
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technology

Department of Software Science

Tallinn 2017

ITC70LT

Iryna Bondar 146085

LUDROID: EVALUATION OF ANDROID

MALWARE DETECTION TECHNIQUES AND

DEVELOPMENT OF A FIRST LINE DEFENSE

SOLUTION

Master thesis

Emin Caliskan

PhD Researcher

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Iryna Bondar

18.05.2017

3

Abstract

Due to the increasing popularity of mobile platforms based on Android, the number of

software distributions increases correspondently. Along with this, the malware industry

is also evolving with the time passing. The main Android application dealer (Google

Play store) performs intrinsic check and examines the distributed software for malicious

components occurrence. But the rest of the distribution sources (alternative Android

markets) follow different policies for applications control. Users who choose alternative

sources are more likely to expose themselves to the malware effects. To solve this

problem researchers and studies started focusing on Android security relying on

different aspects. While antivirus systems generally speaking are redundant and reduce

battery life and device performance, the proposed academic countermeasures are

currently not readily available for research or are not maintained anymore.

The main contribution of this work, besides evaluating and exploring the state of the art

of Android malware detection tools and techniques, is a system which allows users to

check the applications from third-party repositories without downloading the file and

performing malware detection by means of multiple integrated cloud based solutions,

called L u d r o i d. Based on the analysis report the user can decide whether to proceed

with the download and therefore install the file, or cancel it. Ludroid aims, at least in

theory to address in an easy way the threat represented by untrusted applications

belonging to unofficial markets.

This thesis is written in English and is 54 pages long, including 5 chapters, 12 figures

and 4 tables.

4

Annotatsioon

LUDROID: Android platvormi pahavara tuvastamistehnikate ülevaade ning

pahavara esmase kaitse lahenduse arendamine

Androidi-põhiste mobiiliplatvormide suurenevale populaarsusele vastavalt kasvab ka

Androidile mõeldud tarkvara kasutajate hulk. Ajaga areneb järgi ka pahavara. Peamine

Androidi-rakenduste levitaja (Google Play pood) teostab rakenduste sisemist kontrolli ja

püüab rakendustes tuvastada kuritegelikke komponente. Teised mobiilirakenduste

levitamise kanalid (alternatiivsed rakenduste poed) kasutavad rakenduste

kontrollimiseks muid strateegiaid. Alternatiivsetest allikatest pärit rakenduste

kasutajatel on suurem oht sattuda pahavara ohvriks. Selle probleemi lahendamiseks on

teadlased ja uuringud hakanud keskenduma Androidi-rakenduste turvalisuse erinevatele

aspektidele. Kuigi viirusetõrje süsteeme on üldiselt palju ning nad pikendavad aku

eluiga ja parandavad seadme võimekust, siis pakutud akadeemilised lahendused ei ole

teaduslikuks uurimiseks vabalt kättesaadavad või neid enam ei toetata.

Selle töö põhiline panus peale Androidi pahavara tuvastuse tööriistade ja tehnikate

ülevaate tutvustamise ja hindamise on süsteem Ludroid, mis lubab kasutajatel

kontrollida alternatiivsetest allikatest pärit rakendusi ilma neid alla laadimata ning

integreeritud pilvepõhiste lahenduste abil tuvastada pahavara. Selle analüüsi tulemuste

põhjal saab kasutaja otsustada, kas rakenduse alla laadimise ja installeerimisega jätkata

või mitte. Ludroid’i eesmärgiks on pakkuda vähemasti teoreetiline lahendus

mitteametlikest rakenduspoodidest pärit ebausaldusväärsete rakenduste poolt kujutatava

ohu lihtsaks adresseerimiseks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 54 leheküljel, 5 peatükki, 12

joonist, 4 tabelit.

5

Table of abbreviations and terms

APK Android Package

OS Operating System

SQL Structured Query Language

GL Graphics Library

libc Standard library for the C programming language

SGL Scalable Graphics Library

SSL Secure Sockets Layer

CPU Central Processing Unit

API Application Programming Interface

IMEI International Mobile Equipment Identity

SMS Short Message Service

VM Virtual machine

JVM Java virtual machine

DEX Dalvik Executable format

JAR Java Archive

UID User identifier

PC Personal computer

ICCG Inter-Component Call Graph

GPS Global Positioning System

6

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

AV Anti-Virus

GHz Gigahertz

RAM Random-access memory

DDR3 Double data rate type three

TB Terabyte

SATA Serial AT Attachment

IMSI International mobile subscriber identity

MCC Mobile country code

MNC Mobile network code

LAC Location area code

CID Cell ID

WiFi Wireless fidelity

MAC A media access control address

APN Access Point Name

PIM Personal information manager

SD Secure Digital

SHA1 Secure Hash Algorithm 1

PHP Personal Home Page, a server-side scripting language

7

 Table of contents

1. Introduction .. 11

1.1. Research problem .. 11

1.2. Research questions ... 13

1.3. Objectives and scope ... 13

2. Background ... 14

2.1. Overview of Android OS ... 14

2.2. Security measures .. 17

2.3. Classification of Android application malware ... 18

2.4. Threat model .. 19

2.5. Third party repositories .. 21

2.6. Classification of Android malware detection techniques 23

3. Related work ... 26

3.1. Static analysis .. 26

3.2. Dynamic analysis ... 28

3.3. Hybrid analysis .. 29

3.4. Limitations ... 30

4. Project ... 31

4.1. Approach used in the project ... 32

4.2. Use case ... 33

4.3. Selection of techniques .. 33

4.4. Measuring the malware occurrence in third-party stores 37

4.5. Dataset ... 39

4.6. System description ... 41

4.7. Techniques performance .. 39

8

4.7.1. VirusTotal Performance ... 39

4.7.2. Jotti performance .. 40

4.8. Decision making .. 40

4.9. Internet survey ... 41

4.10. Results .. 43

5. Conclusions and future work .. 47

References .. 48

Appendix 1 – Interview with Aptoide security personnel .. 55

Appendix 2 – Example of report generated by Droidbox .. 56

Appendix 3 – Report response from VirusTotal .. 57

Appendix 4 – Report response from Jotti ... 59

Appendix 5 – Internet survey results .. 60

9

List of figures

Figure 1. The Android software stack. ... 14

Figure 2. Number of available applications in Google Play Store from December 2009

to March 2017. .. 21

Figure 3. Number of available applications and their downloads on Aptoide in 1 year

period. ... 22

Figure 4. Number of malwares and their samples in third-party applications stores. 23

Figure 5. Front-end of Ludroid. .. 31

Figure 6. Result of F-Droid samples scan .. 38

Figure 7. Application workflow. .. 41

Figure 8. Result of the scanned file with malware confidence less than 20%. 41

Figure 9. Result of the scanned file with malware confidence 20% or more. 42

Figure 10. Evaluation of the need for a system such as Ludroid. 43

Figure 11. VirusTotal malware confidence distribution. .. 44

Figure 12. Jotti malware confidence distribution. .. 44

10

List of tables

Table 1. Availability of existing malware detection techniques. 30

Table 2. Number of applications hosted on third-party repositories. 37

Table 3. Results of scanned applications in third-party repositories. 38

Table 4. Overview of techniques performance. .. 45

11

1. Introduction

Smartphones have become a crucial part of everyday human life and its usage is

increasing exponentially. Android has become one of the most commonly used and

popular operating systems for mobile devices [53]. Its popularity is partially induced by

the immense collection of extensive smartphone applications in various official and

third party mobile application markets. One of the significant abilities of Android

operating system over other platforms is the ability to support third party applications

that are offered through officious untrusted third party repositories and storages. This

feature together with the tremendous vogue and user friendliness of Android system has

made it highly attractive to malware authors targeting for information and identity theft

[55].

1.1. Research problem

The applications in Android environment are mostly downloaded and installed through

Google Play, an application market managed by Google, which performs malware

checks for every application uploaded [60]. Despite the fact that some malicious

applications have passed the tests and have been uploaded on the official market, this

represents a corner case out of the scope of this research.

The situation changes drastically when a user enables the possibility of installing

applications from other sources, downloading an apk file from the Internet. There are a

lot of unofficial websites or markets where applications can be downloaded. For

instance, Aptoide
1
, one of the most popular third-party repositories, has 115 million

unique users with more than 6 thousand applications available on the market [66]. Most

of popular and trusted officious markets use the anti-virus systems integrated into their

security systems. This does not guarantee safe downloads, since various markets might

apply different filters once the anti-virus system flags the suspicious activity. After

contacting the Security Department of Aptoide (Appendix 1), they confirmed that in

their systems

some anti-virus detections are automatically ignored, such as:

1
 http://www.aptoide.com/

12

“- Detections that have been confirmed to be false positives at all times;

- Potentially unwanted adware that is not extremely invasive […]. However, in such

cases, the application immediately gets a Warning or Adware badge due to such

detections;

- Detections for selected applications, such as Lucky Patcher and King Root. Most

applications that root your device will be detected by a number of anti-virus systems,

even though they are completely safe for the end-user.”

Aside from the most popular markets there are plenty of other less known third party

repositories where uploaded applications are rarely checked or scanned for malicious

activity and therefore they represent a perfect environment for malware hosting [56].

According to Cheetah Mobile security lab [7] in fact, the percentage of malware in

unofficial repositories is significantly higher than the one on Google Play store (0.16%

against 0.005%), and the percentage is even higher if small and unknown Android

application markets are taken in consideration [22].

Fewer people prefer using antivirus applications on their devices [62], (Chapter 4.8).

The solution offered by antivirus companies contains a security suite that manually

scans every application, monitors traffic, may perform remote tracking or data wipe if

the phone has been lost or stolen, backup for all files and data, and so on. These

applications are assumed to be redundant and impairing device’s performance and are

generally annoying with plentiful notifications and pop ups, so most of the users prefer

not to use them and therefore don’t have any protection against malicious application,

once they decide to use an application hosted on officious markets [65]. Besides, the

studies of Android anti-virus applications effectiveness have shown that only 30% of

chosen applications from official Android market were able to detect spyware installed

or being installed [61].

Repackaged applications hosted on third party repositories are popular means for

cybercriminals to hit new victims. To users, repackaged application may seem normal,

but the truth is that malware authors take legitimate applications and add malicious code

to them before distribution that leads to a range of unwanted behavior. Another problem

related to malwares on Android devices is that most people don’t read the permissions

for the applications they install [15]. Repackaged applications are almost always

13

identical in appearance to legitimate versions but they often require more permissions

than they need. When a user initiates the process of installing an application

downloaded from an unofficial website, he or she has to physically tap on a notification

to install the apk downloaded from a source outside the Google Play and is presented

with the list of permissions that the application requests. Studies show that users do not

pay attention or understand Android permissions while granting them to the application

[15], and despite the request of sensitive permissions, such as access to contacts, local

storage, microphone, camera, and location tracking, which might not be needed by those

specific applications, they proceed with the installation rather than canceling it.

1.2. Research questions

The study will be guided by the following research questions:

 How much and why is Android targeted by malware authors?

 What are the existing solutions to eliminate malwares from Android devices?

 What are the limitations of the existing solutions?

 How to protect users from downloading and installing malware?

1.3. Objectives and scope

The aim of this project is to protect the users from downloading malicious applications,

by performing an efficient malware detection at runtime before allowing them to

download the application. With the above premises, an easy way to achieve this is to

delegate the security check to another application, which will take care of the download

just if and only if the tests are passed. Given this purpose, the main problem is that there

does not exist a unique way or a standard way to detect malicious applications, and

many different techniques exist and keep being developed. To fill this gap the author

decided to combine several publicly available cloud-based solutions with different

features sets in one single system. This application is mainly made of two parts: a clear

and user-friendly front-end, and a back-end, which performs the malware detection and

gives back a result of the scanned application to the user.

14

2. Background

2.1. Overview of Android OS

Android is a comprehensive open source, Linux based platform and application

environment designed for mobile devices. The openness of system allows for a much

larger number of devices to run the same applications and is beneficial for developers as

well as for consumers. Android provides huge variety of tools and frameworks making

mobile applications development quick and easy. Android is user friendly and allows

users to customize and adapt their phones individually and according to their needs. For

manufacturers, it is the complete solution for running their devices. Other than some

hardware-specific drivers, Android provides everything else to make their devices work

[1]. Figure 1 [1] depicts the main components of the platform.

Figure 1. The Android software stack.

Android relies on Linux kernel to take advantage of key security features and allows

developers to modify the kernel to fit their needs. The kernel is the first abstraction layer

15

between the hardware and the rest of the software stack. It provides basic architectural

model for process scheduling, support for memory management, resource handling, and

networking.

Many core Android system components and services are built from native code that

requires native libraries written in C and C++. Among others, they include:

“Webkit - a fast web-rendering engine used by Safari, Chrome, and other browsers;

SQLite - a full-featured SQL database;

Apache Harmony - an open source implementation of Java;

OpenGL - 3D graphics libraries;

OpenSSL - The secure sockets layer [1].

The libraries provide necessary services to the Android application level and play a vital

role in optimizing the CPU and memory consumption.

The application framework is an environment that contains numerous Java libraries

specifically built for Android. The entire feature-set of the Android OS is available

through APIs written in the Java language. This layer provides numerous services

designed to simplify the reuse of components including the following:

 View System – component allowing to build an app’s user interface, including

lists, grids, text boxes, buttons, and even an embeddable web browser;

 Resource Manager – component providing access to non-code resources such as

localized strings, graphics, and layout files;

 Notification Manager – component that enables all applications to display

custom alerts in the status bar;

 Telephony Manager – provides device’s information like the IMEI number.

 Activity Manager - component that manages the lifecycle of applications and

provide interface for the users to interact with the application;

 Content Providers - enable applications to access data from other applications,

such as the contacts applications, or to share their own data [3].

https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/resources/overview.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/topics/providers/content-providers.html

16

Android phones come with a rich set of built-in applications, including email, SMS

messaging, a Web browser, calendars, contacts, maps and more. The platform allows

users to customize their phone replacing the built-in applications and so a third-party

application can become the user’s default web browser, SMS messenger, or even the

default keyboard [3]. All the applications reuse the same activity and this is an example

of the system’s open design.

Applications are installed from a single application package with the .apk extension.

Four main Android application components are:

 Activities: codes for a single, user focused task – an entry point for a user’s

interaction with an application;

 Services: application component that can perform time-consuming operations in

the background and doesn’t have user interface;

 Content providers: the standard interface for data fusion in the same process

with the code that is running in another process. They encapsulate data and

provide mechanisms to ensure their security;

 Broadcast receivers: messaging system across applications and outside of the

normal user flow.

Additional Android application components:

 AndroidManifest.xml file: a file where all global settings are made controlling

such components activities, services, broadcast receiver, content providers and

intent filters. It also specifies which permissions are required;

 Intents and intent filters: messaging facility with which actions can be performed

at the request of another component of the application;

 Fragments: fragment class is the behavior of the user interface or in operation

(Activity class);

 Loaders: simplify asynchronous data loading in operation or fragment;

 Application Widgets: miniature application views that can be embedded in other

applications [3].

Android runtime is the managed runtime used by applications and some system services

on Android during the installation time. This component includes a set of core libraries

that provides most of the functionality available in the core libraries of the Java

17

programming language and Dalvik virtual machine. “Every Android application runs in

its own process, with its own instance of the Dalvik virtual machine. During an

application compilation, the Dalvik VM executes files in the Dalvik Executable (.dex)

format that has been converted from the Java bytecode by the included dx tool in order

to optimize minimal memory footprint and enhance multitasking ability”. [2] The usage

of Dalvik VM is beneficial compared to other virtual Java-machines as it uses a special

DEX format to store binary codes, not the JAR and Pack200, which are standard for

other virtual Java machines, is optimized to run multiple processes simultaneously and

uses a register-based architecture compared to the stack architecture in other JVMs,

which increases the execution speed and reduces binaries size. Also it uses its own sets

of instructions and allows to start several independent Android applications in one

process [2].

2.2. Security measures

The Android security model is based mainly on permissions. In the Android model,

each application runs as its own user account, meaning that, by default, all applications

are separated and may access only their own data, not data from other applications. The

system then applies a rigorous permissions system to services that are provided for use

of installed applications. Permission is something that is granted to applications and

required by APIs in order to run. In order to make use of services provided by other

code on an Android device that may be sensitive or dangerous, such as accessing a

user’s personal data or opening an Internet connection, an application must first request

permission and be granted by the device’s user. Android uses an install-time permission

request model, where an application specifies which of these permissions it requires in

its manifest. On the installation phase the user can review the list of potentially

dangerous things that the application is requesting to be allowed to do and has to

approve them before the application is installed. This permission model consequently

informs the user of what operations the application would be able to perform if the

installation went successfully, and allows the user to make a decision whether to grant

such permissions to the application and install it at all. This model has two primary

advantages over traditional ones. First of all, before the application is being installed it

brings to the attention of user all the dangerous things that application can do. Secondly,

this permissions model allows constraining attacks on legitimate applications.

18

Applications inevitably contain coding problems and in many cases, skilled attackers

exploit these errors to take over the running application and cause their own arbitrary

code to run in the same context as the compromised application (with the same unique

identifier (UID) and the same permissions) [9].

2.3. Classification of Android application malware

Malware is a program or file that is specifically designed to perform a variety of

functions, including gaining access, encrypting, stealing and damaging sensitive data

without knowledge and permission of a user. Smartphones have become an obvious

target for malicious actors on the rise of mobile phones popularity. People started using

their pocket devices more than PCs, carrying them all the time and using them for

different purposes, starting with playing games and using multimedia programs, ending

with personal conversations and confidential matters, like internet banking, financial

transactions and storing sensitive personal data. Users are dependent on their mobile

devices due to its feature rich applications and user friendliness. This makes

smartphones more vulnerable to malware attacks and becomes the target for information

and identity theft [10].

Gaining worldwide popularity, Android, being one of the newer operating systems

targeting smartphones, has become one of the most popular mobile platforms, obviously

attracting the attention of malware authors [53], [55]. Android relies on its security

permission system and on the consumers’ feedbacks to protect users against suspicious

programs uploaded on Google Play Market. Unfortunately, users don’t usually read

required permissions and have no security consciousness before installing an

application, thus provoking malware authors.

The classification of Android malwares based on their behavior and current attacks

occurrence is presented in [11]:

a) Information Extraction

Having the right permissions, application can get access to user’s personal data,

contacts, browsing history, IMEI number, users’ credentials and confidential bank

details, thus compromising the device security, stealing and providing all the above

mentioned data to malicious actors.

b) Premium Rate Calls and SMS

19

The malwares of this type masquerades as an application of another kind, such as a

media player or a game and starts secretly making calls and sending SMS to some

premium numbers after installation. The cost of these services is charged then to the

sender’s phone bill.

c) Root Exploits

The malware gains system root privileges and takes control over the system being able

to access and modify information without the user’s permissions and knowledge.

d) Search Engine Optimization

Artificial search of specific terms and simulated clicks on targeted websites

compromised to boost the revenue of a search engine or increase the traffic on a

website.

e) Dynamically Downloaded Code

Due to Android lack of security update patches this category of malwares can

download malicious payload in form of benign application components, such as

plugins extensions or updates and deploy them on the device.

f) Covert Channels

This type of malware is compromised by mobile phones’ vulnerability, allowing

transfer of information between processes that are not supposed to communicate, thus

originating information leak.

g) Botnets

A collection of several bots connected with each other with the help of Command and

Control (C&C) networks, compromised by a botmaster. Botnets gain complete access

to the device and its contents and provide the botmaster with root permissions over the

compromised mobile device allowing malicious activities performance such as:

sending e-mails or text messages, make phone calls, access contacts and photos, etc.

Most of botnets act in covert and spread themselves by forwarding their copies to other

devices using messages and e-mails [11].

The techniques for detecting and identifying these malware families on Android

platform are described in Chapter 2.6.

2.4. Threat model

Each Android store follows different set of policies for policing applications. Android

doesn’t provide any guarantees from the harm that third-party applications may cause

20

the user. “The default setting of Android is that it does not allow its users to install

applications from any source other than the official market, Google Play. The user has

to enable the «Allow installation of apps from unknown sources» option from the

Security settings screen to be able to install apps from unofficial sources [57]. This

means that by downloading applications from unofficial stores, the user is installing

applications completely at his/her own risk.

The easiest way to infect the device is to download the legitimate-looking application

containing malicious code from third-party application stores [8]. In [58] the authors

categorize three main social engineering-based techniques to install malware onto

Android devices based on its internal activity pattern, namely: repackaging, update

attack and drive-by download.

Repackaging is one of the most common techniques that malicious authors use to

masquerade malicious applications as legitimate ones. To create a repackaged

application a malicious developer downloads popular legitimate applications,

disassemble them, make malicious changes, repackage and release them to alternative

Android stores. By enclosing malicious payloads or simply inserting advertisements to

the application, the repackaged applications bring the revenue to malicious authors once

their applications are being widely downloaded and installed.

Update attack does not directly inject malicious payloads into benign applications.

Instead, the malicious payloads are disguised as the “updated” version of legitimate

applications. It is difficult to identify this kind of attack since it is often used by

legitimate applications for the benign purposes as well, such as fixing bugs, upgrading

installed games etc.

Drive-by download is similar to traditional web-based attack that is launched to redirect

users to malicious or compromised websites with exploit codes that target mobile

browser vulnerabilities [58]. Once the malicious application is downloaded, it runs

transparently so that the user doesn’t see any suspicious activity. And once the malware

has the access over the device, it may use its control of permіssions to force іt to

download applications and tap on adverts to generate fraudulent advertіsіng revenue

potentіally without the user’s knowledge.

21

2.5. Third party repositories

According to [4] Android is growing increasingly fast and has become the largest

installed base of any mobile platform. It has the largest market share and hundreds of

millions of mobile devices in more than 190 countries being sold around the world. The

openness of platform allows developers around the world creating applications and

games for users everywhere as well as distributing them in an open market. Google Play

Store is the premier marketplace for selling and distributing Android applications [4].

Statista Inc. Figure 2 [5], has presented the statistic that shows the number of available

applications in the Google Play Store from December 2009 to March 2017.

Figure 2. Number of available applications in Google Play Store from December 2009 to March 2017.

The number of available applications in the Google Play Store reached 1 million in July

2013 and was most recently placed at 2.8 million in March 2017. Google Play Store

uses a security service called Bouncer [63]. This malicious application detection system

automatically scans both new and existing applications and flags them as malicious

when any anomalous activity is detected. Although by the time the malicious

application is detected, it could have already made enough harm.

Moreover, in addition to the official market, there also exist a number of third-party

applications stores which are popular and convenient because of the huge variety of

applications which can be downloaded and installed for free, while being fee-based in

22

Google Play Store, as well as in countries where official applications are not available.

A specific case can be Aptoide repository (Figure 3), which surpassed 3 billion

downloads in 2016 with 1.5 million daily active users [66].

Figure 3. Number of available applications and their downloads on Aptoide in 1 year period.

Due to weak security monitoring, many third-party applications stores have been

infected by malicious applications, usually pretending to be legitimate applications

from top companies, being a great threat to users. The cybersecurity company Opswat

has presented a research where they claim that almost a third of Android applications in

third-party stores contain some form of malicious software [54].

Cheetah Mobile Security Lab [7] took samples from several well-known third-party

Android applications stores and found numbers of malware families and their

samples, starting from adware and ending with remote control which have been

downloaded tens of thousands of times [7], affecting millions of users. Number of

malwares and their samples in third-party applications stores are shown on Figure 4

[7].

23

Figure 4. Number of malwares and their samples in third-party applications stores.

In the report researchers have presented the top three markets containing malware-

infected Android devices, namely: China, India and Indonesia. There are 1.5 million

infected devices in China, 1.1 million in India and 800.000 in Indonesia. Russia has

over 4.5 million infected devices and in fifth place, Malaysia. The report also includes

the statistics of a malware massive increase up from 2.8 million in 2014 to more than

9.5 million in 2015 [7].

The authors in "Android Malware and Analysis" underline the threat of such

repositories:

“Such sites or domains are dedicated to knockoff typosquatting-type domains and names related

to popular games and software are very common in such markets.” [8]

Most of third-party repositories host pirated repackaged applications. Repackaged

applications usually request more permissions than the original ones. When a user starts

the process of installing an application, he or she is displayed the list of permissions that

the application requests and all of the phone resources that the application will have

access to if it is installed. And while granting those permissions users are most often

not even aware of what an application will actually do with their data [15].

2.6. Classification of Android malware detection techniques

Based on the features used to classify an application, three different Android malware

detection techniques exist: Static, Dynamic and Hybrid. Static analysis is done by

extracting static features, such as permissions and API calls from the

AndroidManifest.xml file and inspecting the downloaded application and its source

code without running the application. Static detection techniques are classified as:

24

signature based ([36], [37], [38]), permission based ([24], [27], [28]) and Dalvik byte

code analysis ([18], [32], [33]). The static analysis is usually very efficient in terms of

performances, but not much in terms of detection, especially in case of obfuscation

techniques the malware authors employ to evade from static detection techniques [12],

and suits well as a first layer of detection, saving the server machine of the main

application from running all other tests against a known malware. Several tools for

static analysis exist, with focus on different aspect of Android applications as discussed

in Chapter 3.

In contrast to static analysis, in dynamic analysis, the mobile application is executed in

an isolated controlled environment such as virtual machine and emulator (Sandbox), to

monitor the dynamic behavior of the extracted dynamic features of the application, such

as network traffic, battery usage, IP address. By monitoring and logging every relevant

operation of the execution, a report is automatically generated for each analysis.

Dynamic detection techniques are classified as: anomaly based ([20], [41], [42]), taint

analysis ([19]) and emulator based ([44], [45], [46]). Dynamic analysis can combat

obfuscation techniques but can be circumvented by runtime detection methods and

cannot respond to new malware families quickly [13].

To overcome the drawbacks in both approaches, hybrid analysis was introduced ([41],

[44], [47]). The hybrid methodology involves combining static and dynamic features

collected from analyzing the application and extracting information while the

application is running, respectively [12].

Alongside the above mentioned techniques a large number of cloud-based solutions for

identification of malicious content detected by antivirus engines and website scanners

exists, and it is freely available for public use. The working principle of online scanners

is the following: a user uploads any type of file, after scanning it the report about

malware found is presented. All these systems thanks to reduced management effort

greatly increase mobile protection.

At first, data inspection is performed by means of powerful cloud processors.

Suspicious applications are evaluated using processors with far more compute power

than ones on mobile devices. When a new malicious application is discovered it is being

executed in the protected environment in order to determine what privileges would be

25

requested from a mobile device and whether they would perform any other actions

capable to compromise a device [64].

Secondly, cloud-based solutions support a worldwide community of users. As soon as

the malicious application has been uploaded and analyzed by one user, its report will

remain in the database available for public view.

Thirdly, information about scanned files is stored in the virtually unlimited storage with

a maintained dataset far larger than any mobile device can support [64].

26

3. Related work

The analysis and detection of Android malware has been a broad area of research in the

last years. Researchers have proposed several concepts and techniques to detect and

analyze Android malware. Described below static, dynamic and hybrid malware

detection techniques are taken in consideration during the development of this project.

3.1. Static analysis

Feng, Yu and Anand, S. designed Apposcopy [14], a static analysis technique based on

the combination of a program representation called Inter-Component Call Graph

(ICCG) during the first phase, that depicts main Android application components like

activities, services, broadcast receivers and content providers (Chapter 2.1), and a static

taint analysis as a second phase, that is capable of exposing applications that leak

private user information.

Daniel Arp et al. proposed Drebin [16], a method capable for identifying malware on

smart phones directly by performing a broad static analysis of all the application

features gathered and applying machine learning techniques to classify the applications

as benign or malware. Another example for static analysis is Androguard by Desnos et

al. [18], which decompiles the application and applies signature based malware

detection to identify cloned applications.

Adroit [34] is a combination of text mining and machine learning approaches is applied

over the meta-information extracted from the manifest file, which includes developer

data, the permissions or the description of the application to detect malicious

applications. Similar approach to Adroit is used in the CHABADA [35] framework with

the difference that here the static analysis is performed by applying clustering

techniques over the extracted metadata.

Several signature based technique were developed. Among them AndroSimilar [36], a

static analysis framework that is capable to detect unknown variants of existing malware

samples that are usually generated by using repackaging and code obfuscation

techniques, DroidAnalytics [37], a system which can automatically collect malware,

27

generate signatures for applications and identify malicious code, RobotDroid [38], a

lightweight mobile framework that is capable of distinguishing between benign and

malicious applications of the same name and version, detecting anomalous behavior of

known applications.

Although signature based techniques are very efficient for known malware, they are not

able to detect unknown malware types and due to limited signature database most of the

malware families are not detected [39].

A number of permission based detection techniques are available. For example, Kirin

[24], a static analysis tool that defines security rules and checks the permissions of

applications for indications of malicious activity. If an application fails to pass the

security rules at the install time it’s being reported as malicious. Similarly, Stowaway

[25] determines the set of API calls that an application uses to detect overprivileged

applications and RiskRanker [26] estimates the potential security risks from untrusted

applications by analyzing whether these applications carry any dangerous behaviors.

Another set of permission based mechanism PUMA [27] and MAMA [59] were

developed to detect malicious applications through machine-learning techniques by

analyzing the extracted permissions and Vetdroid [28] that reconstructs sensitive

behavior in the application from the permission use behavior.

Despite permission based tools are quick in performing application scanning and

identifying whether the application is benign or malware, it only analyzes the manifest

file leaving other files which may contain malicious code untouched [39].

Among Dalvik Bytecode Analysis techniques, where Dalvik executable files of the

application are being statically analyzed, the following solutions are worth mentioning:

Androwarn[68], SCANDAL [29], that determines the data flow from information

source and detects the privacy leakage in applications, DroidMOSS [30] extracts the

Dalvik Byte code sequence and developer information of application to detect the

repackaged applications, built upon Androgaurd [18] DroidAPIMiner [31], identifies

the malware by tracking the sensitive API calls, dangerous parameters invoked and

package level, ComDroid [32] that is able to detect the communication based

vulnerabilities among Android applications by dynamically observing interactions

between the Android components and Flowdroid [33], a static taint analysis system for

28

Android applications that analyzes both application byte code and configuration files

with very high recall and precision.

Dalvik Bytecode Analysis is performed on a higher level that will obviously consume

more power and storage place. Since the android devices are resource-intensive, this

approach remains flawed [39].

3.2. Dynamic analysis

Dynamic detection techniques are classified as: anomaly based, taint related and

emulator based. In anomaly based detection in order to classify the application it is

being continuously monitored at the kernel and user level. In pBMDS [40], MADAM

[41], Andromaly [42] and Maline [43] after monitoring various features and activities

obtained from the device, machine learning techniques are applied to detect anomalous

application behaviors and classify them as harmless or hostile. CrowDroid [20] is a

lightweight client that analyzes smartphone application activity by monitoring system

calls of running applications and sending them to a centralized server. The server then

performs behavioral analysis to classify the applications as malware or benign.

Enck et al. proposed TaintDroid [19] that enables dynamically monitoring applications

in a protected environment focusing on taint analysis. It marks data simultaneously

tracked from multiple sensitive sources such as GPS, camera, microphone and other

phone identifiers and monitors all network interfaces for sensitive data leaks.

On the other hand, emulation detection is based on the execution of the application in an

isolated sandbox environment to analyze low level interactions with the system. Among

such techniques the most popular are: Droidbox [44], an extension of TaintDroid [19]

that records application behavioral in file operations, SMS and phone operations,

cryptography operations and network traffic monitoring to identify sensitive

information; Droidscope [45], a dynamic analysis tool that can be used to reconstruct

both OS-level and Java-level components of Android Applications. On top of

DroidScope, the researchers have developed several analysis tools to collect detailed

native and Dalvik instruction traces, profile API-level activity, and track information

leakage through both the Java and native components using taint analysis [45]. Another

proposed emulation based technique is CopperDroid [46], a system call based analysis

29

framework that monitors inter-process communication and reconstructs the behavior of

the Android applications.

3.3. Hybrid analysis

Since both, static and dynamic techniques have limitations, both academic and industry

research has focused on hybrid analysis techniques. Application Sandbox (AASandbox)

by Bläsing et al.[21] was the first framework combining static and dynamic analysis. It

first extracts the .dex file and then performs static analysis scanning the software for

malicious patterns without installing it. In the dynamic analysis the application is

executed in the Sandbox with the traced system calls and corresponding reports for the

further analysis. Another system combining static and dynamic analysis is DroidRanger

[22] where two techniques based on application permission analysis are applied both for

unknown and known Android malware; the first proposed scheme is permission based

behavioral footprinting for detecting malware running against known malware samples,

the second is heuristics-based filtering for identifying inherent behavior of unknown

malicious families. In Mobile Sandbox [17] firstly the application’s manifest file is

parsed and the application is being decompiled to better identify suspicious code; after

that the check on suspicious looking permissions or intents is performed, and in the

dynamic analysis the application is being executed in order to log all the performed

operations. The developers have declared that the system is currently unavailable and

it’s not certain that there will future development.

Andrubis [23] is a web-based interface framework similar to Mobile Sandbox [17]. In

their approach researchers also used Droidbox [44], TaintDroid [19] and Androguard

[18] for fully automated analysis. Although the Andrubis approach is limited to

applications beneath API level 9 (Android 2.3), at the time when Mobile Sandbox

supports up to API level 17 (Android 4.2). Another tool with the similar performance

and background is DroidAnalyst [47] that has been released recently and therefore

supports devices with higher API versions for which the APKs are developed by third

party developers and is more sophisticated in detection analysis environment-reactive

malware [48]. A couple of other hybrid analysis techniques has been introduced, such

as: Androinspector [49], DRACO [50] and on device hybrid analysis techniques

MONET [51] against transformation attack and Marvin [52].

30

3.4. Limitations

The problem of usability of the above mentioned solutions remains urgent. Many

proposed techniques require installing and maintaining components by command line

and many of them are hard to install even for advanced users. Another limitation of the

proposed high level solutions is that some of them just perform an analysis of the

application and not the malware detection. Although they provide information about the

application, such as permissions, API calls, network traffic, etc. they don’t define a

criteria to conclude whether the application can be considered as malicious or not. For

this research thesis author tried to get/use most of the techniques described above and

the obtained results are presented in Table 1 below:

Table 1. Availability of existing malware detection techniques.

Approach Name Availability Last update

Static

Apposcopy No source code -

VetDroid Source code available September 7, 2015

Adroit Source code available April 4, 2017

Drebin No source code -

Androwarn Source code available March 23, 2013

Dynamic

CopperDroid No source code -

Droidbox Source code available September 25, 2015

Maline Source code available May 6, 2015

Hybrid

DroidRanger

Not maintained

anymore

2012

Mobile

Sandbox

2012

AASandbox 2010

DRACO Source code released,

API not available

June 16, 2016

Monet No source code -

Although there are plenty of tools, very few are effectively ready and can be used, while

most present the technique and a proof of concept but are still far from being industry

grade.

31

4. Project

In essence, the Ludroid system is made of two parts: a front-end (Figure 5), which is

aimed to be straightforward and easy, where the user can paste the link of the

application he/she wants to download:

Figure 5. Front-end of Ludroid.

and a back-end which performs the following sequentally: receives the URL for the

specific APK from the front-end and proceeds to download it to the temporary local

storage of the server. First, the hash of the .apk file is computed (SHA1) to identify

univocally the application, then a set of scripts are started and these implement the

client side of the public API for the cloud based tools described in Chapter 4.3. The

same scripts then take care of collecting the reports, or some specially interesting parts

of them, from the above mentioned tools again using the API and saving them.

OS specification

Each Android device supports exactly one unique Android platform version API level.

The API level identifies the version of the libraries that the application can call, the

combination of manifest elements, permissions, etc. This system of API levels helps

Android to determine whether an application is compatible with an Android system

32

image prior to installing the application on a device. When an application is built, it

contains the target API level of Android that the application is built to run on and the

minimum API level of Android that is required to run the application.These settings are

used to ensure that the functionality needed to run the applicaion correctly is available

on the Android device at installation time [4].

The Ludroid system is currently built employing cloud based detection techniques

which don’t require application’s sandboxing or in-depth analysis while scanning. The

detection is performed by comparing the application’s signatures with the ones existing

in the signature database of the antiviruses used by the cloud tool (i.e. VirusTotal).

Because of the above mentioned premises there is no need to establish a certain API

level as a target for Ludroid at the present moment.

The rest of the Chapter is organized as follows: Chapter 4.1 introduces the approach

used in the project; the use case is described in Chapter 4.2; in Chapter 4.3 the selection

criteria for the project techniques is explained; the author performs evaluation test of

the applications collected from unofficial repositories in Chapter 4.4; description of the

Dataset is outlined in Chapter 4.5; Chapter 4.6 features the software components

description; Chapter 4.7 shows the techniques performance; decision making is

described in Chapter 4.8, the results of a survey on users behavior of mobile

applications installation are outlined in Chapter 4.9 and finally, the results are presented

in Chapter 4.10.

4.1. Approach used in the project

For this project a quantitative approach was used by collecting Android malware

samples of different families. Once the data was collected to the database, it was

analyzed with different malware detection techniques in order to check the accuracy.

The malwares which form the dataset were downloaded in bulk without being

specifically selected or categorized by families, types or risk levels.

This approach is also applied to other processes in the project, such as: measuring the

malware occurrence in third-party stores and evaluating the malware detection

techniques.

33

4.2. Use case

The server hosting Ludroid has been rented from Online.net
1
.

Server specifications:

 Ubuntu 14.04 64bit;

 Intel C2750 2.4GHz;

 16GB RAM DDR3;

 1TB hard SATA drive;

 2.5Gb/s Connectivity.

Most of the tools have been previously tested on a local machine.

Local machine specifications:

 Lenovo Y50-70;

 Intel i7 4710HQ @2.5GHz;

 8GB RAM DD3;

 1TB hard SATA drive;

 Linux Mint 17.1.

4.3. Selection of techniques

The Ludroid users should be able to exclusively rely on it. Therefore the assurance of

the most accurate detection performance is one of the biggest priorities.

1
 https://www.online.net/en

34

Ankita Kapratwar from San Jose State University in her research [67] has analyzed the

effectiveness of combining static and dynamic techniques for detecting Android

malware using machine learning techniques. After performing the evaluation

experiment the thesis author concluded that combining analysis techniques is more

efficient than using them independently.

For this reason it was decided to integrate both static and dynamic malware detection

techniques simultaneously with cloud-based detection solutions in Ludroid. The tools

were chosen on the basis of their efficiency and availability.

Firstly, the thesis author tried to use Androwarn [68], a static code analyzer of the

bytecode targeting different malicious behaviors categories. After running the tool it

performed structural and data flow analysis of application behaviors, collecting

information such as: telephony identifiers leakage (IMEI, IMSI, MCC, MNC, LAC,

CID, operator’s name), device settings (software version, usage statіstics, system

settings, logs), geolocation information leakage (GPS/WіFi geolocatіon), connection

interfaces information (WiFі credentіals, Bluetooth MAC address), telephony services

abuse (premium SMS sending, phone call composition), audio/video flow interception

(call recording, video capture), remote connection establishment (socket open call,

Bluetooth paіring, APN settings), PIM data leakage (contacts, calendar, SMS, mails),

external memory operations (fіle access on SD card), PIM data modification (add/delete

contacts, calendar events), denial of service (event notification deactіvation, file

deletion, process kіlling, virtual keyboard dіsable, termіnal shutdown/reboot). Although

the tool performs deep static analysis of the application’s Dalvik bytecode, іt doesn’t

provide any response about the nature of application, but rather analyzes its behavior

providing an information background to perform detection with a custom implemented

technique, which was out of the scope of this project.

Another static technique that was tested is Vetdroid [28], based on Androguard [18].

The tool targets mainly the permissions used by an application and reports sensitive

permissions usage. The report contains simple API misuse static audit, manifest

configuration misuse and custom API call analysis. Unfortunately many benign

applications require sensitive permissions (writing access to storage, GPS etc.) and

therefore the usage of this tool individually would create many false positives. And so,

similarly to Androwarn, a custom implemented detection technique is necessary to

35

decide whether the application in analysis makes legitimate use of all the required

permissions or represents a threat.

Among dynamic analysis techniques Droidbox [44] was tested being one of the most

used and popular. It uses a modified version of the Android emulator that enables

tracking Android applications’ activity, such as tainted data leaked out, SMS sent and

network communications. After getting Android source code and applying Droidbox

patches, the new emulator was launched. Although the emulator process was launched

successfully, Droidbox code couldn’t start the activity of the main application analyzed.

From the documentation it is clear that the tool performs in-depth dynamic analysis of

the application but doesn’t conclude if the application is malicious or benign. An

example of Droidbox report analysis retrieved from [69] can be found in Appendix 2.

Given these results the only compromise between availability and functionality is

performing the malware check by means of cloud-based solutions. Among broad variety

of publicly available tools the choice was made to use a Payload Security service

VxStream Sandbox [70]. The technique uses hybrid analysis technology, possessing

tremendous amount of capabilities to detect unknown threats independent of аnti-vіrus

signatures. Unfortunately the thesis author didn’t get any reply on the premium free-trial

request; and since the free service doesn’t allow processing more than 30 unique files

per month, this tool was discarded.

Further investigation has brought to the analysis technology Joe Sandbox, the service of

Joe Security
1
.The analysis technology includes static, dynamic, hybrid, simulation and

virtualization techniques able to detect any malicious behavior, including obfuscated,

non-executed or hidden code segments. Joe Sandbox executes the files in a controlled

environment and monitors the applications behavior for suspicious activities. The report

of the scanning includes structures and domains of the file, data about strings. Malicious

behavior is determined by matching generic signatures. Integration of Joe Sanbox into

Ludroid came out unsuccessfully due to current company’s policy not allowing

participation in academic projects.

1
 https://www.joesecurity.org/

36

Another feature rich malware analysis system was examined as an option, namely

Cuckoo Sandbox
1
. Cuckoo provides detailed results about file nature, execution time,

signatures, network activity etc. by executing the file in an isolated environment. After

recent update the support for Android has not been added yet to the service, so this tool

will be considered in the future work.

Among other publicly available cloud-based detection systems the ones worth

mentioning are: VirusTotal
2
, Andrototal

3
, Jotti Malware scan

4
 and NVISO ApkScan

5
.

The most simple and popular among such resources is VirusTotal, which has an open

API and requires nothing more than a registration on the site. VirusTotal supports

scanning of more than 50 antivirus scanners. This list of antivirus software vendors is

constantly supplemented by new scanners. The maximum size of the uploaded file is

limited to 128 MB for a maximum of four files per minute. The execution time of

scanning operation depends on the file size, connection speed and network load.

As part of the experiment, AndroTotal, a free service that scans suspicious APKs

against multiple mobile antivirus applications was tested. Through the scanning process

it was discovered that for the detection of malicious activity AndroTotal uses 4 antivirus

engines (Dr. Web, Kaspersky Mobile Security, Norton Security Antivirus and Avast)

already present in the VirusTotal engines set. This system was categorized as a subset of

VirusTotal and therefore excluded from the project.

NVISO ApkScan, a comprehensive tool capable of performing both static and dynamic

analysis on Android programs to automatically detect suspicious applications was also

taken into consideration. Malware analysis report contains general information about

the scanned application, depicts extracted static features, such as permissions, API calls,

services etc. from the AndroidManifest.xml, as well as dynamic features of the

1
 https://cuckoosandbox.org/

2
 https://www.virustotal.com/

3
 https://andrototal.org/

4
 https://virusscan.Jotti.org/

5
 https://apkscan.nviso.be/

37

application, such as disk activity, network activity, cryptographic activity, information

leakage and miscellaneous. The security department of the company agreed to cooperate

with the thesis author and provide an API key with extended permission to satisfy the

need to scan a large amount of files per day, but hasn’t granted it yet. Once the API

account is ready for use the system will be integrated to the Ludroid.

And finally, a malware scan Jotti, a free service that detects suspicious files with several

anti-virus programs. While the developers maintained their own scanning system and

API, they didn’t design any novel detection mechanism. Jotti is fully supported by third

party anti-virus products and aggregate their results.

4.4. Measuring the malware occurrence in third-party stores

Studies have shown that almost a third of Android applications hosted on third-party

applications repositories contain some form of malicious software [7], [54]. To check

the accuracy and relevance of the data the thesis author decided to perform an

independent experimental evaluation of applications gathered from two different third-

party stores. The collection of applications was made in the period of one month, March

2017, from two unofficial marketplaces, namely: F-Droid
1
 and Apkrepo

2
. To select the

candidate sites the author used the first pages of Google results for “free android

applications market”.

With the help of HTTrack tool
3
 the author has downloaded a subset of the applications

from each repository to the server. The number of applications from each marketplace is

shown in Table 2.

Table 2. Number of applications hosted on third-party repositories.

Market Number of applications

F-Droid 4029

Apkrepo 941

1
 https://f-droid.org/

2
 http://www.apkrepo.com/

3
 https://www.httrack.com/

https://f-droid.org/
https://www.httrack.com/

38

All the applications were scanned with VirusTotal. The result of F-Droid samples scan

is shown on Figure 6.

Figure 6. Result of F-Droid samples scan.

Based on the results of scanned files represented on Figure 6 it was decided to report

applications as malicious on condition that they trigger five or more different antivirus

engines, establishing an arbitrary despite reasonable threshold between false positives

and real malware. The overall results of the scanning are summarized in Table 3.

Table 3. Results of scanned applications in third-party repositories.

Market Applications which

triggered less than 5 AV

Applications which

triggered 5 or more AV

Total detections

(more than 0)

F-Droid 434 (10.7%) 22 (0.54%) 456 (11.3%)

Apkrepo 111 (11.8%) 26 (2.7%) 137 (14.5%)

Considering that the selected applications were a random set, there is no reason to

suspect that the obtained percentage is higher or lower than if testing the whole

repository. Despite the fact that the criteria is not an accurate value, at least it seems to

support the results stated by Opswat cybersecurity company and Cheetah Mobile

security lab [7], [54] and affirm the need of the applications’ scan at runtime before

allowing users to download them.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50 55 60

D
e

te
c
te

d
 f

il
e

s

Antivirus engines that detected files as malware

39

4.5. Dataset

For the evaluation process the thesis author gathered a total collection of 434 unique

malicious Android applications. Malware samples were collected from private

repositories, namely “Collection of android malware samples”
1
 by Ashish Bhatia and

“Mobile malware mini dump”
2
 by Mila Parkour. The collection is publicly available

3

and is currently being extended dependent on the availability of other private

repositories which need special rights to be accessed.

4.6. Techniques performance

The general workflow of the techniques is described below.

4.6.1. VirusTotal Performance

To scan files with VirusTotal a slightly variated version of publicly available code
4
 is

used, after having obtained a personal API key.

The workflow is linear: first, an API call to the 'get' endpoint is performed, passing as

parameter the SHA1 hash of the file in analysis. This is made mainly to save

computation time in case the file has been scanned before.

If the file is present, the report is directly retrieved from the 'report' endpoint, if it is not,

then the application is uploaded to the 'scan' endpoint.

After the application has been submitted, the report will be retrieved.

The VirusTotal report is quite detailed, an example can be found in Appendix 3.

From this report, some essential information is extracted; specifically the permanent

links are kept and the total number of positive detections together with the total number

of antiviruses used.

1
 https://github.com/ashishb/android-malware

2
 http://contagiominidump.blogspot.com.ee/

3
 https://github.com/tootsy42/Ludroid-dataset

4
 https://github.com/Gawen/virustotal

https://github.com/ashishb/android-malware

40

4.6.2. Jotti performance

For Jotti there was not any ready client written, so the author had to implement some

basic functions on her own.

To scan files from Jotti, some steps are necessary after having obtained a personal API

key.

First, with the same motivations valid for VirusTotal, the hash of the file is computed

and a GET request to 'getfileinfo' endpoint is made to check whether the file has already

been submitted and in positive case, the report for it is directly queried with a GET

request to the 'getjobstatus' endpoint.

In case the file was not present, a ScanToken must be obtained, which can be used later

to create a job for the specific file. After the job is created, the report is again obtained

with a GET request to the 'getjobstatus' endpoint.

An example of report response from Jotti is reported in Appendix 4.

4.7. Decision making

The decision making process is implemented following the principle established in

Chapter 4.10. Once the reports are generated, the last necessary step is to parse them

and make a decision about the nature of the application and whether to warn the user or

not before downloading it. Despite this process of collaborative decision would require

a very in-depth research, the author decided to simplify it and establish that the user will

be warned about the danger of the application if at least one of the tools used reports the

file as malicious with a confidence (Chapter 4.10) of more than 20%. This arbitrary

value is established on one hand to avoid many false positives, and on the other hand to

keep it lower than the minimum confidence level ecountered in the evaluation made in

Chapter 4.10. Eventually it would be possible also to let the user choose the level of

strictness among a set of multiple choices (High, Medium, Low, Paranoid).

After the above mentioned process, the decision about the application is made and the

back-end will input the result back to the front-end, which will display it accordingly

and will eventually allow the user to download the application.

41

4.8. System description

Ludroid is running Apache2 web server with most of the website logic written in PHP.

Figure 7. Application workflow.

The application workflow is represented on Figure 7 and is the following: the user

opens the Homepage and inputs a link for direct download of the application; a POST

request with the link as a parameter is sent to the server which, on its reception, calls a

bash script passing it as a parameter. The bash script downloads the file, scans it with

VirusTotal, saves it and its corresponding scan result in a directory named as the SHA1

hash of the file and renames the app as SHA1.apk, where SHA1 is the corresponding

application hash and after returns the hash as a result to the php page. Thereafter the

server checks the directory called as the hash and verifies the malware confidence. If the

value of malware confidence is less than 20% it outputs the file directly to the user

(Figure 8).

Figure 8. Result of the scanned file with malware confidence less than 20%.

42

If the value of malware confidence is 20% or more, the server redirects the user to the

Alert.php, that shows a message indicating that the scanned file is malicious (Figure 9).

Figure 9. Result of the scanned file with malware confidence 20% or more.

4.9. Internet survey

The survey was conducted between Internet participants from author’s digital

connections in the period of April 23 – May 18. At the present time 152 users took part

in the questionnaire. The aim of the survey was to find out the reputation of anti-virus

systems among consumers, to find out the statistical information about third-party

repositories usage among respondents and to determine the need for a system such as

Ludroid.

The web-based questionnaire consisted of 5 questions which asked respondents of three

different age groups to evaluate the need of security mechanism when downloading

applications from third-party repositories.

Among the 152 respondents, 47.4% users have downloaded applications at least once

from unofficial sources. From Figure 10 it can be seen that 38.8% of participants

answered they would use an application that would let them downloading applications

from unofficial markets only after the application passes strict security checks; 27.6%

respondents answered they wouldn’t use this system and 33.6% stated that they don’t

know if they would use it.

43

Figure 10. Evaluation of the need for a system such as Ludroid.

Analyzing the current trend in the survey, and integrating this with the information

already gathered [62], it looks legitimate to conclude that many users are unaware of the

threats that unofficial applications may cause. For this reason it makes sense to expand

the project and embed it to the security system of third-party markets, ensuring that only

benign applications will reach the users. Survey results for each question can be found

in Appendix 5.

4.10. Results

The thesis author has established the value Malware confidence to have some term of

comparison between used techniques and to ease the process of the decision making.

Malware confidence (1) is defined as a ratio between systems reported the file as

malicious and the total number of systems used.

 (1)

Malware confidence distribution for VirusTotal and Jotti are depicted on Figure 11 and

Figure 12 correspondently.

44

Figure 11. VirusTotal malware confidence distribution.

Figure 12. Jotti malware confidence distribution.

0

5

10

15

20

25

30

35

40

45

50

0
%

3
%

7
%

1
0

%

1
3

%

1
7

%

2
0

%

2
3

%

2
7

%

3
0

%

3
3

%

3
7

%

4
0

%

4
3

%

4
7

%

5
0

%

5
3

%

5
7

%

6
0

%

6
3

%

6
7

%

7
0

%

7
3

%

7
7

%

8
0

%

8
3

%

8
7

%

9
0

%

9
3

%

9
7

%

1
0

0
%

P
o

s
it

iv
e

 d
e

te
c
ti

o
n

s

Malware confidence

0

20

40

60

80

100

120

P
o

s
it

iv
e

 d
e

tr
c
ti

o
n

s

Malware confidence

45

To estimate the average malware confidence (2) for every technique the total malware

confidence is divided by the number of malwares:

∑

 (2)

The average value of malware confidence for both techniques is summed up in Table 4.

Table 4. Overview of techniques performance.

Technique Average malware

confidence, %

Jotti 77.6

VirusTotal 62.5

The result of the benchmark is overall similar, despite some minor differences that

might put in evidence some characteristics. The average value of confidence, which

represents the number of antiviruses that detected the malware compared to the total

number of antivirus engines is generally higher for Jotti. This means that in general the

selection of antiviruses used in Jotti looks quite accurate. From Figure 11 and Figure 12

it can be observed that the number of malwares with confidence level of 0% is higher in

Jotti than in VirusTotal. VirusTotal didn’t detect four malwares while this number

grows to six in Jotti and therefore Jotti seems to produce a slightly bigger number of

false negatives (x% vs y%). Despite the fact that Jotti’s malware confidence is

particularly higher for most of the detected malware and the execution time is lower due

to the reduced number of systems used, VirusTotal still performs an overall better

detection and it is preferred for the use in Ludroid.

The cloud-based detection techniques used in the project are signature based, where

malware is detected by scanning and finding certain patterns that have been encountered

before. Therefore, the malware has to be known by the scanning engines through a

signature database, otherwise it won’t be detected. This limitation of the technique

explains the false negatives for both systems used. However, the value of malware

confidence estimated by the thesis author doesn’t aim to be definite, it is used in

particular for the known malware leaving the unknown samples out of the reach of the

project and for a further development when sandboxing or more advanced techniques,

46

capable of unknown malware detection, will be used, guaranteeing a lower amount of

false negatives and a better performance overall.

47

5. Conclusions and future work

With the rapid distribution of Android devices equipped with a lot of features the

number of mobile malware is increasing. The thesis author has analyzed how much is

Android targeted by malicious authors and provided an overview of the existing

countermeasures together with their limitations.

Taking into account the limited computation power and energy source of smarthones

Ludroid, a new security mechanism was presented. This system allows users to analyze

Android files prior of downloading them; all the user has to do is to paste the link of the

application he/she wants to test and after the malware analysis is finished the user will

receive security recommendations or alerts about installing the desired file. This feature

distinguishes this project from other cloud based detection techniques. And most

importantly, this complex is a flexible and scalable system that might be integrated

directly into unoffical markets and third-party distributions. While selecting the system

which will be integrated into Ludroid, a public API became the main criterion. Since

this work is a non-commercial project (with the exception of renting a server), it was

decided to use only non-commercial cloud-based detection solutions for demonstration

purposes. Due to the fact that almost all available online scanners use mechanisms

similar to each other, it was decided to discard alternative scanners and to confine to

VirusTotal, currently the most comprehensive and publicly available.

After a new malware is launched, it takes some time for the anti-virus engines to detect

this new threat; only after one of the systems detected it, the file will be flagged as

malicious by the system which integrates it, VirusTotal in our case. Therefore, with

simultaneous verification by a large number of anti-virus scanners, the probability of

finding malicious code increases but to the time it’s detected it might already cause a lot

of harm.

Because of the above mentioned limitations the thesis author decided that in the future,

in order to enhance the tool performance novel detection techniques, such as custom

sandboxing or static analysis tools will be integrated into Ludroid, based on their

efficiency, availability and technological advancement.

48

References

[1] M. Gargenta, Learning android, O’Reilly Media, Inc., 2011, p. 2.

[2] Developers, "What is android," Android Studio, 2011. [Online]. Available:

https://developer.android.com/guide/components/fundamentals.html. [Accessed 15

November 2016].

[3] Developers, "Application Manifest," Android Studio, 2011. [Online]. Available:

http://developer.android.com/guide/topics/manifest/manifest-intro.html. [Accessed 19

November 2016].

[4] Developers, "About Android," Android Studio, 2011. [Online]. Available:

https://developer.android.com/about/android.html. [Accessed 26 November 2016].

[5] Statista Inc., "Google Play: number of available apps 2009-2017," [Online]. Available:

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-play-store/. [Accessed 13 April 2017].

[6] Canalys, "Over 1 billion Android-based smart phones to ship in 2017," 4 June 2013.

[Online]. Available: https://www.canalys.com/static/press_release/2013/canalys-press-

release-040613-shipments-android-based-smart-phones-exceed-1-billion-2017.pdf.

[Accessed October 2016].

[7] Cheetah Mobile Security Lab, "Android App Stores Become Significant Sources for

Malware," Cheetah Mobile, 20 January 2016. [Online]. Available:

http://www.cmcm.com/blog/en/security/2016-01-20/925.html. [Accessed 4 February

2017].

[8] K. Dunham, S. Hartman, . M. Quintans and J. A. Morales, Android Malware and Analysis,

CRC Press, 2014, p. 36.

[9] J. Six, Application Security for the Android Platform: Processes, Permissions, and Other

Safeguards, O'Reilly Media, Inc, 2011, pp. 25-26.

[10] M. Chandramohan and B. K. T. Hee, "Detection of mobile malware in the wild,"

Computer 45, no. 9, pp. 65-71.

49

[11] R. Raveendranath, . V. Rajamani, A. Babu and . S. Datta, "Android malware attacks and

countermeasures: Current and future directions," in Control, Instrumentation,

Communication and Computational Technologies (ICCICCT), 2014 International

Conference on, 2014.

[12] B. Baskaran and A. Ralescu, A Study of Android Malware Detection Techniques and

Machine Learning, 2016, p. 16.

[13] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck and J. Hoffmann, "Mobile-sandbox:

having a deeper look into android applications," in Proceedings of the 28th Annual ACM

Symposium on Applied Computing, March.

[14] Y. Feng, S. Anand, I. Dillig and A. Aiken, "Apposcopy: Semantics-based detection of

android malware through static analysis.," in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pp. 576-587. ACM,

November 2014.

[15] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner, "Android permissions:

User attention, comprehension, and behavior," in Proceedings of the eighth symposium on

usable privacy and security, p.3. ACM, July 2012.

[16] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck and Siemens, "DREBIN:

Effective and Explainable Detection of Android Malware in Your Pocket," in NDSS,

February 2014.

[17] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck and J. Hoffmann, "Mobile-sandbox:

having a deeper look into android applications," in Proceedings of the 28th Annual ACM

Symposium on Applied Computing, pp. 1808-1815. ACM, March 2013.

[18] A. Desnos, "Androguard-reverse engineering, malware and goodware analysis of android

applications... and more (ninja!) Googld Project Hosting," 2012.

[19] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B. Chun, L. Cox, J. Jung, P. McDaniel and A.

Sheth, "TaintDroid: An Information-Flow Tracking System for Realtime Privacy

Monitoring on Smartphones," in ACM Transactions on Computer Systems (TOCS),

January 2014.

[20] I. Burguera, U. Zurutuza and S. Nadjm-Tehrani, "Crowdroid: behavior-based malware

detection system for android," in Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, pp. 15-26. ACM, October 2011.

50

[21] T. Bläsing, L. Batyuk, A. Schmidt, S. Camtepe and S. Albayrak, "An android application

sandbox system for suspicious software detection," in Malicious and unwanted software

(MALWARE), 2010 5th international conference on, pp. 55-62. IEEE , 2010.

[22] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, "Hey, you, get off of my market: detecting

malicious apps in official and alternative android markets," NDSS, vol. 25, no. 4, pp. 50-

52, February 2012.

[23] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio, V. van der Veen

and C. Platzer, "Andrubis: Android malware under the magnifying glass," in Vienna

University of Technology, Tech. Rep. TR-ISECLAB-0414-001, 2014.

[24] W. Enck, M. Ongtang and P. McDaniel, "On lightweight mobile phone application

certification," in Proceedings of the 16th ACM conference on Computer and

communications security, pp. 235-245. ACM, 2009.

[25] A. Felt, E. Chin, S. Hanna, D. Song and D. Wagner, "Android permissions demystified,"

in Proceedings of the 18th ACM conference on Computer and communications security,

pp. 627-638. ACM, October 2011.

[26] M. Grace, Y. Zhou, Q. Zhang, S. Zou and X. Jiang, "Riskranker: scalable and accurate

zero-day android malware detection," in Proceedings of the 10th international conference

on Mobile systems, applications, and services, pp. 281-294. ACM, June 2012.

[27] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Bringas and G. Álvarez, "Puma:

Permission usage to detect malware in android," in International Joint Conference

CISIS’12-ICEUTE´ 12-SOCO´ 12 Special Sessions, pp. 289-298. Springer Berlin

Heidelberg, 2013.

[28] M. N. P. Pravin, "VetDroid: Analysis Using Permission for Vetting Undesirable,"

International Journal of Innovative and Emerging, vol. 2, no. 3, p. 6, 2015.

[29] J. Kim, Y. Yoon, K. Yi, J. Shin and S. Center, "SCANDAL: Static Analyzer for Detecting

Privacy Leaks in Android Applications," MoST, May 2012. [Online]. Available:

http://www.mostconf.org/2012/papers/26.pdf. [Accessed January 2016].

[30] W. Zhou, Y. Zhou, X. Jiang and P. Ning, "Detecting repackaged smartphone applications

in third-party android marketplaces," in Proceedings of the second ACM conference on

Data and Application Security and Privacy, pp. 317-326. ACM, February 2012.

[31] Y. Aafer, W. Du and H. Yin, "Droidapiminer: Mining api-level features for robust

malware detection in android," in International Conference on Security and Privacy in

51

Communication Systems, pp. 86-103. Springer International Publishing, September 2013.

[32] E. Chin, A. Felt, K. Greenwood and W. D., "Analyzing inter-application communication

in Android," in Proceedings of the 9th international conference on Mobile systems,

applications, and services, pp. 239-252. ACM, June 2011.

[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau and

P. McDaniel, "Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps," Acm Sigplan Notices, vol. 49, no. 6, pp. 259-269, June

2014.

[34] A. Martín, A. Calleja, H. Menéndez, J. Tapiador and D. Camacho, "ADROIT: Android

malware detection using meta-information," in Computational Intelligence (SSCI), 2016

IEEE Symposium Series on, pp. 1-8. IEEE, December 2016.

[35] A. Gorla, I. Tavecchia, F. Gross and A. Zeller, "Checking app behavior against app

descriptions," in Proceedings of the 36th International Conference on Software

Engineering, pp. 1025-1035. ACM, May 2014.

[36] P. Faruki, V. Laxmi, A. Bharmal, M. Gaur and V. Ganmoor, "AndroSimilar: Robust

signature for detecting variants of Android malware," Journal of Information Security and

Applications, vol. 22, pp. 66-80, June 2015.

[37] M. Zheng, M. Sun and J. Lui, "Droid analytics: a signature based analytic system to

collect, extract, analyze and associate android malware," in Trust, Security and Privacy in

Computing and Communications (TrustCom), 2013 12th IEEE International Conference

on, pp. 163-171. IEEE, July 2013.

[38] M. Zhao, T. Zhang, F. Ge and Z. Yuan, "RobotDroid: A Lightweight Malware Detection

Framework On Smartphones," JNW, vol. 7, no. 4, pp. 715-722, April 2012.

[39] S. Arshad, M. Shah, A. Khan and M. Ahmed, "Android malware detection & protection: a

survey," Int. J. Adv. Comput. Sci. Appl, vol. 7, no. 2, pp. 463-475, February 2016.

[40] L. Xie, X. Zhang, J. Seifert and S. Zhu, "pBMDS: a behavior-based malware detection

system for cellphone devices," in Proceedings of the third ACM conference on Wireless

network security, pp. 37-48. ACM, March 2010.

[41] G. Dini, F. Martinelli, A. Saracino and D. Sgandurra, "MADAM: a multi-level anomaly

detector for android malware," in International Conference on Mathematical Methods,

Models, and Architectures for Computer Network Security, pp. 240-253. Springer Berlin

Heidelberg, October 2012.

52

[42] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer and Y. Weiss, "“Andromaly”: a behavioral

malware detection framework for android devices," Journal of Intelligent Information

Systems, vol. 38, no. 1, pp. 161-190, February 2012.

[43] M. Dimjaševic, S. Atzeni, I. Ugrina and Z. Rakamaric, "Android malware detection based

on system calls," University of Utah, Tech. Rep, May 2015.

[44] A. Desnos and P. Lantz, "An android application sandbox for dynamic analysis,"

Electrical and Information Technology, Lund university, Lund, Sweden, 2011.

[45] L. Yan and H. Yin, "DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic

Views for Dynamic Android Malware Analysis," in USENIX security symposium, pp. 569-

584, August 2012.

[46] K. Tam, S. Khan, A. Fattori and L. Cavallaro, "CopperDroid: Automatic Reconstruction of

Android Malware Behaviors," in NDSS, February 2015.

[47] P. Faruki, S. Bhandari, V. Laxmi, M. Gaur and M. Conti, "DroidAnalyst: Synergic App

framework for static and dynamic app analysis," in Recent Advances in Computational

Intelligence in Defense and Security, pp. 519-552, 2016.

[48] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis and S. Ioannidis, "Rage

against the virtual machine: hindering dynamic analysis of android malware," in

Proceedings of the Seventh European Workshop on System Security, (p. 5). ACM., April

2014.

[49] V. Babu Rajesh, P. Reddy, P. Himanshu and M. Patil, "ANDROINSPECTOR: ASystem

FOR COMPREHENSIVE ANALYSIS OF ANDROID APPLICATIONS," International

Journal of Network Security & Its Applications (IJNSA), vol. 7, no. 5, p. 21, September

2015.

[50] S. Bhandari, R. Gupta, V. Laxmi, M. Gaur, A. Zemmari and M. Anikeev, "DRACO:

DRoid analyst combo an android malware analysis framework," in Proceedings of the 8th

International Conference on Security of Information and Networks, pp. 283-289. ACM,

September 2015.

[51] M. Sun, X. Li, J. Lui, R. Ma and Z. Liang, "Monet: A User-Oriented Behavior-Based

Malware Variants Detection System for Android," IEEE Transactions on Information

Forensics and Security, vol. 12, no. 5, pp. 1103-1112, 2017.

[52] M. Lindorfer, M. Neugschwandtner and C. Platzer, "Marvin: Efficient and comprehensive

mobile app classification through static and dynamic analysis," Computer Software and

53

Applications Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 2, no. IEEE, pp. 422-

433, July 2015.

[53] Gartner, "Global Sales of Smartphones Grew 4.3 Percent Year on Year," 19 August 2016.

[Online]. Available: http://www.gartner.com/newsroom/id/3415117. [Accessed 2 March

2017].

[54] L. D., "Scanning for Malware in Android Applications," OPSWAT, 14 April 2014.

[Online]. Available: https://www.opswat.com/blog/scanning-malware-android-

applications. [Accessed 13 February 2017].

[55] R. A., "PC-Grade Malware Going Mobile," Security Intelligence, 25 June 2014. [Online].

Available: https://securityintelligence.com/pc-grade-malware-going-mobile/. [Accessed

March 2017].

[56] T. Vidas and N. Christin, "Sweetening android lemon markets: measuring and combating

malware in application marketplaces," in Proceedings of the third ACM conference on

Data and application security and privacy, pp. 197-208. ACM, 2013.

[57] S. Rastogi, K. Bhushan and B. Gupta, "Measuring Android App Repackaging Prevalence

based on the Permissions of App," Procedia Technology, vol. 24, pp. 1436-1444, 2016.

[58] Y. Zhou and X. Jiang, "Dissecting android malware: Characterization and evolution," in

Security and Privacy (SP), 2012 IEEE Symposium on, pp. 95-109. IEEE, 2012.

[59] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P. Bringas and G. Álvarez

Marañón, "MAMA: manifest analysis for malware detection in android," Cybernetics and

Systems, vol. 44, no. 6-7, pp. 469-488, 2013.

[60] Google Security Services for Android, "Android Security 2015 Year in Review," April

2016. [Online]. Available:

https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final

.pdf. [Accessed March 2017].

[61] R. Ramachandran, T. Oh and W. Stackpole, "Android anti-virus analysis," in Annual

symposium on information assurance & secure knowledge management, pp.35-40, 2012.

[62] Statista Inc., "Share of people who used anti-virus software on mobile phones in Denmark

in 2016," [Online]. Available: https://www.statista.com/statistics/649682/usage-of-mobile-

anti-virus-software-in-denmark/. [Accessed 14 March 2017].

54

[63] . H. Lockheimer, "Android and Security," VP of Engineering, Android , 2 February 2012.

[Online]. Available: http://googlemobile.blogspot.com.ee/2012/02/android-and-

security.html. [Accessed April 2017].

[64] Webroot, "Cloud-Based Mobile Device Security," 2013. [Online]. Available:

https://www.webroot.com/shared/pdf/WebrootMobileSecurity.pdf. [Accessed April 2017].

[65] Check Point Research Team, "More Than 1 Million Google Accounts Breached by

Gooligan," 30 November 2016. [Online]. Available:

http://blog.checkpoint.com/2016/11/30/1-million-google-accounts-breached-gooligan/.

[Accessed April 2017].

[66] L. Pinto, "Aptoide Numbers Reached New Heights in 2016!," Aptoide, 29 December

2016. [Online]. Available: http://blog.aptoide.com/aptoide-by-numbers/. [Accessed 13

April 2017].

[67] A. Kapratwar, "Static and Dynamic Analysis for Android Malware," 2016. [Online].

Available:

http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=1488&context=etd_projects.

[Accessed January 2017].

[68] T. D., "Yet another static code analyzer for malicious Android applications," March 2013.

[Online]. Available: https://github.com/maaaaz/androwarn. [Accessed January 2017].

[69] koodous.com, April 2017 . [Online]. Available:

https://koodous.com/apks/b68afb459d1d01d252409522706aed1d1a23e62782f5582c019cb

1006321bf0e/analysis. [Accessed April 2017].

[70] Payload Security, "VxStream Sandbox: Understand and Fight Unknown Threats,"

[Online]. Available: https://www.payload-

security.com/download/VxStream%20Sandbox%20Datasheet.pdf. [Accessed 2017].

55

Appendix 1 – Interview with Aptoide security personnel

“Our security system scans every uploaded application using multiple anti-virus

systems. Since all of the anti-virus systems we use are integrated into our security

system, we do not have much interest in using the exact same tools to externally analyze

a sample of our applications.

They would not detect anything, as any detection in our security system (with some

exceptions, more on that in the next paragraph) immediately removes all instances of

the application from Aptoide.

Some anti-virus detections are automatically ignored by our system, such as:

- Detections that have been confirmed to be false positives at all times;

- Potentially unwanted adware that is not extremely invasive (such as Airpush and

Startapp). However, in such cases, the application immediately gets a Warning or

Adware badge due to such detections;

- Detections for selected applications, such as Lucky Patcher and King Root. Most

applications that root your device will be detected by a number of anti-virus systems,

even though they are completely safe for the end-user. For instance, for King Root:

https://virustotal.com/en/file/ddfc0a7bb5146524b2c2a65e5051b263fe415528b8bdacaf6

20750e2e11d02ba/analysis/

While we're not exactly sure of what Cheetah Mobile considers as malware or not, as

this differs for every anti-virus system, we believe that most, if not all, of their 20

detections are instances of the above cases, which are not very frequent in Aptoide.

To answer your question, yes, 20 occurrences of "malware" out of 37098 applications,

accounting for 0.05% of the sample, seems like an accurate value. We do not have any

official data about this available, for the reasons explained above.”

56

Appendix 2 – Example of report generated by Droidbox

57

Appendix 3 – Report response from VirusTotal

{

 'response_code': 1,

 'verbose_msg': 'Scan finished, scan information embedded in this object',

 'resource': '99017f6eebbac24f351415dd410d522d',

 'scan_id': '52d3df0ed60c46f336c131bf2ca454f73bafdc4b04dfa2aea80746f5ba9e6d1c-

1273894724',

 'md5': '99017f6eebbac24f351415dd410d522d',

 'sha1': '4d1740485713a2ab3a4f5822a01f645fe8387f92',

 'sha256': '52d3df0ed60c46f336c131bf2ca454f73bafdc4b04dfa2aea80746f5ba9e6d1c',

 'scan_date': '2010-05-15 03:38:44',

 'positives': 40,

 'total': 40,

 'scans': {

 'nProtect': {'detected': true, 'version': '2010-05-14.01', 'result': 'Trojan.Generic.3611249',

'update': '20100514'},

 'CAT-QuickHeal': {'detected': true, 'version': '10.00', 'result': 'Trojan.VB.acgy', 'update':

'20100514'},

 'McAfee': {'detected': true, 'version': '5.400.0.1158', 'result': 'Generic.dx!rkx', 'update':

'20100515'},

 'TheHacker': {'detected': true, 'version': '6.5.2.0.280', 'result': 'Trojan/VB.gen', 'update':

'20100514'},

 .

 .

 .

 'VirusBuster': {'detected': true, 'version': '5.0.27.0', 'result': 'Trojan.VB.JFDE', 'update':

'20100514'},

 'NOD32': {'detected': true, 'version': '5115', 'result': 'a variant of Win32/Qhost.NTY',

'update': '20100514'},

 'F-Prot': {'detected': false, 'version': '4.5.1.85', 'result': null, 'update': '20100514'},

 'Symantec': {'detected': true, 'version': '20101.1.0.89', 'result': 'Trojan.KillAV', 'update':

'20100515'},

 'Norman': {'detected': true, 'version': '6.04.12', 'result': 'W32/Smalltroj.YFHZ', 'update':

'20100514'},

 'TrendMicro-HouseCall': {'detected': true, 'version': '9.120.0.1004', 'result':

'TROJ_VB.JVJ', 'update': '20100515'},

 'Avast': {'detected': true, 'version': '4.8.1351.0', 'result': 'Win32:Malware-gen', 'update':

'20100514'},

 'eSafe': {'detected': true, 'version': '7.0.17.0', 'result': 'Win32.TRVB.Acgy', 'update':

'20100513'}

 },

58

 'permalink':

'https://www.virustotal.com/file/52d3df0ed60c46f336c131bf2ca454f73bafdc4b04dfa2aea80746

f5ba9e6d1c/analysis/1273894724/'

 }

59

Appendix 4 – Report response from Jotti

{

 'file':{

 'hashes':{

 'sha256':'4ed7b65890b51b0879866fd7a257536061214906e5d778add519437c6f3a9cd7',

 'sha1':'a25368862386892bb7c50c8d88a63d123d17f150',

'sha512':'59e6b2257b874e3e409c70edf2c613ff0a3e108725fb8af5bca499010ed8041566a12204c

b0cdbc2d1232d461d52cbcd80c75b159ebaa17442cfab85f88c1957',

 'md5':'8b484a016745def60f292a127d1ea22b'

 },

 'type':'Zip archive',

 'name':'fb.apk',

 'firstSeen':'2017-04-11 20:09:30+02:00',

 'size':1524590

 },

 'scanJob':{

 'startedOn':'2017-04-11 20:38:16+02:00',

 'scannersDetected':0,

 'finishedOn':'2017-04-11 20:38:48+02:00',

 'webUrl':'https://virusscan.jotti.org/filescanjob/ab26sixjsq',

 'scannerResults':[

 {

 'scannerId':'adaware',

 'scannerLogoUrl':'https://virusscan.jotti.org/img/logo/filescanner/adaware-logo.png',

 'malwareName':'',

 'finished':True,

 'signatureFileDate':'2017-04-11',

 'finishedWithoutResultReason':None,

 'scannerName':'Lavasoft Ad-Aware'

}

60

Appendix 5 – Internet survey results

61

	LUDROID
	 Table of contents
	1. Introduction
	1.1. Research problem
	1.2. Research questions
	1.3. Objectives and scope

	2. Background
	2.1. Overview of Android OS
	2.2. Security measures
	2.3. Classification of Android application malware
	2.4. Threat model
	2.5. Third party repositories
	2.6. Classification of Android malware detection techniques

	3. Related work
	3.1. Static analysis
	3.2. Dynamic analysis
	3.3. Hybrid analysis
	3.4. Limitations

	4. Project
	4.1. Approach used in the project
	4.2. Use case
	4.3. Selection of techniques
	4.4. Measuring the malware occurrence in third-party stores
	4.5. Dataset
	4.6. Techniques performance
	4.6.1. VirusTotal Performance
	4.6.2. Jotti performance

	4.7. Decision making
	4.8. System description
	4.9. Internet survey
	4.10. Results

	5. Conclusions and future work
	References
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5

