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Introduction
Control is essential and integral part in various engineering applications, e.g., space-
vehicle, robotic systems and manufacturing systems, and any industrial operations
involving control of temperature, pressure, humidity, flow, etc. [63, 75]. Controller
design problem is known for a long time. Tracing back to the 18th century, three
major sources of power: wind, water, and steam already required certain level of
control. During the late 1920s improved management, the introduction of new
machinery, and production processes resulted in a rapid growth in output and
productivity in manufacturing industries. Engineers started to use technology more
actively to ensure meeting the necessary requirements. They preferred continuous
to batch processing and, whenever possible, used remote, semiautomatic, and in
some cases, automatic control. The body of knowledge developed during the years
1930 to 1955 acquired the name of classical or conventional control theory [77]
in the early 1960s, and since then it is known as a modern control theory [21].
Starting from simple deterministic mathematical models, research shifted to the
study of more complex control systems [13, 29]. This complexity resulted into
complication of stability related problems. In such systems uncertainties started
to play more prominent role increasing the relevance of development of efficient
stability methods.

State of the art
For linear systems the most intuitively understandable and inherently simple sta-
bility test is based on the location of roots of a characteristic polynomial. Other
alternatives include Hurwitz, Routh, and Hermite-Bieler tests [20,82] or frequency
domain based techniques [105]. However, once the system contains uncertainties,
these techniques cannot be directly applied. This resulted in the development of the
so-called parametric approach [15], which links the study of relationships between
roots of a polynomial and its coefficients [80]. The main problem appearing with
the parametric approach is that, in general, the stability domain is nonconvex in
the coefficient space. Over the last decades many efforts have been put towards the
development of various techniques for convex approximation [17], including balls,
ellipsoids and multi-ellipsoids, boxes, zonotopes, hyper-rectangles and polytopes,
as summarized in Table 1.

Table 1. Stability domain approximation: Summary of existing methods.

Methods Approximation type
Inner Outer

Balls [33,37] [33]

Ellipsoids [27,48,58] [17–19,22,28,36,43,48,49,58,61,87,103]

Boxes [12] [11,39]

Zonotopes [2, 16,41,65] [16]

Hyper-rectangles [26] [26, 39,53,57]

Polytopic [67,68] [67,68]

For example, work [37] presents convex approximation of the stability domain

8



by means of balls technique. The problem of localization of sensor nodes in a wire-
less network is addressed to approximate the uncertainty in true sensor’s position.
In this case a feasible set of intersections cannot be generally described by few
parameters and outer-approximation by a simple shape of a ball is used. Later
the algorithm was extended by means of ellipsoids that can generally capture more
complex convex set due to the additional degree of freedom [36]. This method is
further extended via intersection of multiple ellipsoids. However, task of finding
the tightest ellipsoidal outer-approximation of the intersection of multiple ellip-
soids is an NP-hard and the optimal algorithm still constitutes an open problem
[17–19, 22, 28, 43, 49, 61, 87, 103]. Alternatively, approximation can be performed
using approaches based on zonotopes [2,41] and hyper-rectangles [39,53,57], which
grant better accuracy. However, the complexity of constructing hyper-rectangular
approximations is O(n), i.e., it grows linearly in the dimension n, as opposed to
ellipsoidal and zonotopic approximations, which exhibit quadratic complexity. An-
other class of methods for convex approximation of the stability region is based
on the class polytopic type techniques [47, 68]. In [67] both inner and outer ap-
proximations of the stability region are presented for discrete polynomials using
their coefficients and reflection coefficients [30, 76]. This approach was further ex-
tended in [60] to solve the problem of pole placement, and eventually developed
into Nurges-Schur method for discrete-time robust controller design in [9, 72, 73].
The subclasses of polytopic methods known as box type approximation and convex
directions are used to solve convex approximation problems in [11,39] and [84], re-
spectively. To get benefit of using different combination of methods, a new hybrid
approach called successive convex approximation was developed. The principal
idea is to iteratively approximate the problem with lower complexity subproblems.
Unfortunately, due to the sequential approximation, the global optimality of the
achieved solution is generally cannot be guaranteed. For example, this approach
was used for the problem of weighted sum rate maximization with user specific
quality-of-service constraints [50]. Same type of approximation has been consid-
ered in various forms by different authors, see [24, 62, 86, 88] and the references
therein.

It is widely accepted that there is no universal method which can be effectively
applicable in any situation. Each of the proposed methods has specific advantages
and drawbacks. The existing parametric methods can be roughly divided into
two categories: quadratic and multilinear criterions based techniques as summa-
rized in Table 2. Ellipsoid type methods utilize nonlinear quadratic optimization
criteria, contrary to the polynomial type methods that are based on the linear
criteria, which is simple, except for cases with complex optimization areas. More
extensive overview can be found in [68, 69, 72]. A simple comparison of controller
performance can be found in [9] and stability area volumes are presented in [8] for
different methods. Results show that volumes for ellipsoid and reflection methods
are comparable. Though the comparison is presented for discrete-time case, many
conclusions are valid for continuous case as well.

Unlike the stability problems that mainly refer to ideal case of mathematical
models, the real applications have to deal with system uncertainties, and the control
is expected to keep required performance within the specified uncertainty domain.
This challenge has lead to the development of the robust control theory that has
been thoroughly studied and different related topics were addressed during past
decades [97]. Most of the recent studies are focused on the robust model reference
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Table 2. Stability domain approximation: Comparison of existing methods.

Methods Accuracy Computational Generality
complexity (e.g., different

uncertainty types)

Balls low medium low

Ellipsoids high high high

Boxes low low low

Zonotopes high high medium

Hyper-rectangles high high high

Polytopic high medium medium-high

Reduced Routh high medium high

adaptive control techniques, which can be applied to different types of systems such
as uncertain nonlinear systems with time delays [99], nonlinear uncertain dynami-
cal systems [104], multi-agent systems with parametric uncertainties and external
disturbances [59, 79], networked single-input single-output nonlinear systems with
time delays [52], switched linear parameter-varying systems with parametric un-
certainties [100], piecewise affine systems with input disturbances [14], and many
others. On the other hand, several recent studies focus on the robust model ref-
erence nonadaptive control techniques. These techniques are applied to different
types of systems, including polytopic uncertain systems [38], multivariable linear
systems subject to model uncertainties [32, 92], decentralized linear systems with
interactions treated as disturbances [45], descriptor linear systems subject to para-
metric uncertainties [31], Markovian jump linear systems with unknown transition
probabilities [107], and uncertain network-based control systems [35].

Many of these robust model reference control techniques have been applied to
practical systems. In case of the permanent magnet motor the position of motor
is easily disturbed by external force, disturbance, and variation in parameters of
a plant. To solve these problems and improve the system a number of solutions
were proposed. For example, in [25] an internal model reference control algorithm
is proposed to reduce the response time on the disturbance and static friction and
eliminate the effect of parameter uncertainties. Improvements in robustness against
load and system parameters’ variations are done with sliding mode observer-based
model reference adaptive algorithm [85]. For precise motion control of the piezoelec-
tric actuation micropositioning systems, a model reference adaptive control with
perturbation estimation is presented in [101]. This approach grants better stability
of the closed-loop system and allows to predefine the size of tracking error. An op-
timized virtual model reference control synthesis method is proposed for semiactive
suspension systems [23]. Designed robust adaptive controller allows to achieve the
H∞ performance of ride comfort and vehicle handling against the influence of pa-
rameter uncertainties and external disturbances of the system. Another practical
applications are addressing robotic systems such as in [83], where physical human-
robot interaction (pHRI) problem was addressed and an inner-loop robot-specific
controller was developed, which enables the user to interact with the robotic sys-
tem so that it behaves like a prescribed robot admittance model and allows to
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take into account the human dynamics and adapt the prescribed robot admittance
model for different users. Similarly, the work [89] presents a nonlinear Model Refer-
ence Adaptive Impedance Controllers for the control of the robot impedance with
uncertainties in model parameters. Work [95] introduces an obstacle-avoidance
control algorithm for controller that is able to incorporate human operator’s com-
mands for a general-type two-wheeled human-operated mobile robot with several
distance sensors to detect obstacles. Another study of robotic systems was done
towards model reference adaptive control of robotic mechanisms in [106]. Robust
control techniques can be used for geostationary satellite networks as in [81], where
a multi-model reference control approach for queue-based bandwidth-on-demand
procedures is presented and the problem of guaranteeing a high exploitation of the
valuable satellite bandwidth while offering acceptable end-to-end delays to the traf-
fic accessing the network is discussed. Or another application area touches chaotic
systems, as in [94], where a model-reference control is successfully developed for
stabilizing chaotic system so that system follows the desired model within a desired
finite time.

The industry in most cases decides in the favor of low-order controllers due to
their simplicity, low cost, and high reliability [40]. The majority of them (approx.
95%, according to [74]) are of PI/PID type, and are mainly (about 80%) poorly
tuned. In brief, the PID controller uses the present (P component—proportional
to the error output), the past (I component—proportional to the integral of the
error), and the future (D component—proportional to the derivative of the error)
of the error to adjust the control signal. To apply PID controllers, engineers must
first decide which element(s) to keep in action and then adjust the parameters
so that their control problems are tuned appropriately. To this end, they need to
know the characteristics of the process. As the basis for this design procedure, they
must have certain criteria to evaluate the performance of the control system [5].
The literature has a great variety of different (including robust) approaches and
methods for PID controller design and tuning with application in different areas. In
what follows, we briefly recall several recent studies on robust PID control design.
PID controller design for unmanned aerial vehicle is presented in [102] using a
reverse multi-variable root contour method. Work [42] presents an adaptive PID
controller for wind turbines based on Lyapunov direct method. Simple internal
model control, integer- and fractional-order PID controllers for motor-generator
system are tuned in [3, 4, 98] using statistical analysis. Nelder Mead optimization
technique is applied to tune both IOPID and FOPID for coupled tank system [64].
FOPID controller is tuned using multiobjective differential evolution method for
the flight control system as shown in [54–56]. The frequency-domain performance
criteria is used to tune FOPID controller as shown in [91].

Motivation and problem statement
The above overview and state of the art constitute motivation for the work pre-
sented in this thesis. In what follows we briefly indicate only the most important
aspects.

The wide-spread of digitalization has resulted in the necessity to develop sim-
ple and efficient control algorithms. Recall that majority of processes cannot be
modeled accurately enough and uncertainty is a common situation in real appli-
cations. These challenges together have resulted in an extensive research interest
in the development of different discrete-time methods for robust controller design,
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see [67, 69] and the references therein. Meantime, various industrial processes are
of continuous nature and controlled by devices operating with high sampling rate
mimicking the continuous behavior. This motivates a further research especially
with respect to continuous-time systems.

This work aims to fill the existing gaps and provide a method for the inner con-
vex approximation of the stability domain and design of a robust output fixed-order
controller for continuous-time systems with parametric uncertainties. The proposed
approach partly employs ideas originally presented in [67] for the discrete-time sys-
tems. However, the continuous-time case is technically different and requires new
mathematical definitions and tools to be developed. The overall problem can be
roughly divided into two stages: (i) to construct convex approximation of the
stability domain; (ii) to design robust output PID controller with the maximum
possible stability measure. In other words, the goal is to find a point inside ap-
proximated stability area such that it is equally located from boundaries of the
stability domain, and identify parameters of the controller based on the obtained
approximation and selected structure. Furthermore, the developed procedure has
to be efficient, yet simple enough to be suitable for software implementation and
practical needs. In this work we extend the polytopic approach (see Table 2) by
relying on the so-called reduced Routh parameters and inheriting all the benefits
of the polytopic approach. We adopt the basics of the polytopic approach and first
extend it to the continuous-time case. Next, we present a more general approach
by including a cone-type uncertainty in addition to the polytopic one. Cone un-
certainty that is addressed in this work is rather unexplored topic that might give
great benefits in the future.

Author’s contributions
The main contribution is the development of a simple and efficient procedure to
design a robust output PID controller for continuous-time linear systems with un-
certainties. The method is based on a new multilinear stability criterion for Hurwitz
polynomials. This contribution comprises three main parts:

• Convex approximation: Development of methods for the solution of inner
convex stability domain approximation problem of continuous-time linear
systems relying on a multilinear stability criterion for Hurwitz polynomials.
The approach is based on the so-called reduced Routh parameters that are
used to construct stable Routh rays starting from a given stable polynomial.
These lines may be used to construct a polytope or polyhedral cone inside
the stability domain. A step-by-step algorithm is proposed for construction
of a stable polytope around given starting point.

• Controller design: Based on the above algorithm for the convex approxima-
tion of a stability domain, a method for robust output PID controller design
is proposed. The procedure starts from a stable simplex (or polytope) of the
closed-loop characteristic polynomial. Then, we define a set of possible plant
parameters as a convex polytope (polytopic plant model). Note that the
number of vertices of the polytope determines complexity of the algorithm.
Finally, we design a robust output controller for polytopic plant model using
quadratic programming approach. The designed controller is able to operate
within the limits of uncertainty presented in the plant.
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• Software implementation: All the theoretical results are implemented in the
Matlab software-based package. The package includes functions related to
stability area approximation and controller design, as schematically depicted
in Fig. 1.

The proposed theory and algorithms are illustrated by numeric examples and lab-
oratory prototype setup of a DC motor servo system.

Identification of 
stable polynomial

Stability area
calculation

Controller 
synthesis

Reduced Routh 
parameters 
calculation

Polytopes

PID robust 
controller design

Cones

Figure 1. Schematic organization of the software package.

Thesis outline
Each section begins with a brief overview of the research problems and material
discussed therein. The thesis opens with a brief overview of the stable (Hurwitz)
polynomials, and is followed by theoretical results on continuous-time system con-
vex approximation and respective robust PID controller design. Each section is
concluded by a short discussion on key aspects. The concluding section com-
prises general comments as well as open directions for the possible future research.
Throughout the thesis a number of illustrative numeric examples complements the
obtained results.

Section 1
In this section, the reader is introduced to the main notions and concepts of Hur-
witz stability, Hurwitz region, and stable polynomials. A method for generation
convex sets of stable polynomials for continuous-time systems is explained. This
method is based on the novel multilinear stability criterion using so-called reflec-
tion coefficients of Hurwitz polynomials. It allows to generate stable line segments
in the directions of the Routh rays starting from an arbitrary Hurwitz polynomial.
This leads to the inner approximation of a stability region based on the derived
line segments. The developed results are summarized in the form of an algorithm
for continuous-time system convex approximation. The section is accompanied by
several illustrative examples.

Section 2
In this section, an algorithm for robust output PID controller design for continuous-
time plant with uncertainties is presented. The solution is based on results from
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the previous section and continues with controller design based on the quadratic
programming approach. The software implementation of the developed theory is
discussed and complemented by description of the main functions and visualiza-
tion of their mutual relations. Illustrative examples for the application of above
introduced algorithms for Routh controller design are also provided.

Section 3
This section is devoted to numerical examples illustrating the main aspects of the
developed theory. In particular, we consider 3 different cases. The first academic
example is devoted to the design of a robust PI controller for the fourth-order sys-
tem. Simulations are performed for the nominal plant and the case with minimal
and maximum possible uncertainty. In the second example, a stabilizing PI con-
troller for the second-order unstable system is designed. Laboratory experimental
platform is analyzed in the third example. First, two types (slow and fast) of PI
controllers are designed and tested for nominal plant and case with external fric-
tion. It is followed by comparison of PD and PI controllers designed using both
polytope and cone techniques.
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1 Identification of stable polynomials
The chapter opens with a brief overview of the Hurwitz stability, Hurwitz region,
and notion of a stable polynomial, which are further used as a basis for construc-
tion of stable polytopes. Then, a method for generation of convex sets of stable
polynomials (so-called polyhedral Routh cones and polytopes) for continuous-time
systems is presented. The generation of stable polynomials is carefully studied in
[90], where Lovinsone-Durbin parametrization is proposed as an efficient and nu-
merically stable method. Here, this approach is generalized to generate stable line
segments in the space of polynomial coefficients. The proposed method is based
on a novel multilinear stability criterion for Hurwitz polynomials. In addition, for
an arbitrary Hurwitz polynomial of the order n a method for generation of n sta-
ble line segments in the directions of the so-called Routh rays is proposed. This
means that instead of single points bunches of stable half-lines in the polynomial
coefficient space are constructed. Next, on the basis of the derived line segments
an inner approximation of stability region is obtained.

A polynomial of degree n

a(s) = ansn +an−1sn−1 + · · ·+a1s+a0 (1)

with real coefficients ai ∈ R, for i = 0, . . . ,n, is said to be continuous-time stable in
the Hurwitz sense, if all its roots λi, for i = 1, . . . ,n, are in the open left-half plane
of C, i.e., ℜ(λi)< 0. Since polynomial (1) is uniquely defined by its coefficients, for
simplicity, sometimes, we use a to denote both the polynomial a(s) and the vector
a =

[
an · · · a0

]T of its coefficients, i.e.,

a := a(s) =
[
an · · · a0

]T
. (2)

The Hurwitz region Hn is defined as the set

Hn =
{

a ∈ Rn+1 | (1) is Hurwitz
}
. (3)

1.1 Reduced Routh parameters of polynomials
In this section the reduced Routh parameters are introduced using Hurwitz and
Routh stability notions. These parameters will be later used for construction of
the stable line segments.

Definition 1.1 ([70]). The reduced Routh parameters w j for normed a0 = 1 poly-
nomials

a(s) = ansn +an−1sn−1 + · · ·+a1s+1 (4)
are defined as follows

w j =
a j

j

a j
j−1

, j = n, . . . ,3,

w2 = a2
2,

w1 = a2
1,

w0 = 1.

(5)

Note that in (5) parameters a j
j and a j

j−1 can be found explicitly via reduced
Routh parameters wk, k = n, . . . ,1 as

ak−1
k−i−1 = ak

k−i−1, i = 0, . . . ,2b(k−2)/2c,
ak−1

k−i−2 = ak
k−i−2−wkak

k−i−3, i = 0, . . . ,2b(k−3)/2c
(6)
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with a0 = 1 or in the matrix form as ak−1 =W kak, where W k is the k× k matrix

W k = Ik−wk




0 Jk−1
...

...
0 0T


 , (7)

and Jk is the k× k diagonal matrix, i.e., Jk = diag{0,1,0,1, . . .}.
A stability boundary is either the boundary of the stability domain in the coef-

ficient space or the boundary of the root location domain (imaginary axis). The
stability of polynomials a(s) can be tested by Routh table, see [34].

Proposition 1.1 ([71]). A normed polynomial a(s) with a0 = 1 is Hurwitz stable
if and only if wk > 0, k = 1, . . . ,n.

First, lets define Routh parameters hk k = 1, . . . ,n for polynomial (4) using re-
duced Routh parameters wk as:

h0 = 1,
h1 = w1,

h2 = w2,

h j = w jh j−1, j = 3, . . . ,n.

(8)

Assume that a normed polynomial a(s) of order n is stable in the Hurwitz sense.
Then, according to Routh-Hurwitz stability criterion all first elements of stability
table [34] have the same sign. Routh parameters hk are equivalent to first elements
of Routh table and method for constructing Hurwitz polynomials can be derived as
follows [90]. Start with arbitrary Hurwitz polynomial of degree 2. Since positivity
of the coefficients is equivalent to stability of the second-order polynomials, generate
arbitrary positive numbers h0,h1,h2 and compose the polynomial

a(s) = h2s2 +h1s+h0 (9)

or
a =

[
a2 a1 a0

]T
=
[
h2 h1 h0

]T
. (10)

At the kth step, having a Hurwitz polynomial of degree k, i.e.,

a(s) =
[
ak ak−1 · · · a0

]T
, (11)

consider two polynomials of degree k+1, e.g.

p(s) =
[
0 ak ak−1 · · · a0

]T (12)

and
q(s) =

[
ak 0 ak−2 0 ak−4 0 · · ·

]T
. (13)

Generate a positive random number hk+1 and compose

a(s) = p(s)+
hk+1

ak
q(s), (14)

which is Hurwitz polynomial of degree k+1, according to the Routh rule. Proceed-
ing in this manner up to k = n, we obtain a Hurwitz polynomial of degree n, see
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[93,96]. Thus, the coefficients ak of the nth-order polynomial are obtained from the
Routh parameters hk, k = 0, . . . ,n recursively by increasing k. Furthermore, all Hur-
witz polynomials of degree n can be obtained using this construction [90]. Observe
that, if wk > 0, for k = 1, . . . ,n, then all the Routh parameters of the polynomial
a(s) are positive hk > 0, k = 0, . . . ,n. Hence, it follows that the polynomial a(s) is
Hurwitz stable.

Example 1.1. Let us illustrate calculation procedure of Routh table stability
criterions for normalized n = 5 polynomial via wk and hk. Denote degree of a
polynomial by superscript.

a5 =
[
a5

5 a5
4 a5

3 a5
3 a5

2 a5
1 a5

0 = 1
]

(15)

First elements of Routh-Hurwitz table are:

row 1: a5
5,

row 2: a5
4,

row 3: b1 =
a5

4a5
3−a5

5a5
2

a5
4

,

row 4: c1 =
b1a5

2−b2a5
4

b1
,

row 5: d1 =
c1b2−b1c2

c1
.

(16)

Now, calculate wk using (5) and (6) from w5:

w5 =
a5

5

a5
4
=

h5

h4
,

w4 =
a4

4

a4
3
=

a5
4

a5
3−w5a5

2
=

a5
4

b1
=

h4

h3
,

w3 =
a3

3

a3
2
=

a4
3

a4
2−w4a4

1
=

b1

a5
2−

a5
4

b1
b2

=
b1

c1
=

h3

h2
,

w2 = a2
2 = a3

2 = c1 = h2,

w1 = a2
1 = a3

1−w3a3
0 = a4

1−
b1

c1
a5

0 = a5
1−w5a5

0−
b1

c1
a5

0

= a5
1−

a5
5

a5
4

a5
0−

b1

c1
a5

0 = b2−
b1

c1
a5

0 =
c1b2−b1c2

c1
= d1 = h1,

w0 = 1 = h0.

(17)

The results show that h5 corresponds to first element of Routh table, h4 corre-
sponds to second element, and so on until h1.

From (14) and (8) the relations for recursive generation of normed Hurwitz
polynomials of order k+1, for k > 2, can be obtained as

a(s) = p(s)+wk+1q(s). (18)

Denote the degree of a polynomial by superscript to obtain

ak+1 =
[
wkak

k ak
k ak

k−1 +wkak
k−2 ak

k−2ak
k−3 +wkak

k−4 · · · 1
]T

, (19)
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where
ak =

[
ak

k ak
k−1 · · · 1

]T
. (20)

Using matrix notation, equation (19) can be rewritten as

ak+1 =Wkak, (21)

where Wk is a (k+1)× k matrix of the form

Wk = wk




Jk
...

0T


+




0T

...
Ik


 (22)

with Ik being the k× k unit matrix and Jk being the k× k diagonal matrix Jk =
diag{1,0,1,0, . . .}, i.e.,

Wk =




wk 0 0 0 · · · 0
1 0 0 0 · · · 0
0 1 wk 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1



. (23)

Next, using recursive relation (21), yields an =W n
k ak, where

W n
k =WnWn−1 · · ·Wk, k = n, . . . ,3 (24)

or

an =W n
3 a2 =WnWn−1 · · ·W3




w2
w1
1


 . (25)

Example 1.2. Let us illustrate equation (25) on the basis of low order polynomials.
In case n = 3, one gets

a3 =W 3
2




w2
w1
1


=




w3 0 0
1 0 0
0 1 w3
0 0 1







w2
w1
1


=




w2w3
w2

w1 +w3
1


 , (26)

and n = 4 yields

a4 =W 4
2




w2
w1
1


=




w4 0 0 0
1 0 0 0
0 1 w4 0
0 0 1 0
0 0 0 1







w2w3
w2

w1 +w3
1




=




w2w3w4
w2w3

w2 +w1w4 +w3w4
w1 +w3

1



.

(27)
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Example 1.3. For numerical example let us consider the polynomial given as
a(s) = 8s3 +2s2 +6s+1 or

a3 =
[
a3

3 a3
2 a3

1 a3
0
]T

=
[
8 2 6 1

]T
. (28)

Then, the reduced Routh parameters can be computed as

w0 = a3
0 = 1,

w1 = a3
1−

a3
3

a3
2
= 6−4 = 2,

w2 = a3
2 = 2,

w3 =
a3

3

a3
2
=

8
2
= 4,

(29)

and therefore w(a) =
[
4 2 2 1

]T.

Lemma 1.1 ([7]). The elements in (25), can be calculated using the direct formula

an
l =

n

∑
i0=1

i0

∑
i1=1
· · ·

in−l−1

∑
in−l=1

n−l

∏
j=0

wi j mod (i j +n− l− j,2), (30)

where l = 1, . . . ,n is the index number of the corresponding row in (25), n > 2,
and mod (α,2) is the usual modulus operation that returns either 1 or 0 depending
on whether the number α is odd or even, respectively [7]. Elements wi j in (30)
correspond to elements of the matrix Wk as

wi j :=

{
w2/w1 for i j = 2,
wi j otherwise.

(31)

Let n = 4 and

w =
[
w4 w3 w2 w1 1

]T
=
[
2 3 5 4 1

]T
. (32)

Next, calculate recursively the coefficients of polynomials. According to (21) and
using the results from Example 1.2, for k = 2,3, yields

a2 =




5
4
1


 , a3 =




3 0 0
1 0 0
0 1 3
0 0 1







5
4
1


=




15
5
7
1


 (33)

and for k = 4

a4 =




2 0 0 0
1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1







15
5
7
1


=




30
15
19
7
1



. (34)

19



1.2 Multilinear stability criterion and Routh rays of polyno-
mials

In this section definition for Routh rays and Routh sources are given and multilinear
stability criteria are presented. Henceforth, to simplify notation sometimes the
power index of a polynomial is omitted, i.e., an = a.

Theorem 1.1 ([70]). Through an arbitrary Hurwitz stable point

a =
[
an an−1 · · · a1 1

]T (35)

with reduced Routh parameters wk > 0, k = 1, . . . ,n one can draw n stable half-lines
Rk(a)⊂Hn such that

Rk(a) =
{

a | wk ∈ (0,∞),w j = const, j 6= k; k, j ∈ {1, . . . ,n}
}
. (36)

Proof. Observe that all points of the line Rk(a) are Hurwitz stable, since

1. n− 1 reduced Routh parameters w j, j ∈ {1, . . . ,n}, j 6= k are assumed to be
fixed and positive w j > 0;

2. the kth reduced Routh parameters wk > 0, according to wk ∈ (0,∞).

Next, we have to prove that Rk(a) is a line segment (half-line). It is easy to see that
mapping (21) is multilinear. If n−1 reduced Routh parameters w j, j ∈ {1, . . . ,n},
j 6= k are fixed, then mapping (21) turns out to be linear with respect to the kth
reduced Routh parameter wk. The latter means that for each k = 1, . . . ,n there is a
half-line Rk(a), and altogether n half-lines Rk(a)⊂Hn.

Definition 1.2 ([70]). The half-lines Rk(a), k = 1, . . . ,n defined by (36) are called
Routh rays of the polynomial a(s). Moreover, their endpoints vk(a) such as

vk(a) = a(wk = 0) (37)

are supposed to be the Routh sources of the polynomial a(s).

Example 1.4 (Example 1.3 cont.). Let n = 3. Start from the polynomial

a =
[
8 2 6 1

]T (38)

with reduced Routh parameters

w(a) =
[
4 2 2 1

]T
. (39)

By (21) we can easily calculate the Routh sources as follows

v1 =
[
8 2 4 1

]T
,

v2 =
[
0 0 6 1

]T
,

v3 =
[
0 2 2 1

]T
(40)

and find the Routh rays R1(a), R2(a), R3(a) through the corresponding Routh
source vk, k = 1,2,3, and the initial point a as

R1 = α
[
8 2 6 1

]T
+(1−α)

[
8 2 4 1

]T
,

R2 = α
[
8 2 6 1

]T
+(1−α)

[
0 0 6 1

]T
,

R3 = α
[
8 2 6 1

]T
+(1−α)

[
0 2 2 1

]T
,

(41)
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where α ∈ [0,∞). Next, we calculate the roots

λ (vk) =
[
λ1(vk) λ2(vk) λ3(vk)

]T (42)

of the Routh sources as

λ (v1) =

[
−0.25
±0.7071i

]
, λ (v2) =




0
0

−0.1667


 ,

λ (v3) =

[
0

−0.5±0.5i

]
.

(43)

Indeed, all the Routh sources have at least one root on the imaginary axis, e.g., v1
has a pair of imaginary roots, v2 has two roots in the origin and v3 has a root in
the origin.

Theorem 1.2 (Multilinear stability criterion, [71]). If a is a Hurwitz stable poly-
nomial with reduced Routh parameters wk(a), k = 1, . . . ,n, then all the Routh rays
Rk(a) are Hurwitz stable.

Proof. The proof follows directly from Theorem 1.1.

According to Proposition 1.1, all Routh sources vk(a) of Hurwitz (stable) polyno-
mials a(s) are placed on the stability boundary. This means that some of the roots
λ j(vk), j = 1, . . . ,n, k = 1, . . . ,n are placed on the imaginary axis. Using mapping
(25) the following theorem can be formulated, regarding roots of Routh sources.

Theorem 1.3 ([70]). All the Routh sources v j(a), j = 2, . . . ,n− 1 of a Hurwitz
polynomial a(s) of the order n have at least two roots at the origin

λ1(v j) = λ2(v j) = 0, j = 2, . . . ,n−1 (44)

and the last Routh source vn(a) has at least one root at the origin

λ1(vn) = 0. (45)

Proof. To prove the theorem, the direct formula (30) from Lemma 1.1 is used.
Indeed, take in (30) for l = 1 and l = 2 indices as

i0 = n, i1 = n−1, . . . , in−2 = 2, in−1 = 1 (46)

and

i0 = n−1, i1 = n−2, . . . , in−3 = 2, in−2 = 1, (47)

respectively. This yields the first two elements an
1, an

2 of (25) given as

an
1 = wnwn−1 · · ·w2w1,

an
2 = wn−2wn−3 · · ·w2w1

(48)

or, using (31), in the simplified form as

an
1 = wnwn−1 · · ·w2,

an
2 = wn−2wn−3 · · ·w2.

(49)
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Hence, according to Definition 1.2, from the previous equations it follows

λ1(v j) = λ2(v j) = 0, for j = 2, . . . ,n−1,
λ1(vn) = 0.

(50)

Example 1.5 (Example 1.2 cont.). Using (37) we can calculate the Routh sources
vk(a) of some low-order polynomials a(s). In case n = 3 from (26) we obtain

v1(a) =




w2w3
w2
w3
1


 , v2(a) =




0
0

w1 +w3
1


 ,

v3(a) =




0
w2
w1
1


 .

(51)

Indeed, as stated in Theorem 1.3, λ1(v2) = λ2(v2) = λ1(v3) = 0 for arbitrary positive
reduced Routh parameters w1, w2 and w3.

Now, in case n = 4 from (27) we obtain

v1(a) =




w2w3w4
w2w3

w2 +w3w4
w3
1



, v2(a) =




0
0

w1w4 +w3w4
w1 +w3

1



,

v3(a) =




0
0

w2 +w1w4
w1
1



, v4(a) =




0
w2w3

w2
w1 +w3

1



.

(52)

Hence, it follows that λ1(v2) = λ2(v2) = λ1(v3) = λ2(v3) = λ1(v4) = 0 for arbitrary
positive reduced Routh parameters w1, w2, w3, and w4 as proposed in Theorem 1.3.

1.3 Stable (Hurwitz) polytopes of polynomials via Routh seg-
ments

In this section the algorithm for construction of Hurwitz stable polytopes is intro-
duced. We now explain the generation procedure of stable polytopes of Hurwitz
polynomials starting from a single Hurwitz polynomial a.

According to Theorem 1.1, the set of n Routh rays Rk(a), k = 1, . . . ,n is Hurwitz
stable. However, in general, the linear cover of the Routh rays Rk(a), k = 1, . . . ,n is
not Hurwitz stable. This results in a complex problem of finding a stable polytope
P(a) around the initial point a such that all the vertices are placed on the Routh
rays Rk(a), k = 1, . . . ,n. Moreover, in many cases it is necessary to find the stable
polytope Pmax(a) with maximal possible volume

V (Pmax(a)) = max
P

V (P(a)). (53)
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A step-by-step algorithm to solve the problem of generating stable polytope via
bunches of Routh segments is described next. Note that + and − signs stand to
positive and negative directions with respect to the starting point, respectively.
Algorithm 1:

Step 1. Start from a given nth-order stable polynomial a(s), or

an =
[
an

n an
n−1 · · · an

1 1
]T

. (54)

Step 2. Using (5), calculate the reduced Routh parameters wk for k = n, . . . ,1.

Step 3. Calculate by (37) the Routh sources vk(a) for k = 1, . . . ,n.

Step 4. Using (36), find the Routh rays Rk(a) for k = 1, . . . ,n.

Step 5. Find the stable polytope of sources P0(a) of the polynomial a(s) as follows:

• Start from the polytope P−0 (a) defined as the linear cover of the ini-
tial polynomial a and all of its sources vk(a), k = 1, . . . ,n, i.e., P−0 (a) =
conv{a,v1, . . . ,vn}.

•Check the stability of single edges of P−0 (a) by Hurwitz Segment Lemma,
see [15, p. 81]. Next, check the stability of the polytope P−0 (a) using Edge
Theorem, see [15, p. 271].

• If thus obtained polytope P−0 (a) is not stable, then generate recursively
using interval halving method (between a and vk(a), k = 1, . . . ,n) the new
candidates for the polytope of sources P−l (a), l = 1,2, . . ..

• If a stable polytope of sources P−max(a) with maximal volume V (P−(a)) =
max is found, then stop. The volume of polytopes P−(a) can be found by
Triangulation method, see [8] for technical details.

Step 6. Similarly, find the stable polytope of rays P+(a) of the polynomial a(s)
starting from endpoints of the Routh rays ek(wk = γ) ∈ Rk(a) with γ being a
big-enough number. If a stable polytope of rays P+

max(a) with maximal volume
V (P+(a)) = max is found, then stop. The volume of polytopes P+(a) can be
found by Triangulation method.

Step 7. Starting from the vertices of the polytopes P−(a) and P+(a), find using
interval halving method the stable polytope of Routh (rays) segments P(a) with
vertices R−k ∈Rk(a) and R+

k ∈Rk(a) with maximal volume.

Algorithm 1 for generating stable polytope is visualized in Fig. 2.

Example 1.6. Consider the insulin model for a specific patient described by the
state equations as [66]

ẋ1 =−0.435x1 +0.209x2 +0.02x3 +u

ẋ2 = 0.268x1−0.394x2

ẋ3 = 0.227x1−0.02x3

y = 0.0003x1,

(55)
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k:=n Calculate W(k)

Input: a(s)

k=0

k:=k-1

yes

k:=1

k>nCalculate v_k(a)

k:=k+1

Calculate Pmin(a)
Calculate Pplus(a)

Construct P(a)

Pmin(a) = Stable Increase Alpha_kDecrease Alpha_k

Pplus(a) = Stable Increase Alpha_kDecrease Alpha_k

P(a) = Stable
OR

V(P(a)) >= V(P_max(a))

yes

Output: P_max(a)

no

no yes

no

no

no

yes

yes

Figure 2. Schematic representation of Algorithm 1 for calculation of a stable polytope.
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where x1, x2, x3 denote the amount of insulin in plasma, liver, and interstitial
compartment, respectively; u is the external insulin flow, and y is the plasma insulin
concentration. The model (55) can be represented by the following transfer function

H(s) =
0.0003s2 +0.1242×10−3s+2.364×10−6

s3 +0.849s2 +0.1274s+0.5188×10−3 . (56)

One can easily verify that the nominal system H(s) is stable, since the poles λ1 =
−0.656, λ2 = −0.189, and λ3 = −0.004 have negative real parts. Our aim is to
find the stable polytope (with maximal volume) in the coefficient space around the
nominal characteristic polynomial

a(s) = s3 +0.849s2 +0.1274s+0.5188×10−3. (57)

Normalize polynomial a(s) with respect to the free term to get

a(s) = 1927.53s3 +1636.47s2 +245.567s+1. (58)

Next, according to Algorithm 1, collect coefficients as

a =
[
1927.53 1636.47 245.567 1

]T (59)

for which the reduced Routh parameters can be found as

wk(a) =
[
1.17786 1636.47 244.389 1

]T
. (60)

Application of (21) yields the Routh sources given as

v1 =
[
1927.53 1636.47 1.17786 1

]T
,

v2 =
[
0 0 245.567 1

]T
,

v3 =
[
0 1636.47 244.389 1

]T
.

(61)

Now, using (36), one can find the Routh rays R1(a), R2(a), R3(a) through the
corresponding Routh source vk, k = 1,2,3, and the initial point a as

R1 = α1




1927.53
1636.47
245.567

1


+(1−α1)




1927.53
1636.47
1.17786

1


 ,

R2 = α2




1927.53
1636.47
245.567

1


+(1−α2)




0
0

245.567
1


 ,

R3 = α3




1927.53
1636.47
245.567

1


+(1−α3)




0
1636.47
244.389

1


 ,

(62)

where α ∈ [0,∞). After several iterations algorithm terminates with the polytope
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Pmax(a), whose vertices have the following coordinates

p−1 = (1927.53,1636.47,87.6285),

p−2 = (681.847,578.888,245.567),

p−3 = (681.847,1636.47,244.805),

p+1 = (1.92752×103,1.63647×103,167.627×103),

p+2 = (1.32208×106,1.12245×106,2.45567×102),

p+3 = (1.32208×106,1.63647×103,1.05228×103),

(63)

where + indicates that αi > 1, and − corresponds to the case 1 > αi > 0. Finally,
the volume of the obtained polytope can be found as

V (Pmax(a)) = 4.1394×1016. (64)

1.4 Stable Routh cones of polynomials
In this section definitions and theorems for Routh cones and polynomials are pre-
sented, followed by several numeric examples.

We now study the stability of polynomials with conic uncertainty [44] by means
of Routh rays. Define the so-called Routh cones1 in the polynomial coefficient space
a ∈ Rn starting from the reduced Routh parameter space w ∈ Rn. Let a∗ ∈Hn be
an arbitrary stable polynomial of the order n, and w∗ be the respective vector
consisting of the reduced Routh parameters.

Definition 1.3 ([7]). 1. A subset Ki(a∗) of normed polynomials a(s) of degree
n with coefficients a ∈ Rn is said to be a Routh cone of a polynomial a∗(s) if
it is closed under positive scalar multiplication of one of its reduced Routh
parameters w∗i , i ∈ {1, . . . ,n}, i.e., a(wi = αw∗i ) ∈Ki when a ∈Ki and α > 0,
where all the other reduced Routh parameters w j, j 6= i, j ∈ {1, . . . ,n} are
fixed w j = w∗j .

2. If P is a subset of normed polynomials a(s) of degree n with coefficients a∈Rn,
then

Ki(P) = {a(wi = αwi); a ∈ P,α > 0, i ∈ {1, . . . ,n}} (65)

is called the Routh cone generated by P.

3. A convex cone K (a∗) of normed polynomials a(s) of degree n with coefficients
a ∈ Rn is said to be a polyhedral Routh cone of a polynomial a∗(s), if there
exist αi,βi, such that

K (a∗) =

{
n

∑
i=1

βia(αiw∗i ); αi > 1,0 < βi < 1,

n

∑
i=1

βi = 1,w j = w∗j = const, j 6= i, i = 1, . . . ,n

}
. (66)

1Note that the notion cone is used in consonance with results in [44,71]. In this work
definition of the Routh cone coincides with that of the Routh ray.
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4. A convex cone Ki, j(a∗) of normed polynomial a(s) of degree n with coefficients
a ∈ Rn is said to be a polyhedral Routh i, j-subcone of a polynomial a∗(s), if
there exist αi,βi, such that

Ki, j(a∗) =
{

βia(wi = αiw∗i ,w j = w∗j)+β ja(w j = α jw∗j ,wi = w∗i );

αi,α j > 1,0 < βi,β j < 1,βi +β j = 1,

wk = w∗k = const,k 6= i, j; i, j,k ∈ {1, . . . ,n}
}
. (67)

5. A convex set K
n
j,k(a

∗) of normed polynomials a(s) of degree n with coefficients
a ∈Rn is said to be a truncated polyhedral Routh cone of a polynomial a∗(s),
if there exist αi,βi, such that

K
n
j,k(a

∗) =

{
n

∑
i=1

βia(αiw∗i ); αi > 1, i 6= j,k;1 < α j < α j,

1 < αk < αk; 0 < βi < 1,
n

∑
i=1

βi = 1,wh = w∗h = const,h 6= i, i = 1, . . . ,n

}
. (68)

Remark 1.1. According to Theorem 1.1, it is possible to draw n stable Routh
rays Ri(a∗) through an arbitrary stable point a∗. In [70] it was shown that if the
point is not placed on the boundary of stability domain, then there are positive and
negative directions with respect to a∗. The positive part of a Routh ray corresponds
to αi ∈ (1,∞) while the negative to αi ∈ (0,1), and for αi = 1 rays intersect at the
point a∗. In this paper notions of Routh rays and Routh cones Ki(a∗) coincide for
positive direction. Therefore, the point a∗ has to be understood as a vertex of the
polyhedral Routh cone.

Theorem 1.4 ([71]). An arbitrary subset P of normed polynomials a(s) of degree
n, a(s) ∈Rn has n Routh cones Ki(P), i = 1, . . . ,n generated by P. If the subset P is
stable, then all Routh cones Ki(P) generated by P are stable.

Proof. According to Theorem 1.1, through an arbitrary point a ∈ P ⊂ Rn it is
possible to draw half-lines Ri(a) such that wi ∈ (0,∞), i = 1, . . . ,n. If polynomials
a ∈ P are stable, then all half-lines Ri(a) are stable, i.e., Routh cone Ki(P) is
stable.

Theorem 1.5 ([71]). The n-times Routh cone of the polynomial a(s) = 1, i.e., a =[
0 . . . 0

]
∈Rn, generates the whole stability domain A in polynomial coefficient

space, A ⊂ Rn.

Proof. Starting from the origin a = 0 it is possible to find the Routh ray R1(0)
which is placed on the stability boundary, since all the points a∈R1(0) have w j = 0,
j = 2, . . . ,n. The Routh cone K1,2(0) = K2(R1(0)) is also placed on the stability
boundary, since all the points a ∈K1,2(0) have w j = 0, j = 3, . . . ,n and wi ∈ (0,∞),
i = 1,2. Similarly, for all the points a∈K1,...,n−1(0) it follows that w j = 0, j = n and
wi ∈ (0,∞), i = 1, . . . ,n−1. Finally, the Routh cone K1,...,n(0) contains points a with
wi ∈ (0,∞), i = 1, . . . ,n, i.e., K1,...,n(0) = A .

Theorem 1.6 ([7]). If all the polyhedral Routh subcones Ki, j(a∗), i, j ∈ {1, . . . ,n}
of a stable polynomial a∗(s) are stable, then the polyhedral Routh cone K (a∗) is
stable.
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Proof. Indeed, if αi and α j, 1 < αi,α j < ∞ are fixed, then the polyhedral Routh
cone K (a∗) is a polytope with n+1 vertices a∗ and a(wk = αkw∗k ,w j = w∗j), j 6= k,
k = 1, . . . ,n. The edges conv{a∗,a(wk)} are stable as Routh rays of a stable point
a∗. The edges conv{a(wk),a(w j)} are stable, since conv{a(wk),a(w j)} ⊂Kk, j(a∗) for
arbitrary 1<αk, j <∞. Thus, it remains to note that by Edge Theorem the polytope
is stable for 1 < αi,α j < ∞, since all edges of the polytope are stable [10].

Let Γ = {1, . . . ,n} be a set of integers. Rewrite it as Γ = γ1 ∪ γ2, where γ1 and
γ2 are sets that contain indices corresponding to ordinary and truncated Routh
subcones, respectively, with dimγ1 = m1 and dimγ2 = m2 such that m1 +m2 = n.

Theorem 1.7 ([7]). A truncated polyhedral Routh cone K
n
i j
(a∗) such that i j ∈ γ2

and j = 1, . . . ,m2 of a stable polynomial a∗(s) is stable if the following conditions
hold:

1. the polyhedral Routh subcones Kr,s(a∗), r,s ∈ γ1 are stable;

2. the line segments Su,v(αu,αv), u,v ∈ γ2 are stable, where

Su,v(αu,αv) =
{

a(wu = αu,minw∗u),a(wv = αv,minw∗v),wi = w∗i , i 6= u,v
}

(69)

and αu,min = minu αu.

Proof. Indeed, if αr and αs, 1 < αr,αs < ∞ are fixed, then the truncated polyhe-
dral Routh cone K

n
i j
(a∗) is a polytope with n+ 1 vertices a∗, a(wu,αu), a(wv,αv)

and a(wr = αrw∗k ,wl = w∗l ), l 6= r, l ∈ {1, . . . ,n}, a(ws = αsw∗k ,wl = w∗l ), l 6= s, l ∈
{1, . . . ,n}. The edges conv{a∗,a(wu,αu)}, conv{a∗,a(wv,αv)}, conv{a∗,a(wr)}, and
conv{a∗,a(ws)} are stable as the Routh rays of a stable point a∗. The edges
conv{a(wr),a(ws)} are stable, since conv{a(wr),a(ws)} ⊂Kr,s(a∗) for arbitrary 1 <
αr,αs <∞. It follows from condition 2) that the edges Su,v(αu,αv) are stable. Hence,
by Edge Theorem the polytope is stable for 1 < αr,αs < ∞, since all edges of the
polytope are stable [10].

Theorem 1.8 ([7]). For n = 3 the polyhedral Routh cone K (a∗) of an arbitrary
stable polynomial a∗(s) is stable.

Proof. Assume without loss of generality that α1 = α2 = α3 = α. Then, by (21) we
obtain the Routh cones Ki(a∗), i = 1,2,3 for the polynomial a∗(s)

K1(a∗) =
[
w∗2w∗3 w∗2 αw∗1 +w∗3 1

]T
,

K2(a∗) =
[
αw∗2w∗3 αw∗2 w∗1 +w∗3 1

]T
,

K3(a∗) =
[
αw∗2w∗3 w∗2 w∗1 +αw∗3 1

]T
,

(70)

where α > 1 and w∗1, w∗2, w∗3 are the reduced Routh parameters of the polynomial
a∗(s).

Let a ∈K (a∗) be an inner point of the polyhedral Routh cone K (a∗). Then,
the convex combination can be expressed as

a = β1K1(a∗)+β2K2(a∗)+β3K3(a∗), (71)
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where 0 < βi < 1, ∑
3
i=1 βi = 1 or in the explicit form as

a =




(β1 +β2α +β3α)w∗2w∗3
(β1 +β2α +β3)w∗2

(β1α +β2 +β3)w∗1 +(β1 +β2 +β3α)w∗3
1


 . (72)

Note that, according to Proposition 1.1, polynomial a(s) is stable if the reduced
Routh parameters wi > 0, i = 1,2,3. From (5) one obtains

w3 =
(β1 +β2α +β3α)w∗2w∗3
(β1 +β2α +β3)w∗2

. (73)

Observe that, according to Proposition 1.1, the reduced Routh parameters w∗i ,
i = 1,2,3, of the stable polynomial a∗(s) are positive. Moreover, α > 1 and βi > 0,
yielding w3 > 0. Similarly, from (5), one obtains

w2 = (β1 +β2α +β3)w∗2 > 0 (74)

and

w1 = (β1α +β2 +β3)w∗1 +(β1 +β2 +β3α)w∗3−
(β1 +β2α +β3α)w∗2w∗3
(β1 +β2α +β3)w∗2

. (75)

The latter after simple algebraic manipulations yields

w1 = ((β1 +β2α +β3)w∗2)
−1×

(
(β1α +β2 +β3)×

(β1 +β2α +β3)w∗1w∗2 +(1−α)2
β2β3w∗2w∗3

)
> 0. (76)

Example 1.7. Consider an Unmanned Free-Swimming Submersible vehicle [66]
for which the relation of pitch angle to elevator surface angle can be represented
by the transfer function

H(s) =
−0.125(s+0.435)

(s+1.23)(s2 +0.226s+0.0169)
. (77)

Since the poles
λ1 =−1.23,
λ2,3 =−0.113±0.0643i

(78)

have negative real parts, it immediately follows that the nominal system H(s) is
stable. The goal is to construct the stable polyhedral cone in the coefficient space
starting from the nominal characteristic polynomial (the denominator of H(s))

a∗(s) = s3 +1.456s2 +0.2949s+0.028. (79)

Normalize the polynomial a∗(s) dividing it by free term 0.028 to get

a∗(s) = 35.7143s3 +52s2 +10.5321s+1 (80)

or
a3 =

[
a3

3 a3
2 a3

1 1
]T

=
[
35.7143 52 10.5321 1

︸ ︷︷ ︸
a3

]T
. (81)
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The reduced Routh parameters can be found using recursive relation (5) as follows.
Start from

w∗3 =
a3

3

a3
2
=

35.7143
52

= 0.6868. (82)

Next, find the second-order polynomial

a2 =




a2
2

a2
1

1


=W 3a3 =




1 0 0
0 1 −0.6868
0 0 1






52
10.5321

1


=




52
9.8453

1


 , (83)

yielding
w∗ =

[
w∗3 w∗2 w∗1 w∗0

]T
=
[
0.6868 52 9.8453 1

]T
. (84)

Then, according to Definition 1.3, Routh cones can be calculated as

Ki =




w3 0 0
1 0 0
0 1 w3
0 0 1




︸ ︷︷ ︸
W3




w2
w1
1


 . (85)

Cone K1: Take w1 = α1w∗1, w2 = w∗2, w3 = w∗3, 1 < α1 < ∞, and

a2 =




52
9.8453α1

1


 . (86)

Then,

K1 =




0.6868 0 0
1 0 0
0 1 0.6868
0 0 1







52
9.8453α1

1


=




35.7136
52

9.8453α1 +0.6868
1


 . (87)

Cone K2: Take w1 = w∗1, w2 = α2w∗2, w3 = w∗3, 1 < α2 < ∞, and

a2 =




52α2
9.8453

1


 . (88)

Then,

K2 =




0.6868 0 0
1 0 0
0 1 0.6868
0 0 1







52α2
9.8453

1


=




35.7136α2
52α2

10.5321
1


 . (89)

Cone K3: Take w1 = w∗1, w2 = w∗2, w3 = α3w∗3, 1 < α3 < ∞, and

a2 =




52
9.8453

1


 . (90)
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Then,

K3 =




0.68682α3 0 0
1 0 0
0 1 0.68682α3
0 0 1







52
9.8453

1




=




35.7136α3
52

0.6868α3 +9.8453
1


 .

(91)

Let a ∈K (a∗) be an inner point of the polyhedral Routh cone K (a∗). Then,
the convex combination can be expressed as

a = β1K1(a∗)+β2K2(a∗)+β3K3(a∗), (92)

where 0 < βi < 1, ∑
3
i=1 βi = 1 or in the explicit form as

a =




35.7136(β1 +β2α +β3α)
52(β1 +β2α +β3)

9.8453(β1α +β2 +β3)+0.6868(β1 +β2 +β3α)
1


 . (93)

From (5) it follows

w3 =
0.6868(β1 +β2α +β3α)

β1 +β2α +β3
,

w2 = 52(β1 +β2α +β3),

w1 =
511.956(β1α +β2 +β3)(β1 +β2α +β3)+35.7136(1−α)2β2β3

52(β1 +β2α +β3)
.

(94)

Observe that a∗(s) is stable. Then, it follows from Proposition 1.1 that w∗i > 0,
i = 1,2,3. It remains to show that the reduced Routh parameters wi, i = 1,2,3 are
also positive. This trivially follows from the fact that αi > 1 and 0 < βi < 1 with
∑

3
i=1 βi = 1. Therefore, the constructed polyhedral Routh cone

K (a∗) =

{
β1K1(a∗)+β2K2(a∗)+β3K3(a∗) | αi > 1,0 < βi < 1,

3

∑
i=1

βi = 1, i = 1,2,3

}
(95)

is stable.

Theorem 1.9 ([7]). The polyhedral subcones Ki, j(a∗), i, j ∈ {1,2,3} of an arbitrary
stable polynomial a∗(s) of order n are stable.

Proof. By (21) we obtain the following Routh cones Ki(a∗), i = 1,2,3 for the poly-
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nomial a∗(s), a ∈ Rn

K1(a∗) =W n
4 (a

∗)




w∗2w∗3
αw∗1 +w∗3

1


 ,

K2(a∗) =W n
4 (a

∗)




αw∗2w∗3
αw∗2

w∗1 +w∗3
1


 ,

K3(a∗) =W n
4 (a

∗)




αw∗2w∗3
w∗2

w∗1 +αw∗3
1


 ,

(96)

where
W n

4 (a
∗) :=Wn(a∗) · · ·W4(a∗) (97)

and α > 1.
For a ∈ K1,2(a∗) there exist constants α > 1 and 0 < β < 1 such that for an

arbitrary a ∈K1,2(a∗)

a = βa(w1 = αw∗1)+(1−β )a(w2 = αw∗2), (98)

where
a(w1 = αw∗1) ∈K1,

a(w2 = αw∗2) ∈K2.
(99)

The above relation can be rewritten in the explicit form as

a =Wn(a∗) · · ·W4(a∗)




(β +(1−β )α)w∗2w∗3
(β +(1−β )α)w∗2

(βα +1−β )w∗1 +w∗3
1


 . (100)

Observe that the reduced Routh parameters wn, . . . ,w4 of the polynomial a(s) are
determined by the product of matrix multiplication Wn(a∗) · · ·W4(a∗), i.e., wi = w∗i ,
i = 4, . . . ,n. For the reduced Routh parameters wi, i = 1, . . . ,3 of the polynomial
a ∈K1,2(a∗), using (5), it follows

w2w3 = (β +(1−β )α)w∗2w∗3,

w2 = (β +(1−β )α)w∗2,

w1 +w3 = (βα +1−β )w∗1 +w∗3

(101)

or
w1 = (βα +1−β )w∗1,

w2 = (β +(1−β )α)w∗2,

w3 = w∗3.
(102)

Note that α > 1, 0 < β < 1, and w∗i > 0, i = 1, . . . ,n. Then, wi > 0, i = 1, . . . ,n, i.e.,
a ∈K1,2(a∗) is stable.

In the similar manner we obtain for a ∈K1,3(a∗) the reduced Routh parameters
wn, . . . ,w4, wi = w∗i , i = 4, . . . ,n. For wi, i = 1, . . . ,3 of the polynomial a ∈K1,3(a∗)
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from (5) we get the following relations

w2w3 = (β +(1−β )α)w∗2w∗3,

w2 = w∗2,

w1 +w3 = (βα +1−β )w∗1 +(β +(1−β )α)w∗3

(103)

or
w1 = (βα +1−β )w∗1 > 0,
w2 = w∗2 > 0,
w3 = (β +(1−β )α)w∗3 > 0.

(104)

Finally, for a∈K2,3(a∗) we obtain the reduced Routh parameters wi =w∗i , i= 4, . . . ,n
and for wi, i = 1, . . . ,3

w2w3 = (βα +(1−β )α)w∗2w∗3,

w2 = (βα +(1−β ))w∗2,

w1 +w3 = w∗1 +(β +(1−β )α)w∗3

(105)

that yields

w1 = w∗1 +
(β (1−β )(1−α)2)w∗3

βα +(1−β )
> 0,

w2 = (βα +1−β )w∗2 > 0,

w3 =
αw∗3

βα +1−β
> 0.

(106)

Hence, all polyhedral subcones Ki, j(a∗), i, j ∈ {1,2,3} of an arbitrary stable poly-
nomial a∗(s) of order n are stable.

1.5 Discussion
There are several aspects that make the method based on Routh polytopes suitable
in a certain situation.

• It is especially well-suited to design a controller for an object with polytopic
uncertainty.

• The largest volume of the stable polytope can be obtained if a∗ is located
relatively far from the stability boundary. In this case, both P− and P+ are
almost proportional, and the initial point a∗ is placed near the center of the
constructed polytope.

At the same time, the proposed method does not use the whole length of the Routh
rays. Moreover, if a∗ is located close to the stability boundary, then volume P−

may appear to be small.
Similarly, the polyhedral Routh cones based method has several advantages.

• It is suitable to design a controller for an object with conic or one dominant
uncertainty.

• The whole length of the Routh half-lines (i.e., α > 1) is used.

• The largest volume can be obtained if a∗ is located relatively close to the
stability boundary.
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Unlike the polytopes based case, if a∗ is located far from the stability boundary,
then the respective part P− is not used at all. Moreover, the point a∗ becomes a
vertex of a polyhedral cone, which complicates the design of a controller.
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2 Routh controller design and software implementa-
tion

In this chapter, we present a simple and efficient algorithm to design a robust
output PID controller for continuous-time plant with uncertainties. The method is
based on a new stability criterion for Hurwitz polynomials presented in the above
section. The overall procedure can be briefly summarized as follows: (i) Start from
a stable simplex (or polytope) of a closed-loop characteristic polynomial, which is
defined via Routh rays of a pre-selected Hurwitz stable polynomial. (ii) Define the
set of possible plant parameters as a convex polytope (polytopic plant model). This
allows to determine properties that are common to all elements in the set analyzing
vertices of the polytope. Hence, the number of vertices determines complexity of
computations defined by n linear inequalities. (iii) Design a robust output controller
for polytopic plant model using, for example, quadratic programming approach.
Further in this section we present and describe a number of core functions that
are used to construct stable Routh cones or polytopes and design the respective
controller. Several illustrative examples are presented in the end of the section.

2.1 Robust controller design based on Routh cones and poly-
topes

In this section, the problem of a fixed-order robust output control with a pre-
selected simplex is stated and solved using quadratic programming approach.

Given a plant with parametric uncertainties. Our goal is to design a robust
output controller of a fixed-order so that the closed-loop poles are assigned in
a specific region approximated by the Routh cone as explained in Section 1.4.
For simplicity, we consider the problem of PID-controller design for a single-input
single-output (SISO) plant with fixed parameters. Let the transfer function H(s)
of the plant is given

H(s) =
g(s)
f (s)

=
gm−1sm−1 + · · ·+g1s+1

fmsm + · · ·+ f1s+ f0
, (107)

and we are looking for a PID-controller C(s) of the order l = 2 with the transfer
function

C(s) = KP +KI
1
s
+KDs (108)

or

C(s) =
q(s)
p(s)

=
q2s2 +q1s+1

p1s
. (109)

The closed-loop characteristic polynomial of degree n = m+ l = m+2 is

a(s) = f (s)p(s)+g(s)q(s). (110)

It is known from the literature [51] that for l = m− 1 the above problem has
a solution for arbitrary a(s), whenever the plant has no common pole-zero pairs.
However, in general, for l < m−1 the exact attainment of the desired polynomial is
not possible. We propose the following approach. Let us relax the requirement of
attaining the desired polynomial a(s) exactly and enlarge the target to a simplex
S in a polynomial coefficient space containing the point representing the desired
closed-loop characteristic polynomial. Without loss of generality we can assume
that g0 = q0 = 1 and consider further normed polynomials a(s) with a0 = 1.
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Consider a stability measure ρ defined in accordance with the simplex S as

ρ = cTc, (111)

where
c = S−1a, (112)

and S is the (m+ l +1)× (m+ l +1) matrix of vertices si of the target simplex

S =
[
s1 · · · sn+1

]
. (113)

Observe that for the normed polynomials

a0 = si0 = 1, i = 1, . . . ,n+1,
n+1

∑
i=1

ci = 1, (114)

where n = m+ l. If all coefficients ci > 0, i = 1, . . . ,n+1, then the point a is placed
inside the simplex S. It is easy to see that the minimum of ρ is obtained when

c1 = c2 = · · ·= cn+1 =
1

n+1
. (115)

Then, the point a is placed in the center of the simplex S.
Now, we are ready to state the following problem of controller design:

Find a controller C(s) such that the stability measure ρ is minimal.

In other words, we are looking for a controller which places the closed-loop char-
acteristic polynomial a(s) as close as possible to the center of the target simplex S.
In the matrix form notation we have

a = Gx, (116)

where G is the plant Sylvester matrix

G =




fm 0 gm−1 gm−2
...

...
...

...
f2 g3 g2 g1
f1 g2 g1 1
f0 g1 1 0
0 1 0 0




(117)

of dimension (m+2)×4 and x is a vector of controller parameters

x =
[
p1 1 q1 q2

]T
. (118)

The above controller design problem is equivalent to the quadratic programming
problem: find x such that the minimum

J = min
x

xTGT(SST)−1Gx (119)

is obtained subject to the linear constraints

S−1Gx > 0. (120)

Note that constraints (120) follow from positivity requirement on coefficients ci,
i = 1, . . . ,n. Next, we summarize the above results in the form of the algorithm.
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Algorithm 2:

Step 1. Start from a given transfer function H(s) for uncertain plant (107) and
desired controller type (PI, PD, or PID) function C(s).

Step 2. Construct the closed-loop characteristic polynomial (110) and Sylvester
matrix (117).

Step 3. Select the initial closed-loop characteristic polynomial a∗(s) and check
the stability.

Step 4. According to (8), find the reduced Routh parameters wk, k = n, . . . ,1 of
the polynomial a∗(s).

Step 5. According to (36), compute Routh rays Rk(a), k = 1, . . . ,n of the polyno-
mial a∗(s) and, using (113), construct stable target simplex S with vertices on
the Routh rays.

Step 6. Start with nominal plant (i.e., with values of uncertainties placed in the
center of region) and find controller gains p and q by solving convex quadratic
programming task (119) with restrictions (120).

Step 7. Check the stability of closed-loop system with polytopic plant, i.e., all the
vertices of the closed-loop polytope must be located inside the target simplex
S. If some points of the rectangle are located outside of S, then select different
initial closed-loop characteristic polynomial a∗(s) and repeat all the previous
steps.

It is important to mention that the algorithm is flexible and one can either choose
Routh cone or polytope to construct the target simplex on Step 5. The algorithm
is visualized in Fig. 3.

2.2 Overview of the developed software package
In this section, we briefly describe the main functions implemented based on the
above theoretical results. All the calculations and simulations were performed using
MATLAB environment.

NormalizeA()

1 function NormInputA = NormalizeA(RawInputA)
2 % NORMALIZEA normalizes coefficients for polynomial a(s)
3 %
4 % Usage:
5 % [NormInputA] = NORMALIZEA(RawInputA)
6 %
7 % where
8 % RawInputA - array of coefficients for polynomial a(s)
9 %

10 % Outputs:
11 % NormInputA - normalized array of coefficients for polynomial

a(s)

The function converts coefficients of polynomial a(s) to a normalized form.
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Input: 
H(s)

C(s) type

Construct a(s)
Construct G

Select new a*(s)

a*(s) = Stable

Calculate Wk(a*)
Calculate v_k(a*)

Construct 
Simplex S(a*)

Calculate a_nominal(s)
Calculate p, q

Add uncertainty
Construct a(s)

a(s) = Stable 
(Simplex S)

Output: C(s)

no

no

yes

yes

Figure 3. A schematic representation of Algorithm 2 robust controller design.

38



calcWfromA()

1 function OutputW = calcWfromA(InputA)
2 % CALCWFROMA calculates reduced Routh parameters for polynomial

a(s) coefficients.
3 %
4 % Usage:
5 % [OutputW] = CALCWFROMA(InputA)
6 %
7 % where
8 % InputA - array of coefficients for polynomial a(s) (in a

normalized format)
9 %

10 % Outputs:
11 % OutputW - reduced Routh parameters for polynomial a(s)

The function calculates Routh parameters from the polynomial a(s).

calcAfromW()

1 function OutputA = calcAfromW(InputW)
2 % CALCAFROMW calculates polynomial a(s) coefficients based on

reduced Routh parameters values.
3 %
4 % Usage:
5 % [OutputA] = CALCAFROMW(InputW)
6 %
7 % where
8 % InputW - array of reduced Routh parameters
9 %

10 % Outputs:
11 % OutputA - array of coefficients for polynomial a(s)

The function calculates polynomial a(s) coefficients based on the reduced Routh
parameters w(s) = {wn,wn−1,wn−2, . . . ,w0}.

calcRouthSources()

1 function RouthSourceV = calcRouthSources(InputW)
2 % CALCROUTHSOURCES calculates of Routh sources from reduced

Routh parameters.
3 %
4 % Usage:
5 % [RouthSourceV] = CALCROUTHSOURCES(InputW)
6 %
7 % where
8 % InputW - array of reduced Routh parameters
9 %

10 % Outputs:
11 % RouthSourceV - array of Routh sources

The function constructs stable half-lines (Routh rays) (36) from the reduced Routh
parameters wk, and calculates the Routh sources vk(a) (37) on the end-points of
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the respective Routh rays.

calcStablePmin()

1 function [OutPmin ,minAlphaStable] = calcStablePmin(InputA ,
RouthSourceV ,IterCnt ,InitAlpha ,IncrAlpha)

2 % CALCSTABLEPMIN calculates stable polytope P-(a) for "negative
" direction.

3 %
4 % Usage:
5 % [OutPmin ,minAlphaStable] = CALCSTABLEPMIN(InputA ,RouthSourceV

,IterCnt ,InitAlpha ,IncrAlpha)
6 %
7 % where
8 % InputA - array of coefficients for polynomial a(s) (in a

normalized format)
9 % RouthSourceV - array of Routh sources

10 % IterCnt - maximum number of iterations in calculation
11 % InitAlpha - initial Alpha value in range between 0 and 1
12 % IncrAlpha - initial interval for Alpha change (should be less

than InitAlpha)
13 %
14 % Outputs:
15 % OutPmin - matrix of vertex coordinates for found stable

polytope (polytope for negative direction)
16 % minAlphaStable - minimal stable Alpha value

The function calculates P−(a) stable polytope for the negative (α between 0 and 1
in (36)) direction, using the interval halving method.
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calcStablePpluss()

1 function [OutPpluss ,plussAlphaStable] = calcStablePpluss(InputA
,RouthSourceV ,IterCnt ,InitAlpha ,IncrAlpha)

2 % CALCSTABLEPPLUSS calculates stable polytope P+(a) for "
positive" direction.

3 %
4 % Usage:
5 % [OutPpluss ,plussAlphaStable] = CALCSTABLEPPLUSS(InputA ,

RouthSourceV ,IterCnt ,InitAlpha ,IncrAlpha)
6 %
7 % where
8 % InputA - array of coefficients for polynomial a(s) (in a

normalized format)
9 % RouthSourceV - array of Routh sources

10 % IterCnt - maximum number of iterations in calculation
11 % InitAlpha - initial Alpha value in range between 1 and

infinity
12 % IncrAlpha - initial interval for Alpha change
13 %
14 % Outputs:
15 % OutPpluss - matrix of vertex coordinates for found stable

polytope (polytope for positive direction)
16 % plussAlphaStable - maximal stable Alpha value

The function calculates of P+(a) stable polytope for positive (α between 1 and
infinity in (36)) direction, using the interval halving method.

checkStablePAll()

1 function [OutPIsStable] = checkStablePAll(InPmin ,InPpluss)
2 % CHECKSTABLEPALL check stability of polytope P(a) based on

vertex coordinates of InPmin and InPpluss.
3 %
4 % Usage:
5 % [OutPIsStable] = CHECKSTABLEPALL(InPmin ,InPpluss)
6 %
7 % where
8 % InPmin - vertex coordinates of "negative" direction polytope
9 % InPpluss - vertex coordinates of "positive" direction

polytope
10 %
11 % Outputs:
12 % OutPIsStable - Flag for status of polytope stability: returns

1 - for stable and 2 - for not stable polytope

This assistant function helps to verify whether a given polytope is stable or not.
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calcStableP()

1 function [OutPminFin ,OutPplussFin ,minAlphaFin ,plussAlphaFin] =
calcStableP(InputA ,RouthSourceV ,minAlphaStable ,CoefMin ,
plussAlphaStable ,CoefPluss ,IterCnt)

2 % CALCSTABLEP calculates final stable polytope P(a) starting
from points of P-(a) and P+(a) cones.

3 %
4 % Usage:
5 % [OutPminFin ,OutPplussFin ,minAlphaFin ,plussAlphaFin] =

CALCSTABLEP(InputA ,RouthSourceV ,minAlphaStable ,CoefMin ,
plussAlphaStable ,CoefPluss ,IterCnt)

6 %
7 % where
8 % InputA - array of coefficients for polynomial a(s) (in a

normalized format)
9 % RouthSourceV - array of Routh sources

10 % minAlphaStable - initial minimal stable Alpha value
11 % CoefMin - value (in range between 0 and 1) that allows to

change a speed at which alpha for Pmin will be adjusted;
value = 0 will disable adjustment in "negative" direction

12 % plussAlphaStable - initial maximal stable Alpha value
13 % CoefPluss - value (in range between 0 and 1) that allows to

change a speed at which alpha for Ppluss will be adjusted;
value = 0 will disable adjustment in "positive" direction

14 % IterCnt - maximum number of iterations in calculation
15 %
16 % Outputs:
17 % OutPminFin - final matrix of vertex coordinates for "negative

" direction of found stable polytope
18 % OutPplussFin - final matrix of vertex

coordinates for "positeve" direction of found stable
polytope

19 % minAlphaFin - final minimal stable Alpha value
20 % plussAlphaFin - final maximal stable Alpha

value

The function returns the final P(a) stable polytope. Calculations begin from end-
points of stable P−(a) and P+(a) cones. Stable polytope P(a) is found using interval
halving method.
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The following functions are designed for a robust controller design:

calcGainsSimplex()

1 function [OutputP_Q ,OutputSimplex ,OutputPlantNominal] =
calcGainsSimplex(InputA ,InputP)

2 % CALCGAINSSIMPLEX calculates controller gains p and q, and a
nominal plant.

3 %
4 % Usage:
5 % [OutputP_Q ,OutputSimplex ,OutputPlantNominal] =

CALCGAINSSIMPLEX(InputA ,InputP)
6 %
7 % where
8 % InputA - array of coefficients for polynomial a(s) (in a

normalized format)
9 % InputP - matrix of vertex coordinates for stable polytope

10 %
11 % Outputs:
12 % OutputP_Q - array of found gains p and q
13 % OutputSimplex - target Simplex matrix S
14 % OutputPlantNominal - matrix of coefficients

representing nominal plant

The function is used to:
• Construct plant Sylvester matrix G (117) and target Simplex matrix S (113).
• Calculate controller C(s) gains p and q using the optimization procedure (119).
• Calculate nominal plant with values of uncertainties placed in the center of re-

gion.

checkUncertRectangle()

1 function OutputPlantRectangle = checkUncertRectangle(InputP_Q ,
InputSimplex ,FUncertValue)

2 % CHECKUNCERTRECTANGLE constructs Uncertainty rectangle and
validates stability of the controller gains p and q.

3 %
4 % Usage:
5 % [OutputPlantRectangle] = CHECKUNCERTRECTANGLE(InputP_Q ,

InputSimplex ,FUncertValue)
6 %
7 % where
8 % InputP_Q - array of controller gains p and q.
9 % InputSimplex - target Simplex matrix S.

10 % FUncertValue - array of uncertainty values for a plant
11 %
12 % Outputs:
13 % OutputPlantRectangle - Uncertainty rectangle end -points

The function constructs uncertainty rectangle and validates stability of the calcu-
lated controller gains p and q for the initial (with uncertainties) plant.
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drawControllerN3()

1 function [] = drawControllerN3(InputA ,InputP ,
InputPlantRectangle ,InputPlantNominal)

2 % DRAWCONTROLLERN3 creates an 3D image of calculated controller
stability area in correspondence to initial plant with

uncertainty.
3 %
4 % Usage:
5 % DRAWCONTROLLERN3(InputA ,InputP ,InputPlantRectangle ,

InputPlantNominal)
6 %
7 % where
8 % InputA - initial closed -loop characteristic polynomial a*(s).
9 % InputP - Stable polytope P(s) end -points

10 % InputPlantRectangle - closed -loop polynomials for end -points
of a plant

11 % InputPlantNominal - nominal plant closed -loop polynomial
12 %
13 % Outputs:
14 % MATLAB image of a controller stability area for initial plant

The function can be used to visualize the calculated controller C(s) stability area
with respect ot the initial plant. It is designed only for n = 3 systems.

Overall relations between the developed functions are presented in Fig. 4.

2.3 Discussion
The problem of designing a robust fixed-order controller for a continuous-time plant
with uncertainties is addressed in this thesis. First, controller structure and order
is selected based on the type of a controller (PI, PD or PID). Then, parameters of a
selected controller are calculated solving linear quadratic problem for which the cor-
responding simplex is constructed using either polyhedral Routh cone or polytope.
The simplex for both methods is calculated using reduced Routh parameters.

Controller is designed using inner approximation of the stability domain based
on both Routh cones and polytopes. While, in general, the resulting area of poly-
tope approach has larger volume, sometimes method based on polyhedral Routh
cones may provide a better result especially when the starting stable point a∗ is
placed near the boundary of the stability domain. Thus, the selection of both
controller type and algorithm should be done based on system prerequisites and
requirements.
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Controller 
calculation
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Figure 4. Overview of the developed package.
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3 Numeric experiments
Example 3.1. Consider the normalized fourth-order system from [78]

H(s) =
g3s3 +g2s2 +g1s+1

f4s4 + f3s3 + f2s2 + f1s+ f0
, (121)

where
g1 = 1, g2 = 0.29167, g3 = 0.04167,
f0 = 1, f1 = 2.083, f2 = 1.4583,
f3 = 0.4167, f4 = 0.04167.

(122)

In order to illustrate the applicability of the algorithm proposed above, we introduce
uncertainty to the plant as

f0 = 1±0.625,
f1 = 2.083±1.25.

(123)

One may verify that the nominal plant (121) is stable. Our goal is to design a
low-order robust controller. In particular, we consider the PI-type controller

C(s) =
q1s+1

p1s
. (124)

The characteristic polynomial a(s) of the closed-loop system is given by

a(s) = p1s5 +(0.4167p1 +0.04167q1)s4

+(1.4583p1 +0.29167q1 +0.04167)s3

+[(2.083±1.25)p1 +q1 +0.29167]s2

+[(1±0.625)p1 +q1 +1]s+1.

(125)

Now, let us choose the initial stable closed-loop characteristic polynomial a∗(s),
whose poles are

r(a) = {−3,−4,−5,−5,−7}. (126)

It means that the normed polynomial with a∗0 = 1

a∗(s) = 0.0005s5 +0.0114s4 +0.1076s3 +0.4971s2 +1.1262s+1 (127)

has the reduced Routh parameters given as

w =
[
0.04167 0.1315 0.2451 0.3545 0.8394 1

]
. (128)

Take
α1 = α2 = α3 = α4 = α5 = 4.4032 (129)

and
a(wi = αiw∗i ) for i = 1, . . . ,5, (130)

yielding the stable polynomials on the Routh rays of the polynomial a∗(s)

a∗1 =
[
0.0005 0.0114 0.1233 0.8728 3.9828 1

]
,

a∗2 =
[
0.0021 0.0503 0.4536 1.7037 1.1262 1

]
,

a∗3 =
[
0.0021 0.0503 0.4079 0.6069 1.9604 1

]
,

a∗4 =
[
0.0021 0.0503 0.1278 0.9825 1.1262 1

]
,

a∗5 =
[
0.0021 0.0114 0.1781 0.4971 1.2680 1

]
.

(131)
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Next, we solve the PI-controller design task for the nominal plant with f1 = 2.083,
f0 = 1 via quadratic programming taking the target simplex of the closed-loop
system by the above Routh rays as

S =
[
a∗ a∗1 a∗2 a∗3 a∗4 a∗5

]

=




0.0005 0.0005 0.0021 0.0021 0.0021 0.0021
0.0114 0.0114 0.0503 0.0503 0.0503 0.0114
0.1076 0.1233 0.4536 0.4079 0.1278 0.1781
0.4971 0.8728 1.7037 0.6069 0.9825 0.4971
1.1262 3.9828 1.1262 1.9604 1.1262 1.2680

1 1 1 1 1 1



.

(132)

The optimization procedure returns parameters, resulting in the controller of the
form

C(s) =
0.4543s+1

0.0404s
. (133)

The reference signal is chosen to be the step function. The simulation results for
three variations (without, with maximum, and minimum possible uncertainties) of
plant (121) are depicted in Fig. 5. It can be seen that outputs are capable of tracking
reference signal for the same controller (133) with sufficient level of accuracy. Note
that the overregulation depends on the choice of the initial stable polynomial a∗(s),
which itself is a different problem not covered here.

Figure 5. Simulation results for the designed PI controller operating for the nominal plant
and plant with minimal and maximum possible uncertainty.

Example 3.2. Consider the second-order (m = 2) uncertain plant

H(s) =
g(s)
f (s)

=
g1s+1

f2s2 + f1s+ f0
(134)

with
g1 = 0.5,
f2 = 1,
f1 =−1.2±0.8
f0 = 0.52±1.

(135)
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One may verify that the nominal plant (i.e., without uncertainties) is unstable.
Thus, our goal is to design a stabilizing robust PI-controller

C(s) =
q1s+1

p1s
. (136)

The characteristic polynomial a(s) of the closed-loop system is given by

a(s) = p1s3− [(1.2±0.8)p1−0.5q1]s2 +[(0.52±1)p1 +0.5+q1]s+1. (137)

Now, let us choose the initial stable closed-loop characteristic polynomial a∗(s)
with poles r(a) = {−4±0.5i,−0.5}. Take α1 = α2 = α3 = 2. Next, we solve the PI-
controller design task for the nominal plant with f1 =−1.2, f0 = 0.52 via quadratic
programming. The optimization procedure returns the optimal parameters, yield-
ing

C(s) =
2.7949s+1

0.1702s
. (138)

Simulation results are presented in Fig. 6. The resulting pyramid corresponds
to approximation of the stability domain by polyhedral Routh cone. The black
(placed in the vertex) and blue dots are, respectively, defined by parameters of the
initial stable polynomial a∗(s) and coefficients of the characteristic polynomial a(s)
of the closed-loop system. The rectangular around blue dot determines bounds of
uncertainties of (137). Note that it is inside the stability domain meaning that the
designed controller is robust.

Figure 6. Approximation of the stability domain by polyhedral Routh cone.

Example 3.3. Consider the servo system provided by INTECO company [46] and
available in [1], see Fig. 7.

This modular experimental platform consists of the following components: a
tachogenerator, a 24V DC motor, an inertia load, a magnetic brake, an encoder,
and a gearbox. The servo system may be interfaced with the MATLAB/Simulink
environment through a specific PCI board, where data is collected from the encoder
and tachogenerator, and is sent to the power drive box, which controls the DC
motor. The data was collected from the plant and used for identification, yielding
the following transfer function

H(s) =
g(s)
f (s)

=
1

0.0049s2 +0.0061s
. (139)
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Figure 7. INTECO modular experimental platform.

We further add uncertainty to the identified model to verify the robustness of the
designed controllers. Hence, the parameters are

g1 = 0, g0 = 1,
f2 = 0.0049, f1 = 0.0061±0.002, f0 = 0.

(140)

Proceeding in the same manner as in the previous examples, and using two sets of
poles

r1(a) = {−1.5,−1,−0.5},
r2(a) = {−7,−5,−3} (141)

for the closed-loop characteristic polynomial, we get slow and fast PI controllers

Cs(s) =
97.1975s+1

13523s
,

C f (s) =
72.2242s+1

22.0993s
.

(142)

The results of laboratory experiments with controller C f (s) are presented in
Fig. 8. Two types of scenarios are considered: (i) nominal plant, and (ii) plant
with external friction between inertia load and the base. One can see that the
controller is capable of tracking reference signal for both cases. Figure 9 shows the
experimental results with controller Cs(s) for varying set point. In addition, Fig. 10
depicts the comparison for PD and PI controllers designed using both polytope and
cone techniques.
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Figure 8. Laboratory experimental results for controller C f (s) operating for nominal plant
and case with friction.

Figure 9. Laboratory experimental results for controller Cs(s).

Figure 10. Laboratory experimental results for PD and PI controllers using cone and
polytope based methods.
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Conclusions and Future research
The problem of convex approximation is very challenging and is still in the focus
of a community. The existing methods can tackle this problem under some specific
settings. The most suitable method is selected based on a task and desired results
with consideration of all advantages and disadvantages of selected approach.

In this thesis a simple and efficient method (with two algorithms) to generate sta-
ble line segments of Hurwitz polynomials is presented and explained. This method
for convex approximation of a continuous-time system is based on the new mul-
tilinear stability condition for Hurwitz polynomials formulated via reduced Routh
parameters. Starting from an arbitrary Hurwitz polynomial it is possible to gener-
ate stable line segments in the directions of the so-called Routh rays. This leads to
the inner (convex) approximation of stability region based on the derived line seg-
ments. Two algorithms for generating stable polytopes and polyhedral cones with
respect to a given polynomial are then developed. The functions and algorithms
are presented in a format suitable for further software implementation. Each of
the presented methods (based on Routh polytopes and cones) has a number of
advantages and disadvantages. In the following we briefly discuss only the most
important.

There are several key points that make the method based on Routh polytopes
more preferable in a certain situation. First, it is well-suited to design a controller
for an object with polytopic uncertainty. Second, the largest volume of the stable
polytope can be obtained if a∗ is located relatively far from the stability boundary.
In this case, both P− and P+ are almost proportional. Finally, the initial point a∗ is
placed near the center of the constructed polytope, what significantly simplifies the
procedure of robust controller design. On the other hand, this method does not use
the whole length of the Routh rays. Moreover, if a∗ is located close to the stability
boundary, then the volume P− is occurs to be small. Similarly, the polyhedral
Routh cones based method has several strong points. First, it is suitable to design
a controller for an object with conic or one dominant uncertainty. Second, the
whole length of the Routh half-lines (i.e., α > 1) is used. Finally, the largest vol-
ume can be obtained if a∗ is located relatively close to the stability boundary. On
the other hand, if a∗ is located far from the stability boundary, then the respective
part P− is not used at all. Moreover, the point a∗ is a vertex of a polyhedral cone,
which complicates the design of a controller. In what follows we summarize the
main procedure for the robust output controller design. The developed method has
two branches in accordance with Routh polytopes and cones approaches. Proposed
methods start from a stable simplex (or polytope) of the closed-loop characteristic
polynomial, which is defined via Routh rays of a preselected Hurwitz stable poly-
nomial. Then, the set of possible plant parameters as a convex polytope (polytopic
plant model) is defined. As a final step for synthesis of robust output controller for
polytopic plant model, a convex quadratic programming task is solved yielding a
set of required parameters.

Mathematical equations and calculations were transformed into format that is
suitable for software implementation, and were implemented in the form of a pack-
age. The simpleness of calculations and effectiveness of robust controllers designed
using these methods is demonstrated on several illustrative systems, including sys-
tem with uncertainties and laboratory prototype of a DC motor servo system.

One of the possible directions for the future research will be devoted to selection
of the initial characteristic polynomial of the closed-loop system that is required
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for design of a suitable controller. According to the above discussion, the correct
choice is not trivial and makes another open and challenging problem. There are
different methods for points generation that might be applicable in this situation:
randomly generated points, identification of the area of interest and selection points
from it, application of already checked point as a basis for new points generation,
etc.

Another direction for the future research lays in the detailed comparison of
alternative methods for convex optimization and robust controller design (such as
boxes, ellipsoids, hyper-rectangles, etc.) for continuous-time systems. The results
should help to identify the most suitable types of problems for each of the existing
methods.

One more possible extension of the research lays in the area of hybrid (combina-
tion of discrete and continuous) systems. The approach of convex approximation
based on the reduced Routh parameters has proven itself for continuous (this the-
sis) and discrete-time [68] systems. Thus, the future research will be focused on
the generalization of the developed results to the hybrid time scale.
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Abstract
Robust PID Controller Design for Continuous-time
Systems via Reduced Routh Parameters
The present thesis is devoted to the research on convex approximation and ro-
bust output controller design for continuous-time linear systems. The proposed
methods are based on the new multilinear stability condition for Hurwitz poly-
nomials and formulated based on the so-called reduced Routh parameters. First
part of the thesis presents two inner (convex) approximation algorithms based on
the Routh polytopes and cones. The results of convex approximation are used
for robust controller design in the second part of the thesis. The functions and
algorithms are presented in a format suitable for further software implementation.
The software-based package of functions for the practical implementation of both
convex approximation and robust controller synthesis is presented in the last part
of the thesis. The illustrative examples indicate the effectiveness of the proposed
methods and ability of designed controllers to handle uncertainties in considered
systems.
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Kokkuvõte
Pidevaja süsteemide robustse PID kontrolleri süntees
taandatud Routh parameetrite kaudu
Käesolev lõputöö on pühendatud kumerate aproksimatsioonide ja robustse väl-
jundikontrolleri disaini uurimisele pidevaja lineaarsüsteemides. Väljapakutud mee-
todid tuginevad uuel multilineaarse stabiilsuse tingimusel Hurwitzi polonüümide
jaoks ja on sõnastatud põhinedes nõndanimetatud vähendatud Routhi parameet-
ritel. Lõputöö esimene osa tutvustab kahte sisemist (kumerat) aproksimatsiooni
algoritmi, mis põhinevad Routh’i polütoopidel ja koonustel. Kumerate aproksimat-
sioonide tulemusi kasutatakse robustse kontrolleri disainimiseks lõputöö teises osas.
Funktsioonid ja algoritmid on esitatud kujul, mis on sobilikud edasistes tarkvara
rakendustes. Tarkvarapõhine funktsioonide pakett kumerate aproksimatsioonide ja
robustse kontrolleri sünteesi praktiliseks rakendamiseks on esitatud lõputöö vii-
mases osas. Illustreerivad näited toovad esile väljapakutud meetodite tõhususe ja
disainitud kontrollerite suutlikkuse käsitleda määramatust vaadeldud süsteemides.
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Generation of stable polytopes of Hurwitz polynomials via Routh
parameters

Ülo Nurges1 and Igor Artemchuk2 and Juri Belikov1

Abstract— The paper addresses an important issue in the
field of continuous-time linear control systems – convex stability
domain approximation problem. The constructive procedure of
generating a stable polytope is proposed. The main idea is based
on constructing so-called Routh stable line segments (half-lines)
starting from a given stable polynomial. It is summarized in the
form of a step-by-step algorithm that results in a stable polytope
around a given point. Several numerical examples are presented
to demonstrate the covered concepts and the effectiveness of the
proposed approach. Calculations are performed in a MATLAB
environment.

I. INTRODUCTION

In recent years, a growing interest is given to the use of
randomized methods in system and control theory [1]. This
new field of research demands efficient tools for generating
random samples of entities encountered in the analysis of
uncertain systems [2], [3]. The necessity of generating stable
polynomials arises in such areas like fixed-order controller
design [4], [5], [6], [7], static output feedback stabilization
[7], and robust output controller design [8]. In general, the
fixed-order output controller design is a hard problem, since
it reduces to finding a stable polynomial in an affine family,
which is known to be NP-hard, see [2]. The existence of
stabilizing fixed-order controller for a given unstable plant
is still an open problem.

Another practical issue is that of model uncertainty. If the
model uncertainty is relatively small, then it is possible to use
sensitivity-based methods. If the model uncertainty is large
some robust formulation of the problem is needed, such as
multimodel [9], polytopic model [10] or LMI approach [11].

The main hindrance of the parametric methods is the
well-known fact that the stability domain in the space of
polynomial coefficients is non-convex in general. That is why
several convex approximations of the stability region such as
ellipsoids [4], hyperrectangles [12] and polytopes [13], [10],
[14] are well known and widely used in robust control.

The goal of this work is to provide a simple, fast enough
and numerically stable algorithm for generation of sets of
stable (Hurwitz) polynomials. The randomized generation
of stable polynomials is carefully studied in [2], where
the Levinsone-Durbin parametrization is suggested as an
efficient and numerically stable method. We generalize this

*The work was supported by the European Union through the European
Regional Development Fund

1Ülo Nurges and Juri Belikov are with Institute of Cybernetics at
Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
nurges@ioc.ee, jbelikov@cc.ioc.ee

2Igor Artemchuk is with the Department of Computer Control,
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
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approach to generation of stable line segments in the space
of polynomial coefficients. Our method is based on a new
stability criterion for Hurwitz polynomials. Indeed, for an
arbitrary Hurwitz polynomial of order n we introduce the
method for generating n stable line segments in directions
of the so-called Routh rays. The latter means that instead
of single points we construct bunches of stable half-lines in
the polynomial coefficient space. Next, on the basis of the
derived line segments we obtain an inner approximation of
the stability region. Note that the results of this paper can
be understood as a step toward, for instance, robust output
controller design.

The paper is organized as follows. Section II recalls the ba-
sic notions and definitions related to stability of polynomials
in the continuous-time case. The reduced Routh parameters
are introduced. It is followed by introducing stable half-lines
(Routh rays) of polynomials. In Section IV a problem of
generating stable polytopes via bunches of Routh segments
is addressed, and a step-by-step algorithm is presented. The
presented theory is illustrated by several numerical examples.
Concluding remarks and possible directions for the future
research are drawn in the last section.

II. REDUCED ROUTH PARAMETERS OF
POLYNOMIALS

A polynomial of degree n

a(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (1)

with real coefficients ai ∈ R, for i = 0, . . . , n, is said to be
continuous-time stable in the Hurwitz sense, if all its roots
λi, for i = 1, . . . , n, are in the open left-half plane of C, i.e.
Re(λi) < 0.

Since the polynomial (1) is uniquely defined by its coef-
ficients, for simplicity, sometimes, we use a to denote both
the polynomial a(s) and the vector a =

[
an . . . a0

]T
of

its coefficients, i.e. a := a(s) =
[
an . . . a0

]T
. Then, the

Hurwitz region Hn is defined as the set

Hn =
{
a ∈ Rn+1 | (1) is Hurwitz

}
.

A stability boundary is either the boundary of the stability
domain in the coefficient space or the boundary of the root
location domain (imaginary axis). The stability of polyno-
mials a(s) can be tested by Routh table, see [15]. Based on
this criterion, a method for constructing Hurwitz polynomials
can be derived as follows [2]. Start with an arbitrary Hurwitz
polynomial of degree 2. Since positivity of the coefficients
is equivalent to stability for the second-order polynomials,



generate arbitrary positive numbers h0, h1, h2 and compose
the Hurwitz polynomial

a(s) = h2s
2 + h1s+ h0

or
a =

[
a2 a1 a0

]T
=
[
h2 h1 h0

]T
.

At the kth step, having a Hurwitz polynomial of degree k

a(s) =
[
ak ak−1 . . . a0

]T
,

consider two polynomials of degree k + 1

p(s) =
[
0 ak ak−1 . . . a0

]T
,

and

q(s) =
[
ak 0 ak−2 0 ak−4 0 . . .

]T
.

Generate a positive random number hk+1 and compose

a(s) = p(s) +
hk+1

ak
q(s), (2)

which is, according to the Routh rule, Hurwitz polynomial of
degree k+1. Proceeding in this manner up to k = n, we ob-
tain a Hurwitz polynomial of degree n, see [16], [17]. Thus,
the coefficients ak of the nth-order polynomial are obtained
from the Routh parameters hk, k = 0, . . . , n recursively by
increasing degree k. Furthermore, all Hurwitz polynomials
of degree n can be obtained using this construction, i.e. the
mapping from Routh parameters h to polynomial coefficients
a is one-to-one [2]. Next, let us introduce the reduced Routh
parameters that are used later in constructing stable line
segments.

Definition 1: The reduced Routh parameters wj for
normed polynomials a(s) = ans

n+an−1s
n−1+· · ·+a1s+1

are defined as follows

w0 = h0 = 1,

w1 = h1,

w2 = h2,

wj =
hj
hj−1

, j = 3, . . . , n.

(3)

From (2) and (3) we obtain the relations for recursive
generation of normed Hurwitz polynomials of order k + 1
for k > 2 as

a(s) = p(s) + wk+1q(s).

Denote the degree of a polynomial by superscription to
obtain

ak+1 =
[
wka

k
k akk akk−1 + wka

k
k−2 akk−2

akk−3 + wka
k
k−4 . . . 1

]T
, (4)

where
ak =

[
akk akk−1 . . . 1

]T
.

Using matrix notation, we can rewrite equation (4) as

ak+1 =Wka
k, (5)

where Wk is a (k + 1)× k-dimensional matrix of the form

Wk = wk



Jk
...
0T


+



0T

...
Ik




with Ik being the k × k-dimensional unit matrix and
Jk being the k × k-dimensional diagonal matrix Jk =
diag{1, 0, 1, 0, . . .}, i.e.

Wk =




wk 0 0 0 . . . 0
1 0 0 0 . . . 0
0 1 wk 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1



.

The inverse mapping from polynomial coefficients ak to
the reduced Routh parameters wk, k = n, . . . , 1 can be
recursively found starting from wn via (5) as follows

wj =
ajj

ajj−1

, j = n, . . . , 3,

w2 = a22 = a32,

w1 = a21 = a31 −
a33
a32
.

(6)

Note that in (6) parameters ajj can be found explicitly as

ak−1
k−i−1 = akk−i−1, i = 0, . . . , 2

⌊
k − 2

2

⌋
,

ak−1
k−i−2 = akk−i−2 − wka

k
k−i−3, i = 0, . . . , 2

⌊
k − 3

2

⌋

with a0 := 1.
Proposition 1: If the reduced Routh parameters wk > 0,

for k = 1, . . . , n, then the normed polynomial a(s) with
a0 = 1 is Hurwitz stable.

Proof: From (6) we obtain

h0 = 1,

h1 = w1,

h2 = w2,

hj = wjhj−1, j = 3, . . . , n.

Now, if wk > 0, for k = 1, . . . , n, then all the Routh
parameters of the polynomial a(s) are positive hk > 0,
k = 0, . . . , n. Therefore, the polynomial a(s) is Hurwitz
stable.

Proposition 2: The mapping (5) from the reduced Routh
parameters wk, k = 1, . . . , n to the normed polynomial
coefficients ank , k = 1, . . . , n with a0 = 1 is a one-to-one
mapping if wk > 0, k = 1, . . . , n.

Proof: The proof is straightforward, since mapping (3)
between the reduced Routh parameters wk, k = 1, . . . , n
and the Routh parameters hk, k = 1, . . . , n is one-to-one
by h0 = 1 as well as the the mapping between the Routh
parameters hk, k = 1, . . . , n and the polynomial coefficients
ank , k = 1, . . . , n by a0 = 1, see [2] for technical details.



Example 1: Let n = 4 and

w =
[
w4

4 w4
3 w4

2 w4
1 1

]T
=
[
1 4 2 2 1

]T
.

Next, we calculate recursively the coefficients of polynomials
starting from k = 2. According to (6),

a2 =



a22
a21
1


 =



2
2
1


 .

For k = 3 we get

a3 =




a33
a32
a31
1


 =




w3 0 0
1 0 0
0 1 w3

0 0 1


 ·



2
2
1


 =




8
2
6
1




and for k = 4

a4 =




a44
a43
a42
a41
1



=




w4 0 0 0
1 0 0 0
0 1 w4 0
0 0 1 0
0 0 0 1



·




8
2
6
1


 =




8
8
8
6
1



.

III. STABLE ROUTH SEGMENTS OF
POLYNOMIALS

In this section we introduce the stable line segments (half-
lines) of polynomials that can be obtained starting from the
reduced Routh parameters wk, k = 1, . . . , n of a Hurwitz
polynomial a ∈ Hn ⊂ Rn+1.

Theorem 1: Through an arbitrary Hurwitz stable point
a =

[
an an−1 . . . a1 1

]T
with reduced Routh param-

eters wk(a) > 0, k = 1, . . . , n one can draw n stable half-
lines Rk(a) ⊂ Hn such that

Rk(a) =
{
a | wk(a) ∈ (0,∞),

wj(a) = const, j 6= k; k, j ∈ {1, . . . , n}
}
. (7)

Proof: Observe that all the points of the line Rk(a)
are Hurwitz stable, since

1) n−1 reduced Routh parameters wj(a), j ∈ {1, . . . , n},
j 6= k are fixed and positive wj(a) > 0 according to
the first assumption;

2) the kth reduced Routh parameters wk(a) > 0 accord-
ing to assumption wk(a) ∈ (0,∞).

Next, we have to prove that Rk(a) is a line segment (half-
line). It is easy to see that the mapping (5) is multilinear. If
n−1 reduced Routh parameters wj(a), j ∈ {1, . . . , n}, j 6= k
are fixed, then the mapping (5) turns out to be linear with
respect to the kth reduced Routh parameter wk(a). The latter
means that for every k such that k = 1, . . . , n we obtain a
half-line Rk(a) and altogether n half-lines Rk(a) ⊂ Hn.

Definition 2: The half-lines Rk(a), k = 1, . . . , n defined
by (7) are called Routh rays of the polynomial a(s). Further-
more, their endpoints vk(a) such as

vk(a) = a(wk = 0) (8)

are supposed to be the Routh sources of the polynomial a(s).
According to Proposition 1, all the Routh sources vk(a) of

Hurwitz (stable) polynomials a(s) are placed on the stability

boundary. The latter means that some of the roots λj(v),
j ∈ {1, . . . , n} are placed on the imaginary axis.

Example 2: Let n = 3. Start from the polynomial a =[
8 2 6 1

]T
with reduced Routh parameters w(a) =[

4 2 2
]T

. By (5) we can easily calculate the Routh
sources as follows

v1 =
[
8 2 4 1

]T
,

v2 =
[
0 0 6 1

]T
,

v3 =
[
0 2 2 1

]T

and find the Routh rays R1(a), R2(a), R3(a) through the
corresponding Routh source vk, k = 1, 2, 3, and the initial
point a as

R1 = α
[
8 2 6 1

]T
+ (1− α)

[
8 2 4 1

]T
,

R2 = α
[
8 2 6 1

]T
+ (1− α)

[
0 0 6 1

]T
,

R3 = α
[
8 2 6 1

]T
+ (1− α)

[
0 2 2 1

]T
,

where α ∈ [0,∞). Next, we calculate the roots λ(vk) =[
λ1(vk) λ2(vk) λ3(vk)

]T
of the Routh sources as

λ(v1) =

[
−0.25
±0.7071i

]
, λ(v2) =




0
0

−0.1667


 ,

λ(v3) =

[
0

−0.5± 0.5i

]
.

Indeed, all the Routh sources have at least one root on the
imaginary axis, e.g. v1 has a pair of imaginary roots, v2 has
two roots in the origin and v3 has a root in the origin.

Next, using the recursive relationship (5) we obtain

an =Wn
k a

k,

where
Wn

k =WnWn−1 · · ·Wk

or

an =Wn
2 a

2 =Wn
2



w2

w1

1


 , (9)

with
Wn

2 =WnWn−1 · · ·W2. (10)

From the mapping (9) and (10), we can easily obtain the
following theorem regarding the roots of Routh sources.

Theorem 2: All the Routh sources vj(a), j = 2, . . . , n−1
of a Hurwitz polynomial a(s) of the order n have at least
two roots at the origin

λ1(vj) = λ2(vj) = 0, j = 2, . . . , n− 1

and the last Routh source vn(a) has at least one root at the
origin

λ1(vn) = 0.
Proof: The proof is a straightforward conclusion from

equations (9) and (10). Indeed, due to the structure of the



matrix Wk the explicit calculation of the first two elements
of an =Wn

k a
k yields

ann = w2 · · ·wn,

ann−1 = w2 · · ·wn−1.

Hence, according to Definition 2, from the previous equa-
tions one immediately gets λ1(vj) = λ2(vj) = 0, for
j = 2, . . . , n− 1, and λ1(vn) = 0.

Example 3: Calculate by (9) and (10) the Routh sources
vk(a) of some low order polynomials a(s). In case n = 3
we obtain

a3 =W 3
2



w2

w1

1


 =




w3 0 0
1 0 0
0 1 w3

0 0 1


 ·



w2

w1

1


 =




w2w3

w2

w1 + w3

1




and

v1(a) =




w2w3

w2

w3

1


 , v2(a) =




0
0

w1 + w3

1


 ,

v3(a) =




0
w2

w1

1


 .

Indeed, λ1(v2) = λ2(v2) = λ1(v3) = 0 for arbitrary positive
reduced Routh parameters w1, w2 and w3.

Now, in case n = 4 we obtain

a4 =W 4
2



w2

w1

1




=




w4 0 0 0
1 0 0 0
0 1 w4 0
0 0 1 0
0 0 0 1



·




w3 0 0
1 0 0
0 1 w3

0 0 1


 ·



w2

w1

1




=




w2w3w4

w2w3

w2 + w1w4 + w3w4

w1 + w3

1




and

v1(a) =




w2w3w4

w2w3

w2 + w3w4

w3

1



, v2(a) =




0
0

w1w4 + w3w4

w1 + w3

1



,

v3(a) =




0
0

w2 + w1w4

w1

1



, v4(a) =




0
w2w3

w2

w1 + w3

1



.

Hence, it follows that λ1(v2) = λ2(v2) = λ1(v3) =
λ2(v3) = λ1(v4) = 0 for arbitrary positive reduced Routh
parameters w1, w2, w3 and w4.

IV. STABLE POLYTOPES VIA BUNCHES OF
ROUTH SEGMENTS

In this section we generate stable polytopes of Hurwitz
polynomials starting from a single Hurwitz polynomial a.
According to Theorem 1, the set of n Routh rays Rk(a), k =
1, . . . , n is Hurwitz stable. However, in general, the linear
cover of the Routh rays Rk(a), k = 1, . . . , n is not Hurwitz
stable. Thus, one may ask the question: how to find a stable
polytope P (a) around the initial stable point a such that all
of its vertices are placed on the Routh rays Rk(a), k =
1, . . . , n. Moreover, it would be interesting to find the stable
polytope Pmax(a) with maximal possible volume V (P (a)),
V (Pmax(a)) = maxP V (P (a)).

Next, we formulate a step-by-step algorithm to solve
the problem of generating stable polytope via bunches of
Routh segments. Note that + and − signs stand to positive
and negative directions with respect to the starting point,
respectively.
Algorithm:
Step 1. Start from a given nth-order stable polynomial
a(s), or an =

[
ann ann−1 . . . an1 1

]T
.

Step 2. Using (6), calculate the reduced Routh parameters
wk for k = n, . . . , 1.

Step 3. Calculate by (8) the Routh sources vk(a) for k =
1, . . . , n.

Step 4. Using (7), find the Routh rays Rk(a) for k =
1, . . . , n.

Step 5. Find the stable polytope of sources P0(a) of the
polynomial a(s) as follows:

• Start from the polytope P−
0 (a) defined as the lin-

ear cover of the initial polynomial a and all of
its sources vk(a), k = 1, . . . , n, i.e. P−

0 (a) =
conv{a v1 . . . vn}.

• Check the stability of single edges of P−
0 (a) by

Hurwitz Segment Lemma [18, p. 81]. Next, check the
stability of the polytope P−

0 (a) using Edge Theorem
[18, p. 271].

• If thus obtained polytope P−
0 (a) is not stable, then

generate recursively using interval halving method
(between a and vk(a), k = 1, . . . , n) the new
candidates for the polytope of sources P−

l (a), l =
1, 2, . . ..

• If a stable polytope of sources P−
max(a) with maxi-

mal volume V (P−(a)) = max is found, then stop.
The volume of polytopes P−(a) can be found by
Triangulation method, see [19] for technical details.

Step 6. Similarly, find the stable polytope of rays P+(a)
of the polynomial a(s) starting from endpoints of the
Routh rays ek(wk = γ) ∈ Rk(a) with γ being a big-
enough number. If a stable polytope of rays P+

max(a)
with maximal volume V (P+(a)) = max is found, then
stop. The volume of polytopes P+(a) can be found by
Triangulation method.

Step 7. Starting from the vertices of the polytopes P−(a)



and P+(a), find using interval halving method the stable
polytope of Routh (rays) segments P (a) with vertices
R−

k ∈ Rk(a) and R+
k ∈ Rk(a) with maximal volume.

Step 8. End of the Algorithm.
According to Theorem 1, the Routh rays Rk(a) are partly

contained in the stable region. In addition, some of the edges
connecting the points (vertices) ek and vk(a) may fall into an
unstable area. To avoid this, we can move along the stable
segments on the Routh rays, changing the overall volume
of the polytope, either increasing or decreasing the distance
from or to the corresponding vertex. The simplest way to
perform this action is due to the so-called interval halving
method [20]. Note that proceeding this way after a finite
number of steps the algorithm will converge to a polytope
having maximal possible volume with respect to the starting
point.

Example 4: Consider an Unmanned Free-Swimming Sub-
mersible vehicle [21] for which the relation of pitch angle to
elevator surface angle can be represented by the following
transfer function

H(s) =
−0.125(s+ 0.435)

(s+ 1.23)(s2 + 0.226s+ 0.0169)
. (11)

One can easily verify that the nominal system H(s) is
stable, since the poles λ1 = −1.23, λ2,3 = −0.113±0.0643i
have negative real parts. Our aim is to find the stable polytope
(with maximal volume) in the coefficient space around the
nominal characteristic polynomial (denominator of H(s))

a(s) = s3 + 1.456s2 + 0.2949s+ 0.028.

First, we need to normalize polynomial a(s) with respect
to the free term (i.e. dividing polynomial by 0.028) as

a(s) = 35.7143s3 + 52s2 + 10.5321s+ 1.

Next, according to the provided algorithm above, we
collect the coefficients as

a =
[
35.7143 52 10.5321 1

]T

for which the reduced Routh parameters can be calculated
as

wk(a) =
[
0.6868 52 9.8453 1

]T
.

Application of (5) yields the Routh sources as

v1 =
[
35.7143 52 0.6868 1

]T
,

v2 =
[
0 0 10.5321 1

]T
,

v3 =
[
0 53 9.845286 1

]T
.

Next, from (7) we find the Routh rays R1(a), R2(a),
R3(a) through the corresponding Routh source vk, k =
1, 2, 3, and the initial point a as

R1 = α
[
35.7143 52 10.5321 1

]T
+

(1− α)
[
35.7143 52 0.6868 1

]T
,

R2 = α
[
35.7143 52 10.5321 1

]T
+

(1− α)
[
0 0 10.5321 1

]T
,

R3 = α
[
35.7143 52 10.5321 1

]T
+

(1− α)
[
0 53 9.845286 1

]T
,

where α ∈ [0,∞). After that we calculate the roots λ(vk) =[
λ1(vk) λ2(vk) λ3(vk)

]T
of the Routh sources as

λ(v1) =

[
−1.4560
±0.1387i

]
, λ(v2) =




0
0

−0.0949


 ,

λ(v3) =

[
0

−0.0947± 0.1013i

]
.

Next, using calculated parameters, initial stable polytope
was constructed, see Fig. 1. In fact, vertices of the positive
direction have to be depicted a bit farther, but we decided
to change coordinates (shifting them towards point a) for
illustrative purposes. In Fig. 1 the big (blue) dot in the middle
is a starting point a, the dark triangles are lower and upper
bases, the light polygons are side faces, and the dashed lines
are Routh rays. One can see that the dashed lines go beyond
the border of polytope. This is due to the fact that the stable
polytope with maximal volume, constructed on the Routh
rays, is to be found.

Fig. 1. Initial stable polytope

Repeating Steps 5-7 several times, we arrive at the poly-



tope Pmax(a) with vertices having the following coordinates

p−1 = (35.7143, 52, 8.9831),

p−2 = (30.0952, 43.8185, 10.5321),

p−3 = (30.0952, 52, 10.424),

p+1 = (35.7143, 52, 1.9672 · 104),
p+2 = (7.1359 · 104, 1.03898 · 105, 10.5321),
p+3 = (7.1359 · 104, 52, 1.382 · 103),

where + indicates positive direction (i.e. vertices placed
above the point a) and − indicates vertices placed below
point a. Finally, the volume of the obtained polytope is
V (Pmax(a)) = 2.4277 · 1013. Note that the volume of the
initial polytope is V (P0(a)) = 2.2164 · 104.

V. CONCLUSIONS

A simple and efficient method is given for generation
stable line segments of Hurwitz polynomials. It is based
on the new stability condition for Hurwitz polynomials via
reduced Routh parameters. The algorithm for generating
stable polytopes around a given polynomial is developed.

The results of this paper can be extended in several ways.
Note that application of the algorithm from Section IV
results in a stable polytope (being a convex approximation
of the stability domain) constructed with respect to a given
point. However, the overall stability region is, in general,
bigger. Therefore, the idea based on random generation
of stable initial points and uniting resulting polytopes in
one approximation with larger volume can be studied. In
addition, the method of generating stable line segments and
stable polytopes can be used for design of a stabilizing
fixed-order controller as well as for robust fixed-order output
controller synthesis.
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Abstract—A problem of inner convex approximation of a
stability domain is addressed in the paper for continuous-time
linear control systems. A constructive procedure for generating
stable cones of polynomials is provided. The main idea is based
on the construction of so-called Routh rays (stable half-lines)
starting from a given stable point. These lines serve as edges
for the corresponding polyhedral Routh cones inside the stability
domain. Several numerical examples are presented to illustrate
introduced concepts and effectiveness of the proposed approach.

I. INTRODUCTION

Progress in modern technologies stimulates deeper research
in the field of control systems such as robust controller design
and robust stabilization. Such controller should be able to
provide required behavior of the controlled system and at the
same time it should ensure desired stability and performance
level for plants with uncertain parameters [1].

Industry in majority of cases decides in favor of the low-
order controllers because of their simplicity, low cost, high
reliability and low maintenance [2]. Those are mostly PI-
and PID-controllers having two and three free parameters,
respectively. Indeed, such controllers might be easy to adjust,
however, the amount of control parameters may be insufficient
to obtain desired performance and a stabilizing control law for
unstable higher-order plants.

The difficulty of designing fixed-order output controllers
lies in the fact that the set of all stabilizing fixed-order
controllers is non-convex in the space of controller parameters.
And the fixed-order output controller design task reduces to
finding a stable polynomial in an affine family, which is
known to be NP-hard [3]. It is well-known that, in general,
the stability domain is non-convex. Over the years, a lot of
techniques in robust control were developed relying on convex
approximations of the stability region such as ellipsoids [4],
hyperrectangles [5] and polytopes [6], [7], [8].

The purpose of this work is to provide simple yet efficient
enough algorithm for generation of convex sets of stable
polynomials (so called polyhedral Routh cones). The random-
ized generation method of stable polynomials is thoroughly
studied in [3], where the Levinsone-Durbin parametrization is
suggested as an efficient and numerically stable method. We
generalize this approach to generation of stable line segments
(Routh rays) in the space of polynomial coefficients. It means
that instead of a single stable polynomial of nth order, we
generate n-bunches of stable line segments of polynomials.
The method is based on a new stability criterion for Hurwitz

polynomials introduced in [9]. The application of this method
has shown good results in robust fixed-order controller design
for discrete-time single-input single-output plants [10]. This
paper employs the idea from [10]; however, addresses the
stability problem for continuous-time systems. Furthermore,
the results presented in [9], where the approximation of the
inner stability domain was made by polytopes, are extended
by complementary results, definitions and proofs.

The paper is organized as follows. Section II recalls basic
definitions related to stability of polynomials in the continuous-
time case. The notion of the reduced Routh parameters is
introduced. It is followed by the description of stable half-
lines (Routh rays) of polynomials. The main results related
to the approximation of the stability domain by the polyhedral
Routh cones are presented in Section III. The presented theory
is illustrated by numerical examples. Concluding remarks and
possible directions for the future research are drawn in the
final section.

II. REDUCED ROUTH PARAMETERS AND STABLE ROUTH
RAYS OF POLYNOMIALS

A polynomial of degree n

a(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (1)

with coefficients ai ∈ R, for i = 0, . . . , n, is said to be
continuous-time stable in the Hurwitz sense, if all its roots
λi, for i = 1, . . . , n, are in the open left-half plane of C, i.e.,
Re(λi) < 0.

Since polynomial (1) is uniquely defined by its coeffi-
cients, for simplicity, sometimes, we use a to denote both
the polynomial a(s) and the vector a = [an · · · a0]

T of
its coefficients, i.e., a := a(s) = [an · · · a0]

T. Then, the
Hurwitz region Hn is defined as the set

Hn =
{
a ∈ Rn+1 | a(s) is Hurwitz

}
.

A stability boundary is either the boundary of the stability
domain in the coefficient space or the boundary of the root
location domain (imaginary axis). The stability of polynomi-
als a(s) can be tested by Routh table, see [11]. Based on
this criterion, a method for constructing Hurwitz polynomials
can be derived as follows [3]. Start with arbitrary Hurwitz
polynomial of degree 2. Since positivity of the coefficients
is equivalent to stability for the second-order polynomials,
generate arbitrary positive numbers h0, h1, h2 and compose the
polynomial a(s) = h2s

2 + h1s+ h0 or a = [a2 a1 a0]
T

=



[h2 h1 h0]
T
. At the kth step, having a Hurwitz polynomial

of degree k, i.e., a(s) = [ak ak−1 · · · a0]
T, consider two

polynomials of degree k + 1

p(s) = [0 ak ak−1 · · · a0]
T

and

q(s) = [ak 0 ak−2 0 ak−4 0 · · ·]T .
Generate a positive random number hk+1 and compose

a(s) = p(s) +
hk+1

ak
q(s), (2)

which is Hurwitz polynomial of degree k + 1, according to
the Routh rule. Proceeding in this manner up to k = n, we
obtain a Hurwitz polynomial of degree n, see [12], [13]. Thus,
the coefficients ak of the nth-order polynomial are obtained
from the Routh parameters hk, k = 0, . . . , n recursively by
increasing k. Furthermore, all Hurwitz polynomials of degree
n can be obtained using this construction [3].

Definition 1. The reduced Routh parameters wj for normed
polynomials a(s) = ans

n + an−1s
n−1 + · · · + a1s + 1 are

defined as follows

w0 = h0 = 1, w1 = h1, w2 = h2,

wj =
hj
hj−1

, j = 3, . . . , n.
(3)

From (2) and (3) we obtain relations for recursive genera-
tion of normed Hurwitz polynomials of order k+1, for k > 2,
as a(s) = p(s)+wk+1q(s). Denote the degree of a polynomial
by superscript to obtain

ak+1 =
[
wka

k
k akk akk−1 + wka

k
k−2 akk−2

akk−3 + wka
k
k−4 · · · 1

]T
, (4)

where ak =
[
akk akk−1 · · · 1

]T
. Using matrix notation,

we can rewrite equation (4) as

ak+1 = Wka
k, (5)

where Wk is a (k + 1)× k matrix of the form

Wk = wk



Jk
...

0T


+




0T

...
Ik




with Ik being the k × k unit matrix and Jk being the
k × k diagonal matrix Jk = diag{1, 0, 1, 0, . . .}. Next, us-
ing recursive relation (5), we obtain an = Wn

k a
k, where

Wn
k = WnWn−1 · · ·Wk or

an = Wn
2 a

2 = WnWn−1 · · ·W2

[
w2

w1

1

]
. (6)

Example 1: Let us illustrate equation (6) on the basis of
low order polynomials. In case n = 3, one gets

a3 = W 3
2

[
w2

w1

1

]
=



w3 0 0
1 0 0
0 1 w3

0 0 1


 ·
[
w2

w1

1

]
=



w2w3

w2

w1 + w3

1




and n = 4 yields

a4 = W 4
2

[
w2

w1

1

]
=




w4 0 0 0
1 0 0 0
0 1 w4 0
0 0 1 0
0 0 0 1


 ·



w2w3

w2

w1 + w3

1




=




w2w3w4

w2w3

w2 + w1w4 + w3w4

w1 + w3

1


 .

Observe that formula (6) is iterative. This means that in
order to calculate elements of the resulting matrix, one needs
to multiply n matrices, whose dimensions increase by 1 with
each iteration. To simplify calculations we derived the direct
formula that can be represented as

anl =
n∑

i0=1

i0∑

i1=1

· · ·
in−l−1∑

in−l=1

n−l∏

j=0

wij mod (ij +n− l− j, 2), (7)

where l = 1, . . . , n is the index number of the corresponding
row in (6), n > 2, and mod (α, 2) is the usual modulus
operation that returns either 1 or 0 depending on whether the
number α is odd or even, respectively. Elements wij in (7)
correspond to elements of the matrix Wk as

wij :=

{
w2/w1 for ij = 2,

wij otherwise.

Example 2: Let n = 4 and

w = [w4 w3 w2 w1 1]
T

= [2 3 5 4 1]
T
.

Next, we calculate recursively the coefficients of polynomials.
According to (5) and using the results from Example 1, for
k = 2, 3 we get

a2 =

[
5
4
1

]
, a3 =




3 0 0
1 0 0
0 1 3
0 0 1


 ·
[

5
4
1

]
=




15
5
7
1




and for k = 4

a4 =




2 0 0 0
1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ·




15
5
7
1


 =




30
15
19
7
1


 .

Note that the same result can be achieved using the
direct formula (7). One can observe that for l = 1 the only
combination of indices i0 = 4, i1 = 3, i2 = 2, i3 = 1 gives a
nonzero addend, yielding a41 = ω4ω3ω2ω1 = ω4ω3ω2 = 30.
Next, for l = 2 again the sum has a single nonzero addend
with the combination of indices i0 = 3, i1 = 2, i2 = 1,
resulting in a42 = ω3ω2ω1 = ω3ω2 = 15. In the case of
l = 3 three combinations of indices, i.e., i0 = 4, i1 = 3; i0 =
4, i1 = 1; i0 = 2, i1 = 1, leads to nonzero addends. Thus,
a43 = ω4ω3+ω4ω1+ω2ω1 = ω4ω3+ω4ω1+ω2 = 19. Finally,
for l = 4 two values of index i0 = 3 and i0 = 1 correspond to
nonzero addends, which yields a44 = ω3 + ω1 = ω3 + ω1 = 7.



The inverse mapping from polynomial coefficients ak to the
reduced Routh parameters wk, k = n, . . . , 1 can be recursively
found starting from wn via (5) as follows

wj =
ajj

ajj−1

, j = n, . . . , 3,

w2 = a22 = a32,

w1 = a21 = a31 −
a33
a32
.

(8)

Note that in (8) parameters ajj and ajj−1 can be found explicitly
as ak−1

k−i−1 = akk−i−1, i = 0, . . . , 2b(k − 2)/2c and ak−1
k−i−2 =

akk−i−2 − wkakk−i−3, i = 0, . . . , 2b(k − 3)/2c with a0 = 1 or
in the matrix form as ak−1 = W ka

k, where W k is a k × k
matrix

W k = Ik − wk




0 Jk−1

...
...

0 0T




and Jk is a k × k diagonal matrix Jk = diag{0, 1, 0, 1, . . .}.
Proposition 1 ([9]). A normed polynomial a(s) with a0 = 1
is Hurwitz stable if and only if wk > 0, k = 1, . . . , n.

Proposition 2 ([9]). The mapping (5) from the reduced Routh
parameters wk, k = 1, . . . , n to the normed polynomial
coefficients ank , k = 1, . . . , n with a0 = 1 is a one-to-one
mapping if wk > 0, k = 1, . . . , n.

Next, we recall from [9] the notion of stable line segments
(half-lines) of polynomials that can be obtained starting from
the reduced Routh parameters wk, k = 1, . . . , n of a Hurwitz
polynomial a ∈ Hn ⊂ Rn+1.

Theorem 1 ([9]). Through an arbitrary Hurwitz stable point
a = [an an−1 · · · a1 1]

T with reduced Routh parame-
ters wk > 0, k = 1, . . . , n one can draw n stable half-lines
Rk(a) ⊂ Hn such that

Rk(a) = {a | wk ∈ (0,∞), wj = const,

j 6= k; k, j ∈ {1, . . . , n}}. (9)

Definition 2. The half-lines Rk(a), k = 1, . . . , n defined by
(9) are called Routh rays of the polynomial a(s). Moreover,
their endpoints vk(a) such as vk(a) = a(wk = 0) are
supposed to be the Routh sources of the polynomial a(s).

III. STABLE ROUTH CONES OF POLYNOMIALS

Next, we study the stability of polynomials with conic
uncertainty [14] by the use of Routh rays. We define so-called
Routh cones1 in the polynomial coefficient space a ∈ Rn
starting from the reduced Routh parameter space w ∈ Rn.
Let a∗ ∈ Hn be an arbitrary stable polynomial of order n and
w∗ its reduced Routh parameters.

Definition 3. 1) A subset Ki(a∗) of normed polynomials a(s)
of degree n with coefficients a ∈ Rn is said to be a Routh
cone of a polynomial a∗(s) if it is closed under positive scalar
multiplication of one of its reduced Routh parameters w∗

i , i ∈
1Note that the notion cone is used in consonance with results in [14]. In

our paper definition of Routh cone coincides with that of the Routh ray.

{1, . . . , n}, i.e., a(wi = αw∗
i ) ∈ Ki when a ∈ Ki and α > 0,

where all the other reduced Routh parameters wj , j 6= i, j ∈
{1, . . . , n} are fixed wj = w∗

j .

2) If P is a subset of normed polynomials a(s) of degree n
with coefficients a ∈ Rn, then

Ki(P ) = {a(wi = αwi); a ∈ P, α > 0, i ∈ {1, . . . , n}}
is called the Routh cone generated by P .

3) A convex cone K(a∗) of normed polynomials a(s) of degree
n with coefficients a ∈ Rn is said to be a polyhedral Routh
cone of a polynomial a∗(s), if there exist αi, βi, such that

K(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, 0 < βi < 1,

n∑

i=1

βi = 1, wj = w∗
j = const, j 6= i, i = 1, . . . , n

}
.

4) A convex cone Ki,j(a∗) of normed polynomial a(s) of degree
n with coefficients a ∈ Rn is said to be a polyhedral Routh
i, j-subcone of a polynomial a∗(s), if there exist αi, βi, such
that

Ki,j(a∗) =
{
βia(wi = αiw

∗
i , wj = w∗

j )

+ βja(wj = αjw
∗
j , wi = w∗

i );

αi, αj > 1, 0 < βi, βj < 1, βi + βj = 1,

wk = w∗
k = const, k 6= i, j; i, j, k ∈ {1, . . . , n}

}
.

5) A convex set Knj,k(a∗) of normed polynomials a(s) of degree
n with coefficients a ∈ Rn is said to be a truncated polyhedral
Routh cone of a polynomial a∗(s), if there exist αi, βi, such
that

Knj,k(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, i 6= j, k;

1 < αj < αj , 1 < αk < αk; 0 < βi < 1,

n∑

i=1

βi = 1,

wh = w∗
h = const, h 6= i, i = 1, . . . , n

}
.

Proposition 3. An arbitrary subset P of normed polynomials
a(s) of degree n, a(s) ∈ Rn has n Routh cones Ki(P ), i =
1, . . . , n generated by P . If the subset P is stable, then all
Routh cones Ki(P ) generated by P are stable.

Proposition 4. The n-times Routh cone of the polynomial a(s)
with ai → 0, i = 1, ..., n, generates the whole stability domain
A in polynomial coefficient space, A ⊂ Rn.

Theorem 2. If all the polyhedral Routh subcones Ki,j(a∗),
i, j ∈ {1, . . . , n} of a stable polynomial a∗(s) are stable, then
the polyhedral Routh cone K(a∗) is stable.

Proof: Indeed, if αi and αj , 1 < αi, αj < ∞ are fixed,
then the polyhedral Routh cone K(a∗) is a polytope with
n + 1 vertices a∗ and a(wk = αkw

∗
k, wj = w∗

j ), j 6= k,
k = 1, . . . , n. The edges conv{a∗, a(wk)} are stable as Routh



rays of a stable point a∗. The edges conv{a(wk), a(wj)} are
stable, since conv{a(wk), a(wj)} ⊂ Kk,j(a∗) for arbitrary
1 < αk,j <∞. Thus, it remains to note that by Edge Theorem
the polytope is stable for 1 < αi, αj <∞, since all the edges
of the polytope are stable [15].

Let Γ = {1, . . . , n} be a set of integers. Rewrite it as
Γ = γ1 ∪ γ2, where γ1 and γ2 are sets that contain indices
corresponding to ordinary and truncated Routh subcones, re-
spectively, with dim γ1 = m1 and dim γ2 = m2 such that
m1 +m2 = n.

Theorem 3. A truncated polyhedral Routh cone Knij (a∗), ij ∈
γ2, j = 1, . . . ,m2 of a stable polynomial a∗(s) is stable if the
following conditions hold:

1) the polyhedral Routh subcones Kr,s(a∗), r, s ∈ γ1
are stable;

2) the line segments Su,v(αu, αv), u, v ∈ γ2 are stable,
where

Su,v(αu, αv) = conv{a(wu = αu,minw
∗
u,

a(wv = αv,minw
∗
v), wi = w∗

i , i 6= u, v}
and αu,min = minu αu.

Proof: Indeed, if αr and αs, 1 < αr, αs < ∞ are
fixed, then the truncated polyhedral Routh cone Knij (a∗) is
a polytope with n + 1 vertices a∗, a(wu, αu), a(wv, αv)
and a(wr = αrw

∗
k, wl = w∗

l ), l 6= r, l ∈ {1, . . . , n},
a(ws = αsw

∗
k, wl = w∗

l ), l 6= s, l ∈ {1, . . . , n}. The edges
conv{a∗, a(wu, αu)}, conv{a∗, a(wv, αv)}, conv{a∗, a(wr)},
and conv{a∗, a(ws)} are stable as the Routh rays of a stable
point a∗. The edges conv{a(wr), a(ws)} are stable, since
conv{a(wr), a(ws)} ⊂ Kr,s(a∗) for arbitrary 1 < αr, αs <
∞. It follows from condition 2) that the edges Su,v(αu, αv)
are stable. Hence, by Edge Theorem the polytope is stable for
1 < αr, αs < ∞, since all edges of the polytope are stable
[15].

Proposition 5. For n = 3 the polyhedral Routh cone K(a∗)
of an arbitrary stable polynomial a∗(s) is stable.

Proof: Assume without loss of generality that α1 = α2 =
α3 = α. Then, by (5) we obtain the Routh cones Ki(a∗),
i = 1, 2, 3 for the polynomial a∗(s)

K1(a∗) = [w∗
2w

∗
3 w∗

2 αw∗
1 + w∗

3 1]
T
,

K2(a∗) = [αw∗
2w

∗
3 αw∗

2 w∗
1 + w∗

3 1]
T
,

K3(a∗) = [αw∗
2w

∗
3 w∗

2 w∗
1 + αw∗

3 1]
T
,

where α > 1 and w∗
1 , w

∗
2 , w

∗
3 are the reduced Routh parameters

of the polynomial a∗(s).

Let a ∈ K(a∗) be an inner point of the polyhedral Routh
cone K(a∗). Then, the convex combination can be expressed
as

a = β1K1(a∗) + β2K2(a∗) + β3K3(a∗),

where 0 < βi < 1,
∑3
i=1 βi = 1 or in the explicit form as

a =




(β1 + β2α+ β3α)w∗
2w

∗
3

(β1 + β2α+ β3)w∗
2

(β1α+ β2 + β3)w∗
1 + (β1 + β2 + β3α)w∗

3
1


 .

Note that, according to Proposition 1, polynomial a(s) is
stable if the reduced Routh parameters wi > 0, i = 1, 2, 3.
From (8) one obtains

w3 =
(β1 + β2α+ β3α)w∗

2w
∗
3

(β1 + β2α+ β3)w∗
2

.

Observe that, according to Proposition 1, the reduced Routh
parameters w∗

i , i = 1, 2, 3, of the stable polynomial a∗(s) are
positive. Moreover, α > 1 and βi > 0, yielding w3 > 0.
Similarly, from (8), one obtains

w2 = (β1 + β2α+ β3)w∗
2 > 0

and

w1 = (β1α+ β2 + β3)w∗
1

+ (β1 + β2 + β3α)w∗
3 −

(β1 + β2α+ β3α)w∗
2w

∗
3

(β1 + β2α+ β3)w∗
2

.

The latter after simple algebraic manipulations yields

w1 = ((β1 + β2α+ β3)w∗
2)−1·(

(β1α+ β2 + β3)(β1 + β2α+ β3)w∗
1w

∗
2

+ (1− α)2β2β3w
∗
2w

∗
3

)
> 0.

Proposition 6. The polyhedral subcones Ki,j(a∗), i, j ∈
{1, 2, 3} of an arbitrary stable polynomial a∗(s) of order n
are stable.

Proof: By (5) we obtain the following Routh cones
Ki(a∗), i = 1, 2, 3 for the polynomial a∗(s), a ∈ Rn

K1(a∗) = Wn
4 (a∗) [w∗

2w
∗
3 w∗

2 αw∗
1 + w∗

3 1]
T
,

K2(a∗) = Wn
4 (a∗) [αw∗

2w
∗
3 αw∗

2 w∗
1 + w∗

3 1]
T
,

K3(a∗) = Wn
4 (a∗) [αw∗

2w
∗
3 w∗

2 w∗
1 + αw∗

3 1]
T
,

where Wn
4 (a∗) := Wn(a∗) · · ·W4(a∗) and α > 1.

Let a ∈ K1,2(a∗) be an inner point of the polyhedral
Routh subcone K1,2(a∗). Then, the convex combination can
be expressed as

a = βK1(a∗) + (1− β)K2(a∗),

where 0 < β < 1, or explicitly

a = Wn(a∗) · · ·W4(a∗)




(β + (1− β)α)w∗
2w

∗
3

(β + (1− β)α)w∗
2

(βα+ 1− β)w∗
1 + w∗

3
1


 .

Observe that the reduced Routh parameters wn, . . . , w4 of
a polynomial a(s) are determined by the product of matrix
multiplication Wn(a∗) · · ·W4(a∗), i.e., wi = w∗

i , i = 4, . . . , n.
For the reduced Routh parameters wi, i = 1, . . . , 3 of the
polynomial a ∈ K1,2(a∗), using (8), we obtain the following
relations

w2w3 = (β + (1− β)α)w∗
2w

∗
3 ,

w2 = (β + (1− β)α)w∗
2 ,

w1 + w3 = (βα+ 1− β)w∗
1 + w∗

3



or

w1 = (βα+ 1− β)w∗
1 ,

w2 = (β + (1− β)α)w∗
2 ,

w3 = w∗
3 .

Observe next that α > 1, 0 < β < 1 and w∗
i > 0, i = 1, . . . , n.

Then wi > 0, i = 1, . . . , n, i.e., a ∈ K1,2(a∗) are stable.

In the similar manner we obtain for a ∈ K1,3(a∗) the
reduced Routh parameters wn, . . . , w4, wi = w∗

i , i = 4, . . . , n.
For wi, i = 1, . . . , 3 of the polynomial a ∈ K1,3(a∗) we obtain
by (8) the following relations

w2w3 = (β + (1− β)α)w∗
2w

∗
3 ,

w2 = w∗
2 ,

w1 + w3 = (βα+ 1− β)w∗
1 + (β + (1− β)α)w∗

3

or

w1 = (βα+ 1− β)w∗
1 > 0,

w2 = w∗
2 > 0,

w3 = (β + (1− β)α)w∗
3 > 0.

Finally, for a ∈ K2,3(a∗) we obtain the reduced Routh
parameters wi = w∗

i , i = 4, . . . , n and for wi, i = 1, . . . , 3

w2w3 = (βα+ (1− β)α)w∗
2w

∗
3 ,

w2 = (βα+ (1− β))w∗
2 ,

w1 + w3 = w∗
1 + (β + (1− β)α)w∗

3

that after simple algebraic manipulations yield

w1 = w∗
1 +

(β(1− β)(1− α)2)w∗
3

βα+ (1− β)
> 0,

w2 = (βα+ 1− β)w∗
2 > 0,

w3 =
αw∗

3

βα+ 1− β > 0.

Hence, all polyhedral subcones Ki,j(a∗), i, j ∈ {1, 2, 3} of an
arbitrary stable polynomial a∗(s) of order n are stable.

We suggest the following algorithm for solving the problem
of generating stable truncated polyhedral Routh cones.

Algorithm:

Step 1. Start from a given n degree stable polynomial a(s),
or an = [ann ann−1 · · · an1 1].

Step 2. Find by (8) the reduced Routh parameters wk, k =
n, . . . , 1 of the polynomial a(s).

Step 3. Find by (9) the Routh rays Rk(a), k = 1, . . . , n of
the polynomial a(s).

Step 4. Check the stability of all the polyhedral Routh sub-
cones Ki,j(a), i, j ∈ {4, . . . , n} of the polynomial a(s)
by Hurwitz Segment Lemma [1, p.81]. By Proposition 6
the polyhedral Routh subcones Ki,j(a), i, j ∈ {1, 2, 3}
are stable. If all the polyhedral Routh subcones Ki,j(a),
i, j ∈ {4, . . . , n} are stable, then by Theorem 2 the
polyhedral Routh cone K(a) is stable.

Step 5. If some of the polyhedral Routh subcones Ki,j(a),
i, j ∈ {4, . . . , n} are not stable, then find the stable
line segments Su,v(αu, αv) according to Theorem 3 with

appropriate values of αu,min = minu αu and αv,min =
minv αv .

Step 6. According to Theorem 3 the stable truncated poly-
hedral Routh cone Kn(a) of the polynomial a(s) is
determined by the stable polyhedral Routh subcones
Ki,j(a), i, j ∈ {1, . . . , n} and the stable line segments
Su,v(αu, αv).

Next, we consider an example that is designed to illustrate
the approximation of stability domain by polyhedral Routh
cone. Note that we deal with four dimensional coefficient
space, and therefore, the presented figure (Fig. 1) has to be
understood as a schematic illustration of the overall procedure.

Example 3: Consider the polynomial from Example 2

a∗ = [30 15 19 7 1]
T
,

whose reduced Routh parameters are

w∗ = [w∗
4 w∗

3 w∗
2 w∗

1 1]
T

= [2 3 5 4 1]
T
.

Then, according to 1) and 2) from Definition 3, Routh
cones can be calculated as follows.

Cone K1: w1 = α1w
∗
1 , 1 < α1 <∞, and

a2 =

[
5

4α1

1

]
, a3 =




3 0 0
1 0 0
0 1 3
0 0 1


 ·
[

5
4α1

1

]
=




15
5

4α1 + 3
1


 ,

yielding

K1 =




2 0 0 0
1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ·




15
5

4α1 + 3
1


 =




30
15

8α1 + 11
4α1 + 3

1


 .

Cone K2: w2 = α2w
∗
2 , 1 < α2 <∞, and

a2 =

[
5α2

4
1

]
, a3 =




3 0 0
1 0 0
0 1 3
0 0 1


 ·
[

5α2

4
1

]
=




15α2

5α2

7
1


 ,

yielding

K2 =




2 0 0 0
1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ·




15α2

5α2

7
1


 =




30α2

15α2

5α2 + 14
7
1


 .

Cone K3: w3 = α3w
∗
3 , 1 < α3 <∞, and

a2 =

[
5
4
1

]
, a3 =




3α3 0 0
1 0 0
0 1 3α3

0 0 1


 ·
[

5
4
1

]
=




15α3

5
4 + 3α3

1


 ,

yielding

K3 =




2 0 0 0
1 0 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ·




15α3

5
4 + 3α3

1


 =




30α3

15α3

6α3 + 13
3α3 + 4

1


 .



Cone K4: w4 = α4w
∗
4 , 1 < α4 <∞, and

a2 =

[
5
4
1

]
, a3 =




3 0 0
1 0 0
0 1 3
0 0 1


 ·
[

5
4
1

]
=




15
5
7
1


 ,

yielding

K2 =




2α4 0 0 0
1 0 0 0
0 1 2α4 0
0 0 1 0
0 0 0 1


 ·




15
5
7
1


 =




30α4

5
14α4 + 5

7
1


 .

Next, between obtained Routh cones we can draw six
polyhedral Routh subcones. According to Proposition 6, the
polyhedral Routh subcones K1,2(a∗), K1,3(a∗), and K2,3(a∗)
are stable. In addition, one may easily check that, according to
Edge Theorem, K2,4(a∗) and K3,4(a∗) are stable as well. Note
that the remaining subcone K1,4(a∗) is not stable, whereas
the truncated polyhedral Routh subcone K1,4(a∗) is stable for
α1 = 2 and α4 = 128. Next, using obtained information, we
can represent the inner approximation of the stability domain
schematically by a truncated polyhedral Routh cone (Fig. 1).

a∗

α1

α4

α2 α3

S1,4(α1, α4)

Fig. 1. Inner approximation of a stability domain by the truncated polyhedral
Routh cone K1,4(a∗). Dotted and/or dashed style indicate that rays go to
infinity and/or hidden, respectively.

IV. CONCLUSION

In this paper, the problem of convex approximation of
the stability domain by a polyhedral Routh cone K(a∗) is
considered. The novel approach based on the introduced notion
of the reduced Routh parameters is presented. The main idea
can be summarized as follows. First, one has to calculate the
reduced Routh parameters. Then, through the initial stable
point one may draw exactly n Routh rays (cones), which
correspond to edges of polyhedral Routh subcones. If the
constructed polyhedral Routh subcones are stable, then the

whole polyhedral Routh cone is stable. If this is not the case,
then it was explained how to calculate the stable truncated
polyhedral Routh cone.

To conclude, this paper provides complementary results to
those presented in [9]. Sometimes when the starting stable
point a∗ is placed too close to the boundary of the stability
domain, the approximation method based on polyhedral Routh
cones may provide a better result than the polytope generated
by Routh rays. This is due to the fact that some edges of a
polytope may fail to be stable or the volume of the stable
polytope may appear to be small. The comparison of two
techniques will make the subject for the future research.
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Robust pole assignment via Routh rays of polynomials

Igor Artemchuk2 and Ülo Nurges1 and Juri Belikov1

Abstract— The paper presents a constructive procedure for
robust output controller design for continuous-time linear
systems. The approach is based on the so-called reduced Routh
parameters that are used to derive stable Routh rays and corre-
sponding Routh cones of polynomials (polyhedral Routh cones),
which approximate stability domain. The obtained region is
used to designed a fixed-order controller. The procedures of pole
placement and robust controller synthesis are described and
summarized in the form of step-by-step algorithm. Theoretical
results are illustrated by two academic example and laboratory
prototype of a DC motor servo system.

I. INTRODUCTION

One of the common approaches in control theory to design
a closed-loop controller for a continuous-time linear system
may be seen in using pole placement or modal control
methods. In case of a state feedback it is always possible to
predefine arbitrary poles whenever the system is controllable.
On contrary in case of the output feedback, in general, it is
not possible to solve arbitrary pole assignment task relying
on a fixed-order controller. Thus, alternative approaches
based on the idea of placing poles of the closed-loop system
in a suitable region of the complex plane were studied by
different researchers [1].

It is well known that majority of practical systems are
exposed to uncertainties. For example, most of sensors
perform measurements with a certain level of precision.
The problem of suppressing uncertainties can be solved
by sensitivity-based methods that are however applicable
in case of relatively small deviations only. For the models
with large uncertainty there is a clear need for some robust
formulations, such as multimodel [2], polytopic model [3],
[4] or LMI approach [5]. In fact, the task of assigning
poles of the closed-loop system can be replaced by an
equivalent problem of assigning coefficients of characteristic
polynomial, since coefficients are simply related to controller
and plant parameters. However, the stability domain in the
space of controller parameters is nonconvex, in general. This
is the reason why, over the years, a lot of techniques in
robust control, relying on convex inner approximations of the
stability domain, were developed and taken into use, such as
ellipsoids [6], [7], hyperrectangles [8] and polytopes [3], [4].

In this paper, we present a simple and efficient algorithm
to design a robust output controller for continuous-time
plant with uncertainties. Our method is based on a new

1Ülo Nurges and Juri Belikov are with Institute of Cybernetics at
Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
nurges@ioc.ee, jbelikov@cc.ioc.ee

2Igor Artemchuk is with the Department of Computer Control,
Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
igor.artemchuk@gmail.com

stability criterion for Hurwitz polynomials. We move from
arbitrary Hurwitz polynomial of order n to the construction
of bunches of stable half-lines in the polynomial coefficient
space (so-called polyhedral Routh cones) and obtain an inner
approximation of the stability region. Similar approach for
robust controller design using reflection coefficients was used
in [9] for discrete-time systems. We start from a stable sim-
plex (or polytope) of closed-loop characteristic polynomials,
which is defined via Routh rays of a preselected Hurwitz
stable polynomial. Next, we define the set of possible plant
parameters as a convex polytope (polytopic plant model).
Proceeding this way, we can determine properties that are
common to all elements in the set from the analysis of its
vertices only. Thus, the number of vertices of the polytope
determines the complexity of computations. Then, we solve
robust output controller for polytopic plant model design task
by quadratic programming approach.

The paper is organized as follows. In Section II the main
notions and definitions regarding Routh reduced parameters
are presented. The results related to the approximation of the
stability domain by the polyhedral Routh cones are presented
in Section III. The problem of fixed-order robust output
control with a preselected simplex is stated and solved by
quadratic programming approach in the next section. Then,
the presented theory is illustrated by examples. Concluding
remarks and possible directions for the future research are
drawn in the final section.

II. REDUCED ROUTH PARAMETERS AND STABLE ROUTH
RAYS OF POLYNOMIALS

A polynomial of degree n

a(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (1)

with coefficients ai ∈ R, for i = 0, . . . , n, is said to
be continuous-time stable in the Hurwitz sense, if all its
roots λi, for i = 1, . . . , n, are in the open left-half plane
of C, i.e., Re(λi) < 0. Since polynomial (1) is uniquely
defined by its coefficients, for simplicity, sometimes, we
use a to denote both the polynomial a(s) and the vector
a =

[
an · · · a0

]T
of its coefficients, i.e., a := a(s) =[

an · · · a0
]T

. Then, the Hurwitz region Hn is defined as
the set Hn =

{
a ∈ Rn+1 | (1) is Hurwitz

}
.

A stability boundary is either the boundary of the sta-
bility domain in the coefficient space or the boundary of
the root location domain (imaginary axis). The stability of
polynomials a(s) can be tested by Routh table, see [10].
Based on this criterion, a method for constructing Hurwitz
polynomials (1) can be derived as follows [11]. Start with
arbitrary Hurwitz polynomial of degree 2. Since positivity of



the coefficients is equivalent to stability of the second-order
polynomials, generate arbitrary positive numbers h0, h1, h2
and compose the polynomial a(s) = h2s

2 + h1s + h0 or
a =

[
a2 a1 a0

]T
=
[
h2 h1 h0

]T
. At the kth step,

having a Hurwitz polynomial of degree k, i.e., a(s) =[
ak ak−1 · · · a0

]T
, consider two polynomials of degree

k + 1, e.g. p(s) =
[
0 ak ak−1 · · · a0

]T
and q(s) =[

ak 0 ak−2 0 ak−4 0 · · ·
]T

.
Generate a positive random number hk+1 and compose

a(s) = p(s) +
hk+1

ak
q(s), (2)

which is a Hurwitz polynomial of degree k + 1, according
to the Routh rule. Proceeding in this manner up to k = n,
we obtain a Hurwitz polynomial of degree n, see [12]. Thus,
the coefficients ak of the nth-order polynomial are obtained
from the Routh parameters hk, k = 0, . . . , n recursively by
increasing k. Furthermore, all Hurwitz polynomials of degree
n can be obtained using this construction [11]. Next, let us
introduce the reduced Routh parameters that are used later
in construction of the stable line segments.

Definition 1: The reduced Routh parameters wj for a
normed polynomial a(s) = ans

n+an−1s
n−1+ · · ·+a1s+1

are defined as follows

w0 = h0 = 1, w1 = h1, w2 = h2,

wj =
hj
hj−1

, j = 3, . . . , n.

The relation for recursive generation of normed Hurwitz
polynomials of order k + 1, for k > 2 is given as a(s) =
p(s) + wk+1q(s). Denote the degree of a polynomial by
superscript to obtain

ak+1 =
[
wka

k
k akk akk−1 + wka

k
k−2 akk−2

akk−3 + wka
k
k−4 · · · 1

]T
, (3)

where ak =
[
akk akk−1 · · · 1

]T
. Using matrix notation,

equation (3) can be rewritten as

ak+1 = Wka
k, (4)

where Wk is a (k + 1)× k matrix of the form

Wk = wk



Jk
...

0T


+




0T

...
Ik




with Ik being the k × k unit matrix and Jk being the
k × k diagonal matrix Jk = diag{1, 0, 1, 0, . . .}. Next,
using recursive relation (4), we obtain an = Wn

k a
k, where

Wn
k = WnWn−1 · · ·Wk or

an = Wn
2 a

2 = WnWn−1 · · ·W2



w2

w1

1


 .

The inverse mapping from polynomial coefficients ak to
the reduced Routh parameters wk, k = n, . . . , 1 can be

recursively found starting from wn via (4) as follows

wj =
ajj

ajj−1

, j = n, . . . , 3,

w2 = a22 = a32,

w1 = a21 = a31 −
a33
a32
.

(5)

Note that in (5) parameters ajj and ajj−1 can be found
explicitly as ak−1

k−i−1 = akk−i−1, i = 0, . . . , 2b(k − 2)/2c and
ak−1
k−i−2 = akk−i−2−wka

k
k−i−3, i = 0, . . . , 2b(k−3)/2c with

a0 = 1 or in the matrix form as ak−1 = W ka
k, where W k

is a k × k matrix

W k = Ik − wk




0 Jk−1

...
...

0 0T




and Jk is a k×k diagonal matrix Jk = diag{0, 1, 0, 1, . . .}.
Proposition 1 ([13]): A normed polynomial a(s) with

a0 = 1 is Hurwitz stable if and only if wk > 0, k = 1, . . . , n.
Proposition 2 ([13]): The mapping (4) from the reduced

Routh parameters wk, k = 1, . . . , n to the normed polyno-
mial coefficients ank , k = 1, . . . , n with a0 = 1 is a one-to-
one mapping if wk > 0, k = 1, . . . , n.

Next, we recall from [13] the notion of stable line
segments (half-lines) of polynomials that can be obtained
starting from the reduced Routh parameters wk, k = 1, . . . , n
of a Hurwitz polynomial a ∈ Hn ⊂ Rn+1.

Theorem 1 ([13]): Through an arbitrary Hurwitz stable
point a =

[
an an−1 · · · a1 1

]T
with reduced Routh

parameters wk > 0, k = 1, . . . , n one can draw n stable
half-lines Rk(a) ⊂ Hn such that

Rk(a) = {a | wk ∈ (0,∞), wj = const,

j 6= k; k, j ∈ {1, . . . , n}}. (6)
Definition 2: The half-lines Rk(a), k = 1, . . . , n defined

by (6) are called Routh rays of the polynomial a(s). More-
over, their endpoints vk(a) such as vk(a) = a(wk = 0) are
supposed to be the Routh sources of the polynomial a(s).

III. STABLE ROUTH CONES OF POLYNOMIALS

Next, we study the stability of polynomials with conic
uncertainty [14] by the use of Routh rays. We define so-
called Routh cones in the polynomial coefficient space a ∈
Rn starting from the reduced Routh parameter space w ∈
Rn. Let a∗ ∈ Hn be an arbitrary stable polynomial of order
n and w∗ its reduced Routh parameters.

Definition 3: 1) A subset Ki(a
∗) of normed polynomials

a(s) of degree n with coefficients a ∈ Rn is said to be
a Routh cone of a polynomial a∗(s) if it is closed under
positive scalar multiplication of one of its reduced Routh
parameters w∗

i , i ∈ {1, . . . , n}, i.e., a(wi = αw∗
i ) ∈ Ki

when a ∈ Ki and α > 0, where all the other reduced Routh
parameters wj , j 6= i, j ∈ {1, . . . , n} are fixed wj = w∗

j .



2) If P is a subset of normed polynomials a(s) of degree n
with coefficients a ∈ Rn, then

Ki(P ) = {a(wi = αwi); a ∈ P, α > 0, i ∈ {1, . . . , n}}

is called the Routh cone generated by P .

3) A convex cone K(a∗) of normed polynomials a(s) of
degree n with coefficients a ∈ Rn is said to be a polyhedral
Routh cone of a polynomial a∗(s), if there exist αi, βi, such
that

K(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, 0 < βi < 1,

n∑

i=1

βi = 1, wj = w∗
j = const,

j 6= i, i = 1, . . . , n

}
.

4) A convex cone Ki,j(a
∗) of normed polynomial a(s) of

degree n with coefficients a ∈ Rn is said to be a polyhedral
Routh i, j-subcone of a polynomial a∗(s), if there exist
αi, βi, such that

Ki,j(a
∗) =

{
βia(wi = αiw

∗
i , wj = w∗

j )

+ βja(wj = αjw
∗
j , wi = w∗

i );

αi, αj > 1, 0 < βi, βj < 1, βi + βj = 1,

wk = w∗
k = const, k 6= i, j; i, j, k ∈ {1, . . . , n}

}
.

5) A convex set Kn

j,k(a∗) of normed polynomials a(s) of
degree n with coefficients a ∈ Rn is said to be a truncated
polyhedral Routh cone of a polynomial a∗(s), if there exist
αi, βi, such that

Kn

j,k(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, i 6= j, k;

1 < αj < αj , 1 < αk < αk; 0 < βi < 1,
n∑

i=1

βi = 1,

wh = w∗
h = const, h 6= i, i = 1, . . . , n

}
.

Remark 1: According to Theorem 1, it is possible to draw
n stable Routh rays Ri(a

∗) through an arbitrary stable point
a∗. In [13] it was shown that if the point is not placed on
the boundary of stability domain, then there are positive and
negative directions with respect to a∗. The positive part of
a Routh ray corresponds to αi ∈ (1,∞) while the negative
to αi ∈ (0, 1), and for αi = 1 rays intersect at the point a∗.
In this paper notions of Routh rays and Routh cones Ki(a

∗)
coincide for positive direction. Therefore, the point a∗ should
be understood as a vertex of the polyhedral Routh cone.

Proposition 3: An arbitrary subset P of normed polyno-
mials a(s) of degree n, a(s) ∈ Rn has n Routh cones Ki(P ),
i = 1, . . . , n generated by P . If the subset P is stable, then
all Routh cones Ki(P ) generated by P are stable.

Theorem 2: If all the polyhedral Routh subcones
Ki,j(a

∗), i, j ∈ {1, . . . , n} of a stable polynomial a∗(s) are
stable, then the polyhedral Routh cone K(a∗) is stable.

Let Γ = {1, . . . , n} be a set of integers. Rewrite it as
Γ = γ1 ∪ γ2, where γ1 and γ2 are sets that contain indices
corresponding to ordinary and truncated Routh subcones,
respectively, with dim γ1 = m1 and dim γ2 = m2 such that
m1 +m2 = n.

Theorem 3: A truncated polyhedral Routh cone Kn

ij (a∗),
ij ∈ γ2, j = 1, . . . ,m2 of a stable polynomial a∗(s) is stable
if the following conditions hold:

1) the polyhedral Routh subcones Kr,s(a
∗), r, s ∈ γ1 are

stable;
2) the line segments Su,v(αu, αv), u, v ∈ γ2 are stable,

where

Su,v(αu, αv) = conv{a(wu = αu,minw
∗
u,

a(wv = αv,minw
∗
v), wi = w∗

i , i 6= u, v}
and αu,min = minu αu.

Proposition 4: For n = 3 the polyhedral Routh cone
K(a∗) of an arbitrary stable polynomial a∗(s) is stable.

Proposition 5: The polyhedral subcones Ki,j(a
∗), i, j ∈

{1, 2, 3} of an arbitrary stable polynomial a∗(s) of order n
are stable.

IV. FIXED-ORDER POLE ASSIGNMENT

Assume that a plant with parametric uncertainties is given.
Our goal is to design an output controller of a fixed-order so
that the closed-loop poles are robustly assigned in a specific
region approximated by the Routh cone, explained in the
previous section. For simplicity, let us first consider the
problem of PID-controller design for a SISO plant with fixed
parameters. Let the plant transfer function H(s) of order m
be given

H(s) =
g(s)

f(s)
=
gm−1s

m−1 + · · ·+ g1s+ 1

fmsm + · · ·+ f1s+ f0
(7)

and we are looking for a PID-controller C(s) of an order
l = 2 with the transfer function

C(s) = KP +KI
1

s
+KDs

or
C(s) =

q(s)

p(s)
=
q2s

2 + q1s+ 1

p1s
.

It means that the closed-loop characteristic polynomial

a(s) = f(s)p(s) + g(s)q(s) (8)

is of degree n = m+ l = m+ 2.
It is known in the literature [15] that when l = m− 1 the

above problem has a solution for arbitrary a(s) whenever
the plant has no common pole-zero pairs. In general, for
l < m − 1 exact attainment of the desired polynomial is
impossible. Here we suggest the following approach. Let
us relax the requirement of attaining the desired polynomial
a(s) exactly and enlarge the target to a simplex S in polyno-
mial coefficient space containing the point representing the



desired closed-loop characteristic polynomial. Without any
restrictions we can assume that g0 = q0 = 1 and consider
further normed polynomials a(s) with a0 = 1.

Let us now introduce a stability measure ρ in accordance
with the simplex S as ρ = cTc, where c = S−1a and S is
the (m + l + 1) × (m + l + 1) matrix of vertices si of the
target simplex

S =
[
s1 · · · sn+1

]
. (9)

Observe that for normed polynomials a0 = si0 = 1,
i = 1, . . . , n + 1,

∑n+1
i=1 ci = 1, where n = m + l. If

all coefficients ci > 0, i = 1, . . . , n + 1, then the point
a is placed inside the simplex S. It is easy to see that the
minimum of ρ is obtained by

c1 = c2 = · · · = cn+1 =
1

n+ 1
.

Then, the point a is placed in the center of the simplex S.
Now we are ready to state the following problem of

controller design: find a controller C(s) such that the stability
measure ρ is minimal. In other words, we are looking
for a controller which places the closed-loop characteristic
polynomial a(s) as close as possible to the center of the
target simplex S. In the matrix form we have a = Gx, where
G is the plant Sylvester matrix

G =




fm 0 gm−1 gm−2

...
...

...
...

f2 g3 g2 g1
f1 g2 g1 1
f0 g1 1 0
0 1 0 0




(10)

of dimension (m + 2) × 4 and x is a vector of controller
parameters x =

[
p1 1 q1 q2

]T
.

The above controller design problem is equivalent to
the quadratic programming problem: find x such that the
minimum

J = min
x
xTGT(SST)−1Gx (11)

is obtained subject to the linear restrictions

S−1Gx > 0. (12)

Note that restrictions (12) follow from the positivity require-
ment of coefficients ci, i = 1, . . . , n. Next, we summarize
the above theory in the form of the algorithm.
Algorithm:
Step 1. Start from a given transfer function H(s) for un-

certain plant (7) and desired controller type (PI or PID)
function C(s).

Step 2. Construct the closed-loop characteristic polynomial
(8) and plant Sylvester matrix (10).

Step 3. Choose the initial closed-loop characteristic poly-
nomial a∗(s) and check the stability.

Step 4. Find reduced Routh parameters wk, k = n, . . . , 1
of the polynomial a∗(s).

Step 5. According to (6), find Routh rays Rk(a), k =
1, . . . , n of the polynomial a∗(s) and, using (9), construct
stable target simplex S with vertices on the Routh rays.

Step 6. Start with nominal plant (i.e., with values of uncer-
tainties placed in the center of region) and find controller
gains p and q by solving convex quadratic programming
task (11) with restriction (12).

Step 7. Check the stability of closed-loop system with
polytopic plant, i.e., all the vertices of the closed-loop
polytope must be located inside the target simplex S.
If some points of the rectangle are located outside of
S, then select different initial closed-loop characteristic
polynomial a∗(s) and repeat all the previous steps.

Example 1: Consider the normalized fourth-order system
from [16]

H(s) =
g3s

3 + g2s
2 + g1s+ 1

f4s4 + f3s3 + f2s2 + f1s+ f0
, (13)

where g1 = 1, g2 = 0.29167, g3 = 0.04167 and f0 = 1, f1 =
2.083, f2 = 1.4583, f3 = 0.4167, f4 = 0.04167. In order to
illustrate the applicability of the algorithm proposed above,
we introduce uncertainty to the plant as f0 = 1±0.625, f1 =
2.083 ± 1.25. One may easily check that the nominal plant
(13) is stable. Our goal then is to design a low-order robust
controller. In particular, we consider PI-controller

C(s) =
q1s+ 1

p1s
.

The characteristic polynomial a(s) of the closed-loop
system is given by

a(s) = p1s
5 + (0.4167p1 + 0.04167q1)s4

+ (1.4583p1 + 0.29167q1 + 0.04167)s3

+ [(2.083± 1.25)p1 + q1 + 0.29167]s2

+ [(1± 0.625)p1 + q1 + 1]s+ 1.

Now, let us choose the initial stable closed-loop char-
acteristic polynomial a∗(s), whose poles are r(a) =
{−3,−4,−5,−5,−7}. It means that the normed polynomial
with a∗0 = 1

a∗(s) = 0.0005s5 + 0.0114s4 + 0.1076s3+

0.4971s2 + 1.1262s+ 1

has the reduced Routh parameters

w =
[
0.04167 0.1315 0.2451 0.3545 0.8394 1

]
.

Take α1 = α2 = α3 = α4 = α5 = 4.4032 and
a(wi = αiw

∗
i ) for i = 1, . . . , 5, yielding the following stable

polynomials on the Routh rays of the polynomial a∗(s)

a∗1 =
[
0.0005 0.0114 0.1233 0.8728 3.9828 1

]
,

a∗2 =
[
0.0021 0.0503 0.4536 1.7037 1.1262 1

]
,

a∗3 =
[
0.0021 0.0503 0.4079 0.6069 1.9604 1

]
,

a∗4 =
[
0.0021 0.0503 0.1278 0.9825 1.1262 1

]
,

a∗5 =
[
0.0021 0.0114 0.1781 0.4971 1.2680 1

]
.



Next, we solve the PI-controller design task for the nomi-
nal plant with f1 = 2.083, f0 = 1 via quadratic programming
taking the target simplex of the closed-loop system by the
above Routh rays as

S =
[
a∗ a∗1 a∗2 a∗3 a∗4 a∗5

]
=



0.0005 0.0005 0.0021 0.0021 0.0021 0.0021
0.0114 0.0114 0.0503 0.0503 0.0503 0.0114
0.1076 0.1233 0.4536 0.4079 0.1278 0.1781
0.4971 0.8728 1.7037 0.6069 0.9825 0.4971
1.1262 3.9828 1.1262 1.9604 1.1262 1.2680

1 1 1 1 1 1



.

The optimization procedure returns parameters, yielding
the following controller

C(s) =
0.4543s+ 1

0.0404s
. (14)

The reference signal is chosen to be the step function.
The experimental results for three variations (without, with
maximum and minimum possible uncertainties) of plant (13)
are depicted in Fig. 1. It can be seen that outputs are capable
of tracking reference signal for the same controller (14) with
acceptable level of accuracy. Note that the overregulation
depends on the choice of the initial stable polynomial a∗(s),
which itself is a separate problem.
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Fig. 1. Simulation results for the closed-loop system

Example 2: Consider the second-order (m = 2) uncertain
plant

H(s) =
g(s)

f(s)
=

g1s+ 1

f2s2 + f1s+ f0

with g1 = 0.5, f2 = 1, f1 = −1.2 ± 0.8, f0 = 0.52 ± 1.
One may easily check that the nominal plant (i.e., without
uncertainties) is unstable. Thus, our goal is to design a stabi-
lizing robust PI-controller C(s) = q1s+1

p1s
. The characteristic

polynomial a(s) of the closed-loop system is given by

a(s) = p1s
3 − [(1.2± 0.8)p1 − 0.5q1]s2

+ [(0.52± 1)p1 + 0.5 + q1]s+ 1. (15)

Now, let us choose the initial stable closed-loop character-
istic polynomial a∗(s) with poles r(a) = {−4±0.5i,−0.5}.
Take α1 = α2 = α3 = 2. Next, we solve the PI-controller
design task for the nominal plant with f1 = −1.2, f0 =
0.52 via quadratic programming. The optimization proce-
dure returns the optimal parameters, yielding the following
controller

C(s) =
2.7949s+ 1

0.1702s
.

The result of the application of the above algorithm can be
seen in Fig. 2. The resulting pyramid is the approximation
of the stability domain by polyhedral Routh cone. The
black (placed in the vertex) and blue dots are, respectively,
defined by parameters of the initial stable polynomial a∗(s)
and coefficients of the characteristic polynomial a(s) of
the closed-loop system. The rectangular around blue dot
determines bounds of uncertainties of (15). Note that it is
placed inside the stability domain indicating that the designed
controller is robust.

Fig. 2. Approximation of the stability domain by polyhedral Routh cone

Example 3: Consider configuration of the servo system
provided by INTECO company [17]. The objective is to
control a servo position. This modular experimental platform
consists of the following components: a tachogenerator,
a 24V DC motor, an inertia load, a magnetic brake, an
encoder, and a gearbox. The servo system may be interfaced
with the MATLAB/Simulink environment through a specific
PCI board, where data is collected from the encoder and
tachogenerator, and is sent to the power drive box, which
controls the DC motor. The data was collected from the plant
and used for identification, yielding the following transfer
function

H(s) =
g(s)

f(s)
=

1

0.0049s2 + 0.0061s
.

We may add uncertainty to the identified model to verify the
robustness of the designed controllers. Hence, the parameters
are g1 = 0, g0 = 1, f2 = 0.0049, f1 = 0.0061± 0.002, f0 =
0. Proceeding in the same manner as in the previous exam-
ples, and using two sets of poles r1(a) = {−1.5,−1,−0.5}



and r2(a) = {−7,−5,−3} for the closed-loop characteristic
polynomial, we get slow and fast controllers

Cs(s) =
97.1975s+ 1

13523s
, Cf (s) =

72.2242s+ 1

22.0993s
.

Experiments from the real prototype for controller Cf (s)
are presented in Fig. 3. Two types of scenarios were consid-
ered: nominal plant and plant with external friction between
inertia load and base. One may see that controller is capable
of tracking reference signal for both cases.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Time [s]

O
ut

pu
ts

 [r
ad

]

 

 

Reference signal
Nominal plant
Plant with friction

Fig. 3. Laboratory experimental results for controller Cf (s)

Fig. 4 shows the experimental results for controller Cs(s)
with varying set point.
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Fig. 4. Laboratory experimental results for controller Cs(s)

V. CONCLUSIONS

In this paper, the problem of designing a robust fixed-order
controller for a continuous-time plant with uncertainties is
addressed. Parameters of the controller are found using linear
quadratic problem for which the corresponding simplex is

constructed using so-called polyhedral Routh cone. The latter
is calculated on the basis of the reduced Routh parameters.

In [13] a similar approach for the inner approximation
of the stability domain was developed using idea based on
polytopes. Though, in general, the resulting area has larger
volume, sometimes method based on polyhedral Routh cones
may provide a better result especially when the starting stable
point a∗ is placed near the boundary of the stability domain.
Thus, the application of the design technique from this paper
to the method from [13] as well as detailed comparison of
the respective results will be subjects for the future research.
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K Y B E R N E T I K A — M A N U S C R I P T P R E V I E W

ON STABLE CONES OF POLYNOMIALS VIA REDUCED
ROUTH PARAMETERS

Ülo Nurges, Juri Belikov and Igor Artemchuk

A problem of inner convex approximation of a stability domain for continuous-time linear
systems is addressed in the paper. A constructive procedure for generating stable cones in the
polynomial coefficient space is explained. The main idea is based on a construction of so-called
Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh
rays) represent edges of the corresponding Routh subcones that form (possibly after truncation)
a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by
the Routh cone is presented.

Keywords: linear systems, Hurwitz stability, convex approximation

Classification: 93C05, 93D09

1. INTRODUCTION

The stability is one of the most important properties in the field of control systems. It
arises in various applications and has to be taken into account while studying a system
or designing an appropriate controller. The stability property can be analyzed in several
ways. In case of linear systems the most intuitively understandable and inherently simple
test is based on the location of roots of a characteristic polynomial. Other alternatives
include Hurwitz, Routh, and Hermite–Bieler tests [6, 18] or frequency domain based
techniques [23].

However, once a system contains uncertainties, these techniques cannot be directly
applied. This resulted in the development of a parametric approach [4], which links
the study of relationships between roots of a polynomial and its coefficients. The main
problem appearing with the parametric approach is that, in general, the stability do-
main is nonconvex in the coefficient space. This challenge has led to the development
of techniques for convex approximation of the stability domain such as based on ellip-
soids [5, 9], polytopes [11, 14], hyperrectangles [8, 12], and convex directions [19]. The
type of convex approximation of the stability domain depends on the type of system
parameters uncertainty, for example, rectangular approximation is suitable for inter-
val parameters, and polytopic approximation is applicable for polytopic uncertainties.
This paper deals with conic approximation which may be useful for systems with one
dominant uncertainty or with several conic type uncertainties.
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In this paper, we provide a simple and efficient algorithm for the convex approxima-
tion of the stability domain by polyhedral Routh cones. The method is based on a new
multilinear stability criterion for Hurwitz polynomials relying on the so-called reduced
Routh parameters. For discrete-time systems the multilinear stability condition is intro-
duced via reflection coefficients of polynomials [14] and the idea of random generation
of stable line segments for stabilizing robust controller design is efficiently used [15, 20].
Here, we have proved that for continuous-time systems a similar approach can be used
via reduced Routh parameters. The results of this paper can be understood as extension
of those presented in [3] and [16]. For [3, 16], and this paper the multilinear stability
condition is the main conception. In [16] the method for polytopic approximation of the
stability domain is addressed. In the conference paper [3] the main idea of conic approx-
imation of the stability domain is considered. However, the majority of facts are used
without detailed proofs. In this paper, we provide the theoretical justification by giving
complete proofs. Furthermore, the relevant additional material is added emphasizing
relations between papers [3] and [16].

The paper is organized as follows. Section 2 recalls necessary definitions related to
stability of polynomials in the continuous-time case. The notion of the reduced Routh
parameters is introduced. The next section is devoted to the description of stable half-
lines (Routh rays) of polynomials. The main results, related to the approximation of
stability domain by polyhedral Routh cone, are addressed in Section 4. The presented
material is illustrated by several numerical examples. Concluding remarks and possible
directions for the future research are drawn in Section 5. Supplementary material is
collected in the Appendix.

2. REDUCED ROUTH PARAMETERS OF POLYNOMIALS

A polynomial of degree n

a(s) = ans
n + an−1s

n−1 + · · ·+ a1s+ a0 (1)

with real coefficients ai ∈ R, for i = 0, . . . , n, is said to be continuous-time stable in
the Hurwitz sense, if all its roots λi, for i = 1, . . . , n, are in the open left-half plane
of C, i. e., <(λi) < 0. Since polynomial (1) is uniquely defined by its coefficients, for
simplicity, sometimes, we use a to denote both the polynomial a(s) and the vector

a =
[
an · · · a0

]T
of its coefficients, i. e., a := a(s) =

[
an · · · a0

]T
. Then, the

Hurwitz region Hn is defined as Hn =
{
a ∈ Rn+1 | (1) is Hurwitz

}
.

A stability boundary is either the boundary of the stability domain in the coeffi-
cient space or the boundary of the root location domain (imaginary axis). The sta-
bility of polynomials a(s) can be tested by Routh table, see [7]. Based on this crite-
rion, a method for constructing Hurwitz polynomials can be derived as follows [20].
Start with arbitrary Hurwitz polynomial of degree 2. Since positivity of the coef-
ficients is equivalent to stability of the second-order polynomials, generate arbitrary
positive numbers h0, h1, h2 and compose the polynomial a(s) = h2s

2 + h1s + h0 or

a =
[
a2 a1 a0

]T
=
[
h2 h1 h0

]T
. At the kth step, having a Hurwitz polynomial of



On stable cones of polynomials via reduced Routh parameters 3

degree k, i. e., a(s) =
[
ak ak−1 · · · a0

]T
, consider two polynomials of degree k + 1

p(s) =
[
0 ak ak−1 · · · a0

]T

and
q(s) =

[
ak 0 ak−2 0 ak−4 0 · · ·

]T
.

Generate a positive random number hk+1 and compose

a(s) = p(s) +
hk+1

ak
q(s), (2)

which is Hurwitz polynomial of degree k+1, according to the Routh rule. Proceeding in
this manner up to k = n, we obtain a Hurwitz polynomial of degree n, see [21, 22]. Thus,
the coefficients ak of the nth-order polynomial are obtained from the Routh parameters
hk, k = 0, . . . , n recursively by increasing k. Furthermore, all Hurwitz polynomials of
degree n can be obtained using this construction [20]. Next, we introduce the reduced
Routh parameters that are used later in construction of stable line segments.

Definition 2.1. The reduced Routh parameters wj for normed polynomials a(s) =
ans

n + an−1s
n−1 + · · ·+ a1s+ 1 are defined as follows

w0 = h0 = 1,

w1 = h1,

w2 = h2,

wj =
hj
hj−1

, j = 3, . . . , n.

(3)

From (2) and (3) relations for recursive generation of normed Hurwitz polynomials
of order k + 1, for k > 2, can be obtained as

a(s) = p(s) + wk+1q(s).

Denote the degree of a polynomial by superscript to get

ak+1 =
[
wka

k
k akk akk−1 + wka

k
k−2 akk−2a

k
k−3 + wka

k
k−4 · · · 1

]T
, (4)

where ak =
[
akk akk−1 · · · 1

]T
. Using matrix notation, equation (4) becomes

ak+1 = Wka
k, (5)

where Wk is a (k + 1)× k matrix of the form

Wk = wk



Jk
...

0T


+




0T

...
Ik



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with Ik being the k × k unit matrix and Jk being the k × k diagonal matrix Jk =
diag{1, 0, 1, 0, . . .}, i. e.,

Wk =




wk 0 0 0 · · · 0
1 0 0 0 · · · 0
0 1 wk 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1



.

From recursive relation (5) it follows that an = Wn
k a

k, where Wn
k = WnWn−1 · · ·Wk,

k = n, . . . , 3 or

an = Wn
3 a

2 = WnWn−1 · · ·W3



w2

w1

1


 . (6)

Lemma 2.2. The elements in (6), can be calculated using the direct formula

anl =
n∑

i0=1

i0∑

i1=1

· · ·
in−l−1∑

in−l=1

n−l∏

j=0

wij mod (ij + n− l − j, 2), (7)

where l = 1, . . . , n is the index number of the corresponding row in (6), n > 2, and
mod (α, 2) is the usual modulus operation that returns either 1 or 0 depending on
whether the number α is odd or even, respectively. Elements wij in (7) correspond to
entries of the matrix Wk as

wij :=

{
w2/w1 for ij = 2,

wij otherwise.
(8)

P r o o f . See the detailed explanation in [3] for the proof. �

The inverse mapping from polynomial coefficients ak to the reduced Routh parameters
wk, k = n, . . . , 1 can be recursively found starting from wn via (5) as

wj =
ajj

ajj−1

, j = n, . . . , 3,

w2 = a22,

w1 = a21.

(9)

Note that in (9) parameters ajj and ajj−1 can be found explicitly as

ak−1
k−i−1 = akk−i−1, i = 0, . . . , 2b(k − 2)/2c,
ak−1
k−i−2 = akk−i−2 − wka

k
k−i−3, i = 0, . . . , 2b(k − 3)/2c
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with a0 = 1 or in the matrix form as ak−1 = W ka
k, where W k is a k × k matrix

W k = Ik − wk




0 Jk−1

...
...

0 0T




and Jk is a k × k diagonal matrix, i. e., Jk = diag{0, 1, 0, 1, . . .}.

Proposition 2.3. A normed polynomial a(s) with a0 = 1 is Hurwitz stable if and only
if wk > 0, k = 1, . . . , n.

P r o o f . Necessity : Assume that a normed polynomial a(s) of order n is stable in the
Hurwitz sense. Then, according to Routh stability criterion, all the Routh parameters
hk of stable polynomial a(s) must be positive real numbers hk > 0, k = 1, . . . , n. Thus,
(3) yields wk > 0, k = 1, . . . , n.

Sufficiency : From (3) it follows

h0 = 1,

h1 = w1,

h2 = w2,

hj = wjhj−1, j = 3, . . . , n.

Observe that, if wk > 0, for k = 1, . . . , n, then all Routh parameters of the polynomial
a(s) are positive hk > 0, k = 0, . . . , n. Hence, the polynomial a(s) is Hurwitz stable.

�

Proposition 2.4. The mapping (5) from the reduced Routh parameters wk, for k =
1, . . . , n to the normed polynomial coefficients ank , k = 1, . . . , n with a0 = 1 is a one-to-
one mapping if wk > 0, k = 1, . . . , n.

P r o o f . According to the construction procedure, defined by (2), the mapping between
the Routh parameters hk, k = 1, . . . , n and the polynomial coefficients ank , k = 1, . . . , n
for a0 = 1 is one-to-one, see [20]. Observe that mapping (3) between the reduced Routh
parameters wk, k = 1, . . . , n and the Routh parameters hk, k = 1, . . . , n is one-to-one by
h0 = 1 as well. Hence, it remains to note that the composition of two injective functions
is injective, and conclusion follows. �

3. STABLE ROUTH RAYS OF POLYNOMIALS

In this section we introduce the stable line segments (half-lines) of polynomials that can
be obtained starting from the reduced Routh parameters wk, k = 1, . . . , n of a Hurwitz
polynomial a ∈ Hn ⊂ Rn+1.
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Theorem 3.1. Through an arbitrary Hurwitz stable point

a =
[
an an−1 · · · a1 1

]T

with reduced Routh parameters wk > 0, k = 1, . . . , n one can draw n stable half-lines
Rk(a) ⊂ Hn such that

Rk(a) = {a | wk ∈ (0,∞), wj = const, j 6= k; k, j ∈ {1, . . . , n}} . (10)

P r o o f . Observe that all points of the line Rk(a) are Hurwitz stable, since

1. n− 1 reduced Routh parameters wj , j ∈ {1, . . . , n}, j 6= k are assumed to be fixed
and positive wj > 0;

2. the kth reduced Routh parameters wk > 0, according to assumption wk ∈ (0,∞).

Next, we have to prove that Rk(a) is a line segment (half-line). It is easy to see that
mapping (5) is multilinear. If n− 1 reduced Routh parameters wj , j ∈ {1, . . . , n}, j 6= k
are fixed, then mapping (5) turns out to be linear with respect to the kth reduced Routh
parameter wk. The latter means that for each k = 1, . . . , n there is a half-line Rk(a),
and altogether n half-lines Rk(a) ⊂ Hn. �

Definition 3.2. The half-lines Rk(a), k = 1, . . . , n defined by (10) are called Routh
rays of the polynomial a(s). Moreover, their endpoints vk(a) such as

vk(a) = a(wk = 0)

are supposed to be the Routh sources of the polynomial a(s).

Proposition 3.3. (Multilinear stability criterion) If a is a Hurwitz stable polynomial
with reduced Routh parameters wk(a), k = 1, . . . , n, then all the Routh rays Rk(a) are
Hurwitz stable.

P r o o f . The proof follows directly from Theorem 3.1. �

According to Proposition 2.3, all Routh sources vk(a) of Hurwitz (stable) polynomials
a(s) are placed on the stability boundary. This means that some of the roots λj(vk),
j = 1, . . . , n, k = 1, . . . , n are placed on the imaginary axis. Using mapping (6) the
following theorem can be formulated, regarding roots of Routh sources.

Theorem 3.4. All the Routh sources vj(a), j = 2, . . . , n − 1 of a Hurwitz polynomial
a(s) of the order n have at least two roots at the origin

λ1(vj) = λ2(vj) = 0, j = 2, . . . , n− 1

and the last Routh source vn(a) has at least one root at the origin

λ1(vn) = 0.
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P r o o f . To prove the theorem, the direct formula (7) from Lemma 2.2 is used. Indeed,
take in (7) for l = 1 and l = 2 indices as i0 = n, i1 = n− 1, . . . , in−2 = 2, in−1 = 1 and
i0 = n − 1, i1 = n − 2, . . . , in−3 = 2, in−2 = 1, respectively. This yields the first two
elements an1 , a

n
2 of (6) given as

an1 = wnwn−1 · · ·w2w1,

an2 = wn−2wn−3 · · ·w2w1

or, using (8), in the simplified form as

an1 = wnwn−1 · · ·w2,

an2 = wn−2wn−3 · · ·w2.

Hence, according to Definition 3.2, from the previous equations it follows λ1(vj) =
λ2(vj) = 0, for j = 2, . . . , n− 1, and λ1(vn) = 0. �

4. STABLE ROUTH CONES OF POLYNOMIALS

Next, we study the stability of polynomials with conic uncertainty [10] by means of
Routh rays. We define so-called Routh cones1 in the polynomial coefficient space a ∈ Rn

starting from the reduced Routh parameter space w ∈ Rn. Let a∗ ∈ Hn be arbitrary
stable polynomial of the order n and w∗ its reduced Routh parameters.

Definition 4.1.

1. A subsetKi(a
∗) of normed polynomials a(s) of the degree n with coefficients a ∈ Rn

is said to be a Routh cone of a polynomial a∗(s) if it is closed under positive scalar
multiplication of one of its reduced Routh parameters w∗

i , i ∈ {1, . . . , n}, i. e.,
a(wi = αw∗

i ) ∈ Ki when a ∈ Ki and α > 0, where all the other reduced Routh
parameters wj , j 6= i, j ∈ {1, . . . , n} are fixed wj = w∗

j .

2. If P is a subset of normed polynomials a(s) of degree n with coefficients a ∈ Rn,
then

Ki(P ) = {a(wi = αwi); a ∈ P, α > 0, i ∈ {1, . . . , n}}
is called the Routh cone generated by P .

3. A convex cone K(a∗) of normed polynomials a(s) of the degree n with coefficients
a ∈ Rn is said to be a polyhedral Routh cone of a polynomial a∗(s), if there exist
αi, βi, such that

K(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, 0 < βi < 1,

n∑

i=1

βi = 1, wj = w∗
j = const, j 6= i, i = 1, . . . , n

}
.

1Note that the notion cone is used in consonance with results in [10]. In our paper definition of the
Routh cone coincides with that of the Routh ray.
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4. A convex cone Ki,j(a
∗) of normed polynomial a(s) of the degree n with coefficients

a ∈ Rn is said to be a polyhedral Routh i, j-subcone of a polynomial a∗(s), if there
exist αi, βi, such that

Ki,j(a
∗) =

{
βia(wi = αiw

∗
i , wj = w∗

j ) + βja(wj = αjw
∗
j , wi = w∗

i );

αi, αj > 1, 0 < βi, βj < 1, βi + βj = 1,

wk = w∗
k = const, k 6= i, j; i, j, k ∈ {1, . . . , n}

}
.

5. A convex set Kn

j,k(a∗) of normed polynomials a(s) of the degree n with coefficients
a ∈ Rn is said to be a truncated polyhedral Routh cone of a polynomial a∗(s), if
there exist αi, βi, such that

Kn

j,k(a∗) =

{
n∑

i=1

βia(αiw
∗
i ); αi > 1, i 6= j, k;

1 < αj < αj , 1 < αk < αk; 0 < βi < 1,
n∑

i=1

βi = 1,

wh = w∗
h = const, h 6= i, i = 1, . . . , n

}
.

Remark 4.2. According to Theorem 3.1, it is possible to draw n stable Routh rays
Ri(a

∗) through an arbitrary stable point a∗. In [16] it was shown that if the point
is not placed on the boundary of stability domain, then there are positive and negative
directions with respect to a∗. The positive part of a Routh ray corresponds to αi ∈ (1,∞)
while the negative to αi ∈ (0, 1), and for αi = 1 rays intersect at the point a∗. In this
paper notions of Routh rays and Routh cones Ki(a

∗) coincide for positive direction.
Therefore, the point a∗ should be understood as a vertex of the polyhedral Routh cone.

Proposition 4.3. An arbitrary subset P of normed polynomials a(s) of the degree n,
a(s) ∈ Rn has n Routh cones Ki(P ), i = 1, . . . , n generated by P . If the subset P is
stable, then all Routh cones Ki(P ) generated by P are stable.

P r o o f . According to Theorem 3.1, through an arbitrary point a ∈ P ⊂ Rn it is
possible to draw half-lines Ri(a) such that wi ∈ (0,∞), i = 1, . . . , n. If polynomials
a ∈ P are stable, then all half-lines Ri(a) are stable, i. e., Routh cone Ki(P ) is stable.

�

Proposition 4.4. The n-times Routh cone of the polynomial a(s) = 1, i. e., a =[
0 · · · 0

]
∈ Rn, generates the whole stability domain A in polynomial coefficient

space, A ⊂ Rn.

P r o o f . Starting from the origin a = 0 it is possible to find the Routh ray R1(0)
which is placed on the stability boundary, since all the points a ∈ R1(0) have wj = 0,
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j = 2, . . . , n. The Routh cone K1,2(0) = K2(R1(0)) is also placed on the stability
boundary, since all the points a ∈ K1,2(0) have wj = 0, j = 3, . . . , n and wi ∈ (0,∞),
i = 1, 2. Similarly, for all the points a ∈ K1,...,n−1(0) it follows that wj = 0, j = n and
wi ∈ (0,∞), i = 1, . . . , n− 1. Finally, the Routh cone K1,...,n(0) contains points a with
wi ∈ (0,∞), i = 1, . . . , n, i. e., K1,...,n(0) = A. �

Theorem 4.5. (Artemchuk et al. [3]) If all the polyhedral Routh subcones Ki,j(a
∗),

i, j ∈ {1, . . . , n} of a stable polynomial a∗(s) are stable, then the polyhedral Routh cone
K(a∗) is stable.

Let Γ = {1, . . . , n} be a set of integers. Rewrite it as Γ = γ1 ∪ γ2, where γ1 and γ2
are sets that contain indices corresponding to ordinary and truncated Routh subcones,
respectively, with dim γ1 = m1 and dim γ2 = m2 such that m1 +m2 = n.

Theorem 4.6. (Artemchuk et al. [3]) A truncated polyhedral Routh cone Kn

ij (a∗) such
that ij ∈ γ2 and j = 1, . . . ,m2 of a stable polynomial a∗(s) is stable if the following
conditions hold:

1. the polyhedral Routh subcones Kr,s(a
∗), r, s ∈ γ1 are stable;

2. the line segments Su,v(αu, αv), u, v ∈ γ2 are stable, where

Su,v(αu, αv) = conv {a(wu = αu,minw
∗
u), a(wv = αv,minw

∗
v), wi = w∗

i , i 6= u, v}

and αu,min = minu αu.

Proposition 4.7. (Artemchuk et al. [3]) For n = 3 the polyhedral Routh cone K(a∗)
of an arbitrary stable polynomial a∗(s) is stable.

Example 4.8. Consider an Unmanned Free-Swimming Submersible vehicle [13] for
which the relation of pitch angle to elevator surface angle can be represented by the
transfer function

H(s) =
−0.125(s+ 0.435)

(s+ 1.23)(s2 + 0.226s+ 0.0169)
.

Since the poles λ1 = −1.23, λ2,3 = −0.113 ± 0.0643i have negative real parts, it im-
mediately follows that the nominal system H(s) is stable. The goal is to construct the
stable polyhedral cone in the coefficient space starting from the nominal characteristic
polynomial (denominator of H(s))

a∗(s) = s3 + 1.456s2 + 0.2949s+ 0.028.

Normalize the polynomial a∗(s) dividing it by free term 0.028 to get

a∗(s) = 35.7143s3 + 52s2 + 10.5321s+ 1

or
a3 =

[
a33 a32 a31 1

]T
=
[
35.7143 52 10.5321 1

︸ ︷︷ ︸
a3

]T
.
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The reduced Routh parameters can be found using recursive relation (9) as follows.
Start from

w∗
3 =

a33
a32

=
35.7143

52
= 0.6868.

Next, find the second-order polynomial

a2 =



a22
a21
1


 = W 3a3 =




1 0 0
0 1 −0.6868
0 0 1






52
10.5321

1


 =




52
9.8453

1




and, therefore,

w∗ =
[
w∗

3 w∗
2 w∗

1 w∗
0

]T
=
[
0.6868 52 9.8453 1

]T
.

Then, according to Definition 4.1, Routh cones can be calculated as

Ki =




w3 0 0
1 0 0
0 1 w3

0 0 1




︸ ︷︷ ︸
W3

·



w2

w1

1


 .

Cone K1: Take w1 = α1w
∗
1 , w2 = w∗

2 , w3 = w∗
3 , 1 < α1 <∞, and

a2 =




52
9.8453α1

1


 .

Then,

K1 =




0.6868 0 0
1 0 0
0 1 0.6868
0 0 1


 ·




52
9.8453α1

1


 =




35.7136
52

9.8453α1 + 0.6868
1


 .

Cone K2: Take w1 = w∗
1 , w2 = α2w

∗
2 , w3 = w∗

3 , 1 < α2 <∞, and

a2 =




52α2

9.8453
1


 .

Then,

K2 =




0.6868 0 0
1 0 0
0 1 0.6868
0 0 1


 ·




52α2

9.8453
1


 =




35.7136α2

52α2

10.5321
1


 .

Cone K3: Take w1 = w∗
1 , w2 = w∗

2 , w3 = α3w
∗
3 , 1 < α3 <∞, and

a2 =




52
9.8453

1


 .
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Then,

K3 =




0.68682α3 0 0
1 0 0
0 1 0.68682α3

0 0 1


 ·




52
9.8453

1


 =




35.7136α3

52
0.6868α3 + 9.8453

1


 .

Let a ∈ K(a∗) be an inner point of the polyhedral Routh cone K(a∗). Then, the convex
combination can be expressed as

a = β1K1(a∗) + β2K2(a∗) + β3K3(a∗),

where 0 < βi < 1,
∑3

i=1 βi = 1 or in the explicit form as

a =




35.7136(β1 + β2α+ β3α)

52(β1 + β2α+ β3)

9.8453(β1α+ β2 + β3) + 0.6868(β1 + β2 + β3α)

1


 .

From (9) it follows

w3 =
0.6868(β1 + β2α+ β3α)

β1 + β2α+ β3
,

w2 = 52(β1 + β2α+ β3),

w1 =
511.956(β1α+ β2 + β3)(β1 + β2α+ β3) + 35.7136(1− α)2β2β3

52(β1 + β2α+ β3)
.

Observe that a∗(s) is stable. Then, it follows from Proposition 2.3 that w∗
i > 0, i =

1, 2, 3. It remains to show that the reduced Routh parameters wi, i = 1, 2, 3 are also
positive. This trivially follows from the fact that αi > 1 and 0 < βi < 1 with

∑3
i=1 βi =

1. Therefore, the constructed polyhedral Routh cone

K(a∗) =

{
β1K1(a∗) + β2K2(a∗) + β3K3(a∗) |

αi > 1, 0 < βi < 1,
3∑

i=1

βi = 1, i = 1, 2, 3

}

is stable.

Proposition 4.9. The polyhedral subcones Ki,j(a
∗), i, j ∈ {1, 2, 3} of an arbitrary

stable polynomial a∗(s) of order n are stable.

P r o o f . See Appendix. �

The following algorithm allows to generate stable truncated polyhedral Routh cones
for a given initial polynomial.
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Algorithm:

Step 1. Start from a given n degree stable polynomial a(s), or

an =
[
ann ann−1 · · · an1 1

]
.

Step 2. Find the reduced Routh parameters wk, k = n, . . . , 1 of the polynomial a(s)
by solving (9).

Step 3. Find by (10) the Routh rays Rk(a), k = 1, . . . , n of the polynomial a(s).

Step 4. Check the stability of all the polyhedral Routh subcones Ki,j(a) with i, j ∈
{4, . . . , n} of the polynomial a(s) by Hurwitz Segment Lemma [1, p.81]. By Propo-
sition 4.9 the polyhedral Routh subcones Ki,j(a), i, j ∈ {1, 2, 3} are stable. If all the
polyhedral Routh subcones Ki,j(a), i, j ∈ {4, . . . , n} are stable, then by Theorem 4.5
the polyhedral Routh cone K(a) is stable.

Step 5. If some of the polyhedral Routh subcones Ki,j(a), i, j ∈ {4, . . . , n} are not
stable, then find the stable line segments Su,v(αu, αv) using Theorem 4.6 with ap-
propriate values of αu,min = minu αu and αv,min = minv αv.

Step 6. According to Theorem 4.6 the stable truncated polyhedral Routh cone Kn
(a)

of the polynomial a(s) is determined by the stable polyhedral Routh subcones Ki,j(a),
i, j ∈ {1, . . . , n} and the stable line segments Su,v(αu, αv).

Example 4.10. Consider the fourth-order system [17]

H(s) =
s3 + 7s2 + 24s+ 24

s4 + 10s3 + 35s2 + 50s+ 24
.

The nominal system H(s) is stable, since the poles are λ1 = −1, λ2 = −2, λ3 = −3,
λ4 = −4. Our goal is to construct the stable polyhedral Routh cone around the nominal
characteristic polynomial

a∗(s) = s4 + 10s3 + 35s2 + 50s+ 24.

Proceed in the same manner as in Example 4.8. Thus, first normalize the polynomial
a∗(s) dividing it by the free term 24 and then calculate the reduced Routh parameters
as

w∗ =
[
w∗

4 w∗
3 w∗

2 w∗
1 w∗

0

]T
=
[
0.1 0.33 1.25 1.75 1

]T
.

Then, according to Definition 4.1, Routh cones can be calculated as

Ki =




w4 0 0 0
1 0 0 0
0 1 w4 0
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
W4

·




w3 0 0
1 0 0
0 1 w3

0 0 1




︸ ︷︷ ︸
W3

·



w2

w1

1


 ,
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yielding

K1 =
[
0.0417 0.4167 1.283 + 0.175α1 0.333 + 1.75α1 1

]T
,

K2 =
[
0.0417α2 0.4167α2 0.2083 + 1.25α2 2.0833 1

]T
,

K3 =
[
0.0417α3 0.4167α3 1.425 + 0.033α3 1.75 + 0.333α3 1

]T
,

K4 =
[
0.0417α4 0.4167 1.25 + 0.2083α4 2.0833 1

]T

with 1 < αi <∞, i = 1, . . . , 4.

Next, between obtained Routh cones it is possible to draw six polyhedral Routh sub-
cones. According to Proposition 4.9, the polyhedral Routh subcones K1,2(a∗), K1,3(a∗),
and K2,3(a∗) are stable. In addition, according to the Edge Theorem, K2,4(a∗) and
K3,4(a∗) are stable as well. The remaining subcone K1,4(a∗) is not stable, whereas the
truncated polyhedral Routh subcone K1,4(a∗) is stable, for example, for α1 = α4 = 6.2.

5. DISCUSSION

This paper proposes the method for convex approximation of stability domain by the
polyhedral Routh cone K(a∗). The main idea is based on the new multilinear stability
criterion for Hurwitz polynomials relying on the reduced Routh parameters. The results
presented in the paper extend those from [3] by giving rigorous mathematical proofs and
providing additional theoretical material. Furthermore, Section 3 and Remark 4.2, in
particular, explain how the results from [3] and [16] are related via Routh rays.

It was shown in Proposition 4.7 that for the particular case of the third-order system,
the Routh cone of an arbitrary polynomial a∗ is always stable. However, for higher order
systems is remains an open challenge. Therefore, we state the following hypotheses that
require theoretical proofs.

Conjecture 5.1. For n = 4 the polyhedral Routh cone K(a∗) of a stable polynomial
a∗(s) is stable if the polyhedral Routh subcone K1,4(a∗) is stable.

Conjecture 5.2. The polyhedral Routh cone K(a∗) of a stable polynomial a∗(s) of
order n is stable if the polyhedral Routh subcones K1,j(a

∗), j = 4, ..., n are stable.

The convex inner approximation of the stability region and the multilinear stability
conditions can be used, for example, to design an output controller of a fixed-order via
quadratic programming approach so that the closed-loop poles are robustly assigned in
the approximated region [2, 15]. This will make another direction for the future research.
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APPENDIX

Proof of Proposition 4.9

P r o o f . By (5) we obtain the following Routh cones Ki(a
∗), i = 1, 2, 3 for the polyno-

mial a∗(s), a ∈ Rn

K1(a∗) = Wn
4 (a∗)




w∗
2w

∗
3

αw∗
1 + w∗

3

1


 , K2(a∗) = Wn

4 (a∗)




αw∗
2w

∗
3

αw∗
2

w∗
1 + w∗

3

1


 ,

K3(a∗) = Wn
4 (a∗)




αw∗
2w

∗
3

w∗
2

w∗
1 + αw∗

3

1


 ,

where Wn
4 (a∗) := Wn(a∗) · · ·W4(a∗) and α > 1.

For a ∈ K1,2(a∗) there exist constants α > 1 and 0 < β < 1 such that for an arbitrary
a ∈ K1,2(a∗)

a = βa(w1 = αw∗
1) + (1− β)a(w2 = αw∗

2),

where a(w1 = αw∗
1) ∈ K1 and a(w2 = αw∗

2) ∈ K2. The above relation can be rewritten
in the explicit way as

a = Wn(a∗) · · ·W4(a∗)




(β + (1− β)α)w∗
2w

∗
3

(β + (1− β)α)w∗
2

(βα+ 1− β)w∗
1 + w∗

3

1


 .

Observe that the reduced Routh parameters wn, . . . , w4 of a polynomial a(s) are de-
termined by the product of matrix multiplication Wn(a∗) · · ·W4(a∗), i. e., wi = w∗

i ,
i = 4, . . . , n. For the reduced Routh parameters wi, i = 1, . . . , 3 of the polynomial
a ∈ K1,2(a∗), using (9), it follows

w2w3 = (β + (1− β)α)w∗
2w

∗
3 ,

w2 = (β + (1− β)α)w∗
2 ,

w1 + w3 = (βα+ 1− β)w∗
1 + w∗

3

or

w1 = (βα+ 1− β)w∗
1 ,

w2 = (β + (1− β)α)w∗
2 ,

w3 = w∗
3 .

Note that α > 1, 0 < β < 1, and w∗
i > 0, i = 1, . . . , n. Then, wi > 0, i = 1, . . . , n, i. e.,

a ∈ K1,2(a∗) is stable.
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In the similar manner we obtain for a ∈ K1,3(a∗) the reduced Routh parameters
wn, . . . , w4, wi = w∗

i , i = 4, . . . , n. For wi, i = 1, . . . , 3 of the polynomial a ∈ K1,3(a∗)
we obtain by (9) the following relations

w2w3 = (β + (1− β)α)w∗
2w

∗
3 ,

w2 = w∗
2 ,

w1 + w3 = (βα+ 1− β)w∗
1 + (β + (1− β)α)w∗

3

or

w1 = (βα+ 1− β)w∗
1 > 0,

w2 = w∗
2 > 0,

w3 = (β + (1− β)α)w∗
3 > 0.

Finally, for a ∈ K2,3(a∗) we obtain the reduced Routh parameters wi = w∗
i , i = 4, . . . , n

and for wi, i = 1, . . . , 3

w2w3 = (βα+ (1− β)α)w∗
2w

∗
3 ,

w2 = (βα+ (1− β))w∗
2 ,

w1 + w3 = w∗
1 + (β + (1− β)α)w∗

3

that yield

w1 = w∗
1 +

(β(1− β)(1− α)2)w∗
3

βα+ (1− β)
> 0,

w2 = (βα+ 1− β)w∗
2 > 0,

w3 =
αw∗

3

βα+ 1− β > 0.

Hence, all polyhedral subcones Ki,j(a
∗), i, j ∈ {1, 2, 3} of an arbitrary stable polynomial

a∗(s) of order n are stable. �

(Received ????)
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