterials. The ability to control stability through piezoelectric actuation
is particularly valuable in applications where material properties must be precisely managed to achieve desired
dynamic behavior. Conversely, if the approach involves using piezoelectric actuators to offset the damping effect
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Figure 2. Root locus plot illustrating the pole trajectories for one mode versus eight modes in a piezoelectrically actuated
metamaterial beam, highlighting the impact of mode inclusion on system stability. The sourced parameters from Table 1.

Figure 3. Root locus plot demonstrating the stabilization effect of increasing piezoelectric actuation voltage vp on stability
of metamaterial beam system. System parameters include a mass ratio µ = 1, resonator damping ratio ζr = 0.1, resonator
natural frequency ωr = 10, structural damping ratio ζm = 0.1, and the first structural natural frequency ωm1 = 10. The
plot traces the pole movement across modes, showing enhanced stability with higher vp, pertinent to the precise dynamic
control of metamaterials.
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Figure 4. This figure illustrates the effect of varying resonator damping ratios ζr on the bandgap properties of the
metastructure, considering a constant metamaterial damping ratio of ζm = 0.01 in the frequency response analysis. The
sourced parameters from Table 1.
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Figure 5. This figure illustrates the effect of varying resonator damping ratios ζr on the bandgap properties of the
metastructure, considering a constant metamaterial damping ratio of ζm = 0.01 in the frequency response analysis. The
sourced parameters from Table 1.

and thus deepen the bandgap, the figure reveals that such use of piezoelectric actuators to counterbalance the
damping in a metamaterial beam might result in instability. This is shown in Fig. 4, where it’s clear that altering
the resonator’s structural damping significantly influences the behavior of the bandgap.

Fig. 5 graphically demonstrates the impact of high damping ζr = 0.4 in a practical application, where it
significantly diminishes the amplitude of vibrations across the frequency spectrum and effectively suppresses
resonant peaks. When piezoelectric actuation is applied in conjunction with this high damping rate, there is a
notable further reduction in peak amplitudes. Importantly, it also compensates for the reduced bandgap effect
caused by increased damping and modifies the resonant frequencies, showcasing the capacity for active vibration
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Figure 6. Stability landscape of a metamaterial beam with piezoelectric actuation, showcasing the stable (green) and
unstable (red) voltage regions. Stability is quantified by the defined threshold, for balancing piezoelectric damping
compensation and maintaining system stability

control. This comparative analysis confirms that piezoelectric actuation not only surpasses passive damping
in vibration reduction but also implies that it can adjust the system’s dynamic properties, such as stiffness or
mass distribution. Consequently, the utilization of piezoelectric actuators in metamaterial beams is a promising
strategy for vibration isolation and noise reduction, offering a dynamically tunable solution to control undesirable
vibrations.

The chart in Fig. 6 depicts how the stability of a metamaterial beam responds to different applied voltages
to piezoelectric actuators. Stability is defined by the weighted average of the pole real parts, with a threshold
set at wa(L)/wb = 0.1. The green area represents stable voltage levels, while the red indicates voltages that
cause instability. Maintaining applied voltage within the green region is essential to ensure stable operation while
enhancing the bandgap depth using piezoelectric damping.

Fig. 7 illustrates the relationship between the cost function and the applied voltage v0 in a piezoelectrically
actuated system. It shows a rapid decline in cost as v0 increases, which then levels off, indicating an optimal
voltage range for system operation. This data is critical for determining the most efficient voltage for system
performance, highlighting the effectiveness of piezoelectric actuation within a specific voltage range.

The 3D plot in Fig. 8 illustrates the effect of the applied voltage v0 on the transmittance response of
a metamaterial beam’s tip displacement with length L to the base excitation displacement over a range of
frequencies. The plot’s valley depth signifies a pronounced attenuation, indicating the optimization of v0 enhances
the bandgap due to compensated damping effects in the presence of over-damping. The response surface reveals
that v0 not only modulates the bandgap’s depth but also its frequency position, which is critical for applications
that require precise control of vibrational characteristics.

Fig. 9 illustrates the variation in the maximum ratio of tip displacement wa(L) to base excitation displacement
wb as a function of applied voltage v0. The plot shows a notable decrease in the displacement ratio when v0 rises
from 0 to about 5 volts, indicating a significant improvement in the beam’s response, likely due to the influence of
actuation on the system dynamics. Beyond 5 volts, the ratio levels off and increases gradually, implying limited
benefits from further voltage increases. This behavior aids in determining the optimal operational voltage range
where the piezoelectric actuation has the most significant impact on the beam’s vibrational characteristics.
The sharp peaks indicate resonant frequencies where the system’s response is highly sensitive to changes in
v0. In practice, such a plot is essential for system designers to set appropriate actuation voltages that balance

Proc. of SPIE Vol. 12946  129460J-8



Figure 7. The cost function’s variation with applied voltage v0, displaying a sharp decrease and subsequent stabilization.
This identifies an optimal voltage range for the piezoelectric actuation system, beyond which no significant cost benefit
is observed.

Figure 8. Transmittance response of the beam’s tip displacement to base excitation across frequencies, depicting the effect
of applied voltage v0. The pronounced valley indicates an optimized bandgap within the structure, adjusted by v0 to
mitigate overdamping effects. This plot is key for identifying optimal v0 settings to control the metamaterial’s vibrational
characteristics effectively.
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Figure 9. Variation of maximum |wa(L)/wb| with applied voltage v0, highlighting resonant frequencies and the impact
of piezoelectric actuation on the beam’s vibrational response.

Figure 10. Transmittance variation with frequency for different applied voltages v0 on a piezoelectrically actuated damped
system, illustrating the modulation of resonant peaks and the adjustment of bandgap frequencies due to piezoelectric
effects.

performance with energy efficiency and ensure the structural integrity of the beam under dynamic loading
conditions.

Fig. 10 shows transmittance responses for varying applied voltages v0, demonstrating the tunability of the
system’s resonant frequencies. The curves shift in response to different v0 levels, which is indicative of the
piezoelectric effect’s impact on the damped system. Such control is essential for optimizing dynamic behaviors
like vibration suppression and bandgap frequency adjustments. The visualization captures the nuanced influence
of voltage on the system’s ability to manage and refine the depth of its bandgap in response to external damping
forces.
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6. CONCLUSION

This research investigated the dynamic stability of a metamaterial beam system with integrated piezoelectric
actuators, designed to compensate for the structural damping of resonators. Central to this investigation was
the implementation of piezoelectric actuation as a means to counteract damping effects, represented by the
introduction of an additional pole term in the denominator of the system’s transfer function (Eq. (8)).

The study’s findings indicate that while piezoelectric actuation can effectively compensate for damping and
enhance the system’s performance, it introduces a complexity that can lead to instability. The root locus analyses
provided a clear depiction of how the system’s poles migrate with varying applied voltage va, highlighting the
delicate balance between achieving desired damping compensation and maintaining system stability.

Through numerical simulations, we delineated the stability regions, revealing that there is an optimal range
of applied voltages within which the system can operate stably while benefiting from the damping compensation
provided by the piezoelectric actuators. However, surpassing this range may lead to instability, as evidenced by
the poles’ transition across the critical boundary in the complex plane.

In conclusion, the study confirms that piezoelectric actuation, when carefully applied, is a potent tool for
managing the dynamic response of metamaterial beams. The critical contribution of this work lies in the
identification of stability thresholds for applied voltages, enabling the use of piezoelectric actuators to control
damping without compromising the system’s stability.
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ABSTRACT

Metamaterials have marked notable advancements in vibration damping and energy harvesting. However, the
specific impact of internal coupled resonators, encompassing both linear and nonlinear types, has received lim-
ited attention from researchers. This study aims to delve into this underexplored area. Utilizing a distributed
parameter model grounded in modal analysis, our research investigates the effects of these coupled resonators on
metamaterial functionality. We particularly emphasize the influence of varying the position of attached masses
and its consequent impact on the bandgap properties. Through developing theoretical and mathematical models
for metastructural beams with internally coupled resonators, our approach facilitates future simulations and
analyses. This investigation not only provides pivotal insights for the design and optimization of metamateri-
als but also underscores the possible potential of manipulating resonator properties to broaden their practical
applications.

Keywords: Distributed parameter model, Modal analysis, Nonlinear internally coupling, Spatial variation

1. INTRODUCTION

Locally resonant metamaterials are engineered materials designed with unique vibrational properties that allow
them to selectively amplify or dampen mechanical waves within certain frequency ranges. Through the strategic
arrangement and geometry of resonators within these materials, they can control wave propagation, enabling
effects such as wave trapping, vibration isolation, and wave guiding. These materials are applied in various fields,
including acoustic and vibration control, energy harvesting, and advanced sensing technologies. A key feature
of locally resonant metamaterials is their ability to create low-frequency bandgaps, where wave propagation is
blocked, differentiating them from phononic crystals that use Bragg scattering for this purpose. This charac-
teristic makes them particularly valuable for research in vibration attenuation and offers a broad spectrum of
potential applications in related fields.

In the field of locally resonant metastructures, various methods have been identified to expand bandgaps,
such as utilizing multiple periodic arrays, employing multi-degree-of-freedom local resonators, and integrating
Bragg-type with resonance-type bandgaps. Techniques like internal coupling between resonators, quasi-periodic
arrangements, and leveraging smart materials and actuators are underscored for their contributions to enhanced
vibrational control.

The study of transverse vibrations in cantilever beams, as presented by Frank Pai et al.,1 underlines the
advantages of multi-frequency vibration absorbers in establishing effective stopbands for wave absorption. This
research emphasizes the critical role of boundary conditions and the distribution of absorbers, especially signifi-
cant at low frequencies.

The inclusion of mass within a system is identified as beneficial for enhancing damping, vibration control,
and structural stability. The investigation conducted by Skoblar et al.2 focuses on the effects of additional mass
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on the dynamic response of cantilever beams, providing insights into the vibration characteristics and overall
system behavior. Piezoelectric materials’ capability for energy conversion is exploited in adjusting the resonant
frequency of cantilever beams, with Yuejuan Li et al.3 offering a methodology for modifying frequency sensitivity
through the strategic placement of attached masses. Magnetic actuators are highlighted for their broad frequency
range and robustness. Hyunseok Song et al.4 introduce a magneto-mechano-electric generator that features self-
resonance tunability, illustrating its use in consistently powering IoT sensor systems in variable conditions. The
formulation of a general mathematical model for analyzing locally resonant metastructures by Sugino et al.5

establishes a systematic approach for predicting structure behavior and facilitating design optimization, with a
particular emphasis on modal analysis to delineate bandgap properties.

The exploration of metastructures with internal coupling and nonlinear resonators is motivated by their
potential to improve bandgap formation and vibration suppression. Research by Hu et al.6 and Xia et al.7

delves into novel designs for energy harvesting and vibration attenuation, highlighting the efficacy of alternate
coupling mechanisms and the influence of excitation intensity on vibrational modes.

1.1 Internally coupled resonators

The subsection on internally coupled resonators delves into the advancements in metamaterial beam designs that
significantly enhance energy harvesting capabilities in the low-frequency range while also marginally improving
vibration suppression through the introduction of an additional band gap. Bao et al.8 explored the enhancement
of vibration suppression performance in the low-frequency region by using a locally resonant metamaterial beam
coupled with horizontal springs. Their findings indicate that variables such as the number of units, damping
ratio, mass, and stiffness critically influence the bandgap, leading to improved vibration suppression in locally
resonant metamaterial beams.

Moreover, Hu et al.6 introduced a modified metamaterial beam designed for dual purposes: vibration sup-
pression and energy harvesting. This design features local resonators that are alternately coupled, with each
resonator equipped with a piezoelectric element to convert vibrations into electrical energy. Furthermore, Oye-
lade and Oladimeji9 presented an innovative metamaterial with a multiresonator mass-in-mass lattice system,
where inner masses are interconnected by a linear spring. Their research highlighted the critical role of the
additional spring and mass ratio in creating two extra bandgaps, showcasing a significant advancement over
traditional multiresonator lattice systems.

Despite these developments, there has been limited research on the effects of nonlinear coupling between
internal resonators within metamaterials. While comprehensive reviews like Patil et al.10 have investigated
various nonlinear characteristics of metamaterials and metastructures, there remains a gap in the focused study
of nonlinear internal coupling and its potential impacts on metamaterial performance.

This study aims to bridge a significant gap in metamaterial research by focusing on the effects of nonlinear
coupling between internal resonators, a topic largely overlooked despite its potential to enhance system dynamics
and application efficiency. Nonlinear behaviors, intrinsic to most physical systems, can lead to improved vibration
control and energy harvesting mechanisms, yet their impact remains underexplored. By investigating both linear
and nonlinear internal coupling, this research seeks to uncover new insights into resonator behavior, potentially
advancing metamaterial design and functionality.

Additionally, the study addresses the minimal investigation into how spatial variations in resonator proper-
ties, such as changes in attached mass positions on beam-type resonators, affect natural frequencies and bandgap
characteristics. Exploring these aspects could offer novel tuning methods, optimize performance, and broaden
metamaterial applications, marking a pivotal step toward mitigating production tolerances and enhancing ma-
terial versatility.

2. DISTRIBUTED PARAMETER MODEL USING MODAL ANALYSIS

The section discusses the utilization of modal analysis in the design and optimization of mechanical locally
resonant metastructures. Modal analysis is essential for identifying vibration characteristics such as natural fre-
quencies, mode shapes, and modal damping ratios, enabling the creation of metastructures tailored for specific
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Figure 1. Example of locally resonant metastructures

wave propagation behaviors. Unlike lumped parameter models that use ordinary differential equations, dis-
tributed parameter models employ partial differential equations (PDEs) to account for the spatial distribution
of physical properties within the material or structure. These models are crucial for systems where dimensions
match or exceed the wavelength of wave propagation, offering insights into phenomena where spatial variations
significantly influence behavior, including wave propagation, heat transfer, and fluid dynamics. Through modal
analysis and the frequency determinant method, analytical models are derived to understand the dynamics of
systems under base excitation and external forces, as illustrated by a typical distributed model.

Let’s explore a standard distributed model that governs the oscillations of a system subjected to base excita-
tion and external forces (refer to Figure 1). This model is formulated as a partial differential equation, drawing
upon principles from Newtonian mechanics and classical references on vibration analysis.

Lw(x, t) + C ∂w(x, t)
∂t

+M∂2w(x, t)

∂t2
−

Nr∑
r=1

(
krur(t) + cr

dur(t)

dt

)
δ (x− xr) = Fbm(x, t) (1)

with associated equations for the resonators:

mr
∂2ur(t)

∂t2
+ cr

∂ur(t)

∂t
+ krur(t) +mr

∂2w (xr, t)

∂t2
= Fbr (t) (2)

The operators L, C, and M in the equations represent the flexural rigidity, damping, and mass distribution of
the system. The main structure’s transverse vibrations and those of individual resonators are denoted by w(x, t)
and ur(t), respectively, while δ (x− xr) indicates the resonators’ locations. Nr is the number of resonators, mr

their mass, kr the stiffness, and cr the damping coefficient. The mode and resonator external force is denoted
by Fbm,r (t), which is distributed over D, and the effects of the base excitation on which the beam is supported.

The boundary conditions corresponding to Eq. (1) can be expressed as

Bi[w(x, t)] = 0, i = 1, 2, . . . , p (3)

where Bi is a linear homogeneous differential operator of the order less than or equal to 2p− 1.

In many real-world structures, the concept of proportional damping often provides sufficient accuracy for
estimating the natural frequencies and mode shapes of these structures.11 Proportional damping is a distinctive
kind of damping where the damping matrix is directly related to the mass and stiffness matrices. Under the
assumption of proportional damping, C can be depicted as a blend of the mass and stiffness operators, denoted
as L and M.

C = c1L+ c2M (4)

Here, c1 and c2 are non-negative constants determined by the physical properties of the system or through an
engineering approach involving modal analysis experiments and data fitting. A benefit of employing proportional
damping is the consistent mode shapes (eigenfunctions) for both the damped and undamped scenarios, and the
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natural frequencies (eigenvalues) remain nearly identical.11 As a result, the eigenfunctions ϕm(x) can be derived
by solving the eigenvalue problem associated with the undamped version of Eq. (1).

L [ϕm(x)] = λmM [ϕm(x)] , m = 1, 2, ..., Nm (5)

For a flexible structure (like a beam) with a set of resonators, the system would indeed be described by
a set of coupled differential equations: one for each resonator and the flexible structure itself. Each of these
components contributes to the overall dynamic behavior of the system, and they can influence each other. Since
the force exerted by the resonators depends on the displacement of the structure, the mode shapes of the original
structure without resonators are no longer the exact mode shapes of the full metastructure. Nevertheless, an
expansion using the mode shapes of the plain structure provides significant simplification.

In the context of an Euler beam, the domain D = [0, L], where the beam is assumed to be linearly elastic
and homogeneous, the operators L and M can be defined as follows:

L = EI
∂4

∂x4
, M = ρA, C = c, B1 = 1, B2 = EI

∂2

∂x2
, (6)

where EI is flexural rigidity of the beam, which is the product of Young’s modulus E and the second moment
of area I. ρ is the density of the beam material. A is the cross-sectional area of the beam.

Employing the modal expansion method, it becomes necessary for the eigenfunctions to be orthogonal to serve
as the basis function for determining the solution of Eq. (1). In order to formalize the overarching principle of
orthogonality, the self-adjoint (Hermitian) eigenvalue problem is outlined. For any two arbitrary eigenfunctions
ϕm(x) and ϕn(x) within a one-dimensional domain, the eigenvalue problem is deemed to be self-adjoint if the
following criterion is satisfied:12 ∫

D

ϕm(x)L [ϕn(x)] dx =

∫
D

ϕn(x)L [ϕm(x)] dx (7)

and ∫
D

ϕm(x)M [ϕn(x)] dx =

∫
D

ϕn(x)M [ϕm(x)] dx. (8)

Let us now consider ω2
m and ω2

n as two unique eigenvalues with their corresponding eigenfunctions ϕm(x) and
ϕn(x), these being the result of solving the self-adjoint eigenvalue problem. For convenience, the eigenfunctions
are generally normalized with respect to M. Consequently, the generalized condition of the orthogonality
equation can be established. ∫

D

ϕm(x)M [ϕn(x)] dx = δmn (9)

and ∫
D

ϕm(x)L [ϕn(x)] dx = δmnω
2
m (10)

Here, δmn is recognized as the Kronecker delta function, which yields a value of 1 when m = n, and maintains
a value of zero in all other situations.

Under the assumption of proportional damping, the following equation is obtained:∫
D

ϕm(x)C [wm(x)] dx = c1δmnω
2
m + c2δmn (11)

which can be reformulated to yield: ∫
D

ϕm(x)C [wm(x)] dx = δmn2ζmωm (12)
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with

ζm =
1

2ωm

(
c1ω

2
m + c2

)
(13)

Here, ζm denotes the damping ratio of m-th mode, and c1 and c2 are non-negative constants. Eq. (9) through
to Eq. (12) constitute a set of orthonormal eigenfunctions. These eigenfunctions serve as a comprehensive basis
that encapsulates the entire solution space of the eigenvalue problem.

In cases where the domain D is two-dimensional, it is often more straightforward to separate the modal
summation into individual summations over the two modal indices. However, it is always feasible to re-frame
the double summation as a single summation over all possible combinations of the two indices. This technique,
widely used in modal analysis, produces convergent solutions to the boundary value problem as formulated. The
effectiveness of these solutions, undoubtedly, depends on the assumptions made during the formulation of the
boundary value problem. For example, the Euler-Bernoulli beam theory might not yield accurate results at
high frequencies. Furthermore, the existence of resonators in the structure creates discontinuities in the internal
forces, making it necessary to use a large number of modes as a general guideline.

Using modal decomposition, the beam’s deflection in the domain D is expressed as a sum of modal shapes
in one direction. This assumes that the behavior of the beam can be accurately represented by a finite number
of modes:

w(x, t) =

Nm∑
m=1

ϕm(x)zm(t), (14)

where ϕm(x) represents the spatial mode shape and zm(t) represents the time-dependent modal coordinate
of the m − th mode of the plain. These equations are to be PDEs that are used to model the dynamics of a
flexible beam system integrated with discrete resonators.

Substituting the modal expansion Eq. (14) into Eq. (1), yields to:

L
Nm∑
m=1

ϕm(x)zm(t) + C ∂

∂t

Nm∑
m=1

ϕm(x)zm(t) +M ∂2

∂t2

Nm∑
m=1

ϕm(x)zm(t)

−
Nr∑
r=1

(
krur(t) + cr

dur(t)

dt

)
δ (x− xr) = Fbm(x, t)

(15)

Multiplying Eq. (15) by ϕn(x) and integrating over the domain D, and applying the orthogonality conditions
Eq. (9) to Eq. (13) of the mode shapes gives

z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t)−

Nr∑
r=1

mrω
2
rur(t)ϕm (xr) = Qbm(x, t), m = 1, 2, . . . , Nm (16)

Similarly for resonators, substituting the modal expansion Eq. (14) into Eq. (2) yields to:

ür(t) + 2ξrωru̇r(t) + ω2
rur(t) +

Nm∑
m=1

z̈m(t)ϕm (xr) = Qbr (t), r = 1, 2, . . . , Nr (17)

For ease of representation, the superscript dot denotes the derivative with respect to time, while the superscript
prime signifies the derivative with respect to spatial location. Each equation characterizes the dynamics of the
corresponding modal coordinate or resonator displacement through a second-order ordinary differential equation.
The motion is influenced by the modal or resonator parameters (natural frequencies ωm and ωr, damping ratios

Proc. of SPIE Vol. 12946  1294614-5



ζm and ζr), the interaction between the beam modes and resonators, and the effective forces due to base excitation
(Qbm and Qbr).

The accomplishment of decoupling can be attained by executing an orthogonal transformation, which com-
prises pre- and post-multiplication of the mode shape matrix. This transformation process results in the diagonal-
ization of the mass and stiffness matrices, as the eigenvectors are orthogonal to both matrices. As a consequence,
a set of decoupled ordinary differential equations is derived. The normal mode method is applicable only when
there is no damping or when the damping matrix is proportional, as previously assumed, implying it can be
presented as a linear combination of the mass and stiffness matrices. The practice of pre- and post-multiplying
the mode shape matrix with the mass and stiffness matrices is often referred to as an orthogonal transforma-
tion. When the mode shape is normalized to the mass matrix, this transformation is known as an orthonormal
transformation.

By merging the basic structure depicted in Eq. (16) and the resonators represented in Eq. (17), the inertial
terms of the system can be coupled, the stiffness can be decoupled, which enables further examination of the
system in the frequency domain. This integration process leads to :

z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t) +

Nr∑
r=1

mrϕm(xr)

Nm∑
p=1

z̈m(t)ϕp(xr)+

Nr∑
r=1

mrür(t)ϕm(xr) + 2

Nr∑
r=1

mrϕm(xr)ζrωru̇r(t) = Hbm(x, t), m = 1, 2, . . . , Nm

(18)

where

Hbm(x, t) =

∫ L

0

Fe(x, t)ϕm(x)dx− ẅb(t)

(∫ L

0

Mϕm(x)dx+

Nr∑
r=1

mrϕm (xr)

)
− ẇb(t)

∫ L

0

Cϕm(x)dx (19)

Eqs. (17) and (18) represent a set of Nm + Nr coupled second-order linear ordinary differential equations.
The simultaneous solution of these equations enables the estimation of the mode shapes and resonant frequencies
of the complete system, as well as the analysis of its steady-state response to harmonic excitation.

Laplace Transform facilitates the system’s analysis in the frequency domain, which often proves simpler to
handle algebraically than the original time-domain equations. Therefore, applying the Laplace Transform to
Eqs. (17) and (18), under the assumption of zero initial conditions, results in:

Ur(s) =
Qbr (s)−

∑Nm

m=1 s
2Zm(s)ϕm (xr)

s2 + 2ξrωrs+ ω2
r

(20)

s2Zm(s) + 2ζmωmsZm(s) + ω2
mZm(s) +

Nr∑
r=1

mrϕm (xr)

Nm∑
p=1

s2Zp(s)ϕp (xr)+

Nr∑
r=1

mrs
2Ur(s)ϕm (xr) + 2

Nr∑
r=1

mrϕm (xr) ζrωrsUr(s) = Hbm(s), m = 1, 2, . . . , Nm

(21)

Here, Zm(s) and Ur(s) symbolize the Laplace Transforms of the modal coordinates and the resonator dis-
placements, respectively. For further analytical understanding, the Laplace Transform is applied to Eq. (17),
following the assumptions made in:5

Nr∑
r=1

mrϕm (xr)ϕm (xr) ≈ µ, Qbr (s) = 0 (22)
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where µ represents the mass ratio, which is the sum of the resonators’ mass to the mass of the plain beam.

Applying these assumptions results in the following expression:

Ur(s) = − s2

s2 + 2ζrωrs+ ω2
r

Nr∑
r=1

Zm(s)ϕm (xr) , r = 1, 2, . . . , Nr (23)

Applying the Laplace transform to Eq. (16) and substituting from Eq. (23) gives the following result:

Zm(s)

Qbm(s)
=

1

s2
(
1 +

µω2
r

s2+2ζrωrs+ω2
r

)
+ 2ζmωms+ ω2

m

m = 1, 2, . . . , Nm (24)

Eq. (24) reveals that the presence of resonators brings about a frequency-dependent mass term. Assuming
an infinite number of resonators, which results in continuous displacements throughout the space, similar sim-
plifications can be made for the resonator displacements. Substituting Eq. (24) into Eq. (23) and replacing the
discrete variable xr with the continuous variable x, the following equation can be derived:

Ur(s) = − s2

s2 + 2ζrωrs+ ω2
r

Nm∑
m=1

ϕm (xr)
Qbm(s)

s2
(
1 +

µω2
r

s2+2ζrωrs+ω2
r

)
+ 2ζmωms+ ω2

m

(25)

This provides a continuous equation for the motion Ur(s) of the resonators along the beam, expressed in
terms of the modal force inputs Qbm(s).

The resonators’ displacement can now be expressed as a linear combination of the plain structure’s mode
shapes in Laplace form:

Ur(s) =

Nm∑
m=1

Ψm(s)ϕm(x) (26)

Equation (26) can be associated with Eq. (25) by identifying the modal coordinates within the Laplace
domain, given by Ψm(s), as follows:

Ψm(s)

Qbm(s)
= − s2

[s2 + 2ζrωrs+ ω2
r ]
[
s2
(
1 +

µω2
r

s2+2ζrωrs+ω2
r

)
+ 2ζmωms+ ω2

m

] , m = 1, 2, . . . , Nm (27)

The transfer function depicted in Eq. (27) elucidates the relationship between the modal force Qbm(s) and
the modal coordinate Ψm(s). It provides insight into the system’s dynamics. The poles of this function, where
the function’s values reach their maximum, correspond to the system’s resonant frequencies.

Investigating the system stability further, as outlined by Eq. (24), demands an exploration of the system
poles. As shown in Figure 2, the impact of resonators and damping on the frequency response and stability of
the system. The introduction of the resonator results in frequency splitting, manifesting as a distinct frequency
bandgap in the Bode plot. The exhibited splitting, regardless of the system’s damping characteristics, underscores
the substantial impact of the resonators. They shape the system’s behavior by engaging with the intrinsic
dynamics of the beam, thereby underscoring the importance of considering resonator influence in the modeling
and analysis of such systems. Damping emerges as a crucial element in ensuring system stability. In the absence
of damping, poles reside on the imaginary axis or the right half of the complex plane, indicating marginal
stability or instability. However, with the inclusion of damping, these poles effectively shift to the left half of
the complex plane, denoting system stability as seen in Root Locus plot in Figure 2. This pivotal transition is
evident in various analyses, such as the Lyapunov stability criterion, reinforcing the fundamental role of damping
in stabilizing the system and optimizing its performance. Moreover, in the damped system, both the beam and
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Figure 2. Root Locus and Bode plot analysis of Eq.(24) with parameters ωm = 1, ωr = 2, ζm = 0.05, ζr = 0.03, µ = 0.5.

Figure 3. Locally resonant metastructures with internally coupled resonators

resonator’s resonant frequencies are slightly lower than their undamped counterparts. This reduction in resonant
frequencies results in smaller peaks in the frequency response, while damping also introduces a phase shift in
the system’s frequency response, further altering its characteristics. These effects underscore the importance of
understanding and considering damping in system design and control strategies, as it not only ensures stability
but also influences the magnitude and phase aspects of the system’s response. It is clearly depicted from Root
Locus in Figure 2 that there are no poles within the locally resonant bandgap zone, which falls within the
frequency range of ωr < Im(s) < ωr

√
1 + µ.

Further investigation of the effects of mass ratio, µ, and root locus interpretation of the bandgap, taking into
account the neglect and exclusion of effects of base excitation on resonators (Qbr ), and for undamped system
can be found in the work by Sugino et al.5

3. INTERNALLY COUPLED RESONATORS MODELING

3.1 Linear system

By incorporating a linear coupling term, kc, into the resonators depicted in Fig. 3, the system transforms into
a connected duo of resonators. This alteration leads to a scenario where the movements of the resonators are
intertwined rather than independent. In particular, the motion of one resonator directly affects the motion of its
counterpart, fostering a dynamic interplay. The energy stemming from this coupling is captured by the coupling
potential energy, where each resonator pair (1 and 2, 3 and 4, 5 and 6, etc.) constitutes a system characterized
by two degrees of freedom.

Vc(t) =
1

2
kc (ur1(t)− ur2(t) + w (xr1 , t)− w (xr2 , t))

2
(28)

The equations governing the coupled resonator system are derived as follows:
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z̈m(t) + 2ζmωmżm(t) + ω2
mzm(t)−

Nr/2∑
r=1

(
m2r−1ω

2
2r−1u2r−1(t)ϕm (x2r−1) +m2rω

2
2ru2r(t)ϕm (x2r)

)
= Qbm , m = 1, 2, . . . , Nm, and Nr ∈ 2N

(29)

Meanwhile, the equation for the resonators is given by:

ü2r−1(t) + 2ξ2r−1ω2r−1u̇2r−1(t) + ω2
2r−1u2r−1(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r−1)

+ β
kc

m2r−1
= Qb2r−1

, r = 1, 2, . . . , Nr/2

(30)

ü2r(t) + 2ξ2rω2ru̇2r(t) + ω2
2ru2r(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r)

− β
kc
m2r

= Qb2r , r = 1, 2, . . . , Nr/2

(31)

where

β = u2r−1(t)− u2r(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r−1)−
Nm∑
m=1

z̈m(t)ϕm (x2r) (32)

These equations delineate the fundamental dynamics of the beam along with the system of internally linearly
coupled resonators.

3.2 Nonlinear system

In the case of a nonlinear coupling, the nature of interaction between the resonators becomes more intricate and
more interesting dynamics can emerge. This nonlinearity could arise from various sources such as mechanical,
magnetic, or electrical interactions. The equations governing the system behavior in this case would contain
nonlinear terms and could potentially give rise to phenomena like bifurcations, chaos, or complex oscillatory
behaviors. The analysis and understanding of such systems often requires advanced mathematical techniques
and may involve numerical simulations. The exact form of the equations would depend on the specific form of
nonlinearity in the coupling.

In the case of bistable nonlinearity (quadratic and quartic terms), the energy associated with this coupling
can be formed as:

Vc(t) =
1

2
kc1 (ur1(t)− ur2(t) + w(xr1 , t)− w(xr2 , t))

2
+

1

4
kc2 (ur1(t)− ur2(t) + w(xr1 , t)− w(xr2 , t))

4
(33)

The quadratic term represents the linear coupling between the resonators, while the quartic term introduces
an additional nonlinearity that leads to bistability for negative kc1 . The quartic term can create a double-well
potential energy landscape, allowing for the presence of two stable equilibrium positions for the resonators. The
dynamic of resonators forms to:
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ü2r−1(t) + 2ξ2r−1ω2r−1u̇2r−1(t) + ω2
2r−1u2r−1(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r−1)

+
kc1β

m2r−1
+

kc2β
3

m2r−1
= Qb2r−1

, r = 1, 2, . . . , Nr/2

(34)

ü2r(t) + 2ξ2rω2ru̇2r(t) + ω2
2ru2r(t) +

Nm∑
m=1

z̈m(t)ϕm (x2r)

− kc1β

m2r
− kc2β

3

m2r
= Qb2r , r = 1, 2, . . . , Nr/2

(35)

Equations (29) to (35) present a more comprehensive formulation that is compatible with the approach taken
in5 when neglecting the coupling effects, and damping of the structure and resonators. Moreover, this equation
advances the previous work by incorporating a modal representation for both the structure and resonators, a
detail overlooked in reference,5 thereby providing a more complete representation of the system.

4. DISPERSION ANALYSIS AND MODEL VALIDATION OF INTERNALLY
COUPLED RESONATORS BY PLANE WAVE EXPANSION METHOD

Linear system

The Plane Wave Expansion (PWE) method is commonly used for analyzing the propagation of waves in
periodic structures, and provides valuable insights into the behavior of these waves, facilitating the design and
optimization of these periodic structures for a wide range of applications, such as vibration suppression and
energy harvesting.13,14

Let’s define the transverse displacement of metastructure and resonators with linear internally coupled in
absolute coordinate as Wt(x, t) = Ŵte

i(Gnx−ωt) for the beam, zr1(t) = ẑr1e
i(ωt) for the first resonator, and

zr2(t) = ẑr2e
i(ωt) for the second resonator.

EIG4
nŴt (Gn)− ρAω2Ŵt (Gn) + kr1Ŵt (Gn) + kr2Ŵt (Gn)− kr1 ẑr1 − kr2 ẑr2 = 0 (36)

−kr1Ŵt (Gn) + kcẑr1 − kcẑr2 + kr1 ẑr1 −mr1ω
2ẑr1 = 0 (37)

−kr2Ŵt (Gn)− kcẑr1 + kcẑr2 + kr2 ẑr2 −mr2ω
2ẑr2 = 0 (38)

The equations capture the interactions within a metastructure, highlighting the dynamics between the main
beam and resonators via coupling constants and mass effects, crucial for understanding wave propagation. The
internal coupling term, kc, is uniquely present in the resonators’ equations, indicating that the coupling directly
links the two resonators, rather than connecting them with the main beam. This setup points to a direct
interaction between resonators, although it implies that forces resultant from this coupling can still transfer to
the main beam, affecting its overall dynamics.

The dispersion relation is obtained by imposing periodic boundary conditions and seeking non-trivial solu-
tions. In one-direction transformation the relation between the frequency ω and the wavevector Gn is achieved
by multiplying the amplitude of the variable by a complex exponential function exp(i(Gnx− ωt)), which can be
written in the form:

C1ω
6 + C2ω

4 + C3ω
2 + C4 = 0 (39)
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where:

C1 = −Amr1mr2ρ,

C2 = mr1mr2

(
EIG4

n + kr1 + kr2
)
+Aρ (mr1 +mr2) kc +Aρmr2kr1 +Aρmr1kr2 ,

C3 = −
(
kc (mr1 +mr2) (kr1 + kr2) +Aρ (kr1kr2 + kc (kr1 + kr2)) + EIG4

nmr1mr2 (kc + kr2 + kr1)
)
,

C4 = EIG4
n (kc (kr1 + kr2) + kr1kr2) .

(40)

Nonlinear system

EIG4
nŴt (Gn)− ρAω2Ŵt (Gn) + kr1Ŵt (Gn) + kr2Ŵt (Gn)− kr1 ẑr1 − kr2 ẑr2 = 0 (41)

The first and second nonlinear internally coupled resonators are:

−kr1Ŵt (Gn) + kc1 ẑr1 − kc1 ẑr2 + kr1 ẑr1 + kc2 ẑ
3
r1 − kc2 ẑ

3
r2 −mr1ω

2ẑr1 + 3kc2 ẑr1 ẑ
2
r2 − 3kc2 ẑ

2
r1 ẑr2 = 0 (42)

−kr2Ŵt (Gn)− kc1 ẑr1 + kc1 ẑr2 + kr2 ẑr2 − kc2 ẑ
3
r1 + kc2 ẑ

3
r2 −mr2ω

2ẑr2 − 3kc2 ẑr1 ẑ
2
r2 + 3kc2 ẑ

2
r1 ẑr2 = 0 (43)

Due to the system’s nonlinearity, the utilization of the determinant of the matrix approach failed. These
transforms are computed numerically.

5. NUMERICAL STUDY

The complexity of such equations is increased due to the coupling induced by resonators, which obstructs a
straightforward analytical solution for Zm(s). Therefore, numerical methods become necessary to determine
the system response. In cases of non-linear equations which may not have closed-form solutions, state-space
representation proves advantageous. This method involves casting the system in matrix form, complete with an
associated vector [Zm(s), Ur(s)] of size [Nm +Nr]. Subsequently, numerical methods like the Newton-Raphson
algorithm can assist in computing the Fourier series expansion coefficients. However, when the Newton-Raphson
method fails to converge, the Runge-Kutta method served as an effective alternative, especially in situations
where the system exhibits high nonlinearity and a large number of degrees of freedom.

The geometric and material properties of the investigated rectangular beam are detailed in Table 1. The
attached mass ma is positioned at various locations along the resonator, with their distances ranging from 20
to 57.3 mm. The coupling spring constants are kc and kc1 , with a second nonlinear coupling constant kc2 being
studied, providing a basis for further analysis and simulations.

Table 1. Geometric and material properties for the studied rectangular beam
Parameter Value Parameter Value

Lm 0.3 m mr 5.9 g
wm 25 mm kr 374 N/m
hm 3 mm ζr 0.003
ρm 2700 kg/m3 Nr 8
Em 70 GP ma 3.8 g
ζm 0.01 kc1 −37.4 N/m
Nm 10 kc2 102 N/m3

kc 374 N/m δ [20...57.3] mm

Fig. 4 presents the simulation of the linear transmissibility characteristics of a clamped-free beam without
any attachments, referred to in this context as a plain beam. Notably, the distinct separation of the first three
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Figure 5. Bandgap formation and anti-resonance phenomena in a vibration absorber structure with an additional resonator

modes can be clearly observed. The outcomes from this simulation align well with the results obtained from
finite element analysis (FEA) for the plain beam, underscoring the validity of the simulation approach. The
parameters for this study were carefully selected to mirror the conditions in the FEA model, thus boosting the
validity of the simulation.

Fig. 5 demonstrates the impact of introducing an additional resonator into the system. This addition
induces the formation of a bandgap, mimicking the attributes of a traditional vibration absorber structure.
Consequently, an anti-resonance event is noted around the resonator’s natural frequency. This occurrence is
instrumental in attenuating specific frequencies in the vibration spectrum, reflecting the response of a single
resonator, comparable to a classical vibration absorber structure. The figure depicts the resonator at the end
of the beam, with the simulated results exhibiting a high degree of agreement with the FEA outcomes. This
concurrence validates the precision of the simulation and the reliability of the modeling assumptions employed.
The dash-solid line in Fig. 5 corresponds to the case of a plain beam without an attached local resonator.
This case provides a stark contrast, as no bandgap phenomenon is observed, highlighting the pivotal role local
oscillators play in the system’s vibrational properties. Such insights are crucial when it comes to designing
systems to control and manipulate desired vibrational behaviors.

Fig. 6 demonstrates the bandgap extracted from the plane wave expansion dispersion analysis for a conven-
tional metamaterial. The displayed curve outlines the relationship between wave frequency and wavenumber,
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Figure 6. Dispersion curves computed using the plane wave expansion method for target frequency ft=31.2 Hz
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Figure 7. Dispersion curve of internally coupled metamaterial beam using the plane wave expansion method for target
frequency kc = kr and ft=31.2 Hz.

providing insight into the spatial variation of the wave within the structure. Based on the design parameters, the
curve reveals that wave propagation occurs within a frequency range of 31.5 Hz to 52.4 Hz. The figure identifies
the presence of bandgaps within this range, where specific frequencies are prevented from propagating through
the structure. The target mode is selected at fr=31.2 Hz. This mode signifies frequency ranges where the wave
propagation is strongly influenced by local resonance, leading to the opening of a bandgap in the out-plane phase.
Understanding this interaction between local resonance and wave propagation provides critical information for
the effective design and application of metamaterials.

Fig. 7 illustrates the bandgap derived from the plane wave expansion dispersion analysis outlined in Eq.
(41). This figure highlights the first bandgap (indicated by the shaded area), which aligns with that of the
conventional metamaterial beam in Fig. 6. Furthermore, a second, narrower bandgap is observed at a slightly
higher frequency range. Notably, this additional bandgap is a result of internal coupling within the metamaterial
structure. The presence of this second bandgap, brought about by internal coupling, could profoundly impact
the wave propagation characteristics and subsequent design strategies of such metamaterials.

The bandgap depicted in Fig. 8 aligns well with the plane wave expansion dispersion analysis presented
in Fig. 6 and Fig. 7. This consistency lends credence to the analytical approach and validates the findings
of the study. Compared to Fig. 5, a significant observation is that the width of the bandgap expands with
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Figure 9. Transmittance of internally nonlinear coupled metamaterial beam with Nr=8 resonators, kc1 = 0.1kr and
kc2 = 0.27kr

the increase in the number of resonators. This expansion enhances vibration suppression, indicating that the
incorporation of more resonators could lead to improved vibration control in such structures. Interestingly, it’s
found that an increase in the coupling spring stiffness (kc) does not affect the first bandgap. On the other hand,
the position of the second bandgap migrates towards higher frequencies, and its width fluctuates. However,
given the relative narrowness of the second bandgap when compared to the first, alterations in its width, either
increasing or decreasing, are not significantly noticeable. This suggests that changes in coupling spring stiffness
may not substantially affect the overall system behavior via the width of the second bandgap.

Proc. of SPIE Vol. 12946  1294614-14



Figure 10. The transmittance pattern evolution in response to the variation of δ

Fig. 9 presents the behavior of nonlinear coupled resonators, the parameters of which are selected to mirror
the behavior of linear coupled resonators. As the figure depicts, the bandgap created during the frequency
sweep-up matches that of the linear case. However, during the sweep-down process, the bandgap behavior
diverges due to the nonlinearity of the coupled spring, resulting in a narrower bandgap compared to the linear
or sweep-up frequency operation. A significant observation from the figure is the notable reduction of the first
side peak around 15 Hz, accompanied by a visible softening behavior exhibited on the second side peak. These
findings underline the substantial influence of nonlinearity on the vibrational behavior of the coupled resonators.
Interestingly, no remarkable increase in the bandgap is observed in this case, despite the introduced nonlinearity.
This observation could have significant implications for the design and control of such systems with selected
parameters.

Given these observations, it is valuable to further explore nonlinear dynamics through analyses like bifurcation,
chaos theory, Lyapunov exponents, or investigations into regimes far removed from linear or stable conditions.
Extending this work into more complex nonlinear analyses could unveil deeper insights into the behavior and
control of nonlinear coupled resonator systems, potentially leading to advanced applications and optimization
techniques for managing vibrational phenomena.

Impact of Variations in Resonator Natural Frequencies on Bandgap Characteristics

This section delves into the influence of variations in resonator natural frequencies on resonant bandgap edge
frequencies. Theoretical frameworks frequently assume identical target frequency ωt for all resonators. How-
ever, real-world resonators exhibit small variations, inevitably resulting from manufacturing inconsistencies, the
distinct interfaces connecting resonators to the primary structure, and other factors. Notably, apart from these
unavoidable minor variations, it is possible to intentionally adjust ωt. Such tuning of the structure enables
operation within different frequency ranges, a capability crucial for broader real-world applications such as in
heavy-duty machinery. This tunability presents a solution to the limitations of piezoelectric metamaterials,
whose applicability is otherwise constrained. Furthermore, the location of the attached mass (δ) can be varied,
resulting in changes to the resonator’s natural frequency due to adjustment in the effective stiffness. This ability
to individually and distinctly alter each resonator’s natural frequency introduces a new dimension of tunability to
the system. Consequently, this approach can potentially circumvent the performance issues commonly associated
with graded metamaterials, as noted in recent studies.15,16

In Fig. 10, the transmittance pattern evolution of a metastructural beam equipped with eight resonators is
depicted in response to the variation of δ, which represents the position of the attached mass. The parameters for
these resonators can be referred to in Table 1. The graph displays a frequency range from 0 to 300 Hz, concurrent
with the alteration in the attached mass position δ from 20 mm to 57.3 mm. The value of δ effectively quantifies
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Figure 11. Effects of attached mass position on resonator natural frequencies and bandgap characteristics: comparing
maximum and minimum δ scenarios

the location of the attached mass along the beam-type resonator. As δ decreases, indicating the mass is closer
to the base of the resonator, a resulting increase in resonator stiffness is observed. This further escalates the
resonator’s natural frequency, ωr.

A key observation from the plot in Fig. 10 is that the bandgap shrinks as δ increases. This suggests that
there is a maximum allowable variation in δ. Moreover, the impact of δ on the width of the bandgap is of
paramount importance, as visualized in Fig. 11. An attached mass moving towards the resonator’s tip (an
increase in δ) results in a narrower bandgap. Conversely, if the mass is attached farther from the tip (a decrease
in δ), a broader bandgap is achieved. These insights highlight the crucial role of the attached mass position in
enhancing the performance of a metastructural beam. They also propose an exciting possibility of manipulating
both the central frequency and width of the bandgap by finely adjusting the location of the attached mass on
each resonator.

6. CONCLUSION

In conclusion, the research outlined provides an expansive theoretical insight into bandgap generation within in-
ternally coupled, locally resonant metastructures. By investigating both linear and nonlinear coupled resonators,
this work sheds light on the significant impact of varying resonator properties, notably the natural frequency
variation of resonators and the stiffness of coupling springs. This study also unveils the substantial effect of the
position of an attached mass on resonators, which dictates the natural frequency and thus governs the central
frequency and width of the bandgap.

While the number of resonators can result in a wider bandgap, the impact of the stiffness of the coupling spring
on the first bandgap is negligible. However, it induces a shift in the second bandgap towards higher frequencies,
while also causing fluctuations in its width. Additionally, in the context of nonlinear coupled resonators, unique
bandgap formation patterns were observed during sweep-up and sweep-down frequency operations, which can be
attributed to the inherent nonlinearity present.

This study further examined the effects of the position of an attached mass on the natural frequency and
bandgap characteristics of a cantilevered beam, highlighting a promising avenue for system tunability. While
these findings offer a critical leap towards comprehensive knowledge of bandgap generation in metamaterials, it is
important to note that these conclusions are bound by the assumptions of the theoretical model used. Empirical
validation through future experimental studies is thus highly recommended to confirm these findings’ real-world
application viability.

Furthermore, the study’s findings highlight the potential of metamaterials compared to conventional piezo-
electric devices. The ability to finely adjust bandgap characteristics and manipulate wave propagation properties
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within these metastructures offers superior vibration suppression, benefiting the maintenance and performance
of various machinery, in particular heavy-duty machinery. Additionally, the design flexibility and tunability of
these metastructures enhance their potential for efficient energy harvesting applications, contributing to sus-
tainability and cost-effectiveness. By establishing a strong foundation for further exploration and optimization
of metamaterial parameters, this research opens doors for broader practical applications of these innovative
structures.
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Abstract—Metastructures with internally coupled resonators
promise enhanced vibration control and energy harvesting capa-
bilities by theoretically enabling multiple bandgaps. This paper
investigates the feasibility of these theoretical benefits under
practical constraints, particularly the challenge of merging mul-
tiple bandgaps in continuous systems. Employing a closed-form
analytical approach alongside FEM simulations and experimental
validation, the study reveals that while internal coupling can
modify bandgap behavior, achieving precise stiffness alignment
and bandgap merging remains challenging. The findings indicate
that practical applications may not fully realize the predicted
advantages and also present more challenges in merging multiple
bandgaps created in such metastructures, even for metastructures
with advanced manufacturing precision and design optimization.
The paper contributes to the understanding of the dynamic
behavior of internally coupled metastructures and outlines di-
rections for future research to bridge the gap between theory
and application.

Index Terms—Locally Resonant Metastructure, Experimental
Exploration, Bandgap Engineering, Internal Coupling, Vibration
Suppression

I. INTRODUCTION

Recent advancements in the field of metastructures have
opened new frontiers in materials science, particularly in
the realms of vibration suppression and energy harvesting.
They have garnered substantial research attention due to their
potential in low-frequency applications at scales smaller than
the wavelength. However, a major limitation is the relatively
narrow widths of their band gaps, which restricts their utility in
environments experiencing broadband spectrum vibrations. To
address this challenge, researchers have investigated various
strategies to broaden the band gap of metastructures. These
strategies include the creation of novel structural configura-

tions aimed at producing multiple band gaps [1], combining
Bragg Scattering and local resonance band gaps [2], and
incorporating nonlinearities for broadband capabilities [3].

Among the various innovations, the concept of internal
coupling within resonators presents a promising avenue for en-
hancing the performance of these structures. Theoretically, in-
ternal coupling facilitates the formation of multiple bandgaps,
potentially broadening the bandgap width and offering sub-
stantial benefits in terms of energy dissipation and conversion
efficiency [4], [5].

This phenomenon has been highlighted in seminal works,
such as those by Hu et al. [6], who have demonstrated
the potential of internal coupling on the dynamic proper-
ties of metastructures. Li et al. [7] have demonstrated the
coherent internally coupled distant magnonic resonators via
superconducting circuits, for integrated magnonic networks
that can operate coherently at quantum-compatible scales.
Oyelade and Oladimeji [8] also contributed by introducing a
novel metastructure with a multiresonator mass-in-mass lattice
system, where the internal coupling was through a linear
spring, leading to the formation of two additional bandgaps
over conventional designs.

A wider bandgap allows resonators to operate over a broader
frequency range, enhancing their effectiveness. Integrating
sensors like piezoelectric devices can transform this mechan-
ical energy into electrical energy, increasing the efficiency of
energy harvesting. Thus, a wider bandgap not only improves
vibration control but also enhances the metastructure’s energy
harvesting capabilities.

Despite theoretical advancements and computational vali-
dations, a significant gap remains in the experimental inves-
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tigation of metastructures with internal coupling. The theo-
retical benefits of such designs, including enhanced vibration
suppression and energy harvesting, rely on precise internal
coupling mechanisms which, if not accurately implemented,
may not yield the expected performance improvements in
practical settings. Moreover, the real-world applicability of
merging multiple bandgaps to extend the bandgap width re-
mains underexplored, leaving unanswered questions about the
feasibility and effectiveness of these advanced metastructural
designs under operational conditions.

Addressing these challenges requires a focused investiga-
tion into the practical implementation of internally coupled
resonators within metastructures. This study aims to bridge the
gap between theoretical predictions and experimental realities,
offering insights into the challenges of realizing the proposed
benefits of internal coupling in metastructural designs. By
examining the limitations and potential discrepancies in the
performance of these structures, this research contributes to a
deeper understanding of the factors that influence the efficacy
of metastructures in achieving desired vibration control and
energy harvesting outcomes.

This work asserts that the theoretical benefits of using inter-
nally coupled resonators in metastructures, such as enhanced
vibration suppression and energy harvesting, are currently lim-
ited by practical constraints in bandgap creation mechanism.

The primary contributions of this paper are summarized as
follows:

• Utilizes a closed-form formulation for analyzing
bandgaps in metastructures with internally coupled
resonators, moving away from traditional methods like
Bloch theory and dispersion curve analysis;

• Illustrates that the bandgap observed in experiments
aligns with those in standard metastructures, underscoring
its importance for structural dynamics and wave manip-
ulation;

• Demonstrates the practical challenges associated with
achieving the theoretical benefits of internally coupled
resonators in metastructures, as discussed by researchers
in earlier studies;

• Provides empirical evidence on the difficulties of merging
multiple bandgaps to increase the overall bandgap width
in continuous metastructures with internally coupled res-
onators;

• Analyzes the effectiveness of internally coupled res-
onators in real-world applications, questioning the prac-
ticality of their implementation for vibration suppression
and energy harvesting;

• Offers insights into the limitations and considerations
necessary for the successful application of internally
coupled resonators in distributed or continuous systems.

The remaining sections of this paper are as follows:
The structure of the remainder of this paper is organized as

follows: In Section 2, the Methodology is presented, outlining
the experimental design, analytical techniques, and the steps
taken to investigate internal coupling effects in metastructures.
Section 3, Results and Discussion, presents the data from

the experiments and FEM simulations, analyzes the dynamic
behavior of metastructures with varying coupling, and as-
sesses the findings against the backdrop of existing theories
and their practical implications. The final section, Section 4,
Conclusion, encapsulates the main discoveries, situates them
within the broader research landscape, and proposes for future
inquiry.

II. METHODOLOGY

This section outlines the experimental setup designed to
investigate the creation of band gaps and their impact on
the dynamic behavior of metastructures. The methodology is
bifurcated into two primary investigative thrusts: firstly, to
validate the theoretical predictions concerning the standard
metastructure through tangible observations; and secondly, to
delineate the practical challenges and limitations inherent in
the implementation of internally coupled resonators within
real-world applications.

Before diving into the experimental setup, it’s crucial to
understand the theoretical underpinnings that guide the in-
vestigation of mechanical metastructures and their dynamic
behaviors. Mechanical metastructures with local resonances
manipulate wave propagation and dynamic responses by com-
bining structural modes and integrated resonators. The model-
ing methodology employs modal analysis within a distributed
parameter model to accurately describe the intricate interplay
of mass, damping, and stiffness. The expression, which rep-
resents the transfer function of the m-th mode in response to
an external force, is detailed as [9]:

Zm(s)

Qbm(s)
=

1

s2
(
1 +

µ(2ζrωrs+ω2
r)

s2+2ζrωrs+ω2
r

)
+ 2ζmωms+ ω2

m

(1)

Here, s is the Laplace transform’s complex frequency vari-
able, Zm(s) denotes the transverse vibration displacement of
the main structure, Qbm(s) represents the Laplace Transform
of the external force applied to the m-th mode of the main
structure, and the parameters µ, ζr, ζm, ωr, and ωm represent
the mass ratio, damping ratios, and natural frequencies of
both the resonators and the modal structure. This equation
highlights how resonator properties impact the metastructure’s
resonance behavior, allowing for the design of systems with
desired dynamics, such as band gaps for wave control and
vibration suppression.

Ignoring the damping ratios of both the structure and the
resonator, the transfer function in (1) features two poles at the
origin, reflecting the fundamental response dynamics of the
system, and reveals a bandgap within the frequency spectrum
due to its unique pole-zero configuration. Specifically, it
features zeros at s = ±iωr and poles at s = ±iωr

√
1 + µ,

with a second-order pole at s = 0. This arrangement ensures
that no poles between ωr and ωr

√
1 + µ, defining a bandgap

in ωr < ω < ωr

√
1 + µ. The transfer function formula-

tion represents a shift from traditional metastructure analysis
methods like Bloch theory towards a more practical approach.
By developing a closed-form solution that leads to a transfer



function model, makes it easier to tailor these structures for
specific applications by directly relating input forces to system
behavior, offering a useful tool for engineers. Although the
approach enhances practical analysis, it’s an evolutionary step
in metastructure research, focusing on application rather than
theoretical novelty.

A. Experimental Setup

Experimental investigations were carried out using a care-
fully designed cantilever beam arrangement, aiming to provide
empirical validation for the theoretical findings discussed
earlier and the numerical ones discussed later.

1) Standard Metastructure Validation: For the initial phase
of the experiment, a standard metastructure prototype without
internal coupling was constructed to serve as a baseline. The
beam’s dimensions and material properties are specified in
Table I. The experiment was conducted using a cantilever
beam setup (see Fig. 1). The cantilever beam was fabricated
from aluminum and had the following dimensions: 3mm thick-
ness, 4cm width, and 0.91m length. To adjust the resonator’s
natural frequency, a nut and screw with a combined mass of 19
grams were attached to the tip of the beam. This modification
successfully achieved a natural frequency of 64 Hz. For
generating base motion, we utilized a 100N TIRA 51110
Shaker. Acceleration at the beam tip was measured using a
Dytran Accelerometer 3055D21, which has a sensitivity of
100 mV/g. To measure transmissibility, another accelerometer
of the same model was positioned at the base of the cantilever
beam. The input signals to the shaker were amplified using the
Power Amplifier BAA 120. The Vibration Controller VR9500
was employed for base control and monitoring of vibrational
inputs and responses throughout the experiment.

Fig. 1. Experimental setup of a metastructure prototype equipped with 8
resonators, each fine-tuned to a 64 Hz natural frequency using adjustable mass
at the tip. Measurement accuracy is ensured with two Dytran Accelerometers,
model 3055D2, linked by low-resistance, high-fidelity wires.

2) Investigating Internally Coupled Resonators: Further-
more, an additional experiment involving the metstructure
with internally coupled resonators is detailed in Fig. 2. Each
resonator was meticulously crafted and integrated into the
metastructure, with particular attention paid to the precision
of internal coupling to examine its impact on the system’s
dynamic response. In this setup, each internally coupled res-
onator is composed of pure aluminum, featuring a thickness
of 2 mm, a width of 20 mm, and a length of 11.3 mm.

Fig. 2. Experimental Design for a Prototype Metastructure Comprising Four
Unit Cells of Internally Linked Resonators, Constructed from Pure Aluminum.
Each Coupled Beam has a Thickness of 2 mm, a Width of 20 mm, and a
Length of 113 mm.

TABLE I
EXPERIMENTAL PARAMETERS

Symbol Parameter Value
L Length of the beam 91 cm
b Width of the beam 4 cm
h Thickness of the beam 3 mm
E Young’s modulus of the beam 70 GPa
ρ Density of the beam 2700 kg/m3

ωr Resonator’s natural frequency 64 Hz
ωrκ Coupled resonator’s natural frequency 85 Hz
Nr Number of Resonators 8

3) Standard Metastructure Transmittance Measurements:
The experimental results displayed in Fig. 3 demonstrate the
transmittance spectrum, which corresponds to the resonant
frequencies of the standard metastructure with µ = 1.2. The
regions of low transmittance, which signify the bandgaps,
commence at a frequency of ωr = 64 Hz, in line with
theoretical predictions. Additionally, the observed width of the
bandgap is consistent with the anticipated value of (1 + µ) =
2.2. This data shows the existence of a bandgap between
frequencies ω and ωr

√
1 + µ, corresponding to the calculated

bandgap limit of
√
1 + µ = 1.484. This observation confirms



the presence of the primary bandgap, illustrating the dynamic
behavior of the system across the spectrum.
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Fig. 3. Experimental transmittance data versus excitation frequency for
the metastructure, with µ = 1.2. The plot highlights the bandgap region
between 64 to 95 Hz, which corresponds to the theoretical bandgap boundary
ωr
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Fig. 4. Experimental transmittance results for the metastructure with internally
coupled resonators. The first bandgap is observed between 90-110 Hz. This
shift can be attributed to the enhanced stiffness of the unit cell, which is
composed of a pair of resonators. Measurement devices are located at the base
and the tip of the metastructure to capture the full spectrum of its response.

4) Internally Coupled Metastructure Transmittance Mea-
surements: While the experimental outcomes for the standard
metastructure corroborated the theoretical forecasts, the sce-
nario markedly diverged with the introduction of internally
coupled resonators. Fig. 4 encapsulates the experimental trans-
mittance data, evidencing a distinct behavioral pattern for the
metastructure endowed with internal coupling mechanisms.
The manifestation of the initial bandgap at 85 Hz, slightly
higher than what is observed in the standard metastructure

(Fig. 3), aligns with the natural frequency of the coupled
resonators. This is indicative of increased stiffness within
the unit cell, a direct result of the resonators’ collective
configuration.

This measurement uncovers a scenario marked by chaos and
irregularities in the transmittance spectrum, diverging from
the uniform patterns expected based on theoretical projec-
tions by researchers in earlier studies, as highlighted in the
introduction. Such manifestations underscore the sensitivity
of the metastructure’s dynamic behavior to the precise in-
tegration and configuration of internally coupled resonators,
highlighting the challenges inherent in translating theoretical
advantages into practical applications. It raises questions about
the practical realization of internally coupled resonator bene-
fits, such as significant bandgap widening or enhanced energy
dissipation. The results imply that while the concept of internal
coupling holds promise in theory, the transition to tangible
applications faces challenges that may limit the effectiveness
of such designs in real-world vibration control scenarios. Fur-
ther investigation and refinement of the metastructure design
and manufacturing processes are necessary to harness the full
potential of internal coupling in metastructures for practical
vibration suppression and energy harvesting applications. This
claim is further supported by FEM analysis in the following
section.

III. FINITE ELEMENT STUDY

Following the experimental investigation, the focus moves
to Finite Element Method (FEM) simulations, aimed to offer
an analytical view complementary to the experimental insights,
especially concerning metastructures with internally coupled
resonators. This shift towards numerical modeling serves as
a crucial phase in corroborating experimental findings, with
the primary aim of substantiating the observed behaviors in
experiments, thereby deepening our comprehension of the
metastructure’s dynamic characteristics.

A. Observations from FEM Analysis:

Fig. 5 depicts the transmissibility across different internal
coupling stiffness, κ, as a function of normalized frequency.
These results highlight the appearance of a pronounced second
bandgap at a specific internal coupling stiffness, κ, matched
to the resonator’s stiffness (κ/ωr = 0.003), pinpointing this
condition as essential for optimal bandgap definition (see
bottom left corner subplot). Such precise matching between
the internal coupling and resonator stiffness is key to achieving
the desired dynamic behavior in the metastructure.

However, deviations from this optimal κ value lead to
significantly disordered responses, underlining the metas-
tructure’s acute sensitivity to variations in internal coupling
stiffness. Such behavior showcases the challenges associated
with achieving and maintaining this precision in stiffness
alignment in practical applications. The observed irregularities
and chaotic dynamics for non-optimal κ values highlight
potential difficulties in predictability and replicability of the
metastructure’s performance in real-world settings.
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Fig. 5. Transmissibility of a cantilever beam for varying stiffness ratios
κ, showing system sensitivity and its effects. Subplots detail responses at
different κ/ωr ratios, highlighting a critical condition at κ = kr in the
bottom left corner subplot for optimal internal coupling. The y-axis is absolute
displacement of beam tip to base displacement, ln |wa(L)/wb|, and the x-
axis is normalized frequency ω/ωr .

Figure 6 confirms the importance of precisely tuning the
internal coupling stiffness κ in metastructures to achieve
effective vibration isolation. The contour plot shows significant
transmittance variations and bandgap formations, represented
by cooler colors, which are crucial for blocking wave propa-
gation. This visualization emphasizes the need for meticulous
parameter optimization, as even small deviations from the ideal
stiffness ratio can substantially alter the system’s behavior.
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Fig. 6. Contour plot of transmittance for varying κ, illustrating the frequency-
dependent formation and bifurcation of the bandgap. The plot captures
the perturbations and potential destabilization inherent to varying internal
coupling stiffness, underscoring the need for precise κ calibration.

Achieving the exact bandgap properties requires careful ad-
justment of the metastructure’s internal stiffness. While analyt-

ical models predict clear transitions and bandgap formations,
the observed data might show more gradual changes and less
distinct boundaries between bandgap regions. This disparity
highlights the challenges in translating theoretical models
into experimental or real-world scenarios. The irregularities
and variations presented in the FEM results underscore the
imperative for experimental studies to authenticate and fine-
tune the theoretical models, thereby confirming their relevance
and effectiveness in real-world applications.

Fig. 7. Metastructure with internally coupled resonators configured as unit
cells.

Fig. 8. Visual representation of the mechanism leading to the second bandgap
in the internally coupled metastructure.

In Figs. 7 and 8, an internal coupling mechanism is demon-
strated at work within the metastructure, where each pair
of resonators acts as a unit cell. Fig. 7 demonstrates the
initial out-of-plane oscillations that give rise to the primary
bandgap, analogous to the behavior observed in conventional
metastructures. As the excitation frequency increases, the
system temporarily reverts to normal vibrational modes before
encountering a specific frequency where the resonators within
each cell commence vibration in opposing directions. This
antiphase motion, depicted in Fig. 8, signifies the onset of
the secondary bandgap due to the stiffness matching be-
tween the resonator and the internal coupling. However, the
crucial insight is that despite the exact stiffness alignment
(resonators and internal couple stiffness), merging the primary
and secondary bandgaps to expand the bandgap width is
not feasible. The inherent nature of the secondary bandgap’s



formation in such metastructures prevents the amalgamation of
multiple bandgaps, thus questioning the practical application
of internally coupled resonators in continuous metastructures.

The experimental outcomes for standard metastructures
aligned well with theoretical predictions, confirming the mod-
els’ reliability. However, experiments with internally coupled
metastructures revealed discrepancies, emphasizing the need
for precise matching of internal coupling and resonator stiff-
ness (κ to kr). Practical implementation faced challenges due
to manufacturing limitations. Additionally, attempts to merge
multiple bandgaps into a broader one were hindered by the
inherent characteristics of the second bandgap, questioning the
feasibility of using internally coupled resonators in practical
applications.

IV. CONCLUSION

This paper has addressed the practical implications of utiliz-
ing internally coupled resonators within continuous metastruc-
tures for enhanced vibration suppression and energy harvest-
ing. Through the experimental validation, and Finite Element
Method simulations, we have illuminated both the potential
advantages and the notable challenges posed by the implemen-
tation of internal coupling mechanisms. While the pioneering
research by Hu et al. [6], and related studies [10], have high-
lighted the theoretical benefits of internal coupling in creating
secondary bandgaps and boosting energy harvesting efficiency,
our findings underscore the difficulties faced when translating
these concepts into practical applications. The challenges
identified, such as the precision required in assembly and the
limitations in merging multiple bandgaps, were substantiated
through experimental observations and reinforced by FEM
analysis, revealing a nuanced understanding of the real-world
applicability of internally coupled resonator metastructures.

The contributions of this paper are:
• Demonstrated the practical challenges in implementing

internally coupled resonators within continuous metas-
tructures.

• Provided evidence that achieving the theoretical benefits
of such systems is non-trivial and highly sensitive to
precise manufacturing and assembly conditions.

• Shown that while internal coupling can indeed create
additional bandgaps, merging these to broaden the over-
all bandgap width remains problematic due to inherent
structural behavior.

• Confirmed that despite identical stiffness of resonators
and internal coupling, the anticipated increase in bandgap
width may not be practical for real-world applications, as
evidenced by experimental and FEM analysis.

• The exploration of internal coupling in metastructures
presents a unique case study of how advanced material
concepts transition from theory to practical realization.
While our findings have highlighted several limitations,
they also pave the way for future research opportunities.

Future research could focus on developing new manu-
facturing techniques or material configurations that mitigate
the current limitations. Innovations in precision engineering

and design optimization may hold the key to successfully
harnessing the full potential of internally coupled resonators.
Further studies could also explore alternative mechanisms
for bandgap manipulation that may offer more practical and
flexible solutions for real-world applications.

In closing, we must acknowledge that while our findings
are promising, they are not without their caveats. The results
should not be overinterpreted as the complexities of real-
world applications may yield different outcomes. Additionally,
while our data is robust, we caution against speculation and
inflation of these results. We must recognize the limitations
of our current study and refrain from drawing conclusions not
fully supported by the data. Instead, we should consider these
findings as stepping stones towards more comprehensive and
applied research in the field of metastructures.

ACKNOWLEDGMENT

This work has been supported by the European Union’s
Horizon Europe research and innovation programme under the
grant agreement No 101120657, project ENFIELD (European
Lighthouse to Manifest Trustworthy and Green AI), by the
Estonian Research Council through the grant PRG658, and by
the Estonian Centre of Excellence in Energy Efficiency, ENER
(grant TK230) funded by the Estonian Ministry of Education
and Research.

REFERENCES

[1] C. Xu, Y. Yang, C. H. Wang, and L. Zhao, “Simultaneous low-frequency
vibration suppression and energy harvesting using a metastructure with
alternately combined nonlinear local resonators,” Mechanical Systems
and Signal Processing, vol. 211, p. 111241, 2024.

[2] F. Liang, Y. Chen, H. Kou, and Y. Qian, “Hybrid bragg-locally resonant
bandgap behaviors of a new class of motional two-dimensional meta-
structure,” European Journal of Mechanics-A/Solids, vol. 97, p. 104832,
2023.

[3] J. Zhou, L. Dou, K. Wang, D. Xu, and H. Ouyang, “A nonlinear
resonator with inertial amplification for very low-frequency flexural
wave attenuations in beams,” Nonlinear Dynamics, vol. 96, pp. 647–
665, 2019.

[4] C. Li, B. Qiu, Y. Yoshioka, K. Hirakawa, and Y. Zhang, “Mechanical
control of nonlinearity in doubly clamped mems beam resonators using
preloaded lattice-mismatch strain,” Physical Review Applied, vol. 19,
no. 2, p. 024025, 2023.

[5] L.-Q. Chen and Y. Fan, “Internal resonance vibration-based energy
harvesting,” Nonlinear Dynamics, vol. 111, no. 13, pp. 11 703–11 727,
2023.

[6] G. Hu, L. Tang, and R. Das, “Internally coupled metamaterial beam for
simultaneous vibration suppression and low frequency energy harvest-
ing,” Journal of Applied Physics, vol. 123, no. 5, 2018.

[7] Y. Li, V. G. Yefremenko, M. Lisovenko, C. Trevillian, T. Polakovic,
T. W. Cecil, P. S. Barry, J. Pearson, R. Divan, V. Tyberkevych et al.,
“Coherent coupling of two remote magnonic resonators mediated by
superconducting circuits,” Physical Review Letters, vol. 128, no. 4, p.
047701, 2022.

[8] A. O. Oyelade and O. J. Oladimeji, “Coupled multiresonators acoustic
metamaterial for vibration suppression in civil engineering structures,”
Forces in Mechanics, vol. 5, p. 100052, 2021.

[9] H. Alimohammadi, K. Vassiljeva, S. H. HosseinNia, and E. Petlenkov,
“Bandgap dynamics in locally resonant metastructures: A general theory
of internal resonator coupling,” Applied Sciences, vol. 14, no. 6, p. 2447,
2024.

[10] G. Hu, J. Xu, L. Tang, C. Lan, and R. Das, “Tunable metamaterial
beam using negative capacitor for local resonators coupling,” Journal of
Intelligent Material Systems and Structures, vol. 31, no. 3, pp. 389–407,
2020.



Appendix 10

Hossein Alimohammadi et al. “Damping Optimization in Lo-
cally Resonant Metastructures via Hybrid GA-PSO Algo-
rithms and Modal Analysis”. In: Conference on Smart Ma-
terials, Adaptive Structures and Intelligent Systems (ASME
SMASIS). 2024, pp. 1–6

283





Proceedings of the ASME 2024
Conference on Smart Materials, Adaptive Structures and Intelligent Systems

SMASIS2024
September 9-11, 2024, Atlanta, GA

SMASIS2024-XXXX

DAMPING OPTIMIZATION IN LOCALLY RESONANT METASTRUCTURES VIA HYBRID GA-PSO ALGORITHMS AND
MODAL ANALYSIS

Hossein Alimohammadi1,∗, Kristina Vassiljeva1, S. Hassan HosseinNia2, Peeter Ellervee1, Eduard Petlenkov1,∗

1Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia
2Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands

ABSTRACT
This study explores the optimization of bandgap character-

istics in locally resonant metastructures through advanced arti-
ficial intelligence (AI) and optimization algorithms, focusing on
the accurate estimation of resonator damping ratios. By develop-
ing a novel mathematical framework for metastructure analysis,
this research diverges from traditional methods, offering a more
nuanced approach to bandgap manipulation. This research sig-
nificantly improves metastructure modeling accuracy by precisely
estimating resonator and structural damping ratios, enhancing
model fidelity crucial for analysis, control strategies, and de-
sign optimization. Through a combination of model simulations
and experimental validation, the efficacy of the Hybrid Genetic
Algorithm-Particle Swarm Optimization (GA-PSO) algorithm is
demonstrated, highlighting its potential for practical applications
in engineering metastructures. This paper not only provides a
robust method for estimating damping ratios but also opens new
avenues for future research, including the application of machine
learning techniques and the development of intelligent materi-
als. The findings of this study contribute to the foundational
understanding necessary for the advancement of mathematical
modeling metamaterials, with broad implications for industries
where precise vibration control is crucial.
Keywords: Bandgap Optimization, Modal Expansion
Method, Experimental Damping Estimation

1. INTRODUCTION
The burgeoning field of metamaterials has revolutionized en-

gineering and material science by offering properties not found in
nature, particularly in controlling wave phenomena. These engi-
neered materials are notable for their bandgaps-specific frequency
ranges where wave propagation is hindered. These bandgaps are
critical in applications aimed at reducing vibration and noise.
However, the inherent damping in metamaterials, originating

∗Corresponding author: eduard.petlenkov@taltech.ee
Documentation for asmeconf.cls: Version 1.37, June 27, 2024.

from their structural components and embedded resonators, poses
a challenge. The resonator’s damping ratio, denoted as 𝜁𝑟 , is a key
determinant of bandgap efficacy and thus a focus for enhancing
the vibration suppression capabilities of these materials.

The exploration of metamaterials has advanced significantly
in recent years, with a particular focus on their unique wave ma-
nipulation capabilities. Research by Valipour et al. [1] and Dalela
et al. [2] has demonstrated how metamaterials can be designed to
exhibit bandgaps, effectively blocking specific frequency ranges.
These bandgaps are pivotal in applications requiring vibration
suppression and noise control.

The role of AI in material science has grown exponentially,
with studies like Diao et al. [3] showcasing how machine learning
algorithms can predict and optimize material properties. The
application of AI in metamaterials, as explored by Song et al.
[4], is an emerging field that promises to revolutionize the design
and functionality of these materials.

The complexity of metamaterials, especially those exhibit-
ing bandgaps, necessitates sophisticated optimization techniques.
The works of Zagaglia et al. [5] and Meng et al. [6] have high-
lighted the efficacy of algorithms like Genetic Algorithms, Parti-
cle Swarm Optimization, and others in fine-tuning the properties
of dynamic systems for optimal performance.

The integration of AI with optimization algorithms in the
context of metamaterials is a relatively new concept. Recent
studies, such as those by Xiong et al. [7], and Salsa et al [8]
have begun to explore this integration, showing promising re-
sults in the dynamic manipulation of bandgaps and enhancing the
functionality of metamaterials.

This work breaks new ground by developing a fresh math-
ematical formulation for the analysis of metastructures, moving
beyond conventional Bloch and dispersion curve methodologies.
This innovative framework allows for a more nuanced AI and
optimization algorithm-based analysis of bandgap phenomena.

The importance of this research lies in its capacity to signif-
icantly enhance the accuracy of mathematical models for metas-

1 Copyright © 2024 by ASME



tructures through precise estimation of both resonator and struc-
tural damping ratios. This improvement in model fidelity is vital
for in-depth analysis, robust control strategies, and efficient de-
sign optimization of metastructures.

The current approaches to metastructure analysis are limited
in their ability to adapt to variable damping scenarios, presenting a
challenge in the real-world application of bandgaps. This research
proposes a solution to this limitation by enabling precise damping
ratio adjustments within the bandgap optimization process.

The effectiveness of this new framework is demonstrated
through a combination of model predictions and real-world ex-
periments. This validation supports the claim that AI-driven
optimization can more effectively tailor bandgap properties for
practical use, providing a clear path to bridge the gap between
theoretical and applied metamaterials research.

The article is structured as follows: Section 2 discusses the
research methods, incorporating modal expansion and optimiza-
tion algorithms to model the metamaterial and identify critical
parameters influencing its bandgap properties. Section 3 analyzes
the results from these optimization algorithms, assesses their ef-
fectiveness in capturing the dynamics of the metastructure, and
examines their implications for vibration suppression. Section 4
offers conclusions and suggests directions for future work.

2. ANALYTICAL AND EXPERIMENTAL APPROACHES FOR
METASTRUCTURE OPTIMIZATION

This study refines the analysis of metastructures using a dis-
tributed parameter model, focusing on modal dynamics and sys-
tem transfer functions. It simulates real-world conditions by in-
tegrating noise into theoretical models and employs optimization
algorithms like the Hybrid GA-PSO for parameter estimation.
This approach balances traditional modal analysis with modern
computational techniques, enhancing our grasp of metastructural
dynamics for more effective design and vibration suppression
strategies. The incorporation of actual experimental data fur-
ther validates the optimization methods, ensuring their practical
applicability in complex system analysis.

2.1 Modal Transfer Function Dynamics of Structure
The study employs modal analysis within a distributed pa-

rameter model to explore the dynamic characteristics of a metas-
tructure, consisting of an aluminum rectangular beam with inte-
grated local resonators. This analytical approach facilitates the
identification of natural frequencies and mode shapes, which are
used for the control of the structure’s bandgap properties.

Equations (1) and (2) elucidate the interaction between the
beam’s displacement and the resonators’ movement, as well as
the influence of external excitations. These equations are derived
from a comprehensive modal decomposition approach, leverag-
ing the system’s orthogonality conditions to simplify the complex
dynamics.

𝑧𝑚 (𝑡) + 2𝜁𝑚𝜔𝑚 𝑧̇𝑚 (𝑡) + 𝜔2
𝑚𝑧𝑚 (𝑡)

−
𝑁𝑟∑︂
𝑟=1

𝑚𝑟𝜔𝑟 (𝜔𝑟 𝑧𝑟 (𝑡) + 2𝜁𝑟 𝑧̇𝑟 (𝑡)) 𝜙𝑚 (𝑥𝑟 )

= Q𝑏𝑚 (𝑥, 𝑡), 𝑚 = 1, 2, . . . , 𝑁𝑚

(1)

Equation (1) captures the modal dynamics of the beam, in-
corporating the effects of damping and resonator interaction. It
presents a detailed account of how the resonators’ characteristics
and positioning influence the beam’s response to dynamic loads.

𝑧𝑟 (𝑡) + 2𝜉𝑟𝜔𝑟 𝑧̇𝑟 (𝑡) + 𝜔2
𝑟 𝑧𝑟 (𝑡)+

𝑁𝑚∑︂
𝑚=1

𝑧𝑚 (𝑡)𝜙𝑚 (𝑥𝑟 ) = Q𝑏𝑟 (𝑡), 𝑟 = 1, 2, . . . , 𝑁𝑟

(2)

Conversely, Equation (2) details the resonators’ dynamics,
highlighting the interaction between resonator movements and the
structural modes. The approach discussed more in [9] to identify
natural frequencies and mode shapes within a metastructure. The
analysis involves developing partial differential equations through
a distributed parameter model to describe the system’s dynamics.
These equations are then discretized and solved numerically to
gain a better understanding of the metastructure’s modal charac-
teristics, enabling the precise manipulation of bandgaps within
the structure.

In reaching the stage of formulating the transfer function,
the analysis first considers the resonator masses (𝑚𝑟 ), which are
proportionally determined by the structure’s mass distribution at
the resonators’ attachment points. This relationship is quanti-
fied by a mass ratio (𝜇), reflecting the resonators’ total mass
relative to the base structure’s mass, as represented by the for-
mula 𝑚𝑟 = 𝜇𝑚 (𝑥𝑟 ) 𝑑𝑥𝑟 . This ensures that the resonator masses
directly correspond to the structural mass distribution, thereby
aligning resonator behavior with the overall dynamics of the
structure. For systems incorporating numerous resonators, an ap-
proximation is employed, equating the summation over discrete
resonators to a continuous integral over the structure’s length.
Taking the Laplace transform of equations (1) and (2), followed
by mathematical manipulation, leads to the derivation of a trans-
fer function. This function elucidates the relationship between the
displacement of the structure’s 𝑚-th mode and the corresponding
excitation force as [9]:

𝑍𝑚 (𝑠)
𝑄𝑏𝑚 (𝑠)

=
1

𝑠2
(︂
1 + 𝜇(2𝜁𝑟𝜔𝑟 𝑠+𝜔2

𝑟)
𝑠2+2𝜁𝑟𝜔𝑟 𝑠+𝜔2

𝑟

)︂
+ 2𝜁𝑚𝜔𝑚𝑠 + 𝜔2

𝑚

,

𝑚 = 1, 2, . . . , 𝑁𝑚

(3)

In this context, 𝑍𝑚 (𝑠) represents the Laplace-transformed
displacement of the structure’s 𝑚-th mode, 𝑄𝑏𝑚 (𝑠) symbolizes
the Laplace-transformed external force, 𝜁𝑚 and 𝜁𝑟 are damping
ratio of structure’s 𝑚-th mode and resonator, respectively. 𝜔𝑚

and 𝜔𝑟 are the natural frequencies of the structure’s 𝑚-th mode
and the resonators, respectively.

2.2 Estimation of Damping Ratio in Metastructures
In the study of metastructures, estimating the damping ratio

𝜁𝑟 from experimental data is pivotal for the effective modeling
of vibration suppression and dynamic response tuning. Various
methods can be employed for this estimation, each with its spe-
cific advantages and requirements. These include Frequency Re-
sponse Analysis, System Identification Techniques, Energy De-
cay Method, Optimization Algorithms, and Bayesian Inference.
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To estimate the damping ratio, optimization algorithms are
utilized due to their ability to navigate complex, multidimen-
sional parameter spaces. These algorithms are particularly ef-
fective in situations where the objective function is non-linear or
nonsmooth, as often encountered in real-world data from metas-
tructures. An objective function is defined to quantify the error
between the experimental data and theoretical model predictions.
Several algorithms are considered for algorithm Selection and
configuration:

Nelder-Mead Simplex Algorithm: A heuristic search method
ideal for non-smooth functions, enabling robust initial parameter
estimation without derivatives. Genetic Algorithm (GA): This
algorithm excels in finding global solutions in complex problems
characterized by multiple local minima.

Particle Swarm Optimization (PSO): It simulates a social
process, effectively honing in on global optima, especially in
continuous optimization scenarios.

Artificial Bee Colony (ABC) Algorithm: Inspired by the
foraging behavior of bees, it balances local and global search
effectively, useful for complex parameter estimation tasks.

Hybrid GA-PSO: Combining GA’s exploration and PSO’s
exploitation efficiency, this approach aims to quickly and reliably
find global optima in multi-modal data landscapes.

For implementation, each algorithm is configured with ap-
propriate parameters such as learning rate, population size, muta-
tion rates, and particle velocities. The choice and configuration of
the algorithm depend on the specific requirements of the problem
and the nature of the experimental data. The selected algorithm
is run to optimize the 𝜁𝑟 , using the objective function to guide the
search. This process is iterative, involving continuous evaluation
and refinement based on performance metrics.

2.3 Integration in Metastructure Damping Estimation
These algorithms are particularly suited for metastructure

analysis due to their ability to handle non-linearities and discon-
tinuities in the objective function, which commonly arise from
complex modal interactions within the structure. To estimate 𝜁𝑟 ,
the mentioned algorithms can be configured to:

• Define an initial range of possible damping values based on
physical constraints and preliminary data.

• Evaluate the fitness of each candidate solution by integrating
the damping values into the metastructure model and com-
paring the resulting dynamic response with experimental
measurements.

• Iteratively refine the population of algorithms based on the
fitness evaluations, converging on a solution that best fits the
experimental data.

The Sum of Squared Errors (SSE) is a statistical measure
commonly used to quantify the difference between predicted val-
ues and observed data, especially useful in optimizing damp-
ing ratios in metastructures. SSE is calculated by summing the
squares of the differences between observed experimental re-
sponses (𝑦𝑖) and model predictions (𝑦̂𝑖) across 𝑛 data points at
various excitation frequencies. This formula provides a scalar
value indicating the magnitude of error across all frequencies.

In the context of damping ratio estimation for metastructures,
minimizing SSE helps in fine-tuning the parameters of optimiza-
tion algorithms. The process includes simulating the metastruc-
ture model across a range of frequencies, comparing the predicted
responses to the actual observed responses, and using SSE as the
objective function to guide optimization.

Given a dataset consisting of 𝑛 observed experimental data
points 𝑦𝑖 at different excitation frequencies, and corresponding
model predictions 𝑦̂𝑖 , the SSE is calculated as follows:

SSE =
𝑛∑︂
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2

Where 𝑦𝑖 is the observed experimental response of the metas-
tructure at the 𝑖-th excitation frequency. 𝑦̂𝑖 is the predicted re-
sponse from the metastructure model using the estimated damp-
ing ratios at the same frequency. 𝑛 is the total number of data
points, encompassing various excitation frequencies used during
the experimental testing and simulations.

By minimizing the SSE, the optimization algorithms adjust
the damping ratios 𝜁𝑟 and 𝜁𝑚 to achieve a closer match between
the model predictions and the experimental results.
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FIGURE 1: Comparison of the beam’s transmittance: noisy sig-
nal versus model predictions, highlighting the algorithm’s effec-
tiveness in identifying transmittance characteristics within the
bandgap frequency range. Parameters are as listed in Table 1 with
initial simulations for noisy signal evaluation, using parameters
Lm0 , mr0 and kr0 .

3. RESULTS AND DISCUSSION
In this section, the analysis extends to incorporating noise

within theoretical models to closely mimic real-world scenarios,
aiming to estimate the damping ratio 𝜁𝑟 in systems characterized
by a locally resonant bandgap. This study further delves into
the utilization of actual experimental data, segmented into two
distinct parts: a simple beam and a metastructure. Each segment
is examined to determine the structural modal damping ratio
𝜁𝑚, demonstrating the efficacy and adaptability of the Hybrid
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TABLE 1: Geometric and material properties of the studied rectan-
gular aluminum beam

Parameter Value Parameter Value
𝐿𝑚0 0.3 m 𝑚𝑟0 17 g
𝐿𝑚 0.91 m 𝑘𝑟0 9kN
𝑤𝑚 40 mm 𝑚𝑟 10 g
ℎ𝑚 3 mm 𝑘𝑟 1.65 kN/m
𝜌𝑚 2700 kg/m3 𝑁𝑟 8
𝐸𝑚 69.5 GPa 𝑁𝑚 8

GA-PSO algorithm across diverse experimental contexts. The
outcomes of this investigation affirm the model’s capability to
accurately predict dynamic behavior, emphasizing its relevance
and potential in enhancing vibration suppression techniques in
metastructures.

The use of different beam lengths in our study—0.3 meters
for preliminary tests to assess basic dynamic responses and modal
analysis under controlled conditions, and 0.9 meters for compre-
hensive experimental validation—allows us to explore metas-
tructure behavior across various scenarios. The shorter beam
facilitates detailed observation of higher frequency dynamics for
initial model validations, while the longer beam helps simulate
more realistic operational conditions, revealing the impact of
beam length on modal damping and bandgap behavior in settings
akin to real-world applications.
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FIGURE 2: Scatter plot demonstrating the correlation between
measured and simulated data via the Hybrid GA-PSO algorithm, ev-
idencing high model accuracy with a correlation coefficient (R ) of
0.98.

The algorithm’s performance in calculating 𝜁𝑟 is illustrated
in Figure 1. The nominal 𝜁𝑟 is 0.2 as an initial guess, and the
results are contextualized within the parameters outlined in Ta-
ble 1, which details the geometric and material properties of the
rectangular aluminum beam under investigation. The findings in-
dicate the algorithm’s robustness in parameter estimation amidst
experimental uncertainties. Figure 2 presents a scatter plot com-
paring measured data against values simulated by the Hybrid

GA-PSO algorithm. The horizontal axis (Simulated) represents
the predicted values of the dynamic response of the metastructure,
normalized to the same scale as the experimental measurements,
which are depicted on the vertical axis (Measured). Each data
point corresponds to a specific excitation frequency used during
the simulations and experimental testing, ranging from 0 to 5
arbitrary units reflecting normalized response magnitudes. The
tight clustering of data points around the line of unity and the
high correlation coefficient (R = 0.98) suggest a strong agree-
ment between the model’s predictions and the measured data.
The scatter plot highlights the algorithm’s precision in estimating
the damping parameter 𝜁𝑟 , as evidenced by the low root mean
square error (RMSE = 0.71) and the sum of squared errors (SSE
= 500.66), which quantify the model’s predictive accuracy. This
figure substantiates the Hybrid GA-PSO’s efficacy in capturing
the underlying dynamics of the metastructure under study.
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FIGURE 3: Residual plot from the Hybrid GA-PSO model prediction
demonstrating the residuals’ distribution against sample points,
underscoring the model’s accuracy with a high coefficient of de-
termination (R2).

Figure 3 reveals the model’s residual distribution, crucial for
evaluating the Hybrid GA-PSO algorithm’s accuracy in estimat-
ing 𝜁𝑟 . The residuals, mostly centered around zero, suggest a
strong model fit, corroborated by a high 𝑅2 value (0.91). Outliers
at the start may signal deviations due to experimental anomalies
or noise, warranting further investigation to enhance the algo-
rithm’s reliability.

3.1 Empirical Analysis of a Basic Beam Structure
To substantiate the theoretical model and optimization ap-

proaches proposed in this study, an experimental validation was
conducted using a cantilever beam setup. This setup is depicted in
Figure 4. The experiment involved a cantilever beam composed
of aluminum, with 3 mm in thickness, 4 cm in width, and 0.91 m
in length. This beam, representative of a standard metamaterial
structure, was devoid of any locally resonant subsystems.

The experimental rig included a 100N TIRA 51110 Shaker,
which provided base motion to excite the beam. The response
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FIGURE 4: Experimental setup showcasing the simple cantilever
beam attached to the Shaker, with the Dytran Accelerometers po-
sitioned at the base and tip, and connected to the Power Amplifier
and Controller.

of the beam was meticulously measured using a Dytran Ac-
celerometer 3055D21, a single-axis TEDS accelerometer capable
of 100mV/g. This accelerometer, weighing 10 grams, was em-
ployed to capture the tip acceleration, while a second accelerom-
eter of the same model was used at the base for control purposes.
The Power Amplifier BAA 120 was utilized to amplify the input
signals to the Shaker. The Vibration Controller VR9500, was em-
ployed to regulate, control the base, and monitor the vibrational
inputs and responses. It is worth noting that the addition of hard-
ware, specifically the low-noise accelerometer wire, introduced
additional mass to the system. This added mass, assumed to be
approximately 1% of the accelerometer’s mass, was factored into
the experimental analysis to ensure accurate representation of the
beam’s response.
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FIGURE 5: Transmittance response of a cantilever beam with Hy-
brid GA-PSO algorithm estimations, highlighting the model’s align-
ment with experimental data for structural modal damping ratio
(ζm ) estimation.

The response of the cantilever beam under base excitation
generates data on the dynamic behavior of metamaterials. The
data obtained from this experimental setup will be further ana-
lyzed and compared with model predictions.

Since the resonators are not incorporated into the system for
the first part of the experiment, the focus shifts to estimating the
modal damping ratio (𝜁𝑚) of the main structure. Drawing on
conclusions from the previous sections, the Hybrid GA-PSO al-
gorithm emerged as a strong candidate for such estimations. In
this phase of the research, this algorithm is employed to deter-
mine 𝜁𝑚, leveraging its demonstrated proficiency in parameter
estimation within complex dynamic systems.

Figure 5 presents the transmittance response, comparing the
experimental data with theoretical model prediction. The plot
illustrates the algorithm’s effectiveness in estimating 𝜁𝑚, crucial
for accurate dynamic modeling of the cantilever beam. The close
alignment of the model predictions with the experimental data
across the frequency spectrum validates the accuracy of all al-
gorithms including Hybrid GA-PSO algorithm. This successful
estimation of 𝜁𝑚 underscores the potential of hybrid optimization
techniques in flexible structures, where accurate damping char-
acterization is essential for designing and controlling dynamic
systems.
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FIGURE 6: Scatter plot comparing measured data to Hybrid GA-
PSO simulated estimations, demonstrating the algorithm’s efficacy
in predicting the structural modal damping ratio (ζm ) with a corre-
lation coefficient (R) of 0.91.

The scatter plot in Figure 6 illustrates the correlation be-
tween the measured and simulated data points using the Hybrid
GA-PSO algorithm for estimating the modal damping ratio. The
correlation coefficient (R) of 0.91 indicates a strong positive re-
lationship, suggesting that the algorithm can predict the system’s
behavior with a high degree of accuracy. The SSE and RMSE
provide further insight into the model’s precision, with lower val-
ues indicating a closer fit to the experimental data. In this case,
an RMSE of 1.03 reflects a reasonably accurate model, although
there is room for improvement in minimizing the prediction error.

The residuals plot in Figure 7 predominantly indicates a sat-
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FIGURE 7: Residual analysis of the Hybrid GA-PSO model predic-
tions showcasing the estimation accuracy across the experimental
data set, with a focus on identifying outlier discrepancies for fur-
ther model refinement.

isfactory model fit, as evidenced by the majority of residuals
clustering near the zero line. However, the presence of outliers
with higher residuals at the structure’s modal resonant frequen-
cies suggests that the model’s predictions diverge from the ex-
perimental data at these critical points. This could be due to
the heightened sensitivity of the system’s response to parameter
variations at resonance.

3.2 Empirical Assessment of Metastructural Dynamics
An integral aspect of designing metastructures for vibra-

tion suppression is understanding the sensitivity of bandgaps to
damping ratios. To investigate this, a series of simulations were
conducted to observe the effects of varying damping ratios on
the bandgap’s efficacy. Figure 8 depics the frequency response
functions illustrating the impact of varying damping ratios on the
dynamic response of a metastructure. The upper plot reveals that
altering the structural damping ratio influences the overall dy-
namic response but leaves the bandgap region largely unaffected.
In contrast, the lower plot indicates that changes in the resonator
damping ratio significantly alter the bandgap region’s dynamics,
highlighting the critical role of resonator damping in tuning the
metastructure’s vibration suppression capabilities.

Building upon the simulation insights, an experimental anal-
ysis was conducted on an actual metastructure to validate the
theoretical findings and assess the practicality of bandgap ma-
nipulation through damping variations. This experiment aims to
corroborate the simulation results with real-world data, establish-
ing the reliability of the proposed models and the feasibility of
achieving targeted vibration suppression through bandgap engi-
neering. The experimental setup is captured in Figure 9, illustrat-
ing the prototype of metastructure real-world application. The
resonators, integral to the metastructure, were crafted from pure
aluminum, featuring a thickness of 2 mm, a width of 20 mm, and
a length of 11.3 mm. A set of nuts and bolts served as adjustable
tip masses, enabling the fine-tuning of the natural frequency to
the target 64 Hz, as determined by Finite Element Method (FEM)
analysis.
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FIGURE 8: Transmittance highlighting the effects of damping ratio
variations on a metastructure’s dynamic response, with a focus on
bandgap region alterations.

FIGURE 9: The experimental setup for the metastructure’s dynamic
analysis. This configuration is instrumental in examining the ef-
fects of damping and resonator adjustments on the metastructure’s
vibrational characteristics.

6 Copyright © 2024 by ASME



0 50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

FIGURE 10: Comparison of experimental data with theoretical
model employing estimated damping ratio

This experimental arrangement was utilized to invoke the
bandgap phenomenon and study its sensitivity to the damping
ratios in a controlled environment. By systematically altering
the tip mass, the resonant frequency of the metastructure could
be adjusted, thereby shifting the bandgap. The data illustrated
in Figure 10 compares experimental data with model predictions
that estimate 𝜁𝑟 using the GA-PSO algorithm. The observed
transmittance peaks and troughs align well with the predicted
values, particularly in the lower frequency range up to 150 Hz,
which includes the designed bandgap region. Beyond this, while
the model continues to follow the general trend of the experimen-
tal data, some deviations become apparent, suggesting areas for
further refinement of the model. Notably, the bandgap’s expected
impact is clear, with a marked reduction in transmittance indicat-
ing effective vibration suppression within the targeted frequency
range.

The data depicted in Figure 11 is indicative of the correlation
between the measured and simulated values, obtained through
the Hybrid GA-PSO algorithm. The scatter plot, with an R-value
of 0.54, suggests a moderate correlation. The SSE of 391.18
and RMSE of 1.21 reflect the discrepancies between the model
predictions and the experimental observations. These metrics
highlight areas where the model could be further calibrated to
enhance its predictive accuracy.

Figure 12 presents the residual plot resulting from the al-
gorithm’s predictions. The distribution of residuals along the
sample points illustrates the model’s areas of strength, as well as
points where the prediction does not align closely with the experi-
mental data. Together, these figures articulate the performance of
the Hybrid GA-PSO algorithm. While the moderate correlation
and the residual trends indicate the algorithm’s potential, they
also suggest that further tuning and validation are necessary for
the model to reliably predict dynamic behavior in metastructures.

As compiled in Tables 2 and 3, the different optimization
algorithms, while varying slightly in the correlation coefficient
(R) and the sum of squared errors (SSE), consistently identi-
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FIGURE 11: Hybrid GA-PSO Scatter plot of Metastructure’s Mea-
sured vs. Simulated data in predicting the resonator damping (ζr ).

TABLE 2: Comparison results of different optimization algorithms
in estimating the structural modal damping ratio (ζm )

Algorithm R SSE Population size Estimated 𝜁𝑚
GA 0.92 104.57 80 0.0273
PSO 0.92 102.40 80 0.0271
ABC 0.92 103.35 50 0.0268
Hybrid GA-PSO 0.92 101.34 50 0.0273
Nelder-Mead 0.91 101.34 N/A 0.0272

fied the damping ratios with enough precision for the theoretical
model. Upon comparing the results in Table 3, it’s evident that
the estimated resonator damping ratio values obtained from the
Hybrid GA-PSO and Nelder-Mead methods align closely, both
indicating a 𝜁𝑟 of 0.021. This contrasts with the slightly lower
estimates from the PSO and ABC algorithms, which may reflect
differences in their search strategies or convergence criteria. No-
tably, the values from the initial table were significantly higher,
suggesting a refinement of experimental or algorithmic parame-
ters in the updated analysis. The convergence of estimates in the
updated table, particularly for 𝜁𝑟 , reinforces the robustness of the
optimization methods and supports their reliability for accurate
metastructure analysis.

The consensus on 𝜁𝑚 and 𝜁𝑟 values highlights the algorithms’
success in capturing the metastructure’s key dynamics. Validation
by experimental data emphasizes their potential in designing and
optimizing metastructures for enhanced vibration suppression.

4. CONCLUSION
This research represents the design and optimization of lo-

cally resonant metastructures for vibration suppression. Through
the integration of advanced AI and optimization algorithms, a
new methodology for estimating damping ratios has been estab-
lished, shedding light on the sensitivity of bandgap characteristics
to these critical parameters. The key contributions of this paper
are summarized as follows:
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TABLE 3: Comparison results of different optimization algorithms
in estimating the resonator damping ratio (ζr )

Algorithm R SSE Population size Estimated 𝜁𝑟
GA 0.93 398.29 80 0.020
PSO 0.92 405.22 80 0.019
ABC 0.91 410.67 50 0.018
Hybrid GA-PSO 0.94 391.18 50 0.021
Nelder-Mead 0.90 420.00 N/A 0.021
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FIGURE 12: Distribution of residuals from the Hybrid GA-PSO al-
gorithm’s predictions.

• A novel mathematical formulation for the analysis of metas-
tructures is utilized to enhance the precision of bandgap
optimization;

• The study demonstrated the significance of accurately esti-
mated damping ratios in the manipulation of bandgap prop-
erties for effective vibration suppression;

• A reliable framework was established to address the gap in
current methodologies regarding variable damping scenar-
ios within metastructures;

• The efficacy of the Hybrid GA-PSO algorithm was validated
against experimental data, reinforcing its potential for real-
world applications in the engineering of metastructures.

The insights from this study suggest promising avenues for
future research, such as developing adaptive control mechanisms
that dynamically adjust damping ratios based on varying con-
ditions and exploring the scalability of these methodologies for
larger and more complex metastructures. Future efforts may
focus on refining these algorithms for greater precision, test-
ing more complex metastructural configurations, and integrating
broader experimental data to enhance the robustness and real-
world applicability of the models. This research moves the field
of metastructure optimization forward by effectively integrating
AI and optimization techniques, although it also highlights the
need for careful interpretation of results due to the limitations of
the current methodologies.
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